

/

I

\

For our families

Susan, Ben, and Josie

Kathleen, Rosemary, Marjorie, Michael, Joanne, and Diane

/

Oh!APas !
George Beekman/Michael Johnson

W·W· NORTON & COMPANY
New York and London

!1J This book was designed and typeset by George Beekman and Michael
Johnson using a Macintosh Plus and an Apple LaserWriter printer.

©Copyright 1986 by W.W. Norton & Company, Inc.

ISBN 0-393-95598-2

Table of Contents

Preface vii

A Word to the Student ix

1 Getting Acquainted with Macintosh Pascal 1
What is Mac Pascal? 1
Programming for Output 2
Variables and Input 3
Antibugging and Debugging 4

2 Programming Calculations and Graphics 7
Assignments and Expressions 7
Built-In Functions and Procedures 8
Introducing QuickDraw Graphics 9

3 Procedures and Functions for Problem Solving 17
Functions as Subprograms 17
Antibugging and Debugging 17

4 Taking Control of Execution: the for Statement 21
for Statements and Program Actions 21
One-Dimensional Arrays* 22

5 Making Choices: the case Statement 24
The case Statem~nt 24

6 Programming Decisions: the if Statement 29
boolean Expressions and If statements 29

7 Making Actions Continue: The Conditional Loops 30
The repeat and while statements 30
Antibugging and Debugging 32

8 Character-Oriented Computing: Text Processing 33
Text Processing 33
The File Window and External Files* 37

9 Extending the Ordinal Types 43
Enumerated Ordinal Types 43

v

Table of Contents

10 Software Engineering 44
Writing Programs for People 44

11 Arrays for Random Access 46
Focus on Programming: Arrays 46
Strings as Arrays 50

12 E Pluribus Unum: Records 53
Predefined Record Types 53

13 Files and Text Processing 56
Making and Using Textfiles 56
Direct Access Files 58
Antibugging and Debugging 64

14 Collections of Values: The set Type 66
Defining and Programming SetTypes 66

15 Abstract Data Structures Via Pointers 67
Pointers in Macintosh Pascal 67

16 Advanced Topics 68
Macintosh Pascal Extensions 68
Advanced Programming Resources 70
Beyond Macintosh Pascal 71

Appendix: A Hands-On Introduction 73
Session 1 : Meet Mac Pascal (to accompany Chapter 1) 73
Session 2: Tools and Tricks (to accompany Chapter 2) 87

Error Messages and Explanations Inside back cover

Macintosh Desktop Command Summary Reference card

Macintosh Pascal Functions and Procedures Reference card

vi

Preface

Ohl Pascall is an exceptionally readable, thorough, and educationally sound
introduction to Pascal programming and problem solvin~. When we first
adopted Ohl Pascall at Oregon State in 1982, we were usmg an aging CDC
mainframe running an antiquated version of Pascal. In 1985 we moved our
introductory programming classes onto a bushel of shiny Macintoshes.
The course will never be the same. The Macintosh Pascal interpreter, with
its graphic user interface, smart editor, multiple windows, and powerful
debugging options, provides a nearly ideal environment for teaching
beginning programming.

Our switch to Macintosh Pascal created one problem: textbook
incompatibility. Ohl Pascall teaches Standard Pascal, a language that only
roughly resembles implementations used on most of today's microcom
puters. String data types, direct access files, and graphics - all common in
microcomputer versions of Pascal - aren't included in the original Pascal
Standard - or the Cooper and Clancy text. Many features that were
included in the Standard have been modified and improved in Mac Pascal.
these changes make Pascal easier to use and more powerful, but they're
hard to teach without a supporting text.

There are at least a dozen Macintosh Pascal books on the market, but
Ohl Pascall provides a far better introduction to Pascal, programming,
problem solving, and computer science than any of these Mac-specific
alternatives. Rather than settling for a book that com_promises on Pascal in
order to focus on the machine environment, we decided to start with the
best available Pascal textbook and develop a bridge between that book and
the Macintosh environment.

Ohl Macintosh Pascall is that bridge. It includes:

• A gentle hands:..on introduction to the Macintosh Pascal programming
environment.

• Topic-by-topic discussions of the differences between Standard Pascal
and Macintosh Pascal.

• Thorough introductions to the most important special features of Mac
Pascal, including string processing, file manipulation, and graphics.

• A wealth of programming examples in Macintosh Pascal.

• Supplementary exercises for Mac Pascal programmers.

• A reference section including explanations of common error messages.

• A tear-out quick reference card.

vii

Acknowledg
ments

Preface

• An optional supplementary disk containing all of the programs in 0 hf
Macintosh Pascal!, many of the programs in Ohl Pascal!, and bonus
programs that illustrate with Macintosh graphics some important
programming concepts from the text.

Oh! Macintosh Pascal! is designed to accompany Oh! Pascal! Topics
are generally covered in the same sequence. And like Oh! Pascal!, this
supplement need not be read in a strict sequential order. Some instructors,
for instance, may want to cover the section on using external files earlier
than Chapter 8 so they can use data files in their programming assignments.
We are careful to introduce Macintosh Pascal's special features where
they'll fit most appropriately in an introduction to Pascal. Strings and
graphics, for example, come early because they provide powerful,
interesting, and understandable tools for learning about procedures and
functions.

We're interested in hearing of your experiences with Oh! Macintosh
Pascal! We can be reached on CSNET at Oregon State (beekman@orstcs,
mpj@orstcs) or by good old-fashioned US Mail in the Computer Science
Department at Oregon State University, Corvallis, OR 97330.

First, thanks to Doug Cooper and Michael Clancy, whose excellent
book inspired this effort. We particularly appreciate Doug's encouragement
and advice in the early stages of this project. On the editorial end, it's been
a pleasure working with Jim Jordan and his staff at W.W. Norton & Co;
their fine editing and professional support made our work much easier - and
this book much better. We also appreciate the help and information we
received from Anjali Magana and the friendly folks at Apple Computer.
Locally, we are especially indebted to Karen Meyer-Arendt, Mark
Borgerson, Susan Beekman, and Kathy Johnson for their many editorial
contributions to this text. And finally, to our families - who have endured
so much and seen us so little over the last few months - love and thanks.

viii

George Beekman
Michael Johnson
October, 1986

A Word to
the Student

Learning
Mac Pascal

identifiers
(4)

Preface

You may be wondering why you've been assigned a separate book on
the subject of Macintosh Pascal. The answer is that you're lucky .. .lucky to
be learning Pascal on a system that's more interesting (and fun) than the
kind of computer system for which the textO hf Pascal! - and the original
Pascal language - were conceived. Because you'll use the Macintosh to
learn programming, you'll also learn a different - and much easier - way of
working with a computer than the one assumed in Oh! Pascal! Oh!
Macintosh Pascal is your guide to the special features of the Macintosh
system; it's an essential supplement to the text.

Oh! Pascal! describes what is regarded by the International Standards
Organization (ISO) as the Pascal Standard, and every program in Oh!
Pascal! is a Standard Pascal program. All Standard Pascal programs can be
run using Macintosh Pascal (occasionally with minor modifications, as
discussed in this supplement). However, since Macintosh Pascal is
designed to allow you to write programs that take advantage of the
Macintosh computer's special features and capabilities - like its graphics
and sound generation hardware - not every program you'll write in
Macintosh Pascal will be a Standard Pascal program.

The two main objectives of Oh! Macintosh Pascal! are to make clear
which elements of Macintosh Pascal are different from Standard Pascal, and
to explain the special features of Mac Pascal that you need to know about to
be fully conversant with the Macintosh. .

You'll find learning Mac Pascal easier if you follow these procedures:

1. Read your assignment in Oh! Pascal! That's where you'll learn the nuts
and bolts of programming, problem solving, and Standard Pascal.

2. Read the corresponding chapter in Oh! Macintosh Pascal! for details of
your brand of the language. Each chapter contains notes that modify or
expand on statements made in the text. For example, when Oh! Pascal!
tells you on page 4 that a Standard Pascal identifier may contain any series
of letters or digits, Oh! Macintosh Pascal! adds that it's OK in Macintosh
Pascal to include underscore characters in identifiers. Marginal sideheads
with parenthesized page references, like the one to the left of this paragraph,
make it easy to find the corresponding passages in Oh! Pascal! For
sideheads that deal with Macintosh-specific topics that aren't covered in 0 hf
Pascal!, we substitute a tiny Macintosh for the page reference number.

How you read these notes will depend on your personal learning
style. Most readers prefer to make an uninterrupted pass through each chap
ter of Oh! Pascal! before consulting Oh! Macintosh Pascal! Some read the
two books side by side from ·the beginning, checking for notes and
additions as they go along. A few read it both ways. Have 1t your way

3. Get your hands dirty. Leaming to program is like learning to ride a
bicycle; you can't do it without doing it. The two-part tutorial in the
appendix is designed to get you up and running on the Macintosh quickly
and painlessly. Work through these tutorial sessions after reading Chapters
1 and 2, respectively. But don't stop there. Do the exercises. Try out
program examples from the text, the supplement, and the Oh! Macintosh
Pascal! diskette. Experiment. Have fun! ix

The White Rabbit put on his spectacles. "Where
shall I begin, please your majesty?" he asked.

"Begin at the beginning," the king said, very gravely,
"and go on till you come to the end: Then stop."

-Lewis Carroll
Alice in Wonderland

What ls
Mac Pascal?

~

language
extensions

user interface

1

Getting Acquainted With Macintosh Pascal

MEET MAC PASCAL, the friendliest member of the ever-growing Pascal
family. Mac Pascal is particularly nice to strangers. You'll find as you read
this chapter and do the followup hands-on session in the Appendix that Mac
Pascal does everything short of holding your hand as you take your first
programming steps.

Macintosh Pascal differs from the Standard Pascal described in Oh!
Pascal! in two ways: the language extensions and the user interface.

Like most modem versions of Pascal, the Macintosh Pascal language
includes several extensions of the Standard. Some of these changes make
programmin~ easier and more intuitive; others allow your programs to do
things that stmply can't be done with Standard Pascal as Wirth defined it.
The price you pay for taking advantage of these extensions is a lack of
portability. Since the detailS of language extensions are implementation
dependent, programs written to take advantage of Mac Pascal's (or any
Pascal's) non Standard features may have to be modified considerably to
run with other Pascal interpreters or compilers.

Macintosh Pascal's most striking feature is its distinctive user
interface - the way it communicates with you. Like the Macintosh itself,
Mac Pascal is designed to be, above all else, easy to learn and easy to use.
But it's also packed with features to make advanced programmers more
productive. We discuss general features of the Mac Pascal user interface
here; the details are in the hands-on sessions in the Appendix.

The Mac Pascal screen generally displays three standard windows:

• the pro~ window, where you'll type your programs and edit (modify)
them. This window will display the name of your program, "Untitled" in
this example.

• the Text window,
r----~,.~",--~• which displays textual

output from your pro
~s. This window

----..,...,-.w..,..tn __ IS the place where
output from FirstRun,
and all other programs
in Oh! Pascal!, will
appear.
• the Drawing win
dow, which displays
whatever pictures you
create with your

l:>o;y----------r.i~t---------t-1 programs.

1

steps for running
programs

(7)

Programming
for Output

(4)

identifiers
(4)

Comments
(5)

program heading
(6)

1 Getting Acquainted with Macintosh Pascal

Across the top of the screen is a series of pull-down menus containing
commands you'll use to tell Mac Pascal what to do. The hands-on session
will show you how easy it is to use those menus.

Macintosh Pascal includes a built-in editor that can be used to enter
and edit (modify) programs in the program window. The editor
automatically formats each program as you type it in, by taking care of
indentation and spacing, and by boldfacing reserved words so you don't
need to make decisions on those matters. What's more, the Mac Pascal
editor points out many of the most common errors as you type your
program in, so you can correct them immediately.

Mac Pascal is an interpreter rather than a compiler, which means that
each line of your program is translated into machine language as the
program is run. This kind of translation-on-the-fly makes programs run
slower, but it also saves you the trouble of going through an extra
translation step each time you change your program. The interpreter also
includes several powerful debugging tools that make it easier to find errors
in your programs. These tools will be introduced in later chapters.

We'll explore the Mac Pascal programming environment further in the
Antibugging and Debugging section of this chapter. For now, let's focus
on extensions to the language itself.

Macintosh Pascal programs look pretty much like Standard Pascal
programs. One noticeable difference is the inclusion of the underscore (_)
as a valid character in an identifier. Underscores can appear anywhere in an
identifier, except at the beginning. For example, in Mac Pascal you can
name an identifier Batting_ Average; standard Pascal insists on
BattingAverage. Most modem versions of Pascal allow underscores to be
included inside identifiers. This extension to the Standard Pascal definition
allows you to write programs that are more readable without changing the
way they work at all. Of course, programs that include underscores in
identifiers won't run properly in older, less permissive versions of Pascal.

Besides accepting the underscore character, Macintosh Pascal also
treats identifiers with uppercase and lowercase characters as identical.
These are all the same to Mac Pascal:

highnumber HIGHNUMBER HighNumber

(The identifier High _Number is not identical to any of these.)
Comments may be surrounded by braces { ... } or by (* ... *). To

enter a multiple-line comment, you can just type a carriage return at the end
of each line of the comment, putting a closin~ brace only on the last line.
Mac Pascal will automatically surround each line with braces. (Don't try to
insert spaces to make the closing braces line up in the same column; it won't
work in Mac Pascal.)

Comments should never be longer than about twenty lines. Longer
comments can be typed in, but they may cause serious problems later when
you try to run the program.

The (input, output) part of the program heading is optional in
Macintosh Pascal.

2

Variables
and Input

(9)

Standard types
(10)

ordinal types
(10)

String Input
and Output

!JJ

Variables and Input

Besides the simple types found in the Standard - integer, char,
boolean, and real - Macintosh Pascal allows several additional types:

longint:

double:

extended:

string:

longint extends the range of integers from -32768 to 32767 for
integer to -2,147,483,648 to 2,147,483,647. This is still not
enough to compute the national debt, but it does allow integer
arithmetic over a much larger range than does integer.
double extends the range and precision of type real. The largest
double number that can be stored is 1.7 times 10 to the power of
308. The precision with which real values can be stored is
increased from 7 digits for real to 15 digits for double.
extended extends the range and precision of type double. The
precision is now 19 digits and the lmgest value is 1.1 times 10
to the power of 4932. Use this one to compute the national
debt.
string is a type which allows from 0 to 255 characters to be
associated with a single identifier, so you can store a complete
name or phrase. String is the only type identifier which is also a
reserved word, which is why it's printed in boldface. As you'll
see in chapter 11, type string has many properties of a structured
data type, like an array. But until then, we'll just think of it as
another simple type.

The ordinal types in Macintosh Pascal are integer, longint, char, and
boolean.

Of all of the non Standard data types included in Macintosh Pascal,
string is by far the most important. Today's computers work with text at
Jeast as much as they work with numbers, and a string data type is an
important feature of a text-processing language. The string:..nandling
capabilities built into Macintosh Pascal can make short work of
programming tasks that are at best tedious with Standard Pascal.*

String variables can be read from the ke~board and written to the text
window much like the other variable types you ve seen:

readln (string_variable);
writeln (string_variable);

String output is straightforward enough; all of the characters in the
string are written just as if they had been stored and written as individual
characters. But string input is complicated by the fact that a string variable
may be any length up to 255 characters. How do'es the computer know
where the string stops? The answer is simple: it keeps reading until it hits
the end of the line (a IRenrnl) and counts everything up to that point as part
of the string. The next read or readln starts reading on the next line, so a
second string could be read from the second input line with a second readln.

• Jn fact, strings have been incorporated into most microcomputer versions of Pascal.

3

Antibugging
and

Debugging
(22)

translation bugs
(22)

1 Getting Acquainted with Macintosh Pascal

(The read statement also reads all of the characters until the end of the line
and places those characters in the string variable. But it's not usually a
good idea to read a string with a read, because it doesn't automatically skip
over the !Return! at the end of the line.)

Because readln with a string variable as a parameter puts all remaining
characters on the line into that variable, you can't read two strings from the
same line, and you therefore shouldn't try to included two strings in one
readln. It's perfectly OK to include variables of other types in a readln with
a string variable, but the string should be the last variable in the list.
(Why?)

Here's a simple program that illustrates basic string input and output:*

Echo Name D Tent

program Echo_Name;
Please type your name: IQl Beaver Cleaver

var Your nmne is Beaver Cleaver

name: string;
begin

writeln('Please type your name:');
readl n(name);
writeln('Your name fs ·,name);

end. ; _ ...

The Macintosh Pascal interpreter translates each line and checks its
syntax as soon as you finish typing it. If it can't understand what you have
typed, it ootllilmes the text, starting with the point at which the program
stops makin~ sense. Suppose you're typing in your first program and you
spell begin incorrectly. The part of the program that follows is displayed in
outlline print.

program FirsLRun;
{This is our first program.}
begnwrlteln ('Hello. I love you.')

The bug is easy to spot because begin is not written in boldface as it would
be if the interpreter recogniz.ed it as a reserved word. To correct the bug,
just insert an "i" with the editor and move on; the outline type should
disappear and "begin" will be written in boldface. (The details of this kind
of editing are explained in the first hands-on session.)

program First_Run;
{This is our first program.}
begin
writeln ('Hello. I love you.')

*We've changed the window sizes here; you'll see how in the second hands-on session.

4

spurious bugs
(23)

run-time bugs
(24)

order of input
(25)

Antibugging and Debugging

Some syntax errors are not immediately recognized by the interpreter.
Suppose that we type the capital letter "I" instead of the lowercase letter "l"
in writeln. The inte:rpreter aoesn't immediately detect this as an error. If
we choose the Check option in the Run menu, the inte:rpreter checks
through the entire program for errors and finds the incorrect spelling of
writefn. Two things happen when a bug like this is detected:

1. The line in which the error occurs is marked with a thumbs down.
2. A ladybug appears in a dialog box along with an error message to give

you an idea of what went wrong. ·

Before you can fix this kind of error, you'll have to acknowledge and clear
the error message by clicking somewhere in the error box or hitting the
!Retll'nl key.

9 File Edit Seorch Windows

~ The name •wrlteln" has not been declored yet. ~

begin
wr1teln('Hello. I love you.')

end. Drawing

Be careful about taking error messages too literally. Many error
messages are hard to understand; others can be downright misleading.
They don't always describe the error accurately, and they sometimes point
you to the wrong line of the program. lnte:rpret them as important clues
rather than absolute truths.

Some bugs won't be detected by the inte:rpreter until the program is
run. In this example a value of zero was read for the variable Oh my ,
causing this error message: -

~ Floating point arithmetic eHceptlon: Dluide by zero attempted.

Otune, OtLmy: integer; H begin
Wrtte1n('Enter two Integer volues:'); Drawln_g_
reed1n(Otune, Otuny);

~ wr1teln(Otune I Otuny);
end.

In many cases, Macintosh Pascal· is more forgiving than other
Pascals. For example, an input type clash won't tenninate the program; the
machine just beeps and waits for a correctly-typed value.

Common error messages are listed and explained in the reference
section of this book.

5

system bugs

get a listing
(24)

write test
programs

(26)

Still More
Exercises

1 Getting Acquainted with Macintosh Pascal

More serious errors may cause a bomb, rather than a bug, to appear,
along with an error message that may be so vague that it's useless.
Sometimes a bomb appears because you've made a programming error, but
more often it means that you've uncovered a bug in the Mac Pascal
interpreter or the Macintosh operating system. Ominous visual image
notwithstanding, a bomb does not mean that your machine is damaged or in
danger; it just means that the Macintosh operating system is terribly
confused by what just happened. You may never see a bomb; they're fairly
rare, especially in mature software. But when a bomb does appear, it may
leave you with no alternative but to restart the machine. That can be a minor
inconvenience or a major setback, depending on how long it's been since
you saved the program you were working on.

A good way to find bugs in a longer pro~am is to make a printed
listing so you can examine it in total and make wntten notes and corrections.
To list the entire program, select the Print option from the File menu, as
described in the hands-on tutorial.

In addition to writing and testing short programs to see how things
work (or don't work), you can take advantage of Macintosh Pascal's
Instant window and Observe window to test features of the language and
debug your programs. The next two chapters will show you how to use
these powerful tools.

1-32 Complete the first hands-on session in the Appendix.
1-33 Type in, edit, and run the example programs from Chapter 1 of Oh! Pascal!
1-34 Write a program that reads a value into an integer variable. Have your program
write a prompt to the text window before the read statement. Run the program and type a
letter instead of a number. What happens?
1-35 Different implementations of Pascal use different default output fonnats. Write a
program that determines the default format for real and integer variables in Mac Pascal.
Change the program so that it writes the result of the expression 10/8 so that all of the
significant places are wriuen.

6

Assignments
and

Expressions
(34)

initializing variables
(35)

string
assignments

(36)

2

Programming Calculations and Graphics

IN CHAPIBR 1 of Ohl Pascal! you were introduced to write and writeln
two standard procedures that allow you to turn program values into text

output. In· Chapter 2, you met several standard functions that calculate and
return simple values to your programs. In this chapter, you'll meet several
Macintosh Pascal procedures and functions that can be used to produce
pictures, rather than numbers and words. Graphics is an exciting
application of computer science that's completely ignored in Standard
Pascal; we'll compensateby giving it lots of attention here. But first, we'll
discuss some simple extensions to those facets of Pascal discussed in
Chapter 2 of Ohl Pascal! (When you've finished this chapter, don't forget
the second hands-on session, Tools and Tricks, in the Appendix.)

Let's start by discussing a potentially hazardous language extension:
Mac Pascal's automatic initialization of variables. Each time a program is
run, Macintosh Pascal initializes all numeric variables to zero, alf characters
to blanks, all string variables to empty (zero characters), and all boolean
variables to false. That means you don't need to explicitly initialize those
variables yourself in the pro~ - but you should anyway! Programs that
don't explicitly initialize their own variables can cause subtle and terrible
bugs if they're ever run on other systems, and programmers who don't
learn ~ood initialization habits can wreak havoc when unleashed in a non
initial1zing system. We therefore strongly recommend that you ignore this
automatic initialization feature and always initialize your own variables.

String variables can be assigned values just like other variables. Like
char variables, strings are assigned values enclosed in single quotes:

String_ Var_ 1 == 'B';

But unlike character variables, strings aren't limited to one character's
worth of data, so it's OK to say

String_ Var_2 := Whaf's up, Doc?';

Of course, it's perfectly OK to assign one strin~ to another, or to assign a
char to a string variable, or even to assign a stnng to a char, provided that
the string contains only one character:

Char_ Var:= 'Y';
String_ Var_3 :=String_ Var_2;
String_ Var_2 :=Char_ Var;
Char_ Var:= String_ Var_ 1;

7

MAX INT
and other
constants

(45)

the
Instant

window

~

Built-In
Functions and

Procedures
(51)

2 Programming Calculations and Graphics

Let's look at Macintosh Pascal's built-in numeric constants. The
Standard Pascal constant MAXIN!' has the value of 32,767 in Mac Pascal;
that's the largest legal integer · value. A non Standard constant,
MAXLONGINI', represents the largest possible value of a variable of
longint type: 2,147,483,647. PI is another built-in constant that provides
an extremely accurate value for that old favorite from geometry, 7t. INF can
be used to represent infinitely large real values in arithmetic expressions;
when it's printed out by itself, it's just "JNF."

Suppose in the middle of writing a program you need to check the
values of those four constants. If you don't have a reference manual handy,
you can ask Mac Pascal via one if its friendliest tools: the Instant window.

Instant D Te Ht

(Do U) 32767 ~ 2147483647
wr1teln(MAXINT); 3.1415926535897932e+O

wr1 tel n(MAXLONG I NT);
INF

wrltel n(PI : 25);
wrlteln(INF);

~
This window allows you to execute one or many Pascal statements without
having to write an entire program. Once you've selected Instant from the
Windows menu, all you need to do is type in the statements that you want to
try and click the "Do it" button in the window. (It's a good idea to save
your program before you Do it, just in case your Instant code bombs the
system.) The Instant window is especially handy for experimenting with
small chunks of Pascal code to test them without wnting a complete
program. (Since the standard editing features are available inside that
window, you can Copy statements that you've tested there directly into your
program window.)

In addition to the Standard Pascal functions, Macintosh Pascal
includes a particularly useful arithmetic function called random. Random

returns a random integer in the range -32768 to 32767.* It has no
arguments. Examples:

writeln(Random:1 O);
or

writeln(Random mod 1o.o:3) {for a random digit 0-9}

Besides random, Mac Pascal includes several functions for working
with the added predefined types (longint, extended, double, and string) and
a variety of other special-purpose functions. In addition, Macintosh Pascal

•Random numbers are discussed in Oh! Pascal!, pages 144-6

8

Introducing
Quick Draw

Graphics
(9

QuickDraw
Procedures

Assignments and Expressions

includes predefined procedures for working with strings, files, sound,
graphics, and the Macintosh user interface. Unlike the built-in functions,
these procedures do more than return simple values. Each predefined
procedure is a complete Pascal statement that tells the interpreter to do
something. You've already worked with readln, read, writeln, and write,
four procedures built into ~tandard Pascal. Standard Pascal has a few
more; Macintosh Pascal has dorens.

Two simple procedures, ShowText and ShowDrawing, allow you to
open the Text window and the Drawing window, respectively, from inside
any program. It's important to use those procedures at the beginning of any
program that depends on the visibility of those windows so the program
will work properly even if they're closed or covered when the it's run.

When Wirth designed Pascal, almost all computer output was in the
form of text or numbers. By contrast, output from the Macintosh is as like
ly to be pictures as words or numbers. Programmin~ the Macintosh means
programming with graphics, and Macintosh Pascal includes a QuickDraw
library of procedures and functions to make graphics programming easier.

The entire Macintosh screen is composed of pixels (picture elements)
- tiny dots that can be displayed as either black or white. Pixels can be
combined in patterns that look like icons, words, numbers, space invaders,
or just about anything else. (The same principle is used by card-carrying
football cheering sections to make stadium-sii.ed pictures and messages.)

In Mac Pascal, graphics output is shown in the drawing window.
Building graphics means making pixel patterns. A single black pixel on a
white pixel background makes a point, a row of black pixels on a white
background lookS like a line, four lines can make a rectangle, and so on.
To allow you to position figures in the window, each pixel has an address
that indicates its vertical and a horizontal position in the window. These
positions are represented as integer values. The upper left hand corner of
the window has vertical and horizontal positions of zero (0,0). (If you're
comfortable with Cartesian coordinates, you'll have to readjust your
orientation so that bigger means down, not up.) The horizontal positions
increase as you move to the right to a maximum of 495 pixels, and the
vertical positions increase as you move down the window to a maximum of
295 pixels. These maximum values assume that you've stretched the
drawing window to fill the entire screen.•

Creating graphics would be tedious, indeed, if we had to individually
position each pixel on the screen. Fortunately, Macintosh Pascal has a
library of built-in QuickDraw graphics procedures which can be used in
programs to produce {>ictures. Most of these QuickDraw procedures have
arguments that ~ecify pixel addresses. There are more than 100
QuickDraw ~aphics procedures, but only a few are necessary for the
drawings you 11 be doing here.

To understand how QuickDraw procedures work, imagine that you
have a magic pen that draws on the screen wherever you tell it to. Drawing

• The bands-on session will show you how to manually change the window si2:e. Jn
Chapter 12 you'll see how you can make it even larger by using a procedure to resize iL

9

Drawing Lines

procedures
MoveTo and

Lineto

QuickDraw
pen-changing

procedures

QuickDraw
pen-moving
procedures

2 Programming Calculations and Graphics

a line is a simple two-step process: move the pen to the starting point of the
line and draw to the ending ·point. Suppose we want to draw a line 40
pixels long and 10 pixels from the top of the window. We'll use two
QuickDraw procedures: MoveTo, which positions the pen at the starting
point for the line (10 over and 10 down from the upper left comer}, and
LineTo, which moves the pen to the end (50 over and 10 down), drawing
as it moves. The Instant window is .ideal for short graphics tests like this:
§0 Instant Drawing

(Do It~ Q --
MoveTo(1 O, 1 O);
LineTo(SO, 1 O)J

[QJ
¢1 lQ Q]

Notice that each of these procedures has two arguments: a horiz.ontal
coordinate and a vertical coordinate. These parameters are like the ordered
pairs used in analytic geometry, in that the horiz.ontal coordinate must be
listed first. (But remember that the Y coordinate measures down.) The two
argilments must be of type inte~er, because points in the graphics window
are represented by integer coordmates. They may be inte~er values, integer
expressions, or integer variables, as Ion¥ as they're in the nght order.

The line is solid black and one-pIXel wide, as if it were drawn with a
black fme-tipped pen. As it turns out, you can change the width and pattern
(color) of your pen with these procedures:

PenSize(width,height): Adjusts pen thickness. Default is (1,1).
PenPat(pattern): Selects the pattern for the pen. The choices are black

(default), white, gray, hgray, dkgray.
PenNormal: Sets pen to default size and pattern.
HidePen: and Showpen: These tum the pen off and on respectively and

are very useful for drawing dashed lines.

MoveTo and LineTo send the pen to absolute coordinate positions.
QuickDraw has two other pen-moving procedures that allow you to move
the pen a specified number of pixels from its current location. Here's a
summary of the pen-moving procedures:

MoveTo(horiz.ontal, vertical): Moves pen (without drawing) to the
specified position. Move absolute.

LineTo(horizontal, vertical): Moves pen (drawing all the way) to the
specified position.

Move(horizontal,vertical): Moves pen (without drawing) to the point
horizontal pixels right or left and vertical pixels up or down. Move
relative.

Line(horiz.ontal, vertical): Moves pen (drawing all the way) to the point
horizontal pixels right or left and vertical pixels up or down.

10

Drawing
Shapes

Introducing QuickDraw Graphics

Using MoveTo and LineTo, we could draw a rectangle like this:

MoveTo(30,40);
LineTo(30, 100);
LineTo(150, 100);
LineTo(150,40);
LineTo(30,40);

but, as it turns out, we can do the same thing with a single procedure call:

FrameRect(40,30, 100, 150);

The four arguments of FrameRect represent, in order:
1. the distance, in pixels, from the

top of the window to the top of
the rectangle (40)

2. the distance from the left of the
window to the left side of the
rectangle (30)

II[Dr11win_g_

TOP,. r
BOTTOM

procedure 3. the distance from the top of the
FrameRect window to the bottom of the

rectangle (100)

HEn->b
~

I"" RIGHT-+I

4. the distance from the left of the
window to the left side of the
rectangle (150).

(495,295)

112J

(Cartesian thinkers might prefer to think of the first two arguments as an
ordered pair representing the upper left comer of the rectangle and the last
two as the lower-right comer.) •

We could have also written

FrameRect(top,left,bottom,right);

assuming that top, left, bottom, and right had already been assigned values
of 40, 30, 100, and 150, respectively. The names of the arguments aren't
important to Pascal; we could just as easily have written

FrameRectGohn, paul, george, ringo);

or even

FrameRect(bottom, right, top, left);

and gotten the same results, as long as the four arguments in parentheses
had been assigned values of 40, 30, 100, and 150, when reading from left
to right. In other words, Pascal pays attention to the order, rather than the
names, of the arguments, in procedures. In FrameRect, the first argument
always represents the top of the rectangle, the second the left side, and so
on. To preserve your sanity, use argument names that correspond to the
actual meanings.

11

QuickDraw
shape

procedures

Labeling
Graphics

procedure
Write Draw

procedure
Drawstring

2 Programming Calculations and Graphics

Here are the most important QuickDraw shape-drawing procedures:

FrameRect(top,left,bottom,right): Draws a rectangle with the specified
bounds.

PaintRect(top,left,bottom,right): Draws a solid black rectangle (unless
you specify another fill pattern using the Penl'at procedure).

FillRect(top,left,bottom,right,pattem): Fills a rectangle with the
specified pattern. FillRect allows the fill pattern to be different from
the border pattern; PaintRect does not. The pattern argument may be
any black, dkgray, gray, ltgray, or white.

EraseRect(top,left,bottom,right): Erases (turns white) everything inside
the specified rectangular area

/nvertRect(top,left,bottom,right): Changes every black pixel to white
and every white pixel to black in the specified area

FrameRound.Rect(top,left,bottom,right,oval_ width,oval_height): Draws
a rectangle with the ~cified boundaries and with rounded comers.
The degree of roundmg is specified by the last two arguments.
Similarly, PaintRound.Rect, EraseRound.Rect, FillRoundRect, and
InvertRound.Rect work like their square-cornered counterparts.

FrameOval(top,left,bottom,right): Draws an oval in the specified
rectangular area FrameOval(l0,10,110,110) draws a circle with a
diameter of 100. PaintOval, FillOval, EraseOval, and InvertOval
work the same way.

FrameArc(top,left,bottom,right,start_angle,arc_angle): Draws an arc
within the specified rectangle, of a size specified by arc angle,
beginning at start_ angle. The angles are specified in Integer
degrees, and rero degrees is twelve o'clock. PaintArc, FillArc,
EraseArc, and InvertArc also exist.

One picture may be worth a thousand words, but it's often worth even
more if it's got a few well-chosen words of its own. It's easy to add text to
your graphics by writing text output directly to the Drawin~ window. The
procedure WriteDraw works just like write except that 1t writes to the
Drawing window instead of the Text window. The lower left comer of the
first character of the text begins wherever the pen rests. (If the pen isn't
where you want it, use MoveTo to get there.)

WriteDraw('FERTILITY RATE,', year1 :4, 'to', year2:4);

The problem with WriteDraw is that it only allows you to specify the
position of the lower left comer of text, so it's difficult to center labels on
graphs and diagrams. Fortunately, there's another built-in procedure,
DrawString, that makes it easier to center labels.

DrawString(label);

The argument label is of type string and may be any string value, variable or
expression that you want to display in the Drawing window.

12

procedure
String Width

function
StringOf

Introducing QuickDraw Graphics

Like WriteDraw, DrawString starts the text at the current pen position.
But since DrawString is writing out exactly one string, you can center the
label if you can detennine the width of that string in pixels. The function
StringWidth returns an integer value equal to the width of the label in pixels:

Label_ Size:= StringWidth(label);

This short example shows how StringWidth and DrawString can be used to
center a picture. (The Drawing window, like the Text window, is cleared
whenever Go or Reset is selected from the Run menu.)

Slmple_orewln

progrom Slmple_on:iwlng;
var

~o Drawin

center: Integer;
title : string;

begin
title := 'PICTURE';
ShowDrowl ng;
FromeRect(10, 10, 100, 150);
MoveTo(lO, 10);
LlneTo(150, 100);
MoveTo(150, 10);
UneTo(10, 100);
center:= BO - StrlngWldth(tltle) div 2;
MoveTo(center, 120);
DrewStrlng(tltle)

end.

PICTURE

Fine, but suppose we want to include a numeric variable in our
centered label? In order to use StringWidth for centering we need to limit
ourselves to a label that can be expressed as a single string argument.
Fortunately, there's a built-in function called StringOf that works just like
write, except that it "writes" the indicated values into a string:

String_ Var:= StringOf('FERTILITY RATE,', year1 :4, 'to', year2:4);

If year 1 is an integer variable with a value of 1950 and year2 has a
value of 1990, String Var now has a value of 'FERTILTIY RATE, 1950 to
1990'. Since it's a String, String_Var can be used as an argument for
StringWidth and for DrawString.*

•For the record, procedure ReadString goes in the other direction, allowing you to break
a string into a collection of numeric, character, or other values. It works just like read,
except that its first argument is a string from which the remaining arguments can be read.

13

QuickDraw
text

procedures
and functions

2 Programming Calculations and Graphics

Here's a summary of the most important functions and procedures for
working with text in the Drawing window:

WriteDraw(expression_l, expression_2, ... , expression_n}: Writes the
specified expressions to the drawing window. The pen begins at the
lower left of the first character.

DrawString(string): Writes the specified string of characters in the
drawing window at the current pen position. The pen begins at the
lower left of the first character.

DrawChar(character): Writes a single character to the drawing window
in the same manner as DrawString.

StringWidth(string) and CharWidth(character) are functions that return
integer values ~ving the width in the number of pixels.

StringOJ{express1on_l, expression_2, ... , expressmn_n): Not actually
a part of the Quick.Draw library, but often used to convert a series of
expressions into a string so that they can be written with DrawString.

TextFace(face): Selects the style of the characters.face must be [bold],
[italic], [underline], [outline], [shadow], [extend], or [condense].
The square brackets must be included: TextFace([shadow]). To
indicate two or more styles, include both in brackets separated by
commas: TextFace ([bold, italic]). Indicate plain text with empty
brackets [].

TextSize(size): Selects the size of the characters. size is an integer
value and is the point size of the characters, which is roughly their
height in pixels. Characters look best when they're written in sizes
that are stored in the system file; otherwise they're likely to have
jagged edges resulting from scaling up or down. (9 and 12 are
usually safe; 12 is the default.)

TextFont(font): Selects the character font (typestyle) from among those
available in your system file. font must be an integer value. If you
want to use this one, you'll need to experiment or ask for help to
determine the numbers of the system fonts on your disk.

Let's finish up with a short program that illustrates several of the
QuickDraw procedures and functions we've discussed. This program isn't
as easy to read as the non-graphic :programs we've seen so far, mostly
because of all the numeric arguments m the Quick.Draw procedures. If you
find it confusing, try stepping through the program listing one statement at a
time using a piece of graph paper to represent the Drawing window. If that
seems too tedious, the second hands-on session the Appendix will show
you how Macintosh Pascal can step through the program for you so you can
actually watch the drawing develop one statement at a time.

14

QuickDraw
graphics

demo
program

Introducing QuickDraw Graphics

program Draw_a_Package; {to demonstrate QuickDraw routines.}
con st
CENTER= 107; {Horizontal center of box.}
var
Labels : string;

begin
ShowDrawing;
Pei1Size(4, 4);
Fill0val(5, 5, 56, 210, dkgray);
Frame0val(5, 5, 56, 21 O);
FrameArc(210, 5, 261, 210, 90, 180);
MoveTo(5, 32);
Line(O, 200);
Move(201, O);
LineTo(206, 32);

{Shadow box top.}
{Outline box top.}

{Draw box bottom.}
{Draw sides of box.}

PaintRoundRect(70, 12, 120, 203, 20, 20); {Draw brand patch.}
Erase0val(75, 22, 115, 193); {Clear place for brand name in patch.}
TextSize(18); {Set up and draw brand name.}
TextFace([shadow]);
Labels :='MAC PASCAL';
MoveTo(CENTER-StringWidth(Labels) div2, 101);
DrawString(Labels);
TextFace(O); {ClearTextFace.}
TextFace([bold, italic]); {Draw product description.}
Labels:= 'FORTIFIED';
MoveTo(CENTER - StringWidth(Labels) div 2, 140);
DrawString(Labels);
TextSize(10);
Labels :='Builds Better';
MoveTo(CENTER - StringWidth(Labels) div 2, 155);
DrawString(Labels);
Labels :='Programs';
MoveTo(CENTER - StringWidth(Labels) div 2, 167);
DrawString(Labels);
end. {Draw_a_Package}

15

Still More
Exercises

2 Programming Calculations and Graphics

2-31 Complete the second hands-on session, Tools and Tricks, in the Appendix.
2-32 Sales of Fortified Mac Pascal are slipping. Redesign the packaging to rekindle
consumer interest.
2-33 Write a program to draw a square inscribed in a circle inscribed in an equilateral
triangle. Have your program accept as input the diameter of the circle and calculate the
dimensions of the other two figures.
2-34 Write a program that takes the length of the two perpendicular sides of a right
triangle as input, draws the triangle, and labels the length of each of the three sides. ·
2-35 Pie charts are used frequently to pictorially represent percentages. These
diagrams are circles divided sliced into pieces. The size (arc) of each piece is proportional
to the percentage represented by that piece. Write a program that reads three values which
represent the number of registered voters who are Republican, Democrat, and Undecided.
Your program should then determine the percent for each party and draw a pie chart to
illustrate those percentages. Add labels to each piece of. the pie.
2-36 Write a program which reads digital data representing the time of day in hours,
minutes, and seconds and converts the time to analog data in the form of a clock face with
hands. The clock face should have numbers at 3, 6, 9 and 12 o'clock.
2-37 Do exercise 2-24, representing graphically the time on Ziggy's 24-hour clock
and on his new Mercurichrone
2-38 Write a program that draws a simple house. Label your house with an address
centered beneath iL
2-39 Repeat your solution to 2-26 with the output going to the Drawing Window
instead of the text window.
2-40 Write a program to draw a picture of a Macintosh computer. (Can this be
considered a self portrait? Is it foreshadowing for recursion?)

16

Functions As
Subprograms

(82)

function type
(82)

Antibugging
and

Debugging
(90)

Using the
Observe
Window

(SJ

3

Procedures and Functions for Problem Solving

TlllS IS ONE OF THE MOST IMPORT ANT - and demanding - chapters
in Oh! Pascal! Fortunately, Macintosh Pascal conforms closely to Standard
Pascal in its treatment of procedures and functions, so you won't be saddled
with much additional material here. The one exception - functions of type
string - is straightfoiward and intuitive. If you found ~rocedures,
parameters, and functions generally confusing, Mac Pascals Observe
window, introduced in this chapter, will come to the rescue. This
innovative and powerful tool, when used with the examples and exercises in
Oh! Pascal!, will help make subprograms and parameters crystal clear.

As you know, Standard Pascal functions may be of result type char,
boolean, integer, and real. Macintosh Pascal allows functions to be of type
string, too. Here's an admittedly silly example. Later, when you've been
introduced to Mac Pascal's advanced string-handling capabilities, you'll see
how useful string functions can really be.

Strlng_Functlo_!!:;1 1 TeHt
program Str1n!JJunctlon_Exemple; Meath•r .-.port for Olhlch dat.? P.
{G1 Yes the weether report for 11ny dete.} l1ay '· 1995 Expect the Mather lo ti. hol

Yllr
Dete : strtng;

rune ti on Weather ...Report (Dete : string): stnng;
{Returns the weather as 11 string given any date}

begin
Weather ...Report := 'hot' {Change to 'humid' for Miami, 'rain' for Oregon}

end;
begin

writeln('Weather report for wh1ch dote? ');
reedln(D11te);
wr1teln('E)(pect the weather to be ·• Weather _Report(Dete))

end.

As we saw in Oh! Pascal!, bugs associated with parameters often
result from confusing value and variable parameters, and programs with lots
of procedures and parameters can be tedious to debug by hand. Fortu
nately, Mac Pascal's Observe window allows you to observe the value of
any variable or expression at any point in the execution of a program. It's
an important tool for debugging - or just understanding - longer programs.

The general procedure for using this tool is to select Observe from the
Window menu and then type in the expressions you wish to observe. The
usual editing features are available , so you don't need to retype long names;
you can just Copy them from your program listing and Paste them in. The
values of those variables will be continuously displayed in that window as
your program executes.

17

Step

Step-Step

Stops In

Go-Go

observing
parameters
and scope

3 Procedures and Functions for Problem Solving

H you select Go, the program will probably run too fast for you to
observe the changes in your selected variables. There are three ways to
slow or stop the execution so you can check the values of your variables.
1. Instead of selecting Go, select Step (or l!:]-S). You probably used this

technique to step through a graphics program one statement at a time in
the last hands-on session; it works particularly well with the Observe
window for tracking variable changes. But for longer programs, single
stepping can be tedious.

2. To speed things up, select Step-Step from the Run menu. This auto
stepping command won't wait for you, so you have to watch carefully.

3. For many problems it's helpful to stop the l'rogram at key checkpoints to
observe the values of your selected vanables. You can do this by
selecting Stops In from the Run menu. Then each time the mouse is
clicked to the left of a statement a stop sign is inserted. Now when Go is
selected from the Run menu the program will execute only to the next
stop sign. Program execution is continued only when Go or Go-Go is
selected from the Run menu. Go-Go behaves like Step-Step except that
it only pauses at stop signs.

The Observe window can also be used to examine the nuances of local
and global variables in subprograms. Let's obseive this variation on Con
fusion from Ohl Pascal!, page 81. (We've removed most of the writeln
statements because the Observe window serves the same function here.)

program Even_More_Confusion;
{Comments? Nope-that would be telling.}
var
A, B, C, D : integer;
procedure Confuse (C, A : integer;
var D : integer);

var
B, E : integer;

begin
A:= 5; B := 6; C := 7; D := 8; {Lines combined to save space}
E :=A+B+C+D;
end; {Confuse}
begin
A:= 1; B := 2; C := 3; D := 4;
Confuse(B, A, D);
writeln(A, B, C, D)
end. {Confusion}

You'll see in the windows on the following pages that we've set stops
at the beginning and end of the procedure, at the procedure call, and at the
final writeln, and we've typed the variable names mto the Observe window.
When we select Step-Step, the program plods along until it stops at the first
stop sign, waiting for you to give it the go-ahead so it can execute the
fin~ered statement. All of the variables have values displayed except E,
which is local to the procedure .and therefore undefined at this point.

18

using stops

A:= 1;
B := 2;
c := 3;
D := 4;

~ Confuse(B, A, D);
O writeln(A, B, C, 0)

end. {Confusion}

Antibugging and Debugging

Euen_More_Confuslon
-O Obserue

1 A fQ
2 B

:~ ~
t.lndefined nt1me E lQ!

We can select Step-Step again to watch the changes in the variables as
the program continues, or we can select Go to move quickly to the next stop
sign. Either way, the finger moves into the procedure and stops at the
begin. Inside the procedure all five observed variables are defined,
including the local variable E. But B and E have not been assigned values
by the program, so they show values of 0, because Macintosh Pascal
initializ.es all variables automatically. Dis a variable parameter; A and Care
value parameters. All three of these variables have values assigned as a
result of being passed as parameters. Note also that the values for A, B,
and C are local to this procedure and will change when the procedure ends.

Euen_More_Confusion

var D: Integer) =D Obserue
var

B, E: integer;

~ b!~~n5 ;

ISi

B := 6;
c := 7;

1 A

!~ I
0 E IQ:

0 B

The finger has reached the end of the procedure and values have
been assigned to each variable within the procedure. A, B, C, and E are
local variables and will be undefined when the end statement is executed.
When execution returns to the main program A, B, and C will refer to the
variables local to the main program.

c := 7;
D := 8;
E := A + B + C + D;

~ end; {Confuse}
begfn

A := 1;
B := 2;

Euen_More_Confusion
!!!0 Obser1Je

5 A Q

26 E Q

19

Still More
Exercises

3 Procedures and Functions for Problem Solving

Back in the main program, E is no longer defined. The identifiers for
A, B, and C now refer to the versions declared in the main program and
contain the values assigned to them in the main program. D was passed as
a variable parameter and its contents were affected by what went on in the
procedure.

A := 1;
B := 2;
c := 3;
D := 4;

Euen_More_Confusion
-o Observe

IA ~

O Confuse(B, A, D);
~ writeln(A, B, C, D)

end. {Confusion} llndefined nt1me E ~

Once you're done observing variables, you'll probably want to
remove the stop signs from the program. A single stop sign may be
removed with a click on the sign. To remove the whole set, select Stops
Out, which has replaced Stops In in the Run menu.

Observing the values of variables during the course of program
execution is one of the most effective ways of finding :program errors. All
programmers do this kind of observation - often by mserting temporary
writeln statements. The Observe window is one of the most important and
powerful tools in your Macintosh Pascal toolbox; we encourage you to use
it often.

3-32 Use the Observe window to follow the values of the variables and parameters in
HardToBelieve (3-13) as the program runs.
3-33 Answer exercise 3-14 for Macintosh Pascal.
3-34 Write the program to help Monica Marin (3-23) using QuickDraw graphics.
3-35 Write procedures to produce block letters in the Drawing window using
QuickDraw graphics. Write a program to display your name with these letters.
3-36 Write procedures to produce a character font of your own design.
3-37 Write procedures to produce line graphs. These might include. Draw_Axes,
Label_Axes, and Draw_Curve. The input is to be from the keyboard and will include
titles for labeling the axes, the range of values along the x and y axes, and the x and y
values to be plotted by the line. Do the input values have to be ordered and. if so, how?
3-38 Write a procedure that draws a simple house. The procedure should have
parameters for receiving values for the position of the house and the size of the house.
Then use the procedure in a program that draws a town with houses of different sizes.
3-39 Write a procedure that draws a flower. Use that procedure in a program that
draws a flower garden.
3-40 Program your solution to Hangman (3-25) using QuickDraw graphics.

20

for
Statements

and
Program
Actions

(100)

for statements
and graphics

l9J

4

Taking Control of Execution: the for Statement

THE FOR STATEMENT in Macintosh Pascal is identical to the Standard
Pascal for statement. In this chapter we'll do a quick graphics for-loop trick
and then show by example how strings can be combined using arrays in
Macintosh Pascal. The section on arrays is optional; read it only if you're
reading the corresponding optional section in Oh! Pascal!

Don't be confused by the section on strings in this chapter of Oh!
Pascal!. You've already seen the Mac Pascal string type in action. But in
the language of Standard Pascal, a string is just a packed array of
characters. Packed character arrays are available in Mac Pascal, but since
they're not as convenient or powerful as strings, we won't use them, and
you probably won't, either. Consequently, that section may be unnecessary
unless you're interested in understanding Standard Pascal, warts and all. In
the interest of completeness, we've rewritten the section on arrays of strin~s
(pages 1123-125) using Mac Pascal string variables; the other material m
that section is old news to you.

The for statement allows you to create elaborate graphics in Mac
Pascal by repeating basic graphic commands. This example shows how a
simple loop can create an impressive visual effect:

circles

program Circles; {drews 100}
{increosingly Jerger circles.}
{Wotch it run for the full effect .}

vor
1 : Integer;

begin
ShowDrew1ng;
for i := 1 t o 100 do

Fn1meOve1(1, 1, 2 * 1, 2 * i);
end.

Drawing

Try creating your own graphics programs using QuickDraw
procedures to get a good sense of how this iterative control statement works
m Pascal.

21

One
Dimensional

Arrays*
(112)

arrays of strings
(123)

4 Taking Control of Execution: the for Statement

As you've seen, for statements are ideal for working with arrays, too.
Arrays of strings are common in Macintosh Pascal. Here's how you might
declare an array variable to contain up to 100 names:

type
Name= string;
Name_List =array [1 .. 100) of Name;

var
One_Name: Name;
Whole_List Name_List;

Using arrays of strings is surprisingly easy. Let's develop a program
that uses the array techniques we've learned so far:

Write a program that reads in up to 100 names. Let the user ask for a
printout of a sublist of names (e.g., the twentieth through fifty-ninth).

A pseudocode restatement of the problem gives us:

find out how many names there will be;
read the names
find out which names should be output;
for the correct starting through finishing name

print the name;

Here's a Mac Pascal solution:

program Store_Names; {Maintains an array of strings.}
type
Name= string;
Name_List = array[1 .. 100) of Name;
var
One_Name: Name;
Whole_List: Name_List:
Number, Start, Finish, i : integer;

procedure Load_One_Name (var Current: Name);
{Reads one string.}

begin
readln(Current)
end; {Load_One_Name}

{continued}

• This section is optional.

22

Still More
Exercises

One-dimensional Arrays

begin
ShowText;
writeln('How many names will you read in?');
readln(Number);
writeln('Enter your names, one per line. i;
for i := 1 to Number do
begin
Load_One_Name(One_Name);
Whole_List[i] := One_Name;
end; {We've read in the list of names.}
writelnCEnter the first and last numbers of the names you want.i;
readln(Start, Finish);
for i := Start to Finish do
writeln(Whole_List[i]);

end. {Store_Names}

-o Teat
How many names will you read in?
5
Enter yo~r names, one per line.
Mickey Mouse
Minnie Mouse
Donald Duck
Daisy Duck
Goofy
Enter the first. and I ast. numbers
of the names you want..
3 4
Donald Duck
Dais.., Duck

Of course, it's kind of silly to isolate the readln in a separate
procedure; we just did it to show you how easy it is to pass an individual
element of this string array as a parameter. As you might expect, an array
element whose value is modified (as in procedure Load One Name) must
be passed to a variable parameter. - -

4-26 Write the graphics part of 4-20 using QuickDraw graphics.
4-27 Write a program to draw a checkerboard with the pieces.
4-28 With the for loop you can easily draw tick marlcs on the axes of a graph. Write
a procedure that draws the axes for a graph and p1aces maj<r ticks (long) every tenth of the
way along each axis and minor ticks (short) each twentieth of the way along the axis.
4-29 As you saw in program Circles, you can use for loops to create very interesting
and attractive graphics by repeatedly drawing the same shape at different positions and/or
sizes. Write programs to produce such graphics by drawing lines at various angles,
drawing ovals at various positions, and drawing circles whose centers form a circle.

23

The case
Statement

(138)

case constants
(139)

random number
generation

(145)

5

Making Choices: the case Statement

THE MAC PASCAL case structure has just one extension - the otherwise
clause - which we'll deal with immediately. We'll also say a few words
about random number generation, and finish with our first major example of
graphics in action: a rewrite of the Oh! Pascal! frisbee bar graph program.

The "Golden Rule of case Constant Lists, " (Every potential value of
the case expression must be specified in the case constant list) doesn't really
apply in Macintosh Pascal. Mac Pascal, like many other versions of the
language, allows case statements to include an otherwise clause. H the case
selector does not match any of the case constants, and the case statement
includes an otherwise clause, the statement following the reserved word
otherwise is executed, and no error results. H there is no otherwise clause
and no match, an error occurs. The otherwise clause is especially useful
for catching "none of the above" exceptions:

case Score of
10:
writeln('Exceptionally good1;
8,9:
writeln('Good');
5,6,7:
writeln('Barely Passing');
3,4:
writeln('Flunking1;
0, 1,2:
writeln('Exceptionally Flunking1;
15:
writeln('Something tells me you cheated');
otherwise
writeln('Error in Score1

end; {case}

(By the way, case constants may be any ordinal type except longint.)

You may remember from Chapter 1 that Macintosh Pascal, has a built
in function, Random, that generates random integer values from -32767
through 32767. Random uses a different seed each time a program is run,
which is appropriate when it's used in a game or other application where
swprise is important. On the other hand, there are some situations when
you want the same sequence of numbers every time you run the program -
when you're debugging your game prograni, for example. For those
situations, you can preset the built-in seed randSeed with the statement
24

bar graphing
program

(150)

The case Statement

randSeed:=1;

If you want a random number generator that returns values between
z.ero and one, so you can substitute it for the random function on page 145
of Oh! Pascal!, all it takes is a simple conversion:

function Real_Random: real;
{Returns real random numbers between o and 1}
begin

Real_Random := abs(Random/MAXINT)
end;

The GraphMaker program in Oh! Pascal! produces adequate bar
graphs, given that it builds the bars from rows of text characters. But that
ldno of graph wouldn't impress the board of directors at the Frisbee
factory. The QuickDraw subprograms in Mac Pascal allow us to produce
graphics more like those we see in magazines and business reports.

Character output in Standard Pascal is printed from left to right one
row at a time, so the position of each succeeding character is predetermined.
That's why the bars in the go from left to right.

QuickDraw graphics allow us to draw things an~here in the Drawing
window in any order. With freedom comes resp0DS1bility: we have to tell
the computer where to draw each element of our graph. This version of
Graph Maker is longer because it includes many lines of code that do
nothing more than tell the pen where to draw each element Is it worth the
extra trouble? You decide

Drawing
60~----------------.60

50 so
40 40

30 30

20 20

10 10

0 0
1985 1986 1987 1988 1989

0 Eng11sh Fr1sbee Product1on
•French Fr1sbee Product1on
li!illJeipeinese Fr1sbee Product1on

Teat
Enter 1985 procMctlcn frr Enclland 26
Enter 1985 prodwctlcn frr France 41
Enter 1985 procMctlcn for Jopan 33
Enter 1186 prodwctlcn for Enclland 34
Ent.er 1186 procMctlcn frr Franca 44
Enter 19111 procMctlcn for Japan 26

i------------------4Enter 11181' procMctlcn frr Enclland 44
Enter 198'1 p-oduc:Ucn for France 49

"----------------Entr 198'1 prodwctlcn for Japan 20
Enter 11188 prodwctlcn frr Enclland 48
Enter 11188 prodwctlcn frr France 49
Enter 11188 prodwc\lcn for Japan 17
Enter 1989 procMctlcn frr Enclland 51
Enter 1989 prodwctlcn frr France 51
Enter 1989 produc:Ucn frr Jopan 5

25

5 Making Choices: the case Statement

program Graph_Maker; {Draws a bar graph, Macintosh style.}
const
TOP= 1 O; {Constants that determine the size of the graph.}
BOTIOM=130;
LEFT=50;
RIGHT=300;
ENGLAND = 1 ; {The countries.}
FRANCE=2;
JAPAN=3;
var
Bar_Pos, Country, Production, Year: integer;

procedure Draw_Axes; {Draws the graph axes with tick marks.}
var
Tick_ Mark, Height: integer;

begin
FrameRect(TOP, LEFT, BOTIOM, RIGHT); {Draw the axes.}
for Tick_Mark := 1 to 11 do {Draw the tick marks.}
begin
{Compute the vertical position of the tick mark.}
Height:= BOTIOM -Tick_ Mark. 20;
MoveTo(LEFT, Height); {Draw a tick mark on the left axis.}
LineTo(LEFT + 5, Height);
MoveTo(RIGHT -1, Height); {Draw a tick mark on the right axis.}
LineTo(RIGHT - 6, Height)
end {for}

end; {Draw_Axes}

procedure Label_ Vertical_Axes;
var
Production, String_Length, Height: integer;
Labels : string;

begin
for Production := o to 6 do {Label the vertical axes.}
begin
TextSize(10); {Set text size to 10 point.}
Labels := StringOf(Production • 1 O : 1); {Convert the label to type string.}
String_ Length := StringWidth(Labels); {Determine the size of the label.}
{Center the label position on the vertical axis.}
Height:= BOTIOM - Production * 20 + 5;
MoveTo(LEFT - String_Length- 3, Height); {Draw label on the left axis.}
DrawString(Labels);
MoveTo(RIGHT + 3, Height); {Draw the label on the right axis.}
DrawString(Labels)
end {for}

end; {Label_ Vertical_ Axes}

26

The case Statement

procedure Label_Horizontal_Axis;
var
Year, String_Length, Height: integer;
Labels : string;

begin
Height:= BOTIOM + 15; {Compute vertical position for the date labels.}
for Year := o to 4 do {Draw date labels.}
begin
Labels:= StringOf(Year + 1985: 1); {Convert year to a string.}
String_Length := StringWidth(labels); {Compute label size.}
{Compute starting position for label.}
MoveTo(50 *Year+ 25 +LEFT - (String_Length div2), Height);
DrawString(labels) {Draw label on horizontal axis.}
end {for}

end; {Label_Horizontal_Axes}

procedure·Draw_Graph_legend;
begin
TextSize(12); {Settextsizeto 12point}
FrameRect(BOTIOM + 24, LEFT, BOTIOM + 36, LEFT+ 12); {Draw bar type.}
MoveTo(LEFT + 15, BOTIOM+35);
DrawString('English Frisbee Production'); {Label bar type.}
PaintRect(BOTIOM + 39, LEFT, BOTIOM + 51, LEFT+ 12);
MoveTo(LEFT + 15, BOTIOM + 50);
DrawString('French Frisbee Production');
FrameRect(BOTIOM + 54, LEFT, BOTIOM + 66, LEFT+ 12);
FillRect(BOTIOM + 55, LEFT+ 1, BOTIOM + 65, LEFT+ 11, ltgray);
MoveTo(LEFT + 15, BOTIOM + 65);
DrawString('Japanese Frisbee Production')
end; {Draw_Graph_legend}

procedure Draw_Bar (Production, Country, Bar_Pos: integer);
begin
{Fill the bar.}
case Country of
ENGLAND:
FillRect(BOTIOM- Production* 2, Bar_Pos, BOTIOM, Bar_Pos + 13, white);
FRANCE:
FillRect(BOTIOM - Production* 2, Bar_Pos, BOTIOM, Bar_Pos + 13, black);
JAPAN:
FillRect(BOTIOM- Production* 2, Bar_Pos, BOTIOM, Bar_Pos + 13, ltgray);

end; {case}
{Outline the bar}

FrameRect(BOTIOM- Production* 2, Bar_Pos, BOTIOM, Bar_Pos + 13)
end; {Draw_Bar}

27

Still More
Exercises

5 Making Choices: the case Statement

begin {Graph_Maker}
Show Text;
ShowDrawing;
Draw_Axes;
Label_ Vertical_Axes;
Label_Horizontal_Axis;
Draw_Graph_Legend
for Year:= 1985 to 1989 do
begin
{Compute the horizontal position of the bars to be drawn.}
Bar_Pos := (Year-1985) * 50 +LEFT+ 5;
for Country== ENGLAND to JAPAN do
begin
case Country of
ENGLAND:
write('Enter ',year: 4,' production for England ');
FRANCE:
write{'Enter ',year: 4,' production for France ');
JAPAN:
write{'Enter ',year: 4,' production for Japan i

end; {case}
readln{Production);
Draw_Bar{Production, Country, Bar_Pos);
Bar_Pos := Bar_Pos + 14
end {for Country}

end {for Year}
end.

5-36 With Macintosh Pascal's built-in graphics procedures, it's no harder (or easier) to
draw a vertical graph than it is to draw horizontal one. Write two procedures to draw the
graph in 5-29, one procedure for the horizontal fonn and one for the vertical fonn.
5-37 Use the random number generator to take a random walk about the Drawing
window. Trace your path with a line. Each line should have a random length (not to
exceed the bounds of the window) and a random direction.
5-38 To make your random walk more interesting, place a small shape in the window
and calculate how far you have to walk before your path crosses the shape. (This is a
variation on the classic "drunk and lamppost" question.)

28

boolean
Expressions

and
if Statements

(176)

boolean input
and output

6

Programming Decisions: the if Statement

AN IF STATEMENT IN MACINTOSH PASCAL is just like an if
statement in Standard Pascal, so this chapter supplement is shorter than
most. We'll discuss how boolean variables are initiafued, read, and written
in Macintosh Pascal, and then leave you to writing your own programs.

In Macintosh Pascal all boolean variables are initiafued to a value of
false when program execution begins, which means that you won't get a
ladybug if you forget to assi~ an initial value to a boolean yourself. You
may get a more subtle bug mstead because your boolean has a value that
may or may not be what you intended. Be wise ... initialize!

In Mac Pascal, boolean variables may be read using read or readln.
The only acceptable values for input are true and false. These must be
completely spelled out in upper case, lower case, or some combination of
the two. Like numbers, boolean values must be separated by spaces or
IReturnls (end-of-lines) when they're read as input.

Boolean variables may also be written using write or writeln. The
output format of these values may be specified. Here's an example; note
how the one-character field width of the first variable is handled:

Boolean_IO

program Booleen_IO; :o Te Ht
vor true false ~ Foithful, Unfeithful : booleen; TT rue False

begin ~ showtext; 121
reedln(Faithful, Unfaithful);
writeln(Faithful: 1, Faithful, Unfaithful: B);

end.

29

The repeat
and while

statements
(216)

Using
Repetition

for Animation

~

7

Making Actions Continue: the Conditional Loops

Macintosh Pascal's conditional loops repeat and while, are 100% standard,
so what you read in Chapter 7 of Oh! Pascall tells you all you need to know
about them. We'll show you here how a loop can be used to animate the
drawing window and we'll end with a word on getting out of endless loops.

Movies don't really move; they just mimic the way the world works.
Rather than showing seamless change and movement, they rely on an
illusion of motion created by rapid repetition of nearly identical frames.
Mac Pascal allows you to do something similar; using graphics procedures
and conditional loops you can create simple animation. Here's an intriguing
example (a modified version of a demo program that's included with each

· copy of Macintosh Pascal) showing how a repeat loop is used to move a
bouncing ball across the Drawing window until it reaches the edge.

30

program Bouncing_Ball; {Watch a ball bounce across the window}
con st
PICTURE_HEIGHT = 100;
PICTURE WIDTH= 400;
BALL_ SIZE= 8; {Changing the constants creates}
GRAVITY= -0.5; {different animated effects}
BOUNCINESS= 0.9;
COURT_LEVEL= 100;
var
Horizontal_Position : Integer;
Vertical_Position, Velocity: Real;

procedure Draw_Ball (Vertical_Position: Integer);
var
Top, Left, Bottom, Right: Integer;

begin
Top:= COURT_LEVEL-Vertical_Position - BALL_SIZE;
Left:= Horizontal_Position - BALL_SIZE;
Bottom ==COURT _LEVEL- Vertical_Position + BALL_SIZE;
Right:= Horizontal_Position +BALL_ SIZE;
FrameOval(Top, Left, Bottom, Right); {Use PaintOval for a solid balij
end;

{continued}

The repeat and while Statements

begin {bouncing ball}
ShowDrawing;
Horizontal_Position == BALL_SIZE + 1;
Vertical_Position := PICTURE_HEIGHT - BALL_SIZE -1;
Velocity:= O;
Draw_Ball(round(Vertical_Position));
repeat
Horizontal_Position := Horizontal_Position + 2;
Velocity ==Velocity+ GRAVITY;
Vertical_Position := Vertical_Position + Velocity;
If Vertical_Position <= o then
begin
Vertical_Position := Abs(Vertical_Position);
Velocity :=-(BOUNCINESS* Velocity);
end;
Draw_Ball(round(Vertical_Position));
until Horizontal_Position >= PICTURE_WIDTH;
end. {bouncing balij

Drawing

As you can see, the bouncing ball leaves a trail behind it so you can
see its path. Since real-world balls don't leave trails, you might want to try
making a change in the program so that it erases each old ball before it
draws a new one. If so, insen the following statement right before the
FrameOval statement at the end of procedure Draw _Ball and run the
program again.

EraseOval(T op-1 o, Left-1 o, Bottom+ 10, Right+ 1 O)

31

Antibugging
and

Debugging
(246)

boundary
conditions

(246)

Yet Another
Exercise

7 Making Actions Continue: the Conditional Loops

The Macintosh doesn't impose a time restriction on the execution of a
program. If your program enters an infinite loop, it just keeJ?S rolling until
you stop it (or the power fails). The graceful way to stop it 1s by selecting
the Halt option from the Pause menu that appeared when the program
started running. The finger will point to the statement which was about to
be executed when you halted the program. You can then use your trusty
Observe window to peek at the value of the variable or expression that was
supposed to terminate your repeat or while statement. Once you've found
the problem, you can restart the program from the beginning by selecting
Reset from the Run menu and then selecting Go. (If you don't Reset first,
the program will just continue from where it left off.)

7-36 You've been hired by the First Interplanetary bank of Corvallis to write a front end
for the bank transaction program that your tellers are using. The program will eventually
call procedures to do five different tasks: record a deposit, record a withdrawal, display the
balance, record a loan payment, and print a check. Tellers will select a task by entering a
response code to a menu of choices; one code matches each task. In addition to these five
choices, the menu displays an option for quitting the program. Your program should
display a readable menu in a reasonable format, accept a typed response from the teller,
call a dummy procedure corresponding to the response. (A dummy procedure might
simply write the massage, "printing balance," for example.) If the teller enters a code that
doesn't match any of the valid choices, your program should request a new code. This
process continues until the code for quit is entered. Make your program as friendly as you
can, given that you're limited to working with the keyboard and the text window.

32

Text
Processing

(260)

Using Strings
with

Relational
Operators

!9J

8

Character-Oriented Computing: Text Processing

TEXT PROCESSING can be done in Macintosh Pascal just like it's done in
Standard Pascal. But Mac Pascal's string data type makes most text
processing operations much easier and more intuitive, as you'll see from the
examples in this chapter.

Chapter 8 of Oh! Pascal! covers many of the nitty-gritty details of text
file processing. Because text file processing often confuses beginning
programmers, we've provided a program on the Oh! Mac Pascal! disk
which graphically illustrates the basic concepts.

In Standard Pascal, text processing means working with characters.
In Mac Pascal, text processing is working with strings. Strings allow
groups of characters to be treated as single variables. Since characters tend
to come in groups in the real world, text processing with strings is much
more natural and intuitive. Consider Echo Text, the basic text processing
program on page 265 of Oh! Pascal!, rewritten here using string variables.

program Echo_ Text;
{Read and echo a file of text.}
var
Line : string;

begin
while not eof do
begin
readln(Line);
writeln(Line)
end {while}

end. {Echo_One_Line}

There's no need to check for end-of-line in this program, because
when the string is read with the readln, the eoln character serves as the
terminator of the string - and the readln ..

Like characters and numbers, strings can be compared with each other
and assigned to each other. (Characters are compatible with strings and
may be assigned to string variables.) All of the usual relational operators
(<,>,<>,=,<=,>=) are valid with strings. Dictionary order - not length -
determines the relation, so 'Sue' is greater than 'Sarah'.

Name :='Sue';
Other_Name :='Sarah';
if Name >Other _Name then
writeln(Name)

else
writeln(Other_Name); {writes "Sue" to the text window.}

33

String
Functions

~

function length

function concat

justifying
string output

function pos

8 Character-Orient~ Computing: Text Processing

Strings becomes even more useful when they're used with the string
functions built into in Mac Pascal. Many of the programs in Ohl Pascal!
can be simplified by taking advantage of these built-in functions.

Counting characters, for example, involves nothing more than a
simple call to the function length. length returns an integer value
representing the length in characters of its string argument (the number of
characters currently stored in the variable).

String_ Variable := 'Harpo Marx';
writeln(length(String_ Variable)); {Writes the value 1 O.}

There are several other useful string functions in Macintosh Pascal.
Strings may combined end to end with the function concat. .

concat(String_ 1,String_2,. .. ,String_n)

concat will .1mt together any number of string expressions as long as the
resulting stnng is less than 255 characters long. Here's a simple example
that combines two string variables with a string constant:

last:= 'Frog';
first:= 'Kermit';
writeln(concat(last, ', ', first)); {Writes "Frog, Kermit".)

Here's a more complex example. When writing a string variable using

writeln(worcl:20);

the output looks like this (...., represents a blank):

I I I I I I I I I I .Felix....,Cat

You can use the function concatto fill Name with spaces.

for counter:= 1 to 20-length(Name) do
Name:= concat(Name,' ');

Then writeln(worcl:20) yields

Felix....,Cat~~~~~~

The pos function searches for the position of a sub-string value
(constant, variable, or expression) within a string value. An integer value
specifying the ~arting position of the sub-string in the string is returned.
z.ero is returned if the sub-string is not found in the string.

34

writeln (pos('af,'Patty')); {Writes the value 2 in the text window}
writeln (pos('ta','Patty')); {Writes the value O in the text window}

function copy

function omit

function include

String
Procedures

~

procedure
delete

Text Processing

The copy function is handy for extracting part of a string. It returns a
string value with any number of consecutive characters copied from
anywhere in a specified string expression. The function requires three
parameters; a string value from which the characters are to be copied, an
integer value which specifies the position of the first character in the string
that's to be copied, and an integer value specifying the number of characters
to be copied. If the sum of the last two parameters is greater than the length
of the first parameter then all the characters beginning at the one specified
by the second parameter are copied.

writeln(copy('Patty',2,2)); {Writes the string "at".}
writeln(copy('Patty',3,5)); {Writes the string "tty".}

The omit function returns a sub-string of a string value with any
number of consecutive characters from the original string omitted. The
original string value is unchanged. The function requires three parameters:
a string value, an integer value specifying the position of the first character
to be omitted, and an integer value specifying the number of characters to be
omitted.

writeln(omit('Patty',3,2)); {Writes the string "Pay".}

Include is the opposite of omit. It returns a super-string of a string
value with characters added to the original string. The function requires
three parameters: a string value representing the characters to be included, a
string value which will receive the characters to be included, and an integer
value specifying the position where the characters are to be included.

writeln(include('tt','Pay',3)); {Writes the string "Patty".}

The string functions you've seen so far behave like good functions
should, in that they don't change the values of their parameters. But there
are times when you want to change the value of a strmg variable by adding
characters to it or taking some away. There are two string procedures with
variable string parameters: delete and insert.

The procedure delete, as you might expect, removes characters from a
string vanable. The procedure requires three parameters; a string variable,
an integer value specifying the position of the starting character to be
deleted, and an integer value specifying the number of characters to be
deleted.

String_ Variable := 'Patty';
delete(String_ Variable,3,2);
writeln(String_ Variable); {Writes the string "Pay".}

The procedure insert puts a string value into string variable. The
procedure requires three parameters; a string value to be inserted, a string
variable into which the string value is inserted, and an integer value
specifying the position of the insertion in the string variable.

35

procedure
insert

search and
replace

8 Character-Oriented Computing: Text Processing

String_ Variable := 'Pay';
insert('tt' ,String_ Variable,3);
writeln(String_ Variable); {Writes the string "Patty".}

Let's put some of these built-in procedures and functions to work by
writing a procedure to do a simple search-and-replace operation. You've
seen a program with search-and-replace capability already: the Macintosh
Pascal editor. The Everywhere option in the Search menu allows you to
change, say, "lead" to "gold" wherever it appears in your program.
Procedure Replace All will take as input a string representing a Line of text,
scan it for occurrences of a particular string Old, and replace each
occurrence of that string with string New.

procedure Replace_All (var Line: string;
Old, New: string);

{Replace all occurrences of the string Old with the string New}
var
Old_Length, Position : integer;

begin
Old_Length := length(Old);
Position:= pos(Old, Line);
while Position > o do
begin
delete(Line, Position, Old_Length);
insert(New, Line, Position);
Position := pos(Old, Line)
end {while Position}

end; {Replace_All}

Suppose the string 'We all live in a yellow submarine, a yellow submarine!'
has been read into the string variable Line. We can repaint the submarine
with a call to Replace_ All:

36

Replace_All (Line, 'a yellow', 'an aquamarine');
writeln (Line);

! ! ! ! ! ! !
We all live in an aquamarine submarine, an aquamarine submarine!

Self-Check
Question

The File
Window and

External
Files*

(280)

the file window
(280)

The File Window and External Files

Q. What's the output from this nonsensical program?

program stringstuff;
var word, prefix: string;

begin
word :='random';
prefix := 'pseudo';
writeln(concat(prefix,word));
writeln(copy(word,2,3));
writeln(pos('do' ,prefix));
writeln(length(omit('dangle', 1,1)));
insert(prefix,word, 1);
writeln(include('-' ,word,7));
delete(word, 1,4);
delete(word,3,3);
delete(word,length(worcl), 1);
writeln(word);

end.

A. ~~gj~~ii~T~eH~t~ii~~~~
pseudorandon
and

5
5

pseudo-random
dodo

·If you read the optional section 8-2 in Oh! Pascall, you learned about
Pascal's 'lookahead' mechanism that allows you to peek at the next charac
ter in line to be read from a text file. The file window is a simple concept
that's not particularly simple to describe. Consequently, programmers
learning Pascal from a textbook or lectures often stumble on the idea.

To make things easier for you, we've included a program called "Text
File Window" on the Ohl Mac Pascall disk that illustrates the process of
reading a text file on screen. The program represents any text file as a train
of boxes that chugs leftward each time a character is read. The box in the
center - the one with the dark outline - represents the file window through
which you can see the character that's about to be read. As each character is
read, the program shows the new contents of the file window and the
current status of the eof and eoln functions. When you run the program, it
asks you via a dialog box to elect a text file to be processed. Any text file
may be used as input; we're using a file containing the verse at the bottom
of page 287 of Ohl Pascall (That file is called "poets" on the disk.)**

* This section may be read now or as a supplement to Chapter 13.
** The program used for these figures was written by Mark Borgerson, author of From
Basic to Pascal (Wiley). Mark used several advanced features of Mac Pascal that we
haven't covered yet, but you'll still find it worthwhile to spend some time looking at the
code to see how it was written.

37

8 Character-Oriented Computing: Text Processing

When the file is first opened, the drawing window shows us this:

Drawing

EOLN: False Window EDF: False
Last Character Read: <UnDefined>

<SPACE> to Read(textChar), <L> to Readln(textChar)

When the character before the first eoln is read, the file window points to the
eoln, and the eoln function returns True:

D Drawing

GJ~[]~DE;JGJ~GJD0
EDLN: True Window EDF: False
Last Character Read: .
<SPACE> to Read(textChar), <L> to Readln(textChar)

121
When the eoln is read, eoln returns to false and Last Character Read looks
like a space:

D Drawing

~GJGJD[S]0~0D0GJ
EDLN: False Window EDF: False
Last Character Read: <Space>

<SPACE> to Read(textChar), <L> to Readln(textChar)

12:1

If you run this program on through the file, you'll discover one of the
best kept secrets of Mac Pascal: there is no eof character at the end of this,
or any other, Macintosh file. Instead of sticking an extra character at the
end of each file, the Macintosh operating system keeps track of the number
of bytes (characters) in each file. By also keeping track of the number of
bytes that have been read, the Mac can always tell when it reaches the end of
the file. As you'll see when you run the program, the end result is exactly
the same as if there were an eof character there.

38

External Files
(283)

Preferences

~

rewrite
(284)

The Text Window and External Files

From a programmer's point of view, the mechanics of processing text
files is essentially the same in Macintosh Pascal as in Standard Pascal,
except that the string data type simplifies many potentially messy coding
prQblems. But whether your programs read and write their text files one
character at a time or one string at a time, they'll use a non Standard method
for communicating file information to the Macintosh operating system.
Standard Pascal uses program parameters in th~ program header to pass the
names of files to the computer's operating system. Macintosh Pascal
doesn't generally use program parameters (and Mac Pascal programs don't
require them); it offers several alternatives, most of which are easier to
understand and use.

You've already seen (in your second hands-on session) the easiest
way to direct text output to someplace besides the screen: use the
Preferences option (in the Windows menu) to route your output to the
printer. You can also use Preferences to specify that output is to be sent to
a text file by clicking the "Output also to a File" box. The Mac responds
with a familiar dialog box askin~ you to type the name of the file; Drive and
Eject buttons allow you to specify the destination disk. If a file with your
chosen file name already exists on the disk, Mac asks you if you want to
replace the existing file. Be careful; there's no turning back if you write
over the top of an important file.

Preferences allows you to send your program's standard text output -
anything written by a writeln or a write without a file parameter - to the
:printer, a text file, or both. Whichever combination you choose, the output
IS still displayed in the text window, too. In effect, clicking one of the
alternative output boxes in Preferences temporarily creates an additional
standard output file.

The main problem with this approach is that it has to be set up in
advance each session; your preferences only remain in effect until you
override them with a new set of yreferences, or until you end your Mac
Pascal session. If the person running your program forgets to specify a file
preference - or doesn't know how - then standard ouwut goes only to the
text window. The alternative is to design the program m such a way that it
asks the user where the output is to go each time it's run. That means a
little more work on your part when you're coding; you have to

1. explicitly open the file using the standard procedure rewrite;
2. include the file name as the first parameter in each writeln and write;

Step 2 is the same as with Standard Pascal; non Standard output files
always have to be exP.licitly referenced in output statements. Step 1 looks
Standard, but the details aren't.

Like Standard Pascal's rewrite, the Macintosh rewrite must be
included before the first write or writeln to the file. But the Macintosh
rewrite also does the file-association work that's done in the program
heading of a Standard Pascal program. That means rewrite must have two
parameters:

39

function
NewFileName

8 Character-Oriented Computing: Text Processing

1. The identifier that's going to represent the file in this program; that is the
identifier that appears as the first parameter in write and writeln
statements, just like in Standard Pascal.

2. The name of the actual disk file, represented as a string. This parameter
could be a literal or a previously-assigned string variable, provided it
specifies the disk and file names appropriately. But this approach
doesn't allow much flexibility, and it doesn't protect you from
accidentally writing over an important file with the same name. It's
safer, easier, and more elegant to allow the user to specify the file name
via your very own customized dialog box.

The built-in function NewFileName allows you to do just that. It
displays a dialog box, complete with whatever prompt you include as a
strmg parameter. When the program user responds to the dialog box
prompt by selecting a disk (using Drive and Eject buttons) and typing the
file name, NewFileName checks whether that disk contains a file with that
name and issues a last-chance warning if it does. Otherwise, NewFileName
returns a string value which includes the names of the disk and the file in the
appropriate format for use in a rewrite statement.

rewrite(Output_File,NewFileName('Whither goest output?');

I C5l Macintosh Pascal I
[) rindt~r ~
r.1 ~Pflb<Hl1

I r.~ ~Plhm

r.~ H11ni1
r.~ iPl.nun1:h IQ

Whither goest output? C5} Macint •.•

I I (Eject]

(Saue) (Cancel) (Driue)

So far we've only talked about non Standard output files. What if you
want to read data from a file other than the keyboard? The procedure reset
and the function OldFileName do for input what Rewrite and NewFileName
do for output. Reset formally opens a file with an identifier specified by its
first parameter; the second parameter is a string indicating the actual file
name and its disk location. When OldFileName is used as the second
parameter, it displays a dialog box that lets the user select an input file at run
time. The dialog box is the same one that you see when you open a Pascal
file; the only difference is the prompt, specified as OldFileName's string
parameter.

40

reset

function
OldFileName

file copy program
(283)

The Text Window and External Files

reset(File_ldentifier), OldFileName('Pick a file, any file:'));

Pick a file, any file:

I (g) Macintos.h P ...

D testdata r!1
Open) I (g} Macintos ...

. !

I (Eject
;
;

Cancel) I (Driue

To summarize, let's look at the file copy program Duplicate from page
283 of Oh! Pascall, which has been rewritten to take advantage of Mac
Pascal's string and file-handling extensions. Notice the differences:

1. The Input and Output parameters are absent from the program statement.
2. The reset and rewrite statements have two parameters, the file identifier

and the function that prompts for the file name;
3. The text is read as a series of strings rather than a series of characters.

This simplifies the code, eliminating the inner loop and the necessity of
checking for eof.

program Duplicate;
{Demonstrates copying of external files, Mac Pascal style.}
var
Old, New : text; {The external files' type.}
Current: string; {A buffer for characters.}

begin
reset(Old, OldFileName('Output File Name:');
rewrite(New, NewFileName('lnput File Name:');
while not eof(Old) do
begin
readln(Old, Current);
writeln(New, Current)
end {while statement}

end. {Duplicate}

41

Still More
Exercises

8 Character-Oriented Computing: Text Processing

8-23 When procedure Replace_ All in this chapter is executed, what happens if the new
string is longer than the string being searched? What happens if the old string continues
to a next line? Refine the procedure to handle those conditions. Is this more easily done
by modifying the procedure or by modifying the way in which the procedure is called
from the calling program unit? Are there other refinements that should be considered?
8-24 In the procedure Replace_ All the search for each occurrence of the old string
always starts at the beginning of the line. Make this procedure more efficient by starting
each search at the point of the last replacement.
8-25 Run the program TextFileWindow until you reach the end of the file and observe
the status of the window, eoln., and eof.
8-26 Write a program that opens a text file for input and copies the file to another file.
The name of the new file is to be the same as the original file name with " Copy" to the
name of the original file.
8-27 Write a program that takes a file of names in the format: "Duck, Daffy" and
writes the name to the Text window in the form "Daffy Duck".
8-28 Files may be processed with three terminating conditions: 1) a particular value in
the file (called a sentinel) terminates the read process; 2) the number of values in the file
is known and exactly that many are read; and 3) reading from the file terminates when the
end of file is encountered. Write three versions of a procedure to list the contents of a text
file, one for each of these terminating conditions. Will the parameters required by each
procedure be the same?
8-29 Rewrite the gerund conversion program using strings.

42

Enumerated
Ordinal Types

(294)

enumerated VO
(297)

Yet Another
Exercise

9

Extending the Ordinal Types

GOOD NEWS! This chapter's short, and it's nothing but good news!

Pascal's enumerated types allow programmers to write more readable,
and therefore more debuggable, programs. This would be even more true if
enumerated constants could be read and written in I/O statements. As it turns
out, they can in Macintosh Pascal.* On input, the only accepted values for a
variable of an enumerated type are the identifiers enumerated for that type.
Case is irrelevant; Monday, MONDAY, and monday are all the same when
read as enumerated values .

. Enumerated_lnpuLOutput

program Enumerated_! npuLOutput;
{Enumerated 1/0 examples.}
type

Day= (Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunde
var =O=TeHt

Today, Other _Days: Day;
~hat day is today? ~ begin wednesday

ShowText; The rest of the days

writeln('What day is today? '); this week are:
Thursday

readln(Today); Friday
writeln('The rest of the days this week are:'); Saturday

for Other _Days := succ(Today) to Sunday do Sunday

wri tel n(Other -Days); ~ end.

l

9-12 In Chapter S's Graph_ Maker program, we represented countries as integer values.
Rewrite that program using an enumerated type for country.

* When compilers translate programs, the source code is not saved. In particular, the
identifiers associated with the enumerated type are lost, leaving only numeric constants in
their place. In the Mac Pascal interpreter, statements are translated immediately prior to
execution, so the identifiers are available for input and output

43

Writing
Programs
for People

10

Software Engineering

ONE ASPECT OF SOFTWARE ENGINEERING deserves a special
mention in any book on Macintosh programming: designing a friendly user
interlace. The user interlace is always part hardware and part software, but
no good software engineer today can afford to ignore it.

The earliest computer programs were anything but user friendly.
They had to be run by programmers who communicated with the computer
by flipping switches and reading patterns of lights on the computer console.
When line printers, punch card readers, and teletype keyboards came along,
life became easier for programmers, but computing still had to be done by
trained professionals. The Macintosh computer is a far cry from those early
machines.

Many of the most important ideas behind the Macintosh were born at
Xerox PARC Research Lab more than a decade ago. A team of scientists
and engineers there spent years studying the man/machine interlace, looking
for ways to make computers more accessible and functional for people.
One of those scientists, Alan Kay, envisioned an inexpensive book-sized
machine that would serve as an appointment book, reference library,
notebook, journal, calculator, and communication center for tomorrow's
professional. Kay's DynaBook would fit easily into a briefcase and be - of
course - user friendly.

The technology of the time wasn't capable of producing a DynaBook.
Even today, designers can't pack that much machine in such a small
package at a reasonable price. But The Xerox PARC team, using large
timesharing computers, did manage to produce several important concepts
that are still with us today: the bit-mapped screen, the mouse-controlled
cursor, windows, icons, pull-down menus - sound familiar?

While these revolutionary software ideas may have originated at
Xerox, they were clearly popularized by Apple in the Macintosh. The
success of the Mac in the marketplace has changed the face of computing
forever. Commodore, Atari, Microsoft, Digital Research, and even IBM
have since developed and marketed mouse-and-window operating systems
for personal computers. Some analysts predict that the Macintosh-style user
interlace will become the industry standard, allowing computer users to
freely switch between brands of hardware and software without learning
new sets of rules.*

What's so special about the Macintosh user interlace?

the Macintosh • It's visual. You don't need to be a computer scientist to know what that
user interface little picture of the disk on the screen means.

* It took a while. but it happened with automobiles.

44

programming
the user
interface

•

•

•

Writing Programs for People

It's intuitive. The desktop metaphor turns the confusing world of bits
and bytes into an environment that's familiar and comfortable for non
computer people. Neophyte computerists who'd break out in a cold
sweat if they had to memorize and type commands like DEL
FRSTRN.PAS have no trouble dragging a document icon into the trash
can.

It's forgiving. It's almost impossible to do anything potentially
destructive without being asked first by the computer if you're sure you
want to do it.

It's consistent. All good Macintosh programs follow the same
guidelines, so a user doesn't need to learn a whole new way of doing
things every time she switches to a different application.

It's not easy to design software for a Macintosh-style machine; there
are all kinds of things that a program has to keep track of constantly (Where
is the cursor? Has the mouse been pressed or clicked? Has a key on the
keyboard been pressed?) and be able to display and use (icons, pull-down
menus, dialog boxes, windows). In short, the programmer has to take care
of many things that used to be handled by users.

In some ways, though, Mac programming isn't as tough as it could
be. You've probably already seen (in Chapter 8) how a single call to
procedure OldFileName brings up a dialog box, checks for user input from
keyboard and mouse, locates the proper file on the proper disk, and opens
the file. It's possible to do all that in a single statement only because of the
years of software engineering that are packed into the Macintosh Read-Only
Memory, operating system, and programming languages. And Old.File
Name is just one of hundreds of already-been-engineered routines, most of
which can be used to make your programs more intuitive and easy to use.

Many Macintosh routines are complex and difficult to use unless
you're an experienced programmer who's spent many an hour studing the
dense Inside Macintosh reference set. Others, like Old.FileName, are easy
to incorporate into even the simplest Mac Pascal programs. We've included
a healthy sampling of those special Macintosh routines in the 16 chapters of
this book; if you want to delve deeper, we'll tell you how in the last
chapter.

All this is not to suggest that the Macintosh is the ultimate personal
computer. The microcomputer age has only just begun. We don't even
have a DynaBook yet, and Alan Kays all over the world are still dreaming
up better ideas. Stay tuned

45

Focus on
Programming:

Arrays
(341)

An Array of
Sounds

~

11

Arrays for Random Access

OH! PASCAL!'S CHAPTER 11 IS RICH WITH EXAMPLES illustrating
the many applications of arrays. In this chapter we'll add two more that
aren't available in Standard Pascal: sound and graphics. Then we'll take
another look at the string data type, this time as a special kind of array rather
than a special kind of simple type. (Once again, you may want to skip the
section on strings in Oh! Pascal!, since it has so little relevance to Mac
Pascal.)

If the only thing you've heard your Macintosh say is "beep!" you may
be SUflJrised to learn that the Macintosh has three built-in sound
synthesizers. Macintosh Pascal has a set of procedures that allow you to
use those synthesizers to add synthesized music, speech, and other sounds
to your programs.

Pianos, violins, trombones, flutes, drums, freight trains, and human
voiceboxes all create sounds by vibrating the air around them. Sound
vibrations can be analyzed mathematically as complex waveforms and
simulated digitally by electronic synthesizers. This kind of synthesis of
complex waves is beyond the scope of this book, but we can show you
how to use Note, a simple procedure for controlling the simplest of the
Mac's three synthesizers. Note is no threat to Stradivarius, but it can be
easily manipulated into producing simple scales and melodies. Note takes
three parameters:

1. Frequency - a longint value in the range 12 to 783360 which determines
the pitch of the sound.

2. Amplitude - an integer value in the range 0 to 255 which determines the
procedure note volume of the sound.

3. Duration - an integer value in the range 0 to 255 which determines the
length of time the sound is generated in 60ths of a second.

Here's a program that uses Note to play the chromatic (12-tone) scale.
Procedure Initialize stores all of the note frequencies for one octave in an
array, so those notes can be accessed in any desired order. (We only stored
one octave's worth because frequencies of notes in higher and lower
octaves can be calculated by multiplying or dividing by powers of two.
Actually, all of the notes can be calculated from one starting frequency.)
It's easy to modify this program so that it plays melodies rather than scales;
you just need to tell Note the name and duration of each note in the melody
individually.

46

Plotting Arrays
of Data

~

Focus on Programming: Arrays

program Play_ The_Scale; {Play a musical scale}
const
VOLUME= 100; {Amplitude for the square wave synthesizer.}
DURATION= 20; {Length note is played in 60ths of a second.}
type
Octave= (A, A_Sharp, B, C, C_Sharp, D, D_Sharp, E, F, F _Sharp, G,

G_Sharp); {Assign enumerated names to the notes}
var
Tone :Octave;
Pitch : array [Octave] of integer; {array to hold the frequencies of Pitch}

procedure Initialize (var Tone: Octave);
begin {assign the frequency values for each of the Pitch}
Pitch[A] := 440;
Pitch(A_Sharp] := 466;
Pitch[B] := 494;
Pitch[C] := 523;
Pitch(C_Sharp] := 554;
Pitch[D] := 587;
Pitch(D_Sharp] := 622;
Pitch[E] := 659;
Pitch[F] := 698;
Pitch(F _Sharp]:= 740;
Pitch[G] := 784;
Pitch(G_Sharp] :=831;
end; {initialize}
begin {play_the_Scale}
Initialize (tone);
for Tone :=A toG_Sharp do {Up the scale through middle C.}
Note(Pitch[Tone], VOLUME, DURATION);
for Tone:= G downto A do {Down the scale through middle C.}
Note(Pitch(Tone], VOLUME, DURATION);
for Tone:= A to G_Sharp do {Play the scale an octave lower.}
Note(Pitch[Tone] div2, VOLUME, DURATION);
for Tone:= A to G_Sharp do {Play the scale an octave higher.}
Note(Pitch[Tone] * 2, VOLUME, DURATION)

end. {Play_The_Scales.}

We can't list the output of this program, so you'll have to try it yourself.

Arrays are incredibly versatile tools for storing large quantities of
information, but large quantities of information can be overwhelming if they
aren't provided in a form that we can understand. Carefully designed
waphic representations can make even the most formidable arrays of data
mto useful storehouses of information. Whether we're dealing with a chess
game simulation or demograEhic statistics, most of us find it easier to see
patterns in the data when they re displayed graphically.

In Chapter 5 we created a simple bar graph. Let's look at a more
complex (and more realistic) example.

47

11 Arrays for Random Access

As teaching assistant for Computer Science II (the hard one), you've
been asked to write a program that, among other things, draws a
histogram showing the distribution scores on the latest exam:

30....---------------------T"30

27 27

24 24

21 21

18 18

15 15

12 12

9 9

6 6

3 3

0 0
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

COMPUTER SCIENCE II: Exominotlon 1

Our program will perform several operations on student data, so
we've decided to read all of the student scores into an array defined like this:

const
MAXIMUM= 500; {Maximum class size.}
MAX_ SCORE= 100;
MIN_ SCORE= O;
type
Valid_ Values= MIN_SCORE .. MAX_SCORE;
Data_Array = array[1 .. MAXIMUM] of Valid_ Values;
var
Student_Score: Data_Array;

But what we really want for this graph is an array that contains the number
of students who earned each score: the number of students who got zeroes,
the number who got ones, and so on. That array might be defined like this:

type
Frequency_Array = array[Valid_ Values] of integer;

var
Frequency: Frequency_Array;

Think of Frequency as an array of 101 turnstiles with counters. After
we set all of the counters to zero, we'll need to ask each student to go
through the turnstile representing her test score. Since it doesn't matter
what order students go through turnstiles (as long as each goes through
only once), we might as well treat our array Student Score as a line of
students and process them in that order: -

48

for i := 1 to Class_ Size do {Compute score frequencies.}
Frequency[Student_Score[i]] := Frequency[Student_Score[i]] + 1;

plotting
frequencies

calculating
scaling factor

Focus on Programming: Arrays

Notice how we're using the array element Student_Score [i] as the
subscript of another array - Frequency. That's logical, legal, and safe,
because the base type of the student score array is the same as the index
type of the frequency array.

Here's the procedure for calculating and plotting frequencies, less a
couple of key procedures for doing the real graphics work:

procedure Plot_Frequencies (var Student_ Score: Data_Array;
Class_Size : integer); {Computes and plots test score frequencies.}

var
Frequency: Frequency_Array;
Scaling_Factor: real;
i, Max_Frequency : integer;
Graph_ Title: string;

begin
for i := MIN_SCORE to MAX_ SCORE do {Initialize frequency array.}
Frequency[i] := O;
for i := 1 to Class_ Size do {Compute score frequencies.}
Frequency[StudenLScore[i]] := Frequency[Student_Score[i]] + 1;
Max_Frequency := O;
for i :=MIN_ SCORE to MAX_ SCORE do {Find max. freq.}
If Frequency[i] > Max_Frequency then
Max_Frequency := Frequency[i);

Scaling_Factor :=Scale (Max_Frequency);
writeln;
writeln('Entergraph title (up to 40 characters):');
readln(Graph_ Title);
Draw_Axes(Graph_ Title, Max_Frequency, Scaling_Factor);
PloLBars(Frequency, Scaling_Factor);
end; {Plot_Frequency}

After it calculates the frequencies but before it draws calls its graph
drawing routines, procedure Plot Frequencies calculates Max Frequency,
the number representing the longest bar in the graph. Max Frequency is
then used in function Scale to calculate a scaling factor that adjusts the
height of the graph so the bars won't go out of the drawing window or be
all scrunched at the bottom:

function Scale (Max_Frequency: integer): real;
var
Increment : integer;
Scaling_Factor: Real;

begin
Scaling_Factor := 10.0; {Find the scaling factor for the vertical axis.}
while Max_Frequency >= trunc(Scaling_Factor) do
Scaling_Factor := Scaling_Factor + 10.0;
Increment:= trunc(Scaling_Factor) div 1 O;{lncrement to scale the Axis.}
Scale := (BOTTOM - TOP) I Scaling_Factor;
end; {Scale}

49

plotting
bars

Strings
as Arrays

(351)

string arrays

11 Arrays for Random Access

We'll skip the messy details of drawing and labeling the axes and show you
instead how to put the histogram in the scaled graph.

procedure Plot_Bars (var Frequency: Frequency_Array;
Scaling_Factor: real); {Draws the bars for the histogram.}

const
BAR_ WIDTH= 4;

var
Score: Valid_ Values;
Vertical, Horizontal : integer;

begin
for Score:= MIN_SCORE to MAX_ SCORE do
begin
Vertical:= BOTTOM - round(Frequency[Score] * Scaling_Factor);
Horizontal:= LEFT+ Score* BAR_ WIDTH+ 2;
PaintRect(Vertical, Horizontal, BOTTOM, Horizontal+ BAR_ WIDTH)
end {for}

end; {Plot_Bars}

These procedures are part of the program Statistics on the Ohl Mac
Pascall disk. If they aren't clear, tty adding stops and stepping through the

· troublesome spots.

We've been using strings since Chapter 1, so they should seem as
familiar as the other simple data types. But now you're ready for the truth:
the Macintosh Pascal stnng is more than just another simple data type; it's
actually a very special kind of array of characters. Of course, a string is not
declared as an array; instead, it's declared using the reserved word string:

var name: string;

You'll remember that a string declared this way has a maximum length of
255 characters, although its functional length depends on exactly what's
stored in it. Since most string variables don't ever come close to the
maximum length of 255 characters, Mac Pascal provides a way to make
programs more efficient by specifying shorter maximum lengths by
providing an integer less than 255 to represent the string's maximum length:

var name: string[Maximum_Length];

This kind of variable is sometimes called a string array, but it's no
different from any other string except for the explicitly declared maximum
length. What does this have to do with the function length? Nothing,
except that length can never be greater than the maximum value that you
specify. In general, strings declared this way work just like strings with the
default limit, except that you have to be careful not to overstep the length
limit you've imposed. Mostly that means not ttying to put a value into the
string that won't fit. For example, if name has been declared to be type
string [10], this statement will cause an error:

50

string subscripts

string
demonstration

program
(352)

Focus on Programming: Arrays

name := 'Rumplestiltskin'

It's also incorrect to try to readln(name) if the next input line contains 15
characters; you can't put more than 10 characters into a string[lO] variable.

Individual characters can be accessed in a string variable as if the
variable were an array with a lower bound of 1. String elements can be
used in any way that you might use any char variable.

Here's an example that writes out the characters of string name in
reverse order:

for i := length(name) downto 1 do write (name[i]);

Notice the use of length for the upper limit of the for loop. If we had used
10, MAX I.£NGTH, or any other constant value, we would have risked
trying to -go beyond the actual current length of the string and write a
nonexistent character. In general, it's illegal to reference an element of a
string whose subscript is greater than the length of that string as given by
the function length.

It's handy to be able to access individual string elements with
subscripts, but it's seldom necessary when Mac Pascal's built-in string
functions and procedures are available. For example, compare this program
with its Standard Pascal counterpart on page 352 of Oh! Pascal! Both
programs are designed to read a line of characters containing two words
separated by a blank and print those words out in alphabetical order.

program Order_Words;
{Demonstrates input, output, and comparison of strings.}
con st
WORD_LENGTH = 15;
LINE_LENGTH = 30;
BLANK='';
var
First, Second: string[WORD_LENGTH];
Line: strlng[LINE_LENGTH];

begin
ShowText;
writeln('Enter two words.');
readln(Line);
First:= Copy(Line, 1, Pos(BLANK, Line) -1); {Extract first word.}
Second:= Copy(Line, Pos(BLANK, Line)+ 1, Length(Line));
writeln('The words are', First,' and', Second);
writeln('ln alphabetical order the words are .. .');
if First< Second then
writeln(First, BLANK, Second)
else
writeln(Second, BLANK, First)

end.

51

Still More
Exercises

11 Arrays for Random Access

Because it uses string input, this version of the program requires an
end-of-line ClReturnl) to tenninate the input; it crashes if the line length or a
word length exceed their respective variable definitions. The Standard
Pascal version won't crash, but it will give incorrect output. Which is
worse? In this case, it doesn't much matter. But in the real world,
incorrect output is far more dangerous than no output at all.

11-25 You have been given a text file that contains no eoln characters. Write a
program that reads the text file character by character into a string variable whose
maximum length is 80 characters. Each time the string variable is filled it should be
written to a new file using writeln.
11-26 Write a program that takes typed values from the computer keyboard and
translates them into notes on a musical scale (using the frequencies given in the chapter).
Use the QWERTY row to represent the high octave going from A to G-sharp (So the Q
key represents the A above middle-C, the W represents A sharp, etc.), the ASDFG row
to represent the middle octave, and the ZXCVB row to represent the low octave. Store
the typed values in an array. When a slash (f) is typed, the song is over, and the
computer should play the array of notes as typed.
11-27 Make your music composition program friendlier by adding a graphic display of
a piano keyboard. Label each piano key with the letter or symbol that represents that
note on the computer keyboard.
11-28 Add two more arrays to your music program which allow the composer to
control the duration and amplitude as well as frequency of each note. Can you think of a
user-friendly interface for the input of duration and amplitude?
11-29 The cumulative frequency of a test score is the frequency of that score plus the
total of the frequencies of all lesser scores. Cumulative frequency is usually expressed as
a percent of the total number of scores, the percentile. Write a procedure for the program
Statistics that calculates the percentile for each exam score and plots the percentiles as a
line on the graph.
11-30 In question 11-20 you are asked to write procedures and functions that already
exist in Macintosh Pascal. Instead, write Mac Pascal statements that perfonn those string
handling tasks.

52

Predefined
Record Types

~

checking
thetime

12

E Pluribus Unum: Records

YOU'LL FIND NO SIGNIFICANT VARIATIONS from the Standard in
this chapter, only some important applications. Many of the Macintosh's
hidden tools are defined as record structures. We'll look at a couple.

As you already know, there's a digital clock ticking away somewhere
inside every Macintosh. That clock is used by the machine to schedule
tasks, but it can also be used by your programs. Suppose you want to print
the date and time at the top of the output of your program. The built-in
procedure GetTime returns the current date and time as calculated by the
Macintosh clock. Since the date and time combined include six different
values, a six-field record is the logical structure for storing and passing
them to GetTime. As a convenience, Macintosh Pascal includes a built-in
record type that's custom-made for the job:

DateTimeRec =record
Year, Month, Day, Hour, Minute, Second, DayOfWeek: integer

end;

About the fields: Year is a four digit value that must be greater than
1903 (we don't know why, either); Hour is the number of hour since
midnight (military time); DayOjWeek is valued 1 to 7 (Sunday - Saturday);
the rest are obvious. You don't need to include this type declaration in your
program, it's automatically there when you need it. The procedure call

GetTime(Date_ Time);

returns all of the date and time information in its variable parameter
Date Time, which must be declared to be of type DateTimeRec. Here's a
procedure to stamp the time and date in your program listing:

procedure Time_Stamp; {Writes the current day, date, and time}
var
Date_ Time : DateTimeRec; {A Mac Pascal predefined record type}

begin
GetTime(Date_ Time); {A built-in procedure that reads the clock}
with Date_ Time do
begin
case DayOtweek of {Convert day from integer code to string}
1 : write('Sunday');
2 : write('Monday');
3: write(Tuesday');
4 : write('Wednesday');

53

..

Predefined
QuickDraw

Record Types

In
~

12 E Pluribus Unum: Records

5: write('Thursday');
6: write('Friday');
7 : write('Saturday')

end; {case}
write(':', Month : 2, '/',Day: 2, '/',Year mod 100: 2,' ');
if Hour< 12 then {Check for AM vs PM}

writeln(Hour: 2, ':',Minute,':', Second,' AM')
else

writeln(Hour- 12: 2, ':',Minute: 2, ':',Second: 2,' PM')
end {with}

end; {Time_Stamp} D TeHt
Monday: 8/11/86 5:33: 16 PM :fr

There are many predefined record types in QuickDraw - far too many
to cover here. (The Macintosh Pascal Technical Appendix lists them all.)
We'll look at just one here. Rect is defined as a special type of variant
record which lacks a tag field, but for our purposes we can think of it like
this:

Rect = record
Top, Left, Bottom, Right: integer

end;

If we declare a variable Rect Var to be of type Rect, we can assign
values to its fields like this: -

Rect_ Var.Top:= 40;
Rect_ Var.Left:= 30;
Rect_Var.Bottom:= 100;
Rect_ Var.Right:= 150;

The work of these four statements can be done with one call to
procedure SetRect. This procedure has five parameters: a variable
parameter of type Rect followed by four integer value parameters which
represent left, top, right, bottom, in that order. (Note the different order.
There are many inconsistencies like this in QuickDraw; it pays to pay
attention.)

SetRect(Rect_Var,30, 40, 150, 100);

Now that we've defined a record of type Rect, what can we do with it?
For starters, we can pass it to any of the QuickDraw shape procedures we
introduced in Chapter 2. Here's an example:

FrameRect (Rect_ Var);

54

Macintosh Pascal Functions and Procedures

Screen Management
HideAll SS, 87
SetDrawingRect SS
SetRect 54, 55
SetTextRectSS
ShowDrawing 9
ShowText9

File Handling
close S7, 58-63
Filepos 60, 64
NewFileName 40, 41, 56-64, 70
OldFileName 40, 41, 45, 56-64
openS9, 60
reset 40, 41, 56
rewrite 39, 56
seek60

Input and Output
Button 70
DrawChar 14
Drawstring 12, 14-15, 26
get62-63
GetMouse70
Note46, 47
page 68
putS9
ReadString 13
reset 40, 41, 56
rewrite 39, 56
SaveDrawing 70
seek60
WriteDraw 12, 14

String Handling
concat34
copy 3S, 51
delete 3S
include 3S
insen 3S
length 34, 51
omit35, 37
pos34
ReadString 13
StringOf 13,14, 26
StringWidth 13,14, 26

Miscellaneous
GetTimeS3
Random 8, 24, 25, 69

Line Drawing
Line 10, 15
LineTo 10, 15, 26
Move 10, 15
MoveTo 10, 15,26

Shape Drawing
EraseArc 12
EraseOval 12, 15, 31
EraseRect 12
EraseRoundRect 12
FillArc 12
FillOval 12, 15
FillRect 12, 27
FillRoundRect 12
FrameArc 12, 15
FrameOval 12, 15, 21,30
FrameRect 11-13, 26, 54
FrameRoundRect 12
InvertArc 12
InvenOval 12
InvertRect 12
InvertRoundRectl2
PaintArc 12
PaintOval 12
PaintRect 12, 50
PaintRoundRect 10, 15

Pen Control
HidePen 10
PenNormal 10
PenPat 10
PenSize 10, 15
ShowPen 10

Graphics Text
CharWidth 14
DrawChar 14
DrawString 12, 14-15, 26
TextFace 14, 15
TextFont 14
TextSize 14, 15, 26
WriteDraw 12, 14

The Mouse
Button 70
GetMouse70

MACINTOSH DESKTOP COMMAND SUMMARY

WORKING WITH DISKS

To start the computerInsert Pascal disk, turn on machine

To initialize (format) a new disk 1) Insert blank disk (after starting computer)
.................................. 2) Click "One-Sided" or ''Two-Sided" or "Initialize"
........... 3) Type new disk name

To eject a disk Select disk, select EJECT from FILE menu or
.. Select disk, press ~-lshiftl-E or
...... Press ~-jShiftI-1 (internal drive) or
.. Press ~-jShiftl-2 (external drive) or

To remove a disk from desktop (not the startup) Drag disk icon to trash (also ejects the disk)

To make a copy of a disk 1) Insert the disk in one drive
... 2) Insert a blank (or erasable) disk in the other drive
........................... 3) Drag source disk icon to destination disk icon

To lock (write protect) a disk Slide plastic tab to open hole (close to unlock)

To open a disk window or folder windowDouble-click icon or
....... Select icon, then select OPEN from FILE

WORKING WITH FILES

To start Macintosh Pascal for creating a program Double-click the Pascal icon or
.............. Select the icon, then select OPEN from FILE

To open an existing Pascal programDouble-click the program icon or
........ Select the icon, then select OPEN from FILE

To select several files at once Drag a rectangle around the icons or
···~··········· · ··········· ··· ····· ·············· ······ · · ········ · ······Click one icon and shift-click the others

To copy file(s) between disks Drag file icon(s) into window of destination disk

To remove file from disk 1) Drag file icon into Trash icon
...... 2) Select EMPTY TRASH from SPECIAL

To lock or unlock a file 1) Select icon
... 2) Select GET INFO from FILE
.. 3) Click LOCKED box

PRINTING

To print the active window Press ~-~-4

To print the entire screen Press leaps Lockl-~-lshiftl-4

To print a program from desktop 1) Select the program icon
....... 2) Select PRINT from FILE

To print a catalog of files 1) Select the disk or folder to be cataloged
.... 2) Select PRINT CATALOG from FILE

Macintosh Pascal Functions and Procedures

Screen Management
HideAll 55, 87
SetDrawingRect 55
SetRect 54, 55
SetTextRect 55
ShowDrawing 9
ShowText9

File Handling
close 57, 58-63
Filepos 60, 64
NewFileName 40, 41, 56-64, 70
OldFileName 40, 41, 45, 56-64
open59, 60
reset 40, 41, 56
rewrite 39, 56
seek60

Input and Output
Button 70
DrawChar 14
Drawstring 12, 14-15, 26
get 62-63
GetMouse70
Note46, 47
page 68
put59
ReadString 13
reset 40, 41, 56
rewrite 39, 56
SaveDrawing 70
seek60
WriteDraw 12, 14

String Handling
concat34
copy 35, 51
delete 35
include35
insert 35
length 34, 51
omit35,37
pos34
ReadString 13
StringOf 13,14, 26
StringWidth 13,14, 26

Miscellaneous
GetTime53
Random 8, 24, 25, 69

Line Drawing
Line 10, 15
LineTo 10, 15, 26
MovelO, 15
MoveTo 10, 15,26

Shape Drawing
EraseArc 12
EraseOval 12, 15, 31
EraseRect 12
EraseRoundRect 12
FillArc 12
FillOval 12, 15
FillRect 12, 27
FillRoundRect 12
FrameArc 12, 15
FrameOval 12, 15, 21,30
FrameRect 11-13, 26, 54
FrameRoundRect 12
InvertArc 12
InvertOval 12
InvertRect 12
InvertRoundRect12
PaintArc 12
PaintOval 12
PaintRect 12, 50
PaintRoundRect 10, 15

Pen Control
HidePen 10
PenNormal 10
PenPat 10
PenSize 10, 15
ShowPenlO

Graphics Text
CharWidth 14
DrawChar 14
DrawString 12, 14-15, 26
TextFace 14, 15
TextFont 14
TextSize 14, 15, 26
WriteDraw 12, 14

The Mouse
Button 70
GetMouse 70

MACINTOSH DESKTOP COMMAND SUMMARY

WORKING WITH DISKS

To start the computerInsert Pascal disk, turn on machine

To initialize (format) a new disk 1) Insert blank disk (after starting computer)
.............................. 2) Click "One-Sided" or "Two-Sided" or "Initialize"
.... 3) Type new disk name

To eject a disk Select disk, select EJECT from FILE menu or
.. Select disk, press ~-IShiftl-E or
........ Press ~-IShi ftl-1 (internal drive) or
.. Press ~-I Shiftl-2 (external drive) or

To remove a disk from desktop (not the startup) Drag disk icon to trash (also ejects the disk)

To make a copy of a disk 1) Insert the disk in one drive
.. 2) Insert a blank (or erasable) disk in the other drive
............ 3) Drag source disk icon to destination disk icon

To lock (write protect) a disk Slide plastic tab to open hole (close to unlock)

To open a disk window or folder window Double-click icon or
............................... Select icon, then select OPEN from FILE

WORKING WITH FILES

To start Macintosh Pascal for creating a program Double-click the Pascal icon or
............................. Select the icon, then select OPEN from FILE

To open an existing Pascal programDouble-click the program icon or
............. Select the icon, then select OPEN from FILE

To select several files at once Drag a rectangle around the icons or
···~·· ··· · ·· · · ···· · ·················· · ··················· · ··· ·· ··· · ·· ···Click one icon and shift-click the others

To copy file(s) between disks Drag file icon(s) into window of destination disk

To remove file from disk 1) Drag file icon into Trash icon
.... 2) Select EMPTY TRASH from SPECIAL

To lock or unlock a file 1) Select icon
..... 2) Select GET INFO from FILE
..... 3) Click LOCKED box

PRINTING

To print the active window Press ~-~-4

To print the entire screen Press leaps Lookj-~-I Shi ftj-4

To print a program from desktop 1) Select the program icon
.. 2) Select PRINT from FILE

To print a catalog of files 1) Select the disk or folder to be cataloged
..... 2) Select PRINT CATALOG from FILE

Still More
Exercises

Predefined Record Types

Interesting, but not particularly useful, since we already have a
perfectly good way of passing values to FrameRect. * What we really need
is a way to control the size and shape of windows automatically so we can
see the entire output from our Frisbee production graph program (Chapter
5) without manually dragging window frames around. As you might have
guessed, variables of type Rect are also used as parameters for window
management routines. Here's a procedure we can add to the Frisbee
program to size the windows automatically:

procedure Window_Setup; {Sizes and displays output windows}
var
Text_ Window, Drawing_ Window: Rect;

begin
HideAll; {Clear the screen.}
SetRect(Text_Window, 280, 40, 508, 330);{Build text rectangle record.}
SetRect(Drawing_Window, 2, 40, 279, 330); {and drawing rect. record.}
SetT extRect(T ext_ Window); {Size and place the text window}
SetDrawing Rect(Drawing_ Window); {and the drawing window}
ShowText; {Display the text window}
ShowDrawing {Display the drawing window}
end; {procedure}

In this procedure, SetRect is used to load values into Text_ Window
and Drawing_Window, both of which are variables of type Rect. These
two record variables are used in turn as parameters for SetTextRect and
SetDrawingRect, which set their resllective windows using the values
assigned to their record parameters. This example puts the drawing window
on the left of the screen and the text window on the right, so that the two
together fill the screen. These procedures and predefined record types may
be used to customize the output from all of your Mac Pascal programs.

12-18 Defme a variant record Date_Time that stores the time either as military time (0-
23 hours) or as civilian time (AM, PM) and the date as American (month, day year) or
European (day, month, year).
12-19 In exercise 11-28 you used three arrays to store values of frequency, amplitude,
and duration for use by the note procedure. Repeat that exercise using an array of records
instead of three arrays.
12-20 Represent a deck of cards as an array of records with suit and value. Write a
program that shuffles the deck and deals four 13-card bridge hands. Draw the cards using
QuickDraw graphics.
12-21 Write a procedure that sizes and shows the Drawing and Text windows. The
procedure receives two values, the percent of the screen to be used for the text window (0
to 100) and a code which specifies whether the screen is divided vertically or horizontally.

* Sharp-eyed readers will note an inconsistency here: FrameRect had four parameters
(top, left, bottom, right) when we introduced it in Chapter 2, but has only one record
type parameter when used in this way. Think of this, not as a contradiction, but as a
convenience. Because type Rect is a variant record, you can treat it as four simple
variables or one structured variable, depending on your needs and your preference.)

55

Making and
Using

Textfiles
(420}

reset and
rewrite

(421,422}

13

Files and Text Processing

WHEN NIKLAUS WIRTH designed Pascal, sequential file processing was
the order of the day. But the world moves faster now, and most of today's
data storage and retrieval applications are better served by direct access files.
This chapter will show you how to use this important file type that's not
even mentioned in the Pascal Standard.

But first we'll look again at external sequential files, filling in some
of the details we left out in Chapter 8. So if you haven't yet read that part of
that chapter, now's the time.

You may remember from Chapter 8 that Macintosh Pascal handles
external files by associating each file with a file identifier in a reset or
rewrite statement, like this:

reset(lnput_File, String_ Var};

In that chapter, we introduced OldFileName and NewFileName, powerful
procedures that tum dialog box input into strings that can be used as string
parameters of reset and rewrite, respectively. From the program user's
point of view, these file name procedures allow input in a friendly and
familiar way. From the programmer's point of view, they're handy because
they provide what's needed by reset and rewrite in exactly the right format.

But there are times when you don't want to bother the user for input,
even if it's only a click of the mouse. Many programs are designed to work
with specific files every time they're run; there's no reason to ask for a file
name in those programs when a built-in string constant will fill the bill. To
use reset and rewrite without OldFileName and NewFileName, you'll need
to know more about their parameter lists.

In both reset and rewrite, the file's identifier (the one used inside the
program) is the first parameter while a string indicating its name and disk
location is the second. The second parameter can be a string constant,
variable, or expression. It can be coded as part of the program, entered as
data, or computed. The string generally contains two pieces of information:
the name of the disk that contains the file and the name of the file. A colon
(:) is attached to the end of the disk name so it doesn't run together with the
file name. (The disk name may be omitted if the file is on the current disk -
the disk on which Mac Pascal resides when it is first opened or the one
currently selected with the file dialog box - but it's a good practice to
always include the disk name.) Confused? Some examples should help:

56

rewrite(Output_ File,'mydisk:myfile'};
rewrite(Output_File,String_ Variable};
rewrite(Output_File,concat(Disk_String_ Var,':',File_String_ Var}};

procedure close

~

printer output

~

Making and Using Textfiles

Reset and rewrite open files so they can be used by your programs;
the non Standard procedure close does the opposite. Close is used to close
a file and to disassociate the file identifier from the the actual file. Close has
one parameter, the file identifier:

close(Output_File);

While it's not technically necessary to formally close a file if it's the only
one you're using, it's a good habit that's especially important when you're
writing programs with lots of data files. Here's an example (with no
redeeming social value) that shows Mac Pascal files in action:

program External_Files; {Create 11 files and write their names to them}
var
Output_File : text; {Declare the file identifier.}
File_Num : integer;
Disk_Name, File_Name: string;

begin
ShowText;
write(' Please enter file name ');
readln(File_Name); {Read file name as data.}
write('Please enter disk name ');
readln(Disk_Name);
File_Name := concat(Disk_Name, ':', File_Name); {Compute file name.}
rewrite(Output_File, File_Name); {Open the file to write.}
writeln(OutpuLFile, 'This is file O'); {Write file name in the file.}
close(OutpuLFile); {Close the file so the identifier can be used again.}
for File_Num := 1 to 9 do {Create 9 files, computing their names.}
begin
rewrite(Output_File, concat(Disk_Name, ':File', chr(ord('O') + File_Num)));

writeln(OutpuLFile, 'This is file', File_Num: 1);
close(Output_ File)
end; {for}
rewrite(Output_File, 'File 1 O'); {This file name is a string constant.}
writeln(OutpuLFile, 'This is file 1 O');
close(OutpuLFile)
end. {External_File}

Way back in the second hands-on session you learned how to use the
Preferences window to send your "Output also to the Printer." You'll
remember, though, that this option sends everything to the printer,
including prompts and input that's typed during the execution of the
program. Consequently, our Dear_Mom printout necessarily included
typed input above the actual letter.

You can avoid this side effect of the Preferences window by explicitly
assigning a file to the printer in your program:

rewrite (Print_File, 'Printer:');

57

other devices
rni
~

Direct
Access Files

~

13 Files and Text Processing

This statement attaches the file identifier Print _File to the printer in the same
way the rewrites in our last program associated file identifiers to files on
specific disks in the disk drives. But unlike a disk drive, the printer can't
contain individual files, so there's no file name after the colon in the string.
Here, then, is how we could rewrite Dear_ Mom to produce a printout
unblemished by input prompt and response:

program Dear_Mom; {This program prints a letter.}
var
How_much : integer;
Print_File : text;

begin
HideAll;
Show Text;
writeln('Enter the amount:') {Display prompt in text window}
readln(How_much);
rewrite (Print_File, 'Printer:'); {Associate identifier with printer}
writeln(Print_File, 'Dear Mom,'); {Write letter directly to printer}
writeln(Print_File);
writeln(Print_File,'Pleasesend me$', How_much: 3, '.');
writeln(Print_File);
writeln(Print_File,'Love,');
writeln(Print_File,'Skip');
end.

It's possible to associate other devices, including Keyboard and
TextWindow, to file identifiers. This may seem unnecessary, since both of
these devices are Standard I/O files in Mac Pascal, but it's occasionally
convenient to be able to redirect standard input or output to other devices
and back again. TextWindow can only be used with the file identifier
output, and Keyboard with input. But within those restrictions, you can do
this kind of thing:

program out(output);
{The program parameter 'output' is necessary to define the file identifier!}
begin

close (output);
rewrite (output, 'Printer:')
writeln ('Goes to the printer even though it's a standard writeln.');
close (output);
rewrite (output, 'TextWindow:');
writeln ('Goes to the textwindow, just like the good old days.');

end.

In Oh! Pascall, as in Standard Pascal, a file is a sequential file -
period. As you know by now, the elements of a sequential file must be read
in order, starting with the first one. If you need information from the
hundredth component in the file, you have to read through the first 99
before you can get what you're after.

58

sequential files

direct access files

procedure open

procedure put

Direct Access Files

H you decide to change something in that hundredth element, you
can't just switch to write mode and make your corrections. Because a file
can't be read and written in the same pass, you have to create a new file,
copy the first 99 elements from the original, write the new version of the
hundredth, and then copy the remaining elements from the original.

In cases where many or most of the elements are changed each time a
file is used (such as when the current balances for all checking accounts are
updated at the end of the day) this is an efficient way to process files. But
there are clearly many applications where this kind of processing just won't
do. H airline reservations were stored on sequential files, the delays in
ticket lines would be so long that most customers would probably find it
faster to take the train - or walk.

Airline clerks clearly need real-time systems that allow for rapid
updates of individual pieces of information. Direct access files make such
systems possible. With direct access files, a single component can be guick
ly accessed, modified, and written back without the necessity of readmg or
copying the other elements. (Direct access files are often called random
access files because any randomly chosen element can be quickly accessed.)
Procedures for allowing direct (non-sequential) access to files are imple
mented in most modem versions of Pascal; in Macintosh Pascal these
procedures are open and seek. In addition, many of the standard proce
dures for working with sequential files can be used with direct access files.

A call to procedure open opens a file for both input and output and
establishes direct access. The form of the call is the same as for reset and
rewrite:

open(File_ldentifier,String_ Var);

This procedure opens the file indicated in String_ Var (which can come from
OldFileName, NewFileName, or the program).

When open is used with a new file name in the string identifier (as
from NewFileName), a new file is created with that name. Since the file is
empty, eof is true and the file window is undefined. H a non-empty file
exists with the specified name, eof is false and the file window frames the
first file component. Either way, you can use either put or write to add
components to the file.

When used with sequential files, put always places a component at the
end of the file. With a direct access file, put places the file component at the
current file position - wherever that might be - and then advances the file
position one component. Typically direct access files are created initially by
adding a batch of new records in a sequence using either put or write.

Once the file has some components, your program can read or change
any of those components directly without scanning the rest of the file. But
in order to do that, the program has to tell the computer which component
it's looking for. It does that with seek, a procedure that effectively says,
"locate the fifth (or first, or 5678th) component of the file." Each compo
nent has an associated number, starting with the first component that you
entered when the file was open. The first component added to a direct
access file is numbered zero (for reasons that have to do with binary code),

59

procedure seek

function FilePos

reading
direct access

files sequentially

random access

13 Files and Text Processing

the second is component number 1, and so on. The seek procedure allows
us to specify the identifier of the file and the number of the desired
component as parameters:

seek(File_ldentifier, Longint_ Value);

Seek moves the file window to the file component specified by the
second parameter (which may be any longint or integer value). Here's how
seek can be used to move the file window to the end-of-file to add more
components:

seek (File_ldentifier, MAXLONGINT);

When cruising around a direct access file in the file window, your
program may need to figure out wher it is. The function FilePos returns a
longint value representing the current file position. It requires one
parameter, the file identifier. Here's how FilePos can be used to move the
window ahead 20 frames:

seek (File_ldentifier, FilePos (File_ldentifier) + 20);

As this short program shows, direct access files are easy to read
sequentially:

60

program List_Files; {Lists the contents of a direct access file.}
var
Data_File : file of integer;
Data : integer;
File_Position : integer;

begin
open(Data_File, 'filename'); {Open the file for direct access.}
while not eof(Data_File) do
begin
read(Data_File, Data);
writeln(Data)
end {while}

end. {List_Files}

It's just as easy to treat a direct access file as a true random access file:

for File_Position := 1 to 5 do
begin
seek(Data_File, random mod FILE_LENGTH);
read(Data_File, Data);
writeln(Data)
end {for}

Order Entry
System:

a Realistic
Example

key values

Direct Access Files

Let's consider a non-random application for direct access files. Al
Gorithm's Software Distribution Company stocks hundreds of products
which are sold to computer stores all across the country, mostly through
telephone orders. Al is trying to computerize the system so that the crucial
details of each phone transaction- customer number, product number, and
quantity ordered- can be entered into the computer. He'd like the computer
to use that information to adjust the product inventory records and to adjust
the billing information for the store that placed the order. The system has to
update the appropriate records immediately so Al's salespeople know with
certainty that the inventory records shown on the screen are accurate. Since
there are far too many products and customers to allow the records to be
kept in the computer's internal memory, the best alternative is to keep the
information in two direct access files: one for all of the customer
information and one for product information.

A direct access file is no better than a sequential file, though, unless
the program has an efficient way to retrieve an individual record without
searching through the others. Each customer has a unique account number;
does that help? Let's suppose the account numbers - and only the numbers
- were stored in an array in the computer's memory. Since the array
contains only account numbers, it doesn't take up much space in memory.
And since array searches are much faster than file searches, a complete scan
of the array can be done without significantly slowing the program's
response time. What happens when the number is matched in the array? If
the customer numbers are stored in the array in exactly the same order that
they're stored in the file, then the array subscript of the matching number is
the address of the corresponding record in the file.

In the vernacular, the customer number is the key to the customer file,
and we're using an array of key values. The same scheme can be used to
find records in the parts file. Of course, since arrays are kept in the compu
ter's volatile memory, the information in each array will have to be copied
to a file when the program isn't being used. If that file is a direct access
file, it can be easily updated right along with the corresponding master file.

Let's focus on the algorithm for the order-entry part of the system:

Read customer key value file into an array
Read product key value file into an array
Read customer number
while customer number is valid do
Find the customer number position in customer key value array
Read customer record from customer file at the same position
Read product number
Find the product number position in the product key value array
Read product record from the product file at the same position
Read order
Update the inventory field of the product record
Update the amount owed field of the customer record
Write updated records to respective files
Read customer number

end

61

order entry
program

13 Files and Text Processing

In Macintosh Pascal:

62

program Order_Entry; {Simple order entry system}
con st
ARRAY _SIZE= 1000; {Maximum number of Products and customers}
type
Customer_Record =record
Number : longint;
Name, Address, City, State_and_Zip: string;
Balance_ Owed, Credit_Limit: real
end;
Product_Record =record
Number: longint;
Product_Description : string;
Unit_Price: real;
In_ Stock: longint
end;
Customer_File =file of Customer_Record;
Product_File =file of Product_ Record;
Key_Array = array[O .. ARRAY_SIZE] of longint;
var
{Global file identifier variables}
Customers: Customer_File;
Products: Product_File;

{Local variables}
Product_Array, Cust_Array: Key_Array;
Cust_Number, Product_ Number: longint;
Number_Ordered, Total_Products, Total_Cust, Rec_Number: integer;
Price: real;

procedure Read_Key_File (var Data_Array: Key_Array;
{Reads a file of key values into an array.}
var Number_Read : integer;
Prompt: string); {Prompt for dialog box.}

var
Key_File: file of longint;

begin
reset(Key_File, OldFileName(Prompt));
Number_Read := O;
while not eof(Key_File) do
begin
read(Key _File, Data_Array[Number_Read]);
Number_Read := Number_Read + 1
end; {while}
close(Key _File)
end; {Read_Key_File}

Direct Access Files

procedure Find_Rec_Number (Key_ Value: longint;
var Data_Array: Key_Array;
var Rec_Number: integer;
Size: integer);

{Uses a linear search to find the position of a key value in the index array.}
var
Found: boolean;

begin
Rec_Number := O;
Found :=false;
while (Rec_Number <Size) and not Found do
if Key_ Value= Data_Array[Rec_Number) then
Found :=true
else
Rec_Number := Rec_Number + 1

end; {Find_Rec_Number}

begin {Order_Entry}
Read_Key_File(Cust_Array, Total_Cust, 'Customer Key File');
Read_Key_File(Product_Array, Total_Products, 'Products Key File');
open(Customers, OldFileName('Customer File'));
open(Products, OldFileName('Products File'));
write('Enter customer number ');
readln(Cust_Number);
while Cust_Number >Odo
begin
Find_Rec_Number(Cust_Number, Cust_Array, Rec_Number, Total_Cust);
seek(Customers, Rec_Number);
write('Enter Product number ');
readln(Product_Number);
Find_Rec_Number(Product_Number,Product_Array ,Rec_ Number,

Total_Products);
seek(Products, Rec_Number);
write('Enter size of order ');
readln(Number_Ordered);
Price:= Number_ Ordered* Products1'.Unit_Price;
Customers11.Balance_Owed := Customers''.Balance_Owed +Price;
Products11.ln_Stock := Products11.ln_Stock- Number_Ordered;
put(Products);
put(Customers);
write('Enter customer number ');
readln(Cust_Number);
end {while}

end. {Order_Entry}

The exercises at the end of this chapter suggest several additions you
can make to this program to turn it into a complete, working system.

63

Antibugging
and

Debugging
(445)

13 Files and Text Processing

A common error with put and get in direct access files is the off-by-one
error. To make sure you always end up looking at the record you're after,
remember three things:

1. Zero is the file position of the first component in a direct access.file.

2. Put moves the file position forward by one after it writes to the file.

3. Get moves the file position forward by one before it reads from the file.

Self-Check Q. What comes out when this program is run?
Question

Still More
Exercises

program File_Position;
{Demonstrates how file procedures affect the file position.}
var
Play_File: file of integer;

begin
open(Play_File, OldFileName('lnput File'));
write(Filepos(Play_File) : 2);
Play_File" := O;
put(Play_File);
write(Filepos(Play _File) : 2);
get(Play_File);
write(Filepos(Play_File) : 2);
seek(Play_File, O);
write(Filepos(Play_File): 2);
Play_File" := O;

.put(Play_File);
writeln(Filepos(Play_File): 2);
end.

A. 01201

13-33 We can improve the perfonnance of the Order_EnJry program by sorting the key
values in their respective arrays so the program can use a binary search instead of a linear
search to find key values. If we change the order of the records, though, we won't be able
to use the subscript of either array to point to the file record position. Instead, we'll have
to include the file position information in the arrays. Each array will become an array of
two-field records; the first field of each record will be the key value, and the second will be
the file position number of the corresponding record. Rewrite the order entry program to
order the key values as they are read from their files and to search the key value arrays
using a binary search.
13-34 Write procedures that add customers and products for both the original order entry
program and for the version modified in 13-33. The advantage of having the key values
files direct access (even though they are read sequentially) should be obvious.

64

Antibugging and Debugging

13-35 Write procedures that delete customers and products from the order entry system.
Is it necessary to delete records from the customer and product files?
13-36 Write a program that uses the order entry files to print an inventory report listing
the quantity on hand for each product.
13-37 Write a program that uses the order entry files to print bills for each customer
whose amount owed is greater than zero.
13-38 Write a procedure that updates the amount owed for a customer when that
customer makes a payment.
13-39 Write a procedure that updates the quantity on hand to allow new shipments to
be added to the inventory.
13-40 Work with a team of students to develop a full-featured order entry system
following the software engineering principles given in Chapter 10 of Oh! Pascal!

65

Defining and
Programming

Set Types
(458)

base types
(458)

set cardinality
(458)

size limit
(458)

the empty set

14

Collections of Values: The set Type

THERE'S LOTS OF LEEWAY in the Pascal Standard's definition of the set
data type. The desi~ers of Macintosh Pascal were generous with sets.
They made the size limits large enough to handle most any programmer's
needs, and only placed one small additional restriction on the way sets can
be used.

Sets may be of the base type enumerated, boolean, char, and integer.
All of the following are allowed m Macintosh Pascal.

type
Reserved_Words =(program, procedure, function, while, repeat, string);
Reserved_ Type= set of Reserved_ Words;
Character_Set =set of char;
Boolean_Set= set of boolean;
lnteger_Set =set of integer;

Amazingly enough, the maximum cardinality of set size in Macintosh
Pascal is 65535, the full range of type integer. There are, of course, some
practical limitations, For example, sets of enumerated types can't be that
large because of memory constraints. And alas, Longint values outside of
the range of integer may not be members of sets. Still, the size limit on sets
is so large that you're not likely to find an application where it's a factor.

And finally, a minor restriction. The null constant "[]'' may not be
used with the set operators, so you'll occasionally· have to add an extra
statement. For example, this

var
Alpha: set of char;

If Alpha= 0 then Do_Something;

would have to be changed to this

var Alpha, Null : set of char;
Null:=[];
If Alpha= Null then Do_Something;

in Macintosh Pascal.

66

Advanced
Pointer

Tools
~

15

Abstract Data Structures Via Pointers

EVERYTHING YOU LEARNED ABOUT POINTERS in Oh! Pascal!
applies to pointers in Macintosh Pascal. Actually, that's not quite true; Mac
Pascal isn't quite as restrictive in the way pointers are assigned values.

From a beginnner's point of view, Standard Pascal's pointer
restrictions aren't a problem; in fact, they provide important protection
against costly and frustrating errors. But for advanced programmers, Mac
Pascal provides two additonal tools for assigning values to pointers: the
pointer operator (@) and the function pointer.

The pointer function allows you to create pointers of different types
that point to the same location. That makes it possible to treat the contents
of a given location as both character and numeric data within the same
program, for example. The pointer operator makes it possible to point to
specific locations in the system's stack, allowing your program to do fancy
memory referencing tricks.

Though these two tools are important and powerful additions to the
experienced programmers toolbox, they're not particularly useful for most
programming tasks, since they're tricky and potentially dangerous in the
hands of the untrained. We thought you might want to know about these
tools for future reference, but we don't recommend that you use them until
you've mastered the basic pointer operations.

If you want to learn more about these advanced tools, consult the
Macintosh Pascal Reference Manuals, experiment with small test programs,
and keep backups of all your important files tucked away in a safe place.

67

Mac Pascal
Extensions

~

procedure page
(560)

declaration
order

16

Advanced Topics: Macintosh Pascal and Beyond

WE DON'T PRETEND to tell you everything you want to know about
Macintosh Pascal in this introductory guide. In this final chapter we'll pass
on a few miscellaneous tricks to add to your Mac bag, including a note on
the page procedure mentioned in the "Everything You Wanted To Know ... "
Appendix of Ohl Pascall We'll close with a few words on where to go
from here when you're ready to explore further the world of Macintosh
programming

As mentioned in Ohl Pascall, the Standard procedure page is highly
implementation-dependent. In Macintosh Pascal, page clears the text
window when it's called without an argument. If the file identifier for the
printer is included, page advances the printer paper to the top of the next
page without changing the Text window. An undocumented feature* of
Mac Pascal causes the printer to advance whenever page is called with or
without argument. So if you're using page to clear the Text window
several times in a program, help save trees by turning off your printer.

page(output); {or} page; {clearsTextwindow}
rewrite(printer, 'printer');
page(printer); {advances printer to the top of the next page}

As long as we're in the spirit of full disclosure, we want to mention an
extension of Macintosh Pascal that has all kinds of potential for abuse. fu
spite of what you read in Oh! Pascall, const, type, var, procedure, and
function declarations in Mac Pascal may appear in a block in any order,
subject to just two restrictions: an identifier must still be defined before it is
referenced and forward referenced pointers must be defmed in the same type
clause. Consider the following confused program:

program Non_Standard_Order;
procedure Print;

const FIRST= 10;
begin

writeln(FIRST, Second)
end;

var
Second : integer;

begin
Second:= 20;
Print

end.

*Computer Science terminology for a bug.

68

Mac Pascal
libraries

programming
the mouse

Macintosh Pascal Extensions

In obvious violation of the Pascal Standard, the var clause follows the
procedure declaration. Macintosh Pascal normally allows variables to be
declared after procedures, but there's another problem here that will keep
this program from running: Second is referenced in the procedure before
it's cfefmed in the main program. We could easily avoid the.run-time error
that will result by moving Second's declaration before the procedure, but
then we'd be accessing Second as a global variable, opening up the
possibility of a side effect. So our non Standard positioning of the var
clause has a hidden benefit: it points out (with an error message) a global
reference to the variable.

We'll leave it up to you (and your instructor) to decide whether this
advantage offsets the possible lack of portability and readability that can
result from taking advantage of Mac Pascal's relaxation of the order of
declarations.

Macintosh Pascal has access to three major libraries of procedures,
functions, predefined constants, and predefined types. We've used one of
these - the QuickDrawl library - extensively in this book. The two we
haven't used are QuickDraw2, the advanced graphics library, and SANE,
the Standard Apple Numerical Environment library. Unlike QuickDrawl,
these libraries can't be accessed from a Macintosh Pascal program unless
they're explicitly requested by the program with a uses clause. This clause
comes immediately after the program statement.

program Show_Uses;
uses Sane, QuickDraw2;

(Note that uses is a reserved word in Macintosh Pascal.)
The SANE library is loaded with numerical functions. One useful

function is random. This function has the same name as the Mac Pascal
built-in function random. The SANE random function returns pseudo
random numbers in the range 1 to 231-1. This is a much greater range than
the built-in random. H SANE is declared in a uses clause then any call to
random calls the SANE random. instead of the built-inrandom.

You've been using the mouse as an input device throughout this book.
H you've wondered how to write programs that can read the mouse, you'll
be happy to know that it's not difficult. The function Button and the
procedure GetMouse provide the basic information your programs need to
accept simple mouse inputs. Button is a boolean function that returns true
when the mouse button is pressed and false when it is not. Button has no
arguments. GetMouse returns the vertical and horizontal positions of the
mouse in the Drawing window. The Getmouse procedure has two integer
variable parameters which represent the horizontal and vertical positions.
Here's a simple program that shows how Button and GetMouse can be used
to create a sort of poor man's MacPaint:*

69

Advanced
Programming

Resources
l9)

16 Advancec:ITopics

program Magic_Pen;
{A program for freehand picture drawing}
var

X, y: integer; rg~~~~5~il~=~~;; begin ~D *
PenSize(10, 1 O);
while true do
begin
repeat
until Button;
GetMouse(x, y);
MoveTo(x, y);
while Button do
begin
GetMouse(x, y);
LineTo(x, y)
end

end
end.

• •

Once you've created a mousterpiece with Magic Pen, how can you
save it to disk? You learned in the appendix how to do ff with the keyboard,
but wouldn't it be nice if the program had an option for saving built right in?
The procedure SaveDrawing, when included in a program, saves the
contents of the drawing window as a picture file that can be accessed by
MacPaint and other applications. It has one string value parameter, the file
name.

SaveDrawing(NewFileName); {Saves the drawing window as a file}

Unfortunately, there's no place to put SaveDrawing in this program,
because it's built around an infinite loop. The only way to stop it with the
Halt option in the Pause menu, and then there's no way to call the
procedure. So it's back to the keyboard if we want to save our pictures.

Obviously, this program in its present form isn't going to inspire
many budding Picassos. To be truly useful as an application, it would have
to allow for pen size changes, special effects, and saving pictures, among
other things. And these additional features should be accessible via pull
down menus in the Macintosh tradition.

Unfortunately, we don't have the space here to show you how to
develop this Magic _Pen into a full-blown Macintosh application. It's a big
jump from Magic_Pen to MacPaint, and it's not a particularly easy jump in
Macintosh Pascal. If you're interested in taking the leap, £there's plenty of
reading matter available to help you jump the right direction. Start by
thoroughly studying the matenal on data structures in Ohl Pascall; a

*This picture was drawn by Rosemary Johnson using Magic_Pen. All inquiries should be
directed to the artist.

70

Beyond
Macintosh

Pascal
[g

One Last
Exercise

Beyond Macintosh Pascal

thorough understanding of data structures is essential for Macintosh
programming. Then read the documentation that comes with Macintosh
Pascal: The Macintosh Pascal Reference Manual, The Macintosh Pascal
Technical Appendix, and the InLine documentation that comes on disk.
InLine is a challenging but powerful procedure that allows you to access
routines in the Macintosh Toolbox to create your own menus and such.

If that documentation isn't clear, consult one of the many commercial
books on Macintosh programming. Mastering the Macintosh Toolbox, by
David B. Peatroy and Datatech Publications, published by Osborne
McGraw-Hill, is a particularly accessible book aimed specifically at
Macintosh Pascal programmers.

If you're really serious about Macintosh programming, you'll
probably want a copy of Inside Macintosh, the challenging but definitive
reference on the subject.

When you're ready to graduate to writing full-scale applications
programs, you may want to consider switching from the Macintosh Pascal
interpreter to a compiler version of Pascal. The Mac Pascal interpreter is
unbeatable for learning Pascal, and its friendly user interface makes it nearly
ideal for designing and debugging Pascal programs. (We know one
professional programmer who develops his programs using Mac Pascal and
then converts them to whatever language the job requires.) But Macintosh
Pascal suffers from a lack of speed and an awkward toolbox interface when
compared with professional development tools. Fortunately, almost
everything you've learned about Pascal in this book is directly applicable to
most compiled Pascals.

Several excellent Pascal compilers are available for advanced
applications programming on the Macintosh. One in particular stands out as
a logical next step from Mac Pascal. Lightspeed Pascal, from Think
Technologies (the same company that developed Macintosh Pascal) has
most of the friendly features of the Macintosh Pascal user interface and is
nearly 100% compatible with Macintosh Pascal.

Whichever language and implementation you choose for your work,
you'll find that the tools and techniques you learned in Ohl Pascall and this
book will make your programming efforts more productive and enjoyable.
Good programming practices work in every language.

Happy programming!

16-1. Rewrite Magic_Pen so that it automatically (1) displays the Drawing window at
the maximum possible size on the screen; (2) draws two square "buttons" in the bottom
of the Drawing window, one labeled "Save" and the other labeled "Quit"; and (3)
recognizes mouse clicks inside those square buttons and reacts accordingly. Add buttons
to change the pen size and pattern or to make other changes to the pen or the picture.
Use your imagination. Finally, if you're interested in a real challenge, redo Magic_Pen
using the Macintosh Toolbox routines to create pull-down menus, dialog boxes, and
other official Macintosh enhancements.

71

I hear and I forget,

I see and I remember,

I do and I understand.

-Ancient Chinese Proverb

Appendix:
A Hands-On
Introduction

Session 1:
Meet

Mac Pascal

locked disks

Session 1 : Meet Mac Pascal

LEARNING TO PROGRAM is like learning to swim: reading about it just
isn't enough. This appendix is designed to give you some hands-on
experience so you can start writing and running programs as quickly as
possible. It's divided into two sessions, each of which can be completed in
an hour or so. The first session, designed to accompany Chapter 1, covers
the basics of working with a Macintosh and the Mac Pascal environment.
Session 2 introduces several tools and tricks you'll need for writing longer
programs; it works best when used with Chapter 2. After you've finished
these two sessions you'll be ready to strike out on your own.

If you haven't already, it's time to sit down in front of a Macintosh
and make things happen. You'll need a Macintosh Pascal program disk, a
blank 3.5" diskette, this book, and about an hour. If you're afraid of
computers or worried about your ability to use them, let go of your
anxieties and have fun!

(If you're using a Macintosh that's connected to a hard disk or other
computers in a network, some of the details of operation may vary slightly
from what's presented here. For example, many machines with hard disks
will automatically boot - computerese for start up - without having a
diskette inserted, provided the hard disk is turned on before the computer
is. And you frobably won't need a Pascal prowam disk at all if you're
running off o a hard disk or a network. Your mstructor or lab assistant
should be able to provide you with details.)

Ready to go? Reach around the left side of the box, and you'll find
the on/off switch about half-way down the back. Flip it on, and your Mac
will wake up with a beep and a question mark. (If the screen is too bright
or too dark for your taste, you can adjust the brightness with the knob
located directly below the rainbow-colored Apple logo.)

That little screen picture (icon, in the vernacular) is saying, "Where's
the disk?" Your Mac needs a disk to tell it what to do. And not just any
disk will do; it needs a disk with system files on it. The Macintosh has lots
of very intelligent circuitry built into its memory, but not enough to do
anything useful. It needs to have the rest of its smarts loaded into memory
from a disk each time it's turned on; that's what the system files are for.

So grab your Mac Pascal program disk. Before you insert it, check
the little square hole in the comer next to the label. If you can see through
the hole, the disk is locked (write-protected) so the computer can't add to or
change any of the information stored on it. Since Macintosh Pascal
occasionally needs to write to the disk in the course of doing its business,
you'll need to slide the little plastic cover over the hole if it's not already
there.

Now insert the disk (metal end first, label side up) in the slot under
the screen. (Remember: the little metal door on the disk protects it from
dangerous dust scratches and fingerprints, so don't open it yourself; the
machine will do it when the time comes.) Gently push it all the way in,
and the disk drive motor will start whirring or clinking as the disk spins.
Eventually you'll see a little Mac on the screen smiling as if to say,
"Thanks." (If you accidentally insert a disk that doesn't have the system

73

the finder

clicking

Appendix: A Hands-On Introduction

files on it, the little Mac will stick its tongue out, the screen will turn black,
and the disk drive will spit out the disk. No thanks. If that happens, or if
the disk is rejected and an "X" appears in the tiny disk icon on the screen,
tum the machine off for a second and try again, making sure you're using
your Pascal disk, and not your blank one. If it happens again, have your
disk checked by your lab assistant.)

After the system has finished booting, you should see a scene that
looks something like this:

Ii File Edit lllew Spec1111

(If someone else has been using your diskette, the screen may not look
exactly like this. Carry on anyway.)

You're staring at your electronic desktop (brought to you by an
important system program called the Finder). This desktop is your work
space when you're dealing with Macintosh, and you can treat it the way you
treat any desktop. You can keep it neat and free of clutter, like it is now, or
lay out your most important work in an organized way, or pile it high with
notes, folders, disks, and miscellaneous garbage. But before you can do
anything, you have to learn how to move things around. That's what the
mouse is for.

To use the mouse, you'll need a clean space about a foot square on
your desktop (your actual desktop, not the one on the screen). You'll be
rolling your mouse around in that area whenever you use your Mac, so
locate it in the position that's most comfortable for you. Orient the mouse
so the cable points away from you and roll it around a little, Watch what
happens to that little pointer(\) on the screen. As the mouse goes, so goes
the pointer. As you move the mouse around, remember to keep it facing the
same direction. If it bumps into something or reaches the edge of the desk,
pick it up and move it to a more roomy location; lifting the mouse doesn't
move the pointer on the screen.

Once you get the hang of moving the pointer, move it so that it points
to the little trash can. Now push and release the mouse button once with
your finger (this is called clicking), and watch the trash icon change from

74

dragging

desk
accessories

Hbout the Finder •••

Chooser
Scrapbook
Hlorm Clock
Note Pod

• I

Key Cops
Control Ponel
Puzzle

Session 1 : Meet Mac Pascal

white to black. Try it again with the Pascal disk icon: point to the disk (the
picture itself, not the "Pascal" label) and click the button once. The can is
now back to normal, and the disk is now black. This inverted coloration
(Apple calls it highlighted) indicates that you have selected the disk icon.
When you use the Macintosh, you generally select something before you do
something.

Point to the trash can and press the mouse button, but this time don't
let go. Move the mouse to the left with the button held down, and watch an
outline of the can move with the pointer. When you let go of the button,
you're letting go of the can, too, and it suddenly relocates where you left
the outline. In the Macintosh vernacular, this is called dragging an icon.
Now drag the can back where you found it and let go. You can drag any
icon around the screen this way.

Your desk comes equipped with more than a trash can; there are
several desk accessories hidden inside. Which desk accessories you have
depends on what's been included in your system file, but you probably
have a calculator, an alarm clock, a note pad, and a few others. These
tools are available for your use almost anytime you're using the Mac -- even
while you're writing a program. To find them, move the pointer to the
Apple (ti) up in the corner of the screen. Then press the button and watch
what happens: the apple is highlighted, and a hidden menu suddenly
appears under the apple.

This is called a pull-down menu, because you'll pull (or drag) the
pointer down to the item you want to select. Try it: without releasing the
mouse button, move the arrow slowly down the list, watching each item
become highlighted as you roll by. When you reach Calculator, release the
button. (If you overshoot the calculator, just move the pointer back up to
Calculator, or roll off the edge of the menu with the button down and try
again. If you don't have a calculator in your list, pick something else.) The
menu disappears, the disk whirs, and your personal calculator appears!

The calculator works just like any good $5 calculator does, except that
you can use the mouse instead of your fingers to punch the buttons. Try it:
move the pointer to the 9 and click; move the pointer to the plus (+) key
and click; then click 5 three times and click the equal sign (=). There's
your answer.

There are four buttons that might not be obvious to you on the
calculator: the asterisk (*), the slash (/) the E, and the C. Computerists use
the asterisk to represent multiplication and the slash for division. The E
stands for exponent , and is used to represent numbers in scientific notation
(explained on page 11 of Oh! Pascal!). And C clears the calculator's screen
and memory.

If you think punching those little buttons with the mouse is awkward,
you're right. Fortunately, you have another choice: you can just type in the
numbers and symbols from your Macintosh keyboard or numeric keypad.
For example, if you type "C6*99=" on the keyboard while the calculator is
selected, you'll clear the calculator and multiply 6 times 99.

You can drag the calculator around to different parts of the desk if it's
ever blocking your view of something else. Just point anywhere on the

75

ejecting
a diskette

Appendix: A Hands-On Introduction

black bar at the top (except inside that little white square), press the mouse
button, drag to a new location, and release. When you're through, click
inside that little square in the upper-left comer, called a close box, to make
the calculator disappear from the desktop.

Unless you've got a network, a hard disk, or some other unusual
hardware configuration, you'll probably be working with two disks: the
Pascal program disk that contains the interpreter and the system files, and a
document disk for storing the programs that you write. You can use your
blank disk for that purpose, but you'll have to get the Mac to recognize it
first. If you've only got one disk drive, select (with a click) the Pascal disk
icon and choose Eject (with a drag) from the File menu. The disk should
pop out like a piece of toast, allowin~ you to insert your blank disk in the
drive. If you nave two drives, theres no need to eject the program disk;
simply insert the blank disk in the extra drive.

If your disk has been used before in a Macintosh, it should show up
on the screen right under the Pascal disk. When it does, select Erase Disk
from the Special menu to turn it into an empty disk.

If you're using a brand new disk the computer will respond with a
dialog box that looks something like this:

@ This disk is unre11d11ble:

D Do you want to initl111ize It?

(Eject] (I niti111ize]

initializing Click inside the button that says "Initialize". Why? A new diskette contains
a diskette no information at all -- just a magnetic surface waiting to be used. But your

disk drive won't let you store any files on it until you initialize (or format)
the disk. If you think of the diskette like a freshly-paved circular parking lot
for programs, initializing the disk is a little like painting stripes and stall
numbers on the pavement so the parking lot attendant will be able to easily
park and unpark the files.

If the dialog box has buttons labeled "One-Sided" and "Two-Sided"
instead of an "Initialize" you're working with a double-sided disk drives. If
your disk is certified as double-sided, you can choose either of these
buttons. The advantage of choosing double-sided is that, as you might
suspect, you can store twice as much information on the disk. The
disadvantage is that a double-sided disk can't be used at all in a machine that
doesn't have a double-sided drive. If you choose single-sided, your disk
will work in either kind of drive. If your lab has both kinds of machines,
you might be safer going single.

Either way, after about a minute, Mac will say

Please name this disk:

76

opening
a window

double-clicking

CJ
System Folder

~
Macintosh Pascal

m
First Run

Session 1 : Meet Mac Pascal

Type a name for the disk - George's Disk, or whatever - and click OK.
After a few seconds, a George's Disk icon will appear on your desktop
right below the Pascal disk. If you're working with a single disk drive,
Pascal is now shaded gray, indicating that it's not physically in the drive.
Your new disk should be black, indicating that it's now the selected icon.

In general, a window is a tool for looking into something, and most
of the icons on your desk have windows associated with them. Since your
new disk is already selected, you can open its window by choosing (with a
drag) Open from the File menu. When you select Open and release the
button, the disk icon turns gray (or hollow) as a window zooms out.

This window, labeled George's Disk, shows us what's stored on the
disk: nothing. To close the disk window, either select Close from the File
menu or click the close box in the upper left comer of the window. The
window shrinks back into the disk icon, which is now back to black, still
selected and waiting to be used. (If there are any other windows open on
your desktop, close them now, too.)

When you're ready, move the pointer to the Pascal disk icon. You're
going to open it now, but not with the pull-down File menu you used
before. Instead, with the pointer pointing to the disk icon, double-click the
mouse button. That's the shorthand way to open something; in this case, a
window looking into the selected disk. If nothing changed on the screen,
try again, making sure that the two clicks are close together. When you get
it right, you should see the disk icon turn hollow as a window opens up,
showing the contents of the disk.

The disk window should contain at least two icons:
• The System Folder, which contains the all-important system files. (You

can open it and see, if you like.)
• The Macintosh Pascal Interpreter, which is the tool you'll be using

throughout this book to create, modify, and run Pascal programs.
Your disk may also contain some Macintosh Pascal programs created

with the interpreter. In order to create programs like these, you need to
open the Mac Pascal interpreter. So do it: select the Macintosh Pascal icon,
and open it using either the Open menu option or a double-click. (If you're
working with a single disk drive, your blank disk will pop out and Mac will
ask you to insert your Pascal disk. This kind of swapping can get tiresome,
but it's necessary when you're using two disks in a single-drive system.)
Eventually, you'll see the three windows of the Macintosh Pascal screen:
the text window, the drawing window, and the program window.

The text and drawing windows are only useful if you've got a
program to run, so let's look first at the program window (labeled
"Untitled" because yourfrogram-to-be doesn't have a name yet.) It already
contains the skeleton o a Pascal program highlighted in black. You're
going to replace that program skeleton with FirstRun, the first program in
Chapter 1 of Oh! Pascal! There are two ways of approaching this task:
1. Erase the skeleton and start typing FirstRun from scratch.
2. Replace those words and symbols that aren't in the FirstRun program

(like the word "Untitled" after "program"), salvaging those parts that are
(like the word "program").

77

typing
the program

Appendix: A Hands-On Introduction

Both methods yield the same results, but for the sake of simplicity, let's
start with the first approach. The easiest way to get rid of text in the
program window is to select it and then hit the !Backspace! key. (As usual,
first select, then do.) But the prototype program is already highlighted, just
as if you'd selected it, so you can remove it by simply hitting !Backspace I.
Try it.

Your slate should now be blank, except for the flashing vertical bar in
the comer. This insertion bar shows you where your typing will be
inserted in the window. (The insertion bar is sometimes called a cursor, for
CURrent poSition indicatOR.) Typing text on a computer is pretty much
like using a typewriter, with one major difference: the computer is more
forgiving. If you make a mistake, or if you change your mind, you can
correct your program without retyping it from the beginning. Soon you'll
learn about a number of J?Owerful tools that can make short work of major
editing jobs. But for this first program you'll only need the one you've
already used: the !Backspace I key.

D Untitled

I

program FirstRun (output); ~
{This is our first program.}
begin

whteln('Hello. I love you.')
end.

Try typing this program exactly as it's shown here, character for
character, ending each line by pressing the IReturnl key. Pascal is picky; it
won't understand what you're telling it to do if you don't use language it
can recognize, right down to the last semicolon. Special characters can be
particularly troublesome; make sure to use apostrophes (') rather than
double-quotes or backward accents to surround the greeting, and curly
brackets {like these} to enclose the second line.

But don't take this to mean that you can't make mistakes in your
typing; the worst that can happen is that you'll have to change something,
and that's easy. If you hit a wrong key or three, just lsackspacel until the of
fending characters are gone and retype from that point. I Backspace I can even
take you back to the previous line to correct errors.

Be sure to put spaces where they're shown between words and
characters, but don't worry about indentation and typestyle details in the
program listing. Each time you press I Return I , the Mac Pascal editor will
scan the line you just typed, displaying all Pascal reserved words in
boldface, indenting the line when appropriate, cleaning up messy details,
and ounttnmfurn.g obvious syntactical problems.

You might notice that the program listing doesn't exactly match the
one in the textbook, even after the editor has prettied it up. From Pascal's

78

editing

checking and
running

Session 1 : Meet Mac Pascal

point of view, the stylistic differences are irrelevant. Line indentation and
typestyle variations are included to make it easier for humans like us to read
programs, and different humans have different ideas about what display
styles make a program most readable. You don't need to make ·any
decisions on these matters, because the designers of Mac Pascal have
already decided for you by creating an editor that does the program
formatting.

Program FirstRun is Standard Pascal, straight from Chapter 1 of Oh!
Pascal! It should run just fine using the Macintosh Pascal interpreter, but it
can be improved by taking advantage of some Mac Pascal extensions. For
example, you can change your program name from FirstRun to First_ Run.

In order to edit your program name so it looks that way, you'll need
to move the insertion bar. Move the pointer over the pro~am window, if
it's not already there. The pointer will tum into an I-beam (l), allowing you
to position it precisely between "First" and "Run". Don't confese the /
beam with the insertion bar. The only thing the I-beam is good for is
pointing to the place where you want the insertion bar. When you've found
the right spot with the I-beam pointer, clicking the mouse instantly moves
the insertion bar there. But until you click, the insertion point is still back
where you left it. So click once and move the pointer out of the way so you
can see the insertion bar in its new location. Now when you type an
underscore character (the shifted hyphen on the top row of the keyboard), it
goes after First, and Run shifts to the right to make room for it.

Next, take the unnecessary program parameter "output" out of the first
line. You could click the pointer after the "t" in "output" and !Backspace I each
letter away, but there's an easier way. Move the pointer so it's positioned
anywhere in the word "output", and double-click to select the entire word.
Now whatever you type will replace that word. You want to replace it with
nothing, and you learned how to do that when you wiped out the
highlighted program skeleton earlier: jsackspacel once. Notice how the left
parenthesis and the semicolon slide to the left to fill the void, and the
insertion bar is the only thing left where ''output" used to be. A single
jsackspacel vaporizes everything that's highlighted, whether a single character
or an entire program. Use it with care

It's time to check your program for errors. Move the pointer to the
Run menu and select Check. If the program is correct, nothing will change
on the screen after some audible disk spinning. But if you've followed
instructions, you're probably looking at a box like this one:

~ Rn lnualid PROGRAM parameter list has been found.

The bug is telling you that your program has a bug - one of those errors
that the editor couldn't find. It's not your fault; we led you here
intentionally to show you how bugs are handled in Mac Pascal. The
message in the box is supposed to help you figure out what the problem is.
But as this example indicates, error messages aren't always as clear as

79

debugging
the program

saving
the program

Appendix: A Hands-On Introduction

you'd like them to be. Click on the bug (or anywhere in the box) to
acknowledge the message, and it'll go away, allowing you to look for more
clues in the program listing. The thumbs-down in the margin tells you
which line contains the error. The program parameter list referred to in the
error message is the part inside the parentheses. There's nothing in there,
so the problem must be that Pascal doesn't allow empty program parameter
lists. You could solve the problem by putting back the "output" parameter,
in conformance with standard Pascal. But a better alternative in Mac Pascal
is to get rid of the parentheses altogether.

So move your pointer to the space right after the "n" in First_Run, and
press the mouse button to position the pointer there. Now hold the button
down while you drag the I-beam across both parens. Let go when you've
reached the spot between the right parenthesis and the semicolon. (If you
go too far, just back up or repeat the drag from the beginning.) The
offending characters should be highlighted in black. IBackspacel them away,
check your program again, and (hopefully) discover that there are no more
errors. If the bug stays away, select Go from the Run menu to actually
make your program execute. If all goes well, you'll see the love note in the
text window.

Once you get your program running, try saving it to disk. To save
this :program, move the pointer to the File menu and select "Save As ... "
(Notice that Save appears in the menu in a hard-to-read, light gray color.
Don't try to adjust your set. That's just Mac's way of telling you that
command isn't operative in this particular situation. Save can only be used
after you've assigned a name to your program in a previous "Save As ... "
operation. Dimmed commands in a menu always mean "no can do.")

After you've selected "Save As ... " from the menu, you'll see a dialog
box asking you what name you'd like to assign to your saved program.
The box will look more or less like this, depending on which version of the
system you're using:

I lg) Macintosh Pascal 2.0 I
D rin11f~r jQ.
L) !nw~j(m~ri1(~r

<Jt M<I< intosh P<1~c<1!

~
Saue your program as

II
lg) Macint •.•

Eject

Cancel (Drive

®Rs TeHt O Rs Object O Rs Application

80

adding to
the program

Session 1: Meet Mac Pascal

At the top of the box is a labeled icon representing your Pascal disk. If
you've got two disk drives, click the Drive button in the dialog box to
switch to the other disk. If you've got just one disk drive, you'll need to
click the Eject button to pop the Pascal disk out so you can insert your blank
disk in its place. Either way, the name of the disk at the top of the box
should now be the name you gave your blank disk.

The flashing vertical bar tells you Mac is waiting for you to type a
name for your soon-to-be-saved program. Most any name will do, but it
makes the most sense to choose the name that appears in your program
heading: First Run. (Macintosh file names can have embedded blanks, so
you don't need to include an underscore character.) When you're done
typing, you can give Mac the go ahead by pressing I Return I or by clicking the
button that says "Save." If you're having second thoughts, you can click
"Cancel" instead.

When the saving process is completed, the only change on the screen
is your title on the program window. You saved a copy of the program
onto a disk; the original is still in the coml'uter's main memory, ready for
more editing. So let's try adding a little bit of personalized dialog to the
program. Move the pointer to the end of the writeln statement (after the
final parenthesis) and click to position the insertion bar there. Now type a
semicolon(;), press I Return I once, and type these lines, following each with a
jReturnl:

writeln('Whaf's your name?');
readln(your_name);
writeln('Bye, ', your_name,'!1

Notice how each JReturnl moves the last line of the program down. IReturnl is
like an invisible character that adds a new line to your program. The empty
line before the end line is just the JReturnl you typed. It's not necessary, so
JBackspacel it away.

Now move the pointer so it's positioned after the closing brace at the
end of the second line. Click to position the I-beam there, press I Return I to
open a new line, and type

var your_name: string;

The Pascal editor will turn this into two lines for you whether you like it or
not. But it's still the same old declaration, no matter how it's formatted.

Making changes to existing lines of your program is just about as easy
as adding new ones. Move the pointer somewhere over the word "love"
and double-click to select it. Now when you type "don't like", "love"
vanishes. Now drag the I-beam through "don't lik" and type "lov" to make
it look the way it did before.

As you can see, there are lots of ways to select text to change or
delete:

81

selecting text

running an
interactive program

Appendix: A Hands-On Introduction

• You can drag the pointer from the beginning to the end of the text to be
selected. If the text crosses several lines, you can beeline down to the
end of the selection without crossing all of the characters on each line.

• You can drag the pointer backwards through text.
• You can double-click on a word to select only that word.
• You can double-click on a word and then drag the pointer to some other

word; both of those words will be selected, as well as every .word and
character in between.

• You can triple-click anywhere on a line to select the entire line.
• You can triple-click on a line and drag to another line to select all lines

between (and including) those two.
Try selecting various pieces of this short program using each of these tech
niques. Don't touch the keyboard, though, or you'll erase the selected text.

By now, the program looks quite a bit different from the one we
originally typed and saved. In the interest of truth in advertising, you
should change the name on the first line from First_Run to Second_Run and
change the comment so it says "This is our second program." Use any of
the editing techniques you've learned so far to make these changes.

When you're done making changes, it should look like this:

program Second_Run;
{This is our second program}

var
your_name: string;

begin
writeln('Hello. I loveyou.');
writeln('What''s your name?');
readln('your_name);
writeln('Bye,', your_name, '!')

end.

Check it for syntax errors with Check, then run it with Go. The text
window will say

D Te1it
Hello. I love you.
What's your name?

and then wait for you to type your name into the string variable your name
via the readln statement. Press I Return I after you type your name to tell the
program where the string stops. Your typing and the final pro!µ'8m writeln
should add two more lines to the text window, so it looks like this:

82

D Te Ht
Hello. I love you.
What's your name?
George
Bye, George!

resaving the
program

disaster
insurance

printing
the program

Session 1 : Meet Mac Pascal

When you're convinced it works, you probably should save it again. Since
it's already been saved once, you could select Save from the File menu
instead of "Save As ... ". That tells Mac to save this new program right on
top of the earlier saved version. The old one is wiped out because you can't
have two things on a disk with the same name.

What if you want to keep the earlier version and the new one? All you
need to do is choose a new name for the second copy (or put it on a
different disk). The "Save As ... " option in the File menu brings up the
dialog box again, allowing you to choose a new name and/or disk to save
the picture, so that you don't wipe out the old one. (When this dialog box
appears, your original name is highlighted in the name box, but anything
you type will replace that name. Or you can position the vertical bar and
edit the title. Or you can leave the name alone and use the buttons to select a
different disk.) For this exercise, save the program as Second Run, so
you'll have two saved prowams with different names.

(When you're buildmg larger programs, it's important to resave your
work like this often. Since the computer's internal memory depends on a
steady flow of power, the program you're editing can vanish anytime the
machine is turned off or the power fails. But if you've saved a copy
recently, you can always bring that copy in from the disk and start editing
from that point. Frequent saves also provide you with a way of going back
to an earlier version in case you accidentally delete or hopelessly mess up a
large chunk of your program during an editing session. A good strategy for
protecting yourself against program loss is to select Save every fifteen
minutes or so when you're originally entering the program, and Save again
right before you run it. Whenever you make major changes to an existing
program, "Save As ... " a different name so you can fall back to the old
version if something goes wrong. When you quit for the day, make a
backup copy of the program using the techniques described later in this
session.)

To make a hard (paper) copy of your program, select Print from the
File menu. If your Macintosh is directly connected to an Imagewriter
printer, you'll see a dialog box something like this:

='m=11="g'=eW=-rit ... e""r ==:=========:;'======~==v=2 3!!.=m K OK D
Quollty: O Best @ F11ster O Droft

Poge Range: @ Rll O From: D To: D (Cancel)

Copies: LJ
Poper Feed: @Automatic 0 Hond Feed

You can probably ignore most of the options in this box; you most likely
want one copy of the whole program on automatic (pin-feed) paper. But
you should know about the three quality choices:
• Best, which produces clean, easy-to-read copy very slowly.
• Faster, which prints text that looks almost as good as Best, but at about

twice the speed.
• Draft, which prints readable, but ugly, text much faster than either of

the other choices.

83

moving
windows

switching
windows

making
backups

Appendix: A Hands-On Introduction

There's generally no reason to select Best unless you're trying to
impress somebody. Faster is a good choice for printing easy-to-read copies
of your program fairly quickly. But both Best and Faster make a temporary
copy of the printout on your disk before routing it to the printer, so they
won't print anything at all if your Pascal disk is full, almost full or locked
(see the first page of this tutorial). Unfortunately, no error message appears
under these circumstances; in fact, the computer may display a dialog box
indicating that the program is being printed! If your program fails to print in
Faster mode, and you know that the printer is turned on, it's connected to
the computer, and the printer's Select light is on, try draft mode and
remember to delete some old files from the disk later.

(If you're using some other kind of printer, or if you're sharing a
printer with other Mac users via network, you'll probably need some
additional instructions from your lab assistant to print your program.)

That's enough Pascal for a while. Select Quit from the File menu to
return to the Macintosh desktop. If you're using two disk drives, you
should see two disk icons on the screen. (If you're using just one, you'll
need to Eject (File menu) your program disk and insert your document disk
to make both appear on the screen.) Open both disk windows (with double
click or the Open menu option) if they aren't already.

If you only see one window, one's probably hidden behind the other.
Position the pointer so that it's pointing to the title of the visible window (or
anywhere along the title bar) and drag. The whole window drags with you.
Drag it so that it partially reveals the other window.

Notice the difference between the title bars and borders of the two
windows: One window is highlighted with more details around the edge
because it's the active window -- the last window selected (or the window
containing the selected object). When two windows overlap like this, the
active window is always "on top." If you want to do anything with a
window, you must first make it the active window, if it's not already. To
do that, simply click anywhere in the inactive window. Try it.

Now make your document disk window active, and notice that it
contains two icons representing the programs you saved. If these were
important programs that took hours or days to create, you'd probably want
to make backup copies immediately, so you wouldn't have to start over if
something corrupted or destroyed the originals.

To see how to make backups, drag the pointer from a point above and
to the left of the leftmost icon to a point below and to the right of the other.
A dotted rectangle will form between the two points, showing you the area
of the window you're selecting. When you release the mouse button, the
two icons inside that rectangle turn black, indicating that you've selected
both icons at once. This multiple-selection ~ability is handy when you
want to do the same thing to several items. (The rectangle doesn't need to
surround the icons completely to select them. If you need to select several
icons that can't easily be surrounded or touched by a rectangle without
including some unwanted icons, you can click each of them separately while
holding down jshittl .)

84

Session 1 : Meet Mac Pascal

To duplicate these two programs, select Duplicate from the File menu.
Since both icons are selected, you'll soon see two additional icons in the
window. These two copies are identical to the original programs except for
their names.

This is the quickest and easiest way to make backup copies of your
programs, but it's not the safest. If you lose your disk, run it through the
washer in your shirt pocket, or park it next to your magnetic flashlight in
your backpack, you may lose everything on it, including backup copies.

It's much safer (if more expensive) to put your backup copies on a
copying second disk and keep that disk in a safe place. To copy a .Program from one

between disks disk to another, simply drag its icon from the source disk window to the
window of the destination disk. Try it: select the First Run and Second
Run icon(s) by dragging a rectangle around them in and drag them onto the
Pascal disk.

When the operation is complete, you'll see a First Run and Second
Run in both disk windows. Your originals are still on your document disk;
you just made copies on the other disk. (Whenever you move an icon from
one disk to another, the original remains undisturbed.) There are two
situations where this technique won't work:
1. Mac won't copy the files if it can't find enough space on the destination

disk. (Solution: delete or move some files from the disk, or use
another disk You may run into this problem when copying these files
onto your Pascal disk. If so, don't try to delete the Pascal or System
files; they're important to keep. If you don't have another disk, just
carry on.)

2. If a file already exists on the destination disk with the same name as one
you're copying, Mac won't proceed with the copy without a warning
query and a chance to cancel your request:

Replace items with the same names
with the selected items?

n OK D (Cancel)

(Solution: Since two files on a disk can't have the same name, you'll have
to change the name of one or the other before making the transfer, or else
say goodbye to one. To change a file name, just click the icon and type a
new name.)

You could, in fact, move everything on the disk that way to make a
backup copy of the entire disk, but there's an easier way: just drag the icon
representing the disk to be copied onto the icon representing the soon-to-be
backu:e disk.

(If you're working with your own hard-earned Pascal disk, you may
want to copy that disk to protect your inventment against accidental
whatever. Earlier versions of the Macintosh Pascal interpreter were copy-

85

trashing
programs

I
Trash

Shut Down

Appendix: A Hands-On Introduction

protected so they couldn't be duplicated in this way. Copy-protection has
been removed from the software to make it easier for you to make extra
copies of the interpreter on different disks in case something happens to
your original. Mac Pascal is still copyrighted, though, so those extra copies
should not be shared with friends. Programming is hard work, and
complex software like Macintosh Pascal is terribly difficult and expensive to
develop. When you give away copies of that, or any other, copyrighted
software, you're stealing from the people who wrote it - and violating
federal law.)

The Golden Rule of Sharing Software

Bootleg unto others as you would have them bootleg unto you.

There's no point in saving both of these tiny programs on both disks,
so drag Copy of First Run and Copy of Second Run out of the document
disk window and into the trash. When your pointer reaches the can, the can
will tum black, indicating that the selected items are now inside it. Let go of
the button, and the copies disappear from the window. They should be in
the trash. Open the can to check, using either of the two can-opener
techniques you've learned. If you did everything correctly, you should see
both icons in the Trash window.

If you're having second thoughts about throwing them away, you can
drag them out of the trash window and back to their original disk windows.
(The programs are still on the disks, even though the icons disappeared
from the window. This feature can come in very handy - even the best of
us occasionally have to dig through our own garbage.) Or, if you're ready
to really dispose of them, you can move the pointer up to the Special menu
and drag it down to "Empty Trash." When you do, the program disappears
from the trash window, and you're given back the space it occupied on the
disk. (Normally, it's not necessary to empty your own trash like this unless
you're in a hurry to get your disk space back. The machine will take care of
it for you eventually, the next time you open Pascal or when you remove
your disk and quit.)

If you just tum off your machine when you're through, you won't be
able to take your disks with you. What's worse, you won't give the
machine a chance to take care of last minute diskkeeping details. So each
time you're ready to quit, pull down the Special menu and select Shut
Down. (If you're using a version of the system that doesn't include the
Shut Down command, just select and eject both disks instead, and ask your
lab assistant about updating your system file.) Mac will eject your disk,
forget everything you did this session, beep, and ask if you want to start
over by bringing back the "Where's the disk?" icon.

If nobody's waiting to use the machine, tum it off and call it a day.
Next time you'll learn some advanced editing and debugging techniques to
make your programming easier and you'll see how to write programs that
draw pictures in the graphics window.

86

Session 2:
Tools

and Tricks

instant window

HideAll

ShowTextand
ShowDrawing

Session 2: Tools and Tricks

For this session you'll need your Mac Pascal disk and the document
disk you created in your first hands-on session. This time we'll cover
several new topics: manipulating windows, editing longer programs, and
organ-izing your files and disks. As usual, this tutorial will work best if
you do it rather than read it. If some of the more advanced material seems
over-whelming, let it go and remember that it's here when you need it.

To get started, turn on your Mac and boot it with your familiar Pascal
program disk. Then insert your document disk in the other drive (if you
have one, or in the main drive, after ejecting Pascal, if you don't). If you
left your document disk window open the last time you ejected the disk, it
should automatically open when you start up this time. If it doesn't, open it
(with a double-click or the Open command in File). The Second Run icon
should be there, where you left it.

Open that icon just like you opened the disk; Mac will recognize it as a
Pascal program, open Pascal, and bring Second Run into the program
window, ready to edit or run. You're going to use Second Run as the raw
material for building a longer, more interesting program. But first, a word
from the Instant window.

Select Instant from the Windows menu. The Instant window will
appear, waiting for you to type a Pascal command. Type

writeln ('Hello again.')

That phrase should appear in the text window as soon as you click "Do it."
No check, no run; just instant results. I Backspace I that writeln statement away
and try another. Type

HideAll

Now push "Do it." Poof! HideAll is a powerful Macintosh Pascal
procedure for automatically closing all the windows on the screen. You
could, of course, close these windows manually with their close boxes, but
HideAll works anywhere inside a program, allowing you to clear the screen
automatically.

with
Select Instant from the Wmdows menu again, and replace HideAll

ShowText;
ShowDrawing

Now you can resurrect the Text and Drawing windows by pressing "Do it."
Bring back the program window manually by selecting Second Run from
the Windows menu. Everything should look normal now.

Now let's change Second Run from a love note to a letter to Mom.
Start by changing the program name; double-click on "Second_Run" to
select it and type:

Dear_Mom

87

Appendix: A Hands-On Introduction

Next, change the comment; triple-click on the comment line and type

{This program writes a letter.}

Now select the line where Your_ name is declared and replace it with
this declaration:

How_much: integer;

On to the program body. Insert the cursor after begin, press !Return!
once, and type these procedure calls:

HideAll;
Show Text;

Now select the first two writeln statements and !Backspace! them away;
you won't need them in this program. Change the variable name in the
readln statement so it looks like this:

readln (How_much);

Now take the remaining writeln statement and erase (select/IBackspacel)
everything between the first and last quote marks, so all that remains is a
generic writeln:

writeln (");

Checkpoint - your program-in-transition should look like this. (The
window is still called "Second Run" because you haven't resaved the
program with a new name yet.)

D

88

Second Run

program Dear _Mom;
{This program writes a letter.}

vor
How_much: integer;

begin
HideAll;
ShowText;
readl n(How_much);
write l n(");

end.

Clear

using the
clipboard

keyboard
shortcuts

WH
WC
WU

Select All WA

Session 2: Tools and Tricks

You'll need one generic writeln for each line of your letter, with the
text of that line inserted between the quotes. There's a tool for mass
producing these writelns hidden up in the Edit menu. Select the entire line
to be replicated with a triple-click; then select Copy from the Edit menu.
You just made a copy of that line, but you can't see it, because it's hidden in
the invisible clipboard. You can paste that copy anywhere you want in your
program by putting the insertion bar at the desired spot and selecting Paste
from the Edit menu. Put the insertion bar at the beginning of end and select
Paste. Then select Paste again. Each time you paste, you'll see a new
writeln added to your program.

You don't need to go to the menu each time you paste, though. Try
holding down ~ - called the command key - and pressing the "v" key.
That keyboard shortcut has the same result as selecting Paste from the
menu. As it turns out, many of the commands in the pull-down menus can
be activated by using the command key with some other key. The keyboard
commands are usually shown in the menus to the right of their mouse
equivalents. Use ~-v to paste ten more writelns into your program.
Then, line by line, insert text between the quote marks so your letter reads
like this:

writeln ('Dear Mom,');
writeln;
writeln ('Due to circumstances');
writeln ('beyond my control,');
writeln ('l"m broke!');
writeln ('My rent is due.');
writeln ('My car payment is due.');
writeln ('Please send me');
writeln ('$', How_much:3,'.');
writeln ('I hope you're fine.');
writeln;
writeln ('Love,');
writeln ('Skip');

(Notice as you're editing that three of these lines don't quite follow the
pattern of the others; two are empty writelns for producing blank lines, and
one includes mention of the variable How much between quoted
punctuations.) -

The copy command can be used to copy anything you can select, from
a single character to a whole program. Try selecting three lines starting with
the 'f'm broke!' line (triple-click on that line and drag down), then press
~-c to copy those four lines into the clipboard. (This action wipes out
the previous contents of the clipboard, which can only handle one chunk of
text at a time.) Now paste those three copied lines into a spot right before
the 'Please send .. .' line, and change the second 'I"m broke' to 'I repeat:',
so that section of the program now reads

89

searching
and replacing

Appendix: A Hands-On Introduction

writeln ('l"m broke!');
writeln ('My rent is due.');
writeln ('My car payment is due.');
writeln ('I repeat:');
writeln ('My rent is due.');
writeln ('My car payment is due.');

To make the letter a bit less heavy-handed, you might prefer to have it start,
rather than end, with 'I hope you're fine.' It's easy to move that line up;
just select it (triple-click), choose Cut from Edit (or use @L]-x), move the
insertion bar right before the 'Due to circumstances' line, and paste. Cut,
like Copy, puts the selected text in the clipboard; the only difference is that it
deletes the selection at the same time. (Cut, Copy, and Paste can also be
used to transfer text between different programs, and even between different
Macintosh applications. The clipboard always remembers what you've put
there until you clip something new there or shut the computer down.)

It's taken so long to write the letter that your payments have lapsed, so
let's change all of those "My ... payments are due" to sentences to read "My
... ~ayments are overdue." We could edit those lines using the techniques
we ve already covered, but there's a way to do all of those changes at once.
Select "What to Find .. .'' from the Search menu, and you'll see this dialog
box:

Search for J
!===:===::::

Replace with J
'--~~~~~~~~~~~~~~~~~~--'

® Separate Words

0 All Occurrences

@Case Is lrreleuant

0 Cases Must Match

OK

Cancel

Type "due" in the "Search for" box, press Tab to move to the
"Replace with" box, type "overdue", and click OK. Toward the bottom of
the window, notice that "Separate Words" and "Case is Irrelevant" are
bulleted, indicating that those are the operative rules, unless you specify
otherwise. "Separate Words" means that due must be in a word by itself to
be changed to overdue; dues or residue wouldn't be recognized or changed.
"Case is Irrelevant" says that the capitalization is not a factor in the search. ·
Don't change anything; just click OK. When the box goes away, select
Everywhere from the same menu. Another dialog box appears, giving you
a last chance to change your mind:

90

Change "due" to "ouerdue" euerywhere in the actiue
window?

K Yes J No)

scrolling

font control

Session 2: Tools and Tricks

Click the circled Yes button, or just press I Return I to indicate that the
circled option is your choice. When you've got a 500-line program full of
misspelled identifiers, this search-and-replace tool can save lots of time.
But it can also become search-and-destroy if you don't think through all of
the implications of your request before you press OK. For example, you
may not have wanted to change 'Due to circumstances' to 'overdue to
circumstances' in the first line, but you just did. (We led you astray again;
case was relevant.) It's easy to correct that oversight - use any of the
editing tricks you've learned. But imagine having to correct it 75 times!
The Replace option in the same menu is a safer tool for cautious changes; it
searches out the next occurrence of the word in question and replaces it with
the substitute word. Find is like Replace, except that it doesn't make any
substitutions. It's useful for finding needles in your larger haystacks.

By now you can't see the whole program at once, because it
overflows the window. Most of the programs you'll be writing will be
much longer than this one, so it's important for you to learn how to scroll
the window up and down through the program using the scroll bar along
the window's right edge. Move your pointer to the arrow that points up
(IQj), press the button, and hold it down. Your program will start scrolling
through the window, with the white scroll box moving up the scroll bar like
a tiny elevator to show you the position of your window relative to the
overall listing. Now scroll back down with the down-arrow(~).

It's also possible to drag the scroll box to a different ~osition on the
scroll bar without using the arrows, or move it one window s worth with a
click on the gray part of the bar between the scroll box and the arrow that's
pointing the direction you want to go. Experiment. Most Macintosh
windows have scroll bars that work just like this one.

Scrolling is handy, but it's often inconvenient if you're trying to
examine many lines of code at the same time. Since you can't put more
lines in by making the window taller, the only alternative is to make the
characters shorter, using the Font Control option from the Windows menu.

Font Control

OK) (Cancel

® Program Windows

program sBmple;

IGeneua-12

O Te Ht Window

(NeHt J
(Preu J

~

91

Appendix: A Hands-On Introduction

When you select this option, a dialog box appears, allowing you to
indicate your font (typestyle) preference for characters that appear in the
program and text windows. The window initially indicates that your
program window displays characters in the 12-point Geneva font. By
clicking the Prev button, you can select the next-smallest available size of
the Geneva font - probably 9-point. Browse through other fonts available
in the system file by clicking the Next and Prev buttons. Some fonts, like
Times, Helvetica, and Courier, are designed to look best when printed on
Apple's LaserWriter printer. Others, like Chicago and Geneva, look best on
the Mac screen or the Imagewriter. If you select a mono-spaced font like
Monoco or Courier, all characters in the window will take up the same
horizontal width, as they do on typewriters and most computer screens.

Since many Pascal programs are designed to produce columns of facts
or figures, and columns are difficult to align using proportionately-spaced
fonts like Geneva, Mac Pascal's text window is set up to display output in
Monoco-9. But you can change this, too, by clicking the Text Window
button and choosing a different font for that window.* When you're happy
with your choices, click OK and take another look at your program. If all is
well, you should be looking at something like this:

program Dear_Mom;
{This program writes a letter.}
var
How_much: integer;

begin
HideAll;
ShowText;
readln(How_much);
writeln('Dear Mom,');
writeln;
writeln('I hope you"re fine.');
writeln('Due to circumstances');
writeln('beyond my control,');
writeln('l"m broke!');
writeln('My rent is overdue!');
writeln('My car payment is overdue!');
writeln('I repeat:');
writeln('My rent is overdue!');
writeln('My car payment is overdue!');
writeln('Please send me');
writeln('$', How_much: 3, '.');
writeln;
writeln('Love,');
writeln('Skip');
end.

* Hundreds of fonts are available, but you'll only see the ones that have been included in
your system file. If you want one that's not there, you'll need to install it using the
Font/DA Mover utility, the same program that's used to add or remove desk accessories.

92

resizing
a window

printing
output

Session 2: Tools and Tricks

If your program looks OK, check it with the Check option in the Run
menu. When it passes, select Go to see if it displays the letter correctly in
the text window.

It won't, of course, until you give it the input it's waiting for: the
number called How _much. Type in any whole number you like, press
I Return I, and watch the letter appear.

Oops! Even if your program works perfectly, it's going to be hard to
read the output in that tiny text window. You could scroll backward and
sideways using the scroll bars to see the rest of it, but there's a better way.
Grab the little size box in the lower right comer of the window and drag it
straight down. The window stretches toward the bottom of the screen,
making room for the missing lines of your letter. You can also use the size
box to make the window wider, but you'll have to move the window to the
left first by dragging the title bar. Play with the size box until you get a nice
fit.

0 Te Ht
500
Dear Mom,

I hope you're fine.
Due to circumstances
beyond my control,
I'm broke!
My rent is overdue!
Hy car payment is overdue!
I repeat:
My rent is overdue!
My car payment is overdue!
Please :send me
$500.

Love,
Skip

It's not practical to mail the computer screen to Mom, so you're going
to need to get a paper copy of your output. Select Preferences from the
Windows menu, click the box that says "Output also to the Printer", and
click OK. Now when you run your program and type in an amount, the
letter should appear in the text window and on paper (if the printer is
ready).

When you print your letter, you'll notice that it's got an unwanted line
at the top: the How much figure you typed in. Later in this book you'll
learn how to assign tlie printer to a different file identifier so you can keep
your printed output separate from interactive input. Until then, you and
Mom will just have to be patient.

Save this program as "Dear Mom" on your document disk. There'll
be a "Dear Mom" icon waiting for you when you return to the desktop, but
you're done with this program for now. So click anywhere in the program
window to activate it and select Close from the File menu to clear it from the
screen and memory.

93

A Graphic
Diversion

stepping through
a program

screen
snapshots

Back to
the Finder

get info

Appendix: A Hands-On Introduction

Before we exit to the finder, let's take a scenic side trip with a
graphics program. There's really nothing different about running graphics
programs, except that they're often more difficult to understand because
they contain so many procedures with numeric arguments. Macintosh
Pascal includes two useful tools for slowing the action down in a program
so you can watch the play-by-play at your own pace.

If you don't have the Oh! Mac Pascal! disk, select New from the File
menu and type in one of the ready-to-run graphics programs from this
chapter. If you have access to the disk, select Open, rather than New, and
use the Drive and Eject buttons in the dialog box to make room for it in one
of your drives. If folders rather than programs appear in the dialog box file
list, double-click on the folder labeled Chapter 2 to find this chapter's
programs. (Folders are explained at the end of this session.)

When you've got a program on the screen, select Step-Step instead of
Go from the Run menu. This option slows down the program's execution
enough so that a tiny hand can point to each statement as it executes. The
action is still fast, but statements don't all run together this way.

An even better option for observing the results of individual
statements is Step. Each time you select Step (or type ~ -S), exactly one
statement is executed. The pointing hand shows you where you are in the
program, so you can compare output with program every step of the way
while you control the pace. Both Step and Step-Step work equally well
with text and graphics programs; they're powerful tools for understanding
and debugging your programs.

(You've probably noticed by now that a Pause menu appears
whenever you run a program. It hides a Halt option that can be used to
bring things to a stop for any reason. Depending on what you're doing,
you may be able to restart things where they left off later. Experiment.)

Graphics programs are fun to watch on the screen, but there comes a
time when you need to make a paper copy of your output. The easiest way
to do that on the Macintosh is to take a snapshot of the Drawing window.
Click on that window, turn on your printer, and press the !!..] , I Shift I , and 4
keys all at once. An exact copy of the window should come out of your
printer. This trick works with any active window. If you want a snapshot
of the whole screen - a screen dump - , press the leaps Lockj key before you
press the other three. (You can also capture any screen as a picture file that
can be read by many Macintosh graphics applications programs, if there's
room on your Pascal disk, by pressing ~-lshittl-3).

When you're ready, select Quit from File to return to the desktop.
Your "Dear Mom" icon should be waiting there for you in the document
window. In the File menu you'll find a way to Get Info about that, or any
other, selected item. Select "Dear Mom" with a click; then select Get Info
from the File menu. A new window should pop out of Dear Mom that tells
you more about that item than you probably care to know. Most of this
window is filled with information from Mac to you, but not all of it.

At the bottom is an empty comment box waiting to be filled with up to
three lines of text describing First Run. Type whatever you want, but

94

view by

folders

Session 2: Tools and Tricks

remember that the purpose of this text is to remind you (or somebody else)
what's in Dear Mom. (You'll be amazed how quickly you'll forget.) As
you're typing, you can use the editing techniques that you learned with
Pascal.

Above the comment box is a much smaller box labeled Locked.
There's no room for typing in this box, but you can "x" it with a click. An
"x" in the box indicates that Dear Mom is locked, and can't be thrown away
until the "x" is removed with another click in the box. (Leave it there for
now.) This doesn't protect a document from being replaced by another
document with the same name, or from being destroyed by a teething
spaniel, but it does help insure that you won't absent-mindedly erase an
important document. Like the comment box, the lock is only helpful if you
choose to use it.

You don't need to open the Info window to find out how big a file is
or when it was created; all you need to do is change the view through the
disk window by selecting an alternative from the View menu. When you
pull this menu down, you'll see a check mark in front of "by Icon",
indicating that that's the way you're currently seeing the active window.
Select "by Name", and the icons in the window are replaced by mini-icons
followed by textual descriptions of the corresponding items on the disk,
arranged al~habetically by name. There's some useful information here that
you couldn t see in the icons: the amount of space each item occupies on
the disk and the date the item was last changed. There's even a padlock in
front of Dear Mom to remind you that it's still locked. You can select and
open items from this list the same way you did icons. In fact, you can do
just about anything with them that you can do with big icons, except scatter
them randomly around in the window. View by Date, by Size, and by
Kind give you the same list arranged in different orders.

As you might expect, you can also open folders to see what's inside.
Try double-clicking the System Folder. You'll find several icons, including
System, the brains behind the operation, and Finder, the desktop organizer.
The Imagewriter file allows your Mac to talk to the printer. These system
files need to be available for your Macintosh to work, but you don't need to
look at them. The system folder hides the system files from you so they
don't clutter up your disk window. The only time you ever have to open
that folder is when you need to tinker with some part of the system (for
example, when you want to replace one of these system files with an
upgraded version of the same file.)

What the system does, you can do, too. Instead of having a window
cluttered with icons representing several month's work, you can neatly stuff
your work into personally labeled folders.

Create a folder by selecting "New Folder" from the File menu.
"Empty Folder" isn't a very useful name for a folder, so the next step is to
rename that folder. The folder is already selected, so all you need to do is
type a new name - "Silly Programs" - to replace the old one. If you make
an error, correct it with the usual editing techniques. (You can change the
names of program and disk icons the same way.)

95

hierarchical file
system

startup disk

Appendix: A Hands-On Introduction

Once you've created and named your folder, drag it anywhere you
want in the window. Then drag Dear Mom over the folder until it turns
black and release. Dear Mom is now in the new folder. Repeat the process
with the other programs you've created. If you open the folder's window,
you'll find those icons.

You can put anything you want (except disks and the trash) in folders
- even other folders. The folder is a powerful organizational aid when
you're working with the Finder. But you'll do some file operations -
saving and opening - via dialog boxes from inside Pascal. Folders may or
may not make a difference there, depending on which version of the system
you're using.

When you select Open or "Save as ... " from inside Pascal, the original
Macintosh File System (MFS) will completely ignore folders and display in
a dialog box a list of every file on the selected disk. The newer Hierarchical
File System (HFS) includes folders in the list along with files, but it won't
show you anything that's hidden inside a folder - unless you open that
folder. When you open a folder, that folder's icon replaces the disk at the
top of the box, and only those objects stored in that folder are visible in the
dialog box list. You can always click the disk icon to return to the disk
level of your hierarchy of folders and files if you need to. It's possible to
lose files in a large hierarchy of folders if they aren't filed logically, so
exercise care and common sense when you're naming and organizing of
folders.

Before you Shut Down for the day, try one last trick: drag your
document disk icon into the trash can. You're not trashing the disk, you're
just telling Mac to forget all about it for now. That's a handy trick for
keeping your desktop clean, but it's also helpful if you're ever greeted by an
"insuffident memory" message. The finder uses memory to keep track of
all of the folders and files stored on each disk, whether those disks are
currently in the drives or not, unless you give it permission to forget.
(There's one situation where this trick won't work: you can't discard the
startup disk. The startup disk is the one that contains the system files that
Mac is currently using as its master instructions. It's usually the one you
used to boot your Mac when you turned it on.)

That's enough for now. There's plenty more to try, but you're ready
now to do your own exploring. When you read about something new in
Mac Pascal - whether it's a langua~e feature like the for loop or a
programmer's tool like the Observe wmdow - try it out. The Macintosh
Pascal environment is designed so you can learn by experimenting. Do it!

96

Index

Index advanced programming tools 45 EraseRect 12
animation 30 EraseRoundRect 12
array 22,46 extended type 3
bar graphing 29 external files 37
bomb6 File menu 6
boolean 3, 29 files
boolean input/output 29 copying files 8S
built-in functions 8 direct access files S8
Button function 70 external files 37
calculating scaling factors 49 J:tierarchical file system 96
calculator 7S sequential files S9
Cartesian coordinates 9 file window 37, 38
case 24 Filepos 60, 64
char3 FillArc 12
CharWidth 14 FillOval 12, 15
Check S, 79 FillRect 12, 27
clicking 74 FillRoundRect 12
clipboard 87 finder 74
close S7, 58-63 folders 9S
comments 2 font control 91
compiler 2 for 21
concat34 FrameArc 12, 15
Copy menu option 17, 89 FrameOval 12, 15, 21,30
copy function 3S, 51 FrameRect 11-13, 26, 54
copying files 8S FrameRoundRect 12
Cut 90 get62-63
DateTimeRec S3 Get Info 94
declaration order 68 GetMouse70
delete 3S GetTimeS3
desk accessories 7S Go18
dialog box 40, 41, 83 Go-Go 18
direct access files S8 HideAll SS, 87
disk HidePenlO

disk ejection 76 hierarchical file system 96
disk initialization 76 histogram 48
locked disk 73 icon 73
startup disk 96 identifiers 2

double type 3 include 3S
double clicking 77 INF8
dragging 7S initializing variables 7
DrawChar 14 insert 3S
drawing shapes 11 insertion bar 78, 79
Drawing window 1, 14 Instant window 8, 87
Drawstring 12, 14-15, 26 integer 3
enumerated 1/0 43 interpreter 2
enumerated types 43 InvertArc 12
EraseArc 12 InvertOval 12
EraseOval 12, 15, 31 InvertRect 12

97

Index

JnvertRoundRect 12
justifying string output 34
key values 61
labeling graphics 12
language extensions 1
length 34, 51
Lightspeed Pascal 71
LinelO, 15
LineTo 10, 15, 26
locked disk 73
longint 3
Mac Pascal libraries
MAXINT7
MAXLONGINT 7
menus

Editmenu89
File menu 6
Run menu 5, 18, 79

MovelO, 15
MoveTo 10, 15, 26
moving windows 34
NewFileName 40, 41, 56-64, 70
Note46,47.
Observe window 17
OldFi "N°ame 40, 41, 45, 56-64
omit35,37
open59, 60
Note46,47
opening a window 77
ordinal types 3
otherwise 24
page procedure 68
PaintArc12
PaintOval 12
PaintRect 12, 50
PaintRoundRectlO, 15
parameters 18
Paste 17, 89
PenNormal 10
PenPatlO
PenSize 10, 15
Pl7
pixel 9
plotting bars 50
plotting frequencies 49
pointer operator 67
pointer function 67
pos34

98

predefined record types 53
Preferences 39, 57
Print 6
printing 83, 93
program heading 2
program window 1
pseudocode 22, 61
put59
QuickDraw Graphics 8
QuickDrawl 69
QuickDraw2 69
Random 8, 24, 25, 69
random number generation 24
read3
readln 3
ReadString 13
real 3
Rect54
relational operators 33
repeat 30
reset 40, 41, 56
resizing a window 93
rewrite 39, 56
Run menu 5, 18, 79
run-time bugs 5
SANE69
Save83
Save As 80, 83
SaveDrawing 70
saving a program 80
scope 18
screen snapshots 94
scrolling 91
search and replace 36, 90
seek60
selecting text 82
sequential files 59
set cardinality 66
SetDrawingRect 55
SetRect 54, 55
SetTextRect 55
ShowDrawing 9,15, 21, 28, 31, 55, 87
ShowPenlO
ShowText9,23,28,43,51,87
ShutDown86
spurious bugs 5
standard types 3
startup disk 96

Step 18
Step-Step 18
Stops Jn 18
Stops Out 20
string 3, 33-36, 56
string arrays 50
string functions 17
string subscripts 50

. StringOf 13,14, 26
StringWidth 13,14, 26
switching windows 84
synthesized music 46
system bugs 6
System folder 77
text processing 33
Text window 1
TextFace 14, 15
TextFontl4
TextSize 14, 15, 26
translation bugs 4
Trash 86
until 30
user interface 1, 40
uses 69
view by 94, 95
while 30
windows

Drawing window 1, 14
file window 37, 38
Instant window 8, 87
moving windows 84
Observe window 17
opening a window 77
program window 1
resizing a window 93
switching windows 84
Text window 1

write 7
WriteDraw 12, 14
writeln 3-5
write protected 73

Index

99

~ m Common error messages and suggested solutions

This doesn't make sense.
Something is out of place or an inappropriate character is on the indicated line. Examine that line
carefully.

R semicolon (;) is required on this line or aboue but one has not
been found.
If you don't find the missing semicolon in the immediate vicinity, then search backward from this point
looking for a missing semicolon or end.

Either a semicolon (;) or an END is eHpected following the
preuious statement, but neither has been found.
Find the missing part; it should be close to the indicated line.

This does not make sense as a statement.
Often a missing parenthesis (unbalanced parentheses) or an operator used in the wrong place.

This formal parameter type or result type should be a named
type or " STR I NG " , but is not.
String[n] is not an acceptable type for a formal parameter. In general, identifiers whose types have not
been declared in a type statement may not be used as formal parameters.

Rn incompatibility between types has been found.
You have tried to assign a value, variable, or expression of one type to a variable of another type. This
error also may occur when the types of formal and actual parameters do not match.

Too few/many parameters haue been used in a call to a
procedure or function.
Check to see that the number of parameters in the function or procedure call match the number of formal
parameters. You may have to refer to the Macintosh Pascal Reference Manual or Technical Appendix to
determine the correct number and type of parameters for the built-in procedures and functions.

R STRING ualue is too long for its intended use.
You have tried to read or assign more characters to a string variable than it was declared to hold. Most
frequently this error occurs when reading from a text file into a string variable and the number of
characters before encountering an end-of-line is greater than the declared length of that string variable.

Floating point arithmetic eHception: Underflow occurred.
A value has been computed that is less than the smallest number the computer can store. Check for
multipliers whose values approach zero.

Floating point arithmetic eHception: Diuide by zero attempted.
A value, expression, or variable used as a divisor is zero or approaches zero.

Floating point arithmetic eHception: Ouerflow occurred.
You have computed a number too large to store. Declare real variables to be of type extended or work
with smaller numbers.

Rn error has occured while opening the deuice.
The file directory is full.
The disk is full.
Try using another disk.

Rn attempt has been made to access a file on a disk or uolume
which is not known to the system.
Rn attempt has been made to RESET a file which does not eHist.
Rn attempt has been made to open a file that cannot be found.
Insen the proper disk. The use of the OldFileName function avoids this type of problem.

Rn attempt has been made to write to a locked file.
Quit Mac Pascal. Select the file. Select the Get Info option in the File menu and click the lock box to
unlock the file.

Rn attempt has been made to write to a locked uolume.
Eject the disk and move the write protect tab to cover the opening.

Rn attempt has been made to create a file with the same name
as a file that already eHists.
Pick a new file name. The use of the NewFileName function avoids this type of problem.

,~ ..

The Bomb
When the bomb appears a serious error has occurred. Typically your program is too large for the
available memory. Often the program itself isn't too large, but it calls too many built-in Mac Pascal
procedures and functions from inside a single module, so these procedures and functions combine to
overflow memory. To avoid the problem, keep your program and its modules as small as possible.
Comments longer than twenty lines can cause bombs, too. If the bomb appears each time you open the
program file you may need to use the editor utility or a word processor to get rid of long comments (or
write your own text processing program that deletes long comments). If all else fails, try running your
program with a fresh Macintosh Pascal disk.

My errors and solutions:

/

Macintosh Pascal Reserved Words

and array begin case const div
do down to else end file for
forward function goto if in label
mod nil not of or otherwise*
packed procedure program record repeat set
string* then to type until uses*
var while with

Macintosh Pascal Defined Types

real double* extended* integer

* non Standard

Mac Pascal Implementation-Defined Values

32767 MAXINT
-32767 least integer

2,147,483,647 MAXLONGINT
3.4 x lQ38 greatest real
1.2 x 10-38 real closest to 0 ('least' real)

7 real
15 double significant digits
19 extended

10 ~eta! default field widths
8 zn eger

65535 maximum set cardinality
ASCII character set

97 ord('a') 65 ord('A') 48 ord('O')

Non Standard Extensions and Limits

(* comment *) for {comment}
_(underscore) is allowed in an identifier
upper- and lower-case characters are identical
set of character is OK
blanks truncated at end of line
255 character maximum identifier length

longint* string* char boolean

Output Format

writeln(SO : 2, 'HI': 5, -7 .933e+47 : 13);
writeln(81.4: 5: 1, 610.22: 9: 2, -817.0: 10: 3);

D Te Ht
50 Hl-7.9330e+47
81.4 610.22 -817.000

Local Implementation Notes

;l :

·-
'!

Table of Conte·nts

Preface

A Word to the Student

1 Getting Acquainted with Macintosh Pascal

2 Programming Calculations and Graphics

3 Procedures and Functions for Problem Solving

4 Taking Control of Execution: the for Statement

5 Making Choices: the case Statement

6 Programming Decisions: the if Statement

7 Making Actions Continue: The Conditional Loops

8 Character-Oriented Computing: Text Processing

9 Extending the Ordinal Types

10 Software Engineering

11 .' Arrays for Random Access
.\

12 . · ~ E Pluribus Unum: Records
./

~;1q :~ Files and Text Processing

14/ Collections of Values: The set Type
l I

15 Abstract Data Structures Via Pointers

16 Advanced Topics

Appendix: A Hands-On Introduction

Index

ix

1

7

17

2·1

24

29

30

33

43

44

46

53

56

66

67

68

73

97

Error Messages and Explanations Inside bacl< cover

Macintosh Desktop Command Summary

Macintosh Pascal Functions and Procedures

~ Norton Yovo•o.46'» ew .. o = :;o•+•••o°'"'·•«
~ W • W • NORTON & COMPANY NEW YORK • LONDON

Reference card

,,Reference card

ISBN 0 - 393-95598-2

' '

