

Macintosh®
Revealed

Volume Four: Expanding the Toolbox

RELATED T I T L E S

Macintosh® Revealed Volume 1: Unlocking the Toolbox,
Second Edition
Stephen Chemicoff

Macintosh® Revealed Volume 2: Programming with the Toolbox,
Second Edition
Stephen Chemicoff

Macintosh® Revealed Volume 3: Mastering the Toolbox
Stephen Chemicoff

The Macintosh® Advisor (Updated for MultiFinder ™)
Cynthia Harriman and Bencion Calica

How to Write Macintosh® Software, Second Edition
Scott Knaster

Macintosh® Hard Disk Management, Second Edition
Charles Rubin and Bencion Calica

Object-Oriented Programming for the Macintosh®, Second Edition
Kurt]. Schmucker and Carl Nelson
(forthcoming)

HyperTalk® Programming (Version 1.2), Revised Edition
Dan Shafer

Understanding HyperTalk TM

Dan Shafer

Using ORACLE® with HyperCard®
Dan Shafer

Personal Publishing with the Macintosh®
(Featuring PageMaker® Version 2.0), Second Edition
Teny M. Ulick

The Waite Group's HyperTalk® Bible
The Waite Group

The Waite Group's Tricks of the HyperTalk® Masters
The Waite Group

For the retailer nearest you, or to order directly from the publisher, call
800-257-5755. International orders telephone 609-461-6500.

Macintosh®
Revealed

Volume Four: Expanding the Toolbox

Stephen Chernicoff

HAYDEN BOOKS
A Division of Howard W. Sams & Company

11711 North College, Suite 141. Carmel, IN 46032 USA

For

Helen,
who is always there.

@1990 by Stephen Chemicoff

FIRST EDITION
FIRST PRINTING-1990

All rights reseived. No part of this book shall be reproduced, stored In a retrieval system, or
transmitted by any means. electronic, mechanical, photocopying. recording, or otherwise,
without written permission from the publisher. No patent liability is assumed with respect to
the use of the information contained herein. While every precaution has been taken in the
preparation of this book, the author and publisher assume no responsibility for errors or
omissions. Neither is any liability assumed for damages resulting from the use of the
information contained herein.

International Standard Book Number: <H>72-484 l 3-7
Library of Congress Catalog Card Number: 85-8611

Acquisitions Editor: Greg Michael

Development Editor: C. Herbert Fellner

Editor: Albright Communications, Inc.
Cover Design: Celeste Design
Indexer: Sharon Hilgenbery

Production Coordinator: Becky Imel
Production: William Hartman, Matj Hopper, Jodi Jensen, David Kline,

Lori Lyons, Jennifer Matthews, Dennis Sheehan,

Bruce D. Steed, Nora Westlake
Composition: Hartman Publtshtng

Printed in the UnUed. Stales of America

Trademark Acknowledgments
All terms mentioned in this book that are known to be trademarks or service marks arc listed
below. In addition, terms suspected of being trademarks or service marks have been
appropriately capitalized. Howard W. Sams & Company cannot attest to the accuracy of this
lnfonnaUon. Use of a term In this book should not be regarded as affecting the validity of any
trademark or service mark.

Apple, the Apple logo, Macintosh, lmageWrtter, LascrWrlter, AppleTalk, A/UX. and Lisa arc
registered trademarks of Apple Computer Inc.

Crayola Is a registered trademark of Binney & Smith, Inc .• and Is used with permission.
Finder, MultiFlnder, Switcher, Apple Desktop Bus, HyperTalk. HypcrCard. APDA. and MPW are

trademarks of Apple Computer Inc.
MacPaint Is a registered trademark of Claris Corp.
Motorola, MC68000, MC68010, MC68020, MC68030, MC68881, MC68882, and MC68851 are

trademarks of Motorola, Inc.
NuBus ts a trademark of Texas Instruments.
PostScript ts a trademark of Adobe Systems, Inc.
Sony is a trademark of Sony Corporation.
UNIX is a registered trademark of AT&T Information Systems.
SY6522 is a trademark of Synertek, Inc.
Z8530 is a trademark ofZilog, Inc.

Contents

Preface xiii

Acknowledgments xv

Chapter 1 Mac by Popular Demand 1

Chapter 2 Old Genies in New Bottles 5

System Configuration 5
Dispatch Table Access 8
Shutdown and Restart 14
Memory Management 15

Memory Layout 16
Memory Allocation 18

Small Fractions 19

Reference 21
2.1 System Conf"iguration 21

2.1.1 Operating Environment 21
2.1.2 Dispatch Table 26

v

vi Expanding the Toolbox

2.1.3 Memory Address Mode 30
2.1.4 Global Variable Access 33
2.1.5 Shutdown and Restart 35
2.1.6 Shutdown Procedures 36

2.2 Memory 38
2.2.1 Memory Layout 38
2.2.2 Memory Allocation 40
2.2.3 Temporary Allocation 43
2.2.4 Available Temporary Space 45

2.3 Resources 46
2.3. l Resource 'fypes 46
2.3.2 ROM-Based Resources 50

2.4 Arithmetic 53
2.4.1 Small Fractions 53

Chapter3 Going for the Juggler 55

Memory Partitions 57
Foreground and Background 58

Background Processing 60
Suspend and Resume Events 62

Cursor Control 68
Notifications 71
Nuts and Bolts 73

Desk Accessories and MultlFinder 73
Faking It 74
MultiFinder Etiquette 76

Reference 79
3.1 Events 79

3.1.1 Event Messages 79
3.1.2 Event Modifiers 81
3.1.3 Retrieving Events 83

3.2 Notifications 86
3.2.1 Notification Records 86
3.2.2 Posting Notifications 88
3.2.3 Response Procedures 90

3.3 Resource Formats 91
3.3.1 Resource fype 'SICN' 91
3.3.2 Resource fype 'SIZE' 92
3.3.3 MultiFinder Flags 94
3.3.4 Resource fypes 'mstr' and 'mstfl• 95

Chapter4

vii Contents

Chasing Rainbows

Color Fundamentals
Physical Properties of Color
Physiological Properties of Color
Color on the Screen
Color on Paper

Toolboz Color Representation
Planar Color
Direct Color
Mapped Color

The Color Picker
Graphics Devices
Color Tables

Structure of Color Tables
Inverse Tables
Color Table Management

Color Palettes
Color Usage
Creating and Destroying Palettes

Reference
4.1 Classic Color Model

4.1.1 Color Values
4.1.2 Foreground and Background Colors
4.1.3 Color Plane

4.2 Color Representation
4.2.1 Color Formats
4.2.2 Color Conversion
4.2.3 The Color Picker

4.3 Graphics Devices
4.3. l Device Records
4.3.2 Creating and Destroying Devices
4.3.3 Device List
4.3.4 Current Device
4.3.5 Device Attributes

4.4 Color Tables
4.4.1 Color Table Structure
4.4.2 Inverse Tables
4.4.3 Creating and Destroying Color Tables
4.4.4 Color Mapping
4.4.5 Color Table Management
4.4.6 Protecting and Resetvlng Entries

97

98
98
99

100
101
102
102
104
106
106
108
111
112
112
115
116
117
119

121
121
121
124
125
126
126
128
131
133
133
136
138
139
141
143
143
146
148
149
151
154

Viii Expanding the Toolbox
~~~~~~~~~~~-

Chapter 5 

4.5 Color Palettes 
4.5.1 Palette Records 
4.5.2 Initlallztng the Toolbox for Palettes 
4.5.3 Creating and Destroying Palettes 
4.5.4 Setting Palette Colors 
4.5.5 Palette Conversion 

4.6 Nuts and Bolts 
4.6. l Custom Matching Routines 
4.6.2 Installing Matching Routines 

4. 7 Color-Related Resources 
4.7.1 Resource Type 'clut' 
4.7.2 ResourceType 'pltt' 

Showing Your Colors 

Pixel Maps 
Color Graphics Ports 

Structure of Color Ports 
Opening and Closing Color Ports 

Pixel Pattems 
Color Transfer Modes 

Additive and Subtractive Modes 
Other Arithmetic Modes 
Transparency and Highlighting 
Mixing Color and Monochrome 

Drawing in Color 
Setting Drawing Colors 
Line and Shape Drawtng 
Direct Pixel Transfer 
Color Table Animation 

Nuts and Bolts 

Reference 
5.1 Graphical Foundations 

5.1.1 Pixel Maps 
5.1.2 Creating and Destroying Pixel Maps 
5.1.3 Color Graphics Ports 
5.1.4 Auxiliary Port Record 
5.1.5 Creating and Destroying Color Ports 
5.1.6 PixelAccess 
5.1. 7 Error Reporting 

155 
155 
158 
158 
160 
161 
163 
163 
165 
166 
166 
168 

171 

171 
174 
175 
176 
177 
180 
181 
182 
183 
185 
187 
189 
189 
191 
193 
195 

197 
197 
197 
200 
201 
205 
206 
209 
210 



Contents 

6.2 Plzel Patterns 211 
5.2.1 Pixel Pattern Structure 211 
5.2.2 Creating and Destroying Pixel Patterns 214 
5.2.3 Filling Pixel Patterns 215 
5.2.4 Using Pixel Patterns 216 

6.S Color Transfer llodea 217 
5.3.1 Mode Constants 217 
5.3.2 Additive and Subtractive Modes 219 
5.3.3 Comparative and Comblnatlve Modes 221 
5.3.4 Transparency and Highlighting 222 

6.4 Color Drawing Operations 224 
5.4.1 Foreground and Background Colors 224 
5.4.2 Shape Drawing 226 
5.4.3 Color Table Animation 228 
5.4.4 Low-Level Pixel Transfer 229 
5.4.5 Special Operations 232 

6.6 Nuts and Bolts 235 
5.5.1 Color Bottleneck 235 

6.6 Resource Formats 238 
5.6. l Resource Type ' pp at ' 238 

Chapters Through Rose-Colored Windows 241 

Color Icons and Cursors 242 
Color Icons 242 
Color cursors 243 

Color Windows 244 
Window Color Tables 245 
Auxiliary Window Records 246 
Window Palettes 249 

Color Controls 250 
Color Dialogs 252 
Color Menus 254 

Reference 259 
8.1 Color Icons 259 

6.1.1 Color Icon Structure 259 
6.1.2 Using Color Icons 261 

8.2 Color Cursors 262 
6.2.1 Color Cursor Structure 262 
6.2.2 Using Color cursors 265 



Expanding the Toolbox 

6.3 Color Windows 266 
6.3.1 Color Window Records 266 
6.3.2 AuxillaryWindow Records 268 
6.3.3 Window Color Tables 270 
6.3.4 Creating Color Windows 273 
6.3.5 Color Window ProperUes 274 
6.3.6 Window Palettes 276 
6.3. 7 Screen Properties 277 

6.4 Color Controls 278 
6.4.1 Auxiliary Control Records 278 
6.4.2 Control Color Tables 280 
6.4.3 Color Control ProperUes 282 

6.5 Color Dialogs 284 
6.5.1 Creating Color Dialogs 284 

6.6 Color Menus 286 
6.6.1 Menu Color Information Tables 286 
6.6.2 Access to Menu Colors 289 
6.6.3 Managing Menu Colors 290 

6. 7 Resource Formats 292 
6.7.1 Resource fype 'cicn' 292 
6.7.2 Resource fype 'crsr' 294 
6.7.3 Window Color Table Resources 295 
6.7.4 Resource fype 'cctb' 297 
6.7.5 Resource fype 'ictb' 298 
6.7.6 Text Style for Dialog Items 299 
6. 7. 7 Resource fype 'mctb • 301 

Chapter 7 Editing with Style 303 

Color Fonts 304 
Text Styles and Tennlnology 307 
Structure of Styled Text 308 
Vertical Spacing 311 
Manipulating Text Styles 313 
Editing Styled Text 322 

The Style Scrap 323 
The Null Style 324 
Scrapless Styling 325 



xi Contents 

Reference 
7.1 Color Fonts 

7.1.1 Font 1)7pe and Depth 
7.1.2 Synthetic Fonts 

7 .2 Styled Tezt 
7.2.1 Text Styles 
7.2.2 Styled Edit Records 
7.2.3 Style Records 
7.2.4 Style Table 
7.2.5 Line-Height Table 
7.2.6 Null-Style Record 
7.2.7 Style Scrap 

7 .3 Editing Styled Text 
7 .3.1 Preparation for Editing 
7.3.2 Character Location 
7.3.3 Getting Style Information 
7.3.4 Styling Text 
7.3.5 Cutting and PastJng Styled Text 
7.3.6 Scrapless Styllng 

7.4 Text-Related Resources 
7.4.1 Resourcefype 'fctb' 

AppendbcA 
Appendix B 
AppendbcC 
AppendbcD 
AppendlzE 
AppendlzF 
AppendbcG 

Glossary 
Index 

Toolbox Summary 
Resource Formats 
Reference Figures 
Reference Tables 
Error Codes 
Trap Macros and Trap Words 
Assembly-Language Variables 

327 
327 
327 
328 
329 
329 
330 
332 
334 
335 
337 
338 
340 
340 
342 
344 
346 
348 
350 
352 
352 

355 
391 
401 
407 
417 
429 
467 

475 
537 



Preface 

Pty the poor technical writer. Trying to keep up with a beast as 
ntmble as the Macintosh is an exercise in futility. Not only does the 
target never stop moving, but even if you manage to score a direct 
hit, ttjust springs to its feet and keeps right on running. You can't 
keep a good computer down. 

So it's been with Macintosh Revealed.. No sooner were the 
original two volumes written than I was already thinking about a 
third, tentatively titled .. Everything I Wanted to Put in Volumes One 
and 1\vo If I'd Only Had the Ttme and Space." But before I could get 
around to writing that third book, Apple introduced the Macintosh 
Plus, with its expanded version of the Toolbox ROM, and it was time 
for a revised edition of the first two volumes. By the time Volume 
Three was done, along came the Macintosh II and it was back to the 
keyboard one more ttme. The result iS the book you 're now holding, 
the latest installment in what has become the longest-running saga 
since The Ring of the Nibelung. 

Even as I was writing, of course, the Macintosh has continued 
to evolve. By the time you read these words, this book will already 
have begun to go out of date-the moving target just refuses to lie 
still. Also, predictably, there are again topics I had to leave out that 
I wish I could have included: hierarchical and popup menus, 

xiii 



XiV Expanding the Toolbox 
~~~~~~~~~~-

Control Panel devices (CDEVs). the new sound facilities, and more.
There's probably enough material left over to add yet another
volume to this epic series, but the line has to be drawn somewhere.
Even Richard Wagner had the sense to wrap up the Ring after four
interminable operas. Besides, there comes a time to move on to
other things. I already have a new project in mind. I'm thinking of
calling it The Decline and Fall of the Roman Empire.

Acknowledg111ents

As always, lt takes more to make a book than one person slttlng
at a keyboard. These people helped me make this one:

My wife and companion, Helen, after years of unfaltering
dedication. has finally received a dedication of her own. I only regret
that it cannot adequately express my love and appreciation. My
children. Ann and David, are an unending source of astonishment
and wonder.

Scott Knaster of Apple Computer and Brian Hamlin of
Farallon Computing helped with technical information.

Nancy Albright of Albright Communications did her usual
superlative job of editing the manuscript.

Scott Arant, Herb Feltner, Wendy Ford, and theircolleagues
at Howard W. Sams & Company helped pull it all together and make
a book out of it.

BW Gladstone of Waterside Productions looked after the
numbers so I could concentrate on the words.

xv

CHAPTER

-[!]-------
Mac by Popular
Demand

Le Macintosh has come a long way since its introduction in
1984. As revolutionary as the original Mac was, with its high
resolution bit-mapped display, mouse pointing device, overlapping
windows. pulldown menus, and iconic user interface, it suffered
significant shortcomings as well. Its meager 128K memory, 9-inch
monochrome screen, and 400K, single-sided disk drive seriously
limited its usefulness for practical computing tasks: its closed
architecture made it difficult to add specialized options and pe
ripheral devices: its lack of a color display compared unfavorably,
not only with the competition, but even with Apple's own lower-end
product line. the Apple II: and its ability to execute only one
application program at a time represented a step backward from the
multitasking features of its predecessor. the Lisa. Almost from the
day the first Macintosh appeared, speculation began about coming
models with more power and enhanced capabilities.

The first improvement was the "Fat Mac." which expanded the
machine's memory capacity from the original 128K to 512K. Next
came the Macintosh Plus, boasting a full megabyte of memory. a
double-sided BOOK disk drive, and a high-speed SCSI (Small Com
puter Standard Interface) parallel port. At about the same time,
hard disks of 20 megabytes and more began appearing, first from in
dependent manufacturers and then from Apple itself. Among the

1

2 Mac by Popular Demand
~~~~~~~~~~-

new features in the Mac Pius's expanded 128K Toolbox ROM (up 
from 64K in the original models) was a Hierarchical File System to 
put the new disk capacity to efficient use. 

Another significant advance was the advent of software concur
rency-first through the ingenious Switcher program, developed by 
independent programmer Andy Hertzfeld, and later through Apple's 
own official version, MultlFinder. These new operating environ
ments allowed the user to keep two or more programs active in 
memory at once, moving quickly and easily from one to another as 
the occasion demanded. They thus offered a reasonable ap
proximation to the convenience of full multitasking that pioneering 
users had ertjoyed in the bygone Lisa days. The pieces were finally 
coming together and the Macintosh was well on its way. 

But the real breakthrough came with the Introduction of the 
Macintosh II, the most powerful model yet in the continuing evolu
tion of the Macintosh family. Here at last was the Macintosh we'd 
all been waiting for, packed with goodies galore: memory configu
rations up to 8 megabytes, a new high-density disk technology 
capable of storing 1.44 megabytes on a 3.5-inch floppy, hard disk 
options as large as 160 megabytes, screen sizes ranging up to 19 
inches and nearly a million pixels. a 68020 processor effectively five 
times faster than the original 68000, a floating-point coprocessor 
and optional paged memory management unit. As if all this weren't 
enough, the new model also offered two features that users had 
been clamoring for from the start: an open architecture, with six 
expansion slots based on the NuBus interface standard developed 
by Texas Instruments, and best of all, a full-color display capability 
with built-in software support. It was truly a Mac by popular 
demand. 

For those with more modest needs (and budgets!), Apple 
simultaneously announced a new midrange model, the Macintosh 
SE, with many of the same features as the II (minus the color 
display, unfortunately) packed in a case the size of the original Mac. 
Over time, the Mac II and SE lines have been upgraded to even faster 
68030-based versions (the Ilx and SE/30) and supplemented with 
newer variants (the Ilcx, with only three expansion slots instead of 
six, and, most recently, the Ilci and Macintosh Portable). Any future 
developments Apple may have In store can be expected to continue 
building on these same established designs. 



3 Mac by Popular Demand 
~~~~~~~~~~~ 

Through it all, great care has been taken to keep each new
version of the system compatible with what has gone before. New
features have been designed to add power and capabilities without
disturbing the operation of existing software. For the programmer.
this means that correctly functioning programs (provided they obey
all of Apple's guidelines and recommendations) needn't be con
stantly revised and updated just to keep working the way they
always have. Our own MiniEdit program, first developed in Volume
Two of this series. is a case in point. Originally written for the
earliest of all Macintosh models, the 128K "Skinny Mac," it has
sutvived without modification through the transition from the
original Macintosh File System to the Hierarchical File System, from
Finder to Switcher to MultiFinder, from Skinny Mac to Fat Mac to
Mac Plus, and now feels comfortably at home on a 5-megabyte
Macintosh IIx with a 19-inch two-page display.

Nevertheless. if you want to take full advantage of all the fancy
new features, you 11 naturally have some extra learning to do. That's
where this book comes in. Building on what we already know about
the Macintosh Toolbox from earlier volumes of this series, we'll learn
how the most important of the new features fit in and how you can
incorporate them into your own programs. (If you haven't already
read the first three volumes, put this one down right now and don't
pick it up again until you have. You have to learn to crawl before you
can roller skate!) Here's a quick preview of what you'll find in the
pages to come:

•Chapter 2, "Old Genies in New Bottles," presents some
general utilities that have been added to recent versions of
the Toolbox.

•Chapter 3, "Going for the Juggler," shows how to structure
your programs to operate most efficiently in the new Multi
Finder environment.

•Chapter 4, "Chasing Rainbows," introduces the basic con
cepts and principles on which the Toolbox color facilities are
built.

•·chapter 5, "Showing Your Colors," tells how to use the new
facilities to draw things in color.

• Chapter 6, "'Through Rose-Colored Windows ... discusses the
use of color in the Macintosh user interface itself.

4 Mac by Popular Demand
~~~~~~~~~~~ 

• Chapter 7, "Editlng with Style," describes the latest version 
of the TextEdit editing routines, which allows you to mix 
typefaces, sizes, and styles within a single passage of text. 

Since you're already assumed to be familiar with the earlier 
volumes of the series, you should find the overall format and style 
old hat by now. You don't need to be told about the text and refer
ence halves of each chapter, about bracketed section references, 
"by-the-way" boxes, hexadecimal numbering conventions, and the 
computer-voice typeface. So instead of wasting time explaining 
them all again, we can just get down to business. Proceed to the next 
page and let's let the genie out of the bottle. 



CHAPTER 

Old Genies in 
New Bottles 

One of the most remarkable things about the Macintosh Toolbox, 
as it has evolved over time, is how little it has changed in its basic 
design and operation. New features and capabilities have been 
carefully designed to build on the existing system structures estab
lished in previous models. For us, this means that everything we've 
already learned in earlier volumes of this series is still true. The 
Toolbox genie may have grown in maturity and acquired some 
dazzling new magical powers, but he's still recognizably the same 
faithful seivant we've lmown since his youth. 

Still, a growing genie naturally needs a roomier bottle in which 
to dwell. Before learning about the fancier new tricks up the genie's 
sleeve-MultiFinder, Color QuickDraw, styled TextEdit-we'll have 
to spend a little time exploring some of the more mundane features 
of his new domicile. In this chapter, we'll deal with a few preliminar
ies like model-to-model compatibility, memory management, and 
access to system resources. Once those are out of the way, we11 be 
ready to uncork the bottle and let the genie show his stuff. 

System Configuration 

Once upon a time, all Macintoshes were the same. Anyone writing 
a program for the machine lmew just what to expect: 128 kilobytes 

5 



6 Old Genies in New Bottles 

of RAM. 64K of ROM, an MC68000 processor, a 9-inch monochrome 
display measuring 512 pixels by 342, one or two single-sided, 400K 
floppy-disk drives, two serial ports, and that about covered it. No 
frills, no variations, one size fits all. 

Not any more. Today's Macintosh programmer is confronted 
with an ever-growing variety of options and configurations. The 
original 68000 processor has been supplanted, at the high end of the 
product line, by the newer and more powerful 68020 and 68030, 
supplemented in some models with a 68881 or 68882 floating-point 
coprocessor. Memory sizes range up to 8 megabytes and higher, 
with the gigabyte horizon coming into view. To help cope with the 
memory explosion, some systems now come equipped with the 
68851 paged memory management unit, or PMMU. Disk capacities 
have evolved from single-sided 400K floppies to double-sided SOOK 
to the current high-density 1.44-megabyte standard, along with a 
profusion of internal and external hard disks at capacities up to 160 
megabytes. 300 megabytes, and beyond. 

With the increasing number of models in the Macintosh line, 
different versions of the Toolbox ROM have also proliferated. grow
ing from the original 64K to 128K in the Macintosh Plus, 256K in the 
Macintosh SE and Macintosh II. and all the way to 512K in the 
current latest-and-greatest. the Macintosh Ilci. The old. built-in 9-
inch screen has given way to more spacious full-page and two-page 
outboard displays, in full color and gray-scale as well as plain black
and-white-and even to the possibility of multiple independent 
screens in the same system. Keyboard options range from the 
original 58-key arrangement to the 105-key, Brand-X-compatible 
Apple Extended Keyboard, a behemoth of such imposing dimen
sions that its internal code name while under development was 
"USS Saratoga." SCSI (Small Computer Standard Interface) parallel 
ports have been added alongside the old RS-232 /RS-422 serial 
ports. supporting a varied array of printers. plotters, scanners, and 
other peripheral devices, mundane and exotic. The range of periph
eral options has been further extended with NuBus expansion slots 
and remote-access network connections. It's a cliff erent world out 
there. 

Faced with all this bewildering diversity, it's essential for a 
program to be able to learn the characteristics of the system it's 
running on. This problem was first addressed in a rudimentary way 
with the Environs procedure [1:3.1.3), added to the Toolbox in the 



7 System Configuration 
~~~~~~~~~~~ 

expansion from the original 64K ROM to the l 28K Macintosh Plus
version. Now this simple facility has been replaced with a more
elaborate version, SysEnvirons [2.1.1), providing a wider range of
information about the system and its configuration.

SysEnvirons accepts a system environment record as a pa
rameter and fills it with descriptive information about the current
system configuration. The format of this record is designed for ex
pandability as the Macintosh system environment evolves overtime.
The first field, environsVersion, identifies the version of the
SysEnvirons routine that created the record, which in tum deter
mines its overall size and structure. In each release of the Toolbox
interface files, the constant CurSysEnvVers gives the current ver
sion number for SysEnvirons; the one described here .is version 1.
SysEnvirons accepts a parameter, whichVersion, identifying the
desired format for the environment record; if this number is higher
than the available version of Sy sEnv irons can provide, it will return
the error code EnvVersTooBig (2.1.1), warning you that the record
you receive is smaller than you're expecting and that some of the
desired fields are missing.

The remaining fields of the environment record give specific
information about the system you're running on. The machineType
field contains an integer code number identifying an overall Macin
tosh model-512K enhanced, SE/30, Ilcx, or whatever. If this field
is positive, you can count on the availability of at least those Toolbox
features included in the 128K Maciiltosh Plus version of the ROM,
as described in the earlier volumes of this series. Negative values
denote such antediluvian species as the Skinny Mac, Fat Mac, and
Macintosh XL (nee Lisa). The list of values given in (2.1.1) is sure to
grow as new models appear. and will probably be out of date by the
time this book goes to print.

The fields processor and keyboardType contain similar code
numbers representing the type of processor and keyboard installed
in the system. systemVersion gives the version number of the
System file from which the system was started: for example, $0420
for System version 4.2. (The earliest valid system version is 4.1; all
earlier versions return O in this field.) The sysVRefNum field holds
the reference number of the startup volume or system folder in
which the System file is located. hasFPU and hasColorQD are

8 Old Genies in New Bottles

Boolean flags telling whether the current system has a floating-point
coprocessor installed and whether it includes the new color version
of the QuickDraw graphics routines. Finally, atDrvrVersNum gives
the version number of the currently installed AppleTalk network
driver, if any. If AppleTalk is not present, this field will be o.

Dispatch Table Access

Often, the information you really need is not what model of proces
sor or version of the system you're running on, but whether a
specific Toolbox feature or capability is available. The way to find
this out is by looking directly in the system dispatch table for the
particular Toolbox routine (procedure or function) you need. The
dispatch table contains the addresses of all Toolbox routines that
are built into the system in ROM, as well as those loaded into RAM
from the System file at startup. If the routine you want is included
in the table, you can go ahead and use it; if not, you can post a
suitable alert message. disable some of your menu commands. or
take whatever other measures are appropriate.

As we learned in Volume One, Toolbox calls are implemented at
the machine level via the processor's emulator trap mechanism.
Each call to a Toolbox routine is represented in machine language
by a special trap word beginning with the hexadecimal digit $A

(binary 1010). which doesn't correspond to any valid machine
instruction. On encountering such an unimplemented instruction.
the processor suspends what it's doing and executes a trap handler
routine to deal with the abnormal condition. The trap handler for
unimplemented instructions in the Macintosh system. called the
Trap Dispatcher, analyzes the trap word to determine what Toolbox
or system routine it represents. looks up the routine's address in the
dispatch table, and executes the routine with a subroutine jump
before resuming program execution from the point of the trap.

Trap words come in two slightly different formats. known as
Operating System or OS traps and Toolbox traps (see Figure 2-1). The
former typically denote low-level system management operations
like memory allocation and input/ output, while the latter deal with
the higher-level elements of the Macintosh user interface, such as
windows. menus, and dialog boxes. Also, in general. OS traps
receive their parameters and return their results directly in the
processor's registers and Toolbox traps pass them on the stack,
though there are occasional exceptions both ways.

9 Dispatch Table Access
~~~~~~~~~~~_; 

a. Operating System trap 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

j1!oj1iolol I I 
... .... 

Unimplemented Flags Trap number 
instruction code 

Specifies 
OS format 

b. Toolbox trap 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
I I O 

I i O i I i 0 
I ! l 

... '-----' 
Unimplemented Flags Trap number 
instruction code 

Specifies 
Toolbox format 

Figure 2-1 Trap word formats 

Both types of trap word begin with the bit pattern 1o1 o 
(hexadecimal $A). which the M68000-sertes processors recognize as 
an unimplemented instruction to be handled via the emulator trap. 
The next bit (bit 11) is a flag distinguishing the two types of trap: o 
for OS, 1 for Toolbox. This is followed by a few more flag bits 
controlling things like register usage and synchronous or asynchro
nous execution. At the end of the word is a trap number identifying 
the specific OS or Toolbox operation the trap represents. An impor
tant point to note is that the trap numbers for the two types of trap 
are of different lengths: 8 bits for OS traps, 9 for Toolbox traps. 

In the earliest models of Macintosh (those with the original 64K 
ROM). there was no overlap between the two types of trap. A given 
trap number could designate either an OS or a Toolbox trap, but not 
both: for example, trap number $ 4 o referred to the OS trap 
ResrvMem (1:3.2.5) and $50 to the Toolbox trap Ini tCursor 



10 Old Genies In New Bottles 

(II:2.5.2]. Both types shared a single dispatch table giving the 
addresses of the corresponding routines in ROM; the table had room 
for 512 entries. with OS traps restricted to the first half of the table 
because of their 8-bit trap numbers. Beginning with the Macintosh 
Plus and its 128K ROM (version $7 5), each type of trap has its own 
dispatch table-one 256 entries long for OS traps and another of 512 
entries for Toolbox traps. Thus the same trap number can now refer 
to two different traps, one in each table. For example, trap number 
$40 now designates both the OS trap ResrvMem (1:3.2.5) and the 
Toolbox trap Fix2Long (1:2.3.IJ; $50 standsforRelString (1:2.1.2) 
in the OS dispatch table as well as Ini tCursor (11:2.5.2) in the 
Toolbox table. 

To find the number for a given trap, look up its trap word 
alphabetically in Appendix F. The trap word will always begin with 
the hexadecimal digit $A. If the second digit is between $0 and $7 
(usually $0 or $1), then the trap resides in the OS dispatch table 
under the number given by its last two digits: for example, the trap 
PostEvent [II:2.3.2], with a trap word of $A02F, is OS trap number 
$2F. If the second digit is between $8 and $F (usually $8 or $9), it"s 
a Toolbox trap; the last two digits again give the trap number, but 
in this case it must be increased by $100 if the second digit is odd 
(that is. if bit 8 is 1). Thus FrameRect (1:5.3.2), whose trap word is 
$A8Al. is Toolbox trap number $Al. while GetNamedResource 
(I:6.3.1]. with trap word $A9Al, is Toolbox trap $1Al. 

Don't make the mistake of applying this same rule to OS traps. 
In an OS trap, bit 8 is not part of the trap number, but a flag 
governing register usage at the machine-language level. An OS 
trap such as NewHandle [1:3.2.IJ, whose trap word is $Al22. 
still has trap number $22, not $122. 

The original ROM provides a pair of utility routines. Ge tT rap -
Address and SetTrapAddress [2.1.2). for manipulating the con
tents of the dispatch table. Both accept the desired trap number as 
a parameter. GetTrapAddress returns a long integer representing 
the numerical address of the corresponding OS or Toolbox routine. 
taken from the table; SetTrapAddress accepts the address as a 



11 Dispatch Table Access 
~~~~~~~~~~__;; 

parameter and stores it into the table, replacing the previous
address for that trap number. On more recent models with separate
OS and Toolbox dispatch tables, these two routines are replaced
with newer versions, NGetTrapAddress and NSetTrapAddress
[2.1.2). The new routines work just the same as the old ones, except
that they take an additional parameter of type Tr a pTyp e (2.1.2). The
values of this enumerated type, OSTrap and ToolTrap, designate
the type of trap to which the trap number parameter refers and thus
which dispatch table it resides in.

At the assembly-language level. the new routines NGetTrap
Address and NSetTrapAddress are called via the same pair of
traps as the older versions, GetTrapAddress and SetTrap
Address. The two forms are distinguished by bit 9 of the trap
word, which is o for the old versions (combined dispatch table)
or 1 for the new (dual dispatch tables). In the latter case, bit 10
selects one of the two tables (O for OS, 1 for Toolbox). See [2.1.2,
note 17) for further details.

On older machines that use a combined dispatch table,
these flag bits in the trap word are ignored and the new routines
simply revert to the same behavior as the old. Where two traps,
one of each type, share the same trap number, the call will thus
affect the older of the two, whichever was included in the
original 64K ROM. This can get you in trouble if you're not
careful: you may think you're asking for RelString (OS trap
number $50) and get Ini tCursor (Toolbox trap $50) instead.
To stay on the safe side, be sure to call SysEnvirons first and
verify that you're running under ROM version $ 7 s or later. The
easiest way to check this is by looking at the machine Type field
of the environment record [2.1.1]: as long as this field ts
positive, you're on a system with dual dispatch tables and you
can trust NGetTrapAddress and NSetTrapAddress to work
the way you expect.

By convention. all OS and Toolbox traps that are not available
in a given version of the system have their dispatch table entries set

12 Old Genies in New Bottles

to the same standard ROM address. For reference, one special trap,
number $9F in the Toolbox series, is set aside and guaranteed to
remain forever unimplemented. (Some versions of the Toolbox inter
face files define its trap number as a constant named Un imp 1 Tr a pNum
[2.1.2]; in others. it's been inadvertently left out and you have to
define it explicitly for yourself.) Thus you can test whether another
trap is available by comparing its trap address with that of this
standard unimplemented trap: if the addresses match, then the trap
you're testing is not available in the system you're running on. As an
example, if thisTr a pNum is the number of a Toolbox trap that was not
present in the original 64K ROM. the following code will test whether
it's available in the current system:

result :- SysEnvirons (CurSysEnvVers, theEnvirons):
if theEnvirons.machineType < 0 then

(Trap is not available}
else

begin
unimplAddr := NGetTrapAddress (UnimplTrapNum, ToolTrap):
thisTrapAddr := NGetTrapAddress (thisTrapNum, ToolTrap):
if thisTrapAddr - unimplAddr then

{Trap is not available}
else

{Trap is available}
end (else}

NSetTrapAddress is useful mainly for "patching" the dispatch
table to substitute your own version of a Toolbox routine in place of
the standard version. Many of the !NIT utilities that are so popular
nowadays operate this way. installing their own code in the dispatch
table to capture calls to key routines and handle them in nonstandard
ways. It's a tricky business. however, and not recommended for those
with faint hearts or careless coding styles. One wrong move can easily
tum the most useful gadgets in your Toolbox into lethal instruments
of self-destruction. Don't try it unless you know what you're doing.

If you do attempt patching a trap in the dispatch table, it's much
safer just to add a bit of extra code to the existing routine instead of
replacing it wholesale. The way to do this is to fetch the existing trap

13 Dispatch Table Access
~~~~~~~~~~~ 

address with NG etT r a pAd dress and save it in an accessible location 
before replacing it with NSetTrapAddress. Then you can call the 
original Toolbox routine from within your substitute version. merely 
adding some extra pre- or postprocessing of your own. This tech
nique also gives you a better chance of staying compatible with other 
INITs or similar pieces of code that may be patching the same trap. 
Finally, if you're patching the dispatch table from within an appli
cation program, don't forget to undo your patches and restore the 
table to its original state before exiting. Remember-only you can 
prevent system pollution. 

Keep in mind that in today's Macintosh environment. your 
program may find itself sharing the system with one or more 
others under the control of MultiFinder. Any patches you 
install in the dispatch table may have unwanted and probably 
toxic effects on the operation of these other programs. Luckily. 
M ultiFinder is smart enough to maintain a separate dispatch 
table for each program and swap it in only when that program 
assumes active control of the system. If you 're careful to locate 
your patch routine in your own application heap. MultiFinder 
will see to it that it affects onlyyour own program and no others. 
Conversely. patches that are intended to affect the global 
environment in which all programs operate (such as those 
installed by INIT routines) should reside in the system heap. 
(We'll be learning more about MultiFinder in the next chapter.) 

Since MultiFinder automatically disposes of your private 
dispatch table when your program terminates. there would 
seem to be no need to remove your patches before exiting. Don't 
forget, though. that you may equally well be running in the 
single-Finder environment-so it's still important to clean up 
after yourself to avoid sabotaging the program that follows you. 



14 Old Genies in New Bottles 

Shutdown and Restart 

A pair of new Toolbox routines. ShutDwnPower and ShutDwnStart 
[2.1.5], allow you to shut down or restart the system under program 
control. These correspond to the Shut Down and Restart com
mands on the Finder's Special menu. On the Macintosh II, which 
has a software-controlled main power switch, ShutDwnPower actu
ally turns off the machine; on other models, it displays an alert 
message prompting the user to tum off the power manually (You may 
now switch off your Macintosh safely). ShutDwnStart replaces 
the earlier Toolbox routine Restart [1:7.1.3), restarting the system 
as if the user had pressed the reset button or toggled the power 
switch off and back on again. Both routines perform all necessary 
housekeeping chores to leave the system in an orderly and consis
tent state: 

1. Issue a "good-bye kiss" [III:3.l.2] to each active driver or desk 
accessory that requires one, then close all active drivers and 
desk accessories. 

2. Unload the contents of the desk scrap to a disk file [1:7.4.4). 

3. Eject and unmount all mounted volumes [II:8.l.3]. 

4. If running under MultiFinder. send each active program the 
equivalent of a Quit command, allowing it to save files. if 
necessary, and exit in an orderly way. 

5. Shut down or restart the system as requested. 

If an application program has any last-minute housekeeping to 
do before system shutdown, it will get its chance in step 4; step 1 
offers the same opportunity to driveFs and desk accessories. Other 
types of program (!NIT routines, for example) must explicitly sched
ule their own shutdown procedure for execution during the shut
down or restart sequence, using the Toolbox routine ShutDwn -
Instal 1 [2.1.6]. The shutdown procedure accepts no parameters 
and returns no results, simply carries out its needed housekeeping 
tasks and exits. A parameter to ShutDwninstall specifies when in 
the shutdown sequence the procedure is to be executed: before 
issuing good-bye kisses and closing drivers (step 1), before ejecting 
and unmountingvolumes (step 3). before restarting the system (step 
5), or before shutting off the power (step 5). If necessary. a procedure 
could be scheduled for execution at more than one of these times, 
though this would be an unusual thing to do. The Toolbox routine 
ShutDwnRemove cancels a previously installed shutdown proce
dure. 



15 Memory Management 
~~~~~~~~~~-

Memory Management

Although all memory addresses on the Macintosh are theoretically
32 bits long. the original models actually used only 24 of the 32. This
is because the MC68000 processor used in those early models
ignores the first 8 bits of the address and carries only the last 24 bits
"'off-chip .. onto the address bus that supplies addresses to physical
memory. Thus these early models were limited in practice to a
maximum address space of 16 megabytes (224, or 16, 777 ,216 bytes).
Those 8 unused bits at the high end of each address provided a
convenient place for the Toolbox to stash additional information.
such as the lock and purge bits in a handle's master pointer [1:3.2.4]
or the variation code in a window's or control's definition function
handle [11:3.1.1, 11:6.1.1].

The newer Macintoshes, with their more powerful 68020 and
68030 processors, now include a full 32-bit address bus, expanding
the effective address space to 4 gigabytes (232 = 4,294,967,296
bytes). For backward compatibility with existing software, these
newer models can also operate in 24-bit mode, suppressing the first
8 bits of each address as before. All Toolbox and system software is
limited to 24-bit addresses: the system starts up automatically in
24-bit mode, and application programs ordinarily run in this mode.
At the time of writing, the only Macintosh software that uses full 32-
bit addresses is Apple's version of the Unix operating system, A/UX,
which also requires the optional paged memory management unit
(PMMU) to maintain its virtual memory space.

The new Macintosh Ilci, announced just before this book went
to press, features a redesigned version of the Toolbox that's
"'32-btt-clean .. -that is, with no extraneous information in the
high-order byte of an address, allowing unimpeded operation
for all software in 32-bit mode.

The choice between 24- and 32-bit address mode (also called
MMU mode, for "'Memory Management Unit ..) is determined by a flag
bit in the control register of one of the VIA (Versatile Interface
Adapter) chips. A pair of new Toolbox routines, GetMMUMode and

16 Old Genies in New Bottles

SwapMMUMode (2.1.3), allow you to read or change this setting.
GetMMUMode simply returns an integer code (False32B or True32B
[2.1.3]) representing the current address mode. SwapMMUMode ac
cepts a similar constant giving the new mode to be set, and returns
the previous mode via the same variable parameter. Thus you can
use paired calls to this routine to save the address mode and later
restore it to its previous state:

rnrnuMode :~ True32B:
SwapMMUMode (mmuMode):

SwapMMUMode (rnmuMode)

{Set 32-blt mode}
{Swap and save old mode}
{Work fn 32-bft mode}
{Restore previous mode}

Another utility routine, StripAddress (2.1.3), strips off the high
order byte of a 32-bit pointer, removing any private data the Toolbox
may have stored there and converting the pointer to a .. clean" 24-bit
address. This operation is meaningful only in 24-bit mode: in 32-bit
mode, it simply leaves the full 32-bit address unchanged.

Memory Layout

What we usually think of when we talk about a computers memory
is its random access memory, or RAM. (This is actually a misleading
term, since other forms of memory can also be accessed in random
fashion: a more descriptive term would be "read/write memory.") In
practice, however, not all of the available address space is devoted
to RAM. Read-only memory (ROM) occupies part of the space, and
addresses are also reseived for memory-mapped input/ output-that
is, for communication with peripheral devices using the various
interface controllers built into the system. Thus there are portions
of the address space set aside for each of the two Versatile Interface
Adapters (VIAs). for the Serial Communications Controller (SCC),
the Small Computer Standard Interface (SCSI), the Integrated
Wozniak Machine (IWM) disk controller. the Apple Sound Chip
(ASC), and so on. In addition, on the Macintosh II, each of the six
expansion slots is allotted a portion of address space for memory
and control functions residing on an expansion card plugged into
the slot.

Memory layouts for the Macintosh II in both 24- and 32-bit
address mode are shown in (2.2.IJ. In24-bitmode, the available 16-
megabyte address space is divided into I-megabyte segments ac-

17 Memory Management
~~~~~~~~~~-

cording to the first hexadecimal digit of the address. Addresses from 
$000000 to $7FFFFF are reserved for RAM, allowing a maximum 
configuration of 8 megabytes. If less than this maximum amount of 
RAM is actually installed, some of the high-order bits of each 
address are ignored, causing the existing memory locations to 
repeat cyclically throughout the logical address space. For example, 
on a machine with 1 megabyte ($100000 bytes) of physical RAM. 
addresses $012446, $112446, $212446, and so on, all refer to the 
same physical byte of memory. 

The next megabyte of addresses, from $800000 to $8FFFFF, are 
assigned to ROM. The first 256 kilobytes of this space, from$ 8 0000 o 
to $83FFFF. are actually used by the initial release of the Macintosh 
II ROM (version $ 7 8); the rest are reserved for future expansion. 
Following ROM are the spaces assigned to the six expansion slots. 
For convenient reference, the slots are numbered with hexadecimal 
digits from $9 to $E, rather than from o to 5 or 1 to 6; each slot's 
address space consists of the megabyte of addresses beginning with 
the corresponding digit ($BOOOOO to $BFFFFF for slot $B, for ex
ample). Finally, the last megabyte of address space, from $FOOOOO 
to $FFFFFF, is reseived for memory-mapped 1/0. This space is 
further subdivtded among the various interface chips mentioned 
earlier, such as the VIAs and SCC; if you need further details on 
these specific address assignments, you can find them in Apple's 
Macintosh FamUy Hardware Reference manual, published by Ad
dison-Wesley. 

In 32-bit mode, the address space is again divided into sixteen 
zones by the first hexadecimal digit of the address-but since the 
total space is 4 gigabytes. each zone ts now 256 megabytes long 
instead of just I megabyte. Addresses $00000000 to $3FFFFFFF are 
allotted to RAM, occupying a quarter of the total space. or 1 gigabyte 
in all. (The machine can't physically accommodate this much 
memory, but it could be addressed as virtual memory under control 
ofthePMMU.) Thenextzone, $40000000to $4FFFFFFF, is assigned 
to ROM, with the actual 256K ROM running from $40000000 to 
$4003FFFF. Memory-mapped 1/0 resides in zone $5 (addresses 
$50000000 to $5FFFFFFF); zones 6 to 8 ($60000000 to $8FFFFFFF) 
are unused and reseived for future expansion. 

Each of the six expansion slots has two separate areas of 
address space assigned to it in 32-bit mode: a 16-megabyte regular 



18 Old Genies in New Bottles 

slot space in zone $ F and an additional super slot space consisting 
of one whole 256-megabyte zone. For slot $B, for example, the 
regular slot space runs from $FBOOOOOO to $FBFFFFFF and the 
super slot space from $BOOOOOOO to $BFFFFFFF. The 1 megabyte 
allotted to the slot in 24-bit mode maps into the first megabyte of 
regular slot space in 32-bit mode (in this case, from $FBOOOOOO to 
$FBOFFFFF). The remaining ten subzones of zone $F ($FOOOOOOO to 
$F8FFFFFF and $FFOOOOOO to $FFFFFFFF) are reserved for future 
use. 

Memory Allocation 
A set of new memory allocation routines have been added to the 
Toolbox (2.2.2], supplementing the original NewHandle and NewPtr 
[I:3.2. l] for allocating relocatable and nonrelocatable blocks, 
respectively. NewHandleSys and NewPtrSys allocate a block from 
the system heap instead of the normal application heap; New
HandleClear and NewPtrClear clear the new block to all zeros 
before returning it; NewHandleSysClear and NewPtrSysClear do 
both. (These facilities have always been available from assembly 
language via flag bits in the trap words for NewHandle and NewPtr: 
the new Toolbox calls make them available from the Pascal level as 
well.) 

For programs running under MultiFinder, a new form of mem
ory allocation is available in addition to the normal system and 
application heaps. The new routine MFTempNewHandle (2.2.3) allo
cates a relocatable block from the unused portion of memory not 
currently assigned to any running program. Such temporary 
memory blocks are intended for short-term use only, and should be 
released before the next pass of the program's event loop (that is, 
before retrieving the next event for processing). This makes the 
space available in case the user wishes to launch a new program, or 
for similar temporary memory requests by other programs with 
which you are already sharing the system. 

Such temporary memory blocks allocated by MultiFinder are 
not interchangeable with those created by NewHandle [I:3.2. l] or 
related allocation calls (2.2.2). You should never attempt to apply 
ordinary memory-management operations to them, such as 
GetHandleSize, SetHandleSize [I:3.2.3], HLock, HUnlock, 
HPurge, HNoPurge (1:3.2.4), MoveHHi (1:3.2.5], EmptyHandle, Re -
allocHandle [I:3.2.l], or RecoverHandle [I:3.2.1]. In particular, 



19 Small Fractions 

always be sure to use the new routine ME'TempDisposHandle (2.2.3) 
to release temporary blocks and the old DisposHandle (1:3.2.1) for 
ordinary blocks, never the other way around. If necessary, you can 
lock and unlock temporary blocks with the new routines MFTemp -
HLock and MFTempHUnlock (2.2.3), but there are no equivalent 
routines for marking them purgeable or unpurgeable; temporary 
blocks can never be purged. 

Depending on the number of programs running concurrently 
under MultlFinder and the amount of space used by each, there 
may not be enough space available to allocate a temporary 
block of the requested size. If the block cannot be allocated, 
MFTempNewHandle will return the error code MemFullErr 
(1:3.1.2) in its variable parameter resul tCode. Your program 
should always have a backup plan for dealing with this contin
gency. so that it can function properly without failing, even if 
the requested temporary space is not available. For example, 
the Finder uses MFTempNewHandle to allocate a large tempo
rary buffer when copying a file: if the space for the buffer isn't 
available, it uses a smaller buffer preallocated for the purpose 
within its own application heap. The MultiFlnder routine 
MFFreeMem (2.2.4) returns the total amount of memory space 
available for temporary allocation; MFMaxMem (2.2.4) compacts 
the temporary heap and then returns the size of the largest 
available free block. 

Small Fractions 

A new numeric data type, SmallFract (2.4. l]. represents a 16-bit 
fractional value between o and 1, with an implicit binary point 
preceding the first bit. The value of such a small fraction is 

equivalent to that of the corresponding unsigned Integer dMded by 
6 5 5 3 6 (216). It thus corresponds to the low-order {fractional) half of 
a 32-bit fixed-point number of type Fix~d (1:2.3.1). The largest pos
sible small fraction, $FFFF, has a numerical value equal to 65535 
divided by 65536, oro. 999984741; thisvalueisdefinedasaToolbox: 



20 Old Genies in New Bottles 

constant named MaxSmallFract. This constant is declared as a 
long integer, $OOOOFFFF, so that it can be used in combination with 
full-length fixed-point numbers. A pair of utility routines, 
Fix2Smal1Fract and Sma11Fract2Fix (2.4.1) convert between 
fixed-point numbers and small fractions. Small fractions are used 
mainly for expressing the components of color values for drawing 
with the new Color QuickDraw routines: we'll have more to say on 
this subject in Chapter 4. 



REFERENCE 

2.1 System Configuration 

2.1.1 Operating Environment 

function SysEnvirons 

(whichVersion 

var t:heEnvirons 

: OSE r r: 

INTEGER; 

SysEnvRec) 

(Desired version of environment record} 

(Description of operating environment} 

(Result code} 

type 

SysEnvRec record 

environsVersion 

machineType 

systemVersion 

processor 

hasFPU 

hasColorQD 

keyboardType 

at:DrvrVersNum 

sysVRefNum 

end; 

con st 

CurSysEnvVers 1 ; 

21 

INTEGER ; {Version number of environment record} 

INTEGER ; (Model of Macintosh hardware) 

INTEGER: (Version number of System ftJe} 

INTEGER: (CPU type} 

BOOLEAN; (Floating-point coprocessor present?} 

BOOLEAN : (Color QuickDraw available?} 

INTEGER; {Type of keyboatd) 

INTEGER : (Version number of AppleTalk driver) 

INTEGER (Volume or directory containing System file} 

(Cunent version of SysEnviron s } 



22 System Architecture and General Utlllttes 

(Machine codes: } 

EnvMachUnknown = O: (Unrecognized hardware model) 

EnvXL -2: (Macintosh XL (Lisa)} 

EnvMac ::::: -1: (Original Skinny or Fat Mac) 

Env512Ke 

EnvMacPlus 
EnvSE 

EnvMacII 
EnvMac!Ix 

EnvMacIIcx 

EnvSE30 

EnvCPUUnknown = 

Env68000 

Env68010 

Env68020 
Env68030 

EnvUnknownKbd 
EnvMacKbd 

EnvMacAndPad 
EnvMacPlusKbd 
EnvAExtendKbd 
EnvStandADBKbd :::;: 

EnvNotPresent 

EnvBadVers 

EnvVersTooBig 

1: (Macintosh S12K enhanced) 

2; (Macintosh Plus) 

3; (Macintosh SE} 

4: {Macintosh Il} 

5; {Macintosh Ilx) 

6; {Macintosh Ilcx} 

7: {Macintosh SEl30} 

(CPU codes: } 

0: (Unrecognized processor} 

1: {MC68000 processor) 

2: (MC68010 processor} 

3: (MC68020 processor} 

4; (MC68030 processor} 

{Keyboard codes: } 

O: (Unrecognized keyboard type} 

1; (Original Macintosh keyboard} 

2: {Original keyboard with optional keypad} 

3: {Macintosh Plus keyboard} 

4: (Apple Extended Keyboard} 

5: (Standard Apple Desktop Bus keyboard} 

(Result codes: } 

-5500: (SysEnvirons not implemented} 

-5501: (Invalid venion number requested} 

-5502: {Requested version not available} 

Notes 

1. SysEnvirons returns an environment record describing the hardware 
and system software on which a program ls running. This allows the 
program to test for the avallablllty of specific features and to adjust 
gracefully In case they are absent. · 



23 (2.1.1] Operating Environment 
~~~~~~~~~~~~-

2. The contents of the environment record will be extended with addi
tional fields as new features and capabilities are added to the Macin
tosh system. The record's environsVersion field identifies the ver
sion of SysEnvirons that created it, and hence its overall size and
structure.

3. The program specifies the desired version of the environment record
via the which Version parameter. If the requested version number ls
higher than the available version of SysEnvirons can provide, it will
return the error code EnvVersTooBig. This warns the program to
proceed with caution, since the environment record it receives will be
smaller than it expects and some of the desired fields will be missing.

4. The definition shown for the environment record ls version 1. corre
sponding to System file version 4. L Forearllerverslons of the System
file, the .. glue" routine for SysEnvirons will fill in the contents of the
record and return the error code EnvNotPresent.

5. The constant CurSysEnvVers gives the current version number for
the environment record (version 1 at the time this book went to print).
The value of this constant will be updated as needed in future releases
of the Toolbox interface files.

6. The environment record's machineType field identifies the model of
the Macintosh hardware on which the program ls running. Possible
values at the time of publication include EnvXL. EnvMac, Env512Ke,
EnvMacPlus, EnvSE, EnvSE30, EnvMacII, EnvMacIIx, and EnvMac
I Icx. The value EnvMachUnknown denotes a hardware model un
known to this version of SysEnvirons.

7. A positive value for machineType ensures the availability of all
Toolbox features included ln the Macintosh Plus (128K) version of the
ROM. Negative values denote .. prehistoric" Macintosh models cany
ing the original 64K ROM.

8. systemVersion gives the version number of the current System file.
The first half of the two-part version number ls in the high-order byte,
the second in the low, in hexadecimal form. For example, a value of
$0420 denotes System version 4.2. Version numbers in this form can
be compared directly. using the ordlnruy arithmetic comparison
operators< ness-than) and> (greater-than).

9. System files earlier than version 4.1 return o in the systemVersion
field.

10. processor identifies the type of central processor (CPU) on which the
program ls running. Possible values at publication time include
Env68000, Env68010, Env68020, and Env68030. The value
EnvCPUUnknown denotes a processor type unknown to this version of
SysEnvi rons.

24 System Architecture and General Utilities
~~~~~~~~~~~~ 

11. The Boolean field hasFPU tells whether a tloatlng-polnt coprocessor· ls 
present 

12. The Boolean field hasColorQD tells whether the Color QutckDraw 
graphics routines are available. (Color QulckDraw ls discussed In 
Chapters 3 and 4.) 

13. keyboard Type identifies the type of keyboard connected to the ma
chine. Possible values at publication time Include EnvMacKbd, 
EnvMacAndPad, EnvMacPlusKbd, EnvAExtendKbd, and EnvStand
ADBKbd. The value EnvUnknownKbd denotes a keyboard type un
known to this version of SysEnvirons. 

14. atDrvrVersNum gives the version number of the currently Installed 
AppleTalk network driver. if any. If AppleTalk ls not present. this field 
will be o. 

15. sysVRefNum is the reference number of the volume or directory In 
which the System file resides. 

16. For SysEnvirons to work properly, it must be preceded by all of the 
needed Toolbox Initialization calls, such as Ini tGraf [1:4.3.1). Ini t
Fonts (1:8.2.4), Ini tWindows [11:3.2.1), InitMenus (11:4.2.IJ. TEinit 
[11:5.2.1), InitDialogs [11:7.2.1), and PrOpen (111:4.2.1). 

~QI ... ___ As_se_m_h_1y_Lan __ gua __ g_e_1m_o_rma __ t1_o_n _____ _ 

Trap macro: 

(Pascal) 
Routine name 

SysEnvirons 

Register usage: 

Routine 

SysEnvirons 

(Assembly) 
Trap macro Trap word 

_SysEnvirons $A090 

Register 

AO .L (In) 

DO. W (In) 

AO.L (out) 
DO. w (out) 

Contents 

pointer to theEnvirons 

whichVersion 

pointer to theEnvi rons 

result code 



25 [2.1.1) Operating Environment 
~~~~~~~~~~~~-

Field offsets in a system environment record:

(Pascal) (Assenibly)
Field nanie Offset nanie

environsVersion
machine Type
systemVersion
processor
hasFPU
hasColorQD
keyboard Type
atDrvrVersNum
sysVRefNum

environsVersion
machineType
systemVersion
processor
hasFPU
hasColorQD
keyboard Type
atDrvrVersNum
sysVRefNum

Assembly-language constants:

Name Value Meaning

Offset
in bytes

0

2

4

6

8

9

10
12
14

SysEnvlSize 16 Size in bytes of environment
record, version 1

CurSysEnvVers 1 Current version of
SysEnvirons

Machine cod.es:

Nanie Value Meaning

EnvMachUnknown 0 Unrecognized hardware model
EnvXL -2 Macintosh XL (Lisa)
EnvMac -1 Original Skinny or Fat Mac
Env512Ke 1 Macintosh 512K enhanced
EnvMacPlus 2 Macintosh Plus
EnvSE 3 Macintosh SE
EnvMacII 4 Macintosh II
EnvMacIIx 5 Macintosh Ilx
EnvMacIIcx 6 Macintosh Ilcx
EnvMacSE30 7 Macintosh SE/30

26 Sys tem Architecture and General Utllfttes

CPU codes:

Name Value Meaning

EnvCPUUnknown 0 Unrecognized processor
Env68000 1 MC68000 processor
Env6801 0 2 MC68010 processor
Env68 020 3 MC68020 processor
Env68030 4 MC68030 processor

Keyboard codes:

Name Value Meaning

EnvUnknownKbd 0 Unrecognized keyboard type
EnvMacKbd 1 Original Macintosh keyboard
EnvMacAndPad 2 Original keyboard with

optional keypad
EnvMacP lusKbd 3 Macintosh Plus keyboard
EnvAExtendKbd 4 Apple Extended Keyboard
EnvStandADBKbd 5 Standard Apple Desktop Bus

keyboard

2.1.2 Dispatch Table

~-~--t-~-D_e_n_n_i_ti_o_n_s~~~~~--~~~~~~~------~-
function GetTrapAd dress

(trapNum : INTEGER)

: LONGINT:

proc edure SetTrapAddress

(ne wAddr LONGINT :

trapNum : INTEGER) :

function NGetTrapAddress

(trapNum : INTEGER :

whichType : TrapType)

: LONGINT:

{Trap number of desired Toolbox routine)

{Address of existing routine in memory)

{Address of replacement routine)

{Trap number of Toolbox routine to be replaced)

{Trap number o f desired Toolbox routine)

{OS or Toolbox trap?)

{Address of existing routine in memory)

27 (2.1.2) Dispatch Table
~~~~~~~~~~~~-

procedure NSetTrapAddress 
(newAddr LONGINT: 
trapNum INTEGER: 
whichType TrapType): 

type 

{Address of replacement routine} 

{Trap number of Toolbox routine to be replaced} 

{OS or Toolbox trap?} 

TrapType = (OSTrap. {Routine resides in OS dispatch table) 

{Routine resides in Toolbox dispatch table} ToolTrap): 

const 
UnimplTrapNum = $9F: {Trap number of unimplemented Toolbox trap} 

Notes 

1. These routines manipulate the contents of the system dispatch tables, 
used by the 1Tap Dispatcher to locate Toolbox and Operating System 
(OS) routines accessed via the trap mechanism. The trap mechanism, 
1Tap Dispatcher, and dispatch tables are discussed in Volume One, 
Chapter 2. 

2. Addresses found in the dispatch table may lie either in ROM (for 
routines whose code is built directly into the system) or in RAM (for 
those loaded from the System file at startup or "patched" by a running 
program). 

3. Each Toolbox or OS routine is identified by a trap munber, which gives 
its index in the relevant dispatch table. 

4. The two types of trap are distinguished by bit 11 of the trap word: 1 
for Toolbox traps, o for OS. This determines the internal format of the 
trap word and the meaning of various flag bits within it; see Volume 
One, Chapter 2, for further discussion. 

5. To find the trap number corresponding to a given Toolbox or OS 
routine, look up the routine's trap word in Appendix F (or in the 
equivalent appendix of Inside Macintosh). 1Tap words beginning with 
the digits $A8 or $A9 designate Toolbox traps. with the trap number 
in the last 9 bits of the word: those beginning with SAO or $Al are OS 
traps. with the trap number in the last 8 bits. 

6. Note that in OS traps, bit 8 (the ninth from the end) ls a flag affecting 
register usage, and is not part of the trap number. For example, the 
Toolbox routine BeginUpdate, with trap word $A922, is trap number 
$122; but the OS routine NewHandle, trap word $Al 2 2, ls trap number 
$ 2 2, not $1 2 2. 



28 System Architecture and General Utilities 
~~~~~~~~~~~~-

7. In the original 64K ROM, Toolbox and OS traps share the same
dispatch table; each 9-bit trap number, from o to 511, designates a
single Toolbox or OS routine, with no overlap between the two
categories. Beginning with the l 28K Macintosh Plus ROM (version
$ 7 s), Toolbox and OS traps are kept in separate dispatch tables: the
same trap nwnber can designate two different routines, one in each
table, depending on bit 11 of the trap word.

8. GetTrapAddress and SetTrapAddress are the original forms of
these routines, intended for use with the old 64K ROM and its single
dispatch table. The parameter trapNum gives the trap number of the
desired routine; no distinction ls made between Toolbox and OS traps.

9. NGetTrapAddress and NSetTrapAddress work with newer ROMs
(version $ 7 5 or greater) that maintain separate OS and Toolbox
dispatch tables. An additional parameter of type TrapType selects
one of the two tables and distinguishes between OS and Toolbox traps
that share the same trap number.

10. On machines with the original (64K) ROM, NGetTrapAddress and
NSetTrapAddress revert to the same behavior as the older versions,
GetTrapAddress and SetTrapAddress. Where the same trap num
ber is shared by both an OS and a Toolbox trap, it ls taken to refer to
the older of the two, whichever was present in the original ROM. Thus
NGetTrapAddress and NSetTrapAddress can safely be used on any
model of Macintosh, provided that the trap they are applied to is one
that was included in the original ROM.

11. For more recent traps that were not in the original ROM, NGetTrap

Address and NSetTrapAddress cannot be used safely on older ma
chines. Before attempting to call these routines for such a trap, you
must first call SysEnvirons (2.1. IJ to verify the presence of ROM $7 5

or later. This ls indicated by a positive value in the machine Type field
of the environment record.

12. To check for the availability of a particular trap, compare the address
returned for it by NGetT ra pAdd ress with that for the unimplemented
Toolbox trap, number $9F, which ls guaranteed to remain forever
unused. If the. two addresses are different, then the desired trap ls
available in the dispatch table; if they're the same, then it isn't. (The
constant UnimplTrapNum is not defined in some versions of the
Toolbox interface ftles, so you may have to declare it for yourself.)

13. Replacing a Toolbox or OS routine with a substitute version of your
own is hazardous and extremely tricky, and should not be attempted

29 (2.1.2) Dispatch Table
~~~~~~~~~~~~ 

unless you are certain of what you are doing. If you absolutely must 
patch a routine, always use SetTrapAddress or NSetTrapAddress 
rather than storing directly into the dispatch table yourself. 

14. Instead of replacing a Toolbox or OS routine wholesale, It ls generally 
safer to call the original routine from within your substitute version, 
simply adding some addltlonal pre- or postprocessing of your own. 
You can obtain the original address from the dispatch table with 
GetTrapAddress or NGetTrapAddress and save it in an accessible 
location before patching the new address into the table. 

15. All replacement code for patched routines should reside in your own 
application heap rather than in the system heap. This ensures that 
your patches will not affect the operation of other programs with which 
you may be sharing the system under MulUFinder. 

16. Always be sure to remove your patches and restore the dispatch table 
to its original state before exiting from your program. 

17. In assembly language, the newer forms, NGetTrapAddress andNSet
TrapAddress, use the same trap macros as theolderones, _GetTrap
Address and _SetTrapAddress. Bit 9 of the trap word specUles 
single ( o) or dual (1) dispatch tables; 1f this bit ls set, bit 10 selects one 
of the two tables (O for OS, 1 for Toolbox). The trap macros accept 
optional parameters NEWOS and NEWTOOL to set these flags correctly for 
the two types of trap under the two-table scheme; omitting the 
parameters specifies the old, one-table scheme instead. For example, 

_GetTrapAddress 

_GetTrapAddress ,NEWOS 

; GetTrapAddress 

; NGetTrapAddress, OS trap 

_GetTrapAddress ,NEWTOOL ; NGetTrapAddress, Toolbox trap 

18. In a normal Toolbox or Operating System call, Issued via the trap 
mechanism, the contents of all processor registers are preserved 
except DO, A7 (the stack pointer), and sometimes AO. However, some 
of the preserved registers (Al, Dl, and D2) are saved and restored by 
the Trap Dispatcher, rather than by the routine Itself. When you 
bypass the Trap Dispatcher by fetching a routine's address from the 
dispatch table and calling it directly, these registers are not saved; if 
you need them preseIVed across the call, you must save and restore 
them for yourself. 



30 System Architecture and General Utilities 
~~~~~~~~~~~~-

-I iii1 I Assembly Language Information

1Tap macros:

(Pascal)
Routine name

GetTrapAddress
SetTrapAddress

Register usage:

Routine

(Assembly)
Trap macro

_GetTrapAddress
_SetTrapAddress
_Unimplemented

Register Contents

Trap word

$A146
$A047
$A89F

GetTrapAddress DO. W (in)
AO. L (out)

trapNum
function result

SetTrapAddress AO. L (in)
DO. w (out)

newAddr
trapNum

Masksfor jl.ag bits in trap word:

Name

NewTool
NewOS

Value

$0600
$0200

Meaning

Toolbox trap
Operating system trap

2.1.3 Memory Address Mode

function GetMMUMode

: SignedByte:

procedure SwapMMUMode

(var addrMode : SignedByte):

function StripAddress

(longAdd r : Ptr)

: Ptr:

{Current address mode}

(New address mode; returns previous mode}

(32-bit address}

(24-bit address}

31 (2.1.3) Memory Address Mode
~~~~~~~~~~~~-

const 

False32B = O: 
True32B = 1: 

Notes 

(24-bit address mode) 

( 32-bit address mode) 

1. GetMMUMode and SwapMMUMode control the width of the memory ad
dresses in use, and hence the total amount of memory that can be 
addressed. (MMU stands for .. memory management unit") 

2. The MC68020 and MC68030 processors, used in the Macintosh II and 
other advanced models, support full 32-blt addressing and can thus 
access a total address space of 4 gigabytes (232 = 4,294,967,296 bytes). 
Older models, based on the MC68000 processor, are limited to 24-bit 
addresses for an address space of 16 megabytes (224 = 16,777,216 
bytes). 

3. GetMMUMode returns an integer code (False32B or True32B) repre
senting the address mode currently ln effect. 

4. SwapMMUMode sets the current address mode as specified by its 
parameter, addrMode. It also returns the previous address mode via 
this same variable parameter. The program can save this value and 
use it later to restore the system to its previous state: for example, 

mmuMode := True32B: (Set new mode} 

SwapMMUMode (mmuMode}: {Swap and save old mode} 

. . . , (Do some work} 

SwapMMUMode (mmuMode) {Restore previous mode} 

5. For compatibility with earlier models, all Macintosh system software 
ls designed to use 24-bit addresses. The Macintosh II and other 
models with a choice of address modes are automatically started up 
in 24-blt mode, and application programs ordinarily run ln this mode. 

6. 32-blt mode ls intended mainly for use by slot-based expansion cards 
needing more memory than the 1 megabyte allotted to them under the 
standard 24-bit memory layout [2.2.1}. It ls also used by A/UX. 
Apple's Macintosh version of the Unix operating system. 

7. Some parts of the Toolbox (notably those concerned with memocy 
management (1:3.2.4, note 5} and window and control defmition 
functions [III:2.2. l, note 6; III:2.3. l, note 61) use the high-order byte 
of a machine address to hold flags and other private data, and will not 
work properly in 32-blt mode. 



32 System Architecture and General Utllities 

8. When running in 24-bit mode, the Toolbox function StripAddress 
clears the high byte of a 32-btt pointer to zero, removing any private 
data the Toolbox may have stored there and converting the pointer to 
a usable24-bttaddress. In32-bitmode, StripAddress simplyleaves 
the full 32-bit address unchanged. 

9. Never use the high byte of a pointer for your own flags or data storage, 
since future versions of the Toolbox may reclaim this space for use as 
a full 32-bit address. 

10. SwapMMUMode and StripAddress are available In assembly language 
via the trap mechanism, but GetMMUMode ls not. To find the current 
address mode in assembly language, look In the global variable 
MMU32Bi t (see "Assembly Language Information" below). This I-byte 
flag will be zero in 24-bit mode, nonzero In 32-bit mode. 

~ liil I Assembly Language Information 

Trap macros: 

(Pascal) 
Routine name 

SwapMMUMode 
St ripAdd ress 

Register usage: 

Routine 

SwapMMUMode 

StripAddress 

(Assembly) 
Trap macro Trap word 

_SwapMMUMode 
_StripAddress 

$A05D 

$A055 

Register 

DO .B (In) 

DO .B (out) 

DO .L (in) 

. DO.L (out) 

Contents 

addrMode 
addrMode 

longAddr 
function result 

Assembly-language constants: 

Name 

False32B 
True32B 

Value 

0 

1 

Meaning 

24-blt address mode 
32-bit address mode 



33 (2.1.4) Global Variable Access 
~~~~~~~~~~~~-

Assembly-language global variable:

Name

MMU32Bit

.Address

$CB2

Meaning

Current address mode (1

byte)

2.1.4 Global Variable Access

procedure SetUpAS:

procedure RestoreAS:

function SetAS

(newAS : LONGINT)
: LONGINT;

{New value to be stored in AS}

{Previous contents of AS}

function SetCurrentA5

: LONGINT: (Previous contents of AS }

~~iiiH~.._. __ N_o_t_es __________________________________ _

1. These routines are used for manipulating the contents of processor
register AS, which holds the base address of a program's application
global space (see Volume One, Chapter 3). They're useful ln places
such as vertical retrace (VBL) tasks and Input/output completion
routines, which are called vla hardware interrupts and cannot assume
AS to be set up properly.

2. SetUpAS saves the current contents ofreglster AS on the stack. then
loads the reglsterwith the application globals pointer for the currently
running program. The program can later call RestoreAS to restore
the register's previous contents from the stack.

3. The globals pointer ls taken from the system variable Cur rentAS in
low memory (see "Assembly Language Information" below), which
always holds the correct AS setting for the currently running program.

34 System Architecture and General Utlllties
~~~~~~~~~~~~-

4. To improve code efficiency, some popular Pascal compilers (notably 
MPW Pascal, from Apple's own Macintosh Programmer's Workshop) 
manipulate the stack In unusual ways that Interfere with the opera
tion of SetUpA5 and RestoreA5. The newer routines SetA5 and 
SetCurrentA5 avoid using the stack and thus remain compatible 
with such optlmlzing compliers. 

5. SetA5 loads register AS with a new value, supplied as a parameter, 
and returns the register's previous contents as a function result. The 
program can save this value and use It later to restore the register to 
its previous state: for example, 

globalPtr : "'" your AS: (Get conect global pointer} 

saveA5 := SetAS (globalPtr): (LoadASandsaveprevious} 
. • {Do your thing} 

ignore := SetA5 (saveA5) {Restore previous contents} 

6. SetCurrentA5 ls similar to SetA5, but takes the new setting of A5 
from the system global CurrentA5, rather than as a parameter. Like 
SetA5, it returns the register's prevtous contents as a function result; 
the program can later pass this value to SetA5 to restore the register. 

7. Notice that CurrentA5 holds the application globals pointer for the 
currently running program. Under MultlFinder. this is not necessarily 
the same program to which an interrupt-driven routine (such as a VBL 
task or 1/0 completion routine) belongs. Recommended practice for 
such routines is to cany a copy of their own globals pointer in a 
known, accessible location, instead of relying on CurrentA5 for this 
information. See Macintosh Technical Note #180 for an example of 
this technique. 

8. All of these routines are defined as part of the Pascal interface •glue," 
and are not available from assembly language Via the trap mechanism. 
In assembly language, you can simply manipulate the contents of 
register AS directly. 

ID I Assembly Language Information ----1m..,.._._ ____ _ 
Assembly-language global variable: 

Name 

CurrentA5 

Address 

$904 

Meaning 

Base pointer for application 
globals 



35 (2.1.5] Shutdown and Restart 
~~~~~~~~~~~~-

2.1.5 Shutdown and Restart

procedure ShutDwnPower:

procedure ShutDwnStart:

const

ShutDownAlert 42: {System error number of shutdown alen}

I~) You may now switch off your Macintosh safely.

(Restart)

System shutdown alert

~~iiil~~~---N_o_t_es---
1. ShutDwnStart restarts the system as if the power had been turned off

and back on: ShutDwnPower shuts down the system without restart
ing.

2. On the Macintosh II (or on the Macintosh XI.., nee Lisa), ShutDwnPower
actually turns off the power to the machine. On other models, It
displays the system shutdown alert (see above), prompting the user to
tum off the power manually.

3. These two routines correspond to the Finder's menu commands
Restart and ShutDown, respectively.

4. Both routines perform any needed housekeeping to leave the system
In an orderly, consistent state. All active drivers and desk accessories
are given a .. good-bye kiss" (111:3.1.2), the contents of the desk scrap
are unloaded to the disk (1:7 .4.4}, and all mounted volumes are ejected
and unmounted (11:8.1.3).

5. If several application programs are running under MultlFlnder, each
ls sent the equivalent of a Quit command, allowing It to save files, If
necessary, and exit In an orderly way.

36 System Architecture and General Utilities
~~~~~~~~~~~~-

6. If any application-defined shutdown procedures have been installed 
(2.1.6), they are executed at the requested times in the shutdown or 
restart sequence. 

7. The trap macros for these routines expand to call the same machine
level trap, _Shutdown ($A895), after pushing an identifying routine 
selector (see table below) onto the stack. 

~la 1-------As_s_e_m_b_I_y_Lan __ ~ __ g_e_i_m_orm __ •_tl_o_n ______ _ 

Trap macros and routine selectors: 

(Pascal) (Assembly) Trap 
word6 

Routine 
selector Routine name Trap macro 

ShutDwnPower 
ShutDwnStart 

_SDPowerOff 
_SDRestart 

$A895 
$A895 

1 

2 

Assembly-language constant: 

Name Value Meaning 

ShutDownAlert 42 System error number of 
shutdown alert 

2.1.6 

procedure ShutDwninstall 
(shutDownProc 

whenToCall 

procedure ShutDwnRemove 
(shutDownProc 

con st 
SDOnPowerOff 
SDOnRestart 

= 1: 

= 2: 

SDRestartOrPower = 3: 
SDOnUnmount 4: 
SDOnDrivers = 8: 

Shutdown Procedures 

ProcPtr: 
INTEGER): 

ProcPtr): 

{Shutdown procedure to install} 

{When should procedure be called?) 

{Shutdown procedure to remove} 

{Call procedure before power-off} 

{Call procedure before restart} 

{Call procedure before power-off or restart} 

{Call procedure before unmounting volumes} 

{Call procedure before closing drivers} 



37 [2.1.6) Shutdown Procedures 
~~~~~~~~~~~~-

Notes

1. ShutDwninstall Installs an application-defined shutdown procedure
to be called as part of the system shutdown or restart sequence [2.1.5).
ShutDwnRemove removes a previously Installed shutdown procedure.

2. The shutdown procedure should accept no parameters and return no
results.

S. The whenToCall parameter specifies the point in the shutdown se
quence at which the procedure is to be called. Flag bits within this
number denote various possible execution times:

• before issuing good-bye kisses to active drivers and desk
accessories

• after closing drivers and before unmountlng volumes

• after unmountlng volumes and before restarting the system

• after unmounting volumes and before shutting down the
system

4. The constants denoting these flag bits (SDOnDri vers, SDOnUnmount,
SDOnRestart, SDOnPowerOff) can be added together to produce any
needed combination of execution times. In particular, the predefined
constant SDRestartOrPower represents the combination of SDOn
Restart and SDOnPowerOff, calling for execution after unmounting
all online volumes during both restart and shutdown sequences.

5. The trap macros for these routines expand to call the same machine
level trap, _Shutdown ($A895), after pushing an identifying routine
selector (see table below) onto the stack.

~la ... 1 ___ As_s_e_m_b_l_y_Lan __ gua __ g_e_1_im_o_1n_1_a_t1_o_n ______ _

Trap macros and routine selectors:

(Pascal} (Assenibly}
Routine name Trap macro

ShutDwninstall

ShutDwnRemove

_SD Install

_SDRemove

Trap
word

$A895

$A895

Routine
selector

3

4

38 System Architecture and General Utilities
~~~~~~~~~~~~~~ 

Assembly-language canst.ants: 

Name Value Meaning 

SDOnPowerOff 1 Call procedure before power-off 
SDOnRestart 2 Call procedure before restart 
SDRestartOrPower 3 Call procedure before power-off 

or restart 
SDOnUnmount 4 Call procedure before un-

mounting volumes 
SDOnDrivers 8 Call procedure before closing 

drtvers 

2.2 Memory 

2.2.1 Memory Layout 

$00 0000 

$80 

$90 

$AO 

$BO 

$CO 

$00 

SEO 

SFO 

$FF 

I-

t-

I-

t- RAM 

,.... 

I-

I-

0000 
ROM 

0000 
Slot $9 

0000 
Slot SA 

0000 
Slot SB 

0000 
Slot SC 

0000 
Slot SD 

0000 
Slot SE 

0000 
VO 

FFFF 

Macintosh II 24-bit 
memory layout 

-

-
---
-
-
-

$0000 0000 

$4000 0000 

$5000 0000 

$6000 0000 

$9000 0000 

$AOOO 0000 

$BOOO 0000 

scooo 0000 

$0000 0000 

SEOOO 0000 

$FOOO 0000 

$FFFF FFFF 

I-

I-

I-

I-

I-

RAM 

ROM 

110 

Reserved for 
future use 

Super slot space S 9 

Super slot space $A 

Super slot space S B 

Super slot space S c 

Super slot space S D 

Super slot space SE 

Regular slot space 

Macintosh II 32-bit 
memory layout 

-
-
-

-
-

$FOOO 0000 

SF900 0000 

SFAOO 0000 

$FBOO 0000 

$FCOO 0000 

$FDOO 0000 

SFEOO 0000 

$FFOO 0000 

$FFFF FFFF 

I-

I-

t-

I-

I-

I-

t-

I-

Reserved 
for 

future 
use 

Slot$ 9 

Slot SA 

Slot SB 

Slot SC 

Slot $0 

Slot SE 

Reserved 

Macintosh II 32-blt 
regular slot space 

-i 

-i 

~ 

---
-
-
-



39 )2.2.1) Memoty Layout 
~~~~~~~~~~~~ 

Notes

1. Earlier models of Macintosh, based on the MC68000 processor, are
limited to 24-blt addresses, for a maximum address space of 16
megabytes (224 = 16,777,216 bytes). 1be MC68020 and MC68030
processors, used In the Macintosh II and other advanced models,
support full 32-blt addressing and can thus address a total space of
4 gigabytes (232 = 4,294,967,296 bytes). Such models are capable of
operating in either 24- or 32-blt mode.

2. In 24-blt mode, the high-order byte of each 32-blt address ls Ignored.
The remaining 24 bits are then mapped by the memory management
unit (MMU) into an equivalent 32-bit physical memory address.

3. The utility routines GetMMUMode and SwapMMUMode (2.1.3) read and
change the current address mode.

4. For compatibility with earlier models, all Macintosh system software
is designed to use 24-blt addresses. Models with a choice of address
modes are automatically started up in 24-bit mode, and application
programs ordinarily run in this mode.

5. 32-blt mode ls intended mainly for use by slot-based expansion cards
needing more memory than the 1 megabyte allotted to them under the
standard 24-blt memory layout. It ls also used by A/UX. Apple's
Macintosh version of the Unix operating system.

6. In 24-blt mode, 8 megabytes ($800000 bytes) of address space are
reserved for RAM, from addresses $000000 to $ 7FFFFF. In 32-blt
mode, l gigabytelsavallableforRAM, from $00000000 to $3FFFFFFF.
The 24-blt RAM addresses map into the first 8 megabytes of this space
($00000000 to $007FFFFF).

7. If less than the maximum amount of RAM Is actually Installed, some
of the high-order address bits are Ignored, causing the existing
memory locations to repeat cyclically throughout the logical address
space. For example, on a machine with 1 megabyte ($100000 bytes)
of physical RAM, addresses $012446, $112446, $212446, and so on,
all refer to the san:ie physical byte of memory.

8. The Macintosh II's 256-kllobyte ROM occupies addresses $800000 to
$83FFFF In 24-bit mode, $40000000 to $4003FFFF In 32-bltmode. In
all, 1 megabyte ($800000 to $8FFFFF) Is reserved for ROM In 24-blt
mode, 256 megabytes ($40000000 to $4FFFFFFF) in 32-blt mode.

9. The megabyte of address space from $FOOOOO to $FFFFFF in 24-blt
mode ($50000000 to $5FFFFFFF in 32-bit mode) ls reserved for
memory-mapped f.npul./ output. This space ls further subdivided
among the various Interface chips: the VIAs (Versatile Interface '
Adapters). SCC (Serial Communications Chip), SCSI (Small Computer

40 System Architecture and General Utilities
~~~~~~~~~~~~~ 

Standard Interface), ASC (Apple Sound Chip), and so forth. See the 
Macintosh Family Hardware Reference for further details. 

10. Each of the Macintosh II's six expansion slots ls identified by a one
digit hexadecimal slot number, from S9 to SE. In 24-blt mode, all 
addresses beginning with that digit are reserved for memory locations 
residing on an expansion card plugged into the slot. (For example, slot 
SB is allotted addresses from SBOOOOO to SBFFFFF .) This allows 1 
megabyte of address space for each slot. 

11. In 32-blt mode, each slot ls assigned 16 megabytes of regular slot 
space and 256 megabytes of super slot space. For slot SB. for example, 
the regular slot space runs from SFBOOOOOO to SFBFFFFFF and the 
super slot space from SBOOOOOOO to SBFFFFFFF. The 1 megabyte 
allotted to the s lot In 24-blt mode maps into the first megabyte of 
regular slot space in 32-blt mode (In this case, from SFBOOOOOO to 
SFBOFFFFF). 

2.2.2 Memory Allocation 

I Definitions --1_.__ ____ _ 
function NewHandleClear 

(blockSize : Size) 

: Handle: 

f unction NewHandleSys 

(blockSize : Size) 

: Handle : 

functio n NewHandleSysClear 

(blockSize : Size) 

: Handle : 

function NewP t r Clea r 

(blockSize Size) 

: Ptr: 

function NewPtrSys 

(blockSize Size) 

: Ptr : 

function NewPt rSysClear 

(blockSize Size) 

: Ptr: 

(Size of needed block in bytes} 

(Handle to new relocatable block) 

(Size of needed block in bytes) 

(Handle to new relocatable block} 

(Size of needed block in bytes} 

(Handle to new relocatable block} 

( Sii.e of needed block in bytes) 

(Pointer to new non relocatable block) 

(Size of needed block in bytes) 

(Pointer to new non relocatable block} 

(Size of needed block in bytes ) 

(Pointer to new non relocatable block} 



41 (2.2.2) Memory Allocation 
~~~~~~~~~~~~ 

~~~lil==1~--N-o_te_s ________________________________ _ 
1. These routines are newer, specialized versions of the more general 

memory allocation routines NewHandle and NewPtr (1:3.2.1). 

2. NewHandleClear and NewPtrClear allocate a relocatable or nonrelo
catable block, respectively, and clear Its contents to all zeros. (lbe 
original NewHandle and NewPtr don1 Initialize the block's contents In 
anyway.) 

3. NewHandleSys and NewPtrSys allocate a block from the system heap. 
(NewHandle and NewPtr use whatever heap zone ls current at the 
time. normally the application heap.) 

4. NewHandleSysClear and NewPtrSysClear allocate a block from the 
system heap and clear its contents to all zeros. 

6. The bloc kSi ze parameter gives the size of the needed block In bytes. 
The data type of this parameter. Size, ls equivalent to a long Integer 
(1:3.1.1). 

6. The block allocated by NewHandleClear, NewHandleSys, or New
HandleSysClear ls lnltlally unlocked and unpurgeable. 

7. If necessaty, all of these routines may compact the heap or purge 
blocks from It. NewHandleClear and NewPtrClear may also expand 
the application heap to create more space: the system heap can never 
be expanded. 

8. Like all memory management routines. these post a result code to 
report the success or failure of the operation. In Pascal, you can check 
the result code by calling the Toolbox routine MemError (1:3.1.2) 
immediately after the allocation request; In assembly language. the 
result code ls found In register DO on return from the allocation call. 

9. If a block of the requested size can't be allocated, all of these routines 
post the error code MemFullErr (1:3.1.2) and return a NIL handle or 
pointer. 

10. At the machine level, these routines use the same traps as the original 
versions. _NewHand 1 e and _New Pt r. Bit 9 of the trap word specifies 
that the new block ls to be cleared to zeros on allocation: bit 10 forces 
allocation from the system heap. The trap macros for the new routines 
expand to call the original traps. setting these nag bits as required for 
the given combination of attributes. 



42 System Architecture and General Uttlitles 
~~~~~~~~~~~~-

~~I Assembly Language Information

1Tap macros:

(Pascal) (Assembly)
Routine name Trap macro Trap word

NewHandleClear _NewHandleClear $A322

NewHandleSys _NewHandleSys $A522

NewHandleSysClear _NewHandleSysClear $A722

NewPtrClear _NewPtrClear $A31E

NewPtrSys _NewPtrSys $A51E

NewPtrSysClear _NewPtrSysClear $A71E

Register usage:

Routine Register Contents

NewHandleClear DO .L (in) blockSize
AO.L (out) function result
DO. W (out) result code

NewHandleSys DO. L (In) blockSize
AO.L (out) function result
DO. w (out) result code

NewHandleSysClear DO .L (In) blockSize
AO. L (out) function result
DO.W (out) result code

NewPtrClear DO.L (in) blockSize
AO.L (out) function result
DO. W (out) result code

NewPtrSys DO.L (in) blockSize
AO.L (out) function result
DO. w (out) result code

NewPtrSysClear DO.L (In) blockSize
AO. L (out) function result
DO. w (out) result code

43 (2.2.3) Temporary Allocation
~~~~~~~~~~~~~-

2.2.3 Temporary Allocation 

I Definitions 
-1~1---------

function MFTempNewHandle 
(blockSize Size: (Siu of needed block in bytes) 

{Result code) 

procedure 

procedure 

procedure 

var resultCode 
: Handle; 

OSErr) 

{Handle to temporary relocatable block) 

MFTempDisposHandle 
(theHandle Handle: {Handle to temporary block to be deallocated) 

{Result code} var resultCode OSErr): 

MFTempHLock 

(theHandle Handle: {Handle to temporary block to be locked) 

{Result code) var resultCode OSErr) : 

MFTempHUnlock 
(theHandle Handle: {Handle to temporary block to be unlocked} 

{Result code) var resultCode OSErr) : 

1. These routines allocate and manipulate temporary memory blocks for 
transient uses such as file buffers and parameter blocks. 

2. The letters MF stand for MultlFinder, which provides a limited amount 
of memory space for such purposes. 

3 . MFTempNewHandle a llocates a relocatable temporary block; 
MFTempDisposHandle releases one. There are no nonrelocatable 
temporary blocks. 

4. The blockSize parameter gives the size of the needed block in bytes. 
The data type of this parameter, Si z e , Is equivalent to a long integer 
(1:3. l. l). 

5 . If a block of the requested size can't be allocated, MFTe mpNe wHand l e 
returns the error code MemFullErr (1:3. l.2) in Its variable parameter 
resul tCode, with a NIL handle for the function result. 



44 System Architecture and General Utilities 
~~~~~~~~~~~~ 

6. Your program should use the temporary block and then release it
immediately. before the next call to Wai tNextEvent [3.1.3].

7. MFTempHLock locks a temponuy block; MFTempHUnlock unlocks it.

8. Temporary blocks are Initially unlocked and are permanently un
purgeable.

9. Blocks allocated with MFTempNewHandle do not reside in the same
heap as those allocated with NewHandle [1:3.2.1) or related allocation
calls [2.2.2). Never attempt to apply ordinary memory-management
operations to them. such as GetHandleSize, SetH~ndleSize
(1:3.2.3). HLock. HUnlock, HPurge, HNoPurge (1:3.2.4], MoveHHi
[1:3.2.5). EmptyHandle. ReallocHandle [1:3.3.3]. or RecoverHandle
[1:3.2.1). Also beware of passing such blocks to Toolbox routines that
may apply any of these operations to them indirectly.

10. Always use MFTempDisposHandle to release temporary blocks and
DisposHandle (1:3.2.1] for ordina:ty blocks. never the other way
around. Similarly. use MFTempHLock and MFTempHUnlock only on
temporary blocks and HLock and HUnlock [1:3.2.4] only on ordina:ty
ones.

11. At the machine level. all operations Involving temporary memo:ty are
performed by a single general-purpose trap. _OSDispatch ($A88F).
The trap macros all expand to call this same trap, after pushing an
identifying routine selector (see table below) onto the stack.

12. These operations pass their parameters and return their results on
the stack. not in registers like their counterparts for ordinary memo:ry
management (1:3.2.1. 1:3.2.2, 1:3.2.4. 2.2.2).

~ lal ... ___ As_s_e_m_bl_y_Lan __ g_u_a_g_e_i_n_fi_o_rm_a_u_o_n ______ _

Trap macros and routine selectors:

(Pascal) (Assembly)
Routine name Trap macro

MFTempNewHandle _MFTempNewHandle

MFTempDisposHandle _MFTempDisposHandle

MFTempHLock _MFTempHLock

MFTempHUnlock _MFTempHUnlock

Trap Routine
word selector

$A88F 29

$A88F 32

$A88F 30

$A88F 31

45 [2.2.4] Available Temporary Space
~~~~~~~~~~~~-

2.2.4 Available Temporary Space 

function MFFreeMem 
: LONGINT: 

function MFMaxMem 
(Total bytes available for temporary allocation} 

(var growBytes Size) 

: Size: 

(Rewms maximum bytes for temporary expansion} 

(Siu of largest available temporary block} 

function MFTopMem 
Ptr: (Pointer to end of memory} 

~~il~~~--N_o_te_s ________________________________ __ 
1. These routines return information on the amount of memocy space 

available for temporary allocation [2.2.3). 

2. The letters MF stand for MultlFlnder, which provides a limited amount 
of memory space for such purposes. 

3. MFFreeMem returns the total number of free bytes available for 
temporary allocation. 

4. MFMaxMem returns the size in bytes of the largest free block avallable 
for temporary allocation, after first compacting the entire temporary 
heap. 

5. MFTopMem returns a pointer to the first address beyond the end of 
physical RAM memory (not the last address actually exis Ung In 
memory). For example, in a 4-megabyte Macintosh II, whose last byte 
of physical memory ls at address $ 3FFFFF, MFTopMem returns a 
pointer to address $400000. 

6. The pointer returned by MFTopMem ls to the end of the machine·s total 
physical memocy, notjust that of the running program's MulUFlnder 
partition. 

7. At the machine level, all operations involving temporary memory are 
performed by a single general-purpose trap, _OSDispatch ($A88F). 
The trap macros all expand to call this same trap, after pushing an 
identifying routine selector (see table below) onto the stack. 

8. These operations pass their parameters and return their results on 
the stack. not in registers like their counterparts forordinacy memocy 
management (1:3.3. l, 1:3.3.2, 1:3.1.3). 



46 System Architecture and General Utilities 
~~~~~~~~~~~ 

~ lijl I Assembly Language Information

n-ap macros and routine selectors:

2.3

(Pascal) (Assembly) Trap
Routine name Trap macro word

MFFreeMem
MFTopMem
MFMaxMem

_MFFreeMem
_MFTopMem
_MFMaxMem

Resources

2.3.1 Resource Types

Standard resource types:

Resource
Type Description

'PAT I Bit pattern
'PAT/I' Bit pattern list
'ppat• Pixel pattern
'ppt/I' Pixel pattern list
'bmap' Bit map
'PICT' QuickDraw picture

I ICON' Icon
I ICN/l 1 Icon list
'SICN' Small icon
'cicn• Color icon

'TEXT' Any text
'STR I Pascal-format string
'STR/1 1 String list

'FONT' Font
'NFNT' Non-menu font
'FWID' Font width table
1 FRSV 1 Reserved font list
'FOND' Font famtly definition

$A88F
$A88F
$A88F

Routine
•elector

24

22

21

See
Section

(1:5.5.1)
(1:5.5.2)
(IV:5.6.l)

(1:5.5.5]

(1:5.5.3)
(1:5.5.4)
(IV:3.3.l)
(IV:6.7.l]

(1:8.4.1)
(1:8.4.2)
(1:8.4.3)

(1:8.4.5)
(1:8.4.5)
(1:8.4.6)
(1:8.4. 7)

4 7 (2.3.1) Resource 'fypes
~~~~~~~~~~~~ 

Resource See 
Type Description Section 

'CURS' Cursor [11:2.9.1) 
'crsr' Color cursor [IV:6.7.2) 

'KMAP' Key code map 
'KCHR' Character code map 
'KSWP' Keyboard script table 
'FKEY' Low-level keyboard routine [11:2.9.2. 

111:6.3.1) 

'WIND' Window template [11:3. 7.1) 

'MENU' Menu [11:4.8.1) 

'MBAR' Menu bar [11:4.8.2) 

'CNTL' Control template [11:6.6.1) 

'ALRT' Alert template [11:7.6.1) 

'DLOG' Dialog template (11:7.6.2) 

'DITL' Dialog or alert Item list (11:7.6.3) 

'WDEF' Window definition function (111:2.5.1) 

'CDEF' Control definition function [111:2.5.2) 

'MDEF' Menu definition procedure (111:2.5.3) 

'MBDF' Menu bar definition function 
'LDEF' List definition procedure 

'CODE' Code segment (1:7.5.1) 

'PACK' Package (1:7.5.2) 

'DRVR' Device driver (Including desk accessories) (111:3.3.1. 
1:7.5.5} 

'SERO' Serial driver 
'FMTR' Disk formatting code 

'PREC' Print record (111:4.6.1} 
1 PDEF' Printing code [111:4.6.2) 

'FREF' Finder file reference [1:7.5.3} 

'BNDL' Finder bundle (1:7.5.4) 

'SIZE' Partition size (MultiFinder) [IV:3.3.2} 

'mstr' MultlFinder string [IV:3.3.4] 

'mstll • MultiFinder string list (IV:3.3.4) 

'MACS' Macintosh system autograph 
'vers' Software version ID 

'scrn' Screen configuration 



48 System Architecture and General UtiliUes 
~~~~~~~~~~~~ 

Resource See
Type Description Section

'clut' Color lookup table (IV:4.7.l)
'pltt' Color palette (IV:4.7.2)
'gama' Color correction table
'mitq' Color Inverse table, memozy requirements

'fctb' Font color table
'wctb' Window color table (IV:6.7.3)
'cctb' Control color table [IV:6.7.4)
'mctb' Menu color table (IV:6.7.7)
'actb' Alert color table (IV:6.7.3)
'dctb' Dialog color table [IV:6.7.3)
'ictb' Dialog Item color table [IV:6.7.5)

'snth' Sound synthesizer
'snd ' Sound definition

'INIT' Initialization resource (1:8.4.4)
'DSAT' .. Dire straits .. alert table
'PTCH' System patch code
'ptch' System patch
'boot' Boot blocks
'lmem' Low-memoiy globals

'ROvr' ROM override code
'ROv/J• ROM override list
'CACH' RAM cache code

'ADBS' Apple Desktop Bus service routine
'MMAP' Mouse tracking code
'mcky' Mouse tracking data

I INTL' International localization resource
'itlO' International localization, date and

time formats
'itll' International localization, day and

month names
'itl2' International localization, sort hooks
'itlb' International localization, script bundles
'itlc' International localization, script

configuration

'NBPC' Name-Binding Protocol code (AppleTalk)
'PAPA' Printer Access Protocol address (AppleTalk)
'mppc' Macintosh Packet Protocol configuration

(AppleTalk)
'atpl' AppleTalk private resource

49 (2.3. l] Resource Types
~~~~~~~~~~~~-

Resource See 
fype Description Section 

'PRES' Printer resource (Chooser) 
'PRER' Printer resource, remote (Chooser) 
'RDEV' Remote device (Chooser) 
'clst' Cached Icon list (Chooser, Control Panel) 

'cdev' Control Panel device 
'ctab' Control Panel device table 
'mach' Machine compatibility list (Control Panel) 
'nrct' Rectangle list (Control Panel) 

'KCAP' Keyboard layout (Key Caps) 

I INT/I I Integer list (Find File) 

'APPL' Application table (Finder) 
'FDIR' Finder directory 
'FOBJ' Finder object 
'FCMT' Finder comment 
'LAYO' Folder layout (Finder) 

'MINI' MlniFlnder resource 
'FBTN' File button (MlnlFlnder) 

'insc' Installer script 

'TMPL' Resource type template (ResEdlt) 

Notes 

1. The table above supersedes the one given In [1:6.1.1) and lists all 
known resource types used by the Toolbox and other Macintosh 
system software at the time of publication. 

2. New resource types are continually being invented, so this list should 
not be considered final or exhaustive. 

3. Resource types that you Invent for your own use must not conflict with 
those shown In the table. 

4. All type names consisting entirely of lowercase letters (such as 
' blob •) are resetved by Apple for the private use of the Toolbox. Never 
give any of your own resource types a name of this form. 



50 System Architecture and General Utilities 
~~~~~~~~~~~~-

5. Resource types for which no section number is given In the table are
not covered in this series of books. Most of these are private to the
Toolbox and are of no concern to the application programmer. Some
of them are described in Inside Macintosh; others are so private that
they are not documented even there.

2.3.2 ROM-Based Resources

function RGetResource

(rsrcType : ResType;

rs re ID INTEGER)

: Handle ;

(Resource type}

(Resource ID}

(Handle lo resource}

Macintosh II ROM-based resources:

Resource Resource
Type ID Description

' CURS ' l * I-beam cursor (11:2.5.2, 11:2.9.1)
2* Cross cursor [II:2.5.2, 11:2.9.1)
3* Plus-sign cursor (11:2.5.2, 11:2.9.1)
4* Wristwatch cursor (11:2.5.2, II:2.9. l)

' KMAP ' O* Standard key code map

' KCHR ' 0 Standard character code map

' FONT ' O* Name of system font [I:8.2. l, 1:8.4.5)
12* System font (12-pofnt Chicago) [1:8.2.1 ,

1:8.4.5)
384 Name of Geneva font [1:8.2. l , 1:8 .4.5)
393* 9-polnt Geneva font [I:8 .2. l , 1:8.4 .51
396* 12-pofnt Geneva font (1:8.2.1 , 1:8.4 .5)
512 Name of Monaco font (1:8.2.1. 1:8.4.51
521* 12 -polnt Monaco font [I:8.2. l. 1:8.4.5)

' NFNT ' 2 System font (12-polnt Chicago), 4 bits deep
3 System font (12-point Chi cago), 8 bits deep

34 9-polnt Geneva font. 4 bits deep

51 (2.3.2) ROM-Based Resources
~~~~~-------------------------~~ 

Resource Resource 
Type ID Description 

'PACK' 4* Floating-Point Arithmetic Package [1:7. 2.1, 
1:7.5.2] 

5* Transcendental Functions Package (1:7.2.1. 
1:7.5.2) 

7* Binaiy/Decimal Conversion Package [1:7.2. l, 
1:7.5.2) 

'DRVR' 3* Sound driver (.Sound) [111:3.3.l, 1:7.5.5] 
4* Disk driver (.Sony) [111:3.3.l, 1:7.5.5] 
9* AppleTalk driver, Macintosh Packet Protocol 

(.MPP) [111:3.3.1, 1:7.5.5] 
10* AppleTalk driver, AppleTalk Transaction 

Protocol (.ATP) [111:3.3.1, 1:7.5.5] 
40* AppleTalk driver, Extended Protocol Package 

(.XPP) [IIl:3.3.l, 1:7.5.5] 

'SERD' O* Serial drivers (.Ain, .AOut, .Bin, .BOut) 
[III:3.3.l, 1:7.5.5] 

'WDEF' O* Definition function for document windows 
[III:2. 5.1] 

l* Definition function for accessory- windows 
(111:2. 5. 11 

'CDEF' O* Definition function for standard buttons 
[III:2.5.2] 

l* Definition function for scroll bars [III:2.5.2] 

'MDEF' O* Definition procedure for text menus [III:2.5.3] 

'MBDF' O* Standard menu bar definition procedure 

'clut' 1 Standard color table, 1 bit deep [IV:4.7.l] 
2 Standard color table, 2 bits deep [IV:4. 7.1) 
4 Standard color table, 4 bits deep [IV:4.7.l] 
8 Standard color table, 8 bits deep [IV:4.7.l) 

127 Standard color table, classic color model 
[IV:4.7.l] 

'gama' 0 Standard color correction table 

'mitq' 0 Standard color inverse table memory- require-
men ts 

'wctb' 0 Color table for standard windows [IV:6. 7.3) 

'cctb' 0 Color table for standard controls [IV:6.7.4] 

'snd I 1 Standard system beep 



52 System Architecture and General Utilities 
~~~~~~~~~~~~ 

Notes

1. The table above lists all system resources that are built into the 256K
Macintosh II ROM (version $ 7 8). Those marked with an asterisk (•)are
also included in the Macintosh SE ROM (version$ 7 6). See (1:6.6.3) for
the contents of the 128K ROM (version $75) used in the Macintosh
Plus and Macintosh 512Ke.

2. In searching for a requested resource, those in ROM are normally
searched first. If the needed resource ts not found there, the search
then proceeds through the chain of open resource files in reverse
chronological order, starting with the current resource file [I:6.2.2]
and ending with the System file.

3. RGetResource searches the ROM-based resources last instead of
first, only after exhausting the chain of open resource files without
suc~ess. This allows disk-based resource files (in particular, the
application resource file) to override ROM-based resources with re
placement versions of their own.

4. In all other respects, RGetResource behaves exactly the same as the
older routine GetResource (1:6.3.1).

~~I ... ___ As_s_e_m_b_l_y_Lan __ gu_a_g_e_1_n_f;_o_rm_a_t1_o_n ______ _

Trap macro:

(Pascal)
Routine name

RGetResource

(Assembly)
Trap macro

_RGetResource

Trap word

$A80C

53 [2.4. 1) Small Fractions
~~~~~~~~~~~~-

2.4 Arithmetic 

2.4.1 Small Fractions 

type 

SmallFract = INTEGER: 

const 

MaxSmallFract = $OOOOFFFF: {Largest possible small fraction} 

function Fix2Sma11Fract 

(theNumber : Fixed) 

: SmallFract: 

function Sma11Fract2Fix 
(theNumber : SmallFract) 

: Fixed: 

Notes 

{Fixed-point number to be converted} 

{Equivalent small fraction} 

{Small fraction to be converted} 

{Equivalent fixed-point number} 

1. Type SmallFract represents a 16-bit fractional value between o and 
1, with a binary point preceding the first bit. It ls equivalent to the low
order (fractional) half of a fixed-point number of type Fixed [1:2.3.1). 

2. The value of a small fraction is equivalent to that of the corresponding 
unsigned integer dlvlded by 655 36 (216). 

3. Small fractions are used mainly for expressing the components of 
color values in CMY, HSV, and HSL representations (4.2.1). 

4. The constant MaxSmallFract represents the largest possible value 
expressible as a small fraction, defined as a long integer for use in 
combination with full fixed-point numbers. Its value ls equivalent to 
6 s 5 3 5 divided by 6 s s 3 6, or o . 9 9 9 9 8 4 7 41. 

5. Fix2Sma11Fract and Sma11Fract2Fix convert between small frac
tions and fixed-point numbers. 

6. These routines are implemented as part of the Color Picker Package, 
and are called at the machine level via the package trap _Pack12 
(1:7.2.1). The trap macros expand to call this trap after pushing an 
identifying routine selector (see table below) onto the stack. 



54 System Architecture and General Utilities 
~~~~~~~~~~~~ 

~Ila I Assembly LangUage Information

Trap macros and routine selectors:

(Pascal) (Assembly)
Routine name Trap macro

Trap
word

Routine
selector

Fix2Sma11Fract _Fix2Sma11Fract $A82E 1
Sma11Fract2Fix _Sma11Fract2Fix $A82E 2

Assembly-1.anguage constant:

Name Value Meaning

MaxSmallFract $OOOOFFFF Largest possible small fraction

CHAPTER

Going for the
Juggler

One of the more frustrating limitations in the original Macintosh
software architecture was that only one application program could
be run at a time. If you were using your word processor, say, and
needed your graphics editor to create an illustration, you had to save
your document, quit from the word processor to the Finder, start up
the graphics editor, draw the illustration, save it to a disk file. select
and copy it to the Clipboard, quit from the graphics editor back to
the Finder, start up the word processor, reload your document, and
paste in the illustration. All told, this process required four program
startup cycles (counting the Finder twice): if you then decided to
change the illustration, you had to go through the whole exercise all
over again. Especially at the slow transfer rates of the original
floppy-disk drives, this added up to a lot of finger-drumming time
while waiting for programs to load from the disk.

The one limited fonn of program concurrency available in those
early days was that offered by desk accessories, which could share
the screen more or less harmoniously with any other program you
happened to be running. Software developers responded with a
proliferation of "mini-applications"-spreadsheets, text editors,
graphics programs, terminal emulators-masquerading as lowly
desk accessories. Such creations were certainly a tribute to the
programmers' imagination and ingenuity, but desk accessories were
really never intended for such ambitious purposes. What was
needed was a way to run two ormore full-scale application programs

55

56 Going for the Juggler

at once instead of trying to squeeze one of them into the narrow
confines of a desk accessory.

Flying to the rescue with his wizard's wand at the ready came
the illustrious software magician and Apple Hero. Andy Hertzfeld.
Already renowned as the father of the original Toolbox. Andy
bestowed yet another gill: on the grateful Macintosh community in
the form of Switcher. an ingeniously improvised solution to the
concurrency problem. In a dazzling display of prestidigitation and
legerdemain. Switcher allowed several programs to reside in mem
ory simultaneously. giving each the illusion of having the entire
system to itself. Using Switcher. you could keep that word processor
and graphics editor (as well as the Finder itsem side by side in
memory. switching quickly and easily from one to another with a
click of the mouse.

One drawback to Switcher. though. was that it allowed pro
grams to share the system but not the screen. Each program
maintained its own independent screen display. with its own win
dow list. menu bar. and so on. When the user switched control from
one program to another. the newly activated program would take
over the entire screen. displaying only its own windows and not
those of the other programs. Although Switcher was a huge im
provement on what had gone before. it still didn't quite have the
smooth. natural .. look and feel" that we've come to expect from our
Macintosh software.

This time it was Apple itself that provided the solution with a
new operating environment for Macintosh software. known while
under development by the internal code name Juggler for its
acrobatic ability to keep several balls in the air at once. Based on
many of the same ideas that Andy first pioneered in Switcher.
Juggler offered a similar model for concurrent program operation.
but repackaged to present a more elegant. Macintosh-like appear
ance to the user. This system. renamed at the time of its official
product release, became what we now know as MulUFinder.

Each program running under MultiFinder maintains its own
independent window list. just as before. When the user activates a
program, all of its windows come to the front of the screen as a single
.. layer ... overlaying those of all other programs. The other programs'
windows remain on the screen, however, and can still be seen
peeking through wherever they aren't obscured by those of the ac
tive program. Clicking the mouse inside one of these other windows
switches control to the program it belongs to and brings that
program's layer of windows (including the one where the mouse was

5 7 Memory Partitions
~~~~~~~~~~~ 

clicked) to the front. This allows the user to arrange windows freely 
on the screen and use them to "navigate" from one program to 
another in a natural, intuitive way. 

Like every other significant advance in the Macintosh system 
software, MultiFinder is carefully designed for backward compati
bility, so that programs written before its introduction can continue 
to work correctly without modification. On the other hand, pro
grams written with MultlFinder in mind can use the techniques 
discussed in this chapter to operate more effectively in the new 
environment. 

Memory Partitions 

MultiFinder works by dividing the system's memory into separate 
partitions, one for each active application program. A program can 
specify the size of its partition by including a resource of type ' SIZE ' 
(3.3.2] in its application resource file. The size resource actually con
tains two different size specifications-a pref erred memory size and 
a minimum memory size-as well as a flag word (3.3.3] defining 
various other MulttFinder-related properties. (In particular. bit 11 of 
the flag word is the MultiFind.er-aware bit, indicating that the 
program is prepared to take full advantage of MultiFinder's capabili
ties. A program that doesn't set this bit can still run properly under 
MultiFinder, but will be unable to use some of its more advanced 
features.) 

The size resource defining a program's preferred and minimum 
memory sizes always has a resource ID of - 1. When the program is 
started up, M ultiFinder will attempt to assign it a partition of the 
preferred size, if possible. If this amount of space can't be found, the 
program will receive the largest partition currently available. If even 
the minimum memory requirement can't be satisfied, MultiFinder 
will simply post an alert message on the screen and refuse to run the 
program. 

The user can choose to change a program's partition size 
(before starting the program, not after it's already running) by 
displaying its information window with the Finder's Get Info com
mand and typing the new setting into the box labeled Application 
Memory Size (see Figure 3-1). This affects the preferred size only; 
the minimum size cannot be changed. The box initially shows the 
program's own preferred memory size, taken from its size resource 
number - 1; this value is also displayed as static text above the box 
for the user's reference. If the user types in a new value, it will be 



58 Going for the Juggler 

stored in the program's application resource file in a separate size 
resource with an ID of o: if present. this resource takes precedence 
over number -1, which preserves the program's original size prefer
ence unchanged. Programs with no size resource at all (such as 
those that predate the introduction of MultiFinder) are given a 
standard partition size of 384K by default. 

Info 

Locbd D 
MiniEdit 2 .0 .1 

Kind: application 
Size: 21,474 bytes, 21K on disk 

Vhere: Luarus, interna 1 hard disk drive 

Creaited: Thu, Jan 26, 1989 10:17 AM 
Modified: Thu, Jan 26, 1989 10 :17 AM 

MiniEdit 2 .0.1 
Macintosh Revealed, Yolume Three 
Example application pro9ram 
S. Chernicoff, 26 January 1989 

Suggested Memory Size (K): 256 

App licaition Memory Size (K) : §Q 

Figure 3-1 Program information window 

Within its memory partition, each program has its own inde
pendent stack, application heap, and application global space ("AS 
world") . Each program also has its own copy of the low-memory area 
where the Toolbox keeps its global variables. dispatch table, and so 
forth, so that one program's changes in low memory don't affect the 
operation of any other program. MultiFinder keeps careful track of 
all these memory areas and swaps them in and out as needed, so 
that programs won't trip over each other as control switches from 
one to another. 

Foreground and Background 

Although any number of programs can be running at once under 
MultiFinder (subject to the available memory), only one at a time can 



59 Foreground and Background 
~~~~~~~~~~~ 

be in active control of the system. This active program is said to be
running In the foreground. with all other programs in the
background. Only the foreground program can respond to the user's
mouse clicks and keystrokes. As described earlier. the foreground
program's windows always appear frontmost on the screen, in front
of those of all other programs. Clicking the mouse in any window
belonging to another program brings all of that program's windows
forward on the screen together. The program thus activated be
comes the new foreground program, assuming control of the system
and sending the previous program into the background.

The current foreground program is Identified by a small copy of
Its Finder icon. reduced to half-size and displayed at the right-hand
end of the menu bar. Clicking the mouse repeatedly on this menu
bar icon cycles control through all programs currently in memory.
bringing each one in tum to the foreground. MultlFinder also adds
the names of all available programs to the Apple menu. (along with
the usual list of desk accessories). with a check mark next to the
program currently in the foreground. This gives the user a choice of
three ways to move from one program to another:

• Click the mouse in an exposed part of any window belonging
to the desired program.

• Click repeatedly on the icon at the right of the menu bar until
the desired program comes to the foreground.

• Pull down and choose the desired program from the Apple
menu.

The transition from foreground to background occurs when a
program asks the Toolbox for the next event to process. Old
fashioned programs that know not MulUFinder do this in the old.
familiar way. by calling GetNextEvent (11:2.2.1). If the user has
taken any of the actions listed above to switch to another program.
MultiFinder will suspend the current program at the point of the
call, moving it to the background and transferring control to the one
the user has requested. When the user eventually brings the original
program back to the foreground. control will return from the
GetNextEvent call and the program's execution will be resumed
from that point. From the program's point of view. everything looks
perfectly normal: the only way it can tell that anything unusual has
happened is to call TickCount (11:2. 7.1) before and after the Get -
NextEvent call and notice that an inordinate inteival has elapsed
on the system clock.

60 Going for the Juggler

Out of respect for the preemptive nature of modal dialog
windows, MultiFinder will not move a program to the back
ground while it has such a window frontmost on the screen.
M ultiFinder recognizes modal dialogs by their window type:
any window whose type is DBoxProc (11:3.2.2) (or Plain
DBoxProc or Al tDBoxProc) is assumed to be a modal dialog. To
keep MultiFinder from getting confused, you should never use
these window types for anything other than modal dialogs.

Background Processing
Programs wise to the ways of MultiFinder, however, can take
advantage of it to make more efficient use of the system. One of the
new capabilities MultiFinder offers is that of executing a program in
the background, while some other program retains nominal control
of the system. To be eligible for such background processing, a
program must have a size resource (3.3.2) with the can-backgrowul
bit(bit 12) set in the resource'sflagword [3.3.3). The classic example
of background processing is printing a document: once the opera
tion is started, the user can switch control to some other program
and continue to do useful work in the foreground while the original
program completes the printing operation in the background.

It's even possible to write a program that runs only in the
background and can never assume full control of the system.
Bit 10 in the size resource's flag word (3.3.3] is the background
only bit: a program with this bit set has no user interface of its
own and can operate only as an "'embedded selVice" or "'faceless
background task" behind another program running in the
foreground. An example might be a telecommunications pro
gram that monitors the network for incoming transmissions
and buffers them to a disk file for later processing by some
other program.

The can-background bit requests the opportunity to do
background processing, but does not guarantee it. To receive any
processor time while in the background, the program must depend

61 Foreground and Background
~~~~~~~~~~~ 

on the kindness of strangers. Specifically, the foreground program 
running in front of it must use the new routine Wai tNextEvent 
[3.1.3) to retrieve its events instead of the old standby 
GetNextEvent [Il:2.2.1). If there is no event of interest to report to 
the active program, Wai tNextEvent will look for a background 
program able to make constructive use of the available idle time. If 
there is such a program, Wai tNextEvent will suspend the 
foreground program that called it and resume the one requesting 
background time, sending it a null event as a signal to perform one 
cycle of its background processing task. (A program printing in the 
background, for instance, might use this occasion to print one line 
of its document.) 

Notice, though, that the suspended foreground program does 
not give up active control of the system. All user events (mouse 
clicks and keystrokes) are still considered to be directed to the 
foreground program: programs running in the background can 
never receive such events. When a user event occurs, MultiFinder 
will duly report it to the foreground program by resuming the 
program's execution from the point of its last Wai tNextEvent call, 
returning the user event as the result of the call. This, however. 
requires the cooperation of the background program, which in tum 
must call Wai tNextEvent periodically to allow control to pass back 
to the foreground when necessary. If the foreground program 
doesn't call Wai tNextEvent often enough. the background program 
won't get any processor time; if the background program doesn't call 
it often enough. the foreground program will appear sluggish and 
unresponsive to the user's actions. Apple likes to refer to this 
relationship of reciprocal dependence and shared responsibility as 
"cooperative multitasking." 

Keep in mind that your program may sometimes be run on 
older systems that aren't equipped with MultiFinder. To ensure 
compatibility, you must check the dispatch table (using the 
technique discussed in Chapter 2) to make sure the Wai tNext -
Event trap is available before attempting to use it. If it isn't, 
you'll have to settle for an old-fashioned GetNextEvent call 
instead. Note. however, that Wai tNextEvent is guaranteed to 
be available. with or without MultiFinder itself, under all 
versions of the System file beginning with 6.0. If your program 
depends for its operation on any other system feature requiring 
version 6.0 or later, you must of course check the current 
system version with SysEnvirons [2.1.1) and, if it isn't recent 



62 Going for the Juggler 

enough, post an informative alert message (Sorry. this 
program requires System version 6. 0 or later) and exit. 
Assuming the system version is acceptable. however. you may 
as welljust assume the availability of Wai tNextEvent without 
explicitly checking for it. 

Even without a user event to respond to, the foreground 
program may still need to regain control periodically for some other 
task of its own-for instance, to blink the insertion point in a text 
document by calling TE Idle (11:5.4.3). To accommodate this, Wait
NextEvent allows the program to request a "wakeup call" when it 
yields to another program for background processing. The routine's 
sleepTicks parameter [3.1.3) specifies the maximum length of 
time, in ticks (sixtieths of a second), for which the program is willing 
to relinquish control. If no user event occurs within this period, the 
program will be awakened with a null event so it can do its idle-time 
processing; if it wishes, it can then yield control again with another 
call to Wai tNextEvent. Programs running in the background can 
use the sleepTicks parameter, too: for example, the telecommu
nications program we mentioned earlier might need to regain 
control no less than once per second (60 ticks) to prevent a network 
connection from timing out. A sleepTicks value of o requests 
control back as soon as possible, making Wai tNextEvent equiva
lent to the old event-retrieval routine GetNextEvent (11:2.2.1). 

Suspend and Resume Events 
Programs written without any knowledge of MultiFinder can never 
do background processing, since they have no size resource in 
which to set the "can-background" flag. When such a program is 
switched to the background, it simply hangs in a state of suspension 
until it returns to the foreground, at which point it resumes 
execution as if nothing had happened. As we mentioned earlier, the 
only way for the program even to know that it has been suspended 
and resumed is to read the system clock and notice that an 
unexpectedly long time interval has elapsed-something a program 
ignorant of MultiFinder would have no reason to do. 

For those programs able to use the information, however, 
MultiFinder does provide a mechanism for tracking the transitions 
between foreground and background. It does this by means of two 



63 Foreground and Background 
~~~~~~~~~~~ 

new event types: suspend events to inform the program that it's
going from the foreground to the background and resume events
when it comes back from the background to the foreground. Such
events are generated only if bit 14 (the accept-suspend/reswne bit)
is set in the flag word of the program's size resource (3.3.3]. There's
also ·another new type of event. the mouse-moved event. which we'll
be discussing in a later section.

All such MultiFtnder events are identified by the type code
App4Evt (II:2. l.2] in the what field of the event record (II:2. l. l]. (This
was originally one of the four application event types resetved for
application programs to use for their own private purposes; it has
now been appropriated for use by MultiFinder instead.) The event's
message field (II:2.l.1] distinguishes one type ofMultiFinder event
from another. In both suspend and resume events. the first byte of
the message (3.1.1) contains the hexadecimal value $01; the last bit
of the message is o for a suspend event. 1 for a resume. Mouse
moved events have $FA in the first byte of the message field.

MultlFinder events are not queued like ordinary user events, so
you can't selectively defer them by masking out type App4Evt
in the mask parameter you supply to Wai tNextEvent (3.1.3].
Your program will still be suspended or resumed on schedule
you just won't know when it happens.

Program 3-1 (DoMul tiEvent) shows a new routine that we
might add to our MiniEdit program to handle MultiFinder events.
(To call this routine on receiving such an event, we would also have
to add the new clause

App4Evt:
DoMultiEvent:

to the case statement in.our existing DoEvent routine, Program
II:2-5.) DoMul tiEvent extracts the type code from the first byte of
the event's message field and uses it to dispatch control to a more
specialized routine for each specific event type. We'll examine the
routine for mouse-moved events later; the one for suspend and
resume events, DoSuspRes (Program 3-2), simply tests the low
order bit of the event message and passes control to a still more

64 Going for the Juggler

specialized routine, DoSuspend (Program 3-3) or DoResume (Pro
gram 3-4), to do the actual work.

Program 3-1 Handle MultiFinder event

Global variable

var
TheEvent EventRecord:

procedure DoMultiEvent:

Handle Mul tiFinder event.

con st
typeMask
suspResEvt
mouseMovedEvt

= $FFOOOOOO:
$01000000:
$FAOOOOOO:

var
whichType LONGINT:

begin {DoMultiEvent}

with TheEvent do
whichType ·= BitAnd(message,

case whichType of

suspResEvt:
DoSuspRes:

mouseMovedEvt:
DoMouseMoved:

otherwise
{Do nothing}

end {case whichType}

end: {DoMultiEvent}

{Current event [Il:2.1.1]}

{Mask for extracting event type from message field}
{Event type for suspend/resume events [3.1.1]}
{Event type for mouse-moved events [3.1.1]}

{Type code of MultiFinder event}

typeMask) : {Extract type code from event message
[1:2.2.2, 11:2.1.1]}

{Handle suspend/resume event [Prog. 3-2]}

{Handle mouse-moved event [Prog. 3-5]}

65 Foreground and Background
~~~~~~~~~~~~~ 

Program 3-2 Handle suspend/resume event 

Global variable 

var 
TheEvent : EventRecord: (Current event [11:2.1.1)) 

procedure DoSuspRes: 

Handle suspend/resume event. 

const 
suspResBi t: - 31: 

begin {DoSuspRes} 

with TheEvent: do 
if not BitTst(@message. 

DoSuspend 
else 

Do Resume 

end: {DoSuspRes} 

Program S-S Handle suspend event 

Global variable 

var 
InForeground : BOOLEAN: 

procedure DoSuspend: 

Handle suspend event. 

begin {DoSuspend} 

Writ:eDeskScrap: 

if TheWindow <> NIL then 
Deact:Window (TheWindow): 

[Hide Clipboard window. if 

InForeground ·= FALSE 

end: {DoSuspend} 

{Bit number for testing suspend/resume bit [3.1.1]} 

s us pRe s Bit) then (Examine suspend/resume bit 
[1:2.2.1, Il:2.1.1]} 

(Handle suspend event [Prog. 3-3]} 

(Handle resume event [Prog. 3-4)) 

{Currendy operating in foreground?} 

{Write Toolbox scrap to desk scrap [Prog. 11:5-13)) 

(Any windows on screen?} 
{Deactivate frontmost window [Prog. II:S-14]} 

necessary}: 

{Set flag for background processing} 



66 Going for the Juggler 
~~~~~~~~~~~ 

A suspend event notifies you that you are about to be moved
from the foreground to the background; the transition actually takes
place the next time you request an event from the Toolbox.. Program
3-3 (Do Suspend) shows how we could modify MiniEdit to respond to
such an event. First we call the MiniEdit routine Wri teDeskScrap
(Program 11:5-13), which transfers the contents of the internal
Toolbox (TextEdit) scrap (11:5.5.4) to the global desk scrap (1:7.4).
This allows the user to cut or copy text in MlniEdit and paste it into
another program after the MultlFinder transition. (Naturally, a
program that maintains a private scrap of its own would transfer
that to the desk scrap instead.)

Actually. as we'll see in Chapter 7. the latest versions of the
TextEdit routines no longer maintain a separate internal scrap,
but do their editing directly through the desk scrap itself.
Nevertheless, you should still transfer the scrap on receiving a
suspend event, for compatibility with older systems that still
use the original version ofTextEdit.

Moving to the background also entails deactivating our
frontmost window, since some other program's windows will be
moving ahead ofit on the screen. However, if the MultlFinder-aware
bit in our size resource is set, no separate deactivate event will be
sent; so we have to remember to deactivate the window explicitly as
part of our response to the suspend event itself. (MiniEdit originally
handled both activate and deactivate events with a single routine,
DoActi vate, which appeared in Volume 1\vo as Program 11:5-14. It
was split into two separate routines, ActWindow and DeactWindow,
in the Version 2.0 revision of the program, listed in Appendix H of
Volume Three.)

Apple's guidelines for MultiFinder behavior also recommend
that programs that display a Clipboard window on the screen hide
it while in the background. Although MiniEdit doesn't maintain
such a window. this would be the place to hide it for those programs
that do. Finally, programs that can receive events while in the
background (that is, whose can-background bit is set) should use a
Boolean variable to track whether they're currently operating in the
foreground or the background. In MiniEdit's case. this variable is
named InForeground; it is initially set to TRUE by the MiniEdit

67 Foreground and Background
~~~~~~~~~~~~ 

routine Initialize (Program Il:2-6). then changed to FALSE on 
receiving a suspend event and back to TRUE on a resume event. 

Program 3-4 Handle resume event 

Global variables 

var 
TheEvent 
InForeground 

EventRecord: 
BOOLEAN: 

( Cunent event [11:2.1.1)) 
(Cunently operating in foreground?} 

procedure DoResume: 

Handle resume event. 

const 
scrapDirtyBit = 30: (Bit number for testing scrap-dirty bit [3.1.1)} 

begin ( DoResume} 

with TheEvent do 
if Bi tTst (@message, 

ReadDeskScrap: 
sc rapDirtyBi t) then (Has desk scrap changed? [1:2.2.l, 11:2.1.1)} 

{Read desk scrap to Toolbox scrap [Prog. 0:5-12)) 

if TheWindow <> NIL then 
ActWindow (TheWindow): 

(Show Clipboard window, if 

InForeground := TRUE 

end: {DoResume} 

(Any windows on screen?} 
{Activate frontmost window [Prog. ll:S-14)} 

necessary}; 

(Set flag for foreground processing} 

After receiving and responding to a suspend event. a program 
will be moved to the background when it calls Wai tNextEven t again 
on the next pass of its main event loop. If the can-background bit is 
set in its size resource, the program may (though it is not guaranteed 
to) continue to receive null events. allowing it to do useful work while 
in the background. When the program is eventually returned to the 
foreground. it will be so Informed with a resume event. Program 3-4 
(DoResume) shows MiniEdifs response to such an event. Bit 1 (the 
second from the end) of the evenfs message field (11:2.1.1. 3.1.1] 
tells whether the contents of the global desk scrap have changed 
while we were asleep, so we can transfer them back to the Toolbox 
scrap if necessary. The rest of the routine is just the reverse of what 
we did in DoSuspend (Program 3-3) for a suspend event. 



68 Going for the Juggler 
~~~~~~~~~~~ 

Cursor Control

As an added convenience for programs running under MultiFinder,
it provides help in tracking the mouse's movements on the screen
and adjusting the appearance of the cursor. Previously, you had to
check the location of the mouse on every pass of your main event
loop (as in MiniEdit's FixCur sor routine, Program II:2-8) to find out
what part of the screen it was in and set the cursor accordingly. With
MultiFinder, instead of checking on eveiy pass, you can arrange to
be notified atjust those times when the shape of the cursor actually
needs to be changed.

The last parameter to Wai tNextEvent [3.1.3) is a region of the
screen within which the cursor is to keep its current appearance.
Any time the mouse strays outside this region, MulUFinder will
generate a mouse-moved event to allow you to adjust the cursor's
appearance to match its new location. Like suspend and resume
events, the mouse-moved event carries the type code App4Evt
[11:2.1.2) in the what field (11:2.1.1} of its event record. It is distin
guished from suspends and resumes by the value $FA (rather than
$0 l, as in the other types) in the first byte of its message field
[II:2.1.1, 3.1.1). The rest of the message field is unused and reseived
for future expansion.

The term mouse-moved event is slightly misleading, as it seems
to imply that the event is generated only when the mouse
actually crosses the boundary and leaves the designated re
gion. In fact, such an event is generated whenever the mouse
is outside the given region (and no higher-priority events are
pending)-not just when it first moves outside the region.
Unless you recalculate the mouse region to reflect its new
location, you will keep getting the same mouse-moved event
over and over again.

Program 3-5 (DoMouseMoved) shows an example of a routine
MiniEdit could use to handle mouse-moved events. This routine is
Intended to be called from our new DoMul tiEvent routine (Program
3-1). rather than from MainLoop (Program 11:2-2). Besides setting
the cursor to the appropriate shape, as in our original FixCursor

69 Cursor Control

routine (Program Il:2-8), the new routine also calculates the region
of the screen within which the cursor is to keep that shape:

• If the screen is empty, the cursor is the standard northwest
arrow and its region is the .. wide-open" region encompassing
the entire QuickDraw coordinate plane.

•If one ofMiniEdit's own windows is active and the cursor is
inside its text rectangle, the cursor appears as an I-beam and
its region is the text rectangle.

• If a MiniEdit window is active but the cursor is outside its
text rectangle, the cursor is an arrow and its region is the
wide-open region minus the window's text rectangle.

Program 3-5 Handle mouse-moved event

Global variables

var
TheWindow
TheText
MouseRgn
I Beam

WindowPtr:
TEHandle:
RgnHandle:
CursHandle:

procedure DoMouseMoved:

Handle mouse-moved event.

var
mousePoint
textRect
globalRect
textRgn
wideOpen
savePor't

Point:
Rec't:
Rect:
RgnHandle:
RgnHandle:
GrafPtr;

begin {DoMouseMoved}

wideOpen := NewRgn:
textRgn := NewRgn;

(Pointer to currently active window [11:3.1.1]}
(Handle to active window's edit record (11:5.1.1))
{Handle to current mouse region (1:4.1.5))
(Handle to I-beam cursor [11:2.5.1]}

{Current mouse position in window coordinates [1:4.1.1]}
{Active window's text rectangle [1:4.1.2))
{Text rectangle in screen coordinates [1:4.1.2]}
(Region representing text rectangle (1:4.1.5]}
{Wide-open (maximum) region [1:4.1.5]}
(Pointer to previous current port [1:4.2.2]}

{Create regions [1:4.1.6]}

SetRectRgn (wideOpen, -32768, -32768, {Setwide-openregion[l:4.t.7])
32767. 32767):

if FrontWindow
begin

InitCursor:

NIL then

CopyRgn (wideOpen, MouseRgn)
end {if FrontWindow = NIL}

(Screen empty? [11:3.3.3]}

{Set arrow cursor [11:2.5.2]}
(Set mouse region to wide-open [1:4.1.7]}

70 Going for the Juggler
~~~~~~~~~~~~-

Program 3-5 Handle mouse-moved event (conttnuedJ 

else if FrontWindow ... TheWindow then {Is one ofour windows active? [11:3.3.3]} 
begin 

textRect := TheTextAA.viewRect: 
globalRect :a textRect: 
GetPort (savePort): 

SetPort (TheWindow): 
with globalRect do 

begin 
LocalToGlobal (topLeft): 
LocalToGlobal (botRight) 

end; (with globalRect} 
SetPort (savePort) : 
RectRgn (textRgn. globalRect): 

GetMouse (mousePoint) : 

(Get window's text rectangle [II:S.1.1]} 
(Prepare to convert) 
(Save previous port [1:4.3.3]) 
(Get into window's port [1:4.3.3)} 

(Convert rectangle to global coordinates [1:4.4.2]} 

(Restore previous port [1:4.3.3]) 
{Set region to global text rectangle [1:4.1. 7]} 

{Get mouse position [11:2.4.1]} 
if PtinRect (mousePoint. 

begin 
text Rec t) then (Is mouse in text rectangle? [1:4.4.3]} 

SetCursor 
CopyRgn 

end (then} 
else 

begin 
InitCursor: 

( IBeamAA) : (Set I-beam cursor [11:2.S.2]} 
( textRgn. MouseRgn) (Set mouse region to text rectangle [1:4.1.7]} 

(Set am>w cursor [11:25.2)) 
DiffRgn (wideOpen. textRgn. MouseRgn) {Use wide-open minus text rectangle 

[1:4.4.8]) 
end (else} 

end (if FrontWindow = TheWindow} 

else 
{Do nothing}: 

DisposeRgn (wideOpen) : {Destroy regions [1:4.1.6)} 
DisposeRgn (textRgn) 

end: (DoMouseMoved} 

After calculating the applicable mouse region. the routine 
saves it in a global variable. MouseRgn. We can then use this variable 
as a parameter when we call Wai tNextEvent from our main event 
loop. Thus we can replace the line 

if GetNextEvent (EveryEvent. TheEvent) then 



71 Notifications 

in the MiniEdit routine DoEvent (Program 11:2-5) with 

if InForeground then 
blinkTicks ·= GetCaretTime 

else 

blinkTicks ·= 99999999: 
if WaitNextEvent (EveryEvent, TheEvent, 

blinkTicks, MouseRgn) then 

(The Toolbox routine GetCaretTime (11:5.4.3) returns the inteival in 
ticks between blinks of the TextEdit insertion point, as set by the 
user with the Control Panel desk accessory. This gives us the correct 
value to use for the third parameter to Wai tNextEvent, the maxi
mum number of ticks we're willing to remain suspended before 
regaining control.) 

It's important to keep in mind, though, that some users may be 
running our program on older systems that aren't equipped with 
MultiFinder. Before attempting to execute the code above, we must 
first check the dispatch table (using the technique discussed in 
Chapter 2) to make sure Wai tNextEvent is available: if not, we must 
settle for an old-fashioned GetNextEvent call instead. Also notice 
that for this method of mouse tracking to work properly, the mouse 
region must be recalculated whenever a different window becomes 
active on the screen. Thus we must add a call to the new Do
MouseMoved routine to our processing of activate and deactivate 
events in routine DoActi vate (Program II:S-14, restructured to 
ActWindow and DeactWindow in Appendix III:H). 

Notifications 

One problem that can arise in the M ultlFinder environment is how 
to communicate with the user while operating in the background. 
For example, an electronic mail program running in the background 
might want to notify the user, "You have new mail," whenever an 
incoming message arrives. Unfortunately, the time-honored method 
of posting an alert or dialog box won't work. because the dialog 
window may be obscured from the user's view by other windows 
belonging to the foreground program. To handle this type of situ
ation in a convenient way, M ultiFinder offers a new method of 
communicating with the user called a notification. 



72 Going for the Juggler 
~~~~~~~~~~~ 

There are four ways a notification can capture the user's
attention. any or all of which can !Je used in combination:

• Display a small (16-by-16) icon at the left end of the menu
bar. alternating with the usual Apple symbol.

• Place a diamond mark (1:8.1.1) next to the program name on
the Apple menu.

• Play a sound through the speaker.
• Post an alert box on the screen.

Unlike ordinary alerts posted by the program itself. those displayed
by a notification always appear at the front of the screen. ahead of
all other windows. no matter what other program may be running at
the time.

Notice that all communication goes from the program to the
user. not the other way around. If you need Information.from
the user. post a notification to ask the user to bring your pro
gram to the foreground. then use an ordinary dialog box to
request the needed information.

The exact behavior of any given notification iS defined by a
notification record (3.2.1). The fields of this record identify the small
icon to be displayed in the menu bar, the sound to be played, the
menu item to be marked. and the message to be displayed in the
notification box. (Any of these elements may be suppressed, if you
wish; it is not necessary to use all four.) All pending notifications are
kept in the notification queue, which is a standard Operating System
queue of the form discussed in (III:3.1.6). To issue a notification, you
add it to the queue with the Toolbox routine NMinstall (3.2.2).

Another field of the notification record holds a pointer to an
optional response procedure (3.2.3) to be executed after all the other
steps (small icon, sound. menu mark. alert box) have been carried
out. The response procedure should accept one parameter, a
QElemPtr (III:3. l .6) pointing to the notification record that activated
it. and should return no result. A procedure pointer of ProcPtr
(- 1) denotes the standard response procedure, which simply
removes the notification from the queue; if you supply your own
procedure. it can accomplish the same thing by calling NMRemove

73 Nuts and Bolts

(3.2.2). This would make sense for a notification that just posts an
alert on the screen (and perhaps plays a sound as well), but not for
one that displays a small icon or marks a menu item, since it would
remove these from the screen too quickly for the user to notice them.
In the latter case, it's better not to remove the notification until after
you've returned to the foreground.

Because notifications are typically posted at a time when some
other program is in foreground control of the system, your
response procedure cannot rely on processor register AS being
properly set up to point to your program's application global
space. If you need access to any of your own global variables (or
anything else in your AS world. such as a QuickDraw global
[1:4.3.1)), you can store a copy of your own AS base address in
the notification record's nmRe fC on field for use by the response
procedure.

Nuts and Bolts

Desk Accessories and MultiFinder
Desk accessories are handled somewhat differently under MultiFin
der than they were in the old single-Finder (UniFinder?) environ
ment. Previously, a desk accessory existed as a guest of the single
program (called the lwst program) that happened to be running at
the time the accessory was opened. The accessory's code and
resources resided in the host program's application heap, and its
window was part of the host program's window list. When the user
decided to exit from the host program, all open desk accessories
were automatically closed as part of the program's termination
sequence.

Under MultiFinder, desk accessories ordinarily reside in the
system heap. rather than in any one program's application heap. A
special-purpose application program, named DA Handler, seives as
host for all accessories. taking its place alongside all the other
programs sharing the system under MulUFinder. This program
maintains its own window list for all desk accessory windows.
separate from that of any other program. One surprising conse
quence of this is that whenever the user activates any one

7 4 Going for the Juggler

accessory's window with a mouse clic~ all open accessories come to
the front of the screen together as a single •1ayer ...

The user can stlll choose to run a desk accessory the old way,
under a single host program instead ofDAHandler, by holding down
the Option key while opening the accessory from the Apple menu.
The accessory will then reside in the active program's application
heap and window list, as before. This makes no dilTerence from the
accessory's point of view, and a properly Written accessory should
run equally well in both environments.

Before MultiFinder, application programs were expected to
support the operation of desk accessories by calling the Tool
box routine SystemTask (II:2.7.2, III:6.2.4) at least once per
tick, giving the accessories a chance to perform their periodic
tasks, if necessary. Under M ulUFinder, the new event-retrieval
routine Wai tNextEvent (3.1.3) calls SystemTask foryou auto
matically, so you should avoid explicitly calling it yourself. If
you're still retrieving your events with GetNextEvent, however
(for instance, if you 're running on an older system where
WaitNextEvent is not available), you must still call System
Task as before, to give the desk accessories the processor time
they need.

Faking It

The main purpose of suspend and resume events is to tell you when
to transfer information between the global desk scrap and your
internal Toolbox or private scrap, if you have one. It is essential for
all programs running under MultlFinder to do this, to allow the user
to cut and paste information from one program to another. For
programs that don't accept suspend and resume events (in particu
lar, those Written before the advent of M ultiFinder), a bit of trickery
is needed to fool the program into transferring the scrap at the
appropriate times.

When the time comes to move a program to the background,
MultiFinder looks for a size resource (3.3.2) to see whether to send
a suspend event. If the program has no size resource, or if its accept
suspend/resume bit (3.3.3] is off, MultiFinder instead generates a

75 Nuts and Bolts

sequence of events that look to the program Uke the opening of a
desk accessory. First it sends a mouse-down event simulating a
mouse click in the title of the Apple menu. When the program
responds to this event by calling MenuSelect [11:4.5.1), MultiFinder
intercepts the call (by patching the dispatch table) and returns a
menu ID and item number representing a choice from the menu. If
the program's MultiFinder-aware bit is off as well, MultiFinder also
creates an invisible dummy window to force a deactivate event for
the program's frontmost window. As long as the program conforms
to Macintosh standards, this sequence of events will cause it to copy
its scrap to the global desk scrap. A similar sequence when the
program returns to the foreground induces it to copy the desk scrap
back to its internal scrap if its contents have changed while the
program was suspended.

The same kind of trickery takes place when the user attempts
to open one of a program's documents by double-clicking in the
Finder. MultiFinder brings the program to the foreground, sends it
a mouse-down event simulating a click in the title of its Fi le menu,
intercepts the resulting MenuSelect call and returns the item
number of the Op en command. then again intercepts the program's
call to SFGetFile (11:8.3.2) and returns the name and locationofthe
selected file. Similarly, when the user chooses the Finder's Shut
Down or Restart command, MultiFindersends each active program
a sequence representing a mouse event in the program's Quit com
mand, allowing the program to close up shop in an orderly way
before the system is shut down.

To find the correct menu IDs and item numbers to denote these
operations. MultiFinder looks in the program's resource file for a
menu named File containing individual items named Quit and
Open (or Open ...). If a program uses different names from these. it
can identify them to MultiFinder by using a special resource type.
'ms tr ' (.. MulUFinder string") (3.3.4). The internal format of such a
resource is the same as for an ordinary string resource (' STR '
[1:8.4.2)). Its resource ID designates the specific item the string
denotes (1 o o for the name of the menu containing the Quit
command. 1o1 for the name of the Quit command itself, and so
forth). as shown in the table in [3.3.4). If. for some reason. a program
uses more than one name for one of these items (for instance. if the
name of a command can change dynamically during execution). it
can use a resource of type 'mstfl' (.. MultiFinder string list") (3.3.4)
instead of just 'ms tr'.

76 Going for the Juggler
~~~~~~~~~~~ 

MultlFinder Etiquette 
Finally. we close this chapter with a few general rules of civilized 
behavior for programs running under MultlFinder: 

• Never modify any Toolbox data structure directly: use the 
Toolbox routine calls provided for the purpose. 

• Do not use the Winoow Manager port [11:3.6.1, 6.3. 7) unless 
you're writing a window definition function or some other 
unusual piece of code. 

•Never draw anything on the screen outside your own win
dows. The background .. desktop" area of the screen belongs 
exclusively to MultiFinder. 

• When operating in the background, don't draw to the screen 
at all or take any other user-visible action. such as changing 
the cursor or the menu bar. (Exception: See next note.) 

• Be sure to respond to all update events promptly, even when 
in the background. This is necessary to keep the screen 
properly updated as the user manipulates windows in other 
programs. 

• Don't use application-defined events (ApplEvt, App2Evt, 
App3Evt [II:2.1.2]) for internal program communication 
while in the background. (Event type App4Evt, of course, is 
now reserved for MulUFinder events.) These are considered 
user events, and are never reported to background pro
grams. If you post such an event from the background, it will 
be sent to the current foreground program instead, with 
unpredictable and possibly disastrous results. If you must 
send a signal to yourself from the background, try setting a 
global variable instead. 

• Never release or detach a system resource, since other 
programs may be using it as well. (Under MultiFinder, 
resources read from the System file are always stored in the 
system heap. regardless of their individual ResSysHeap at
tributes [1:6.4.2).) 

• Break time-consuming operations into smaller pieces in
stead of performing them all at once. For instance, when 
printing a document. print just one line at a time between 
event calls, rather than a whole page at a time. This is 
especially important when running in the background, to 
allow the foreground program to respond smoothly to the 
user's actions. 



77 Nuts and Bolts 

•It's recommended that you remember your screen layout 
from one session to the next. You can do this by saving all 
window locations in a special configuration resource in your 
application resource file before exiting from your program. 
The next time the program is started up, it can restore the 
exact arrangement of windows that was on the screen last 
time, saving the user the trouble of opening and positioning 
them all again. 

• In general, follow Apple's recommended user interface stan
dards and programming practices as closely as possible. 



3.1 

REFERENCE 

Events 

3.1.l Event Messages 

31 2 1 0 

0 0 0 0 0 0 0 1 

Reserved 
o =Suspend 
1 =Resume 

o ... Don't convert scrap 
1 ... Convert scrap 

Event message for suspend/resume events 

31 24 23 0 

Reserved 

Event message for mouse-moved events 

31 24 23 1615 8 7 0 

I I I : 
'--------------_,.11, ______ ~l.,..----~J~l------~ ....... ----_,J1, ______ ,l,... ____ _, 

Reserved Key code 
[1:8.1.3, IV:2.3.1) 

79 

Apple Desktop 
Bus address 

Character code 
[1:8.1.1) 

Event message for keyboard events 



80 Events 

con st 

ADBAddrMask $00FFOOOO: 
KeyCodeMask $OOOOFFOO: 

{Mask for ADB address} 

{Mask for key code} 

{Mask for character code} CharCodeMask = $000000FF: 

~~i~~No_tes _____________ _ 
1. Event type App4Evt (11:2.1.2) is now reseived for use by MulUFinder 

for suspend, resume, and mouse-moved events. 

2. Suspend and resume events are identified by the value $ o 1 in the 
high-order byte of the event record's message fteld (11:2.1.1). 

3. Bit O of the event message distinguishes suspend (O) from resume (1) 
events. 

4. For resume events, bit 1 of the event message tells whether the 
contents of the desk scrap (1:7.4) have changed since the last suspend. 
If you are using the Toolbox text scrap or maintaining a private scrap 
of your own. this bit tells you to update it from the desk scrap on 
resuming operation. 

5. Forsuspendevents, it'suptoyou tokeeptrackofchangesinyourown 
scrap and transfer its contents to the desk scrap if necessary. The 
simplest (though not necessarily the most efficient) policy is simply to 
transfer the scrap whenever you receive a suspend event. 

6. If your program has a size resource (3.3.2) with the MultiFinder-aware 
bit set. you will not receive deactivate and activate events for your 
frontmost window on suspension and resumption. You must deacti
vate and activate the Window for yourself as part of your response to 
suspend and restµne events. 

7. The value $FA in the high-order byte of a MultiFinderevent's message 
field identifies it as a mouse-moved event, signifying that the mouse 
has moved outside the allowable region you specified for it in your call 
to Wai tNextEvent (3.1.3). The remainder of the message is reseived 
for future use. 

8. On models equipped with the Apple Desktop Bus, the second byte of 
the event message for keyboard (key-down, key-up, and auto-key) 
events now gives the ADB address of the keyboard. 



81 (3.1.21 Event Modifiers 

9. The third byte of the event message gives the virtual key code (not the 
raw key code) for the key that was pressed. The fourth byte contains 
the corresponding character code (1:8.1.1) under the keyboard map 
currently in effect 

10. The constants ADBAddrMask. KeyCodeMask, and CharCodeMask can 
be used with Bi tAnd and Bi tShift (1:2.2.2) to extract the various 
items from the keyboard event message. 

11. The contents of the message field for all other event types are 
unchanged from earlier versions of the Toolbox (11:2.1.4). 

~~I ... ___ As_s_e_m_b_1_y_Lan __ gua __ ge_1im_o_rm_a_t_1o_n ______ _ 

Masks for keyboard event messages: 

Name Value Meaning 

ADBAddrMask 

KeyCodeMask 

CharCodeMask 

$00FFOOOO 

$0000FFOO 

$000000FF 

3.1.2 Event Modifiers 

ControlKey 

OptionKey 
AlphaLock 

Shift Key 
CmdKey 

BtnState 

Mask for ADB address 
Mask for key code 
Mask for character code 

ActiveFlag 

-R-es-e-rve_d_ ....... ____ '-___ l -.. -dow-~----Re-seO<Jrve_d ___ .,, 

L-{a .. up 
1 ;: activate 
o = deactivate 

Event modifiers 



82 Events 

I Definitions 
~.______:-------------------------~ 

con st 

ControlKey = $1000; 

OptionKey • $0800: 

(Control key) 

(Option key) 

(Caps Loclc key) 

{Shift key) 

(Command key) 

AlphaLock 

ShiftKey 

$0400 : 

$0 200 ; 

CmdKey ~ $0100: 

Bt nState - $0080: (Mouse button} 

ActiveFlag = $0001: (Activate or deactivate event?} 

~~il-f'=-+· _N_ote_s -----

1. On keyboards with a Control key (such as the Macintosh II keyboard 
and the Apple Extended Keyboard), bit 12 of the event record's 
modifiers field [II:2.l. l) now gives the state of the Control key at the 
time the event was posted. 

2 . The remaining contents of the modifiers field are the same as on 
earller models [II:2. l.5]. 

3. The assembly-language constants listed below are bit numbers within 
the modifier s field, for use with the BTST, BSET, BCLR, and BCHG 
instructions. 

I Cl I Assembly Language Information 
~qr]ll.,___ ____ _ 

Bit numbers in the modifiers.field.: 

Name V~ue Meaning 

ControlKey 12 Control key 
OptionKey 11 Option key 
AlphaLock 10 Caps Lock key 
ShiftKey 9 Shift key 
CmdKey a Command key 
BtnState 7 Mouse button 
ActiveFlag 0 Activate or deactivate? 



83 [3.1.3) Retrieving Events 
~~~~~~~~~~~~~-

3.1.3 Retrieving Events

function WaitNextEvent

(mask INTEGER: {Mask designating event types of interest}

var theEvent Event Record : {Rewms information about event}

sleepTic ks LONG INT: (Length of time to suspend program, in ticks}

mouseRgn RgnHandl e) (Mouse-tracking region in global coordinates}

: BOOLEAN : (Should application respond to event?)

~~it+--" ..,___Not_es ------

1. Wai tNextEvent requests the next available event of a specified type
or types. Its operation is similar to that of GetNextEvent [II:2.2. l),
except that it allows MultiFinder to switch control of the system to
another program if no events of the requested types are pending.

2. To take full advantage ofMultiFinder, always use Wa i tNextEvent to
retrieve your events, if possible, rather than GetNextEvent . This
allows other programs the opportunity to perform useful background
work during your program's idle time. (Wai tN~xtEvent may not
always be available. however. see note 26 below.)

3. The mask parameter is an event mask [II:2. l.3) designating which
event types are of interest. Event types excluded by the mask are
ignored.

4 . An event record describing the requested event is returned in the
variable parameter theEve n t . The event Is then removed from the
event queue.

5. Like GetNextEvent, Wai tNextEvent Intercepts events destined for
desk accessories and passes them to the accessory for processing. It
then reports s uch events to your program with a function result of
FALSE, telllng you to ignore them: a TRUE result means you must
process the reported event you rself.

6. If no event of the requested types is available. WaitNextEvent may
suspend your program in favor of another that is requesting processor
time, either for background processing or because the user has
brought it to the foreground on the screen.

84 Events

7. The parameter sleepTicks gives the maximum length of time, ln
ticks, for which your program ls willing to remain suspended between
events. The program Will resume execution when this number of ticks
has elapsed or at the next reportable event of the requested types,
whichever occurs first.

8. A zero value for sleepTicks requests control back as soon as
possible. However, you may still be suspended briefly to allow other
programs' minimum control requirements to be satisfied.

9. When control eventually returns to your program, your call to Wait -
NextEvent will return either with an event of a requested type (lf one
has occurred in the interim) or with a null event (lf the specified
interval has elapsed Without a reportable event).

10. If you can perform useful work while running in the background, you
shoulddosoonrecelvlnganulleventfrom Wai tNextEvent. The value
you supply for the sleepTicks parameter regulates the frequency
with which you will receive such events.

11. To take advantage of MultlFtnder's background processing capablllty,
the can-background bit in your size resource [3.3.2) must be set to 1:
if this bit ls o, you will receive no null events while ln the background.

12. When executing ln the background behind another program, you will
not receive ordinary user (mouse and keyboard) events. You may
receive other types of event, however, such as update events for parts
ofyourwindows that become exposed tovlewwhen another program's
windows are moved on the screen.

13. Do not perform time-consuming tasks, such as garbage collection or
full-page printing, while running in the background. You must make
frequent, regular calls to Wai tNextEvent to allow the foreground
program the processing time it needs.

14. Wai tNextEvent gives no direct indication of whether it has returned
control immediately or after a period of suspension. The only way to
find this out is to call TickCount (11:2. 7.1) before and after Wai tNext -
Event, to see how much time has elapsed on the system clock.

15. When the user activates another program on the screen, Wai tNext
Event will return a suspend event (3.1.1) to notify you that you are
about to relinquish foreground control of the system. When you
eventually return to the foreground, you will be so notified with a
resume event.

16. After receiving a suspend event, you will be suspended from fore
ground operation at your next call to Wai tNextEvent.

85 (3.1.3) Retrleving Events
~~~~~~~~~~~~-

17. If your program has a size resource [3.3.2) with the MultlFinder-aware 
bit set, you will not receive deactivate and activate events for your 
frontmost window on suspension and resumption. You must deacti
vate and activate the window for yourself as part of your response to 
suspend and resume events. 

18. If you maintain a Clipboard window on the screen, you should hide the 
window on recelving a suspend event and redisplay it at the subse
quent resume. While in the background, you will not be able to track 
changes in the scrap and keep the contents of the Clipboard window 
current 

19. Suspend and resume events should never be masked out, either in the 
mask parameter or in the global system event mask (11:2.3.2). 

20. mouseRgn specifies a region of the screeq within which no special 
action is needed to respond to the mouse's movements. If the mouse 
position Iles outside this region, Wai tNextEvent will return a mouse
moved event [3.1.1). 

21. mouseRgn is expressed in global coordinates. 

22. The mouseRgn parameter and mouse-moved events are useful for 
adjusting the appearance of the cursor [11:2.5.2] in different regions of 
the screen. 

23. After receiving a mou~-moved event. don't forget to change the value 
of mouseRgn for your next Wai tNextEvent call, to reflect the new 
mouse position and avoid receiving the same mouse-moved event 
repeatedly. 

24. If sleepTicks = O and mouseRgn =NIL. Wai tNextEvent is equivalent 
to GetNextEvent. 

25. When you use Wai tNextEvent for event retrieval instead of GetNext -
Event, MultiFinder assumes responsibility for scheduling the peri
oclic tasks of drivers and desk accessories. Thus you need not call 
SystemTask [11:2.7.2, 111:6.2.4] regularly, as you must in the original 
single-Finder environment. 

26. If MultiFinder is not active, the Wai tNextEvent trap will not be 
available in the Toolbox dispatch table. You can test for its presence 
by comparing the address returned for it byNGetTrapAddress [2.1.2) 
with that of the unimplemented Toolbox trap, UnimplTrapNum. If the 
two addresses are different, you can safely call WaitNextEvent: if 
they're the same, then MultlFinder is not currently active and you 
should use GetNextEvent (11:2.2.1) (and SystemTask [11:2.7.2, 
III:6.2.4]) instead. 



86 Events 

~~I Assembly Language Information 

'ITap macro: 

(Pascal) 
Routine name 

WaitNextEvent 

(Assembly) 
Trap macro 

_WaitNextEvent 

Trap word 

$A860 

3.2 Notifications 

type 

NMRec 

con st 
NMType 

3.2.1 

record 

qLink 

qType 

nm Flags 
nmPrivate 

nmReserved 

nmMark 
nmSicon 

nm Sound 
nmStr 
nm Resp 

nmRefCon 

end: 

8: 

Notification Records 

QElemPtr: 

INTEGER: 

INTEGER: 

LONGINT: 
INTEGER: 

INTEGER: 

Handle: 

Handle: 

StringPtr: 
ProcPtr: 

LONG INT 

{Pointer to next queue element) 

{Queue type(= NMType)) 
{Private) 

{Private) 

{Private} 

{Item to mark on Apple menu} 

{Handle to small icon to display in menu bar} 

{Handle to sound to be played} 

{Pointer to text to display in alert box} 

{Pointer to response procedure} 

{Reference constant for application use} 

{Queue type for a notification queue} 

~~·~....,__No_tes ______ _ 

1. A notification record defines a communication to the user, typically to 
announce some occurrence or condition arising while running in the 
background under MultiFinder. 



87 (3.2.1) Notlflcation Records 
~~~~~~~~~~~~ 

2. The letters NM stand for Notlftcatlon Manager, the part of the Macin
tosh Operating System that deals with notifications.

S. Notlftcation records are elements of the not{ficatton queue, a standard
Operating System queue (111:3.1.6) maintained by the system. Use
NM!nstall and NMRemove (3.2.2) to add and remove elements of this
queue.

· 4. Like all queue elements (111:3.1. 6), notification records are nonrelocat
able objects, referred to by pointers rather than handles.

5. qLink ls a pointer to the next element ln the notification queue, or NIL
if this ls the last element.

6. qLink ls nominally of type QElemPtr (111:3.1.6), but must actually
point to another notification record. Use typecasting to convert
between types QElemPtr and "'NMRec.

7. qType identifies the type of queue to which this element belongs; for
notification records, It must always be the constant NMType. Notice
that, unlike other standard queue types, NMType ls defined directly as
an integer constant, not as a scalar value of the enumerated type
QTypes (111:3.1.6).

8. nmMark designates an Item on the Apple menu to be marked with a
diamond mark [1:8.1. l) to catch the user's attention.

9. Stand-alone application programs should mark their own Item on the
Apple menu by setting nmMark to 1. This causes the currently running
application program to be marked.

10. Desk accessories should pass their own reference number for nmMa r k.
Any negative value is assumed to be the reference number of a desk
accessory to be marked.

11. Device drivers other than desk accessories should set nmMark to o,
meaning that no item ls to be marked.

12. nms Icon ls a handle to a small icon (3.3.1] to be displayed at the left
of the menu bar, in rotation with the standard Apple mark [1:8.1.l].

IS. nmSound is a handle to a 'snd ' resource to be played through the
speaker. See Inside Macintosh, Volume 5, for more information.

14. The handles passed for nmS!con and nmSound must be unpurgeable,
but need not be locked.

15. A value of POINTER(-1) for nmSound denotes the standard system
beep (11:2.8.1).

16. nmSt r ls a pointer to a text string to be displayed In an alert box on the
screen.

17. The alert will be presented with only one dismissal button. No Item
number is returned representing a choice of dismissal actions: there
ls thus no way to receive information from the user about hbw to
proceed after the notification.

88 Events

18. nmResp lsapolntertoaresponseprocedure (3.2.3) to be executed after
all the other steps of the notU1cation (menu mark , small Icon, sound,
alert box) have been carried out.

19. An nmResp value of POINTER (-1) denotes the standard response
procedure, which simply removes this notification from the notU1ca
tion queue.

20. Don't set nmResp to POINTER(-1) If you're using a menu mark or a
small Icon, since this will destroy them before the user has a chance
to notice them.

21. A NIL value for nmSicon, nmSound , nmStr, or nmResp omits the
corresponding step from the notification.

22. nmRefCon Is a 4-byte field reserved for the program posting the
notification to use In any way it wishes.

23. Notifications are available only In version 6 .0 or later of the System
file . You can use SysEnvirons [2.1.1] to check the current system
vers ion and, iflt Is not recent enough, e ither use a different method of
communicating with the user or post an explanatory a lert message
(Sorry. this program requi re s System version 6.0 or late<l
and exit.

~liill~~~~-As~s-e_1I1_b_1_y_Lan~-g-u_a_g_e~I-lll_o_nn~-a-tl_o_n~~~~~~~
Assembly-language constant:

Name Value Meaning

NMType 8 Queue type for a notification queue

3.2.2 Posting N otlficatlons

function NMinstall

(theRequest QElemPtr)

: OSErr;

function NMRemove

(theRequest QElemPtr)

: OSErr;

(Pointer to notification request}

{Result code}

(Pointcn o notification request}

(Result code}

89 (3.2.2] Posting Notiflcations
~~~~~~~~~~~~-

con st 

NMTypeErr = -299: {Wrong queue type} 

{Element not found in queue} QErr -1: 

~ij~liil==t----N_o_t_es __________________________________ _ 

1. NMinstall Installs an entiy in the notillcatlon queue: NMRemove 
removes one. 

2. The letters NM stand for Notification Manager, the part of the Macin
tosh Operating System that deals with notifications. 

3. The parametertheRequest ls nominally of type QElemPtr [111:3.1.6), 
but must actually point to a notification record [3.2.1 ). Use typecast
ing to convert between fypes QElemPtr and ANMRec. 

4. These routines merely install and remove an existing notification 
record. They perform no memoiy allocation or deallocation, and thus 
can safely be used In response procedures (3.2.3), input/output 
completion routines, and other routines that execute at the Interrupt 
level. 

5. Both routines return a result code [1:3.1.2) reporting the success or 
failure of the operation. 

6. A result code of NoErr [1:3.1.2) means that all ts well; no error has 
occurred. 

7. If the designated queue element's qType field ts not equal to NMType 
(3.2.1), both routines return the error code NMTypeErr. 

8. If the designated element ls not found in the notification queue, 
NMRemove returns the error code QEr r. 

9. Errors from other parts of the Toolbox can also occur in the course of 
these operations. See Appendix E for a complete list of Toolbox error 
codes. 

ID I Assembly Language Information --fUDII...___ ____ _ 
Trap macros: 

(Pascal) 
Routine name 

NMinstall 
NMRemove 

(Assembly) 
Trap macro 

_NM!nstall 
_NMRemove 

Trap word 

$A05E 

$A05F 



90 Events 

Register usage: 

Routine 

NMinstall 

NMRernove 

Register 

AO. L (In) 

DO.W (out) 

AO .L (in) 

DO. w (out) 

Contents 

theRequest 
result code 

theRequest 
result code 

3.2.3 Response Procedures 

procedure YourResponse 

(theRequest QElemPtr): {Pointer to notification request} 

Notes 

1. A notUlcatlon record [3.2.1) may contain a pointer to an optional 
response procedure in Its nmResp field. 

2. The procedure heading shown above is only a model for your response 
procedure. You can give your procedure any name you like; there is 
no Toolbox routine named YourResponse. 

3. If present, the response procedure is called at the ver:y end of the 
notification sequence [3.2.1), after all other steps (menu mark, small 
icon, sound, alert box) have been completed. 

4. The response procedure receives one parameter, a pointer to the 
notification record that activated ft, and returns no result. 

5. Because the response procedure may be called during an interrupt or 
while executing in the background under MultiFlnder, it should 
perform no memor:y allocation, mouse tracking, or drawing to the 
screen. If necessar:y, it can set a global variable that will trigger such 
actions when the program later resumes foreground execution. 

6. Register AS will not be properly set up to point to the program's 
application global space at the time the response procedure is called. 
If the response procedure needs access to global variables, keep a copy 



________ 9_1 __ _:[:.._3_.3.1) Resource1)'pe 'SICN' 

of the correct A5 value in the nmRefCon field of the notification record 
and use SetA5 (2.1.4) to set up the register for yourself. Don't forget 
to restore the register's previous value before returning! 

7. The standard response procedure. denoted by a value of POINTER ( -1) 

in the notification record's nmResp field (3.2.1), simply calls NMRemove 

(3.2.2) to remove the record from the notification queue. The record 
ls not deallocated and remains available for future reuse: if you have 
no further use for It, you must explicitly deallocate it for yourself. 

3.3 Resource Formats 

3.3.1 Resource Type ' S I C N ' 

Row 1 2 bytes) 

Row 2 (2 bytes) 

. 

i 
Row 16 (2 bytes) I 
Row 1 (2 bytes) 

Row 2 I2 bytes) 

Row 16 (2 bytes) 

Structure of a ' s I CN ' resource 

Any number of 
small icons 

~~1ii~·;::::::::=:1~--N-o_t_es __________________________________ _ 

1. A resource of type 'SI CN' contains one or more small icons for display 
on the screen. 

2. Each small icon ls a 16-by-16 bit image, half the dimensions ofa full
size icon [1:5.4.4, 1:5.5.3]. 



92 Events 

3. The resource may contain any number of small icons. The number 
can be found from the overall size of the resource: each icon is 32 bytes 
long. 

4. There is no defined data type representing a small icon. If you have 
to create one in your program, you can use an 

array (1 .. 16] of INTEGER 

5. Small icons are used for a variety of purposes, including: 

• by the Finder, to represent files in a folder when viewed "'by 
small icon" 

• by MulUFinder, to represent the currently active program at 
the right end of the menu bar 

• by MultiFinder, to represent other available programs on the 
Apple menu 

• in notifications (3.2. l J, to identify the program posting the 
· notification and requesting the user's attention 

6. The Finder and MultiFinder automatically generate small icons for 
their own use by scaling down the full-size icon representing a 
program or file. It is not normally necessary to supply a small icon 
explicitly for these purposes. However, it is necessary to supply an 
explicit small icon if one is needed for use in a notification [3.2. lJ. 

3.3.2 Resource Type ' SIZE ' 

Flags(~ bytes) 
I 

Preferred memory size 
(4 bytes) 

_l 

i 

Minimum memory size 
(4 bytes) 

Structure of a 'SIZE' resource 



93 [3.3.2] Resource 1)'pe 'SIZE' 
~~~~~~~~~~~~-

Notes

1. A resource of type 'SIZE' summarizes a program's memory require
ments and other information used by MultiFinder.

2. The first word of the resource contains flags (3.3.3] describing the
program's MultlFinder-related properties.

S. The flags are followed by the program's preferred and minimum
memory requirements, in bytes.

4. In starting up a program, MultiFinder will attempt to honor its stated
memory requirements if possible:

• If a large enough block of contiguous memory ls available,
MultlFtnder will allocate a partition of the full preferred
memory size.

• If the largest available block is smaller than the preferred size
but larger than the minimum, MultiFinder will display an
alert box asking the user whether to run the program anyway,
using the available memoiy.

• If not even the minimum required memocy is available,
MultiFtnder will post an appropriate error alert and ref use to
start the program.

5. A program's standard memory requirements are specified by a size
resource with an ID of - 1.

6. The user can change the preferred memocy size with the Finder's Get

Info command, by typing into a text box in the resulting information
window. The minimum memoiy size cannot be changed.

7. If the user changes a program's preferred memoiy size, the new value
ls recorded in a new size resource with an ID of o. The original size
resource (ID= -1) is retained, but resource o overrides it if present.

8. A program with no size resource can still run under MultiFinder, and
will be given a standard memocy partition of 384K.

94 Events

3.3.3 MultiFinder Flags

15 14 13 12 11 10 9 8 7 6 5

I I I

I I
I I

4 3

I I I
2 1 0

I
Reserved
Get front clicks
Background only
MultiFinder-aware
Can background

L------------------- Disable option (Switcher)
'--------------------Accept suspend/resume

'----------------------Save screen (Switcher)

MultlFinder flags

~~iii~~.,__--N_o_t_es-----------------------------------
1. The first word of a program's size resource [3.3.2) contains flags de

scribing the program's MultiFinder-related properties.

2. Bit 11 of the flagword is the MultiFinder-aware bit. By setting this bit,
the program indicates that it is prepared to take full advantage of
MultiFinder·s features and capabilities.

3. Bit 14 tells whether the program is prepared to accept suspend and
resume events [3.1.1).

4. If bit 14 is o. MultiFinder will instead signal the transition between
foreground and background operation with a sequence of events
simulating the activation or deactivation of a desk accessory, to fool
the program into transferring data to or from the desk scrap [1:7.4).

5. If both bits 14 and 11 (accept-suspend/resume and MultiFinder
aware) are set, the program will not receive deactivate and activate
events for its frontmost window on suspension and resumption. The
program must deactivate and activate the window for itself as part of
its response to suspend and resume events.

6. If bit 14 (accept-suspend/resume) ls set but bit 11 (MultiFinder
aware) is not, the program will receive both suspend/resume and
activate/deactivate events. To generate the latter, however, MultiFin
der must create a dummy window, slowing down the transltlon
between foreground and background. For maximum efficiency, any
program that sets bit 14 to accept suspend and resume events should
also set bit 11 to refuse activates and deactivates.

95 [3.3.4) Resource'JYpes 'mstr' and 'mstfl•
~~~~~~~~~~~~ 

7. Bit 12 requests the opportunity to do useful work while running in the 
background behind another program. MultiFinder will comply by 
sending null events when the program is in the background, at the 
inteIVals specl.fted by the sleepTicks parameter In the program's 
calls to Wai tNextEvent (3.1.3). If the can-background bit is o, the 
program will receive no null events while in the background. 

8. Bit 1 O means that the program wishes to run exclusively in the 
background. A program with this bit set will never be switched to the 
foreground and can never interact directly with the user. 

9. Bit 9 asks to receive the mouse clicks with which the user switches the 
program to the foreground. These will be reported as mouse-down and 
mouse-up events immediately following the resume event itself. If this 
bit is o, such transitional mouse events will not be reported. 

10. Bits 15 and 13 in the flag word have no meaning for MultlFinder, but 
were used by its predecessor, Switcher. Although MultlFinder no 
longer uses these bits, it continues to maintain them for the sake of 
backward compatibility. 

11. The remaining bits in the flag word are reserved for future use. 

3.3.4 Resource Types 'ms tr' and 'ms t// • 

Resource IDs for 'mst r ' and 'mstll • : 

Resource 
ID 

Notes 

100 

101 
102 

103 

Meaning 

Name of menu containing Quit command 
Name of Quit command 
Name of menu containing Open command 
Name of Open command 

1. Resource types 'mstr' C-MultlFlnder string") and 'mst// • C-MultlFin
der string list") help MultlFlnder locate and identify key commands on 
a program's menus. 

2. These resources have the same internal structure as 'STR ' [1:8.4.21 
and ' STR/I' (1:8.4.3], respectively. 



96 Events 

3. When the user chooses the Finder's Restart or ShutDown command, 
MultiFtnder sends each active program a sequence of events simulat
ing a mouse press In the program's Quit command. The program 
responds by executing Its normal tennlnatlon sequence, just as if the 
user had chosen Quit directly. 

4. Similarly. when the user double-clicks or opens one of a program's 
document files In the Finder, MultiFinder simulates a mouse press In 
the program's Open command, then Intercepts the resulting call to 
SF Ge tFi 1 e (11:8.3.2) and returns the name and locatlon of the selected 
file. 

5. Ordinarily, MultiFtnder assumes that both these commands reside on 
a menu named File, under the names Quit and Open (or Open ... ), 
respectively. 'mstr' and 'mst// • resources override these assump
tions. and thus are needed only if the menu or command names differ 
from the standard ones. 

6. In most cases, the desired menu or command will have just a single 
name, identified by an 'mst r' resource. If more than one name is 
needed (for example, if the name of the command may change In the 
course of program execution), use an 'mstll' resource. In either case, 
the table above gives the resource IDs for the various menus and 
commands. 

7. The technique described here applies to version 6.0 of the System file. 
It ls not available In earlier versions and may be superseded by 
improved methods in future versions. 



CHAPTER 

Chasing 
Rainbows 

Early models of Macintosh offered a range of display options 
something like the paintjob on the old Model-TFord: "anycoloryou 
like, as long as it's black." With its built-in 9-inch screen and 
associated video circuitry, the classic Macintosh could support any 
desired display configuration, as long as it was black-and-white, 
512 pixels wide by 342 high. What you saw was what you got. 

The Macintosh II, with its open architecture, is more flexible in 
its display capabilities. Unlike earlier models, the II has no built-in 
display screen; instead, it must be connected to a separate graphics 
device, via a controller card plugged into one of the expansion slots. 
Users can now choose from a whole range of available display 
devices according to their needs and budget-from the old 9-inch 
monochrome display to 14-inch monitors with continuous gray 
scale to 19-inch double-page screens capable of displaying 256 
distinct colors at a time. There can even be two or more different 
video devices connected to the system at once, displaying different 
portions of the same shared, "virtual" display space. 

Of course, all these fancy display capabilities would be worth
less if the software didn't lmow how to make use o~ them. The new. 
expanded version of the Toolbox includes an extensive set of added 
facilities to work with color displays. In this chapter, we'll learn 
about the general principles and concepts underlying the Toolbox's 
approach to color; in the next, we'll see how to put them to use on 
the screen. 

97 



98 Chasing Rainbows 
~~~~~~~~~~~ 

Color Fundamentals

A really thorough conceptual discussion on the subject of color
would lead us into a vast range of topics, from optics to electrody
namics to quantum theory. from electrical engineering to industrial
chemistry. from physiology and psychology to esthetics and semiot
ics (the study of symbols). We could easily fill a whole book the size
of this one and still not exhaust the subject. Still. some basic
knowledge of color principles will help us to understand how the
Macintosh Toolbox deals with color and how to use it in our own
programs.

Physical Properties of Color
Light. as the Scottish physicist James Clerk Maxwell first recognized
in the nineteenth century. is a form of electromagnetic radiation: a
fluctuating energy field varying over tlme in the shape of a sine wave
(Figure 4-1). The amplitude. or peak magnitude. of the wave deter
mines the brightness or intensity of the light. the overall amount of
energy it carries. The frequency of the light wave (or its inverse. the
wavelength) determines the hue-the quality that we usually think
of as .. color," such as green. orange. yellow. or blue.

Magnitude

f Amplllude

Time (seconds)

I
Period (1 cycle)

Frequency (cycles per second)

Figure 4-1 Anatomy of a light wave

99 Color Fundamentals

A uniform mixture of all hues, with equal intensity across the
spectrum of visible frequencies, produces pure white light. Adding
such a mixture to light of a given frequency yields a lighter, more
pastel tint. The degree to which a single, dominant hue rises above
the background level of undifferentiated white is called saturation,
and measures the vividness or purity of the color: fire-engine red is
a more saturated color than rose pink, for example. A saturation
level of zero represents a colorless gray tone somewhere on a scale
from pure black to pure white, depending on the brightness level.

Together, these three properties of a light wave-its hue,
brightness. and saturation, corresponding in physical terms to its
frequency. amplitude, and what radio engineers would call its
"signal-to-noise ratio"--completely characterize its color as per
ceived by the eye. They form the basis of the Munsell system. the
most widely used method of color classification. (What we're calling
brightness is commonly known in the Munsell system as the value
of a color, and so Munsell is often referred to as hue
saturatlon-value, or HSV representation.)

A related form of color representation is HSL. in which the
color's value (brightness) is replaced by its lightness level. This
expresses the equivalent level of gray that would result if all trace of
distinctive hue were removed (that is, if the saturation were reduced
to zero). Lightness is the property that is captured by monochrome
(black-and-white) video or photographic film. To understand how
color (more precisely, hue) is added to a video image. we'll have to
learn a little about the visual mechanisms of the human eye and
brain.

Physiological Properties of Color
The retina at the back of the eye contains two types of light-sensing
structures (or photoreceptors, if you like fancy words) called rods
and cones. The rods are more sensitive and respond to lower levels
of stimulation, but they can't distinguish one color from another.
They come into play mainly under conditions of limited light. which
explains why we can't perceive colors in a darkened room.

Cones need more light than rods to make them respond, but
when the light level is high enough, they enable us to see colors as
well as mere intensity levels. This is because the retina contains
three different kinds of cone, which respond most strongly to light
of different frequencies: one kind to frequencies in the red region of
the color spectrum, one in the green region, and one in the blue.

100 Chasing Rainbows
~~~~~~~~~~~ 

Light of different hues stimulates the three types of cone to different 
levels of response. which the brain then recombines into a single, 
full-color image. 

The colors at which the retinal cones exhibit their maximum 
levels of sensitivity are called the additive primary colors, because 
they can be added together to produce any other desired color. 
Mixing equal levels of blue and green, for example, yields an 
intermediate blue-green color called cyan. Similarly. red and blue 
combine to form the purplish shade known as magenta. and red and 
green mix together to produce plain old yellow. By presenting the eye 
with the right levels of the three primary colors. you can fool the 
brain into "seeing" any other color you wish. In fact. as we'll see in 
the next section. this is exactly the way color video works. 

Color on the Screen 
The screen of a color video tube (such as a television picture tube) 
is coated with three kinds of chemical phosphor, which emit red. 
green. and blue light. respectively. when struck by a beam of 
electrons from the tube's electron gun. The purest form of color video 
transmission consists of three independent intensity signals. one 
for each of the three phosphors. When the three signals are com
bined on the face of the tube. the result is a full-color video image. 
This RGB (red-green-blue) signal format is commonly used to drive 
closed-circuit monitors such as those found in television studios or 
connected to personal computers. 

Ordinary broadcast receivers like the one in your living room. 
on the other hand. accept a different form of video input. When color 
television was first introduced. a vital concern was that the video 
signals it used had to be backward-compatible with the millions of 
black-and-white 1V sets already in existence. To achieve this goal. 
an American industry group called the National Television Stan
dards Committee (NTSC) established a form of composite video 
signal that could be read by both the older monochrome and the 
new-fangled color receivers. This is the form of video transmission 
used by all broadcast television receivers in the United States today. 

Under the NTSC standard, all hue and saturation values are 
extracted from the color image. leaving only the lightness levels of 
the equivalent gray tones. The resulting luminance signal is then 
transmitted in exactly the same form as in a plain black-and-white 
transmission. The hues and saturations. in tum. are encoded into 



101 Color Fundamentals 

a supplementary chromtnance signal and ingeniously inserted in the 
gaps between scan lines. Thus an old-fashioned monochrome re
ceiver can simply use the luminance signal to regulate the lightness 
level of its black-and-white picture, while a properly equipped color 
receiver can decipher the additional chrominance information and 
use it to reconstruct the original full-color Image. 

Color on Paper 

You may have been puzzled a few paragraphs back to read that green 
combines with red to produce yellow. Since when is green a primary 
color? Didn't we all learn in kindergarten to make green by mixing 
yellow and blue paint, and that red mixed with green makes black 
or a dark, muddy brown? Did the Color Kittens lie to us? 

No, it's just that the rules for combining colors on paper aren't 
the same as on a video screen. Opaque coloring agents like paints 
and inks combine subtractively rather than additively. Instead of 
emitting light of their own, like the phosphors on the face of a video 
tube, they merely reflect the light falling on them from some other 
source. In the process. the chemical pigments in the paint or ink 
absorb some of the frequencies from the uniform mix that makes up 
white light. Thus the light that gets reflected back to our eyes iS no 
longer white, because some of the original colors have been sub
tracted out of it. 

It's the light frequencies that are left, the ones that haven'tbeen 
absorbed by the paint, that determine what color we perceive. If the 
paint absorbs blue light, for example, then only the red- and green
sensing cones in our eyes will be stimulated, and we will see the color 
as yellow. Similarly. a paint that absorbs red but reflects blue and 
green will appear to us as cyan; if it absorbs green but reflects red 
and blue. we will perceive it as magenta. 

Now suppose we mix the yellow and magenta paints together in 

equal proportions. The pigment molecules from the yellow paint 
absorb blue light, those from the magenta paint absorb green, and 
all that's left to reach our eyes is red. If we mix cyan and magenta, 
they subtract out all the red and green light and leave blue; if we mix 
cyan and yellow. they subtract red and blue and leave green. The 
Color Kittens were right after all. 

Notice that the primary colors in the two systems are comple
mentary. On a video screen, any two of the additive primaries (red. 
green, and blue) combine to form one of the subtractive primaries 



102 Chasing Rainbows 

(cyan. magenta. and yellow); on paper, any pair of subtractive 
primaries combine to form an additive primary. On the screen. all 
three additive primaries combine to form pure white (all colors 
present); on paper, all three subtractive primaries combine to form 
pure black (all colors absorbed, none reflected). It all depends on 
which medium you're working in. 

Toolbox Color Representation 

Now that we lmow a bit about the principles and properties of color 
in general, we're ready to talk about how the Macintosh Toolbox 
represents colors internally for its own use. Naturally. to display 
more than just black and white on the screen •. you need more than 
a single bit to specify the color of each pixel. This third dimension of 
a graphical image, the number of bits used to represent each 
individual pixel, is called the pixel depth. and determines the 
number of distinct colors the image can contain. Old-style mono
chrome images have a pixel depth of 1, allowing just two colors 
(normally black and white). An image 4 bits deep can contain 16 
colors. an 8-bit image can contain 256 colors. and so on. Because 
each pixel can now occupy more than I bit of memory. images that 
include color information are no longer referred to as bit images, but 
rather as pixel images. 

Actually, the Toolbox has several different formats for internal 
color representation, depending on the needs of a particular graph
ics device. In this section, we'll look at the various color formats 
themselves; later we'll discuss the characteristics of the graphics 
devices they're used with. 

Planar Color 

A little-lmown secret about the original Macintosh Toolbox is that it 
already included some rudimentary provisions for color graphics. 
Even though early Macintoshes were only equipped with a mono
chrome display screen. the QuickDraw graphics routines were 
designed right from the start to support color when it became 
available-as it eventually did on devices such as the ImageWriter 
II printer, with its optional four-color ribbon. Not many programs 
actually made use of this color capability, but it was there neverthe
less for any program that wished to take advantage of it. 

These "classic QuickDraw" color facilities are based on a planar 
model of color representation. A graphical image can consist of 



103 Toolbox Color Representation 
~~~~~~~~~~~ 

many separate color planes, each representing a single color. On
each plane, a 1 bit at a given position indicates the presence of the
corresponding color, a o denotes its absence. When all the planes
are superimposed, their individual colors combine to form a single
full-color image.

Every QuickDraw graphics port has a foreground color and a
background color to be used in drawing operations. The current
color settings are kept in the fgColor and bkColor fields of the
GrafPort record (1:4.2.2, 4.1.2). When a new port is created, these
fields are initialized to black and white, respectively, for use in
ordinary monochrome draWing. The QuickDraw routines Fore -
Color and BackColor (4.1.2] change these settings, allowing you to
draw with other colors instead. For example, if you set the fore
ground color to green and the background to yellow, all subsequent
lines, shapes. patterns, and text will be drawn in green-on-yellow
instead of black-on-white.

Within the fgColor and bkColor fields, each bit position cor
responds to a single color plane; the value stored in the field can
represent any combination of individual planes needed to produce
a desired color. Drawing in the port takes place in one plane at a
time, as determined by a bit number in the colrBi t field of the port
record (1:4.2.2, 4.1.3]. All drawing operations use this value to select
the corresponding bits from the fgColor and bkColor fields. which
tell whether the color associated with this plane is present or absent
in the port's current foreground and background colors. These bits
in turn determine what bit values to store into the plane's bit image.

The colrBi t field in a newly created port is initialized to o,
denoting the black-on-white plane used in ordinary monochrome
drawing. Normally this value is never changed, and only plane 0 is
drawn. On color devices. however (such as the ImageWriter II with
a color ribbon), the port is customized with special bottleneck
routines [III:2. l] that redraw the image repeatedly, once for each
plane. (The bottlenecks use the QuickDraw routine ColorBi t
(4.1.3] to switch from one plane to another; under normal circum
stances, no application program should ever need to call this routine
for itself.)

Since the fgColor and bkColor fields are long integers, Quick
Draw can theoretically support as many as 32 separate color planes.
In practice, however. only a few of these planes are actually used. As
already noted, plane 0 represents normal black-on-white mono-

104 Chasing Rainbows
~~~~~~~~~~~ 

chrome; similarly, plane 1 is used for inverse monochrome (white
on-black). The next three planes, numbered 4 to 2, stand for the 
additive primary colors red, green, and blue, respectively. Planes 8 
to 5 correspond to the four colors on the ImageWriter II ribbon: the 
three subtractive primaries (cyan, magenta, and yellow) plus black. 
The Toolbox interface includes bit-number constants representing 
each of these color planes, named NormalBi t, InverseBi t, 
Bl ueBi t, GreenBi t, and so on [4.1. l]; all other planes are unused. 

There are also constants (4.1.1) for the eight standard colors 
themselves (BlackColor, Whi teColor, RedColor, GreenColor, 
and so on), to be used as parameters to the Toolbox routines 
ForeColor and BackColor (4.1.2]. The strange-looking numerical 
values of these constants are actually bit patterns for producing the 
corresponding colors in both additive and subtractive media. Notice 
that all of them except Whi teColor are odd (that is, have bit 0 set). 
This means that all colors except white will appear as black when 
displayed in a monochrome medium; in inverse monochrome (bit 1), 
white will appear as black and all other colors as white. 

Direct Color 

One drawback to the planar approach is that it allows only one bit 
for each plane. Even if all 32 available planes were assigned specific 
colors, any given color could still only be present or absent; there 
would be no way to mix them in varying amounts to produce a 
desired result. The Macintosh II version of the Toolbox takes a more 
straightforward approach, allowing you to specify the exact colors 
you want directly, in terms of the fundamental properties we 
discussed earlier. 

The Toolbox recognizes four different formats for direct color 
definition: RGB (red-green-blue), CMY(cyan-magenta-yellow), HSV 
(hue-saturation-value), and HSL (hue-saturation-lightness). Each 
of the four is represented internally by a record type with three 
component fields: RGBColor, CMYColor, HSVColor, or HSLColor 
(4.2.1). With 16 bits allotted to each field, this yields a potential 
range of 248, or 281,474,976,710,656 colors-even more than in 
your de luxe Crayola box, and far more than any existing graphics 
device is actually capable of displaying. As we'll see, the Toolbox 
includes extensive facilities for matching the abstractly defined 
colors you choose from this vast space to the concrete capabilities 
of a. particular device. 



105 Toolbox Color Representation 
~~~~~~~~~~~ 

In RGB format, each of the three components is expressed as
an unsigned integer between o and 6 5 5 3 5. In the other three
formats, the component values are given instead as small
fractions (2.4.1) between o. 00000 and 1. 00000. The distinc
tion is only an illusion, however, created by the Pascal interface
definitions themselves. At the underlying machine level, it's the
same 16 bits either way: the only difference is at which end of
the number the imaginary binary point is considered to lie.

In both RGB and CMY, any color with three equal components
represents a pure gray level, with no predominant hue. Notice,
however, that the scales go in opposite directions for the two
formats: a color with all components equal to o represents black in
RGB (no illumination on the screen), whereas in CMY it represents
white (no ink on the paper; all frequencies reflected, none absorbed).
At the opposite extreme, an RGB color with all components equal to
the maximum value of 65535 represents white; a similar color in
CMYformat (all components equal to 1. 00000) stands for black. In
HSV and HSL formats. saturation and lightness or brightness are
measured on a closed scale, but the hue value represents a position
on a "color wheel" whose ends wrap around cyclically. Both ends of
the scale, o. 00000 and 1. 00000. correspond to red, with . 33333
standing for green and . 66667 for blue.

Because it deals primarily with colors displayed on a video
screen, the Toolbox uses RGB as its standard format for device
independent color representation. Most parts of the Toolbox that
deal with device-independent colors expect them to be given in RGB
form: for instance, when you draw into a color graphics port, you
normally specify your foreground and background colors in RGB. If
for some reason you prefer one of the other formats instead, you
must convert it to RGB before passing it to the Toolbox, using one
of the conversion routines (4.2.2) provided for this purpose.

Notice that all the conversion routines have RGB as either their
source or target format. Thus if you wanted to convert from,
say, HSV to CMY, you would have to do it in two stages: first
from HSV to RGB, then from RGB to CMY.

J 06 Chasing Rainbows
~~~~~~~~~~~ 

Mapped Color 

Theoretically, a display device could accept a full RGBColor record 
for each pixel and display precisely that color on the screen. But at 
48 bits per pixel, the screen image for even a dinky 9-inch screen like 
the one on the original Macintosh would take up more than a 
megabyte of memory; today's roomier screens would need even 
more. And since no existing device can actually produce so many 
fine gradations of color anyway, there's really no point in using up 
such extravagant amounts of memory. 

To reduce the memory requirements to less gargantuan pro
portions, most graphics devices use a form of mapped color repre
sentation. Out of the trillions of possible colors in RGB space, only 
a limited number are available on the device at any given time. The 
current selection of colors is kept in a color lookup table (often 
ref erred to, briefly if not euphoniously, as a CLUf). 

Instead of direct RGB color values, the pixel image for such a 
mapped device contains a color ind.ex for each pixel, identifying the 
position in the device's color table where the actual color is to be 
found. The device driver reads out the color index for each pixel in 
the image and looks up the corresponding entry in the table to find 
what color to display on the screen. The size of the color table 
determines the pixel depth of the image in memory: 4 bits for a table 
of 16 colors, 8 bits for 256 colors, and so on. 

The Color Picker 

As a convenience to the user in selecting colors for use on the screen, 
the Toolbox provides a standard dialog box called the Color Picker 
(Figure 4-2). Any time your program needs to specify a color for any 
purpose, you can call the Toolbox routine GetColor (4.2.3) to put up 
the Color Picker dialog and leave the choice to the user. You supply 
a prompting string to be displayed in.the dialog box ("Please pick 
a co 1 or : " in the figure) and propose an initial color for the user to 
consider. The GetColor routine handles all interactions with the 
user until the dialog is dismissed, then returns the color the user 
has picked via the variable parameter pickedColor. You can then 
use this color in any way you consider appropriate. 



107 The Color Picker 

1.1 

Plense plclc 11 color: 

• 
Hue 59733 r;J 

Soturntion 63286 i Brightness 62167 

Red 62167 I Green 2134 
Blue 34028 ( Concel J ( OK Il 

Figure 4-2 Color Picker dia log 

Like the Standard File dialogs [II:8.3) for selecting file names. 
the Color Picker is technically not part of the Toolbox proper, 
but instead resides in a new disk-based package. the Color 
Picker Package. This package also includes the routines for 
converting color formats [4.2.2) that we referred to earlier. 

The user can specify a color in any of three ways: 

• Use the mouse to designate a position on the color wheel and 
the scroll-bar-style brightness control. 

• Type the color's HSV parameters directly into the upper set 
of three text boxes or manipulate their contents with the up 
and down arrows. 

• Set the color's RGB components in a similar way in the lower 
three text boxes. 

The angular position of the color wheel's indicator defines the hue 
of the selected color. and the radial distance from the center gives 
the saturation. The brightness is determined by the scroll-bar-style 
control at the right. 



108 Chasing Rainbows 

Any change in any of the three methods of color selection is 
automatically reflected in the others as well: for instance, changing 
any of the .RGB components also changes the HSV values and 
repositions the indicators on the color wheel and brightness control. 
In addition, the currently selected color is displayed in the upper 
of the two color boxes near the top-left of the dialog box, just below 
the prompting string. The lower box always displays the initial color 
you proposed when you first posted the dialog: clicking in this box 
with the mouse resets the upper box (and all the other settings) to 
match it. 

When the user dismisses the dialog, GetColor returns a 
Boolean value telling whether it was dismissed with the OK or the 
Cancel button. If the function result is TRUE, then the dialog was 
confirmed and you should use the color value returned in the 
parameter pickedColor. If the result is FALSE, then the user 
canceled the dialog and you should use your own default color 
choice instead (presumably the one you initially proposed as 
startColor). 

Graphics Devices 

Unlike earlier models, the Macintosh II is not limited to a single 
display screen of a predetermined size. Any number of separate 
display devices can be connected via controller cards in the system's 
expansion slots. each with its own screen dimensions, pixel depth. 
and other characteristics. Since the pixel image defining the con
tents of the screen can vary in size from one device to another. it no 
longer occupies a fixed block of locations in the computer's main 
memory. Instead. it resides in the controller card's slot space. in 
memory chips physically located on the card itself. The card can 
support a screen of any size it wishes. so long as it provides enough 
memory capacity to hold the required screen image. 

Each time the system is started up, it scans through all of its 
slots looking for installed display devices. For each one it finds, it 
creates a device record of type GDevice [4.3.1), containing all the 
information the Toolbox needs to carry out its drawing operations on 
that device. In particular. the record's gdRect field holds a boundary 
rectangle giving the dimensions of the device's screen image and its 
location on the QuickDraw coordinate plane. 

The screen image itself is kept in a pixel map (analogous to an 
old-style QuickDraw bit map) located via a handle in the device 
record's gdPMap field. As we11 see in the next chapter [5.1.1), the 



109 Graphics Devices 

pixel map also defines the image's pixel depth, color table, and other 
important properties. The record's gdType field holds an integer 
code identifying the form of color representation this device expects 
to find in its pixel map: 

•A direct device accepts colors in explicit RGB format and 
reproduces them directly on the screen. The present version 
of the Toolbox doesn't support this type of device; it's 
included purely for the sake of future compatibility. 

• A.fixed device uses a color table to map color indices from the 
pixel map into the actual color values they stand for. How
ever, the selection of available colors is predefined by the 
device itself and cannot be changed. 

•A variable CLUI' device also uses a color table, but the 
contents of the table can be changed as needed by the 
running program. This is the type of device with which the 
present version of the Toolbox is primarily designed to 
operate, and to which all discussions in this book are under
stood to apply unless otherwise stated. 

Devices records are created and destroyed by the Toolbox 
routines NewGDevice and DisposGDevice [4.3.2}. These 
chores are normally handled by the system, though, and you'll 
rarely have any occasion to wony about them yourself. Ordi
narily the only time you11 need to create a device record of your 
own is for drawing to an offscreen pixel map rather than 
directly to a display device. 

There are a variety of reasons for offscreen drawing: to 
present smoothly animated graphics on the screen, to avoid 
flickers and other unwanted visual effects when drawing over
lapping objects, to draw into a window that crosses the bound
ary from one display screen to another (possibly with differing 
color environments). or to prepare an image for a printer or 
other device whose color environment doesn't match that of 
any existing display. In each of these cases. you must use the 
Toolbox routine NewGDevice (4.3.21 to create a dummy device 
record that isn't associated with any actual graphics device in 
the system. Off screen drawing is an unusual and rather tricky 
operation, however; if you really need to attempt it, see the 
chapter on graphics devices in Inside Macintosh for details. 



110 Chasing Rainbows 
~~~~~~~~~~~ 

The device records for all true graphics devices (but not those
you create yourself for offscreen drawing) are linked together into a
global device list. The list begins in the system global variable
DeviceList (4.3.3) (accessible only in assembly language) and
continues through the gdNextGD fields of the individual records
[4.3.1); a NIL handle marks the end of the list. You can get a handle
to the first device in the list from the Toolbox routine GetDevice
List (4.3.3) and move from one device to the next with GetNext -
Device (4.3.3).

A device can have one or more display modes that determine
the way it presents an image on the screen. Different display modes
typically correspond to different pixel depths, and hence control the
number of distinct colors that can appear on the screen; but they
may also affect other aspects of the device's operation, such as the
use of gray scale instead of full color. The possible modes in which
the device can operate are defined by slot resources in declaration
ROM on its controller card; the ID numbers of these resources also
seive as identifying numbers for the modes themselves.

The gdMode field in the device record [4.3.1) always contains
the number of the mode in which the device is currently operating.
By convention, mode number 12 8 denotes the device's default mode,
which is normally monochrome (I-bit) video; if there are any
additional modes, they are numbered sequentially from 12 9 up. The
Toolbox routine Ini tGDevic e (4.3.2) reinitializes an existing device
record for a specified display mode.

Using the Control Panel desk accessory, the user can set a
screen configuration that includes the display mode for each screen
and, if there's more than one, their spatial arrangement relative to
one another. This information is then saved in a special resource of
type 'scrn' for future reference. If a 'scrn' resource is present the
next time the system is started. and if the same set of devices are still
connected, they will automatically be initialized to the previous
configuration. Otherwise, the device in the lowest-numbered slot
will be placed in its standard (monochrome) mode and all others will
be made inactive (unavailable for use).

The user's screen configuration also designates one particular
device as the main device or main screen, the one on which the menu
bar is to appear. This device's boundary rectangle establishes the
global coordinate system in which those of all other devices (if any)
are expressed. If no screen configuration is present at system

111 Color Tables

startup, the device in the lowest-numbered slot automatically
becomes the main device. The assembly-language global variable
MainDevice holds a handle to the device record defining the main
device: you can get a copy of this handle with the Toolbox routine
GetMainDevice (4.3.4).

At any given time, exactly one graphics device is singled out as
the current device, whose color table and other attributes establish
the color environment for all color drawing operations. A handle to
the current device record is kept in the system global TheGDevice,
where you can read or change it with the Toolbox routines Get
GDevice and SetGDevice (4.3.4]. It isn't usually necessary to ma
nipulate the current device yourself, however, since the Toolbox
does it for you automatically when you draw into a given window or
graphics port. Even if a window spans the boundary from one screen
to another, the Toolbox will see to it that all drawing operations are
directed to the proper graphics device.

Color Tables

The mapping from the color indices used in a pixel map to the actual
color values they stand for is defined by a Toolbox data structure
called a color table (4.4.1]. Every mapped device has its own color
table defining the selection of colors currently available: a handle to
'the color table is kept in a field of the device's pixel map (5.1.1),
which in turn is located via the gdPMap field of the device record
[4.3.1). On a fixed device, the contents of the table are predefined
and unchangeable, while on a variable device (the usual type) you
can modify them to tailor the color environment to your own needs.
The color table belonging to the current graphics device is the
current color table, which defines the color mapping currently in
effect for all drawing operations.

An individual pixel map can also have its own color table,
separate from that of the device on which it is displayed. In this case,
the color table defines the exact RGB colors that the index values in
the pixel map are intended to represent. When displayed on a
particular device, these colors are matched against those in the
device's own color table and replaced with the closest approxima
tions currently available. Thus the actual appearance of the image
may vary, depending on the device, the display mode the user has
chosen, and the dynamic state of the device's color environment.

112 Chasing Rainbows
~~~~~~~~~~~ 

Structure of Color Tables 
Structurally, a color table [4.4.1) consists of a few bytes of header 
information followed by an array of color spectficatiDns. The c tF lags 
field is reseived for flag bits describing various attributes of the 
table; the only one currently defined is the high-order bit. which is 
1 for a table belonging to a graphics device or o for one associated 
with a device-independent pixel map. The ctSeed field is used to 
coordinate the contents of the color table with those of its matching 
inverse table, so we'll postpone discussing it until later in this 
chapter when we talk about inverse tables. 

The main body of the table is the array ctTable, which 
contains an indefinite number of entries; the ct Size field tells how 
many. Each entry is a record of type Color Spec (4.4.1), which in 
tum has two fields, value and rgb. In a color table belonging to a 
device-independent pixel map, each entry's rgb field defines a 
desired or intended color and the associated value field gives the 
index number that stands for that color in the body of the map. In 
a table belonging to a graphics device, the rgb fields define the colors 
currently available on the device and are indexed positionally by 
their location within the table; the value fields are used internally 
for other purposes, and are nobody's business but the Toolbox. 

Color tables can be stored as resources of type ' c 1 u t ' ("color 
lookup table") [4.7.1) and read in with the Toolbox routine Get
CTable [4.4.3]. Resource IDs from o to 127 are reseived for system 
use; in particular, the Macintosh II ROM contains built-in 'clut' 
resources numbered 1, 2, 4, and 8, which define default color sets 
for the corresponding standard pixel depths. There's also another 
built-in resource, number 12 7, which holds a table of RGB equiva
lents to the eight standard colors of the "classic QuickDraw" planar 
color model. Any ' c 1 u t ' resources you create for yourself should 
have ID numbers between 128 and 1023. 

Inverse Tables 
The Toolbox routines Index2Color and Color2Index (4.4.4) con
vert in either direction between a color index and the corresponding 
RGB value. The results in both cases are based on the current state 
of the color environment (that is, on the color table of the current 
graphics device). Index2Color just does a simple table lookup, but 
the inverse mapping, Color2Index, is less straightforward. This is 
an important operation, because the Toolbox uses it to convert your 
requested drawing colors into the corresponding pixel values to be 



113 Color Tables 

written into the screen image-so it's worth going to some trouble to 
implement as eftlciently as possible. 

To avoid having to do a lengthy table search each time you ask 
for a new drawing color. the Toolbox builds an auxiliary data 
structure. the inverse table (4.4.2]. based on the contents of the 
color table itself. Every graphics device has its own inverse table. 
located via a handle in the gdITable field of the device record 
(4.3.1]. Entries in the inverse table are indexed according to the RGB 
color they represent. and in tum yield the index of the entry in the 
color table most closely approximating that color. Once the inverse 
table is built. the Toolbox can simply look up your color requests 
directly instead of searching the entire color table for a match. 

The Toolbox routine Make !Tab 1 e (4.4.2] builds an inverse table 
corresponding to a given color table. Both the color table and the 
inverse table (or at least the memory block to hold it) must already 
exist; MakeITable accepts handles to both as parameters. (For 
convenience, a NIL value for either or both of these parameters 
designates the color or inverse table belonging to the current 
graphics device.) The third parameter to MakeITable is the desired 
bU resolution. which determines the size and precision of the inverse 
table. The gdResPref field of a device record [4.3.1} gives the 
preferred bit resolution for that device's inverse table; the actual 
resolutionforagiventable iskeptin the table's iTabResfield [4.4.2}. 

Red Green Blue 

J 
Color table 

1 kl 
$ lt1Dl9] 

Inverse table 
. ...>.I $16BO D388 9A.?2 ". . 

~ --, 

. . 

Figure 4-3 Inverse color mapping 



114 Chasing Rainbows 

To look up a given color in the inverse table, the Toolbox 
constructs a table index by concatenating together the most signifi
cant (high-order) bits from each of the color's three RGB compo
nents. The table's bit resolution tells how many bits to take from 
each: for example, at 4-bit resolution, the first 4 bits of each color 
component (red, green, and blue in that order) combine to form a 12-
bit table index, as shown in Figure 4-3. The entry at that position in 
the inverse table gives, In tum, the index of the closest available 
matching color in the color table itself. (Notice in the figure that the 
match is not exact, but is merely the best approximation among the 

. colors currently contained in the color table. The Toolbox routine 
RealColor [4.4.4] tests whether a given exact color ls available in 
the current color environment.) 

Higher bit resolutions yield more precise color mappings, but 
at the expense of exponentially increasing table size. For example, 
at 3-bit resolution, each table index is 9 bits long (3 bits for each of 
three color components): thus the table must contain 29 , or 512 
entries. At a resolution of 4 bits, the table size is 212, or 4K entlies: 
at 5 bits, it grows to 215, or 32K. These are the only three bit 
resolutions the Toolbox currently supports: anything less than 3 
bits would give results too coarse to be meaningful, while more than 
5 bits would require table indices longer than a single 16-bit word. 
In general, 4-bit resolution is sufficient for most practical purposes. 

Once an inverse table is built, it remains valid only as long as 
the contents of the underlying color table remain the same. Any 
change in the color table invalidates the inverse table, which must 
then be rebuilt before it can be used again. Instead of rebuilding the 
table immediately, however, the Toolbox simply marks it as invalid, 
postponing the actual rebuilding until the next time it needs the 
table for a color lookup. 

To coordinate this rebuilding process, the Toolbox maintains a 
long-integer seed for every color and inverse table. The Toolbox 
routine GetCTable [4.4.3], which creates a color table from a 
'clut' resource, initializes the table's ctSeed field [4.4.1] to the 
resource ID. (If you create a color table in some other way, you 
should call GetCTSeed [4.4.3] to get an initial seed value and store 
it into the ctSeed field "by hand.") Thereafter, any operation that 
changes the contents of the color table automatically changes its 
seed value as well. 

When MakeITable builds an inverse table corresponding to a 
given color table, it copies the color table's current seed value into 



115 Color Tables 

the iTabSeed field of the inverse table (4.4.2). Then, whenever it 
needs to use the inverse table for color mapping, the Toolbox first 
compares its seed with that of the color table it's based on. If the two 
seed values agree, then the inverse table is still valid and can be used 
as is: if they don't, the contents of the color table have changed and 
the inverse table must be rebuilt. 

Color Table Management 
As you might expect, the Toolbox includes a variety of routines for 
maintaining and manipulating the contents of color tables. In 
practice, however, you 11 seldom need to use these facilities directly. 
We'll be learning in the next section about color palettes, a handy 
mechanism for managing your color environment in a controlled, 
flexible way. Although the lower-level routines described here are 
always available for direct color table management, you 11 generally 
find it more convenient to work with palettes instead. 

The main routine for setting the contents of a color table 
directly is SetEntries [4.4.5). You supply an array of color speci
fications [4.4.1), newColors, giving the RGB values to be entered in 
the current color table: the nEntries parameter tells how many. 
(Actually, nEntries must be set to the number of colors minus 1.) 
There are two ways of specifying the color indices under which the 
colors are to be entered. If you set the start!ndex parameter to -1, 
each color's index is given by the va 1 ue field of its color specification 
in the newColors array. If start!ndex is positive, the value fields 
are ignored and the colors are simply entered at consecutive indices 
starting from the given value. In either case, notice that all index 
numbers refer to logical color indices and do not necessarily corre
spond to physical positions within the color table. 

Before making any change in the color environment, you can 
save its current state with SaveEntries and restore it later with 
RestoreEntries (4.4.5). Both routines take a request list as a 
parameter. an array of index numbers identifying the entries to be 
saved or restored. (In this case, just to keep you on your toes. the 
indices are physical rather than logical.) SaveEntries copies the 
requested entries from the main color table into a smaller, auxiliary 
table; RestoreEntries copies them back from the auxiliary table to 
the main table. Just as for the MakeITable routine we discussed 
earlier. a NIL value forthe mainTable parameter implicitly refers to 
the current color table. 



116 Chasing Rainbows 
~~~~~~~~~~~ 

One thing to bear in mind is that in the MultiFinder environ
ment, space in the color table is a limited resource that you may have
to share with other programs. The Toolbox routines ProtectEntry
and ReserveEntry (4.4.6) allow you to claim some of this precious
real estate for your own private use. Protecting a color table entry
prevents any other program from changing its color value; reserving
it makes it unavailable as a match for other programs' color
requests, even if it is the nearest color in the table to the one they
asked for. Both routines accept a color index referring to an entry in
the current color table, along with a Boolean parameter telling
whether you wish to apply or remove the protection or reservation
on that entry. These routines are particularly useful in allocating
table entries for color table animation. a technique we'll be talking
about in the next chapter (5.4.3).

Color Palettes

By far the most convenient way to manage your program's color
environment is with color palettes. A palette is a predefined collec
tion of colors that you wish to use for your drawing operations.
Whenever the palette is activated, the Toolbox will automatically
update the current color table to try to ensure that the colors
requested in the palette are available for use. Palettes save you the
trouble of manipulating the color environment for yourself: you just
place the colors you want in a palette and let the Toolbox take care
of the details.

The most common way of using palettes is in connection with
windows. Every color window has its own palette. When the user
brings a window to the front of the screen, its palette is automatically
activated and the color table stocked with its preferred selection of
colors. We'll have more to say on this subject when we take up color
windows in Chapter 6.

The internal description of a palette is a palette record (4.5.1).
The palette can include as many colors as you wish; the Toolbox will
do its best to make them all available (subject of course to the
capacity of the color table on the device you 're drawing on). Each
color in the palette is identified positionally by its palette index. It's
sort of like one of those paint-by-numbers kits you can buy at the
hobby store-1 for red, 2 for purple, 3 for brown-except that you get
to choose the numbers and the colors.

11 7 Color Palettes

Note that a color's palette index is not the same as the color
index used to represent it in pixel images. A color index refers
to a position in a color table, a palette index to a position in a
palette. As the color environment varies over time or from one
device to another, the color index most nearly approximating a
given color may change, but its palette index never does. That's
what makes palettes so convenient.

Color Usage

The heart of a palette record is an array of subrecords of type
Color Info [4.5.1] defining the individual colors. Each Color Info
record includes the desired RGB value along with a usage level that
determines how the color is to be matched against those available in
the color table. The current Toolbox recognizes five possible usage
levels, lmown as tolerant, courteous, animating, explicit, and dith
ered colors.

Tolerant colors are the standard form of color usage. This type
of color will match an existing value in the current color table if there
is one close enough. If no such match can be found, the Toolbox will
choose an existing entry in the table and set it to the exact RGB value
requested in the palette. (This may spoil the appearance of other
windows on the screen, but only until those windows are activated
and their own palettes come back into effect.)

Just what constitutes "close enough" is defined by a tolerance
value that's included in the Colorinfo record. The tolerance ex
presses the margin of error the color is willing to accept: an existing
color is considered to match if each of its three RGB components
differs from that of the requested color by less than the specified
tolerance. A tolerance level of $5000 is suggested for most ordinary
purposes. but of course you can vary this according to your specific
needs. A tolerance of o yields what might be called an "intolerant
color," which demands perfection and won't settle for anything less
than an exact match.

At the opposite extreme are courteous colors, which don't like
making a fuss and will accept any old value you care to give them.
(This makes them equivalent to tolerant colors with the maximum

118 Chasing Rainbows

possible tolerance level, $FFFF.) A courteous color will still look for
the best available match in the current color table, but it will always
be satisfied with some available color and will never cause any
change in the existing color environment.

The main use of courteous colors is to avoid having your
favorite colors dropped from the color table in favor of someone
else's. Recall that if the Toolbox can't find a suitable match for
a tolerant color, it will throw some other color out of the table
to make room. If you have expressed a fondness for a particular
color, the Toolbox will attempt to keep it available and kick out
some other color instead. This kindness is not guaranteed, and
you may sometimes find your colors getting stolen anyway
but at least you stand a chance if you keep the Toolbox
informed of your preferences by declaring them courteously in
a palette.

Animating colors reserve entries in a device's color table for use
in color table animation [5.4.3). As we learned earlier, such reseived
entries become unavailable for use in other drawing operations and
will not match any color request issued by another program. We'll
learn more about color table animation in the next chapter.

Explicit colors bypass the color-matching process entirely and
use the entry's palette index directly as an index into the current
color table. (This is the one time that a color's palette index and color
index are guaranteed to be the same.) They always use the color
currently associated with the given index in the color table, without
reference to the RGB value specified in the palette entry itself.

The last type of color usage a palette entry can specify is a
dithered color. If the requested RGB value is not explicitly available
in the color table, it will be simulated by "dithering" together two or
more other colors in a pattern of dots that blend visually to
approximate the desired color-sort of like the colored dots on the
Sunday comics page. This capability is not yet supported in the
current version of the Toolbox, but is included for possible future
implementation.

119 Color Palettes

Creating and Destroying Palettes

Before the Toolbox can perform any operation involving palettes, it
must be prepared for the task with Ini tPalettes (4.5.2]. This
initializes its internal palette-related data structures and performs
other bits of miscellaneous housekeeping. However, in all versions
of the Toolbox that support palettes at all, this routine is called
automatically by Ini tWindows [II:3.2. l], so there should never be
any need for you to call it directly yourself.

The usual way of creating a new palette is from a template
resource of type 'pltt' (4.7.2). In the common case where the
palette is to be associated with a window on the screen, you should
give the palette template the same resource ID as the window
template it belongs with. The Toolbox routine GetNewCWindow
(6.3.4), which creates a color window from a template, will then
automatically create the palette as well. In other cases, you can call
GetNewPalette (4.5.3) to create the palette explicitly.

You can also build a new palette .. from scratch" with New
Palette [4.5.3]. The nEntries parameter tells how many colors it
should hold. For the color values themselves, you can either supply
a color table, entryColors, or else initialize them all to black by
passing NIL for this parameter and then set each color individually
with SetEntryColor [4.5.4]. All colors in the new palette will be
given the same usage and tolerance levels, as specified by the
NewPalette parameters entryUsage and entryTolerance; if
necessary. you can then use SetEntryUsage (4.5.4] to adjust these
settings for individual palette entries.

Once a palette is built, SetEnt ryColor [4.5.4] returns the RGB
value of an individual entry and SetEntryUsage [4.5.4] returns its
usage and tolerance values. Other utility routines that are occasion
ally useful are CTab2Palette and Palette2CTab [4.5.5], which
copy the contents of a color table to a palette and vice versa. and
CopyPalette [4.5.5). which copies all or part of one palette to
another. When you have no further need for a palette. Dispose
Palette [4.5.3] destroys it and recycles its memory space for other
uses. (Needless to say, this operation also converts all existing
handles to the palette into lethal weapons, so don't leave them lying
around for your kids to play with.)

REFERENCE

4.1 Classic Color Model

4.1.1 Color Values

con s t

No rmalBi t - 0;

I n ve r seBit 1 ;

121

Cyan

Magen t a

Yellow

Black
Red

Gr ee n

Blue

15 14 13 12 11 10 9 8 7 6 5 4 3 2 J
lnverse

-~o rmal
1 01_ __ ___,_ ___ ..._...~+--+-l~~,~,

Classic QuickDraw color bits

{Bit numbers fo r color planes: }

{Normal monochrome (black-on-white)}

{Inverse monochrome (white-on-black)}

BlueBit
GreenBit
RedBit

BlackBit
YellowBit

MagentaBit
CyanBit

BlackColor
WhiteColor

RedColor
GreenColor
BlueColor

CyanColor

122 Color Fundamentals

= 2;

= 3:

= 4;

= 5;
= 6;

= 7:

= 8:

$0021;

$001E:

= $OOCD:
$0155;
$0199:

$0111:

{Blue}

{Green}

{Red}

(Black}

{Yellow}

(Magenta}

{Cyan}

(Colorvalues for drawing aperations: }

(Black}

(White}

{Red}

(Green}

(Blue}

MagentaColor $0089:

{Cyan}

{Magenta}

(Yellow} YellowColor = $0045;

Notes

1. The planar color model used in •cJasslc" QulckDraw provides two
planes for monochrome drawing (normal and inverse), three for
additive color (red, green, blue), and four for subtractive color (cyan,
magenta, yellow, black).

2. The constants NormalBi t, InverseBi t, and so on, are bit numbers
representing the various color planes, for use with the Toolbox routine
ColorBi t [4.1.3).

3. The constants BlackColor, Whi teColor, and so on, are actual color
values for use in QuickDraw drawing operations.

4. The numerical values of the color constants represent the appropriate
combinations of individual color bits for planar Imaging.

5. Standard monochrome graphics devices, such as the original Macin
tosh screen, use only the low-order bit (NormalBi t) of the color value.
Since all the color constants except Whi teColor are odd, this causes
all colors except white to appear as black.

123 [4.1.1) Color Values

6. To draw with a given color, use ForeColor or BackColor [4.1.2) to
make it the foreground or background color of the current graphics
port. 'lbe color will then be used in place of black or white, respec
tively, in all of the port's subsequent drawing operations.

~~l~------As __ s_em __ b_1y __ Lan __ gua ___ g_e_1_nfi_o_1_m_a_u __ on ____________ _

Bit numbers for color planes:

Name Value Meaning

NormalBit 0 Normal monochrome (black-
on-white)

InverseBit 1 Inverse monochrome (white-
on-black)

BlueBit 2 Blue
GreenBit 3 Green
RedBit 4 Red

BlackBit 5 Black
YellowBit 6 Yellow
MagentaBit 7 Magenta

CyanBit 8 Cyan

Color values for drawing operations:

Name Value Meaning

BlackColor $0021 Black

WhiteColor $001E White

RedColor $00CD Red
GreenColor $0155 Green

BlueColor $0199 Blue

CyanColor $0111 Cyan
MagentaColor $0089 Magenta

YellowColor $0045 Yellow

124 Color Fundamentals

4.1.2 Foreground and Background Colors

type

Graf Port ~ record

fgColor LONGINT:

bkColo r LONGINT:

(Current foreground color}

(Current background color}

end:

procedure ForeColor

(newColor LONGINT): (New foreground color)

procedure BackColor

(newColor LONGI NT): (New background color)

~~i~+--No_tes ____________ _

1. ForeColor and BackColor set the foreground and background colors
of an old-style graphics port.

2. The foreground and background colors are kept In the f gCo lor and
bkColor fields of the Graf Port record (1:4.2.2] .

3. The value of newC olo r should be one of the constants BlackColor.
Whi teColo r, and so on, defined in (4.1.1].

4 . In a newly created graphics port, the foreground color Is Initialized to
black and the background color to white.

5. In the discussions of classic QulckDraw drawing operations In earlier
volumes of this series, all references to black and whl te pixels actually
apply to the port's current foreground and background colors, respec
tively.

6. ForeColo r and BackColor are Intended for use In old-style graphics
ports only. In a color port (5.1.3], use RGBForeColor a nd
RGBBackColor (or PMForeCol or and PMBackColor) [5.4.1] instead.

125 [4.1.3) Color Plane
~~~~~~~~~~~~-

ID I Assembly Language Information 
--tm...-------

type 

Field offsets in a graphics port: 

(Pascal) 
Field name 

f gColor 
bkColor 

n-ap macros: 

(Pascal) 
Routine name 

ForeColor 
BackColor 

4.1.3 Color Plane 

(Assembly) 
Offset name 

f gColor 
bkColor 

(Assembly) 
Trap macro 

_ForeColor 
_BackColor 

Offset 
in bytes 

80 

84 

Trap word 

$A862 

$A863 

Graf Port record 

colrBit INTEGER: [Current color plane} 

end: 

procedure ColorBit 

(whichPlane INTEGER): {New color plane} 

Notes 

1. The colrBi t field of the Graf Port record (1:4.2.21 controls which 
color plane the port draws into. 

2. The Toolbox routine ColorBi t sets the color plane for the current 
port. Subsequent drawing operations will take place in the designated 
plane. 



126 Color Fundamentals 

3. The value ofwhi chPlane should be one of the cons tants NormalBi t , 
InverseBit, and so on, defined in [4.1.1). 

4 . ColorBi t is meaningful for old-style graphics ports only, an d should 
never be used in a color port (5.1.3). 

5. This routine is intended to be u sed by low-level printing and video 
imaging software; ordinary applica tion programs normally have no 
need for it. 

~lirill~~~~As~s_e_111~b-ly~Lan~_g_u_a_g_e_1_nfi_o_nn~_at_1_o_n~~~~~~-
Field offset in a graphics port: 

(Pascal) 
Field name 

col rBit 

Trap macro: 

(Pascal) 
Routine name 

ColorBit 

(Assembly) 
Offset name 

colrBit 

(Assembly) 
Trap macro 

_ColorBi t 

4.2 Color Representation 

4.2. 1 Color For111ats 

type 

RGBColo r = record 

red INTEGER ; {Level of red component) 

g reen INTEGER ; {Level of green component] 

blue I NTEGER {Level of blue component) 

e nd: 

CMYColo r = r e co r d 

cyan SmallFract: {Level of cyan component} 

mage n ta Smal l F r act ; {Level of magenta component} 

y ellow Smal l Fr act {Level of yellow component} 

end; 

Offset 
in bytes 

88 

Trap word 

$A8 64 



127 (4.2. l] Color Formats 
~~~~~~~~~~~~-

HSVColor ; record

HSLColor =

hue SmallFract: {Hue}

saturation SmallFract: {Saturation}

value SmallFract {Value (brighbless)}

end:

record
hue SmallFract: {Hue}

saturation SmallFract: {Saturation)

lightness SmallFract (Lighbless)

end:

Notes

1. These data structures all represent alternative methods of specifying
colors in a device-independent way.

2. RGB (red-green-blue) is the standard form of device-independent
color representation used by the Macintosh Toolbox. The three
components give the relative levels of the additive primary colors used
in color video.

3. CMY (cyan-magenta-yellow) format expresses colors in terms of the
subtractive primaries used in hardcopy printing.

4. HSV (hue-saturation-value) is the most widely known form of color
representation, and is used by the Color Picker Package (4.2.3) to
allow users to specify colors interactively on the screen.

5. HSL (hue-saturation-lightness) is an alternative format similar to
HSV.

6. RGB components are expressed as unsigned integers, from o to 65 5 3 5.

7. In all other forms of color representation, the components are ex
pressed as small fractions (2.4.1) with values between o and 1.

8. Hue values wrap around cyclically to denote positions on a circular
"color wheel." Values of both o and 1 correspond to red. . 3 3 3 3 3 to
green, and . 66667 to blue.

9. Saturattondenotes the purity or vividness of a color, from o (pure gray,
no color) to 1 (pure color, no gray).

10. Value (also called brightness) measures the strength or intensity of a
color, from o (pure black, no color) to 1 (maximum intensity).

11. Lightness expresses the depth of a color's shade as an equivalent gray
level, from o (pure black) to 1 (pure white).

128 Color Fundamentals

12. To convert colors from one format to another, use the conversion
routines in (4.2.2).

~ ~1 ... ___ As_s_e_m_b_1_y_Lan __ gua __ g_e_1_m_o_rm_a_t1_o_n ______ _

procedure

procedure

procedure

Field offsets in color records:

(Pascal) (Assembly)
Field name Offset name

Offset
in bytes

red red
green green
blue blue

cyan cyan
magenta magenta
yellow yellow

hue hue
saturation saturation
value value
lightness lightness

Assembly-language constant:

Name Value Meaning

0

2

4

0

2

4

0

2

4

4

RGBColor 6 Size of color records, in bytes

4.2.2 Color Conversion

RGB2CMY

(fromColor RGBColor: {Color to be converted, in RGB format}

var toColor CMYColor): {Equivalent color in CMY fonnat}

CMY2RGB

(f romColor CMYColor; {Color to be converted, in CMY fonnat}

var toColor RGBColor): {Equivalent color in RGB fonnat}

RGB2HSV

(fromColor RGBColor; {Color to be converted, in RGB fonnat}

var toColor HSVColor): {Equivalent color in HSV fonnat}

129 (4.2.2) Color Conversion
~~~~~~~~~~~~-

procedure HSV2RGB 
(fromColor HSVColor: {Color to be converted, in HSV format} 

var toColor RGBColor): {Equivalent color in RGB format} 

procedure RGB2HSL 
(fromColor RGBColor: {Color to be converted, in RGB format} 

var toColor HSLColor): {Equivalent color in HSL format} 

procedure HSL2RGB 
(fromColor HSLColor: (Color to be converted, in HSL format} 

var toColor RGBColor): {Equivalent color in RGB format} 

RGB values of standard primary colors: 

Table Red Green Blue 
Index Color Dec. Hex. Dec. Hex. Dec. Hex. 

0 Black 0 $0000 0 $0000 0 $0000 
1 Yellow 64512 $FCOO 62333 $F370 1327 $052F 
2 Magenta 62167 $F2D7 2134 $0856 34028 $84EC 
3 Red 56683 $DD6B 2242 $08C2 1698 $06A2 

4 Cyan 577 $0241 43860 $AB54 60159 $EAFF 

5 Green 0 $0000 32768 $8000 4528 $11BO 

6 Blue 0 $0000 0 $0000 54272 $0400 

7 White 65535 $FFFF 65535 $FFFF 65535 $FFFF 

~~iiiH~~--N_o_te_s ________________________________ _ 
1. These routines convert colors among the alternative representation 

formats defined in [4.2.1 ). 

2. The standard format used by the Toolbox itself is RGB. All the 
conversion routines convert between this form and one of the others. 

3. The table shows the equivalent RGB values of the standard additive 
and subtractive primary colors. 



~~I 

130 Color Fundamentals 

4. The assembly-language global variable QDColors (see ·.Assembly 
Language Information· below) holds a handle to a table of these 
values. 

5. Each color's index In the table Is taken from bits 4-2 of the correspond
ing color constant (4.1.1). 

6. The RGB values for the standard colors are based on those produced 
by an lmageWrlter II printer with a color ribbon. 

7. The conversion routines are Implemented as part of the Color Picker 
Package. and are called at the machine level via the package trap 
_Pack12 [1:7.2.1). The trap macros expand to call this trap after 
pushing an identifying routine selector (see table below) onto the 
stack. 

Assembly Language Information 

Trap macros and routine selectors: 

(Pascal) (Assembly) Trap Routine 
Routine name Trap macro word selector 

RGB2CMY _RGB2CMY $A82E 4 

CMY2RGB _CMY2RGB $A82E 3 

RGB2HSV _RGB2HSV $A82E 8 
HSV2RGB _HSV2RGB $A82E 7 

RGB2HSL _RGB2HSL $A82E 6 

HSL2RGB _HSL2RGB $A82E 5 

Assembly-language global variable: 

Name Address Meaning 

QDColors $8BO Handle to table of prlmai:y 
color values 



131 (4.2.3) The Color Picker 
~~~~~~~~~~~~...:.._-

4.2.3 The Color Picker

1.1

Pleose pick o color:

•
Hue 59733 [;)

Saturation 63286 [;)
Brightness 62167 Ill

Red 62167 I Green 2134
Blue 34028 (Cancel) n OK ll

Color Picker dialog

I Definitions

---1~~-----------------------------------
f unction GetColor

(top Left

promptString

startColor

var pic kedColor

: BOOLEAN :

Point :

Str255:

RGBColor:

RGBColor)

{Top-left comer of dialog in screen coordinates)

(Prompting string}

{Initial color to propose in dialog box}

(Returns color selected by user)

{Did user confirm color selection?}

1. GetColor displays the dialog box shown in the figure, allowing the
user to specify a color interactively on the screen.

2. GetColor handles all events until the user dismisses the dialog box,
either by clicking the OK or Cancel button or by pressing the Return
or Enter key.

132 Color Fundamentals

3. The topLeft parameter gives the location of the dialog box ln global
(screen) coordinates.

4. The point designated by topLeft should lie on the screen of the main
graphics device [4.3.4].

5. If topLeft = (0, 0), the dialog box will automatically be centered
horizontally on the main screen, with half as much empty space above
as below.

6. startColor specifies an initial color value to be proposed to the user
when the dialog first appears on the screen. This color will remain
permanently displayed in the lower of the two color boxes, while the
color in the upper box changes in response to the user's actions.

7. The promptString parameter is displayed as a static text item above
the two color boxes.

8. The currently selected color is displayed simultaneously in four
different ways:

• as a direct visual sample in the upper of the two color boxes

• as an Indicator position on the color wheel and the sliding
brightness control (scroll bar)

• as a set of digital HSV parameters in the upper three text
boxes

• as a set of digital RGB components In the lower three text
boxes

9. The angular position of the indicator on the color wheel determines
the hue of the selected color, the radial distance from the center
determines the saturation, and the height of the indicator box in the
scroll bar determines the value (brightness).

10. All digital (HSV and RGB) parameters range from a minimum of o to
a maximum of 65535. Hue values wrap around from 65535 to o.
allowing the hue to cycle continuously around the color wheel: all
other values pin at o or 6 5 5 3 5.

11. The user can vaiy the selected color either by moving the indicators on
the color wheel and scroll bar, manipulating the HSV or RGB parame
ters with the up and down arrows, or typing new parameter values
directly into the text boxes. All changes in any one form of color
display are automatically reflected in the others as well.

12. Clicking the mouse In the lower color box automatically restores all
color settings to the color initially proposed via the startColor
para.meter.

13. When satisfied with the selected color, the user confirms the selection
by clicking the OK button or pressing the Return or Enter key. The

133 (4.3.1) Device Records
~~~~~~~~~~~~~ 

selected color is then returned as an RGB value in the variable 
parameter pickedColor. 

14. Clicking the Cancel button dismisses the dialog and rejects the 
selected color. The value returned for pickedCo lo r is then unde
fined; the program should presumably use the original s tartColor 
instead. 

15. The Boolean function result tells whether the user confirmed (TRUE) or 
canceled (FALSE) the dialog. 

16. Get Color does not change the current color environment in anyway. 
It is up to your program to use the selected color in whatever way it 
considers appropriate. 

17. GetColor is part of the Color Picker Package. and ls called at the 
machine level via the package trap _Packl2 (1:7.2.l ). The trap macro 
expands to call this trap after pushing an identifying routine selector 
(see table below) onto the stack. 

~ li:a I Assembly Language Information 

Trap macro and routine selector: 

(Pascal) (Assembly) 
Routine name Trap macro 

GetColor _GetColor 

4.3 Graphics Devices 

4.3.1 Device Records 

I Definitions 

Trap 
word 

$A82E 

Routine 
selector 

9 

-I _____ -----------
type 

GDHandle 'CDP~r: 

GDP~r ' GDevice: 

GDevice r ecord 

gdRefNum 

gdID 

gdType 

gdITable 

I NTEGER: {Driver reference number J 
INTEGER: {Client ID for matching routines (4.6.2)) 

INTEGER: {Device type) 

ITabHandle : (Inverse table (4.4.2)) 



con st 

134 Color Fundamentals 

gdResPref 
gdSearchProc 
gdCompProc 
gdFlags 
gdPMap 
gdRefCon 
gdNextGD 
gdRect 
gdMode 
gdCCBytes 
gdCCDepth 
gdCCXData 
gdCCXMask 
gdReserved 

end; 

INTEGER: 
SProcHndl: 
CProcHndl: 
INTEGER: 
PixMapHandle: 
LONGINT: 
GDHandle: 
Rect: 
LONGINT: 
INTEGER: 
INTEGER: 
Handle: 
Handle: 
LONG INT 

{Preferred inverse table resolution [4.4.2]} 

{List of custom search functions [ 4.6.1]} 

{List of custom complement procedures [4.6.l]} 

(~ttribute flags [4.3.S]} 

(Pixel map to hold displayed image} 

{CalcCMask and SeedCFill parameters [5.4.S]} 

(Next device in device list} 

{Boundary rectangle} 

{Current display mode} 

{Private} 

{Private} 

{Private} 

{Private} 

(Reserved for future expansion} 

CLUTType O: {Mapped device with color lookup table} 

{Fixed device. no lookup table} 

{DirectRGB device} 

FixedType 1: 
DirectType 2: 

Notes 

1. A device record summarizes the characteristics of a graphics device. 

2. A device record is created at system startup for each installed video 
graphics card. Additional device records can be created as needed (for 
example. for drawing into an offscreen pixel map whose pixel depth or 
other properties differ from those of the screen). 

3. All device records reside in the system heap. 

4. gdRect is the device's boundary rectangle. in the coordinate system 
established by the main graphics device [4.3.4). For devices other 
than the main device. the relative positioning of this rectangle is set by 
the user via the Control Panel desk accessory. 

5. gdType identifies the device's general method of color specification. 
Currently defined device types are CLUTType, FixedType, and 
DirectType. 

6. The device's pixel depth, color table [4.4. l J, and other specific display 
characteristics are defined by the pixel map [5.1. l J containing Its 
displayed image. The gdPMap field of the device record holds a handle 
to this pixel map. 



135 [4.3.1) Device Records 
~~~~~~~~~~~~ 

7. gdRefNum ls the reference number of the device's driver.

8. gdMode ls the display mode ln which the device Is currently operating.
The available modes are defined In declaration ROM on the device's
controller card; the user chooses among them with the Control Panel.

9. By convention, mode number 128 designates the device's default
mode, which ls normally monochrome (I-bit) video. Additional modes
are numbered sequentially from 12 9 up.

10. gdFlags is a word of flag bits describing the device's attributes: see
[4.3.5) for details.

11. gdNextGD ls a handle to the next device record In the global device list
[4.3.3). A NIL handle marks the end of the list.

12. gdITable is a handle to the device's inverse table (4.4.2), used for
mapping RGB color values to their corresponding color table index or
other concrete representation. gdResPref is the preferred bit resolu
tion for the inverse table, as discussed in [4.4.2).

13. gdSearchProc and gdCompProc are handles to lists of custom color
matching routines [4.6.1) (search functions and complement proce
dures, respectively). NIL values denote the standard matching rou
tines only. The gd ID field holds a client ID [4.6.2) for use with custom
matching routines.

14. The gdRefCon field is used to pass parameter information to the
special graphics operations CalcCMask and SeedCFill (5.4.5).
Application programs should never store directly into this field.

15. The gdCCBytes, gdCCDe_pth, gdCCXData, and gdCCXMask fields are
used privately by the Toolbox to maintain the device·s color cursor
(6.2).

16. The gdReserved field ls reserved for future expansion, and should
always be set to o.

ID I Assembly Language Information --1m......_ ____ _
Field offsets in a device record:

(Pascal) (Assembly)
Field name Offset name

gdRefNum gdRefNum

gdID gdID

gdType gdType

gdITable gdITable

gdResPref gdResPref

Offset
ln bytes

0

2

4

6

10

fun c tion

136 Color Fundamentals

(Pascal) tAsaembly) Offset
Field name Offset name in bytes

gdSearchProc gdSearchProc 12

gdCompP r oc gdCompProc 16

gdFlags gdFlags 20

gd PMap gdPMap 22

gdRefCon gdRefCon 26

gdNextGD gdNextGD 30

gdRect gdRect 34
gdMode gdMode 42

p,dCCBytes p,dCCBytes 46

gdCCDepth gdCCDepth 48
p,dCCXData p,dCCXData 50
gdCCXMask gdCCXMask 5 4
gdReserved gdReserved 58

Assembly-language constant:

Name

GD Rec
ln bytes

Value Meaning

62 Size of a graphics device record

Graphics device types:

Name

CLUTType
lookup table
Fixed Type
table
Direct Type

Value

0

1

2

Meaning

Mapped colors with color

Fixed color mapping, no lookup

Direct ROB representation

4.3.2 Creating and Destroying Devices

NewGDevice

(dRefNum INTEGER :

ini~Mode : LONGINT)
: GDHandle:

(Driver reference number)

(Initial display mode)

(Handle to device record)

137 [4.3.2) Creating and Destroying Devices
~~~~~~~~~~~~-

procedure InitGDevice 

(dRefNum 

newMode 

theDevice 

procedure DisposGDevice 

(theDevice : 

INTEGER: 

LONGINT: 

GDHandle): 

GDHandle): 

(Driver reference number} 

(New display mode} 

{Handle to device record} 

{Handle to device record} 

---l~il~~.----N_o_t_es __________________________________ _ 

1. NewGDevice creates and initlalizes a new device record [4.3.1] and all 
of its subsidiary data structures: Ini tGDevice reinitializes an exist
ing device record for a specified display mode. 

2. dRefNum is the reference number of the driver for the desired device. 

3. ini tMode or newMode specifies the display mode to which the device 
is to be set. The fields of the device record are set to reflect the 
characteristics of the requested mode. 

4. A color table for the specified mode ts allocated and initialized, either 
from a 'clut' resource (4.7.1) (for mapped devices) or directly from 
the controller card's ROM (for fixed devices). MakeITable [4.4.2] ls 
then called to build a corresponding inverse table. 

5. A device's possible display modes are defined in declaration ROM on 
its controller card. By convention, mode number 12 8 designates the 
device's default mode, which ls normally monochrome (1-blt) video. 
Addltlonal modes are numbered sequentially from 12 9 up. 

6. If ini tMode or newMode :1: 128, the device ls assumed to be capable of 
displaying color and its GDDevType attribute (4.3.5) is set to TRUE. All 
other device attributes are Initialized to FALSE. 

7. To create a device record for an offscreen pixel map. set dRefNum to O 
and ini tMode to -1. The contents of the record will then not be 
initialized for a particular device and display mode; it's up to you to 
initialize them for yourself. 

8. Newly created device records are not added to the global device list 
(4.3.3]. The contents of the device list are maintained entirely by the 
Toolbox; do not attempt to add new devices to the list yourself. 

9. All device records and their associated data structures reside in the 
system heap. 

10. If a new device record cannot be successfully allocated or initialized. 
NewGDevice returns NIL. 



138 Color Fundamentals 

11. DisposGDevice deallocates and destroys a device record and all of its 
associated data structures. 

12. Device records for all installed graphics devices are created automati
cally by the Toolbox at system startup and can be reinitialized to a new 
display mode by the user via the Control Panel desk accessory. You 
don't ordinarily need to call these routines yourself un less you're 
doing something unusual, such as drawing to an ofTscreen pixel map. 

~ lrjl I Assembly Language Information 

Trap macros: 

(Pascal) 
Routine name 

NewGDevice 

InitGDevice 

DisposGDevice 

4.3.3 Device List 

function GetDeviceList 

: GDHandle: 

functio n GetNextDevice 

(thisDevice : GDHandle) 

: GDHandle: 

(Assembly) 
Trap macro 

_NewGDevice 

InitGDevice 

_DisposGDevice 

(First device in list} 

(Handle to a device} 

(Next device in list} 

Trap word 

$AA2F 

$AA2E 

$AA30 

~~i±---+-i-N-otes -----

1. All graphics devices in the system are kept in a global device list, linked 
together through the gdNextGD fields of their device records (4.3 .1). 

2. A handle to the first device in the list Is kept In the assembly-lan guage 
global variable DeviceList; GetDeviceList returns a copy of this 
handle. 

3. GetNextDevice returns a handle to the next device following a given 
one, or NIL for the last device in the list. 



139 (4.3.4) Current Device 
~~~~~~~~~~~~~-

4. The list only includes true graphics devices, whose controller cards
are found installed In the system at startup time. New device records
created dynamically with NewGDevice [4.3.2] are not added to the list.

5. The contents of the device list are maintained entirely by the Toolbox;
do not attempt to add new devices to the lis t yourself.

I cm I Assembly Language Information
---llill1--------

Trap macros:

(Pascal)
Routine name

GetDeviceList

GetNextDevice

(Assembly)
Trap macro

_ GetDeviceList

_ GetNextDevice

Trap word

$AA29

$AA2B

Assembly-language global vart.a.ble:

Name Address

DeviceList $BAB

Meaning

Handle to first graphics
device in device lis t

4.3.4 Current Device

procedure SetGDevice
(newDevice GDHandle) ;

func tion GetGDevice
: GDHandle;

function GetMaxDevice
(globalRect : Rec t)

: GDHandle;

function GetMainDevice
: GDHandle ;

{Handle to device to be made current)

{Handle to current device)

{Rectangle to intersect with, in global coordinates}
{Deepest device that intersects with this rectangle}

{Handle to main device}

140 Color Fundamentals

~~lii~..,.___Not_es ------

1. SetGDevice makes a designated graphics device the current device:
GetGDevice returns a handle to the current device.

2. The Toolbox uses the color table, Inverse table, and matching routines
associated with the current device to find the best available matches
to the colors you specify for your drawing operations.

3. When you draw Into a window, the Toolbox automatically finds which
screen(s) the window lies on and handles the setting _of the current
device for you. You don't ordinarily need to call SetGDevice yourself
unless you're doing something unusual, such as drawing to an
offscreen pixel map.

4. GetMaxDevice finds the device with the greatest pixel depth whose
boundary rectangle Intersects with a given rectangle. This Is useful,
for Instance, In determining the appropriate depth for an Image that
may span two or more separate screens.

5. The rectangle to be Intersected Is given In global coordinates.

6. GetMainDevice returns a handle to the main graphics device (the one
on which the menu bar is displayed).

7. The graphics device Installed In the lowest-numbered slot at system
startup becomes the main device, unless the user designates some
other device with the Control Panel desk accessory.

8. The assembly-language global variables TheGDevice and Main -
Device hold handles to the current and main devices, respectively.

Assembly Language Informatlon

Trap macros:

(Pascal) (Assembly)
Routine name Trap macro Trap word

SetGDevice _SetGDevice $AA31
GetGDevice _GetGDevice $AA32
GetMainDevice _GetMainDevice $AA2A
GetMaxDevice _GetMaxDevice $AA27

141 (4.3.51 Device Attributes
~~~~~~~~~~~~~~ 

Assembly-language global variables: 

Name Address Meaning 

TheGDevice $CC8 Handle to cu rrent graphics 
device 

MainDevice $8A4 Handle to main screen device 

4.3.5 Device Attributes 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

11 1~-L~~~;~:~pe 
- Ma inScr een 

Alllnit 
'--~~~~~~~~~~~~~~~~~~~~~ Sc reenDevice 

'--~~~~~~~~~~~~~~~~~~~~~~- NoUriver 

~~~~~~~~~~~~~~~~~~~~~~~~~ Sc reenAcrive 

f u n c tion TestDeviceAttribute

(theDevice GDHandle ;

whichAttr : INTEGER)

: BOOLEAN;

proc e dure SetDeviceAttribute

(theDevic e GDHandle:

whichAttr

newValue

INTEGER :

BOOLEAN);

Graphics device a ttribute flags

(Handle to device record)

(Bit number of desired attribute)

(Current value of atLribute)

(Handle to device record }

(Bit number of desired attribute}

(New value of auribute}

con st
GDDevType
RAMinit
MainScreen
Alllnit
ScreenDevice
NoDriver
ScreenActive

~ijli

142 Color Fundamentals

0:

10:

11:

12:

13:

14:

= 15:

Notes

{Supports color}

{Initialized from RAM}

{Is main device (contains menu bar)}

{Initialized from a • scrn • resource}
{Is a screen device}

{Has no driver}

{Available for drawing)

1. TestDeviceAttribute and SetDeviceAttribute test and set the
attribute flags in the gdFlags field of a device record (4.3.1].

2. The desired attribute is identified by its bit number within the flag
word, using one of the constants shown.

3. The GDDevType attribute tells whether the device is capable of display
ing color. For monochrome devices, this attribute is FALSE.

4. The RAMinit attribute tells whether the device was initialized from
RAM.

5. The MainSc reen attribute marks the main graphics device (the one on
which the menu bar is displayed).

6. The Alllnit attribute is TRUE if the modes and arrangement of the
system's screens were initialized from a screen configuration (• sc rn •)
resource.

7. The Sc reenDevice attribute tells whether the device is a video display
screen. This attribute would be FALSE, for example, for a printer or for
a device record representing an offscreen pixel map.

8. The NoD river attribute is TRUE for devices, such as an offscreen pixel
map, that have no associated device driver.

9. The ScreenActive attribute tells whether the device is currently
active (available for drawing).

10. The remaining bits in the flag word are resexved for future use.

143 (4.4.1) Color Table Structure
~~~~~~~~~~~~-

ID I Assembly Language Information 
-ID..------

Bit numbers for device atbibute flags: 

Name 

GDDevType 

RAMinit 

MainScreen 

bar) 
Allinit 

source 
ScreenDevice 

NoDriver 

ScreenActive 

Trap macros: 

(Pascal) 
Routine name 

Value Meaning 

0 

10 

11 

12 

13 

14 

15 

Supports color 
Initialized from RAM 
Is main device (contains menu 

Initialized from a 'scm' re-

Is a screen device 
Has no driver 
Is current device 

(Assembly) 
Trap macro Trap word 

TestDeviceAttribute _TestDeviceAttribute 

SetDeviceAttribute _SetDeviceAttribute 

$AA2C 

$AA2D 

4.4 Color Tables 

4.4.1 Color Table Structure 

type 
CTabHandle = ACTabPtr: 
CTabPtr AColorTable: 

ColorTable = record 
ct Seed 

ctFlags 

ctSize 
ct Table 

end; 

LONGINT; 

INTEGER: 

INTEGER: 

CSpecArray 

{Seed value for coordinating inverse table} 

{Attribute flags} 

{Number of entries minus 1} 

{Array of color specifications} 



144 Color Fundamentals 

CSpecArray =array (0 .. 0] of ColorSpec: 
ColorSpec = record 

value INTEGER: 
rgb RGBColor 

end: 

Notes 

{Color index} 

{Tme color value} 

1. A color table maps the index numbers used to represent colors in a 
pixel image into the corresponding actual color values. 

2. Each mapped or fixed-color graphics device has its own color table 
defining the colors the device is currently configured to display. A 
handle to the device's color table is kept in the pmTa b le field ofits pixel 
map (5.1.l), which in tum is located via a handle in the gdPMap field 
of the device record (4.3.l). 

3. For fixed devices, the color table is read from ROM on the device's 
controller card and cannot be changed. For mapped devices, the 
table's contents are initialized from a 'cl ut' resource (4. 7.1), but can 
then be modified to vaiy the range of colors presented. 

4. Individual pixel maps can also have their own tables of intended color 
values, independent of the device on which the pixel map is displayed. 

5. The high-order bit of the color table's ctFlags field tells whether this 
table belongs to a graphics device (1) or a device-Independent pixel 
map (0). 

6. All remaining bits of ctFlags are reserved for future use. 

7. ctSeed is the color table's current seed value, used to coordinate its 
contents with those of Its matching Inverse table (4.4.2). 

8. For color tables created from 'clut' resources {4.7.1) with Get
CTable (4.4.3), ctSeed ls inltlallzed to the resource ID, which ls 
always between o and 1023. For tables created any other way, call 
Get CT Seed (4.4.3) to obtain an initial seed value, which will always be 
greater than 1023. 

9. All Toolbox routines that change the contents of a color table also 
change its seed value. This invalidates the corresponding inverse 
table, forcing the Toolbox to rebuild it before it can be used. (Exception: 
RestoreEntries (4.4.5) does not change the seed and thus does not 
force rebuilding of the inverse table.) 



145 (4.4.1) ColorTable Structure 
~~~~~~~~~~~~ 

10. ctTable ls a variable-length array of color specifications (not directly
accessible in Pascal) containing the actual entries in the color table.

11. ctSize ls the index of the last element in the ctTable array, and ls
equal to the total number of entries in the color table minus 1.

12. In a color table belonging to a graphics device, each color specification
represents a color currently available for display on the device. The
rgb field gives the actual value of the color: the use of the value field
ls private to the Toolbox.

13. In a color table belonging to a device-independent pixel map, each
color speclflcatlon represents a desired or intended color. The value
field gives the index number used to denote the color in the map's pixel
image; the r gb field gives the exact color value that index ls intended
to represent. When the image ls displayed on a given graphics device.
this color will be matched to the closest approximation available on the
device.

14. By convention, the first and last entries in a color table should always
be white (red= green= blue= $FFFF) and black (red= green= blue
= $0000), respectively.

~la I Assembly Language Information

Field offsets in a color table:

(Pascal)
Field name

ct Seed

ctFlags

ctSize

ctTable

(Assembly)
Offset name

ct Seed

ctFlags

ctSize

ctTable

Field offsets in a color specfftcation:

(Pascal) (Assembly)
Field name Offset name

value

rgb

value

rgb

Offset
in bytes

0

4

6

8

Offset
in bytes

0

2

146 Color Fundamentals

Assembly-language constants:

Name Value Meaning

CT Rec 8 Size of a color table record in
bytes, excluding ctTable

CTEntrySize 8 Size of a color table entry in
bytes

ColorSpecSize 8 Size of a color specification in
bytes

4.4.2 Inverse Tables

type

ITabHandle = AITa bPtr:

ITabPtr AITab:

!Tab r ecord

iTabSeed LONGINT ; {Seed value}

iTabRes INTEGER: {Bit resolution)

i t Table array [O • . 0) of SignedByte {Anayofcolorindiccs)

end;

procedure Make!Table

(colorTab CTabHandle:

inverseTab ITabHandle :

bitRes INTEGER) :

{Handle to color table}

{Handle to inverse table)

{Desired bit resolution}

~~iiii~==.,_ __ N_o_t_e_s ____________________________________ _

1. An inverse table maps RGB color values into the corresponding color
indices relative to a given color table.

2 . iTabSeed is the seed value for the version of the color table on which
this inverse table Is based. If the color table's current seed value
doesn't match, then the inverse table Is invalid and must be rebuUt
before it can be u sed.

14 7 [4.4.2) Inverse Tables
~~~~~~~~~~~~-

3. i Tab Res is the bit resolution of the inverse table. A color's Index in the 
table ts constructed by concatenating this many high-order bits from 
each of its three RGB components. 

4. The length of each inverse table index in bits is thus three times the 
bit resolution, and the total number of entries in the table ts 2 to this 
power. For example, 3-btt resolution produces 9-bit table indices and 
a table size of 512 (29) entries. 

5. The only bit resolutions currently supported are 3. 4. and 5 bits. The 
corresponding table sizes are 512, 4096, and 32,768 entries, respec
tively. The standard resolution is 4 bits. 

6. i tTable ls a variable-length array of signed bytes (not directly 
accessible in Pascal) containing the actual entries in the inverse table. 
Each array element gives the index of the color table entry best 
approximating the corresponding RGB color. 

7. Make!Table constructsanlnversetableofagiven bit resolution based 
on a given color table. 

8. A NIL value for either colorTab or inverseTab denotes the color or 
inverse table associated with the current graphics device [4.3. l ). 

9. IfbitRes = o, the inverse table will be built to the current devlce·s 
preferred bit resolution. taken from the gdResPref field of its device 
recora (4. 3.1 ]. 

10. Reserved entries [4.4.6) in the color table are ignored, and are never 
included In the Inverse table. 

11. If bit Res ls less than 3 or greater than 5, the error code c Res Err is 
posted. (You can check for this error with the Toolbox routine 
QDError [5.1.7).) 

.12. The inverse table format described here may change in future versions 
of the Toolbox or for nonstandard color-matching routines [4.6.1]. 
This information ls given for your background understanding only; 
never write code based on it. 

ID I Assembly Language Information 
--1m--------

Field offsets in an inverse table: 

(Pascal) (Assembly) 
Field name Offset name 

iTabSeed 

iTabRes 

itTable 

iTabSeed 

iTabRes 

itTable 

Offset 
in bytes 

0 

4 

6 



148 Color Fundamentals 

Trap macro: 

(Pascal) 
Routine name 

Make!Table 

(Assembly) 
Trap macro 

_Make!Table 

Trap word 

$AA39 

4.4.3 Creating and Destroying Color Tables 

function GetCTable 

(cTabID : INTEGER) 

: CTabHandle: 

func tion GetCTSeed 

: LONGINT; 

procedure DisposCTable 

(theTable : CTabHandle) : 

(Resource ID of color table resource) 

{Handle lo new color table} 

(Seed value for color table } 

(Handle lo color table 10 destroy} 

~~i~?--No_tes ____________ _ 

1. GetCTable creates a new color table from a resource of type ' clut ' 

[4.7.l) a nd returns a handle to it. 

2. The new table's seed value is initialized to the resource ID from which 
it was created. 

3. If no ' clut ' resource exis ts with the given ID, the function result will 
be NIL. 

4 . GetCTSeed returns an Initial seed value for a color table not created 
from a ' clut ' resource. Thisvaluewill always begreater than 1023, 

and is guaranteed to be different from that of any other existing color 
table. 

5. DisposCTable destroys a color table and deallocates the storage 
s pace it occupies. 



149 (4.4 .4) Color Ma pping 
~~~~~~~~~~~~~~ 

I CJ I Assembly Language Information
-111:1...------

Trap macros:

(Pascal)
Routine name

GetCTable
GetCTSe ed
DisposCTable

(Assembly)
Trap macro

_Get CTable
_Get CTSeed
_DisposCTab l e

Trap word

$AA18
$AA28
$AA24

Assembly-language constant:

Name

MinSeed

Value

1023

Meaning

Minimum seed value for color
a nd Inverse tables

4 .4 .4 Color Mapping

procedure I ndex 2Color

(t:heindex

var theColor

function Color2 I ndex

LONGINT;

RGBCol or) ;

(t: heColor ; RGBColor)

; LONGINT ;

function Re alColor

(theColor : RGBColo r)

: BOOLEAN;

proc edur e Invert:Color

(var t heColo r

procedure Get Sub table
(t:heSubtable

iTabRes

sourceTable

RGBColor) ;

CTabHand l e ;

I NTEGER ;

CTa bHandle);

{Color index}

{Returns corresponding color value}

{Color value)

{Corresponding color index}

{Color value J
{Exact match available?)

{Color to be inverted; returns com pl em ent)

I Subtable of matched colors)

(Bit resolution fo r matching)

(Color table to be searched)

150 Color Fundamentals

Notes

1. Index2Color finds the RGB colorvalue corresponding to a given color
index: Color2Index finds the index most nearly approximating a
given color value.

2. Both routines use the color table of the current graphics device.

3. Notice that because Color2Index only produces the nearest available
approximation, the two operations are not necessarily direct inverses.
That ls, applying Color2Index to a given color and then Index2Color
to the result does not necessarily yield back the same color you
originally started with.

4. RealColor tests whether an exact match to a given color is available
in the current device's color table.

5. The test is limited by the current bit resolution of the device's inverse
table: that is, if the inverse table resolution is 3 bits, Real Color tests
for a color that matches the given color in the three most significant
bits of each RGB component.

6. InvertColor finds the complement of a given RGB color.

7. The color to be complemented is passed as the value of the parameter
theColor; the resulting complement is returned via the same variable
parameter.

8. Color2Index and InvertColor use the current device's list of search
functions and complement procedures (4.6. l], respectively.

9. GetSubtable accepts a pair of color tables as parameters and builds
a subtable of the best available matches from one table to the colors
in the other.

10. The colorsgtventn the rgb fields of theSubtable's color specifications
(4.4.1) are matched against the contents of sourceTable; the color
indices of the best available approximations are returned in the v a 1 u e
fields of theSubtable.

11. A NIL value for sourceTable denotes the color table belonging to the
current graphics device.

12. A temporary- inverse table is built for sourceTable, at the bit resolu
tion specified by iTabRes, and immediately discarded on completion
of the operation. (If sourceTable =NIL, the current device's existing
inverse table is used instead of building a new one.)

151 (4.4.51 Color Table Management
~~~~~~~~~~~~~~ 

~Iii I Assembly Language Information 

Trap macros: 

(Pascal) 
Routine name 

Index2Color 
Color2Index 
RealColor 
InvertColor 
GetSubtable 

(Assembly) 
Trap macro 

_Index2Color 
_Color2Index 
_Real Color· 

InvertColor 
_Get Subtable 

Trap word 

$AA34 

$AA33 

$AA36 

$AA35 

$AA37 

4.4.5 Color Table Management 

procedure SetEntries 
(start i ndex INTEGER: 
nEntries INTEGER: 
newColors CSpecArray): 

procedure SaveEntries 

(mainTable CTabHandle: 

saveTable CTabHandle: 

var whichEntries ReqListRec): 

procedure RestoreEntries 

(saveTable 

type 

ReqListRec 

mainTable 
var whichEntries 

CTabHandle: 
CTabHandle: 
ReqLis t:Rec) : 

INTEGER: 

{First color index to be set) 
{Number of colors minus 1} 

(Array of color specifications} 

(Color table to copy from } 

(Color table to copy to} 
(List of entries to copy} 

(Color table to copy from ) 

(Color table to copy to} 
(List of entries to copy) 

(Number of entries to copy} 
record 

reqLSize 
reqLData 

end: 

array (0 .. 0) of INTEGER (Arrayofindexnumbers) 



152 Color Fundamentals 

Notes 

1. SetEntries enters a specified set of colors in the current device·s 
color table. 

2. newColors is an array of color specifications (4.4.1) whose rgb fields 
define the colors to be entered. nEntries gives the number of colors 
minus 1. 

3. If start Index= -1, the color indices to be set are given by the value 
fields of the colorspectftcatlons [4.4.1) in the newColors array. These 
indices must be in the proper range for the current device's pixel depth 
(for example, from o to 255 for a pixel depth of 8). 

4. If startlndex ~ o, it specifies the first color index to be set. Colors 
taken from the newColors array are loaded into the color table with 
consecutive color indices. starting from this point: the v a 1 ue fields in 
the array are ignored. 

5. Notice that all index values. whether taken from the startindex 
parameter or from the value fields in the newColors array. refer to 
logical color indices, not to physical positions within the color table. 

6. Save Entries copies a specified set of entries from a main color table, 
mainTable, to an auxiliaty table, saveTable. RestoreEntries cop
ies them back from saveTable to mainTable. 

7. Notice that the parameters to the two routines are given in opposite 
orders, so that the source table always comes first and the destination 
table second. 

8. A NIL value for mainTable denotes the color table belonging to the 
current graphics device. 

9. whichEntries is a request list specifying which entries from 
mai nT ab 1 e to save or restore. The contents of these entries are copied 
to or from consecutive positions starting at the beginning of save
Table. 

10. The number of entries in saveTable must be the same as the size of 
the request list (reqLSize). 

11. Entries are identified in the request list by their physical positions 
within the main table, not by the logical color indices given in the 
value fields of their color specifications (4.4.1). 

12. If any of the indices specified in the request list lie outside the range 
of mainTable, the corresponding elements of the request list are set 



153 [4.4.5] Color Table Management 
~~~~~~~~~~~~-

to a (negative) error value and the error code CRangeErr is posted.
(You can check for this error with the Toolbox routine QDError
[5.1. 7].) All valid indices in the request list will be correctly saved or
restored.

13. SaveEntries and RestoreEntries are not affected by the protection
or reseivatlon (4.4.6] of any color table entry.

14. All changes made in the current device's color table by SetEntries or
RestoreEntries will directly affect the colors appearing on the
screen.

15. RestoreEntries does not change the value of mainTable's seed
[4.4.1] and thus does not invalidate the corresponding inverse table.
even though the contents of the two tables no longer match. This may
cause inverse color-mapping operations such as Color2Index.
RealColor, InvertColor, GetSubtable (4.4.4), RGBForeColor,
RGBBackColor [5.4.1), and SetCPixel [5.1.6) to produce erroneous
results. If necessary, you must explicitly rebuild the inverse table with
MakeITable (4.4.2).

16. SaveEntries and RestoreEntries are intended only for very lim
ited, special purposes. In general, it's safer and more convenient to
use palettes (4.5] to manage your color environment instead.

ID I Assembly Language Information
---1m---------

Trap macros:

(Pascal)
Routine name

SetEntries
SaveEntries
RestoreEntries

(Assembly)
Trap macro

_SetEntries
_SaveEntries
_RestoreEntries

Field off sets in a request list:

(Pascal)
Field name

reqLSize
reqLData

(Assembly)
Offset name

reqLSize
reqLData

Trap word

$AA3F

$AA49

$AA4A

Offset
in bytes

0

2

procedure

procedure

154 Color Fundamentals

4.4.6 Protecting and Reserving Entries

ProtectEntry

(colorindex

onOrOff

ReserveEntry

(colo rindex

onOrOff

INTEGER:
BOOLEAN);

INTEGER:

BOOLEAN) :

(Color index}

{Protect or rclcase7}

{Color index}

{Reserve or relinquish? }

~~~i+--No_tes ____________ _ 

1. P rotectEntry and Rese rveEntry protect or reserve a specified color 
table entry, preventing other programs from using it. 

2 . Both routines operate on the color table of the current graphics device. 

3 . The o nO rOff parameter tells whether to apply protection or reserva
tion to the specUled entry (TRUE) or remove it (FALSE). 

4. A protected entry cannot be changed by other programs; any operation 
that attempts to do so will fail with the error code CProtectErr. (You 
can check for this error with the Toolbox routine QDError (5.1.7).) 

5 . A reserved entry cannot be matched by another program's color 
requests. This is particularly useful for setting aside specific indices 
for color table animation (5.4.3). 

6 . Both routines will themselves post the error code CProtectErr (5.1. 7) 
if you attempt to protect an already protected entry or reserve an 
already reserved one. However, you can freely release or relinquish 
any entry. 

~~~l~~~-As~s_e_Ill_b_l_y_Lan~-g_u_a_g_e~In_~_o_nn~a_t_i_o_n~~~~~~~ 
Trap macros:

(Pascal)
Routine name

ProtectEntry

ReserveEntry

(Assembly)
Trap macro

_ProtectEntry

_ReserveEntry

Trap word

$AA3D

$AA3E

155 (4.5.1) Palette Records
~~~~~~~~~~~~~-

4.5 Color Palettes 

type 

PaletteHandle 

PalettePtr 

Palette 

4.5.1 Palette Records 

"PalettePtr: 

"Palette: 

record 

pmEntries 

pmDataFields 

pm Info 

e nd; 

INTEGER; (Number of colors} 

array (0 .. 6] of INTEGER ; (Private} 

array (0 .. OJ of Colorinfo {Array of colors } 

Colorinfo r ecord 

con st 

PMCourteous 

PMDithered 

PMTo1erant 

PMAnimated 

PMExplici t 

ciRGB 

c iUsage 

ciTolerance 

ciDataFields 

end; 

0; 

l ; 

= 2; 

4 ; 

= 8; 

RGBColor; 

INTEGER; 

INTEGER ; 

array (0 .. 2) of INTEGER 

(RGB color value} 

(Usage level} 

[Color tolerance} 

{Private} 

(Courteous color} 

{Dithered color (not yet implemented)} 

{Tolerant color} 

{Animated color} 

{Explicit color} 

1. A palette represents a selection of colors requested by a program for 
use in its drawing operations. 

2 . Each individual window can have its own palette (6.3.6). The Toolbox 
will do its best to ensure that the colors in the palette are available 
whenever that window becomes active on the screen. 

3 . The letters pm (or PM) stand for Palette Manager, the part of the Toolbox 
that deals with color palettes. 



156 Color Fundamentals 

4. The variable-length array pm!nfo (not directly accessible in Pascal) 
contains a color irifo record for each color In the palette, specifying the 
color's RGB value, usage level, and tolerance. 

6. pmEntries gives the numberof colors In the palette, and thus defines 
the true size of the pm! nf o array. 

6. pmDataFields holds information used privately by the Toolbox, 
including a pointer to the window to which this palette belongs. 

7. The ciRGB field of the color Info record specifies the requested RGB 
color value. 

8. ciUsage gives the color's usage level, and must be one of the 
constants shown. 

9. Tolerant colors (PMTolerant) will match an existing color in the 
current color environment if there is one that approximates the 
requested ROB value (ciRGB) to within a specified tolerance (ciTol
e ran c e). If no such color exists, the current device's color table will 
be modified to make the exact requested color available. 

10. An existing color will be considered to match if it differs from the 
requested color by less than the given tolerance In each of the three 
ROB components independently. A tolerance value of o requires an 
exact match. 

11. Courteous col.ors (PMCourteous) always use the best available ap
proximation in the existing color environment, without changing the 
environment in any way. They are thus equivalent to tolerant colors 
with a tolerance value of $FFFF. 

12. Explicit colors (PMExplici t) refer directly to the corresponding color 
index in the current device's color table. They always use the RGB 
value currently associated with the given color Index, without refer
ence to the value of ciRGB. 

13. Animating colors (PMAnimated) reseive (4.4.6) entries in the current 
device's color table for use in color table animation (5.4.3). Such 
reseived entries become unavailable for use in other drawing opera
tions and wlll not match any color request Issued by another program. 

14. Dithered colors (PMDi the red) can be simulated by a pixel pattern (5.2) 
constructed of other colors that blend visually to approximate the 
requested color. This capability is not yet supported in the current 
version of the Toolbox. 



15 7 (4.5.1) Palette Records 
~~~~~~~~~~~~ 

ID I Assembly Language Information
-l~r---------

Field offset.s in a palette record:

(Pascal) (Assembly)
Field name Offset name

pmEntries
pmDataFields

pminfo

pmEntries
pmWindow
pmPrivate
pmDevices
pmSeeds
pminf o

Field offset.s in a color info record:

(Pascal) (Assembly)
Field name Offset name

ciRGB
ciUsage
ciTolerance
ciDataFields

ciRGB
ciUsage
ciTolerance
ciFlags
ciPrivate

Assembly-language constants:

Name Value Meaning

Offset
in bytes

0

2

6

8

12

16

Offset
in bytes

0

6

8

10

12

pmHdrSize

ciSize

16

16

Size of a palette record in
bytes, excluding pminfo

Size of a color info record in
bytes

Color usage levels:

Name Value Meaning

PMCourteous 0 Courteous color
PMDithered Dithered color
PMTolerant 2 Tolerant color
PMAnimated 4 Animated color
PMExplicit 8 Explicit color

158 Color Fundamentals

4.5.2 Initializing the Toolbox for Palettes

I Definitions
--I~.,__ ______________________ _

procedure InitPalettes :

~~t::::t:::=ti-N-ote_s -----

1. Ini tPalett:es inltlalizes the Toolbox's internal data structures for
working with color palettes.

2. This routine must be called before any other operation involving
palettes.

3. Ini tPalettes is called automatically by the Toolbox routine Ini t -
Windows (11:3.2.1]. There is normally no need for you to call it directly
yourself.

~lillrl~~~As~s_e_nt~b-ly~Lan~-gua~_g_e_I_lll_o_nn~-at_i_o_n~~~~~~-

function

Trap macro:

(Pascal)
Routine name

InitPa let:tes

(Assembly)
Trap macro

InitPalettes

Trap word

$AA90

4.5.3 Creating and Destroying Palettes

NewPalett e

(nEntries I NTEGER: {Number of colors in palette}

e nt ryColors CTabHandle: {Table of colors)

ent ryUsage INTEGER : [Usage level foraU entries)

ent ryTolerance INTEGER} {Tolerance value for aU entries}

: PaletteHandle: (Handletoncwpalcuc}

159 (4.5.3) Creating and Destroying Palettes
~~~~~~~~~~~~-

function GetNewPalette 
(paletteID : INTEGER) 

: PaletteHandle: 

procedure DisposePalette 

(Rescurc:e ID of paleue} 
{Handle to new palette} 

(thePalette : PaletteHandle); (Handle topaleue to be destroyed} 

Notes 

1. NewPalette and GetNewPalette both create a new color palette and 
return a handle to it. 

2. NewPalette receives its initialization information as parameters; 
GetNewPalette gets it from a resource. 

S. entryColors ls a handle to a color table defining the colors to be 
included in the new palette. 

4. Colors from the color table are entered sequentially in the palette, 
using only their rgb values: the value fields of their color specifica
tions (4.4.1) are ignored. 

6. If the color table contains more than the specified number of colors 
(nEntries), unneeded entries from the end of the table are unused; if 
there are not enough colors ln the table to fill the palette, the 
remaining palette entries are lnltlallzed to black. 

8. By convention, the first two colors ln a palette should always be white 
(red= green= blue= $FFFF) and black (red= green= blue= $0000). 

7. For compatibility with a range of graphics devices, the first four colors 
in the palette should be the preferred colors for use on devices with 2-
blt pixel depth, the first 16 for 4-blt devices, and so on. 

8. If entryColors =NIL, all colors in the palette are initialized to black. 
You can then set their values explicitly with SetEntryColor [4.5.4). 

9. The entryUsage and entryTolerance parameters give the initial 
usage level and tolerance for all entries in the palette. If necessary, you 
can change these settings for individual entries with SetEntryUsage 
(4.5.4). 

10. palette ID ls the ID number of a palette resource of type 'pl tt' 
(4.7.2). 

11. The Toolbox routine GetNewCWindow (6.3.4), which creates a color 
window from a template in a resource file, automatically loads the 
corresponding palette resource as well. As long as the window and its 
palette have the same resource ID, there is no need to call GetNew-
Palet te explicitly. · 



160 Color Fundamentals 

12. DisposePalette destroys a palette and frees the storage space lt 
occupies. 

13. Any color table entries the palette has reseived for animating colors 
are relinquished. 

14. All handles to the palette become invalid and must not be used again. 

~Ir) 1 .... ___ As_s_e_m_b_1_y_Lan __ gua __ ge_1m_o_rm_a_t_1o_n ______ _ 

Trap macros: 

(Pascal) 
Routine name 

NewPalette 
GetNewPalette 
DisposePalette 

(Assembly) 
Trap macro 

_NewPalette 
_GetNewPalette 
_DisposePalette 

Trap word 

$AA91 
$AA92 
$AA93 

4.5.4 Setting Palette Colors 

procedure GetEntryColor 

(thePalette PaletteHandle: 
entryindex INTEGER: 

var entryColor RGBColor): 

procedure SetEntryColor 
(thePalette PaletteHandle: 
entryindex INTEGER: 
newColor RGBColor): 

procedure GetEntryUsage 

{Handle to palette} 
{Palette index of desired entry} 
{Returns current color value} 

{Handle to palette} 
{Palette index of desired entry} 
{New color value} 

(thePalette 
entryindex 

PaletteHandle: {Handle to palette} 
INTEGER: 

var entryUsage INTEGER: 
var entryTolerance INTEGER): 

procedure SetEntryUsage 
(thePalette 
entry Index 
newUsage 
newTolerance 

PaletteHandle: 
INTEGER: 
INTEGER: 
INTEGER): 

{Palette index of desired entry} 
{Returns current usage level} 
{Returns current tolerance value} 

{Handle to palette} 
{Palette index of desired entry} 
{New usage level} 
{New tolerance value} 



161 (4.5.5) Palette Conversion 

~~~ii=t--No_te_s ________________ __ 

1. These routines read or change the current color, usage, and tolerance
settings of a palette entry.

2 . The desired entry ls identified by the palette it belongs to and its index
within the palette.

S. The value you supply for newU sage must be one of the usage constants
(PMCourteous, PMTolerant , and so on) defined in (4.5.1).

4. A value of -1 for either newUsage or newTol erance leaves that
property of the palette entry unchanged from its previous value.

5 . Changes in the contents of a palette are not immediately reflected in
the current color environment. Call Ac ti vatePalette (6.3.6) after
any change to put it into effect on the screen.

~ ~ ... 1---As-_se_m_b_Iy_Lan __ g_ua_g_e_I_n_fo_rm __ a_ti_o_n ______ _

1Tap macros:

(Pascal) (Assembly)
Routine name Trap macro Trap word

GetEntryColor _GetEntryColor $AA9B
SetEntryColor _SetEntryColor $AA9C
GetEntryUsage _GetEntryUsage $AA9D
SetEntryUsage _ SetEntryUsage $AA9E

4.5.5 Palette Conversion

pr ocedure CTab2Palette
(fromCTab CTabHandle : (Color table to conven from)
toPalette PaletteHandle: (Palette to convert to)

entryUsage INTEGER: (Usage level for all entries)
entryTolerance INTEGER) : (Tolerance value for all entries J

procedure Palette2CTab
(fromPalette PaletteHandle: (Palette to convert from)

toCTab CTabHandle): (Color table to conven to)

162 Color Fundamentals

procedure CopyPalette
(fromPalette
toPalette
fromEntry
toEntry
nEntries

Notes

PaletteHandle:
PaletteHandle:
INTEGER:
INTEGER:
INTEGER):

{ Paleue to copy from}

(Palette to copy to}

{Index of first entry to copy from}

{Index of first entry to copy to}

(Number of entries to copy}

1. CTab2Palette and Palette2CTab copy colors from a color table to a
palette or vice versa.

2. No new data structures are created: colors are simply copied from one
existing data structure (color table or palette) to another.

3. The destination data structure Is resized, If necessary, to match the
number of colors In the source structure.

4. CTab2Palette first relinquishes any color table entries that were
previously reserved [4.4.6) for animating colors In the palette.

5. All entries In the palette are set to the values gtven by the entryUsage
and entryTolerance parameters. If necessary, you can then change
these settings for individual entries with SetEntryUsage [4.5.4).

6. CopyPalette copies a specified range of entries from one palette to
another.

7. fromEntry Is the index of the first entry to copy from the source
palette; toEntry is the index of the first entry to copy to in the
destination palette: nEntries tells how many entries to copy.

8. Changes in the contents of a palette as a result of CTab2Palette or
CopyPalette are not Immediately reflected in the current color
environment. If necessary-, call Acti vatePalette [6.3.6) to put the
palette's new contents into effect cm the screen.

~~I ... ___ As_s_e_m_b_1_y_La.n __ gua __ g_e_1_m_o_rm_a_t1_o_n ______ _

Trap macros:

(Pascal)
Routine name

CTab2Palette

Palette2CTab

CopyPalette

(Assembly)
Trap macro

_CTab2Palette

_Palette2CTab

_CopyPalette

Trap word

$AA9F
$AAAO
$AAA1

163 (4.6.1] Custom Matching Routines
~~~~~~~~~~~~~ 

4.6 Nuts and Bolts 

4.6.1 Custom Matching Routines 

type 
SProcHndl ASProcPtr: 
SProcPtr ASProcRec: 
SProcRec record 

nxtSrch Handle: 
srchProc ProcPtr 

end: 

{Handle to next list element} 

{Pointer to search function} 

CProcHndl = ACProcPtr: 
CProcPtr 
CProcRec 

ACProcRec: 
record 

nxtComp 
compProc 

end: 

CProcHndl: 
ProcPtr 

{Handle to next list element} 

{Pointer to complement procedure} 

function YourSearchProc 
(colorValue RGBColor: {Color to be matched} 

var colorlndex 
: BOOLEAN: 

procedure YourCompProc 

LONGINT) {Returns corresponding color index} 

{Was color matched?} 

(var colorValue RGBColor): {Color to be inverted; returns complement} 

Notes 

1. Custom color-matching routines allow a program to provide its own 
nonstandard algorithms for approximating colors or their comple
ments on a given graphics device. 

2. The lists of search functions and complement procedures begin in the 
gdSearchProc and gdCompProc fields. respectively. of the device 
record (4.3.1] and are linked through the nxtSrch or nxtComp fields 
of the individual list elements. 

3. For unknown reasons. the Pascal interface defines nxtSrch as an 
untyped Handle instead of a typed SProcHndl. 



164 Color Fundamentals 

4. Use Add Search and Add Comp (4.6.2) to add new routines to the lists, 
DelSearch and DelComp to remove them. 

5. The routine headings shown are merely models for your own matching 
routines. TherearenoToolboxroutlnesnamed YourSearchProc and 
YourCompProc. 

6. Search and complement routines recognize their own program's color
matchlng requests via a unique client ID In the gd ID field of the device 
record (4.3.1). The program must set this field with the Toolbox 
routine SetClient ID [4.6.2) before issuing any color requests. 

7. The color to be matched ls passed to the routine in the parameter 
colorValue. 

8. To satisfy a color request (presumably after recognizing its own 
program's client ID in the device record's gd ID field), a search function 
should set its color Index parameter to the index of the nearest 
match available on the device and return a TRUE function result. 

9. A FALSE result refuses the request, passing it on to the next search 
function in the list. 

10. If all functions in the list return FALSE, the standard search function 
ts used, which simply looks up the requested color in the device's 
inverse table [4.4.2). 

11. Complement procedures receive the color to be complemented in the 
variable parameter colorValue and return the complement via the 
same parameter. 

12. The standard complement procedure simply replaces each of the 
specified color's RGB components with its bitwise complement. 

ID I Assembly Language Information 
~m 

Field offsets in matching-procedure records: 

(Pascal) (Assembly) 
Field name Offset name 

nxtSrch 

srchProc 

nxtComp 

compProc 

nxtSrch 

srchProc 

nxtComp 

compProc 

Offset 
In bytes 

0 

4 

0 

4 



165 (4.6.2) Installing Matching Routines 
~~~~~~~~~~~~~-

procedure

procedure

procedure

procedure

procedure

Assembly-language constants:

Name

SP ro e Size

CProc Size

Value

8

8

Meaning

Size of a search procedure
record in bytes

Size of a complement proce
dure record in bytes

4.6.2 Installing Matching Routines

AddSearch

(searchFunc ProcPt r): (Search function to be added}

AddComp

(compProc ProcPtr) : (Complement procedure to be added}

DelSearch

(searchFunc ProcPtr): (Search function to be deleted}

DelComp

(compProc ProcPtr) : (Complement procedure to be deleted}

SetClient ID

{client ID : INTEGER): (Client ID to be set}

~~1~· ~No_tes ____________ _

1 . AddSearch and AddComp add new routines to the current graphics
device 's list of search functions a nd complement procedures,
respectively; DelSearch and DelComp delete them.

2. New routines are always added at the head of the relevant list.

3. List elements of types SP roe Rec and CProcRec (4.6.1) pointing to the
specified routines are automatically allocated and deallocated as
needed.

166 Color Fundamentals

4. SetClientID sets the value of the client ID In the gdID field of the
current device record [4.3.1]. allowing search and complement rou
tines to recognize their own program's color requests.

ID I Assembly Language Information
-ID---------

Trap macros:

(Pascal)
Routine name

Add Search
Add Comp
DelSearch
Del Comp
SetClient ID

(Assembly)
Trap macro

_Add Search
_Add Comp
_Del Search
_Del Comp
_SetClient ID

4. 7 Color-Related Resources

4.7.1 Resource Type ' c 1 u t '

I----

I---

1---·-·

I

ct Seed
1

(4 bytes)

ctP'laga (2 bytes)

ctSize (2 bytes)

value (2 bytes)
red ~ytes)

green
1

(2 bytes)

blue (
1

2 bytes)

value (2 bytes)

red (2 bytes)

green
1

(2 bytes)

blue {2 bytes)

--

·--
"---

Structure of a ' c 1 u t ' resource

Trap word

$AA3A
$AA3B
$AA4C
$AA4D
$AA3C

Any number
of colors

167 [4.7.1) Resouree'I}'pe 'clut'
~~~~~~~~~~~~-

const 

DefQDColors = 127: {Resource ID of "classic QuickDraw .. color table} 

Notes 

1. A resource of type ' c 1 u t ' defines the contents of a color table [4.4. l). 

2. When the color table ls read into memory, its seed (ctSeed) will be 
inltlalized to the resource ID. The ID must bes 102 3, since seed values 
of 1024 and above denote color tables built from scratch rather than 
from a resource. 

3. Resource IDs from 0-12 7 are reserved for use by the Toolbox: your own 
color tables should be numbered in the range 128-1023. 

4. In the resource file, the table's ctSeed field should be set to o. 

5. The high-order bit of ctFlags should be 1 for a color table belonging 
to a graphics device, o for one belonging to a device-independent pixel 
map. All remaining flag bits should be set too. 

6. ctSize gives the number of entries in the color table minus 1. 

7. In a color table for a pixel map, each color's v a 1 u e field gives the index 
number by which that color is identified in the map. In a table for a 
graphics device, all value fields should be o: a color's index number 
is defined instead by its position within the table. 

8. By convention, the first and last entries ln a color table should always 
be white (red= green= blue= $FFFF) and black (red= green= blue 
= $0000), respectively. 

9. The Macintosh II ROM contains built-in 'cl ut' resources (2.3.2) with 
IDs of 1, 2. 4, and 8, each defining the standard array of colors for the 
corresponding pixel depth. 

10. Thereisalsoabuilt-in 'clut' resource numbered 127, containingthe 
RGB values of the eight standard .. classic QuickDraw" colors [4.1.1, 
4.2.2). The constant DefQDColors defines the resource ID for this 
table. 

11. Use GetCTable [4.4.3) to load resources of this type. 



168 Color Fundamentals 

~ rrril I Assembly Language Information 

Assembly-language constant: 

Name Value Meaning 

DefQDColors 127 Resource ID of .. classic Qutck
Draw" color table 

4.7.2 Resource Type ' p 1 t t ' 

_!_mBntries j2~esl 
i 

.. -·-·- I ---
-·--· ·------I-·-- pmDataFieldo ---
······-··- (14 bytes) ······--
1--- -.. --· t --
·---- red (2 bytes) ··--· green 

1

(2 bytes) __ ,,_ 
blue 12 bytes) ··-·-

ciUsago (2 bytes) 
ciTolorance (2 bytes) 

I 

-·---· ciDataFields --·-· 
-- (6 bytes) --

! 

''""""•--+oh 
red (~ bytes) -··--·· 

·---- green (2 bytes) ---· blue (2 bytes) 

ciUsage (2 ~es) 
ciTolerance (2 bytes) 

T ...... _ .... ciDatai'ields . .... _,_ 
--· (6 bytes) --

J_ 

Structure of a ' p 1 t t ' resource 

Any number 
of colors 



169 (4.7.2) Resource'fype 'pltt' 
~~~~~~~~~~~~ 

Standard system palette:

Palette
Index

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

~ Green Blue
Color Dec. Hex. Dec. Hex. Dec. Hex.

White 65535 $FFFF 65535 $FFFF 65535 $FFFF
Black 0 $0000 0 $0000 0 $0000
Yellow 64512 $FCOO 62333 $F37D 1327 $052F
Orange 65535 $FFFF 25738 $648A 652 $028C
Blue-green 881 $0371 50943 $C6FF 40649 $9EC9
Green 0 $0000 40960 $AOOO 0 $0000
Blue 0 $0000 0 $0000 54272 $0400
Red 56683 $DD6B 2242 $08C2 1698 $06A2
Light gray 49152 $COOO 49152 $COOO 49152 scooo
Medium gray 32768 $8000 32768 $8000 32768 $8000
Beige 65535 $FFFF 50140 $C3DC 33120 $8160
Brown 37887 $93FF 10266 $281A 4812 $12CC
Olive green 25892 $6524 49919 $C2FF 0 $0000
Bright green 0 $0000 65535 $FFFF 1265 $04Fl
Sky blue 26078 $65DE 44421 $AD85 65535 $FFFF
Violet 32768 $8000 0 $0000 65535 $FFFF

Notes

1. A resource of type 'pl tt' defines the contents of a color palette
(4.5.1).

2. The fields of the ' pl tt' resource have the same meanings as in a
palette record (4.5.1) in memory.

3. By convention, the first two colors in a palette should always be white
(red= green= blue= $FFFF) and black (red= green= blue= $0000).

4. For compatibility with a range of graphics devices, the first four colors
in the palette should be the preferred colors for use on devices with 2-
blt pixel depth, the first 16 for 4-bit devices, and so on.

5. A palette belonging to a color window should have the same resource
ID as the window template itself, so that the Toolbox routine Get -

NewCWindow [6.3.4) will read it in automatically at the time the window
ls created.

6. Noncolor windows and those without assigned palettes of their own
use the standard system palette, stored in the system resource file as
'pltt' resource number o.

170 Color Fundamentals

7. 'pl tt' resource number o holds the standard system palette, used
for old-style (monochrome) windows and for color windows without
explicit palettes of their own.

8. The table shows the ROB values for the entries In the system palette.
All entries are tolerant, with a tolerance level of o.

9. Use GetNewPalette (4.5.3) to load resources of this type.

Pixel Maps

CHAPTER

Showing Your
Colors

Now that we know how to mix our paints, ifs time to start painting
some pictures. In this chapter. we11 learn about the extensions to
the QuickDraw graphics routines that allow you to add color to your
creations. You'll find the additions involve nothing radically new,
just straightforward generalizations of old familiar concepts. Once
you get the hang of them, you'll be ready to set up your electronic
easel and let your true colors shine through.

The canvas you spread on your Color QuickDraw easel is a pixel map
(5.1.1]. Just as an old-fashioned bit map (1:4.2.1) contains a bit
image along with the additional information needed to interpret it,
a pixel map does the same for a pixel image. All color drawing
operations take place within the context of a pixel map.

Like bit maps, two or more pixel maps can share the same
underlying image in memory. In particular, every graphics device
has its own screen map representing the image displayed on its
screen, located via the gdPMap field in the device record (4.3. l]. This
map's pixel image, the screen image, is then shared by all other pixel
maps (those belonging to windows. for instance) whose contents
appear on the screen.

The first few fields of a pixel map are exactly the same as those
of a bit map. There's a pointer (baseAddr) to the start of the pixel

171

172 Showing Your Colors
~~~~~~~~~~-

image, followed by its row width (rowByt es) and boundary rectangle 
(bounds). The row width tells the Toolbox how many bytes to skip to 
get from the beginning of one row of pixels to the beginning of the 
next: the boundary rectangle delJmits the extent of the pixel image 
and establishes its system of coordinates. The high-order bit of the 
rowByt es field seives as a flag to distinguish the two types of map: 
it's set to 1 for a pixel map, o for a bit map. The Toolbox, of course. 
strips off this bit before attempting to use the contents of rowBytes 
as an integer row width. 

Notice that a pixel map's row width varies with th~ pixel depth 
of its image (since it depends on the number of pixels that are 
packed into each byte of the image), while the boundary 
rectangle, which is expressed directly in pixels, is independent 
of the depth. 

In theory, a pixel image can be stored in any of three different 
sfDrageformats in memory, lmown as planar, chunky, and chunky/ 
planar. (In practice, only chunky format is supported by the current 
version of the Toolbox: the others are included for possible future 
implementation.) 

• Planar format corresponds to the .. classic QuickDraw" model 
of color representation that we discussed in Chapter 4. Each 
color plane has its own separate image in memory, with just 
1 bit per pixel in each plane. Together, these individual bit 
images combine to form the complete pixel image. 

• In chunky format, the bits representing each pixel in the 
image are grouped or .. chunked" together into a single image, 
rather than distributed into separate bit images as in the 
planar model. Depending on the needs of a particular graph
ics device, the bits may represent either a direct color value 
or (more commonly) an index into a mapped color table. 

• Chunky/planar is a hybrid format consisting of some num
ber of planes (normally three, one for each color component), 
with a separate chunky representation for each plane. Typi
cally these would represent color intensities in the three 
primary colors, to be used to drive the color circuitry of a 
direct video device. 



173 Pixel Maps 

The pixelType field in the pixel map record (5.1.1] holds an 
integer code identifying the storage format in use. The cmpCount 
("component count") field specifies the number of separate planes. 
with cmpSize giving the depth of each plane in bits per pixel. For the 
time being. at least, pixelType must always be o (for chunky 
format), cmpCount must be 1, and cmpSize is simply the image's 
overall pixel depth. In principle, this logical pixel depth need not 
exactly equal pixelSize. the physical number of bits allotted per 
pixel. In the present implementation, however. both the logical and 
physical depths are restricted to powers of 2 (allowing a whole 
number of pixels to be packed efficiently within an 8-bit byte or a 16-
bit word). and thus they are, in fact, always equal. 

To help the Toolbox navigate its way around in the pixel image, 
the pixel map's planeBytes field gives the plane offset, the distance 
in bytes from the beginning of one plane in memory to the beginning 
of the next. (In chunky format, this field is simply set to o and 
ignored.) Our old friend the row width (rowBytes) refers to the offset 
from one row to the next within each individual plane. hRes and 
vRes give the image's horizontal and vertical resolution in pixels per 
inch, allowing it to be scaled. if necessary, to the physical resolution 
of the device it's drawn on. There's also a pairoffields, packType and 
packSize, to be used in compressing the image for more efficient 
storage, but the present Toolbox doesn't yet take advantage of this 
capability. 

One of the most important fields in the pixel map is pmTable, 
which holds a handle to the map's color table. The color table 
assigns an actual. concrete color value to each abstract color index 
used in the map's pixel image. (Only chunky images on mapped 
devices need such a table. of course, but those are also the only kind 
the Toolbox currently supports.) In a graphics device's screen map
or in other pixel maps based on it, such as those belonging to 
windows on the screen-pmTable points to the device's own color 
table, which controls the colors it displays on the screen. In device
independent pixel maps. pmTable is a table of desired or intended 
colors, to be matched to the existing color environment when the 
image is displayed on a given device. 

When you open a color graphics port-such as, in particular, 
a color window-on the screen of a graphics device. the Toolbox 
automatically creates a new pixel map for you and initializes all of 
its fields from the corresponding fields of the device's screen map. It 



17 4 Showing Your Colors 
~~~~~~~~~~~ 

then stores a handle to the pixel map into a field of the graphics port.
(We11 be discussing color graphics ports in detail in the next
section.) There's also a Toolbox routine, SetPortPix [5.1.2), for
explicitly setting the current port's pixel map. This operation works
only for color ports, and has no effect if an old-style (monochrome)
port is current; in that case, use SetPortBi ts [1:4.3.4) instead.

Should you ever need to create a pixel map that isn't associated
with a window (for off screen drawing, for instance), you can use the
Toolbox routine NewPixMap [5.1.2). Again the fields of the new pixel
map are initialized from those of the current device's screen map,
but in this case the color table handle, pmTabl e, is not copied, but
simply set to an empty handle. It's then up to you to initialize this
field yourself by creating a new color table, copying the handle from
the device's screen map, or whatever else may be appropriate.

Another Toolbox routine, CopyPixMap [5.1.2), treats the color
table in yet a different way. Instead of just copying the color table
handle from one pixel map to another, it makes a brand-new copy
of the entire color table and gives the new pixel map a handle to the
copy. Thus the new and original pixel maps initially have the same
set of colors to work with, but subsequent changes in one map's
color table will not affect the other. The two maps do share the same
pixel image in memory. however, since only the bas eAd d r pointer is
copied and not the underlying image itself. Thus drawing operations
in one map wUl affect the contents of the other.

When you're through with a pixel map, use DisposPixMap
[5.1.2) to destroy it and deallocate its memory space. Don't forget to
drop any remaining handles in the handle shredder, lest they fall
into the wrong hands and come back to haunt you later.

Color Graphics Ports

To accommodate the needs of the full-color drawing environment,
the old-style graphics port has been expanded into a new structure,
the color graphics port. Actually, .. expanded" is not quite the right
word, since the new port record is exactly the same size as the old,
108 bytes, with most of the same fields in the same relative locations
as before. What's different is that several of the larger data struc
tures that formerly were embedded directly in the port record have
been moved elsewhere and replaced by their handles, freeing some
additional space in the body of the record itself.

175 Color Graphics Ports
~~~~~~~~~~~ 

Structure of Color Ports 

If you compare the definition of the old Graf Port record [1:4.2.2) 
with that of the new CGrafPort (5.1.3), you'll see that four such em
bedded structures-one bit map (portBi ts) and three patterns 
(bkPat, fillPat, pnPat)-have been removed infavorofhandles to 
the corresponding pixel-based structures (portPixMap, bkPixPat, 
fillPixPat, pnPixPat). Since a bit map is 14 bytes long and the bit 
patterns 8 bytes each, this means that a total of 38 bytes have been 
reduced to 16, making 22 extra bytes available for other uses. 

The first of the new fields added to the port record is po rt Ver -
sion, which identifies the version of Color QuickDraw that created 
the port. As the Toolbox continues to evolve over time, this version 
number will be used to track the changes and maintain compatibil
ity. The two high-order bits of the po rt Version field are set to l, 
identifying this as a color port. (In an old-style port, this same 
relative posltlon within the record is occupied by the field 
portBi ts. rowBytes, the row width of the port's bit map. Since this 
is always a positive integer comfortably less than 16,384, its first two 
bits are always O.) 

As we learned in Chapter 4. the original type of graphics port 
already has a pair of fields, fgColor and bkColor, to hold its 
current foreground and background drawing colors. The Quick
Draw routines ForeColor and BackColor [4.1.2) set the contents 
of these two fields. Colors are represented in planar form, which 
means they are limited in practice to the eight color constants of the 
classic QuickDraw color interface (4.1.1). 

In the new color port, these same two fields hold the pixel 
values for the foreground and background colors as they will appear 
in the port's pixel image. Since the current version of Color Quick
Draw only supports chunky pixel images for mapped devices, these 
pixel values are always indices into a color table, which defines the 
actual colors that will appear on the screen. These are not necessar
ily the exact drawing colors you originally requested, but merely the 
best available matches in the current color environment. The exact 
requested RGB values are kept in a new pair of fields in the port 
record, rgbFgColor and rgbBkColor. 

When you use a color palette (4.5) to set your drawing colors, 
the Toolbox also saves a handle to the palette, along with the color's 
index within it, for future reference. This information lives in a new 
data structure, the auxlli.ary port record [5.1.4), which in tum is 
located via a handle in a new field (grafVars) of the main port 



176 ShowtngYourColors 

record. The othertwofieldsofthe auxillaryportrecord, rgbOpColor 
and rgbHili teColor, are used in connection with some of the new 
color transfer modes, which we'll be discussing later in this chapter. 

The last two new fields in the color port are both concerned with 
text drawing. When drawing a line of text, the Toolbox maintains a 
fractional pen location for more accurate character placement on 
high-resolution devices such as the LaserWriter printer. The 
pnLocHFrac field of the port record is nominally defined as an 
integer. but is actually a fraction between o and 1, to be added to the 
horizontal coordinate of the pen location, pnLoc. The other new 
field. chExtra, specifies an extra width to be added to all characters 
except spaces (which are still governed by the old spExtra field, as 
before). Again the number is nominally an integer, but this time it 
is interpreted as a fixed-point quantity with 4 bits before the binary 
point and 12 after it. 

Opening and Closing Color Ports 
Color ports. like their monochrome predecessors, are nonrelocat
able objects and are always referred to with simple pointers instead 
of handles. Also like their predecessors. they form the basis for 
other. more extended structures: color windows. color dialog boxes, 
and so forth. Most of the ports you use will be opened implicitly as 
part of these other structures. and you'll rarely need to create one 
for yourself. If you do, you can use the Toolbox routine OpenCPort 
[5.1.5) to initialize the port and open it for use. This routine accepts 
a pointer to an existing color port as a parameter. so you must first 
allocate the space for the new port with NewPtr [1:3.2.1) and 
typecast the resulting untyped pointer into a port pointer: 

rawPtr :; NewPtr(SIZE(CGrafPort)): 
colorPort := CGrafPtr(rawPtr): 
OpenCPort (colorPort) 

OpenCPort allocates space for the port's internal data structures-
its pixel map. auxiliary port record, visible and clipping regions, and 
pen. fill, and background patterns-then calls another Toolbox 
routine, Ini tCPort (5.1.5). to initialize its fields. 

The one subsidiary structure that isn't allocated fresh from the 
heap when you open a new port is the color table: its handle (along 
with all the other fields of the port's pixel map) is simply copied from 
the screen map of the current graphics device. Thus the port shares 



177 Pixel Patterns 

the device's own color table in memory, and is directly affected by all 
changes in the device's color environment. 

When the time comes to close a color port, the Toolbox routine 
CloseCPort (5.1.5] deallocates all of its internal structures except 
the color table, on the assumption that the table really belongs to a 
graphics device and that the rightful owner will not take kindly to its 
premature demise. If for some reason you've provided your own color 
table, not associated with any device, you'll have to dispose of it 
yourself before closing the port. Notice also that CloseCPort only 
destroys the port's internal structures, not the port record itself-so 
you have to follow it with a call to DisposPtr [I:3.2.2] to finish the 
demolition job: 

Pixel Patterns 

{Deallocate color table if appropriate}: 
CloseCPort (colorPort): 
rawPtr := Ptr(colorPort): 
DisposPtr (rawPtr) 

The classic QuickDraw bit pattern (1:5.1.1) was a simple structure: 
just an array of 8 bytes representing an 8-by-8 square arrangement 
of black and white (or foreground and background) pixels. In Color 
QuickDraw, this is generalized to a more flexible (and consequently 
more complex) structure, the pixel pattern.. Like its monochrome 
counterpart, a pixel pattern is a rectangular "tile" that can be laid 
end to end and repeated indefinitely to fill an arbitrary area in a 
graphics port. 

Instead of just a simple array, a pixel pattern is represented by 
a relocatable record of type Pix Pat (5.2.1), referred to by a handle 
of type PixPatHandle. The heart of this structure is a pixel map, 
patMap, which defines the pattern's graphical characteristics. The 
map's color table assigns RGB values to the color indices used in the 
pattern's pixel image. Because the map has a boundary rectangle to 
define its dimensions, the pattern can be of any size and is not 
limited to 8 pixels wide by 8 high, like an old-style bit pattern. The 
only restriction is that, for speed and storage efficiency, both its 
width and height must be powers of2. 

Surprisingly, however, the pixel map's baseAddr field does not 
point to the pixel image defining the pattern's content. Instead, a 
handle to the image is stored as a separate field, patData, in the 
pattern record itself; the pixel map's base address is simply ignored. 



178 Showing Your Colors 
~~~~~~~~~~~ 

The pattern record also Includes a field for a monochrome bit
pattern, pat lDa ta, to be substituted for the full-color pattern when
drawing fn a monochrome port.

When drawing a pattern In a given color environment, the
Toolbox creates a private copy of the pattern, specifically tailored to
the current pixel depth and color table. The pixel map and image for
this .. expanded" version of the pattern are kept fn the pa tXMa p and
patXData fields of the pattern record. The patXValid field flags
whether the expanded pattern is valid for the current color environ
ment: a value of -1 fn this field means that the environment has
changed and the pattern must be rebuilt.

Every color graphics port [5.1.3) has fields for three pixel
patterns: a pen pattern. a background pattern. and aft.ll pattern. The
pen pattern is used for drawing lines and for painting shapes with
the QuickDraw operations PaintRect. PaintOval, and so on; the
background pattern is used In operations like EraseRect and
EraseOval. The new QuickDraw routines PenPixPat and Back
PixPat [5.2.4) assign new pixel patterns to these fields of the
current (color) port. The third field, the fill pattern, is used internally
by the new color shape-filling operations, such as FillCRect and
FillCOval [5.4.2), to hold the pixel pattern you supply as a
parameter.

It's still possible to use the old-fashioned monochrome bit
patterns, even in a color graphics port. When a color port is
current, the old bit-oriented routines like PenPat [1:5.2.2),
BackPat [1:5.1.1), FillRect (1:5.3.2), FillOval [1:5.3.4), and
so on, will construct a special type of pixel pattern that
simulates a simple bit pattern. Patterns of this type are iden
tified by a code value of o fn the patType field of the pattern
record [5.2.1). (In a full-color pixel pattern, this field is setto 1.)
The patMap and patData fields are ignored; the patlData field
holds the pattern's bit image. The pattern's dimensions are
always understood to be 8-by-8, and it is always drawn in the
port's current foreground and background colors.

As usual, the recommended way of creating a new pixel pattern
is from a resource. In this case, the resource type is 'ppat' (5.6.1)
and the Toolbox routine for reading it in is GetPixPat [5.2.2). You
can also build a pixel pattern from scratch, using NewPixPat (5.2.2).

1 79 Pixel Patterns

Besides creating the pattern record itself, this routine also creates
the pattern's pixel map and initializes its fields from those of the
current device's screen map. Empty handles are created for the rest
of the pattern's subsidiary structures, but no storage is allocated for
the structures themselves. It's up to you to create the pixel image
(patData) and color table (patMap'"'. pmTable) and store their
handles in the appropriate fields: the expanded map (patXMap) and
image (pa tXDa ta) are the Toolbox's responsibility. The pattern's
monochrome equivalent (patlData) is initialized to the standard
medium gray (1:5.1.2), but you can change it, if you wish, to
something else more to your lildng.

Pixel image Color table

Specific color values for
indices o to 3 are computed
when panem is displayed

Figure 5-1 A dithered pattern

One interesting way of creating a pixel pattern is with
MakeRGBPat [5.2.3). This routine constructs a dithered pattern of
colored dots that blend to create the visual illusion of a specified
color. The pattern record must already exist, presumably having
been created previously with NewPixPat [5.2.2); MakeRGBPat
merely sets its internal fields to approximate the given color. The
pattern's pa tType field is set to 2, denoting a dithered pattern. A
pattern of this type has no explicit pixel image: its patData field is
NIL. The pattern is implicitly understood to consist of an 8-by-8
arrangement of four alternating colors. as shown in Figure 5-1. The
RGB color value the pattern stands for is stored in its color table
under index 4, but the four colors making up the image itself,
numbered o to 3, are left unspecified in the table. The actual values
of these colors are not filled in until the pattern is drawn, using the
available color environment then in effect.

180 Showing Your Colors

Dithered patterns are most effective for filling relatively large
areas, less so for smaller areas or narrow lines. In particular.
they don't work at all for lines only I pixel wide, since these use
only half of the pattern's four-color pixel arrangement.

When you no longer need a pixel pattern, DisposPixPat [5.2.2)
disposes of it and all its subsidiary data structures-its pixel image,
pixel map, expanded image, expanded map, and color table. Notice,
though, that if some graphics port happens to be holding a handle
to this pattern as its pen, background, or fill pattern, the handle will
be left pointing into Never-Never-Land. To protect you from the
crocodile, the Toolbox automatically checks all existing ports for
handles to the vanishing pattern and clears them safely to NIL. In
spite of this built-in protection, destroying patterns before their time
is frowned upon in polite society and will get you ostracized from the
best programming circles.

Color Tran sf er Modes

Just as in monochrome, all color drawing is governed by a transfer
mode. which controls the way the new pixels you draw combine with
the old ones already existing in the pixel map. In monochrome
Quick.Draw, there are four basic drawing modes-Copy, or, Bi c (.. bit
clear"), and XOr [1:5.1.3)---each with a variant that inverts the source
pixels before drawing them (NotCopy, NotOr, NotBic, NotXOr). In
the color enviromnent, these .. classic" monochrome modes are sup
plemented by a new set [5.3.1] designed specifically for color
operation.

You may recall that the original Quick.Draw had two versions
of each transfer mode-a source mode for transferring images
from one bit map to another (including text characters from a
font's character strike) and a pattern mode for drawing lines
and shapes or filling areas with a pattern. On the Macintosh II.
this distinction is no longer maintained: all drawing operations
automatically perform correctly with either type of mode. Thus

181 Color Transfer Modes

it's no longer necessary to distinguish, for example, SrcCopy
from PatCopy orNotSrcOr from NotPatOr. However, for com
patibility with earlier versions of QuickDraw that still obseive
the distinction, you should continue to use the correct type of
mode for any given operation. For simplicity, we will use short
forms such as Copy and NotOr to refer to the old modes in this
chapter, even though these· names are not valid in an actual
program.

Color graphics ports have the same two mode fields as their
monochrome counterparts: a pen mode (pnMode) for drawing lines
and shapes and a text mode (txMode) for characters. The old
QuickDraw routines PenMode (1:5.2.2] and TextMode (1:8.3.2] still
set these two fields of the current port record, whether color or
monochrome. The low-level transfer routine CopyBi ts (1:5.1.4],
which now works on pixel maps as well as bit maps, also accepts a
transfer mode as a parameter. To use the new color modes, you
simply pass them to these routines in the usual way. As we'll see
later, you can also still use the old monochrome modes in a color
port, though the results may not always be useful or pleasing to
look at.

All the color transfer modes operate on a pair of pixels at a time:
a new one from the pattern or pixel map being drawn (the source) and
an existing one from the map it's being drawn to (the destination).
Since the .. raw" pixel values are normally mapped indices into a color
table, QuickDraw first looks in the table for their current RGB
values. It then combines the two colors arithmetically. component
by component, according to whatever rule the given mode calls for.
Finally, it finds the nearest available match to the RGB result in the
destination color table and stores the corresponding color index
back into the destination pixel map as the result of the operation.

Additive and Subtractive Modes
The most obvious way to combine two colored pixels is simply to add
their respective components together. This mixes the two colors
additively and raises the overall brightness level, something like
mixing colored spotlights on a stage or double-exposing a photo
graphic slide. Color QuickDraw has two such additive modes [5.3.2).
The first, AddOver, allows the component values to overflow and

182 Showing Your Colors
~~~~~~~~~~~ 

"wrap around" from the maximum value ($FFFF, or 65535) back to 
o. This can sometimes produce anomalous or unexpected results. 

Usuallyyou11 want to use Add Pin instead, which limits ("pins") 
the components to a maximum value to prevent wraparound. The 
pin limits for the three components are specified by a field, rgbOp -
Co 1 or, in the current port's auxiliary port record. This is initially set 
to black (all components equal to O), but you can then change it with 
the Toolbox routine OpColor [5.3.2]. For additive drawing, you11 
almost always want to use pure white, pinning all components at the 
top of the scale ($FFFF). If you need to achieve some other oddball 
effect-photographing through a colored filter, perhaps-you can 
use different pin limits instead. 

There are also a pair of analogous subtractive modes, SubOver 
and SubPin (5.3.2]. These combine the source and destination 
colors subtractively and darken the overall color level, like mixing 
watercolor paints. Again, SubOver allows underflow from O to 
$FFFF, while SubPin limits all components to the minimum values 
given in the port's rgbOpColor field. (In this case, you'll usually 
want to use the default setting of pure black, pinning all color 
components at o .) Drawing a color subtractively is like painting with 
its RGB complement: for example, subtracting blue on a cyan 
background is like painting in yellow, and will yield a green result. 

Other Arithmetic Modes 

Another obvious idea for combining colors is to average their 
components, producing a result that falls somewhere between the 
two original colors. This is what the transfer mode Blend [5.3.3] 
does. Once again, the rgbOpColor field in the auxiliary port record 
provides additional information on how to perform the operation: in 
this case, it gives the weights to be used in averaging the original 
colors. Each component of rgbOpColor gives the relative weight of 
the corresponding component from the source pixel, on a scale from 
o to 65 5 35 ($FFFF). Dividing this value by 65 s 3 6 normalizes it to a 
fraction between O and 1 (let's call it w), which is then subtracted 
from 1 to get the complementary weight for the destination pixel. 
Thus each component in the result is given by the formula 

result ; w*source + (1-w)*destination 

As always, you use the Toolbox routine OpColor (5.3.2) to set 
the value of rgbOpColor. Ordinarily you'll want to make it medium 
gray(allcomponentsequal to $8000, or32 768), to obtainanequally
weighted blend midway between the source and destination colors. 



183 Color Transfer Modes 

In unusual cases, you may want to use a different value to weight the 
result more toward one or the other of the original colors. If you're 
feeling really eccentric, you can even use different weights for each 
of the three RGB components. 

Rather less useful are the comparative modes AD Max and AD Min 

(5.3.3). (The letters AD stand for .. arithmetic drawtng. ")These modes 
compare the two operand pixels, one component at a time, and 
choose the larger or smaller of the two values for each component 
independently; notice that this may produce a result that doesn't 
match either of the two onginal colors. These modes are useful 
mainly for certain specialized purposes, such as drawing text in an 
.. anti-aliased" font that uses gray-scale pixels, rather than just black 
and white, to increase the effective resolution. If you think anti
aliasing is a police technique for catching criminals operating under 
assumed names, you11 probably never have any use for these 
transfer modes. 

Transparency and Highlighting 
Perhaps the most useful color transfer mode of all is Transparent 
(5.3.4]. This copies all pixels directly from the source to the destina
tion unless they match the current background color. In the latter 
case. it leaves the existing destination pixels unchanged, producing 
an overlay or .. see-through" effect. If you set the port's background 
color to one that doesn't occur anywhere in the source. Transpar
ent mode will simply copy all source pixels exactly as they are. 
without modification. 

The last of the color transfer modes is Hili te (5.3.4). As the 
name implies. this one is particularly useful for highlighting se
lected text or other objects in a window. On the old black-and-white 
screen, highlighting was usually done by color Inversion with the 
monochrome mode XO r. changing black pixels to white and vice 
versa. XOr doesn't work very well in a color environment, however. 
so Hili te mode is provided as a full-color equivalent. 

Hi lite mode produces a color reversal similar to that of XO r in 
monochrome by exchanging the port's background color with a 
second highlighting color, read from the rgbHili teColor field of the 
auxiliary port record [5.1.4). The effect is similar to marking with a 
colored highlighting pen. The user can set a preferred highlighting 
color with the Control Panel desk accessory, which saves it in 
battery-powered parameter RAM where it will be retained even when 
the machine's power is turned off. At system startup, this value is 
copied into a low-memory global, Hili teRGB, which in turn is used 



184 Showing Your Colors 
~~~~~~~~~~~ 

to initialize the rgbHili teColor field for all newly created ports.
You can change the highlighting color with the Toolbox routine Hi -
li teColor [5.3.4). but normally you should just honor the user's
preference.

Although you can use Hili te mode in the usual way. by
passing it as a parameter to PenMode [I:5.2.2]. TextMode [I:S.3.2]. or
CopyBi ts [I:5. l.4]. there's also another way to activate it. The low
memory global variable Hili teMode. at address $938. is a flag that
causes the old monochrome mode XO r to do color highlighting
instead of simple bit inversion. (Actually. the flag is just the high
order bit at this address; the other 7 bits are reserved for future use.
and should not be disturbed.) When this flag is o. any drawing
operation that would otherwise use XOr (or NotXOr) mode will in
effect use Hili te mode instead. This applies not only to routine
line- or shape-drawing operations with xo r as an explicit pen or fill
mode, but also to the standard shape-inverting operations
InvertRect, InvertOval, and so on, all of which use XOr mode
implicitly. The advantage to this method is that it allows older,
existing code that uses XO r mode for monochrome highlighting to
work properly in color as well.

Setting the Hili teMode flag is fairly straightforward in assem
bly language, where you can manipulate single bits directly. The
assembly-language constant Hili teBi t is the bit number of the
flag bit within the byte, for use with the machine instruction BCLR
(Bit Clear):

BCLR #HiliteBit.HiliteMode

Following the standard M68000 convention, the bits are numbered
from right to left within a byte, so the high-order bit, the one that
actually contains the flag, is bit 7.

In Pascal, on the other hand, you need the Toolbox utility
routine Bi tClr [1:2.2.1) to get your hands on the single flag bit.
Since this routine defies the normal convention and numbers the
bits from left to right. you have to identify the flag as bit number o
instead of 7. using the constant PHili teBi t instead ofHili teBi t.
Notice also that the constant Hili teMode (defined in the Pascal
interface file SysEq u) is an integer representing the address of the
flag, so you have to typecast it to a pointer before passing it to
Bi tClr:

flagPtr := Ptr(HiliteMode):
BitClr (flagPtr. PHiliteBit)

185 Color Transfer Modes

One more wrinkle to be aware of is that the highlighting flag is a
"one-shot" flag that automatically gets set back to 1 after every
drawing operation. If you want it to remain in effect, you have to
clear it again explicitly before each drawing operation.

Mixing Color and Monochrome
Color and monochrome transfer modes are compatible in both
directions: that is, you can use color modes to draw in a mono
chrome port and vice versa. QuickDrawwill attempt to do something
sensible in such hybrid situations, though its idea of sensible may
not always coincide with yours. Mixing color and monochrome
modes can produce useful results, but only if you're careful and
obseive some restrictions in the way you use them.

When used in a color port, the old monochrome modes perform
the same bit-level operations as before, but on multibit pixel values
rather than single bits. In place of simple black and white, they use
the current foreground and background colors, taken from fields
f gCo 1 or and bk Co 1 or of the port record. Notice that these are direct
pixel representations, presumably color table indices, and not the
absolute RGB values they stand for. These are combined bitwise
with the existing pixel values found in the destination pixel map. The
source map or pattern seives as a mask, telling where to use the bits
from the port's drawing color and where to use the ones from the
destination.

Because the raw pixel values bear no direct relation to the RGB
colors they denote, it makes no sense to combine them partially,
using some bits from one pixel and some from another. For the
results to be useful, they should consist only of whole pixels-either
the drawing color or the destination pixel, but not a mixture of the
two-meaning that the source pixels that control the operation must
each be either all Os or all 1 s. These two pixel values refer to the first
and last entries in the color table, which by convention are always
pure white and black, respectively. (Notice that this is the opposite
of RGB representation, in which all Os stand for black and all ls for
white.) Thus the monochrome modes produce meaningful results in
a color port only when the source pixels that control them are
restricted solely to black and white.

186 Showing Your Colors
~~~~~~~~~~~-

Table ~1 Monochrome modes in a color port 

Mode Effect of Black Source Pixels Effect of White Source Pixels 

Copy Foreground color Background color 
Not Copy Background color Foreground color 

Or Foreground color No change 
Not Or No change Foreground color 

Bic Background color No change 
NotBic No change Background color 

XOr Invert bits No change 
NotXOr No change Invert bits 

Subject to this restriction, the effects of the monochrome 
modes are reasonably orderly and predictable (see Table 5-1). Copy 
mode, for instance, copies the source image to the destination in the 
port's current drawing colors, using the foreground color in place of 
black and the background color for white; NotCopy reverses the two 
colors. Or and Bic each paint one of the drawing colors (the 
foreground color for Or, background for Bic) wherever the source 
image has a black pixel, leaving the destination image unchanged 
where the source is white. NotOr and NotBic do the same, but 
reverse the roles of black and white in the source: that is, they paint 
the color where the source is white and leave the destination alone 
where the source is black. 

XOr and NotXOr are a bit trickier. These modes invert the bits 
of selected destination pixels, using the source pixels as a mask to 
determine which ones to invert. Since the effects of bitwise inversion 
on raw pixel values are unpredictable, XOr and NotXOr yield mean
ingful results only when the destination pixels, as well as those in 
the source, are limited to black and white; in that case, they do 
simple black-and-white inversion, just as before. If the destination 
includes colors other than black and white, use the Hili teMode flag 
to make XOr and NotXOr do color highlighting instead of bit 
inversion, as described in the preceding section. 

Similarly, you can use the new color modes in an old-style port. 
If you're drawing in color under the classic QuickDraw planar model 
(4.1), the new modes will do their best to cany out their intended 
functions, using the limited range of eight colors available in that 
model. Since the port has no auxiliary port record, those modes that 



187 Drawing in Color 

ordinarily depend on fields of the auxiliary record have to use 
standard default values instead: Add Pin pins to pure white, Sub Pin 
to black, Blend averages all colors equally, and Hili te uses the 
preferred highlighting color set by the user with the Control Panel. 

Table ~2 Color modes in a monochrome port 

Color Mode 

Add Over 
Add Pin 

SubOver 
Sub Pin 

AD Max 
ADMin 

Blend 
Transparent 
Hilite 

Equivalent Monochrome Mode 

XOr 
Bic 

XOr 
Or 

Bic 
Or 

Copy 
Or 
XOr 

If you 're drawing in true monochrome, all the color modes 
default to monochrome equivalents that best approximate their 
intended functions, as shown in Table 5-2. These substitutions 
apply even in a color port if the pixel depth happens to be 1. Another 
problem that can arise at low pixel depths is that both the fore
ground and background colors may map into the same pixel value. 
Recall, in particular, that in 1-bit mode, anything that isn't white 
maps to black. You may think you're drawing in, say, dark blue on 
a yellow background, only to have the results appear on a 1-bit 
screen as black on black. At pixel depths of 1 or 2, QuickDraw will 
check for this problem and automatically invert one of the drawing 
colors, if necessary, to make sure the results are plainly visible. 

Drawing in Color 

When it comes to actually putting pixels on the screen, everything 
you already know about drawing in monochrome still holds true in 
color. You use a color port in just the same way as the old-fashioned 
kind: make it the current port and draw into it. To make a color port 
current, you simply use the old QuickDraw routine SetPort 
(1:4.3.3],just as you always have. First, though, you have to typecast 



188 Showing Your Colors 
~~~~~~~~~~~~ 

its pointer into an old-style GrafPtr to propitiate the Pascal type
checking deities:

plainPort :- GrafPtr(colorPort):
SetPort (plainPort)

Once you've made the port current, you can go ahead and scribble
in it to your heart's content.

Don't let the ease with which you can typecast one kind of port
into the other lull you into a false sense of security. The two are
still distinct record types with different internal structures.
Never try to use an old-style port pointer (like plainPort in the
example above) to access the internal fields of a color port, lest
the shade of Blaise Pascal descend on you in a howling fury and
dispatch your program to the nether regions.

This can be especially hazardous if you use GetPort
(1:4.3.3] to obtain a pointer to the current port. This routine has
never heard of color ports and always returns an old-style
Graf Ptr, no matter which type the port may actually be. If it
matters. you have to test the port's type yourself and typecast
it to a color port:

colorMask :~ $COOO:
GetPort (plainPort):
with plainPortA do

colorFlag := BitAnd(portBits.rowBytes, colorMask):

if colorFlag = colorMask then
begin

end
else

colorPort := CGrafPtr(plainPort):
with colorPortA do

(Treat as color port}

with plainPortA do
(Treat as monochrome port}

Because the two types of port record are the same size and have
most of the same fields, you can use them more or less interchangea
bly. All the old monochrome drawing routines from Volume One will
still work in a color port, and will use the port's foreground and

189 Drawing in Color

background colors instead of boring old black and white. The nifty
new color drawing routines will also work in a monochrome port,
though naturally the results won't be as pretty as in a full-color port.

Setting Drawing Colors

One difference between the two kinds of port is the way you set their
drawing colors. In an old-style port, you normally do all your
drawing in plain black and white. If you wish, you can use the old
ForeColor and BackColor routines (4.1.2) to choose other drawing
colors instead, but your selection is limited to the eight colors offered
by the classic planar model (4.1.1).

In a color port, you set your drawing colors with the new
routines RGBForeColor and RGBBackColor (5.4.1]. You can ask for
any color you like, over the full range of281 trillion RGB possibili
ties, but QuickDraw doesn't promise to deliver exactly the shade you
ask for-you have to settle for the best approximation available in
the current color environment. The color index you actually get is
stored in the port's fgColor or bkColor field (5.1.3), to be used for
drawing into the pixel image. The exact RGB value you originally
requested is saved in the rgbFgColor or rgbBkColor field; if the
color environment later changes, QuickDraw can try again and
perhaps find you a better (or worse) match. The QuickDraw routines
GetForeColor and GetBackColor (5.4.1) return these exact RGB
values for the current foreground and background colors, respec
tively.

If you're using a palette to manage your color environment (as
you usually do in a color window), you can use PMForeColor and
PMBackColo r (5.4.1) to set your drawing colors. Instead of giving an
RGB value directly, you identify the desired color by its palette
index; the Toolbox will look up the corresponding color value in the
palette record and use it to set the port's drawing color. It also saves
the palette handle and palette index in the auxiliary port record
(5.1.4] for future reference, using the pmFgColor and pmFgindex
fields for the foreground color, pmBkColor and pmBkindex for the
background color.

Line and Shape Drawing
Once you've set your foreground and background colors, drawing in

a color port is pretty much the same as in a monochrome port. All
the old line- and shape-drawing operations we learned about in
Volume One (1:5.2, 1:5.3) still work, and are still governed by the
port's pen and background patterns, pen mode, and pen size. Of

190 Showing Your Colors
~~~~~~~~~~~ 

course, these can now include the new multicolored pixel patterns 
and color transfer modes that we've been discussing in this chapter 
as well as the old monochrome patterns and modes. 

By using a solid black, monochrome pen pattern with a pen 
mode of Pa tCopy (1:5.1.3), you can do simple line drawing in the 
port's current foreground color. [11lese are the standard pattern and 
mode settings that you get by default when you open a new port 
[5.1.5), so you needn't do anything to disturb them.) You position the 
pen and draw with it the same way as always. using the old 
QuickDraw routines Move, MoveTo, Line, and LineTo (1:5.2.4). You 
can still make the pen visible and invisible with HidePen and 
ShowPen [1:5.2.3), set its dimensions with PenSize [1:5.2.2), or save 
and restore its drawing characteristics wholesale with Get Pen -
State and SetPenState [1:5.2.1). (The latter save and restore the 
old pnPat [1:4.2.2) field, among others. This field no longer exists in 
a color port, but since its place is taken by the new pnPixPat and 
fillPixPat handles [5.1.3), everything should still work correctly.) 

You can also use PenPixPat (5.2.4) to switch to a multicolored 
pen pattern and do your line drawing with that instead of just a solid 
foreground color. Remember, though. that the old monochrome 
transfer modes (1:5.1.3) don't work properly on a colored source. so 
be sure to use one of the new color modes instead. Unfortunately. 
there is no simple color copy mode corresponding to the 
monochrome Pa tCopy. To achieve the same effect in color, you have 
to use Transparent mode and set the port's background color to 
one that doesn't occur in the pen pattern. 

Shape drawing, too, works more or less the same as it always 
has. The same five drawing operations (frame. paint, fill, erase, and 
invert [1:5.3.1)) are still available, and can be applied to rectangles 
[1:5.3.2), rounded rectangles [1:5.3.3), ovals [1:5.3.4), arcs and 
wedges [1:5.3.5), polygons [1:5.3.6). and regions [1:5.3. 7). As always. 
framing and painting use the port's current pen pattern and mode, 
erasing uses the background pattern. If the pen and background are 
set to monochrome bit patterns, all black and white pixels in the 
patterns will be replaced with the current foreground and back
ground colors. respectively. Thus under the standard settings (solid 
black pen pattern. solid white background, PatCopy mode), shapes 
will be framed or painted in the foreground color and erased in the 
background color. 

The old shape-filling routines like FillRect and FillOval, 
which accept a fill pattern as an explicit parameter, operate on bit 



191 Drawing in Color 

patterns only and can't be applied to pixel patterns. Instead. there's 
a set of alternate routines (5.4.2] designed specifically for pixel 
patterns, named FillCRect, FillCOval, and so on (C for ·color," of 
course). The fifth operation, inverting a shape, is really a mono
chrome operation that fonns the bitwise complement of each pixel 
within the shape's boundary. In a color port with mapped represen
tation, the results are unpredictable and usually quite peculiar. 
Recall, however, that this operation implicitly uses Pa tXOr mode 
and thus is governed by the Hili teMode flag that we learned about 
earlier. Clearing this flag to o before inverting a shape yields a much 
more pleasing result by exchanging the port's background and 
highlighting colors instead of complementing bits. 

Direct Pixel Transfer 

The fundamental drawing operation Copy Bi ts (1:5.1.4], on which all 
others are based, has been modified (5.4.4) to operate on pixel maps 
as well as bit maps. For both its source and destination maps, 
CopyBi ts examines the two high-order bits of the rowBytes field 
[I:4.2.l, 5.1.1) to see which kind of map itis. Ifthesetwoflagbits are 
00, the map is understood to be an old-fashioned bit map: if they're 
10, it is a pixel map. Either way, the new version of CopyBi ts is 
prepared to deal with it properly. 

A third possibility is that the map's two flag bits are 11. This 
indicates that it isn't really a bit or pixel map at all, but the part 
of a color port record (5.1.3) occupying the same relative 
position as the bit map, po rtBi ts, in an old-style port (1:4.2.2). 
The field containing the flag bits is not really rowBytes but 
portVersion, and what looks like the baseAddr field is really 
portPixMap, the handle to the port's pixel map. CopyBi ts will 
follow this handle and use the real pixel map instead of the fake 
bit map it actually received. Thus, to operate on the pixel map 
belonging to a color port, you canjust typecast it to an old-style 
port and pass its fictitious portBi ts field as a parameter: 

dummyPort := GrafPtr(colorPort); 
CopyBits ( ... dummyPortA.portBits ... ) 

(You can get away with this because CopyBi ts already dwells 
in the nether regions, safely beyond the reach of Pascal's 
ghost.) 



192 Showing Your Colors 
~~~~~~~~~~~ 

The source and destination maps need not be the same kind:
you can copy between a bit map and a pixel map, or between pixel
maps of different depths, and CopyBi ts will automatically adjust
the results to the depth of the destination map. Similarly, if the
source and destination rectangles are of different sizes, CopyBi ts
will scale the source rectangle to the dimensions of the destination,
and if the two maps have difierent color tables, it will convert all
source colors to their nearest available matches in the destination.
(Such color mapping is always done through the inverse table of the
current graphics device, however, so it won't work correctly unless
the destination pixel map is based on that device's color table.)

Like the old monochrome version, this new color version of
CopyBi ts accepts a transfer mode as a parameter. You can use
either a monochrome or a color mode, depending on the nature of
the pixel source. Monochrome modes give useful results only if the
source is either a bit map or a pixel map containing black and white
pixels exclusively. For a full-color source, use one of the new color
transfer modes instead.

The alternate transfer routine CopyMask [1:5.1.4] has likewise
been extended [5.4.4] to handle both pixel and bit maps. This
routine works similarly to CopyBi ts, but accepts an additional bit
map to use as a mask. Although the source and destination maps
may be of either kind, the mask must be a bit map, not a pixel map,
and must have the same width and height as the source. Pixels are
copied from the source to the destination only in those positions
where the mask has a black (1) bit.

CopyMask is useful for transferring icons (1:5.4.4, 6.1.1) into a
bit map and also for implementing on-screen drawing tools like the
.. lasso" and .. paint bucket." In the former case, the mask normally
comes from an icon resource of type 'ICN//' (1:5.5.4, 1:7.5.3) (for
monochrome icons) or ' c i c n' [6. 7 .1] (for color icons). In the latter,
the mask is generated by the special-purpose QuickDraw routines
CalcCMask and SeedCFill [5.4.5], for the lasso and paint bucket.
respectively.

These routines work essentially the same as their old mono
chrome counterparts CalcMask and SeedFill [1:5.1.6], but on pixel
maps as well as bit maps. CalcCMask starts from a given rectangle
within the source map and finds the largest closed boundary lying
entirely within the rectangle, representing the area .. roped" by the
lasso. SeedCFill starts from a given seed point and finds the
smallest closed boundary surrounding that point, representing

193 Drawing in Color

the area filled by the paint bucket. Both routines then build a mask
to be passed to Co pyMa sk, with 1 bits corresponding to the identified
boundary and the area inside it.

The difference between these routines and their older counter
parts lies in the way they define what constitutes a boundary. By
default, both of the new color-oriented routines look for a closed
boundary or a contiguous area of one single color: CalcCMask
accepts the color as a parameter and SeedCFill takes it from the
source map itself at the designated seed coordinates. Thus if the
edge color specified to CalcCMask is cobalt blue, it looks for
the largest closed chain of cobalt blue pixels completely enclosed
within the given rectangle; if the pixel at SeedCFill's seed point is
lemon yellow. it finds the region of all lemon yellow pixels contiguous
to that one. If this simple one-color approach isn't what you need,
you can customize it to suit yourself: see the "Nuts and Bolts"
section at the end of this chapter for further information.

Color Table Animation
One interesting technique that the new color environment makes
possible is color table antmation. Instead of changing the contents of
a pixel map to produce the illusion of motion on the screen, you can
leave the map fixed and change the color values of its pixels.
Depending on how you set things up, this can produce a variety of
unusual and useful effects.

Figure 5-2 shows an example, going eyeball to eyeball with our
old friend Big Brother from Volume One and finally making him
blink. {Now that we have color available, we've given him an iris
instead of just a solid black pupil; picture it as blood red.) Figure
5-2a shows the old boy in his normal vigilant state; in 5-2b, he's
caught napping. By changing quickly from one image to the other,
you can make him visibly blink on the screen.

As Figure 5-2c shows, the eyeball is actually made up of five
separate regions with different pixel values, representing various
color transitions from one image to the other. One region includes
the eyelids and pupil, which remain black both before and after the
transition. The white of the eye is divided into two regions, one that
changes from white to black and another that remains white
throughout; similarly, the iris has one region that goes from blood
red to black and another that goes from red to white. When all these
color transitions are made simultaneously, the eye changes from
open to closed.

194 Showing Your Colors
~~~~~~~~~~~-

c. 

Palette Color Color 
entry a b FA.I=•• 
[ill]= D -
~=DD •=•• 
UIIIIIll = - CJ 

Figure 5-2 Color table animation 

It's possible to do this kind of animation by manipulating the 
contents of the color table directly with SetEntries (4.4.5), but it's 
generally much more convenient to use a palette instead. The palette 
contains a separate animating entry (4.5.1) for each color region in 
the animated image (Figure 5-2c in our example). As we11 see. for 
effective animation the entries should occupy consecutive positions 
within the palette. Each animating entry reseives an index in the 
device color table and sets it to the specified initial color (presumably 
the one shown in the first column in the figure). Once such a color 
index has been reseived [ 4. 4. 6), it becomes unavailable for use as an 
ordinary drawing color, via RGBForeColo r or RGBBackColor 
(5.4. 1): you can use it only through the palette, by passing its palette 
index to PMForeColor or PMBackColor (5.4.1). 



195 Nuts and Bolts 

If you 're drawing in a window that spans more than one display 
screen, a separate index will be reserved in each device's color 
table for each palette entry you use. In general, the same 
palette entry will correspond to different color indices on 
different devices, but all the appropriate color settings will be 
maintained for you automatically and won't affect the way you 
do your drawing at the application level. 

Once you've drawn the image in terms of your animating 
palette entries, you have to change the colors associated with those 
entries to produce the animation. The Toolbox routine Animate
Entry [5.4.3) changes the color of a single palette entry, but if 
you change one entry at a time. the intermediate results will be 
visible on the screen and will ruin the effect. For the animation to 
be effective, you have to change the entries all at once with 
AnimatePalette [5.4.3). This routine sets the color values for a 
whole group of palette entries simultaneously. taking the new colors 
from a color table passed as a parameter. A sequence of consecutive 
colors are copied from the color table to the palette: that's why we 
said earlier that the entries for an animated image should occupy 
consecutive positions within the palette. To make Big Brother blink. 
we would call AnimatePalette with an auxiliary color table con
taining the five colors shown in the second column in the figure: 
black, black, white, black, white. To open his eye again. we would 
use another color table with the colors from the first column: black. 
white. white, red. red. 

Nuts and Bolts 

The CalcCMask and SeedCFill routines [5.4.5). which build bit 
masks for use with CopyMask [5.4.4) to implement the lasso and 
paint bucket drawing tools. ordinarily use a single color to define the 
lasso boundary or fill region (specified either by the edge Color 
parameter to CalcCMask or by the pixel color at the seed point 
supplied to SeedCFill). If your needs are different. you can custom
ize these routines to use some other search algorithm instead. 
Before learning how. we'll have to understand a little about how 
these routines work internally. 



196 ShowingYourColors 
~~~~~~~~~~~-

Both routines build the required bit mask by calling Copy Bi ts
to convert the source pixel map to 1-bit depth, after first installing
their own custom search function [4.6.1) in the current device
record. For each pixel in the source map, CopyBi ts looks in the
map's color table to find the pixel's RGB color. It then calls
Color2 Index (4.4.4] to convert the color to an equivalent I-bit
"color index" for the destination (mask) map. This in tum activates
the search function to perform the actual color-to-index conversion.

Before issuing the call to CopyBi ts, the CalcCMask and
SeedCFill routines create a special parameter record of type
MatchRec (5.4.5), containing the RGB components of the reference
(edge or seed) color. and place a pointer to this record in the
gdRefCon field of the current device record (4.3.1). The standard
search function simply compares each pixel's color against this
reference color, generating a 1 bit in the mask if the two colors
match, a o bit otherwise. This is the function that's used if the
searchFunc parameter to CalcCMask or SeedCFill is NIL.

To customize the operation of these routines. you can supply
your own search function in place of the standard one. The function
receives the RGB color of a pixel and returns the resulting mask bit
via a variable parameter, along with a Boolean function result of
TRUE to signal that it has accepted and processed the request. The
value of the edge or seed color (which the search function is free to
ignore if it wishes) is available in the match record [5.4.5). which is
pointed to by the current device's gdRefCon field. The match record
also contains an additional utility field, matchData, to be used in
any way the search function wishes. You supply the contents of this
field as a parameter in your call to CalcCMask or SeedCFill, and
the parameter value is copied into the match record for use by the
search function.

For example. suppose you want to copy a six-colored banana
from one place to another on the screen. In order to "lasso" the
banana for copying, you need to call CalcCMask with a search
function that recognizes all six of the banana's colors instead of just
a single edge color. You can accomplish this by building a colortable
containing the six colors and passing a handle to the table (typecast
to a long integer) as the searchParam parameter to CalcCMask. This
handle will be copied into the matchData field of the match record,
where your search function can find it. The function can then search
the table for each pixel color it receives and generate a mask bit
telling whether the table includes that color.

REFERENCE

5.1 Graphical Foundations

type

PixMapHandle

PixMapPtr

PixMap

5.1.1 Pixel Maps

APixMapPtr:

APixMap:

record

baseAddr Ptr:

rowBytes INTEGER:

bounds Re ct:

pmVersion INTEGER:

packType INTEGER:

packSize LONGINT:

hRes Fixed:

vRes Fixed:

pixel Type INTEGER:

pixelSize INTEGER:

cmpCount INTEGER:

cmpSize INTEGER:

planeBytes LONGINT:

pmTable CTabHandle:

pmReserved LONG INT

end:

197

(Pointer to pixel image)

(Row width in bytes)

(Boundary rectangle)

(Color QuickDraw version number)

(Format of packed image)

(Sire of packed image in bytes)

{Horizontal resolution in pixels per inch)

{Vertical resolution in pixels per inch)

{Storage format)

{Physical pixel sire in bits}

{Number of color planes)

{Logical pixel sire per plane, in bits}

{Plane offset in bytes)

(Handle to color table)

(Reserved for future expansion}

198 Color Drawing

Notes

1. A pixel map contains the information needed to interpret a given pixel
image in memory.

2. Each graphics device has its own screen map, defining the image to be
displayed on the screen of the device. The gdPMap field of the device
record [4.3.1) holds a handle to the screen map.

3. baseAdd r is a pointer to the map's pixel image. The pixels of the image
define the contents of the pixel map.

4. rowBytes is the row width, the numberofbytesineach row of the pixel
image.

5. The row width should always be even, representing a whole number
of 16-bit words.

6. The high-order bit (bit 15) of rowBytes must be 1, to distinguish the
pixel map from an old-style bit map [1:4.2.1). Bits 14 and 13 are
reserved for future use as flags, and for now should be set too.

7. bounds is the pixel map's boundary rectangle, which defines its extent
and coordinate system.

8. The first pixel in the pixel image lies just inside the top-left corner of
the boundary rectangle.

9. The width of the boundary rectangle must not exceed the image's row
width in pixels (that is, 8/ cmpSize • rowBytes). Its height must not
exceed the number of rows In the pixel image.

10. Any pixels of the image that lle beyond the right or bottom edge of the
boundary rectangle are Ignored.

11. pmVersion identifies the version ofColorQuickDraw that created this
pixel map.

12. hRes and vRes give the horizontal and vertical resolution of the image
in pixels per inch.

13. pixelSize is the physical numberofbits occupied by each pixel in the
image.

14. pixelSize ls always a power of2, allowing efficient packing of pixels
within an 8-bit byte or a 16-bit word.

15. pixel Size ls not necessarily equal to the image's logical pixel depth.
However, in the current version of the Toolbox, pixel depths are also
restricted to powers of 2, so the two quantities are in fact always equal.

16. pixel Type is an integer code denoting the format in which the pixel
image is stored in memory. A value of o stands for chunky format, 1
for chunky /planar, and 2 for planar. At present, only chunky format
ts supported; the others are included for possible future expansion.

199 (5.1.1) Pixel Maps
~~~~~~~~~~~~-

~~I 

17. In planar and chunky /planar formats, cmpCount Is the number of 
components (planes) and cmpSize the number ofblts per pixel In each 
plane (1 for pure planarrepresentatlon). In chunkyfonnat, cmpCount 
= 1 and cmpSize = pixelSize. 

18. planeBytes Is the size of each plane's pixel Image in bytes, and thus 
defines the offset from the beginning of one plane to the beginning of 
the next. Note that rowBytes refers to the row width within each 
plane. In chunky format, planeBytes = o. 

19. packType and packSize are Included for future use with compressed 
pixel Images. packType Identifies the packing format used; packSize 
gives the size of the compressed Image in bytes. At present, no packing 
formats are supported and both fields should be set too. 

20. pmTable ls a handle to a color table defining the colors used In the 
pixel Image. This may be either the hardware color table for a 
particular graphics device or a table of Intended color values for a 
device-independent pixel map. 

21. The field pmReserved Is resetved for future expansion and should be 
set too. 

Assembly Language Information 

Field offsets in a pixel map: 

(Pascal) (Assembly) Offset 
Field name Offset name in bytes 

baseAddr pmBaseAddr 0 

pmNewFlag 4 

rowBytes pmRowBytes 4 

bounds pmBounds 6 

pmVersion pmVersion 14 

packType pmPackType 16 

packSize pmPackSize 18 

hRes pmHRes 22 

vRes pmVRes 26 

pixel Type pmPixelType 30 

pixel Size pmPixelSize 32 

cmpCount pmCmpCount 34 

cmpSize pmCmpSize 36 

planeBytes pmPlaneBytes 38 

pmTable pmTable 42 

pmReserved pmReserved 46 



200 Color Drawing 

Assembly-language constant: 

Name 

PMRec 

bytes 

Value 

50 

Meaning 

Size of a pixel map record in 

5.1.2 Creating and Destroying Pixel Maps 

function NewPixMap 

: PixMapHandle: 

procedure CopyPixMap 

(fromPix PixMapHandle: 

toPix PixMapHandle): 

procedure SetPortPix 

(thePix : PixMapHandle): 

procedure DisposPixMap 

(thePix : PixMapHandle): 

Notes 

{Handle to new pixel map} 

{Pixel map to be copied} 

{Pixel map to copy it to} 

{New pixel map for current port} 

{Pixel map to be destroyed} 

1. NewPixMap creates a new pixel map and returns a handle to it. 

2. An empty handle is created for the pixel map·s color table (pmTable). 
No memocy ls actually allocated for the table. 

3. All other fields are Initialized from those of the pixel map belonging to 
the current graphics device. 

4. CopyPixMap copies the contents of one pixel map record [5.1.1) to 
another. 

5. The destination pixel map shares the same physical pixel image in 
memory with the source map. Only the baseAddr pointer ls copied, 
not the underlying Image itself. 

6. The destination pixel map receives a copy of the source map·s color 
table, not just a handle to the same table. The two pixel maps are thus 
left with separate color tables, rather than sharing the same table. 



201 (5.1.3) Color Graphics Ports 
~~~~~~~~~~~~~ 

7. SetPortPix assigns a new pixel map to the current graphics port.

8 . The pixel map thePi x ls stored Into the port's po r tPixMap field
[5.1.3].

9. The rectangle the Pix. bounds becomes the port's boundary rectangle
and establishes a new local coordinate system for the port.

10. If the current port ls not a color graphics port, Set Po rt Pix has no
effect. Similarly, lfthe port ts a color port, the old QulckDraw routine
SetPort Bi ts [1:4.3.4) has no effect.

11. Di sposPixMap destroys a pixel map and frees Its storage for other
uses.

12. The pixel map's color table ls deallocated as well as the pixel map itself.
lfa pixel map is using the color table associated with a graphics device,
be sure to clear Its pmTab le field [5.1.1] to NIL before disposing of it.

-1 liil I Assembly Language Information

Trap macros:

(Pascal) (Assembly)
Routine name Trap macro Trap word

Ne wPixMap _NewPixMap $AA03

CopyPi xMa p _ Co pyPixMap $AA05

Set Po rt Pi x _ SetPortPix $AA06

DisposPixMap _DisposPixMap $AA04

5.1.3 Color Graphics Ports

type

CGrafPt r ACGrafPort :

CGrafPo rt r ecord

device

portPixMap

portVersion
grafVars
chExt r a

INTEGER:
PixMapHandle :

INTEGER:
Handle :
INTEGER:

{Device code for font selection (1:8.3. J J J
{Pixel map for this port [5.1.1 J}

{Color Quick Draw version number}

{Handle to auxiliary port record [5.1.4))

{Extra character width}

202 Color Drawing

pnLocHFrac INTEGER: {Fractional pen location}

portRect Rect: {Port rectangle}

visRgn RgnHandle: {Visible region}

clipRgn RgnHandle: {Clipping region}

bkPixPat PixPatHandle: {Background pixel pattern [S.2.1])

rgbFgColor RGBColor: {RGB value of foregl'OWld color [S.4.1)}

rgbBkColor RGBColor: {RGB value of background color [S.4.1])

pnLoc Point: {Current pen location [l:S.2.1))

pnSize Point: {Dimensions of graphics pen [l:S.2.1)}

pnMode INTEGER: {Transfer mode for graphics pen [S.3.1)}

pnPixPat PixPatHandle: (Pixel pauem for line drawing [S.2.1))

fillPixPat PixPatHandle: (Pixel pauem for area fill [S.2.1])

pnVis INTEGER: {Pen visibility level [l:S.2.3)}

txFont INTEGER: (Font nwnber for text (1:8.2.1, 1:8.3.l]}

txFace Style: {Type style for text (1:8.3.1)}

txMode INTEGER: (Transfer mode for text [S.3.1, 1:8.3.1)}

txSize INTEGER: {Type sii.e for text [1:8.3.1]}

spExtra Fixed: {Extra space between words [1:8.3.1))

fgColor LONGINT: {Color index of foreground color [5.4.1)}

bkColor LONGINT: {Color index of background color [S.4.1)}

colrBit INTEGER: {Current color plane [4.1.3]}

patStretch INTEGER: {Private}

pie Save Handle: {Private}

rgnSave Handle: {Private}

poly Save Handle: {Private}

graf Procs QDProcsPtr {Pointer to bottleneck procedures [S.S.l]}

end:

Notes

1. A color graphics port is a complete color drawing environment con
taining all the information needed for Color QuickDraw drawing
operations.

2. The CGraf Port record is the same size as an old-style Graf Port
record [1:4.2.2'] and (with the exceptions noted below) has most of the
same fields in the same locations within the record.

203 [5.1.3) Color Graphics Ports
~~~~~~~~~~~~ 

S. Like old-style graphics ports, color ports are nonrelocatable objects In 
the heap and are always referred to by simple pointers rather than 
handles. 

4. portPixMap ls a handle to the pixel map [5.1.1) that this port draws 
into. 

&. The port's boundary rectangle ls the same as that of its pixel map, 
portPixMap"". bounds (5.1.1). 

6. portVersion identifies the version of Color QulckDraw that created 
this port. 

7. The first two bits (bits 15 and 14) of portVersion are set to 1. This 
distinguishes color graphics ports from old-style ports, In which the 
field portBi ts. rowBytes (occupying the same relative position 
within the port record) always has o In these two bits. 

8. grafVars ls a handle to an auxiliary port record (5.1.4) containing 
addltlonal Information about the port. 

9. The bkPat, fill Pat, and pnPat fields of the old-style graphics port 
(1:4.2.2) are replaced by bkPixPat, fillPixPat, and pnPixPat. 
Notice that these are now handles to pixel patterns [5.2.1), rather than 
old-style bit patterns (1:5.1.1) embedded directly in the port record. 

10. rgbFgColor and rgbBkColor are the exact RGB values [4.2.ll re
quested for the port's foreground and background colors [5.4.1). 
fgColor and bkColor are the corresponding actual pixel values. 
normally the color indices of the best available matches In the current 
device's color table. 

11. colrBit ls the current color plane [4.1.3) for drawing under the 
'"classic QulckDraw" planar color model. 

12. chExtra Is a new field specifying the addltlonal character width to be 
used in proportional spacing. All text characters except spaces are 
widened by this number of pixels; space characters are still governed 
by the spExtra field, as before [1:8.3.1). 

IS. chExtra ls nominally defined as an integer, but ls actually a fixed
point number with 4 bits before the binary point and 12 after it. 

14. pnLoc HF r ac ls a fractional pen location maintained by the Toolbox for 
more precise character placement when drawing text. 

15. All other fields of the color graphics port have the same meanings as 
in an old-style port [1:4.2.2). 



204 Color Drawing 

~~I Assembly Language Information 

Field offsets in a color graphics port.: 

(Pascal) (Assembly) Offset 
Field name Offset name in bytes 

device device 0 

portPixMap portPixMap 2 
portVersion portVersion 6 
grafVars grafVars 8 
chExtra chExtra 12 
pnLocHFrac pnLocHFrac 14 
portRect portRect 16 
visRgn visRgn 24 
clipRgn clipRgn 28 
bkPixPat bkPixPat 32 
rgbFgColor rgbFgColor 36 
rgbBkColor rgbBkColor 42 
pnLoc pnLoc 48 
pnSize pnSize 52 
pnMode pnMode 56 
pnPixPat pnPixPat 58 
fillPixPat fillPixPat 62 
pnVis pnVis 66 
txFont txFont 68 
txFace txFace 70 
txMode txMode 72 
txSize txSize 74 
spExtra spExtra 76 
f gColor f gColor 80 
bkColor bkColor 84 

colrBit colrBit 88 

pat Stretch pat Stretch 90 
picSave picSave 92 
rgnSave rgnSave 96 
polySave polySave 100 

graf Procs grafProcs 104 



205 (5.1.4] Auxiliary Port Record 
~~~~~~~~~~~~-

Assembly-language constant:

Name Value Meaning

PortRec 108 Size of a color port record in
bytes

5.1.4 Auxiliary Port Record

I Definitions
--l~t--------

type

GVarHandle AGVarPtr:
GVarPtr AGrafVars:

GrafVars record
rgbOpColor
rgbHiliteColor
pmFgColor
pmFglndex
pmBkColor
pmBklndex
pmFlags

end:

Notes

RGBColor:
RGBColor:
Handle:
INTEGER:
Handle:
INTEGER:
INTEGER

(Reference color for transfer modes}

(Highlighting color}

(Palette containing foreground color}

(Palette index of foreground color}

(Palette containing background color}
(Palette index of background color}

(Private flags for paleue usage}

1. The auxiliary port record contains additional information associated
with a graphics port. beyond what ls contained in the port record Itself.

2. The grafVars field in the main port record [5.1.3) holds a handle to
the auxiliary port record.

3. rgbOpColor ls an RGB color value used in connection with the
transfer modes AddPin. SubPin [5.3.2), and Blend [5.3.3). See the
sections on these transfer modes for further discussion.

4. rgbHili teColor is the port's highlighting color; see (5.3.4) for further
discussion.

5. The values of rgbOpColor and rgbHili teColor are set by the
Toolbox routines OpColor (5.3.2) and Hili teColor (5.3.4), respec
tively.

6. The remaining fields are used internally by the Toolbox when the
port's drawing colors are set from a palette with the routines

206 Color Drawing

PMForeColor and PMBackColor [5.4.1). The letters pm stand for
Palette Manager, the part of the Toolbox that deals with color palettes.

7. pmFgColo r and pmBkColor are handles to the palettes containing the
port's foreground and background colors, respectively. pmFg!ndex
and pmBkindex are the colors' palette indices within these palettes.

8. pmFlags contains private flags relating to the port's use of palettes.

~ lrill ... ____ As_se_m_h_Iy_Lan __ gua __ g_e_I_nfi_o_rm __ a_tl_o_n ______ _

procedure

pr oc edure

procedure

Field offsets in an auxUtary port record:

(Pascal)
Field name

rgbOpColo r
rgbHiliteColor
pmFgColor
pmFg!ndex
pmBkColor
pmBk!ndex
pmFlags

(Assembly)
Offset name

rgbOpColor
rgbHili teColor
pmF gColor
pmFgindex
pmBkColor
pmBk!ndex
pmFlags

Offset
in bytes

0

6

12

16

18

22

24

Assembly-language constant:

Name Value

GrafVa rRec 26

Meaning

Size of an auxiliary port record
in bytes

5.1.5 Creating and Destroying Color Ports

OpenCPo rt

(whichPort CGrafPtr) : (Pointe r to port to open}

Init:CPort

(wh ichPort: CGrafPtr) : {Pointer to port to initiali1.c}

CloseCPort

(whichPort: CGrafPt:r): (Pointer to port to close }

207 [5.1.5) Creating and Destroying Color Ports
~~~~~~~~~~~~ 

Initial values of CGrafPort fields: 

Field 

device 

portPixMap 

portVersion 

chExtra 

pnLocHFrac 

portRect 

visRgn 

clipRgn 

bkPixPat 

rgbFgColor 

rgbBkColor 

pnLoc 

pnSize 

pnMode 

pnPixPat 

fillPixPat 

pnVis 

txFont 

txFace 

txMode 

txSize 

spExtra 

f gColor 

bkColor 

colrBit 

patStretch 
pie Save 

rgnSave 

polySave 

graf Procs 

lnitlal Value 

o (screen) 

Copy of current device's pixel map 
$COOO 

0 

0.5 
portPixMapAA.bounds 

Rectangular region equal to portRect 

Rectangular region (-32768, -32768) 
to (+32767, +32767) 

Solid white 
Black 

White 
(0, 0) 

(1, 1) 

PatCopy (1:5.1.3) 

Solid black 
Solid black 

o (visible) (1:5.2.3) 
o (system font) [1:8.2.1] 
Plain (1:8.3.1] 

SrcOr (1:5.1.3] 

o (standard size) [1:8.3. l] 

0 

Black 
White 

0 

0 

NIL 
NIL 
NIL 
NIL (standard bottlenecks) [111:2.1. 5.5.1) 



208 Color Drawing 

~~i~....__Not_es _____ _ 

1. OpenCPort initializes a color graphics port and opens it for use: 
Ini tCPort reinitializes a color port that has already been opened. 

2. Both routines set the fields of the CGrafPort record to their standard 
initial values, as shown in the table. 

S. The CGrafPort record representing the port must already have been 
allocated previously with NewPtr [1:3.2.1). Use typecasting to convert 
the resulting pointer from type Ptr (1:3.1.1) to CGrafPtr [5.1.3). 

4. In both cases, the designated port becomes the current port. 

5. In additlon to the port record itself, OpenCPort allocates space for the 
port's internal data structures (pixel map: pen, fill. and background 
pixel patterns: visible and clipping regions: auxiliary port record), but 
not for the pixel map's color table. InitCPort allocates no storage, 
but merely initializes the contents of the existing port record and 
internal structures. 

6. All fields of the port's pixel map are initialized from those of the current 
device's pixel map. In particular, the map's color table handle 
(portPixMapJ\J\. pmTable) is set to point to the device's color table 
(gdPMapJ\J\. pmTable). Thus the port and the device share the identi
cal color table in memory. 

7. The rgbOpColor field in the auxiliary port record [5.1.4) is initialized 
to black, and rgbHili teColor to the default highlight color taken 
from the system global Hili teRGB [5.3.4). All other fields of the 
auxiliary port record are initialized too. 

8. To create a port for drawing into an offscreen pixel map, call NewGDe -
vice [4.3.2) with a dRefNum parameter of o to create a device record 
that ls not initialized for any existing device. Set the record's gdPMap 
field [4.3.1) to point to your offscreen map and initialize its other fields 
"by hand" as necessary. Then use SetGDevice [4.3.4) to make it the 
current device before calling OpenCPort to create a port based on it. 

9. CloseCPort destroys a port's internal data structures, but not the 
CGraf Port record itself. Use this routine to deallocate the internal 
structures, then DisposPtr [I:3.2.2] to dispose of the port itself. 

10. Since a port's pixel map commonly shares the color table belonging to 
a graphics device, CloseCPort does not deallocate the color table 
along with the pixel map itself. If you have supplied your own color 
table and wish to dispose of it, you must do so explicitly before calling 
CloseCPort. 

11. These routines have no effect on an old-style graphics port; similarly, 
the old routines OpenPort, Ini tPort, and Close Port [1:4.3.2) have 
no effect on a color port. 



209 (5.1.6) Pixel Access 

~ ~ .-1---As_s_e_m_b_l_y_Lan __ gua __ g_e_I_nfi_o_rm_a_tl_o_n ______ _ 

Trap macros: 

(Pascal) 
Routine name 

OpenCPort 
InitCPort 
CloseCPort 

(Assembly) 
Trap macro 

_OpenCPort 
InitCPort 

_CloseCPort 

5.1.6 Pixel Access 

procedure GetCPixel 

( hCoo rd I NTEGER: (Horizontal coordinate of pixel) 

vGoord INTEGER: (Verticalcoordinatc ofpixel) 

var pixel Color RGBColor) ; (Returns current color of pixel) 

procedure SetCPixel 

(hCoord INTEGER: 

vGoord INTEGER : 

pixelColor RGBColor): 

(Horizontal coordinate of pixel) 

(Vertical coordinate of pixel) 

(Desired new color of pixel) 

Trap word 

$AAOO 

$AA01 

$A87D 

~~Hlii~1----N_o_t_es __________________________________ _ 

1. GetCPixel returns the color of a designated pixel In the current 
graphics port; SetCPixel sets a pixel to a specified color. 

2. hCoord and vCoord are expressed In the local coordinate system of the 
current port. The pixel affected will be the one Immediately below and 
to the right of these coordinates. 

3. SetCPixel accepts an RGB color value and sets the designated pixel 
to the nearest available color In the current color environment. 
GetCPixel returns the pixel's exact RGB color. 

4. For a graphics port on the screen (such as a window), the result Is 
meaningful only if the given coordinates lie within the port's visible 
region. 



210 Color Drawing 

-I ii'.1 I Assembly Language Information 

'ITap macros: 

function QDError 

(Pascal) 
Routine name 

GetCPixel 
SetCPixel 

(Assembly) 
Trap macro 

_GetCPixel 
_SetCPixel 

5.1.7 Error Reporting 

Trap word 

$AA17 
$AA16 

: INTEGER: (Result code of last QuickDraw or color operation) 

con st 
NoErr 
CMatchErr 
CTempMemErr 
CNoMemErr 
CRangeErr 
CProtectErr 
CDevErr 
CResErr 

0: 

-150: 

-151: 

-152: 

-153: 

-154: 

-155: 

-156: 

Notes 

{No error; all is well} 

{Unable to match requested color} 

{Unable to allocate temporary memory} 

{Unable to allocate memory} 

{Color index out of range} 

{Color table protection violation) 

{Invalid type for graphics device} 

{Invalid resolution for inverse table) 

1. QDError returns the result code posted by the last QuickDraw or 
color-related routine call. 

2. The result code returned in the normal case is o (NoEr r). Any nonzero 
result code denotes an error. 

3. Error codes listed here are only those directly related to color. Errors 
from other parts of the Toolbox can also occur in the course of color
related operations, and Will be reported by QDE r r or. See Appendix E 
for a complete list of Toolbox error codes. 



211 (5.2.1) PJxel Pattern Structure 
~~~~~~~~~~~~-

--I~ I Assembly Language Information

Trap macro:

(Pascal)
Routine name

QDError

Result codes:

Name Value

NoErr 0

CMatchErr -150

CTempMemErr -151

CNoMemErr -152
CRangeErr -153
CProtectErr -154
CDevErr -155
CResErr -156

[Assembly)
Trap macro

_QDError

Meaning

Trap word

$AA40

No error: all is well
Unable to match requested

color
Unable to allocate temporary

memory
Unable to allocate memory
Color index out of range
Color table protection violation
Invalid type for graphics device
Invalid resolution for inverse

table

5.2 Pixel Patterns

5.2.1 Pixel Pattern Structure

type

PixPatHandle ; ~PixPatPtr:

PixPatPtr

PixPat

~PixPat:

record

pa'tType
patMap
patData
patXDa'ta

INTEGER: {Pauem type}

PixMapHandle: {Characteristics of pixel image}

Handle: {Pixel image}

Hand 1 e ; {Expanded pixel image}

212 Color Drawing

patXValid INTEGER:

patXMap Handle:

patlData Pattern

end:

Notes

{Is expanded image valid?}

{Characteristics of expanded image}

{Bit pauem for old-style ports}

1. A pixel pattern is the color analog of an old-style (monochrome) bit
pattern [1:5.1.1): a colored .. tile" that can be repeated indefinitely to
draw lines or fill areas in a graphical image.

2. Unlike bit patterns. which are limited to a fixed size (8-by-8). a pixel
pattern's height and width may be any power of 2.

3. When drawn in a graphics port. a pixel pattern is aligned with the
coordinates of the port rectangle. so that adjacent patterned areas will
blend continuously without creating .. seams."

4. patType is an integer code denoting the type of pattern. A value of o
stands for a monochrome pattern (equivalent to an old-style bit
pattern). 1 for a full-color pixel pattern. and 2 for a dithered pattern
approximating a given RGB color.

5. The assembly-language interface to the Toolbox includes constants
OldPat. NewPat, and DitherPat. representing the three pattern
types (see "Assembly Language Information" below). These constants
have been inadvertently omitted from the Pascal version of the
interface.

6. patData is a handle to the pixel image defining the pattern.

7. patMap is a pixel map defining the pattern's dimensions, pixel depth,
color table. and other properties. The map's bas eAd d r field is ignored.
since the pixel Image is defined by patData instead.

8. In a monochrome pattern (patType = 0), patMap is ignored. The
pattern's dimensions are always 8-by-8, its pixel depth isl, and it is
always drawn in the port's current foreground and background colors
(5.4.1).

9. When a pixel pattern is drawn in a given color environment, the
Toolbox builds a private copy to match the current pixel depth and
color table. The pixel image and map defining this private copy are
stored in the patXData and patXMap fields.

213 (5.2.1) Pixel Pattern Structure
~~~~~~~~~~~~ 

~~I 

10. patXValid ls a flag indicating whether patXData and patXMap 
represent a valid expansion of the pattern for the current color 
environment. After changing the pattern's pixel image, color table, or 
other properties, set this field to - 1 to mark the expanded pattern as 
invalid and force It to be rebuilt. 

11. patlData ls a monochrome bit pattern [1:5.1.1] for use In drawing the 
pattern Into old-style graphics ports. Like all bit patterns, it is limited 
to the standard fixed dimensions, 8 bits by 8. 

12. In a newly created pixel pattern, patlData ls Initialized to the 
standard medium gray pattern (1:5.1.2). To use a different pattern 
Instead, you must explicitly store It into this field yourself. 

Assembly Language Information 

Field offsets in a pixel pattern: 

(Pascal) (Assembly) Offset 
Field name Offset name in bytes 

patType patType 0 

patMap patMap 2 

patData patData 6 

patXData patXData 10 

patXValid patXValid 14 

patXMap patXMap 16 

patlData patlData 20 

Assembly-language constant: 

Name Value Meaning 

PPRec 28 Size of a pixel pattern In bytes 

Pattern types: 

Name Value Meaning 

Old Pat 0 Monochrome (bit) pattern 
NewPat 1 Full-color pixel pattern 
DitherPat 2 Dithered pixel pattern 



214 Color Drawing 

5.2.2 Creating and Destroying Pixel Patterns 

function NewPixPat 

: PixPatHandle: (Handle lo new pixel pauem) 

function GetPixPat 

(patternID : INTEGER) 

: PixPatHandle: 

procedure DisposPixPat 

(thePixPat : PixPatHandle) ; 

(Resource ID of desired pixel pauem) 

(Handle lo pattern in memory} 

(Pixel pattern to be destroyed} 

1. NewPixPat creates a new pixel pattern (5.2. 1) and Initializes Its fields. 

2. The pattern's pat Type field Is set to 1, denoting a standard, full-color 
pixel pattern. 

3. A new pixel map (patMap) Is created, with Its fields (row width, 
boundary rectangle, pixel depth, and so forth) Initialized from those of 
the current graphics device. If these settings are not the ones you want 
for the pattern, you must change them yourself. 

4. Empty handles are created for the pattern's pixel Image (patData), 
color table (p atMap'"' . pmTable), expanded Image (patXData), and 
expanded pixel map (patXMap), but no memory ls actually allocated 
for these structures. The patXValid field Is set to - 1, marking the 
expanded Image as Invalid. 

5 . The pattern's monochrome equivalent (pat lData) Is Initialized to the 
standard medium gray pattern (1:5.1.2). To use a different pattern 
Instead, you must explicitly store it Into this field yourself. 

6 . Get PixPat createsanewplxelpatternfroma ' ppat' resource (5.6.1). 

7. DisposPixPat disposesofa pixel pattern and all oflts subsidiary data 
structures (pixel Image, pixel map, expanded Image, expanded map, 
and color table). 

8 . If the pattern you"re destroying Is the current pen, background, or fill 
pattern of any existing graphics port. the port's handle to the pattern 
Is automatically cleared to NIL to avoid leaving It dangling. In general, 
you should be careful not to dispose of a pattern while It Is still In u se 
by a port. 



215 [5.2.3) Filling Pixel Patterns 
~~~~~~~~~~~~-

ID I Assembly Language Information
--lmll1------

n-ap macros:
(Pascal)
Routine name

NewPixPat
GetPixPat
DisposPixPat

(Assembly)
Trap macro

_NewPixPat
_GetPixPat
_DisposPixPat

5.2.3 Filling Pixel Patterns

procedure MakeRGBPat
(toPixPat
f romColor

procedure CopyPixPat
(fromPixPat
toPixPat

PixPatHandle:
RGBColor):

PixPatHandle:
PixPatHandle):

(Pixel pattern to be filled}

(Color value to be approximated}

(Pixel pattern to be copied}

(Pixel pattern to copy it to}

Trap word

$AA07
$AAOC
$AA08

~~iiil~~~--N_o_te_s ________________________________ __

1. MakeRGBPat builds a dithered pixel pattern approximating a given
ROB color.

2. The pixel pattern data structure [5.2.1] must already exist:
MakeRGBPat merely sets its fields to represent the desired pattern.

3. The pattern's patType field is set to 2. denoting a dithered pattern.

4. Adithered pattern has no explicit pixel image: its patData field is set
to NIL. The pattern ls implicitly understood to consist of four (not
necessarily different) colors in a 2-by-2 grid, which blend visually to
give the appearance of the requested color.

5. Entries o to 3 in the pattern's color table are allotted to the four
dithered colors. but MakeRGBPat does not fill in anycolorvalues. The
colors are computed when the pattern is actually drawn, using the
color environment current at that time.

216 Color Drawing

6 . Entxy 4 in the color table holds the exact RGB value the pattern ls
Intended to represent, as specified by the f romColo r parameter to
MakeRGBPat.

7 . Co py Pi xPa t copies the contents of one pixel pattern to another.

8. All of the pattern's subsldlaxy data structures are cop led, Including Its
pixel image, pixel map, expanded Image, expanded map, and color
table. The resulting copy shares none of these structures with the
original.

~ ~ ... 1----As-se_m_b_ly_Lan __ g_ua_g_e_I_nfi_o_rm __ a_ti_o_n ______ _

'lrap macros:

(Pascal)
Routine name

MakeRGBPat

CopyPixPa1:

(Assembly)
Trap macro

_MakeRGBPa1:

_ CopyPixPa1:

5.2.4 Using Pixel Patterns

Trap word

$AAOD
$AA09

I Definitions

--1~--------------------------------------
pr ocedu r e PenPixPat

(newPenPat PixPatHandle); (New pen pattern}

procedu re Back Pix Pat

(newBackPat PixPatHandle); (New background paucm}

procedure SetDeskCPat
(newDeskPat PixPatHandle) : (New desk pauem}

~~~iil~i----N_o_t_es __________________________________ _ 

1. PenPixPat and Bac kPixPat set the current port's pen pattern 
(pnPixPat) and background pattern (bkPixPat), respectively. 

2 . The port's fill pattern (FillPixPat) Is set Implicitly by shape-filling 
operations such a s FillCRect [5.4.2). 



217 [5.3.1) Mode Constants 
~~~~~~~~~~~~-

3. If the current port is an old-style graphics port, the pixel pattern's
monochrome equivalent, patlData [5.2.1) is used instead.

4. The old routines PenPat [1:5.2.2) and BackPat [1:5.1.1) can still be
used In a color port. and will construct a monochrome pattern
(patType = O) equivalent to the specified bit pattern.

6. SetDeskCPat sets the desktop pattern for drawing the screen back
ground to a given pixel pattern.

6. The screen ls Immediately repainted with the new desktop pattern.

7. This routine is intended for use by the Control Panel desk accessory-.
and should not normally be called by an application program.

ID I Assembly Language Information
---1m-------

Trap macros:

(Pascal)
Routine name

PenPixPat
BackPixPat
SetDeskCPat

(Assembly)
Trap macro

_PenPixPat
_BackPixPat
_SetDeskCPat

5.3 Color Transfer Modes

const
Blend =
Add Pin =
AddOver =
SubPin =

Transparent =
AD Max =

SubOver =

ADMin =
Hili te =

5.3.1

32:

33:

34:

35:

36:

37:

38:

39;

SO:

Mode Constants

{Blend colors [5.3.3)}

{Add with maximum [S.3.2)}

{Add with wraparound [5.3.2)}

{Subtract with minimum [5.3.2]}

{Copy with transparency [S.3.4]}

{Arithmetic maximum [5.3.3)}

{Subtract with wraparound [S.3.2]}

{Arithmetic minimum [S.3.3]}

{Highlight background [5.3.4)}

Trap word

$AAOA
$AAOB
$AA47

218 Color Drawing

Notes

1. Color transfer modes control the transfer of pixels between pixel maps,
or between a pixel pattern and a pixel map.

2. Each transfer mode denotes a way of combining pixels from the source
(pixel map, character, or pattern) with the corresponding pixels from
the destination pixel map. The resulting pixels are then stored back
Into the destination. See (5.3.2) to (5.3.4] for details of specUlc color
modes.

3. Two transfer modes are associated with each graphics port (1:4.2.2,
5.1.3):

• a pen mode (pnMode) for drawing lines and shapes

• a text mode (txMode) for drawing text characters

4. To set a port's pen mode, use PenMode [1:5.2.2): to set the text mode.
use TextMode (1:8.3.2). The low-level transfer routine CopyBi ts
(1:5.1.4) also requires a mode as a parameter. All of these routines will
accept the new color modes shown here as well as the older mono
chrome modes [1:5.1.3).

S. Monochrome modes can still be used in a color graphics port, but are
useful only when all source pixels are restricted to black and white.
Other colors in the source produce unpredictable results and should
be avoided.

6. On the Macintosh II, the QulckDraw routines no longer distinguish
between source and pattern transfer modes: the right type ls chosen
automatically according to the operation being performed. (For this
reason, the following notes refer simply to Copy mode, for example.
rather than SrcCopy and PatCopy.) Earlier versions of QuickDraw
still observe the source-pattern distinction. however, so you should
continue to use the correct type of mode for the sake of compatlblllty.

7. The monochrome modes Copy and NotCopy completely replace the
pixels of the destination with those of the source, drawn In the port's
current drawing colors. Copy uses the port's foreground color where
the source has a black pixel. the background color where the source
is white: NotCopy does the reverse.

8. To copy a multicolored source rather than black-and-white, use
Transparent mode [5.3.4) Instead.

9. The monochrome modes Or, NotOr, Bic (•bit clear"), and ~otBic
replace selected pixels In the destination with one of the port's current
drawing colors, while leaving the remaining pixels unchanged. or and

219 (5.3.2) Additive and Subtractive Modes
~~~~~~~~~~~~~ 

NotOr use the port's foreground color, Bic and Nol:Bic the back
ground color. Or and Bic paint the given color where the source has 
a black pixel, leaving the destination unchanged where the source ls 
white; NotOr and NotBic do the reverse. 

10. The monochrome modes XOr and No1:X0r yield unpredictable results 
unless the destination, as well as the source, ls limited to black and 
white pixels only. To achieve the effect of color inversion In a 
multicolored pixel map, use Hili te mode (5.3.4) instead. 

~ liil I Assembly Language Information 

Color transfer modes: 

Name Value Meaning 

Blend 32 Blend colors 
Add Pin 33 Add with maximum 
AddOver 34 Add with wraparound 
Sub Pin 35 Subtract with minimum 
Transparen1: 36 Copy with transparency 
AD Max 37 Arithmetic maximum 
SubOver 38 Subtract with wraparound 
ADM in 39 Arithmetic minimum 

5.3.2 Additive and Subtractive Modes 

con st: 

AddOver 34; 

AddPin 33; 

SubOver 38; 

SubPin 35; 

procedure OpColor 

(newColor RGBColor); 

{Add with wraparound} 

(Add with maximum) 

{Subtract with wraparound} 

(Subtract with minimum} 

(Color to pin to) 



220 Color Drawing 

Notes 

I. These modes combine colored pixels by arithmetically adding or 
subtracting their respective ROB components, then finding the near
est available approximation to the ROB result 

2. AddOver and SubOver Ignore arithmetic overflow or underflow and 
allow the component values to "'wrap around" from $FFFF to o or vice 
versa. 

3. AddPin and SubPin limit the results to a specified maximum or 
minimum value. Component values that would otherwise go above 
the maximum (for AddPin) or below the minimum (for SubPin) are 
instead "pinned" to the limiting value. 

4. Because of the additional check for overflow or underflow, Add Pin and 
SubPin are sltghtly slower than AddOver and SubOver. 

5. Maximum or minimum values for the three ROB components are 
specified by the rgbOpColor field in the current port's auxillruy port 
record [5.1.4). 

6. In a newly created graphics port, rgbOpColor ls lnltlalized to black: 
it can then be changed, If necessacy, with the Toolbox routine 
OpColor. 

7. In an old-style graphics port, AddPin always pins to pure white (all 
components equal to $FFFF) and SubPin to pure black (all compo
nents equal to O). 

8. When drawn at I-bit depth, Add Over and SubOver are both equivalent 
to XOr, AddPin to Bic, and SubPin to Or. 

ID I Assembly Language Information 
--10..------

Trap macro: 

(Pascal) 
Routine name 

OpColor 

(Assembly) 
Trap macro 

_OpColor 

Trap word 

$AA21 



221 [5.3.3) Comparative and Comblnattve Modes 
~~~~~~~~~~~~ 

con st

ADMax = 37:

ADMin = 39:

Blend = 32:

5.3.3 Comparative and Comblnatlve Modes

{Arithmetic maximum)

{ Arilhrnetic minimum}

{Blend colors}

~~lii~==:11----N-o_t_es __________________________________ _

1. The modes ADMax and ADMin combine colored pixels by arithmetically
comparing their respective RGB components. choosing the maximum
or minimum value for each. then finding the nearest available approxi
mation to the RGB result.

2. The letters AD stand for "arithmetic drawing."

3. Since each color component is compared separately, the result may
differ from both of the original colors.

4. In some versions of the Pascal interface files, the constant ADMax is
incorrectly spelled AddMax.

5. Blend mode combines colored pixels by computing a weighted average
of their respective RGB components. then finding the nearest avail
able approximation to the RGB result.

6. Weights for averaging the three color components are specified by the
rgbOpColor field in the current port's auxiliary port record [5.1.4).

7. For each component. rgbOpColor gives the relative weight of the
source pixel on a scale from o to 65535 ($FFFF). This value ls first
divided by 6 5 5 3 6, normalizing it to a fractional weight w between o and
1; the result ls then subtracted from 1 to obtain the complementary
destination weight. Thus the result value for each component is given
by the formula

result= w•source + (1-w)•dest

8. In a newly created graphics port, rgbOpColor ls initialized to black;
it can then be changed. ifnecessaiy, with the Toolbox routine OpColor
(5.3.2).

con s t

222 Color Drawing

9. In an old-style graphics port, source and destination pixels are always
averaged with equal weights.

10. When drawn at 1-blt depth, ADMax ls equivalent to Bi c, ADMin to Or,
and Bl end to Copy.

5.3.4 Transparency and mghllghting

Tr an6pa r ent 36 ; {Copy with transparency}

{Highlight background} Hil i t e 50 ;

Hil i teMode $938; {Address of highlighting flag}
PHiliteBit O; (Bil number of highlight bit for Bi tCl r [I:2.2.l) }

procedure HiliteCol or
(newColor : RGBCol or) : {New highlight color]

1. Transpa rent mode copies all pixels from the source to the destination
except those of the current port's background color. The latter leave
the corresponding destination pixels unchanged, producing a trans
parent or -see-through- effect.

2. Hi li te mode exchanges a given highlighting col.or ln the destination
with the current port's background color at all positions where the
source has a black pixel. The effect ls similar to marking with a colored
highlighting pen.

3. Source pixels other than black and white wlll produce unpredictable
results and should be avoided.

4. The rp,bHili teColor field of the current port"s a uxilia ry port record
[5.1.4) defines the highlighting color to be used.

5. The user can specify a preferred highlighting color with the Control
Panel desk accessory. This value ls then saved In parameter RAM,
copied Into the low-memory global Hili teRGB at system startup, and
used to initialize the rp,bHili t eCol or field for all newly created
graphics ports.

6. You can change the current port"s rp,bHili teColor, ifyou wish, with
the Toolbox routine Hili teColor, but ordinarily you should simply
honor the user's preferred setting.

223 (5.3.4) Transparency and Highlighting
~~~~~~~~~~~~ 

7. The low-memory global Hili teMode is a flag that converts the 
monochrome transfer mode XOr [I:5.l.3] to Hili te. When the high
order bit at this address Is o, all drawing operations nominally using 
XOr or NotXOr mode actually perform color highlighting Instead. This 
also affects shape-inverting operations such as Invert Rec t, Invert -
Oval, and so forth, which use XOr mode implicitly. 

8. The constant PHi li teBi t is a bit number for clearing the highlighting 
flag with the Toolbox routine BitClr [I:2.2.l], which numbers bits 
from left to rtght within a byte: 

BitClr (Ptr(HiliteMode). PHiliteBit) 

In assembly language, use the constant Hili teBi t with the machine 
instruction BCLR, which numbers the bits from right to left according 
to the usual M68000 convention: 

BCLR #HiliteBit.HiliteMode 

9. All remaining bits of Hili teMode are reserved for future use and 
should never be changed. 

10. The highlighting flag is a "one-shot" flag: it is automatically set to 1 

after every drawing operation. and must be explicitly cleared again 
before the next operation if it is to remain in effect. 

11. When drawn at I-bit depth, Transparent ls equivalent to Or and 
Hili te to XOr. 

ID I Assembly Language Information -IE....__ ____ _ 
Assembly-language global varl.ables: 

Name 

HiliteMode 

HiliteRGB 

Address 

$938 

$DAO 

Assembly-language constant: 

Name Value 

HiliteBit 7 

Meaning 

Highltghtlng flag 
Initial highlighting color 

Meaning 

Bit number of highlight bit 
for BCLR 



224 Color Drawing 

Trap macro: 

(Pascal) 
Routine name 

HiliteColor 

(Assembly) 
Trap macro 

_HiliteColor 

Trap word 

$AA22 

5.4 Color Drawing Operations 

procedure 

procedure 

procedure 

procedure 

procedure 

procedure 

5.4.1 Foreground and Background Colors 

GetForeColor 
(var theColor RGBColor): {Current foreground color} 

GetBackColor 
(var theColor RGBColor): {Current background color} 

RGBForeColor 
(newColor : RGBColor): {New foreground color} 

RGBBackColor 
(newColor : RGBColor): {New background color} 

PMForeColor 
(paletteEntry INTEGER): (Palette index of new foreground color} 

PMBackColor 
(paletteEntry INTEGER): {Palette index of new background color} 

Notes 

1. GetForeColor and GetBackColor return the RGB value of the 
current port's foreground and background colors, respectively. 

2. In a color port, the RGB value ls taken directly from the rgbFgColor 
or rgbBkColor field In the port record [5.1.3). 



225 (5.4.1) Foreground and Background Colors 
~~~~~~~~~~~~ 

3. In an old-style port, the RGB value is taken from the global table
QDColors (4.2.2) for the color speclfted by the port's fgColor or
bkColor field (4.1.2).

4. RGBForeColor and RGBBackColor set the foreground and back
ground colors for the current port.

6. The exact RGB color requested is stored into the port's rgbFgColor or
rgbBkColor field.

6. The port"s fgColor or bkColor field is set to the color index of the
nearest available match in the current color table. This ls the pixel
value that will actually be used in the port's drawing operations.

7. In an old-style graphics port, the high-order bits of the three requested
RGB components are used to find the nearest match among the eight
colors of the classic planar model (4.1.1). The port's fgColor or
bkColor field ls then set to the corresponding color constant (4.1.1).

8. You can also set the drawing colors for an old-style port directly to a
desired color constant with the old routines ForeColor and
BackColor (4.1.2].

9. PMForeColor and PMBackColor set a window's foreground or back
ground color from an entry ln its color palette. (The letters PM stand
for Palette Manager, the part of the Toolbox that deals with palettes.)

10. If the current port ls not a color window or has no assigned palette of
its own. the standard system palette (4. 7 .2] ls used.

11. For tolerant or courteous palette entries, the entry's RGB value ls
stored into the port's rgbFgColor or rgbBkColor field. with the color
index of the nearest available match in fgColor or bkColor.

12. For animating palette entries, the entry's reseived color index ls stored
into the port's fgColor orbkColor field, with the correspondingRGB
value from the current color table ln rgbFgColor or rgbBkColor.

13. For explicit palette entries, the requested palette Index ls stored
directly Into the port's f gCo 1 or or b kC o 1 or field as a color index. with
the corresponding RGB value from the current color table ln
rgbFgColor or rgbBkColor. If the designated index exceeds the size
of the color table, its remainder modulo the table size ls used.

14. In all cases, the palette handle and palette index are saved in the
auxiliary port record [5.1.4), either in fields pmFgColor and pmFg
Index or in pmBkColor and pmBklndex.

226 Color Drawing

~Iii I Assembly Language Information

Trap macros:

(Pascal)
Routine name

Ge t: ForeColor

Get:BackColor

RGBForeColor

RGBBac kCo l o r

PMForeColor

PMBackCo l or

(Aasembly)
Trap macro

_Ge t:ForeColor

_Get:BackColor

_RGBForeColor

_ RGBBackColor

_ PMForeColor

_ PMBackColor

5.4.2 Shape Drawing

Re ct :

procedure FillCRect

(t: heRect

fillPat PixPatHa ndle):

procedure FillCRoundRect

Rect :

INTEGER :

INTEGER:

{Rectangle to be filled)

{Pixel pauem to fill with}

{Body of rectangle)

{Width of comer oval)

{Height of comer oval)

(t:heRect

co r ne r Wi dt: h

co rnerHeight

fillPat PixPatHandle): {Pixel pauem to fill with)

pr ocedure Fi llCOval

(inRec t Rect; {Rectangle defining oval}

fill Pat Pix PatHa nd le): {Pixel pauem to fill with)

p roc e dure Fi ll CA re

(inRect Rect : {Rectangle defining oval)

startAngle INTEGER : { Staning angle}
/

arc Angle INTEGER : {Extent of arc)

fillPat PixPat:Handle) : {Pixel pauem to fill with}

pr ocedure Fill CPoly

(t hePoly gon PolyHandle : {Handle to polygon to be filled}

fillPat Pix Pa t Hand le) : {Pixel pauem to fill with}

Trap word

$AA19

$AA1A

$AA14

$AA15

$AA9 7

$AA98

227 [5.4.2] Shape Drawing
~~~~~~~~~~~~ 

procedure FillCRgn 
(theRegion 
fillPat 

RgnHandle: 
PixPatHandle): 

(Handle to regian to be filled} 

(Pixel pattern to fill with} 

~~~liiil:::=:11-----N-o_te_s ________________________________ __ 

1. These routines fill a specified shape with a pixel pattern. They are
analogous to the old routines FillRect (1:5.3.2), FillRoundRect
[1:5.3.3), and so on.

2. The letter c in the routine names stands for ·color.·

3. The specified pattern handle, fillPat, ls stored into the current
port's fillPixPat field (5.1.3). The port's pen pattern (pnPixPat) ls
unaffected.

4. In an old-style graphics port, the fill pattern's monochrome
equivalent, patlData (5.2.1), will be used instead.

5. These operations do not change the location of the graphics pen;
however, they have no effect if the pen ls hidden.

6. All drawing is clipped to the intersection of the current port's bound
ary rectangle, port rectangle, clipping region, and visible region. Only
those portions of shapes that fall within all of these boundaries will
actually be filled.

7. Pixels outside the boundaries of the shape being drawn are not
affected.

ID I Assembly Language Information
--1m--------

n-ap macros:

(Pascal)
Routine name

FillCRect

FillCRoundRect

FillCOval

FillCArc

FillCPoly

FillCRgn

(Assembly)
Trap macro

_FillCRect

_FillCRoundRect

_FillCOval

_FillCArc

_FillCPoly

_FillCRgn

Trap word

$AAOE

$AA10
$AAOF

$AA11
$AA13

$AA12

228 Color Drawing

5.4.3 Color Table Animation

procedure Animat:eEnt:ry

(in Window WindowPt: r: {Window the palette belongs to)

palet:t:eindex INTEGER: {Palette index of entry to be set)

newColor RGBColor) : {Color to set it to)

procedure Anima tePalet:te

(inWindow WindowPtr: (Window the palette belongs to)

newColors CTabHandle : {Color table containing new color values)

firstColor INTEGER: (Color table index of first new color)

firstEnt:ry INTEGER: {Palette index of first entry to be set)

nColors INTEGER): {Number of entries to be set)

~~iii~·=-'1----N-o_t_e_s __________________________________ __

I. These routines set the color values of animating entries in a window's
color palette (4.5.1).

2. The palette itself is not identified directly, but only implicitly via the
window It belongs to.

3. All requested color settings are made in the color table of the device on
which the window is displayed.

4. The requested color for each palette entry is stored into the color table
under that entry's reserved color index.

5. If the window spans more than one device, the requested colors are
stored into each device's color table independently. Notice that, in
general, the color index associated with a given palette entry will be
different for each device.

6 . If a designated palette entry Is not an animating en try. or If no color
Index is reserved for it in the device's color table, no color setting Is
made for that entry. If inWindow Is not a color window or has no
assigned palette of Its own, the color environment Is not affected at all.

7. Animat:eEnt:ry sets the color of a single palette entry, designated by
its index within the palette.

8. Animat:ePalet:t:e sets a ra nge of consecutive entries, beginning at
palette Index fir st:Ent:ry and continuing for nColors entries.

229 (5.4.4) Low-Level Pixel 'Ihutsfer
~~~~~~~~~~~~~ 

9. The new color values to be set are taken from consecutive indices ln 
the color table newColors, beginning at color index firstColor and 
continuing for nColors entries. 

10. If the end of the newColors table ls reached before all designated 
palette entries have been set. the remaining entries are left unchanged 
from their previous color values. 

ID I Assembly Language Information 
---101--------

procedure 

procedure 

Trap macros: 

(Pascal) 
Routine name 

AnimateEntry 
AnimatePalette 

(Assembly) 
Trap macro 

_AnimateEntry 
_AnimatePalette 

5.4.4 Low-Level Pixel Transfer 

CopyBits 
(sourceMap BitMap: {Bit or pixel map to copy from} 

destMap BitMap: {Bit or pixel map to copy to} 

sourceRect Rect: {Rectangle to copy from} 

destRect Rect: {Rectangle to copy to} 

transMode INTEGER: {Transfer mode} 

clipTo RgnHandle) : {Region to clip to} 

Copy Mask 
(sourceMap BitMap: {Bit or pixel map to copy from} 

maskMap BitMap: {Bit map containing mask} 

destMap BitMap: {Bit or pixel map to copy to} 

sourceRect Rect: {Rectangle to copy from} 

maskRect Rect: {Rectangle containing mask} 

destRect Rect): {Rectangle to copy to} 

Trap word 

$AA99 

$AA9A 



230 Color Drawing 

Notes 

1. These old QuickDraw routines, formerly used to transfer images from 
one bit map to another (1:5.1.4), can now operate on pixel maps as well. 

2. Copy Bi ts transfers pixels from one bit or pixel map to another, in any 
transfer mode and with any specified scaling and clipping. CopyMask 
transfers pixels under the control ofa third bit map used as a mask. 

3. sourceMap is the bit or pixel map that is the source of the transfer. 
destMap the destination. For CopyMask, maskMap is the mask 
controlllng which pixels to transfer from source to destination. 

4. The source and destination maps can each be either a monochrome bit 
map or a color pixel map. If the two high-order bits of the map's 
rowBytes field (1:4.2.1) are oo, itis treated asa bitmap; if 10, as a pixel 
map. If these bits are 11, the "'map" is understood to be part ofa color 
port record [5.1.3) instead: its baseAdd r field is interpreted as the 
port's pixel map handle, portPixMap, and the operation is applied to 
the pixel map. Thus you can operate on a color port's pixel map by 
typecasting to an old-style graphics port [1:4.2.2) and passing its 
(fictitious) portBi ts field as a parameter: 

dummyPort := GrafPtr(colorPort): 
CopyBits ( ... dummyPortA.portBits ... ) 

5. Pixel and bit maps, or pixel maps of different depths, can be mixed as 
source and destination In the same call; the results are adjusted 
automatically to the depth of the destination map. 

6. The maskMap parameter to CopyMask must be a bit map rather than 
a pixel map. Bits set to 1 in the mask cause the corresponding source 
pixel to be transferred to the destination; o bits leave the existing 
destination pixel unchanged. 

7. sourceRect tells what portion of the source map to transfer; 
destRect tells where in the destination map to transfer it to; 
maskRect tells what portion of the mask map to use as the mask. 

8. Each rectangle is expressed in the local coordinate system of its 
own map. 

9. The source and destination maps may be the same, but the rectangles 
must not overlap. There is no error checking for this condition; the 
transfer simply will not work correctly. 

10. The source and destination rectangles need not be the same size. If 
they aren't, the contents of the source rectangle will be scaled to the 



231 [5.4.4) Low-Level Pixel Transfer 
~~~~~~~~~~~~ 

width and height of the destination. (For CopyMask, this represents
a change from the earlier version, which performed no scaling [1:5.1.4,
note 12]; however, the source and mask rectangles must still have the
same dimensions.)

11. The source and destination pixel maps may have different color tables;
all source colors are converted to their nearest available matches In
the destination color table.

12. Color conversion from source to destination always uses the inverse
table [4.4.2) of the current graphics device. To work correctly, the
destination pixel map must be based on the current device's color
table.

13. Before calling CopyBi ts or CopyMask, set the current port's fore
ground and background colors [5.4.1] to black and white, respectively,
to avoid spurious coloring of the pixels being transferred.

14. The transMode parameter to CopyBi ts specifies the transfer mode to
be used, and may be either a monochrome [1:5.1.3) or color [5.3.1)
mode.

15. When applied to a pixel map, monochrome modes are useful only
when all source pixels are restricted to black and white. Other colors
in the source produce unpredictable results and should be avoided.

16. The source and pattern varieties of monochrome mode [1:5.1.3) are no
longer distinguished; CopyBits and CopyMask always use a source
mode automatically, no matter which type you specify. However, for
compatlbllity with earlier versions of QuickDraw, you should still be
sure to specify a source mode with these routines.

17. All transfer operations are clipped to the destination map's boundary
rectangle. If the destination ls the bit or pixel map belonging to the
current port, the transfer ls clipped to the port rectangle and the port's
visible and clipping regions as well.

18. c 1 i pTo is an addltlonal clipping region to be used by Cop yBi ts for this
transfer only, expressed In the coordinate system of the destination
map. If clipTo =NIL, no additional clipping region will be used.
CopyMask never performs such additional clipping.

19. Calls to CopyBi ts are recorded in picture definitions [1:5.4.2), but
those to CopyMask are not.

20. CopyMask ls useful for drawing icons, particularly those that are
stored with their masks In resources of type 'ICN/J• (1:5.5.4, 1:7.5.3)
or 'cicn' [6.7.1). It can also be used in connection with CalcCMask
and SeedCFill [5.4.5) (or the older monochrome versions, CalcMask
and SeedFill [1:5.1.6}) to implement the MacPaint "lasso" and "paint
bucket" tools.

232 Color Drawing

_J ~I Assembly Language Information

n-ap macros:
(Pascal)
Routine name

CopyBits
CopyMask

(Assembly)
Trap macro

_CopyBits
_CopyMask

Trap word

$A8EC
$A817

5.4.5 Special Operations

procedure CalcCMask
(sourceMap
maskMap
sourceRect
maskRect
edgeColor
searchFunc
searchParam

procedure SeedCFill
(sourceBits
maskBits
sourceRect
maskRect
seedHoriz
seed Vert

searchFunc
searchParam

type
MatchRec record

red
green
blue
matchData

end:

BitMap:
BitMap:
Rect:
Rect:
RGBColor:
ProcPtr:
LONGINT):

BitMap:
BitMap:
Rect:
Rect:
INTEGER:
INTEGER:

ProcPtr:
LONGINT):

INTEGER:
INTEGER:
INTEGER:
LONG INT

(Bit or pixel map to operate on}

(Bit map to hold result mask}

{Rectangle to operate on}

{Rectangle to hold result mask}

(Color defining edge of masked region}

(Pointer to custom search function}

(Parameter for custom search function}

(Bit or pixel map to operate on}

{Bit map to hold result mask}

(Rectangle to operate on}

{Rectangle to hold result mask}

{Horizontal coordinate of starting point}

(Vertical coordinate of starting point}

(Pointer to custom search function}

{Parameter for custom search function}

{Red component of seed or edge color}

{Green component of seed or edge color}

{Blue component of seed or edge color}

{Value passed for searchParam}

233 [5.4.5] Special OperaUons
~~~~~~~~~~~~-

Notes 

1. These routines are color versions of the old QulckD aw routines 
CalcMask and SeedFill [1:5.1.6), used to Implement specialized 
MacPaint-style drawing operations. 

2. The letter c In the routine names stands for "'color." 

3. Both routines operate on an existing bit or pixel map and produce a 
mask to be passed to the pixel-transfer routine CopyMask [5.4.4). 

4. CalcCMask finds the largest closed boundary lying entirely within the 
given rectangle Olke the MacPaint "'lasso") and produces a mask 
representing the area Inside this boundary. SeedCFill does the same 
for the smallest closed boundary surrounding a given starting point 
(the seed), like the MacPaint "'paint bucket." 

5. For both routines, sourceMap may be either a monochrome bit map 
or a color pixel map. If the two high-order bits of the map's rowBytes 
field [1:4.2.1) are oo, It ls treated as a bit map; If 1 o, as a pixel map. If 
these bits are 11, the "map" ls understood to be part of a color port 
record [5.1.3) Instead: Its baseAddr field ls Interpreted as the port's 
pixel map handle, portPixMap, and the operation is applied to the 
pixel map. Thus you can operate on a color port's pixel map by 
typecasting to an old-style graphics port [1:4.2.2) and passing its 
(fictitious) port Bi ts field as a parameter: 

dummyPort := GrafPtr(colorPort): 
CalcCMask ( ... dummyPortA.portBits ... ) 

6. maskMap must be a bit map rather than a pixel map. Pixels falling 
within the desired boundaiy will be set to 1 in the mask; those falling 
outside the boundary will be set to o. 

7. sourceRect tells what portion of the source map to operate on; 
maskRect tells what portion of the mask map will receive the mask. 

8. The source and mask rectangles must have the same dimensions. 

9. Each rectangle ls expressed In the local coordinate system of its 
own map. 

10. No clipping ls performed either to map's boundary rectangle or to the 
current port's port rectangle, visible region, or clipping region. 

11. The seedHoriz and seed Vert parameters to SeedCFill give the seed 
location in the local coordinate system of the source map. 



234 Color Drawing 

12. By default, the desired boundary Is defined by an unbroken edge (for 
CalcCMask) or a contiguous area (for SeedCFill) composed of pixels 
of a single color. For CalcCMask. the color Is given by the parameter 
edgeColor; for SeedCFill, It Is the color of the pixel at the given seed 
location. 

13. The default method of determining the boundary can be overridden by 
supplying a non-NIL value for the parameter searchFunc. This 
should be a pointer to a search function of the form given in [4.6.l]. 
It will be installed In the current device record (4.3.l] and used to 
convert the colors In the source pixel map to I-bit depth for Inclusion 
In the mask. 

14. The search function will be called once for each pixel in the source 
rectangle. with the color of the pixel passed directly as a parameter. It 
should return a color Index of 1 for pixels lying on the lasso boundary 
(for CalcCMask) or Within the fill region (for SeedCFill), O for all other 
pixels. 

15. At the time the search function is called. the gdRefCon field of the 
current device record (4.3.1) will point to a record of type MatchRec 
containing the RGB components of the seed or edge color, for compari
son with the given source pixel. 

16. The calling program can pass an arbitrary long-integer value to the 
search function via the parameter searchParam. This value will be 
copied into the matchData field of the match record for use by the 
search function. A program might use it, for example, to hold a handle 
to a color table containing several colors, rather than just one, to be 
included in the lasso boundary or fill region. 

17. Calls to CalcCMask and SeedCFill are not recorded in picture 
definitions [1:5.4.2). 

ID I Assembly Language Information 
---f'ln.......------

Trap macros: 

(Pascal) 
Routine name 

CalcCMask 

SeedCFill 

(Assembly) 
Trap macro 

_CalcCMask 

_SeedCFill 

Trap word 

$AA4F 

$AA50 



235 (5.5.1) Color Bottleneck 
~~~~~~~~~~~~~~ 

Field offset,s in a match record:

(Pascal) (Assembly)
Field name Offset name

red·
green
blue

matchData

red
green
blue

matchData

Assembly-language constant:

Name Value Meaning

Offset
ln bytes

0

2

4

6

MatchRecSize 10 Size of a match record in bytes

5.5 Nuts and Bolts

5.5.1 Color Bottleneck

type
CQDProcsPtr

CQDProcs

"CQDProcs:

record
textProc
lineProc
rectProc
rRectProc
ovalProc
arcProc
polyProc
rgnProc
bitsProc
commentProc
txMeasProc
getPicProc
putPicProc
opCodeProc

Ptr: {Draw text}

Ptr: {Draw lines}

Ptr: {Draw rectangles}

Ptr: {Draw rounded rectangles}

Ptr: {Draw ovals}

Ptr: {Draw arcs and wedges}

Ptr: {Draw polygons}

Ptr: {Draw regions}

Ptr: {Copy bit images}

Ptr; {Process picture comments}

Ptr: {Measure text}

Ptr; {Retrieve picture definitions}

Ptr; {Save picture defmitions}

Ptr; {Process unknown picture operation}

procedure

236 Color Drawing

newProcl Ptr: {Reserved for future expansion}

newProc2 Ptr: {Reserved for future expansion}

newProc3 Ptr: {Reserved for future expansion}

newProc4 Ptr: {Reserved for future expansion}

newProc5 Ptr; {Reserved for future expansion}

newProc6 Ptr {Reserved for future expansion)

end:

SetStdCProcs
(var theProcs CQDProcs): (Color bottleneck record to initialize}

Notes

1. A CQDProcs record holds pointers to the low-level "'bottleneck" rou
tines on which all Color QutckDraw operations are based.

2. Each color graphics port can have its own set of bottleneck routines,
identified via the grafProcs field of the CGrafPort record (5.1.3].

3. A NIL value for graf Procs designates the standard, built-in bottle
neck routines, described below and In sections [111:2.1.2] to [111:2.1.6].

4. SetStdCProcs initializes a CQDProcs record to the standard bottle
neck routines. Always use this routine to initialize the bottlenecks in
a color port, the older routine SetStdProcs [111:2.l.l] in an old-style
port. You can then selectively change individual fields of the bottle
neck record to install your own routines in place of the standard ones.

5. The color bottleneck record is identical to the old one (111:2.1.l], but
wt th several extra fields added at the end.

6. opCodeProc is a new routine for processing pictures (1:5.4.1] in the
new, expanded color format. Any unknown operation code encoun
tered in a picture definition Will be passed to this routine for handling.
As previously unused op codes are assigned meanings and added to
the picture protocol, this routine will be modified to process them.

7. The Color QuickDraw picture format and op codes are described in
detail in Inside Macintosh. Volume V.

8. The standard version of the opCodeProc routine, StdOpCodeProc,
simply ignores all op codes passed to it and returns without doing
anything.

9. StdOpCodeProc is defined in the assembly-language trap interface
and listed as a trap macro in the table below, but has been inadver
tently omitted from the Pascal interface to the Toolbox.

237 15.5.1] Color Bottleneck
~~~~~~~~~~~~~ 

10. The remaining fields of the CQDProcs record, newProc 1 to newProc6, 
are reseived for future expansion. 

~~1--------

Assembly-language constant: 

Name 

CQDProcsRec 

Trap macros: 

(Pascal) 
Routine name 

SetStdCProcs 

Value Meaning 

80 Size of a color bottleneck 
record in bytes 

(Assembly) 
Trap macro 

_SetStdCProcs 
_StdOpCodeProc 

Trap word 

$AA4E 
$ABF8 



238 Color Drawing 

5.6 Resource Formats 

5.6.1 Resource Type ' p p at ' 

1(2 bytes) pat Type"' full color 

(4 bytes) Placeholder for pat:Map 
Offset to pixel map } 

.,_ ______ ___,O~f~fset--to-p~~-e~ll_mag __ e----------11} 
(4 bytes) Placeholder for pat:Data ..,_ __________________________ .... 
(4 b~es) } Placeholder for pat:XDat:a 

m--------------1("""'2>-by-te_s.,..)------------11 patXValid ... fnvalid 

(4 b~es) } Placeholder for pat:XMap 

------------------------------
patlData 
(8 bytes) 

Pattem's pixel map 
(50 bytes) 

: } See next figure ______________ ..._ ____________ ...... 

. . 

Pattern's pixel Image 
(Indefinite length) 

Pattern's color table 
(Indefinite length) 

: } See (4.7.1) 

--------------------------·' 

Structure of a ' pp at ' resource 



239 [5.6.1) Resource 1}'pe 'ppat' 
~~~~~~~~~~~~~ 

0 -- (4 bytes)

rovBytoa (2 bytes) -,
I-

bounds -- (8 bytes) --·
I

pmVersion (2 bytes)

O_!U>ytes)

0 --- (4 bytes)

1--
$00480000

(4 bytes)

$00480000 -·-- (4 bytes)
o (2 bytes)

pixelSize (2 bytes)
1 (2 bytes)

cmp.Siza (2 twtes)
0 -- (4 bytes)

Offset to color table -- (4 bytes)

0 --·-· (4 bvtes)

-- }

--
-·--·-

-1-
____ ,,_ }
- }
-··-- }

- I-

-I-

--··- }
- }
-···--- }

Placeholder for baseAddr

packType

packSize

hRes ... 72.0

vRes ""72.0

pixel Type"' chunky

cmpCount

planeBytes

Placeholder for pmTable

pmReserved

Detail of pixel map in a 'ppat' resource

Notes

1. A resource of type 'ppat' contains a pixel pattern for color drawing.

2. The resource includes not only the pattern record (5.2.1) itself, but
also its associated pixel map (5.1.1]. pixel image. and color table
(4.4.1].

3. The first figure above shows the overall structure of the 'ppat'
resource, the second the detailed structure of the pixel map embedded
within it.

240 Color Drawing

4. The pattern's patMap and patData fields contain the offset in bytes
from the beginning of the resource to the start of the pixel map and
pixel Image, respectively. Similarly, the pmTable field of the pixel map
holds the offset from the beginning of the resource to the start of the
color table. When the resource is loaded from a rue. these fields are
replaced by handles to the corresponding actual data structures In
memory.

5. The pattern's patXMap and patXData fields and the pixel map's
baseAddr field are set to o in the resource as placeholders for the
actual handles and pointer that these fields will contain in memory.

6. The patType field Is always set to 1, denoting a standard, full-color
pixel pattern.

7. The patXValid field ls set to -1. marking the pattern's expanded map
and Image as Invalid so that they will be built and installed in the
pattern record the first time the pattern is used.

8. In the current version of the Toolbox. the pixel map's pixelType,
planeBytes. packType, and packSize fields are always set to o.
denoting chunky format with no packing of the pixel image.
cmpCount. the number of color planes, is always 1. and cmpSize. the
pixel depth per plane, is equal to pixelSize.

9. The pattern's horizontal and vertical pixel resolution, hRes and vRes,

are always set to 72 pixels per inch.

10. The structure of the color table within the 'pp at' resource is the same
as that of a ' c 1 u t ' resource, shown in [4. 7 .1).

11. 'ppat' resource number 16 in the system resource file holds the
standard pixel pattern for the screen's desktop background.

12. Use GetPixPat [5.2.2) to load resources of this type.

CHAPTER

Through Rose
Colored Windows

One area where you can apply the use of color to Interesting effect
is in the Macintosh user interface itself. The new color Toolbox
includes facilities for coloring all the familiar features of the stan
dard interface: windows, menus, controls, cursors, and dialog
boxes. In this chapter we'll learn how to liven up our program's
personality with a touch of color.

A word of caution, though: when it comes to user interfaces. a
small dash of color goes a long way. Red text on a blue background
is neither as legible nor as pleasing to look at as plain old black-on
white. Green windows with pink titles and purple scroll bars add
nothing but noise to the user interface and make your program look
more like a video arcade game than a serious piece of software. Try
to use color sparingly for visual accents and highlights instead of
spraying it all over your screen like a graffiti artist.

Bear in mind, too, that not all users have a color monitor. Never
use color as the sole means of conveying information to the user:
always provide some other cue as well, using color purely as an
additional or supplementary indication. Finally, unless you have
some strong reason for using a particular color for a given purpose
(such as a well-established color-coding convention in your applica
tion domain), let the user choose a color with the Color Picker (4.2.3)
and then honor that choice-don't impose your own preferences
against the user's will. Always remember that on the Macintosh, the
user controls the computer and not the other way around.

241

242 Through Rose-Colored Windows

Color Icons and Cursors

The old monochrome icon and cursor structures have been updated
and expanded to operate in the color environment. The new color
versions of these data structures are Cleon [6.1.1) and CCrsr
[6.2.1). Both are normally stored as resources (of types 'cicn'
[6.7.1) and 'crsr' [6.7.2], respectively) and loaded into memocy
with the Toolbox routines GetCicon (6.1.2) and GetCCursor (6.2.2).
The routines DisposCicon and DisposCCursor destroy the two
structures and recycle their heap space for other uses.

GetCicon and GetCCursor work a little differently than most
Toolbox resource-loading routines. Usually, if the resource you
request has already been loaded Into memory, the Toolbox will
simply give you a handle to the existing copy instead of reading
in the same resource again. These two routines, however,
always create a fresh copy of the requested resource, as well as
all its subsidiary data structures (pixel image, color table, and
so forth). To avoid wasting substantial amounts of memocy for
no reason, be careful to call these routines just once for each
resource and save the handle for later use, rather than call
them again each time you need the resource.

Color Icons
The original Toolbox didn't even have a defined data type to repre
sent an icon-just an array of 128 bytes (32 long integers) containing
a bit image offixed dimensions, 32 wide by 32 high [1:5.4.4). To draw
an icon on the screen normally required a second bit image of the
same dimensions to serve as a mask, defining which bits of the icon
to transfer and which to leave transparent to the existing screen
image. The icon and its mask were typically stored together in an
icon list resource of type 'ICN/I' (I:5.5.4).

In the brave new world of Color QuickDraw, icons are no longer
second-class citizens without a data type to call their own. The color
icon record (6.1.1) holds a complete pixel map (iconPMap) defining
the icon's dimensions, pixel depth, color table, and other properties.
along with a matching bit map (iconMask) containing its transfer

243 Color Icons and Cursors

mask. As in a pixel pattern (5.2.1). the pixel map's baseAddr field is
ignored and a handle to the icon's pixel image is instead kept in a
separate field of the icon record, iconData. There's also a mono
chrome bit map. iconBMap, to be used instead of the pixel map at
shallow pixel depths of only 1 or 2 bits.

Because the dimensions of a color icon are defined by the
boundary rectangle of its pixel map, they are not limited to a
fixed 32-by-32, as they are in the monochrome case. It is
essential, however, that the icon's pixel map (iconPMap). bit
map (iconBMap), and mask (iconMask) all have the same di
mensions.

TheToolboxroutlne PlotCicon (6.1.2) drawsacoloriconin the
current graphics port at a location specified by the parameter
inRe ct. The dimensions of this rectangle need not match those of
the icon itself: if necessaty. it will be scaled to fit. The icon is also
adjusted automatically to the port's pixel depth, and all of its colors
are mapped to their best matches in the current color table. In a
monochrome port (or a color port only 1or2 bits deep), the icon is
drawn in the port's current foreground and background colors,
using the icon's bit map in place of its full pixel map.

Color Cursors
The record representing a color cursor [6.2.1] is actually a sort of
hybrid between a pixel pattern (5.2.1) and a monochrome cursor
(11:2.5.1). The first seven fields (crsrType through crsrlData) are
nearly identical in form and function to those of a pixel pattern and
are handled internally in much the same way. The Toolbox distin
guishes between the two types of record by the high-order bit of the
type code in their first field, which is 1 for a cursor, o for a pattern.
Like a pattern, a cursor has a pixel map to define its graphical
characteristics, but the map's base address is ignored in favor of a
handle to the pixel image kept directly in a field (crsrDa ta) of the
cursor record itself. The image must always be exactly 16 pixels wide
by 16 high, the same as an old-style monochrome cursor.

When you make a color cursor current with SetCCursor
(6.2.2), its pixel image is automatically expanded to match the

244 Through Rose-Colored Windows
~~~~~~~~~~~ 

current pixel depth and color table. The crsrXData field of the 
cursor record holds a handle to this expanded image, allowing it to 
be drawn quickly to track the mouse in real time. Two other fields 
help coordinate the expanded image with the current color 
environment: crsrXValid holds the pixel depth of the expanded 
image and c rs r ID the seed value of the color table on which it is 
based. If either of these values doesn't match the current environ
ment, then the expanded image is invalid and must be rebuilt. 

If you ever have occasion to change either the cursor's image or 
its color table, you should invalidate the cursor by setting its 
crsrXValid to 0, obtain a new seed value from GetCTSeed 
[4.4.3] and store it into the crsrID field, and call SetCCursor 
to rebuild and redisplay the cursor. 

Also embedded in the color cursor record are three fields 
corresponding to those of an old-style cursor [11:2.5.1]. crsrlData 
holds a 16-by-16 bit image to be used in place of the full pixel image 
when drawing the cursor on a monochrome device or at 1- or 2-bit 
depth. (If the type code in the crsrType field is $8000, denoting a 
monochrome cursor. this bit image is simply used all the time and 
the pixel image is ignored entirely.) crsrMask is a bit mask defining 
which pixels of the cursor to draw and which to leave transparent to 
the existing screen image. The mask must always be l 6-by-16, and 
is used with both the color (pixel) and monochrome (bit) images. 
Finally. the field crsrHotSpot defines the point within the cursor's 
Image that corresponds to the actual mouse position on the screen. 
The point is expressed relative to the cursor's own coordinate 
system, with (0, O) denoting the top-left comer. 

Color Windows 

To draw anything in color on the screen, you need a color window 
[6.3.1] to draw it in. Rememberthat at the machine level, a window 
is just a port with some extra fields appended at the end. The only 
difference between a color window record and the old-fashioned 
monochrome kind [II:3. l. l] is that it's based on a color graphics port 
[5.1.3] instead of a monochrome port [1:4.2.2). Thus the Toolbox can 
tell one kind of window from the other by looking at the high-order 
flag bit in its portVersion (or portBi ts. rowBytes) field. 



245 Color Windows 

Like all structures based on graphics ports, color windows are 
nonrelocatable objects and are referred to with simple pointers 
rather than handles. Just as for monochrome windows, there are 
two different pointer types [6.3.1) for referring to them. The first. 
CWindowPtr, is equivalent to a CGrafPtr-a pointer to a color 
graphics port. The second, CWindowPeek, is defined specifically as 
a pointer to a color window record, allowing you to "peek" at the 
window-specific fields beyond the end of the port record. 

Because color and monochrome ports are the same size in 
memory, all the window-specific fields that follow them are in the 
same relative places in both types of window record, allowing all the 
old Toolbox window operations from Volume Two, Chapter 3, to 
work equally well on both. They all accept parameters of type 
WindowPtr, though, so you11 have to typecast your color windows 
from CWindowPtr first: 

dummyWindow :- WindowPtr(colorWindow): 
BringToFront (dummyWindow) 

The Toolbox routines for creating color windows are perfectly 
analogous to the ones for monochrome windows. One routine. 
NewCWindow, accepts descriptive information about the window as 
direct parameters; another, GetNewCWind.ow, reads the same infor
mation from a window template in a resource file. In both cases, the 
parameters are the same as for the old monochrome routines 
NewWindow and GetNewWindow [II:3.2.2]. So much so, in fact, that 
there isn't even a separate resource type for color windows: both 
GetNewWindow and GetNewCWindow use exactly the same template 
resource, 'WIND' [11:3. 7.1). The only thing different about the new 
routines is the internal structure of the graphics port on which they 
build the new window record. They don't even bother to return a 
different pointer type: although they create a color window, they 
return it as a plain WindowPtr that you can pass directly to any 
other Toolbox routine without typecasting. 

Window Color Tables 
Recall from Volume Two that every window has ajrame, which is 
drawn automatically by the Toolbox, and a content region that your 
program must draw for itself. The frame normally includes those 
structural features that are common to all windows, such as the title 
bar, close box, and zoom box. In the color environment, you can 
supply a window color table to specify colors for these features 
instead of the normal black and white. 



246 Through Rose-Colored Windows 
~~~~~~~~~~~ 

Window color tables are normally built from resources of type
'wctb' [6. 7.3). Their structure [6.3.3) is essentially the same as that
of an ordinmy color table [4.4.1), but the first couple of fields are
ignored. The only fields that matter are ctSize, which gives the
number of entries (minus 1) in the table, and ctTable, an array
containing the entries themselves. As in an ordinary color table,
each entry is a color specification [4.4.1): its value field holds an
integer part identifier designating the part of the window to which
this specification applies, with the corresponding color value in the
rgb field.

The specific values and meanings of a window's part identifiers
are determined by its window definition function [III:2.2), and can
vary from one type of window to another. Figure 6-1 shows the ones
for the standard type of Toolbox document window; their numerical
values are given in [6.3.3). The part identifierWFrameColor denotes
the color in which the outline of the window's frame is drawn, as well
as the borders defining the title bar, close box, and zoom box.
WTi tleBarColor gives the title bar's background color, WHili te
Color the accent color for the inside of the close and zoom boxes,
and WTextColor the color in which the text of the window title is
drawn. Finally, WContentColor defines the background color for
the interior of the window's content region: this value is used to
initialize the window's background color [5.4.1) for all Erase opera
tions in the content region.

Since a window's scroll bars are part of its content region rather
than its frame. they are not governed by the window's color
table. Instead, their colors are defmed by a control color table
that we'll be learning about later in this chapter.

Auxiliary Window Records

The connection between a window and its color table is established
by an auxlltary w'lndow record [6.3.2). a new data structure main
tained by the color Toolbox. The auxiliary record holds information
on a window's color-related properties. supplementing the more
general information in the main window record itself. Although it
has several other fields as well. the auxiliary record's main purpose
is to hold a handle (awCTable) to the window's color table.

24 7 Color Windows

WTitleBarColor

• !I
WHiliteColor

Color Window

WTextColor

WFrameColor WC ont entCo lo r

Figure 6-1 Part identifiers in a document window

Although the auxiliary record contains a pointer (awOwner)

back to the window it belongs to, there is no forward pointer or
handle from the window to its auxiliary record. Instead, all auxiliary
window records are kept in a separate auxiliary window list, linked
together through a chain of handles in their awNext fields. To locate
a window's auxiliary record, the Toolbox scans through this list
looking for a record whose awOwne r field points to the desired
window. No two windows can share the same auxiliary record ,
though two different auxiliary records can point to the same under
lying color table.

It isn't necessary to have a separate auxiliary record and color
table for every window you open on the screen. If an auxiliary record
doesn't exiSt for a given window, the Toolbox uses the program's

248 Through Rpse-Colored Windows
~~~~~~~~~~~ 

default color table, pointed to by the last record in the auxiliary 
window list. The default table is read from 'wctb' resource (6. 7.3) 
number o when you call Ini tWindows [II:3.2. l] at the start of your 
program. The standard, system-wide version of this resource (kept 
in ROM or in the system resource file) simply specifies the same 
black-and-white colors for a window's frame as in the old mono
chrome environment. If you wish, you can override these colors for 
your own program by including a substitute color table under the 
same resource type and ID in your application resource file. 

When you create a new window from a template with Get -
NewCWindow (6.3.4), the Toolbox looks for a 'wctb' resource with 
the same ID number as the window template itself. If it finds one, it 
reads it into memory (if it isn't already there), creates an auxiliary 
window record pointing to it, and adds the record to the auxiliary 
window list. If not. the window will not be given an auxiliary record 
and will use the standard color table (found in the last record of the 
list) by default. 

Instead of using a 'wctb' resource, you can explicitly assign a 
color table to a window with SetWinColo r [6.3.5). If the window 
already has an auxiliary record, this simply replaces the previous 
color table handle with a new one: if it hasn't, a new auxiliary record 
is created pointing to the designated color table. Passing a handle to 
the standard color table destroys a window's existing auxiliary 
record, causing it to revert to the standard colors by default. Finally, 
by passing a NIL window pointer, you can redefine the standard 
color table itself in the last record of the auxiliary window list. 

There is no Toolbox routine for obtaining a window's color table 
directly, but you can use GetAuxWin [6.3.5) to get its auxiliary 
record and then look in the record's awCTable field for the color table 
handle. GetAuxWin returns a handle to the auxiliary record via a 
variable parameter; if the window has no auxiliary record of its own, 
a handle to the standard record is returned instead. The Boolean 
function result tells whether the handle returned is to the window's 
own auxiliary record (TRUE) or to the standard one from the end of 
the list (FALSE). Passing a NIL window pointer specifically requests 
the standard auxiliary record rather than one belonging to any in
dividual window; in this case, the function returns TRUE, since it's 
giving you the record you asked for. 



249 Color Windows 

One more piece of information that"s sometimes found in the 
auxiliary window record is the window's variation code. This 
code, taken from the last 4 bits of the Window definition ID 
(11:3.2.2] when the window is first created, distinguishes among 
several different types of window implemented by the same 
definition function (Ill:2.2]. As we learned in Volume Three, it 
was originally kept in the high-order byte of the window 
record's windowDefProc field (11:3.1.1, 6.3.1]. 

Now that some Macintosh models can run in 32-bit 
memory mode (2.1.3], however, the handle to the definition 
function can take up the entire windowDefProc field all by 
itself, leaving no room there for the variation code. In that case. 
the variation code must be moved elsewhere-to the awFlags 
field of the auxiliary window record. Anew routine, GetWVari
ant (6.3.5], has been added to the Toolbox to return a window's 
variation code wherever it may live. Always use this routine to 
access the variation code; never assume you know where to 
find it or attempt to read it directly from the window record. 

Window Palettes 
The natural way to manage a window's color environment is with a 
color palette [4.5]. Each window you open can have its own palette, 
defining the colors you wish to be made available whenever that 
window is active on the screen. This, in fact. is just what palettes 
were invented for. 

The easiest way to associate a palette with a window is to 
include it in your resource file as a ' p 1 tt ' resource (4. 7 .2] with the 
same ID as the 'WIND' template. GetNewCWindow [6.3.4) will then 
use it to build the window's palette automatically at the same time 
it creates the window itself. Alternatively, you can build the palette 
yourself with NewPalette (4.5.3], SetEntryColor, and SetEn
tryUsage [4.5.4] and assign it to the window explicitly with SetPal -
ette (6.3.6]. In any case, you can use GetPalette (6.3.6) to get a 
handle to the palette belonging to a given window. 

Every time the window comes to the front of the screen and 
becomes the active window, the Toolbox will automatically call 
ActivatePalette (6.3.6] for its palette as well. This routine exam-



250 Through Rose-Colored Windows 

ines and, if necessary, modifies the color table for the device on 
which the window appears, doing its best to provide the color 
environment called for in the palette. Uf the window spans more than 
one graphics device. ActivatePalette operates on each one inde
pendently.) 

ActivatePalette first attempts to reseive a color table index 
for each animating entry in the palette, then looks for an acceptable 
match for each tolerant entry. If no such match can be found, it 
selects an entry in the color table and forces it to the requested 
tolerant color. After repeating these steps for all entries in the 
palette, it generates update events for all other windows that are 
affected by the changes, causing them to redraw their contents 
under the new color environment. The important thing to notice 
about this process is that it happens automatically: once you've 
associated a palette with a window, you can just take it for granted 
that the requested color environment is present whenever the 
window becomes active on the screen. 

Color Controls 

The mechanism for specifying the colors in which controls (push
buttons, scroll bars, and so forth) are drawn on the screen is nearly 
identical to the one for windows. Each control can have an optional 
auxiliary control record (6.4.1 J pointing to a control color table (6.4.2). 
The color table is usually taken from a resource of type ' cc t b ' 
(6. 7 .4) With the same resource ID as the 'CNTL' template [11:6.5.1) 
defining the control itself. The Toolbox routine GetNewControl 
[11:6.2.1) now looks for such a resource and, if it finds one, uses it 
to build an auxiliary record and color table for the new control. 
Alternatively, you can construct the color table yourself and assign 
it to the control .. by hand" With SetCtlColor (6.4.3). 

Unlike a window's frame, which is always drawn in the Color 
Window Manager port [6.3. 7) even for a monochrome window. 
controls (including scroll bars) are part of the window's content 
region and th us are governed by the color properties of the 
window's own port. Although it's possible to include color 
controls in a monochrome window. they are then limited to the 
eight "classic QuickDraw" colors (4.1.1) only. Colorcontrolsare 
most effective when they belong to a color window. 



251 Color Controls 

All of a program's auxiliary control records (not just the ones for 
a given window) are chained together through their acNext fields to 
form an auxiliary control list. The last record in the list points to the 
default control color table, which defines the drawing colors for all 
controls that don't have a table of their own. The Toolbox routine 
GetAuxCtl (6.4.3) returns a handle to a control's auxiliary record, 
or to the last record in the list if the control doesn't have one of its 
own. 

The default color control table is read in from ' cc th ' resource 
number o at program initlalization time by the Toolbox routine 
Ini tWindows (Il:3.2.1). The standard version of this table, found in 
ROM or ln the system resource file, containS the same black-and
white colors that are used on a monochrome screen; a program can 
override these settings. if it wishes, with an alternate 'cctb' o 
resource in its own application resource file. 

D 

0 

D 

CFrameColor 

([ Pushbutton )J 

D CheckboH 

O Radio Button 

• 
• 

CBodyColor 

Pushbutton 

CheckboH 

Radio Button 

CTextColor 

FJgure 6-2 Part identifiers in button controls 

Each entry in a control color table carries a part identifier in its 
va 1 ue field.Just as for windows. the meanings of the part identifiers 
are detennlned by the control definition function and can vary from 
one type of control to another. Figures 6-2 and 6-3 show the part 
identifiers for the standard Toolbox button controls (pushbuttons, 
checkbox:es, radio buttons) and scroll bars, respectively. 



252 Through Rose-Colored Windows 
~~~~~~~~~~~-

m
I •

I I
CFrameColor CBodyColor CThumbColor

Figure 6-3 Part identifiers in a scroll bar

Color Dialogs

There is no special data type for color dialog and alert windows-just
our old friend Dia logRecord (11:7.1.1) and her pointer sisters. Dia -
logPtr and DialogPeek. Recall that every dialog record includes a
complete window record in its wind ow field, and that the window
record in tum includes a complete graphics port. In a color dialog,
the embedded window record is a color window (6.3.1), based on a
color port (5.1.3). Thus the Toolbox can tell color and monochrome
dialogs apart by looking at the flag bits in the port's portVersion
(or portBi ts. rowByt es) field.

The old Toolbox routines GetNewDialog (11:7.2.2) and Alert
(11:7.4.2) (as well as the more specialized variants NoteAlert, Cau
tionAlert , and StopAlert (11:7.4.2)), which create a new dialog or
alert window from a template of type 'DLOG' [II:7.6.2) or ' ALRT'
(11:7.6.1). now also look for a matching color table resource with the
same resource ID as the template itself. lf they find one, they build
the new dialog record around a color graphics port. with a window
color table (6.3.3) read from the resource and an auxiliary window
record (6.3.2) to point to it. If no color table resource exists. a
monochrome dialog will be created instead. (There's also a new
Toolbox routine, NewCDialog (6.5 .1). that explicitly builds a color
dialog from scratch. This routine doesn't give the new dialog an
auxiliary record or color table, however: you have to assign these by

253 Color Dialogs

hand with SetWinColor (6.3.5). As always, it's much more conven
ient to use resource-based templates instead.)

Even if you want your dialog to use the standard window colors
without modification, you must still give it a color table re
source to mark it as a color dialog. A value of -1 in the color
table's ct Size field, with an empty ctTable array [6. 7.3]. calls
for the standard window colors as defined by the last entry in
your program's auxiliary window list [6.3.2).

The resources defining a dialog's or alert's color table have the
same form as an ordinary window color table [6.7.3], but are
distinguished by the special resource types ' d c tb ' and ' act b '
instead of the usual 'wctb'. The GetNewDialog and Alert rou
tines also look for an ttemcolorlistoftype 'ictb' (6.7.5], again with
the same resource ID as the main dialog or alert template. (Notice
that it's an item color list, not a color table-the spelling of the
resource type notwithstanding-because its structure is not the
same as a true color table [4.4.1].) If present, the color list defines
the colors (and also the text styles) for the dialog's items; if there is
no item color list, the items will be displayed in standard black-and
white.

The item color list begins with a table of 2-word entries that
parallel the dialog's main item list itself (resource type ' D ITL '

(11:7.6.3]). The first word for each item is an item header whose
contents vary depending on the item type; the second is an offset in
bytes from the beginning of the color list to the item data for this
item. Only control items. static text items, and editable text boxes
[7 .1.2] are actually affected by the color list, but there must still be
a 2-word placeholder for every item, regardless of type. For those
that have no item data, the header and offset are simply equal to o.

For control items, the item data consists of a control color table
in exactly the same form as in a 'cctb' resource (6.7.4]. The item
header gives the length of the data in bytes. For text items (both
static and editable), the item data includes not only color informa
tion but also text style attributes (typeface, size, and so forth), in the
form shown in (6. 7.6). This is basically a text style record such as
we11 be learning about in the next chapter (7 .2.1), with two extra
fields added for the background color and transfer mode.

254 Through Rose-Colored Windows
~~~~~~~~~~~ 

Not every field of a text item's style attributes need necessarily 
apply: the item header at the beginning of the item color list contains 
flag bits telling the Toolbox which attributes to use and which to 
ignore. These flags are in the same format used forthe whichAttrs 
parameter to the styled text-editing routines TESetStyle, TE
ReplaceStyle (7.3.4), and TEContinuousStyle (7.3.3), but with 
some extra bits added to account for the additional fields in the style 
record. For style attributes whose flag bit is o, the standard settings 
will be used: 12-point system font, plain character style, SrcCopy 
transfer mode (1:5.1.3), black-on-white. Where the flag bit is l, the 
value from the item data overrides the standard setting. 

If you just want to use the standard style settings for a text 
item, you can omit the item data entirely and just set the item 
header and offset to o. But to override even one of the style 
attributes, you must include all fields in the item data and use 
the flags in the header to mask out those that don't apply. 

A couple of the flags in the item header have special meanings 
worth mentioning. If bit 4 is set, the value given in the item data for 
the type size is not to be used directly, but rather as a positive or 
negative adjustment to the standard 12-point type size. (For ex
ample, a value of - 3 would denote a type size of 9 points.) Bit 15 
causes the typeface to be identified by name rather than by font 
number [I:S.2.1). In this case, the last item data in the color list 
[6.7.5] is followed by a series of Pascal-format strings giving the 
names of the typefaces for the various text items; instead of a font 
number, an item's typeface field gives the offset in bytes from the 
start of the color list to that of the typeface name. (This is the 
recommended way of identifying typefaces for universal compatibil
ity, since the Font/DA Mover utility program may renumber a font 
when installing it in the System file.) All other bits of the header are 
straightforward on-or-off flags for the corresponding fields of the 
item data. 

Color Menus 

A new data structure, the menu color information table [6.6.1], holds 
the information the Toolbox needs to display your menus in color on 



255 Color Menus 

the screen. (It isn't just a "menu color table" because, unlike those 
for windows, dialogs, and controls, it doesn't have the same struc
ture as a true color table (4.4.1].) The Toolbox maintains a single 
current version of this table (located via a handle in the low-memory 
global MenuCinfo), which defines the colors to be used for drawing 
the menu bar and the titles and contents of all the menus it 
contains. 

The entries in the menu color information table form a hierar
chy, with one entry for the menu bar as a whole, one for each menu 
title, and one for each individual item. The fields me tID and met It em 
In each entry designate the menu ID and item number to which it 
applies. The entry for a menu's title carries that menu's ID with a 
zero item number; the one for the menu bar itself has a zero menu 
ID. A given entry may be missing from the table, but there must 
never be duplicate entries with the same menu ID and item number. 
A special entry with a menu ID of - 9 9 (defined as the Toolbox 
constant MCTLastIDindie) marks the end of the table. 

An entry's color settings are held In four fields named me tRGB 1 
to metRGB4, whose meanings vary depending on the type of entry 
(menu bar, menu title, or menu item) (6.6.1]. Entries at each level of 
the hierarchy establish the default colors for those missing at lower 
levels. The menu bar entry defines the standard text and back
ground colors for menu titles and items with no table entries of their 
own; a given menu can override these settings with a title entry 
specifying different colors for just that menu's items: and these. in 
tum, can be overridden by an explicit entry for any single item. 

Recall from Volume 'l\vo that besides its text, a menu item can 
display an optional mark character (II:4.6.4), icon (11:4.6.5). and 
keyboard alias. The item's entry in the color information table can 
define separate colors for the text, mark, and alias. For items that 
have no table entry of their own, however. these all default to a single 
foreground text color, defined either in the title entry for the item's 
menu or in the entry for the menu bar as a whole. 

The display colors for an item's icon, if any, are not included in 
the menu color information table. Recall (11:4.6.51 that such an 
icon is identified by an tcon number between 1 and 2 s s. which 
is added to 2 s 6 to arrive at the resource ID (from 2 s 7 to 511) 
under which the icon is stored in the application resource file. 
In a color envtromnent, the Toolbox will look for a color icon 



256 Through Rose-Colored Windows 
~~~~~~~~~~~ 

resource of type 'cicn' [6.7.1) with the required resource ID.
If no such resource exists. it will next look for a monochrome
icon of type 'ICON' [1:5.5.3) and display it in the item's text and
background colors as defined in the color information table.

Remember. too. that although color icons (unlike their
monochrome counterparts) can vary in size, those used in
menus must always be of the standard dimensions, 32 pixels
wide by 32 high. Icons larger than this will not be displayed on
the menu.

Menu color information is stored in resources of type 'mctb'
[6. 7. 7). Such a resource is simply a collection of entries of the same
form as in a menu color information table [6.6.1), preceded by a 2-
byte count giving the number of entries. 'mctb' resource number
o contains the table entry for the menu bar. which 1s read into
memory to start the color information table when you call Ini t
Menus [11:4.2.1) at the beginning of your program. This entry
contains the standard menu colors set by the user with the Control
Panel; you should normally just honor these settings without
alteration.

Each time you build a menu from a 'MENU' resource [11:4.8.1]
with GetMenu [11:4.2.2], the Toolbox automatically reads in
the matching 'mctb' resource, if any, and adds its contents to the
global menu color information table. Removing a menu from the
menu bar with DeleteMenu [11:4.4.1] removes its entries from
the color information table as well. Emptying the entire menu bar
with ClearMenuBar [11:4.4.1] automatically clears the color infor
mation table and disposes of its previous contents; you can do the
same thing explicitly with DispMCinfo (6.6.2]. though this would be
an unusual action for an application program.

You can also add and remove table entries explicitly with
SetMCEntries and DelMCEntries [6.6.3). SetMCEntries accepts
a pointer to a separate color information table and copies its
contents into the main table. (For menus and items that are already
included in the main table, SetMCEntries simply updates the
existing entry to the new color settings: for those that aren't already
present, it adds a new entry to the table.) DelMCEntries accepts a
menu ID and item number and deletes the corresponding entry from
the global table; if the item number is - 9 8 (Toolbox constant

257 Color Menus

MCTAllitems), it deletes all entries associated with the designated
menu. Neither of these routines redraws the menu bar automati~
cally, so you have to follow them with a call to Dr awMenuBa r (11:4.4.31
if you want the color changes to become visible immediately on the
screen.

If you need to, you can get a copy of the current color
information table with GetMCinfo or replace its contents wholesale
with SetMCinfo (6.6.2). The main purpose of these routines is for
saving the previous contents of the table before making changes and
then restoring them later. They're particularly useful in conjunction
with the older routines GetMenuBar and SetMenuBar [11:4.4.4],
which save and restore the contents of the menu bar itself.

Another routine, GetMCEntry [6.6.3), returns a pointer to the
table entry for a given menu ID and item number. Beware, though:
this isn't a pointer to a copy, but directly to the relevant entry within
the global color information table itself. Since the table is a relocat
able heap object, it's liable to slither out from under the pointer
without asking your permission. To be on the safe side, it's a good
idea to make a copy of the table entry immediately and then work
with the copy instead of the original:

entrySize := SIZE(MCEntry):
copyHandle := NewHandle (entrySize) :
origPtr :- GetMCEntry (menuID, theitem):
BlockMove (origPtr, copyHandleA, entrySize):
{Work with copyHandle instead of origPtr}

Notice that the memory block to hold the copy must be preallocated
before the call to GetMCEntry; othelWise, the allocation call might
cause the table to move in the heap and trigger the very catastrophe
we're trying to avoid.

Another tricky point to watch out for concerns the old Toolbox
routine GetNewMBar [11:4.4.2), which creates a new menu bar from
a template resource of type 'MBAR' [11:4.8.2]. This routine works by
temporarily Mborrowing" the main system menu bar and using it to
build the new one. That is, it saves the previous contents of the
menu bar with GetMenuBar [11:4.4.4). clears it to empty with
ClearMenuBar [11:4.4. l], then builds the new menu bar by reading
in its menus one at a time with GetMenu [11:4.2.2]. Once the new
menu bar is built, it restores the old one with SetMenuBar (11:4.4.4]
and returns the handle to the new one as its function result. Thus

258 Through Rose-Colored Windows
~~~~~~~~~~~ 

the net effect is to leave the main menu bar unchanged from its 
original state; the whole operation is invisible to the user, since none 
of the temporary changes become visible on the screen without an 
explicit call to DrawMenuBar [11:4.4.3). 

This neat little scheme breaks down, however, when menu 
color information is added to the picture. The calls to ClearMenuBar 

and GetMenu to clear and rebuild the menu bar operate on the color 
information table as well. but those to GetMenuBar and SetMenuBar 
do not. Thus. although the GetNewMBar operation doesn't change 
the previous contents of the menu bar. it does change the color in
formation table to the colors for the newly built menu bar instead of 
the original (saved and restored) one. Of course, GetNewMBar could 
use GetMCinfo and SetMCinfo (6.6.2) to save and restore the color 
information along with the menu bar itself. but then the new menu 
bar's color information would be lost (since GetNewMBar returns 
only the menu bar to the calling program and not the color informa
tion to go with it). So the only feasible solution is to leave it up to you 
to do the saving and restoring for yourself: 

saveColors := GetMCinfo: 
newMBar := GetNewMBar (mBarID) : 
newColors :- GetMCinfo: 

SetMCinfo (saveColors) 

Naturally, if you're making the new menu bar current immediately, 
there's no need for this little juggling act: you can just follow 
GetNewMBar directly with SetMenuBar-

newMBar :~ GetNewMBar (mBarID) : 
SetMenuBar (newMBar) 

-since the color information table is now already set up for the new 
menu bar. 



REFERENCE 

WM&&Ai#&%9Mi+ f@@Mfi@i4:iaj§f#Wf#W@W#iik¥ 
@f§44?¥4£G~ffiM4§@fif@#4tmf#W-!Wii##kfM+L¥tM%¥lfJiih#¥~JJ!i§§i~Wifi§§tHif4kMtiiiM W 
~1@@Fi§t@-t¥£iit$PiA~Dfii§fl.Aff-if.@&AA?i4¥iY¥#4¥*#-F iP 
9¥ttit¥tSiif¥&W~1##ftAA439¥Mkfi~~tff.5f4i£§@*'!4i*~i!fYff.tf1i¥¥:5¥M'&###f&-iiWiWSAA$i!§§iifflMt-

8.1 Color Icons 

type 
CiconHandle 
CiconPtr 

Cleon 

8.1.1 Color Icon Structure 

"CiconPtr: 
"Cleon: 

record 
iconPMap 
iconMask 
iconBMap 
iconData 
iconMaskData 

end: 

Notes 

PixMap: 
BitMap: 

{Full pixel map} 

(Bit mask} 

Bi tMa p : {Substitute bit map} 

Handle: {Handle to pixel image} 

array [0 .• 0] of INTEGER (Private} 

1. A color icon is the color analog of an old-style (monochrome) icon 
(1:5.4.4): a small pixel image, commonly (but not necessarily) used to 
represent an object on the screen. 

2. Color icons are usually stored in resource files under resource type 
'cicn' (6.7.1) and read In with GetCicon (6.1.2). 

259 



260 Color and the Toolbox 

3. iconData is a handle to the pixel image defining the icon. 

4. iconPMap is a pixel map [5.1.1) defining the icon's dimensions, pixel 
depth, color table, and other properties. The map's baseAddr field is 
ignored, since the pixel image ls defined by iconData instead. 

6. iconBMap is a monochrome bit map [1:4.2.1) for use in drawing the 
icon at 1- or 2-bit pixel depths. 

6. If the bit map's rowBytes field is zero, the bit map is ignored and the 
pixel map Is used to draw the Icon at all depths. 

7. iconMask is a monochrome bit map defining which pixels to transfer 
in plotting the icon, like the second part of a monochrome ' I CNfl ' 
resource [1:5.5.4). 

8. Unlike monochrome icons, which are limited to a fixed size (32-by-32), 
a color icon's height and width are defined by the boundaiy rectangle 
of its pixel map. The pixel map, bit map, and mask must all have the 
same dimensions. 

9. Notice that the pixel map and bit maps themselves, not just their 
handles, are embedded directly within the color Icon record. 

10. The iconMaskData field holds the actual data for the icon's mask, bit 
image, color table, and pixel image, and ls meaningful only for icons 
residing in a resource file. After the icon has been read into memory 
for use, this field is ignored. 

~lrll~------As--s_e_m_b_Iy __ Lan ___ gua __ g_e_1_im __ orm ____ at_1_o_n ___________ ___ 

Field offsets in a color icon: 

(Pascal) 
Field name 

iconPMap 

iconMask 

iconBMap 

iconData 

(Assembly) 
Offset name 

iconPMap 

iconMask 

iconBMap 

iconData 

Offset 
in bytes 

0 

50 

64 

78 

Assembly-language constant: 

Name Value 

IconRec 82 

Meaning 

Size of a color icon in bytes, 
excluding iconMaskData 



261 (6.1.2] Using Color Icons 
~~~~~~~~~~~~-

function

6.1.2 Using Color Icons

GetCicon

(iconID : INTEGER)
: CiconHandle:

{Resource ID of desired icon}
{Handle to icon in memory}

procedure PlotCicon
(inRect

the Icon
Rect:

CiconHandle):

{Rectangle to plot in}

{Handle to icon}

procedure DisposCicon

(theicon : CiconHandle): {Handle to icon to be destroyed}

Notes

1. GetCicon reads a color icon (6.1.1) from a resource file into memory
and returns a handle to it.

2. iconID is the resource ID of the desired icon; its resource type is
'cicn' (6.7.1).

3. Space is allocated from the heap for the icon's pixel image, bit image,
mask, and color table, as well as for the color icon record itself.

4. Unlike other resource-loading operations, Get c I con always creates a
new copy of the requested icon instead of just returning a handle to an
existing copy already in memory. Call it just once for any given icon,
rather than repeatedly before each use.

5. Plot Cleon draws a color icon in the current graphics port, under the
control of the icon's mask and scaled to a specified rectangle.

6. The rectangle inRect is expressed in the local coordinate system of
the current port.

7. The icon is automatically converted to the current port's pixel depth;
at depths of 1 or 2 bits, the icon's bit map (iconBMap) is used in place
of its full pixel map (iconPMap) [6.1.1).

8. All of the icon's colors are mapped to their nearest matches in the
current color environment.

9. Calls to PlotCicon are not recorded in picture definitlons (1:5.4.2).

10. DisposCicon destroys a color icon and all of its subsidiary data
structures, and deallocates the space they occupy in the heap.

262 Color and the Toolbox

~~I Assembly Language Information

Trap macros:

(Pascal)
Routine name

GetCicon

PlotCicon

DisposCicon

(Assembly)
Trap macro

_GetCicon

_PlotCicon

_DisposCicon

Trap word

$AA1E
$AA1F
$AA25

6.2 Color Cursors

type

CCrsrHandle

CCrsrPtr

CCrsr

Bitsl6

6.2.1 Color Cursor Structure

"CCrsrPtr:

"CCrsr:

record

crsrType

crsrMap

crsrData

crsrXData

crsrXValid

crsrXHandle

crsrlData

crsrMask
crsrHotSpot

crsrXTable

crsrID

end:

INTEGER:
PixMapHandle :

Handle:

Handle:

INTEGER:
Handle:

Bitsl6:

Bitsl6:
Point;
LONGINT;
LONG INT

array [0 .. 15) of INTEGER:

(Cursor type}

(Characteristics of pixel image}

(Pixel image)

(Expanded pixel image I
(Depth of expanded image}

(Reserved for future use}

(Bit image for old-style pons}

{Transfer mask)

{Point coinciding with mouse}

(Reserved for future use}

(Seed value for color table)

(16 rows of 16 bits each}

263 [6.2.1) Color Cursor Structure

Notes

1. The first seven fields of the color cursor record are identical in form to
those of a pixel pattern [5.2.1). However, the crsrXHandle field
(corresponding to patXMap ln a pixel pattern) is unused and reseived
for future expansion, and crsrXValid ls used in a slightly different
way than Its counterpart patXValid (see note 9 below).

2. crsrType ls an integer code denoting the type of cursor. The high
order bit must be 1, to distinguish the cursor from a pixel pattern. A
value of $8000 stands for a monochrome cursor (equivalent to an old
style bit cursor [11:2.5.lD, $8001 for a full-color cursor.

3. The assembly-language interface to the Toolbox includes constants
OldCrsrPat and CCrsrPat, representing the two cursor types (see
"Assembly Language Information," below). These constants have been
inadvertently omitted from the Pascal version of the interface.

4. crsrData is a handle to the pixel Image defining the cursor.

6. crsrMap is a pixel map defining the cursor's dimensions, pixel depth,
color table, and other properties. The map's baseAdd r field ls ignored,
since the pixel Image ls defined by crsrData instead.

6. The cursor is always 16 pixels wide by 16 high.

7. In a monochrome cursor (crsrType = $8000), crsrMap is ignored.
The cursor's pixel depth is 1 by definition, and it ls always drawn in
the port's current foreground and background colors [5.4.1).

8. When a color cursor ls drawn in a given color environment, the Toolbox
builds a private copy to match the current pixel depth and color table.
A handle to the pixel image defining this private copy is stored in the
c rsrXData field. ·

9. crsrXValid holds the pixel depth of the expanded pixel Image. After
changing the cursor's pixel Image, color table, or other properties, set
this field to o to mark the expanded cursor as invalid and force it to be
rebuilt.

10. crsrlData ls a monochrome bit image, 16 bits by 16, for use in
drawing the pattern into old-style graphics ports or at depths of 1 or
2 bits per pixel.

11. crsrMask ls another bit Image, also 16-by-16, that defines how the
cursor's pixel or bit image ls transferred to the screen.

12. The same mask is used for both the monochrome bit image
(c rsr !Data) and the full-color pixel Image (c rsrData).

13. 1 bits in the mask cause the corresponding pixels of the cursor's image
to be copied directly to the screen.

264 Color and the Toolbox

14. Where the mask has a o bit, the corresponding pixel of the image will
be "'excluslve-or'ed" with the existing pixel value already on the screen.
Image pixels at such posltlons should always be set to white, causing
the cursor to overlay the screen transparently; other pixel values will
produce peculiar and unpredictable results.

15. crsrHotSpot defines the point In the cursor that coincides with the
mouse posltlon on the screen.

18. The hot spot Is expressed In the cursor's own coordinate system, not
that of the screen. The top-left comer of the cursor has coordinates
(o. o).

17. Notice that the fields crsrlData, crsrMask, and crsrHotSpot have
exactly the same contents and fonn as the fields of an old-style cursor
record (11:2.5.1).

18. c rs r ID holds a seed value for coordinating the cursor's colors with
those of the current color table. After changing the cursor's pixel
image. color table. or other properties, obtain a new seed value with
GetCTSeed (4.4.3) and store It Into this field, then call SetCCursor
(6.2.2) to redisplay the cursor.

19. Color cursors are usually stored in resource flies under resource type
'crsr' [6.7.2) and read In With GetCCursor [6.2.2).

~Q 1 ... ___ As_s_e_m_b_1_.,._Lan __ gua __ ge_1m_o_rm_a_t_1o_n ______ _

Field offsets in a color cursor:

(Pascal) (Assembly)
Field name Offset name

crsrType crsrType
crsrMap crsrMap
crsrData crsrData
crsrXData crsrXData
crsrXValid crsrXValid
crsrXHandle crsrXHandle
crsrlData crsrlData
crsrMask crsrMask
crsrHotSpot crsrHotSpot
crsrXTable crsrXTable
crsrID crsrID

Offset
in bytes

0

2

6

10

14

16

20

52

84

88

92

265 (6.2.2) Using Color Cursors
~~~~~~~~~~~~~ 

Assembly-language constant: 

Name 

CrsrRec 

Cursor types: 

Name 

OldCrsrPat 

CCrsrPat 

Value 

96 

Value 

$8000 

$8001 

Meaning 

Size of a color cursor in bytes 

Meaning 

Monochrome cursor 
Full-color cursor 

6.2.2 Using Color Cursors 

Definitions 

function GetCCursor 

(cursorID : INTEGER) 

: CCrsrHandle: 

procedure SetCCursor 

(newCursor CCrsrHandle) : 

procedure DisposCCursor 

(oldCursor : CCrsrHandle): 

Notes 

{Resource ID of desired color cursor} 

{Handle to cursor in memory} 

{Color cursor to be made current} 

{Color cursor to be destroyed} 

1. GetCCursor reads a color cursor [6.2.1) from a resource file into 
memory and returns a handle to it. 

2. cursorID ls the resource ID of the desired cursor; its resource type is 
'crsr' [6.7.2). 

3. Space ts allocated from the heap for the cursor's pixel map, pixel 
image, and color table, as well as for the color cursor record itself. 

4. Unlike other resource-loading operations, GetCCursor always cre
ates a new copy of the requested cursor instead of just returning a 
handle to an existing copy already in memory. Call it just once for any 
given cursor, rather than repeatedly before each use. 



266 Color and the Toolbox 

&. SetCCursor makes a designated color cursor the current cursor. 

6. If the cursor·s crsrXValid and crsrID fields (6.2.1) don't match the 
current pJxel depth and color table seed, the cursor's expanded pixel 
image (crsrXData) Is rebuilt. 

ID I Assembly Language Information ---1m..,___ ____ _ 
n-ap macros: 

(Pascal) 
Routine name 

GetCCursor 
SetCCursor 
DisposCCursor 

6.3 Color Windows 

(Assembly) 
Trap macro 

_GetCCursor 
_SetCCursor 
_DisposCCursor 

Trap word 

$AA1B 
$AA1C 
$AA26 

6.3.1 Color Window Records 

type 

CWindowPtr CGrafPtr: 
CWindowPeek ACWindowRecord: 

CWindowRecord record 
port 
windowKind 
visible 
hili ted 
goAwayFlag 
spareFlag 
strucRgn 
contRgn 
updateRgn 
windowDef Proc 
dataHandle 
titleHandle 
ti tleWidth 

CGrafPort: 
INTEGER: 
BOOLEAN: 
BOOLEAN: 
BOOLEAN: 
BOOLEAN: 
RgnHandle: 
RgnHandle: 
RgnHandle: 
Handle: 
Handle: 

(Color graphics pon for this window} 

{Window class} 

{Is window visible?) 

{Is window highlighted?} 

{Does window have close region?} 

{Is morning enabled?} 

{Handle to stnJcWre region} 

{Handle to content region) 

{Handle to update region) 

{Handle to window definition function} 

{Handle to defmition function's data} 

St ringHandle: {Handle to window's title} 

INTEGER: (Private} 



267 [6.3.1) Color Window Records 
~~~~~~~~~~~~-

controlList
next Window
windowPic
refCon

ControlHandle;
CWindowPeek:

(Handle to start of control list}

PicHandle:
LONG INT

(Pointer to next window in window list}

(Picture for drawing window's contents}

(Reference constant}

end:

Notes

1. A color window record is identical in fonn to an old-style window
record [11:3.1. l), except that it is based on a color, instead of a
monochrome, graphics port.

2. Use a CWindowPtr to refer to the window as a color graphics port (to
draw into it with Color QulckDraw) and a CWindowPeek to refer to It
as a window (to access the remaining fields of the color window
record).

3. po rt is a complete color graphics port record [5.1.3) (not just a pointer)
embedded within the color window record.

4. The declared type of the nextWindow field has been changed from
WindowPeek, as In a monochrome window record, to CWiqdowPeek.

6. All other fields have the same meanings as In a monochrome window;
see [11:3.1.1) for details.

6. All old Toolbox routines for working with monochrome windows (11:3)
can operate on color windows as well. At the Pascal level, you must
typecast the window pointer from type CWindowPtr to WindowPtr
before passing It to such routines.

ID I Assembly Language Information
-ID--------

Field offsets in a color window record:

(Pascal) (Assembly)
Field name Offset name

port

windowKind

visible

hilited

goAwayFlag

spareFlag

port

windowKind

wVisible

wHili ted

wGoAway

wZoorn

Offset
in bytes

0

108

110

111

112

113

type
AuxWinHndl
AuxWinPtr

AuxWinRec

268 Color and the Toolbox

(Pascal) (Assembly) Offset
Field name Offset name in bytes

strucRgn structRgn 114

contRgn contRgn 118

updateRgn updateRgn 122

windowDef Proc windowDef 126

dataHandle wDataHandle 130

titleHandle wTitleHandle 134

titleWidth wTitleWidth 138

controlList wControlList 140

next Window next Window 144

windowPic windowPic 148

ref Con wRefCon 152

Assembly-language constant:

Name Value Meaning

WindowSize 156 Size of color Window record In

bytes

6.3.2 Auxiliary Window Records

,..AuxWinPtr:
,..AuxWinRec:

record
awNext
awOwner
awCTable
dialogCitem
awFlags
awReserved
awRefCon

end:

AuxWinHndl:
WindowPtr:
CTabHandle:
Handle:
LONGINT:
CTabHandle:
LONG INT

{Next record in auxiliary window list}

{Window this record belongs to}

{Window color table}

{Dialog item color list}

{Private)

{Reserved for future use}

{Reference constant for application use}

269 (6.3.2) Auxiliary Window Records
~~~~~~~~~~~~ 

Notes 

1. An auxiliary window record holds information about a window's color
related properties, supplementing the more general information in the 
main window record (6.3.1). 

2. A window need not have Its own auxiliary window record unless its 
color properties differ from the standard ones the program uses for all 
Its windows. 

3. 1Wo windows may not share the same auxiliary record, but two 
auxiliary records may share the same underlying color table. 

4. awOwner ts a pointer to the window to which this auxiliary record 
belongs. There Is no corresponding forward pointer or handle from the 
window Itself to its auxiliary record. 

5. awOwne r is declared as a plain Wind ow Pt r. rather than a CWi nd ow Pt r, 
so that it can be passed directly to window-related Toolbox routines 
without typecasting. 

6. awCTable ls a handle to the window color table [6.3.3) for this window. 

7. For alert and dialog windows. dialogCitem holds a handle to the 
dialog Item color list [6.7.5). 

8. awFlags holds flags and other information for private use by the 
Toolbox. In particular. in 32-bit address mode (2.1.3), this field 
includes the window's variation code [111:2.2.1) (formerly kept In the 
htgh-orderbyteofthewindowDefProc field in the main window record 
[11:3.1.l, 6.3.1)). 

9. awRefCon ls a 4-byte reference "constant" (actually a varlable) that 
your program can use ln anyway lt chooses. awReserved is resexved 
for future use by the Toolbox. and should always be set to o. 

10. All auxiliary window records are kept in an auxiliary window list, 
linked together through their awNext fields. 

11. In assembly language, the beginning of the auxiliary window list is 
accessible ln the global variable AuxWinHead. 

12. The last record in the auxiliary window list defines the program's 
standard window colors, to be used by default for all windows that 
have no auxiliary record of their own. 

13. The default record at the end of the list ls identified by NIL values for 
both awNext and awOwner. 

14. CloseWindow and DisposeWindow [11:3.2.3) automatically dispose of 
the auxiliary window record along with the window itself. 



270 Color and the Toolbox 

~~I Assembly Language Information 

Field offsets in an auxUiary window record: 

type. 

(Pascal) (Assembly) 
Field name Offset name 

awNext awNext 
awOwner awOwner 
awCTable awCTable 
dialogCitem dialogCitem 
awFlags awFlags 
awReserved awResrv 
awRef Con awRef Con 

Assembly-language constant: 

Name Value Meaning 

Offset 
ln bytes 

0 

4 

8 

12 

16 

20 

24 

AuxWinSize 28 Size of auxiliaiy window 
record in bytes 

Assembly-language global variable: 

Name Address Meaning 

AuxWinHead $CDO Pointer to first record in 
auxiltaiy window list 

6.3.3 Window Color Tables 

WCTabHandle = AWCTabPtr: 
WCTabPtr 

WinCTab = record 
we Seed LONGINT: 
we Reserved INTEGER: 

{Reseived for future use} 

{Reseived for future use} 

ct Size 
ct Table 

end: 

INTEGER: {Number of entries minus 1} 

array (0 .. 4) of ColorSpec {Array of color specifications} 



271 (6.3.3) Window Color Tables 
~~~~~~~~~~~~-

con st

WContentColor = 0: {Background fill color for content region)

(Frame and border color} WFrameColor 1:
WTextColor = 2:
WHiliteColor = 3:
WTitleBarColor = 4:

Notes

{Text color for window title)

(Background color for close and zoom boxes)

(Background color for title bar}

1. A window color table specifies the colors to be used in displaying a
window on the screen.

2. The colors in the table apply only to the window's frame, which is
drawn automatically by the Toolbox. The window's contents are the
application program's responsibility.

S. A window color table has the same general structure as an ordinaty
color table (4.4.1), but its first two fields (renamed from ctSeed and
ctFlags to wcSeed and wcReserved) are unused and reseived for
future use. For now, these fields should always be set too.

4. ctSize is the index of the last element in the ctTable array, and is
equal to the total number of entries in the color table minus 1. For
standard document windows, this value is normally 4.

5. ctTable is an array of color specifications (4.4.1) containing the
actual entries in the color table.

6. Each color specification's value field contains an integer part
identifler designating the part of the window to which it applies; the
rgb field gives the color in which that partofthewindowis to be drawn.

7. 'Ihe meanings of the part identifiers are determined by the window
definition function (111:2.2) and can vary for different types of window.
The constants shown (WContentColor, WFrameColor, and so on) are
for the standard Toolbox document window.

8. Because the color specifications are identified by their value fields.
they need not all be present and need not appear in any particular
order. The table's first color entry is used for any window part that is
missing from the table.

9. A window's color table is normally stored as a resource of type 'wet b '
(6. 7 .3) with the same resource ID as that of the window template
('WIND' (11:3. 7.1)) itself.

272 Color and the Toolbox

10. The standard system window color table, defined by 'wctb' resource
number o in ROM, contains the same color values as an ordinary
monochrome window: black for WFrameColor and WTextColor,
white for WContentColor, WHili teColor, and WTi tleBarColor.

11. The assembly-language Toolbox Interface doesn't define offset con
stants specifically for the fields of a Window color table; use the ones
for an ordinary color table [4.4.1] instead, as shown In the table below.

~ lril I Assembly Language Information

Field offsets in a window color table:

(Pascal) (Assembly) Offset
in bytes Field name Offset name

we Seed
we Reserved
ctSize
ctTable

ct Seed
ctFlags
ctSize
ctTable

0

4

6

8

Assembly-language constants:

Name Value Meaning

CT Rec 8

CTEntrySize 8

Size of a window color table
record In bytes, excluding
ctTable

Size of a window color table
entry in bytes

Standard indices in a window color table:

Name Value Meaning

WContentColor 0 Background and fill color for
content region

WFrameColor 1 Frame and border color
WTextColor 2 Text color for window title
WHiliteColor 3 Highlight color for close and

zoom boxes
WTitleBarColor 4 Background color for title bar

273 (6.3.4) Creating Color Windows
~~~~~~~~~~~~~-

6.3.4 Creating Color Windows 

function NewCWindow 

(wStorage Ptr ; {Storage for window record} 

windowRect Rect; {Window's pon TCGUUlgie in screen coordinates} 

title Str255; (Window's title} 

visible BOOLEAN; (Is window initially visible?} 

windowType INTEGER; {Window definition ID} 

behind Window WindowPtr: {Window in front of this one} 

hasClose BOOLEAN; (Does window have a close region?} 

ref Con LONGINT) (Window's reference constant} 

: Windo wPtr; {Pointer lo new window} 

function Ge-i:NewCWindow 

(-i:empla-i:eID INTEGER; {Resource ID of window template} 

wStorage Ptr; {Storage for window record} 

behind Window WindowPtr) {Window in front of this one} 

: WindowPtr; (Pointer to new window) 

~~ii-t=-1---No_tes ______ _ 

1. Both these routines create a new color window, enter It In the window 
list, and return a pointer to It. 

2. NewCWindow takes Its inltlallzatlon lnfonnatlon as parameters, Get -
NewCWindow gets It from a window template In a resource file. 

3. All parameters have the same meanings as for the old monochrome 
routines NewWindow and GetNewWindow: see (11:3.2.2) for details. 

4. Both routines return a plain WindowPtr Instead ofa CWindowPtr, so 
that It can be passed directly to other window-related Toolbox routines 
without typecasting. To access the Internal fields of the window 
record, typecast this pointer to a CWindowPeek (6.3.1). 

5. The new window is based on a color graphics port (5.1.3) and supports 
the full use of color for drawing In Its content region. 

6. If 'wc tb ' (6.7.3) and 'pl tt' (4. 7.2) resources exist with the same 
resource ID as the window template Itself (t emplateID). Get
NewCWind ow uses them to define the new window's color table (6.3.3) 



27 4 Color and the Toolbox 

and palette (4.5.l, 6.3.6). An auxiliary window record (6.3.2) is 
created pointing to the given color table, and the contents of this table 
determine the colors in which the window's frame will be drawn. 

7. NewCWi ndow (or GetNewCWi ndow, lfthe required 'wctb' and 'pl t t ' 
resources don't exist) does not create an auxiliary window record or 
assign the window a color table or palette of its own. If necessary, you 
can assign them explicitly with SetWinColor (6.3.5) and Set Palett e 
(6.3.6) ; otherwise, the window will use the standard color table and 
palette by default, as defined by 'wc t b' and 'pl t t • resources 
number o. 

~ ~ .... 1---As_s_e_m_b_l_y_Lan __ gu_a_g_e_I_nfi_o_rm_a_ti_o_n ______ _ 

Trap macros: 

(Pascal) 
Routine name 

NewCWind ow 

GetNewCWindow 

(Assembly) 
Trap macro 

_ NewCWi n dow 

_ GetNewCWindow 

6.3.5 Color Window Properties 

I Defiilitions 

Trap word 

$AA45 

$AA46 

--f----..t--------
p r oc edure SetWinColor 

(theWindow Wind o wPtr; 

newCTab WCTabHand le): 

function GetAuxWi n 

(Pointer to the window} 

(New colortable} 

( t h eWindow Wi ndowPtr: (Pointertothewindow} 

var t h eAuxRec AuxWinHndl) (Returns handle to auxiliary window record} 

: BOOLEAN : (Does window have an auxiliary record?} 

function Get WVariant 

( t heWindow : WindowPtr) 

: INTEGER: 

(Pointer to the window} 

(Window's variation code} 



275 (6.3.5) Color Window Properties 
~~~~~~~~~~~~-

Notes

1. SetWinColor sets a window's color table, defining the colors in which
its frame is drawn on the screen.

2. The window's frame ts immediately redrawn in the new colors.

S. The background color [5.4.1] of the window's port Is set to the color
designated by the part identlfter WContentColor (6.3.3] in the new
color table.

4. If an auxiliary window record (6.3.2] already exists for the given
window, it is modified to point to the new color table; 1f the window has
no auxiliary record, a new one is created.

5. If newCTab contains the standard window colors (defined by the last
record in the auxiliary window list (6.3.2)), the window's existing
auxiliary record ts destroyed: the window will use the standard
auxiliary record and color table instead.

6. If theWindow = NIL, the standard color table itself is redefined to
newCTab.

7. GetAuxWin returns a handle to a window's auxiliary window record,
if any. via the variable parameter theAuxRec ..

8. If the window has no auxiliary record, the standard record (last in the
auxiliary window list) is returned instead.

9. The function result tells whether the record returned as theAuxRec
actually belongs to the designated window (TRUE) or is merely the
standard one (FALSE).

10. If theWindow = NIL, the standard auxiliary record is returned as
theAuxRec and the function result ls TRUE.

11. GetWVariant returns a window's variation code, taken from the
window definition ID (11:3.2.2] at the time the window is created.

12. The variation code, formerly stored in the high-order byte of the
window'swindowDefProc field (11:3.1.l, 6.3.1), now resides elsewhere
on some systems and in some memory modes. Always use Get WV a r i -
ant to obtain it, rather than trying to read it directly from the window
record.

276 Color and the Toolbox

~~I Assembly Language Information

Trap macros:

procedure

function

procedure

(Pascal)
Routine name

SetWinColor

GetAuxWin

GetWVariant

(Assembly)
Trap macro

_SetWinColor

_GetAuxWin

_GetWVariant

Trap word

$AA41

$AA42

$A80A

6.3.6 Window Palettes

Set Palette

(theWindow WindowPtr: {Pointer to the window}

theP.alette PaletteHandle: {Handle to new palette}

doUpdates BOOLEAN): {Automatic updates?}

GetPalette

(theWindow : WindowPtr} {Pointer to the window}

: PaletteHandle: {Handle to current palette}

ActivatePalette

(theWindow : WindowPtr) : {Pointer to the window}

Notes

1. SetPalette sets a window's color palette; GetPalette returns its
current palette.

2. If doUpdates is TRUE, an update event will automatically be generated
for the window whenever its color environment changes, allowing you
to redraw the window's contents in the new colors.

3. If theWindow has no palette or ls not a color window, GetPalette
returns NIL.

4. Ac ti vatePalette puts a window's palette into effect, modlfying the
color environment if necessary- to make the colors in the palette
available for drawing.

277 (6.3. 7) Screen Properties
~~~~~~~~~~~~~ 

5. If the window spans more than one device, each device's color 
environment is modified independently. 

6. Update events are generated for all windows that have requested them 
(via the doUpdates parameter to SetPalette). 

7. A window's palette is activated automatically whenever the window 
itself becomes active (frontmost) on the screen. You should also call 
it explicitly after malting any change in the contents of the palette. 

~~It-___ As_s_e_m_b_I_y_Lan __ g_ua_g_e_I_m_o_nn_a_tl_o_n ______ _ 

Trap macros: 

(Pascal) 
Routine name 

Set Palette 

GetPalett:e 

ActivatePalett:e 

(Assembly) 
Trap macro 

_ Set Palette 

_Get Palette 

_Act ivat:ePa lette 

Trap word 

$AA95 

$AA96 

$AA94 

6.3.7 Screen Properties 

procedure GetCWMgrPort 

(var c wMgr Po r t CGrafPtr); (Returns pointer to Color Window Manager port} 

function GetGrayRgn 

: RgnHandle: (Handle to desktop region} 

~~~iil===t----N-o_t_e_s ________________________________ ~ 
1. GetCWM&rPort returns a pointer to the Color Window Manager port,

the color graphics port in which the Toolbox draws all window frames.

2. All drawing in the Color Window Manager port is done by the Toolbox
itself and by wtndow definition functions [III:2.2). Application pro
grams should never draw tnto this port themselves, particularly when
running under MultiFtnder.

278 Color and the Toolbox

3. GetGrayRgn returns a handle to the desktop region. defining the size
and shape of the total area in which drawing can take place on all
available screens combined.

4. In assembly language, a handle to the desktop region 1s available in
the global variable GrayRgn.

~~I ... ___ As_s_e_m_h_l_y_Lan __ gua __ g_e_1_n_fo_1_m_a_t_10_n ______ _

Trap macro:

(Pascal)
Routine name

(Assembly)
Trap macro Trap word

GetCWMgrPort _GetCWMgrPort $AA48

Assembly-language global variable:

Name Address Meaning

GrayRgn $9EE Handle to desktop region

6.4 Color Controls

6.4.1

type
AuxCtlHndl AAuxCtlPtr:
AuxCtlPtr AAuxCtlRec:

AuxCtlRec record
acNext
acOwner
acCTable
acFlags

Auxiliary Control Records

AuxCtlHnd 1: (Next record in auxiliary control list}

ControlHandle: (Control this record belongs to}

CCTabHandle: (Control color table}

INTEGER: {Private}

acReserved LONGINT: (Reserved for future use}

acRefCon LONGINT (Reference constant for application use}

end:

279 (6.4.1) AwdllaJy Control Records
~~~~~~~~~~~~ 

Notes 

1. An auxiliary control record holds Information about a control's color
related properties, supplementing the more general Information In the 
main control record (11:6.1.1). 

2. A control need not have its own auxiliary control record unless its color 
properties differ from the standard ones the program uses for all its 
controls. 

S. T\vo controls may not share the same auxiliary record, but two 
auxiliary records may share the same underlying color table. 

4. acOwner ls a handle to the control to which this auxiliary record 
belongs. There is no corresponding forward pointer or handle from the 
control itself to Its auxlliary record. 

6. a c CT ab 1 e is a handle to the control color table (6.4. 2) for this control. 

6. acFlags holds flags and other information for private use by the 
Toolbox. In particular, ln 32-bit address mode (2.1.3), this field 
Includes the control's variation code (111:2.3.1) (formerly kept in the 
high-order byte of the contrlDef Proc field in the main control record 
(11:6.1.1]). 

7. acRefCon is a 4-byte reference "constant" (actually a vartable) that 
your program can use In anyway lt chooses. acReserved ls reseIVed 
for future use by the Toolbox, and should always be set to o. 

8. All auxiliary control records are kept in an auxiliary control list, linked 
together through their acNext fields. 

9. There is only one auxiliary control list for the entire program, not a 
separate one for each window. 

10. In assembly language, the beginning of the auxillary control list ls 
accessible In the global variable AuxCtlHead. 

11. The last record ln the auxiliary control list defines the program's 
standard control colors, to be used by default for all controls that have 
no auxiliary record of their own. 

12. The default record at the end of the list is identified by NIL values for 
both acNext and acOwner. 

18. DisposeControl and KillControls (11:6.2.2) automatically dispose 
of the auxiliary control record along with the control itself. 



280 Color and the Toolbox 

~ li'.jl I Assembly Language Information 

Field offsets in an auxiliary control record: 

type 
CCTabHandle 

CCTabPtr 

Ct:lCTab 

(Pascal) (Assembly) 
Field name Offset name 

acNext acNext 

acOwner acOwner 

acCTable acCTable 

acFlags acFlags 

acReserved acReserved 

acRefCon acRefCon 

Assembly-language constant: 

Name Value Meaning 

Offset 
in bytes 

0 

4 

8 

12 

14 

1 8 

AC Size 22 Size of auxiliary control 
record in bytes 

Assembly-language global variable: 

Name Addreu Meaning 

AuxCtlHead $CD4 Handle to first record in 
auxiliary control list 

6.4.2 Control Color Tables 

"CCTabPt:r : 
"Ct:lCTab : 

record 

cc Seed LONG INT : 

cc Rider INTEGER : 

ct: Size INTEGER : 

{Reserved for future use} 

{Reserved for future use} 

{Number of entries minus 1} 

ct:Table array [O .. 3) of ColorSpec {Arrayofcolorspecifications] 

end; 



281 (6.4.2) Control Color Tables 
~~~~~~~~~~~~-

const
CFrameColor = O: (Frame and border color}

{Background fill color}

(Text color for conuol lide}

(Fill color for scroll box}

CBodyColor = 1:
CTextColor = 2:
CThumbColor = 3:

Notes

1. A control color table speclftes the colors to be used In displaying a
control on the screen.

2. A control color table has the same general structure as an ordinary
color table [4.4.1), but Its first two fields (renamed from ctSeed and
ctFlags to ccSeed and ccRider) are unused and reseived for future
use. For now, these fields should always be set too.

S. Yes, the second field ls really named ccRider (see what you have
done ...).

4. ctSize is the index of the last element in the ctTable array, and is
equal to the total number of entries In the color table minus 1. For
standard controls, this value ts normally 3.

5. ctTable ts an array of color speclftcations [4.4.1) containing the
actual entries In the color table.

6. Each color specification's value field contains an integer part
fdentYJ.erdeslgnattng the part of the control to which It applies; the r gb
field gives the color In which that part of the control ls to be drawn.

7. The meanings of the part Identifiers are determined by the control
definition function [111:2.3] and can vary for different types of control.
The constants shown (CFrameColor. CBodyColor, and so on) are for
the standard Toolbox control types.

8. Because the color speclftcatlons are identified by their value fields.
they need not all be present and need not appear in any particular
order. The table's first color entry ls used for any control part that ts
missing from the table.

9. A control's color table ts normally stored as a resource of type 'cctb'
[6.7.4] with the same resource ID as that of the control template
(' CNTL • [11:6.5.1]) itself.

10. The standard control color table. read from 'cctb' resource number
o. contains the same color values as for ordinary monochrome (black
and-white) controls: black for CFrameColor and CTextColor, white
for CBodyColor and CThumbColor.

282 Color and the Toolbox

11. The assembly-language Toolbox interface doesn't define offset con
stants specifically for the fields of a control color table; use the ones
for an ordinary color table (4.4.1) instead, as shown in the table below.

~ Q ... 1 ___ As_s_e_m_b_1_y_Lan __ g_ua_g_e_1_m_o_rm_a_t1_o_n ______ _

Field offsets in a control color table:

(Pascal)
Field name

cc Seed

ccRider

ct Size

ctTable

(Assembly)
Offset name

ct Seed

ctFlags

ct Size

ctTable

Offset
in bytes

0

4

6

8

Assembly-language constants:

Name

CT Rec

CTEntrySize

Value

8

8

Meaning

Size of a control color table
record in bytes, excluding
ctTable

Size of a control color table
entry in bytes

Standard indices in a control color table:

Name Value Meaning

CFrameColor 0 Frame and border color
CBodyColor 1 Background fill color
CTextColor 2 Text color for control title
CThumbColor 3 Fill color for scroll box

6.4.3 Color Control Properties

procedure SetCtlColor
(theControl ControlHandle: (Handletothecontrol}
newCTab CCTabHandle); (Newcoloruible)

283 [6.4.3) Color Control Properties
~~~~~~~~~~~~-

function GetAuxCtl 
(theControl 
var theAuxRec 

: BOOLEAN: 

function GetCVariant 

ControlHandle: 
AuxCtlHndl) 

(theControl : ControlHandle) 
: INTEGER: 

Notes 

{Handle to the con1rol) 

{Returns handle to auxiliary conlrol record) 

{Does conlrol have an auxiliary record?) 

{Handle to the con1rol} 

{Control's variation code} 

1. SetCtlColor sets a control's color table, defining the colors in which 
it is drawn on the screen. 

2. The control ls immediately redrawn In the new colors. 

S. If an auxiliary control record [6.4.1) already exists for the given 
control, It is modified to point to the new color table; if the control has 
no auxiliary record, a new one ls created. 

4. If newCTab contains the standard control colors (defined by the last 
record in the auxiliary control list [6.4.1 )), the control's existing 
auxiliary record ls destroyed; the control will use the standard 
auxiliary record and color table Instead. 

6. If theControl ::: NIL, the standard color table itself ls redefined to 
newCTab. 

8. GetAuxCtl returns a handle to a control's auxillaiy control record, if 
any, via the variable parameter theAuxRec. 

7. If the control has no auxiliary record, the standard record (last in the 
auxiliary control list) is returned instead. 

8. The function result tells whether the record returned as theAuxRec 
actually belongs to the designated control (TRUE) or is merely the 
standard one (FALSE). 

9. If theControl =NIL, the standard auxillaiy record is returned as 
theAuxRec and the function result ls TRUE. 

10. GetCVariant returns a control's variation code, taken from the 
control definition ID [11:6.2.1) at the time the control is created. 

11. The variation code, formerly stored in the high-order byte of the 
control"s contrlDefProc field [11:6.1.1), now resides elsewhere on 
some systems and In some memoty modes. Always use GetCVariant 
to obtain it, rather than trying to read it directly from the control 
record. 



284 Color and the Toolbox 

---l ~I Assembly Language Information 

Trap macros: 

(Pascal) 
Routine name 

SetCtlColor 
GetAuxCtl 
GetCVariant 

(Assembly) 
Trap macro 

_SetCtlColor 
_GetAuxCtl 
_GetCVariant 

Trap word 

$AA43 

$AA44 

$A809 

6.5 Color Dialogs 

function 

6.5.1 

NewCDialog 
(dStorage 
windowRect 
title 
visible 
windowType 
behind Window 
hasClose 
refCon 
itemList 

Creating Color Dialogs 

Ptr: 
Rect: 
Str255: 
BOOLEAN: 
INTEGER: 
WindowPtr; 
BOOLEAN: 
LONGINT: 
Handle) 

(Storage for dialog record} 

{Dialog window's port rectangle} 

{Title of dialog window} 

(Is dialog window initially visible?} 
{Dialog window's definition ID} 

{Window in front of lhis one} 

{Does dialog window have a close box?} 

{Dialog window's reference constant} 

(Handle to item list} 

: DialogPtr; {Pointer to new dialog record} 

Notes 

1. NewCDialog creates a new color dialog window, enters it in the 
window list, and returns a pointer to it. 

2. All parameters have the same meanings as for the old monochrome 
routine NewDialog; see (11:7.2.2) for details. 



285 [6.5.1) Creating Color Dialogs 
~~~~~~~~~~~~ 

3. This routine ls for creating modal and modeless dialogs only; alerts are
always created implicitly by the alert routines (11:7 .4.2).

4. There is no separate data type for color dialogs. They are simply old
style dialog records [11:7.1.1) whose window field contains a color
window record [6.3.1). based on a color graphics port [5.1.3).

5. NewCDialog returns an old-style DialogPtr that can be passed
directly to other dialog-related Toolbox routines without typecasting.
To access the internal fields of the dialog record. typecast this pointer
to a DialogPeek [11:7.1.1).

6. The old Toolbox routines GetNewDialog (11:7.2.2). Alert. NoteAlert,
CautionAlert. and StopAlert [11:7.4.2) now look for a dialog or alert
color table (resource type 'dctb' or 'actb' [6.7.3)) with the same
resource ID as the dialog or alert template(• DLOG • (11:7.6.2) or• ALRT •
[11:7.6.1]) itself. If they find one. they create a color dialog window with
an auxiliary window record [6.3.2) and color table [6.3.3) based on the
' d ct b ' or ' act b • resource. If an item color list (resource type ' ic t b '
(6. 7.5)) is also present, It ls used to color the dialog's items and its
handle is saved ln the dialogCitem field of the auxiliaiy window
record [6.3.2).

7. NewCDialog does notglve the new dialog window an auxiliaiywindow
record or color table; you must assign these explicitly with SetWin -

Color [6.3.5).

8. The old Toolbox routines CouldDialog, CouldAlert, FreeDialog,
and FreeAlert [11:7.5.3) now operate on the dialog's or alert's color
table and item color list resources as well as on the template resource
itself.

ID I Assembly Language Information
-ID---------

n-ap macro:

(Pascal)
Routine name

NewCDialog

(Assembly)
Trap macro

_NewCDialog

Trap word

$AA4B

286 Color and the Toolbox

6.6 Color Menus

6.6.1 Menu Color Information Tables

AMCTablePtr:
AMCTable:

type
MCTableHandle

MCTablePt:r

MCTable a rray [0 .. 0] of MCEnt:ry: {Any nwnber of entries)

MCEnt:ryPt:r

MCEnt:ry

con st

AMCEnt:ry:

record

met: ID

mct:It:em

mctRGBl

mctRGB2

mct:RGB3
mct:RGB4
met Reserved

end:

MCTLast:ID indic -99 ;

Menu color information:

Field Na me Menu Bar

met ID 0

met Item 0

mctRGBl Default text color
for menu titles

mctRGB2 Default background
color for menus

mctRGB3 Default text color
for menu items

mctRGB4 Background color for
menu bar

INTEGER: (Menu ID number}

INTEGER :

RGBColor:

RGBColor:
RGBColor:

RGBColor:
INTEGER

(Item number within the menu)

(Color information (see table below)}

(Color information (see table below))

(Color information (see table below))

(Color information (see table below))

(Private}

(Dummy menu ID for last entry in table}

Menu Title Menu Item

Menu ID Menu ID

0 Item number

Text color for Text color for mark
menu title character

Background color Text color for
for menu title item text

Default text color Text color for
for menu items keyboard alias

Background color Background color
for menu for item

287 (6.6.1] Menu Color Information Tables

Notes

1. A menu color Information table deftnes the colors to be used in
displaying a program's menus.

2. Color Information for each menu ls stored in a resource of type 'met b •
[6. 7. 7]. As the menu bar ls built, the colors for the individual menus
are accumulated Into a single Information table In memory.

3. In each information table entry, fields met ID and met Item give the
menu ID and Item number to which the entry refers.

4. There ls at most one entry for the menu bar as a whole (met ID= 0), one
forthe title of each menu (metID =menu ID, metltem = 0), and one for
each individual menu Item (metID = menu ID, metltem = item
number).

5. Fields metRGBl to metRGB4 contain the entry's RGB color values. The
exact meanings of these fields vary depending on the type of entry. as
shown In the table.

6. metReserved is a private field for use by the Toolbox itself.

7. The information table entry for the menu bar ls read from ' met b '
resource number o by the Initialization routine Ini tMenus [11:4.2.1).

8. The title and Item entries for a given menu are read by GetMenu
[11:4.2.2] from the 'metb' resource with the same ID number as the
menu itself.

9. If there ls no table entry for a given item, it uses the default colors from
its menu's title entry: if there ls no title entry, It uses those from the
menu bar entry; If there ls no menu bar entry, it defaults to black text
on a white background. Similarly, the default colors for a menu title
are taken from the menu bar entry, or black-on-white if there is none.

10. When used as a menu title at pixel depths of 4 bits and above, the
Apple mark character (1:8.1.l) ls always displayed in six colors.

11. For missing item entries, the default text color from the menu title or
menu bar governs the Item's keyboard alias and mark character
[11:4.6.4] as well as the text of the item itself.

12. To define the colors for an item's Icon (11:4.6.5), use a resource of type
'cien' [6.7.1) with the appropriate resource ID (256 plus the Icon
number [11:4.6.5}). If present, such a color icon resource takes
precedence over any monochrome icon resource(' ICON' (1:5.5.3)).

13. A color icon will not be displayed if it is larger than the standard
monochrome size, 32 pixels by 32.

288 Color and the Toolbox

14. If a monochrome Icon Is used, It Is displayed In the same foreground
and background colors as the Item's text, keyboard alias, and mark
character.

15. The end of the menu color Information table Is marked by a special
enby with a menu ID of -99 (constant MCTLastIDindic). All other
fields of this final entry are reseived by the Toolbox for Its private use.

16. In assembly language, the global variable MenuCinfo holds a handle
to the current menu color Information table.

~~I ... ___ As_se_m_b_1,._Lan __ gua __ g_e_1m_o_rma __ t1_o_n _____ _

Field offsets in a menu color information table entry:

(Pascal) (Assembly) Offset
Field name Offset name in bytes

mctID met ID 0

met Item met Item 2
mctRGBl mctRGBl 4

mctRGB2 mctRGB2 10

mctRGB3 mctRGB3 16

mctRGB4 mctRGB4 22
mctReserved mctReserved 28

Assembly-language constants:

Name Value Meaning

MCTEntrySize

MCTLast IDindic

30

-99

Size of a menu color Informa
tion table entry In bytes

Dummy menu ID for last enby
In table

Assembly-language global variable

Name Address Meaning

MenuCinf o $D50 Handle to current menu color
Information table

289 (6.6.2) Access to Menu Colors
~~~~~~~~~~~~-

6.6.2 Access to Menu Colors 

function GetMCinfo 
: MCTableHandle: {Copy of wrrent menu color info table} 

procedure SetMCinfo 
(newMCTab MCTableHandle): {New menu color info 1able} 

procedure DispMCinfo 
(oldMCTab MCTableHandle): {Menu color info table to be destroyed} 

~~liiil~~~--N_o_te_s ________________________________ __ 
1. GetMCinfo returns the contents of the current menu color 

information table (6.6.1); SetMCinfo replaces the current table with 
a new one. 

2. The handle returned by Get MC Info refers to a copy of the current color 
information table, not to the actual table itself. Similarly, SetMCinfo 
makes the new current table a copy of the one supplied as parameter 
newMCTab. 

3. After installing a new menu color information table, SetMCinfo 
automatically disposes of the old one. 

4. Always follow SetMCinfo with a call to DrawMenuBar (11:4.4.3) to 
redraw the menu bar on the screen in its new colors. 

5. You can use GetMCinfo and SetMCinfo in conjunction with the old 
routines GetMenuBar and SetMenuBar (11:4.4.4) to save and restore 
the contents of the menu color information table along with those of 
the menu bar itself. 

6. The old 'toolbox routine GetNewMBar [11:4.4.2), which builds a new 
menu bar from a resource of type 'MBAR' [11:4.8.2], now also builds a 
corresponding color information table. However, although this rou
tine does not change the contents of the current menu bar by making 
the new one current, it does replace the previous color information 
table with the one belonging to the new menu bar. If you aren't 
immediately making the new menu bar current, you must bracket 



290 Color and the Toolbox 

GetNewMBar with calls to GetMCinfo and SetMCinfo to save and 
restore the previous contents of the table: 

saveColors :• GetMCinfo; 
ne wMBar :• Ge tNewMBar (mBarID) ': 

newColors :• GetMCinfo; 
SetMCinfo (saveColors) 

Notice that it isn't necessaiy to save and restore the menu bar itself, 
since GetNewMBar does this automatically. 

7. DispMCinfo destroys a designated menu color information table and 
releases the space it occupies in the heap. 

8. Emptying the menu bar with Clea rMenuBa r (11:4.4. 1] also automati
cally disposes of the current color information table. 

~~I .... ___ As_s_e_m_b_l_y_Lan __ gua __ g_e_r_n_fi_o_rm_a_ti_o_n ______ _ 

Trap macros: 

(Pascal) 
Routine name 

Ge tMCi nfo 

SetMCinf o 

Di spMC i n fo 

(Assembly) 
Trap.macro 

_ Ge t MCinfo 

SetMCinfo 

_ DispMC i nfo 

Trap word 

$AA61 

$AA62 

$AA63 

6.6.3 Managing Menu Colors 

___J ____ ...... _n_en_n1_t_1o_n_s ________________ _ 

function GetMCEntry 

(menu ID INTEGER; 

t heitem : INTEGER) 

: MCE nt ryPtr ; 

p roc edure SetMCEntries 

(nEnt ries INTEGER; 

newC o lo rs : MCTa blePt r ): 

{Menu ID of desirea menu} 

{Item number within the menu} 

{Pointer to item's color information entry} 

{Number of entries in table} 

(Table of new menu colon} 



291 (6.6.3) Managing Menu Colors 
~~~~~~~~~~~~-

procedure DelMCEntries
(menuID INTEGER:
theitem : INTEGER):

const

{Menu ID of desired menu}

(Item number within the menu}

MCTAllitems -98: (Delete all items in menu}

Notes

1. GetMCEnt ry returns a pointer to the menu color information table
entry [6.6.1) for a given menu ltem.

2. The item is identified by its menu ID and its item number within the
menu.

3. An item number of o requests the table entry for the title of the given
menu; a menu ID of o requests the entry for the menu bar.

4. Notice that the function result ls apointerto the item's table entiy, not
a handle. This pointer points directly into the global menu color
Information table.

5. If the requested entry doesn't exist in the color information table, the
function returns a NIL result.

6. BEWARE: The menu color Information table ls a relocatable object and
may move In the heap, invalidating the pointer returned by GetMC -
Entry. Safest practice ls to copy the underlying table entry immedi
ately and then work with the copy Instead of the original.

7. SetMCEntries accepts apotnter(nota handle) to a table of new menu
colors and copies Its contents into the global menu color information
table.

8. For menus and items that are already included in the global table, the
existing entry ls updated to the color values given in newColors. For
those that are not already included, a new entry ls added to the table.

9. The table designated by newCo lo rs must be locked or nonrelocatable.

10. nEntries gives the size of the newColors table.

11. DelMCEnt ries deletes one or all of a menu's entries from the global
menu color Information table.

12. The entry to be deleted ls identified by menu ID and item number.

13. An item number of -98 (constant MCTAllitems) deletes all entries
associated with the designated menu.

14. Deleting a menu from the menu bar with DeleteMenu [11:4.4.1] also
automatically deletes all oflts entries from the color information table.

292 Color and the Toolbox

~~I Assembly Language Information

Trap macros:

(Pascal)
Routine name

GetMCEntry
SetMCEntries
DelMCEntries

(Assembly)
Trap macro

_GetMCEntry
_SetMCEntries
_DelMCEntries

Assembly-language global constant:

Name Value Meaning

Trap word

$AA64
$AA65
$AA60

MCT All It ems -98 Delete all items in menu

6. 7 Resource Formats

6.7.1 Resource Type ' c i c n '

iconPHap I (50 bytes) See (5.6.1)

iconHask
(14 bytes)

iconBHap
(14 bytes)

o (4 bytes) -11- Placeholder for iconData

Icon's mask image
(indefinite length)

Icon's bit Image
(Indefinite length)

iconMaskData

Icon's color table
(Indefinite length)

Icon's pixel Image
(indefinite length)

"

Structure of a ' c i c n ' resource

293 (6.7.1) Resourcefype 'cicn'
~~~~~~~~~~~~-

Notes 

1. A resource of type 'cicn' contains a color Icon to be displayed on the 
screen. 

2. The resource Includes not only the color icon record [6.1.1] Itself (with 
embedded pixel map. bit map. and mask map). but also Its associated 
pixel Image. bit Image. mask Image. and color table. 

3. When the Icon ls loaded Into memoiy for use. Its pixel Image. bit Image, 
mask Image. and color table are read Into separate blocks and the 
appropriate pointers and handles within the main structure are set to 
point to them. 

4. The icon's iconData field, the baseAddr fields of both bit maps, and 
the pixel map's pmTable field are all set to o In the resource as 
placeholders for the actual handles and pointers that these fields will 
contain in memory-. 

5. The pixel map, bit map, and mask must all have the same dimensions. 

6. See the second figure in section [5. 6.1] for the detailed structure of the 
pixel map (iconPMap) embedded within the resource. 

7. In the current version of the Toolbox. the pixel map's pixelType. 
planeBytes, packType. and packSize fields are always set to 0, 
denoting chunky format with no packing of the pixel image. 
cmpCount, the number of color planes, is always 1, and cmpSize, the 
pixel depth per plane, ts equal to pixelSize. 

8. The pattern's horizontal and vertical pixel resolution, hRes and vRes, 
are always set to 72 pixels per Inch. 

9. The structure of the color table within the 'cicn • resource Is the same 
as that of a ' c 1 u t • resource. shown In [4. 7 .1 ]. 

10. ' ci c n' resources should normally be purgeable. 

11. Use GetCicon [6.1.2) to load resources of this type. 



294 Color and the Toolbox 

6. 7 .2 Resource Type ' c rs r ' 

$8001_(2~~ - 1--

~ I- Offset to pixel map (4 bytes) - I-

r--1-1 I- Offset to plxel Image (4 bytes) - I-

o (4 bytes) - I-

o (2 bytes) -1-

o (4 bytes) -1--

. crorlData . . 
(32 bytes) 

. . . 
I I . crsrHask . . 

(32 bytes) 
. . . 

crsrHotSpot (4 bytes) 

o (4 bytes) -11-

o (4 bytes) -11-

'-7~ 
Cursor's pixel map j} . 

,_;_ (50 bytes) 

----r7~ Cursor's plxel Image ! . . . (Indefinite length) . 

crsrType.,. full color 

Placeholder for c rs r Map 

Placeholder for c rs r Data 

Placeholder for crsrXData 

crsrXValid ... invalid 

Placeholder for c rs rXHand 1 e 

Placeholder for crsrXTable 

Placeholder for c rs r I D 

See (5.6.1) 

-71 
Cursor's color table 
(Indefinite length) 

I 
: } See [4.7.1] ._ __________________________ .... 

Structure of a ' c rs r ' resource 

~iji~· ~No_tes ____________ _ 

1. A resource of type ' c rs r ' contains a color cursor to be displayed on 
the screen. 

2. The resource Includes not only the color cursor record [6.2.1) itself, 
but also its associated pixel map [5.1.1), pixel image, and color table 
[4.4.1). 

3. The figure above shows the overall structure of the ' c rs r ' resource: 
see the second figure In section [5.6.1) for the detailed structure of the 
pixel map embedded within il 

4. The cursor's crsrMap and crsrData fields contain the offset In bytes 
from the beginning of the resource to the start of the pixel map and 
pixel Image, respectively. Similarly, the pmTable field of the pixel map 
holds the offset from the beginning of the resource to the start of the 
color table. When the resource ls loaded from a file, these fields are 



295 (6.7.3) Window Color Table Resources 
~~~~~~~~~~~....;..._-

replaced by handles to the corresponding actual data structures in
memocy.

6. The cursor's crsrXData field and the pixel map's baseAddr field are
set to o In the resource as placeholders for the actual handle and
pointer that these fields will contain In memory.

6. The c rs rType field Is always set to $ 80o1, denoting a full-color cursor.

7. The crsrXVal id field Is set to O, marking the cursor's expanded image
as invalid so that it will be built and installed In the cursor record the
first time the cursor is used.

8. In the current version of the Toolbox. the pixel map's pixel Type,
planeBytes, packType, and packSize fields are always set to 0,
denoting chunky format with no packing of the pixel image.
cmpCount, the number of color planes, is always 1. and cmpSize, the
pixel depth per plane. is equal to pixelSize.

9. The cursor's horizontal and vertical pixel resolution, hRes and vRes,
are always set to 72 pixels per inch.

10. The structure of the color table within the ' c rs r ' resource ls the same
as that of a 'clut' resource, shown In (4.7.1).

11. ' c rs r ' resources should normally be purgeable.

12. Use GetCCursor (6.2.2) to load resources of this type.

6.7.3 Window Color Table Resources

WCon<entColor {

WF rameColo r {

WTex<Color {

WHilHeColor {

WTitleBarColor {

t---

1---··

1-...........

I-----

1-------·

I-·-

t-----·

1--··-
i-------

i-------

I---·--

I

o (4 bytes) .
o (2 bytes)

4 (2 bytes)

o (2 bytes)

red (~ bytes)
green

1
(2 bytes)

blue (2 bytes)

1_12~es)

red (~ bytes)
green (2 bytes)
blue {2 bytes)

2 (2 bytes)

red (~ bytes)
gr eon

1
(2 bytes)

blue (2 bytes)

3 (2 bytes)

red (~ bytes)
gr eon (2 bytes)
blue {2 bytes)

4 (2 bytes)

red (2 bytes)
green "(2 bytes)
blue {2 bytes)

----- }
~I-

~I-

...

·····-· .. ··-
. _
·-------
-·-····--

--··---
·-·----

............ _
-·-·---

--·---

I~

we Seed

we Reserved
ct Size

ctTable

Structure of window color table resources

296 Color and the Toolbox

Notes

1. Three resource types share the structure shown: 'wctb' (window
color table), 'dctb' (dialog color table), and 'actb' (alert color table).

2. The structure of the resource is the same as that of a window color
table in memory. All fields have the same form and meaning described
in [6.3.3).

3. The first two fields (we Seed and wcReserved) are unused and reseived
for future use. For now, these fields should always be set too.

4. ' wet b ' resource number o defines the standard colors for windows
with no color table of their own. The system-wide, ROM-based [2.3.2]
version of this resource contains the same color values as an ordinary
monochrome window: black for WFrameColor and WTextColor,
white for WContentColor, WHili teColor, and WTi tleBarColor. A
program can substitute its own set of standard window colors by
including a 'wet b ' resource number o in its own application resource
file.

5. Color table resources are typically paired in the resource file with
corresponding window templates under the same resource ID:
'wctb' resources with those of type 'WIND' (11:3.7.l], 'dctb' with
'DLOG' (11:7.6.2), 'actb' With 'ALRT' (11:7.6.1}.

6. If a ' wet b ' resource exists with the same ID as the main • w I ND •
template, GetNewCWindow [6.3.4]will use it to build the window's color
table (6.3.3] and create an auxiliary window record (6.3.2] pointing to
it. If no such resource exists, the window will have no auxiliary record
and will use the standard Window colors from 'wctb' number o
instead.

7. Ifa 'dctb' or 'actb' resource exists with thesameIDasthe 'DLOG'
or 'ALRT' template, the old Toolbox routines GetNewDialog [11:7.2.2),
Alert, NoteAlert, CautionAlert, and StopAlert [11:7.4.2] will
now build a color dialog record, based on a color graphics port. If no
such resource exists, an old-style monochrome dialog [11:7.1.1] will be
created.

8. To create a color dialog or alert box using the standard window colors
defined in 'wctb' number o, use a 'dctb' or 'actb' resource with
a value of -1 in the ct Size field and no color specifications of its own.

297 (6.7.4) Resource1)'pe 'cctb'
~-----------~

6. 7 .4 Resource Type ' c ct b '

.-------o _(4 ~-yt_es_, _____ ... } cc Seed

O (2 b,Ytes) cc Rider
3 (2 bytes) ct size

o (2 bytes) }

red (2 bytes) CF rameColo r
green

1

(2 bytes)
bl"ue (2 bytes)

-------------------------------1 (2 bytes) }

red (2 bytes) CBodyColor
green

1

(2 bytes)
blue (2 bytes)

-----------------------------2 (2b,Ytes) }
red (2 bytes)

green (2 bytes) CTextColor

blue (2 bytes)

-----------------------------3 (2 bytes) }
red (~ bytes)

green (2 bytes) CThumbColor

blue (2 bytes)

._ ________________________ ..
Structure of a ' cc t b ' resource

Notes

1. A resource of type 'cctb' defines the color table for a control.

2. The structure of the resource is the same as that of a control color table
in memory. All fields have the same form and meaning described in
[6.4.2).

3. The first two fields (cc Seed and ccRider) are unused and reseived for
future use. For now, these fields should always be set too.

4. 'cctb' resource number o defines the standard colors for controls
with no color table of their own. The system-wide, ROM-based (2.3.2}
version of this resource contains the same color values as ordinacy
monochrome controls: black for CFrameColor and CTextColor,
white for CBodyColor and CThumbColor. A program can substitute
its own set of standard control colors by including a 'cctb • resource
number o in its own application resource file.

5. ' cc t b ' resources are typically paired in the resource file with the
corresponding control template (' CNTL' (11:6.5.1)) under the same
resource ID.

298 Color and the Toolbox

6. If a ' cctb ' resource exists with the same ID as the main ' CNTL'
template, GetNewControl UI:6.2.l) wlll use It to build the control's
color table (6.4.2) and create an auxlllary control record (6.4.1 I
pointing to It. If no such resource exists, the control w1ll have no
auxiliary record and w1ll use the standard control colors from ' cc t b '
number o Instead.

6.7.5 Resource Type ' i c t b '

. One for each item .
Last Item header (2 bytes)
Last Item offset (2 bytes)

. Arst Item dala .
One for each
control (6.7.4) or

I
text item [6.7.6)

Last Item data

Length

1- Arst typeface name

-I (Indefinite length)
I

One for each typeface

L d Length

Last typeface name

1--·--·-···- (Indefinite length) ··---·---1 I

Structure of an ' ic t b ' resource

Notes

1. A resource of type ' i ct b ' defines the colors and text styles for a
dialog's or alert's items.

2. The resource ID must match that of the dialog or alert itself (' DLOG '
(11:7.6.2) or' ALRT' [11:7.6.1)), as well as Its Item list(' DITL' [11:7.6.3))
and color table(' dctb' or 'actb' [6.7.3)).

_______ 2_9....;9_--=-[6_.7.6) Text S1;yle for Dialog Items

3. A handle to the item color llst ls kept in the dialogCitem field of the
dialog's auxiliary window record (6.3.2).

4. The item color llst affects control items, static text items, and editable
text boxes (11:7.1.2) only. However, there must be an item header and
offset for every Item in the corresponding item list, regardless of type.
For items not covered in the llst (including controls and text items
using the standard colors and styles), set these fields too.

5. For controls, static text, and text boxes, the item offset gives the
location of the corresponding Item data, expressed in bytes relative to
the start of the color llst.

6. The item data for control items consists of a control color table (6.4.2)
in exactly the same form as in a 'cctb' resource (6.7.4). The item
header gives the length of the item data in bytes.

7. Two or more control items can share the same color table within the
resource.

8. The item data for text items (both static text and editable boxes) has
the form shown in (6.7.6). The item header contains flags (6.7.6)
specifying which fields of the data to apply.

9. Following the last item's data ls an optional series of typeface names
for the dialog's text Items. These are needed only for typefaces
designated by name in the item data (6.7.6).

10. To define the colors for an Icon item [11:7.1.2). include a resource of
type • ci c n 1 (6. 7 .1] in your resource flle under the ID given in the
dialog's item list (11:7.6.3). If present, such a color icon resource will
take precedence over any monochrome resource of type ' I CON'
(1:5.5.3).

11. You can use an item color list just to define the styles for a dialog's text
Items, without any color information as such. For the list to be
honored, however, you must still include a dialog or alert color table
(' dctb' or' actb • (6.7.3)) lnyourresourcefile, eveninamonochrome
environment.

6.7.6 Text Style for Dialog Items

Typeface name offset or font number (2 bytes)
Type style (2 bytes)
lype size (2 bytes)

red (2 bytes) ·-·-
green \2 bytes)

_ -
................ -

blue (2 ~las) -··----

.. -............. - red (2 bytes) _
green

1

(2 bytes) ·--·- blue f2bytes) --
Transfer mode for text (2 bytes)

} Foreground color

} Background color

Text item data in an 'ictb' resource

SOO Color and the Toolbox

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I I I I I I I I I I
~;:':e
Type size
Foreground color

.....__ _____ Adjust type size
.._ __________________ Background color

L..-.------------------- Transfer mode
.._ ____________________ Typeface by name

Flag bits for dialog text styles

Notes

1. The first figure shows the fonn of the item data for a text Item (static
text or editable text box (11:7.1.2)) in an 'ictb' resource (6.7.5).

2. The data has the same form as a text style record (7 .2.1], with two extra
fields (background color and transfer mode) added at the end.

S. The item header (6. 7 .5) for a text item contains flags specifying which
fields of the Item data to apply to the item's text. The format of the
header ls shown in the second figure.

4. For style attributes whose flag bits are o, the contents of the item data
are ignored and the standard settings used instead: system font, 12
points, plain type style, black-on-white, SrcCopy mode (1:5.1.3).

5. All style attributes must be present for each Item, even if not all are
actually used. However, for items that use only the standard colors
and styles, you can set both the item header and offset (6. 7 .5) to o and
omit the item data entirely.

6. Bits 0 to 4 have the same meanings as in the whichAttrs parameter
to the TextEdlt routines TESetStyle, TEReplaceStyle (7.3.4), and
TEContinuousStyle (7.3.3). Bits 13 and 14 refer to the two addi
tional style attributes, background color and transfer mode.

7. Ifblt 15 ls 1. the first field of the item data contains the offset in bytes
from the beginning of the Item color list to the name of the typeface.
If bit 15 is o, this field holds the typeface's font number (1:8.2.1)
instead.

301 (6.7.7) Resourcefype 'mctb'

8. Two or more text Items can point to the same copy of the typeface
name.

9. To ensure compatibility in all system environments, always specify
typefaces by name rather than font number.

10. The type style is given as a Pascal set of type Style [1:8.3.1).

11. If bit 4 ls 1, the type size field In the Item data ls an incremental
adjustment (positive or negative) to be added to the standard type size
of 12 points. If bit 4 is o, this field gives the type size directly.

12. The foreground and background colors are given in RGB form [4.2.1).

13. The text transfer mode can be any monochrome [1:5.1.3) or color
[5.3.1) mode.

14. You can use an Item color list [6.7.5) just to define the styles for a
dialog's text items, without any color Information as such. For the list
to be honored, however, you must still include a dialog or alert color
table ('dctb' or 'actb' [6.7.3)) ln your resource file, even in a
monochrome environment.

6.7.7 Resource Type ' m ct b '

Number of entries (2 bytes)

Arst table entry
(30 bytes; see next figure)

Last table entry
(30 bytes; see next figure)

Structure of an 'met b ' resource

mctRGBl
(6 b

1
ytes)
I

mctRGB2
(6 b

1
ytes)

mctRGB3
(6 b,ytes)

I

mctRGBl.i
(6 ~ytes)

mctReserved (2 bytes)

Table entry In an 'met b ' resource

Any number

of entries

302 Color and the Toolbox

Notes

1. A resource of type 'mctb' defines the colo~ for displaying a menu on
the screen.

2. The structure of the resource Is the same as that of a menu color
Information table In men;toiy, with an additional 2-byte field at the
beginning giving the number of table entries the resource contains. All
other fields have the same form and meaning described in [6.6.1).

3. The resource ID should be the same as the menu ID to which It applies.
This Is also the resource ID of the corresponding ·MENU · resource
[11:4.8.1).

4. Each entiy's met ID field should contain the menu ID.

5. The met Item field holds the Item number of the menu Item to which
the entiy refers.

6. An item number of o refers to the menu title.

7. Fields mctRGBl to mctRGB4 each contain an RGB color value [4.2.1).
For the specific meanings of these fields, see the table in [6.6. l].

8. Field met Reserved ts for private use by the Toolbox and should always
be set too.

9. 'mctb' resource number o defines the table entiy for the menu bar
and establishes the standard colors for menus with no color informa
tion of their own.

10. If an 'mctb' resource exists with the requested menu ID. GetMenu
[11:4.2.2) will read it in and add Its contents to the global menu color
Information table [6.6.1). If no such resource exists, the menu will
have no color information and will use the standard colors from the
menu bar entiy instead.

11. The standard menu colors in 'met b ' resource number o are set by the
user with the Control Panel desk accessory and ordinarily should not
be overridden.

CHAPTER

Editing with
Style

Oie of the handler features of the original Toolbox was Its
extensive facilities for on-screen text editing. A set of built-in
routines, known collectively as TextEdit, provided full Toolbox
support for performing Macintosh-style editing on the screen,
including text display, point-and-click selection, keyboard text
entry. cutting and pasting, word wrap. justification, and scrolling.
Although intended primarily for light editing tasks such as entering
text in interactive dialog boxes, TextEdit was also powerful enough
to support full-scale. stand-alone editing programs like our Mini
Edit example from Volume Two.

The original TextEdit routines did suffer from one serious
limitation, however: they could display text in only one format at a
time. If one character was in boldface. they all had to be bold; if one
word was in IO-point New York, the next couldn't be in 12-point
Geneva or 14-point Venice or 18-point London. The typeface, size,
and style were properties of the text as a whole, and couldn't vary
from one individual character to another.

The latest versions of the Toolbox remove this limitation. The
new styled TextEdit routines maintain information not only about
what characters to display. but also about each character's type
face, size. and other formatting characteristics. This means you can
now change fonts in the middle of the text, display a single word in

303

Color Fonts

304 Editing with Style

italic for emphasis, or display an isolated headline in a larger point
size.

The styled TextEdit facilities are not 11mited to the Macintosh II;
they're also included in ROM on the Macintosh SE. and can be
used on earlier models beginning with version 4.1 of the
System file.

Another capability the new Toolbox places at your disposal is
that of displaying text in color. Character fonts for drawing text can
now optionally be defined in color instead of monochrome. Even for
monochrome fonts. the text style associated with each character can
include an RGB color in which the character is to be drawn.

In this chapter, we11 leam how to put all this added formatting
flexibility to work. By way of illustration, we'll sketch out how we
might modify our old friend MiniEdit to handle multiple text styles.
We won't bother with all the excruciating details here.just touch on
a few example routines that shed light on the use of styled TextEdit.
By learning the techniques presented here. you11 be ready to start
doing your text editing with style.

A color font is represented by the same font record [1:8.2.2) as the old
monochrome kind. Just as in a monochrome font. the actual form
of the characters is defined by a font image containing all the
individual character images arranged consecutively in a horizontal
row. commonly known as a strike of the font. The font image is still
kept in the field of the font record named bi timage (1:8.2.2, 1:8.2.3).
but in a color font it's actually a pixel image instead.

Bits 2 and 3 of the fontType field [1:8.2.2. 7.1.1) now distin
guish color from monochrome fonts by giving the pixel depth of the
font image in the form of a binary exponent. (Recall that pixel depths
are always restricted to powers of 2.) A monochrome font has a value
of o in these two bits, representing a depth of 1 (2°) bit per pixel:
values of 1. 2. or 3 denote color fonts at pixel depths of2 (21). 4 (22),

and 8 (23
) bits. At present, 8 bits is the maximum font depth the

Toolbox supports.

305 Color Fonts

The font image, already rather a sizable beast even in mono
chrome fonts, can grow to truly prodigious proportions as the
pixel depth increases. This can cause problems for the font
record's owTLoc field [1:8.2.2), which gives the distance in
words from itself to the beginning of the font's offset/width
table [1:8.2.3). Since the offset/width table follows the font
image within the font record. at high pixel depths this distance
can exceed the mere 64K capacity of the 2-byte owTLoc field.

Luckily, the means are at hand to deal with this crisis. For
reasons lmown only to the original programmer, the font record
includes a redundant field, nDescent (1:8.2.2), which is simply
the negative of another field, descent. Although the two are not
contiguous in the font record, nDe scent can nevertheless seive
as a convenient parking place for the leftward extension of
owTLoc when the latter overflows its allotted 2 bytes. A positive
value in nDescent indicates that it has been appropriated for
this new purpose; if it is less than o. it is understood to contain
the negative font descent. as originally intended.

An optionalfont color table defines the colorvalues forthe pixels
in the font image. If present. the color table has the usual form for
such creatures [4.4.1) and is read from a resource of type 'fctb'
[7.4.1) with the same resource ID as the font itself. (For some reason.
only fonts stored under resource type 'NFNT' [1:8.4.5) can have
color tables: ordinary ' FONT' resources cannot.) A flag (bit 7) in the
font record's fontType field [7.1.1] tells whether the font has a color
table.

A font color table is only an amenity. however. not a necessity.
For fonts that have no color table, the Toolbox uses a standard
algorithm to assign color values by default. based on the foreground
and background colors [5.4.1] of the port the characters are being
drawn into. A pixel value of o is taken to refer to the port's
background color; the maximum possible pixel value (15 in a 4-bit
deep font. for example) stands for the foreground color. All remain
ing color values are blended uniformly between the two extremes.
using a weighted average of their RGB components. as in the Blend
transfer mode (5.3.3].

306 Editing with Style

Notice. In particular, that in the common case where the port's
foreground and background colors are pure black and white,
the intermediate pixel values stand for uniformly graded
shades of gray. Such uniform gray tones also happen to be a
built-in feature of the PostScript image-description language,
meaning that they can be reproduced directly on the Laser
Writer or any other printer fluent in PostScript.

Gray-tone pixels are particularly useful for implementing
a font-definition technique with the formidable-sounding
name of anti-aliasing. in which the .. jaggies" around the edges
of the characters are smoothed out with suitably weighted gray
pixels instead of stark black and white. Anti-aliased fonts
aren't usable on a plain monochrome device. but on a monitor
or printer with gray-scale capabilities, they can significantly
improve the clarity and legibility of text. especially at small
point sizes.

If a font's pixel depth doesn't match that of the graphics device
on which it's being displayed. the Toolbox has to convert each
character to the proper depth before drawing it. This can seriously
degrade the system's performance, elevate the user's blood pres
sure, and lead to serious screen damage from shoes, paperweights,
and other foreign objects. Just to keep things user-friendly, the
Toolbox automatically expands each font to the current screen
depth as soon as it's read in, then uses the expanded version to draw
to the screen instead of the original. This temporary, expanded
version of the font at the current screen depth is called a synthetic
font (7.1.2].

All synthetic fonts currently in existence are kept in a single
master list, the synthetic:font list, located via a handle in the low
memory global variable SynListHandle [7.1.2]. Bit 8 of the font
record's fontType field (7.1.1) identifies a font as synthetic. How
ever, some of the new international fonts for languages such as
Chinese and Japanese contain so many characters that expansion
to 4 or 8 bits per pixel would push their size beyond merely
prodigious to downright gargantuan. In these cases, another
fontType flag. bit 14, suppresses the expansion to a synthetic font
and forces the Toolbox to use the oliginal I-bit version without
modification.

307 Text Styles and Terminology
~~~~~~~~~~-

Text Styles and Terminology 

The term text style (or simply style) refers to the visual properties 
that determine the way a character appears on the screen or in print. 
These include its overall typeface design. its size. variations such as 
bold or italic, and (on the Macintosh II) its color. All of these 
properties are summarized in a text style record of type TextStyle 
(7.2.1]. 

Unfortunately. as we first pointed out in Volume One. Chapter 
8. this whole subject of styles and style properties suffers from 
inconsistent, confusing, and often contradictory terminology. Con
sider the terms font and typeface, for instance. As we have been 
using the term since Volume One, typeface refers to the overall form 
or design of the text characters, independent of size or other 
variations. By Macintosh convention, typefaces are typically named 
afterworld cities. such as New York. Geneva, or Athens: those used 
on the LaserWrtter and other PostScrtpt printers use the more 
traditional names recognized by professional typographers. such as 
Helvetica. Garamond, or Palatino. 

By contrast, a font. in the Macintosh Toolbox, is a specific, 
rather elaborate data structure (1:8.2.2] that defines the appearance 
of characters in a particular typeface and size. such as 12-point 
Monaco or 18-point Baskerville. Apple has belatedly recognized this 
distinction in its official terminology by Introducing the term font 
famlly to refer to what we've been calling the typeface-the overall 
design of the characters. as distinct from any individual font. Yet the 
identifying number that designates a particular font family is called 
a font number (1:8.2.1). rather than a "family number." and is kept 
in the txFont field of the graphics port record (1:8.3.1) and set with 
the Toolbox routine TextFont (1:8.3.2). 

A similar inconsistency surrounds the use of the word style. As 
originally defined by the Toolbox. the data type Style (1:8.3.1) is a 
Pascal set specifying variations on the form of a character, such as 
bold. italic, underline. outline. and shadow. In keeping with this 
usage. we adopted the term type style (or character style) for such 
variations when we first discussed this subject in Volume One. 
Regrettably. however. the field of the port record that holds the 
Style set is named txFace (1:8.3.1). and the Toolbox routine that 
sets it is TextFace (1:8.3.2). 

Now. to compound the confusion still further, the term text 
style has been introduced to refer collectively to the whole combina-



308 Editing with Style 

tlon of attributes that determine a character's appearance-its 
typeface, size, color, and variations like bold, italic, and underline. 
Moreover, the field names within a TextStyle record [7.2.1) con
tinue to perpetuate the same inconsistencies as before, with tsFont 
holding the typeface and tsFace the Style set. When is a Style not 
a style? 

For lack of a better solution, we will continue to use the term 
type style or character style for individual properties like bold and 
italic, which we will refer to individually as style variations. We will 
reserve text style for the more inclusive set of overall text character
istics (typeface, type size, type style, and text color), which we will 
individually call style attributes. Finally, when we say type size, we 
mean "type size." 

If you're experiencing a feeling of confusion or disorientation at 
this point, please rest assured that it is a perfectly normal 
response to the foregoing discussion and no cause for undue 
alarm. If you aren't, it's probably because your eyes glazed over 
two paragraphs ago and you've been reading on autopilot ever 
since. Before proceeding to the next section, take a few minutes 
to go back and reread this one until you're feeling suitably 
bewildered. If this still doesn't work, put the book down and 
seek professional help. 

Structure of Styled Text 

The basic Toolbox data structure for text editing, as we learned in 
Volume Two, is the edit record [11:5.1.1 ]. This is a complete operating 
environment for the TextEdit routines. analogous to the graphics 
port for QuickDraw. The new version ofTextEdit still uses this same 
structure, but when dealing with styled text, it changes the meaning 
of some of the record's fields. This modified form of the edit record 
structure is known as a styled edit record [7.2.2]. 

In the old, unstyled form of edit record, the txFont, txFace. 
and txSize fields hold the global style attributes that apply to all 
characters. In a styled edit record. where the style attributes can 
vary from one character to another, they're kept instead in a 
separate data structure. the style record. freeing the three original 



309 Structure of Styled Text 
~~~~~~~~~~~ 

--~ "'~

fields for other uses. The tx size field is set to - 1 to identify the
record as a styled edit record: txFont and txFace combine to hold
a handle to the style record, which in tum contains the character
styling information. There are also a couple of other fields with new
meanings, which we11 get to later in the chapter.

The new TextEdit routine TEStylNew [7.3.1) creates a styled
edit record, sets its txSize field to -1, creates its style record and
other auxiliary data structures, and stores the style record's handle
(the style handle) in the txFont and txFace fields where it belongs.
(The old routine TENew [Il:5.2.2] still creates an unstyled edit record,
in which tx Size is positive and all fields have their original
meanings.) Another pair of new routines, GetStylHandle and
SetStylHandle (7.3.1], access or change the style handle: always
use these routines instead of reading or storing into the txFont and
txFace fields directly. When the time comes to dispose of an edit
record, the old TEDispose routine [II:5.2.2] now accepts both the
styled and unstyled kinds, and disposes of the style record and other
auxiliary structures in addition to the edit record itself.

Run list Style table
startChar stylelndex

~[courier 12 italic] l ~1c . 12 plain]
LJ T 'L ourier

-

r----1 I-

1 + +
Now is the time for all good parties to come to the aid of Man.

Figure 7-1 Run list and style table

Although in theory every character in an edit record's text could
have a different style, in practice they tend to form long runs of
consecutive characters in the same style. Thus, in general, the

310 Editing with Style

number of times the style changes is much smaller than the total
number of characters in the text. For example, the text shown in
Figure 7-1 is 63 characters long, but contains only four runs, all
in the same typeface, size, and (presumably) color: 3 characters in
italic, 17 (including spaces) in plain style, 3 more in italic, and
another 40 in plain.

The structure of the style record (7.2.3], which holds the style
information for an edit record's text, is based on this idea of uniform
runs. At the heart of the style record are the run list, which gives the
location and style of each run, and a handle to the style table (7 .2.4],
which holds the style definitions themselves. As the contents and
style of the text change over time, the Toolbox automatically keeps
the run list and style table up to date.

Each entry in the run list gives the starting character position
for a run and the index of its style in the style table. Runs are listed
in sequential order, so their lengths needn't be stored explicitly: the
length of each run is found by subtracting its starting position from
that of the next one following it. The list ends with a dummy entry
to delimit the length of the last run, carrying a starting position
beyond the last character of the text. The nRuns field of the style
record (7 .2.3) gives the index of this last entry in the run list: the first
is at index o.

Recall from Volume Two that TextEdit character positions ref er
to the points between the characters, not to the characters
themselves. Thus, for example, the second run shown in Figure
7-1 extends from character position 3 (between the third and
fourth characters in the text) to position 2 o (between the
twentieth and twenty-first). Position o lies at the start of the
text, before the first character: the position at the end. following
the last character. is equal to the total length of the text. given
by the teLength field of the edit record (11:5.1.1].

The edit record's style table (7 .2.4] holds the actual style
definitions referred to in the run list. The table is simply a linear
array of style elements. one for each distinct style occurring in the
text. The array is indexed from o up to the value of the nStyles field
in the style record (7 .2.3]. No single style can occur more than once
in the table: if two or more character runs are set in the same style,
they both refer to the same entry in the style table. In addition to the

311 Vertical Spacing

fields deflnJng its actual style attributes (typeface, size, type style,
and color), each style element holds a reference count telling how
many runs currently refer to it. The remaining two fields have to do
with the style's vertical spacing properties, and are described in the
next section.

Vertical Spacing

fontAscent

lineHeight

Since all characters in an unstyled edit record have the same style,
every line of text is the same height. Two fields of the edit record
[11:5.1.1] establish uniform vertical spacing for all lines: fontAs -
cent defines the distance from the top of the destination rectangle
to the first baseline, while lineHeight gives the distance thereafter
from each baseline to the next (see Figure 7-2). The initial values of
these fields are taken from the properties of the font in which the text
is drawn (1:8.2.6], but you can change them, if necessary, to adjust
the vertical spacing of the text in any way you wish.

----------------Top of destination
rectangle

------.----------- Ascent line

__ _...___....__ __ ___.. _ _.. __ .__ ___ Baseline

------------------ Descent line

------------------- Ascent line

--------------------------- Baseline

----------------Descent line

Figure 7-2 Vertical spacing parameters

Life is a bit more complicated in a styled edit record. Because
the text style can vary from one character to another, the vertical
spacing need not be the same from line to line. Instead, the lhTab
field of the style record [7 .2.3) holds a handle to a line-height table

312 Editing with Style
~~~~~~~~~~-

[7.2.5) containing a separate line height and ascent value for each 
line of text. The entries in the line-height table parallel those of the 
edit record's own line Starts table [Il:5.1.1]; the nLines field in the 
edit record gives the index of the last entry in both tables. 

Each separate text style has its own vertical spacing parame
ters, based on its individual font properties [1:8.2.6] and kept in the 
stHeight and stAscent fields of its style table entry [7.2.4). The 
height and ascent for a given line are simply the maximum values for 
any single style occurring in the line. Whenever the line breaks 
change, whether implicitly (after editing operations, keyboard type
in, and so forth) or explicitly (through a direct call to the TextEdit 
routine TECalText (11:5.3.1)), the contents of the line-height table 
are automatically recalculated to match. Thus the vertical spacing 
is continually readjusted to accommodate the tallest text style in 
each line. 

There are two ways to override these automatic calculations 
and exercise more control over the vertical spacing of your text. In 
the first place, the line-height table is honored only if the edit 
record's lineHeight and fontAscent fields are negative. TE
StylNew [7.3.1) initializes these fields to -1 when it creates a styled 
edit record, but you can change them if you wish. A positive value 
in either field will be used directly, bypassing the line-height table 
and resulting in uniform vertical spacing, as in the unstyled case. 

Alternatively, you can leave lineHeight and fontAscent set 
to - 1, but store your own values into the line-height table instead of 
letting the Toolbox calculate them automatically. For each entry in 
the table, the high-order bit of the lhHeight field [7.2.5) is a flag that 
optionally suppresses automatic calculation for that line and just 
uses the existing lhHeight and lhAscent values without change. 
(The flag bit itself is, of course, stripped from the lhHeight value 
first.) Notice that there is no equivalent flag in the lhAscent field: 
the one in lhHeight governs both fields together. 

This technique allows you to control your vertical spacing on a 
line-by-linebasts,ratherthanjustsettingasingle, uniformvaluefor 
the entire text, as in the first method described above. Notice also 
that you don't have to use it for every line in the table: it's possible 
to set the flag bit for some lines and leave the rest to be calculated 
automatically. The technique is very tricky to use, however, on text 
that keeps changing dynamically and having its line breaks recalcu
lated; it's most useful for fixed text whose line breaks never change, 
such as in a static text box displayed with the TextBox routine 
[11:5.3.2). 



313 Manipulating Text Styles 
~~~~~~~~~~~ 

Because of the mixed styles and variable line heights, the
problem of finding the location of a given character or measuring the
height of a sequence of lines can be a bit complicated. TextEdit
provides a set of new utility routines [7.3.2] to help. TEGetOffset
finds the character corresponding to a given point (such as. in
particular, the mouse position); TEGetPoint finds the coordinates
of a given character: TEGetHeight finds the total vertical extent of
a sequence of lines. All coordinates are given in the local coordinate
system of the edit record's port (normally a window on the screen).
and those returned by TEGetPoint lie on the baseline at the bottom
left. of the character. All these routines can be used equally well with
both styled and unstyled edit records.

Manipulating Text Styles

The Toolbox routine TEGetStyle (7.3.31 returns style information
for a single character in an edit record's text. Since character
positions refer to the points between characters instead of the
characters themselves. you have to identify the character you 're
interested in by the number of the position preceding it: o for the first
character, 1 for the second, and so on up to (teLength - 1) for the
last. The routine returns three variable parameters giving the
character's style, height, and ascent. Another routine, TENum
Sty les (7.3.3), returns the number of complete or partial style runs
lying within a given range, specified by its starting and ending
position. Notice that this routine counts runs, not styles: in Figure
7-1, for instance, it would return a result of 4, even though the text
contains only two distinct styles (plain and italic). because each of
them applies to two separate runs of characters.

The basic routine for setting text styles is TESetStyle [7.3.4).
You supply the new style in the form of a text style record [7.2.1); the
characters affected are those in the current selection range, defined
by the edit record's selStart and selEnd fields [11:5.1.1). Not every
field of the record necessarily counts. however: the parameter
whichAttrs contains flag bits telling which specific fields to apply,
allowing you to set any desired combination of style attributes
without affecting the rest.

The constants DoFont, DoFace, DoSize, and DoColor [7.3.4)
denote the flag bits in the whichAttrs parameter corresponding to
the four fields of the text style record (7.2.1); you can add these
arithmetically to produce any combination of style attributes you
need. Thus, for example, setting whichAttrs to DoSize changes

314 Editing with St;yle

just the point size of the selected text while leaving all other
attributes unaffected; settfngitto (DoFont +Do Size) changes both
the typeface and size, but not the type style and color. For conve
nience, the constant DoAl 1 (7 .3. 4) represents the combination of all
four style attributes together. There are also two more flag bits with
special meanings, which we11 come to shortly.

Another routine closely related to TESetStyle is TEReplace
Style (7.3.4). Instead of applying a new style to the current
selection outright, TEReplaceStyle searches the selection for all
occurrences of a speclfted style and replaces them with another.
Again, you can use the whi c hA ttr s parameter to operate selectively
on some style attributes while ignoring the rest: for instance, you
can change every character in IO-point Geneva to 12-point Helvetica
or every occurrence of bold italic to bold underline.

As an example of style manipulation, suppose we decide to add
three new menus to MlnlEdit to control the typeface, size, and type
style, respectively. (In keeping with established Macintosh conven
tion, we11 title the typeface menu Font rather than Face: the other
two will be called Size and Style.) Naturally, we'll have to include
three new •MENU' templates (11:4.8.1) in our application resource file
and add the appropriate clauses to our SetUpMenus routine (Pro
gram 11:4-2), to initialize the new menus, and to DoMenuChoice
(Program 11:4-5), to dispatch control after a mouse click (or an
equivalent Command keystroke) in one of their items.

Program 7-1 (DoFontChoice) shows MinlEdit's routine for re
sponding to a choice from the Font menu. This menu is built by
calling AddResMenu (11:4.3.3] to find and list all available resources
of type 'FONT' (I:8.4.5J. When the user chooses an Item from the
menu, our DoMenuChoice routine will pass control to the routine
shown here.

The first thing DoFontChoice does is get the typeface name
from the chosen menu item and convert it to an equivalent font
number. After storing the font number into the appropriate field of
our text style record, we call TESetStyle with a whichAttrs
parameter of DoFont. This applies just the font number to the
current selection without affecting any of the other existing style
attributes. Finally, we call the MiniEdit routine FixStyleMenus
(discussed later in this chapter) to check the chosen item on
the Font menu and uncheck the one that was previously checked,
if any.

315 Manipulating Text Styles
~~~~~~~~~~~~ 

Program 7-1 Handle choice from Font menu 

Global variables 

var 
FontMenu MenuHandle: (Handle to Font menu [11:4.1.1]} 
TheText TEHandle: (Handle to active window's edit record [ll:S.1.1]) 

procedure DoFontChoice (theitem: INTEGER): 

Handle choice from Font menu. } 

var 
fontName Str255: (Name of selected typeface [1:2.1.1]) 
fontNum INTEGER: 
newStyle TextStyle; 

begin (DoFontChoice} 

Getitem (FontMenu, theitem, fontName): 
GetFNum (fontName, fontNum): 

{Font number of selected typeface [1:8.2.l]} 
{New text style for selected text (7.2.1]} 

(Get typeface name from menu item [11:4.6.1)} 
(Convert to font number [1:8.2.S)} 

newStyle.tsFont :- fontNum: {Stmcfontnumberintcxtstyle[7.2.1]) 
TESetStyle (DoFont, newStyle, TRUE, TheText) : {Apply new style to selection (7.3.4]) 

FixStyleMenus (Mark menu item for new typeface [Prog. 7-3)} 

end: (DoFontChoice} 

We mentioned earlier that there are two more flag bits in the 
whichAttrs parameter with special meanings, in addition to the 
four denoting the fields of the text style record. The first of these, 
AddSize (7.3.4), causes the text style's tsSize field (7.2.1) to be 
interpreted as an incremental adjustment to the existing type size 
instead of an outright replacement. The adjustment can be either 
positive or negative: for example. a value of 2 for ts Size increases 
the size of every character in the current selection by two points, 
whereas -1 reduceseverycharacterbyonepoint. Ifboth theDoSize 
and Adds i z e bits are set, Adds i z e takes precedence. 

The last flag bit, DoToggle [7.3.4), modifies the meaning of the 
DoFace bit. To understand how it works, we have to introduce the 
concept of a continuous style. A style property (attribute or variation) 



316 Editing with Scyle 

is continuous over a range of text if every character within the range 
has the given property. For example, in the text 

0 frabjous dayl Calloohl Callayl 

the typeface, size, and bold style variation are continuous (every 
character is bold and in the same face and size), but italic is not 
(some characters are italic and others aren't) and neither is under
line (none of the characters are underlined). 

If both the DoFace and DoToggle bits of the whichAttrs pa
rameter are on, TESetStyle tests each of the specified variations 
(bold, italic, and so forth) individually to see whether that variation 
is continuous over the selection range. If a variation is not continu
ous (that is, if one or more characters in the selection don't already 
have the variation), it is turned on for every character; if it is 
continuous (if every character already has the variation), it is turned 
off for every character. Thus, in the example above, if we call 
TESetStyle with the whichAttrs parameter set to (DoFace + 
DoToggle) and the tsFace field of newStyle equal to [Italic], 
every character will be made italic (since not all of them already are): 
if tsFace is equal to [Bold]. the bold variation will be removed from 
all characters (since they all have it already). 

Program 7-2 Handle choice from Style menu 

Global declarations 

const 
Plainitem = 1: 
Bolditem = 2: 
Italicitem = 3: 
Underline!tem = 4: 
Outlineltem = 5: 
Shadowltem = 6: 

var 
TheText TEHandle: 

{Item number for Plain command} 
{Item number for Bo 1 d command} 
{Item number for Italic command} 
{Item number for Underline command} 
{Item number for Outline command} 
{Item number for Shadow command} 

{Handle to active window's edit record [11:5.1.1]} 



S 17 Manipulating Text Styles 
~~~~~~~~~~~~-

Program 7-2 Handle choice from Style menu (continued}

procedure DoStyleChoice (theltem : INTEGER):

Handle choice from Style menu.)

var
newStyle
whichAttrs

TextStyle:
INTEGER:

begin {DoStyleChoice)

case theltem of

Plainitem:
newStyle.tsFace

Bolditem:
newStyle.tsFace ·=

Italicitem:
newStyle.tsFace ·=

Underlineitem:
newStyle.tsFace

Outlineitem:
newStyle.tsFace ·=

Shadowitem:
newStyle.tsFace ·=

end: {case theltem)

if theitem ... Plainitem
whichAttrs ·= DoFace

else
whichAti:rs ·= DoFace

[] :

[Bold] :

[Italic]:

[Underline] :

[Outline]:

[Shadow]

then

+ DoToggle:

(New text style for selected text [7.2.1]}
(Style attributes to change [7.3.4]}

(Set type style to empty set [7.21, 1:8.3.1])

{Toggle bold style [7.2.1, 1:8.3.l]}

(Toggle italic style [7 .2.1, 1:8.3.1]}

(Toggle underline style [7.2.1, 1:8.3.l]}

(Toggle outline style [7.2.1, 1:8.3.1]}

(Toggle shadow style [7.2.1, 1:8.3.1]}

(Plain style chosen?}
(Set new style outright [7.3.4]}

{Toggle existing style [7.3.4)}

TESetStyle (whichAttrs, newStyle, TRUE, TheText): {Applynewstyleto)
(selection [7 .3.4]}

FixStyleMenus (Mark menu items for new style [Prog. 7-3]}

end: {DoStyleChoice)

Notice that this is exactly the proper behavior for implementing
a menu command for a style variation: apply the variation to evecy

318 Editing with Style
~~~~~~~~~~~~-

character of the selected text unless they all have it already, in which 
case remove it. Program 7-2 (DoStyleChoice) shows the use of 
Do Toggle in the MiniEdit routine for responding to a choice from the 
Style menu. First we dispatch on the item number to set the 
tsFace field of the text style to the requested variation (or to the 
empty set in the case of the Plain command). If Plain was chosen, 
we just set whichAttrs to DoFace, applying the empty style uncon
ditionally to every character in the selection: for all other items, we 
set it to (DoFace + DoToggle), causing the given variation to be 
toggled on or off according to the existing properties of the selected 
text, as described in the preceding paragraph. After calling TESet
Style to apply the new style to the selection, we next call our 
MiniEdit routine FixStyleMenus to adjust the check marks on the 
menu to the new style. 

Program 7-3 Mark menu items for style of current selection 

Global declarations 

const 
StyleID = 6: 

Plain!tem = 1: 
Color!tem = 8: 

var 
The Text 
FontMenu 
SizeMenu 
StyleMenu 

TEHandle: 
MenuHandle: 
MenuHandle: 
MenuHandle: 

procedure FixStyleMenus: 

{Menu ID for Style menu} 
{Item number for Plain command} 
{Item number for Color •.. command} 

{Handle to active window's edit record [11:5.1.1]} 
{Handle to Font menu [11:4.1.1]) 
{Handle to Size menu [11:4.1.1]} 
{Handle to Style menu [11:4.1.1]) 

Mark menu items for style of current selection. } 

var 
whichAttrs 
styleValues 
n!tems 
this Item 
itemString 
isChecked 
f ontName 
sizeString 
this Style 
itemColors 
ignore 

INTEGER: 
TextStyle; 
INTEGER: 
INTEGER: 
Str255: 
BOOLEAN: 
Str255; 
Str255: 
Style!tem; 
MCEntryPtr; 
BOOLEAN: 

{Which atttibutes are continuous?) 
{Values of continuous attributes [7.2.1]} 
{Number ofitems in menu} 
(Index variable for menu items} 
{Text of menu item [1:2.1.1]} 
{Should menu item be checked?} 
(Name of typeface [1:2.1.1]} 
{Type size in string form [1:2.1.1]} 
{Index variable for style variations [1:8.3.1]} 
{Pointer to menu color info entry [6.6.1]} 
(Dummy variable for function result} 



Program 7-S Mark menu items for style of current selection (continuedJ 

begin {FixStyleMenus} 

whichAttrs 0
""' DoAll: (Examine all attributes [7.3.4]} 

ignore ·- TEContinuousStyle (whichAttrs, styleValues. TheText): 

with styleValues do 
begin . 

if BitAnd(whichAttrs, DoFont) <> 0 then 
GetFontName (tsFont, fontName) 

else 
fontName := • '; 

n!tems := CountMitems (FontMenu): 
for this!tem :- 1 to n!tems do 

begin 

(Find continuous attributes [7.3.3]) 

(Is typeface continuous? [7.3.4]} 
(Convert number to name [1:8.2.5, 7.2.1]} 

(Use null font name} 

(Get size of menu [11:4.3.5]) 
(Loop through menu items} 

Get Item (FontMenu, this!tem. i temString) : {Get text of item [11:4.6.1]} 
isChecked := ( i temString = fontNarne) : {Is this the one?} 
Chee kl tern (FontMenu. this Item. isChecked) (Mark or unmark item [11:4.6.4]} 

end: {for this!tem} 

if BitAnd(whichAttrs. DoSize) <> 0 then 
NumToString (tsSize. sizeString) 

else 
sizeString := '': 

n!tems := CountMitems (SizeMenu): 
for this!tem := 1 to nltems do 

begin 

(Is type size continuous? [7.3.4]} 
(Convert to string [1:2.3.7, 7.2.1]} 

{Use null size string} 

(Get size of menu [11:4.3.5]} 
(Loop through menu items} 

Get Item (SizeMenu. this Item. i temString) : (Get text of item [11:4.6.1)} 
isChecked := (itemString - sizeString): (Is this the one?} 
Check!tem (SizeMenu, thisltem, isChecked) (Markorunmarkitem[Il:4.6.4]} 

end: {for thisltem} 

if BitAnd(whichAttrs, DoFace) <> 0 then {lstypestylecontinuous?[7.3.4]} 
begin 

t:his!tern := Plain!tern: (Start with Plain item} 
isChecked :c:: (tsFace = []): {ls plain style continuous? (7.2.1]} 
Check!tern (StyleMenu. this Item. isChecked) : (Mark or unmark item [11:4.6.4]} 

for this Style : ... Bold to Shadow do {Loop through style variations [1:8.3.l]} 
begin 

this!tem := this!tem + 1: {Advancetonextmenuitem} 
is Checked :""' (this Style in tsFace) : (Is this variation continuous? [7.2.l]} 
Check!tem (StyleMenu, thisltem, isChecked) (Mark or unmark} 

end {for thisStyle} 
end (then} 

{ item [11:4.6.4]} 



320 Editing with Style 

Program 7-3 Mark menu items for style of current selection (contfnued) 

else 
begin 

nitems := CountMitems (StyleMenu) : 
for this!tem := 1 to nltems do 

Checkitem (StyleMenu. thisltem, FALSE): 
end: (else} 

(Get size of menu (11:4.3.S]} 
{Loop through menu items} 
(Unmark all items [11:4.6.4]} 

itemColors := GetMCEntry (Style!D, Colorltem): (Get item colon [6.6.3]} 
if BitAnd(whichAttrs, DoColor) <> 0 then {lstextcolorcontlnuous?} 

( [1:22.2. 7.3.4)} 
itemColors".rnctRGB2 := tsColor (Setitem•stextcolor[6.6.t. 7.21]} 

else 
with itemColors".rnctRGB2 do 

begin 
red ·= 0: (Set text color to black (4.21)} 
green ·= O: 
blue 0 

end (with itemColors".mctRGB2} 

end {with styleValues} 

end: {FixStyleMenus} 

FixStyleMenus is shown in Program 7-3. To find which style 
properties to mark on the menus, it uses the Toolbox routine 
TEContinuousStyle [7.3.3]. This routine accepts a whichAttrs 
parameter in the same form as the one for TESetStyle [7.3.4], 
except that it uses only the DoFont, Do Face, Do Size, and DoColor 
bits and ignores AddSize and DoToggle. On exit from the routine, 
this same whichAttrs parameter tells which of the requested 
attributes are continuous over the current selection: the actual 
values of the indicated attributes are returned in the variable 
parameter theStyle. The function result is TRUE if all of the 
originally requested attributes are continuous, FALSE if one or more 
of them are not. 

TEContinuousStyle works straightforwardly for the DoFont, 
Do Size, and Do Color attributes, but its handling of DoFace needs 
some further explanation. If the DoFace bit in whichAttrs is set on 
return from the call. it can mean one of two things, depending on the 
contents of the Style set [1:8.3.1] returned in the tsFace field of 
parameter the Sty le. If the set is not empty-that is, if it contains 



321 Manipulating Text Styles 
~~~~~~~~~~~ 

one or more style variations-then those specific variations are con
tinuous over the selection range. Variations that are not included in
the set are not continuous, but may still be present for some
characters in the selection (though not for all of them). For example.
the set [Bold. Underline] means that every character in the
selection 1S bold and underlined; it does not necessarily mean that
none of them are italic, outlined, or shadowed. If, on the other hand,
tsFace is the empty set, then the entire selection is in plain style
and none of its characters have any style variations at all.

Program 7-3 shows how to use this information to mark the
items on our Font, Size, and Style menus according to the style
of the current selection. We will call this routine after any operation
that changes the style of the selection (as we've already seen in our
DoFontChoice and DoStyleChoice routines, Programs 7-1 and
7-2), as well as when the selection itself 1S changed (DoSelect,
Program 11:5-4) or when a new window is activated (ActivateWin
dow, Program II:5-14). In each of these cases, we want to place a
check mark in the menu beside just those items that are continuous
over the selection and make sure all other items are unmarked.

Our first step 1S to call TEContinuousStyle with a which
Attrs parameter of DoAll, asking for all continuous style proper
ties (typeface. size, variations, and color). On return from this call,
the flag bits in whi chA tt rs tell which attributes are continuous over
the selection, and the fields of the text style record styleValues
give the corresponding attribute values. We then test each flag bit in
tum and mark our menu items accordingly.

For the typeface and size attributes, we get the value from the
style record and convert it to string form, using GetFontName
[1:8.2.5] forthe typeface and NumToString [1:2.3. 7] for the size. Next
we loop through the items of the corresponding menu, testing each
in tum to see if it matches the attribute string. Using a Boolean
variable, isChecked, to hold the result of the comparison, we then
call Checkitem [11:4.6.4) to mark or unmark the item with a check
mark. If the flag bit in whichAttrs tells us that the given attribute
is not continuous (that is, that the selection contains mixed type
faces or sizes), we simply use the null string for our comparisons:
this will not match any of the menu items, causing them all to be
unmarked.

Handling type-style variations is a bit trickier. If the DoFace
flag in whichAttrs is on, we know either that one or more style
variations are continuous over the selection or else that the entire

322 Editing with Style

selection is in plain style. So we first check for an empty Sty le set
and mark or unmark the menu item titled Plain accordingly. We
then loop through all the indMdual style variations from Bold to
Shadow [1:8.3.1], testing for each one separately and marking or
umnarking it on the menu as needed. (Notice that the code here
depends on the assumption that the items appear on the menu in
the same order in which they're defined in the enumerated type
Style!tem (1:8.3.1].) If the DoFace bit is not set in whichAttrs,
then no single variation (including plain) is continuous, so we simply
loop through all the items on the menu and unmark them all.

The last style attribute to account for is color. We'll assume that
our Style menu ends with a command titled Color ... , which
brings up the Color Picker dialog (4.2.3] to allow the user to specify
a color for the current selection. If the selection has a continuous
color attribute, we will display this command on the menu In the
same color as the text itself. To control the color of the menu Item,
we have to call GetMCEntry (6.6.3] to get a pointer to its entry in the
menu color information table. If the selection's color is continuous,
we store it into the appropriate field of the color info entry (6.6.1];
otherwise, we just set the field to plain black. (Notice that we will
suffer an agonizing demise if GetMCEntry returns a NIL pointer,
meaningthatthe Color ... item on our Style menu has no explicit
entry in the color information table. To elude the Grim Reaper, we
must be sure to give the item an entry. either via an 'met b ' resource
(6.7.7] or with an explicit call to SetMCEntries (6.6.3] at initializa
tion time.)

Editing Styled Text

One significant change in the new version of TextEdit is that it no
longer maintains a separate Toolbox scrap (11:5.5.4) for cut-and
paste operations, but instead uses the main desk scrap (1:7.4.1)
directly. Previously, the desk scrap was used only for cutting and
pasting from one program or desk accessory to another: internal
editing operations within a program used the Toolbox scrap instead.
This meant you had to transfer text back and forth from one scrap
to the other whenever control passed to or from another program: on
entiy and exit. when activating or deactivating a desk accessoiy
window, or on receiving a suspend or resume event. To make
matters worse, the flag bit in the event record (1:2.1.5) that notified
you when control was passing to or from a desk accessoiy was not

323 Editing Styled Text
~~~~~~~~~~~ 

always set reliably, sometimes causing the contents of the scrap to 
fall through the crack between the accessory and your program. 

Life is much simpler with the new TextEdit. All text cut and 
pasted in a styled edit re~ord goes directly through the desk scrap 
and thus is available automatically, with no extra effort, when 
control transfers to or from another program. (For the sake of 
compatibility. cut or copied text is written to the internal Toolbox 
scrap as well, and unstyled edit records continue to use the Toolbox 
scrap as they always did.) The old transfer routines TEFromScrap 
and TEToSc rap (11:5.5.5), which copy text from one scrap to the 
other, are still supported, but as long as you stick exclusively to 
styled edit records. you needn't ever bother with such scrap trans
fers. 

The Style Scrap 

As we learned in Volume One, the desk scrap consists of one or more 
separate items representing the same information in different forms. 
for use by different recipient programs. Each item is identified by a 
four-character type code similar to a resource type (though it may or 
may not actually be used as such in resource files). Every program 
that uses the scrap is expected to accept and to deliver at least one 
of the two standard types 'TEXT' (1:8.4.1) (unformatted ASCII text 
characters) and 'PICT' (1:5.5.5) (QuickDraw picture definitions), 
which serve as a uniform medium of data exchange between 
programs. In addition, a program may optionally add specialized 
item types for its own use, carrying further information beyond that 
conveyed by the two standard types. The scrap is supposed to 
contain no more than one item of any given type, though the Toolbox 
does not actively enforce this rule. 

When operating in a styled edit record, the old TextEdit 
routines TECut and TECopy (11:5.5.2, 7.3.5] now write the characters 
of the current selection to the desk scrap as an item of the standard 
type 'TEXT ' . A second item, under the new type ' sty l ' • holds the 
accompanying style information in the form of a style-scrap record 
(7.2.7). The new TextEdit routine TEStylPaste (7.3.5] pastes the 
contents of the scrap back into the document at the current 
selection or insertion point, using the styles defined by its matching 
'styl' item. The old routine TEPaste (11:5.5.2, 7.3.5] continues to 
paste just the text without the accompanying style; instead, its style 
is determined according to the rules for unstyled text, which we'll 
come to in a minute. 



324 Editing with Style 

The style-scrap record ts simply a linear array of scrap style 
elements (7 .2. 7), one for each style run in the scrap's text, preceded 
by an integer length count giving the number of elements. Each 
element has essentially the same fonn as a style table element 
[7 .2.4], except that instead of a reference count, the first field holds 
the starting character position of the run within the scrap's 'TEXT' 
item. Unlike the style table, however, the style scrap may contain 
duplicate entrtes for the same style: its elements correspond one-to
one with the style runs in the cut or copied text. 

The Null Style 
Another important use for style-scrap records is in defining an edit 
record's null style. This is the style applied to new characters entered 
at an insertion point (that is, when the selection range. selStart to 
se !End, is empty). The null style governs all characters that don't 
already have an explicit style of their own. whether typed from the 
keyboard via TEKey (11:5.5.1). pasted from the scrap with TEPaste 
[11:5.5.2, 7.3.5]. or inserted directly into the document with the 
.. scrapless" editing routine TE Insert [11:5.5.3). 

The null style is defined by a null-style record(7.2.6). located via 
a handle in the nullStyle field of the style record [7.2.3). The null
style record in tum holds a handle to a style-scrap record [7.2.7) 
giving the attrtbutes of the current null style. This style-scrap record 
has the same form as the one used for the style scrap itself, but is 
limited to at most one element (since it's just defining a single style 
instead of an indefinite sequence of runs). Thus its scrpNStyles 
field. which gives the number of elements it contains, can never be 
greater than 1. 

It's also possible (common. in fact) for scrpNStyles to be o. 
meaning that no null style is currently defined. Every time the 
selection range is changed (by TEClick [11:5.4.1) or TESetSelect 
[11:5.4.2)), the null style is cleared by setting its sc rpNStyles field 
to o. Any unstyled text entered at such a time will take its style from 
the first character in the selection. if there is one. or (if the selection 
is empty) from the character preceding the insertion point. An 
explicit null style can be created, overriding this default behavior, in 
either of two ways. First, when the selection is empty, all calls to 
TESetStyle (7.3.4) apply to the null style instead. This allows 
styling commands like those on MiniEdit's Font, Size, and Style 
menus to control the style of text typed at an insertion point. Second, 
when TEKey [11:5.5.1) deletes the first character of a style run in 



325 Editing Styled Text 
~~~~~~~~~~~ 

response to a backspace character, the style of that run is copied to
the null style to be remembered and applied to any subsequent type
in. Backspacing again, however, past the last character in the pre
ceding run, clears the null style and reinstates the default styling
behavior.

Scrapless Styling

Style-scrap records are also useful for styling operations that work
with multiple text styles at once, since they can contain any number
of runs in different styles. One such operation is GetStylScrap
[7 .3.6]. The name is misleading: rather than retrieving the contents
of the global style scrap, as you might expect, this routine returns
a scrap record describing the styles of the edit record's currently
selected text. If the current selection is empty or the edit record is
unstyled, it returns NIL.

Another routine with a misleading name is SetStylScrap
(7.3.6], which has no effect on the style scrap itself. Rather, it uses
a style-scrap record to set the styles for a range of characters within
an edit record's text. This routine is similar in operation to TESet
Style [7.3.4], but with some important differences. First, instead of
applying implicitly to the current selection range, it accepts a pair
of explicit parameters, startPos and endPos, defining the range of
characters affected. Second, the new styles are defined by a style
scrap record instead of a single text style, allowing a whole series of
styles to be applied consecutively in one operation. And finally, all
attributes of each style are used: there is no whichAttrs parameter
to selectively choose some attributes and ignore others.

TEStylinsert [7.3.6] is the styled analog of the old "scrapless"
insertion routine, TEinsert (11:5.5.3]. This routine inserts a speci
fied sequence of characters at the beginning of the current selection
without reference to the contents of the scrap and without disturb
ing the selected text. The text to be inserted is specified directly. via
a pointer, and need not have been cut or copied from elsewhere in
the document. A style-scrap record, textStyles, defines the styles
for the inserted text. Both here and in SetStylScrap, it isn't nec
essary for the text and the scrap record to match in length. If the
total length of all the runs in the scrap record exceeds the number
of characters in the specified range or insertion, excess runs at the
end will be ignored: if it falls short. the last run will be extended to
cover all the remaining characters.

REFERENCE

&t~--@Mtf.ittAAiijjW@@MRMMWii*Mi!!!M%RMMAWUIDM~ifMM!

6¥tMf\W@@ij1§¥ttAflijfM#IW@#i!##i~1HM1M!titi!~M1-stiJM~h1MMfiW!Mi#iMi#&#iittif&ttiii*h@@EriU9Mfh&Mi$ifi#i

ilf§if#¥ii¥f.E¥##ffi!tv&WMW1¢'#®4W$1§iit§fiffi'#PiW®EAMMW*M'Mt@ri·§!@>§%!t@ifitiliiPMfHM¥+¥W

7 .1 Color Fonts

7.1.1 Font Type and Depth

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

I 1
I

Notes

II~
Font type flags

Has Image-height table
Has character-width table
Pixel depth
Has cofor table
Synthetic font
Not all black
Fixed-width font
Do not expand

1. The figure shows the contents of the font Type field in a font record
[1:8.2.2].

2. Bits marked with an asterisk(•) apply only to the Macintosh II and
should be set to o on older models.

327

328 Styled Text

3. Bits O and 1 tell whether the font has an image-height table and a
character-width table (1:8.2.3], respectively.

4. Bits 2 and 3 give the depth of the font's pixel image as an integer power
of 2. For example, a value of 3 {binaiy 11) denotes a depth of 8 (23) bl ts
per pixel. In a normal monochrome font, these bits are o, indicating
a pixel depth of 1 (20).

5. At high pixel depths, the font Image can grow quite large, causing the
font's owTLoc field (which holds the offset in words from Itself to the
beginning of the offset/width table 0:8.2.3)) to overflow Its allotted 2
bytes. In this case, the nDescent field 0:8.2.2] (which ls redundant
anyway) ts used as an additional 2-byte leftward extension to owTLoc.
This usage ls Indicated by a posltlve value In nDescent; If this field ls
less than o, lt ls understood to hold the negative font descent, as
before.

6. Bit 7 tells whether the font has an associated color table of resource
type ' f ct b ' [7.4.1]. This flag ls applicable only for fonts stored as
'NFNT' resources [1:8.4.5].

7. Bit 9 should be set to 1 If the font's pixel image includes colors other
than plain black and white.

8. Bits 8 and 13 identl(y the font as synthetic (7.1.2) and fixed-width
(1:8.2.2], respectively.

9. If bit 14 ls 1, the font must be used as Is and must not be expanded
Into a synthetic font to match the screen depth. This flag ls used
mainly in fonts for large foreign character sets, such as Japanese or
Chinese, that would require inordinate amounts of memory at high
pixel depths.

10. All other bits in the flag word are reserved for future use and should
be set to the constant values (o or 1) shown in the figure.

7.1.2 Synthetic Fonts

Handle to lont record .. _ _
(4 bytes) ----

Resource ID of actual font (2 bytes)

o (2 bytes)

·--- red (~ bytes) --green (2 bytes) ·---- blue (2 bytes) --
o (2 bytes)

•-•-o•-- red (~bytes) ---..
green (2 bytes)

0-0-HH--

blue (2 bytes)
__

Synthetic-font list entry

} Foreground color

} Background color

329 (7.2.1) Text Styles
~~~~~~~~~~~~ 

~~~lii=::1~--N_o_te_s ________________________________ __ 

1. A synthetic font ls generated automatically by the Toolbox when a font
read from a resource file doesn't match the pixel depth at which lt ls
to be drawn.

2. A synthetic font ls represented by an ordinary font record [1:8.2.2) with
bit 8 set ln its flag word (7.1.1) and its font image (1:8.2.3) expanded
to the current screen depth.

3. The Toolbox maintains a list of all synthetic fonts currently in
existence, located via a handle in the low-memory global variable
SynListHandle.

4. Each entry ln the synthetic-font list has the form shown in the figure.

~ ~ l---As_s_e_m_b_1_y_Lan __ gua __ g_e_1_nfi_o_rm_a_t1_o_n ______ _

Assembly-language global variable:

Name

SynListHandle

7.2 Styled Text

Address

$032

Meaning

Handle to first font ln
synthetic-font list

7.2.1 Text Styles

type

TextStyle = record

ts Font INTEGER:

ts Face Style:

ts Size INTEGER:

tsColor RGBColor

end;

(Font number of typeface [1:8.2.1]}

{Type style [1:8.3.1]}

(Type sire in points}

(Text color (4.2.1]}

330 Styled Text

~~li+--~Not_es ------

1. A text style defines the appearance of text characters when displayed
or printed.

2 . tsFont is a font number (1:8.2.1) identifying the typeface in which the
text is to be drawn; t s Size is the type size in points.

3. tsFace is a Styl e set (1:8.3.1) defining the type s tyle variations (such
as bold or italic) to be applied.

4. tsCo lo r is the text color in RGB form (4.2 .1).

~ ~ 1-l----As-se_m_b_Iy_1..an __ gua __ g_e_1_nfi_o_rm __ a_t1_o_n ______ _

Field offsets in a text style:

(Pascal) (Assembly)
Field name Offset name

tsFont tsFont

tsFac e tsFace

ts Size tsSize

tsColor tsColo r

Assembly-language constant:

Name Value Meaning

Offset
in bytes

0

2

4

6

St yleSize 12 Size of a text style in bytes

7.2.2 Styled Edit Records

~~ __. ---n_e_n_n1 __ t_1_o_n_s __________________________________ _

typ e

TEHandle = ATEPtr:
TEPtr ATERec:

331 (7.2.2) Styled Edit Records
~~~~~~~~~~~~-

TE Rec record 

lineHeight INTEGER: 

fontAscent INTEGER: 

(Negative for variable line height [7.2.5)) 

(Negative for variable line ascent [7.2.5)} 

{First half of style record handle [7.2.3]) 

{Last half of style record handle [7.2.3]) 

txFont INTEGER; 

txFace Style: 

txSize INTEGER: ( -1 for styled text} 

end: 

Notes 

1. These fields of an edit record [11:5.1.1) have new meanings in connec
tion with styled text. 

2. The Toolbox routine TES t y lNew [7. 3.1] creates a styled edit record and 
initializes its fields as described here; TENew (11:5.2.2] continues to 
create an unstyled edit record with all fields initialized as in the past. 

S. A value of -1 in the txSize field identifies a styled edit record. If 
txSize ~ o, the edit record ls unstyled and all fields have their original 
meanings [11:5.1.1). 

4. The combined fields txFont and txFace hold a h'ndle to a style 
record [7.2.3) defining the styles for the edit record's text. 

5. In assembly language, the new offset constant teStylesH (see .. As
sembly Language Information" below) selects the style record handle 
within an edit record, replacing the old offsets teFont and teFace 
[11:5.1.1). In Pascal, use the new Toolbox routines GetStylHandle 
and SetStylHandle [7.3.1) to access or set the style handle. 

6. If the lineHeight and fontAscent fields are negative, the vertical 
spacing for each line of text can vary according to the text styles the 
line contains, and is defined by the style record's line-height table 
(7 .2.5). If these fields are positive, they specify fixed vertical spacing 
values for all text lines, as before [11:5.1.1]. 

7. The old Toolbox routine TEDispose [11:5.2.2) disposes of an edit 
record, whether styled or unstyled, along with all of its associated data 
structures (text [11:5.2.3], style record [7.2.3], style table [7.2.4), line
hetght table [7.2.5), and null-style record (7.2.6)). 



332 Styled Text 

-1 liiil I Assembly Language Information 

Field offset in an edit record: 

type 

TESt:yleHandle 

TESt:ylePtr 

TEStyleRec 

(Pascal) 
Field name 

txFont 

(Assembly) 
Offset name 

teStylesH 

Offset 
in bytes 

74 

7.2.3 Style Records 

ATESt:ylePt:r; 

ATESt:yleRec; 

r ecord 

nRuns 

nSt:yles 

styleTab 

lhTab 

teRefCon 

null Style 

runs 

e n d; 

INTEGER; 

INTEGER; 

STHandle: 

{Number of runs) 

{Number of styles) 

{Style table (7.2.4) ) 

LHHandle; (Line-height table (7.2.5)) 

LONG INT; {Reference constanl) 

NullSTHandle ; {Null-style record (7.2.6) ) 

array [ 0 .. 8000) of StyleRun {Array of slyle runs) 

StyleRun = r e c ord 

st:artChar INTEGER; ( Staning characler position) 

(Index in slyle table ) st:yleindex INTEGER 

end; 

-l~i~+--No_tes __________ ~-
1 . A style record defines the s tyle attributes for an edit record's text. 

2. The style record ls located via a handle ln the edit record's t xF on t and 
txFace fields (7.2.2) and accessed with GetStyl Handle and Set· 
StylHandle (7.3 .1) . 

3 . The run list, runs. divides the text into style runs of consecutive 
characters ln the same style . The styles themselves are kept ln a 



333 [7.2.3] Style Records 
~~~~~~~~~~~~ 

separate style table [7 .2.4), located via the handle in the style record's
styleTab field.

4. Although the run list is nominally indexed from o to sooo, it may
actually contain any number of runs. The nRuns field gives the index·
of its last element and determines the true length of the list.

6. Each element in the run list specifies the starting character position
of a run and the index of its style within the style table.

6. The length of a run is the difference between its starting position and
that of the next run following It in the run list.

7. The run list ends with a dummy entry at index nRuns, marking the
character position beyond the end of the last run. The "starting
position" for this dummy entry ls equal to the overall length of the text
in characters.

8. nStyles ls the index of the last entry in the style table.

9. No single style occurs more than once in the style table. Runs with
identical text styles share the same style entzy in the table.

10. lhTab and nullStyle are handles to the edit record's line-height
table [7.2.5) and null-style record [7.2.6). respectively.

11. teRefCon ls a 4-byte reference '"constant" that your program can use
in any way you wish.

IDI Assembly Language Information --1m.,_ ____ _
Field offsets in a style record:

(Pascal) (Assembly)
Field name Offset name

nRuns nRuns
nStyles nStyles
styleTab styleTab
lhTab lhTab
teRefCon teRefCon
nullStyle nullStyle
runs runs

Field offsets in a style run:

(Pascal)
Field name

start Char
style Index

(Assembly)
Offset name

start Char
style Index

Offset
In bytes

0

2

4

8

12

16

20

Offset
In bytes

0

4

334 Styled Text

Assembly-language constant:

Name Value

StStartSize 4

7.2.4 Style Table

Meaning

Size of a style run (•style start
record•) In bytes

~11111----D_e_n_n1_t_1_on_s ____________________________ __

type
STHandle = ASTPtr;
STPtr = ATEStyleTable:
TEStyleTable= array [0 .. 1776] of STElement;

STElement = record

stCount INTEGER: {Number of runs in this style}

stHeight INTEGER: {Line height}

stAscent INTEGER: {Font ascent}

stFont INTEGER: {Font nmnber of typeface (1:8.2.1)}

st Face Style: {Type style (1:8.3.1])

stSize INTEGER: {Type size in points}

stColor RGBColor {Text color [4.2.1])

end:

Notes

1. A style table holds the style Information for an edit record's style
record [7.2.3).

2. The table's nominal capacity of 1776 red-white-and-blue elements Is
purely fictitious: It may actually contain any number of styles. The
nStyles field in the style record (7.2.3) gives the Index of Its last
element and determines the true length of the table.

3. No single style occurs more than once in the table. Character runs
with identical text styles share the same table entry. the st Count field
in each entcy holds a reference count telling how many runs refer
to it.

335 (7.2.5) Line-Height Table
~~~~~~~~~~~~ 

4. stHeight and stAscent give the line height and ascent for a given 
text style, measured in points relative to the baseline. 

5. stF ont is a font number [1:8.2.1] identifying the typeface in which the 
text is to be drawn; stSize is the type size in points. 

6. stFace is a Style set (1:8.3.1] defining the 1¥pe style variations (such 
as bold or italic) to be applied. 

7. stColor ls the text color in RGB form (4.2.1]. 

~~ ... 1---As_s_e_m_b_l_y_Lan __ gua __ g_e_Infi_o_rm_a_t_io_n ______ _ 

Field offsets in a style element: 

(Pascal) tAssembly) 
Field name Offset name 

st Count st Count 
stHeight stHeight 
stAscent stAscent 
stFont stFont 
stFace stFace 
st Size st Size 
stColor stColor 

Assembly-language constant: 

Name Value Meaning 

Offset 
in bytes 

0 

2 

4 

6 

8 

10 

12 

STRecSize 18 Size of a style element in bytes 

7.2.5 Line-Height Table 

type 
LHHandle = ALHPtr: 

LHPtr = ALHTable: 

LHTable =array [0 .. 8000] of LHElement; 

LHElement = record 

lhHeight INTEGER: 
lhAscent INTEGER 

end: 

{Line height in pixels} 

{line ascent in pixels} 



336 Styled Text 

Notes 

1. A line-height table defines the vertical spacing Independently for each 
line of an edit record's text. 

2. Entries In the table correspond one-to-one with those In the edit 
record's lineStarts array (11:5.1.1). 

3. Each line's height and ascent are determined by the maximum values 
for any text style occurring within the line. 

4. The Information In the table applies only If the edit record's 1 ine -
Height or fontAscent field [7.2.2) ts negative. If these fields are 
positive. they specify uniform vertical spacing for the text and the line
height table Is Ignored. 

6. Although the line-height table Is nominally Indexed from o to 8000, It 
may actually contain any number ofllnes. The nLines field In the edit 
record [11:5.1.1) gives the Index of Its last element and determines the 
true length of the table. 

8. Like the lineStarts array. the table ends with a dummy entry at 
Index nLines. representing the end of the text beyond the last line. 

7. Line heights and ascents are recalculated automatically whenever the 
line breaks themselves are changed. either as a result of an editing 
operation or through an explicit call to TECa 1 Text [11:5.3.1). 

8. The high-order bit of each entry's lhHeight field Is a flag that 
optionally suppresses automatic calculation for that line and uses the 
given line height and ascent values directly, without modification. 
(Naturally. the high-order flag bit Is first stripped from lhHeight.) 
This allows you to control vertical spacing explicitly on a line-by-line 
basis. rather than uniformly for the entire text via the lineHeight 
and fontAscent fields of the edit record [7.2.2). 

9. There Is no equivalent flag bit In the lhAscent field; the one In 
lhHeight applies to both fields together. 

10. This technique ts most useful for fixed text whose line breaks will 
never change. such as In static text boxes displayed with the TextBox 
routine [11:5.3.2). 

11. Through an oversight. the assembly-language Interface does not 
define offset constants for the fields of a line-height element 



337 (7.2.6) Null-St¥le Record 
~~~~~~~~~~~~ 

7.2.6 Null-Style Record

type

NullStHandle = ANullStPtr:
NullStPtr

NullStRec

= ANullStRec:

= record

teReserved
null Scrap

end:

Notes

LONG INT: {Reserved for future expansioo)

St Sc rpHandle {Style scrap for null style [7.2.7]}

1. A null-style record defines the style for text entered into an edit record
at an insertion point (that is, when the selection range is empty).

2. nullScrap ls a handle to a style-scrap record (7.2.7). When a null
style is ln effect, this record's scrpNStyles field ls set to 1 and its
s c r pS t y 1 eT ab field holds a scrap style table (7. 2. 7} with a single entry
defining the null style.

3. If the scrap record's scrpNStyles field (7.2.7} is O, no null style is in
effect. Entered text will then take its style from that of the character
preceding the insertion point.

4. teReserved ls a 4-byte utility field resetved for future use.

5. When text is entered at an insertion point with TEKey (11:5.5.1),
TEPaste (11:5.5.2, 7.3.5), or TEinsert (11:5.5.3), the null style is
copied into the main style table (7.2.4) (if it isn't already there) and
thencleared toemptybysettingits scrpNStyles field (7.2.7) to 0. The
styled editing routine TEStylPaste (7.3.5) does the same if there ls no
style entry in the desk scrap, as does TEStylinsert (7.3.6} if its
textStyles parameter is NIL.

6. The null style is set by TESetStyle [7.3.4} when the selection range
is empty (selStart = selEnd (11:5.1.1)).

7. Changing the insertion point with TESetSelect (11:5.4.2) or TEClick
(11:5.4.1) clears the null style to empty.

8. Backspacing to the beginning of a style run with TEKey (11:5.5.1) or
clearing it with TEDelete (11:5.5.3) copies its style to the null style. to
be applied to any text subsequently entered in its place. Backspacing
further. beyond the beginning of the run, clears the null style to empty.

338 Styled Text

~Iii I Assembly Language Information

Field offsets in a null-style record:

type

StScrpHandle

StScrpPt r
StScrpRec

ScrpStTable

ScrpStElement

(Pascal) (Assembly) Offset
ln bytes Field name Offset name

teReserved

nullScrap
teReserved

nullScrap

Assembly-language constant:

Name Value Meaning

0

4

NullStSize 8 Size of a null-style record in
bytes

7.2.7 Style Scrap

Definitions

AStScrpPtr:
AStScrpRec:

r ecord

scrpNStyles
scrpStyleTab

end ;

INTEGER: (Number of styles}

ScrpStTable {Tableofstyles}

array [0 . . 1600) of ScrpStElement:
record

scrpStartChar
scrpHeight

scrpAscent
sc rpFon t
scrpFace
sc rpSize
sc rpColor

end :

LONGINT:

INTEGER:
INTEGER :
INTEGER:
Style:
INTEGER:
RGBColor

(Starting character position}

(Line height}

(Font ascent}

(Font nwnber of typeface (1:8.2.1)}

{Type style (1:8.3.I]}

(Type size in points}

{Text color (4.2.1]}

339 [7.2.7) Style Scrap
~~~~~~~~~~~~-

Notes 

1. A style-scrap record holds the style information for text being cut and 
pasted via the desk scrap. Such records are also used to define an edit 
record's null style (7 .2.6) and for passing style Information to and from 
the scrapless styling routines GetStylScrap, SetStylScrap, and 
TEStylinsert (7.3.6). 

2. When operating on a styled edit record (7.2.2), the TextEcllt routines 
now use the main desk scrap (1:7.4) for all cut-and-paste editing. For 
backward compatibility, a duplicate handle to the same text ls also 
stored in the internal Toolbox scrap [11:5.5.4). Unstyled edit records 
(11:5.1.1) continue to use the Toolbox scrap only, as before. 

3. The text itself is written to the desk scrap under type 'TEXT ' [1:8.4.1 ), 
with the associated style Information stored separately as a style
scrap record (StScrpRec) under type 'styl '. 

4. Style Information ls written to the desk scrap only, never to the 
Toolbox scrap. 

5. Although the scrap style table ls nominally indexed from o to 1600, it 
may actually contain any number of entries. The scrpNStyles field 
gives the index of its last enby and determines the true length of the 
table. 

6. Notice that the complete scrap style table. not just a handle, is 
embedded directly in the style-scrap record. Thus the record actually 
consists of a sequence of scrap style elements (ScrpStElement) 

preceded by a 2-byte length count telling how many. 

7. Each scrap style element defines the style for a run of consecutive 
characters within the body of the text scrap. Its form ls the same as 
thatofa style table element [7.2.4), except that the first field is a4-byte 
starting character position instead of a 2-byte reference count. 

8. The length of each run is the difference between its starting position 
(scrpStartChar) and that of the next run following it in the table. 

9. The table ends with a dummy entcy at index scrpNStyles, marking 
the character position beyond the end of the last run. The "starting 
position'" for this dummy entry ls equal to the overall length of the 
scrap in characters. 

10. Entries in the style scrap correspond one-to-one with consecutive 
runs of characters in the text scrap. This means that the identical 
style can occur more than once in the scrap-unlike the style table 
(7.2.4), which contains no duplicate entries. 



340 Styled Text 

ID I Assembly Language Information 
~n 

Field offsets in a style-scrap record: 

(Pascal) (Assembly) 
Field :Dame Offset name 

scrpNStyles 
scrpStyleTab 

scrpNStyles 
scrpStyleTab 

Field offsets in a scrap style element 

(Pascal) (Assembly) 
Field name Offset name 

scrpStartChar 
scrpHeight 
scrpAscent 
scrpFont 
scrpFace 
scrpSize 
scrpColor 

scrpStartChar 
scrpHeight 
scrpAscent 
scrpFont 
scrpFace 
scrpSize 
scrpColor 

Assembly-language constant: 

Name Value Meaning 

Offset 
in bytes 

0 

2 

Offset 
in bytes 

0 

4 

6 

8 

10 

12 

14 

ScrpRecSize 20 Size of a scrap style element in 
bytes 

7 .3 Editing Styled Text 

7.3.1 Preparation for Editing 

function TEStylNew 
(destRect : Rect: 
viewRect : Rect) 

: TEHandle: 

{Destination (wrapping) rectangle} 

{View (clipping) rectangle} 

{Handle to new edit record} 



341 (7.3.1) Preparation for Editing 
~~~~~~~~~~~~-

function GetStylHandle
(editRec : TEHandle)

: TEStyleHandle:

procedure SetStylHandle
(styleRec TEStyleHandle:
editRec : TEHandle):

Notes

(Handle to edit record)

(Handle to current style record}

(Handle to new style record)

(Handle to edit record)

1. TEStylNew creates a new styled edit record [7.2.2) and all of its
associated data structures (style record (7.2.3), style table (7.2.4),
llne-hetght table [7.2.5), and null-style record [7.2.6)). The old
TextEdtt routine TENew (11:5.2.2] continues to create an unstyled edit
record (11:5.1.1).

2. TEStylNew sets the new record's txSize field to -1, marking It as a
styled record.

S. A handle to the new style record is stored in the edit record's txFont

and t xF ace fields.

4. The edit record's lineHeight and fontAscent fields are both set to
- 1. placing vertical spacing under the control of the line-height table.

5. The destination and view rectangles are expressed in the local coordi
nates of the current port, normally a window in which text ls to be
edited. This port becomes the new edit record's graphics port.

6. The text of the new edit record is initially empty. You can give it text
to edit with TESetText [11:5.2.3).

7. The style table (7.2.4) initially contains a single style with the text
characteristics of the current port [1:8.3. l]. The line-height table is
initialized to the height and ascent of this style.

8. All other fields of the new edit record are initialized to the same values
as for an unstyled edit record (11:5.2.2).

9. The old Toolbox routine TEDispose [11:5.2.2) disposes of an edit
record. whether styled or unstyled, along with its text and all other
associated data structures.

10. GetStylHandle returns a styled edit record's style handle [7.2.4),
taken from its txFont and txFace fields [7.2.2). SetStylHandle
assigns lt a new style handle.

11. If edi tRec ls an unstyled edit record. GetStylHandle returns NIL
and SetStylHandle does nothing.

342 Styled Text
~~~~~~~~~~~~~-

12. The trap macro for TEStylNew ls spelled _TEStyleNew. 

13. The trap macros for GetStylHandle and SetStylHandle expand to 
call the generic trap _TEDispatch with the routine selectors shown 
below. 

I E1 I Assembly Language Information 
~&:Ill.___-----

function 

function 

function 

procedure 

Trap macros and routine selectors: 

(Pascal) (Assembly) 
Routine name Trap macro 

Trap 
word 

Routine 
selector 

TEStylNew 

GetStylHandle 

SetStylH.and le 

_TEStyleNew 

_ GetStylHandle 

_S etStylHandle 

$A83E 

$A83D 

$A83D 

7.3.2 Character Location 

TEGetOffset 

(thePoint : Point; 

editRec TEHandle) 

: INTEGER; 

TEGetPoint 

(char Index INTEGER; 

editRec TEHandle ) 

: Point; 

TEGetHeight 

(last Line L9NGINT: 

firstLine LONGINT; 

editRec TEHandle) 

: LONGINT: 

CharExtra 

(extraWid th Fixed): 

(Point to be mapped, in window coordinates} 

(Handle to edit record} 

(Corresponding character index) 

(Character index) 

(Handle to edit record} 

{Bottom·left of character in window coordinates) 

(Last line number} 

(First line number} 

(Handle to edit record) 

(Total height of lines in pixels) 

(Extra character width in pixels) 

4 

5 



343 (7.3.2} Character Location 

Notes 

1. TEGet Off set maps a given point (typically the mouse position) to the 
corresponding character position In an edit record's text; TEGetPoint 
maps a character position to the corresponding point. 

2. TextEdlt character positions fall between the text characters, not on 
them. These routines designate each character by the character 
position preceding It for example, the first character In the text ls at 
position o. A character posltlon equal to the length of the text ls 
located at the very end, following the last character. 

3. The point returned by TEGetPoint lies on the baseline at the given 
character position-that ls, at the bottom-left of the corresponding 
character. 

4. All points are expressed ln local (window) coordinates. 

5. TEGetHeight measures the total height of a sequence of text lines. 

6. The measurement ls based either on the edit record's llne-helght table 
[7 .2.5) or on the uniform vertical spacing values In lts li neHei gh t and 
fontAscent fields [7.2.2). 

7. Line posltlons, like those for single characters, fall between the llnes 
instead of coinciding with them. Line position o ls at the beginning of 
the text; the line position at the end ls equal to the edit record's nLines 
field [11:5.1.1 ). 

8. Notice that the parameters are given ln reverse order, with lastLine 
preceding firstLine. 

9. All of these routines work for both styled and unstyled edit records. 

10. CharExtra sets the value of the current port's chExtra field [5.1.3), 
which specifies the additional character width to be used In propor
tional spacing. 

11. The extra character space ls given In fixed-point form [1:2.3.l), with 16 
bits before the binary point and 16 after It. 

12. All text characters except spaces will be widened by the specified 
number of pixels; space characters are still governed by the spExtra 
field [1:8.3. l ), as before. 

13. Negative values for extraWidth are allowed, and will narrow all 
characters instead of widening them. 

14. The port's txSize field [1:8.3.l] must already have been set to a valid 
value before the call to CharExtra. 

15. CharExtra operates on color graphics ports [5.1.3) only: lf a mono
chrome port [1:4.2.2) Is current, 1t does nothing. 

16. The trap macros for TEGetPoint and TEGetHeight expand to call the 
generic trap _TEDispatch with the routine selectors shown below. 



344 Styled Text 

~~I Assembly Language Information 

procedure 

function 

function 

Trap macros and routine selectors: 

(Pascal) (Assembly) Trap Routine 
Routine name Trap macro word selector 

TEGetOff set _TEGetOff set $A83C 
TEGetPoint _TEGetPoint $A830 8 
TEGetHeight _TEGetHeight $A830 9 

CharExtra _CharExtra $AA23 

7.3.3 Getting Style Information 

TEGetStyle 

(charPos INTEGER: {Character position of desired character} 

var theStyle TextStyle: 

var lineHeight INTEGER: 

var fontAscent INTEGER: 

editRec TEHandle): 

TEContinuousStyle 

(var whichAttrs INTEGER: 

var theStyle TextStyle: 

editRec TEHandle) 

: BOOLEAN: 

TENumStyles 

(startPos LONGINT: 

endPos LONGINT: 

editRec TEHandle) 

: LONGINT: 

Notes 

(Returns character's style auributes} 

{Returns character's line height} 

{Returns character's font ascent} 

{Handle to edit record} 

{Desired attributes; returns continuous attributes} 

{Values of continuous attributes } 

{Handle to edit record} 

{Are all requested attributes continuous?} 

{Starting character position} 

{Ending character position} 

{Handle to edit record} 

{Number of style changes} 

1. TEGetStyle returns the text style and vertical spacing for a single 
character in an edit record's text. 



345 (7.3.3) Oetting Style Information 
~~~~~~~~~~~~-

2. TextEdit character positlons fall between the text characters, not on
them. The desired character is designated by the character positlon
preceding it: for example, a value of o for charPos requests the style
of the first character in the text.

3. If edi tRec is an unstylededitrecord [11:5.1.l], TEGetStyle returns its
global text characteristics.

4. TEContinuousStyle examines selected style attributes of an edit
record's text to see which of them are continuous (have the same
uniform value) over the current selection range.

6. The edit record's selStart and selEnd fields [11:5.4.2) define the
range of characters to be tested.

6. On entry, whichAttrs specifies which style attributes to test, using
the same flag values as for TESetStyle or TEReplaceStyle (7.3.4).

7. On exit, whichAttrs identifies which of the requested attributes are
continuous over the selection; the Style contains the specific values
of those attributes.

8. Only those fields oftheStyle corresponding to continuous attributes
are valid; the contents of other fields are meaningless and should be
ignored.

9. The function result ls TRUE if all of the requested attributes are
continuous, FALSE if one or more of them are not.

10. In the case of the type-style attribute (DoFace (7.3.4)), the flag bit in
whi c hA t tr s ls set if any one or more individual style variations (such
as bold or italic) are continuous over the selection range, or if the entire
selection ls in plain style. Field tsFace [7.2.1) of the Style returns a
Style set [1:8.3.1) contalningjust those specific variations that apply
to all characters in the selection. Variations not included in this set
may still be present for one or more characters, but not for all of them.
If the DoFace flag ls set and theStyle. tsFace is empty, then the
entire selection ls in plain style.

11. If the current selection is an insertion point (selStart = selEnd), all
style attributes are considered continuous. Attribute values returned
in theStyle are those for the next character to be entered, taken from
the null-style record (7.2.6) if there is one, otherwise from the style of
the character preceding the insertion point.

12. TENumStyles returns the number of separate style runs in a specified
range of characters.

13. startPos and endPos are character positions marking the beginning
and end of the desired range.

14. The function result reports the number of separate runs, not the
number of distinct styles. The same style may be counted more than
once if it applies to two or more runs of characters separated by others
in different styles.

346 Styled Text

15. The trap macros for these routines expand to call the generic trap
_TEDispatch with the routine selectors shown below.

~ ~ 1..._ ___ As_s_e_m_b_I_y_Lan __ gua __ g_e_1_nfi_o_rm_a_t_1o_n ______ _

procedure

procedure

con s t

DoFont
Deface

DoSize
DoColor
Do All

Add Size

Trap macros and routine selectors:

(Pascal) (Assembly) Trap
Routine name Trap macro word

TEGetStyle _TEGetStyle $A83D
TEContinuousStyle _TEContinuousStyle $A83D
TENumStyles _TENumStyles $A83D

7.3.4

TESetStyle
(whichAttrs
newStyle
redraw
editRec

TEReplaceStyle

(whichAttrs
old Style

newStyle
red raw

editRec

1;

2;

4 :
8;

15;

16 ;

Styling Text

INTEGER;
TextStyle:
BOOLEAN :
TEHandle);

INTEGER ;

TextStyle:

TextStyle:
BOOLEAN:
TEHandle);

{Style attributes to set)

{New attribute values)

(Redraw after change?)

(Handle to edit record I

(Style attributes to replace)

(Old attribute values to be replaced)

{New attribute values to replace them with)

(Redraw after change?)

(Handle to edit record)

(Set typeface)

I Set type style l
I Set type size l
(Set text color)

{All of the above)

(Adjust type sii.e)

DoToggle 32; (Toggle existing attribute value)

Routine
selector

3
10

13

34 7 (7.3.4) Styling Text
~~~~~~~~~~~~-

Notes 

1. TESetStyle sets the text style of an edit record's current selection; 
TEReplaceStyle searches the current selection for all occurrences of 
a given style and changes them to another. 

2. whichAttrs is a word of flag bits specuymg which style attributes to 
set or replace. The constants DoF ont. DoF ace, and so on represent the 
individual flags within this word. 

3. newStyle is a text style record [7.2.1] containing the new values to be 
set for the designated attributes. Only those fields of this record 
corresponding to 1 bits in whichAttrs are used; the rest are ignored. 

4. oldStyle is a text style record (7.2.1] defining the style to be replaced. 
Again. only those fields designated by 1 bits in whichAttrs are 
meaningful. All characters in the current selection whose values for 
these attributes match those in the oldStyle record will have them 
changed to the corresponding values from newStyle. 

5. If the redraw parameter is TRUE, the text is redrawn in the new sfyle. 

6. If the current selection ls an insertion point (selStart = selEnd). 
TESetStyle sets the null style (7.2.6] instead. 

7. The flag constants DoFont, DoFace. DoSize. and DoColor refer to the 
corresponding fields of the text style record (7.2.1). DoAll represents 
the combination of all four of these attributes. 

8. AddSize changes the meaning of the text style's tsSize field (7.2.1). 
Instead of an absolute type size, it is interpreted as an incremental 
adjustment (positive or negative) to be added to the existing fype size 
of each character. 

9. Ifboth DoSize and AddSize are specified. AddSize takes precedence. 

10. DoToggle modifies the operation of DoFace. For each type-style 
variation (bold, italic. and so on) specified by the tsFace field of 
newStyle. ifthe variation is continuous over the edit record·s current 
selection (that is, if every character in the selection has the variation). 
then it is turned off for the entire selection. If the variation ls not 
continuous (that is. if at least one character in the selection does not 
have the variation). then it ls turned on for the entire selection. 

11. If DoFace is not specified, DoToggle has no effect. 

12. AddSize and DoToggle are meaningful only for TESetStyle, and are 
ignored by TEReplaceStyle. 

13. The trap macros for these routines expand to call the generic trap 
_TEDispatch with the routine selectors shown below. 



348 Styled Text 

~ liil I Assembly Language Information 

Trap macros and routine select.ors: 

(Pascal) (Assembly) Trap Routine 
Routine name Trap macro word selector 

TESetStyle _TESetStyle $A83D 1 

TEReplaceStyle _TEReplaceStyle $A83D 2 

Bit numbers for style attributes: 

Name Value Meaning 

FontBit 0 Set typeface 
FaceBit 1 Set type style 
SizeBit 2 Set type size 
ClrBit 3 Set text color 
AddSizeBit 4 Adjust type size 
ToglBit 5 Toggle existing attribute value 

Constants for style attributes: 

Name Value Meaning 

DoFont 1 Set typeface 
Do Face 2 Set type style 
DoSize 4 Set type size 
DoCo l or 8 Set text color 
Do All 15 All of the above 
Add Size 16 Adjust type size 
DoToggle 32 Toggle existing a ttribute va lue 

7.3.5 Cutting and Pasting Styled Text 

procedure TECut 

(editRec TEHandle): (Handle to edit record) 



349 (7.3.5) Cutting and Pasting Styled Text 
~~~~~~~~~~~~-

procedure

procedure

procedure

TE Copy

(editRec TEHandle): {Handle to edit record}

TE Paste

(editRec TEHandle): {Handle to edit record}

TEStylPaste

(edi t:Rec : TEHandle): {Handle to edit record}

Notes

1. In a styled edit record, the old editing routines TECut, TECopy, and
TEPaste [11:5.5.2] now operate directly via the global desk scrap [1:7.4]
instead of the internal Toolbox text scrap.

2. Text cut or copied to the scrap ls stored under type ' TEXT ' [1:8.4. l],
accompanied by a style-scrap record [7.2.7] under type 'styl '.

3. TEStylPaste pastes the styled contents of the scrap into the edit
record's text at the current selection range or insertion point.

4. The old routine TEPaste [11:5.5.2) pastes just the text from the scrap
but ignores the style, using instead the style of the first character
being replaced. If the selection is empty (an insertion point), it uses
the edit record's current null style (7.2.6], if any, or the style of the
character preceding the insertion point.

5. If the desk scrap does not contain a 'styl' entcy, TEStylPaste is
equivalent to TEPaste.

6. For backward compatibility, all text cut or copied in a styled edit
record is also written to the Toolbox scrap, but without its accompa
nying style information.

7. Although the Toolbox and desk scraps are always in agreement for
styled edit records, the old transfer routines TEFromScrap and
TEToScrap [11:5.5.5) are still supported for compatibility.

8. In unstyled edit records, cutting and pasting take place via the
Toolbox scrap only, as before (11:5.5.2), and TEStylPaste is equiva
lent to TEPaste.

9. The trap macro for TEStylPaste expands to call the generic trap
_TEDispatch with the routine selectors shown below.

350 Styled Text

~ liill I Assembly Language Information

Trap macros and routine selector:

(Pascal) (Assembly) Trap
word Routine name Trap macro

TECut
TECopy
TEPaste
TEStylPaste

_TECut
_TECopy
_TEPaste
_TEStylPaste

$A9D6

$A9D5

$A9DB

$A83D

7.3.6 Scrapless Styling

function GetS t ylScrap
(editRec : TEHandle)

: StScrpHandle:

procedure SetStylScrap
(startPos

endPos
newStyles

red raw

editRec

procedure TEStylinsert

LONGINT:

LONG INT :
StScrpHandle:
BOOLEAN:

TEHandle):

(textPtr Ptr :
textLength LONGINT :

t ext Styles StScrpHandle:
edi tRec TEHandle) :

(Handle to edit record}

{Styles for current selection}

(Starting character position)

(Ending character position}

{Styles to apply}

(Redraw after change?)

(Handle to edit record}

(Pointer to insertion text)

(Length of insertion text in characters)

{Styles for insertion text}

(Handle to edit record}

Routine
selec tor

0

1. These routines manipulate an edit record's style information without
using or affecting the contents of the scrap.

2. GetStylScrap returns a style-scrap record (7.2 .7) describing the
styles of the currently selected text.

351 (7.3.6) Scrapless Styling
~~~~~~~~~~~~ 

3. If the current selection ts empty (selStart = selEnd [11:5.1.1]) or if 
edi tRec ls an unstyled edit record, the function result Is NIL. 

4. SetStylScrap appltes the styles defined by a style-scrap record 
[7 .2. 7) to a specified range of characters. 

6. If the character range from startPos to endPos ts shorter than the 
total number of characters covered by newStyles, unused styles at 
the end of newStyles are Ignored: If longer, the last style defined ls 
applied to all excess characters In the range. 

6. The current selection range ts not affected. 

7. If the redraw parameter Is TRUE, the text ts redrawn In the new styles. 

8. If newStyles = NIL or If edi tRec ls an unstyled edit record, Set -
StylScrap has no effect. 

9. TEStylinsert inserts styled text at the beginning of the current 
selection, but without replacing the selected text. If the selection is an 
insertion point. the new text ls inserted at that point. 

10. The selection range Is adjusted by the length of the Insertion, so that 
the same characters remain selected after the operation as before. 

11. textPtr Is a pointer to the text to be inserted; textLength is its 
length In characters. 

12. textStyles ts a handle to a style-scrap record [7.2.7) defining the 
styles for the inserted text. 

13. The edit record's text is automatically rewrapped to the destination 
rectangle and redisplayed within the view rectangle. 

14. If text Styles = NIL or if edi tRec ls an unstyled edit record, 
TEStylinsert ls equivalent to TEinsert [11:5.5.3). 

16. The trap macros for these routines expand to call the generic trap 
_TEDispatch with the routine selectors shown below. 

ID I Assembly Language Information ---IUll...,___ _____ _ 
n-ap macros and routine selectors: 

(Pascal) (Assembly) Trap Routine 
Routine name Trap macro word selector 

GetStylScrap _GetStylScrap $A83D 6 

SetStylScrap _SetStylScrap $A83D 11 

TEStylinsert _TEStylinsert $A83D 7 



352 Styled Text 

7 .4 Text-Related Resources 

7.4.1 Resource Type ' f c t b ' 

i----

t---·---

1-----

!--····-"""" 

1--··-·-·-

I 

ctSead (4 bytes) 
...L 

ctFlags (2 bytes) 

ctSize (2 bytes) 

value (2 bytes) 
red (2bytes) 

green 
1
(2 bytes) 

blue (
1

2 bytes) 

value (2 bytes) 

red (2 bytes) 

green 
1

(2 bytes) 

blue (2 bytes) 

--

---
·---

---
-·-

Any number 
of colors 

Structure of an 'fctb' resource 

Notes 

1. A resource of type 'fctb' defines the color table for a color font. 

2. Only font resources of type 'NFNT' [1:8.4.5) can have a color table; 
ordinacy ' FONT ' resources cannot. 

3. The color table(' fctb ')must have the same resource ID as the font 
( • NFNT ' ) itself. 

4. The structure of the resource is the same as that of an ordinacy color 
table resource of type ' c 1 u t ' . All fields have the same form and 
meaning described in (4.4.1) and (4. 7 .1 ). 

5. Fields ctSeed and ctFlags should both be O. 

6. The fontType field in the font record itself (7.1.1) defines the font's 
pixel depth. 



353 (7.4.1) Resource 1)'pe 'fctb' 
~~~~~~~~~~~~ 

7. Any color Indices not explicitly defined In the 'fctb' resource are
automatically assigned color values based on the foreground and
background colors of the current port. The lowest-numbered missing
color Index ls assigned to the port's background color, the hlghest
numbered to the foreground color, and all others to Intermediate
colors spaced uniformly between the two. If only one color Index is
missing, It ls assigned to the background color.

8. For fonts that have no 'f ctb' resource, all color values are assigned
automatically, as described in the preceding note.

APPENDIX 0-* -·..,·mw_i!C!Wi_aa ___ _

Toolbox Summary

Chapter 2 General Utilities

2.1 System Configuration

2.1.1 Operating Environment

function SysEnvirons
(whichVersion
var theEnvirons

: OSErr:

INTEGER;
SysEnvRec)

type
SysEnvRec - record

env i ronsVersion
machineType
systemVersion
proces sor
hasFPU
hasColorQD
keyboardType
atDrvrVersNum
sysVRefNum

end;

355

INTEGER;
INTEGER;
INTEGER:
INTEGER;
BOOLEAN :
BOOLEAN;
INTEGER:
INTEGER;
INTEGER

{Desired version of environment record}
{Description of operating environment}
{Result code}

{Version number of environment record}
{Model of Macintosh hardware}
{Version number of System file}
(CPU type}
(Floating-point coprocessor present?}
{Color QuickDraw available?}
(Type of keyboard}
(Version number of AppleTalk driver}
{Volume or direclory conlaining Sys Lem file}

const
CurSysEnvVers

EnvMachUnknown
EnvXL
EnvMac
Env512Ke
EnvMacPlus
EnvSE
EnvMacII
EnvMacIIx
EnvMacIIcx
EnvSE30

EnvCPUUnknown
Env68000
Env68010
Env68020
Env68030

EnvUnknownKbd
EnvMacKbd
EnvMacAndPad
EnvMacPlusKbd
EnvAExtendKbd
EnvStandADBKbd

EnvNotPresent
EnvBadVers
EnvVersTooBig

356 Appendix A

1;

= 0;
-2;
-1;
1;
2:
3;
4;

5:
6;
7;

0;
1:
2:
3;
4;

0;
1;
2:
3:
4:
5:

= -5500;
::::: -5501;
= -5502:

2.1.2 DlspatchTable

function GetTrapAddress
(trapNum : INTEGER)

: LONGINT:

procedure SetTrapAddress
(newAddr : LONGINT:
trapNum : INTEGER):

function NGetTrapAddress
(trapNum : INTEGER:
whichType : TrapType)

: LONGINT:

procedure NSetTrapAddress
(newAddr LONGINT:
trapNum INTEGER:
whichType TrapType) :

{Current version of SysEnvirons}

(Machine codes: }
{Unrecognized hardware model}
(Macintosh XL (Lisa)}
(Original Skinny or Fat Mac}
(Macintosh 512K enhanced}
(Macintosh Plus}
(Macintosh SE}
(Macintosh II}
(Macintosh Ilx}
(Macintosh llcx}
(Macintosh SE/30}

{CPU codes: }
{Unrecognized processor}
(MC68000 processor}
(MC68010 processor}
{MC68020 processor}
{MC68030 processor}

{Keyboard codes: }
{Unrecognized keyboard type}
{Original Macintosh keyboard}
{Original keyboard with optional keypad}
{Macintosh Plus keyboard}
(Apple Extended Keyboard}
{Standard Apple Desktop Bus keyboard}

(Result codes: }
{SysEnvirons not implemented}
{Invalid version number requested}
(Requested version not available}

(Trap number of desired Toolbox routine}
(Address of existing routine in memory}

{Address of replacement routine}
(Trap number of Toolbox routine to be replaced}

{Trap number of desired Toolbox routine}
{OS or Toolbox trap?}
{Address of existing routine in memory}

{Address of replacement routine}
{Trap number of Toolbox routine to be replaced}
{OS or Toolbox trap?}

357

type
TrapType = (OSTrap.

ToolTrap) :

con st
UnimplTrapNum g $9F:

2.1.3 Memory Address Mode

function GetMMUMode

(Routine resides in OS dispatch table}
(Routine resides in Toolbox dispatch table}

{Trap number of unimplemented Toolbox trap}

: Signed Byte: (Current address mode}

procedure SwapMMUMode
(var addrMode: SignedByte): {Newaddressmode;returnspreviousmode}

function StripAddress
(longAddr : Ptr)

Ptr:

const
False32B
True32B

0:
1:

2.1.4 Global Variable Access

procedure SetUpAS;

procedure RestoreAS;

function SetAS
(newAS : LONGINT)

: LONGINT:

function SetCurrentAS
.: LONGINT:

2.1.5 Shutdown and Restart

procedure ShutDwnPower:

procedure ShutDwnStart:

con st
ShutDownAlert = 42:

2.1.6 Shutdown Procedures

procedure ShutDwnlnstall
(shutDownProc
whenToCall

ProcPtr:
INTEGER):

{32-bit address}
{24-bit address}

(24-bit address mode}
{32-bit address mode}

{New value to be stored in AS }
{Previous contents of AS}

{Previous contents of AS}

{System error number of shutdown alen}

{Shutdown procedure to install}
{When should procedure be called?}

358 Appendix A

procedure ShutDwnRemove
(shutDownProc ProcPtr):

const
SDOnPowerOff = 1:
SDOnRestart 2:
SDRestartOrPower 3:
SDOnUnmount = 4:
SDOnDrivers = 8:

2.2 Memory

2.2.2 Memory Allocation

function NewHandleClear
(blockSize : Size)

: Handle:

function NewHandleSys
(blockSize : Size)

: Handle:

function NewHandleSysClear
(blockSize : Size)

: Handle:

function NewPtrClear
(blockSize : Size)

: Ptr:

function NewPtrSys
(blockSize Size)

: Ptr;

function NewPtrSysClear
(blockSize Size)

: Ptr:

2.2.3 Temporary Allocation

function MFTempNewHandle
(blockSize
var resultCode

: Handle:

procedure MFTempDisposHandle
(theHandle
var resultCode

procedure MFTempHLock
(theHandle
var resultCode

Size:
OSErr)

Handle:
OSErr):

Handle:
OSErr) :

(Shutdown procedure to remove)

(Call procedure before power-off}
(Call procedure before restart)
{Call procedure before power-off or restart)
{Call procedure before unmounting volumes)
{Call procedure before closing drivers)

{Size of needed block in bytes)
{Handle to new relocatable block)

{Size of needed block in bytes}
{Handle to new relocatable block)

{Size of needed block in bytes}
{Handle to new relocatable block}

{Size of needed block in bytes}
{Pointer to new nonrelocatable block}

{Size of needed block in bytes}
{Pointer to new nonrelocatable block}

{Size of needed block in bytes}
{Pointer to new nonrelocatable block}

{Size of needed block in bytes)
{Result code}
{Handle to temporary relocatable block}

{Handle to temporary block to be deallocated)
{Result code}

{Handle to temporary block to be locked}
{Result code}

procedure MFTempHUnlock
(theHandle
var resultCode

Handle:
OSErr):

2.2.4 Available Temporary Space

function MFFreeMem
: LONGINT:

function MFMaxMem
(var growBytes

: Size:

function MFTopMem
: Ptr:

2.3 Resources

Size)

2.3.2 ROM-Based Resources

function RGetResource
{rsrcType : ResType:
rs re ID INTEGER)

: Handle:

2.4 Arithmetic

2.4.1 Small Fractions

type
SmallFract = INTEGER:

const
MaxSmallFract = $0000FFFF:

function Fix2Smal1Fract
{theNumber : Fixed)

: SmallFrac t:

function Smal1Fract2Fix
(theNumber : SmallFract)

: Fixed:

(Handle to temporary block to be unlocked)
(Result code)

(Total bytes available for temporary allocation)

(Returns maximwn bytes for temporary expansion}
(Size of largest available temporary block)

{Pointer to end of memory}

(Resource type}
(Resource ID}
(Handle to resource}

{Largest possible small fraction)

{Fixed-point number to be converted}
(Equivalent small fraction}

{Small fraction to be converted}
(Equivalent fixed-point number)

360 Appendix A

Chapter 3 Events

3.1 Events

3.1.1 Event Messages

const
ADBAddrMask = $00FFOOOO:
KeyCodeMask $0000FFOO:
CharCodeMask $000000FF:

3.1.2 Event Modifiers

$1000:
$0800;

= $0400:

const
ControlKey ""
OptionKey
AlphaLock
ShiftKey
CmdKey

BtnState

ActiveFlag

$0200:
... $0100:

= $0080:

$0001:

3.1.3 Retrieving Events

function WaitNextEvent
(mask
var theEvent
sleepTicks
mouseRgn

: BOOLEAN:

INTEGER:
EventRecord:
LONGINT:
RgnHandle)

(Mask for ADB address)
(Mask for key code)
(Mask for character code}

(Control key}
(Option key}
(Caps Lock key}
(Shift key}
(Command key}

(Mouse button}

(Activate or deactivate event?}

(Mask designating event types of interest}
(Returns information about event}
(Length of time to suspend program, in ticks}
(Mouse-tracking region in global coordinates}
(Should application respond to event?}

3.2 Notifications

3.2.1 Notlflcation Records

type
NMR.ec record

qLink QElemPtr:
qType INTEGER:
nmFlags INTEGER:
nmPrivate LONGINT:
nmReserved INTEGER:
nmMark INTEGER;
nmSicon Handle:
nmSound Handle;
nmStr StringPtr;
nmResp ProcPtr:
nmRefCon LONG INT

end:

con st
NMType ... 8:

3.2.2 Posting Notifications

function NMinstall
(theRequest QElemPtr)

: OSErr:

function NMRemove
(theRequest : QElemPtr)

: OSErr:

const
NMTypeErr = -299:
QErr -1;

3.2.3 Response Procedures

procedure YourResponse
(theRequest QElemPtr):

(Pointer to next queue element}
(Queue type(= NMType)}
(Private}
(Private}
(Private}
(Item to mark on Apple menu)
(Handle to small icon to display in menu bar}
(Handle to sound to be played)
(Pointer to text to display in alert box}
(Pointer to response procedure}
(Reference constant for application use}

{Queue type for a notification queue}

{Pointer to notification request}
{Result code}

(Pointer to notification request)
(Result code}

{Wrong queue type}
(Element not found in queue}

{Pointer to notification request}

362 Appendix A

Chapter 4 Color Fundamentals

4.1 Classic Color Model

4.1.1 Color Values

const

NormalBit = O:
InverseBi 1: - 1:

BlueBit c 2:
GreenBil: = 3:
RedBit = 4:

BlackBi t = 5:
YellowBit 6:
MagentaBil: = 7:
CyanBil: ""' 8:

BlackColor = $0021:
Whil:eColor = $001E:

RedColor = $OOCD:
'GreenColor = $0155:
BlueColor = $0199:

CyanColor = $0111:
MagentaColor = $0089:
YellowColor = $0045;

{Bit numbers for color planes:)
{Normal monochrome (black-on-white))
(Inverse monochrome (white-on-black))

{Blue}
{Green)
{Red}

{Black}
{Yellow}
{Magenta}
(Cyan}

(Color values for drawing operations:
{Black}
{White}

{Red}
(Green}
{Blue}

{Cyan}
(Magenta}
(Yellow}

4.1.2 Foreground and Background Colors

type
GrafPorl: record

:
f gColor
bkColor

end:

procedure ForeColor
(newColor

procedure BackColor
(newColor

LONGINT:
LONGINT:

LONGINT):

LONGINT):

(Cunent foreground color}
(Cunent background color}

{New foreground color}

{New background color}

4.1.3 Color Planes

type
GrafPort = record

colrBit INTEGER:

end:

procedure ColorBit
(whichPlane : INTEGER) :

4.2 Color Representation

4.2.1 Color Formats

type
RGBColor = record

red
green
blue

end:

CMYColor = record
cyan
magenta
yellow

end:

HSVColor ... record
hue

INTEGER:
INTEGER:
INTEGER

SmallFract:
SrnallFract:
SmallFract

SmallFract:
saturation SmallFract:
value Smal!Fract

end:

HSLColor ""' record
hue SmallFract:
saturation SmallFract:
lightness Smal!Fract

end:

4.2.2 Color Conversion

procedure RGB2CMY
(fromColor RGBColor:
var toColor CMYColor):

procedure CMY2RGB
(fromColor CMYColor:
var toColor RGBColor):

(Current color plane)

(New color plane)

{Level of red component}
(Level of green component}
{Level of blue component)

(Level of cyan component)
(Level of magenta component}
(Level of yellow component}

(Hue)
(Saturation)
(Value (brightness))

(Hue}
(Saturation)
{Lightness}

(Color to be converted. in RGB format)
{Equivalent color in CMY format}

{Color to be converted. in CMY format}
(Equivalent color in RGB format}

364 Appendix A

procedure RGB2HSV
(fromColor RGBColor:
var toColor HSVColor) :

procedure HSV2RGB
(fromColor HSVColor:
var toColor RGBColor):

procedure RGB2HSL
(fromColor RGBColor:
var toColor HSLColor) :

procedure HSL2RGB
(fromColor HSLColor;
var toColor RGBColor):

4.2.3 The Color Picker

function GetColor
(topLeft
promptString
startColor
var pickedColor

: BOOLEAN;

Point;
Str255;
RGBColor;
RGBColor)

4.3 Graphics Devices

4.3.1 Device Records

type
GDHandle = AGDPtr;
GDP tr = "GDevice:

GDevice = record
gdRefNum
gdID

INTEGER;
INTEGER:
INTEGER:
ITabHandle:
INTEGER:
SProcHndl:
CProcHndl:
INTEGER:

(Color to be converted, in RGB format}
(Equivalent color in HSV format}

{Color to be converted, in HSV format}
(Equivalent color in RGB format}

(Color to be converted, in RGB format}
(Equivalent color in HSL format}

{Color to be converted, in HSL format}
(Equivalent color in RGB format}

{Top-left comer of dialog in screen coordinates)
{Prompting string}
(Initial color to propose in dialog box}
{Returns color selected by user}
{Did user confirm color selection?}

(Driver reference number}
(Client ID for matching routines [4.6.2]}
(Device type}
(Inverse table [4.4.2)}
{Preferred inverse table resolution [4.4.2))
(List of custom search functions [4.6.1]}
(List of custom complement procedures [4.6.l]}
{Attribute flags [4.3.5]}

gdType
gd!Table
gdResPref
gdSearchProc
gdCompProc
gdFlags
gdPMap
gdRefCon
gdNextGD
gdRect
gdMode

PixMapHandle;
LONGINT:

(Pixel map to hold displayed image}
{CalcCMask and SeedCFill parameters [S.4.5]}
(Next device in device list) GDHandle:

Rect;
LONGINT:

(Boundary rectangle}
(Current display mode}

const

gdCCBytes
gdCCDepth
gdCCXData
gdCCXMask
gdReserved

end:

CLUTType c: O:
FixedType = 1:
DirectType ... 2:

INTEGER:
INTEGER:
Handle:
Handle:
LONG INT

{Private}
{Private}
{Private}
{Private}
{Reserved for future expansion}

{Mapped device with color lookup table}
{Fixed device, no lookup table}
{Direct ROB device}

4.3.2 Creating and Destroying Devices

function NewGDevice
(dRefNum : INTEGER:
initMode : LONGINT)

: GDHandle:

procedure InitGDevice
(dRefNum
newMode
theDevice

procedure DisposGDevice
(theDevice

4.3.3 Device List

function GetDeviceList

INTEGER:
LONGINT:
GDHandle):

GDHandle) :

: GDHandle:

function GetNextDevice
(thisDevice : GDHandle)

: GDHandle:

4.3.4 Current Device

procedure SetGDevice
(newDevice : GDHandle) :

function GetGDevice
: GDHandle:

function GetMaxDevice
(globalRect : Rect)

: GDHandle:

function GetMainDevice
: GDHandle:

{Driver reference number)
{Initial display mode}
{Handle to device record}

{Driver reference number}
(New display mode}
(Handle to device record}

{Handle to device record}

{Fust device in list}

(Handle to a device}
(Next device in list}

(Handle to device to be made cunent}

(Handle to cunent device}

(Rectangle to intersect with, in global coordinates}
{Deepest device that intersects with this rectangle}

(Handle to main device}

366 Appendix: A

4.3.5 Device Attributes

function TestDeviceAttribute
(theDevice : GDHandle:
whichAttr : INTEGER)

: BOOLEAN:

procedure SetDeviceAttribute
(theDevice GDHandle:
whichAttr INTEGER:
newValue BOOLEAN) :

const
GDDevType
RAMinit
MainScreen
All!nit

0;
10:

= 11:
12;

ScreenDevice 13:
NoDriver 14:
ScreenActive = 15:

4.4 Color Tables

4.4.1 Color Table Structure

type
CTabHandle
CTabPtr
ColorTable

CSpecArray
ColorSpec

"CTabPtr:
"ColorTable:
record

ctSeed
ctFlags
ctSize
ctTable

end:

LONGINT;
INTEGER:
INTEGER:
CSpecArray

array [0 .. 0] of ColorSpec;
record

value
rgb

end;

INTEGER:
RGBColor

{Handle to device record}
{Bit number of desired attribute}
{Current value of attribute}

{Handle to device record}
{Bit number of desired attribute}
{New value of attribute}

{Supports color}
{Initialized from RAM}
{Is main device (contains menu bar)}
{Initialized from a ' sc rn' resource}
{Is a screen device}
{Has no driver}
{Available for drawing}

{Seed value for coordinating inverse table}
{Attribute flags}
{Number of entries minus 1}
{Array of color specifications}

{Color index}
{True color value}

4.4.2 Inverse Tables

type
ITabHandle = AITabPtr:
ITabPtr - AITab:
!Tab = record

LONGINT:
INTEGER:

{Seed value}
{Bit resolution}

iTabSeed
iTabRes
itTable array [0 .. 0] of SignedByte {Array of color indices}

end:

procedure Make!Table
(colorTab
inverseTab
bitRes

CTabHandle:
ITabHandle:
INTEGER) :

{Handle to color table)
{Handle to inverse table}
{Desired bit resolution}

4.4.3 Creating and Destroying Color Tables

function GetCTable
(cTabID : INTEGER)

: CTabHandle:

function GetCTSeed
: LONGINT:

procedure DisposCTable
(theTable : CTabHandle):

4.4.4 Color Mapping

procedure Index2Color
{the!ndex
var theColor

function Color2Index

LONGINT:
RGBColor) :

(theColor : RGBColor)
: LONGINT:

function RealColor
(theColor : RGBColor)

: BOOLEAN:

procedure InvertColor
(var theColor : RGBColor) :

procedure GetSubtable
(theSubtable
iTabRes
sourceTable

CTabHandle:
INTEGER:
CTabHandle):

(Resource ID of color table resource}
{Handle to new color table}

{Seed value for color table}

{Handle to color table to destroy}

{Color index}
{Returns corresponding color value}

{Color value}
{Corresponding color index}

{Color value}
{Exact match available?}

(Color to be inverted; returns complement}

(Subtable of matched colors}
(Bit resolution for matching}
{Color table to be searched}

368 Appendix A

4.4.5 Color Table Management

procedure SetEntries
(startindex
nEntries
newColors

procedure SaveEntries
(mainTable
saveTable

INTEGER:
INTEGER:
CSpecArray) :

{First color index to be set}
(Number of colors minus 1}
{Array of color specifications}

var whichEntries

CTabHandle: {Color table to copy from}
CTa bHandl e: {Color table to copy to}
ReqListRec) : (List of entries to copy}

procedure RestoreEntries
(saveTable
mainTable
var whichEntries

type

CTabHandl e; (Color table to copy from}
CTabHandle; {Color table to copy to}
ReqListRec): {List of entries to copy}

ReqListRec = record
reqLSize
reqLData

end;

INTEGER:
array [0 .. 0) of INTEGER

{Number of entries to copy}
{Array of index numbers}

4.4.6 Protecting and Reserving Entries

procedure ProtectEntry
(color Index
onOrOf f

procedure ReserveEntry
(color Index
onOrOff

INTEGER:
BOOLEAN):

INTEGER;
BOOLEAN);

4.5 Color Palettes

4.5.1 Palette Records

type
PaletteHandle
PalettePtr

Palette

"PalettePtr:
,..Palette:

record
pmEntries
pmDataFields
pminfo

end;

{Color index}
{Protect or release?}

{Color index}
{Reserve or relinquish?}

INTEGER;
array [0 .. 6] of INTEGER:
array [0 .. 0] of Colorinfo

{Number of colors}
{Private}
{Array of colors}

Color Info record
ciRGB
ciUsage
ciTolerance
ciDataFields

RGBColor: (ROB color value}
INTEGER: (Usage level)
INTEGER: (Color tolerance)
array [O .. 2] of INTEGER {Private)

end:

const
PMCourteous = O:
PMDithered = 1:
PMTolerant = 2:
PMAnimated = 4:
PMExpiicit = B:

(Courteous color}
{Dithered color (not yet implemented))
{Tolerant color)
(Animated color)
{Explicit color)

4.5.2 Initializing the Toolbox for Palettes

procedure InitPalettes:

4.5.3 Creating and Destroying Palettes

function NewPalette
(nEntries INTEGER:
entryColors CTabHandle:
entryUsage INTEGER:
entryTolerance INTEGER)

: PaletteHandle:

function GetNewPalette
(paletteID : INTEGER)

: PaletteHandle:

procedure DisposePalette

(Number of colors in palette}
{Table of colors}
(Usage level for all entries)
{Tolerance value for all entries}
(Handle to new palette)

(Resource ID of palette}
(Handle to new palette)

(thePalette : PaletteHandle): (Handle to palette to be destroyed}

4.5.4 Setting Palette Colors

procedure GetEntryColor
(thePalette
entry Index
var entryColor

procedure SetEntryColor

PaletteHandle:
INTEGER:
RGBColor):

(thePalette PaletteHandle:
entryindex : INTEGER:
newColor RGBColor):

{Handle to palette}
{Palette index of desired entry}
(Returns current color value}

(Handle to palette}
(Palette index of desired entry}
{New color value}

procedure GetEntryUsage
(thePalette PaletteHandle: (Handle to palette}
entrylndex INTEGER: (Palette index of desired entry}
var entryUsage INTEGER: (Returns current usage level)
var entryTolerance INTEGER) : (Returns current tolerance value}

370 AppendfxA

procedure SetEntryUsage
(thePalette
entryindex
newUsage
newTolerance

PaletteHandle:
INTEGER:
INTEGER:
INTEGER) :

(Handle to palette}
(Palette index of desired entry}
(New usage level}
(New tolerance value}

4.5.6 Palette Conversion

procedure CTab2Palette
(fromCTab
toPalette
entryUsage
entryTolerance

procedure Palette2CTab
(fromPalette
toCTab

procedure CopyPalette
(fromPalette
toPalette
fromEntry
toEntry
nEntries

CTabHandle; (Color table to convert from}
PaletteHandle: (Palette to convert to)
INTEGER; (Usage level for all entries}
INTEGER) : (Tolerance value for all entries}

PaletteHandle:
CTabHandle):

PaletteHandle:
PaletteHandle:
INTEGER:
INTEGER:
INTEGER):

{Palette to convert from}
(Color table to convert to}

{Palette to copy from)
{Palette to copy to}
(Index of first entry to copy from)
{Index of first entry to copy to}
(Number of entries to copy}

4.6 Nuts and Bolts

4.6.1 Custom Matching Routines

type
SProcHndl - "'SProcPtr:
SProcPtr
SProcRec

CProcHndl
CProcPtr
CProcRec

"'SProcRec:
record

nxtSrch
srchProc

end:

"'CProcPtr:
"'CProcRec:
record

nxtComp
compProc

end:

function YourSearchProc
(colorVal ue
var colorindex

: BOOLEAN:

Handle:
ProcPtr

CProcHndl:
ProcPtr

RGBColor:
LONG INT)

(Handle to next list element}
(Pointer to search function}

(Handle to next list element)
(Pointer to complement procedure}

(Color to be matched}
(Returns corresponding color index}
(Was color matched?}

procedure YourCompProc
(var colorValue : RGBColor): (Colortobeinverted;returnscomplement}

4.6.2 Installing Matching Routines

procedure Add Search
(searchFunc : ProcPtr): (Search function to be added}

procedure Add Comp
(compProc : ProcPtr): (Complement procedure to be added}

procedure Del Search
(searchFunc : ProcPtr) : {Search function to be deleted}

procedure Del Comp
(compProc : ProcPtr): (Complement procedure to be deleted}

procedure SetClientID
(clientlD : INTEGER): (Client ID to be set}

4. 7 Color-Related Resources

4.7.1 Resource type 'clut'

const
DefQDColors = 127: (Resource ID of"classic QuickDraw" color table}

Chapter 5 Color Drawing

5.1 Graphical Foundations

5.1.1 Pixel Maps

type
PixMapHandle
PixMapPtr

PixMap

"PixMapPtr;
"PixMap;

record
baseAddr
rowBytes
bounds
pmVersion
packType
packSize
hRes
vRes

Ptr:
INTEGER:
Rect:
INTEGER:
INTEGER:
LONG INT:
Fixed;
Fixed:

{Pointer to pixel image}
(Row width in bytes)
{Boundary rectangle)
{Color QuickDraw version number}
{Format of packed image}
(Size of packed image in bytes}
{Horizontal resolution in pixels per inch}
{Vertical resolution in pixels per inch}

372 Appendix A

pixel Type
pixelSize
cmpCount
cmpSize
planeBytes
pmTable
pmReserved

end:

INTEGER:
INTEGER:
INTEGER:
INTEGER:
LONGINT:
CTabHandle:
LONG INT

(Storage format}
{Physical pixel si7.e in bits}
(Number of color planes}
(Logical pixel si7.e pez plane, in bits}
(Plane offset in bytes}
(Handle to color table}
(Reserved for future expansion}

5.1.2 Creating and Destroying Pixel Maps

function NewPixMap
: PixMapHandle:

procedure CopyPixMap
(fromPix : PixMapHandle:
toPix PixMapHandle) :

procedure SetPortPix
(thePix : PixMapHandle) :

procedure DisposPixMap
(thePix : PixMapHandle):

5.1.3 Color Graphics Ports

type
CGrafPtr - "CGrafPort:

CGrafPort = record
device INTEGER;
portPixMap PixMapHandle:
portVersion INTEGER:
grafVars Handle:
chExtra INTEGER:
pnLocHFrac INTEGER:
portRect Rect:
visRgn RgnHandle:
clipRgn RgnHandle:
bkPixPat PixPatHandle:
rgbFgColor RGBColor:
rgbBkColor RGBColor:
pnLoc Point:
pnSize Point:
pnMode INTEGER:
pnPixPat PixPatHandle:
fillPixPat PixPatHandle:
pnVis INTEGER:
txFont INTEGER:
txFace Style:
txMode INTEGER:
txSize INTEGER:

(Handle to new pixel map}

(Pixel map to be copied}
{Pixel map to copy it to}

(New pixel map for cunent port}

{Pixel map to be destroyed}

(Device code for font selection [1:8.3.1)}
{Pixel map for this port [5.1.1]}
(Color QuickDraw version number}
(Handle to auxiliary port record [5.1.4]}
(Extra character width}
(Fractional pen location}
(Port rectangle}
(Visible region}
(Clipping region}
(Background pixel pattern (5.21]}
{RGB value of foreground color [5.4.1]}
{RGB value of background color (5.4. l]}
{Current pen location (1:5.2.1]}
(Dimensions of graphics pen [1:5.2.1]}
{Transfer mode for graphics pen (5.3.1]}
(Pixel pattern for line drawing (5.2.1]}
(Pixel pattern for area fill [5.2.1]}
(Pen visibility level [l:S.2.3]}
{Font number for text (1:8.2.1, 1:8.3.1])
(Type style for text [1:8.3.1]}
{Transfer mode for text [5.3.1, 1:8.3.1]}
(Type size for text (1:8.3.1]}

spExtra
f gColor
bkColor
colrBit
patStretch
pie Save
rgnSave
poly Save
grafProcs

end:

Fixed:
LONGINT:
LONGINT:
INTEGER:
INTEGER:
Handle:
Handle:
Handle:
QDProcsPtr

5.1.4 Auxiliary Port Record

type
GVarHandle = AGVarPtr:
GVarPtr

GrafVars

= AGrafVars:

record
rgbOpColor
rgbHiliteColor
pmFgColor
pmFgindex
pmBkColor
pmBkindex
pmFlags

end:

RGBColor:
RGBColor:
Handle:
INTEGER:
Handle;
INTEGER;
INTEGER

{Extra space between words [1:8.3.1]}
{Color index of foreground color [S.4.1]}
{Color index of background color [5.4.1])
{ CUJTent color plane [4.1.3]}
{Private}
{Private}
{Private}
{Private}
{Pointer to bottleneck procedmes [S.S.1]}

{Reference color for transfer modes}
{Highlighting color}
{Palette containing foreground color}
{Palette index of foreground color}
{Palette containing background color}
{Palette index of background color}
(Private flags for palette usage}

5.1.5 Creating and Destroying Color Ports

procedure OpenCPort
(whichPort

procedure InitCPort
(whichPort

procedure CloseCPort
(whichPort

5.1.6 Pixel Access

procedure GetCPixel
(hCoord
vCoord

CGrafPtr):

CGrafPtr) :

CGrafPtr) :

INTEGER;
INTEGER:

var pixelColor RGBColor) :

procedure SetCPixel
(hCoord
vCoord
pixel Color

INTEGER:
INTEGER:
RGBColor):

{Pointer to port to open}

{Pointer to port to initialize}

{Pointer to port to close}

{Horizontal coordinate of pixel}
{Vertical coordinate of pixel}
{Returns cUJTent color of pixel}

{Horizontal coordinate of pixel}
(Vertical coordinate of pixel}
{Desired new color of pixel}

374 AppendixA

5.1.7 Error Reporting

function QDError
INTEGER:

const
NoErr
CMatchErr
CTempMemErr =
CNoMemErr
CRangeErr
CProtectErr
CDevErr
CResErr

O:
-150:
-151:
-152:
-153:
-154:
-155;
-156:

5.2 Pixel Patterns

{Result code of last QuickDraw or color operation}

{No error; all is well}
{Unable to match requested color}
(Unable to allocate temporary memory}
(Unable to allocate memory}
(Color index out of range}
(Color table protection violation}
{Invalid type for graphics device}
{Invalid resolution for inverse table}

5.2.1 Pixel Pattern Structure

type
PixPatHandle
PixPatPtr
PixPat

"PixPatPtr:
"PixPat:
record

patType
patMap
patData
patXData
patXValid
patXMap
patlData

end:

INTEGER: {Pattern type}
PixMapHandle: {Characteristics of pixel image}
Handle ; (Pixel image}
Handle: {Expanded pixel image}
INTEGER: {Is expanded image valid?}
Hand 1 e : {Characteristics of expanded image}
Pattern {Bit pattern for old-style ports}

5.2.2 Creating and Destroying Pixel Patterns

function NewPixPat
: PixPatHandle:

function GetPixPat
(patternID : INTEGER)

: PixPatHandle:

procedure DisposPixPat
(thePixPat : PixPatHandle):

{Handle to new pixel pattern}

{Resource ID of desired pixel pattern}
{Handle to pattern in memory}

(Pixel pattern to be destroyed}

5.2.3 Filling Pixel Patterns

procedure MakeRGBPat
(toPixPat PixPatHandle: (Pixel pattern to be filled}
fromColor RGBColor): (Color value to be approximated}

procedure CopyPixPat
(fromPixPat PixPatHandle: (Pixel pattern to be copied}
toPixPat PixPatHandle): (Pixel pattern to copy it to}

6.2.4 Using Pixel Patterns

procedure PenPixPat
(newPenPat : PixPatHandle): (New pen pattern}

procedure BackPixPat
(newBackPat PixPatHandle): (New background pattern}

procedure SetDeskCPat
(newDeskPat PixPatHandle) : {New desk pattern}

5.3 Color Transfer Modes

5.3.1 Mode Constants

const
Blend ... 32:
Add Pin ""' 33;
Add Over ""' 34:
Sub Pin - 35;
Transparent ... 36:
AD Max - 37:
SubOver - 38:
AD Min ... 39;
Hilite - 50:

(Blend col0ts [5.3.3])
{Add with maximum [S.3.2])
{Add with wraparound [S.3.2])
{Subtract with minimum [S.3.2)}
{Copy with ttansparency [S.3.4])
{Arithmetic maximum [S.3.3))
{Subtract with wraparound [S.3.2)}
{Arithmetic minimum [S.3.3])
{Highlight background [S.3.4])

5.3.2 Additive and Subtractive Modes

const
AddOver = 34;
AddPin ... 33:
SubOver = 38:
SubPin • 35:

procedure OpColor
(newColor RGBColor);

{Add with wraparound)
{Add with maximum)
{Subtract with wraparound}
{Subtract with minimum}

{Color to pin to}

376 AppendlxA

5.3.3 Comparative and Comblnative Modes

const
ADMax = 37:
ADMin - 39:
Blend 32:

{Arithmetic maximum}
(Arithmetic minimum}
{Blend colors}

5.3.4 Transparency and Highlighting

const
Transparent ~ 36:
Hilite g 50:

HiliteMode ~ $938:
PHiliteBit = O:

procedure HiliteColor
(newColor : RGBColor):

(Copy with transparency}
(Highlight background}

{Address of highlighting flag}
(Bit number of highlight bit for Bi tClr [1:2.2.1])

(New highlight color)

5.4 Color Drawing Operations

5.4.1 Foreground and Background Colors

procedure GetForeColor
(var theColor RGBColor):

procedure GetBackColor
(var theColor RGBColor):

procedure RGBForeColor
(newColor : RGBColor):

procedure RGBBackColor
(newColor : RGBColor):

procedure PMForeColor
(paletteEntry

procedure PMBackColor
(paletteEntry

5.4.2 Shape Drawing

procedure FillCRect
(theRect : Rect:

INTEGER):

INTEGER):

fillPat : PixPatHandle) :

procedure FillCRoundRect
(theRect
cornerWidth
cornerHeight
fill Pat

Rect:
INTEGER:
INTEGER:
PixPatHandle) :

{ Cmrent foreground color)

{ Cmrent background color)

(New foreground color)

(New background color)

(Palette index of new foreground color}

(Palette index of new background color}

(Rectangle to be filled)
(Pixel pattern to fill with}

(Body of rectangle}
(Width of corner oval)
(Height of comer oval}
(Pixel pattern to fill with}

procedure FillCOval
(inRect Rect:
fill Pat PixPatHandle):

procedure FillCArc
(inRect Rect:
startAngle INTEGER:
arcAngle INTEGER;·
fill Pat PixPatHandle):

procedure FillCPoly
(thePolygon PolyHandle:
fill Pat PixPatHandle):

procedure FillCRgn
(theRegion RgnHandle:
fill Pat PixPatHandle):

&.4.S Color Table Animation

procedure AnimateEntry
(inWindow
paletteindex
newColor

procedure AnimatePalette
(inWindow
newColors
firstColor
firstEntry
nColors

WindowPtr:
INTEGER:
RGBColor):

WindowPtr:
CTabHandle;
INTEGER:
INTEGER:
INTEGER);

&.4.4 Low-Level Pixel Transfer

procedure CopyBits
(sourceMap BitMap:
destMap BitMap;
sourceRect Rect:
destRect Rect:
transMode INTEGER:
clipTo RgnHandle):

procedure CopyMask
(sourceMap BitMap:
maskMap BitMap:
destMap BitMap:
sourceRect Rect:
maskRect Rect:
destRect Rect):

(Rectangle defining oval)
(Pixel pattern to fill with)

(Rectangle defining oval)
(Starting angle}
(Extent of me l
{Pixel pattern to fill with)

(Handle to polygon to be filled}
{Pixel pattern to fill with}

(Handle to region to be filled}
(Pixel pattern to fill with}

(Window the palette belongs to}
(Palette index of entry to be set)
(Color to set it to}

(Window the palette belongs to)
(Color table containing new color values}
(Color table index of first new color}
(Palette index of first entry to be set}
(Number of entries to be set}

(Bit or pixel map to copy &om)
(Bit or pixel map to copy to}
(Rectangle to copy from}
(Rectangle to copy to)
{Transfer mode)
(Region to clip to)

(Bit or pixel map to copy &om}
(Bit map containing mask}
(Bit or pixel map to copy to}
(Rectangle to copy from}
(Rectangle containing mask)
(Rectangle to copy to}

378 AppendlxA

5.4.6 Special Operations

procedure CalcCMask
(sourceMap BitMap: (Bit Cll' pixel map to operate on}
maskMap BitMap: (Bit map to hold result inask}
sourceRect Rect: {Rectangle to operate on}
maskRect Rect: (Rectangle to hold result mask}
edgeColor RGBColor: (Color defining edge of masked region}
searchFunc ProcPtr: {Pointer to custom search function}
searchParam LONGINT): {Parameter for custom search function}

procedure SeedCFill
(sourceBits BitMap: {Bit Cll' pixel map to operate on}
maskBits BitMap; {Bit map to hold result mask}
sourceRect Rect: {Rectangle to operate on)
maskRect Rect: {Rectangle to hold result mask}
seedHoriz INTEGER: {Horizontal coordinate of starting point}
seed Vert INTEGER: {Vertical coordinate of starting point}
searchFunc ProcPtr: (Pointer to custom search function}
searchParam LONGINT) : (Parameter for custom search function}

type
MatchRec ... record

red INTEGER: {Red component of seed or edge color}
green INTEGER: (Green component of seed or edge color}
blue INTEGER: (Blue component of seed or edge color)
matchData LONG INT {Value passed for searchParam)

end:

5.5 Nuts and Bolts

5.5.1 Color Bottleneck

type
CQDProcsPtr ... ACQDProcs:

CQDProcs ... record
textProc Ptr: (Draw text)
lineProc Ptr: (Draw lines)
rectProc Ptr: {Draw rectangles}
rRectProc Ptr: {Draw rounded rectangles}
ovalProc Ptr: (Draw ovals}
arcProc Ptr: (Draw arcs and wedges}
polyProc Ptr; (Draw polygons}
rgnProc Ptr: {Draw regions}
bitsProc Ptr: (Copy bit images}
commenl:Proc Ptr: (Process picture comments}
txMeasProc Ptr: {Measure text}
getPicProc Ptr: {Retrieve picture definitions}
putPicProc Ptr; (Save picture definitions}

opCodeProc Ptr:
newProcl
newProc2
newProc3
newProc4
newProc5
newProc6

end:

procedure SetStdCProcs
(var theProcs

Ptr:
Ptr;
Ptr:
Ptr;
Ptr:
Ptr

CQDProcs):

{Process unknown picture operation}
{Reserved for future expansion}
(Reserved for future expansion}
(Reserved for future expansion}
(Reserved for future expansion}
(Reserved for future expansion}
{Reserved for future expansion}

{Color bottleneck record to initialize}

Chapter 6 Color and the Toolbox

6.1 Color Icons

8.1.1 Color Icon Structure

type
CiconHandle = ACiconPtr:
CiconPtr

Cleon

- ACicon:

- record
PixMap: {Full pixel map}
BitMap: (Bit mask}
BitMap:
Handle:

iconPMap
iconMask
iconBMap
iconData
iconMaskData array (0 •. 0] of INTEGER

(Substitute bit map}
(Handle to pixel image}
(Private}

end:

8.1.2 Using Color Icons

function GetCicon
(iconID : INTEGER)

: CiconHandle:

procedure PlotCicon
(inRect
the Icon

procedure DisposCicon

Rect:
CiconHandle):

(theicon: CiconHandle):

(Resource ID of desired icon}
(Handle to icon in memory}

(Rectangle to plot in}
(Handle to icon}

(Handle to icon to be destroyed}

380 Appendix A

6.2 Color Cursors

6.2.1 Color Cursor Structure

type
CCrsrHandle = ACCrsrPtr:
CCrsrPtr

CCrsr

Bits16

= ACCrsr:

""" record
crsrType
crsrMap
crsrData
crsrXData
crsrXValid
crsrXHandle
crsrlData
crsrMask
crsrHotSpot
crsrXTable
crsrID

end:

... array [0 •. 15] of

6.2.2 Using Color Cursors

function GetCCursor
(cursorID : INTEGER)

: CCrsrHandle:

procedure SetCCursor

INTEGER:
PixMapHandle:
Handle:
Handle:
INTEGER:
Handle:
Bits16:
Bit:sl6:
Point:
LONGINT:
LONG INT

INTEGER:

(newCursor : CCrsrHandle):

procedure DisposCCursor
(oldCursor : CCrsrHandle):

6.3 Color Windows

6.3.1 Color Window Records

type
CWindowPtr
CWindowPeek

= CGrafPtr:
~ ACWindowRecord:

{Cursor type)
(Characteristics of pixel image)
{Pixel image)
{Expanded pixel image)
(Depth of expanded image}
(Reserved for future use)
(Bit image for old-style ports}
{Transfer mask)
(Point coinciding with mouse}
(Reserved for future use)
(Seed value for color table}

(16 rows of 16 bits each)

(Resource ID of desired color cursor}
(Handle to cursor in memory}

{Color cursor to be made current}

(Color cursor to be destroyed}

CWindowRecord = record
port CGrafPort:
windowKind INTEGER:
visible BOOLEAN:
hilited BOOLEAN:
goAwayFlag BOOLEAN:
spareFlag BOOLEAN:
strucRgn RgnHandle:
contRgn RgnHandle:
updateRgn RgnHandle:
windowDefProc Handle:
dataHandle Handle:
titleHandle StringHandle:
titleWidth INTEGER:
control List ControlHandle:
nextWindow CWindowPeek:
window Pie PicHandle:
ref Con LONG INT

end:

6.3.2 AuxtHary Window Records

type
AuxWinHndl - AAuxWinPtr;
AuxWinPtr • AAuxWinRec:

AuxWinRec m record
awNext
awOwner
awCTable
dialogCitem
awFlags
awReserved
awRefCon

end:

6.3.3 Window Color Tables

type
WCTabHandle = AWCTabPtr:
WCTabPtr = AWinCTab:

WinCTab m record

AuxWinHndl:
WindowPtr:
CTabHandle:
Handle:
LONGINT:
CTabHandle:
LONG INT

LONGINT:
INTEGER:
INTEGER:

(Color graphics port for this window}
(Window class}
(Is window visible?}
(Is window highlighted?}
(Does window have close region?}
(Is zooming enabled?}
{Handle to structure region}
{Handle to content region}
(Handle to update region}
{Handle to window definition function}
(Handle to definition function's data}
(Handle to window's title}
{Private}
{Handle to start of control list}
{Pointer to next window in window list}
(Picture for drawing window's contents}
{Reference constant}

{Next record in auxiliary window list}
{Window this record belongs to}
{Window color table}
(Dialog item color list}
(Private}
(Reserved for future use}
(RefCICnce constant for application use}

we Seed
wcReserved
ctSize
ctTable array (0 •• 4] of ColorSpec

(Reserved for future use}
{Reserved for future use}
(Number of entries minus 1)

{Array of color specifications}
end:

382 Appendix A
~~~~~~~~~~~~~ 

const 
WContentColor - O; 
WFrameColor - 1: 
WTextColor - 2: 
WHiliteColor = 3; 
WTitleBarColor = 4: 

6.S.4 Creating Color Windows 

function NewCWindow 
{wStorage Ptr: 
windowRect Rect: 
title Str255: 
visible BOOLEAN: 
windowType INTEGER: 
behind Window WindowPtr: 
hasClose BOOLEAN: 
refCon LONG INT) 

: WindowPtr: 

function GetNewCWindow 
{templateID INTEGER: 
wStorage Ptr: 
behind Window WindowPtr) 

: WindowPtr: 

6.S.5 Color Window Properties 

procedure SetWinColor 
{theWindow 
newCTab 

WindowPtr: 
WCTabHandle): 

function GetAuxWin 
(theWindow 
var theAuxRec 

: BOOLEAN: 

function GetWVariant 

WindowPtr: 
AuxWinHndl) 

(theWindow : WindowPtr) 
: INTEGER: 

6.S.6 Window Palettes 

procedure SetPalette 
(theWindow 
thePalette 
doUpdates 

WindowPtr: 
PaletteHandle: 
BOOLEAN): 

(Background fill color for content region) 
(Fmme and bonier color) 
{Text color for window dde) 
{Background color for close and zoom boxes} 
{Background color for tide bar) 

(Storage for window record) 
(Window's port rectangle in screen coordinates) 
(Window's tide) 
(Is window initially visible?) 
(Window definition ID) 
{Window in front of this one) 
{Does window have a close region?) 
(Window's reference constant} 
(Pointer to new window} 

(Resource ID of window template} 
{Storage for window record) 
{Window in front of this one) 
{Pointer to new window) 

{Pointer to the window) 
(New color table) 

(Pointer to the window) 
{Returns handle to auxiliary window record} 
(Does window have an auxiliary record?) 

{Pointer to the window) 
{Window's variation code) 

{Pointer to the window) 
(Handle to new palette) 
{Automatic updates?) 



function GetPalette 
(theWindow : WindowPtr) 

: PaletteHandle: 

procedure ActivatePalette 
(theWindow: WindowPtr): 

6.3. 7 Screen Properties 

procedure GetCWMgrPort 
(var cwMgrPort 

function GetGrayRgn 
: RgnHandle: 

6.4 Color Controls 

CGrafPtr): 

6.4.1 Auxiliary Control Records 

type 
AuxCtlHndl = AAuxCtlPtr: 
AuxCtlPtr - AAuxCtlRec: 

AuxCtlRec = record 
AuxCtlHndl: 

(Pointer to the window} 
(Handle to C1D'l'Cnt palette} 

(Pointer to the window} 

{Returns pointer to Color Window Manager port} 

(Handle to desktop region} 

acNext 
acOwner 
acCTable 
acFlags 
acReserved 
acRefCon 

ControlHandle: 
{Next JeCOrd in auxiliary control list} 
(Control this record belongs to} 
(Control color table} CCTabHandle: 

INTEGER: (Private} 
LONGINT: {Reserved for future use} 
LONG INT {Reference constant for application use} 

end: 

6.4.2 Control Color Tables 

type 
CCTabHandle m ACCTabPtr: 
CCTabPtr ACtlCTab: 

CtlCTab = record 
ccSeed LONGINT: {Reserved for future use} 
ccRider INTEGER: {Reserved for future use} 
ctSize INTEGER: (Number of entries minus l} 
ctTabl e array [O •• 3] of ColorSpec {Anay of color specifications} 

end: 



984 Appendix A 
~~~~~~~~~~~~-

const
CFrameColor • O:
CBodyColor • 1:
CTextColor - 2:
CThumbColor - 3:

6.4.S Color Control Properties

procedure SetCtlColor
(theControl
newCTab

function GetAuxCtl

ControlHandle:
CCTabHandle):

{Frame and border color}
{Background fill color)
{Text color for control lidc}
(Fill color for scroll box}

{Handle to the control)
(New color table)

(theControl
var theAuxRec

: BOOLEAN:

ControlHandle: {Handle to the control}
AuxCtlHndl) {Returns handle to auxiliary control record}

{Does control have an auxiliary record?}

function GetCVariant
(theControl : ControlHandle)

: INTEGER:

6.5 Color Dialogs

6.5.1 Creating Color Dialogs

function NewCDialog
(dStorage Ptr:
windowRect Rect:
title Str255:
visible BOOLEAN:
windowType INTEGER:
behindWindow WindowPtr:
hasClose BOOLEAN:
refCon LONGINT:
itemList Handle)

: DialogPtr:

6.6 Color Menus

(Handle to the control}
(Control's variation code}

(Storage for dialog record}
{Dialog window's port rectangle}
{Tide of dialog window}
(Is dialog window initially visible?}
(Dialog window's definition ID}
{Window in front of this one}
(Does dialog window have a close box?)
{Dialog window's reference constant}
(Handle to item list)
(Pointer to new dialog record)

6.6.1 Menu Color Information Tables

type
MCTableHandle a AMCTablePtr:
MCTablePtr
MCTable

a "MCTable:
a array [O •• 0) of MCEntry: (Anynumberofenlries}

MCEntryPtr
MCEntry

const

"'" "MCEntry:
record

met ID
met Item
mctRGBl
mctRGB2
mctRGB3
mctRGB4
mctReserved

end;

MCTLastlDlndic - -99:

6.6.2 Access to Menu Colors

function GetMCinf o
: MCTableHandle:

INTEGER:
INTEGER:
RGBColor:
RGBColor:
RGBColor:
RGBColor:
INTEGER

(Menu ID number}
(Item number within the menu}
(Color information (see table, [6.6.1]))
(Color information (see table, [6.6.1))}
(Colorinf~tion (see table, [6.6.1))}
(Color information (see table, [6.6.1))}
(Private}

(Dununy menu ID for last entry in table)

(Copy of current menu color info table)

procedure SetMCinfo
(newMCTab MCTableHandle): (New menu color info table}

procedure DispMCinfo
(oldMCTab MCTableHandle):

6.6.3 Managing Menu Colors

function GetMCEntry
(menuID INTEGER:
theitem : INTEGER)

: MCEntryPtr:

procedure SetMCEntries
(nEntries INTEGER:
newColors : MCTablePtr):

procedure DelMCEntries
(menuID INTEGER:
theitem : INTEGER) :

const
MCTAllitems - -98:

(Menu color info table to be destroyed}

(Menu ID of desired menu}
{Item number within the menu}
{Pointer to item •s color information entry)

{Number of entries in table}
(Table of new menu colors}

(Menu ID of desired menu}
(Item number within the menu}

{Delete all items in menu}

386 Appendix A

Chapter 7 Styled Text

7 .2 Styled Text

7.2.1 Text Styles

type
TextStyle • record

tsFont
tsFace
tsSize
tsColor

end:

INTEGER:
Style:
INTEGER:
RGBColor

7.2.2 Styled Edit Records

type
TEHandle • ATEPtr:
TEP tr ATERec:

TERec - record

lineHeight INTEGER:
fontAscent INTEGER:

:
txFont INTEGER:
txFace Style:

:
txSize INTEGER:

end:

7.2.3 Style Records

type
TEStyleHandle ~ ATEStylePtr:
TEStylePtr ~ ATEStyleRec:

TEStyleRec "'"' record
INTEGER:
INTEGER:

(Font number of typeface (1:8.2.1])
{Type style (1:8.3.1)}
(Type size in points}
{Text color [4.2.1]}

(Negative for variable line height (7.2.5)}
(Negative for variable line ascent (7.2.5))

(First half of style record handle [7.2.3))
{Last half of style record handle (7.2.3]}

(-1 for styled text)

{Number of runs)
(Number of styles)

nRuns
nStyles
styleTab
lhTab
teRefCon
null Style

STHandle: {Style table [7.2.4)}
{Line-height table [7.2.5))
{Reference constant}
{Null-style JeCord (7.2.6)}

LHHandle:
LONGINT:
NullSTHandle:

runs : array [0 .. 8000) of StyleRun {Anayofstyleruns}
end:

387 Toolbox Summmy
~~~~~~~~~~~~-

StyleRun = record 
startChar 
styleindex 

end; 

7.2.4 Style Table 

type 
STHandle ~ "STPtr: 

INTEGER: 
INTEGER 

STPtr = "TEStyleTable: 
TEStyleTable =array [0 .. 1776] of STElement: 

STElement = record 
stCount 
stHeight 
stAscent 
stFont 
stFace 
stSize 
stColor 

end: 

7.2.5 Line-Height Table 

"LHPtr: 
"LHTable: 

INTEGER; 
INTEGER: 
INTEGER: 
INTEGER: 
Style: 
INTEGER: 
RGBColor 

type 
LHHandle 
LHPtr 
LHTable =array [0 •. 8000] of LHElement: 

LHElement = record 
lhHeight 
lhAscent 

end: 

7.2.6 Null-Styl~ Record 

type 
NullStHandle 
NullStPtr 

Null St Rec 

"NullStPtr: 
"NullStRec: 

INTEGER: 
INTEGER 

(Starting character position} 
{Index in style table} 

(Number of runs in this style} 
{Line height} 
(Font ascent} 
(Font number of typeface [1:8.2.1]} 
{Type style [1:8.3.l]} 
(Type size in points} 
{Text color [4.21]} 

{Line height in pixels} 
{Line ascent in pixels} 

record 
teReserved 
null Scrap 

end: 

LONG INT: {Reserved for future expansion} 
St Sc rpHandl e {Style scrap for null style [7.2.7]} 



388 Appendix A 

7.2. 7 Style Scrap 

type 
StScrpHandle 
StScrpPtr 
StScrpRec 

= "StScrpPtr: 
"" "StScrpRec: 
= record 

scrpNStyles 
scrpStyleTab 

end: 

INTEGER: 
ScrpStTable 

{Number of styles} 
{Table of styles) 

ScrpStTable =array [0 .. 1600) of ScrpStElement: 
ScrpStElement = record 

scrpStartChar 
scrpHeight 
scrpAscent 
scrpFont 
scrpFace 
scrpSize 
scrpColor 

end: 

7 .3 Editing Styled Text 

7.3.1 Preparation for Editing 

function TEStylNew 
(destRect : Rect: 
viewRect : Rect) 

: TEHandle: 

function GetStylHandle 
(editRec : TEHandle) 

: TEStyleHandle: 

procedure SetStylHandle 
(styleRec TEStyleHandle: 
editRec : TEHandle): 

7.3.2 Character Location 

function TEGetOffset 
(thePoint : Point: 
editRec TEHandle) 

: INTEGER: 

function TEGetPoint 
(charindex : INTEGER: 
editRec TEHandle) 

: Point: 

LONGINT: 
INTEGER: 
INTEGER: 
INTEGER: 
Style: 
INTEGER: 
RGBColor 

(Starting character position} 
(Line height} 
(Font ascent} 
(Font number of typeface [1:8.2.1]} 
{Type style [1:83.1]} 
{Type size in points} 
{Text color [4.2.1]} 

(Destination (wrapping) rectangle) 
(View (clipping) rectangle} 
(Handle to new edit record} 

(Handle to edit record} 
(Handle to cmrent style record} 

(Handle to new style record} 
(Handle to edit record} 

(Point to be mapped, in window coordinates} 
(Handle to edit record} 
{Corresponding character index} 

(Character index} 
(Handle to edit record} 
(Bottom-left of character in window coordinates} 



function TEGetHeight 
(lastLine LONGINT: 
firstLine LONGINT: 
editRec TEHandle) 

: LONGINT: 

procedure CharExtra 
(extraWidth: Fixed); 

7.3.3 Getting Style Information 

procedure TEGetStyle 
(charPos 
var theStyle 
var lineHeight 
var fontAscent 
editRec 

INTEGER; 
TextStyle: 
INTEGER: 
INTEGER: 
TEHandle): 

function TEContinuousStyle 
(var whichAttrs 
var theStyle 
editRec 

INTEGER; 
TextStyle: 
TEHandle) 

: BOOLEAN: 

function TENumStyles 
(startPos LONGINT: 
endPos LONGINT: 
edit Rec TEHandle) 

: LONGINT: 

7 .3.4 Styling Text 

procedure TESetStyle 
(whichAttrs 
newStyle 
redraw 
editRec 

procedure TEReplaceStyle 
(whichAttrs 
oldStyle 
newStyle 
redraw 
editRec 

INTEGER: 
TextStyle: 
BOOLEAN: 
TEHandle): 

INTEGER: 
TextStyle: 
TextStyle: 
BOOLEAN: 
TEHandle) : 

{Last line number) 
(First line number) 
(Handle to edit record) 
{Total height of lines in pixels} 

(Extra character width in pixels) 

(Character position of desired character} 
(Returns character's style attributes} 
(Returns character's line height) 
(Returns character's font ascent} 
{Handle to edit record} 

( Deshed attributes; returns continuous attributes} 
{Values of continuous attributes} 
(Handle to edit record} 
(Are all requested atttibutes continuous?} 

(Starting character position} 
(Ending character position} 
(Handle to edit record} 
(Number of style changes} 

(Style atttibutes to set} 
(New atttibute values} 
(Redraw after change?} 
(Handle to edit record} 

(Style attributes to replace} 
(Old attribute values to be replaced} 
(New atttibute values to replace them with} 
{Redraw after change?} 
(Handle to edit record} 



const 
DoFont 1: 
DoFace 2: 
DoSize 4: 
DoColor 8: 
DoAll 15: 
AddSize = 16: 
DoToggle == 32: 

390 Appendix A 

{Set typeface} 
{Set type style} 
{Set type size} 
{Set text color} 
(All of the above} 
(Adjust type size} 
{Toggle existing attribute value} 

7.3.5 Cutting and Pasting Styled Text 

procedure TECut 
(editRec TEHandle): 

procedure TECopy 
(editRec TEHandle): 

procedure TEPaste 
(editRec TEHandle): 

procedure TEStylPaste 
(editRec : TEHandle): 

7.3.6 Scrapless Styling 

function GetStylScrap 

procedure 

procedure 

(editRec : TEHandle) 
: StScrpHandle: 

SetStylScrap 
(startPos LONGINT: 
endPos LONGINT: 
newStyles StScrpHandle: 
redraw BOOLEAN: 
editRec TEHandle) : 

TEStylinsert 
(textPtr Ptr: 
textLength LONG INT: 
text Styles StScrpHandle: 
editRec TEHandle): 

(Handle to edit record} 

{Handle to edit record} 

{Handle to edit record} 

{Handle to edit record} 

{Handle to edit record} 
{Styles for current selection} 

(Starting character position} 
{Ending character position} 
(Styles to apply} 
{Redraw after change?} 
(Handle to edit record} 

{Pointer to insertion text) 
(Length of insertion text in characters} 
{Styles for insertion text} 
{Handle to edit record} 



APPENDIX 

- [!]-------
Resource Formats 

Resource Type 'ac tb' 1s.1.s1 

391 



392 Appendix B 

Resource Type ' cc t b ' [6.7.41 

o (4 bytes) 
r 

o (2 es) 

1 (2b es) } 

red (~bytes) CBodyColor 
green °(2 bytes) 

._ __________ b_l_u_e.~.....,,b~_es_,_) ________ __. 

2 (2 bytes) } 
red <2 bytes) CTextColor 

green (2 bytes) 
blue (2 b~es) 

..._ ____________________________ __ 
3 (2 bytes) } 

red (2 bytes) 
green '<2 bytes) CThumbColor 

blue (2 bytes) ............................................ 

Resource Type 'cicn' [6.1.11 

iconPMap l (50 bytes) See (5.6.1) 

iconMask 
(14 b~es) 

iconBMap 
(14 bytes) 

o (4 bytes) - I- Placeholder for iconData 
I• 

Icon's mask Image 
(Indefinite length) 

Icon's bit image 
(Indefinite length) 

iconMaskData 

Icon's color table 
(indefinite length) 

Icon's pixel Image 
(Indefinite length) 

I~ 



393 Resource Fonnats 

Resource Type 'c 1 u t ' (4.1.11 

1---......... . 

!---·---

ctSeed (4 bytes) 

cti'lags (2 bytes) 
ctSize (2 bytes) 
value (2 bytes) 

red bytes 
green ~2 bytes) 
blue (2 bytes) 

value (2 bytes) 
red (2 bytes) 

green (2 bytes) 
blue (2 bytes) 

Resource Type ' c rs r ' (s.1.21 

.-I-

r--......... 1-

. . . 
I· . . . 

4. . 
..:_ 

L.-.. t-7! . . 
L-7t 

$8001 <2t>Yies) 

Offset to pixel map (4 bytes) 

Offset to pixel Image (4 bytes) 

o (4 bytes) 

o (2 bytes) 

o (4 bytes) 

crsrlData 
(32 bytes) 

crsrMask 
(32 bytes) 

crsrHotSpot (4 bytes) 

o (4 bytes) 

o (4 bytes) 

Cursots pixel map 
(50 bytes) 

Cursor's pixel Image 
(Indefinite leng1h) 

Cursor's color table 
(Indefinite lenQth) 

I 

- I-

-I-

- I-

-II--

-'I-

-.,1-

. . . 
I . . . 

-II-

-t-

~} 
1 . . 
I 

Any number 
of colors 

crsrType =full color 

Placeholder for crsrMap 

Placeholder for c rs r Data 

Placeholder for crsrXData 

crsrXValid c Invalid 

Placeholderfor crsrXHandle 

Placeholder for c rs r XT able 

Placeholder for c rs r ID 

See [5.6.1) 

: } See [4.7.1] 

........................................ 



394 Appendix B 

Resource Type 'dctb' 1s.1.s1 

O (4 bytes) } we Seed 

1-~~~~~-0-(~2~yt~es-=-)~~~~~-1 wcReserved 

4 (2bytes) ctSize 

{ 

o (2b,ytes) 
red (2 bytes) 

WContentColor groan ·(2 bytes) 

blue (
1

2 bytes) 
._ _____________ ......, ____________ ...... 

{ 

1 2b es 

WFrameColor red <2 bytes) 
green 

1

(2 bytes) 
blue (

1

2 bytes) ._ ____________ _..., ____________ ...... 

{ 

2 (2 bytes) 

WTextColor red <2 bytes) 
green (2 bytes) 
blue (

1

2 bytes) 

{
1------------3-(-2~byt_es __ ).._ ________ -t 

rad (2 bytes) 
WHiliteColor • 

green (2 bytes) 
blue (2 bytes) 

{
1------------,.-(-2~byt-es~)-----------1 

red (2 bytes) 
WTitleBarColor groan "(2bytes) 

blue (2 bytes) 

._ ________________________ ... 

Resource Type 'fctb' 11.4.IJ 

ctSeed (4 bytes) 

ctFlaga (2 bytes) 
ctSil:e (2 bytes) 
value (2 bytes) 

red es 

green ~2 bytes) 
blue (

1

2 bytes) 

value (2 es) 

red (2 bytes) 
green (2 bytes) 

blue (2 bytes) 

ct Table 

Any number 
of colors 



395 Resource Formats 

Resource Type 'ic tb' (6.1.s1 

. . . . 
Last Item header (2 bytes) 
Last Item offset (2 bytes) 

. First Item data . 

Last Item data I 
Length 

t-
Rrst typeface name 

-·---1 (Indefinite length) 
I 

L _J Length 

Last typeface name 1--- (Indefinite length) -1 I 

Text Item Data in an 'ic tb' Resource l a.7.61 

Typeface name ottset or font number (2 bytes) 
Type style (2 bytes) 
Type Slze~esl 

........ " ___ red (2 bytes) ---.. green ,2 bytes) ... _,_ 
blue (2 tJYtes) -

.. -............. - red (2 bytes) 
green 

1
(2 bytes) -··· .... --

------ blue (2 bytes) -·-
Transfer mode for text (2 bytes) 

One for each item 

One for each 
control (6.7.4) or 
text item [6.7 .6) 

One for each typeface 

} Foreground color 

} Badqjround color 



396 Appendix B 

Resource Type 'me tb' 10.1.11 

Number of entries~ ~esl 

First table entry 
(30 bytes; see next figure) 

Last table entiy 
(30 bytes: see next figure) 

Table Entry in an 'me tb ' Resource 10.1.11 

mctRGB2 
(6 bytes) 

I 

mctRGB3 
(6 bytes) 

I 
I 

mctRGB4 
(6 ~ytes) 

mctReserved (2 bytes) 

Any number 
of entries 



397 Resource Formats 

Resource Type 'pl tt' [4.1.21 

. . 
--· 
I-

--
--

pm.Datal'ield• 
(14 bytes) 

red (2 bytes) 
green' (2 bytes) 
blue 12 bytes) 

ciUaage (2 bytes) 
ciTolerance (2 88 

ciDataiiold11 
(6 bytes) 

red (~ bytes) 
green (2 bytes) 
blue (2 bytes) 

ciUaage (2 bytes) 
ciTolerance (2 bytes) 

I 

ciDataiield• 
(6 bytes) 

..1 

·-·--·-

. . 

-

----

Any number 
of colors 



398 Appendix B 

Resource Type ' pp at ' 1s.s.11 

o } Placeholder tor patXData 
(4 bytes) 

1--------~1 (;:2-tbyt::::es=r)------::i pat XValid "' Invalid 
0 

} Placeholder for patXMap (4 bytes) 
I-~~~~........;~___;~~~~~, 

patlData 
(Sbytes) 

Pattern's pixel map 
(50 bytes) 

: } Seo next figure 

I-~~~~~-+~~~~~~~ 

Pattern's pixel Image 
(Indefinite length) 

I 
Pattem'scolortable :} See[4.7.1) 

(Indefinite length) 

'-----------------~' 



399 Resource Formats 

Detail of a Pixel Map in a 'ppat' Resource [s.s.11 

0 } I-·-- (4 bytes) ----
rowBytea (2 bytes) 

I -- __ _, 
bounds ___ _, -- (8 bytes) -- --...., 

_j_ 

pmVersion (2 bytes) 
o (2 bytes) -t-

0 } ·--·-· (4 bytes) --·-

-- $00480000 -··-·- } (4 bytes) 

··-··-· 
$00480000 --·-·-- } (4 bytes) 
o (2 bytes) -t-

pixelSize (2 bytes) 
1 (2 bytes) -t-

cmp.Size (2 twtes) 
0 } ... __ 

(4 bytes) ----
Offset to color table } ·-·- (4 bytes) ---·-

0 } -- (4 bytes) ----

Resource Type ' s I CN' (3.3.ll 

. . . 
I 

Row 1 (2 bytes) 
Row 2 (2 bytes) 

Row 16 (2 bytes) 

Row 1 J..2 bytes) 
Row 2 J.2 bytes) 

Row 16 (2 bytes) 

Placeholder for baseAddr 

packType 

packSize 

hRes = 72.0 

vRes:::: 72.0 

pixelType =chunky 

cmpCount 

planeBytes 

Placeholder for pmTable 

pmReserved 

Any number of 
small icons 



400 Appendix B 

Resource Type ' s I ZE ' [3.3.2J 

Rags (2 bytes) 
T 

I'-
Preferred memory size --(4 bytes) 

_J_ 

I 
Minimum memory size --- (4 bytes) --·--· 

_l 

Resource Type 'we tb' [6.7.3J 

} wcSeed 

1-----------~~~-----------tl wcReserved 

ctSize 

{ 

red (2 bytes) 
WContentColor green (2 bytes) 

blue (
1

2 bytes) 1-----------------------------1 

ctTable 

{ 

1 2 b es) 

WFrameColor red <2 bytes) 
green 

1

(2 bytes) 
blue (

1

2 bytes) 

{
1------------2-c2•b-~-es-)-----------1 

red (2 bytes) 
WTextColor green •(2 bytes) 

blue (2 bytes) 

-----------------------------.... 

{ 

3 (2 bytes) 
red (2 bytes) 

WHili teColor green 1(2 bytes) 

blue (2 bytes) 

{
1------------~-(2~b-yt~es-)...----------1 

red (2 bytes) 
WTitleBarColor green '(2bytes) 

blue (2 bytes) 
._ __________ ...._. ________ ..... 



APPENDIX 

-@]-------
Reference Figures 

Trap Word Formats !Figure 2-11 

a. Operating System trap 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 

Unimplemented 
Instruction code 

Specifies 
OS format 

b. Toolbox trap 

.. 
Flags Trap number 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 

Unimplemented 
instruction code 

Flags 

Specifies 
Toolbox format 

401 

Trap number 

1 0 

1 0 



402 Appendix C 

Macintosh II 24-Bit Memory Layout (2.2.11 

$00 0000 

I- -
~ -
~ -
I- RAM -
I- -
I- -
~ -

$80 0000 
ROM 

$90 0000 
Slot$ 9 

Slot $A 
$AO 0000 

$80 0000 
Slot $B 

$CO 0000 
Slot$ c 

$DO 0000 
Slot $D 

$EO 0000 
Slot SE 

$FO 0000 110 
$FF FFFF 

Macintosh II 32-Blt Memory Layout (2.2.11 

$0000 0000 

$4000 0000 

$5000 0000 

$6000 0000 

$9000 0000 

$AOOO 0000 

$BOOO 0000 

$COOO 0000 

$0000 0000 

$EOOO 0000 

$FOOO 0000 

$FFFF FFFF 

~ 

I-

~ 

~ 

I-

-
RAM -

-
ROM 

110 

Reserved for -
future use -

Super slot space $ 9 

Super slot space $A 

Super slot space $ B 

Super slot space $ c 

Super slot space $ D 

Super slot space $ E 

Regular slot space 



403 Reference Figures 

Macintosh II 32-Bit Regular Slot Space 12.2.11 

SFOOO 0000 

SF900 0000 

SFAOO 0000 

$FBOO 0000 

SFCOO 0000 

SFDOO 0000 

$FEOO 0000 

SFFOO 0000 

SFFFF FFFF 

I-

I-

t-

I-

I-

I-

I-

I-

-
~ 

-
Reserved -for 

future -
use -

-
-

Slot $9 

Slot SA 

Slot SB 

Slot SC 

Slot SD 

Slot $E 

Reserved 

Event Message for Suspend/Resume Events 13.1.11 

31 2423 . . 
00000001 

Reserved 
o a Suspend 
l =Resume 

o ... Don't convert scrap 
l • Convert scrap 

Event Message for Mouse-Moved Events 13.1.11 

31 2423 0 

Reserved 



404 Appendix C 

Event Message for Keyboard Events (3.1.11 

31 2423 1615 8 7 0 

. I . : I: : : : : : I: I : : : I -• --"'T' ___ .. ___ ""l ___ .. __ _..,T ___ • -• __ ....,l __ _ 

Reserved Key code 
[1:8.1.3, IV:2.3.1] 

Apple Desktop 
Bus address 

Event Modifiers (3.1.21 

ControlKey 

OptionKey 
Alpha Lock 

Shift Key 
CmdKey 

BtnState 

Character code 
[1:8.1.1) 

ActiveFlag 

.._R_e_se~Trve __ d__.••--------r...-----1-.. -d-rM_n ________ Re-se~rve--d------~ 

L-{o .. up 
1 a activate 
o .,. deadlvate 

MultiFinder Flags (3.3.sJ 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

I I I 

111 

f Reserved 

L_______ Getfrontclicks 
- Background only 

MuldFlnder-aware 

--------------------Can background 
'--------------------Disable option (Switcher) 

'---------------------Accept suspend/resume 
'-----------------------Save screen (Switcher) 



405 Reference Figures 
~------------

Classic QuickDraw Color Bits [4.1.11 

15 14 13 12 11 10 9 
1 
i 
I 
I 
I 
I 
I 

Cyan 
Magenta 

Yellow 
Black 

Red 
Green 

Blue 
Invers 

8 7 6 5 4 3 2 J oior 

r I I I 1 fl lT I f i I 
i I ! I I ! 

I ! i I 
I i I I i i I ! I 
i i I I i i 

e 
mal 

Graphics Device Attribute Flags 14.3.51 

1s 14 13 12 11 10 9 e 1 s s 4 3 2 1 o 

11 

l_~L:~:;:~~·· 
· MainScreen 

Alllnit 

'-------------------- ScreenDevice .....__ ____________________ NoDriver 

.....__ _____________________ ScreenActive 

Flag Bits for Dialog Text Styles [6.7.61 

1s 14 13 12 11 10 g e 1 s s 4 3 2 1 o 

llil Typeface 
l-: Typestyle 

Type size 
Foreground color 

------ Adjust type size 
........_ __________________ Background color 

"'--------------------- Transfer mode 

'----------------------- Typeface by name 



408 Appendix C 

Font Type Flags (1.1.u 

15 14 13 12 11 10 9 8 7 8 5 4 3 2 1 0 

11 1•1 11 1°1°1•1•1•1°1°1°1•1•1 I I 

11 
~l Has image-height table 

L.:: Has character-width table 
Pixel depth 

'---------- Has color table 
'------------- Synthetic font 

'------------ Notall black 
~---------------- Flxed-wldthfont 

'-------------------- Do not expand 

• Macintosh II only 

Synthetic-Font List Entry 11.1.21 

red <2 bytes) } Foreground color 
green i2 bytes) 

._ ________ b1_u_e.c2_byt~es-> ....... ______ ~ 

o 2 es } 
red (2 bytes) Backg d col 

green (2 bytes) -- roun or 

blue (2 bytes) ._ __________ ...... m...i ________ ~ 



APPENDIX 

Reference Tables 

Standard Resource Types 12.3.1J 

Resource 
Type Description 

'PAT ' Bit pattern 
'PATf/ 1 Bit pattern list 
'ppat' Pixel pattern 
'pptfl' Pixel pattern list 
'bmap' Bit map 
'PICT' QulckDraw picture 

'ICON' Icon 
'ICNf/' Icon list 
'SICN' Small Icon 
'cicn' Color Icon 

'TEXT' Any text 
'STR ' Pascal-format string 
'STR/1 1 String list 

'FONT' Font 
'NFNT' Non-menu font 
'FWID' Font width table 
'FRSV' ReseIVed font list 
'FOND' Font family definition 

407 

See 
Section 

(1:5.5.1) 
[1:5.5.2) 
(IV:5.6.l] 

[1:5.5.5) 

(1:5.5.3) 
(1:5.5.4) 
[IV:3.3.l] 
(IV:6.7.l] 

(1:8.4.1) 
(1:8.4.2) 
[1:8.4.3) 

[1:8.4.5) 
(1:8.4.5) 
[1:8.4.6} 
(1:8.4.7} 



408 Appendix D 

Resource See 
Type Description Section 

'CURS' Cursor [11:2.9.1) 
'crsr' Color cursor [IV:6.7.2) 

'KMAP' Key code map 
'KCHR' Character code map 
'KSWP' Keyboard script table 
'FKEY' Low-level keyboard routine [11:2.9.2, 

111:6.3.1) 

'WIND' Window template (11:3. 7.1) 

'MENU' Menu (11:4.8.1) 
'MBAR' Menu bar (11:4.8.2) 

'CNTL' Control template (11:6.6.l] 

'ALRT' Alert template (11:7.6.l) 
'DLOG' Dialog template [11:7.6.2) 
'DITL' Dialog or alert item list [11:7.6.3) 

'WDEF' Window definition function (111:2.5.1] 
'CDEF' Control definition function [111:2.5.2) 
'MDEF' Menu definition procedure (111:2.5.3) 
'MBDF' Menu bar definition function 
'LDEF' List definition procedure 

'CODE' Code segment [1:7.5.1) 
'PACK' Package (1:7.5.2) 
'DRVR' Device driver (including desk accessories) (111:3.3. l, 

1:7.5.5) 
'SERO' Serial driver 
'FMTR' Disk formatting code 

'PREC' Print record [111:4. 6.1] 
'PDEF' Printing code [111:4.6.2) 

'FREF' Finder file reference (1:7.5.3) 
'BNDL' Finder bundle [1:7.5.4) 
'SIZE' Partition size (MultlFtnder) [IV:3.3.2] 
'mstr' MultlFinder string [IV:3.3.4) 
'mstfJ• MultiFinder string list [IV:3.3.4) 

'MACS' Macintosh system autograph 
'vers' Software version ID 

'scrn' Screen configuration 



409 Reference Tables 

Resource See 
Type Descrtptlon Section 

'clut' Color lookup table [IV:4.7.l] 
'pltt' Color palette [IV:4.7.2] 
'gama' Color correction table 
'mitq' Color inverse table, memory requirements 

'fctb' Font color table 
'wctb' Window color table [IV:6.7.3) 
'cctb' Control color table [IV:6.7.4) 
'mctb' Menu color table [IV:6.7.7] 
'actb' Alert color table [IV:6.7.3] 
'dctb' Dialog color table [IV:6.7.3] 
'ictb' Dialog Item color table [IV:6.7.5) 

'snth' Sound synthesizer 
'snd I Sound definition 

'!NIT' Initialization resource [I:S.4.4) 
'DSAT' ·mre stratts• alert table 
'PTCH' System patch code 
'ptch' System patch 
'boot' Boot blocks 
'lmem' Low-memory globals 

'ROvr' ROM override code 
'ROv/J• ROM override list 
'CACH' RAM cache code 

'ADBS' Apple Desktop Bus service routine 
'MMAP' Mouse tracking code 
'mcky' Mouse tracking data 

'INTL' International localization resource 
'itlO' International localization, date and 

time formats 
'itll' International localization, day and 

month names 
'itl2' International localization, sort hooks 
'itlb' International localization, script bundles 
'itlc' International localization, scrtpt 

configuration 

'NBPC' Name-Binding Protocol code (AppleTalk) 
'PAPA' Printer Access Protocol address (AppleTalk) 
'mppc' Macintosh Packet Protocol configuration 

(AppleTalk) 
'atpl' AppleTalk private resource 



410 Appendix: D 

Resource See 
Type Description Section 

'PRES' Printer resource (Chooser) 
'PRER' Printer resource, remote (Chooser) 
'RDEV' Remote device (Chooser) 
'clst' C«ched Icon list (Chooser, Control Panel) 

'cdev' Control Panel device 
'ctab' Control Panel device table 
'mach' Machine compatibility list (Control Panel) 
'nrct' Rectangle list (Control Panel) 

'KCAP' Keyboard layout (Key Caps) 

I INT//• Integer list (Find File) 

'APPL' Application table (Finder) 
'FDIR' Finder directory 
'FOBJ' Finder object 
'FCMT' Finder comment 
'LAYO' Folder layout (Finder) 

'MINI' MiniFlnder resource 
'FBTN' File button (MlnlFinder) 

'insc' Installer script 

'TMPL' Resource type template (ResEdit) 

Macintosh II ROM-Based Resources 12.s.21 

Resource Resource 
1)1pe ID Description 

'CURS' 1* I-beam cursor (11:2.5.2, 11:2.9.1) 
2* Cross cursor [11:2.5.2, 11:2.9.1) 
3* Plus-sign cursor [11:2.5.2, 11:2.9.1) 
4* Wristwatch cursor [11:2.5.2, 11:2.9.1) 

'KMAP' O* Standard key code map 

'KCHR' 0 Standard character code map 

•Also included in Macintosh SE ROM 



411 Reference Tables 

Resource Resource 
Type ID Description 

'FONT' O* Name of system font (1:8.2.1, 1:8.4.5) 
12* System font (12-polnt Chic a go) (1:8.2. l, 1:8.4.5) 

384 Name of Geneva font (1:8.2. l, 1:8.4.5] 
393* 9-polnt Geneva font (1:8.2.l, 1:8.4.5] 
396* 12-polnt Geneva font (1:8.2. l, 1:8.4.5) 
512 Name of Monaco font (1:8.2.1, 1:8.4.5] 
521* 12-polnt Monaco font (1:8.2.l, 1:8.4.5) 

'NFNT' 2 System font (12-polnt Chicago), 4 bits deep 
3 System font (12-polnt Chicago), 8 bits deep 

34 9-polnt Geneva font, 4 bits deep 

'PACK' 4* Floating-Point Arithmetic Package [1:7.2.1, 
1:7.5.2) 

5* Transcendental Functions Package [1:7.2. l, 
1:7.5.2) 

1* Binary/Decimal Conversion Package (1:7.2.l, 
1:7.5.2) 

'DRVR' 3* Sound driver(. Sound) [111:3.3.1, 1:7.5.5) 
4* Disk driver (. Sony) [111:3.3.1, 1:7 .5. 5) 
9* AppleTalk driver, Macintosh Packet Protocol 

(. MPP) [111:3.3. l, 1:7.5.5) 
10* AppleTalk driver, AppleTalk Transaction 

Protocol (.ATP) [111:3.3. l, 1:7 .5.5) 
40* AppleTalk driver, Extended Protocol Package 

(. XPP) [111:3.3. l, 1:7.5.5) 

'SERO' O* Serial drivers (. Ain, • AOut, . Bin, . BOut) 
(111:3.3.1, 1:7.5.5] 

'WDEF' O* Definltlon function for document windows 
(111:2.5.1] 

l* Definltlon function for accessory windows 
[III:2.5. l] 

'CDEF' O* Definltlon function for standard buttons 
(111:2.5.2) 

l* Definition function for scroll bars [IIl:2.5.2) 

'MDEF' O* Definltlon procedure for text menus [111:2.5.3] 

'MBDF' O* Standard menu bar definltlon procedure 

*Also included in Macintosh SE ROM 



412 Appendix D 

Resource Resource 
1)'pe ID Description 

'clut' 1 Standard color table, 1 bit deep [IV:4. 7.1] 
2 Standard color table, 2 bits deep [IV:4.7.l] 
4 Standard color table, 4 bits deep [IV:4.7.l] 
8 Standard color table, 8 bits deep [IV:4.7.l] 

127 Standard color table, classic color model 
[IV:4.7.l) 

'gama' 0 Standard color correction table 

'mitq' 0 Standard color Inverse table memory require-
men ts 

'wctb' 0 Color table for standard windows [IV:6. 7.3) 

'cctb' 0 Color table for standard controls [IV:6. 7 .4) 

'snd ' 1 Standard system beep 

Resource IDs for Types 'ms tr' and 'mst// • (3.3.41 

Resource 
ID 

100 
101 
102 
103 

Meaning 

Name of menu containing Quit command 
Name of Quit command 
Name of menu containing Open command 
Name of Open command 

RGB Values of Standard Primary Colors [4.2.2) 

Table Red Green Blue 
Index Color Dec. Hex. Dec. Hex. Dec. Hex. 

0 Black 0 $0000 0 $0000 0 $0000 
1 Yellow 64512 $FCOO 62333 $F37D 1327 $052F 
2 Magenta 62167 $F2D7 2134 $0856 34028 $84EC 
3 Red 56683 $DD6B 2242 $08C2 1698 $06A2 
4 Cyan 577 $0241 43860 $AB54 60159 $EAFF 
5 Green 0 $0000 32768 $8000 4528 $11BO 
6 Blue 0 $0000 0 $0000 54272 $0400 
7 White 65535 $FFFF 65535 $FFFF 65535 $FFFF 



413 Reference Tables 

Standard System Palette (4.7.2) 

Palette &st ~ Blue 
Index Color Dec. Hex. Dec. Hex. Dec. Hex. 

0 White 65535 $FFFF 65535 $FFFF 65535 $FFFF 
1 Black 0 $0000 0 $0000 0 $0000 
2 Yellow 64512 $FCOO 62333 $F37D 1327 $052F 
3 Orange 65535 $FFFF 25738 $648A 652 $028C 
4 Blue-green 881 $0371 50943 $C6FF 40649 $9EC9 
5 Green 0 $0000 40960 $AOOO 0 $0000 
6 Blue 0 $0000 0 $0000 54272 $0400 
7 Red 56683 $DD6B 2242 $08C2 1698 $06A2 
8 Light gray 49152 $COOO 49152 $COOO 49152 $COOO 
9 Medium gray 32768 $8000 32768 $8000 32768 $8000 

10 Beige 65535 $FFFF 50140 $C3DC 33120 $8160 
11 Brown 37887 $93FF 10266 $281A 4812 $12CC 
12 Olive green 25892 $6524 49919 $C2FF 0 $0000 
13 Bright green 0 $0000 65535 $FFFF !265 $04Fl 
14 Sky blue 26078 $65DE 44421 $AD85 65535 $FFFF 
15 Violet 32768 $8000 0 $0000 65535 $FFFF 

Monochrome Modes in a Color Port [Table s-11 

Mode Effect of Black Source Pixels Effect of White Source Pixels 

Copy Foreground color Background color 
Not Copy Background color Foreground color 

Or Foreground color No change 
NotOr No change Foreground color 

Bic Background color No change 
NotBic No change Background color 

XOr Invert bits No change 
NotXOr No change Invert bits 



414 Appendix D 

Color Modes in a Monochrome Port (Table &-21 

Color Mode 

Add Over 
Add Pin 

SubOver 
Sub Pin 

ADM ax 
ADM in 

Equivalent Monochrome Mode 

XOr 
Bic 

XOr 
Or 

Bic 
Or 

Blend 
Transparent 
Hili te 

Copy 
Or 
XOr 

Initial Values of CGrafPort Fields (5.I.51 

Field 

device 

portPixMap 
portVersion 
chExtra 

pnLocHFrac 

portRect 

visRgn 

clipRgn 

bkPixPat 
rgbFgColor 

rgbBkColor 
pnLoc 
pnSize 

pnMode 
pnPixPat 

fillPixPat 

pnVis 

txFont 

Initial Value 

o (screen) 

Copy of current device's pixel map 
$COOO 
0 

0.5 

portPixMapAA.bounds 

Rectangular region equal to portRect 

Rectangular region (-32 7 68, -32 7 68) 
to (+32767, +32767) 

Solid white 
Black 
White 

(0, 0) 

(1. 1) 

PatCopy (1:5.1.3) 
Solid black 
Solid black 
o (visible) (1:5.2.3) 

O (system font) (1:8.2.1) 



415 Reference Tables 

Field Initial Value 

txFace Plain (1:8.3.1) 
txMode SrcOr (1:5.1.3) 
txSize 0 (standard size) (1:8.3.1) 
spExtra 0 

Black 
White 
0 

0 

NIL 
NIL 
NIL 

f gColor 
bkColor 

colrBit 

pat Stretch 

pie Save 

rgnSave 
polySave 

grafProcs NIL (standard bottlenecks) [111:2.l, 5.5.1) 

Menu Color Information f6.6.1J 

Field Name Menu Bar Menu Title Menu Item 

met ID 0 Menu ID Menu ID 

met Item 0 0 Item number 

mctRGBl Default text color Text color for Text color for mark 
for menu titles menu title character 

mctRGB2 Default background Background color for Text color for 
color for menus menu title item text 

mctRGB3 Default text color Default text color Text color for 
for menu items for menu items keyboard alias 

mctRGB4 Background color for Background color Background color 
menu bar for menu for item 



APPENDIX 

Error Codes 

Operating System Errors 

The following is a complete list of Operating System error codes. Not 
all are covered in these books, and some of the meanings may be 
obscure. (I don't know what a bit-slip nybble is either.) For the 
errors you're most likely to encounter, see reference sections 
(1:3.1.2, 1:6.6.1, 11:8.2.8, IIl:4.2.4, IV:5.1. 7). 

Number Name Meaning 

0 NoErr No error: all is well 

-1 IPrSavPFil Error saving print file 

-1 QErr Queue element not found during 
deletion 

-2 VTypErr Invalid queue element 
-3 CorErr Trap ('"core routine") number out 

of range 
-4 UnimpErr Unimplemented trap 

-8 SENoDB No debugger installed 

-17 ControlErr Driver error during Control 
operation 

417 



418 Appendix E 

Number Name Meaning 

-18 StatusErr Driver error during Status 
operation 

-19 ReadErr Driver error during Read 
operation 

-20 WritErr Driver error during Write 
operation 

-21 BadUnitErr Bad unit number 
-22 UnitEmptyErr No such entry tn unit table 
-23 OpenErr Driver error during Open 

operation 
-24 CloseErr Driver error during Close 

operation 
-25 DRemovErr Attempt to remove an open driver 
-26 D!nstErr Attempt to install nonexistent 

drtver 
-27 AbortErr Driver operation canceled 
-28 NotOpenErr Driver not open 
-29 UnitTblFullErr Unit table full 
-30 DCEExtErr DCE extension error 

-33 DirFulErr Directoiy full 
-34 DskFulErr Disk full 
-35 NSVErr No such volume 
-36 IOErr Disk 1/0 error 
-37. BdNamErr Bad name 
-38 FNOpenErr File not open 
-39 EOFErr Attempt to read past end-of-file 
-40 PosErr Attempt to position before start of 

file 
-41 MFulErr Memory (system heap) full 
-42 TMFOErr Too many files open (more than 12) 
-43 FNFErr File not found 
-44 WPrErr Disk ls write-protected 
-45 FLckdErr File locked 
-46 VLckdErr Volume locked 
-47 FBsyErr File busy 
-48 DupFNErr Duplicate file name 
-49 OpWrErr File already open for writing 
-so ParamErr Invalid parameter list 
-51 RfNumErr Invalid reference number 
-52 GFPErr Error during GetFPos 
-53 VolOffLinErr Volume off-line 



419 Error Codes 

Number Name Meaning 

-54 PermErr Permission violation 
-55 VolOnLinErr Volume already on-line 
-56 NSDrvErr No such drtve 
-57 NoMacDskErr Non-Macintosh disk 
-58 ExtFSErr External file system 
-59 FSRnErr Unable to rename file 
-60 BadMDBErr Bad master dlrectoiy block 
-61 WrPermErr No write permission 

-64 FontDecError Error during font declaration 
-65 FontNotDeclared Font not declared 
-66 FontSubErr Font substitution occurred 

-64 NoDriveErr No such drive 
-65 OffLinErr Drive off-line 
-66 NoNybErr Can't find 5 nybbles 
-67 NoAdrMkErr No address mark 
-68 DataVerErr Data read doesn't verify 
-69 BadCksmErr Bad checksum (address mark) 
-70 BadBtSlpErr Bad bit-slip nybbles (address 

mark) 
-71 NoDtaMkErr No data mark 
-72 BadDCksum Bad checksum (data mark) 
-73 BadDBtSlp Bad bit-slip nybbles (data mark) 
-74 WrUnderrun Write underrun 
-75 CantStepErr Can't step disk drive 
-76 TkOBadErr Track o bad 
-77 InitIWMErr Can't Initialize disk chip ('"Inte-

grated Wozniak Machine") 
-78 TwoSideErr Two-sided operation on one-sided 

drive 
-79 SpdAdjErr Can't adjust disk speed 
-80 SeekErr Seek to wrong track 
-81 SectNFErr Sector not found 

-82 FmtlErr Can't find sector o after track 
format 

-83 Fmt2Err Can't get enough sync 
-84 Ver Err Track failed to verify 

-85 ClkRdErr Error reading clock 
-86 ClkWrErr Error writing clock 



420 Appendix E 

Number Name Meaning 

-87 PRWrErr Error writing parameter RAM 
-88 PRinitErr Parameter RAM uninitialized 

-89 RcvrErr Receiver error (serial communl-
cations) 

-90 BreakRecd Break received (serial communl-
cations) 

-91 DDPSktErr Socket error (AppleTalk. 
Datagram Dellvery Protocol) 

-92 DDPLenErr Packet too long (AppleTalk, 
Datagram Dellvery Protocol) 

-93 NoBridgeErr No bridge found (AppleTalk) 
-94 LAPProtErr Protocol error (AppleTalk, Unk 

Access Protocol) 
-95 ExcessCollsns Excessive collisions (AppleTalk) 
-97 Port!nUse Port already 1n use (AppleTalk) 
-98 PortNotCf Port not configured for this 

connection (AppleTalk) 

-99 MemROZError Error In read-only zone 

-100 NoScrapErr No desk scrap 
-102 NoTypeErr No Item in scrap of requested type 

-108 MemFullErr No room; heap is full 
-109 NilHandleErr Illegal operation on empty handle 
-110 MemAdrErr Bad memory address 
-111 MemWZErr Illegal operation on free block 
-112 MemPurErr Illegal operation on locked block 
-113 MemAZErr Address not In heap zone 
-114 MemPCErr Pointer check falled 
-115 MemBCErr Block check failed 
-116 MemSCErr Size check failed 
-117 MemLockedErr Attempt to move a locked block 

-120 DirNFErr Dlrectoiy not found 
-121 TMWDOErr Too many working directories 

open 
-122 BadMovErr Invalid move operation 
-123 WrgVolTypErr Wrong volume type (not HFS) 

-124 VolGoneErr Server volume disconnected 

-125 UpdPixMemErr Not enough memory to update 
pixel map 

-126 MBarNFnd Menu bar definition function not 
found 



421 Error Codes 

Number Name Meaning 

-127 HMenuFindErr Can't find parent of hierarchical 
menu 

-127 FSDSintErr Internal file system error 

-150 CMatchErr Unable to match requested color 
-151 CTempMemErr Unable to allocate temporary 

memory 
-152 CNoMemErr Unable to allocate memory 
-153 CRangeErr Color Index out of range 
-154 CProtectErr Color table protection violation 
-155 CDevErr Invalid type for graphics device 
-156 CResErr Invalid resolution for inverse table 

-192 ResNotFound Resource not found 
-193 ResFNotFound Resource file not found 
-194 AddResFailed AddResource failed 
-196 RmvResFailed RmveResource failed 
-198 ResErrAttr Operation prohibited by resource 

attribute 
-199 MapReadErr Error reading resource map 

-200 NoHardware No sound hardware 
-201 NotEnoughHardware Not enough sound channels 
-203 QueueFull Sound queue full 
-204 ResProblem Problem loading sound resource 
-205 Bad Channel Invalid queue length for sound 

channel 
-206 BadFormat Invalid sound resource 

-290 SMSDMinitErr Error inltlalizing slot devices 
-291 SMSRTinitErr Error lnltlalizlng Slot Resource 

Table 
-292 SMPRAMinitErr Error initializing PRAM 
-293 SMPrilnitErr Error initializing card 

-299 NMTypErr Wrong queue type for notification 

-300 SMEmptySlot No card In slot 
-301 SMCRCFail Bad checksum in declaration 

data 
-302 SMFormatErr Invalid format block 
-303 SMRevisionErr Wrong revision level 
-304 SMNoDir Invalid directocy offset 
-305 SMLWTstBad Bad test pattern 
-306 SMNoSinfoArray Error allocating slot info array 



422 Appendix E 

Number Name Meaning 

-307 SMResrvErr Reserved field nonzero 
-308 SMSMUnExBusErr Unexpected bus error 
-309 SMBLFieldBad Bad byte lanes 
-310 SMFHBlockRdErr Error reading format header 
-312 SMDisposePErr Error disposing of format header 
-313 SMNoBoardSRsrc No board slot resource list 
-314 SMGetPRErr Error reading PRAM init data 
-315 SMNoBoardID No board ID 
-316 SMinitStatVErr Error in vendor init status 
-317 SMinitTblErr Error initializing Slot Resource 

Table 
-318 SMNoJrnpTbl Error creating jump table 
-319 SMBadBoard ID Invalid board ID 
-320 SMBusErrTO Bus error timeout 

-330 SMBadRefID Invalid reference ID 
-331 SMBadSList Slot resources out of order 
-332 SMReservedErr Reserved field nonzero 
-333 SMCodeRevErr Invalid code revision 
-334 SMCPUErr Invalid CPU field 
-335 SMSPointerNil No slot resource list 
-336 SMNilSBlockErr Bad block size 
-337 SMSlotOOBErr Slot out of bounds 
-338 SMSelOOBErr Selector out of bounds 
-339 SMNewPErr Error allocating block 
-340 SMBlkMoveErr Error moving block 
-341 SMCkStatusErr Bad slot status 
-342 SMGetDrvrNamErr Error getting driver name 
-343 SMDisDrvrNamErr Error disposing of driver name 
-344 SMNoMoreSRsrcs No more slot resources 
-345 SMSGetDrvrErr Error loading driver 
-346 SMBadSPtrErr Bad slot pointer 
-347 SMByteLanesErr Bad byte lanes 
-348 SMOff setErr Invalid offset 
-349 SMNoGoodOpens No successful opens 
-350 SMSRTOvrflErr Slot Resource Table overflow 
-351 SMRecNotFnd Record not found in Slot Resource 

Table 

-360 SlotNumErr Invalid slot number 

-500 RgnTooBigErr Region too big 
-501 TEScrapSizeErr Scrap Item too big for edit record 



429 Error Codes 

Number Name Meaning 

-502 HWParamrErr Hardware parameter error 

-1024 NBPBuffOvr Buffer overflow (AppleTalk. Name 
Binding Protocol) 

-1025 NBPNoConfirm Name not confirmed (AppleTalk, 
Name Binding Protocol) 

-1026 NBPConfDiff Name confirmed for different 
socket (AppleTalk. Name 
Binding Protocol) 

-1027 NBPDuplicate Name already exists (AppleTalk. 
Name Binding Protocol) 

-1028 NBPNotFound Name not found (AppleTalk. Name 
Binding Protocol) 

-1029 NBPNISErr Names Information socket error 
(AppleTalk, Name Binding 
Protocol) 

-1066 ASPBadVersNum Version not supported (AppleTalk 
Session Protocol) 

-1067 ASPBufTooSmall Buffer too small (AppleTalk 
Session Protocol) 

-1068 ASPNoMoreSess No more sessions available 
(AppleTalk Session Protocol) 

-1069 ASPNoServers No seivers at this address 
(AppleTalk Session Protocol) 

-1070 ASPParamErr Parameter error (AppleTalk 
Session Protocol) 

-1071 ASPServerBusy Seiver busy (AppleTalk Session 
Protocol) 

-1072 ASPSessClosed Session closed (AppleTalk Session 
Protocol) 

-1073 ASPSizeErr Command block too big 
(AppleTalk Session Protocol) 

-1074 ASPTooMany Too many clients (AppleTalk 
Session Protocol) 

-1075 ASPNoAck Seiver not responding (AppleTalk 
Session Protocol) 

-1096 ReqFailed Request failed (AppleTalk) 
-1097 TooManyReqs Too many concuITent requests 

(AppleTalk) 

-1098 TooManySkts Too many responding sockets 
(AppleTalk) 

-1099 BadATPSkt Bad responding socket (AppleTalk 
Transaction Protocol) 

-1100 BadBuffNum Bad buffer number (AppleTalk) 

-1101 NoRelErr No release received (AppleTalk) 



424 Appendix E 

Number Name Meaning 

-1102 CBNotFound Control block not found 
(AppleTalk) 

-1103 NoSendResp AddResponse before 
SendResponse (AppleTalk) 

-1104 NoDataArea Too many outstanding calls 
(AppleTalk) 

-1105 ReqAborted Request canceled (AppleTalk) 

-3101 Buf 2Sma11Err Buffer too small (AppleTalk) 
-3102 NoMPPError Driver not Installed (AppleTalk, 

Macintosh Packet Protocol) 
-3103 CkSumErr Bad checksum (AppleTalk) 
-3104 ExtractErr No tuple In buffer (AppleTalk) 
-3105 ReadQErr Invalid socket or protocol type 

(AppleTalk) 
-3106 ATPLenErr Packet too long (AppleTalk 

Transaction Protocol) 
-3107 ATPBadRsp Bad response (AppleTalk 

Transaction Protocol) 
-3108 RecNotFnd No AppleBus record (AppleTalk) 
-3109 SktClosedErr Socket closed (AppleTalk) 

-5000 AFPAccessDenied Access denied (AppleTalk Filing 
Protocol) 

-5001 AFPAuthContinue Authorization continue (AppleTalk 
F1ling Protocol) 

-5002 AFPBadUAM Bad UAM (AppleTalk Filing 
Protocol) 

-5003 AFPBadVersNum Bad version number (AppleTalk 
Filing Protocol) 

-5004 AFPBitMapErr Bit map error (AppleTalk Filing 
Protocol) 

-5005 AFPCantMove Can't move (AppleTalk Ftllng 
Protocol) 

-5006 AFPDenyConflict Deny conflict (AppleTalk Filing 
Protocol) 

-5007 AFPDirNotEmpty Directoiy not empty (AppleTalk 
Filing Protocol) 

-5008 AFPDiskFull Disk full (AppleTalk Filing 
Protocol) 

-5009 AFPEOFError End-of-file error (AppleTalk Ftling 
Protocol) 

-5010 AFPFileBusy File busy (AppleTalk Filing 
Protocol) 



425 Error Codes 

Number Name Meaning 

-5011 AFPFlatVol Flat volume (AppleTalk Filing 
Protocol) 

-5012 AFPitemNotFound Item not found (AppleTalk Filing 
Protocol) 

-5013 AFPLockErr Lock error (AppleTalk Filing 
Protocol) 

-5014 AFPMiscErr Miscellaneous error (AppleTalk 
Filing Protocol) 

-5015 AFPNoMoreLocks No more locks (AppleTalk Filing 
Protocol) 

-5016 AFPNoServer No seJVer (AppleTalk Filing 
Protocol) 

-5017 AFPObjectExists Object already exists (AppleTalk 
Filing Protocol) 

-5018 AFPObjectNotFound Object not found (AppleTalk Filing 
Protocol) 

-5019 AFPParmErr Parameter error (AppleTalk. Fillng 
Protocol) 

-5020 AFPRangeNotLocked Range not locked (AppleTalk 
Filing Protocol) 

-5021 AFPRangeOverlap Range overlap (AppleTalk Filing 
Protocol) 

-5022 AFPSessClosed Session closed (AppleTalk Filing 
Protocol) 

-5023 AFPUserNotAuth User not authorized (AppleTalk 
Filing Protocol) 

-5024 AFPCallNotSupported Call not supported (AppleTalk 
Filing Protocol) 

-5025 AFPObjectTypeErr Object type error (AppleTalk 
Filing Protocol) 

-5026 AFPTooManyFilesOpen Too many files open (AppleTalk 
Filing Protocol) 

-5027 AFPServerGoingDown SeJVer going down (AppleTalk 
Filing Protocol) 

-5028 AFPCantRename can•t rename (AppleTalk Filing 
Protocol) 

-5029 AFPDirNotFound Dlrectoiy not found (AppleTalk 
Ftllng Protocol) 

-5030 AFPiconTypeErr Icon type error (AppleTalk Filing 
Protocol) 

-5031 AFPVolLocked Volume ls read-only (AppleTalk 
Filing Protocol) 

-5032 AFPObjectLocked Object locked for this operation 
(AppleTalk Filing Protocol) 

-5500 EnvNotPresent SysEnvi rons not Implemented 



426 Appendix E 

Number Name Meaning 

-5501 EnvBadVers Invalid version number requested 
(SysEnvirons) 

-5502 EnvVersTooBig Requested version not available 
(SysEnvirons) 

1 EvtNotEnb Event type not enabled 
(PostEvent) 

1 SWOverrunErr Software overrun (serial driver) 
16 ParityErr Parity error (serial driver) 
32 HWOverrunErr Hardware overrun (serial driver) 
64 FramingErr Framing error (serial driver) 

128 IPrAbort Printing canceled In progress 



427 Error Codes 

"Dire Straits" Errors 

The following errors are reported directly to the user-not to the 
running program-by the .. Dire Straits" Manager (officially called 
the System Error Handler). Errors in this category are considered 
so serious that recovery is impossible: the Toolbox simply displays 
a .. dire straits" alert box (the one with the bomb icon) on the screen, 
forcing the user to restart the system. Some people insist that DS 

really stands for .. deep spaghetti," but most Macintosh programmers 
prefer a more colorful term. 

Number Name Meaning 

1 DSBusErr Bus error 
2 DSAddressErr Address error 
3 DSilllnstErr Illegal instruction 
4 DSZeroDivErr Attempt to divide by zero 
5 DSChkErr Check trap 
6 DSOvflowErr Overflow trap 
7 DSPrivErr Privilege violation 
8 DSTraceErr Trace trap 
9 DSLineAErr .. A emulator" trap 

10 DSLineFErr .. F emulator" trap 
11 DSMiscErr Miscellaneous hardware 

exception 
12 DSCoreErr Unimplemented core routine 

13 DSIRQErr Uninstalled Interrupt 
14 DSIOCoreErr 1/0 core error 
15 DSLoadErr Segment Loader error 
16 DSFPErr Floating-point error 

17 DSNoPackErr Package o not present 
18 DSNoPkl Package 1 not present 
19 DSNoPk2 Package 2 not present 
20 DSNoPk3 Package 3 not present 
21 DSNoPk4 Package 4 not present 
22 DSNoPkS Package 5 not present 
23 DSNoPk6 Package 6 not present 

24 DSNoPk7 Package 7 not present 



428 Appendix E 

Number Name Meaning 

25 DSMemFullErr Out of memory 
26 DSBadLaunch Can't launch program 

27 DSFSErr File system error 
28 DSStkNHeap Stack/heap collision 

30 DSReinsert Ask user to reinsert disk 
31 DSNotTheOne Wrong disk Inserted 

33 NegZCBFreeErr Negative heap space available 

40 DSGreeting -Welcome to Macintosh· 
41 DSFinderErr Can't load Finder 
42 ShutDownAlert System shutdown alert 

51 DSBadSlotlnt Unserviceable slot Interrupt 

81 DSBadSANEOpcode Bad SANE opcode (Standard 
Apple Numeric Environment) 

84 MenuPrgErr Menu purged from heap 

87 WDEFNFnd Window deftnltlon function not 
found 

88 CDEFNFnd Control definltlon function not 
found 

98 DSNoPatch Can't patch for this model 
99 DSBadPatch Can't load patch resource 

32767 DSSysErr General system error 



APPENDIX 

Summary of Trap 
Macros and 
Trap Words 

Trap Macros 

The following is an alphabetical list of assembly-language trap 
macros covered in the four volumes of this book. with their corre
sponding trap words. For routines belonging to the standard 
packages, the trap word shown is one of the eight package traps 
LP ackO to _Pack 7) and is followed by a routine selector in parenthe
ses; similarly, routines called via 11universal" traps such as 
_OSDispatch, _TEDispatch, or _PrGlue list the appropriate trap 
word along with a specific routine selector. Routines marked with 
an asterisk ( *) were introduced in the 128K Macintosh Plus ROM 
(version $7 S); those with a dagger ( t) are new in the 256K ROMs for 
the Macintosh SE (version $ 7 6) or Macintosh II (version $ 7 8). 

Trap Ttap Reference 
Macro Name Word Section 

t_ActivatePalette $AA94 [IV:6.3.6] 

t_AddComp $AA3B [IV:4.6.2] 

_Add Pt $A87E [1:4.4.1) 

_AddResMenu $A94D (11:4.3.3} 

_AddResource $A9AB [1:6.5.3} 

t_AddSearch $AA3A [IV:4.6.2] 

_Alert $A985 [11:7.4.2) 

429 



430 Appendix F 

Trap Trap Reference 
Macro Name Word Section 

_Allocate $A010 [11:8.2.5) 

t_AnimateEntry $AA99 [IV:5.4.3) 

t_AnimatePalette $AA9A [IV:5.4.3) 

_AppendMenu $A933 (11:4.3.1) 

_BackColor $A863 [IV:4.l.2) 

_BackPat $A87C [1:5.1.1) 

t_BackPixPat $AAOB [IV:5.2.4) 

_Begin Update $A922 [11:3.4.1) 

_BitAnd $A858 (1:2.2.2) 

_BitClr $A85F [1:2.2.1) 

_BitNot $A85A [1:2.2.2) 

_BitOr $A85B [1:2.2.2) 

_BitSet $A85E [1:2.2.1) 

_BitShift $A85C [1:2.2.2) 

_BitTst $A85D [1:2.2.1) 

_BitXOr $A859 [1:2.2.2) 

_BlockMove $A02E [1:3.2.5) 

_BringToFront $A920 [11:3.3.3) 

_Button $A974 [11:2.4.2) 

t _CalcCMask $AA4F [IV:5.4.5) 
*_CalcMask $A838 [1:5.1.6) 
_CalcMenuSize $A948 [11:4. 7.1] 
_CautionAlert $A988 [11:7.4.2) 
_Chain $A9F3 [1:7.1.1) 

_ChangedResource $A9AA [1:6.5.2) 
t_CharExtra $AA23 [IV:7.3.2) 

_CharWidth $A88D [1:8.3.4) 

_Check Item $A945 (11:4.6.4) 
_ClearMenuBar $A934 (11:4.4.1] 
_ClipRect $A87B (1:4.3.6] 
_Close $A001 [11:8.2.2. 111:3.2.1) 
_CloseCPort $A87D [IV:5.l.5] 
_CloseDeskAcc $A9B7 (11:4.5.2, 111:6.2.1 J 
_CloseDialog $A982 [11:7.2.3) 
_ClosePgon $A8CC [1:4.1.4) 
_ClosePicture $A8F4 (1:5.4.2) 

_Close Port $A87D [1:4.3.2) 

_CloseResFile $A99A (1:6.2.1) 



431 Summaiy of Trap Macros and Trap Words 
~~~~~~~~~~~~ 

Trap Trap Reference
Macro Name Word Section

_CloseRgn $A8DB (1:4.1.6)
_CloseWindow $A92D (11:3.2.3)
_CmpString $A03C (1:2.1.2)

t_CMY2RGB $A82E (3) (IV:4.2.2)
_ColorBit $A864 (IV:4.l.3)

t_Color2Index $AA33 [IV:4.4.4)
_CompactMem $A04C (1:3.3.2)
_Control $A004 (111:3.2.3)
_CopyBits $A8EC [1:5.1.2, IV:5.4.4]

*_CopyMask $A817 (1:5.1.4, IV:5.4.4]
t_CopyPalette $AAA1 [IV:4.5.5]
t_CopyPixMap $AA05 (IV:5.l.2]
t_CopyPixPat $AA09 [IV:5.2.3]
_CopyRgn $A8DC (1:4.1.7)
_CouldAlert $A989 [11:7.5.3]
_CouldDialog $A979 [11:7.5.3)
_CountMitems $A950 [11:4.3.4]
_CountResources $A99C (1:6.3.3)
_CountTypes $A99E (1:6.3.3]

*_CountlResources $A80D [1:6.3.3)
*_CountlTypes $A81C (1:6.3.3)
_Create $A008 (11:8.2.1)
_CreateResFile $A9Bl (1:6.5.1)

t_CTab2Palette $AA9F (IV:4.5.5]
_CurResFile $A994 [1:6.2.2)

_Date2Secs $A9C7 (1:2.4.3)
_Delay $A03B [11:2.7.1]

t_DelComp $AA4D [IV:4.6.2]
_Delete $A009 [11:8.2. 71
_DeleteMenu $A936 [11:4.4.1]

t_DelMCEntries $AA60 [IV:6.6.3]
*_DelMenuitem $A952 [11:4.3.4]
t_DelSearch $AA4C [IV:4.6.2]
_DeltaPoint $A94F [1:4.4.1]
_Dequeue $A96E (111:3.1. 7)
_DetachResource $A992 (1:6.3.2)

_Dialog.Select $A980 [11:7.4.4]
_DIBadMount $A9E9 (0) [11:8.4.1)
_Dif fRgn $A8E6 (1:4.4.8)

432 Appendix F

Trap Trap Reference
Macro Name Word Section

_DIFormat $A9E9 (6) (11:8.4.2)

_DI Load $A9E9 (2) (11:8.4.3)

_Disable Item $A93A (11:4.6.2)

t_DispMCinfo $AA63 [IV:6.6.2]

t_DisposCCursor $AA26 [IV:6.2.2)

t_DisposCicon $AA25 (IV:6.l.2)

_DisposControl $A955 (11:6.2.2)

t_DisposCTable $AA24 [IV:4.4.3)

_DisposDialog $A983 (11:7.2.3)

t_OisposePalette $AA93 [IV:4.5.3)

t_DisposGDevice $AA30 [IV:4.3.2)

_DisposHandle $A023 [1:3.2.2)

_DisposMenu $A932 (11:4.2.3)

t_DisposPixMap $AA04 [IV:5.l.2)

t_DisposPixPat $AA08 [IV:5.2.2)

_DisposPtr $A01F [1:3.2.2)

_DisposRgn $A809 [1:4.1.6)
_DisposWindow $A914 [11:3.2.3)

_DIUnload $A9E9 (4) [11:8.4.3)
_D!Verify $A9E9 (8) (11:8.4.2)
_D!Zero $A9E9 (10) (11:8.4.2)
_DragControl $A967 [11:6.4.3)
_DragWindow $A925 [11:3.5.4)
_DrawChar $A883 [1:8.3.3)

_DrawControls $A969 [11:6.3.1)
_DrawOialog $A981 [11:7.4.1)
_DrawGrowlcon $A904 [11:3.3.4)

_DrawMenuBar $A937 [11:4.4.3)
_DrawPicture $A8F6 [1:5.4.3)
_Drawstring $A884 [1:8.3.3)
_OrawText $A885 (1:8.3.3)

_Eject $A017 (11:8.1.3)
_EmptyHandle $A02B [1:3.3.3)
_EmptyRect $A8AE [1:4.4.4)
_EmptyRgn $A8E2 [1:4.4.7)
_Enable Item $A939 [11:4.6.2)
_End Update $A923 (11:3.4.1)
_Enqueue $A96F (111:3. l. 7)

_EqualPt $A881 (1:4.4.1)

433 Sunuruuy of Trap Macros and Trap Words
~~~~~~~~~~~~ 

Trap Trap Reference 
Macro Name Word Section 

_EqualRect $A8A6 [1:4.4.51 
_EqualRgn $A8E3 (1:4.4.8) 
_EraseArc $A8CO (1:5.3.5) 
_EraseOval $A8B9 (1:5.3.41 
_ErasePoly $A8C8 (1:5.3.6) 
_EraseRect $A8A3 (1:5.3.21 
_EraseRgn $A8D4 (1:5.3.7) 
_EraseRoundRect $A8B2 [1:5.3.3) 
_ErrorSound $A98C (11:7.5.1] 
_EventAvail $A971 (11:2.2.1] 
_ExitToShell $A9F4 (1:7.1.3] 

_FillArc $A8C2 [1:5.3.5] 
t_FillCArc $AA11 [IV:5.4.2] 
t_FillCOval $AAOF [IV:5.4.2] 

t_FillCPoly $AA13 [IV:5.4.2] 
t _FillCRect $AAOE [IV:5.4.2] 
t_FillCRgn $AA12 (IV:5.4.2] 

t_FillCRoundRect $AA10 (IV:5.4.2) 

_FillOval $A8BB (1:5.3.4] 

_FillPoly $A8CA (1:5.3.6] 
_FillRect $A8AS (1:5.3.2] 
_FillRgn $A8D6 [1:5.3.7) 

_FillRoundRect $A8B4 (1:5.3.3] 

_FindControl $A96C (11:6.4.1) 

* _FindDitem $A984 (11:7.3.4) 

_Find Window $A92C (11:3.5.1) 

*_FixATan2 $A818 (1:2.3.6] 

*_FixDiv $A84D (1:2.3.2] 

_FixMul $A868 (1:2.3.2] 

_FixRatio $A869 (1:2.3.2] 

_FixRound $A86C (1:2.3.1] 

*_Fix2Frac $A841 [1:2.3.3] 

*_Fix2Long $A840 (1:2.3.1] 

t_Fix2Sma11Fract $A82E (1) [IV:2.4.l] 

_FlashMenuBar $A94C (11:4.7.2] 

_FlushEvents $A032 [11:2.3.1] 

_FlushVol $A013 [11:8.1.31 
*_FontMetrics $A835 (1:8.2.6] 

_ForeColor $A862 (IV:4.l.2] 



434 Appendix F 

Trap Trap Reference 
Macro Name Word Section 

•_FracCos $A847 0:2.3.6) 
•_FracDiv $A84B [1:2.3.4) 
•_FracMul $A84A [1:2.3.4) 
•_FracSin $A848 [1:2.3.6) 
*_FracSqrt $A849 [1:2.3.4) 
•_Frac2Fix $A842 [1:2.3.3) 
_FrameArc $A8BE (1:5.3.5) 
_FrameOval $A8B7 [1:5.3.4) 
_FramePoly $A8C6 [1:5.3.6) 
_FrameRect $A8Al [1:5.3.2) 
_FrameRgn $A8D2 [1:5.3.7) 
_FrameRoundRect $A8BO [1:5.3.3) 
_FreeAlert $A98A [11:7.5.3) 
_FreeDialog $A97A (11:7.5.3) 
_FreeMem $A01C (1:3.3.1) 
_FrontWindow $A924 [11:3.3.3) 

_GetAppParms $A9F5 (1:7.3.4) 
t_GetAuxCtl $AA44 (IV:6.4.3] 
t_GetAuxWin $AA42 [IV:6.3.5] 
t_GetBackColor $AAIA [IV:5.4.l] 
t_GetCCursor $AA1B [IV:6.2.2) 
t_GetCicon $AA1E [IV:6.l.2] 
_Get Clip $A87A [1:4.3.6) 

t_GetColor $A82E (9) [IV:4.2.3) 
t_GetCPixel $AA17 [IV:5.l.6) 
_GetCRef Con $A95A [11:6.2.3) 

t_GetCTable $AA18 [IV:4.4.3) 
_GetCTitle $A95E (11:6.2.3) 
_GetCtlAction $A96A [11:6.4.2) 
_GetCtlValue $A960 [11:6.2.4) 

t_GetCTSeed $AA28 [IV:4.4.3) 
_GetCursor $A9B9 [11:2.5.2) 

t_GetCVariant $A809 [IV:6.4.3) 
t_GetCWMgrPort $AA48 [IV:6.3.7) 
t_GetDeviceList $AA29 (IV:4.3.3) 
_GetDitem $A98D [11:7.3.1) 

t_GetEntryColor $AA9B (IV:4.5.4) 
t_GetEntryUsage $AA9D (IV:4.5.4) 
_GetEOF $A011 (11:8.2.5) 



435 Summaiy of Trap Macros and Trap Words 
~~~~~~~~~~~~ 

Trap Trap Reference
Macro Name Word Section

_GetFileinfo $AOOC (1:7.3.3)
_GetFName $A8FF (1:8.2.5)
_GetFNum $A900 (1:8.2.5)
_Get Font Info $A88B (1:8.2.6)

t_GetForeColor $AA19 [IV:5.4.l]
_GetFPos $A018 (11:8.2.4)

t_GetGDevice $AA32 [IV:4.3.4]
_GetHandleSize $A025 (1:3.2.3)
_GetindResource $A99D (1:6.3.3)
_GetindType $A99F (1:6.3.3)
_Get Item $A946 (11:4.6.1}
_GetIText $A990 (11:7.3.2)

_Getitmicon $A93F (11:4.6.5}
_GetltmMark $A943 (11:4.6.4)
_Get!tmStyle $A941 (11:4.6.3)
_Get Keys $A976 (11:2.6.ll

t _GetMainDevice $AA2A [IV:4.3.4]

_GetMaxCtl $A962 (11:6.2.4)

t _GetMaxDevice $AA27 [IV:4.3.4)

t _GetMCEntry $AA64 [IV:6.6.3]

t_GetMCinfo $AA61 [IV:6.6.2]

_GetMenuBar $A93B (11:4.4.4)

_GetMHandle $A949 [II:4.4.5]

_GetMinCtl $A961 (11:6.2.4}

_GetMouse $A972 (11:2.4.1)

_GetNamedResource $A9Al (1:6.3.1)

_GetNewControl $A9BE (11:6.2.1]

t_GetNewCWindow $AA46 [IV:6.3.4]

_GetNewDialog $A97C [II:7.2.2]

_GetNewMBar $A9CO (11:4.4.2)

t_GetNewPalette $AA92 (IV:4.5.3]

_GetNewWindow $A9BD [II:3.2.2]

t_GetNextDevice $AA2B [IV:4.3.3}

_Get Next Event $A970 (11:2.2.1]

t_GetPalette $AA96 [IV:6.3.6]

_Get Pattern $A9B8 (1:5.1. l]

_Get Pen $A89A (1:5.2.4}

_GetPenState $A898 (1:5.2.1)

_GetPicture $A9BC (1:5.4.2}

436 Appendix F

Trap Trap Reference
Macro Name Word Section

_Get Pixel $A865 (1:4.2.3)

t_GetPixPat $AAOC [IV:5.2.2]

_Get Port $A874 (1:4.3.3)

_GetPtrSize $A021 (1:3.2.3)

_GetResAttrs $A9A6 (1:6.4.2)

_GetResFileAttrs $A9F6 (1:6.6.2)

_GetResinf o $A9A8 (1:6.4.1)

_GetResource $A9AO (1:6.3.1)

_GetRMenu $A9BF (11:4.2.2)

_GetScrap $A9FD (1:7.4.3)

_GetString $A9BA (1:8.1.2)

t_GetStylHandle $A83D (4) [IV:7.3.l]

t_GetStylScrap $A83D (6) [IV:7.3.6]

t_GetSubtable $AA37 [IV:4.4.4]

_GetTrapAddress $Al46 [IV:2.l.2]

_GetVol $A014 (11:8.1.2)

_GetVolinfo $A007 (11:8.1.1)

_GetWindowPic $A92F (11:3.4.3)

_GetWMgrPort $A910 (11:3.6.1)

_GetWRefCon $A917 (11:3.2.4)
_GetWTitle $A919 (11:3.2.4)

t _GetWVariant $A80A [IV:6.3.5]
*_GetlixResource $A80E (1:6.3.3)
*_GetlixType $A80F (1:6.3.3)

*_GetlNamedResource $A820 (1:6.3.1)
*_GetlResource $A81F (1:6.3.1)
_GlobalToLocal $A871 (1:4.4.2)
_GrafDevice $A872 (1:8.3.2)
_GrowWindow $A92B (11:3.5.4)

_HandAndHand $A9E4 (1:3.2.6)
_HandToHand $A9El (1:3.2.5)

*_HClrRBit $A068 (1:3.2.4)

*_HGetState $A069 (1:3.2.4)
_HideControl $A958 (11:6.3.1)
_HideCursor $A852 (11:2.5.3)

*_HideDitem $A827 (11:7.3.3)
_Hide Pen $A896 (1:5.2.3)
_HideWindow $A916 (11:3.3.1)

t_HiliteColor $AA22 [IV:S.3.4)

437 Summaty of Trap Macros and Trap Words
~~~~~~~~~~~-

Trap Trap Reference 
Macro Name Word Section 

_HiliteControl $A95D (11:6.3.3) 
_HiliteMenu $A938 [11:4.5.4) 
_HiliteWindow $A91C (11:3.3.4) 
_Hi Word $A86A (1:2.2.3] 
_HLock $A029 [1:3.2.4) 
_HNoPurge $A04A [1:3.2.4) 
_HomeResFile $A9A4 [1:6.4.3) 
_HPurge $A049 (1:3.2.4) 

*_HSetRBit $A067 (1:3.2.4) 
*_HSetState $A06A (1:3.2.4) 
t_HSL2RGB $A82E (5) [IV:4.2.2] 
t_HSV2RGB $A82E (7) [IV:4.2.2) 
_HUnlock $A02A (1:3.2.4) 

t_Index2Color $AA34 [IV:4.4.4) 
_InfoScrap $A9F9 (1:7.4.2] 

Ini tAllPacks $A9E6 (1:7.2.2] 
t _InitCPort $AA01 [IV:5.l.5) 

InitCursor $A850 (11:2.5.2] 

_InitDialogs $A97B [11:7.2.1] 

_InitFonts $A8FE [1:8.2.4) 

t _InitGDevice $AA2E [IV:4.3.2] 

_InitGraf $A86E [1:4.3.1] 

_InitMenus $A930 [11:4.2.1) 

InitPack $A9E5 [1:7.2.2] 

t_InitPalettes $AA90 [IV:4.5.2) 

InitPort $A86D (1:4.3.2] 

InitWindows $A912 (11:3.2.1] 

InsertMenu $A935 [11:4.4.1) 

_InsertResMenu $A951 (11:4.3.3) 

InsetRect $A8A9 (1:4.4.4] 

_InsetRgn $A8El (1:4.4.7) 

*_InsMenuitem $A826 (11:4.3.1) 

_Inv?lRect $A928 [11:3.4.2] 

_InvalRgn $A927 [11:3.4.2] 

_InverRect $A8A4 [1:5.3.2] 

_InverRgn $A8D5 (1:5.3.7) 

InverRoundRect $A8B3 [1:5.3.3] 

InvertArc $A8Cl [1:5.3.5) 

t_InvertColor $AA35 [IV:4.4.4] 



438 Appendix F 

Trap Trap Reference 
Macro Name Word Section 

_InvertOval $ABBA [1:5.3.4) 

_InvertPoly $A8C9 [1:5.3.6) 

_IsDialogEvent $A97F [11:7.4.4) 

_IUDateString $A9ED (0) (1:2.4.4) 
_IUTimeString $A9ED (2) [1:2.4.4) 

_KillControls $A956 [11:6.2.2) 

_Kill IO $A006 (111:3.2.3) 

_KillPicture $ABF5 (1:5.4.2) 

_KillPoly $A8CD [1:4.1.4) 

_Launch $A9F2 [1:7.1.1) 
_Line $A892 [1:5.2.4) 
_Line To $A891 [1:5.2.4) 
_LoadSeg $A9FO (1:7.1.2) 
_LocalToGlobal $A870 [1:4.4.2) 
_LodeScrap $A9FB [1:7.4.4) 
_LongMul $A867 [1:2.3.3) 

*_Long2Fix $A83F (1:2.3.1) 
_Lo Word $A86B [1:2.2.3) 

t_Make!Table $AA39 [IV:4.4.2] 
t_MakeRGBPat $AAOD (IV:5.2.3] 
_MapPoly $A8FC (1:4.4.9) 
_Map Pt $A8F9 [1:4.4.9) 
_MapRect $ABFA [1:4.4.9) 
_MapRgn $A8FB (1:4.4.9) 

*_MaxApplZone $A063 (1:3.3.4) 
*_MaxBlock $A061 [1:3.3.1) 

_MaxMem $A11D [1:3.3.1) 
*_MaxSizeRsrc $A821 [1:6.4.3) 
*_MeasureText $A837 [1:8.3.4) 
_Menu Key $A93E [11:4.5.1) 
_MenuSelect $A93D [11:4.5.1) 

t_MFFreeMem $A88F (24) (IV:2.2.4] 
t_MFMaxMem $A88F (21) (IV:2.2.4] 
t_MFTempDisposHandle $A88F (32) (IV:2.2.3] 
t_MFTempHLock $A88F (30) (IV:2.2.3] 
t_MFTempHUnlock $A88F (31) (IV:2.2.3] 
t_MFTempNewHandle $A88F (29) (IV:2.2.3] 
t_MFTopMem $A88F (22) (IV:2.2.4] 



439 Summmy of Trap Macros and Trap Words 
~~~~~~~~~~~-

Trap Trap Reference
Macro Name Word Section

_ModalDialog $A991 (11:7.4.3]
_MoreMasters $A036 [1:3.2.5]
_Mount Vol $AOOF (11:8.1.3]
_Move $A894 [1:5.2.4]
_MoveControl $A959 (11:6.3.2]

•_MoveHHi $A064 (1:3.2.5)
_MovePortTo $A877 (1:4.3.5)
_MoveTo $A893 (1:5.2.4)
_MoveWindow $A91B (11:3.3.2]
_Munger $A9EO [11:5.5.6)

t_NewCDialog $AA4B [IV:6.5.l]
_NewControl $A954 (11:6.2.1)

t_NewCWindow $AA45 [IV:6.3.4]
_NewDialog $A97D (11:7.2.2)

*_NewEmptyHandle $Al66 [1:3.2.1)
t_NewGDevice $AA2F [IV:4.3.2]

_NewHandle $A122 (1:3.2.1)
_NewHandleClear $A322 [IV:2.2.2)

_NewHandleSys $A522 [IV:2.2.2]

_NewHandleSysClear $A722 [IV:2.2.2]

_NewMenu $A931 (11:4.2.2]

t_NewPalette $AA91 [IV:4.5.3]

t_NewPixMap $AA03 [IV:S.1.2)
t_NewPixPat $AA07 [IV:5.2.2]

_NewPtr $A11E (1:3.2.1)

_NewPtrClear $A31E [IV:2.2.2]

_NewPtrSys $A51E [IV:2.2.2]

_NewPtrSysClear $A71E [IV:2.2.2]

_NewRgn $A8D8 (1:4.1.6)

_NewString $A906 (1:8.1.2)

_NewWindow $A913 (11:3.2.2)

t_NMinstall $A05E [IV:3.2.2]

t_NMRemove $A05F [IV:3.2.2]
_NoteAlert $A987 (11:7.4.2)

_NumToString $A9EE (0) (1:2.3.4)

_ObscureCursor $A856 (11:2.5.4)

_Of fLine $A035 (11:8.1.3)

_Off setPoly $A8CE (1:4.4.6)

440 Appendix F

Trap Trap Reference
Macro Name Word Section

_Off setRect $A8A8 (1:4.4.4)

_Of setRgn $A8EO (1:4.4.7)

t_OpColor $AA21 [IV:5.3.2)

_Open $AOOO (II:S.2.2, 111:3.2.1)

t_OpenCPort $AAOO [IV:5.l.5)

_OpenDeskAcc $A9B6 (11:4.5.2, 111:6.2.1)

_OpenPicture $A8F3 [1:5.4.2)

_OpenPoly $A8CB (1:4.1.4)

_OpenPort $A86F [1:4.3.2)

_OpenResFile $A997 [1:6.2.1)

_OpenRF $AOOA (11:8.2.2)

_OpenRgn $A8DA (1:4.1.6)

t_OSDispatch $A88F [IV:2.2.3-2.2.4)

_PackO $A9E7 [1:7.2.1)

_Pack! $A9E8 (1:7.2.1)
_Pack2 $A9E9 [1:7.2.1)
_Pack3 $A9EA [1:7.2.1)
_Pack4 $A9EB [1:7.2.1)

_Pack5 $A9EC [1:7.2.1)
_Pack6 $A9ED [1:7.2.1)
_Pack7 $A9EE [1:7.2.1)

*_Packs $A816 [1:7.2.1)
*_Pack9 $A82B [1:7.2.1)
*_PacklO $A82C [1:7.2.1)
*_Packll $A82D [1:7.2.1)
*_Pack12 $A82E [1:7.2.1)
*_Pack13 $A82F [1:7.2.1)
*_Pack14 $A830 [1:7.2.1)
*_Pack15 $A831 [1:7.2.1)
_PaintArc $A8BF [1:5.3.5)
_PaintOval $A8B8 [1:5.3.4)
_Paint Poly $A8C7 [1:5.3.6)
_PaintRect $A8A2 [1:5.3.2)
_PaintRgn $A803 [1:5.3.7)
_PaintRoundRect $A8Bl [1:5.3.3)

t_Palette2CTab $AAAO [IV:4.5.5)
_ParamText $A98B [11:7.4.6)
_PenMode $A89C [1:5.2.2)
_PenNormal $A89E [1:5.2.2)

441 Summary of Trap Macros and Trap Words
~~~~~~~~~~~ 

Trap Trap Reference 
Macro Name Word Section 

_PenPat $A89D (1:5.2.2] 
t_PenPixPat $AAOA [IV:5.2.4) 
_PenSize $A89B (1:5.2.2] 
_Pie Comment $A8F2 (111:2.1. 7) 
_PinRect $A94E (1:4.4.3] 

t_PlotCicon $AA1F [IV:6.l.2} 
t_PMBackColor $AA98 [IV:5.4.l] 
t_PMForeColor $AA97 [IV:5.4.ll 
_PortSize $A876 (1:4.3.5] 
_PostEvent $A02F (11:2.3.2) 

*_PrClosDoc $A8FD ($08000484) (111:4. 3.1) 
*_PrClose $A8FD ($00000000) [III: 4. 2.1] 
*_PrClosPage $A8FD ($1800040C) (111:4.3.2) 
*_PrCtlCall $A8FD ($AOOOOEOO) (III:4.4.3} 
*_PrDlgMain $A8FD ($4A040894) (III:4.5.l) 
*_PrDrvrClose $A8FD ($88000000) (III:4.4. l] 
*_PrDrvrDCE $A8FD ($94000000) (111:4.4.2) 
*_PrDrvrOpen $A8FD ($80000000) (111:4.4.1) 
*_PrDrvrVers $A8FD ($9AOOOOOO) [III:4. 4. 2) 
*_PrError $A8FD ($BAOOOOOO) (111:4.2.4) 
*_PrGlue $A8FD (111:4.2-4.5) 
*_PrintDefault $A8FD ($20040480) (111:4.2.2) 
*_PrJobDialog $A8FD ($32040488) (111:4.2.3) 

*_PrJobinit $A8FD ($44040410) (111:4. 5.1 I 
*_PrJobMerge $A8FD ($5 804089C) (111:4.2.3] 

*_PrNoPurge $A8FD ($BOOOOOOO) (III:4.4.2] 

*_PrOpen $A8FD ($C8000000) (111:4. 2.1] 
*_PrOpenDoc $A8FD ($04000COO) [111:4.3.1) 
*_PrOpenPage $A8FD ($10000808) (111:4.3.2] 

t_ProtectEntry $AA3D [IV:4.4.6] 

*_PrPicFile $A8FD ($60051480) [III:4.3.3) 

*_PrPurge $A8FD ($A8000000) [III:4.4.2] 

*_PrSetError $A8FD ($C0000200) [III:4.2.4) 

*_PrStlDialog $A8FD ($2A040484) [III:4.2.3] 

*_PrStlinit $A8FD ($3C04040C) [III: 4. 5.1) 

*_PrValidate $A8FD ($52040498) [111:4.2.2] 

_Pt2Rect $A8AC (1:4.1.2) 

_PtinRect $ASAD (1:4.4.3) 

_PtlnRgn $A8E8 (1:4.4.31 



442 Appendix F 

Trap Trap Reference 
Macro Name Word Section 

_PtrAndHand $A9EF (1:3.2.6) 

_PtrToHand $A9E3 (1:3.2.5) 
_PtrToXHand $A9E2 (1:3.2.5) 
_PtToAngle $A8C3 (1:5.3.5) 
_PurgeMem $A04D (1:3.3.3) 

•_PurgeSpace $A162 (1:3.3.1) 

_PutScrap $A9FE (1:7.4.3) 

t_QDError $AA40 [IV:5.l.7) 

_Random $A861 (1:2.3.5) 
_Read $A002 (11:8.2.3, 111:3.2.2) 

t_RealColor $AA36 [IV:4.4.4] 
_RealFont $A902 (1:8.2.5) 
_ReallocHandle $A027 (1:3.3.3) 
_RecoverHandle $Al28 (1:3.2.1) 
_RectinRgn $A8E9 (1:4.4.3) 
_RectRgn $A8DF (1:4.1.7) 
_ReleaseResource $A9A3 (1:6.3.2) 

•_RelString $A050 (1:2.1.2) 
_Rename $AOOB [11:8.2.7) 
_ResError $A9AF (1:6.6.1) 

t_ReserveEntry $AA3E [IV:4.4.6] 
_ResrvMem $A040 (1:3.2.1] 

t_RestoreEntries $AA4A [IV:4.4.5] 
t_RGBBackColor $AA15 [IV:5.4.l) 
t_RGBForeColor $AA14 [IV:5.4.l] 
t_RGB2CMY $A82E (4) [JV:4.2.2] 
t_RGB2HSL $A82E (6) [IV:4.2.2) 
t_RGB2HSV $A82E (8) [JV:4.2.2] 
t_RGetResource $A80C (IV:2.3.2] 
_RmveResource $A9AD (1:6.5.3) 
_RstFilLock $A042 (11:8.2.6) 

t_SaveEntries $AA49 [IV:4.4.5) 
_Scale Pt $A8F8 (1:4.4.9) 
_ScrollRect $A8EF (1:5.1.5) 

t _SDinstall $A895 (3) [IV:2.l.6] 
t_SDPowerOff $A895 (1) (IV:2.l.5] 
t_SDRemove $A895 (4) [IV:2.l.6] 
t_SDRestart $A895 (2) (IV:2.l.5] 



443 Summmy of Trap Macros and Trap Words 
~~~~~~~~~~~~ 

Trap Trap Reference
Macro Name Word Section

_Secs2Date $A9C6 (1:2.4.3)
_SectRect $A8AA (1:4.4.5)
_SectRgn $A8E4 (1:4.4.8)

t_SeedCFill $AA50 (IV:5.4.5)
* _SeedFill $A839 (1:5.1.6)
_SelectWindow $A91F (11:3.5.2)
_Sel!Text $A97E (11:7.3.2)
_SendBehind $A921 (11:3.3.3)
_SetApplLirnit $A02D (1:3.3.4)

t_SetCCursor $AA1C [IV:6.2.2)
t _SetClient ID $AA3C [IV:4.6.2)
_SetClip $A879 (1:4.3.6)

t_SetCPixel $AA16 [IV:5.l.6)
_SetCRefCon $A95B [11:6.2.3)
_SetCTitle $A95F [11:6.2.3)
_SetCtlAction $A96B (11:6.4.2)

t_SetCtlColor $AA43 [IV:6.4.3)
_SetCtlValue $A963 (11:6.2.4)
_SetCursor $A851 (11:2.5.2)

_SetDateTime $A03A (1:2.4.1)
t_SetDeskCPat $AA47 [IV:5.2.4)

t_SetDeviceAttribute $AA2D [IV:4.3.5)
_SetDitern $A98E (11:7.3.1)

_SetEmptyRgn $A8DD (1:4.1.7)

t_SetEntries $AA3F (IV:4.4.5)

t_SetEntryColor $AA9C [IV:4.5.4)

t_SetEntryUsage $AA9E [IV:4.5.4)
_SetEOF $A012 (11:8.2.5)

_SetFileinfo $AOOD (1:7.3.3)
_SetFilLock $A041 (11:8.2.6)

_SetFontLock $A903 (1:8.2.7)
_SetFPos $A044 (11:8.2.4)

*_SetFScaleDisable $A834 [1:8.2.8)

t_SetGDevice $AA31 (IV:4.3.4)

_SetHandleSize $A024 (1:3.2.3)

_Set Item $A947 (11:4.6.1)

_SetIText $A98F (11:7.3.2)

_Setitrn!con $A940 [11:4.6.5)

_SetitmMark $A944 (11:4.6.4)

444 Appendix F

Trap Trap Reference
Macro Name Word Section

_SetitmStyle $A942 (11:4.6.3)

_SetMaxCtl $A965 [11:6.2.4)

t_SetMCEntries $AA65 (IV:6.6.3]

t _SetMCinfo $AA62 [IV:6.6.2]

_SetMenuBar $A93C (11:4.4.4)

_SetMFlash $A94A (11:4. 7.2)

_SetMinCtl $A964 (11:6.2.4)

_SetOrigin $A878 [1:4.3.4)

t_SetPalette $AA95 [IV:6.3.6]

_SetPBits $A875 [1:4.3.4)

_SetPenState $A899 [1:5.2.1)

_Set Port $A873 [1:4.3.3)

t _SetPortPix $AA06 [IV:S.1.2)
_Set Pt $A880 [1:4.1.1)

_SetPtrSize $A020 [1:3.2.3)

_SetRecRgn $A8DE (1:4.1.7)

_SetRect $A8A7 [1:4.1.2)
_SetResAttrs $A9A7 (1:6.4.2)

_SetResFileAttrs $A9F7 [1:6.6.2)
_SetReslnfo $A9A9 [1:6.4.1)
_SetResPurge $A993 (1:6.5.5)

t_SetStdCProcs $AA4E [IV:5.5.l)
_SetStdProcs $A8EA [111:2.1.1 J
_Set String $A907 (1:8.1.2)

t _SetStylHandle $A83D (5) [IV:7.3.l)
t_SetStylScrap $A83D (11) [IV:7.3.6)
_SetTrapAddress $A047 [IV:2.l.2]
_SetVol $A015 (11:8.1.2)

t_SetWinColor $AA41 [IV:6.3.5]
_SetWindowPic $A92E (11:3.4.3)
_SetWRefCon $A918 (11:3.2.4)
_SetWTitle $A91A (11:3.2.4)
_SFGetFile $A9EA (2) (11:8.3.2)
_SFPutFile $A9EA (1) [11:8.3.3)
_Shield Cursor $A855 (11:2.5.4)
_ShowControl $A957 [11:6.3.1)
_ShowCursor $A853 (11:2.5.3)

•_showDitem $A828 [11:7.3.3)
_ShowHide $A908 (11:3.3.1)

445 Summary of Trap Macros and Trap Words
~~~~~~~~~~~ 

Trap Trap Reference 
Macro Name Word Section 

_Show Pen $A897 (1:5.2.3) 
_ShowWindow $A915 (11:3.3.1 J 

t_Shutdown $A895 [IV:2. l. 5-2.1. 6] 
_SizeControl $A95C (11:6.3.2] 
_SizeRsrc $A9A5 (1:6.4.3) 

_SizeWindow $A91D [11:3.3.2) 
t _Smal1Fract2Fix $A82E (2) (IV:2.4.l) 
_SpaceExtra $A88E (1:8.3.2] 

•_stackSpace $A065 [1:3.3.4) 

_Status $A005 (111:3.2.3) 

_Std Arc $A8BD (111:2.1.4) 

_StdBits $A8EB (111:2.1.2] 

_Std Comment $A8Fl [111:2.1. 7) 

_StdGetPic $ABEE (111:2.1.6) 

_Std Line $A890 (111:2.1.3) 

t_StdOpCodeProc $ABF8 (IV:S.5.1) 

_StdOval $A8B6 [111:2.1.4) 

_Std Poly $A8CS (111:2.1.4) 

_StdPutPic $A8FO (111:2.1.6] 

_StdRect $A8AO (111:2.1.4) 

_StdRgn $A8Dl (111:2.1.4) 

_StdRRect $A8AF (111:2.1.4] 

_Std Text $A882 (111:2.1.5) 

_StdTxMeas $A8ED (111:2.1.5) 

- StillDown $A973 (11:2.4.2) 

_StopAlert $A986 (11:7.4.2) 

_StringToNum $A9EE (1) (1:2.3.4) 

_StringWidth $A88C (1:8.3.4) 

t_StripAddress $A055 (IV:2.l.3) 

_StuffHex $A866 (1:2.2.4) 

_Sub Pt $A87F [1:4.4.1) 

t_SwapMMUMode $AOSD (IV:2.l.3] 

_SysBeep $A9C8 (11:2.8.1) 

_SysEdit $A9C2 (11:4.5.3. 111:6.2.3) 

t_SysEnvirons $A090 [IV:2.l.l] 

_SystemClick $A9B3 (11:3.5.3, 111:6.2.2) 

_SystemEvent $A9B2 (111:6.2.2) 

_SystemMenu $A9BS (111:6.2.3) 

_SystemTask $A9B4 (11:2. 7 .2. 111:6.2.4) 



446 Appendix F 

Trap Trap Reference 
Macro Name Word Section 

_TEActivate $A9D8 (11:5.4.3) 

*_TEAutoView $A813 (11:5.3.3) 

_TECalText $A9DO (11:5.3.1) 

_TEClick $A9D4 (11:5.4.1) 

t_TEContinuousStyle $A83D (10) (IV:7.3.3) 

_TECopy $A9D5 (11:5.5.2, IV:7.3.5] 

_TECut $A9D6 OI:5.5.2, IV:7 .3.5] 

_TEDeactivate $A9D9 (11:5.4.3) 
_TEDelete $A9D7 (11:5.5.3) 

t_TEDispatch $A83D (IV:7.3.l-7.3.6] 
_TEDispose $A9CD (11:5.2.2) 

t_TEGetHeight $A83D (9) (IV:7.3.2) 

t_TEGetOffset $A83C (IV:7.3.2) 
t_TEGetPoint $A83D (8) (IV:7.3.2) 
t_TEGetStyle $A83D (3) (IV:7.3.3] 
_TEGetText $A9CB (11:5.2.3) 
_TE Idle $A9DA (11:5.4.3) 
_TEinit $A9CC (11:5.2.1) 

_TEinsert $A9DE (11:5.5.3) 
_TEKey $A9DC (11:5.5.1) 
_TENew $A9D2 (11:5.2.2) 

t_TENumStyles $A83D (13) (IV:7.3.3] 
_TEPaste $A9DB (11:5.5.2, IV:7.3.5] 

*_TEPinScroll $A812 (11:5.3.3) 
t_TEReplaceStyle $A830 (2) (IV:7.3.4) 
_TEScroll $A9DD [11:5.3.3) 

*_TESelView $A811 (11:5.3.3) 
_TESetJust $A9DF (11:5.3.1) 
_TESetSelect $A9Dl [11:5.4.2) 

t_TESetStyle $A83D (1) (IV:7.3.4] 
_TESetText $A9CF (11:5.2.3) 
_TestControl $A966 (11:6.4.1) 

t_TestDeviceAttribute $AA2C [IV:4.3.5] 
t_TEStyleNew $A83E [IV:7.3.l] 
t_TEStylinsert $A83D (7) (IV:7.3.6] 
t_TEStylPaste $A83D (0) [IV:7.3.5] 
_TEUpdate $A9D3 [11:5.3.2) 
_TextBox $A9CE (11:5.3.2) 
_TextFace $A888 (1:8.3.2) 



44 7 Summruy of Trap Macros and Trap Words 
~~~~~~~~~~~~ 

Trap Trap Reference
Macro Name Word Section

_TextFont $A887 (1:8.3.2)

_TextMode $A889 (1:8.3.2)

_TextSize $A88A (1:8.3.2)

_TextWidth $A886 (1:8.3.4)

_TickCount $A975 [11:2.7.1)

*_TrackBox $A83B [11:3.5.4)

_TrackControl $A968 [11:6.4.2)

_TrackGoAway $A91E [11:3.5.4)

t_Unimplemented $A89F [IV:2.l.2)

_UnionRect $A8AB (1:4.4.5)

_UnionRgn $A8E5 (1:4.4.8)

_Unique ID $A9Cl [1:6.5.3)

*_UniquelID $A810 (1:6.5.31

_UnloadSeg $A9Fl (1:7.1.2)

_UnlodeScrap $A9FA (1:7.4.4)

_Unmount Vol $AOOE [11:8.1.3)

_UpdateResFile $A999 [1:6.5.41

*_UpdtControls $A953 [11:6.3.11

*_UpdtDialog $A978 (11:7.4.1)

_UprString $A854 [1:2.1.2)

_UseResFile $A998 (1:6.2.2)

_ValidRect $A92A [11:3.4.2)

_ValidRgn $A929 (11:3.4.2)

_WaitMouseUp $A977 [11:2.4.2)

t_WaitNextEvent $A860 [IV:3.l.3]

_Write $A003 [11:8.2.3. IIl:3.2.2]

_WriteResource $A9BO [1:6.5.4)

_XOrRgn $A8E7 [1:4.4.8)

_ZeroScrap $A9FC (1:7.4.3)

*_ZoomWindow $A83A [11:3.3.2)

Trap Words

448 Appendix: F

Here is the same list sorted numerically by trap number. Again,
routine selectors are given in parentheses following the trap word for
routines belonging to the standard packages or accessed via "uni
versal" traps: routines marked with an asterisk(*) were introduced
in the Macintosh Plus ROM; and those with a dagger (t) are new in
the Macintosh SE and Macintosh II ROMs.

Trap Trap Reference
Word Macro Name Section

$AOOO _Open (11:8.2.2. 111:3~2. l 1

$A001 _Close (11:8.2.2. 111:3.2.11

$A002 - Read (11:8.2.3, 111:3.2.2)

$A003 _Write (11:8.2.3, 111:3.2.2)

$A004 _Control (111:3.2.3]

$A005 _Status (111:3.2.3)

$A006 _Kill IO (111:3.2.3)

$A007 _GetVolinfo (11:8.1.1)

$A008 _Create (11:8.2.1)

$A009 _Delete (11:8.2.7)

$AOOA _OpenRF (11:8.2.2)
$AOOB Rename (11:8.2.7)
$AOOC _GetFileinfo (1:7.3.3)
$AOOD _SetFileinfo (1:7.3.3)
$AOOE _UnmountVol (11:8.1.3]
$AOOF _MountVol (11:8.1.3]

$A010 _Allocate (11:8.2.5)
$A011 _GetEOF (11:8.2.5]
$A012 _SetEOF (11:8.2.5)
$A013 _Flush Vol (11:8.1.3]
$A014 _Get Vol (11:8.1.2)
$A015 _Set Vol (11:8.1.2]
$A017 _Eject (11:8.1.3)
$A018 _GetFPos (11:8.2.4)
$A01C _FreeMem (1:3.3.1)
$A11D _MaxMem (1:3.3.1)

SAllE _NewPtr (1:3.2.1)
$A31E _NewPtrClear [IV:2.2.2)

$A51E _NewPtrSys [IV:2.2.2)

449 Summmy of Trap Macros and Trap Words
~~~~~~~~~~~~ 

Trap Trap Reference 
Word Macro Name Section 

$A71E _NewPtrSysClear (IV:2.2.2) 
$A01F _OisposPtr (1:3.2.2) 

$A020 _SetPtrSize (1:3.2.3) 
$A021 _GetPtrSize (1:3.2.3) 
$A122 _NewHandle (1:3.2.1) 
$A322 _NewHandleClear (IV:2.2.2) 
$A522 _NewHandleSys (IV:2.2.2] 
$A722 _NewHandleSysClear [IV:2.2.2] 
$A023 _OisposHandle (1:3.2.2) 
$A024 _SetHandleSize (1:3.2.3) 

$A025 _GetHandleSize (1:3.2.3) 
$A027 _ReallocHandle (1:3.3.3) 

$A128 _RecoverHandle [1:3.2.1) 
$A029 _HLock (1:3.2.4) 

$A02A _Hunlock (1:3.2.4) 

$A02B _EmptyHandle (1:3.3.3) 

$A02D _SetApplLimit [1:3.3.4) 

$A02E _BlockMove (1:3.2.5) 

$A02F _PostEvent [11:2.3.2) 

$A032 _FlushEvents (11:2.3.1) 

$A035 _Of fLine [11:8.1.3) 

$A036 _MoreMasters (1:3.2.5) 

$A03A _SetDateTime (1:2.4.1) 

$A03B _Delay [11:2. 7.1) 

$A03C _CmpString [1:2.1.2) 

$A040 _ResrvMem (1:3.2.1) 

$A041 _SetFilLock [11:8.2.6) 

$A042 _RstFilLock [11:8.2.6) 

$A044 _SetFPos [11:8.2.4) 

$Al46 _GetTrapAddress [IV:2.l.2] 

$A047 _SetTrapAddress [IV:2.l.2) 

$A049 _HPurge [1:3.2.4) 

$A04A _HNoPurge (1:3.2.4) 

$A04C _CompactMem (1:3.3.2) 

$A04D _PurgeMem (1:3.3.3) 

*$A050 _RelString (1:2.1.2) 

t$A055 _StripAddress (IV:2.l.3] 



450 Appendix F 

Trap Trap Reference 
Word Macro Name Section 

t$A05D _SwapMMUMode (IV:2.l.3) 

t$A05E _NMinstall (IV:3.2.2) 

t$A05F _NMRemove (IV:3.2.2) 

*$A061 _MaxBlock (1:3.3.1) 

*$A162 _PurgeSpace (1:3.3.1) 

*$A063 _MaxApplZone (1:3.3.4) 

*$A064 _MoveHHi (1:3.2.5) 
*$A065 _StackSpace (1:3.3.4) 
*$Al66 _NewEmptyHandle (1:3.2.1) 
*$A067 _HSetRBit [1:3.2.4) 
*$A068 _HClrRBit (1:3.2.4) 

*$A069 _HGetState [1:3.2.4) 

*$A06A _HSetState (1:3.2.4) 

t$A090 _SysEnvirons [IV:2.I.l) 

t$A809 _GetCVariant [IV:6.4.3] 
t$A80A _GetWVariant [IV:6.3.5) 
t$A80C _RGetResource [IV:2.3.2) 
*$A80D _CountlResources (1:6.3.3) 
*$A80E _GetlixResource [1:6.3.3) 
*$A80F _GetlixType (1:6.3.3) 

*$A810 _UniquelID (1:6.5.3) 
* $A811 _TESelView [11:5.3.3) 
*$A812 _TEPinScroll [11:5.3.3) 
*$A813 _TEAutoView [11:5.3.3) 
*$A816 _Pack8 [1:7.2.1) 
*$A817 _CopyMask [1:5.1.4, IV:5.4.4) 
*$A818 _FixATan2 [1:2.3.6) 
*$A81C _CountlTypes [1:6.3.3) 
*$A81F _GetlResource [1:6.3.1) 

*$A820 _GetlNamedResource [1:6.3.1) 
*$A821 _MaxSizeRsrc [1:6.4.3] 
*$A826 _InsMenuitem [11:4.3.l] 
*$A827 _HideDitem (11:7.3.3) 
*$A828 _ShowDitem [11:7.3.3) 
*$A82B _Pack9 [1:7.2.l] 
*$A82C _PacklO [1:7.2.1] 
*$A82D _Packll [1:7.2.1] 



451 Summaiy of Trap Macros and Trap Words 
~~~~~~~~~~~ 

Trap Trap Reference
Word Macro Name section

*$A82E _Packl2 (1:7.2.1)
t $A82E (1) _Fix2Smal1Fract [IV:2.4.l]
t $A82E (2) _Sma11Fract2Fix [IV:2.4.l]
t $A82E (3) _CMY2RGB [IV:4.2.2]
t $A82E (4) _RGB2CMY [IV:4.2.2]
t $A82E (5) _HSL2RGB [IV:4.2.21
t $A82E (6) _RGB2HSL [IV:4.2.21
t $A82E (7) _HSV2RGB (IV:4.2.2I
t $A82E (8) _RGB2HSV [IV:4.2.21
t $A82E (9) _GetColor (IV:4.2.3]
*$A82F _Packl3 (1:7.2.ll

*$A830 _Pack14 (1:7.2.1)
*$A831 _PacklS (1:7.2.1)
*$A834 _SetFScaleDisable (1:8.2.8)
*$A835 _FontMetrics [1:8.2.61
*$A837 _MeasureText (1:8.3.41
*$A838 _CalcMask (1:5.1.61
*$A839 _Seed Fill (1:5.1.61
*$A83A _ZoomWindow [11:3.3.21
*$A83B _TrackBox (11:3.5.4)
t$A83C _TEGetOff set (IV:7.3.2]
t$A83D _TEDispatch [IV:7.3.l-7.3.6I
t $A83D (0) _TEStylPaste [IV:7.3.5I
t $A83D (1) _TESetStyle [IV:7.3.4]
t $A83D (2) _TEReplaceStyle [IV:7.3.4I
t $A83D (3) _TEGetStyle [IV:7.3.3]
t $A83D (4) _GetStylHandle [IV:7.3.l)
t $A83D (5) _SetStylHandle [IV:7.3.l)
t $A83D (6) _GetStylScrap (IV:7.3.6)
t $A83D (7) _TEStylinsert [IV:7.3.6)

t $A83D (8) _TEGetPoint [IV:7.3.2)
t $A83D (9) _TEGetHeight (IV:7.3.2)
t $A83D (lo) _TEContinuousStyle (IV:7.3.3)
t $A83D (11) _SetStylScrap (IV:7.3.6)
t $A83D (13) _TENumStyles [IV:7.3.3)
t$A83E _TEStyleNew (IV:7.3.l)
*$A83F _Long2Fix (1:2.3.1)

*$A840 _Fix2Long (1:2.3.1)

452 Appendix F

Trap Trap Reference
Word Macro Name Section

*$A841 _Fix2Frac (1:2.3.3)

*$A842 _Frac2Fix (1:2.3.3)

*$A847 _FracCos (1:2.3.6)

*$A848 _FracSin (1:2.3.6)

*$A849 _FracSqrt (1:2.3.4)

*$A84A _FracMul (1:2.3.4)

*$A84B _FracDiv (1:2.3.4)

*$A84D _FixDiv (1:2.3.2)

$A850 InitCursor (11:2.5.2)

$A851 _SetCursor (11:2.5.2)
$A852 _HideCursor (11:2.5.3)

$A853 _ShowCursor (11:2.5.3)

$A854 _UprString (1:2.1.2)

$A855 _ShieldCursor (11:2.5.4)
$A856 _ObscureCursor (11:2.5.4)
$A858 _BitAnd (1:2.2.2)
$A859 _BitXOr (1:2.2.2)

$ASSA _BitNot (1:2.2.2)
$A85B _Bit Or (1:2.2.2)
$A85C _BitShift (1:2.2.2)
$A85D _BitTst (1:2.2.1)
$A85E _BitSet (1:2.2.1)
$A85F _BitClr (1:2.2.1)

t$A860 _WaitNextEvent [IV:3.l.3)

$A861 _Random (1:2.3.5)
$A862 _ForeColor [IV:4.l.2]
$A863 _BackColor [IV:4.l.2)
$A864 _ColorBit [IV:4.l.3)
$A865 _Get Pixel (1:4.2.3)
$A866 _StuffHex (1:2.2.4)
$A867 _LongMul (1:2.3.3)
$A868 _FixMul (1:2.3.2)
$A869 _FixRatio (1:2.3.2)
$A86A _Hi Word (1:2.2.3)
$A86B _Lo Word (1:2.2.3)
$A86C _FixRound (1:2.3. l]
$A86D _InitPort (1:4.3.2)
$A86E _InitGraf (1:4.3. l]
$A86F _OpenPort (1:4.3.2)

459 Summaiy of Trap Macros and Trap Words
~~~~~~~~~~~~ 

Trap Trap Reference 
Word Macro Name Section 

$A870 _LocalToGlobal (1:4.4.2] 
$A871 _GlobalToLocal (1:4.4.2] 
$A872 _GrafDevice (1:8.3.2] 
$A873 _Set Port (1:4.3.3) 
$A874 _Get Port [1:4.3.3) 
$A875 _SetPBits [1:4.3.4) 
$A876 _Port Size (1:4.3.5) 
$A877 _MovePortTo [1:4.3.5) 
$A878 _SetOrigin [1:4.3.4) 
$A879 _SetClip [1:4.3.6) 
$A87A _Get Clip [1:4.3.6) 
$A87B _ClipRect [1:4.3.6) 
$A87C _BackPat [1:5.1.1) 
$A870 _ClosePort [1:4.3.2) 
$A87D _CloseCPort (IV:5.l.5] 
$A87E _Add Pt (1:4.4.1) 
$A87F _Sub Pt [1:4.4.1) 

$ABBO _Set Pt [1:4.1.1) 

$ABBI _Equal Pt [1:4.4.1) 

$ABB2 _Std Text (111:2.1.5) 

$ABB3 _DrawChar (1:8.3.3) 

$A884 _Drawstring (1:8.3.3) 

$AB85 _DrawText [1:8.3.3) 

$ABB6 _TextWidth [1:8.3.4) 

$ABB7 _Text Font [1:8.3.2) 

$ABBB _TextFace [1:8.3.2) 

$A889 _Text Mode (1:8.3.2) 

$ABBA _Text Size (1:8.3.2) 

$AB8B _GetFontlnfo [1:8.2.6) 

$A8BC _StringWidth [1:8.3.4) 

$ABBD _CharWidth [1:8.3.4) 

$ABBE _SpaceExtra (1:8.3.2) 

t$A88F _OSDispatch [IV:2.2.3-2.2.4) 

t $A88F (21) _MFMaxMem [IV:2.2.4] 

t $A88F (22) _MFTopMem [IV:2.2.4) 

t $A88F (24) _MFFreeMem (IV:2.2.4) 

t$A88F (29) _MFTempNewHandle [IV:2.2.3) 

t $A88F (30) _MFTempHLock [IV:2.2.3) 



454 Appendix F 

Trap Trap Reference 
Word Macro Name Section 

t $A88F (31) _MFTempHUnlock [IV:2.2.3] 

t $A88F (32) _MFTempDisposHandle [IV:2.2.3] 

$A890 _Std Line (111:2.1.3) 

$A891 _LineTo (1:5.2.4) 

$A892 _Line (1:5.2.4) 

$A893 _Move To (1:5.2.4) 

$A894 _Move (1:5.2.4) 

t$A895 _Shutdown (IV:2. l .5-2. l .6) 

t$A895 (1) _SDPowerOff [IV:2.l.5) 

t $A895 (2) _SDRestart [IV:2.l.5) 

t $A895 (3) _SD Install [IV:2.l.6] 

t $A895 (4) _SD Remove [IV:2.l.6] 

$A896 _HidePen (1:5.2.3) 

$A897 _Show Pen (1:5.2.3) 

$A898 _GetPenState (1:5.2.1) 

$A899 _SetPenState (1:5.2.1) 

$A89A _Get Pen (1:5.2.4] 

$A89B _PenSize (1:5.2.2) 

$A89C _PenMode (1:5.2.2] 

$A89D _PenPat (1:5.2.2) 
$A89E _PenNormal (1:5.2.2) 

t$A89F _Unimplemented [IV:2.l.2) 

$A8AO _StdRect (111:2.1.4) 
$A8Al _FrameRect (1:5.3.2) 

$A8A2 _PaintRect (1:5.3.2) 

$A8A3 _EraseRect (1:5.3.2) 

$A8A4 _InverRect (1:5.3.2) 

$A8A5 _FillRect (1:5.3.2) 
$A8A6 _EqualRect (1:4.4.5) 
$A8A7 _SetRect (1:4.1.2) 

$A8A8 _Off setRect (1:4.4.4) 

$A8A9 _InsetRect (1:4.4.4) 
$A8AA _SectRect (1:4.4.5) 
$A8AB _UnionRect (1:4.4.5) 
$A8AC _Pt2Rect [1:4.1.2) 
$ASAD _PtinRect (1:4.4.3) 

$A8AE _EmptyRect [1:4.4.4) 
$A8AF _StdRRect (111:2.1.4) 



455 Summaiy of Trap Macros and Trap Words 
~~~~~~~~~~~~ 

Trap Trap Reference
Word Macro Name Section

$A8BO _FrameRoundRect [1:5.3.3)
$A8Bl _PaintRoundRect (1:5.3.3)
$A8B2 _EraseRoundRect [1:5.3.3)
$ABB3 _InverRoundRect (1:5.3.3)
$ABB4 _FillRoundRect (1:5.3.3)
$ABB6 _Std Oval (111:2.1.4)

$A8B7 _FrameOval (1:5.3.4)
$ABBB _PaintOval [1:5.3.4)
$A8B9 _EraseOval (1:5.3.4)
$ABBA _InvertOval (1:5.3.4)

$A8BB _FillOval [1:5.3.4)

$A8BD _StdArc (111:2.1.4)

$ABBE _FrameArc (1:5.3.5)

$A8BF _PaintArc (1:5.3.5)

$A8CO _EraseArc (1:5.3.5)

$ABC1 InvertArc [1:5.3.5)

$A8C2 _FillArc (1:5.3.5]

$A8C3 _PtToAngle [1:5.3.5)

$A8C5 _Std Poly (111:2.1.4)

$ABC6 _FramePoly [1:5.3.6)

$A8C7 _PaintPoly (1:5.3.6)

$A8C8 _ErasePoly [1:5.3.6)

$ABC9 _Invert Poly (1:5.3.6)

$A8CA _FillPoly (1:5.3.6)

$ABCB _OpenPoly (1:4.1.4)

$A8CC _ClosePgon (1:4.1.4]

$ABCD _KillPoly [1:4.1.4]

$A8CE _Off set Poly (1:4.4.6)

$A8Dl _StdRgn (111:2.1.4)

$A8D2 _FrameRgn (1:5.3.7)

$A8D3 _PaintRgn (1:5.3.7)

$A8D4 _EraseRgn [1:5.3.7)

$A8DS _InverRgn [1:5.3. 7}

$A8D6 _FillRgn (1:5.3.7)

$ABDB _NewRgn [1:4.1.6]

$A8D9 _DisposRgn [1:4.1.6}

$A8DA _OpenRgn (1:4.1.6]

$A8DB _CloseRgn (1:4.1.6]

456 Appendix F

Trap Trap Reference
Word Macro Name Section

$A8DC _CopyRgn [1:4.1.7)

$A8DD _SetEmptyRgn [1:4.1.7)

$A8DE _SetRecRgn [1:4.1.7)

$A8DF _RectRgn (1:4.1.7)

$A8EO _Of setRgn [1:4.4.7)

$A8El _InsetRgn (1:4.4.7)

$A8E2 _EmptyRgn (1:4.4.7)

$A8E3 _EqualRgn (1:4.4.8)

$A8E4 _SectRgn (1:4.4.8)

$A8E5 _UnionRgn (1:4.4.8)

$A8E6 _DiffRgn (1:4.4.8)

$A8E7 _XOrRgn (1:4.4.8)

$A8E8 _PtinRgn (1:4.4.3)

$A8E9 _RectlnRgn [1:4.4.3)

$A8EA _SetStdProcs (111:2.1.1)

$A8EB _StdBits (111:2.1.2)

$A8EC _CopyBits (1:5.1.2. IV:5.4.4)

$A8ED _StdTxMeas (111:2.1.5)

$A8EE _StdGetPic (111:2.1.6)

$A8EF _ScrollRect (1:5.1.5)

$A8FO _StdPutPic (111:2.1.6)

$A8Fl _Std Comment (111:2.1.7)

$A8F2 _Pie Comment (111:2.1. 7)

$A8F3 _OpenPicture (1:5.4.2)

$A8F4 _ClosePicture [1:5.4.2)
$A8F5 _Kill Picture (1:5.4.2)
$A8F6 . _DrawPicture (1:5.4.3)

$A8F8 _Scale Pt (1:4.4.9)
$A8F9 _Map Pt (1:4.4.9)
$ABFA _MapRect (1:4.4.9)

$A8FB _MapRgn [1:4.4.9)

$A8FC _MapPoly (1:4.4.9)
*$A8FD _PrGlue (111:4. 2-4. 5)
* $A8FD ($04000COO) _PrOpenDoc [111:4. 3.1)
* $A8FD ($08000484) _PrClosDoc [111:4.3.1)
* $A8FD ($10000808) _PrOpenPage (111:4.3.2)

* $A8FD ($1800040C) _PrClosPage [111:4.3.2)
* $A8FD ($20040480) _PrintDefault (111:4.2.2)

457 Summary of Trap Macros and Trap Words
~~~~~~~~~~~ 

Trap Trap Reference 
Word Macro Name Section 

* $A8FD ($2A040484) _PrStlDialog [111:4.2.31 
* $A8FD ($32040488) _PrJobDialog [111:4.2.31 
* $A8FD ($3C04040C) _PrStlinit [111:4.5.ll 
* $A8FD ($44040410) _PrJob!nit [111:4.5.ll 
*$A8FD ~4A04089~ _PrDlgMain [111:4.5.1) 
* $A8FD ($52040498) _PrValidate [111:4.2.2) 

* $A8FD ($5 804089C) _PrJobMerge [111:4.2.31 
*$A8FD ($60051480) _PrPicFile [III:4.3.3) 
* $A8FD ($80000000) _PrDrvrOpen (111:4.4.1] 

* $A8FD ($88000000) _PrDrvrClose (111:4.4.1] 
* $A8FD ($94000000) _PrDrvrDCE (111:4.4.2] 

* $A8FD ($9AOOOOOO) _PrDrvrVers (111:4.4.2) 

* $A8FD ($AOOOOEOO) _PrCtlCall (111:4.4.31 

* $A8FD ($A8000000) _PrPurge (111:4.4.2) 

* $A8FD ($BOOOOOOO) _PrNoPurge (111:4.4.2) 

* $A8FD ($BAOOOOOO) _PrError (111:4.2.4) 

* $A8FD ($C0000200) _PrSetError (111:4.2.4] 

* $A8FD ($C8000000) _PrOpen [111:4.2.1] 

* $A8FD ($00000000) _PrClose (111:4. 2.11 

$A8FE _InitFonts [1:8.2.4) 

$A8FF _GetFName (1:8.2.5] 

$A900 _GetFNum (1:8.2.5) 

$A902 _RealFont (1:8.2.5) 

$A903 _Set Font Lock (1:8.2.7) 

$A904 _DrawGrowicon [U:3.3.4] 

$A906 _NewString (1:8.1.2) 

$A907 _Set String (1:8.1.2) 

$A908 _ShowHide (11:3.3.1) 

$A910 _GetWMgrPort [U:3.6.l] 

$A912 _InitWindows [U:3.2. l] 

$A913 _NewWindow (11:3.2.2) 

$A914 _DisposWindow (11:3.2.31 

$A915 _ShowWindow [11:3.3.1) 

$A916 _HideWindow (U:3.3.l) 

$A917 _GetWRef Con [U:3.2.4] 

$A918 _SetWRef Con (U:3.2.4] 

$A919 _GetWTitle [ll:3.2.4) 

$A91A _SetWTitle (ll:3.2.4] 

$A91B _MoveWindow (U:3.3.2] 



458 Appendix F 

Trap Trap Reference 
Word Macro Name Section 

$A91C _HiliteWindow (11:3.3.4] 

$A91D _SizeWindow (11:3.3.2] 

$A91E _TrackGoAway (11:3.5.4] 

$A91F _SelectWindow (11:3.5.2] 

$A920 _BringToF ront (11:3.3.3) 

$A921 _Send Behind (11:3.3.3) 

$A922 _BeginUpdate [11:3.4.1) 

$A923 _End Update [11:3.4.1) 

$A924 _FrontWindow [11:3.3.3) 
$A925 _DragWindow (11:3.5.4) 
$A927 _InvalRgn [11:3.4.2) 
$A928 _InvalRect (11:3.4.2) 
$A929 _ValidRgn (11:3.4.2) 
$A92A _ValidRect (11:3.4.2) 
$A92B _GrowWindow (11:3.5.4) 
$A92C _FindWindow (11:3.5.1) 
$A92D _CloseWindow [11:3.2.3) 
$A92E _SetWindowPic (11:3.4.3) 
$A92F _GetWindowPic [11:3.4.3] 

$A930 _InitMenus [11:4.2.1) 
$A931 _NewMenu (11:4.2.2) 
$A932 _DisposMenu (11:4.2.3) 
$A933 _AppendMenu (11:4.3.1) 
$A934 _ClearMenuBar (11:4.4.1) 
$A935 _InsertMenu (11:4.4.1) 
$A936 _DeleteMenu (11:4.4.1) 
$A937 _DrawMenuBar [11:4.4.3) 
$A938 _HiliteMenu (11:4.5.4) 
$A939 _Enable Item (11:4.6.2) 
$A93A _Disable Item (11:4.6.2) 
$A93B _GetMenuBar (11:4.4.4) 
$A93C _SetMenuBar (11:4.4.4] 
$A93D _MenuSelect (11:4.5.1) 
$A93E _MenuKey (11:4.5.1) 
$A93F _Getltmlcon (11:4.6.5) 

$A940 _Setitmlcon (11:4.6.5) 
$A941 _GetitmStyle (11:4.6.3) 
$A942 _SetitmStyle [11:4.6.3) 



459 Summaiy of Trap Macros and Trap Words 
~~~~~~~~~~~~ 

Trap Trap Reference
Word Macro Name Section

$A943 _GetltmMark (11:4.6.4)

$A944 _SetltmMark [11:4.6.4)

$A945 _Checkltem (11:4.6.4)

$A946 _Get Item (11:4.6.1)

$A947 _Set Item (11:4.6.1)

$A948 _CalcMenuSize (11:4. 7.1)

$A949 _GetMHandle (11:4.4.5)

$A94A _SetMFlash (11:4.7.2)

$A94C _FlashMenuBar (11:4.7.2)

$A94D _AddResMenu (11:4.3.3)

$A94E _PinRect (1:4.4.3)

$A94F _DeltaPoint (1:4.4.1)

$A950 _CountMitems (11:4.3.4)

$A951 _InsertResMenu (11:4.3.3)

*$A952 _DelMenultem (11:4.3.4)

*$A953 _UpdtControls (11:6.3.1)

$A954 _NewControl (11:6.2.1]

$A955 _DisposControl [11:6.2.2)

$A956 _KillControls (11:6.2.2)

$A957 _ShowControl [11:6.3.1)

$A958 _HideControl [11:6.3.1)

$A959 _MoveControl (11:6.3.2)

$A95A _GetCRefCon (11:6.2.3)

$A95B _SetCRefCon (11:6.2.3)

$A95C _SizeControl (11:6.3.2)

$A95D _HiliteControl 111:6.3.3)

$A95E _GetCTitle (11:6.2.3)

$A95F _SetCTitle (11:6.2.3)

$A960 _GetCtlValue (11:6.2.4)

$A961 _GetMinCtl (11:6.2.4)

$A962 _GetMaxCtl (11:6.2.4)

$A963 _SetCtlValue [11:6.2.4)

$A964 _SetMinCtl (11:6.2.4)

$A965 _SetMaxCtl (11:6.2.4)

$A966 _TestControl (11:6.4.1)

$A967 _DragControl [11:6.4.3)

$A968 _TrackControl (11:6.4.2)

$A969 _DrawControls (11:6.3.1)

$A96A _GetCtlAction (11:6.4.2)

460 Appendix F

Trap Trap Reference
Word Macro Name Section

$A96B _SetCtlAction (11:6.4.2)

$A96C _Find Control (11:6.4.1)

$A96E _Dequeue (111:3.1. 7)

$A96F _Enqueue (111:3.1. 7)

$A970 _GetNextEvent (11:2.2.1)

$A971 _EventAvail (11:2.2.1)

$A972 _GetMouse (11:2.4.1)

$A973 _StillDown (11:2.4.2)

$A974 _Button (11:2.4.2)

$A975 _TickCount (11:2.7.1)

$A976 _Get Keys (11:2.6.1)

$A977 _WaitMouseUp [11:2.4.2)

*$A978 _UpdtDialog [11:7.4.1)

$A979 _CouldDialog [11:7.5.3)

$A97A _FreeDialog (11:7.5.3)

$A97B _InitDialogs [11:7.2.1)

$A97C _GetNewDialog (11:7.2.2)

$A97D _NewDialog [11:7.2.2)

$A97E _SelIText [11:7.3.2)

$A97F _IsDialogEvent (11:7.4.4)

$A980 _DialogSelect [11:7.4.4)

$A981 _DrawDialog [11:7.4.1)

$A982 _CloseDialog [11:7.2.3)

$A983 _DisposDialog (11:7.2.3)

*$A984 _FindDitem (11:7.3.4)

$A985 _Alert [11:7.4.2)

$A986 _StopAlert [11:7.4.2)

$A987 _NoteAlert [11:7.4.2)

$A988 _CautionAlert (11:7.4.2)

$A989 _CouldAlert [11:7.5.3]

$A98A _FreeAlert (11:7.5.3)

$A98B _ParamText [11:7.4.6)

$A98C _ErrorSound [11:7.5.1)

$A98D _GetDitem [11:7.3.1)

$A98E _SetDitem [11:7.3.1)

$A98F _SetIText [11:7.3.2)

$A990 _Get!Text [11:7.3.2)

461 SummaJy ofTrap Macros and Trap Words
~~~~~~~~~~~~ 

Trap Trap Reference 
Word Macro Name Section 

$A991 _ModalDialog (11:7.4.3) 
$A992 _DetachResource (1:6.3.2) 
$A993 _SetResPurge [1:6.5.5) 
$A994 _CurResFile (1:6.2.2) 

$A997 _OpenResFile (1:6.2.1) 

$A998 _UseResFile (1:6.2.2) 

$A999 _UpdateResFile (1:6.5.4) 

$A99A _CloseResFile (1:6.2.1) 
$A99C _CountResources (1:6.3.3) 

$A99D _GetindResource (1:6.3.3] 

$A99E _CountTypes (1:6.3.3] 

$A99F _Get Ind Type (1:6.3.3] 

$A9AO _GetResource (1:6.3.1] 

$A9Al _GetNamedResource (1:6.3.1) 

$A9A3 _ReleaseResource (1:6.3.2] 

$A9A4 _HomeResFile (1:6.4.3) 

$A9A5 _SizeRsrc [1:6.4.3) 

$A9A6 _GetResAttrs (1:6.4.2] 

$A9A7 _SetResAttrs (1:6.4.2) 

$A9A8 _GetReslnfo (1:6.4.1) 

$A9A9 _SetReslnfo (1:6.4.1) 

$A9AA _ChangedResource (1:6.5.2] 

$A9AB _AddResource (1:6.5.3) 

$A9AD _RmveResource [1:6.5.3) 

$A9AF _ResError (1:6.6.1) 

$A9BO _WriteResource (1:6.5.4) 

$A9Bl _CreateResFile (1:6.5.1] 

$A9B2 _SystemEvent [111:6.2.2) 

$A9B3 _SystemClick (11:3.5.3, 111:6.2.2) 

$A9B4 _SystemTask (11:2.7.2, 111:6.2.4) 

$A9B5 _SystemMenu (111:6.2.3) 

$A9B6 _OpenDeskAcc (11:4.5.2. 111:6.2.ll 

$A9B7 _CloseDeskAcc [11:4.5.2, 111:6.2.11 

$A9B8 _GetPattern (1:5.1.1) 

$A9B9 _GetCursor (11:2.5.2) 

$A9BA _Get String (1:8.1.2) 

$A9BC _Get Picture [1:5.4.2) 

$A9BD _GetNewWindow [11:3.2.2) 

$A9BE _GetNewControl [11:6.2.1) 



462 Appendix F 

Trap Trap Reference 
Word Macro Name Section 

$A9BF _GetRMenu [11:4.2.2) 

$A9CO _GetNewMBar (11:4.4.2) 

$A9Cl _Unique ID [1:6.5.3) 

$A9C2 _SysEdit (11:4.5.3, 111:6.2.3) 

$A9C6 _Secs2Date [1:2.4.3) 

$A9C7 _Oate2Secs [1:2.4.3) 

$A9C8 _SysBeep (11:2.8.1) 

$A9CB _TEGetText (11:5.2.3) 

$A9CC _TEinit [11:5.2.1) 

$A9CD _TEDispose [11:5.2.2) 

$A9CE _Text Box (11:5.3.2) 

$A9CF _TESetText (11:5.2.3) 

$A9DO _TECalText (11:5.3.1) 

$A9Dl _TESetSelect (11:5.4.2) 

$A9D2 _TENew (11:5.2.2) 

$A9D3 _TEUpdate (11:5.3.2) 

$A9D4 _TEClick [11:5.4.1) 

$A9DS _TECopy [11:5.5.2, IV:7.3.5] 

$A906 _TECut [11:5.5.2, IV:7.3.5] 

$A9D7 _TEDelete [11:5.5.3) 

$A908 _TEActivate [11:5.4.3) 

$A909 _TEDeactivate (11:5.4.3) 

$A9DA _TE Idle [11:5.4.3) 

$A9DB _TEPaste (11:5.5.2, IV:7.3.5] 

$A9DC _TEKey (11:5.5.1) 

$A9DD _TEScroll (11:5.3.3) 

$A9DE _TEinsert (11:5.5.3) 

$A9DF _TESetJust (11:5.3.1) 

$A9EO _Munger (11:5.5.6) 
$A9El _HandToHand [1:3.2.5) 

$A9E2 _PtrToXHand [1:3.2.5) 

$A9E3 _PtrToHand (1:3.2.5) 

$A9E4 _HandAndHand (1:3.2.6) 

$A9E5 _InitPack [1:7.2.2) 

$A9E6 _Ini tAllPacks [1:7.2.2) 

$A9E7 _PackO (1:7.2.1) 

$A9E8 _Packl [1:7.2.1) 
$A9E9 _Pack2 (1:7.2.1) 



463 Summary of Trap Macros and Trap Words 
~~~~~~~~~~~ 

Trap Trap Reference
Word Macro Name Section

$A9E9 (0) _DIBadMount (11:8.4.1)
$A9E9 (2) _DILoad (11:8.4.3)
$A9E9 (4) _DIUnload (11:8.4.3)
$A9E9 (6) _DIFormat (11:8.4.2)
$A9E9 (8) _DIVerify (11:8.4.2)
$A9E9 (lo) _DI Zero (11:8.4.2)

$A9EA _Pack3 (1:7.2.1)
$A9EA (1) _SFPutFile (11:8.3.3]
$A9EA (2) _SFGetFile (11:8.3.2)
$A9EB _Pack4 (1:7.2.1)
$A9EC _Packs (1:7.2.1)
$A9ED _Pack6 (1:7.2.1)

$A9ED (0) _IUDateString (1:2.4.4)
$A9ED (2) _IUTimeString (1:2.4.4)
$A9EE - Pack7 [1:7.2.1)

$A9EE (0) _NumToString (1:2.3.4)

$A9EE (1) _StringToNum (1:2.3.4)

$A9EF _PtrAndHand (1:3.2.6)

$A9FO _LoadSeg (1:7.1.2)

$A9Fl _UnloadSeg (1:7.1.2)

$A9F2 _Launch (1:7.1.1)

$A9F3 _Chain (1:7.1.1)

$A9F4 _ExitToShell [1:7.1.3)

$A9F5 _GetAppParms (1:7.3.4]

$A9F6 _GetResFileAttrs (1:6.6.2)

$A9F7 _SetResFileAttrs (1:6.6.2)

$A9F9 _InfoScrap (1:7.4.2)

$A9FA _UnlodeScrap (1:7.4.4)

$A9FB _LodeScrap (1:7.4.4)

$A9FC _ZeroScrap (1:7.4.3)

$A9FD _Get Scrap (1:7.4.3)

$A9FE _PutScrap (1:7.4.3)

t$AAOO _OpenCPort [IV:5.l.5)

t$AA01 _InitCPort [IV:5.l.5)

t$AA03 _NewPixMap [IV:5.l.2)

t$AA04 _DisposPixMap [IV:5.l.2)

t$AAOS _CopyPixMap [IV:5.l.2)

t$AA06 _SetPortPix [IV:5.l.2)

464 Appendix: F

Trap Trap Reference
Word Macro Name Section

t$AA07 _NewPixPat [IV:S.2.2)

t$AA08 _DisposPixPat [IV:S.2.2)
t$AA09 _CopyPixPat [IV:S.2.3)

t$AAOA _PenPixPat [IV:S.2.4)

t$AAOB _BackPixPat [IV:S.2.4)

t$AAOC _GetPixPat [IV:S.2.2)

t$AAOD _MakeRGBPat [IV:S.2.3]
t$AAOE _FillCRect [IV:S.4.2)

t$AAOF _FillCOval [IV:S.4.2)

t$AA10 _FillCRoundRect [IV:5.4.2]

t$AA11 _FillCArc [IV:5.4.2]
t$AA12 _FillCRgn [IV:S.4.2)
t$AA13 _FillCPoly [IV:S.4.2)
t$AA14 _RGBForeColor [IV:S.4.1)
t$AA15 _RGBBackColor [IV:S.4.1)
t$AA16 _SetCPixel [IV:5.l.6]
t$AA17 _GetCPixel (IV:S.1.6)
t$AA18 _GetCTable [IV:4.4.3]
t$AA19 _GetForeColor (IV:5.4.l]
t$AA1A _GetBackColor [IV:5.4.l]
t$AA1B _GetCCursor [IV:6.2.2]
t$AA1C _SetCCursor [IV:6.2.2]
t$AA1E _GetCicon [IV:6.l.2]
t$AA1F _PlotCicon [IV:6.l.2]

t$AA21 _OpColor [IV:S.3.2)
t$AA22 _HiliteColor (IV:5.3.4]
t$AA23 _CharExtra (IV:7.3.2]
t$AA24 _DisposCTable [IV:4.4.3]
t$AA25 _DisposCicon [IV:6.l.2]
t$AA26 _DisposCCursor [IV:6.2.2]
t$AA27 _GetMaxDevice [IV:4.3.4)
t$AA28 _Get CT Seed [IV:4.4.3]
t$AA29 _GetDeviceList [IV:4.3.3]
t$AA2A _GetMainDevice [IV:4.3.4]
t$AA2B _GetNextDevice [IV:4.3.3]
t$AA2C _TestDeviceAttribute [IV:4.3.5]
t$AA2D _SetDeviceAttribute (IV:4.3.5]
t$AA2E _InitGDevice [IV:4.3.2]
t$AA2F _NewGDevice [IV:4.3.2]

465 Summaiy of Trap Macros and Trap Words
~~~~~~~~~~~~ 

Trap Trap Reference 
Word Macro Name Section 

t$AA30 _DisposGDevice [IV:4.3.2) 
t$AA31 _SetGDevice [IV:4.3.4) 
t$AA32 _GetGDevice [IV:4.3.4) 
t$AA33 _Color2Index [IV:4.4.4] 
t$AA34 _Index2Color [IV:4.4.4] 
t$AA35 _InvertColor [IV:4.4.4) 
t$AA36 _RealColor [IV:4.4.4) 
t$AA37 _Get Subtable [IV:4.4.4) 
t$AA39 _Make!Table [IV:4.4.2) 

t$AA3A _AddSearch [IV:4.6.2] 
t$AA3B _Add Comp [IV:4.6.2) 
t$AA3C _Set Client ID [IV:4.6.2) 

t$AA3D _ProtectEntry [IV:4.4.6] 
t$AA3E _ReserveEntry [IV:4.4.6] 

t$AA3F _SetEntries [IV:4.4.5] 

t $AA40 _QDError [IV:5.l.7] 

t$AA41 _SetWinColor [IV:6.3.5] 

t$AA42 _GetAuxWin [IV:6.3.5] 

t$AA43 _SetCtlColor [IV:6.4.3) 

t$AA44 _GetAuxCtl [IV:6.4.3) 

t$AA45 _NewCWindow [IV:6.3.4] 

t$AA46 _GetNewCWindow [IV:6.3.4] 

t$AA47 _SetDeskCPat [IV:5.2.4] 

t $AA48 _GetCWMgrPort [IV:6.3.7] 

t$AA49 _SaveEntries [IV:4.4.5] 

t$AA4A _RestoreEntries [IV:4.4.5] 

t$AA4B _NewCDialog [IV:6.5.l] 

t$AA4C _Del Search [IV:4.6.2] 

t$AA4D _Del Comp [IV:4.6.2] 

t$AA4E _SetStdCProcs [IV:5.5.l] 

t$AA4F _CalcCMask [IV:5.4.5] 

t$AA50 _SeedCFill [IV:5.4.5] 

t$AA60 _DelMCEntries [IV:6.6.3) 

t$AA61 - GetMCinfo [IV:6.6.2] 

t$AA62 _SetMCinfo [IV:6.6.2] 

t$AA63 _DispMCinfo [IV:6.6.2] 

t$AA64 _GetMCEntry [IV:6.6.3] 

t$AA65 _SetMCEntries [IV:6.6.3] 



466 Appendix F 

Trap Trap Reference 
Word Macro Name Section 

t $AA90 InitPalettes (IV:4.5.2] 
t$AA91 _NewPalette (IV:4.5.3] 
t$AA92 _GetNewPalette (IV:4.5.3] 

t$AA93 _DisposePalette (IV:4.5.3) 
t$AA94 _ActivatePalette (IV:6.3.6) 
t$AA95 _Set Palette (IV:6.3.6) 
t $AA96 _GetPalette (IV:6.3.6] 
t$AA97 _PMForeColor [IV:S.4.1) 
t $AA98 _PMBackColor (IV:S.4.1) 
t$AA99 _AnimateEntry [IV:5.4.3] 
t$AA9A _AnimatePalette [IV:S.4.3) 
t$AA9B _GetEntryColor [IV:4.5.4) 
t$AA9C _SetEntryColor [IV:4.5.4) 
t$AA9D _GetEntryUsage [IV:4.5.4] 
t$AA9E _SetEntryUsage [IV:4.5.4] 
t$AA9F _CTab2Palette [IV:4.5.5] 

t$AAAO _Palette2CTab [IV:4.5.5) 
t$AAA1 _CopyPalette [IV:4.5.5] 

t$ABF8 _StdOpCodeProc [IV:S.5.1) 



APPENDIX 

Summary of 
Assembly-Language 
Variables 

System Globals 

Listed below are all assembly-language global variables covered in 
the four volumes of this book, together with their hexadecimal 
addresses. Warning: The addresses given may be subject to change 
in future versions of the Toolbox; always refer to these variables by 
name instead of using the addresses directly. Variables marked 
with an asterisk ( •) were introduced in the 128K Macintosh Plus 
ROM (version $ 7 s); those with a dagger ( t) are new in the 256K 
RO Ms for the Macintosh SE (version $ 7 6) or Macintosh II (version 
$78). 

Variable Reference 
Name Address Section Meaning 

ACount $A9A [11:7.5.2] Stage of last alert 
minus 1 

ANumber $A98 [11:7.5.2] Resource ID of last 
alert 

ApFontID $984 (1:8.2.1) True font number of 
current application 
font 

App~Limit $130 [1:3.3.4) Application heap limit 

467 



468 Appendix G 

Variable Reference 
Name Address Section Meaning 

ApplZone $2AA [1:3.1.3) Pointer to start of 
application heap 

AppParmHandle $AEC (1:7.3.4) Handle to Finder 
startup information 

tAuxCtlHead $CD4 [IV:6.4.l] Handle to first record 
in auxiliary control 
list 

tAuxWinHead $CDO [IV:6.3.2) Pointer to first record 
in auxiliary window 
list 

Buf Ptr $10C [1:3.1.3) Pointer to end of appll-
cation global space 

CaretTime $2F4 [11:5.4.3) Current blink interval 
in ticks 

CurActivate $A64 [11:3.4.3] Pointer to window 
awaiting activate 
event 

CurApName $910 (1:7.3.4] Name of current appll-
cation (maximum 31 
characters) 

CurApRefNurn $900 (1:6.2.2. Reference number of 
1:7.3.4] application resource 

file 
CurDeactivate $A68 (11:3.4.3) Pointer to window 

awaiting deactivate 
event 

CurMap $ASA (1:6.2.2) Reference number of 
current resource file 

CurPageOption $936 (1:7.1.1) Integer specifying 
screen and sound 
buffers 

CurPitch $280 (111:5.1.2) Count value for 
current square-wave 
tone 

CurrentA5 $904 (1:3.1.3, Base pointer for 
IV:2.l.4] application globals 

CurStackBase $908 (1:3.1.3) Pointer to base of stack 
DABeeper $A9C [11:7.5.1) Pointer to current 

sound procedure 
DAStrings $AAO (11:7.4.6) Handles to four text 

substitution strings 
DeskPattern $A3C (1:5.1.2) Screen background 

pattern 



469 Summruy of Assembly-Language Variables 
--~~~~~~~~~~~ 

Variable Reference 
Name Address Section Meaning 

tDeviceList $8A8 [IV:4.3.3) Handle to first graph-
ics device in device 
list 

DlgFont $AFA (11:7.5.1) Current font number 
for dialogs and alerts 

DoubleTime $2FO (11:5.4.1] Current double-click 
inteival in ticks 

FinderName $2EO (1:7.1.3) Name of program to 
exit to (maximum 15 
characters) 

*FractEnable $BF4 (1:8.2.8) Use fractional charac-
ter widths? (1 byte) 

FScaleDisable $A63 (1:8.2.8) Tum off font scaling? 
(1 byte) 

GrayRgn $9EE [11:3.6.I. Handle to desktop 
IV:6.3.7) region 

Heap End $114 [1:3.1.3) Pointer to end of appll-
cation heap 

t Hili teMode $938 [IV:5.3.4) Highlighting flag 

t Hili teRGB $DAO [IV:S.3.4) lnltlal highlighting 
color 

Keyl Trans $29E [1:8.4.4) Pointer to keyboard 
configuration routine 

Key2Trans $2A2 (1:8.4.4) Pointer to keypad 
configuration routine 

Key Map $174 (11:2.6. l] System keyboard map 

KeypadMap $17C [11:2.6.1) System keypad map 

Lo3Bytes $31A (1:3.2.4) Mask for extracting 
address from a 
master pointer 

tMainDevice $8A4 [IV:4.3.4] Handle to main screen 
device 

*MBarHeight $BAA [11:4.4.3) Height of menu bar in 
pixels 

MBState $172 [11:2.4.2) State of mouse button 

MemTop $108 (1:3.1.3) Pointer to end of physi-
cal memory 

tMenuCinfo $DSO [IV:6.6.l) Handle to current 
menu color informa-
tion table 

MenuFlash $A24 (11:4.7.2) Current flash count for 
menu items 



4 70 Appendix G 

Variable Reference 
Name Address Section Meaning 

MenuList SAIC (11:4.4.4) Handle to current 
menu bar 

tMMU32Bit $CB2 [IV:2.l.3) Current address mode 
(1 byte) 

PrintErr $944 (111:4.2.4) Result code from last 
printing operation 

tQDColors $8BO [IV:4.2.2) Handle to table of 
primary color values 

ResErr $A60 (1:6.6.1) Result code from last 
resource-related call 

ResLoad $A5E [I:6.3.4) Load resources auto-
matlcally? 

ResumeProc $A8C (11:7.2.1) Pointer to restart 
procedure 

ROMBase $2AE (1:3.1.3) Pointer to start of ROM 
ROMFontO $980 (1:8.2.1) Handle to system font 

*ROMMapinsert $B9E (1:6.6.3) Include ROM-based 
resources in search? 
(1 byte) 

ScrapCount $968 (1:7.4.2) Current scrap count 
ScrapHandle $964 (1:7.4.2) Handle to contents of 

desk scrap 
ScrapName $96C (1:7.4.2) Pointer to scrap file 

name 
ScrapSize $960 (1:7.4.2) Current size of desk 

scrap 
ScrapState $96A (1:7.4.2) Current state of desk 

scrap 
ScrDmpEnb $2F8 (111:6.3.1) Intercept Command-

Shift keystrokes? 
(I byte) 

ScrnBase $824 [1:3.1.3) Pointer to start of 
screen buffer 

SdEnable $261 (111:5.1.1) Sound generator cur-
rently enabled? 
(1 byte) 

SdVolume $260 [111:5.2.2) Current speaker 
volume (I byte) 

SEvtEnb $15C (111:6.2.2) Intercept system 
events? (I byte) 

SoundActive $27E [111:5.1.1) Sound generator cur-
rently active? (1 byte) 



4 71 SummaJY of Assembly-Language Variables 
~~~~~~~~~~~-

Variable Reference
Name Address Section Meaning

SoundBase $266 (1:3.1.3, Pointer to start of
III:5.l.l) sound buffer

SoundOCE $27A [III:5.l.l) Pointer to sound
driver's device control
entry (3.1.4]

SoundPtr $262 [III:5. l.3) Pointer to current four-
tone sound record

SPFont $204 (1:8.2.1) True font number of
default application
font

tSynListHandle $032 [IV:7.l.2] Handle to first font In
synthetic font list

SysEvtMask $144 (11:2.3.2) System event mask

SysMap $A58 . (1:6.2.2] True reference number
(not O) of system
resource file

SysMapHndl $A54 (1:6.2.2] Handle to resource
map of system re-
source file

SysResName $AD8 (1:6.2.2) Name of system re-
source file (string.
maxhnum 19 charac-
ters)

Sys Zone $2A6 (1:3.1.3) Pointer to start of
system heap

TEScrpHandle $AB4 (11:5.5.4) Handle to text scrap

TEScrpLength $ABO [11:5.5.4) Length of text scrap in
characters

TEWdBreak $AF6 [11:5.6.2] Pointer to built-In
word-break routine

TheCrsr $844 (11:2.5.2) Current cursor record

tTheGDevice $CC8 (IV:4.3.4] Handle to current
graphics device

The Menu $A26 (11:4.5.4] Menu ID of currently
highlighted menu

Ticks $16A [11:2. 7.1) System clock

Time $20C (1:2.4.1) Current date and time
In •raw" seconds

*TmpResLoad $B9F (1:6.6.3) Load resources auto-
matlcally t;t this
once? (1 e)

4 72 Appendix G

Variable Reference
Name Address Section Meaning

TopMapHndl $A50 [1:6.2.2) Handle to resource
map of most recently
opened (not neces-
sarily current)
resource file

UnitNtryCnt $102 [111:3.1.3) Number of entries 1n
unit table

UTableBase $11C [111:3.1.3) Pointer to start of unit
table

*WidthTabHandle $B2A [1:8.2.6) Handle to global width
table for current font

WindowList $906 [11:3.1.1) Pointer to first window
in window list

WMgrPort $9DE [11:3.6.1) Pointer to Window
Manager port

4 73 Sununary of Assembly-Language Variables
~~~~~~~~~~~-

QuickDraw Globals 

The QuickDraw global variables listed below are located at the given 
offsets relative to the QuickDraw globals pointer, which in tum is 
pointed to by address register AS. 

Variable Offset Reference 
Name In Bytes Section Meaning 

The Port 0 (1:4.3.3) Current graphics port 

White -8 (1:5.1.2) Standard white pattern 

Black -16 (1:5.1.2) Standard black pattern 

Gray -24 (1:5.1.2) Standard gray pattern 

LtGray -32 [1:5.1.2) Standard light gray 
pattern 

DkGray -40 (1:5.1.2) Standard dark gray 
pattern 

Arrow -108 (11:2.5.2) Standard arrow cursor 

ScreenBits -122 (1:4.2.1) Screen bit map 

Rand Seed -126 (1:2.3.8) '"Seed" for random 
number generation 



Glossary 

The following is a glossary of technical terms used in this 
volume. Note: Terms shown in italic are defined elsewhere in 
this glossary. 

A5 world: Another name for a program's application global 
space, located by means of a base address kept in processor 
register AS. 

accept-suspend/resume bit: A flag bit in a program's size 
resource that tells whether the program is prepared to accept 
suspend and resume events from MultiFinder. 

accessory window: A window with rounded comers, used for 
displaying a desk accessory on the screen. 
activate event: A window event generated by the Toolbox to 
signal that a given window has become the active window. 

active window: The frontmost window on the screen, to which 
the user's mouse and keyboard actions are directed. 
ADB: See Apple Desktop Bus. 

additive color: The mixing of colors in a luminescent or 
!Iansparent medium, such as a video screen, which adds 
together primary colors to produce the range of colors perceived 
by the eye; compare subtractive color. 

additive primary colors: The three primary colors (red, green, 
and blue) that combine in a luminescent or transparent me
dium, such as a video screen, to produce the range of colors 
perceived by the eye; see additive color. 

475 



4 76 Expanding the Toolbox 
~~~~~~~~~~~ 

address bus: The set of transmission lines used by the processor
to specify a memory address to be read or written: compare data
bus.
address mode: A state of the Macintosh system that determines
the number of bits constituting a memory address: see 24-bit
mode, 32-bit mode.
address space: The total range of memory addresses available
in a given system.
alert: Short for alert box.
alert box: A form of dialog box that prevents the user from
interacting with any other window for as long as the alert
remains on the screen, and in which the only meaningful action
is to dismiss the alert by clicking a pushbutton: compare mod.al
dialog box, modeless dialog box.

allocate: To set aside a block of memory from the heap for a
particular use.
allocation block: The unit in which space is allocated on a given
storage device, such as a disk volume.

amplitude: The maximum magnitude attained at the peak of a
sound or light wave. which determines the volume (loudness) of
the sound or the intensity (brightness) of the light.
and: A bit-level operation in which each bit of the result is a 1

if both operands have ls at the corresponding bit position, or o
if either or both have Os.
animating color: An entry in a palette that reserves an entry in
the current color table for use in color table animation. making
that entry unavailable for use by other programs; compare
tolerant color, courteous color, explicit color, dithered color.
anti-aliasing: (1) A police technique for apprehending criminals
operating under assumed names. (2) Afont definition technique
in which the "jaggies" on the edges of characters are smoothed
out with suitably weighted gray pixels instead of plain black and
white.
APDA: The Apple Programmers and Developers Association, a
membership organization sponsored by Apple that provides
seIVices and publications for professional and advanced ama
teur programmers working on Apple equipment.
Apple Desktop Bus: A connector on the back of recent Macin
tosh models for connecting low-speed, user-operated input

41'7''7' Glossary

devices such as the keyboard, mouse, trackball, or graphics
tablet.
Apple Extended Keyboard: The huge, 105-key keyboard
available on some Macintosh models for compatibility with
brand-X computers and their clones.
Apple mark: A special character (character code $14) that
appears on the Macintosh screen as a small Apple symbol; used
for the title of the Apple menu.

Apple menu: A menu listing the available desk accessories,
conventionally placed first in the menu bar with the Apple mark
as its title.
Apple Sound Chip: The custom-designed chip used in recent
models of Macintosh to control the digital stereo sound genera
tor.
AppleTalk: A network to which the Macintosh can be connected
for communication with other computers.
AppleTalk drivers: The standard device drivers used for com
municating with other computers over the AppleTalk network.
application: A particular use or purpose to which the Macin
tosh (or any computer) can be applied, such as word processing,
graphics, or telecommunications.
application event: Any of the four event types originally
reseived for the running application program to use in any way
it wished. One of these, type App4Evt (ls), is now redefined to
stand for MultiFlnd.er events instead.
application file: The file containing the executable code of an
applicatton program. with aflle type of 'AP PL ' and the program's
own signature as its creator signature.

application global space: The area of memory containing a
program's application globals, application parameters, andjump
table; located by means of a base ad.dress kept in processor
register AS •

application globals: Global variables belonging to the running
application program, which reside in the applicatton global
space and are located at negative offsets from the base address
in register AS.

application globals pointer: The base address kept in proces
sor register AS and used to locate the contents of a program's
application global space.

4 78 Expanding the Toolbox
~~~~~~~~~~~ 

application heap: The portion of the heap available for use by 
the running application program; compare system heap. 

application parameters: Descriptive information about the 
running program, · located 1n the application global space at 
positive offsets from the base address in register AS. The 
application parameters are a vestige of the Lisa software envi
ronment, and most are unused on the Macintosh; the only ones 
still in use are the QutckDraw globals pointer and the startup 
handle. 
application program: A stand-alone program for the Macin
tosh that the user can start up from the Finder by double
clicking the icon of its appllcationfue. 
application resource me: The resource fork of a program's 
appllcationftle. containing resources belonging to the program 
itself. 
application window: A window used by the running program 
itself; compare system window. 

arc: A part of an oval defined by a given starting angle and arc 
angle. 

arc angle: The angle defining the extent of an arc or wedge; 
compare starting angle. 

arrow cursor: The standard, general-purpose cursor, an arrow 
pointing upward at an angle of "eleven o'clock." 
ASC: See Apple Sound Chip. 

ascent: (1) For a text character, the height of the character 
above the baseline, in dots or pixels. (2) For afont, the maximum 
ascent of any character in the font. 
ascent line: The line marking a font's maximum ascent above 
the baseline. 

ASCil: American Standard Code for Information Interchange, 
the industry-standard 7-bit character set on which the 
Macintosh's 8-bit character codes are based, commonly pro
nounced "asky." 
asynchronous: Describes an input/ output operation that is 
queued for later execution, returning control immediately to the 
calling program without waiting for the operation to be carried 
out. The calling program may supply an optional completion 
routine to be executed on completion of the operation. Compare 
synchronous. 



4 79 Glossaiy 

autograph: A Finder resource whose resource type is the same 
as a program's signature, and which seives as the program's 
representative in the desktop jUe; also called a version data 
resource. 
auto-key event: An event reporting that the user held down a 
key on the keyboard or keypad, causing it to repeat automati
cally. 
A/UX: The version of the Unix operating system developed by 
Apple for use on the Macintosh. 
auxiliary control list: A linked list of all auxiliary control 
records belonging to a given program, chained together through 
a field in the records. . 
auxiliary control record: A data structure containing informa
tion about a control's color-related properties, supplementing 
the more general information in the main control record. 

awdllary port record: A data structure associated with a color 
graphics port. containing additional information relating to color 
drawing operations in the port. 
auxiliary window list: A linked list of all auxiliary window 
records belonging to a given program, chained together through 
a field in the records. 
auxiliary window record: A data structure containing informa
tion about a window's color-related properties, supplementing 
the more general information in the main window record. 

background: (1) Under MultiFinder, the state in which a 
program ts not in active control of the system, while some other 
program displays its windows frontmost on the screen and 
receives and responds to the user's actions with the mouse and 
keyboard. (2) In monochrome drawing, the portion of a graphical 
image represented by bits with a value of o, drawn in the 
background color of its graphics port. Compare foreground. 

background color: The color in which the background portion 
of a graphical image is to be drawn in a given graphics port; 
compare foreground color. 
background-only bit: A flag bit in a program's stze resource that 
indicates that the program wishes to run exclusively in the 
background under MulttFinder and never interact directly with 
the user. 
background pattern: The pattern used for erasing shapes in a 
given graphics port. 



480 Expanding the Toolbox 
~~~~~~~~~~-

background processing: Useful work performed by a program
while running in the background under MulttFlnder.
base address: In general, any memory address used as a
reference point from which to locate desired data in memory.
Specifically, (1) the address of the btt tmage or pixel tmage
belonging to a given btt map or pixel map; (2) the address of a
program's application parameters. kept in processor register AS
and used to locate the contents of the program's application
global space.
base of stack: The end of the stack that remains fixed in
memory and is not affected when items are added and removed:
compare top of stack.
baseline: The reference line used for defining the character
images in afont. and along which the graphics pen travels as text
is drawn.
Binary /Decimal Conversion Package: A standard package,
provided in the system resource file (or in ROM on some models),
that converts numbers between their internal biruuy format and
their external representation as strings of decimal digits.
binary point: The binary equivalent of a decimal point, separat
ing the integer and fractional parts of a .fixed-point number.
bit Image: An array of bits in memory representing the pixels of
a monochrome graphical image.
bit map: A data structure containing the information needed to
interpret and display a given btt image in memory.
bit-mapped display: A video display screen on which each pixel
can be individually controlled.
bit pattem: A pattern composed of single bits representing the
foreground and background colors of the current port, for use in
monochrome drawing operations; compare pixel pattern.
bit resolution: A property of an inverse table that measures its
ability to discriminate among closely differing colors. When
looking up a color value in the table, the bit resolution tells how
many high-order bits of each color component to use in con
structing the corresponding table index.
block: An area of contiguous memory within the heap, either
allocated or free.
block map: A table containing information needed by the .file
system about the usage of all allocation blocks on a given volume.

481 Glossaiy

bottleneck record: A data structure containing pointers to the
bottleneck routines associated with a given graphics port.
bottleneck routine: A specialized routine for performing a low
level drawing operation in a given graphics port. used for
customizing QuickDraw operations.
boundary rectangle: (1) For a bit map or pixel map, the
rectangle that defines the bit map's extent and determines its
system of coordinates. (2) For a graphics port, the boundary
rectangle of the port's bit map or pixel map.
boundlng box: The smallest rectangle completely enclosing a
polygon or regiDn on the coordinate grid.
brightness: See value.

bundle: A Finder resource that identifies all of a program's other
Finder resources, so that they can be installed in the desktopjU.e
when the program's appltcatiDnjUe is copied to a new volume.

bus: A set of transmission lines used to transfer many bits of
information in parallel from one component of a computer
system to another.
button: A control with two possible settings, on (1) and off (O);

compare dial.
byte: An independently addressable group of 8 bits in the
computer's memory.
can-background bit: A flag bit in a program's size resource that
tells whether the program is prepared to do useful work while
running in the background behind another program under
MultiFinder.
Caps Lock key: A modifier key on the Macintosh keyboard, used
to convert lowercase letters to uppercase while leaving all

· nonalphabetic keys unaffected.
centered: A method oftextjustljlcationin which each line of text
is positioned midway between the left and right margins;
compare flush left, flush right, fulljustification.

central processing unit: The main processor of a computer
system, which carries out the operations specified by the in
structions of the running program.
character code: An integer code representing a text character:
compare key code.
character image: A graphical image that defines the appear
ance of a text character in a given typeface and type size.

482 Expanding the Toolbox
~~~~~~~~~~-

character key: A key on the keyboard or keypad that produces 
a character when pressed; compare modifier key. 
character position: An integer marking a point between 
characters in a ftle or other collection of text, from o (the very 
beginning of the text. before the first character) to the length of 
the text (the very end, after the last character). 
character style: See type style. 

character width: The distance in pixels by which the graphics 
pen advances after drawing a character. 
character-width table: An optional table in a font record. 
containing.fractional character widths for the characters in the 
font. 
checkbox: A button that retains an independent on/ off setting 
to control the way some future action will occur; compare 
pushbutton. radio buttons. 

choose: To designate a menu item by pointing with the mouse. 
chromlnance: The portion of a composlle video signal used only 
by color receivers. defining the hue and saturation of the color 
picture; compare luminance. 

chunky: A storage format for pixel images in which each pixel 
is represented in memory by a contiguous "chunk" of bits 
specifying the color of that pixel, usually in the form of a color 
index into a color lookup table: compare planar, chunky/planar. 
chunky/planar: A storagefonnatfor pixel images in which the 
full-color Image is resolved into separate color planes, each of 
which is in turn a chunky pixel image with a pixel depth greater 
than 1. representing the intensity level of a single constituent 
color; not supported by the current version of Color QuickDraw. 
Compare chunky, planar. 

classic Macintosh: Any of the early. first-generation models of 
Macintosh, including the Macintosh 128K ("Skinny Mac"). Macin
tosh 512K ("Fat Mac"), Macintosh 512K enhanced.. and Macin
tosh Plus. 
classic QulckDraw: The original version of the QuickDraw 
graphics routines, found in the classic Macintosh: compare Color 
Qut.ckDraw. 
client ID: An identifying number that allows a program's color
matching requests to be recognized by its own custom matching 
routines. 



4'El:J Glossary 

clip: To confine a drawing operation within a specified bound
ary, suppressing any drawing that falls outside the boundary. 
Clipboard: The term used in Macintosh user's manuals to refer 
to the scrap. 

clipping boundaries: The boundaries to which all drawing in a 
given graphics port is confined, consisting of the port's boundary 
rectangle, port rectangle, clipping region, and visible region. 

clipping rectangle: See vtew rectangle. 

clipping region: A general-purpose clipping boundary associ
ated with a graphics port, provided for the application program's 
use. 
close box: The small box near the left end of the title bar, by 
which a document window can be closed with the mouse. 
close region: The area of a window by which it can be closed 
with the mouse; also called the "go-away region." In a document 
window, the close region is the close box. 

CLUT: See color lookup table. 

CMY: A method of color representation that characterizes colors 
according to the relative intensities of the three subtractive 
primary colors (cyan, magenta. and yellow); compare RGB, HSV, 
HSL. 
code segment: A resource containing all or part of a program's 
executable machine code. 
color bit: A field of the graphics port record that designates the 
color plane of its pixel image into which the port is currently 
drawing. 
color box: Either of the two rectangular areas near the top-left 
corner of the Color Picker dialog box displaying the currently 
selected color and the one initially proposed by the application 
program. 
color component: Any of the three constituent values that 
characterize a color in RGB, CMY, HSV, or HSL representation. 
~olor constant: An integer value representing one of the eight 
standard colors in the planar model of color representation used 
by classic QuickDraw. 
color cursor handle: A handle to a color cursor record. 
color cursor record: A data structure defining the appearance 
of a cursor based on a color pixel image instead of a monochrome 
bit image. 
color dialog record: A dialog record based on a color window 



484 Expanding the Toolbox 

record. containing descriptive information about a color alert or 
dialog box. 
color environment: Those global settings and system attrib
utes that determine the effects of color drawing operations, such 
as the current graphics device, its current pixel depth. and the 
contents of its color lookup table. 
color font: A font whose font image is a full-color pixel image 
rather than a monochrome bit image. 

color graphics port: A complete drawing environment contain
ing all the information needed for Color QuickDraw drawing 
operations. 
color icon handle: A handle to a color icon record. 

color icon record: A data structure defining the appearance of 
an icon based on a color pixel image instead of a monochrome bit 
image. 
color index: An integer identifying a color by its position in a 
color lookup table. 

color lookup table: A table containing the color values cur
rently available for display on a mapped device. 

Color Picker dialog: The standard dialog box displayed by the 
Color Picker Package, allowing the user to supply a color value for 
a Toolbox operation. 
Color Picker Package: A standard package, provided in the 
system resource ftle, that provides a convenient, standard way 
for the user to supply color values for Toolbox operations. 
color plane: A component of a pixel image in planar or chunky/ 
planar format, representing one of the constituent colors making 
up the image. In planar format, each color plane is a bit image 
1 bit deep; in chunky /planar format, it is a pixel image with a 
pixel depth greater than 1. 
color port: See color graphics port. 

Color QulckDraw: The full-color version of the QuickDraw 
graphics routines, found in the Macintosh H; compare classic 
QuickDraw. 

color record: A data structure defining a color value to be used 
by the Toolbox. 
color specification: The association between a color index and 
its corresponding color value. 

color table: A table of color speeifteations mapping color indices 



485 Glossary 

to their corresponding color values; commonly (but not exclu
sively) used for the color lookup table of a mapped device. 

color table animation: A technique for producing animation in 
a pixel image by manipulating the color values of the pixels in its 
color table, rather than changing the pixel values in the image 
itself. 
color value: An exact color to be used by the Toolbox, specified 
in a form (such as RGB) that is independent of any particular 
graphics device or color environment. 

color wheel: The target-shaped image displayed in the Color 
Picker dialog box for setting the hue and saturation of the desired 
color. 
color window: A window that supports color drawing using the 
full capabilities of Color QuickDraw. 
Color Window Manager port: The color graphics port in which 
the Toolbox draws all window frames. 
color window pointer: A pointer to a color window record. 
color window record: A window record based on a color 
graphics port, containing descriptive information about a given 
color window. 

Command key: A modifier key on the Macintosh keyboard, 
used in combination with character keys to type keyboard 
aliases for menu ttems. 
comment data: The Information a picture comment contains. 
comment type: An integer code that identifies the kind of 
Information a picture comment contains. 
compaction: The process of moving together all relocatable 
blocks in the heap, in order to coalesce the available free space. 
complement: (1) A bit-level operation that reverses the bits of 
its operand, changing each o to a 1 and vice versa. (2) The color 
opposite to a given color, which combines with it to yield pure 
white in an additive display medium or pure black in a 
subtractive medium. 
complement procedure: A procedure for finding the closest 
approximation to the complement of a requested color on a given 
graphics device. 
completion routine: A routine supplied in conjunction with an 
asynchronous input/ output request, to be executed on comple
tion of the requested operation. 



486 Expanding the Toolbox 
~~~~~~~~~~~ 

composite video: A form of video transmission used in broad
cast television receivers, in which separate luminance and
chromtnance signals are combined to form a single broadcast
signal.
content: The information displayed in a window.

content region: The area of a window in which information is
displayed, and which a program must draw for itself; compare
window.frame.
continuous property: A style attribute or style variation that is
possessed by every character within a given range of text.
control: An object on the Macintosh screen that the user can
manipulate with the mouse in order to operate on the contents
of a window or control the way they're presented.
control color table: A data structure specifying the colors to be
used in drawing a control.

control definition function: A routine, stored as a resource,
that defines the appearance and behavior of a particular type of
controL
control definition ID: A coded integer representing a control
type. which includes the resource ID of the control definition
junction along with a variation code giving additional modifying
information.
control handle: A handle to a control record.

control list: A linked list of all the controls belonging to a given
window, beginning in a field of the window record and chained
together through a field of their control records.

Control Panel: A standard desk accessory with which the user
can set optional operating characteristics of the Macintosh
system, such as the speaker volume and keyboard repeat rate.
control record: A data structure containing descriptive infor
mation about a given control.

control template: A resource containing all the information
needed to create a control.

control title: The string of text characters displayed on the
screen as part of a control.

control type: A category of control. identified by a control
deftnitton ID. whose appearance and behavior are determined by
a control dejinttionfunction.

487 Glossary

coprocessor: An auxiliary processor included in a computer
system in addition to the central processing unit to perform
specialized processing tasks such as.floating-point arithmetic or
virtual memory management.
courteous color: An entry in a palette that will always match
the closest color value available in the current color table, no
matter how much it may dilTerfrom the requested color; compare
tolerant color, animating color, expltclt color, dithered color.
covered: Describes a window, control or other object that is
obscured from view by other overlapping objects. A covered
object is never displayed on the screen. even if visible; compare
exposed.
CPU: See central processing unit.
CPU code: An integer code in the system envtrorunent record
identifying the type of central processing untton which a program
is currently running.
creator signature: A four-character string identlfying the
application program to which a given .file belongs. and which
should be started up when the user opens the file in the Finder.
current color table: The color table belonging to the current
graphics device.
current device: See current graphics device.
current graphics device: The graphics device whose color table
and other attributes establish the color environment for all color
drawing operations.
current port: The graphics port in use at any given time, to
which most QuickDraw operations implicitly apply.
current resource me: The resource .file that will be searched
first in looking for a requested resource, and to which certain
resource-related operations implicitly apply.
current volume: The volume or directory under consideration
at any given time, to which many .file system operations implic
itly apply.
cursor: A small (16-by-16-pixel) graphical image whose move
ments can be controlled with the mouse to designate positions
on the Macintosh screen.
cursor record: A data structure defining the form and appear
ance of a cursor on the screen.

488 Expanding the Toolbox
~~~~~~~~~~~ 

customize: To redefine an aspect of the Toolbox's operation to 
meet the specialized needs of a particular program. 
cut and paste: The standard method of editing used on the 
Macintosh, in which text. graphics. or other information is 
transferred from one place to another by way of an intermediate 
scrap or Clipboard. 
cyan: One of the three subtractive primary colors, com
plementary to red and formed, in an addittvemedium. by mixing 
blue and green. 
cycle: A single repetition of a regularly recurring wave, such as 
a sound or light wave. 
dangllng pointer: An invalid pointer to an object that no longer 
exists at the designated address. 
data bus: The set of transmission lines used by the processorto 
transfer information to or from memory: compare address bus. 
data fork: Theforkof ajllethat contains the file's data, such as 
the text of a document: compare resource fork. 
deactivate event: A window event generated by the Toolbox to 
signal that a given window is no longer the active window. 
deallocate: To free a block of memory that is no longer needed, 
allowing the space to be reused for another purpose. 
declaration ROM: A collection of information stored in read
only memory on an expansion card, consisting of slot resources 
describing the characteristics of the card or of the device it 
controls. 
default button: The pushbutton displayed with a heavy black 
double border in an alert or dialog box; pressing the Return or 
Enter key is considered equivalent to clicking the default button 
with the mouse. 
definition routine: See control definition function, wind.ow 
dejlnitionfu.nction, menu definition procedure, menu bar defini
tionfunction, list dejlnition procedure. 
dereference: (I) In general, to convert any pointer to the value 
it points to. (2) Specifically, to convert a handle to the 
corresponding master pointer. 
descender: A portion of a text character that extends below the 
baseline, as in the lowercase letters g, j, p, q, and y. 

descent: (1) For a text character. the distance the character 
extends below the baseline, in dots or pixels. (2) For a font, the 
maximum descent of any character in the font. 



489 Glossary 

descent line: The line marking a font's maximum descent below 
the baseline. 

desk accessory: A type of device driver that operates as a "mini
application," which can coexist on the screen with any other 
program. 
desk scrap: The scrap maintained by the Toolbox to hold 
information being cut and pasted from one application program 
or desk accessory to another; compare Toolbox scrap. 

desktop: ( 1) The gray background area of the Macintosh screen, 
outside of any window. (2) The arrangement of windows, icons, 
and other objects on the screen, particularly in the Find.er. 

desktop me: A file containing Finder-related information about 
the files on a volume, including their file types, creator 
signatures, and locations on the Finder desktop. 
desktop region: A region defining the size and shape of the total 
area in which drawing can take place on the screens of all 
available graphics devices combined. 
destination rectangle: The boundary to which text is wrapped 
in an edit record, determining the placement of the line breaks: 
also called the "wrapping rectangle." 
device: See peripheral device. 

device attributes: A set of flags describing the characteristics 
of a given graphics device, kept in a field of its device record. 
device code: An integer identifying the output device a graphics 
port draws on, used in selecting the appropriate fonts for draw
ing text. 
device driver: A specialized piece of software that enables the 
Macintosh to control and communicate with a particular periph
eral device. An important special category of device drivers are 
desk accessories. 
device list: A linked list of all graphics devices currently 
available in the system, chained together through a field of their 
device records. 
device record: Adata structure containing descriptive informa
tion about a given graphics device. 

device type: An integer code identifying the general method of 
color specification used by a graphics device: see direct device, 
mapped device, frxed device, variable CLUI' device. 



490 Expanding the Toolbox 
~~~~~~~~~~-

dlal: A control that can take on any of a range of possible
settings, depending on the position of a moving indicator that
can be manipulated with the mouse; compare button.

dialog: Short for dialog box.

dialog box: A window used for requesting information or
instructions from the user.
dialog Item: A single element displayed in an alert or dialog box,
such as a piece of text, an icon, a control, or a text box.
dialog pointer: A pointer to a dialog record.
dialog record: A data structure containing descriptive informa
tion about a given alert or dialog box.

dialog template: A resource containing all the information
needed to create a dialog box.

dialog window: See dialog box.

diameters of curvature: The width and height of the ovals
forming the comers of a rounded rectangle.
dimmed: Describes an object. such as a menu it.em or a.ft.le icon,
that is displayed in gray instead of black to show that it is not
currently available or active.
direct device: A color graphics device that accepts colors in
explicit RGB format and reproduces them directly on the screen:
not supported by the current version of Color QuickDraw.
Compare mapped device.

directory: A table containing information about the .ft.les on a
volume. Under the Hierarchical File System, directories may in
tum contain oth~r directories (subdirectories) and correspond to
folders displayed on the desktop by the Finder.

directory name: Under the Hierarchical File System, a string of
text characters identifying a particular directory.

directory reference number: An identifying number assigned
by the Hierarchical File System to stand for a given directory.

disk driver: The device driver built into ROM for communicating
with the Macintosh's built-in Sony disk drive.
Disk Initialization Package: A standard package, provided in
the system resource ftle, that takes corrective action when an
unreadable disk is inserted into the disk drive, usually by
initializing the disk.
disk-inserted event: An event reporting that the user inserted
a disk into a disk drive.

491 Glossary

dismiss: To remove an alert or dialog box from the screen.
typically by clicking a pushbutton.

dispatch table: A table in memory contaJning the trap address
associated with each trap number, used by the Trap Dispatcher
to locate Toolbox routines in ROM.
display: (1) To present information in a dynamically changing
graphical form. (2) An arrangement of information presented in
such a form. (3) A peripheral device capable of presenting
information in such a form. such as the screen of a video picture
tube.
display mode: A state of a graphics device that determines the
way it presents an image on the screen: typically corresponds to
a particular pixel depth. but may also affect other aspects of the
device's operation. such as the use of gray scale instead of full
color.
dithered color: An entry in a palette that constructs a dithered
pattern to approximate the requested color if it is not directly
available in the current color table: not supported by the current
version of Color QutckDraw. Compare tolerant color. courteous
color. animating color, expltcU color.

dithered pattem: A pixel pattern constructed to approximate
the appearance of a desired color by dithering two or more other
colors.
dithering: A technique of combining two or more colors in a
pattern of dots that blend visually to approximate the appear
ance of another color.
document: A coherent unit or collection of information to be
operated on by a particular applieatfDn program

document file: A file containing a document.
document window: The standard type of window used by
application programs to display information on the Macintosh
screen.
dot: A single spot forming part of a graphical image when
printed on paper: compare pixel
double click: Two presses of the mouse button in quick
succession. considered as a single action by the user.
down arrow: The arrow at the bottom or right end of a scroll bar,
which causes it to scroll down or to the right a line at a time when
clicked with the mouse.

492 Expanding the Toolbox
~~~~~~~~~~~ 

drag: (I) To roll the mouse while holding down the button. 
(2) To move a window, icon, or other object to a new location on 
the screen by dragging with the mouse. 
drag region: The area of a window by which it can be dragged 
to a new location with the mouse. In a document window, the 
drag region consists of the title bar minus the close box and 
zoom box. if any. 

driver: See device driver. 

driver event: See 1/0 driver event. 
driver reference number: An identifying number designating 
a particular device driver. 

edge color: The pixel color defining the border of the region to 
be selected by the lasso drawing tool. 
edit record: A complete text editing environment containing all 
the information needed for TextEdit operations. 
eject: To remove a disk volume physically from a disk drive. 
placing the volume ojf-ltne. 

electronic mall: A type of computer application that enables 
users to send and receive messages over a network or other 
communication line. 
empty handle: A handle that points to a NIL master pointer. 
indicating that the underlying block has been purged from the 
heap. 
empty rectangle: A rectangle that encloses no pixels on the 
coordinate grid. 
empty region: A region that encloses no pixels on the coordi
nate grid. 
emulator trap: A form of trap that occurs when the M68000-
series processors attempt to execute an unimplemented 
instruction; used to "'emulate" the effects of such an instruction 
in software instead of hardware. 
enclosing rectangle: ( 1) The rectangle within which an oval is 
inscribed. (2) The rectangle that defines the location and extent 
of a control within its owning window. 

end-of-file: The character position following the last byte of 
meaningful information included in ajUe (the logical end-of-flle) 
or the last byte of physical storage space allocated to it (the 
physical end-of-ft.le). 

environment record: See system environment record. 



493 Glossary 

EOF: See end-of-ftle. 

erase: To fill a shape with the background pattern of the current 
port. 
error code: A nonzero result code, reporting an error of some 
kind detected by a Toolbox routine. 
error sound: A sound emitted from the Macintosh speaker by 
an alert 

event: An occurrence reported by the Toolbox for a program to 
respond to, such as the user's pressing the mouse button or 
typing on the keyboard. 
event-driven: Describes a program that is structured to re
spond to events reported by the Toolbox. 
event loop: See main event loop. 
event mask: A coded integer specifying the event types to which 
a given operation applies. 
event message: A field of the event record containing informa
tion that varies depending on the event type. 

event modifiers: A field of the event record containing flags that 
describe conditions pertaining to the event, such as the state of 
the mouse button and of the modifier keys on the keyboard. 
event queue: The data structure in which events are recorded 
for later processing. 
event record: A data structure containing descriptive informa
tion about a given event. 

event type: An integer code identifying the kind of occurrence 
reported by an event. 

exception: See trap. 

exclusive or: A bit-level operation in which each bit of the result 
is a 1 if the corresponding bits of the two operands are different, 
or o if they are the same. 
expansion card: An integrated-circuit card that can be plugged 
into one of the Macintosh's expansion slots to extend or enhance 
the capabilities of the system. 
expansion slot: An internal connector in some models of 
Macintosh, in which an expansion card can be installed. 
explicit color: An entry in a palette that refers directly to a given 
color index in the current color table, without reference to the 
color value specified in the palette entry itself: compare tolerant 
color, courteous color, animating color, dithered color. 



494 Expanding the Toolbox 
~~~~~~~~~~~ 

exposed: Describes a window. control, or other object that is not
obscured from view by other overlapping objects. An exposed
object is displayed on the screen if visible: compare covered.
extemal disk drive: A disk drive physically separate from the
Macintosh itself and connected to it via a connector on the back
of the machine.
Fat Mac: See Macintosh 512K.

field: One of the components of a Pascal record.
FIFO: First in, first out: the order in which items are added to
and removed from a queue such as the event queue. Compare
LIFO. LIOF.

me: A collection of information stored as a named unit on a disk
or other mass storage device.
me directory: A table containing information needed by the.ftle
system about the ftles on a given volume.

file Icon: The icon used by the Finder to represent aftle on the
screen.
me name: A string of text characters identifying a particular
ftle.

file reference: A Finder resource that establishes the connec
tion between a .ftle type and its ftle icon.
file reference number: An identifying number assigned by the
ftle system to stand for a given.file.
file system: The part of the Macintosh Operating System that
deals with ftles on a disk or other mass storage device.
me type: A four-character string that characterizes the kind of
information a.file contains, assigned by the program that created
the file.
fill: To color a shape with a specified pattem

fill pattern: A pattern associated with a graphics port, used
privately by QuickDraw for ftlling shapes.
Finder: The Macintosh application program with which the
user can manipulate files and start up applications: normally
the first program to be run when the Macintosh is turned on.
Finder resources: The resources associated with a program
that tell the Finder how to represent the program's ftles on the
screen. Finder resources include autographs, icon lists, fde
references. and bundles.

Finder startup handle: See startup handle.

495 Glossaiy

Finder startup information: See st.artup inf onnatton.

fixed device: A mapped device in which the selection of colors
available in the color lookup table is predefined by the device
itself and cannot be changed: compare variable Curr device.

fixed-point number: A binary number with a fixed number of
bits before and after the binary point; specifically, a value of the
Toolbox data type Fixed (1:2.3.1), consisting of a 16-bit integer
part and a 16-bit fractional part.
fixed-width font: A font in which all character widths are equal.
Oat file system: A ft.le system in which all ftles on a volume
reside in a single directory, with no subdirectories.

Floating-Point Arithmetic Package: A standard package.
provided in the system resource ft.le (or in ROM on some models).
that petforms arithmetic on floating-point numbers in accor
dance with the IEEE standard. using the Standard Apple Nu
meric Environment (SANE).

floating-point coprocessor: An auxiliary processor included in
some models of Macintosh for performing high-speed jl.oating
point computations.
floating-point number: A binary number in which the binary
point can "float" to any required position; the number's internal
representation includes a binary exponent. or order of magni
tude, that determines the position of the point.
flush left: A method of textjustiflcation in which the left margin
is straight and the right margin ts "ragged"; comparejlush right,
centered, fulljustiflcation.

Dush right: A method of text justtficatton in which the right
margin is straight and the left margin is "ragged"; comparejlush
right. centered, fulljustiflCation.

folder: An object in the desktop ft.le of a disk or other volume.
represented on the screen by an icon or window, that can
containft.l.es or other folders: used for organizing the files on the
volume. Under the Hierarchical File System, folders correspond
to directories.

font: (1) A resource containing all of the character images and
other information needed to draw text characters in a given
typeface and type size. (2) Sometimes used loosely (and incor
rectly) as a synonym for typeface, as in the terms font number
and textf ont.

496 Expanding the Toolbox

font color table: A color table defining the color values for the
pixels in the font Image of a color font
font depth: The pixel depth of a font image, stored in a portion
of the font type field in the font record.
font family: A term used in recent Apple publications for what
we, in these books, have called a typeface.
font height: The overall height of a font, from ascent line to
descent line.
font image: A btt image or pixel Image consisting of all the
individual character images in a gtvenfont, arranged consecu
tively in a single horizontal row; also called a strike of the font.
font number: An integer denoting a particular typeface.
font record: A data structure containing descriptive in
formation about a given font.
font type: A field of the font record containing flags and other
descriptive information about the properties of afont (including,
in particular, the font depth).
foreground: (1) Under MultiFlnd.er, the state in which a program
is in active control of the system, displaying its windows
frontmost on the screen and receiving and responding to the
user's actions with the mouse and keyboard. (2) In monochrome
drawing, the portion of a graphical image represented by bits
with a value of l, drawn in the foreground color of its graphics
porL Compare background.
foreground color: The color in which the foreground portion of
a graphical image is to be drawn in a given graphics port;
compare background color.
fork: One of the two parts of which every jlle is composed: the
data.fork or the resource fork.
fraction: Afrxed-pofnt value of the Toolbox data type Fract
(1:2.3.3), consisting of a 2-bit integer part and a 30-bit fractional
part.
fractional character widths: A feature included in recent
versions of the Toolbox that allows the character widths for afont
to be expressed as fractional, rather than integral, numbers of
points. The resulting character positions are then rounded to
the available resolution of whatever device they're drawn on
(such as a printer or the screen of a graphics device).
frame: (1) To draw the outline of a shape, using the pen size, pen
pattern, andpenmodeofthe currentporL (2) See window.frame.

497 Glossmy

(3) A single paJntJng of the Macintosh screen by the display
tube's electron beam, from the top-left comer to the bottom
right.
free block: A contiguous block of space available for allocation
within the heap.

frequency: The speed with which a regularly recurring wave
(such as a sound or light wave) ts repeated, which determines the
pitch of the sound or the color of the light: measured tn hertz
(cycles per second).
full Justification: A method of text.Justtftcatton (not supported
by TextEdtt) in which both the left and right margins are straight.
with the spaces between words adjusted accordingly: compare
flush left. centered.flush right.

gamma table: A table of the correction values needed to
compensate for the nonlinear color response of the screen
phosphors on a given graphics devtce.
get-front-clicks bit: Aflagbit in a program's stzeresourcethat
indicates that the program wishes to receive mouse-down events
reporting the mouse clicks with which the user switches the
program from the background to the foreground under MulttFin
der.
gigabyte: A unit of memory capacity equal to 230 (1,073, 7 41,824)
bytes.
global coordinate system: The coordinate system associated
with a given bit image or pixel image. in which the top-left comer
of the unage has coordinates (0, O). The global coordinate system
ts independent of the boundary rectangle of any bit map. pixel
map. or graphics port based on the image.
glue routine: See interface routine.
go-away region: See close regiDn.

good-bye kiss: A special call to a device driver or desk
accessory. warning it that the application heap is about to be
reinitialized and allowing it to take any special action it may
require.
graphics device: A peripheral device that presents information
in graphical form. such as a video display screen.
graphics pen: The imaginary drawing tool used for drawing
lines and text characters in a graphics port.
graphics port: A complete drawing environment containing all
the information needed for QuickDraw drawing operations.

498 Expanding the Toolbox
~~~~~~~~~~~ 

grow Icon: The visual representation of a window's size region 
on the screen; for a standard docwnent window. a pair of small 
overlapping squares in the bottom-right comer of the window. 
grow region: See size region. 
handle: A pointer to a master pointer, used to refer to a 
relocatable block. 
hardcopy: A copy of a document printed physically on paper. 
heap: The area of memory in which space is allocated and 
deallocated at the explicit request of a running program; 
compare stack. 

hertz: A unit of .frequency, equivalent to cycles (or any other 
regularly recurring event) per second; abbreviated Hz. 
HFS: See Hierarchical File System. 

hide: To make a window. control. or other object invisible. 

Hierarchical Fiie System: The file system built into recent 
models of Macintosh in ROM, designed for use with double-sided 
and high-density disks. hard disks. and other large-capacity 
storage devices; also available for older models in RAM-based 
form. Compare Macintosh File System. 

highlight: To display a window. control. menu item or other 
object in some distinctive way as a visual signal to the user, often 
(but not necessarily) by . inverting white and black pixels when 
displayed in monochrome, or by exchanging the background. 
color with a specified highlighting color. 

highlighting color: The color to be exchanged with the back
ground color when highlighting text or other material in a color 
graphics port. 

host program: The application program with which a desk 
accessory shares the system. 
hot spot: The point in a cursor that coincides with the mouse 
position on the screen. 
HSL: A method of color representation that characterizes colors 
according to their hue. saturation. and lightness; compare HSV. 
RGB,CMY. 

HSV: A method of color representation that characterizes colors 
according to their hue, saturation, and value or brightness; also 
called the Munsell color system. Compare HSL, RGB, CMY. 
hue: The property of a color determined by the.frequency of its 
light wave. and corresponding to the subjective quality referred 



499 Glossary 

to by names such as green. orange. yellow. or blue: compare 
saturation. value. lightness. 

hypertext: A type of computer application. typified by Apple's 
HyperCard. in which text, graphics, and other information are 
linked together into a free-form. interconnected information 
base that the user can traverse In arbitrary order. 
Hz: See hertz. 

I-beam cursor: A standard CtUsor included in the system 
resourceftl.e (or in ROM on some models) for use in text selection. 
Icon: A small graphical image (typically 32 pbcels by 32) used on 
the Macintosh screen to represent an object such as a disk or 
file. 
Icon list: A resource containing any number of icons: commonly 
used to hold aftle icon and its mask for use by the Finder. 
Icon number: An integer used to identify an icon to be displayed 
on a menu. equal to the icon's resource ID plus 2 5 6. 

Identifying Information: The properties of a resource that 
uniquely identify it: its resource type, resource ID, and (optional) 
resource name. 
IEEE standard: A set of standards and conventions for jloattng
potnt arithmetic, published by the Institute of Electrical and 
Electronic Engineers. 
Image-height table: An optional table in afont record, contain
ing information on the heights of the character images in the 
font. 
ImageWrlter: A dot-matrix impact printer originally developed 
by C. Itoh & Company and marketed by Apple Computer. with 
a maximum resolution of 144 dots per inch vertically by 160 
horizontally and a maximum printing speed of 120 characters 
per second. 
ImageWrlter LQ: An upgraded model of the lmageWrtter 
printer, with a maximum resolution of 216 dots per inch and 
improved paper handling capabilities. 
ImageWrlter II: An enhanced version of the original 
ImageWriter printer with a maximum printing speed of 250 
characters per second. finer dot placement for better print 
quality, improved paper handling including an optional auto
matic sheet feeder for non-continuous, separately cut sheets, a 
limited color capability using a special four-color ribbon, and an 



500 Expanding the Toolbox 

optional AppleTalk network connection for sharing the printer 
among two or more users. 
indicator: The moving part of a dial that can be manipulated 
with the mouse to control the dial's setting. 
insertion point: An empty selection in a text document. 
denoted by a selection range that begins and ends at the same 
character position. 

Inside Macintosh: The comprehensive manual on the 
Macintosh Toolbox. produced by Apple Computer. Inc .• and 
published by Addison-Wesley Publishing Company. Inc. 
Integrated Wozniak Machine: The custom-designed chip used 
to control the Macintosh floppy-disk drive. based on an original 
design by Apple cofounder Steve Wozniak. 
interactive item: A dialog item. such as a control or text box. 
that accepts information from the user via the mouse and 
keyboard: compare static item. 

intercepted event: An event that is handled automatically by 
the Toolbox before being reported to the running program. 
interface: A set of rules and conventions by which one part of 
an organized system communicates with another. 
interface routine: A routine that mediates between the stack
based parameter-passing conventions of a Pascal calling pro
gram and those of a register-based Toolbox routine: also called 
a "glue routine." 
intemal disk drive: The 3 Yi-inch single- or double-sided Sony 
disk drive built into the Macintosh. 
International Utllltles Package: A standard package, provided 
in the system resource fUe, that helps programs conform to the 
prevailing conventions of different countries in such matters as 
formatting of numbers. dates, times, and currency: use of metric 
units; and alphabetization of foreign-language accents. diacriti
cals. and ligatures. 
interrupt: A trap triggered by a signal to the Macintosh 
processor from a peripheral device or other outside source. 
interrupt-driven: Describes a piece of software that is designed 
to be executed in response to an interrupt. 

interrupt handler: The trap handler for responding to an 
interrupt. 



501 Glossary 

Invalid region: An area of a window's content region whose 
contents are not accurately displayed on the screen, and which 
must therefore be updated; compare valid region. 

Inverse table: A data structure that maps color values to their 
most closely matching color indices relative to a given color table. 

Invert: (I) Generally, to reverse the colors of pixels in a 
monochrome graphical image, changing white to black and vice 
versa. (2) Specifically, to reverse the colors of all pixels inside the 
boundary of a given shape. 

Invisible: Describes a window. controL or other object that is 
logically hidden from view. An invisible object is never displayed 
on the screen, even if exposed; compare visible. 

1/0 driver event: A type of event used internally by the Toolbox 
to handle communication with peripheral devices. 

item color list: A data structure specifying the colors to be used 
in drawing the dialog items in a color alert or dialog box. 

item color table: See item color lisL 

item data: The descriptive information about a given dialog item 
in an item color list. 

item handle: A handle to a dialog item. kept in its dialog's item 
list. 

item header: A word of descriptive information about a dialog 
item in an item color list, whose exact format and meaning vary 
depending on the item type. 
Item list: A data structure defining all of the dialog items 
associated with an alert or dialog box, located via a handle in the 
dialog record. 

item number: The sequential position of a menu item within its 
menu, or of a dialog item within its dialog's item list; used as an 
identifying number to refer to the item. 
item offset: An integer giving the location of the item data for 
a given dialog item in an item color list. expressed in bytes relative 
to the start of the list. 
Item type: An integer code denoting a kind of dialog item. 

IWM: See Integrated Wozniak Machine. 

Juggler: An early internal code name for MultiFinder. 
jump table: A table used to direct external references between 
code segments to the proper addresses in memory; located in the 



502 Expanding the Toolbox 

application global space, at positive offsets from the base 
address kept in register AS. 

justlftcatlon: The way in which text in an edit record is aligned 
to the left and right edges of the destination rectangle; see flush 
left. centered. flush right, fulljustificatiDn. 

K: See kilobyte. 
key code: An integer code representing a physical key on the 
Macintosh keyboard or keypad; compare character code. 
key-clown event: An event reporting that the user pressed a key 
on the keyboard or keypad. 
key-up event: An event reporting that the user released a key 
on the keyboard or keypad. 
keyboard: A set of keys for typing text characters into the 
computer. 
keyboard alias: A character that can be typed in combination 
with the Command key to stand for a particular menu item. 

keyboard code: An integer code in the system environment 
record identifying the type of keyboard connected to the system 
on which a program is currently running. 
keyboard configuration: The correspondence between keys on 
the Macintosh keyboard or keypad and the characters they 
produce when pressed. 
keyboard clrlver: The low-level part of the Toolbox that commu
nicates directly with the keyboard and keypad. 
keyboard event: An event reporting an action by the user with 
the keyboard or keypad: see key-down event, key-up event. auto
key event. 
keyboard routine: A routine to be executed directly by the 
keyboarddriverwhen the usertypes a number key while holding 
down the Command and Sh!fl keys: stored as a resource of type 
'FKEY'. 

keypad: See numeric keypad. 

kHz: See kUohertz. 
kilobyte: A unit of memory capacity equal to 2 10 (I 024) bytes. 
kilohertz: A unit of .frequency equal to 1000 hertz; abbreviated 
kHz. 
LaserWrlter: A high-resolution laser printer manufactured and 
marketed by Apple Computer, with a resolution of 300 dots per 
inch, an MC68000 processor, 512K of ROM containing a 



503 Glossary 

PostScript interpreter and 11 built-in fonts. and a RAM capacity 
of 1. 5 megabytes for page imaging and additional font storage. 
LaserWrlter Plus: An upgraded version of the original 
LaserWriter printer with an expanded ROM capacity and 35 
built-in fonts. 
LaserWrlter II-NT: An upgraded model of the LaserWriter 
printer with a faster version of the PostScrtpt interpreter. 35 
built-in fonts. and an expanded RAM capacity of 2 megabytes. 
LaserWrlter 11-NTX: An upgraded model of the LaserWrtter 
printer with an MC68020 processor. an MC68881 floating-point 
coprocessor. a faster version of the PostScript interpreter. 35 
built-in fonts. an expandable RAM capacity of up to 12 mega
bytes. and an optional hard disk connection. 
LaserWrlter D-SC: An inexpensive model of the LaserWrtter 
printer with no PostScript interpreter or built-in fonts. driven 
directly with QutckDraw operations in the same way as an 
Image Writer. 

lasso: A drawing tool included in many graphics-editing pro
grams, which selects the largest closed shape enclosed within a 
specified boundacy in a graphical image. 
launch: To start up a new program after reinitializing the stack, 
appltcatton global space, and appltcatton heap. 
leading: (Rhymes with .. heading," not .. heeding.") The amount 
of extra vertical space between lines of text. measured in dots or 
pixels from the descent line of one to the ascent line of the next. 
length byte: The first byte of a Pascal-format string, which gives 
the number of characters in the string, from o to 2 s s. 
LIFO: Last in, first out: the order in which items are added to 
and removed from the stack. Compare FIFO, LIOF. 

lightness: The quality of a color captured by monochrome video 
or photographic film, which expresses its shade as an equivalent 
gray level between pure black and pure white; compare hue, 
saturation. value. 

line ascent: The vertical distance. in dots or pixels, from the 
ascent line to the baseline of a line of text in a styled edit record. 

line breaks: The character positions marking the beginning of 
each new line when text is wrapped to a boundary. 
line drawing: Drawing in a graphics port by moving the graphics 
pen. using the QuickDraw routines Move, MoveTo. Line, and 
LineTo. 



504 Expanding the Toolbox 
~~~~~~~~~~-

line height: The vertical distance, in dots or pixels, between the
baseline of a line of text and that of the previous line in a styled
edit record.
line-height table: A data structure defining the line height and
line ascent for each line of text in a styled edit record.
LIOF: ·Last in, OK. fine": describes the allocation and de
allocation of items in the heap, which can occur in any order at
all. Compare FIFO, LIFO.

Lisa: A personal computer manufactured and marketed by
Apple Computer, Inc.: the first reasonably priced personal com
puter to feature a high-resolution bit-mapped display and a
hand-held mouse pointing device. Later called Macintosh XL.

list deftnltlon procedure: A routine, stored as a resource, that
defines the appearance and behavior of a particular type of
scrollable list to be displayed by the Ust Manager Package.

List Manager Package: A standard package, provided in the
system resourceftl.e, that displays scrollable lists of items from
which the user can choose with the mouse (like the one used in
selecting files to be read from the disk).
load: To read an object, such as a resource or the desk scrap,
into memory from a file.
local coordinate system: The coordinate system associated
with a given graphics port, determined by the boundary rectangle
of the port's bit map or pixel map.

lock: To temporarily prevent a relocatable block from being
purged or moved within the heap during compaction.

lock bit: A flag associated with a relocatable block that marks
the block as locked.
logical address: The address by which a memory location is
referred to at the software level: compare physical ad.dress.
logical end-of-file: The character position following the last byte
of meaningful information included in aftl.e.
logical shift: A bit-level operation that shifts the bits of a given
operand left or right by a specified number of positions, with bits
shifted out at one end being lost and Os shifted in at the other
end.
long Integer: A data type provided by most Pascal compilers,
consisting of double-length integers: 32 bits including sign,
covering the range ±2147483647.

505 Glossary

long word: A group of 32 bits (2 words, or 4 bytes) beginning at
a word boundary in memory.
luminance: The portion of a composite video signal used by both
monochrome and color receivers, defining the lightness of the
color picture: compare chrominance.
machine code: (1) The representation of a program in a form
that can be executed directly by the processor of a particular
computer. (2) An integer code in the system envirorunent record
identifying the model of Macintosh on which a program is
currently running.
Macintosh: A personal computer manufactured and marketed
by Apple Computer, Inc., featuring a high-resolution bit
mapped display and a hand-held mouse pointing device.
Macintosh 128K: The original model of Macintosh. with an
MC68000 processor clocked at 7 .8336 MHz, a RAM capacity of
128K, 64K of ROM, a 400K single-sided disk drive, and two
RS-232/RS-422 serial ports; also known as the .. Skinny Mac."
Macintosh 512K: A model of Macintosh with an MC68000
processor clocked at 7 .8336 MHz, a RAM capacity of 512K, 64K
of ROM, a 400K single-sided disk drive, and two RS-232/
RS-422 serial ports: also known as the .. Fat Mac."
Macintosh 512K enhanced: An upgraded version of the
Macintosh512Kincluding the 128KMacintoshPlusROM and an
BOOK double-sided disk drive.
Macintosh 512Ke: See Macintosh 512K enhanced.

Macintosh Family Hardware Reference: A technical refer
ence manual describing the hardware characteristics of the
Macintosh computers, produced by Apple Computer, Inc., and
published by Addison-Wesley Publishing Company. Inc.
Macintosh File System: The flat fde system built into the
original Macintosh Toolbox; superseded in recent models by the
Hierarchical File System.
Macintosh Operating System: The body of machine code built
into the Macintosh ROM to handle low-level tasks such as
memory management, disk input/ output, and serial communi
cations.
Macintosh Plus: A model of Macintosh with an MC68000
processor clocked at 7 .8336 MHz, a RAM capacity of 1 megabyte
(expandable to 4 megabytes), 128K of ROM containing an up-

506 Expanding the Toolbox
~~~~~~~~~~-

dated and expanded version of the Toolbox. an BOOK double
sided disk drive, a redesigned keyboard, two RS-232/RS-422 
serial ports, and a SCSI parallel port. 
Macintosh Programmer's Workshop: A software development 
system produced and marketed by Apple Computer, including a 
Pascal compiler, C compiler, M6BOOO-series assembler, and 
other development tools; commonly called MPW for short. 
Macintosh SE: A model of Macintosh with an MC68000 proces
sor clocked at 7.B336 MHz, a RAM capacity of I megabyte 
(expandable to 4 megabytes), 256K of ROM containing an up
dated and expanded version of the Toolbox. an BOOK double
sided disk drive with optional second drive or 20- or 40-
megabyte internal hard disk, two RS-232/RS-422 serial ports, 
a SCSI parallel port, two Apple Desktop Bus ports. and one 
custom expansion slot. 
Macintosh SE/30: A model of Macintosh with an MC68030 
processor clocked at 15.6672 MHz, an MC68882floating-point 
coprocessor, a RAM capacity of I megabyte (expandable to B 
megabytes) with built-in paged memory management unit, 256K 
of ROM containing an updated and expanded version of the 
Toolbox, a 1.44-megabyte high-density disk drive with optional 
40- or BO-megabyte internal hard disk, two RS-232/RS-422 
serial ports, a SCSI parallel port. two Apple Desktop Bus ports. 
one custom expansion slot. and digital stereo sound. 
Macintosh Technical Notes: An ongoing series of documents 
on Macintosh programming, providing useful hints, tips, tech
niques. and up-to-the-minute technical information: published 
several times a year by Apple and widely available through 
Macintosh user groups, bulletin boards. and the Apple Program
mers and Developers Association (APDA). 
Macintosh n: A model of Macintosh with anMC68020processor 
clocked at 15.6672 MHz, an MC68881 floating-point coproces
sor, a RAM capacity of 1 megabyte (expandable to B megabytes) 
with optional paged memory management unit. 256K of ROM 
containing an updated and expanded version of the Toolboxwith 
full color support, an BOOK double-sided disk drive with optional 
second BOOK or 1.44-megabyte high-density disk drive, a 40-. 
BO-, or 160-megabyte internal hard disk, two RS-232/RS-422 
serial ports, a SCSI parallel port, two Apple Desktop Bus ports, 
six NuBus expansion slots. and digital stereo sound. 



507 Glossary 

Macintosh Del: A model of Macintosh with an MC68030 
processor clocked at 25 MHz, an MC68882 floating-point co
processor, a RAM capacity of 1 megabyte (expandable to 8 
megabytes) with built-in paged memory management unit and 
optional high-speed RAM cache, 512K of ROM containing an 
updated and expanded version of the Toolbox with full color 
support and 32-bit-clean addressing, redesigned video circuitry 
with built-in 8-bit color video controller, a 1.44-megabyte high
density disk drive with optional 40- or SO-megabyte internal 
hard disk, two RS-232/RS-422serial ports, a SCSI parallel port, 
two Apple Desktop Bus ports, three NuBus expansion slots, and 
digital stereo sound. 
Macintosh Dex: A model of Macintosh with an MC68030 
processor clocked at 15.6672 MHz, an MC68882floating-point 
coprocessor, a RAM capacity of 1 megabyte (expandable to 8 
megabytes) with built-in paged memory management unit. 256K 
of ROM containing an updated and expanded version of the 
Toolbox with full color support, a 1.44-megabyte high-density 
disk drive with optional 40- or SO-megabyte internal hard disk, 
two RS-232/RS-422 serial ports, a SCSI parallel port, two Apple 
Desktop Bus ports, three NuBus expansion slots, and digital 
stereo sound. 
Macintosh Ilx: A model of Macintosh with an MC68030 proces
sor clocked at 15.6672 MHz, an MC68882 floating-point 
coprocessor, a RAM capacity of 1 megabyte (expandable to 8 
megabytes) with built-in paged memory management unit. 256K 
of ROM containing an updated and expanded version of the 
Toolbox with full color support, a 1.44-megabyte high-density 
disk drive with optional second drive, a 40-, 80-, or 160-
megabyte internal hard disk, two RS-232/RS-422 serial ports, 
a SCSI parallel port, two Apple Desktop Bus ports, six NuBus 
expansion slots, and digital stereo sound. 
Macintosh XL: A Lisa computer running Macintosh software 
under the MacWorks emulator. 
MacWorks: The software emulator program that enables a Lisa 
computer to run Macintosh software without modification. 
magenta: One of the three subtractive primary colors, comple
mentary to green and formed, in an additive medium, by mixing 
red and blue. 
magnitude: The intensity of a sound or light at any point in 
time, measured by the height of the curve defining its waveform. 



508 Expanding the Toolbox 
~~~~~~~~~~~ 

main device: See main graphics device.
main entry point: The point in a program's code where
execution begins when the program is first started up.
main event loop: The central control structure of an event
driven program, which requests events one at a time from the
Toolbox and responds to them as appropriate.
main graphics device: The graphics device on which the menu
bar is displayed, and whose boundary rectangle establishes the
global coordinate system in which those of all other devices (if
any) are expressed.
main screen: See main graphics device.

mapped device: A color graphics device that accepts color
indices and uses a color lookup table to map them into the actual
color values they stand for; compare direct device, .fixed device,
variable CUTI' device.

master pointer: A pointer to a relocatable block, kept at a
known, fixed location in the heap and updated automatically by
the Toolbox whenever the underlying block is moved during
compactton. A pointer to the master pointer is called a handle to
the block.
match record: A data structure specifying an edge colorfor use
by the lasso drawing tool or a seed colorfor the paint bucket tool.
matching routine: A routine for approximating colors or their
complements on a given graphics device; see search junction,
complement procedure.

MC68000: The microprocessor used in the Macintosh 128K,
512K, 512Kenhan.ced. Plus, and SE. manufactured by Motorola,
Inc.; usually called "68000" for short.
MC68020: The microprocessor used in the Macintosh II, manu
factured by Motorola. Inc.; usually called "68020" or just "020"
for short.
MC68030: The microprocessor used in the Macintosh SE/ 30,
Ilx. II ex, and Ilci. manufactured by Motorola. Inc.; usually called
"68030" or just "030" for short.
MC68881: The floating-point coprocessor used in the Macintosh
II, manufactured by Motorola, Inc.; usually called "68881" or
just "881" for short.
MC68882: The floating-point coprocessor used in the Macintosh
SE/ 30, Ilx, Ilcx, and Ilct.. manufactured by Motorola, Inc.: usually
called "68882" or just "882" for short.

509 Glossary

megabyte: A unit of memory capacity equal to 220 (1,048,576)
bytes.
megahertz: A unit of frequency equal to 1,000,000 hertz;
abbreviated MHz.

memory management unit: A component in some models of
Macintosh that controls the transfer of information between the
processor and memory.
memory-mapped 1/0: The use of specified memory addresses
for communication with peripheral devices rather than for data
storage.
memory partition: The segment of memory reseived for a given
program to operate in under MultlFind.er.
menu: A list of choices or options from which the user can
choose with the mouse.
menu bar: The horizontal strip across the top of the screen from
which menus can be "'pulled down" with the mouse.
menu bar definition function: A routine, stored as a resource,
that defines the appearance and behavior of a program's menu
bar.
menu color information table: A data structure specifying the
colors to be used in drawing a menu.
menu color table: See menu color information table.

menu definition procedure: A routine, stored as a resource,
that defines the appearance and behavior of a particular type of
menu.
menu handle: A handle to a menu record.

menu m: An identifying integer designating a particular menu;
commonly the resource ID under which the menu is stored in a
resource file.
menu Item: One of the choices or options listed on a menu.
menu list: A data structure maintained by the Toolbox,
containing handles to all of a program's currently active menus.

menu record: A data structure containing descriptive informa
tion about a given menu.
menu type: A category of menu whose appearance and behavior
are determined by a menu definition procedure.
MFS: See Macintosh File System.

MHz: See megahertz.

510 Expanding the Toolbox

microprocessor: A computer processor constructed in the form
of a single silicon microchip.
MiniEdit: The extensive example application program origi
nally developed in Volume Two of this series and further ex
panded In subsequent volumes.
minimum memory size: The size of the smallest memory
parti.tlon in which a program can successfully operate, specified
in its size resource; compare preferred memory size.

MMU: See memory management unit.
MMU mode: See address mode.

modal dialog box: A form of dialog box that prevents the user
from interacting with any other window for as long as the dialog
remains on the screen, but which allows actions beyond merely
dismissing the dialog by clicking a pushbutton; compare alert
box, mod.eless dialog box.

mode: A state of the system that determines its response to the
user's actions with the mouse and keyboard.
modeless dialog box: A form of dialog box that allows the user
to interact with other windows while the dialog remains on the
screen: compare alert box. modal dialog box.
modifier key: A key on the Macintosh keyboard that doesn't
generate a character of its own, but may affect the meaning of
any character key pressed at the same time; see Shift key, Caps
Lock key, Option key, Command key.

monochrome: Describes a graphical image with a pixel depth
of 1 bit per pixel, drawn in the foreground and background colors
of its graphics port (typically. but not necessarily, black and
white).
mouse: A hand-held pointing device that controls the move
ments of the cursor to designate positions on the Macintosh
screen.
mouse-down event: An event reporting that the user pressed
the mouse button.
mouse event: An event reporting an action by the user with the
mouse; see mouse-down event, mouse-up event. Note that
mouse-moved events are considered MultiFinder events and not
mouse events.
mouse-moved event: A MulttFinder event notifying a program
that the mouse has been moved into a different region of the

511 Glossary

screen and that the appearance of the cwsor must be adjusted
accordingly.
mouse-up event: An event reporting that the user released the
mouse button.
MPW: See Macintosh Programmer's Workstwp.

M68000: The family of Motorola microprocessors used 1n the
Macintosh, including the MC68000, MC68008, MC68010,
MC68020, and MC68030.

MultlFlnder: A software environment that allows the user to
switch freely among two or more application programs, all of
which may be resident in memory at the same time ..
MultlFlnder-aware bit: A flag bit in a program's size resource
that tells whether the program is prepared to take full advantage
of MultiFinder's features and capabilities.
MultlFinder event: An event reported to a running program by
MulttFind.er, using the application event type App4Evt; see sus
pend event, resume event, mouse-moved event.

Munsell color system: The most widely used method of color
classification, which characterizes colors according to their hue.
saturation, and value or brightness: also called HSVrepresenta
tion.
network event: A type of event used internally by the Toolbox
to handle communication with other computers over a network.
nonrelocatable block: A block that cannot be moved within the
heap during compaction, referred to by single indirection with a
simple pointer: compare relocatable block.

notification: Afacilityprovided by MultiFinderforcommunicat
ing error messages, program status, or other important informa
tion to the user while running in the background.
notlflcation queue: A list of pending notifications maintained
by the Toolbox.
notification record: A data structure defining the content and
behavior of a notification.
NTSC: (1) National Television Standards Committee. an indus
try group that established the standard format for composite
video signals used by broadcast television receivers in the
United States. (2) The video format defined by this group.
NuBus: An industry-standard interface for expansion cards,
developed by Texas Instruments, Inc., and used in the Macin-
tosh II's expansion slots. ·

512 Expanding the Toolbox
~~~~~~~~~~~ 

null event: An event generated by the Toolbox when a program 
requests an event and there are none to report. 
null style: The style attributes to be applied to text entered at 
an insertion point in a styled edit record . 

null-style record: The data structure defining the null style for 
a styled edit record. 
numeric keypad: A set of keys for typing numbers into the 
computer. On recent Macintosh models. the keypad is physi
cally built into the keyboard unit; on earlier models. it's an 
optional separate unit that connects to the keyboard with a 
cable. 
off-line: Describes a volume (such as a disk that has been 
ejected from a disk drive) for which only a minimal amount of the 
descriptive information needed by theftle system is immediately 
available in memory; compare on-line. 

offset/width table: A table in the font record containing 
information on the width and spacing of each character in a 
given font. 
old-style graphics port: A graphies port of the kind used by 
classic QuickDraw, supporting monochrome drawing and limited 
planar color. 
on-line: Describes a volume (such as a disk currently in a disk 
drive) for which all of the descriptive information needed by the 
file system is immediately available in memory; compare off-line. 
Operating System: See Macintosh Operating System. 

Operating System trap: A form of trap word denoting a low
level, typically register-based, system management operation 
such as memory allocation or disk input/ output. 
Option key: A modifier key on the Macintosh keyboard, used for 
typing special characters such as foreign letters and accents. 
or: A bit-level operation in which each bit of the result is a 1 if 
either or both operands have ls at the corresponding bit posi
tion, or o if both have Os. 
origin: (I) The top-left comer of a rectangle. (2) For a bit map, 
pixel map, or graphics port, the top-left corner of the boundary 
rectangle, whose coordinates determine the local coordinate 
system. 

OS: Short for "operating system"; see Macintosh Operating 
System. 



513 Glossmy 

OS trap: See Operating System trap. 

oval: A graphical figure, circular or elliptical in shape: defined 
by an enclosing rectangle. 

owning window: The window with which a given control is 
associated. 
package: A resource, usually residing in the system resourceftle 
(or in ROM on some models), containing a collection of general
purpose routines that can be loaded into memory when needed; 
used to supplement the Toolbox with additional facilities. 
package number: The resource ID of a package; must be 
between o and 15 (or o and 7 on earlier Macintosh models). 
package trap: A Toolbox trap used at the machine-language 
level to call a routine belonging to a package. In the original 
Toolbox there ai:-e eight package traps, named _Pac kO to _Pa ck 7; 
on more recent models there are sixteen, named _PackO to 
_PacklS. 

page-down region: The area of a scroll bar's shaft below or to 
the right of the scroll box, which causes it to scroll down or to the 
right a windowful ("'page") at a time when clicked with the mouse. 
page-up region: The area of a scroll bar's shaft above or to the 
left of the scroll box, which causes it to scroll up or to the left a 
windowful ("page") at a time when clicked with the mouse. 
paged memory management unit: An auxiliary processor 
included in some models of Macintosh that maintains a system 
of virtual memory, in which portions ("'pages") of a program's 
logical memocy space are kept on a hard disk or other mass 
storage device and transferred in and out of physical memory as 
needed. 
paint: To fill a shape with the pen pattern of the current port. 

paint bucket: A drawing tool included in many graphics-editing 
programs. which fills a contiguous region in a graphical image 
with a specified pattem 

palette: A predefined selection of colors requested by a program 
for use in its drawing operations. 
palette Index: An integer identifying a color by its position 
within a palette. 

palette record: A data structure specifying the contents of a 
palette. 

palette template: A resource defining the contents of a palette. 



514 Expanding the Toolbox 
~~~~~~~~~~-

parallel port: A connector on the back of the Macintosh for
communicating with peripheral devices via the SCSI parallel
interface.
parameter RAM: A small amount (256 bytes) of read/wrtte
memory that is stored on the Macintosh's real-time clock chip
and powered independently by a battery even when the
machine's main power is turned off: used to store operating
characteristics of the system that must be retained from one
working session to the next, such as those set by the user via the
Control Panel desk accessory.
part code: An integer denoting the part of the screen, or of a
wind.ow or control. in which the mouse was pressed; compare
part identifier.
part Identifier: An integer denoting the part of a wind.ow or
control to which an entiy in its wind.ow or control color table
applies; compare part code.

partition: See memory partition.

Pascal-format string: A sequence of text characters repre
sented in the internal format typically used by Pascal compilers,
consisting of a length byte followed by from 0 to 255 bytes of
character codes.

patch: To replace a standard Toolbox routine with a customized
version of your own by changing its trap address in the dispatch
table.

pattem: A small graphical image that can be repeated indefi
nitely to fill an area, like identical floor tiles laid end to end.
pattem list: A resource consisting of any number of patterns.
pattem transfer modes: A set of transfer mod.es used in classic
QuickDraw for drawing lines or shapes or filling areas with a pat
tern; compare source transfer modes.
pen: See graphics pen.

pen level: An integer associated with a graphics port that
determines the visibility of the port's graphics pen. The pen is
visible if the pen level is zero or positive, hidden if it's negative.
pen location: The coordinates of the graphics pen in a given
graphics port.

pen mode: The transfer mode with which a graphics port draws
lines and frames or paints shapes: should be one of the pattern
transfer mod.es.

515 Glossacy

pen pattern: The pattern in which a graphics port draws lines
and frames or paints shapes.
pen size: The width and height of the graphics pen belonging to
a graphics port.

pen state: The characteristics of the graphics pen belonging to
a graphics port, including its pen location, pen. stze, pen mode,
and pen pattern.

period: The duration in time of one cycle of a regularly recurring
wave, such as a sound or light wave.
periodic ~sk: An operation that a device driver or desk
accessory must perform at regular intervals in order to function
properly.
peripheral device: An article of input/ output or other equip
ment that is separate from the Macintosh and connected to it
with a cable, such as a disk drive, printer, or modem.
physical address: The address at which a memory location is
actually found at the hardware level: compare logical address.

physical end-of-me: The character position following the last
byte of physical storage space allocated to a file.
picture: A recorded sequence of QuickDraw operations that can
be repeated on demand to reproduce a graphical image.
picture comment: A special command embedded in a picture
to convey additional information unused by QuickDraw but
meaningful to some other application program. The general
nature of the information is identified by an integer comment
type; the information itself constitutes the comment data.

picture frame: The reference rectangle within which a picture
is defined. and which can be mapped to coincide with any other
specified rectangle when the picture ts drawn.
pixel: A single spot forming part of a graphical image when
displayed on the screen: short for "picture element." Compare
dot.
pixel depth: The number of bits representing each pixel in a
pixel image, which determines the number of distinct ·colors the
image can contain.
pixel Image: An array of values in memory representing the
pixels of a color graphical image.
pixel map: A data structure containing the information needed
to interpret and display a given pixel image in memory.

516 Expanding the Toolbox
~~~~~~~~~~~ 

pixel pattem: A pattern composed of pixel values representing 
multiple colors, for use in color drawing operations; compare btt 
pattern. 
pixel value: The combination of bits representing a pixel of a 
particular color in a pixel image. 

plain text: Text set in plain type style, with no style variations 
such as bold or italic. 
planar: A storagefonnat for pixel images in which the full-color 
image is resolved into separate color planes, each of which is a 
btt image I bit deep representing the presence or absence of a 
single constituent color; compare chunky, chunky/planar. 

plane: (1) A window's front-to-back position relative to other 
windows on the screen. (2) See color plane. 
plane offset: The number of bytes in each plane of a pixel image 
in planar or chunky/planar format. 
PMMU: See paged memory management unit. 
point: ( 1) A position on the QuickDraw coordinate grid, specified 
by a pair of horizontal and vertical coordinates. (2) A unit used 
by printers to measure type sizes, equal to approximately 1/72 
of an inch. 
point size: See type size. 
polygon: A graphical figure defined by any closed series of 
connected straight lines. 
pop: To remove a data item from the top of a stack. 

port: (I) A connector on the back of the Macintosh for commu
nication with a peripheral device, such as a printer or modem. 
(2) See graphics porL 

port rectangle: The rectangle defining the portion of a bit map 
or pixel map that a graphics port can draw into. 
post: To record an event in the event queue for later processing. 
Postscript: A device-independent page description language, 
developed by Adobe Systems Incorporated and licensed by Apple 
for use in the LaserWriter printer. 
preferred memory size: The ideal size of a program's memory 
partition, specified in its size resource: compare minimum mem
ory size. 

primary colors: A set of three colors that can be combined in 
varying proportions to produce the full range of colors perceived 
by the eye; see additive primary colors, subtractive primary 
colors. 



517 Glossaiy 

printer driver: The device driver for communicating with a 
printer through one of the Macintosh"s built-in ports. 
processor: The component of a computer that carries out the 
operations specified by a program. 
prompting string: A string of text characters supplied by the 
application program for display in the Standard File or Color 
Picker dialog. prompting the user to select a file name or color 
value. 
protect: To lock the contents of an entry in a color table, 
preventing other programs from changing its color value; 
compare release. 
pseudo-random numbers: Numbers that seem to be random 
but can be reproduced in exactly the same sequence if desired. 
pull down: To display a menu on the screen by pressing the 
mouse inside its title in the menu bar. 
purge: To remove a relocatable block from the heap to make 
room for other blocks. The purged block"s master pointer 
remains allocated, but is set to NIL to show that the block no 
longer exists in the heap; all existing handles to the block 
become empty handles. 
purge bit: A flag associated with a relocatable block that marks 
the block as purgeable. 
purgeable block: A relocatable block that can be purged from 
the heap to make room for other blocks. 
push: To add a data item to the top of a stack. 
pushbutton: A button that causes some immediate action to 
occur, either instantaneously when clicked with the mouse or 
continuously for as long as the mouse button is held down: 
compare checkbox, radio buttons. 
pushdown stack: See stack. 
QulckDraw: The extensive collection of graphics routines built 
into the Macintosh in ROM. 
QulckDraw globals pointer: A pointer to the global variables 
used by QuickDraw, kept at address o (AS) in the application 
global space. 
radio buttons: A group of two or more related buttons, exactly 
one of which can be on at any given time; turning on any button 
in the group turns off all the others. Compare pushbutton. 
check box. 



518 Expanding the Toolbox 
~~~~~~~~~~~ 

RAM: See random-access memory.

random-access memory: A common but misleading term for
read/write memory.
raw key code: A device-dependent key code generated directly
by the hardware of a keyboard.. keypad, or other text-entry
device: compare virtual key code.
read-only memory: Memory that can be read but not written;
usually called ROM. The Macintosh ROM contains the built-in
machine code of the Macintosh Operating System. QutckDraw,
and the User Interface Toolbox; on larger models it also includes
some packages, device drivers, and other frequently used
resources. Compare read/write memory.

read/write memory: Memory that can be both read and
written; commonly known by the misleading term random
access memory, or RAM. Compare read-only memory.

reallocate: To allocate fresh space for a relocatable block that
has been purged, updating the block's master pointer to point to
its new location. Only the space is reallocated; the block's
former contents are not restored.
recalibrate: To recalculate the line breaks in an edit record after
any change in its text, text characteristics, or destination rec
tangle.
rectangle: A four-sided graphical figure defined by two points
specifying its top-left and bottom-right comers, or by four
integers specifying its top, left. bottom, and right edges.
reference constant: A 4-byte field included in a Toolbox data
structure (such as a window record or control record) for the
application program to use in any way it wishes.
region: A graphical figure that can be of any arbitrary shape. It
can have curved as well as straight edges, and can even have
holes or consist of two or more separate pieces.
register-based: Describes a Toolbox routine that accepts its
parameters and returns its results directly in the processor's
registers; compare stack-based.

regular slot space: In 32-bit mode, a 16-megabyte area of
address space allotted for use by a given expansion slot; compare
super slot space.

release: (1) To unlock the contents of an entry in a color table,
again allowing other programs to change its color value; compare
protect. (2) See deallocate.

519 Glossaiy

relinquish: To give up exclusive possession of an entty in a color
table, making it again available to other programs for drawing
operations; compare reserve.

relocatable block: A block that can be moved within the heap
during compaction, referred to by double indirection with a
handle; compare rwnrelocatable block.

request list: A list of table indices specifying which entries of a
color table to save or restore.
reserve: To claim exclusive possession of an entty in a color
table. making lt unavailable to other programs for drawing
operations; compare relinquish.

resource: A unit or collection of information kept in a resource
ftl.e on a disk or other mass storage device and loaded into
memory when needed. (On recent Macintosh models, fre
quently-used system resources are permanently available in
ROM and needn't be loaded for use.)
resource data: The information a resource contains.
resource file: A collection of resources stored together as a unit
on a disk or other mass storage device: technically not aftl.e as
such, but merely the resource fork of a particular file.
resource fork: Theforkof aftlethat contains the file's resources:
usually called a resourcejlle. Compare datafork.

resource m: An integer that identifies a particular resource
within its resource type.
resource name: An optional string of text characters that
identifies a particular resource within its resource type. and by
which the resource can be listed on a menu.
resource specification: The combination of a resource type and
resource ID, or a resource type and resource name, which
uniquely identifies a particular resource.
resource type: A four-character string that identifies the kind
of information a resource contains.
response procedure: (1) A procedure that defines the action to
be taken when the mouse is clicked in a dialog item of a printing
related dialog. (2) A procedure supplied by a program to be
executed when posting a notification to the user.
result code: An integer code returned by a Toolbox routine to
signal successful completion or report an error.
resume: Under MultiFinder, to move a program from the
background to the foreground; compare suspend.

520 Expanding the Toolbox
~~~~~~~~~~~ 

resume event: A MulttFinder event notifying a program that it 
has just been moved from the background to the foreground; 
compare suspend event. 
return link: The address of the instruction following a routine 
call. to which control is to return on completion of the routine. 
RGB: ( 1) A method of color representation that characterizes 
colors according to the relative intensities of the three additive 
primary colors (red. green. and blue); compare CMY. HSV, HSL. 
(2) A form of video transmission used in closed-circuit studio 
monitors and computer displays. in which the relative intensi
ties of the additive primary colors are represented by three 
independent signals. 
ROM: See read-only memory. 

ROM-based resource: A system resource that resides in read.
only memory for rapid access. rather than in a resourceftle on a 
disk or other mass storage device. 
rounded rectangle: A graphical figure consisting of a rectangle 
with rounded comers: defined by the rectangle itself and the 
dimensions of the ovals forming the comers. 
routine selector: An integer used at the machine-language 
level to identify a specific routine that is called via a more general 
Toolbox trap. such as a package trap or a "universal" trap like 
_OSDispatch or _TEDispatch. 

row width: The number of bytes in each row of a bit image or 
pixel image. 

RS-232: An industry-standard interface convention for serial 
communication with peripheral devices, supported by the serial 
ports built into all models of Macintosh. 
Rs-422: An industry-standard interface convention for serial 
communication with peripheral devices, supported by the serial 
ports built into all models of Macintosh. 
run: See style run. 

run list: A list of style runs contained in a style record, defining 
the style attributes of the text characters in the corresponding 
styled edit record. 
SANE: See Standard Apple Numeric Environment. 

saturation: The property of a color determined by the "signal
to-noise ratio" of its light wave, and corresponding to the 
subjective purity or vividness of the color (distinguishing. for 



521 Glossmy 

example. fire-engine red from rose pink); compare hue, value, 
lightness. 
SCC: See Serl.al Conununications Controller. 
scrap: The vehicle by which information ls cut and pasted from 
one place to another. 
scrap count: An integer maintained by the Toolbox that tells 
when the contents of the desk scrap have been changed by a 
desk accessory. 
scrap me: A.ftle holding the contents of the desk scrap. 

scrap handle: A handle to the contents of the desk scrap, kept 
by the Toolbox in a system global 
scrap Information record: A data structure summarizing the 
contents and status of the desk scrap. 
scrap style element: A single entry in a scrap style table, 
defmtng the location and style attributes of a single style run 
within the text being cut and pasted via the desk scrap. 

scrap style table: A table in a style-scrap record deOning the 
style runs within the text being cut and pasted via the desk 
scrap, along with their associated style attributes. 

scrapless editing: The insertion or deletion of text in an edit 
record without reference to the contents of the desk scrap or 
Toolbox scrap. 
scrapless styling: The application of style attributes to text in 
a styled edit record without reference to the contents of the style 
scrap. 
screen buffer: The area of memory reseived to hold a screen 
image. 

screen conftguratlon: A resource kept in the system resource 
jlle defining the display modes and spatial arrangement of all 
graphics devices in the system. 
screen depth: The pixel depth of the screen image on a given 
graphics device. 
screen Image: The bit image or pixel image that defines what is 
displayed on the screen of a graphics device. 
screen map: The bit map or pixel map representing the screen 
of a g,raphics device, kept in the QuickDraw global variable 
ScreenBi ts (1:4.2.1] (under classic QuickDraw) or located via a 
handle in the gdPMap field of the device record [4.3.1] (under 



522 Expanding the Toolbox 

colorQutckDraw). Its bit fmageor pixel image is the screen image; 
its boundary rectangle has the same dimensions as the screen, 
with the origin at coordinates (0, O). 

scroll: To move the contents of a window with respect to the 
window itself, changing the portion of a document or other 
information that's visible within the window.· 
scroll bar: A control associated with a window that allows the 
user to scroll the window's contents. 
scroll box: The indicator of a scroll bar, a small white box that 
can be dragged to any desired position within the scroll bar's 
shaft; also called the "'thumb." 
SCSI: Small Computer Standard Interface, a parallel interface 
built into some Macintosh models for communicating with 
peripheral devices; commonly pronounced "scuzzy" (or "'sexy," 
according to personal temperament). 
search function: A function for finding the closest approxima
tion to a requested color on a given graphics device. 
seed: ( 1) The starting value used in generating a sequence of 
pseudo-random numbers. (2) A numerical value used for coordi
nating the contents of a color table and its corresponding inverse 
table. (3) The point within a graphical image that designates the 
region to be filled by the paint bucket drawing tool. 
seed color: The color of the pixel at the seed location in a 
graphical image, which defines the extent of the region to be 
filled by the paint bucket drawing tool. 
selection: An object or part of a document designated by the 
user to be acted on by subsequent commands or operations. 
selection range: A pair of character posttiDns defining the 
beginning and end of the selection in an edit record. 

Serial Communications Controller: A special-purpose con
troller chip, the Zilog 2-8530, used in the Macintosh to control 
communication with peripheral. devices via the serial port. 

serial driver: The devtcedriverbuilt into ROM for communicat
ing with peripheral devices through the Macintosh's built-in 
serial ports. 
serial port: A connector on the back of the Macintosh for 
communicating with peripheral devices such as a hard disk, 
printer, or modem. 
setting: An integer specifying the current state or value of a 
control 



528 Glossmy 

shaft: The vertical or horizontal body of a scroll bar. within 
which the scroll box slides. 
shape: Any of the figures that can be drawn with QuickDraw 
shape-drawtng operations. including rectangles. rounded rec
tangles. ovals, arcs and wedges. polygons. and regions. 

shape drawing: Drawing shapes in a graphics port, using the 
operations frame, paint. jUl. erase. and invert. 

Shift key: A mod.flier key on the Macintosh keyboard. used to 
convert lowercase letters to uppercase or to produce the upper 
character on a nonalphabetic key. 
show: To make a window. control. or other object visible. 

shutdown procedure: A special procedure provided by a 
program to perform last-minute housekeeping before the system 
is shut down or restarted. 
signature: A four-character string that identifies a particular 
application program, used as a creator signature on files belong
ing to the program and as the resource type of the program's 
autograph resource. 
sine wave: A waveform whose shape is defined by the trigono
metric sine function. 
6522: See SY6522. 
68000: See M68000, MC68000. 

68020: See MC68020. 
68030: See MC68030. 

68881: See MC68881. 
68882: See MC68882. 

size box: The small box at the bottom-right comer of a document 
window, with which it can be resized by dragging with the 
mouse. 
size region: The area of a window with which it can be resized 
by dragging with the mouse; also called the "grow region." In a 
document window. the size region is the size box. 
size resource: A resource defining a program's pref erred 
memory size. minimum memory stze, and other MultiFinder
related properties. 
Skinny Mac: See Macintosh l 28K. 

slot: See expansion slot. 

slot card: See expansion card. 



524 Expanding the Toolbox 

slot number: The identifying number designating a particular 
expansion slot. consisting of a single hexadecimal digit between 
$9 and $E. 

slot resource: An item of information (not a true resource in the 
usual sense) stored in declaration ROM on an expansion card. 
describing the characteristics of the card or of the device it 
controls. 
slot space: The portion of address space reserved for use by an 
expansion card plugged into a given expansion slot. In 24-bit 
mode, each slot is allotted 1 megabyte of slot space; in 32-bit 
mode, each slot has 16 megabytes of regular slot space and 256 
megabytes of super slot space. 
small fraction: A value of the Toolbox data type SmallFract 
[2.4. l], representing a 16-bit fractional value between o and 1 
with a binaiy point preceding the first bit: equivalent to the low
order (fractional) half of a fixed-point number of type Fixed 
[I:2.3.l]. 

small icon: A graphical image half the size of a standard icon ( 16 
pixels by 16), used on the Macintosh screen to represent an 
object such as a disk or file. 
sound chip: The special-purpose chip that controls the 
Macintosh sound generator. The sound chip in the classic 
Macintosh and Macintosh SE is manufactured by Sony Corpora
tion; the Macintosh n uses a custom Apple Sound Chip. 

sound driver: The device driver built into ROM for controlling 
the sounds emitted by the Macintosh's built-in speaker. 
sound number: An integer identifying the error sound to be 
emitted by an alert. 

sound generator: The electronic circuitiy that produces 
sounds through the Macintosh's built-in speaker. 
sound procedure: A procedure that defines the error sounds to 
be emitted by alerts. 
source transfer modes: A set of transfer modes used in classic 
QuickDraw for transferring pixels from one bit map or pixel map 
to another or for drawing text characters into a bit or pixel map; 
compare pattern transfer modes. 
stack: (1) Generally, a data structure in which items can be 
added (pushed) and removed (popped) in UFO order: the last 
item added is always the first to be removed. (2) Specifically, the 
area of Macintosh RAM that holds parameters, local variables, 



525 Glossaiy 

return addresses, and other temporary storage associated with 
a program's procedures and functions: compare heap. 

stack-based: Describes a Toolbox routine that accepts its 
parameters and returns its results on the stack, according to 
Pascal conventions: compare register-based.. 

stack pointer: The address of the current top of the stack, kept 
in processor register A 7. 

Standard Apple Numeric Environment: A set of routines for 
performing arithmetic onjloating-point numbers in accordance 
with the IEEE standard; available on the Macintosh through the 
Floating-Point Arithmetic Package. Commonly called by the 
acronym SANE. 

Standard File dialog: The dialog b~displayed by the Standard 
File Package, allowing the user to supply a file name for an 
input/ output operation. 
Standard File Package: A standard package, provided in the 
system resource .file, that provides a convenient, standard way 
for the user to supply file names for input/output operations. 
standard 811 tones: A set of five bit patterns representing a 
range of homogeneous tones from solid white to solid black, 
provided as global variables by the QuickDraw graphics rou
tines. 
starting angle: The angle defining the beginning of an arc or 
wedge: compare arc angle. 
startup handle: A handle to a program's startup informatt.on. 
passed to the program by the Finder as an application parameter. 

startup Information: A list of document fdes selected by the 
user to be opened or printed on starting up an application 
program. 
static Item: A dialog item, such as a piece of text, an icon, or a 
picture, that conveys information to the user without accepting 
any in return: compare interactive item. 

storage format: The form in which color values are represented 
in memory as part of a pixel image: see chunky, planar, chunky I 
planar. 
strike: See font image. 
structure region: The total area occupied by a window, 
including both its window frame and content region. 

style: See text style. 



526 Expanding the Toolbox 
~~~~~~~~~~-

style attribute: Any of the individual properties composing a
text style, including typeface, type size, type style, and text color:
compare style variation.

style element: A single entry in a style table, defining the style
attributes for one or more style runs In the run list of the
associated style record.

style handle: A handle to the style record associated with a
styled edit record.

style record: A data structure defining the style attributes for
the text of a styled edit record.

style run: A sequence of consecutive characters in the text of
a styled edit record that all share the same style attributes.

style scrap: An item written to the desk scrap to define the style
attributes of text being cut and pasted via the scrap.
style-scrap record: The data structure constituting the style
scrap.

style table: A data structure containing the specific style
attributes for the style runs defined in the run list of a style record.

style variation: Any of the individual variations composing a
type style, such as bold. italic, underline, outline, or shadow;
compare style attribute.

styled edit record: A modified form of edll record used by the
styled TextEdit routines for working with styled text.
styled text: Text whose style attributes are not uniform, but can
vary from character to character.
styled TextEdlt: The version of the TextEd.it editing routines
that supports styled text.

subdirectory: Under the Hierarchical Ftl.e System. a directory
contained within another directory.
subtractive color: The mixing of colors in an opaque medium,
such as paint or ink on paper. which subtracts primary colors
from reflected light to produce the range of colors perceived by
the eye; compare additive color.

subtractive primary colors: The three primary colors (cyan.
magenta, and yellow) that combine in an opaque medium, such
as paint or ink on paper. to produce the range of colors perceived
by the eye; see subtractive color.

super slot space: In 32-bit mode. a 256-megabyte area of
address space allotted for use by a given expansion slot; compare
regular slot space.

527 Glossmy

suspend: Under MultiFind.er, to move a program from the
foreground to the background: compare resume.
suspend event: A MulttFinder event notifying a program that it
is about to be moved from the foreground to the background;
compare resume event.

Switcher: An early precursor of MultiFind.er, developed privately
by the renowned Macintosh programmer Andy Hertzfeld.
SY6522: The Versatae Interface Ad.apter chip used in the
Macintosh, manufactured by Synertek Incorporated; usually
called "6522" for short.
synchronous: Describes an input/ output operation that is
performed to completion. returning control to the calling pro
gram only after the operation has been carried out in its entirety;
compare asynchronous.
synthetic font: A temporary version of afont converted to the
current screen depth of the graphics device on which it is to be
used. created automatically by the Toolbox for more efficient text
display.
synthetic-font list: A data structure listing all synthettcfont.s
currently in existence.
system clock: The clock that records the elapsed tlme in ticks
since the system was last started up.
system environment record: A data structure containing
descriptive information about the configuration of the Macin
tosh system on which a program is currently running.
system event mask: A global event mask maintained by the
Toolbox that controls which types of event can be posted into the
event queue.
System file: See system resourceftle.
system font: The typeface (normally Chicago) used by the
Toolbox for displaying its own text on the screen, such as
window titles and menu items.
system global: A fixed memory location reseived for use by the
Toolbox.
system heap: The portion of the heap reseived for the private
use of the Macintosh Operating System and Toolbox; compare
application heap.
system resource me: The resource fork of the file System,
containing shared resources that are available to all programs.

528 Expanding the Toolbox
~~~~~~~~~~-

system window: A window in which a desk accessory is 
displayed on the screen: compare application window. 
temporary memory allocation: A form of memory allocation 
available under MultiFtnder, in which blocks of memory are 
allocated on a short-term basis from the portion of memory not 
current]¥ in use by any program. 
tezt box: A dial.og item consisting of a box into which the user 
can type text from the keyboard. 
tezt characteristics: The properties of a graphics port or edit 
record that determine the way it draws text characters, including 
its textface, text size, text style, and text mode. 

tezt color: The color in which a graphics port draws text 
characters. 
tezt face: The typeface in which a graphics port draws text 
characters. 
tezt file: A file of file type 'TEXT' , containing pure text 
characters with no additlonal formatting or other infonnatlon 
text font: A tenn sometimes used loosely (and incorrectly) as a 
synonym for textface. 
text handle: A handle to a sequence of text characters in 
memory. 
text menu: The standard menu type used by the Toolbox. 
consisting of a vertical list of item tltles. 
text mode: The transfermodewith which agraphicsportdraws 
text characters. 
text scrap: See Toolbox scrap. 

text size: The type size in which a graphics port draws text 
characters. 
text style: (1) A set of style attributes defining the visual 
appearance oftext characters, including typeface. type size, type 
style. and text color; compare type style. (2) The type style in 
which a graphics port draws text characters. 
text style record: A data structure defining the style attributes 
of a particular text style. 
TextEdlt: The collection of text-editing routlnes included in the 
User lntelface Toolbox. 
32-blt-clean: Describes software in which no extraneous infor
mation is stored in the high-order byte of any memory address, 
allowing unimpeded operatlon in full 32-bit mode. 



529 Glossary 

32-blt mode: A state of the Macintosh system in which memory 
addresses can be a full long word (32 bits) in length. 
thumb: See scroll box. 

tick: The basic unit of time on the system clock; the interval 
between successive occurrences of the vertical retrace interrupt, 
equal to approximately one sixtieth of a second. 
title bar: The area at the top of a document window that displays 
the window's title, and by which the window can be dragged to 
a new location on the screen. 
tolerance: The degree of difference that is acceptable in 
matching a tolerant color from a palette against the colors 
available in the current color table. 
tolerant color: An entry in a palette that will match the closest 
color value available in the current color table, provided that it 
differs from the requested color by less than a specified 
tolerance; if no such color exists, the color table will be modified 
to make the exact requested color available. Compare courteous 
color, animating color, explicit color. dithered color. 
Toolbox: (1) The User Interface Toolbox. (2) Loosely. the entire 
contents of the Macintosh ROM, including the Macintosh Oper
ating System and QuickDraw in addition to the User Interface 
Toolbox proper. 
Toolbox scrap: The private scrap maintained internally by the 
TextEdit routines to hold text being cut and pasted from one 
place to another within an application program: compare desk 
scrap. 
Toolbox trap: A form of trap word denoting a higher-level, 
typically stack-based. user-interface operation. such as window 
or menu management. 
top of stack: The end of the stack at which items are added and 
removed: compare base of stack. 
track: To follow the movements of the mouse while the user 
drags it, taking some continuous action (such as providing 
visual feedback on the screen) until the button is released. 
Transcendental Functions Package: A standard package, 
provided in the system resourcefde (or in ROM on some models), 
that calculates various transcendental functions on jl.oattng
point numbers. such as logarithms. exponentials, trigonometric 
functions. compound interest. and discounted value. 



530 Expanding the Toolbox 
~~~~~~~~~~-

transfer mode: A method of combining pixels being transferred
to a bit map or pixel map with those already there.
translate: To move a point or graphical figure a given distance
horizontally and vertically.
trap: An error or abnormal condition that causes the M68000-
series processor to suspend normal program execution tempo
rarily and execute a trap handler routine to respond to the
problem: also called an exception.
trap address: The memory address of the Toolbox routine
associated with a given trap number.
Trap Dispatcher: The trap handlerroutine for responding to the
emulator trap, which examines the contents of the trap word and
jumps to the corresponding Toolbox routine in ROM.
trap handler: The routine executed by the central processing
unit to respond to a particular type of trap.

trap macro: A macroinstruction used to call a Toolbox routine
from an assembly-language program: when assembled, it pro
duces the appropriate trap word for the desired routine. Trap
macros are defined in the assembly-language interface to the
Toolbox and always begin with an underscore character (_).
trap number: The last 8 or 9 bits of a trap word. which identify
the particular Toolbox routine to be executed; used as an index
into the dispatch table to find the address of the routine in ROM.
trap type: The internal format of a trap word. which determines
the kind of operation it represents: see OS trap, Toolbox trap.

trap vector: The address of the trap handler routine for a
particular type of trap, kept in the vector table in memory.
trap word: An unimplemented instruction used to stand for a
particular Toolbox operation in a machine-language program.
The trap word includes a trap number identifying the Toolbox
operation to be performed: when executed, it causes an emulator
trap that will execute the corresponding Toolbox routine in ROM.
24-blt mode: A state of the Macintosh system in which all
memory addresses are limited to 24 bits in length.
type size: The size in which text characters are drawn,
measured in printer's points and sometimes referred to as a
.. point size."
type style: A set of style variations modifying the basic form in
which text characters are drawn, such as bold, italic, underline,
outline, or shadow: compare text style.

531 Glossary

typecasting: A feature of some Pascal compilers that allows
data items to be converted from one data type to another with the
same underlying representation (for example, from one pointer
type to another).
typeface: The overall form or design in which text characters
are drawn, independent of size or style. Macintosh typefaces are
conventionally named after world cities, such as New York,
Geneva, or Athens.

unimplemented Instruction: A machine-language instruction
whose effects are not defined by the M68000-serles processors.
Attempting to execute such an instruction causes an emulator
trap to occur, allowing the effects of the instruction to be
.. emulated" in software instead of hardware.
unimplemented trap: A special trap number that is guaranteed
by Apple to remain forever unassigned to any Toolbox routine:
used for comparison with the trap ad.dresses of other Toolbox
routines to find whether they are available in a given version of
the Macintosh system.
Unix: A popular operating system available on many comput
ers, developed at the Bell Laboratories of AT&T and implemented
for the Macintosh as A/UX.
unload: To remove an object, such as a resource or the desk
scrap. from memory, often (though not necessarily) by writing it
out to a ft.le.
unlock: To undo the effects of locking a relocatable block, again
allowing it to be moved within the heap during compactiOn.

unmount: To make a volume unknown to the file system by
releasing the memory space occupied by its ftle directory and
block map.
unpurgeable block: A relocatable block that cannot be purged
from the heap to make room for other blocks.
unstyled edit record: An edit record of the kind used by the
original version of TextEdit, which cannot support the use of
styled text.
up arrow: The arrow at the top or left end of a scroll bar, which
causes it to scroll up or to the left a line at a time when clicked
with the mouse.
update: To redraw all or part of a window's content region on the
screen, usually because it has become exposed as a result of the
user's manipulations with the mouse.

532 Expanding the Toolbox

update event: A window event generated by the Toolbox to
signal that all or part of a given window has become exposed and
must be updated (redrawn).
update rectangle: The rectangle within which text is to be
redrawn when an edit record is updated.

update region: The region defining the portion of a window that
must be redrawn when updating the window.
usage level: An integer code associated with a color requested
in a palette, specifying the way in which the color is to be
matched against those available in the current color table: see
tolerant color, courteous color, animating color, explicit color,
dithered color.
user: The human operator of a computer.
user event: An event reporting an action by the user: see mouse
event, keyboard event, disk-inserted event

user interface: The set of rules and conventions by which a
human user communicates with a computer system or program.
User Interface Guidelines: An Apple document (part of the
Inside Macintosh manual) that defines the standard user
interface conventions to be followed by all Macintosh application
programs.
User Interface Toolbox: The body of machine code built into
the Macintosh ROM to implement the features of the standard
user inteif ace.

valid region: An area of a window's content region whose
contents are already accurately displayed on the screen. and
which therefore need not be updated; compare invalid region.
value: The property of a color determined by the amplitude of its
light wave. and corresponding to the subjective strength or
intensity of the color; also called brightness. Compare hue,
saturation. lightness.
variable CLUT device: A mapped device in which the selection
of colors available in the color lookup table can be changed as
needed by the running program; compare fixed device.

variation code: An integer code, part of a window or control
defmitionID, that carries modifying information or distinguishes
among different types of window or control implemented by the
same deftnitionfunction.
VBL Interrupt: Short for "vertical blanking interrupt"; see
vertical retrace interrupt.

533 Glossary

VBL Interval: Short for "vertical blanking interval"; see vertical.
retrace interval.

VBL task: Short for -Vertical blanking task"; see vertical. retrace
task.

vector table: A table of trap vectors kept in the first kilobyte of
RAM, used by the M68000-series processors to locate the trap
handler routine to execute when a trap occurs.
Versatile Interface Adapter: A special-purpose controller
chip, the Synertek SY6522, used in the Macintosh to control a
variety of input/output devices such as the mouse, keyboard,
disk motor, sound generator, and real-time clock.
version data: Another name for a program's autograph re
source, so called because its resource data typically holds a
string identifying the version and date of the program.
vertical blanking Interrupt: See vertical retrace inteJTUpt.

vertical blanking Interval: See vertical retrace interval.

vertical blanking task: See vertical retrace task.

vertical retrace Interrupt: An interrupt generated by the
Macintosh's video display circuitry when the display tube's
electron beam reaches the bottom of the screen and returns to
the top to begin the next frame. This interrupt, recurring
regularly at intervals of one tick (approximately sixty times per
second) forms the "heartbeat" of the Macintosh system.
vertical retrace Interval: The interval between successive
occurrences of the vertical retrace interrupt, equal to one tick or
approximately one sixtieth of a second.
vertical retrace task: A routine supplied by a program for
periodic execution during the vertical retrace interrupt.

VIA: See Versatlle Inteiface Adapter.
video: An electronic display medium in which images are drawn
by a dynamically varying beam of electrons sweeping across the
screen of a cathode-ray tube.
video card: An expansion card that controls the operation of a
video-based graphics device.

view rectangle: The boundary to which text is clipped when
displayed in an edit record; also called the .. clipping rectangle."
virtual key code: A device-independent key code reported by
the Macintosh keyboard driver in place of the raw key code
received directly from the device.

534 Expanding the Toolbox

virtual memory: A form of memory management in which
portions ("'pages") of a program's logical memory space are kept
on a hard disk or other mass storage device and transferred in
and out of physical memory as needed.
visible: Describes a window, control. or other object that is
logically in view on the screen. A visible object is actually
displayed only if exposed: compare invisible.
visible region: A clipping boundary that defines, for a graphics
port associated with a wind.ow, the portion of the port rectangle
thaes exposed to view on the screen.
volume: A collection of .files grouped together as a logical unit
on a disk or other storage device.
volume name: A string of text characters identifying a
particular volume.

volume reference number: An identifying number assigned by
the ftle system to stand for a given volume.
waveform: A cmve describing the variations over time in the
magnitude of a wave, such as a sound or light wave.
wavelength: The spatial distance a wave (such as a sound or
light wave) propagates during one complete cycle.

wedge: A graphical figure bounded by a given arc and the radii
joining its endpoints to the center of its ovaL

wide-open region: A rectangular region extending from coordi
nates (- 3 2 7 68, -3 2 7 68) to (+3 2 7 6 7. +3 2 7 6 7), encompassing the
entire QuickDraw coordinate plane.
window: An area of the Macintosh screen in which information
is displayed, and which can overlap and hide or be hidden by
other windows.
window class: An integer code that identifies the origin and
general purpose of a window, as opposed to its appearance and
behavior; compare wind.ow type.

window color table: A data structure specifying the colors to be
used in drawing a window's.frame.
window definition function: A routine, stored as a resource,
that defines the appearance and behavior of a particular type of
window.
window definition ID: A coded integer representing a window
type, which includes the resource ID of the window deftn.Uion
function along with a variation code gtvtng additional modifying
information.

535 Glossmy

window event: An event generated by the Toolbox to coordinate
the display of windows on the screen: see activate event. deac
tivate event. update event
window &ame: The part of a window that is independent of the
information it displays, and which is drawn automatically by the
Toolbox; compare content region.

window list: A linked list of all windows belonging to a given
program. chained together through a field of their wind.ow
records.

Window Manager port: The graphics port in which the Toolbox
draws all window frames.

window palette: A palette associated with a color window,
defining the colors to be made available for drawing in the
window's content region.
window pointer: A pointer to a window record.

window record: A data structure containing descriptive infor
mation about a given window.
window template: A resource containing all the information
needed to create a window.
window title: The string of text characters displayed in the title
bar of a wind.ow.
window type: A category of window, identified by a wind.ow
de.ftnitiDn ID, whose appearance and behavior are determined by
a window definitiDnfunctiDn; compare wind.ow class.
word: A group of 16 bits (2 bytes) beginning at a word boundary
in memory.
word boundary: Any even-numbered memory address. Every
word or long word in memory must begin at a word boundary.
word break: A character position marking the beginning or end
of a word.
word-break routine: A function associated with an edit record
that determines the locations of the word breaks in the record's
text.
word wrap: A method of wrapping text in which an entire word
is carried forward when beginning a new line, so that no word is
ever broken between lines.
wrap: To format text or other information agatnst a boundary by
beginning a new line whenever the edge of the boundary is
reached.

536 Expanding the Toolbox
~~~~~~~~~~~ 

wrapping rectangle: See destinatiDn rectangle. 

wristwatch cursor: A standard cursor included in the system 
resource .ftle (or in ROM on some models) for use in signaling 
processing delays. 
Z8530: The Serial Communications Controller chip used in the 
Macintosh, manufactured by Zilog, Inc. 
zoom: To alternate a window between a smaller and a larger size 
by clicking with the mouse in its zoom region. 

zoom box: The small box near the right end of the title bar. by 
which a document window can be zoomed with the mouse. 
zoom ID: To zoom a window from its larger to its smaller size. 
zoom-in rectangle: A rectangle defining the screen location of 
a window when zoomed in to its smaller size. 
zoom out: To zoom a window from its smaJler to its larger size. 
zoom-out rectangle: A rectangle defining the screen location of 
a window when zoomed out to its larger size. 
zoom region: The area of a window by which it can be zoomed 
with the mouse. In a document window. the zoom region is the 
zoom box. 



Index 

ACSize constant, 280 
AcUvatePalette procedure, 

276-277 
ActiveFlag constant. 82 
ADBAddrMask constant, 80-

81 
AddComp procedure, 165-

166 
additive and subtractive 

color transfer mode, 
181-182, 219-220 

AddOver constant, 217-220 
AddPin constant, 217-220 
AddSearch procedure, 165-

166 
AddSize constant, 346-348 
ADMax constant. 217-219, 

221-222 
ADMin constant, 217-222 
Alllnit constant. 142 
AlphaLock constant, 82 
AnimateEntty procedure, 

228-229 
AnimatePalette procedure, 

228-229 
animating colors, 118 

537 

arithmetic 
color transfer modes, 

182-183 
srnallfractions,359 

AuxCtlHead global variable, 
280 

AuxCtrlRec record type, 278-
280 

auxiliary control 
list, 251 
record, 250, 278-280 

auxiliary port record, 175, 
205-206 

auxiliary window record, 
246-249, 268-270 

AuxWinHead global variable, 
270 

AuxWinRec record type. 268-
270 

AuxWinSize constant, 270 

BackColor procedure, 124-
125 

background processing, 58-
67 

BackPixPat procedure, 216-
217 

bits 
can-background, 60-61 
values for color planes, 

123 
Bitsl6 array type, 262-265 
BlackBit constant. 122 
BlackColor constant, 122 
Blend constant, 217-219, 

221-222 
blocks 

allocating from system 
heap, 18 

clearing to zero, 18 
BlueBit constant, 122 
BlueColor constant, 122 
BtnState constant, 82 

CalcCMask procedure, 232-
234 

can-background bit, 60-61 
CBodyColor constant, 281-

282 
CCrsr record type, 262-265 



538 Index 

CDevErr constant. 210-211 color-cont color drawing-cont 
CFrameColor constant, 281- conversion, 128-130 creating and destroying 

282 formats, 126-128 color ports, 373 
CGrafPort record type. 201- lookup table, 106 direct pixel transfer, 

203 mapping. 149-151 191-193 
character modes In monochrome error reporting, 210-211, 

location for styled text, ports,414 374 
342-344 on paper, 101-102 line and shape, 189-191 

style, 308 on-screen, 99-101 low-level pixel transfer, 
CharCodeMask constant, 80- physical properties, 98- 229-232, 377 

81 99 pixel access. 373 
CharExtra procedure, 342- physiological properties, pixel maps. 371-372 

344 99-100 creating and 
chunky pixel image storage RGB signal. 100 destroying, 372 

format, 172 saturation. 99 setting colors, 189 
chunky /planar pixel image color bottleneck, 378-379 shape drawing, 226-227. 

storage format, 172 color controls 376-377 
Cleon record type, 259-260 auxiliary control records, special operations, 232-
ciSlze constant, 157 278-280, 383 235,378 
classic color model, 121-126 control color table, 280- color fonts, 304-306, 327-

color plane, 125-126, 282. 383-384 329 
363 properties, 282-284, 384 font type and depth, 

color values, 121-123, color cursors, 242-244, 262- 327-328 
362 266 synthetic fonts, 328-329 

foreground and structure, 262-265, 380 color graphics ports, 17 4-
background colors, types,265 177, 201-205 
124-125, 362 using, 265-266, 380 structure, 175-176 

classic QuickDraw color bits, color dialogs, 252-254, 284- color Icons, 242-243, 259-
405 285 262 

CloseCPort procedure, 206- creating, 284-285, 384 record, 242 
209 item color list, 253-254 structure, 259-260, 379 

CLUTfype constant, 134 item data, 253 using, 261-262, 379 
CMatchErr constant, 210- item header, 253 color menus, 254-258, 286-

211 color display, 98-119 292 
CmdKey constant, 82 graphics devices, 108- access to menu colors, 
CMY2RGB procedure, 128, llO 289-290, 385 

130 color drawing, 187-195, 224- information, 415 
CMYColor record type, 126 237 tables, 384-385 
CNoMemErr constant, 210- auxiliary port record, managing colors, 290-

211 373 292,385 
color, 241-258 background and menu color information 

bottleneck routines, 235- foreground colors, table, 254-258, 286-
237 224-226, 376 288 

composite video, 100 color graphics ports, color palettes, 116-117, 119 
controls, 250-251 372-373 creating and destroying, 

auxiliary list, 251 color table animation, 119, 369 
auxiliary record, 250 193-195, 228-229, initializing Toolbox, 369 
color table, 250-251 377 palette conversion, 370 



539 Index 

color palettes-cont 
palette index. 116-117 
palette record. 116-117, 

155-157. 368-369 
setting colors, 369-370 

Color Picker dialog box. 106-
108, 131-133 

color plane, 125-126 
bit values. 123 

color ports 
creating and destroying. 

206-209 
monochrome modes, 

186,413 
opening and closing, 

176-177 
color related resources. 371 
color representation 

color conversion. 128-
130, 363-364 

color formats. 126-128. 
363 

color picker, 364 
Color Picker dialog box. 

131-133 
Toolbox. 102-106 

pixel depth, 102 
color specifications field 

offsets. 145 
color tables. 111-112 

animation. 193-195, 
228-229 

color mapping, 149-151. 
367 

creating and destroying. 
148-149, 367 

inverse tables. 146-148. 
367 

managing. 115-116, 
151-153. 368 

pixel maps, 173 
protecting and reserving 

entries, 154, 368 
structure, 112. 143-146. 

366 
windows. 245-246. 248 

color transfer mode, 180-
187, 220-224 

additive and subtractive 
modes. 181-182. 219-
220, 375 

arithmetic modes, 182-
183 

color modes in 
monochrome port, 
187 

comparative and 
comblnative modes. 
221-222, 376 

constants. 217-219 
mixing color and 

monochrome. 185-
187 

mode constants. 375 
transparency and 

highlighting. 183-185. 
222-224 

color usage levels, 157 
colorvalues. 121-123 

drawing operations, 123 
color windows. 244-278. 

295-296 
auxiliary window 

records. 268-270, 381 
creating. 273-274, 382 
palettes, 276-277 
properties, 274-276, 382 
records. 266-268, 380-

381 
screen properties, 277-

278, 383 
window color tables. 

270-272, 381-382 
window palettes, 382-

383 
color-related resources, 166-

170 
Color2Index function, 149-

151 
ColorBlt procedure, 125-126 
Colorlnfo record type. 155-

157 

colors 
animating. 118 
courteous. 117-118 
dithered, 118 
explicit, 118 
RGB values of standard 

primary colors, 129 
tolerant. 117 

ColorSpec record type, 144-
146 

ColorSpecSlze constant. 146 
Colot'l'able record type. 143-

146 
combinatlve color transfer 

mode, 221-222 
comparative color transfer 

mode, 221-222 
configuration. 5-8 
control color table. 250-251, 

280-282 
part identifier. 251 
standard indices, 282 

ControlKey constant, 82 
controls for color, 250-251 
coprocessors 

68881,6 
68882,6 

CopyBlts procedure, 229-232 
CopyMask procedure. 229-

232 
CopyPalette procedure, 162 
CopyPixMap procedure, 200-

201 
CopyPtxPat procedure, 215-

216 
courteous colors. 117 -118 
CProcRec record type. 163-

165 
CProcSlze constant, 165 
CProtectErr constant, 210-

211 
CQDProcs record type, 235-

237 
CQDProcsRec constant, 237 
CRangeErr constant. 210-

211 



540 Index 

CResErr constant, 210-211 device record, 108-109, 133- DoResume program listing, 
CrsrRec constant, 265 136 67 
CSpecArray array type, 144- DeviceList global variable, DoStze constant, 346-348 

146 139 DoStyleChoice program 
CTab2Palette procedure, dialogs listing, 316-317 

161-162 color, 252-285 DoSuspend program listing, 
CTempMemErr constant, text style for Items, 299- 65 

210-211 301 DoSyspRes program listing, 
C1EntrySlze constant. 146, dire straits error codes, 427- 65 

272,282 428 DoToggle constant, 346-348 
CTextColor constant, 281- direct color, 104-105 drawing ln color. See color 

282 Direct.Type constant, 134 drawing 
CThumbColor constant, 281- dispatch table, 8-13, 26-30 drawing operations, color 

282 manipulating contents, values, 123 
CtlCTab record type, 280- 10-11 

282 patching traps. 12-13 
CTRec constant, 146, 272, testing available traps, edltlng styled text, 322-325, 

282 12 340-342 
current device, 139-141 display character location, 388-
CurrentA5 global variable, characteristics, 97 389 

34 color. 98-119 cutting and pasting. 390 
cursors DispMClnfo procedure. 289- getting style information, 

color, 242-244, 262-266 290 389 
control in MultiFinder. DisposCCursor procedure, preparation, 388 

68-71 265-266 scrapless styling, 390 
CurSysEnvVers constant, 7, DisposClcon procedure, 261- styling text, 389-390 

22 262 editing text. 303-325 
custom matching routines, DisposCTable procedure, emulator trap mechanism, 8 

163-165, 370-371 148-149 Environs procedure, 6-7 
installing. 371 DisposePalette procedure. EnvNoWresent error code, 

CWindowRecord record type, 159-160 23 
266-268 DisposGDevice procedure, EnvVersTooBig error code, 7, 

CyanBit constant. 122 137-138 23 
CyanColor constant, 122 DisposPixMap procedure, error codes 

200-201 dire straits errors, 427-
DisposPixPat procedure, 428 

DefQDColors constant, 167- 214-215 operating system errors. 
168 dithered colors, 118 417-426 

DelComp procedure, 165- DoAll constant. 346-348 error reporting for color 
166 DoColor constant, 346-348 drawing, 210-211 

DelMCEntries procedure, DoFace constant, 346-348 event message, 360 
291-292 DoFont constant, 346-348 keyboard events, 404 

DelSearch procedure, 165- DoFontChoice program mouse-moved events. 
166 listing, 315 403 

desk accessories and DoMouseMoved program MultiFinder, 79-81 
MultiFinder, 73-74 listing, 69-70 suspend/resume events. 

device attributes, 141-143 DoMultiEvent program 403 
device list, 138-139 listing, 64 



541 Index 

event modlflers, 360, 404 
MultiFinder, 81-82 

expansion slots 
regular slot space 

address, 17-18 
super slot space 

address, 18 
explicit colors. 118 

fill region, defining, 195-196 
FlllCArc procedure, 226-227 
FlllCOval procedure, 226-

227 
FlllCPoly procedure, 226-227 
FillCRect procedure, 226-

227 
FlllCRgn procedure. 227 
FlllCRoundRect procedure, 

226-227 
Fix2Sma11Fract function, 20, 

53-54 
FixedType constant, 134 
FixStyleMenus program 

listing. 318-320 
flags for MultlFinder, 94-95 
font, 307 

color, 304-306, 327-329 
color table, 305-306 
family, 307 
image, 304-305 
number, 307 
synthetic, 306, 328-329 
type and depth. 327-328 
type flags. 406 

ForeColor procedure, 124-
125 

foreground and background 
colors. 124-125 

foreground processing. 58-
67 

FrameRect Toolbox trap, 10 

GDDevType constant, 142 
GDevice record type, 133, 

135 

GDREC constant, 136 
GetAuxCtl function, 283-284 
GetAuxWin function, 27 4-

276 
GetBackColor procedure, 

224-226 
GetCCursor function, 265-

266 
GetCicon function, 261-262 
GetColor function, 131-133 
GetCPixel procedure, 209-

210 
GetCTable function, 148-149 
GetCTSeed function, 148-

149 
GetCVarlant function, 283-

284 
GetCWMgrPort procedure, 

277-278 
GetDevlceList function, 138-

139 
GetEntryColor procedure, 

160-161 
GetEntryUsage procedure, 

160-161 
GetForeColor procedure, 

224-226 
GetGDevice function, 139-

141 
GetGrayRgn function, 277-

278 
GetMalnDevice function, 

139-141 
GetMaxDevlce function. 139-

141 
GetMCEntry function, 290-

292 
GetMCinfo function, 289-

290 
GetMMUMode function, 15-

16, 30-31 
GetNamed Resource Toolbox 

trap, 10 
GetNewCWindow function, 

273-274 
GetNewPalette function. 159-

160 

GetNextDevice function. 
138-139 

GetFalette function, 276-277 
GetFixPat function, 214-215 
GetstylHandle function, 341-

342 
GetStylScrap function, 350-

351 
Getsubtable procedure, 149-

151 
GetTrapAddress function. 

10. 26-30 
GetWVarlant function, 274-

276 
global variables 

accessing, 33-34 
AuxCtlHead, 280 
AuxWinHead, 270 
CurrentA5, 34 
DeviceList, 139 
GrayRgn, 278 
HiliteMode, 223 
HillteRGB, 223 
MainDevlce, 141 
MenuCinfo, 288 
MMU32bit, 32-33 
QulckDraw, 473 
SynLlstHandle, 329 
system, 467-4 72 
TheGDevice, 141 

glossary, 475-536 
GratPort record type, 124-

125 
GraNarRec constant, 206 
GrafVars record type, 205-

206 
graphics devices 

attribute flags. 405 
attributes, 141-143~ 366 
color display, 108-110 
creating and destroying, 

136-138, 365 
current device, 139-141, 

365 
device list. 138-139, 365 
direct device, 109 
display modes. 110 



542 Index 

graphics devices-cont InitPalettes procedure, 158 matching-procedure records, 
fixed device, 109 installing matching routines, 164 
global device list, 110 165, 166 MatchRec record type. 232-
pixel map, 108-109 instructions, 234 
records, 108-109, 133- unimplemented, 8 MatchRecSfze constant, 235 

136, 364-365 integer type, SmallFract, 53- MaxSmallFract constant, 20, 
screen map, 171 54 53-54 
types, 136 inverse table, 112-115, 146- MC68000 processor, 6 
variable CLUT device, 148 MCEnby record fype. 286-

109 InverseBit constant, 122 288 
graphics ports. 125-126 InvertColor procedure, 149- MCTable array qrpe, 286-288 
GrayRgn global variable, 278 151 MCTAllltems constant, 291-
GreenBlt constant, 122 ITab record qrpe, 146-147 292 
GreenColor constant, 122 MCTEatrySlze constant, 288 

MCTI..asUDindic constant, 
KeyCodeMask constant, 80- 286-288 

Hilite constant, 217-219, 81 MemFullErr error code, 19, 
222-223 41.43 

HillteBit constant. 223 memoiy 
HiliteColor procedure. 222- lasso boundary. defining, addressing. 15, 30-33 

224 195-196 allocation, 18-19, 40-42, 
HiliteMode constant, 222- LHElement record type, 335- 358 

223 336 MultiFinder, 18-19 
HillteMode global variable, LHTable array type, 335-336 available space, 45-46 

223 line-height table, 335-336 layout, 16-18, 37-40 
HtliteRBG global variable, 24-bit mode, 16-17 

223 32-bit mode, 17-18 
HSL2RGB procedure, 129- Macintosh II management, 15-19 

130 24-blt memory layout, part1Uonlng in 
HSLColor record type, 127 402 MultiFinder, 57-58 
HSV2RGB procedure, 129- 32-btt memory layout, temporary allocation, 43-

130 402 44, 358-359 
HSVColor record type, 127 32-bit regular slot space, temporary available 

403 space. 359 
ROM-based resources, memoiy-mapped input/ 

IconRec constant, 260 410-412 output, 16 
Icons. color, 242-243 Macintosh Ilci, memory menu color information, 415 
images. pixel, 102 addressing, 15 table, 254-258, 286-288 
Index2Color procedure, 149- MagentaBlt constant, 122 MenuCinfo global variable, 

151 MagentaColor constant, 122 288 
InitCPort procedure, 206- MalnDevtce global variable, menus. color. 254-258, 286-

209 141 292 
InitCursor Toolbox trap. 9-11 MalnScreen constant, 142 MFFreeMem function. 19, 
lnitGDevice procedure, 137- MakelTable procedure, 146- 45-46 

138 148 MFMaxMem function, 19, 
initial values of CGrafPort MakeRGBPat procedure, 45-46 

fields. 414-415 215-216 



543 Index 

MFTempDlsposHandle MultiFinder-cont notification 
procedure. 19. 43-44 partltlonlng memory, 57- MultlFinder response 

MFTempHLock procedure. 58 procedures. 90-91 
19, 43-44 resource formats, 91-92. postlng.361 

MFTempHUnlock procedure. 95-96 MultlFinder. 88-90 
19. 43-44 resume events. 62-67 queue,72 

MFTempNewHandle retrieving events, 83-86 records, 72, 361 
function. 18-19,43- swrunarlzlng program's MultlFinder, 86-88 
44 memory requirements, response procedures. 

MFropMem function, 45-46 93 361 
MlnSeed constant. 149 suspend events. 62-67 user In MultiFlnder, 71-
MMU (Memory Management transferring the scrap, 73 

Unit) mode, 15-16 74-75 NSetTrapAddress procedure. 
MMU32blt global variable. 11. 13, 27-29 

32-33 null style text, 324 
modal dialog windows, 60 NewCDlalog function, 284- null-style record, 324, 337-
monochrome modes In color 285 338 

ports, 187, 413-414 NewCWlndow function, 273- NullStRec record type, 337-
mouse-moved MultlFlnder 274 338 

event. 68-71 NewGDevice function, 136- NullStSize constant, 338 
MultlFinder. 56-96 138 

'mst#' resource, 95-96 NewHandleClear function, 
'mstr' resource. 95-96 18, 40-42 OpColor procedure, 219-220 
'SICN' resource, 91-92 NewHandleSys function. 18, OpenCPort procedure, 206-
'SIZE' resource, 92-93 40-42 209 
and desk accessories, NewHandleSysClear operating environment, 21-

73-74 function, 18, 40-42 26 
and other programs, 76- NewPalette function, 158- operating system error 

77 160 codes, 41 7-426 
and patching dispatch NewPlxMap function. 200- OptlonKey constant, 82 

table traps. 13 201 OS (Operating System) traps, 
available memory space, NewPiXPat function, 214-215 8-13 

45-46 NewPrtSysClear function, 
cursor control, 68-71 18.42 
event messages, 79-81 NewPtrClear function, 18. paged memory management 
event modifiers, 81-82 40-42 unit. See PMMU 
flags, 94-95, 404 NewPtrSys function, 40-42 palette records, 155-157 
foreground and NewPtrSysClear function, Palette2CTab procedure, 

background 40-42 161-162 
processing, 58-67 NGetTrapAddress function, palettes 

memory allocation. 18- 11, 13, 26. 28-29 color, 116-117, 119 
19 NMlnstall function, 88-90 color window, 276-277 

mouse-moved event, 68- NMRec record type, 86-88 conversion. 161-162 
71 NMRemove function, 88-90 creating and destroying, 

notification, 71-73 NMType constant, 86-88 158-160 
posting, 88-90 NMTypeErr constant, 89 initializing Toolbox, 158 
response procedure, NoDrtver constant, 142 setting colors, 160-161 

72, 90-91 NoErr constant, 210-211 standard system, 169 
records, 86-88 NormalBit constant, 121 windows, 249-250 



544 Index 

PenPlxPat procedure, 216- PMForeColor procedure, RBM2CMY procedure, 128, 
217 224-226 130 

peripherals, communicating pmHdrSlze constant, 157 RealColor function, 149-151 
with, 16 ·PMMU records 

PHiliteBit constant. 222-223 68851, 6 auxiliary port, 1 75 
pixel PMRec constant, 200 color Icon, 242 

access, 209-210 PMTolerant constant, 155- notification, 72 
Image, 102, 173 156 null-style, 337-338 
low-level transfer, 229- PortRec constant, 205 system environment, 7 

232 ports RedBlt constant, 122 
storage formats color graphics, 17 4-177 RedColor constant, 122 

chunky, 172 SCSI (Small Computer reference figures 
chunky/planar, 172 Standard Interface), 6 classic QutckDraw color 
planar. 172 PPRec constant, 213 bits, 405 

pixel map, 108-109, 171- processing, background and event message 
174, 197-201 foreground, 58-67 keyboard events, 404 

color table, 1 73 processors mouse-moved events, 
creating and destroying. 68020,6 403 

200-201 68030,6 suspend/resume 
pixel patterns. 177-180, MC68000, 6 events, 403 

211-217 program listings event modifiers, 404 
background pattern, 178 DoFontCholce, 315 flag bits for dialog text 
creating and destroying. DoMouseMoved, 69-70 styles, 405 

214-215, 374 DoMultlEvent. 64 font type flags, 406 
field offsets, 213 DoResume, 67 graphics device attribute 
fill pattern. 1 78 DoStyleCholce, 316-317 flags. 405 
filllng. 215-216, 375 DoSuspend, 65 Macintosh II 
pattern types. 213 DoSuspRes, 65 24-bit memory layout, 
pen pattern, 178 FixStyleMenu, 318-320 402 
structure, 211-213, 374 programs 32-bit memory layout. 
using, 216-217, 375 and MulUFinder, 76-77 402 

PixMap record type, 197 -199 Switcher, 56 32-bit regular slot 
PixPat record type, 211 transferring the scrap in space, 403 
planar MultiFinder, 74-75 MultiFinder flags, 404 

color, 102-104 ProtectEntry procedure, 154 synthetic-font list entry, 
pixel image storage 406 

format. 172 trap word formats, 401 
PlotCicon procedure, 261- QDError function, 210-211 RelString OS (Operating 

262 QErr constant, 89 System) trap, 10-11 
PMAnlmated constant, 155- queue notification, 72 ReqListRec record type, 151-

156 QuickDraw 152 
PMBackColor procedure, global variables. 4 73 request lists, 153 

224-226 graphics routines, 102- ReserveEntry procedure, 154 
PMCourteous constant. 155- 104 resource formats, 238-240, 

156 391-400 
PMDithered constant. 155- resource types 

156 RAM (random access 'actb', 391 
PMExplicit constant. 155- memory), 16 'cctb', 297-298, 392 

156 RAMlnit constant, 142 'cicn', 292-293, 392 



545 Index 

resource fonnats-cont 
'clut'. 166-168. 371. 

393 
'crsr. 294-295. 393 
'dctb', 394 
'fctb'. 352-353. 394 
'lctb'. 298-299. 395 
'mctb'. 301-302. 396 
'mst#'. 95-96 
'mstr'. 95-96 
'pltt'. 168-170. 397 
'ppat'. 238-240. 398-

399 
'SICN'. 91-92. 399 
'SIZE'. 92-93. 400 
'wctb'. 400 

standard.407-410 
text style for dialog 

Items. 299-301 
resource IDs for types 'mstr' 

and 'mst#', 412 
resources 

color-related. 166-170 
Macintosh II ROM-

based. 410-412 
ROM-based. 50-52, 359 
standard types. 46-50 
text-related. 352-353 

Restart procedure, 14 
RestoreAS procedure. 33-34 
RestoreEntrles procedure. 

151-153 
resume MultlFlnder events. 

62-67 
ROB values of standard and 

primary colors. 412 
RGB2CMY procedure. 130 
RGB2HSL procedure. 129-

130 
RGB2HSV procedure. 128, 

130 
RGBBackColor procedure. 

224-226 
RGBColor constant. 128 
RGBColor record type. 126 
RGBForeColor procedure, 

224-226 
RGetResource function, 50-

52 

ROM (read-only memory). 16 
ROM-based resources. 50-52 
routines 

custom matching. 163-
165 

Installing matching. 165-
166 

trap handler. 8 
run list of style record. 310 

SaveEntrles procedure, 151-
153 

scrap siyle elements,. 324, 
340 

scrapless text styling, 325, 
350-351 

screen 
Image, 171 
map. 171 
properties of color 

windows. 277-278 
ScreenA.cttve constant. 142 
ScreenDevlce constant, 142 
ScrpRecSlze constant. 340 
ScrpStElement record type, 

338-340 
ScrpStTable array type, 338-

340 
SCSI (Small Computer 

Standard Interface) 
ports.6 

SDOnDrlvers constant. 36 
SDOnPowerOff constant. 36 
SDONRestart constant. 36 
SDOnUnmount constant. 36 
SDRestartOrPower constant. 

36 
SeedCFlll procedure. 232-

234 
SetA5 function, 33-34 
SetCCursor procedure, 265-

266 
SetCllentlD procedure, 165-

166 
SetCPlxel procedure. 209-

210 
SetCtlColor procedure, 282-

284 

SetCurrentAS funcUon, 33-
34 

SetDeskCPat procedure. 
216-217 

SetDevlceAttribute 
procedure. 141-143 

SetEntrles procedure. 151-
153 

SetEntryColor procedure. 
160-161 

SetEnbyUsage procedure, 
160-161 

SetGDevtce procedure. 139-
141 

SetMCEntrles procedure, 
290-292 

SetMClnfo procedure, 289-
290 

SetPalette procedure. 276-
277 

SetPortPlx procedure. 200-
201 

SetStdCProcs procedure. 
236-237 

SetStyleHandle procedure, 
341-342 

SetStylSerap procedure. 
350-351 

SetTrapAddress procedure, 
10, 26-30 

SetupA5 procedure. 33-34 
SetWlnColor procedure. 27 4-

276 
ShlftKey constant, 82 
ShutDownAlert constant. 35-

36 
ShutDwnlnstall procedure. 

14, 36-37 
ShutownPower procedure. 

14, 35-36 
ShutDwnRemove procedure, 

14. 36-37 
ShutDwnStart procedure, 

14. 35-36 
small 

fractions, 19-20 
Icons. generating. 91-92 

SmallFract Integer type, 19-
20, 53-54 



546 Index 

Smal1Fract2Fix function, 20, 
53-54 

SPRocRec record type, 163-
165 

SProcSize constant, 165 
standard resource types, 46-

50, 407-410 
standard system palette, 

169,413 
S1Element record type, 334-

335 
STRecSize constant, 335 
StripAddress function, 16, 

30,32 
StScrpRec record type, 338-

340 
StStartSize constant. 334 
style 

attributes, 308 
bit number, 348 

elements. 335 
record. 308-31 o. 332-

334 
run, 333 
scrap, 338-340 
table. 310, 334-335 
variatlons,308 

style-scrap record, 323-324 
styled text, 329-351, 386 

character location, 342-
344 

cutting and pasting, 
348-350 

edit records. 330-332 
edltlng, 340-342 
getting information, 344-

346 
line-height table, 387 
null-style record, 387 
scrapless styling, 350-

351 
style records, 386-387 
style scrap, 388 
style table, 387 

StyleRun record type, 332-
334 

StyleSize constant, 330 
SubOver constant, 217-220 
SubPin constant, 217-220 

suspend MultiFinder events, 
62-67 

SwapMMUMode procedure, 
16, 30-32 

Switcher, 56 
SynListHandle global 

variable, 329 
synthetic fonts, 306, 328-

329 
list, 306 
list entry, 406 

SysEnvirons function, 7-8, 
21-26 

SysEnvRec record type, 21 
system 

environment record, 7 
global variables, 467-4 72 
restarting, 14, 35-36 
shutdown procedures, 

36-37 
shutting down, 14, 35-

37 
system configuration, 5-8, 

21-26 
descriptive Information, 

7 
DlspatchTable, 356-357 
global variable access, 

357 
memory address mode, 

357 
operating environment, 

21-26, 355-356 
shutdown and restart, 

357 
shutdown procedures, 

357-358 

tables 
color, 111-112, 115-116 

lookup, 106 
pixel map. 173 

dispatch, 8-13 
inverse, 112-115, 146-

148 
line-height. 335-336 

1EContlnuousStyle function, 
344-346 

1ECopy procedure, 349-350 
1ECut procedure, 348-350 
1EGetHelght function, 342-

344 
1EGetOffset function, 342-

344 
TEGetPolnt function, 342-

344 
TEGetStyle procedure, 344-

346 
1ENumStyles function, 344-

346 
TEPaste procedure, 349-350 
1ERec record type, 331 
1EReplaceStyle procedure, 

346-348 
1ESetStyle procedure, 346-

348 
TestDevlceAttrlbute function, 

141-143 
TEStyleRec record type, 332-

334 
1EStyleTable array type, 

334-335 
1EStyllnsert procedure, 350-

351 
1EStylNew function, 340-

342 
1EStylPaste procedure, 349-

350 
text 

continuous style. 315 
editing, 303-325 

styled, 322-325 
font, 307 
manipulating styles, 

313-322 
null style, 324 
scrap style elements, 

324 
scrapless styling. 325 
style edit records, 308-

31 o. 330-331 
style record, 308-31 O 
style-scrap record, 323-

324 
styles, 307-311. 329-351 
terminology, 307-308 
typeface, 307 



547 Index 

text-cont 
vertical spacing, 311-313 

line-height table, 311-
312 

text-related resources, 352-
353 

TextEdlt routines, 303-304 
TextStyle record type, 329-

330 
TheGDevlce global variable. 

141 
tolerant colors, 117 
Toolbox 

arithmetic 
small fractions, 359 

classic color model 
color planes, 362 
color values, 362 
foreground and 

background colors. 
362 

color bottleneck, 378-
379 

color controls 
auxiliary control 

records. 383 
control color tables. 

383-384 
properties. 384 

color cursors 
structure. 380 
using. 380 

color dialogs 
creating. 384 

color drawing 
auxiliary port record, 

373 
color graphics ports. 

372-373 
creating and destroying 

color ports, 373 
errorreportlng,374 
pixel access, 373 
pixel maps, 371-372 

creating and 
destroying, 372 

Toolbox-cont 
color drawing operations 

color table animation, 
377 

foreground and 
background colors, 
376 

low-level pixel transfer, 
377 

shape drawing, 376-
377 

special operations, 378 
color Icons 

structure, 379 
using, 379 

color menus 
accessing colors, 385 
information tables, 

384-385 
managing colors, 385 

color palettes 
creating and 

destroying. 369 
lnltlalizing Toolbox. 369 
palette. conversion, 370 
palette records. 368-

369 
setting colors. 369-370 

Color Picker dialog box. 
106-108 

color representation. 
102-106 

color conversion. 363-
364 

color formats. 363 
color picker, 364 
direct color, l 04-105 
mapped color, 106 
pixel depth, l 02 
planar color, 102-104 

color tables, 115-116 
color mapping, 367 
creating and 

destroying. 367 
Inverse tables, 367 
managing. 368 

Toolbox-cont 
protecting and 

reserving entries, 368 
structure, 366 

color transfer modes 
additive and 

subtractive modes. 
375 

comparative and 
combtnative modes, 
376 

mode constants, 375 
transparency and 

highlighting, 376 
color windows 

auxiliary window 
records, 381 

creating. 382 
properties, 382 
records, 380-381 
screen properties, 383 
window color tables. 

381-382 
window palettes. 382-

383 
custom matching 

routines, 370-371 
Installing, 371 

editing styled text 
character location. 388-

389 
cutting and pasting. 

390 
getting style 

Information, 389 
preparation, 388 
scrapless styling. 390 
styling text, 389-390 

events 
messages, 360 
modifiers, 360 
retrieving. 360 

graphics devices 
creating and 

destroying. 365 
current device, 365 



548 Index 

Toolbox-cont 
device attributes, 366 
device list, 365 
records, 364-365 

lnitlallzlng for palettes, 
158 

Inverse table, 112-115 
memory 

allocation, 358 
temporary allocation, 

358-359 
temporary available 

space, 359 
notlflcatlons 

posting,361 
records, 361 
response procedures, 

361 
pixel patterns 

creating and 
destroying, 37 4 

filling, 375 
structure, 374 
using, 375 

resources 
ROM-based, 359 

routines, 8 
styled text 

line-height table, 387 
null-style record, 387 
style records, 386-387 
style scrap, 388 
style table, 387 
styled edit records, 386 
text styles, 386 

system configuration 
DlspatchTable, 356-

357 
global variable access, 

357 
memory address mode, 

357 

Toolbox-cont 
operating environment. 

355-356 
shutdown and restart, 

357 
shutdown procedures, 

357-358 
traps, 8-13 

Transparent constant, 217-
219, 222-223 

Trap Dispatcher, 8 
trap 

handler routines, 8 
macros, 429-44 7 
number, 9-10 
testing availability, 12 
word formats, 401 
words, 8-11, 13, 27, 

448-465 
masks for flag bits, 30 
OS (Operating System) 

traps, 8-13 
Toolbox traps, 8-13 

type size, 308 
type style, 308 
typeface, 307 

Unimp 1 TrapNum constant, 
12 

unimplemented instructions, 
8 

UnlmpITrapNum constant, 
28 

variation codes auxiliary 
Window record, 249 

VIA (Versatile Interface 
Adapter), 15-16 

WaitNextEvent function, 83-
86 

WContentColor constant, 
271-272 

WFrameColor constant, 271-
272 

WHlliteColor constant. 271-
272 

WhlteColor constant, 122 
WinCTab record type, 270-

272 
window color table, 245-246, 

271-272 
resources, 295-296 

windows 
auxiliary window record, 

246-249 
colc,r, 244-250, 266-278, 

295-296 
content region, 245 
frame, 245 
modal dialog, 60 
palettes, 249-250 

WindowSize constant. 268 
WfextColor constant, 271-

272 
WfitleBarColor constant, 

271-272 

YellowBit constant, 122 
YellowColor constant, 122 
YourCompProc procedure, 

163-165 
YourResponse procedure, 

90-91 
YourSearchProc function, 

163-165 





I 

! ' 



i 

r · 

I 

I 

I 





i 
I . 



The Software Featured in 
Macintosh Revealed 
Available on Disk 

L you want ID produce programs with that professional Macintosh look, you'll want a copy of the 
MiniEdi t 2.0 source disk, now avaQable directly from the author. 

The latest version of the Mini Edit source disk, version 2.0, contains the complete source 
code of all the example programs developed in Volume Three of this series. The original Mini Edit 
program has been expanded to include a full-featured printing capability, as well as bug fixes 
and minor enhancements. The disk also includes the StopWatch desk accessory, SideWindow 
window definition function, and ThreeState control definition function, all just as they appear 
in Appendix H of Volume Three. By using them as shells within which to develop your own 
Macintosh programs, you can avoid •reinventing the wheel" for every program you wrtte. 

To order your MiniEdi t 2.0 disk, complete the order form below and return it along with 
$29.95 in check or money order, payable directly to the author, Stephen Chemicoff. If you 
already own an earlier version of the disk (version I .O or I. I), you can upgrade to version 2. 0 by 
sending $9. 95, along with your original disk or other acceptable proof of purchase (original disk 
label, receipt, or warranty card). 

Sony, we are not equipped to accept payment by credit card or company purchase order. 
Please include $3.50 ($5.00 outside continental North America) to cover postage and handling. 
California residents, please add 7% sales tax. Prices subject to change. 

MaU your order to: 
MiniEdit Disk 
P.O. Box 7537 
Berkeley, California 94707-0537 

Organization __________________________ _ 

Address ----------------------------~ 
City/State/Zip _______________________ _ 

Please send me: D MiniEdi t 2 . o ($29.95 plus postage and handling) 

D Upgrade from earlier version ($9.95 plus postage and handling, 
accompanied by original disk or acceptable proof of purchase) 

D Double-sided (SOOK) disk 

D Single-sided (400K) disks 

I understand that if I am not completely satisfied, I may return the undamaged disk within 
I 0 days for a complete refund. 



HAYDEN ~~t..~~ BOOKS . 

Macintosli Revealed 
&panding the Toolbox 

Volume Four 
Master the secrets of your Macintosh with Macintosh 
Revealed. This four-volume set explores ilie Macintosh 
User Interface Toolbox, the nearly 500 built-in ROM rou
tines that ensure that all Macintosh software consistently 
shares the same easy, intuitive user interface. 

Volume One, Unlocking the Toolbox, introduced 
the underlying foundations on which the Toolbox is built. 
Volume 1\vo, Programming UJith the Toolbox. showed 
how to use it to implement the revolutionary Macintosh 
user interface. Volume Three, Mastering the Toolbox 
guided you on your next step toward understanding its 
secrets and subtleties. NO\V, with Erpanding the Tool
box you learn how to incor-
porate the most important 
of th e Macin tosh fanc y 
new features into your own 
programs. 

£\paneling the Tool
box begins by presenting 
general utilities added to 
recent versions of the fool 
box. Next you'll learn how to 
structure your programs to 

About the Author 
Stephen Chernicoff has been 
programming computers 
since 1962 and writing 
about them ~ince 1976. A 
graduate of Princeton University with an advanced 
degree in computer science from the University of Cali
fornia at Berkeley, Steve met his first mouse in 1977 at the 
Xerox Palo Alto Research Center (PARC) and has been 
mousing around ever since. In 1980, Steve joined Apple 

$26.95 US/$34.95 CAN 

HAYDEN BOOKS 
Macmillan C:omputer Book P11blis/1ing Dil'ision 

operate efficiently in the new MultiFinder environment. 
A lively and thorough discussion of color fo llows, 

beginning with the fundamentals of color properties. 
You'll learn how to use the flexible display capabilities of 
the Macintosh II and the extensive set of added faci lities 
that work with them. Then you'll see how to use color in 
the Macintosh user interface itself. Finally, a stylish dis
cussion of stylish editing shows you how to mix typefaces, 
sizes, and styles within a single passage of text. 

Each topic is accompanied by extensive technical 
description, thorough, relevant analysis, and liberal 
cross-referencing to the other volumes. The discussions 

are also supported with fu lly 
commented Pascal exam
ples that can serve as a 
framework for building your 
own progran1s. 

If you dared to unlock 
tl1e lbolbox and ventured on 
to program and master the 
Toolbox, you are ready 
to begi1i Expanding the 
Toolbox. 

Computer, Inc., where he 
served as editor-in-chief of 
the publi cations depart-
ment, contributed to the 

early development of the Lisa computer, and helped write 
Apple's Inside Macintosh documentation. He now works 
as a freelance author, technical writer, documenta
tion consultant, and father of two budding Macintosh 
enthusiasts. 

ISBN 0-672-48413-7 

90000 

9 780672 484131 


