

SECOND EDITION

Learn C on the
Macintosh®

SECOND EDITION

Learn C on the
Macintosh®

Dave Mark

...
TT

ADDISON-WESLEY PUBLISHING COMPANY
Reading, Massachusetts • Menlo Park, California • New York • Don Mills, Ontario

Wokingham, England • Amsterdam • Bonn • Sydney • Singapore • Tokyo
Madrid • San Juan • Paris • Seoul • Milan • Mexico City • Taipei

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and Addison­
Wesley was aware of a trademark claim, the designations have been printed in initial capi­
tal letters or all capital letters.

The author and publisher have taken care in preparation of this book, but make no ex­
pressed or implied warranty of any kind and assume no responsibility for errors or omis­
sions. No liability is assumed for incidental or consequential damages in connection with or
arising out of the use of the information or programs contained herein.

Appendix E supplied courtesy of Metrowerks Corporation.

Library of Congress Cataloging-in-Publication Data

Mark, Dave.
Learn C on the Macintosh I Dave Mark. - 2nd ed.

p. cm.
Includes bibliographical references and index.
ISBN 0-201-48406-4
1. Macintosh (Computer)-Programming. 2. C (Computer program

language) I. Title.
QA76.8.M3M36771861995
005.265-dc20 95-23299

CIP

Copyright© 1995 by Dave Mark

All rights reserved. No part of this publication may be reproduced, stored in a retrieval sys­
tem, or transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written permission of the publisher. Printed in
the United States of America. Published simultaneously in Canada.

Sponsoring Editor: Martha Steffen
Project Manager: John Fuller
Production Coordinator: Ellen Savett
Cover design: Andrew M. Newman
Text design: Wilson Graphics and Design (Kenneth J. Wilson)
Set in 10 point Palatino by Vicki L. Hochstedler

34567MA 00999897

3rd Printing November, 1997

Addison-Wesley books are available for bulk purchases by corporations, institutions, and
other organizations. For more information please contact the Corporate, Government, and
Special Sales Department at (800) 238-9682.

This book is dedicated to Deneen J. Melander and Daniel J. Mark -
LFUEMNMWWA,OK? ...

--------------Contents

Preface xi

Acknowledgments xiii

Chapter 1 Welcome Aboard 1

What's in the Package? 1

Why Learn C? 2

What Should You Know to Get Started? 2

What Equipment Will You Need? 3

The Lay of the Land 3

The Chapters 4

Conventions Used in This Book 5

Strap Yourself In . . . 6

Chapter 2 Installing and Testing CodeWarrior Lite 7

Installing CodeWarrior Lite 7

Testing CodeWarrior Lite 10

What's Next? 12

Chapter 3 Programming Basics 13

Reasons for Programming 13

Programming Languages 13

The Programming Process 16

Flavors of Object Code 21

What's Next? 23

vii

CONTENTS

viii

Chapter 4 C Basics: Functions 25

C Functions 25

ISO C and the Standard Library 29

Same Program, Two Functions 31

Generating Some Errors 36

What's Next? 40

Exercises 40

Chapter 5 C Basics: Variables and Operators 43

An Introduction to Variables 43

Operators SO

Operator Order 57

Sample Programs 60

Sprucing Up Your Code 71

What's Next? 75

Exercises 75

Chapter 6 Controlling Your Program's Flow 77

Flow Control 77

Expressions 79

Statements 86

Sample Programs 104

What's Next? 110

Exercises 111

Chapter 7 Pointers and Parameters 113

What Is a Pointer? 113

Pointer Basics 116

Function Parameters 122

What Do Parameters Have to Do with Pointers? 128

Global Variables and Function Returns 131

More Sample Programs 139

What's Next? 147

Exercises 147

Chapter a Variable Data Types 151

Other Data Types 151

Working with Characters 162

Arrays 168

Text Strings 177

#define 183

A Sample Program: wordCount 188

What's Next? 194

Exercises 194

Chapter 9 Designing Your Own Data Structures 197

Using Arrays (Model A) 197

Designing Data Structures (Model B) 209

Allocating Your Own Memory 223

Working with Linked Lists 228

What's Next? 241

Exercises 241

Chapter 10 Working with Files 243

What Is a File? 243

Working with Files, Part One 243

Working with Files, Part Two 252

Working with Files, Part Three 266

What's Next? 278

Exercises 278

CONTENTS

ix

CONTENTS

x

Chapter 11 Advanced Topics 281

What Is Typecasting? 281

Unions 285

Function Recursion 289

Binary Trees 293

Function Pointers 301

Initializers 303

The Remaining Operators 305

Creating Your Own Types 308

Static Variables 310

More on Strings 312

What's Next? 314

Exercises 314

Chapter 12 Where Do You Go from Here? 317

Appendixes

The Macintosh Graphical User Interface 317

Useful Resources 322

Get On-line 324

Go Get 'Em 324

Appendix A

AppendixB

AppendixC

AppendixD

AppendixE

AppendixF

AppendixG

Index 467

Glossary 325

Source Code Listings 337

CSyntax Summary 413

Selections from the Standard Library 417

About CodeWarrior . . . 447

Answers to Selected Exercises 459

Bibliography 465

--------------Preface
One of the best decisions I ever made was back in 1979 when I hooked up with
my buddy Tom and learned C. At first, C was just a meaningless scribble of curly
brackets, semicolons, and parentheses. Fortunately for me, Tom was a C guru, and
with him looking over my shoulder, I learned C quickly.

Now it's your tum.
This time I'll be looking over your shoulder as you learn C. My goal is to pre­

sent every aspect of C the way I would have liked it explained to me. I've saved up
all the questions I had as I learned the language and tried to answer them here.

Learning to program in C will open a wide range of opportunities for you. C
is one of the most popular programming languages in the world today. Recessions
may come and go, but there's always a demand for good C programmers.
Whether you want to start your own software company or just write programs for
your own enjoyment, you will discover that C programming is its own reward.
Most of all, C programming is fun.

I hope you enjoy the book. If you make it to Mac World on either coast, stop by
the Addison-Wesley booth and say hello. I'd love to hear from you. In the mean­
time, tum the page, and let's get started

D.M.
Arlington, VA

xi

-----------Acknowledgments

I 1
d like to take a paragraph or two and thank some people whose names didn't

make the cover, but who made this book possible. First of all, I'd like to thank
Keith Rollin, whose technical review made this book so much better. Thanks,
Keith. I owe you big!

Next, I'd like to thank all the folks at Addison-Wesley for their time, dedica­
tion, and just plain hard work. People like Keith Wollman, Martha Steffen, Kaethin
Prizer, John Fuller, and Ellen Savett do the work that gets this book from my Mac
into your hands.

Next, I'd like to thank Greg Galanos, Greg Dow, Berardino Baratta, Avi
Rappaport, and the rest of the folks at Metrowerks for their support. Not only did
they provide the copy of CodeWarrior you'll use to run all the examples in this
book but they answered all my questions when Keith wasn't available.

Thanks to Stu Mark who put together the CD in back of the book and alter­
nated between bass, drums, and lead guitar to keep me from getting bored. Stu,
I'm lucky to have you for a brother!

A special thanks to Deneen and Daniel for letting me burn the midnight oil
without complaint. And thanks to Hersh, Beth, Jackson, and Caroline Porter for
being such great friends and neighbors.

Finally, I'd like to thank the man who was there at the beginning, the man who
introduced me to the wonders of C, my good friend Tom Swartz. Thanks, Tom.

xiii

------------Chapter 1
Welcome Aboard

Welcome! By purchasing this book/disk package, you have taken the first step to­
ward learning the C programming language. As you make your way through the
book, you'll learn one of the most popular and powerful programming languages
of all time. You will be glad you took this step.

Before we start programming, there are a few questions worth addressing at
this point.

What's in the Package?
Learn C on the Macintosh is a book/ disk package. The book is filled with all kinds
of interesting facts, figures, and programming examples, all designed to teach you
how to program in C.

In the back of the book you'll find a compact disc filled with important infor­
mation. Though it may look like a normal audio CD, you won't want to pop this
disc into your compact disc player. Instead, you'll place the disc into a CD-ROM
drive connected to your computer.

Like a giant floppy disk, the Learn C CD-ROM is filled with files. First and
foremost, it contains everything you'll need to run each of the book's program­
ming examples on your own computer. As you look through the disc, you'll find a
customized version of Code Warrior, one of the most popular Macintosh develop­
ment environments, along with each of the programs presented in the book, so
you don't have to type in the examples yourself. We've also included a boatload of
cool shareware and commercial software demos. Such a deal!

H you don't have a~D-ROM drive, try to borrow one from a friend or bor­
row a friend's CD-ROM equipped computer. You'll only need the CD-ROM
drive long enough to copy CodeWarrior and the book's programs from the
Learn C CD to the)rard drive inside your computer.

By the Way

1

WELCOME ABOARD

2

Why Learn C?
There are many reasons for learning C. Perhaps the biggest reason is C's popular­
ity as a programming language. C is probably the hottest programming language
around. In fact, most of the best-selling Macintosh applications were written in C.
If you are just getting started in programming, C is a great first programming lan­
guage. If you already know a programming language, such as BASIC or Pascal,
you'll find C a worthy addition to your language set.

C is everywhere. Almost every computer made today supports the C lan­
guage. Once you learn C, you'll be able to create your own programs for fun and
profit. You can use C to create utilities, games, and tools that do exactly what you
want them to do. You can even use C to write the next great spreadsheet, word
processor, or utility. Who knows? You might even make $80 gazillion in the
process!

Whatever your reasons, learning to program in C will pay you dividends the
rest of your programming life.

What Should You Know to Get Started?
For the most part, the only prerequisite to using this book is a basic knowledge of the
Macintosh. Do you know how to double-click on an application to start it up? Does
the scrolling list in Figure 1.1 look familiar? Do you know how to use a word proces­
sor like MacWrite or Microsoft Word? If you can use the Macintosh to run programs
and edit documents, you have everything you need to get started learning C.

I a My Documents ... ,

~Book Ideas m
IBD Business Letters
bilGames
ffigMemos
l]]g Personal Files

Figure 1.1 Scrolling through a list of documents.

Cl Macintosh HD

(Eject)

(Desktop)

(Cancel)

(Open J

THE LAY OF THE LAND

If you know nothing about programming, don't worry. The first few chapters
of this book will bring you up to speed. If you have some programming experience
(or even a lot), you might want to skim the first few chapters, then dig right into
the C fundamentals that start in Chapter 4.

What Equipment Will You Need?
Although it is possible to learn C just by reading a book, you'll get the most out of
this book if you run each example program as you read how it works. To do this,
you'll need a Macintosh with a 68020, 68030, 68040, or Power PC processor; at least
8 megabytes of memory; System 7.1 (68K-based Macintosh computers) or System
7.1.2 (for Power Macintosh computers) or later; and, of course, a CD-ROM drive so
you can install your new programming environment.

The Lay of the Land
This book was designed with several different readers in mind. If you're new to
programming, you'll want to read every chapter. As you make your way through
the book, try not to skip over material you don't understand. Ask. Make a com­
mitment to finish this book. You can do it!

If you have some programming experience but know nothing about C, read
Chapter 2, then skim through Chapter 3. If Chapter 3 is cake to you, jump right to
Chapter 4. You'll probably find that the concepts presented in the first few chap­
ters are pretty straightforward. Read at your own speed until you reach a com­
fortable depth. The farther into the book you get, the more complex the concepts
become.

If you get stuck, there are a lot of places you can tum to for help. On-line ser­
vices, such as eWorld, CompuServe, and America Online, all feature Macintosh de­
velopment forums filled with friendly folks who are usually more than glad to
help someone just getting started. If you have access to the Internet, you can sub­
scribe to newsgroups, such as "comp.lang.c" and "comp.sys.mac.programmer.­
help," where you'll be able to post your questions and, hopefully, find answers to
them. Better yet, find a friend who's been down this road before, someone you can
get together with, face-to-face, to help you through the tougher concepts.

Whether you have programming experience or not, you might find it helpful
to have a copy of a good C reference by your side as you make your way through
this book. Two particularly useful books are The C Programming Language by
Kernighan and Ritchie (affectionately known as K&R) and C: A Reference Manual
by Harbison and Steele (also known as H&S). K&R is the granddaddy of all C ref­
erences and is the book that got me started in C programming. Although K&R

3

WELCOME ABOARD

4

tends to be a little dense, it is filled with great sample code. As you master each
new concept in this book, take a look at how K&R treats the same subject.

H&S covers much of the same ground as K&R but at a slightly different level.
If you can swing the cost, consider picking up both of these books. They'll prove
to be valuable additions to your C programming library. You'll find descriptions of
both books (along with a bunch of others) in the bibliography in Appendix G.

The Chapters
This book is made up of 12 chapters and 7 appendixes. Chapter 1 provides an
overview of the book and gets you started down the right path.

Chapter 2 introduces the disk portion of this book/ disk package. You'll learn
about Code Warrior, the C programming environment you'll use to run all of the pro­
grams in this book. You'll install CodeWarrior on your hard drive and test the soft­
ware to make sure it's installed properly. You'll also run your first C program.
Regardless of any programming experience you already have, don't skip Chapter 2!

Chapter 3 is for those of you with little or no programming experience.
Chapter 3 answers some basic questions, such as Why write a computer program?
and How do computer programs work? We'll look at all the elements that come to­
gether to create a computer program, elements such as source code, a compiler,
and the computer itself. Even if you're a seasoned Pascal programmer, you might
want to read through this chapter, just to review the basics.

Chapter 4 opens the door to C programming by focusing on one of the pri­
mary building blocks of C: the function. You'll run some sample programs and dis­
cover one of the cruelest, least-liked, yet most important parts of programming:
the syntax error.

Chapter 5 explores the foundation of C programming: variables and operators.
When you finish this chapter, you will have a fundamental understanding of pro­
gramming. You'll know how to declare a variable and how to use operators to
store data in the variable.

Chapter 6 introduces the concept of flow control. You'll learn how to use C
programming constructs, such as if, while, and for, to control the direction of
your program. You'll learn how your program can make decisions based on data
that you feed into it.

Chapter 7 starts off with the concept of pointers, which you'll use in almost
every C program you write. Pointers allow you to implement complex data struc­
tures, opening up a world of programming possibilities.

Chapter 8 introduces data types. You'll learn about arrays and strings and the
common bond they share. At this point, you are in real danger of becoming a C
guru. Careful!

CONVENTIONS USED IN THIS BOOK

Chapter 9 tackles data structures. You'll learn how to design and build the
right data structure for the job. Your knowledge of pointers is sure to get a work­
out in this chapter.

Chapter 10 teaches you how to work with disk files. You'll learn how to open
a file and read its contents into your program. You'll also learn how to write your
program's data out to a file.

Chapter 11 is a potpourri of miscellaneous C programming issues. This chap­
ter tries to clear up any programming loose ends. You'll learn about recursion, bi­
nary trees, and something not every C programmer knows about: C function
pointers.

Chapter 12 prepares you for your next step along the programming path: the
Macintosh C Programming Primer. You'll learn a little about what makes Macintosh
programs special, as well as find out how you can write your own programs that
sport that special Macintosh look and feel.

Appendix A is a glossary of the technical terms used in this book.
Appendix B contains a complete listing of all the examples used in this book.

This section will come in handy as a reference as you write your own C programs.
Need an example of an if-else statement in action? Tum to the examples in
AppendixB.

Appendix C is another useful reference. It describes the syntax of each of the
C statement types introduced in the book. Need an exact specification of a switch
statement? Check out Appendix C.

Appendix D provides a description of the Standard Library functions intro­
duced in this book. The Standard Library is a set of functions available as part of
every standard C development environment, no matter what type of computer it's
being used with. Need to know how to call one of the Standard Library functions
introduced in the book? Use Appendix D.

Appendix E describes the differences between the version of Code Warrior that
came with this book and the commercial version.

Appendix F provides answers to the exercises presented at the end of each
chapter.

Appendix G is a bibliography of useful programming titles.

Conventions Used in This Book
As you read this book, you'll encounter a few standard conventions intended to
make it easier to read. For example, technical terms appearing for the first time are
in boldface. You'll find most of these terms in the glossary in Appendix A.

5

WELCOME ABOARD

By the Way

6

Occasionally, you'll come across a block of text set of£ in its own little box,
like this. These blocks are called tech blocks and are mtended to add technical
detail to the subject bemg discussed. For the most part, each tech block will
fit in one of three categories: "By the Way," "Important," and "Warning." As
the names imply, these blocks have different purposes. "By the Way" tech
blocks are intended to be informative but not crucial. "Important" tech
blocks should be read beglllning to end and the information withm tucked
into a reasonably responsive part of your brain. "Warning" tech blocks are
usually trying to caution you about a potentially disastrous programming
problem you should be on the lookout for. Read and heed these warnings.

All of the source code examples in this book are presented using a special font,
known as the code font. This font is also used for source code fragments that ap­
pear in the middle of rwming text. Menu items, or items you'll click on, appear in
Chicago font.

At the end of each chapter from Chapter 4 on, you'll find a set of exercises de­
signed to reinforce the concepts presented in that chapter. Go through each of the
exercises. It will be time well spent. As mentioned earlier, Appendix F contains an­
swers to selected chapter exercises.

Strap Yourself In . . .
That's about it. Let's get started

------------Chapter 2
Installing and Testing

CodeWarrior Lite
Tucked into the back of this book is a CD containing a special version of Code­
Warrior, one of the leading Macintosh programming environments. CodeWarrior
Lite provides you with all the tools you'll need to work with the programming ex­
amples presented in the book.

Installing CodeWarrior Lite
When you insert the Learn C CD in your CD-ROM drive, the main Learn C CD win­
dow will appear on your desktop. In the center of that window is the Code Warrior
Lite Installer icon (Figure 2.1). Double-click on that icon to launch the installer .

.

-~ • Learn C CD
i 7 items 1 64 .1 MB in disk 200K av ail ab le

i ~

~

l'.i;.«~,
0(1~·

[IJ [fill -
Learn C Projects Code'w' arr ior Lite™ C Library Reference

~ - rn D l~?'·~~;
~~~~~~{ ~ . 

Commercial Demos App le Development Products Share'w' ar e ~ 
¢1 1¢ Qi 

Figure 2.1 The CodeWarrior Lite Installer 

7 



INSTALLING AND TESTING CODEWARRIOR LITE 

By the Way 

8 

If you already own a reasonably recent version of CodeWarrior, you may 
want to skip the installation of Code Warrior Lite. If that is the case, just drag 
the Learn c++ Projects folder from the top level of the CD onto your 
hard drive. If you do run into problems, try removing the full CodeWarrior 
from your hard drive and install CodeWarrior Lite instead. 

When you start the installer, the first thing you'll see is the Code Warrior Lite in­
formation screen. Click on the Continue button. Next, a license agreement will ap­
pear in a scrolling window. Read the license agreement (it's sooo interesting); then 
click on the Continue button. This time, you'll be presented with a list of possible 
installation configurations (Figure 2.2). In this version of CodeWarrior, there's only 
one configuration, named "Standard Install," which requires about 18 megs of free 
hard drive space. If you've got the space, click the Install button. Otherwise click 
Quit and go make some room. 

Install the following: 

Standard Install ftl 

l'l1 Installs Code\\!arrior Lite™. 

Ins ta nation requires : 1 76 70K 

(.......__o u_i t___,,) K Ins ta II J 
Figure 2.2 The CodeWarrior Lite installer. Do you have enough free space on your hard 

drive? 



INSTALLING CODEWARRIOR LITE 

~Iii 02.01 - hello - la~ 
2 ;terns 734. 9 MB ;n d;sk 29 

Ill D Q 
' 

hello.µ hello.c 

~ 
¢1 1¢ 'Ii 

Figure 2.3 The 02. 01 - hello folder. 

After the installation is complete you will still need to do one thing: At the top 
level of the Learn C CD is a folder named Learn c Projects that contains all of 
the book's programs. Drag this folder from the CD onto your hard drive. Once you 
have done this you will no longer need the CD (although you'll want to keep it as 
a souvenir!). 

hello.JI 
File Code Data ml ----

v source . 01 01 • a -0.: 
• . • i---

hello .c ! 0 ! 0 ! • Iii ·v:···1iiir::ar:ie:5······· .................................... r····· ......... o·r··············o·r· .................. a .. 
MacOS.lib ~ 0 i 0 ~ III 
ANSI (2i) C.68K.Lib l 0 l 0 l JD 
SIOUX .68K .Lib i 0 i 0 i [ii 

............... '-1.~.!~~!~~.!~ ... (~.~l~~!~ ........ l... ............ Q.l... ........... .Q.l... ................ W .. 

5 file(s) 0 0 

Figure 2.4 The hello.µ project window. 

9 



INSTALLING AND TESTING CODEWARRIOR LITE 

Warning 

10 

Testing CodeWarrior Lite 
Now that CodeWarrior Lite is installed, let's take it for a spin. Open the Learn c 
Projects folder on your hard drive; then open thesubfoldernamed 02. 01 - hello. 
You should see a window similar to the one shown in Figure 2.3. The two files in this 
window contain the ingredients you'll use to build your very first C application. 

Double-click on the file he llo.µ . A window just like the one shown in Figure 
2.4 should appear. This window is called the project window. It contains informa­
tion about the files used to build our double-clickable application. Since this infor­
mation is stored in the file hello .µ, this file is also known as a project file. A file 
that ends in the characters . µis likely a project file. 

If you got a message telling you that the document hello.µ could not be 
opened, restart your Mac and try again. If this still doesn't work, try rebuild~ 
ing your desktop. To do this, restart your Mac and then press the command 
(~) and option keys simultaneously. Keep holding both keys down until the 
Mac asks you if you'd like to rebuild your desktop1 Click on OK and go 
watch TV for a few minutes. 

If a window with the title hello. c appeared instead of the one shown 
in Figure 2.4, you double-clicked on the wrong file. Quit CodeWarrior and 
double-click on the file hello.µ instead of hello. c. 

IE hello.c 
#include <stdio . h> 

int main( vo id ) 
{ 

pr i n tf ( "He I I o, wor I d ! \n" ) ; 

} 
return O;I 

lIJ[o][ir;l]J ]Line : 7 

Figure 2.5 The source code window with the source code from the file hello. c. 



TESTING CODEWARRIOR LITE 

hello.out 
SIOUX state: application has terminated. 

Hello, world! & 
I 

~ 
~ 

Figure 2.6 The window created by the hello program. 

The project window in Figure 2.4 is divided into two parts, each marked by a 
down-pointing triangle on the extreme left side of the window. The first part (la­
beled source) names the files that contain the project source code. Source code is 
a set of instructions tha t determine what your application will do and when it will 
do it. This project contains a single source code file, named hello. c . 

Let's take a look at the source code in hello . c. Double-click on the label 
hello. c, being careful not to d ouble-click on the word source. A source code 
window will appear containing the source code in the file hello. c (Figure 2.5). 
This is your first C program. This program tells the computer to display the text 
"Hello, world ! " in a window. Don't worry about the how or why of it right 
now. We'll get into all that later on. For now, let's turn this source code into an ap­
plication. 

Go to the Project menu and select Run (alternatively, you could have typed 
~R). If you look closely, you'll see numbers appear in each row of the project win­
dow. Then, a new window, labeled hello. out, will ap pear on the screen. 

Actually, this window doesn't belong to Code Warrior. When you selected Run 
from the Project menu, Code Warrior converted your source code into a double­
clickable application named hello and then ran hello. The application he l lo, 
in tum, created the new window (Figure 2.6). Once this window appears, you 
know you 've successfully installed Code Warrior Lite. 

11 



INSTALLING AND TESTING CODEWARRIOR LITE 

12 

§Iii 02.01 -- hello. liJ~ 
3 ;terns 735 .1 MB in d;sk 29 

D • :ht 
-

hello.µ hello.c 

~ 
hello 

~ 
¢1 1¢ 'iii 

Figure 2.7 The folder 02. 01 - hello, with the addition of the hello application. 

Once you are done admiring your handiwork, select Quit from the File menu. 
You'll be asked if you want to save the results of your program. If you click on the 
Saue button, the results produced by your program are saved as a text file, which 
you can then open by using CodeWarrior or your favorite word processor. For 
now, select Don't Saue and let's move on. 

Back in the Finder, take another look at the folder O 2 • O 1 - hello. Notice that 
there's now a third file in the folder-the application hello (Figure 2.7). 
Congratulations! You've just built your first C application! 

What's Next? 
Now that you've installed CodeWarrior, let's take a little closer look at the pro­
gramming process. Get comfortable and tum the page. Here we go .... 



-----------~.~3 
Programming Basics 

Before we dig into the specifics of C programming, we'll spend a few minutes re­
viewing the basics of programming in general. We'll answer such basic questions 
as, Why write a computer program? and How do computer programs work? We'll 
look at all of the elements that come together to create a computer program, such 
as source code, a compiler, and the computer itself. 

If you've already done some programming, skim through this chapter. If you 
feel comfortable with the material, skip ahead to Chapter 4. Most of the issues cov­
ered in this chapter are not specific to C. 

Reasons for Programming 
Why write a computer program? There are many reasons. Some programs are 
written in direct response to a problem too complex to solve by hand. For example, 
you might write a program to calculate the constant 7t to 5000 decimal places or to 
determine the precise moment to fire the boosters that will bring the space shuttle 
home safely. 

Other programs are written as performance aids, allowing you to perform a 
regular task more efficiently. You might write a program to help you balance your 
checkbook, keep track of your baseball card collection, or lay out this month's 
issue of Dinosaur Today. 

All of these examples share a common theme. All are examples of the art of 
programming. 

Programming Languages 
Your goal in reading this book is to learn how to use the C programming language 
to create programs of your own. Before we get into C, however, let's take a minute 
to look at some other popular programming languages. 

13 



PROGRAMMING BASICS 

By the Way 

14 

Some Alternatives to C 

As mentioned in Chapter l, C is probably the most popular programming lan­
guage around. There's very little you can't do in C, once you know how. On the 
other hand, a C program is not necessarily the best solution to every programming 
problem. 

For example, suppose that you are trying to build a database to track your 
company's inventory. Rather than writing a custom C program to solve your prob­
lem, you might be able to use an off-the-shelf package, such as FileMaker Pro or 
4th Dimension, to construct your database. The programmers who created these 
packages solved most of the knotty database management problems you'd face if 
you tried to write your program from scratch. The lesson here: Before you tackle a 
programming problem, examine all the alternatives. You might find one that will 
save you time or money or that will prove to be a better solution to your problem. 

Some problems can be solved by using HyperCard or AppleScript. Take some 
time to learn about both of these products. Using HyperCard, you can very quickly 
put together an application (known as a stack) that features all the standard 
Macintosh gadgets (like buttons, checkboxes, and scroll bars). If you choose, you 
can customize your stack by using a programming language called HyperTalk. The 
nice thing about HyperCard is that it is very easy to use. HyperCard does have its 
limits, however. Although you might build a HyperCard stack to keep track of your 
business contacts or, perhaps, to track your growing wine collection, you won't be 
able to build a more sophisticated, general-purpose application, such as PageMaker 
or Claris Works. 

Like HyperCard's HyperTalk, AppleScript is a programming language. Instead 
of controlling HyperCard stacks, however, AppleScript interacts with scriptable 
programs. One of the best examples of a scriptable program is the Finder. Using 
AppleScript, you can make the Finder do some pretty cool things. You can ask the 
Finder to find a specific file, to arrange all open windows just so, or even to drag the 
current selection to the trash (careful with that one!). 

Want to mess with AppleScript? Everything you need to do just that is on th:e 
CD in back of the book. Search for the AppleScript extension on the CD, in­
stall it in your System folder, and then reboot your Mac. Next, copy the 
Script Editor and the Scriptable Text Editor onto your hard drive. The Script 
Editor lets you create and run AppleScript programs. The Scriptable Text 
Editor makes a perfect target for your scripts. 

Once you get everything installed, launch the Scriptable Text Editor and 
type some text into the text editing window that appears. Next, launch the 
Scriyt Editor, type in this script, and click on the Run button: 



PROGRAMMING LANGUAGES 

tell application "Scriptable Text Editor" 
get number of words in front window 

end tell 

If all goes well, a window named the result will appear, containing 
the number of words in your Scriptable Text Editor window. If you are inter­
ested in learning more, there are a number of good AppleScr~pt books out 
there. Personally, I like Danny Goodman's AppleScript Handbook. 

Some applications feature their own proprietary scripting language. For in­
stance, Microsoft Excel lets you write programs that operate on the cells within a 
spreadsheet. Some word processing programs let you write scripts that control just 
about every word processing feature in existence. Although proprietary scripting 
languages can be quite useful, they aren't much help outside their intended envi­
ronments. You wouldn't find much use for the Excel scripting language outside 
Excel, for example. 

What About Pascal? 

There are a lot of programming languages out there. In the late 1970s and early 
1980s, C's popularity was still growing, and the undisputed ruler of the program­
ming universe was Pascal. Pascal remains an excellent programming language, 
but it has now fallen far behind C in popularity. To prove this to yourself, go to 
your favorite bookstore and compare the number of C books and Pascal books (as­
suming you can still find a Pascal book). Better yet, dig out the employment sec­
tion from last Sunday's paper and count the number of computer ads calling for C 
or C++ experience (we'll get to C++ in a minute) versus those calling for Pascal ex­
perience. These two exercises should convince you that you are on the right track. 

What About C++? 

If there is a pretender to the programming language throne, it has to be a language 
called C++ (pronounced C-Plus-Plus). Simply put, C++ is an object-oriented ver­
sion of Candis extremely popular with both Macintosh and Windows program­
mers. Someday, you will want to learn C++. Thankfully, you can learn C first, and 
all that C knowledge will count toward your C++ education. Learn C now and 
spend some time practicing your newfound craft. Once you have some C experi­
ence under your belt, make learning C++ your next priority. 

15 



PROGRAMMING BASICS 

16 

The Programming Process 
In Chapter 2, you installed Code Warrior and went through the process of opening 
a project, converting the project's source code into a real, double-clickable applica­
tion. Let's take a closer look at that process. 

Writing Your Source Code 
No matter what their purposes, most computer programs start as source code. 
Your source code will consist of a sequence of instructions that tell the computer 
what to do. Source code is written in a specific programming language, such as C. 
Each programming language has a specific set of rules defining what is and isn't 
"legal" in that language. 

Your mission in reading this book is to learn how to create useful, efficient, 
and, best of all, legal C source code. 

If you were using everyday English to program, your source code might look 
like this: 

Hi, Computer! 
Do me a favor. Ask me for five numbers, add them together, 
then tell me the sum. 

If you wanted to run this program, you'd need a programming tool that un­
derstood source code written in English. Since CodeWarrior doesn't understand 
English but does understand C, let's look at a C program that does the same thing: 

int main( void ) 
{ 

int index, num, sum; 

sum O; 

for index=l; index<=5; index++ ) 
{ 

} 

printf( "Enter number %d --->", index ); 
scanf( "%d", &num ); 
sum = sum + num; 

printf( "The sum of these numbers is %d.", sum ); 



THE PROGRAMMING PROCESS 

return O; 
} 

If this program doesn't mean anything to you, don't panic. Just keep reading. 
By the time you finish reading this book, you'll be writing C code like a pro. 

Compiling Your Source Code 
Once your source code is written, your next job is to hand it off to a compiler. The 
compiler translates your C source code into instructions that make sense to your 
computer. These instructions are known as machine language, or object code. 
Source code is for you, machine language/ object code is for your computer. 

CodeWarrior uses the project file to keep track of all your source and object 
code. As an example, the project file shown in Figure 3.1 contains the names of 
three files. The first two files contain C source code. The third file, known as a li­
brary, contains object code. Think of a library as a source code file that has already 
been compiled. 

A library starts life as source code. The source code is compiled an9. the re­
sulting object code stored in a file. This objeet code can then be included in 
other projects. By using a library, you get access to some :useful source code 
without having to go through the time and effort of recompiling the source 
code into object c de. 

When you ask CodeWarrior to run your project, CodeWarrior steps through 
each of the files referenced by your project file (Figure 3.2). If a file contains source 
code, the source code is sent to a compiler, and the resulting object code is c~pied 
into the project file. If the file is a library, the compilation step is skipped, and the 
library's object code is copied into the project file. Once all the object code is in 
place, it gets combined (in a process known as linking) and copied into your ap­
plication file. Finally, Code Warrior runs your application. 

If the compilation process seems confusing to you, don't worry. Each pro­
gramming example comes complete with step-by-step directions that show 
you how to compile your code. Once you feel more comfortable with the pro­
gramming process, give this section another read. 

By the Way 

By the Way 

17 



PROGRAMMING BASICS 

18 

File 

A CodeWarrior 
Project File 

v source 
SomeSource .c 
More Source .c ······················································ ... v libraries 
L ibr ariy .Lib 

3 file(s) 

Files Used by 
This Project 

intmaln(volcl) 
{ 

return O; 

intmaln(void) 
{ 

return O; 

0100110010010 
1010011110010 
1 01011 0111 001 
0111100100111 
0110000001110 
1001010010001 

Figure 3.1 A CodeWarrior project file containing three files. 

Let's take a look at a real-life example. In Chapter 2, you opened a project file 
named hello.µ. Figure 3.3 shows the hello.µ project window. The project win­
dow lists all the files that Code Warrior uses to build the hello application. Notice 
that the list is divided into two parts. The top part lists the project's source code 
files (there's only one), and the lower part lists the project's libraries (there are 
four). 

Each of the five files listed in the project window is found on your hard drive. 
You'll find the file hello. c in the same folder as the project file (hello.µ). The 
four library files are located with the rest of the CodeWarrior files, in various sub­
folders of the folder named Libraries f. To convince yourself of this, use the 
Finder's Find command to search for these libraries on your hard drive. They 
were copied onto your hard drive when you install~d CodeWarrior .. 



THE PROGRAMMING PROCESS 

nt rm'1(void) 

( OllJm O; 

SomeSource.c 
0100110101001110010010100111 
1001001111100111010011110010 
1010111110011001110001101100 

----<~• 681?1 gm~ ~1? mgg1~ 116 
0111110101111101010011100011 r---- 11 

....__ __ ____. C Compiler 
100101101110100101001 0010010 
1010010010010 101001001111101 

MoreSource.c 
0100110101001110010010100111 
1001001111100111010011110010 
1010111110011001110001101100 
1010101111000101011100100111 

----<~• 8?:: 1 ?6:gm1 n16 :&W?18661? r---- 11 
....__ __ ____. C Compiler 

1001011011101 001010010010010 
1010010010010101001001111101 My Application 

0 10011001 0010 
1010011110010 
1 010110111001 
011 11 00100111 
0110000001110 
1001010010001 

Libra .Lib 
0100110101001110010010100 111 
1001001111100111010011110010 
1010111110011001110001101100 
101010111100010101 1100100111 
0011101100001001110100101110 

>-----------~01111 10101111101010011100011 
1001011011101001010010010010 
1010010010010101001001111 101 

Figure 3.2 CodeWarrior sends source code through a compiler to generate object code, 
then copies the object code into the project file. Object code from libraries bypasses the 
compilation step. 

hello.µ 
File Code Data la--.-

v source 0 l 0 l • El &:i 
hello .c . 0 i 0 i • III 

··················· · ······ ··········· · ········· ···· · ·························~ ··· · · ·············-<>··················'°······················· · ·· v libraries 1 01 0 1 ~ 
MacOS.lib l 0 l 0 l III 
ANS I (2i) c .68K .Lib l 0 l 0 l III 
s IOUX .68K .Lib : 0 l 0 l III 

............... ~.~.~~~~~~.~~J~.P.:~~~ ........ l... ............ 9.l... ........... .Q.L. ................ ~ .. 

5 file(s) 0 0 

Figure 3.3 The hello.µ project window, before compilation. 

19 



PROGRAMMING BASICS 

Warning 

20 

When you find the libraries, don't move them or mess with them in any way. 
CodeWarrior knows where these libraries live and won' t be able to run your 
project if it can't find them. 

When you select Run from the Project menu, CodeWarrior steps through 
each of the project's files. In the case of hello. c , Code Warrior first checks to see 
whether hello . c has been modified since the last time it was compiled. If it has, 
the source code in hello.c is passed to CodeWarrior's C compiler, and the re­
sulting object code is stored in the file hello.µ. 

In the case of each of the four libraries, CodeWarrior first checks to see 
whether the object code from the library file has already been copied into 
hello.µ. If it has not been copied, the object code gets copied over. This process 
is known as loading. Source code gets compiled and libraries get loaded (insert 
silly drinking reference here). 

Figure 3.4 is a snapshot of the project window after all the project files were 
updated. Notice that w here there used to be a solid block of zeroes, there are now 
all kinds of numbers. The Code column tells you how much object code is stored 
in hello.µ for each file in the project. For example, the object code for the file 
hello. c is 28 bytes long, and the object code for the library MacOS . lib is 31,554 

hellO . .lJ. 
File Code Data mt • ~ 

V source 281 151 • la {t . . . t--1 
hello.c i 281 151 • Iii 

................................................... .. ........................ <-··· ·· ·· · ···· · ·····-0-·················· -0- ··············· · · ········· 

V libraries i 98Kj 11 Ki ~ 

MacOS.lib 1 31554 ~ 01 [i) 
ANS I (2i) c .68K .Lib l 31 726 ~ 8983 l III 
SIOUX .68K .Lib 1 1 01 94 ~ 8291 Ill 

............... ~.~.~~~~~~.~~ ... ~?..P.~~~~ ........ l...~.?J~.~.l.. .... ~J~.~.l... ............. ..JIJ .. 

·- - -- 11K -= 5 file(s) 98K 

Figure 3.4 The updated project window. 



FLAVORS OF OBJECT CODE 

bytes long. Why such a big difference? The source code in hello. c is tiny. As you 
get farther along in the book, watch that number start to climb! 

You'll find these same four libraries in every one of the programs in this 
book. Together, these libraries contain everything needed to create the win­
dow that appears every time you run one of the book's programs. 

The row labeled source summarizes the numbers for all the source code in 
the project. The row labeled libraries summarizes the numbers for the project 
libraries. If you add the code sizes for all four libraries, you'll get the number 
100,668. So where does the number 98K come from? One kilobyte, or lK, is equal 
to 1024 bytes; 100,668 divided by 1024 is approximately 98.3. Roughly speaking, 
100,668 bytes is around 98K. 

As the compiler goes through your source code, it sets aside certain pieces of 
your source code as data. For example, the text string "Hello, world!\n" is stored 
in the project file as data, not as part of the object code. As you can see in Figure 
3.4, this string takes up 15 bytes of memory (look in the column labeled Data). 
You'll learn all about text strings later in the book. 

Since CodeWarrior stores the object code inside the project file on your hard 
drive, your project files will take up more room with a compiled program 
than with an uncompiled program. To save space, select Remoue Binaries 
from the Project menu when you are done with a project. This item tells 
CodeWarrior to delete any object code it may have stored in the project file. 
Don't worry; Remoue Binaries won't affect your source code. It'll just 
slim down your project file. 

Flavors of Object Code 
Just as there are many different programming languages, there are many different 
flavors of object code. In order for your application to run, the object code it was 
built on must be compatible with the central processing unit (also known as the 
CPU, or processor), which is the brains of your computer. 

IBM PCs and PC-compatibles use processors built by Intel. These processors 
include the 8086, 80286, 80386, 80486, and the infamous Pentium. Macintosh com­
puters are based on processors from Motorola. These include the 68000, 68020, 
68030, 68040, and the PowerPC 601 and 604. 

By the Way 

By the Way 

21 



PROGRAMMING BASICS 

By the Way 

22 

Actually, the PowerPC is a joint production, brought to you by Apple, IBM, 
and Motorola. 

Each of these processors understands a specific set of machine language in­
structions. The 68000 understands 68000 machine language instructions but not 
80486 machine language instructions. Similarly, the 80486 does not understand 
68000 machine language instructions. That's one reason why you can't just copy a 
Windows application onto your Mac hard drive and run it. It's also one reason 
why you can't copy a Mac application onto a Windows machine and run it. 

When it introduced the 68020 processor, Motorola started with the 68000 ma­
chine language, then added a few new instructions to it. This meant that the 68020 
could understand every single instruction in the 68000 machine language. More 
important, this meant that if a program was compiled into 68000 machine lan­
guage, it would also run on a 68020. 

As Motorola designed each new processor, it stuck with this strategy. The 
68030 machine language is a superset of the 68020 (and therefore of the 68000) ma­
chine language. The 68040 is a superset of the 68030 machine language. (We'll get 
to the PowerPC in a minute.) 

This means that a program compiled into 68000 machine language can be run 
by any of the later 68000 family of processors. This concept is known as backward 
compatibility. It's important to note that the reverse is not necessarily true, how­
ever. For example, a program compiled into 68040 machine language might con­
tain 68040 instructions that weren't part of the 68000 machine language; therefore, 
the program wouldn't run on a 68000. 

The PowerPC adds a new wrinkle to this situation. When they designed the 
PowerPC, the Apple, IBM, and Motorola consortium started from scratch. The 
PowerPC 601 processor has a brand-spanking-new machine language, in no way 
related to the 68000-series machine language. Fortunately, Apple's remained com­
mitted to the concept of backward compatibility. Built into every PowerPC-based 
Mac is something called the 68000 emulator. If you run an application built from 
68000 object code on a PowerMac, the 68000 emulator translates the 68000 instruc­
tions into PowerPC instructions while the program is running. 

Unfortunately, this translation process does take time, which is why 68000-
based programs run slower on a PowerMac than programs compiled using 
PowerPC object code. 



A program compiled into Pow.erPC machine language and running on a 
PowerPC is said to be running in native mode. Native mode programs run 
screamingly fast! 

As you start writing your own applications, you'll have a few choices to make. 
Which object code should you base your applications on? If you generate 68000-
based applications, they'll run on all Macs, but they'll run slower on the 
PowerMacs. If you generate PowerPC-native applications, they' ll run only on the 
PowerMacs. 

Fortunately, there are several solutions to this dilemma. One solution is to gen­
erate two versions of your application: one 68000-based and the other PowerPC­
based. Deliver both versions and let your user choose the one that's right. A 
second solution is to create what's known as a fat binary, or fat application. A fat 
binary is an application that contains both 68000 and PowerPC machine language. 
When you run a fat binary, the Macintosh operating system is smart enough to run 
the object code that makes sense for the machine you are on. The downside of this 
approach is that your applications tend to take up a lot more disk space than their 
skinny counterparts. 

What's Next? 
At this point, don' t worry too much about the details. Although Code Warrior can 
easily generate both PowerPC and 68000 object code, the projects on the CD were 
set up to build 68000-based applications, guaranteeing that they will run on your 
computer. For now, focus on the basics. Understanding how to write C source code 
is far more important than the intricacies of the project file. 

Ready to get into some source code? Get out your programming gloves; we're 
about to go to code! 

WHAT'S NEXT? 

By the Way 

23 



------------Chapter 4 
C Basics: Functions 

Every programming language is designed to follow strict rules that define the lan­
guage's source code structure. The C programming language is no different. The 
next few chapters will explore the syntax of C. 

Chapter 3 discussed some fundamental programming topics, including the 
process of translating source code into machine code through a tool called the 
compiler. This chapter focuses on one of the primary building blocks of C pro­
gramming, the function. 

C Functions 
C programs are made up of functions. A function is a chunk of source code that ac­
complishes a specific task. You might write a function that adds a list of numbers 
or that calculates the radius of a given circle. Here's an example of a function: 

int main( void ) 
{ 

printf ( "I am a function and my name is main I ! I \ n" ) ; 

return O; 
} 

This function, called main ( ) , prints a message in a window. 

Throughout this book, we'll refer to a function by placing a pair of parenthe­
ses after its name. This will help distinguish between function names and 
variable names. For example, doTask ( ) refers to" a function, whereas the 
name doTask refers to a variable. Variables are covered in Chapter 5. 

Important 

25 



C BASICS: FUNCTIONS 

26 

The Function Definition 

Functions start off with a function specifier, in this case: 

int main( void ) 

A function specifier consists of a return type, the function name, and a pair of paren­
theses wrapped around a parameter list. We'll talk about the return type and the pa­
rameter list later. For now, the important thing is to be able to recognize a function 
specifier and be able to pick out the function's name from within the specifier. 

Following the specifier comes the body of the function. The body is always 
placed between a pair of curly braces: { } . These braces are known in program­
ming circles as "left-curly" and "right-curly." Here's the body of main ( ) : 

{ 

printf( "I am a function and my name is main!!!\n" ); 

return O; 
} 

The body of a function consists of a series of statements, with each statement 
followed by a semicolon (; ). If you think of a computer program as a detailed set 
of instructions for your computer, a statement is one specific instruction. The 
printf ( ) featured in the body of main ( ) is a statement. It instructs the com­
puter to display some text on the screen. 

As you make your way through this book, you'll learn C's rules for creating effi­
cient, compilable statements. Creating efficient statements will make your programs 
run faster with less chance of error. The more you learn about programming (and the 
more time you spend at your craft), the more efficient you'll make your code. 

Syntax Errors and Algorithms 

When you ask the compiler to compile your source code, the compiler does its best 
to translate your source code into object code. Every so often, however, the com­
piler will hit a line of source code that it just doesn't understand. When this hap­
pens, the compiler reports the problem to you and does not complete the compile. 
The compiler will not let you run your program until every line of source code 
compiles. 

As you learn C, you'll find yourself making two types of mistakes. The simplest 
type, called a syntax error, prevents the program from compiling. The syntax of a lan­
guage is the set of rules that determines what will and will not be read by the com-



piler. Many syntax errors are the result of a mistyped letter, or typo. Another common 
syntax error occurs when you forget the semicolon at the end of a statement. 

Syntax errors are usually fairly easy to fix. If the compiler doesn't tell you ex­
actly what you need to fix, it will usually tell you where in your code the syntax 
error occurred and give you enough information to spot and repair the error. 

The second type of mistake is a flaw in your program's algorithm. An algo­
rithm is the approach used to solve a problem. You use algorithms all the time. For 
example, here's an algorithm for sorting your mail: 

1. Start by taking the mail out of the mailbox. 

2. If there's no mail, you're done! Go watch TV. 

3. Take a piece of mail out of the pile. 

4. If it's junk mail, throw it away; then go back to step 2. 

5. If it's a bill, put it with the other bills; then go back to step 2. 

6. If it's not a bill and not junk mail, read it; then go back to step 2. 

This algorithm completely describes the process of sorting through your mail. 
Notice that the algorithm works, even if you didn't get any mail. Notice also that 
the algorithm always ends up at step 2, with the TV on. 

Figure 4.1 is a pictorial representation, or flowchart, of the mail-sorting algorithm. 
Much as you might use an outline to prepare for writing an essay or a term paper, 

Take Mail 
Out of Mailbox 

All Done! 
Go Watch TV. 

Look at a 
Piece of Mail 

Figure 4.1 An algorithm for sorting your mail. 

Recycle the 
Darn Thing 

Place Bill 
on Hall Table 

Read Mail 

CFUNCTIONS 

27 



C BASICS: FUNCTIONS 

28 

you might use a flowchart to flesh out a program's algorithm before you start writing 
the program. 

This flowchart uses two types of boxes. Each rectangular box portrays an ac­
tion, such as taking mail out of the mailbox or throwing junk mail into the trash. 
Each diamond-shaped box poses a yes/no question. An action box has a single 
arrow leading from it to the next box to read, once you've finished taking the ap­
propriate action. A question box has two arrows leading out of it: one showing the 
path to take if the answer to the question is yes and the other showing the path to 
take if the answer is no. Follow the flowchart through, comparing it to the algo­
rithm as described. 

In the C world, a well-designed algorithm results in a well-behaved program. 
On the other hand, a poorly designed algorithm can lead to unpredictable results. 
Suppose, for example, that you wanted to write a program that added three num­
bers and printed the sum at the end. If you accidentally printed one of the num­
bers instead of the sum of the numbers, your program would still compile and 
run. The result of the program would be in error, however (you printed one of the 
numbers instead of the sum), because of a flaw in your program's algorithm. 

The efficiency of your source code, referred to earlier, is a direct result of good 
algorithm design. Keep the concept of algorithm in mind as you work your way 
through the examples in the book. 

Calling a Function 

In Chapter 2, you ran hello, a program with a single function, main ( ) . As a re­
fresher, here's the source code from hello: 

#include <stdio.h> 

int main( void ) 
{ 

print£( "Hello, worldl\n" ); 

return O; 
} 

You ran hello by selecting Run from the Project menu. CodeWarrior 
started by executing the first line in the function named main ( ) . In this case, the 
first line in main ( ) was the call to the function print£ ( ) . Whenever your source 
code calls a function, each statement in the called function is executed before the 
next statement of the calling function is executed. 



ISO C AND THE STANDARD LIBRARY 

main() 
{ 

} 

MyFunction(); 
AnotherFunction(); 

MyFunction() 
{ 

} 

AnotherFunction() 
{ 

} 

Figure 4.2 When main ( ) calls MyFunction ( ) , all of the statements inside MyFunction ( ) 

get executed before main ( ) calls AnotherFunction ( ) . 

Confused? Look at Figure 4.2. In this example, main ( ) starts with a call to the 
function MyFunction ( ) . This call to MyFunction ( ) will cause each statement inside 
MyFunction ( ) to be executed. Once the last statement in MyFunction ( ) has been 
executed, control is returned to main ( ) . Now, main ( ) can call AnotherFunction ( ) . 

Every C program you write will have a main ( ) function. Your program will 
start running with the first line in main ( ) and, unless something unusual hap­
pens, end with the last line in main ( ) . Along the way, main ( ) may call other 
functions, which may, in tum, call other functions, and so on. 

ISO C and the Standard Library 
The American National Standards Institute (ANSI) established a national standard 
for the C programming language. This standard became known as ANSI C. Later, 
the International Standards Organization (ISO) adopted this standard, and ANSI 
C evolved into the international standard known as ISO C. Part of this standard is 
a specific definition of the syntax of the C language. 

Since the term ISO C is still catching on, you'll still hear most C programmers 
refer to the ANSI C standard. The main difference between the two standards 
is that ISO C has extra functions in its Standard library to handle multibyte 
and wide characters. ISO C or ANSI C-either term is fine. The important 
thing to be aware of is that a strict C standard does exist. 

By the Way 

29 



C BASICS: FUNCTIONS 

30 

As we stated earlier, the syntax of a language provides a set of rules defining 
what is and isn't legal source code. For example, ISO C tells you when you can and 
can't use a semicolon. ISO C tells you to use a pair of parentheses after the name of 
your function, regardless of whether your function has any parameters. You get 
the idea. The greatest benefit to having an international standard for C is portabil­
ity. With a minimum of tinkering, you can get an ISO C program written on one 
computer up and running on another computer. When you finish with this book, 
you'll be able to program in C on any computer that has an ISO C compiler. 

Another part of the ISO C standard is the Standard Library, a set of functions 
available to every ISO C programmer. As you may have guessed, the print£ () 
function you've seen in our source code examples is part of the Standard Library. 
Take another look at the hello.µ project window from Chapter 2 (Figure 4.3). In 
the libraries section, the file ANS I ( 2 i ) C • 6 BK. Lib contains the Standard Library. 
Remember, when you see ANSI, think ISO! 

We'll spend a great deal of time working with the Standard Library in this 
book. Once you get comfortable with the Standard Library functions presented 
here, check out the C Library Reference on the Learn C CD. Spend some time going 
through each of the Standard Library functions to get a sense of the variety of func­
tions offered. 

-rm hello.JI 
File Code Data 19 

V source Oj Oj • 13 '"\".} 
he Ho .c i 0 l 0 i • Iii ............................................................................. ~ .................. ~ .................. ~ ......................... . 

v libraries i 0 i 0 i a 
MacOS.lib l 0 l 0 l JD 
ANSI (2i) C_68K_Lib ~ 0 ~ 0 ~ ~ 
SIOUX.68K.Lib . 0 l 0 l Ill 

............... ~.~.~~~~~~.~~.J~.~l~~!~ ........ l... ............ Q.l... ............ Q.L. ................ ~ .. 

5 file(s) 0 0 

Figure 4.3 The hello.µ project window, with the Standard Library highlighted. 



SAME PROGRAM, TWO FUNCTIONS 

Same Program, Two Functions 
As you start writing your own programs, you'll find yourself designing many in­
dividual functions. You might need a function that puts a form up on the screen for 
the user to fill out. You might need a function that takes a list of numbers as input, 
providing the average of those numbers in return. Whatever your needs, you will 
definitely be creating a lot of functions. Let's see how it's done. 

Our first program, hello, consisted of a single function, main ( ) , that passed 
the text string "Hello, world! \n" to printf ( ) . Our second program, hello2, 
captures that functionality in a new function, called SayHello ( ) . 

You've probably been wondering why the characters \n keep appearing at 
the end of all our text strings. Don't worry; there's nothing wrong with your 
copy of the book. The \n is perfectly normal. It tells printf () to move the 
cursor to the beginning of the next line in the text window, sort of like press­
ing the return key in a text editor. 

The sequence \n is frequently referred to as a carriage return, or just 
plain return. By including a return at the end of a printf (),we know that 
the next line we print will appear at the beginning of the next line in the text 
window. 

Opening hello2. µ 

In the Finder, open the Learn c Projects folder, open the subfolder named 
04. O 1 - hello2, and double-dick on the project file hello2. µ. A project win­
dow named hello2. rr will appear, as shown in Figure 4.4. lf you double-click on 
the name hello2. c in the project window, a source code editing window will ap­
pear, containing source code remarkably similar to this: 

#include <stdio.h> 

void SayHello( void); 

int main( void 
{ 

SayHello ( ) ; 

By the Way 

31 



C BASICS: FUNCTIONS 

32 

-··- .... 
hello2.J.l 

File Code Data 9 • 
V source 0! Oi Iii {t 

he 11o2 .c . 0 i 0 ! IB ~ ............................................................................. ~··················~ .................. ~ ......................... . 
v libraries i 01 01 1:1 

HacOS.lib j 0 j 0 j r.il 
ANSI (2i) C.68K.Lib ! 0 ! 0 ! III 
SIOUX .68K .Lib 1 0 j 0 j [ii 

............... '-1.~.!~~!~~.@~ ... ~~.~l~~!~ ........ L. ............ Q.l... ............ Q.l... .............. Jil .. 

5 file(s) 0 0 

Figure 4.4 The project window for hello.µ. 

return O; 
} 

void SayHello( void ) 
{ 

printf( "Hello, world!\n" ); 
} 

hello2 starts off with this line of source code: 

#include <stdio.h> 

You'll find this line (or a slight variation) at the beginning of each one of the pro­
grams in this book. It tells the compiler to include the source code from the file 
stdio.has it compiles hello2 • c. The file stdio. h contains information we'll need 
if we are going to call print£ ( ) in this source code file. You'll see the #include (pro­
nounced pound-include) mechanism used throughout this book, and we'll talk about 
it in detail later. For now, get used to seeing this line of code at the top of each of our 
source code files. 



SAME PROGRAM, TWO FUNCTIONS 

The two lines following the #include are blank. This is completely cool. 
Since the C compiler ignores all blank lines, you can use them to make your code 
a little more readable. I like to leave a few blank lines (at least) between each of my 
functions. 

This line of code appears next: 

void SayHello( void ) ; 

Although this line might look like a function specifier, don't be fooled! If this 
were a function specifier, it would not end with a semicolon, and it would be fol­
lowed by a left-curly brace ( {) and the rest of the function. This line is known as a 
function prototype, or function declaration. You'll include a function prototype 
for every function, other than main ( ) , in your source code file. 

To understand why, it helps to know that a compiler reads your source code 
file from the beginning to the end, a line at a time. By placing a complete list of 
function prototypes at the beginning of the file, you give the compiler a preview of 
the functions it is about to compile. The compiler uses this information to make 
sure that calls to these functions are made correctly. 

This will make a lot more sense to you once we get into the subject of para­
meters in Chapter 7. For now, get used to seeing function prototypes at the 
beginning of all your source code files. 

Next comes the function main ( ) . main ( ) first calls the function 
SayHello ( ) : 

int main( void 
{ 

SayHello ( ) ; 

At this point, the lines of the function SayHello () get run. When 
SayHello ( ) is finished, main ( ) can move on to its next line of code. The key­
word return tells the compiler to return from the current function, without exe­
cuting the remainder of the function. We'll talk about return in Chapter 7. Until 
then, the only place you' ll see this line is at the end of main ( ) . 

return O; 
} 

By the Way 

33 



C BASICS: FUNCTIONS 

34 

Following main ( ) is another pair of blank lines, followed by the function 
SayHello ( ) . SayHello () prints the string "Hello, world 1" in a window, 
then returns control to main ( ) . 

void SayHello( void ) 
{ 

printf( "Hello, world!\n" ); 
} 

Let's step back for a second and compare hello to hello2. In hello, 
main ( ) called printf ( ) directly. In hello2, main ( ) calls a function that calls 
pr intf ( ) . This extra layer demonstrates a basic C programming technique: tak­
ing code from one function and using it to create a new function. This example 
took the following line of code and used it to create a new function called 
SayHello ( ) : 

print£( "Hello, world!\n" ); 

This function is now available for use by the rest of the program. Every time we 
call the function SayHello ( ) , it's as if we executed the following line of code: 

print£( "Hello, world!\n" ); 

SayHello ( ) may be a simple function, but it demonstrates an important con­
cept. Wrapping a chunk of code in a single function is a powerful technique. 
Suppose that you create an extremely complex function, say, 100 lines of code in 
length. Now suppose that you call this function in five different places in your pro­
gram. With 100 lines of code, plus the five function calls, you are essentially achiev­
ing 500 lines of functionality. That's a pretty good return on your investment! 

Let's watch hello2 in action. 

Running hello2 • µ 

Select Run from the Project menu. You'll see a window similar to the one shown 
in Figure 4.5. Gee, this looks just like the output from Chapter 2's hello program. 
Of course, that was the point! Even though we embedded our print£ () inside 
the function SayHello ( ) , hello2 ran the same as hello. Select Quit from the 
File menu to exit hello2. 

Before we move on to our next program, let's get a little terminology out of the 
way. The window that appeared when you ran hello and hello2 is known as a 



SAME PROGRAM, TWO FUNCTIONS 

hello2.out 
S IOUX state : application has terminated . 

Hello, world! 
I 

Figure 4.5 The output from hello2. 

console window. The console window appears whenever you call a function like 
printf ( ) , that is, a routine that tries to display some text. The console window is 
one of the benefits you get by using the Standard Library. All the programs in this 
book take advantage of the console window. 

The text that appears in the console window is known as output. After you 
run a program, you're likely to check out the output that appears in the console to 
make sure that your program ran correctly. 

Another Example 

Imagine what would happen if you changed mai n ( ) in hello2 to read: 

int main( void 
{ 

} 

SayHello ( ) ; 
SayHello ( ) ; 
SayHello ( ) ; 

return O; 

.Q 

-0 
'Ri 

35 



C BASICS: .. UNCTIONS 

36 

I a 04.02 - he1103 ..-1 
: F.3 hello3 .. u. m 

E:J Macintosh HD 

( Eject ) 

( Desktop ) 

( Cancel ) 

'"---------~---- ( Open D 
0 • D Read Only 

Figure 4.6 This window appears when you select Open from CodeWarrior's File menu. 

What's different? In this version, we've added two more calls to SayHello ( ) . 
Can you picture what the console will look like after we run this new version? 

To find out, close the hello2 .µproject window and then select Open from 
CodeWarrior's File menu. When the window shown in Figure 4.6 appears, navigate 
into the folder named 04. 02 - hello3 and open the project named hello3 .µ. 

When you run hello3, the console window shown in Figure 4.7 will appear. 
Take a look at the output. Does it make sense to you? Each call to SayHello ( ) 
generates the text string "Hello, world!" followed by a carriage return. 

Once you're done staring at the console window, select Quit from the File 
menu and quit hello3. Note that you are quitting hello3 and not Code Warrior. 

Generating Some Errors 
Before we move on to the next chapter, let's see how the compiler responds to er­
rors in our source code. Back in Code Warrior, double-dick on the name hello3. c 
in the hello3 • µ project window (Figure 4.8). The source code window contain­
ing the hello3. c source code will appear. 

In the source code window, find the line of source code containing the function 
specifier for main ( ) . The line should read: 

int main( void ) 



GENERATING SOME ERRORS 

hello3.out 
SI OUX s t a t e: app l ication has terminated . 

Hel l o , world .Q 
He l l o , worl d 
He l l o , wor ld 
I 

-0 
I-=-
l!i 

Figure 4.7 The output from hello3. 

hello3.JJ 
File Code Data ~ ~ 

v source 0 ! 0 ! El -{} 
IB 

""V libraries 0 ! 0 ! Ef 
HacOS.lib O l O l IB 
ANS I (2i) C .68K .Lib 0 l 0 l [El 
SIOUX.68K.Lib . 0 ! 0 ! [El 

............... ~.~.~~~~~~-~~.J~.P.:~~~ ........ l... ........... .9.l... ........... .9.l... ................ ~ .. 

5 file(s) 0 0 

Figure 4.8 The hello3 . µ project window, with the source code file hello3 . c highlighted. 

37 



~BASICS: FUNCTIONS 

38 

Click at the end of the line, so the blinking cursor appears at the very end of 
the line. Now type a semicolon, so that the line reads: 

int main( void ); 

Here's the entire file, showing the tiny change you just made: 

#include <stdio.h> 

void SayHello( void ); 

int main( void ); 
{ 

} 

SayHello ( ) ; 
SayHello ( ) ; 
SayHello ( ) ; 

return O; 

void SayHello( void ) 
{ 

print£( "Hello, worldl\n" ); 
} 

Keep in mind that you added only a single semicolon to the source code; select 
Run from the Project menu. CodeWarrior knows that you changed your source 
code since the last time it was compiled and will try to recompile hello3 • c. 
Figure 4.9 shows the error window that appears, telling you that you've got a 
problem with your source code. Yikes! All that, just because you added a measly 
semicolon! Sometimes, the compiler will give you a perfectly precise message that 
exactly describes the error it encountered. In this case, however, the compiler got 
so confused by the extra semicolon that it reported six errors instead of just one. 
Notice, however, that the very first error message gives you a pretty good idea of 



GENERATING SOME ERRORS 

C)Error 
hel I o3 .c 

C)Error 
he 11 o3 . c 

Messa e Window 

dentifier 'SayHel lo' redeclared 
ne 9 SayHel lo ()~ 
dentifier 'SayHel lo' redeclared 
ne 10 SayHel lo ( )~ e Error dent if i er 'SayHe 11 o' redec I ared 

hel lo3 .c ne 11 SayHel lo()~ e Error : dee I ara t i on syn tax error 
hel lo3 .c I ine 13 return O; e Error : dee I ara t i on syn tax error 
he I I o3 . c I i ne 14 }_ 

Figure 4.9 Yikes! All this just because you added a single semicolon! 

what is going on. It complains about a syntax error on line 8 and then displays a 
left-curly brace ( {). If you click on the line you just modified, then look a t the bot­
tom of the source code window, you'll see that the line you added the semicolon to 
is line 7 and that the very next line (line 8) contains the left-curly b race in question. 

Use the mouse and the dele te key to dele te the offending semicolon at the end 
of the firs t line of code. Select Run from the Project menu again. This time, the 
code should compile without a hitch. Once the code is compiled, Code Warrior w ill 
run it, proving that your source code is now fixed. 

The Importance of Case in C 

Many types of errors are possible in C programming. One of the most common re­
sults from the fact tha t C is a case-sensitive language. In a case-sensitive language, 
there is a b ig d ifference behveen lower- and uppercase letters. This means that you 
can' t refer to pri ntf ( ) as Printf ( ) or even PRINTF ( ) . Figure 4.10 shows the 
error message you 'll get if you change your p r intf ( ) call to PRINTF ( ) . This mes­
sage is telling you tha t Code Warrior couldn' t find a function named PRINTF ( ) . To 
fix this problem, just change PRINTF ( ) to pr intf ( ) and recompile. 

39 



C BASICS: FUNCTIONS 

40 

Messa e Window 

Figure 4.10 The error reported by Code Warrior for use of incorrect case in call to printf ( ) . 

What's Next? 
Congratulations! You've made it through basic training. You know how to open a 
project, how to compile your code, and even how to create an error message or 
two. You've learned about the most important function: main ( ) . You've also 
learned about printf () and the Standard Library. 

Now you're ready to dig into the stuff that gives a C program life: variables 
and operators. 

Exercises 
Open the project hello2 . µ, edit hello2. c as described in each exercise, and 
describe the error that results: 

1. Change the line: 

SayHello() 

to say: 

SayHello( 



2. Change things back. Now change the line: 

main() 

to say: 

Main() 

3. Change things back. Now delete the {after the line: 

main() 

4. Change things back. Now delete the semicolon at the end of this line: 

printf("Hello, world!\n"); 

so it reads: 

printf("Hello, world!\n") 

EXERCISES 

41 



------------Qq~5 
C Basics: Variables 

and Operators 
At this point, you should feel pretty comfortable with the CodeWarrior environ­
ment. You should know how to open a project and how to edit a project's source 
code. You should also feel comfortable running a project and (heaven forbid) fix­
ing any syntax errors that may have occurred along the way. 

On the programming side, you should recognize a function when you see one. 
When you think of a function, you should first think of main ( ) , the most impor­
tant function. You should remember that functions are made up of statements, 
each of which is followed by a semicolon. 

With these things in mind, we're ready to explore the foundation of C pro­
gramming: variables and operators. Variables and operators are the building 
blocks you'll use to construct your program's statements. 

An Introduction to Variables 
A large part of the programming process involves working with data. You might 
need to add a column of numbers or sort a list of names alphabetically. The tricky 
part of this process is representing your data in a program. This is where variables 
come in. 

Variables can be thought of as containers for your program's data. Imagine 
three containers on a table. Each container has a label: cupl, cup2, and cup3. 
Now imagine that you have three pieces of paper. Write a number on each piece of 
paper and place one piece inside each of the three containers. Figure 5.1 shows 
what this might look like. 

Now imagine asking a friend to reach into the three cups, pull out the number 
in each one, and add the three values. You can ask your friend to place the sum of 
the three values in a fourth container created just for this purpose. The fourth con­
tainer is labeled sum and is shown in Figure 5.2. 

This is exactly how variables work. Variables are containers for your pro­
gram's data. You create a variable and place a value in it. You then ask the com­
puter to do something with the value in your variable. You can ask the computer 

43 



C BASICS: VARIABLES AND OPERATORS 

44 

Figure 5.1 Three containers, each with its own value. 

to add three variables and place the result in a fourth variable. You can even ask 
the computer to take the value in a variable, multiply it by 2, and place the result 
back into the original variable. 

Getting back to our example, now imagine that you changed the values in 
cupl, cup2, and cup3. Once again, you could call on your friend to add the three 
values, updating the value in the container sum. You've reused the same variables, 
using the same formula, to achieve a different result. Here's the C version of this 
formula: 

sum = cupl + cup2 + cup3; 

Every time you execute this line of source code, you place the sum of the vari­
ables cupl, cup2, and cup3 into the variable named sum. At this point, it's not 
important to understand exactly how this line of C source code works. What is im­
portant is to understand the basic idea behind variables. Each variable in your pro­
gram is like a container with a value in it. This chapter will teach you how to create 
variables and how to place a value in a variable. 

Figure 5.2 A fourth container, containing the sum of the other three containers. 

\ 



AN INTRODUCTION TO VARIABLES 

Working with Variables 
Variables come in a variety types~ A variable's type determines the kind of data 
that can be stored in that variable. You determine a variable's type when you cre­
ate the variable. (We'll discuss creating variables in just a second.) Some variable 
types are useful for working with numbers. Other variable types are designed to 
work with text. In this chapter, we'll work only with variables of one type: a nu­
merical type called int. (In Chapter 8, we'll get into other variable types.) A vari­
able of type int can hold a numerical value, such as 27 or -589. 

Working with variables is a two-stage process. First, you create a variable; then 
you use the variable. In C, you create a variable by declaring it. Declaring a vari­
able tells the compiler, "Create a variable for me. I need a container to place a piece 
of data in." When you declare a variable, you have to specify both the variable's 
type and its name. In our earlier example, we created four containers, each having 
a label. In the C world, this would be the same as creating four variables with the 
names cupl, cup2, cup3, and sum. In C, if we want to use the value stored in a 
variable, we use the variable's name. We'll show you how to do this later in the 
chapter. 

Here's an example of a variable declaration: 

int myVariable; 

This declaration tells the compiler to create a variable of type int (remember, 
an int is useful for working with numbers) with the name myvariable. The type 
of the variable (in this case, int) is extremely important. As you'll see, a variable 
type determines the kind and range of values a variable can be assigned. 

Variable Names 
Here are two rules to follow when you create your own variable names: 

• Variable names must always start with an upper- or lowercase letter (A, B, ... , 
Z or a, b, ... , z) or with an underscore LJ. 

• The remainder of the variable name must be made up of upper- or lowercase 
letters, numbers (0, 1, ... , 9), or the underscore. 

These two rules yield such variable names as myVariable, THIS_NUMBER, 
VaRiAbLe_l, and A1234_ 4321. Note that a C variable may never include a space 
or a character such as & or*. These two rules must be followed. 

On the other hand, these rules do leave a fair amount of room for inventive­
ness. Over the years, different groups of programmers came up with additional 

45 



C BASICS: VARIABLES AND OPERATORS 

Warning 

46 

guidelines (also known as conventions) that made variable names more consistent 
and a bit easier to read . 

As an example of this, UNIX programmers tended to use all lowercase letters 
in their variable names. When a variable name consisted of more than one word, 
the words were separated by an underscore. This yielded variable names like 
rny_variable or nurnber_of_puppies. 

Macintosh programmers tend to follow a naming convention established by 
their SmallTalk cousins. We'll use this convention throughout the book: 

• We'll form our variable names from lowercase letters and numbers, always 
starting with a lowercase letter. This yields variable names like number or 
digit33. 

• When we create a variable with more than one word, we'll start the variable 
name with a lowercase letter and each successive word in the variable name 
with an uppercase letter. This yields variable names like rnyVariable or 
howMany. 

As mentioned in Chapter 4, C is a case-sensitive language. The compiler will 
cough out an error if you sometimes refer to rnyVariable and other times refer to 
rnyvariable. Adopt a naming convention and stick with it: Be consisten t! 

The Size of a Type 
When you declare a variable, the compiler reserves a section of memory for the ex­
clusive use of that variable. When you assign a value to a variable, you are modi­
fying the variable's dedicated memory to reflect that value. The number of bytes 
assigned to a variable is determined by the variable's type. You should check your 
compiler's documentation to see how many bytes go along with each of the stan­
dard C types. 

Some Macintosh compilers assign 2 bytes to each int. Others assign 4 bytes to 
each int. By default, Code Warrior uses 2-byte in t s. 

It's important to understand that the size of a type can change, depending on 
such factors as your co.,mputer's processor type and operating system 
(MacOS versus Windows, for example) and your development environment: 
Remember, read the manual that comes with your compiler. 



AN INTRODUCTION TO VARIABLES 

Let's continue with the assumption that CodeWarrior is using 2-byte ints. 
The following variable declaration reserves memory (in our case, 2 bytes) for the 
exclusive use of the variable myint: 

int myint; 

If you later assign a value to my Int, that value is stored in the 2 bytes allocated for 
myint. If you ever refer to the value of myint, you'll be referring to the value 
stored in myint's 2 bytes. 

If your compiler used 4-byte in ts, the preceding declaration would allocate 4 
bytes of memory for the exclusive use of myint. As you'll see, it is important to 
know the size of the each type you are dealing with. 

Why is the size of a type important? The size of a type determines the range of 
values that the type can handle. As you might expect, a type that's 4 bytes in size 
can hold a wider range of values than a type that's only 1 byte in size. 

Bytes and Bits 

Each byte of computer memory is made up of 8 bits. Each bit has a value of either 
1 or 0. Figure 5.3 shows a byte holding the value 001O1O11. The value O O 1O1O11 

is said to be the binary representation of the value of the byte. Look more closely 
at Figure 5.3. Each bit is numbered (above each bit in the figure), with bit 0 on the 
extreme right side and bit 7 on the extreme left. Most computers use this standard 
bit-numbering scheme. 

Notice also the labels ("Add l," "Add 2," and so on) that appear beneath each 
bit in the figure. These labels are the key to binary numbers. Memorize them. (It's 
easy-each bit is worth twice the value of its neighbor to the right.) These labels 
are used to calculate the value of the entire byte. Here's how it works: 

• Start with a value of 0. 

• For each bit with a value of 1, add the label value below the bit. 

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

[QlQJOJ[QJ[J[QJ[J[J 
Figure 5.3 A byte holding the binary value 00101011. 

47 



C BASICS: VARIABLES AND OPERATORS 

Important 

48 

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

[QJITJ[QJITJITJ[QJITJ[QJ 
Add 128 Add 64 Add 32 Add 16 Add 8 Add 4 Add 2 Add 1 

Figure 5.4 What's the value of this byte? 

That's all there is to it! In the byte pictured in Figure 5.3, you'd calculate the 
byte's value by adding 1 + 2 + 8 + 32 = 43. Where did we get the 1, 2, 8, and 32? 
They're the bottom labels of the only bits with a value of 1. Try another one. 
What's the value of the byte pictured in Figure 5.4? 

Easy, right? Just 2 + 8 + 16 + 64 = 90. Right! How about the byte in Figure 5.5? 
This is an interesting one: 1 + 2 + 4 + 8 + 16 + 32 + 64 + 128 = 255. This exam­

ple demonstrates the largest value that can fit in a single byte. Why? Because 
every bit is turned on. We've added everything we can add to the value of the 
byte. 

The smallest value a byte can have is 0 (00000000). Since a byte can range in 
value from 0 to 255, a byte can have 256 possible values. 

This is just one of several ways to represent a number using binary. This ap­
proach is fine if you want to represent integers that are always greater than 
or equal to 0 (known as unsigned integers). Computers use a different tech­
nique, known as two's complement notation, to represent integers that 
might be either negative or positive. 

To represent a negative number using two's complement notation: 

• Start with the binary representation of the positive version of the 
number. 

• Complement all the bits (tum the ls into Os and the Os into ls). 

• Add 1 to the result. 

For example, the binary notation for the number 9is00001001. To rep­
resent -9 in two's complement notation, flip the bits (11110110) and then 
add 1. The two's complement for -9 is 11110110 + 1 = 11110111. 

The binary notation for the number 2 is 00000010. The two's comple­
ment for -2 would be 11111101 + 1 = 11111110. Notke that in binary 
addition, when you add 01 + 01, you get l 0. Just as in regular addition, 
you carry the 1 to the next column. 



AN INTRODUCTION TO VARIABLES 

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

[!JOJOJOJ[IIJ[J[J 
Figure 5.5 Last one: What's the value of this byte? 

Don't worry about the details of binary representation and arithmetic. What's 
important to remember is that the computer uses one notation for positive-only 
numbers and a different notation for numbers that can be positive or negative. 
Both notations allow a byte to take on one of 256 different values. The positives­
only scheme allows values ranging from 0 to 255. The two's complement scheme 
allows values ranging from -128 to 127. Note that both of these ranges contain ex­
actly 256 values. 

Going from 1 to 2 Bytes 

So far, we've discovered that 1 byte (8 bits) of memory can hold one of i = 256 pos­
sible values. By extension, 2 bytes (16 bits) of memory can hold one of i16 = 65,536 
possible values. If the 2 bytes are unsigned (never allowed to hold a negative 
value), they can hold values ranging from 0 to 65,535. If the 2 bytes are signed (al­
lowed to hold both positive and negative values), they can hold values ranging 
from - 32,768 to 32,767. 

By default, most C data types are signed (allowed to hold both positive and 
negative values). This means that a variable declared as follows is signed and, as­
suming a 2-byte int, can hold values ranging from -32,768 to 32,767: 

int myint; 

..-

To declare a variable as unsigned, precede its declaration with the un­
signed qualifier. Here's an example: 

unsigned int myint~ 

This version of myint (again, assuming 2-byte in t s) can hold values 
ranging from 0 to 65,535. 

Important 

49 



C BASICS: VARIABLES AND OPERATORS 

By the Way 

50 

Now that you've defined the type of variable your program will use (in this 
case, int), you can assign a value to your variable. 

Operators 
One way to assign a value to a variable is with the= operator, also known as the 
assignment operator. An operator is a special character (or set of characters) rep­
resenting a specific computer operation. The assignment operator tells the com­
puter to compute the value to the right of the = and to assign that value to the left 
of the =. Take a look at this line of source code: 

myint = 237; 

This statement causes the value 237 to be placed in the memory allocated for 
my Int. In this line of code, myint is known as an I-value (for left-value) because 
it appears on the left side of the = operator. A variable makes a fine I-value. A num­
ber (like 237) makes a terrible I-value. Why? Because values are copied from the 
right side to the left side of the= operator. For example, the following line of code 
asks the compiler to copy the value in myint to the number 237: 

237 = myint; 

Since you can't change the value of a number, the compiler will report an error 
when it encounters this line of code (most likely, the error message will say some­
thing like "I-value expected"). 

As we just illustrated, you can use numerical constants (such as 237) directly 
in your code. In the programming world, these constants are called literals. 
Just as there are different types of variables, there are also different types of 
literals. You'll see more on this topic later in the book. 

Look at this example: 

int main( void ) 
{ 

int myint, anotherint; 

myint = 503; 



another Int myint; 

return O; 
} 

Notice we've declared two variables in this program. One way to declare mul­
tiple variables is the way we did here, separating the variables by a comma (, ). 
There's no limit to the number of variables you can declare using this method. 

We could have declared these variables by using two separate declaration 
lines: 

int myint; 
int anotherint; 

Either way is fine. As you'll see, C is an extremely flexible language. However, 
there is one rule of thumb you should keep in mind. Although there are excep­
tjons, you'll generally declare all your variables before any other type of statement 
occurs. Consider this example: 

int main( void 
{ 

int myint; 

myint = 503; 

int anotherint; 

anotherint = myint; 

return O; 
} 

This program will not compile (see the errors in Figure 5.6). Why? A variable 
(anotherint) was declared after a nondeclaration statement (myint = 503). 

Here's the corrected version: 

int main( void 
{ 

int myint; 
int anotherint; 

OPERATORS 

51 



C BASICS: VARIABLES AND OPERATORS 

52 

} 

myint = 503; 
a nother Int 

return O; 

myint; 

This program starts by declaring two in t s: 

int myint; 
int another!nt; 

Next, the program assigns the value 503 to my Int: 

my!nt = 503; 

Finally, the value in my Int is copied into another Int: 

anotherint = my!nt; 

After this last statement, the variable anotherint also contains the value 503. 

Messa e Window 

()Error : undefined identifier 'another Int' 
intTes ter.c I ine 9 another Int = my Int; 

Figure 5.6 These errors occurred because anotheri nt was declared after an assign­
ment statement. 



Here's another version of our program that also compiles: 

int main( void ) 

{ 

int myint; 

myint 503; 
{ 

int anotherint; 

another Int = myint; 
} 

return O; 
} 

Wait a sec. This version declares a variable (anotherint) after a nonde­
claration statement. So how come it compiles? The left-curly ({)after the as­
signment statement starts a new block of code, which gives you another 
opportunity to declare more variables. The right-curly (}) ends the block. 

Although this may be -interesting, it doesn't come up that often. Your best 
bet is to stick to the strategy of declaring a function's variables at the begin­
ning of the function. 

Why go to all this effort just to assign a value to a variable? Think of it as learn­
ing to crawl before you can walk. As we cover more and more of the C language, 
you' ll start to see some of the fantastic things you can accomplish . At the begin­
ning of this chapter, we looked at an example that took the values from three con­
tainers, added them, and placed the result in a fourth container. Tha t's what this is 
all about. C variables and operators allow you to manipulate and manage data in­
side a program. The da ta might represent your baseball card collection or the flight 
path of the Mars lander. Variables and operators allow you to massage the da ta to 
get the results you want. Have patience and keep reading. 

Let's look a t some other operators. 

OPERATORS 

By the Way 

53 



C BASICS: VARIABLES AND OPERATORS 

54 

The+,-,++, and -- Operators 
The + and - operators each take two values and reduce them to a single value. For 
example, the following statement will first resolve the right side of the =by adding 
the numbers 5 and 3. 

myint = 5 + 3; 

Once that's done, the resulting value (8) is assigned to the variable on the left side 
of the=. This statement assigns the value 8 to the variable myint. Assigning a 
value to a variable means copying the value into the memory allocated to that 
variable. 

Here's another example: 

myint = 10; 
anotherint = 12 - myint; 

The first statement assigns the value 10 to myint. The second statement sub­
tracts 10 from 12 to get 2, then assigns the value 2 to anotherint. 

The ++ and -- operators operate on a single value only. The ++ operator in­
crements (raises) the value by 1, and -- decrements (lowers) the value by 1. Take 
a look: 

myint = 10; 
myint++; 

The first statement assigns myint a value of 10. The second statement 
changesthe value of myint from 10to11. Here's an example with--: 

myint = 10; 
myint; 

This time, the second line of code left myint with a value of 9. You may have 
noticed that the first example showed the++ following myint, whereas the second 
example showed the -- preceding myint. 

The position of the++ and -- operators determines when their operation is 
performed in relation to the rest of the statement. Placing the operator to the right 
of a variable or an expression (postfix notation) tells the compiler to resolve all val­
ues before performing the increment (or decrement) operation. Placing the opera­
tor to the left of the variable (prefix notation) tells the compiler to increment (or 



decrement) first, then continue evaluation. Confused? The following examples 
should make this point clear: 

rnyint = 10; 
anotherint = rnyint--; 

The first statement assigns rnyint a value of 10. In the second statement, the -­
operator is to the right of my Int. This use of postfix notation tells the compiler to as­
sign rnyint's value to anotherint before decrementing rnyint. This example 
leaves my Int with a value of 9 and another Int with a value of 10. 

Here's the same example, written using prefix notation: 

rnyint = 10; 
anotherint = -- rnyint ; 

This time, the -- is to the left of rnyint. In this case, the value of rnyint is 
decremented before being assigned to anotherint. The result? Both rnyint and 
another Int are left with a value of 9. 

This use of prefix and postfix notation shows both a strength and a weakness 
of the C language. The strength is that C allows you to accomplish a lot in a 
small amount of code. In the previous examples, we changed the value of 
two different variables in a single statement. C is powerful. 

The weakness is that C code written in this fashion can be extremely 
cryptic, difficult to read for even the most seasoned C programmer. 

Write your code carefully. 

The += and -= Operators 

In C, you can place the same variable on both the left and right sides of an assign­
ment statement. For example, the following statement increases the value of 
rnyint by 10: 

rnyint = rnyint + 10 ; 

The same results can be achieved using the += operator: 

rnyint += 10; 

OPERATORS 

By the Way 

55 



C BASICS: VARIABLES AND OPERATORS 

Important 

56 

In other words, the preceding statement is the same as: 

myint = myint + 10; 

In the same way, the-= operator can be used to decrement the value of a vari­
able. The following statement decrements the value of myint by 10: 

myint -= 10; 

The *, I, *=, and I= Operators 

The * and I operators each take two values and reduce them to a single value, 
much the same as the+ and - operators do. The following statement multiplies 3 
and 5, leaving myint with a value of 15: 

myint = 3 * 5; 

The following statement divides 5 by 2 and, if myint is declared as an int (or 
any other type designed to hold whole numbers), assigns the integral (truncated) 
result to myint: 

myint = 5 I 2; 

The number 5 divided by 2 is 2.5. Since myint can hold only whole numbers, the 
value 2.5 is truncated, and the value 2 is assigned to myint. 

Math alert! Numbers like -37, 0, and 22, are known as whole numbers, or 
integers. Numbers like 3.14159, 2.5, and .0001 are known as fractional, or 
floating-point, numbers. 

The *= and I= operators work much the same as their += and -= counter­
parts. The following two statements are identical: 

myint *= 10; 

myint = myint * 10; 

The following two statements are also identical: 



OPERATOR ORDER 

rnyint /= 10; 

rnyint = rnyint I 10; 

The I operator doesn't perform its truncation automatically. The accuracy of 
the result is limited by the data type of the operands. As an example, if the di­
vision is performed using in ts, the result will be an int and is truncated to 
an integer value. 

Several data types (such as float, introduced in Chapter 8) support 
floating-point division, using the I operator. 

Operator Order 
Using Parentheses ( ) 

Sometimes, the expressions you create can be evaluated in many ways. For example: 

rnyint = 5 + 3 * 2; 

You can add 5 + 3, then multiply the result by 2 (giving you 16). Alternatively, 
you can multiply 3 * 2 and add 5 to the result (giving you 11). Which is correct? 

Chas a set of built-in rules for resolving the order of operators. As it turns out, 
the * operator has a higher precedence than the + operator, so the multiplication 
will be performed first, yielding a result of 11. 

Although it helps to understand the relative precedence of the C operators, it 
is difficult to keep track of them all. That's why the C gods gave us parentheses! 
Use parentheses in pairs to define the order in which you want your operators per­
formed. The following statement will leave rnyint with a value of 16: 

rnyint = ( 5 + 3 ) * 2; 

The following statement will leave rnyint with a value of 11: 

rnyint = 5 + ( 3 * 2 ); 

You can use more than one set of parentheses in a statement, as long as they 
occur in pairs-one left parenthesis associated with each right parenthesis. The fol­
lowing statement will leave rnyint with a value of 16: 

rnyint = ( ( 5 + 3 ) * 2 ); 

By the Way 

57 



C BASICS: VARIABLES AND OPERATORS 

58 

Resolving Operator Precedence 

As mentioned previously, Chas built-in rules for resolving operator precedence. 
If you have a question about which operator has a higher precedence, refer to the 
chart in Figure 5.7. Here's how the chart works. 

The higher an operator is in the chart, the higher its precedence. For example, 
suppose that you are trying to predict the result of this line of code: 

myint = 5 * 3 + 7; 

First, look up the operator * in the chart. Hmmm ... * seems to be in the chart 
twice: once with label pointer and once with the label multiply. You can tell 
just by looking at this line of code that we want the multi ply version. The com­
piler is pretty smart. Just like you, it can tell that this is the multi ply version of*. 

OK, now look up+. Yup, it's in there twice also: once as unary and once as 
binary. A unary+ or - is the sign that appears before a number, as in +147 or 

Operators by Precedence Order 

- >, ., +-tPOstfix
1 

__ postfix 

*pointer, &addressol, + i.nary, . i.nary, ! '-, ++P<•, _ prefix, sizeof 
Typecast 
*mutt~Y, /, O/o 

+bina 1Y 
1 

.Jl lnary 

<<lef~sl>ft1 >>igit-stlt 

>, >=, <, <=, 
==, != 
& bitwise-and 

/\ 

I 
&& 

II 
?: 
=, +=, -=, *=,I=, o/o=, >>=, <<=, &=, I=,"= 

Left to Right 
Right to Left 
Right to Left 
Left to Right 
Left to Right 
Left to Right 
Left to Right 
Left to Right 
Left to Right 
Left to Right 
Left to Right 
Left to Right 
Left to Right 
Right to Left 
Right to Left 
Left to Right 

Figure 5.7 The relative precedence of C's built-in operators. The higher its position in the 

chart, the higher the operator's precedence. 



OPERATOR ORDER 

-32768. In our line of code, the + operator has two operands, so clearly binary + 
is the one we want. 

Now that you've figured out which operator is which, you can see that the 
multiply * is higher up on the chart than the binary + and thus has a higher 
precedence. This means that the * will get evaluated before the +, as if the expres­
sion were written as: 

myint = (5 * 3) + 7; 

So far, so good. Now consider this line of code: 

myint = 27 * 6 % 5; 

Both of these operators are on the fourth line in the chart. Which one gets evalu­
ated first? If both operators under consideration are on the same line in the chart, 
the order of evaluation is determined by the entry in the chart's rightmost column. 
In this case, the operators are evaluated from left to right. In the current example, 
% will get evaluated before *, as if the line of code were written: 

myint = 27 * (6 % 5); 

Now look at this line of code: 

myint = 27 % 6 * 5; 

In this case, the * will get evaluated before the %, as if the line of code were written: 

myint = 27 % (6 * 5); 

Of course, you can avoid this exercise altogether with a judicious sprinkling 
of parentheses. As you look through the chart, you'll definitely notice some oper­
ators that you haven't learned about yet. As you read through the book and en­
counter new operators, check back on the chart to see where it fits in. In fact, go 
ahead and dogear the page (pay for the book first, though!) so you can find the 
chart again later. 

Sample Programs 
So far in this chapter, we've discussed variables (mostly of type int) and opera­
tors (mostly mathematical). The program examples on the following pages com-

59 



C BASICS: VARIABLES AND OPERATORS 

60 

bine variables and operators into useful C statements. We'll also learn about a 
powerful part of the Standard Library, the print£ () function. 

Opening operator. J.l 

Our next program, operator.µ, provides a testing ground for some of the oper­
ators covered in the previous sections. operator. c declares a variable (myint) 
and uses a series of statements to change the value of the variable. By including a 
print£ ( ) after each of these statements, operator. c makes it easy to follow the 
variable, step by step, as its value changes. 

Start up Code Warrior by double-clicking on the project file operator.µ in­
side the Learn c Projects folder, in the subfolder named 05. 01 - operator. 
The project window for operator.µ should appear (Figure 5.8). 

Run operator.µ by selecting Run from the Project menu. CodeWarrior 
will first attempt to compile operator. c, turning it into an application named 
operator. If you haven't mucked around with the source code, things should 
proceed smoothly, resulting in a clean compile. Once the code compiles, 
CodeWarrior will run operator, displaying information in the console window. 

operator.JI 
File Code Data 19 ~ 

V source Oi Di f3 {} . . . ~ 

operator .c i 0 i 0 i ID ............................................................................. '°' ..................................... '°' ........................ .. 
V libraries i O~ Di Iii 

HacOS.lib ~ 0 i 0 ~ ID 
ANS I (2i) C .68K .Lib l 0 l 0 l Iii 
SIOUX.68K.Lib ~ 0 j 0 ~ JD 

............... ~.~.!~~!~~.~~ ... (~.~l~~!~ ........ L. ............ 9.l... ............ 9.l... ................ W .. 

5 file(s) 0 0 

Figure 5.8 The operator.µ project window. 



SAMPLE PROGRAMS 

The information displayed by your program is also known as your program's out­
put. Compare your output to that shown in Figure 5.9. They should be the same. 

In ancient times, programmers used character-based displays to communi­
cate with their computers. These displays were called consoles. A typical con­
sole screen supported 24 rows of text, each up to 80 columns wide. When the 
computer wanted to communicate with you, it displayed some characters on 
your console. To respond to the computer, you'd type at your keyboard. The 
characters you typed would also appear on your console. 

Programmers love character-based displays because they' re simple. To 
display text on a window-based system (like the Macintosh), you have to 
worry about things like text font, size, and style. You have to worry about lin­
ing all your text up just right. 

With a character-based display, you didn't worry about things like that. 
Typically, you just sent the text out to the display, one line at a time. When 
you reached the bottom of the screen, the console would scroll the text auto­
matically. So easy! 

operator.out 
S IOUX state: application has terminated . 

mylnt ---> 6 
mylnt ---> 7 
mylnt ---> 2 
mylnt ---> 20 
mylnt - --> 5 
myl nt ---> 2 

Figure 5.9 The output generated by operator. 

By the Way 

_.. 

~ 

~ 
llf 

61 



C BASICS: VARIABLES AND OPERATORS 

By the Way 

62 

Modem programming environments, such as Code Warrior, offer you the 
best of both worlds. For example, CodeWarrior supports all the elements 
specific to the Macintosh, such as pull-down menus, scroll bars, windows, 
and icons. (Once you feel comfortable with C, get a copy of the Macintosh C 
Programming Primer. It will teach you how to add those Mac-specific elements 
to your programs.) 

CodeWarrior also features a standard, scrolling console window. The 
console window is essentially a 24-line, 80-column display console embed­
ded in a Macintosh window. Since many of the Standard Library routines, 
such as printf ( ) , were designed with this simpler, character-based display 
in mind, we'll make extensive use of the console window as We learn C. 

Stepping Through the Source Code 

Before we step through the source code in operator. c , you might want to bring 
the source code up on your screen (double-click on the name operator. c in the 
project window, or select Open from the File menu). A new window will appear, 
listing the source code in the file operator . c . 

The file operator . c starts off with a # include statement that gives us ac­
cess to a bunch of Standard Library functions, including printf ( ) : 

# include <stdio . h> 

Then, main ( ) starts out by defining an int named my Int . 

int main( void 
{ 

int myint; 

Note that earlier the term "declaring a variable" was used; now the term 
"defining" is being used. What's the difference? A variable declaration is any 
statement that specifies a variable's name and type-for example: 

int myint; 

A variable definition is a declaration that causes memory to be allocated for 
the variable. Since the previous statement does cause memory to be allocated 
for myint, it does qualify as a definition. Later in the book, you'll see some 



SAMPLE PROGRAMS 

declarations that don't qualify as definitions. For now, just remember that a 
definition causes memory to be alfocated. 

At this point in the program (after myint has been declared but before any 
value has been assigned to it), myint is said to be uninitialized. In computerese, 
the term initialization refers to the process of establishing a variable's value for 
the first time. A variable that has been declared but that has not had a value as­
signed to it is said to be uninitialized. You initialize a variable the first time you 
give it a value. 

Since myint was declared to be of type int and since CodeWarrior is cur­
rently set to use 2-byte in t s, 2 bytes of memory were reserved for my Int. Since 
we haven't placed a value in those 2 bytes yet, they could contain any value at all. 
Some compilers place a value of 0 in a newly allocated variable; some do not. The 
key is, don't depend on a variable being preset to a specific value. If you want a 
variable to contain a specific value, assign the value to the variable yourself! 

Later in the book, you'll learn about global variables. Global variables are al­
ways given an initial value by the compiler. All the variables used in this 
chapter are local variables, not global variables. Local variables are not guar­
anteed to be initialized by the compiler. 

The next line of code uses the * operator to assign a value of 6 to myi nt. 
Following that, we use printf () to display the value of myint in the console 
window: 

myint 3 * 2; 
printf ( "myint ---> %d\n", my Int ) ; 

The code between printf () 's left and right parentheses is known as a para­
meter list. The parameters, or arguments, in a parameter list are automatically 
provided to the function you are calling (in this case, printf ()). The receiving 
function can use the parameters passed to it to determine its next course of action. 
We'll get into the specifics of parameter passing in Chapter 7. For the moment, let's 
talk about printf () and the parameters used by this Standard Library function. 

The first parameter passed to printf () defines what will be drawn in the 
console window. The simplest call to printf () uses a quoted text string as its 

Important 

63 



C BASICS: VARIABLES AND OPERATORS 

By the Way 

64 

only parameter. A quoted text string consists of a pair of double-quote characters 
( ") with zero or more characters between them. For example, this call of 
pr intf ( ) will draw the characters Hello! in the console window: 

printf( "Hello!" ); 

Notice that the double-quote characters are not part of the text string. 
You can request that printf () draw a variable's value in the midst of the 

quoted string. In the case of an int, do this by embedding the two characters %d 
within the first parameter and by passing the int as a second parameter. Then, 
pr intf ( ) will replace the %d with the value of the int. 

In these two lines of code, we first set myint to 6 and use printf () to print 
the value of my Int in the console window: 

myint = 3 * 2; 
printf ( "myint ---> %d\n", myint ) ; 

This code produces the fol lowing line of output in the console window: 

myint ---> 6 

The two characters "\n" in the first parameter represent a carriage return and 
tell printf () to move the cursor to the beginning of the next line before it prints 
any more characters. 

The %d is known as a format specifier. The d in the format specifier tells 
printf () that you are printing an integer variable, such as an int. We'll 
cover format specifiers in detail in Chapter 8. 

You can place any number of% specifications in the first parameter, as long as 
you follow the first parameter by the appropriate number of variables. Here's an­
other example: 

intvarl, var2; 

varl = 5; 
var2 = 10; 
printf ( "varl %d\n\nvar2 %d\n", varl, var2 ) ; 



SAMPLE PROGRAMS 

The preceding code will draw the following text in the console window: 

varl = 5 

var2 = 10 

Notice the blank line between the two lines of output. It was caused by the "\n \n" 
in the first print£ () parameter. The first carriage return placed the cursor at the 
beginning of the next console line (directly under the v in varl}. The second car­
riage return moved the cursor down one more line, leaving a blank line in its path. 

Let's get back to our source code. The next line of operator. c increments 
myint from 6 to 7 and prints the new value in the console window: 

myint += l; 
printf( "myint ---> %d\n", myint ); 

The next line decrements myint by 5 and prints its new value, 2, in the con­
sole window: 

myint -= 5: 
printf ( "myint ---> %d\n", myint ) ; 

Next, myint is multiplied by 10, and its new value, 20, is printed in the con­
sole window: 

myint *= 10: 
printf( "myint ---> %d\n", myint ); 

Next, myint is divided by 4, resulting in a new value, 5. 

myint /= 4; 
printf( "myint ---> %d\n", myint ); 

Finally, myint is divided by 2. Since 5 divided by 2 is 2.5 (not a whole num­
ber}, a truncation is performed, and myint is left with a value of 2: 

myint /= 2; 
printf ( "myint ---> %d 11

, myint ) ; 

return O; 
} 

65 



C BASICS: VARIABLES AND OPERATORS 

66 

Opening postfix.µ 

Our next program demonstrates the difference between postfix and prefix notation 
(the ++ and -- operators defined earlier in the chapter). In the Finder, go into the 
Learn c Projects folder, then into the 05 . 02 - postfix subfolder, and 
double-click on the project file postfix.µ . Code Warrior will close the project file 
operator .µ and open postfix.µ . 

Take a look at the source code in the file postfix. c and try to predict the re­
sult of the two printf () calls before you run the program. Remember, you can 
open a source code listing for postfix. c by double-clicking on the name 
postfix. c in the project window. Careful, this one's tricky. 

Once your guesses are locked in, select Run from the Project menu. How'd 
you do? Compare your two guesses with the output in Figure 5.10. Let's look at 
the source code. 

mylnt ---> 5 
myl nt --> 7 

postfiH.OUt 

Figure 5.10 The output generated by the program postfix. 

Stepping Through the Source Code 

The firs t half of postfix. c is pretty straightforward . The variable myint is de­
fined to be of type int. Then, myint is assigned a value of 5. The tricky part 
comes next: 



SAMPLE PROGRAMS 

#include <stdio.h> 

intmain( void ) 

{ 

int myint; 

my Int = 5; 

The first call to print£ () has a statement embedded in it. This is another 
great feature of the C language. Where there's room for a variable, there's room for 
an entire statement. Sometimes, it's convenient to perform two actions within the 
same line of code. For example: 

print£( "myint ---> %d\n", myint = myint * 3 ); 

This line of code first triples the value of my Int, then passes the result (the tripled 
value of myint) on to print£ ( ) . The same could have been accomplished using 
two lines of code: 

myint = myint * 3; 
print£ ( "myint ---> %d\n", myint ) ; 

In general, when the compiler encounters an assignment statement where it 
expects a variable, it first completes the assignment, then passes on the result of the 
assignment as if it were a variable. Let's see this technique in action. 

In postfix. c, our friend the postfix operator emerges again. Just prior to the 
two calls of print£ ( ) , my Int has a value of 5. The first pr intf ( ) increments the 
value of my Int using postfix notation: 

print£( "myint ---> %d\n", myint++ ); 

The use of postfix notation means that the value of myint will be passed on to 
print£ ( ) before myint is incremented. This means that the first print£ () will 
accord myint a value of 5. However, when the statement is finished, myint will 
have a value of 6. 

The second print£ () acts in a more rational (and preferable) manner. The 
prefix notation guarantees that myint will be incremented (from 6 to 7) before its 
value is passed on to printf ( ) : 

67 



C BASICS: VARIABLES AND OPERATORS 

By the Way 

68 

} 

printf ( "myint ---> %d", ++myint ) ; 

return O; 

Can you break each of these printf () statements into two separate ones? 
Give it a try, then read on .. . 

The first printf ( ) looks like this: 

printf ( "rnyint ---> %d\n", rnyint++ ) ; 

Here's the two-statement version: 

printf( "rnyint ---> %d\n", rnyint ); 
mylnt++; 

Notice that the statement incrementing rnylnt was placed after the 
printf ( ) . Do you see why? The postfix notation makes this necessary. Run 
through both versions and verify this for yourself. 

The second printf () looks like this: 

printf ( "rnyint. ---> %d", ++mylnt ) ; 

Here's the two-statement version: 

++mylnt; 
print£ ( "myint ---> %d\n", rnylnt ) ; 

This time, the statement incrementing rnylnt came before the 
print£ () . Tiris time, it's the prefix notation that makes this necessary. 
Again, go through both versions and verify this for yourself. 

The purpose of demonstrating the complexity of the postfix and prefix opera­
tors is twofold. On one hand, it's extremely important that you understand exactly 
how these operators work from all angles. This will allow you to write code that 
works and will aid you in making sense of other programmers' code. On the other 
hand, embedding prefix and postfix operators within function parameters may 
save you lines of code but, as you can see, may prove a bit confusing. 



SAMPLE PROGRAMS 

Opening slasher.µ 

The last program in Chapter 5, slasher.µ, demonstrates several backslash com­
binations. In the Finder, open the Learn c Projects folder; then open the 
05. 03 - slasher subfolder and double-dick on the project file slasher.µ. 
When CodeWarrior opens the slasher.µ project window, run s lasher.µ by se­
lecting Run from the Project menu. You should see something like the console 
window shown in Figure 5.11. 

Stepping Through the Source Code 

slasher. c consists of a series of printf ( ) calls, each of which demonstrates a 
different backslash combination. The first printf ( ) prints a series of 10 zeros, fol­
lowed by the characters \r (also known as the backslash combination \ r ): 

#include <stdio.h> 

int main( void ) 
{ 

printf( "0000000000\r" ) ; 

slosher.out 
SIOUX s tate : application has terminated . 

1111100000 
0011 
Here·s a backslash ... \ ... for you. 
Here ' s a doub I e quote .. . " ... for you . 
Here are a few tabs . . . . .. for you . 
Here are a few beeps . .. . .. for you . 

Figure 5.11 The output from slasher . µ . 

69 



C BASICS: VARIABLES AND OPERATORS 

70 

The \ r backslash combination generates a carriage return without a line feed, 
leaving the cursor at the beginning of the current line (unlike \n, which leaves the 
cursor at the beginning of the next line down). 

The next print£ () prints five ls over the first five Os, as if someone had 
printed thetextstring 11 1111100000 11

• The \nattheendofthisprintf() moves 
the cursor to the beginning of the next line in the console window: 

printf( 11 lllll\n 11 
); 

The next print£ () demonstrates \b, the backspace backslash combination, 
which tells print£ () to back up one character so that the next character printed 
replaces the last character printed. This print£ () sends out four Os, backspaces 
over the last two, then prints two ls. The result is as if you had printed the string 
11 0011 11

: 

printf( "0000\b\bll\n" ); 

The\ can also be used to cancel a character's special meaning within a quoted 
string. For example, the backslash combination \ \ generates a single \ character. 
The difference is, this \ loses its special backslash powers. It doesn't affect the character 
immediately following it. 

The backslash combination \ 11 generates a 11 character, taking away the special 
meaning of the 11

• Without the \ before it, the 11 character would mark the end of 
the quoted string. The \ allows you to include a 11 inside a quoted string. 

The backslash combinations \ \ and \" are demonstrated in the next two 
print£ () calls: 

printf( "Here's a backslash ••• \\ ••. for you.\n" ); 
print£( "Here's a double quote ••• \ 11 

••• for you.\n 11 
); 

The \ t combination generates a single tab character. The console window has 
a tab stop every eight spaces. Here's a print£ () example: 

print£( "Here's a few tabs ••• \t\t\t\t .•• for you.\n" ); 

The Mac offers a host of sound options, unlike most text-based computer con­
soles, which offer only one: the beep. Although a beep isn't quite as interesting as 
a clank! or a boing!, it can still serve a useful purpose. The \a backslash combina­
tion provides a simple way to make your Mac beep. 



SPRUCING UP YOUR CODE 

print£( "Here are a few beeps ••• \a\a\a\a ••• for you." ); 

return O; 
} 

Those are all the sample programs for this chapter. Before we move on, how­
ever, I'd like to talk to you about something personal. It's about your coding 
habits. 

Sprucing Up Your Code 
You are now in the middle of your C learning curve. You've learned about vari­
ables, types, functions, and bytes. You've learned about an important part of the 
Standard Library, the function print£ ().It's at this point in the learning process 
that programmers start developing their coding habits. 

Coding habits are the little things programmers do that make their code a lit­
tle bit different (and hopefully better!) than anyone else's. Before you get too set in 
your ways, here are a few coding habits you can, and should, add to your arsenal. 

Source Code Spacing 

You may have noticed the tabs, spaces, and blank lines scattered throughout the 
sample programs. These are known in C as white space. With a few exceptions, 
white space is ignored by C compilers. Believe it or not, as far as the C compiler 
goes, the following two programs are equivalent: 

main() 
{ 

int myint;myint 

= 
5 

print£ ( "myint=" ,myint);} 

main() 
{ 

int myint; 

myint = 5; 

71 



C BASICS: VARIABLES AND OPERATORS 

72 

print£ ( "myint 
} 

II = I myint ) ; 

The C compiler doesn't care whether you put 5 statements per line or whether 
you put 20 carriage returns between your statements and your semicolons. One 
thing the compiler won't let you do is place white space in the middle of a word, 
such as a variable or a function name. For example, the following line of code 
won't compile: 

my Int = S; 

Instead of a single variable named myint, the compiler sees two items: one named 
my and the other named Int. White space can confuse the compiler. 

Too little white space can also confuse the compiler. For example, this line of 
code won't compile: 

intmyint; 

The compiler needs at least one piece of white space to tell where the type ends 
and where the variable begins. On the other hand, as you've already seen, this line 
compiles just fine: 

myint=S; 

Since a variable name can't contain the character=, the compiler has no prob­
lem telling where the variable ends and where the operator begins. 

As long as your code compiles properly, you're free to develop your own style 
for using white space. Here are a few hints: 

• Place a blank line between your variable declarations and the rest of your 
function's code. Also, use blank lines to group related lines of code. 

• Sprinkle single spaces throughout a statement. Here is a line without spaces: 

print£ ( "myint=" ,myint); 

Compare that line with this line: 

print£ ( "myint =", myint ) ; 



SPRUCING UP YOUR CODE 

The spaces make the second line easier to read. 

• When in doubt, use parentheses. Compare these two lines: 

myint=var1+2*var2+4; 

myint = varl + (2 * var2) + 4; 

What a difference parentheses and spaces make! 

• Always start variable names with a lowercase letter, using an uppercase letter 
at the start of each subsequent word in the name. This yields variable names 
such as myVar, areWeDone, and employeeName. 

•Always start function names with an uppercase letter, using an uppercase let­
ter at the start of each subsequent word in the name. This yields function 
names such as DoSomework( ), HoldThese( ), and DealTheCards( ). 

These hints are merely suggestions. Use standards that make sense for you 
and the people with whom you work. The object here is to make your code as 
readable as possible. 

Comment Your Code 
One of the most critical elements in the creation of a computer program is clear 
and comprehensive documentation. When you deliver your award-winning 
graphics package to your customers, you'll want to have two sets of documenta­
tion. One set is for your customers, who'll need a clear set of instructions to guide 
them through your wonderful new creation. 

The other set of documentation consists of the comments you'll weave 
throughout your code. Comments in source code act as a sort of narrative, guiding 
a reader through your source code. You'll include comments that describe how 
your code works, what makes it special, and what to look out for when changing 
it. Well-commented code includes a comment at the beginning of each function to 
describe the function, the function parameters, and the function's variables. It's 
also a good idea to sprinkle individual comments among your source code state­
ments, explaining the role each line plays in your program's algorithm. How do 
you add a comment to your source code? Take a look ... 

All C compilers recognize the sequence I* as the start of a comment and will 
ignore all characters until they reach the sequence *I (the end of comment charac­
ters). Here's some commented code: 

73 



C BASICS: VARIABLES AND OPERATORS 

74 

int main( void ) 
{ 

} 

Important 

int numPieces; I* Number of pieces of pie left *I 

numPieces = 8; I* We started with 8 pieces *I 

numPieces--;I* Marge had a piece *I 
numPieces--;I* Lisa had a piece *I 
numPieces 2;1* Bart had two pieces!! *I 
numPieces -= 4; 1* Homer had the rest!!! *I 

printf( "Slices left= %d", numPieces ); I* How about 
some cake 
instead? *I 

return 0; 

Notice that although most of the comments fit on the same line, the last com­
ment was split among three lines. The preceding code will compile just fine. 

Most modem C compilers will also accept the C++ commenting convention. 
C++ ignores the remainder of a line of code, once it encounters the characters 
I I. For example, this line of code combines both comment styles: 

print£( "Comments" I* C comment *I ) ; 11 c++ comment! 11 

Use the C++ comment mechanism only if you are sure you won't be port­
ing your code to a C compiler that doesn't understand the C++ mechanism. 

Since all the programs in this book are examined in detail, line by line, the 
comments were left out. This was done to make the examples as simple as possi­
ble. In this instance, do as we say, not as we do. Comment your code. No excuses! 



What's Next? 
This chapter introduced the concepts of variables and operators, tied together in C 
statements, separated by semicolons. We looked at several examples, each of 
which made heavy use of the Standard Library function print£ ().We learned 
about the console window, quoted strings, and backslash combinations. 

Chapter 6 will increase our programming options significantly, introducing C 
control structures, such as the for loop and the if • • • then • • • else state­
ment. Get ready to expand your C programming horizons. See you in Chapter 6. 

Exercises 

1. Find the error in each of the following code fragments: 

a. printf( Hello, world ); 

b. int myint myOtherint; 

c. myint =+ 3 ; 

d. printf ( "myint 

e. printf ( "myint 

f. printf ( "myint 

%d" ) i 

", myint ); 

%d\ 11
, myint ); 

g. myint + 3 = myint; 

h. int main( void ) 
{ 

} 

int myint; 
myint = 3; 
int anotherint; 

anotherint = myint; 

return O; 

2. Compute the value of myint after each code fragment is executed: 

a. myint = 5; 
myint *= (3+4) * 2; 

b. myint = 2; 
myint *= ( (3*4) I 2 ) - 9; 

EXERCISES 

75 



C BASICS: VARIABLES AND OPERATORS 

c. mylnt = 2; 
myint /= 5; 
myint--; 

d. my Int = 25; 
myint I= 3 * 2; 

e. myint = (3*4*5) I 9; 
myint -= (3+4) * 2; 

f. my Int 5; 
print£( "myint = %d"' my Int 2 ) ; 

g. my Int = 5; 
myint = (3+4) * 2; 

h. myint = 1; 
my Int I= (3+4) I 6; 

76 



------------c~~6 
Controlling Your 
Program's Flow 

So far, you've learned quite a bit about the C language. You know about functions 
(especially one named main()). You know that functions are made up of state­
ments, each of which is terminated by a semicolon. You know about variables, 
which have a name and a type. Up to this point, you've dealt with variables of 
type int. 

You also know about operators, such as=,+, and+=. You've learned about 
postfix and prefix notation and the importance of writing clear, easy-to-under­
stand code. You've learned about an important programming tool, the console 
window. You've learned about the Standard Library, a set of functions supplied as 
standard equipment with every C programming environment. You've also learned 
about print£ ( ) , an invaluable component of the Standard Library. 

Finally, you've learned a few housekeeping techniques to keep your code 
fresh, sparkling, and readable. Comment your code, because your memory isn't 
perfect, and insert some white space to keep your code from getting too cramped. 

Flow Control 
One thing you haven't learned about the C language is flow control. The programs 
we've written so far have all consisted of a straightforward series of statements, 
one right after the other. Every statement is executed in the order it occurred. 

Flow control is the ability to define the order in which your program's state­
ments are executed. The C language provides several keywords you can use in 
your program to control your program's flow. One of these is the keyword if. 

The if Statement 

The keyword if allows you to choose among several options in your program. In 
English, you might say something like this: 

If it's raining outside I'll bring my umbrella1 otherwise I 
won't. 

77 



CONTROLLING YOUR PROGRAM'S FLOW 

78 

In the previous sentence, you're using "if" to choose between two options. 
Depending on the weather, you'll do one of two things. You'll bring your umbrella 
or you won't bring your umbrella. C's if statement gives you this same flexibility. 
Here's an example: 

int main( void 
{ 

int myint; 

myint :::: 5; 

if ( my Int =:::: 0 ) 

print£( "myint 
else 

print£( "myint 

return O; 
} 

is equal to zero. " ) ; 

is not equal to zero. II ) ; 

This program declares my Int to be of type int and sets the value of myint to 
5. Next, we use the if statement to test whether myint is equal to 0. If myint is 
equal to 0 (which we know is not true), we'll print one string. Otherwise, we'll 
print a different string. As expected, this program prints the string "myint is 
not equal to zero". 

An if statement can come in two ways. The first, known as plain old if, fits 
this pattern: 

if ( expression 
statement 

An if statement will always consist of the word if, a left parenthesis, an ex­
pression, a right parenthesis, and a statement. (We'll define both "expression" and 
"statement" in a minute.) This first form of if executes the statement if the ex­
pression in parentheses is true. An English example of the plain if might be: 

If it's raining outside, I'll bring my umbrella. 

Notice that this statement tells us what will happen only if it's raining outside. 
No particular action will be taken if it is not raining. 

The second form of if, known as if-else, fits this pattern: 



if ( expression 
statement 

else 
statement 

An if-else statement will always consist of the word if, a left parenthesis, 
an expression, a right parenthesis, a statement, the word else, and a second state­
ment. This form of if executes the first statement if the expression is true and ex­
ecutes the second statement if the expression is false. An English example of an 
if-else statement might be: 

If it's raining outside, I'll bring my umbrella, otherwise I 
won't. 

Notice that this example tells us what will happen if it is raining outside (I'll 
bring my umbrella) and if it isn't raining outside (I won't bring my umbrella). The 
example programs presented later in the chapter demonstrate the proper use of 
both if and if-else. 

Our next step is to define our terms. 

Expressions 
In C, an expression is anything that has a value. For example, a variable is a type 
of expression, since a variable always has a value. (Even an uninitialized variable 
has a value-we just don't know what the value is!) The following are all examples 
of expressions: 

• myint + 3 

• ( myint + anotherint ) * 4 

• myint++ 

An assignment statement is also an expression. Can you guess the value of an 
assignment statement? Think back to Chapter 5. Remember when we included an 
assignment statement as a parameter to printf ()?The value of an assignment 
statement is the value of its left side. Check out the following code fragment: 

myint = 5; 
myint += 3; 

EXPRESSIONS 

79 



CONTROLLING YOUR PROGRAM'S FLOW 

By the Way 

80 

Both of these statements qualify as expressions. The value of the first ex­
pression is 5. The value of the second expression is 8 (because we added 3 to 
myint's previous value). 

Literals can also be used as expressions. The number 8 has a value. Guess 
what? Its value is 8. All expressions, no matter what their type, have a numerical 
value. 

Technically, there is an exception to this rule. The expression (void)O has no 
value. In fact, any value or variable cast to type void has no value. Ummm, 
but, Dave, what's a cast? What is type void? We'll get to both of these topics 
later in the book. For the moment, when you see void, think "no value." 

True Expressions 

Earlier, we defined the if statement as follows: 

if ( expression 
statement 

We then said that the statement gets executed if the expression is true. Let's look at 
C's concept of truth. 

Everyone has an intuitive understanding of the difference between true and 
false. I think we'd all agree that the s tatement is false: 

5 equals 3 

We'd also agree that the following sta tement is true: 

5 and 3 are both greater than 0 

This intuitive grasp of true and false carries over into the C language. In the case 
of C, however, both true and false have numerical values. Here's how it works. 

In C, any expression that has a value of 0 is said to be false. Any expression 
with a value other than 0 is said to be true. As stated earlier, an if statement's 
statement gets executed if its expression is true. To put this more accurately: 

An if statement's statement gets executed if (and only if) its expression has a 
value other than 0. 

Here's an example: 



myint = 27; 

if ( myint 
print£ ( "myint is not equal to 0" ) : 

The if statement in this piece of code first tests the value of myint. Since myint 
is not equal to 0, the print£ () gets executed. 

Comparative Operators 

C expressions have a special set of operators, called comparative operators. 
Comparative operators compare their left sides with their right sides and produce 
a value of either 1 or O, depending on the relationship of the two sides. 

For example, the operator == determines whether the expression on the left is 
equal in value to the expression on the right. In the following expression, myint 
evaluates to 1 if myint is equal to 5 and to 0 if myint is not equal to 5: 

myint == 5 

Here's an example of the == operator at work: 

if ( myint == 5 ) 
print£ ( "myint is equal to 5" ) ; 

If myint is equal to 5, the expression myint == 5 evaluates to 1 and print£ () 
gets called. If myint isn't equal to 5, the expression evaluates to 0 and the 
print£ () is skipped. Just remember, the key to triggering an if statement is an 
expression that resolves to a value other than 0. 

Figure 6.1 shows some of the other comparative operators. You'll see some of 
these operators in the example programs later in the chapter. 

,_ 
·- left side is not equal to right 

Figure 6.1 Some comparative operators. 

EXPRESSIONS 

81 



CONTROLLING YOUR PROGRAM'S FLOW 

By the Way 

82 

Logical Operators 

Code Warrior provides a pair of constants that really come in handy when dealing 
with our next set of operators. The constant true has a value of 1, and the constant 
false has a value of 0. You can use these constants in your programs to make 
them a little easier to read. Read on and you'll see why. 

In addition to true and false, CodeWarrior also provides the constants 
TRUE and FALSE (with values of 1 and 0, respectively). Some people prefer 
TRUE and FALSE, others prefer true and false. Pick a pair and stick with 
them. We'll work with true and false throughout the rest of the book. 

Our next set of operators, collectively known as logical operators, are mod­
eled on the mathematical concept of truth tables. If you don't know much about 
truth tables (or are just frightened by mathematics in general), don't panic. 
Everything you need to know is outlined in the next few paragraphs. 

The first of the set of logical operators is the 1 operator. The 1 operator turns 
true into false and false into true. Figure 6.2 shows the truth table for the ! 

operator. In this table, T stands for true and F stands for false. The letter A in 
the table represents an expression. If the expression A is true, applying the ! op­
erator to A yields the value false. If the expression A is false, applying the l 

operator to A yields the value true. The ! operator is commonly referred to as the 
NOT operator; 1 A is pronounced Not A. 

Here's a piece of code that demonstrates the ! operator: 

int myFirstint, mySecondint; 

myFirstint = false; 
mySecondint = ! myFirstint; 

A !A 
T F 
F T 

Figure 6.2 The truth table for the ! operator. 



First, we declare two ints. We assign the value false to the first int, then 
use the ! operator to tum the false into a true and assign it to the second int. 
This is really important. Take another look at Figure 6.2. The 1 operator converts 
true into false and false into true. What this really means is that ! converts 
1 to 0 and 0 to 1. This really comes in handy when you are working with an if state­
ment's expression, like this one: 

if ( mySecondint ) 
print£( "mySecondint must be true" ); 

The previous chunk of code translated mySecondint from false to true, 
which is the same thing as saying that mySecondint has a value of 1. Either way, 
mySecondint will cause the if to fire, and the print£ () will get executed. 

Take a look at this piece of code: 

if ( ! mySecondint ) 
print£( "mySecondint must be false" ); 

This print£ ( ) will get executed if mySecondint is false. Do you see why? 
If mySecondint is false, then 1 mySecondint must be true. 

The ! operator is a unary operator. Unary operators operate on a single ex­
pression (the expression to the right of the operator). The other two logical opera­
tors, & & and I I , are binary operators. Binary operators, such as the == operator 
presented earlier, operate on two expressions, one on the left side and one on the 
right side of the operator. 

The & & operator is commonly referred to as the and operator. The result of an 
& & operation is true if, and only if, both the left side and the right side are true. 
Here's an example: 

int hasCar, hasTimeToGiveRide; 

hascar = true; 
hasTimeToGiveRide = true; 

if ( hasCar && hasTimeToGiveRide 
print£( "Hop in - I'll give you a ride!\n 11 

); 

else 
print£( "I've either got no car, no time, or neitherl\n" ); 

EXPRESSIONS 

83 



CONTROLLING YOUR PROGRAM'S FLOW 

84 

This example uses two variables. One indicates whether the program has a car, 
the other whether the program has time to give us a ride to the mall. All philo­
sophical issues aside {Can a program have a car?), the question of the moment is, 
Which print£ () will fire? Since both sides of the && were set to true, the first 
print£ ( ) will be called. If either one {or both) of the variables were set to false, 
the second print£ () would be called. Another way to think of this is that we'll 
get a ride to the mall only if our friendly program has a car and has time to give us 
a ride. If either of these is not true, we're not getting a ride. By the way, notice the 
use here of the second form of if: the if-else statement. 

The I I operator is commonly referred to as the or operator. The result of a I I 
operation is true if either the left side or the right side, or both sides, of the I I are 
true. Put another way, the result of a 11 is false if, and only if, both the left side 
and the right side of the 11 are false. Here's an example: 

int nothingElseOn, newEpisode; 

nothingElseOn = true; 
newEpisode = true; 

if ( newEpisode I I nothingElseOn ) 
print£( "Let's watch Star Trekl\n" ); 

else 
print£( "Something else is on or I've seen this one.\n" ); 

This example uses two variables to decide whether we should watch "Star 
Trek" {your choice: TOS, TNG, DS9, or VOY). One variable indicates whether any­
thing else is on right now, and the other tells you whether this episode is a rerun. 
If this is a brand new episode or if nothing else is on, we'll watch "Star Trek." 

Here's a slight twist on the previous example: 

int nothingElseOn, itsARerun; 

nothingElseOn = true; 
itsARerun = false; 

if ( (1 itsARerun) I I nothingElseOn ) 
print£( "Let's watch Star Trekl\n" ); 

else 
print£( "Something else is on or I've seen this one.\n" ); 



A B A&& B A II B 
T T T T 

T F F T 

F T F T 

F F F F 

Figure 6.3 Truth table for the && and 11 operators. 

This time, we've replaced the variable newEpisode with its exact opposite, 
i tsARerun. Look at the logic that drives the if statement. We're combining 
i tsARerun with the 1 operator. Before, we cared whether the episode was a 
newEpisode. This time, we are concerned that the episode is not a rerun. See the 
difference? 

Both the && and the 11 operators are summarized in the table in Figure 6.3. If 
you look in the folder Learn C Projects, you'll find a subfolder named 
06. O 1 - truth Tester. The file truthTester. c contains the three examples we 
just went through. Take some time to play with the code. Take turns changing the 
variables from true to false and back again. Use this code to get a good feel for 
the 1, & &, and I I operators. 

On most keyboards, you type the character & by holding down the shift key 
and typing a 7. You type the character I by holding down the shift key and 
typing a \ (backslash). Don't confuse the I with the letters 1 or i or with the 
! character. 

Compound Expressions 

All of the examples presented so far have consisted of relatively simple expres­
sions. Here's an example that combines several operators: 

EXPRESSIONS 

By the Way 

85 



CONTROLLING YOUR PROGRAM'S FLOW 

86 

int myint; 

myint = 7; 

if ( (myint >= 1) && (myint <= 10) ) 

printf ( "myint is between 1 and 10" ) ; 
else 

print£( "myint is not between 1 and 10" ) ; 

This example tests whether a variable is in the range between 1 and 10. The 
key here is the expression: 

(myint >= 1) && (myint <= 10) 

This expression lies between the if statement's parentheses and uses the && 
operator to combine two smaller expressions. Notice that the two smaller expres­
sions are each surrounded by parentheses to avoid any ambiguity. If we left out 
the parentheses, the expression might not be interpreted as we intended: 

myint >= 1 && myint <= 10 

Once again, use parentheses for safe computing. 

Statements 
At the beginning of the chapter, we defined the if statement as: 

if ( expression 
statement 

We've covered expressions pretty thoroughly. Now, we'll turn our attention to the 
statement. 

At this point in the book, you probably have a ·pretty good intuitive model of 
the statement. You'd probably agree that this is a statement: 

myint = 7; 

But is this one statement or two? 

if ( isCold ) 
print£( "Put on your sweater!" ); 



The previous code fragment is a statement within another statement. The 
print£ () resides within a larger statement, the if statement. 

The ability to break your code out into individual statements is not a critical 
skill. Getting your code to compile, however, is critical. As we introduce new types 
of statements, pay attention to the statement syntax. And pay special attention to 
the examples. Where do the semicolons go? What distinguishes this type of state­
ment from all other types? 

As you build up your repertoire of statement types, you'll find yourself using 
one type of statement within another. That's perfectly acceptable in C. In fact, 
every time you create an if statement, you'll use at least two statements, one 
within the other. Take a look at this example: 

if ( myVar >= 1 ) 
if ( myVar <= 10 

print£( "myVar is between 1 and 10" ); 

This example uses an if statement as the statement for another if statement. 
This example calls the print£ ( ) if both if expressions are true, that is, if 
myVar is greater than or equal to 1 and less than or equal to 10. You could have ac­
complished the same result with this piece of code: 

if ( ( myVar >= 1 ) && ( myVar <= 10 ) 
printf( "myVar is between 1 and 10" ); 

The second piece of code is a little easier to read. There are times, however, 
when the method demonstrated in the first piece of code is preferred. Take a look 
at this example: 

if ( myVar 1= O ) 
if ( ( 1 I myVar ) < 1 ) 

printf( "myVar is in range" ); 

One thing you don't want to do in C is divide a number by 0. Any number di­
vided by O is infinity, and infinity is a foreign concept to the C language. If your 
program ever tries to divide a number by 0, your program is likely to crash. The 
first expression in this example tests to make sure that myVar is not equal to 0. If 
myVar is equal to 0, the second expression won't even be evaluated! The sole pur­
pose of the first if is to make sure that the second if never tries to divide by 0. 
Make sure that you understand this point. Imagine what would happen if we 
wrote the code this way: 

STATEMENTS 

87 



CONTROLLING YOUR PROGRAM'S FLOW 

88 

if ( (myVar != 0) && ((1 I myvar) < l) 
printf ( "myVar is in range" ) ; 

As it turns out, if the left half of the && operator evaluates to false, the right 
half of the expression will never be evaluated, and the entire expression will eval­
uate to false. Why? Because if the left operand is false, it doesn't matter what 
the right operand is; true or false, the expression will evaluate to false. Be 
aware of this as you construct your expressions. 

The Curly Braces 

Earlier in the book, you learned about the curly braces ( { } ) that surround the 
body of every function. These braces also play an important role in statement con­
struction. Just as parentheses can be used to group terms of an expression together, 
curly braces can be used to group multiple statements together. Here's an example: 

onYourBack = TRUE; 

if ( onYourBack ) 
{ 

} 

printf( "Flipping over" ); 
onYourBack = FALSE; 

In the example, if onYourBack is true, both of the statements in curly braces 
will be executed. A pair of curly braces can be used to combine any number of 
statements into a single superstatement, also known as a block. You can use this 
technique anywhere a statement is called for. 

Curly braces can be used to organize your code, much as you'd use parenthe­
ses to ensure that an expression is evaluated properly. This concept is especially ap­
propriate when dealing with nested statements. Consider this code, for example: 

if ( myint >= 0 ) 
if ( myint <= 10 

printf( "myint is between 0 and 10.\n" ); 
else 

printf( "myint is negative.\n" ); /*<---Error!!! */ 

Do you see the problem with this code? Which if does the else belong to? 
As written (and as formatted), the else looks as though it belongs to the first if. 



That is, if myint is greater than or equal to 0, the second if is executed; otherwise, 
the second pr intf ( ) is executed. Is this right? 

Nope. As it turns out, an else belongs to the if closest to it (the second if, in 
this case). Here's a slight rewrite: 

if ( myint >= 0 ) 

if ( myint <= 10 
print£( "myint is between 0 and 10.\n" ) ; 

else 
print£( "myint is not between 0 and 10.\n" ) ; 

One point here is that formatting is nice, but it won't fool the compiler. More 
important, this example shows how easy it is to make a mistake. Check out this 
version of the code: 

if ( myint >= 0 
{ 

if ( myint <= 10 
print£( "myint is between 0 and 10.\n" ); 

} 

else 
print£( "myint is negative.\n" ); 

Do you see how the curly braces help? In a sense, they act to hide the second 
if inside the first if statement. There is no chance for the else to connect to the 
hidden if. 

No one I know ever got fired for using too many parentheses or too many 
curly braces. 

Where to Place the Semicolon 

So far, the statements we've seen fall into two categories. Function calls, such as 
calls to print£ ( ), and assignment statements are called simple statements. 
Always place a semicolon at the end of a simple statement, even if it is broken over 
several lines, like this: 

print£( "%d%d%d%d", varl, 
var2, 
var3, 
var4 ); 

STATEMENTS 

89 



CONTROLLING YOUR PROGRAM'S FLOW 

90 

Statements made up of several parts-including, possibly, other statements­
are called compound statements. Compound statements obey some pretty strict 
rules of syntax. The if statement, for example, always looks like this: 

if ( expression 
statement 

Notice there are no semicolons in this definition. The statement part of the if 
can be a simple statement or a compound statement. If the statement is simple, fol­
low the semicolon rules for simple statements by placing a semicolon at the end of 
the statement. If the statement is compound, follow the semicolon rules for that 
particular type of statement. 

Notice that using "curlies" to build a superstatement, or block, out of smaller 
statements does not require the addition of a semicolon. 

The Loneliest Statement 

Guess what? A single semicolon qualifies as a statement, albeit a somewhat lonely 
one. For example: 

if bored ) 

This code fragment is a legitimate (and thoroughly useless) if statement. If bored 
is true, the semicolon statement gets executed. The semicolon by itself doesn't do 
anything but fill the bill where a statement was needed. There are times where the 
semicolon by itself is exactly what you need. 

The while Statement 

The if statement uses the value of an expression to decide whether to execute or to 
skip over a statement. If the statement is executed, it is executed just once. Another 
type of statement, the while statement, repeatedly executes a statement as long as 
a specified expression is true. The while statement follows this pattern: 

while ( expression 
statement 

The while statement is also known as the while loop, because once the state­
ment is executed, the while loops back to reevaluate the expression. Here's an ex­
ample of the while loop in action: 



int i• I 

i=O; 

while ( ++i < 3 ) 
printf ( "Looping: %d\n", i ) ; 

printf( "We are past the while loop." ); 

This example starts by declaring a variable, i, to be of type int; i is then initialized 
to 0. Next comes the while loop. The first thing the while loop does is evaluate its ex­
pression. The while loop's expression is: 

++i < 3 

Before this expression is evaluated, i has a value of 0. The prefix notation used 
in the expression {++i) increments the value of i to 1 before the remainder of the 
expression is evaluated. The evaluation of the expression results in true, since 1 
is less than 3. Since the expression is true, the while loop's statement, a single 
printf (),is executed. Here's the output after the first pass through the loop: 

Looping: 1 

Next, the while loops back and reevaluates its expression. Once again, the 
prefix notation increments i, this time to a value of 2. Since 2 is less than 3, the ex­
pression evaluates to true, and the printf () is executed again. Here's the out­
put after the second pass through the loop: 

Looping: 1 
Looping: 2 

Once the second print£ () completes, it's back to the top of the loop to 
reevaluate the expression. Will this never end? Once again, i is incre-mented, this 
time to a value of 3. Aha! This time, the expression eval-uates to false, since 3 is 
not less than 3. Once the expression evaluates to false, the while loop ends. 
Control passes to the next statement, the second printf () in our example: 

printf( "We are past the while loop." ); 

The while loop was driven by three factors: initialization, modification, and 
termination. Initialization is any code that affects the loop but occurs before the 

STATEMENTS 

91 



CONTROLLING YOUR PROGRAM'S FLOW 

By the Way 

92 

loop is entered. In our example, the critical initialization occurred when the vari­
able i was set to 0. 

In a loop, you11 frequently use a variable that changes value each time 
through the loop. In our example, the variable i was incremented b,x; 1 each 
time through the loop. The first time through the loop, i had a value of 1. The 
second time, i had a value of 2. Variables that main"'tain a value based on the 
number of times through a loop are known as counters. 

Traditionally, programmers have given counter variables simple names, 
such as i, j, or k (it's an old FORTRAN convention). Jn the interest of clarity, 
some programmers use such names as counter or loopCounter. The nice 
thing about names like i, j, and k is that they don't get in the way; they 
don't take up a lot of space on the line. Oq,the other hand, your goal shotild 
be to make your code as readable as possible, se it would seem that a name 
like counter would be better than the uninformative i, j, or k. 

Once again, pick a style y-ou are comfortable with and stick with it! 

Within the loop, modification is any code that changes the value of the loop's ex­
pression. In our example, the modification occurred within the expression itself when 
the counter, i, was incremented. 

Termination is any condition that causes the loop to end. In our example, ter­
mination occurs when the expression has a value of false. This occurs when the 
counter, i , has a value that is not less than 3. Take a look at this example: 

int i· I 

i=l; 

while ( i < 3 ) 
{ 

} 

printf( "Looping: %d\n", i ); 
i++; 

printf( "We are past the whi l e loop." ); 

This example produces the same results as the previous example. This time, 
however, the initialization and modification conditions have changed slightly. In 



this example, i starts with a value of 1 instead of 0. In the previous example, the 
++ operator was used to increment i at the very top of the loop. This example mod­
ifies i at the bottom of the loop. 

Both of these examples show different ways to accomplish the same end. The 
phrase "There's more than one way to eat an Oreo" sums up the situation per­
fectly. There will always be more than one solution to any programming problem. 
Don' t be afraid to do things your own way. Just make sure that your code works 
properly and is easy to read. 

The for Statement 

Nestled inside the C toolbox, right next to the while statement, is the for state­
ment. The for statement is similar to the while statement, following the basic 
model of initialization, modification, and termination. Here's the pattern for a for 
statement: 

for ( expressionl 
statement 

expression2 expression3 ) 

The first expression represents the for statement's initialization. Typically, 
this expression consists of an assignment statement, setting the initial value of a 
counter variable. This first expression is evaluated once, at the beginning of the 
loop. 

The second expression is identical in function to the expression in a while 
statement, providing the termination condition for the loop. This expression is 
evaluated each time through the loop, before the statement is executed. 

Finally, the third expression provides the modification portion of the for 
statement. This expression is evaluated at the bottom of the loop, immediately fol­
lowing execution of the statement. 

All three of these expressions are optional and may be left out entirely. For 
example, here's a for loop that leaves out all three expressions: 

for ( ; ; ) 

DoSomethingForever(); 

Since this loop has no terminating expression, it is known as an infinite 
loop. Infinite loops are generally considered bad form and should be avoided 
like the plague! 

STATEMENTS 

Important 

93 



CONTROLLING YOUR PROGRAM'S FLOW 

By the Way 

94 

The for loop can also be described in terms of a while loop: 

expressionl; 
while ( expression2 
{ 

} 

statement 
expression3; 

Since you can always rewrite a for loop as a while loop, why introduce the 
for loop at all? Sometimes, a programming idea fits more naturally into the 
pattern of a for statement.Uthe for loop makes the code more readable, 
why not use it? As you write more and more code, you'll develop a sense for 
when to use the while and when to use the for. 

Here's an example of a for loop: 

int i; 

for i = 1; i < 3; i++ ) 
printf( "Looping: %d\n", i ); 

printf( "We are past the for loop." ); 

This example is identical in functionality to the while loops presented earlier. 
Note the three expressions on the first line of the for loop. Before the loop is en­
tered, the firs t expression is evaluated (remember, assignment statements make 
great expressions): 

i = 1 

Once the expression is evaluated, i has a value of l. We are now ready to enter 
the loop. At the top of each pass through the loop, the second expression is evalu­
ated: . 

i < 3 

If the expression evaluates to true, the loop continues. Since i is less than 3, 
we can proceed. Next, the statement is executed: 



print£( "Looping: %d\n", i ); 

Here's the first line of output: 

Looping: 1 

Having reached the bottom of the loop, the for evaluates its third expression: 

i++ 

This changes the value of i to 2. Back to the top of the loop. Evaluate the ter­
mination expression: 

i < 3 

Since i is still less than 3, the loop continues. Once again, the print£ () does 
its thing. The console window looks like this: 

Looping: 1 
Looping: 2 

Next, the for evaluates expression3: 

I++ 

The value of i is incremented to 3. Back to the top of the loop. Evaluate the ter­
mination expression: 

i < 3 

Lo and behold! Since i is no longer less than 3, the loop ends, and the second 
pr intf ( ) in our example is executed: 

print£( "We are past the for loop." ); 

As was the case with while, for can take full advantage of a pair of curly 
braces: 

for i = O; i < 10; i++ ) 
{ 

STATEMENTS 

95 



CONTROLLING YOUR PROGRAM'S FLOW 

By the Way 

96 

} 

DoThis(); 
DoThat(); 
DanceALittleJig(); 

In addition, both while and for can take advantage of the loneliest state­
ment, the lone semicolon: 

for ( i = O; i < 1000; i++ 

This example does nothing 1000 times. But the example does take some time 
to execute. The initialization expression is evaluated once, and the modification 
and termination expressions are each evaluated 1000 times. Here's a while ver­
sion of the loneliest loop: 

i = O; 

while i++ < 1000 ) 

Some compilers will eliminate this loop and just set i to its terminating value 
(the value it would have if the loop executed normally). This is known as 
code optimization. The nice thing about code optimization is that it can 
make your code run faster and more efficiently. However, an optimization 
pass on your code can sometimes have unwanted side effects, such as elimi­
nating the while loop just discuss-ed. It's a good idea to get to know your 
compiler's optimization capabilities and tendencies. Read your manual! 

loopTester.µ 
Interestingly, there is an important difference between the for and while loops 
you just saw. Take a minute to look back and try to predict the value of i the first 
time through each loop and after each loop terminates. Were the results the same 
for the while and for loops? Hmmm .... You might want to take another look. 
Here's a sample program that should clarify the difference between these two 
loops. Look in the folder Learn C Projects, inside the subfolder named 
06.02 - l oopTester, and open the project loopTester .µ. The file 
l oopTester . c implements a while loop and two slightly different for loops. 
Run the project. Your output should look like that shown in Figure 6.4. 



looplester.out 
SIOUX state : application has termi na ted . 

while i=1 
while i=2 
while i=3 
whi le i=4 
After whi le loop, i=5 . 

first for : i=O 
first for : i=1 
first for : i=2 
first for : i=3 
After first for loop, i=4 . 

second for : i=t 
second for : i=2 
second for : i=3 
second for : 1=4 
After second for loop, i=5 . 
I 

Figure 6.4 The output from loopTester. µ, showing the output from three different 

loops. 

IQ 

-0' • 
The loopTester program starts off with the standard # include. The 

main ( ) function defines a counter variable, i; sets i to 0; and then enters a while 
loop: 

while ( i++ < 4 ) 
printf( "while : i=%d\n", i ); 

The loop executes four times, resulting in this output: 

while: i =l 
while: i=2 
whi l e: i =3 
while: i=4 

Do you see why? If not, go through the loop yourself, calculating the value for 
i each time through the loop. Remember, since we are using postfix notation 
(i ++), i gets incremented after the test is made to see whether it is less than 4. The 
test and the increment happen at the top of the loop, before the loop is entered. 

STATEMENTS 

97 



CONTROLLING YOUR PROGRAM'S FLOW 

98 

Once the loop completes, we print the value of i again: 

print£( "After while loop, i=%d.\n\n", i ); 

Here's the result: 

After while loop, i=S. 

Here's how we got that value. The last time through the loop (with i equal to 
4), we go back to the top of the while loop, test to see whether i is less than 4 (it 
no longer is), and then do the increment of i, bumping it from 4 to 5. 

OK, one loop down, two to go. This next loop looks as if it should accomplish 
the same thing. The difference is, we don't do the increment of i until the bottom 
of the loop, until we've been through the loop once already. 

for ( i = O; i < 4; i++ ) 
printf( "first for: i=%d\n", i ); 

As you can see by the output, i ranges from 0 to 3 instead of from 1 to 4. 

first for: i=O 
first for: i=l 
first for: i=2 
first for: i=3 

After we drop out of the for loop, we once again print the value of i: 

printf( "After first for loop, i=%d.\n\n", i ); 

Here's the result: 

After first for loop, i=4. 

As you can see, the while loop ranged i from 1 to 4, leaving i with a value of 
5 at the end of the loop. The for loop ranged i from 0 to 3, leaving i with a value 
of 4 at the end of the loop. So how do we fix the for loop so that it works the same 
way as the while loop? Take a look: 

for ( i = 1; i <= 4; i++ 
print£( "second for: i=%d\n", i ); 



This for loop started i at 1 instead of 0 and it tests to see whether i is less than 
or equal to 4 instead of just less than 4. We could also have used the terminating ex­
pression i < 5 instead. Either one will work. As proof, here's the output from this 
loop: 

second for: i=l 
second for: i=2 
second for: i=3 
second for: i=4 

Once again, we print the value of i at the end of the loop: 

print£( "After second for loop, i=%d.\n", i ); 

return O; 
} 

Here's the last piece of output: 

After second for loop, i=S. 

This second for loop is the functional equivalent of the while loop. Take 
some time to play with this code. You might try to modify the while loop to 
match the first for loop. 

The while and for statements are by far the most common types of C loops. 
For completeness, however, we'll cover the remaining loop, a little-used gem 
called the do statement. 

The do Statement 

The do statement is a while statement that evaluates its expression at the bottom 
of its loop instead of at the top. Here's the pattern a do statement must match: 

do 
statement 

while ( expression 

Here's a sample: 

STATEMENTS 

99 



CONTROLLING YOUR PROGRAM'S FLOW 

100 

i = 1; 

do 
{ 

} 

printf( "%d\n", i ); 
i++; 

while ( i < 3 ); 

printf( "We are past the do loop." ); 

The first time through the loop, i has a value of 1. The printf () prints a 1 
in the console window, then the value of i is bumped to 2. It's not until this point 
that the expression ( i < 3 ) is evaluated. Since 2 is less than 3, a second pass 
through the loop occurs. 

During this second pass, the printf ()prints a 2 in the console window; then 
the value of i is bumped to 3. Once again, the expression ( i < 3 ) is evaluated. 
Since 3 is not less than 3, we drop out of the loop to the second pr intf ( ) . 

The important thing to remember about do loops is this: Since the expression is not 
evaluated until the bottom of the loop, the body of the loop (the statement) is always ex­
ecuted at least once. Since for and while loops both check their expressions at the top 
of the loop, it's possible for either to drop out of the loop before the body of the loop is 
executed. 

Let's move on to a completely different type of statement, known as the 
switch. 

The switch Statement 

The switch statement uses the value of an expression to determine which of a se­
ries of statements to execute. Here's an example that should make this concept a 
little clearer: 

switch ( theYear 
{ 

case 1066: 
printf( "Battle of Hastings" ); 
break; 

case 1492: 
printf( "Columbus sailed the ocean blue" ); 
break; 



} 

case 1776: 
print£( "Declaration of Independence\n" ); 
print£( "A very important document!!!" ); 
break; 

default: 
print£( "Don't know what happened during this year" ); 

The switch is constructed of a series of cases, each based on a specific value 
of theYear. If theYear has a value of 1066, execution continues with the state­
ment following that case's colon, in this case, the line: 

print£( "Battle of Hastings" ); 

Execution continues, line after line, until either the bottom of the switch (the 
right-curly brace) or a break statement is reached. In this case, the next line is a 
break statement. 

The break statement comes in handy when you are working with switch 
statements and loops. The break tells the computer to jump immediately to the 
next statement after the end of the loop or switch. 

Continuing with the example, if theYear has a value of 1492, the switch 
jumps to the lines: 

print£( "Columbus sailed the ocean blue" ); 
break; 

A value of 1776 jumps to the lines: 

printf( "Declaration of Independence\n" ); 
print£( 11 A very important documentlll 11 

); 

break; 

Notice that this case has two statements before the break. There is no limit to 
the number of statements a case can have: One is OK; 653 is OK. You can even 
have a case with no statements at all. 

The original example also contains a default case. If the switch can't find 
a case that matches the value of its expression, the switch looks for a case la­
beled default. If the default is present, its statements are executed. If no de­
fault is present, the switch completes without executing any of its statements. 

STATEMENTS 

101 



CONTROLLING YOUR PROGRAM'S FLOW 

Important 

102 

Here's the pattern the switch tries to match: 

switch ( expression 
{ 

} 

case constant: 
statements 

case constant : 
statements 

default: 
statements 

Why would you want a case with no statements? Here's an example: 

switch ( myVar 
{ 

} 

case 1: 
case 2: 

DoSomething ( ) ; 
break; 

case 3: 
DoSomethingElse(); 

In this example, if myvar has a value of 1 or 2, the function 
DoSomething ( ) is called. If myVar has a value of 3, the function 
DoSomethingElse ( ) is called. If myVar has any other value, nothing hap­
pens. Use a case with no statements when you want two different cases to 
execute the same statements. 

Think about what happens with this example: 

switch ( myVar 
{ 

} 

case 1: 
DoSometimes(); 

case 2: 
DoFrequently ( ) ; 

default: 
DoAlways(); 



If myVar is 1, all three functions will get called. If myVar is 2, 
DoFrequently ( ) and DoAlways ( ) will get called. If myVar has any other 
value, DoAlways ( ) gets called by itself. This is a good example of a switch 
without breaks. 

At the heart of each switch is its expression. Most switches are based on 
single variables, but, as we mentioned earlier, assignment statements make per­
fectly acceptable expressions. 

Each case is based on a constant. Numbers (such as 47 or -12,932) are valid 
constants. Variables, such as myVar, are not. As you'll see later, single-byte char­
acters (such as 'a' or '\n ') are also valid constants. Multiple-byte character 
strings (like "Gummy-bear") are not. 

If your switch uses a default case, make sure that you use it as shown in 
the pattern described. Don't include the word case before the word default. 

break Statements in Other Loops 

The break statement has other uses besides the switch statement. Here's an ex­
ample of a break used in a while loop: 

i=l; 

while ( i <= 9 ) 
{ 

} 

PlayAninning( i ); 
if ( ItisRaining() 

break; 
i++; 

This sample tries to play nine innings of baseball. As long as the function 
ItisRaining ( ) returns with a value of false, the game continues uninter­
rupted. If ItsRaining ( ) returns a value of true, the break statement is exe­
cuted, and the program drops out of the loop, interrupting the game. 

The break statement allows you to construct loops that depend on multiple 
factors. The termination of the loop depends on the value of the expression found 
at the top of the loop, as well as on any outside factors that might trigger an unex­
pected break. 

STATEMENTS 

103 



CONTROLLING YOUR PROGRAM'S FLOW 

104 

Sample Programs 

isOdd.c 

This program combines for and if statements to tell you whether the numbers 1 
through 20 are odd or even and whether they are an even multiple of 3. The pro­
gram also introduces a brand new operator: the% operator. Go into the Learn c 
Projects folder, then into the 06. 03 - isOdd subfolder, and open the project 
isOdd.µ. 

Run isOdd.µ by selecting Run from the Project menu. You should see 
something like the console window shown in Figure 6.5. You should see a line for 
each number from 1 through 20. Each of the numbers will be described as either 
odd or even. Each of the multiples of 3 will have additional text describing them 
as such. Here's how the program works. 

Stepping Through the Source Code 

This program starts off with the usual #include and the beginning of main ( ) , 
which begins by declaring a counter variable named i. 

isOdd.out 
SIOUX state : application has terminated. 

The number 1 is odd . 
The number 2 is even. 
The number 3 is odd and is a multiple of 3 . 
The number 4 is even . 
The number S is odd. 
The number 6 is even and is a mu ltip le of 3 . 
The number 7 is odd . 
The number 8 is even. 
The number 9 is odd and is a multiple of 3 . 
The number 10 is even. 
The number 11 is odd. 
The number 12 is even and is a multiple of 3 . 
The number 13 is odd . 
The number 14 is even . 
The number 15 is odd and is a multiple of 3 . 
The number 16 is even. 
The number 17 is odd. 
The number 18 is even and is a multiple of 3 . 
The number 19 is odd . 
The number 20 is even. 
I 

Figure 6.5 Running isOdd. µ. 



SAMPLE PROGRAMS 

int main( void ) 
{ 

inti; 

Our goal here is to step through each of the numbers from 1 to 20. For each num­
ber, we want to check to see whether the number is odd or even. We also want to 
check whether the number is evenly divisible by 3. Once we've analyzed a number, 
we'll use printf () to print a description of the number in the console window. 

The scheme that defines the way a program works is called the program's al­
gorithm. It's a good idea to try to work out the details of your program's al­
gorithm before writing even one line of source code. 

As you might expect, the next step is to set up a for loop, using i as a counter 
initialized to 1. The loop will keep running as long as the value of i is less than or 
equal to 20. This is the same as saying that the loop will exit as soon as the value of 
i is found to be greater than 20. Every time the loop reaches the bottom, the third 
expression, i++, will be evaluated, incrementing the value of i by 1. This is a clas­
sic for loop. 

for ( i 
{ 

1 ; i <= 20; i++ ) 

Now we're inside the for loop. Our goal is to print a single line for each num­
ber, that is, one line each time through the for loop. If you check back to Figure 
6.4, you'll notice that each line starts with the phrase: 

The number x is 

In that phrase, xis the number being described. That's the purpose of this first 
print£ ( ): 

print£( "The number %dis ", i ); 

Notice that this print£ ( ) wasn't part of an if statement. We want this 
print£ () to print its message every time through the loop. The next sequence of 
print£ ( ) statements are a different story altogether. 

By the Way 

105 



CONTROLLING YOUR PROGRAM'S FLOW 

106 

The next chunk of code determines whether i is even or odd, then uses 
print£ () to print the appropriate word in the console window. Because the last 
printf ( ) didn't end with a newline character (' \n' ), the word "even" or "odd" 
will appear in the console window on the same line as, and immediately following: 

The number x is 

This next chunk of code introduces a brand new operator-%-a binary oper­
ator that returns the remainder when the left operand is divided by the right 
operand. For example, i % 2 divides 2 into i and returns the remainder. If i is 
even, this remainder will be 0. If i is odd, this remainder will be 1. 

if ( (i % 2) == 0 
print£ ( "even" ) ; 

else 
print£ ( "odd" ) ; 

In the expression i % 3, the remainder will be 0 if i is evenly divisible by 3 
and either 1 or 2 otherwise. 

if ( (i % 3) == 0 ) 
print£( " and is a multiple of 3 11 

); 

If i is evenly divisible by 3, we'll add the following phrase to the end of the 
current line: 

11 and is a multiple of 3" 

Finally, we add a period " • " and a newline " \ n" to the end of the current line, 
placing us at the beginning of the next line of the console window: 

print£( ". \n" ) ; 

The loop ends with a curly brace, and main ( ) ends with Ot.µ' normal return 
and a righ-curly brace. 

} 

return O; 
} 



SAMPLE PROGRAMS 

nextPrime.n 
Our next program focuses on the mathematical concept of prime numbers. A 
prime number is any number whose only factors are 1 and itself. For example, 6 is 
not a prime number, because its factors are 1, 2, 3, and 6. The number 5 is prime be­
cause its factors are limited to 1 and 5. The number 12 isn't prime, because its fac­
tors are 1, 2, 3, 4, 6, and 12. 

Our next program will find the next prime number greater than a specified 
number. For example, if we set our starting point to 14, the program would find 
the next prime, 17. We have the program set up to check for the next prime after 19. 
Know what that is? 

Go into the folder Learn c Projects, into the subfolder 06. 04 - nextPrirne, 
and open the project nextPrirne. µ.Run nextPrirne. µby selecting Run from the 
Project menu. You should see something like the console window shown in 
Figure 6.6. As you can see, the next prime number after 19 is (drum roll, please ... ) 
23. Here's how the program works. 

Stepping Through the Source Code 

This program starts off with two #includes instead of the usual one. The new 
#include, <math. h>, gives us access to a series of math functions, most notably 

neHtPrime.out 
SIOUX state: appl ication has terminated. 

The nex t prime after 19 is 23 . Happy? 

Figure 6.6 Running nextPrime.µ. 

107 



CONTROLLING YOUR PROGRAM'S FLOW 

108 

the function sqrt ( ) . This function takes a single parameter and returns the 
square root of that parameter. You'll see how this works in a minute. 

#include <stdio.h> 
#include <math.h> 

int main( void ) 
{ 

We're going to need a boatload of variables. They're all defined as ints: 

int startingPoint, candidate, last, i; 
int isPrime; 

The first variable, startingPoint, is the number we want to start off with. 
We'll find the next prime after startingPoint; candidate is the current candi­
date we are considering. Is candidate the lowest prime number greater than 
startingPoint? By the time we are done, it will be! 

startingPoint = 19; 

Since 2 is the lowest prime number, if startingPoint is less than 2, we 
know that the next prime is 2. By setting candidate to 2, our work is done: 

if ( startingPoint < 2 ) 
{ 

candidate = 2; 
} 

If startingPoint is 2, the next prime is 3, and we'll set candidate ac­
cordingly: 

else if ( startingPoint -- 2 ) 
{ 

candidate = 3; 
} 

If we got this far, we know that startingPoint is greater than 2. Since 2 is the 
only even prime number and since we've already checked for startingPoint 
being equal to 2, we can now limit our search to odd numbers only. We'll start can­
didate at startingPoint, then make sure that candidate is odd. If it isn't, 



SAMPLE PROGRAMS 

we'll decrement candidate. Why decrement instead of increment? If you peek 
ahead a few lines, you'll see that we're about to enter a do loop and that we bump 
candidate to the next odd number at the top of the loop. By decrementing can­
didate now, we're preparing for the bump at the top of the loop, which will take 
candidate to the next odd number greater than startingPoint. 

else 
{ 

candidate = startingPoint; 

if (candidate % 2 == 0) 
candidate--; 

This loop will continue stepping through consecutive odd numbers until we 
find a prime number. We'll start isPrime off as true, then check the current 
candidate to see whether we can find a factor. If we do find a factor, we'll set 
isPrime to false, forcing us to repeat the loop. 

do 
{ 

isPrime = true; 
candidate += 2; 

Now we'll check to see whether candidate is prime. This means verifying 
that candidate has no factors other than 1 and candidate. To do this, we'll 
check the numbers from 3 to the square root of candidate to see whether any of 
them divides evenly into candidate. If not, we know we've got ourselves a prime! 

last= sqrt( candidate ); 

So why don't we check from 2 up to candidate-1? Why start with 3? Since 
candidate will never be even, we know that 2 will never be a factor. For the 
same reason, we know that no even number will ever be a factor. 

Why stop at the square root of candidate? Good question! To help un­
derstand this approach, consider the factors of 12, other than 1 and 12. They 
are 2, 3, 4, and 6. The square root of 12 is approximately 3.46. Notice how this 
fits nicely in the middle of the list of factors. Each of the factors less than the 
square root will have a matching factor greater than the square root. In this 
case, 2 matches with 6 (2*6=12) and 3 matches with 4 (3*4=12). This will al­
ways be true. If we don't find a factor by the time we hit the square root, 
there won't be a factor, and the candidate is prime. 

By the Way 

109 



CONTROLLING YOUR PROGRAM'S FLOW 

110 

Take a look at the top of the £or loop. We start i at 3. Each time we hit the top 
of the loop (including the first time through the loop), we'll check to make sure 
that we haven't passed the square root of candidate and that isPrime is still 
true. If isPrime is false, we can stop searching for a factor, since we've just 
found one! Finally, each time we complete the loop, we bump i to the next odd 
number. 

for 
{ 

i 3; (i <= last) && isPrime; i += 2 ) 

Each time through the loop, we'll check to see whether i divides evenly into 
candidate. If so, we know that it is a factor, and we can set isPrime to£ alse: 

} 

} while 
} 

if ( (candidate % i) == 0 ) 
isPrime = false; 

isPrime ); 

Once we drop out of the do loop, we use print£ ( ) to print both the starting point 
and the first prime number greater than the starting point 

} 

print£( 11 The next prime after %dis %d. Happy?\n", 
startingPoint, candidate ); 

return O; 

If you are interested in prime numbers, play around with this program. See if 
you can modify the code to print all the prime numbers from 1 to 100. How about 
the first 100 prime numbers? 

What's Next? 
Congratulations! You've made it through some tough concepts. You've learned 
about the C statements that allow you to control your program's flow. You've 
learned about C expressions and the concept of true and £ alse. You've also 
learned about the logical operators based on the values true and false. You've 
learned about the if, if-else, for, while, do, switch, and break statements. 
In short, you've learned a lot! 



Our next chapter introduces the concept of pointers, also known as variable 
addresses. From now on, you'll use pointers in almost every C program you write. 
Pointers allow you to implement complex data structures, opening up a world of 
programming possibilities. 

Chapter 7 also discusses function parameters in detail. As usual, plenty of 
code fragments and sample applications will be presented to keep you busy. See 
you there. 

Exercises 
1. What's wrong with each of the following code fragments: 

a. 

b. 

c. 

d. 

e. 

if i 
i++; 

for( i=O; i<20; i++ ) 

i--; 

while ( ) 

i++; 

do ( i++ 
until i 20 ) ; 

switch ( i 
{ 

} 

case "hello": 
case "goodbye" : 

print£( "Greetings." ); 
break; 

case default: 
print£( "Boring." ); 

i if ( i < 20 ) 
if ( i 20 ) 

print£ ( "Lonely ••• " ) ; 

g. while ( done = TRUE ) 
done = 1 done; 

h. for( i=O; i<20; i*20 ) 
print£ ( "Modification ••. " ) ; 

2. Modify nextPr ime. c to compute the prime numbers from 1 to 100. 

3. Modify nextPr ime. c to compute the first 100 prime numbers. 

EXERCISES 

111 



~~~~~~~~~~~-C~p~7 

Pointers and
Parameters

You've come a long way. You've mastered variable basics, operators, and state­
ments. You're about to add some powerful, new concepts to your programming
toolbox.

For starters, we'll introduce the concept of pointers. In programming, pointers
are references to other things. When someone calls your name to get your atten­
tion, they're using your name as a pointer. Your name is one way people refer to
you.

What Is a Pointer?
Your name and address can combine to serve as a pointer, telling the mail carrier
where to deliver the new Sears catalog. Your address distinguishes your house
from all the other houses in your neighborhood, and your name distinguishes you
from the rest of the people living in your house.

A pointer to a variable is really the address of the variable in memory. If you
pass the value of a variable to a function, the function can make use of the vari­
able's value but can't change the variable's value. If you pass the address of the
variable to the function, the function can also change the value of the variable.

When you declare a variable in C, memory is allocated to the variable. This mem­
ory has an address. C pointers are special variables, specifically designed to hold one of
these addresses. Later in the chapter, you'll learn how to create a pointer, how to make
it point to a specific variable, and how to use the pointer to change the variable's value.

Why Use Pointers?
Pointers can be extremely useful, allowing you to access your data in ways that or­
dinary variables just don't allow. Here's a real-world example of "pointer flexibility."

When you go to the library in search of a specific title, you probably start your
search in a card catalog. Card catalogs contain thousands of index cards, one for
every book in the library. Each index card contains information about a specific
book: the author's name, the book's title, and the copyright date, for example.

113

POINTERS AND PARAMETERS

Important

114

If Catalog J
1 l Information

530.1
E3Smg
1950

RELATIVITY (PHYSICS)

Einstein, Albert, 1879-1955
The Meaning of Relativity; 3rd ed.

rev. including the generalized theory
of gravitation. Princeton Univ. Press,
c1950.

162p.

I. Relativity (Physics) I. Title

0 0
Figure 7.1 Catalog card for a rather famous book. Note the catalog information on the left
side of the card.

Most libraries have three card catalogs. Each lists all the books, sorted alpha­
betically by subject, by author, or by title. In the subject card catalog, a book can be
listed more than once. For example, a book about Thomas Jefferson might be listed
under "Presidents, U.S.," "Architects," or even under "Inventors" (Jefferson was
quite an inventor).

Figure 7.1 shows a catalog card for Albert Einstein's famous book on relativity,
called The Meaning of Relativity. The card was listed in the subject catalog under the
subject "RELATIVITY (PHYSICS)." Take a minute to look the card over. Pay spe­
cial attention to the catalog information located on the left side of the card. The cat­
alog number for this book is 530.l. This number tells you exactly where to find the
book among all the other books on the shelves. The books are ordered numerically,
so you'll find this book , between 530 and 531 on the shelves.

In this example, the library bookshelves are like your computer's memory,
with the books acting as data. The catalog number is the address of your data
(a book) in memory (on the shelf).

WHAT IS A POINTER?

As you might have guessed, the catalog number acts as a pointer. The card cat­
alogs use these pointers to rearrange all the books in the library, without moving a
single book. Think about it. In the subject card catalog, all the books are arranged
by subject. Physically, the book arrangements have nothing to do with subject.
Physically, the books are arranged numerically, by catalog number. By adding a
layer of pointers between you and the books, the librarians achieve an extra layer
of flexibility.

In the same way, the author and title card catalogs use a layer of pointers to
arrange all the books by author and by title. With these pointers, all the books in
the library can be arranged in four different ways without ever leaving the shelves.
The books are arranged physically (sorted by catalog number) and logically
(sorted in one catalog by author, in another by subject, and in another by title).
Without the support of a layer of pointers, these logical book arrangements would
be impossible.

Adding a layer of pointers is also known as "adding a level of indirection."
The number of levels of indirection is the number of pointers you have to use
to get to your library book (or to your data).

Checking Out of the Library

So far, we've talked about pointers in terms of library catalog numbers. The use of
pointers in your C programs is not much different from this model. Each card cat­
alog number points out the location of a book on the library shelf. In the same way,
each pointer in your program will point out the location of a piece of data in com­
puter memory.

If you wrote a program to keep track of your compact disc collection, you
might maintain a list of pointers, each one of which might point to a block of data
describing a single CD. Each block of data might contain such information as the
name of the artist, the name of the album, the year of release, and a category Gazz,
rock, blues). If you got more ambitious, you could create several pointer lists. One
list might sort your CDs alphabetically by artist name. Another might sort them
chronologically by year of release. Yet another list might sort your CDs by musical
category. You get the picture.

There's a lot you can do with pointers. By mastering the techniques presented
in these next few chapters, you'll be able to create programs that take full advan­
tage of pointers.

By the Way

115

POINTERS AND PARAMETERS

116

Our goal for this chapter is to master pointer basics. We'll talk about C point­
ers and C pointer operations. You'll learn how to create a pointer and how to make
the pointer point to a variable. You'll also learn how to use a pointer to change the
value of the variable the pointer points to.

Pointer Basics
Pointers are variable addresses. Instead of an address such as:

1313 Mockingbird Lane
Raven Heights, California 90263

a variable's address refers to a memory location within your computer. As we dis­
cussed in Chapter 3, your computer's memory consists of a sequence of bytes. A 1-
megabyte computer has exactly 220 (or1,048,576) bytes of memory, also known as
random-access memory, or RAM. An 8-megabyte computer has exactly 8 x 220 = 2n
= 8,388,608 bytes of RAM. Every one of those bytes has its own unique address.
The first byte has an address of 0. The next byte has an address of 1. Computer ad­
dresses always start with 0 and continue up, one at a time, until they reach the
highest address. Figure 7.2 shows the addressing scheme for an 8-megabyte com­
puter. Notice that the addresses run from 0 (the lowest address) all the way up to
8,388,607 (the highest address).

9,399,501 I I I I I I 11 I
0,300,506 I I I I I I I I I

• • •
2 111111111
1 111111111
0 111111111

Figure 7.2 Addressing scheme for 8 megabytes of bytes.

Variable Addresses
When you run a program, one of the first things the computer does is allocate
memory for your program's variables. For example, suppose that you declare an
int in your code, like this:

int rnyVar;

The compiler reserves memory for the exclusive use of rnyVar.

The amount of memory allocated for an int depends on your development
environment For example, CodeWarrior allows you to select either 2- or 4-
bfle ints. Since all of the projects in this book were built using 2-byte ints,
the figures showing int memory allocation also show 2-byte in ts. Don't be
fooled! If your development environment is set to use 4-byte ints, 4 bytes
will be allocated for each int.

Each of rnyVar's bytes has a specific address. Figure 7.3 shows an 8-megabyte
computer with 2 bytes allocated to the variable rnyvar. In this picture, the 2 bytes
allocated to rnyVar have the addresses 508 and 509.

By convention, a variable's address is said to be the address of its first byte (the
first byte is the one with the lowest-numbered address). If a variable uses memory
locations 508 and 509 (as rnyVar does), its address is 508 and its length is 2 bytes.

8·388·607 I I I I I I I I I
8,388,606 I I I I I I I I I

• • •
509 1 11 1111 I I Lint myVar.
5081111111111 '

• • •
1 I 111 111 I I
0 111111111

Figure 7.3 The 2 bytes allocated for the int named rnyvar.

POINTER BASICS

Important

117

POINTERS AND PARAMETERS

Important

118

When more than 1 byte is allocated to a variable, the bytes will always be
consecutive (next to each other in memory). The 2 bytes allocated to an int
might have such addresses as 508 and 509 or 64,000 and 64,001. You will
never see an int whose byte addresses are 508 and 695. A variable's bytes
are like family-they stick together!

As we showed earlier, a variable's address is a lot like the catalog number on
a library catalog card. Both act as pointers: one to a book on the library shelf and
the other to a variable. From now on, when we use the term pointer with respect
to a variable, we are referring to the variable's address.

Now that you understand what a pointer is, your next goal is to learn how to
use pointers in your programs. The next few sections will teach you some valuable
pointer-programming skills. You'll learn how to create a pointer to a variable.
You'll also learn how to use that pointer to access the variable it points to.

The C language provides you with a few key tools to help you. These tools
come in the form of two special operators: & and *.

The & Operator

The & operator (also called the "address of" operator) pairs with a variable name
to produce the variable's address. For example, the following expression refers to
rnyVar's address in memory:

&rnyVar

If rnyvar owned memory locations 508 and 509 (as in Figure 7.3), the expression
would have a value of 508:

&rnyVar

The expression &rnyVar is a pointer to the variable rnyVar.
As you start programming with pointers, you'll find yourself using the & op­

erator frequently. An expression like &rnyVar is a common way to represent a
pointer. Another way to represent a pointer is with a pointer variable, a variable
specifically designed to hold the address of another variable.

Declaring a Pointer Variable

C supports a special notation for declaring pointer variables. The following line
declares a variable called myPointer:

int *myPointer;

Notice that the * is not part of the variable's name. Instead, it tells the compiler
that the associated variable is a pointer, specifically designed to hold the address
of an int. If there were a data type called bluto, you could declare a variable de­
signed to point to a bluto like this:

bluto *blutoPointer;

For now, we'll limit ourselves to pointers that point to in ts. Look at this code:

int *myPointer, myVar;
myPointer = &myVar;

The assignment statement puts myVar's address in the variable myPointer. If
myvar's address is 508, this code will leave myPointer with a value of 508. Note
that this code has absolutely no effect on the value of myVar.

There will be times in your coding when you have a pointer to a variable but
not the variable itself. This happens a lot. You can use the pointer to manipulate
the value of the variable it points to. Observe:

int *myPointer, myVar;

myPointer = &myVar;
*myPointer = 27;

As before, the first assignment statement places myVar's address in the vari­
able myPointer. The second assignment introduces the* operator. The* opera­
tor (called the star operator) converts a pointer variable to the item the pointer
points to.

The * that appears in the declaration statement isn't really an operator. It's
there only to designate the variable myPointer as a pointer.

POINTER BASICS

By the Way

119

POINTERS AND PARAMETERS

120

If myPointer points to myvar, as is the case in our example, *myPointer
refers to the variable myVar. In this case, the next two lines say the same thing:

*myPointer = 27;

myVar = 27;

Confused? These memory pictures should help. Figure 7.4 joins our program
in progress, just after the variables myVar and myPointer were declared:

int *myPointer, myVar;

Notice that 2 bytes were allocated for the variable myVar and that 4 bytes were
allocated for myPointer. Why? Because myVar is an int and myPointer is a

0,30a,501 I I I I I I I I I
0,30a,606 I I I I I I I I I

1,035
1,034
1,033
1,032

• • •
::=::::=:=~~~~

::=::::=~:=:::::::::::=~

::=::::=~:=:::::::::::=~

• • •

i.nt *myPoi.nter;

509111111111}-i.ntmyVar·
so0 I I I I II I I I '

• • • 1111111111
0111111111

Figure 7.4 Memory allocated for myvar and myPointer.

pointer, designed to hold a 4-byte address; 4 bytes equal 32 bits. Since memory ad­
dresses start at 0 and can never be negative, 4-byte memory addresses range from
0 up to 232 -1 = 4,294,967,295. That means that a 32-bit computer can address a
maximum of 4 gigabytes (4096 megabytes) of memory. That's a lot of RAM!

Older computers (such as the Apple Ile, for example) represented an ad­
dress using 2 bytes (16-bits) of memory, yielding a range of addresses from 0
to t 6

- 1 = 65,535. Imagine having to fit your operating system, as well as all
your applications, in a mere 64K of RAM (lK = 1024 bytes).

When the Mac first appeared, it came with 128K of RAM and used 24-bit
memory addresses, yielding a range of addresses from 0 to 224

- 1 =
16,777,215 (also known as 16 megabytes). In those days, no one could imag­
ine a computer that included 16 entire megabytes of memory!

Of course, these days we are much smarter. We absolutely know for a
fact that we'll never exceed the need for 32-bit addresses. I mean, there's no
way that a computer could ever make use of 4 gigabytes of RAM, right?
Hmmm Better not count on that. In fact, if you are a betting person, I'd
wager that someday we'll see 8-byte addresses. For now, it's OK to think of
addresses as all being 4 bytes in length. Just remember that that number is
strictly implementation dependent!

Once memory is allocated for myVar and myPointer, we move on to the
statement:

myPointer = &myVar;

The 4-byte address of the variable myVar is written to the 4 bytes allocated to
myPointer. In our example, myVar's address is 508. Figure 7.5 shows the value
508 stored in myPointer's 4 bytes. Now myPointer is said to "point to" myVar.

OK, we're almost there. The next line of ow example writes the value 27 to the
location pointed to by myPointer:

*myPointer = 27;

Without the * operator, the computer would place the value 27 in the memory
allocated to myPointer. The* operator dereferences myPointer. Dereferencing
a pointer twns the pointer into the variable it points to. Figure 7.6 shows the end
results.

POINTER BASICS

Important

121

POINTERS AND PARAMETERS

122

0,300,607 I I I I I I I I I
0,300,606 I I I I I I I I I

1,035
1,034
1,033
1,032

~

F

r-

• • •
..L -1. ..L

5

I I

0
I

• • •

..L

i:;

!:;

8 i:;

..L

i.nt *myPoi.nter;

509111111111}-i.nt myVar·
so0 I I I I I I I I I '

• • •
1 111 I I 11 11
0111111111

Figure 7.5 The address of myVar is assigned to myPointer.

If the concept of pointers seems alien to you, don't worry. You are not alone.
Programming with pointers is one of the most difficult topics you'll ever take on.
Just keep reading, and follow each of the examples line by line. By the end of the
chapter, you'll be a pointer expert!

Function Parameters
One of the most important uses of pointers (and perhaps the easiest to understand)
lies in the implementation of function parameters. In this section, we'll focus on
parameters and, at the same time, have a chance to see pointers in action.

What Are Function Parameters?

A function parameter is your chance to share a variable between a calling function
and the called function.

FUNCTION PARAMETERS

0,388,607 I I I I I I I I I
0,300,606 I I I I I I I I I

1,035

1,034

1,033

1,032

I

5

• • •
..L ..L ..L ..L

0
8

..L ..L ..L ..L ..L

• • •

I=

I= int *myPointer;

509@]}-27 int myVar;
508

• • •
1 II 1111111
0 111111111

Figure 7.6 Finally, the value 27 is assigned to *myPointer.

Suppose that you wanted to write a function called Add Two () that took two
numbers, added them, and returned their sum. How would you get the two orig­
inal numbers into AddTwo () ? How would you get the sum of the two numbers
back to the function that called Add Two () ?

As you might have guessed, the answer to both questions lies in the use of pa­
rameters. Before you can learn how to use parameters, however, you'll have to first
understand the concept of variable scope.

Variable Scope

In C, every variable is said to have a scope, or range. A variable's scope defines
where in the program you have access to a variable. In other words, if a variable is
declared inside one function, can another function refer to that same variable?

C defines variable scope as follows:

123

POINTERS AND PARAMETERS

By the Way

124

• A variable declared inside a function is local to that function and may be ref­
erenced only inside that function.

This statement is important. It means that you can't declare a variable inside
one function, then refer to that same value inside another function. Here's an ex­
ample that will never compile:

int main(void)
{

int numDots;

numDots = 500;

DrawDots ();

return O;
}

void DrawDots(void)
{

int i· ,

for i = 1; i <= numDots; i++)
printf(" ") ;

}

The error in this code occurs when the function DrawDots () tries to reference
the variable numDots. According to the rules of scope, DrawDots () doesn't even
know about the variable numDots. If you tried to compile this program, the com­
piler would complain that DrawDots () tried to use the variable numDots with­
out declaring it.

The problem you are faced with is getting the value of numDots to the func­
tion DrawDots () so DrawDots () knows how many "dots" to draw. The answer
to this problem is function parameters.

DrawDots () is another example of the value of writing functions. We've
taken the code needed to perform a specific function (in this case, draw some
dots) and embedded it in a function. Now, instead of having to duplicate the
cede inside BrawDots () every time we want to draw some d0ts in our pro­
gram, all we'd need is a single line of code: a call to the function DrawDots () .

FUNCTION PARAMETERS

How Function Parameters Work
Function parameters are just like variables. Instead of being declared at the begin­
ning of a function, function parameters are declared between the parentheses on
the function's title line, like this:

void DrawDots(int nwnDots
{

/* function's body goes here */
}

When you call a function, you just match up the parameters, making sure that
you pass the function what it expects. To call the version of DrawDots () we just
defined, make sure that you place an int between the parentheses. The call to
DrawDots () inside main () passes the value 30 into the function DrawDots () :

int main(void)
{

DrawDots(30);

return O;
}

When DrawDots () starts executing, it sets its parameter to the passed-in value. In
this case, DrawDots () has one parameter, an int named numDots. When the call
executes, the function Drawoots () sets its parameter, numDots, to a value of 30:

DrawDots(30);

To make things a little clearer, here's a revised version of our example:

int main(void)
{

DrawDots(30);

return O;
}

void DrawDots(int numDots)
{

125

POINTERS AND PARAMETERS

126

~ drawDots.out
SIOUX state : application has terminated .

. ~

-0
11

Figure 7.7 The program drawoots in action.

int i;

for i = 1; i <= numDots; i++)
printf (" ") ;

}

This version of main () calls Drawoots () , passing as a parameter the con­
stant 30. Drawoots () receives the value 30 in its int parameter, numoots. This
means that the function Drawoots () starts execution with a variable named
numDots having a value of 30.

Inside Drawoots () , the for loop behaves as you might expect, drawing 30
periods in the console window. Figure 7.7 shows this program in action. You can
run this example yourself. The project file, drawDots. µ, is located in the Learn C

Projects folder in a subfolder named 07. 01 - drawDots.

Parameters Are Temporary

When you pass a value from a calling function to a called function, you are creat­
ing a temporary variable inside the called function. Once the called function exits
(returns to the calling function), that variable ceases to exist.

FUNCTION PARAMETERS

In our example, we passed a value of 30 into Drawoots () as a parameter. The
value came to rest in the parameter variable named numDots. Once DrawDots ()
exited, numDots ceased to exist.

• Remember, a variable declared inside a function can be referenced only by that function.

It is perfectly acceptable for two functions to use the same variable names for
completely different purposes. It's fairly standard, for example, to use a variable
name like i as a counter in a for loop. What happens when, in the middle of just
such a for loop, you call a function that also uses a variable named i? Here's an
example:

int main(void)
{

int i;

for i=l; i<=lO; i++
{

DrawDots(30);

print£ (11 \n 11
) ;

}

return O;
}

void DrawDots(int numDots)
{

int i;

for i = l; i <= numDots; i++)
pr intf (11 11

) ;

}

This code prints a series of 10 rows of dots, with 30 dots in each row. After
each call to DrawDots () , a carriage return (" \n ")is printed, moving the cursor in
position to begin the next row of dots.

Notice that both main () and Drawoots () feature a variable named i. In
main () , the variable i is used as a counter, tracking the number of rows of dots
printed. DrawDots () also uses i as a counter, tracking the number of dots in the
row it is printing. Won't the copy of i in DrawDots () mess up the copy of i in
main()? No!

127

POINTERS AND PARAMETERS

128

When main () starts executing, memory gets allocated for its copy of i. When
main () calls Drawoots () , additional memory gets allocated for the copy of i in
DrawDots () . When DrawDots () exits, the memory for its copy of i is deallo­
cated, freed up so it can be used again for some other variable. A variable declared
within a specific function is known as a local variable. Drawoots () has a single
local variable, the variable i.

What Do Parameters Have to Do with Pointers?
OK. Now we're getting to the crux of the whole matter. What does all this have to
do with pointers? To answer this question, you have to understand the two differ­
ent methods of parameter passing.

Parameters are passed from function to function either by value or by address.
Passing a parameter by value passes only the value of a variable or a literal on to
the called function. Take a look at this code:

int main(void)
{

int numDots;

numDots = 30;

DrawDots(numDots);

return O;
}

void DrawDots(int numDots)
{

int i;

for (i = 1; i <= numDots; i++)
print£ (11 11

) ;

}

Here's what happens when main () calls DrawDots () . On the calling side,
the expression passed as a parameter to DrawDots () is resolved to a single value.
In this case, the expression is simply the variable numoots. The value of the ex­
pression is the value of numDots, which is 30.

On the receiving side, when DrawDots () gets called, memory is allocated for
its parameters, as well as for its local variables. This means that memory is allo-

WHAT DO PARAMETERS HAVE TO DO WITH POINTERS?

cated for its copy of numDots, as well as for its copy of i. The value that
DrawDots () receives from main () (in this case, 30) is copied into the memory al­
located to its copy of numDots.

It is important to understand that whatever main () passes as a parameter to
DrawDots () is copied into its local copy of the parameter. Think of this copy of
numDots as just another local variable that will disappear when DrawDots ()
exits. DrawDots () can do whatever it likes to its copy of the parameter. Since it is
just a local copy, any changes will have absolutely no effect on the copy of the pa­
rameter in main () .

Since passing parameters by value is a one-way operation, there's no way to
get data back from the called function. Why would you ever want to? Several rea­
sons. You might write a function that takes an employee number as a parameter.
You might want that function to return the employee's salary in another parame­
ter. How about a function that turns yards into meters? You could pass the num­
ber of yards as a value parameter, but how would you get back the number of
meters?

Passing a parameter by address (instead of by value) solves this problem. If
you pass the address of a variable, the receiving function can use the * operator to
change the value of the original variable. Here's an example:

int main(void
{

int square;

Squareit(5, &square);

print£("5 squared is %d.\n", square);

return O;
}

void Squareit(int number, int
{

*squarePtr ; number * number;
}

*squarePtr)

In this example, main () calls the function Squareit () , which takes two pa­
rameters. As in the previous example, both parameters are declared between the
parentheses on the function's title line. Notice that a comma separates the para­
meter declarations.

129

POINTERS AND PARAMETERS

By the Way

130

The first of the two Squareit () parameters is an int. The second parameter
is a pointer to an int. Square It () squares the value passed in the first parame­
ter, using the pointer in the second parameter to return the squared value.

If it's been 10 or more years since your last math class, squaring a number is
the same as multiplying the number by itself. The square of 4 is 16, and the
square of 5 is 25.

Here's how main () calls Square It () :

Squareit(5, &square);

Here's the function prototype of Square It () :

void Squareit(int number, int * squarePtr) ;

When Square It () gets called, memory is allocated for an int (number) and for
a pointer to an int (squarePtr).

square It.out
SIOUX state : app li cation has t erminated .

5 squared is 25 .

Figure 7.8 squareit in action.

GLOBAL VARIABLES AND FUNCTION RETURNS

Once the local memory is allocated, the value 5 is copied into the local para­
meter number, ::l!ld the address of square is copied into squarePtr. (Remember,
the & operator produces the address of a variable.)

Inside the function Squareit(), any reference to *squarePtr is just like a
reference to square. The following assignment statement assigns the value 25
(since number has a value of 5) to the variable pointed to by squarePtr:

*squarePtr = number * number;

This has the effect of assigning the value 25 to square. When Squareit () re­
turns control to main () , the value of square has been changed, as evidenced by
the screen shot in Figure 7.8. If you'd like to give this code a try, you'll find it in the
Learn C Projects folder, inside the 07. 02 - squareit subfolder.

We'll see lots more pointer-wielding examples throughout the rest of the book.

Global Variables and Function Returns
The combination of pointers and parameters gives us one way to share variables
between different functions. This section demonstrates two more techniques for
doing the same.

Global variables are variables that are accessible from inside every function in
your program. By declaring a global variable, two separate functions can access
the same variable without passing parameters. We'll show you how to declare a
global variable, then talk about when and when not to use global variables in your
programs.

Another topic we'll discuss later in the chapter is a property common to all
functions. All functions written in C have the ability to return a value to the func­
tion that calls them. You set this return value inside the function. You can use a
function's return value in place of a parameter, use it to pass "additional informa­
tion" to the calling function, or not use it at all. We'll show you how to add a return
value to your functions.

Global Variables
Earlier in the chapter, you learned how to use parameters to share variables be­
tween two functions. Passing parameters between functions is great. You can call
a function and pass it some data to work on; when the function's done, it can pass
you back the results.

Global variables provide an alternative to parameters. Global variables are just
like regular variables, with one exception. Global variables are immune to C's scope
rules. They can be referenced inside each of your program's functions. One function

131

POINTERS AND PARAMETERS

132

might initialize the global variable, another might change its value, and another
function might print the value of the global variable in the console window.

As you design your programs, you'll have to make some basic decisions about
data sharing between functions. If you'll be sharing a variable among a number of
functions, you might want to consider making the variable a global. Globals are es­
pecially useful when you want to share a variable between two functions that are
several calls apart.

Several calls apart? At times, you'll find yourself passing a parameter to a
function not because that function needs the parameter but because the function
calls another function that needs the parameter. Look at this code:

#include <stdio.h>

void PassAlong(int myVar);
void PrintMyVar(int myVar);

int main(void)
{

int myVar;

myVar = 10;

PassAlong(myvar);

return O;
}

void PassAlong(int myVar
{

PrintMyVar(myVar);
}

void PrintMyVar(int myVar)
{

print£ ("myVar = %d 11
, myVar) ;

}

Notice that main () passes myVar to the function PassAlong () .
PassAlong () doesn't make use of myVar but instead just passes myVar along to
the function PrintMyVar () . PrintMyVar () prints myVar, then returns.

GLOBAL VARIABLES AND FUNCTION RETURNS

If myVar were a global, you could have avoided some parameter passing. In
that case, main () and Pr intMyVar () could have shared myVar without the use
of parameters. When should you use parameters? When should you use globals?
There's no easy answer. As you. write more code, you'll develop your own coding
style and, with it, your own sense of when to use globals versus parameters. For
the moment, let's take a look at the proper way to add globals to your programs.

Adding Globals to Your Programs

Adding globals to your programs is easy. Just declare a variable at the beginning
of your source code, before the start of any of your functions. Here's the example
we showed you earlier, using globals in place of parameters:

#include <stdio.h>

void PassAlong(void);
void PrintMyVar(void);

int gMyVar;

int main(void
{

gMyVar = 10;

PassAlong();

return O;
}

void PassAlong(void
{

PrintMyVar () ;
}

void PrintMyVar(void)
{

print£("gMyVar = %d", gMyVar);
}

133

POINTERS AND PARAMETERS

Important

134

This example starts with a variable declaration, right at the top of the program.
Because gMyVar was declared at the top of the program, gMyVar becomes a global
variable, accessible to each of the program's functions. Notice that none of the
functions in this version use parameters. As a reminder, when a function is de­
clared without parameters, use the keyword void in place of a parameter list.

Did you notice that funny g at the beginning of the global'sname? Get used
to it. In general, Macintosh C programmers start each global variable with
the letter g (for global). Doing this will distinguish your local variables from
your global variables and will make your code much easier to read.

When to Use Globals

In general, you should try to minimize your use of globals. On the one hand,
global variables make programming easier, because you can access a global any­
where. With parameters, you have to pass the parameter from function to function,
until it gets to where it will be used.

On the other hand, globals are expensive, memorywise. Since the memory
available to your program is finite, you should try to be memory conscious when­
ever possible. What makes global variables expensive where memory is con­
cerned? Whenever a function is called, memory for the function's variables is
allocated on a temporary basis. When the function exits, the memory allocated to
the function is freed up (put back into the pool of available memory). Global vari­
ables, on the other hand, are around for the life of your program. Memory for each
global is allocated when the program first starts running and isn't freed up until
the program exits.

Try to minimize your use of globals, but don't be a miser. If using a global will
make your life easier, go ahead and use it.

Function Returns

Before we get to our source code examples, there's one more subject to cover. In ad­
dition to passing a parameter and using a global variable, there's one more way to
share data between two functions. Every function returns a value to the function
that called it. You can use this return value to pass data back from a called function.

So far, all of our examples have ignored function return values. The return
value comes into play only when you call a function in an expression, like this:

int main(void)
{

GLOBAL VARIABLES AND FUNCTION RETURNS

int sum;

sum= AddTheseNumbers(5, 6);

print£ ("The sum is %d. 11
, sum) ;

return O;
}

int AddTheseNumbers(int numl, int num2)
{

return(numl + num2);
}

There are a few things worth noting in this example. First, take a look at the
function specifier for AddTheseNumbers () . So far in this book, every single func­
tion other than main() has been declared by using the keyword void.
AddTheseNumbers () , like main () , starts with the keyword int. This keyword
tells you the type returned by this function. A function declared with the void
keyword doesn't return a value. A function declared with the int keyword re­
turns a value of type int.

A function returns a value by using the return keyword, followed by an ex­
pression that represents the value you want returned. For example, take a look at
this line of code from AddTheseNumbers () :

return(numl + num2);

This line of code adds the two variables numl and num2, then returns the sum. To
understand what that means, take a look at this line of code, which calls
AddTheseNumbers () from main () :

sum= AddTheseNumbers(5, 6);

This line of code first calls AddTheseNumbers () , passing in values of 5 and 6 as
parameters. AddTheseNumbers () adds these numbers and returns the value 11,
which is then assigned to the variable sum.

When you use a function inside an expression, the computer makes the func­
tion call, then substitutes the function's return value for the function when it eval­
uates the rest of the expression.

135

POINTERS AND PARAMETERS

By the Way

136

There are several ways to use return. To exit a function immediately, without
establishing a return value, you could use this statement:

return;

You could also use this statement:

return();

The parentheses in a return statement are optional. You'd use the plain
return, without an expression, to return from a function of type void. You might
use this immediate return in case of an error, like this:

if (OutOfMemory()
return;

What you'll want to remember about this form of return is that it does not
establish the return value of the function. This works fine if your function is de­
clared void:

void MyVoidFunction(int myParam);

But it won't cut it if your function is declared to return a value:
int AddTheseNumbers(int numl, int num2)

If you forget to specify a return value, some compilers will say nothing, some
will print warnings, and others will report errors.

AddTheseNumbers () is declared to return a value of type int. Here are two
versions of the AddTheseNumbers () return statement:

return(numl + num2);

return numl + num2;

Notice that the second version did not include any parentheses. Since return is a
keyword and not a function call, either of these forms is fine.

You can find a version of this program on your hard drive. Look in the folder
Learn c Projects, in the subfolder 07. 03 - addThese. Figure 7.9 shows the
output of this program.

GLOBAL VARIABLES AND FUNCTION RETURNS

addlhese.out
SIOUX state : application has terminated .

The sum is 11.

Figure 7.9 addThese in action.

Danger! Avoid Uninitialized Return Values!

Before we leave the topic of function return values, there's one pitfall worth men­
tioning. If you're going to use a function in an expression, make sure that the function
provides a return value. For example, this code will produce unpredictable results:

int main(void
{

int sum;

sum AddTheseNumbers(5, 6);

printf ("The sum is %d. ", sum) ;

return O;
}

int AddTheseNumbers(int numl, int num2)
{

}

return; /* Yikes! We forgot to
set the return value */

~

-01 w

137

POINTERS AND PARAMETERS

138

addThese.out
SIOUX state : application has terminated.

The sum is 0 . .Q

-0
!Qi

Figure 7.10 Yikes! The sum of 5 + 6 is not equal to 0. Someone forgot to set the return

value.

When AddTheseNumbers () returns, what will its value be? No one knows!
Figure 7.10 shows one possibility. As you can see, the computer used 0 as the re­
turn value for AddTheseNumbers () . Don't forget to set a return value if you in­
tend to use a function in an expression.

To Return or Not to Return

Should you use a return value or a passed-by-address parameter? Which is cor­
rect? This is basically a question of style. Either solution.will get the job done, so
feel free to use whichever works best for you. Just remember that a function can
have only one return value but an unlimited number of parameters. If you need to
get more than one piece of data back to the calling function, your best bet is to use
parameters.

The function AddTheseNumbers () was a natural fit for the return state­
ment. It took in a pair of numbers (the input parameters) and needed to return the
sum of those numbers. Since it needed to return only a single value, the return
statement worked perfectly.

MORE SAMPLE PROGRAMS

Another nice thing about using the return statement is that it frequently al­
lows us to avoid declaring an extra variable. In addThese, we declared sum to re­
ceive the value returned by AddTheseNuinbers () . Since all we did with sum was
print its value, we could have accomplished the same thing with this version of
main():

int main(void)
{

print£("The sum is %d. 11
, AddTheseNumbers(5, 6));

return O;
}

See the difference? We included the call to AddTheseNumbers () in the
print£ () , bypassing sum entirely. When AddTheseNumbers () returns its int,
that value is passed on to print£ ().

More Sample Programs
Are you ready for some more code? The next few sample programs use pointers,
function parameters, global variables, and function returns. Crank up the stereo,
break out the pizza, and fire up your Mac. Let's code!

listPrimes.µ
Our next sample program is an updated version of nextPr ime, the Chapter 6 pro­
gram that found the next prime number following a specified number. The exam­
ple we presented reported that the next prime number after 19 was 23.

This version of the program, called listPrimes .µ,uses a function named
IsitPrime () and lists all the prime numbers between 1and50. Open up the pro­
ject listPrimes. µ.You'll find the program in the Learn C Projects folder, in­
side the subfolder named 07. 04 - listPrimes. Run listPrimes and then
compare your results with the console window shown in Figure 7.11.

Stepping Through the Source Code

The listPrimes.c source code consists of two functions: main() and
IsitPrime () . IsitPrime () takes a single parameter, an int named candidate,
which is passed by value. IsitPrime () returns a value of true if candidate is a
prime number and a value off alse otherwise.

139

POINTERS AND PARAMETERS

140

listPrimes.out ~
SIOUX state: application has terminated .

2
3
5
7
11
13
17
19
23
29
31
37
4 1
43
47

s a pr ime number. .Q
s a prime number .
s a prime number .
s a prime number .
is a prime number.
Is a prime number.
is a prime number.
is a prime number .
is a prime number .
is a prime number .
is o prime number .
is o prime number.
Is o prime number .
is a prime number .
is a prime number .

~ w
Figure 7.11 listPrimes in action.

The program starts off with two #includes: stdio. h gives us access to the
function prototype of printf () , and math. h gives us access to the function pro­
totype for sqrt () :

#include <stdio.h>
#include <math . h>

Next comes the function prototype for IsitPrime ().The compiler will use
this function prototype to make sure that all calls to IsitPrime () pass the right
number of parameters (in this case, 1) and that the parameters are of the correct
type (in this case, a single i nt).

/***********************/
/* Function Pr ototypes */

/***********************/
int IsitPrime(int candidate);

The main () function defines a single variable, an int named i. We'll use i as
a counter to step through the integers from 1 to 50. We'll pass each number to
IsitPrime () . If the result is true, we'll report the number as prime:

MORE SAMPLE PROGRAMS

int main(void)
{

}

int i;

for (i
{

1; i <= 50; i++

if IsitPrime(i))
printf (11 %d is a prime number. \n 11

, i) ;
}

return O;

As usual, main () ends with a return statement. By convention, returning
a value of 0 tells the outside world that everything ran just hunky-dory. If
something goes wrong (if we ran out of memory, perhaps), the same conven­
tion calls for us to return a negative number from main () . Some operating
systems will make use of this return value, and others won't. It doesn't cost
you anything to follow the convention, so go ahead and follow it.

IsitPrime () first checks to see whether the number passed in is less than 2.
If it is, IsitPrime () returns false, since 2 is the first prime number:

int IsitPrime(int candidate)
{

int i, last;

if candidate < 2)
return false;

If candidate has a value of 2 or greater, we'll step through all the numbers
between 2 and the square root of candidate, looking for a factor. If this algorithm
is new to you, go back to the previous chapter and ~heck out the program
nextPr irne. If we find a factor, we know that the number isn't prime, and we'll re­
turn false:

By the Way

141

POINTERS AND PARAMETERS

By the Way

142

else
{

}

last= sqrt(candidate);

for (i = 2; i <= last; i++
{

if

}

(candidate % i)
return fal se;

0)

If we get through the loop without finding a factor, we know that candidate
is prime, and we return true:

}

return true;

If candidate is equal to 2, last will be equal to 1.414, which will get trun­
cated to l, since last is an int. If last isl, the for loop won't even get
through one iteration and will fall through to the statement:

return true;

The same thing happens if candidate is 3. Since 2 and 3 are both prime,
this works just fine. On the other hand, this little example shows you how
careful you have to be to check your code, to make sure it works in all cases.

Consider t~e function name Is I tP rime () . In C, when you name a function
in the form of a true or false question, it is good form to return a value of t rue
or false . The question this function answers is, Is the candidate prime? It is criti­
cal that IsitPrime () return true if the candidate was prime and false other­
wise. When main () calls I sitPr ime () , main () is asking the question, Is the
candida te prime? In the case of the if statement, main () is saying, If i is prime,
do the printf ():

if (IsitPrime(i))
printf(...) ;

Make sure that your function return values make sense!

MORE SAMPLE PROGRAMS

power.µ
Our next program combines a global variable, a pointer parameter, and some
value parameters. At the heart of the program is a function, called DoPower () ,
that takes three parameters. DoPower () takes a base and an exponent, raises the
base to the exponent power, and returns the result in a parameter. Raising a base
to an exponent power is the same as multiplying the base by itself, an exponent
number of times.

For example, raising 2 to the fifth power (written as 25
) is the same as saying

2*2*2*2*2, which is equal to 32. In the expression 25
, 2 is the base and 5 is the expo­

nent. The function DoPower () takes a base and an exponent as parameters and
raises the base to the exponent power. DoPower () uses a third parameter to re­
turn the result to the calling function.

The program also uses a global variable, an int named gPrintTraceinfo,
which demonstrates one of the most important uses of a global variable. Every
function in the program checks the value of the global gPrintTraceinfo. If
gPrintTraceinfo is true, each function prints a message when the function is
entered and another message when the function exits. In this way, you can trace
the execution of the program. By reading each print£ () , you can see when a
function is entered and when it leaves.

If gPrintTraceinfo is set to true, the extra function-tracing information
will be printed in the console window. If gPrintTraceinfo is set to false, the
extra information will not be printed. As you'll see in a moment, by simply chang­
ing the value of a global, you can dramatically change the way your program runs.

Running power.µ

You'll find power.µ in the Learn C Projects folder, in the 07. 05 - power sub­
folder. Run power.µ and compare your results with the console window shown
in Figure 7.12. This output was produced by three consecutive calls to the function
DoPower ().The three calls calculated the result of the expressions 25

, 34
, and 53

•

Here's how the program works.

Stepping Through the Source Code

The program starts with a standard #include and the function prototype for
DoPower () . Notice that DoPower () is declared to be of type void, telling you
that DoPower () doesn't return a value. As you read through the code, think about
how you might rewrite DoPower () to return its result by using the return state­
ment instead of in a parameter.

143

POINTERS AND PARAMETERS

144

power.out
SIOUX state : application has terminated .

2 to the 5th = 32.
3 t o the 4th= 81 .
5 to the 3rd = 125.

Figure 7.12 power output, with gPrintTraceinfo set to false.

#include <stdio . h>

/***********************/
/* Function Prototypes */
/***********************/
void DoPower(int *resultPtr, int base, int exponent);

Next comes the declaration of our global, gPrintTraceinfo. Once again,
notice that the global starts with a g:

/***********/
/* Globals */
/***********/
int gPrintTraceinfo;

Next, main () starts off by setting gPrintTraceinfo to false. We then
check to see whether tracing is turned on. If so, we'll print a message telling us
we've entered main () :

MORE SAMPLE PROGRAMS

int main(void
{

int power;

gPrintTraceinfo = false;

if (gPrintTraceinfo)
printf("--->Starting main() . .. \n");

C guarantees that it will initialize all global variables to zero. Since false is
equivalent to zero, we could have avoided setting gPrintTraceinfo to
false, but it does make the code a little clearer.

Here are our three calls to DoPower () , each of which is followed by a
printf () reporting our results. If DoPower () returned its results in a return
statement, we could have eliminated the variable power and embedded the call to
DoPower () inside the printf () in place of power.

DoPower(&power, 2, 5) ;

printf("2 to the 5th = %d.\n", power) ;

DoPower(&power , 3, 4) ;
printf("3 to the 4th = %d . \n" , power) ;

DoPower(&power, 5, 3) ;
printf("5 to the 3rd = %d.\n", power) ;

If tracing is turned on, we'll print a message saying that we are leaving
main ():

if gPrintTraceinfo)
printf("--->Leaving main() .. • \n");

return O;
}

The function DoPower () takes three parameters. We'll use resul tPtr, a
pointer to an int, to pass back the function results. The value parameters base
and exponent represent the-guess what?-base and exponent.

By the Way

145

POINTERS AND PARAMETERS

146

void DoPower(int *resultPtr, int base, int exponent)
{

int i;

Once again, check the value of gPrintTraceinfo. If it's true, print a mes­
sage telling us that we're at the beginning of DoPower () . Notice the tab character
(represented by the characters \t) at the beginning of the print£ () quoted
string. You'll see what this was for when we set gPrintTraceinfo to true.

if (gPrintTraceinfo)
printf("\t---> Starting DoPower() ••• \n");

The following three lines calculate base raised to the exponent power, accu­
mulating the results in the memory pointed to by resultPtr. When main()
called DoPower () , it passed &power as its first parameter. This means that
resultPtr contains the address of (points to) the variable power. Changing
*resultPtr is exactly the same as changing power. When DoPower() returns
to main () , the value of power will have been changed; power was passed by ad­
dress (also called by reference) instead of by value.

*resultPtr = 1;
for (i = 1; i <= exponent; i++)

*resultPtr *= base;

Finally, if gPrintTraceinfo is true, print a message telling us that we're
leaving DoPower () :

if (gPrintTraceinfo
printf("\t---> Leaving DoPower() ••• \n");

}

Figure 7.13 shows the console window when power is run with
gPrintTraceinfo set to true. See the trace information? Find the lines printed
when you enter and exit DoPower () . The leading tab characters help distinguish
these lines.

This tracing information was turned on and off by a single global variable. As
you start writing your own programs, you'll want to develop your own set of tricks
for global variables. For example, programmers who write programs that can run
in color or black and white usually create a global called something like gisColor.
They set gisColor to true or false, once they establish whether they are run­
ning in a color or a black-and-white environment. In this way, a function buried

power.out
SIOUX state: application has terminated.

--->Starting main() . ..
--->Starting DoPower() .. .
---> Leaving DoPower() .. .

2 to the 5th = 32 .
--->Starting DoPower<> .. .
---> Leaving DoPower<> . . .

3 to the 4th= 8 1.
---> Starting DoPower<> .. .
---> Leaving DoPower() .. .

5 to the 3rd = 125.
---> Leaving main <> ...

Figure 7.13 power output, with gPrintTraceinfo set to true.

deep inside the program doesn't have to figure out whether it's running in color or
in black and white. All it has to do is check the value of gisColor.

What's Next?
Wow! You really are becoming a C programmer. In this chapter alone, you covered
pointers, function parameters (both by value and by address), global variables,
and function return values.

You're starting to develop a sense of just how powerful and sophis ticated the
C language really is. You've built an excellent foundation. Now you're ready to
take off.

Chapter 8 introduces the concept of data types. Throughout the book, you've
been working with a single data type, the int. Chapter 8 introduces the concepts
of arrays, strings, pointer arithmetic, and typed function return values. Let's go.

Exercises
l. Predict the result of each of the following code fragments:

a. int main(void)
{

int nurn, i;

EXERCISES

147

POINTERS AND PARAMETERS

148

}

num 5;

for i = O; i < 20; i++)
AddOne(&num) ;

printf ("Final value is %d.", num) ;

return O;

void AddOne(int
{

*myVar)

(*myVar) ++;
}

b. int gNumber;

c.

int
{

}

int
{

}

int

int
{

main(void

int i;
gNumber = 2;

for (i 1; i <= 2; i++)
gNumber *= Multiplyit(gNwnber);

print£("Final value is %d.", gNumber);

Multiplyit(intmyVar

return(myvar * gNumber) ;

gNwnber;

main(void

int i;

}

qNumber 1;

for (i 1; i <= 10; i++)
qNumber = Doubleit(qNumber);

print£("Final value is %d.", qNumber);

int Doubleit(int myVar)
{

return 2 * myVar;
}

2. Modify power. c. Delete the first parameter of the function DoPower () , mod­
ifying the routine to return its result as a function return value instead.

3. Modify listPrimes. c. Instead of printing prime numbers, print only non­
prime numbers. In addition, print one message for nonprimes that are multi­
ples of 3 and a different message for nonprimes that are not multiples of 3.

EXERCISES

149

------------Chapter 8
Variable Data Types

OK, now we're cooking! You may now consider yourself a C Programmer, First
Class. At this point, you've mastered all the basic elements of C programming. You
know that C programs are made up of functions, one-and only one!-of which is
named main () . Each of these functions uses keywords (such as if, for, and
while), operators (such as=, ++,and *=),and variables to manipulate the pro­
gram's data.

Sometimes, you' ll use a global variable to share data between functions. At
other times, you'll use a parameter to share a variable between a calling and a
called function. Sometimes, these parameters are passed by value; sometimes,
pointers are used to pass a parameter by address. Some functions return values.
Others, declared with the void keyword, don't return a value.

In this chapter, we'll focus on variable types. Each of the variables in the pre­
vious example programs has been declared as an int. As you'll soon see, there are
many other da ta types out there.

Other Data Types
So far, the focus has been on ints, which are extremely useful when it comes to
working with numbers. You can add two ints. You can check whether an int is
even, odd, or prime. You can do a lot with in ts, as long as you limit yourself to
whole numbers.

Just as a reminder, 527, 33, and -2 are all whole numbers, whereas 35.7, 92.1,
and -1.2345 are not whole numbers.

What do you do if you want to work with nonwhole numbers, such as 3.14159
and -98.6? Check out this slice of code:

By the Way

151

VARIABLE DATA TYPES

By the Way

152

int myNum;

myNum = 3.5;
printf ("myNum = %d" , myNum) ;

Since myNum is an int, the number 3.5 will be truncated before it is assigned
to myNum. When this code ends, myNum will be left with a value of 3 and not 3.5 as
intended. Do not despair. There are several special C data types created especially
for working with nonwhole, or floating-point numbers.

The term floating point refers to the decimal point found in all floating-point
nwnbers.

Floating-Point Data Types

The three floating-point data types are float, double, and long double. These
types differ in the number of bytes allocated to each and, therefore, the range of
values each can hold. The relative sizes of these three types are completely imple­
mentation dependent. Here's a program you can run to tell you the size of these
three types in your development environment and to show you various ways to
use printf () to print floating-point numbers.

floatSizer

Look inside the Learn C Projects folder, inside the subfolder named 08. 01 -
floatSizer, and open the project named floatSizer. µ.Figure 8.1 shows the
results when I ran floatSizer on my Macintosh using the 68000 version of
Code Warrior. The first three lines of output tell you the size, in bytes, of the types
float, double, and long double, respectively. If you run the same program
using THINK C, you'll find that a float is still 4 bytes long but that a double
and a long double are 12 bytes each. If you compiled this program into native
code using the Power Macintosh version of Code Warrior, you'll find that a float
is 4 bytes long but that a double and a long double are each 8 bytes long. The
point here is this: Never assume that you know the size of a type. As you'll see
when we go through the source code, C gives you everything you need to check
the size of a specific type in your development environment. If you need to be sure
of a type's size, write a program and check the size for yourself.

OTHER DATA TYPES

flootSizer.out
S IOUX state : application has terminated .

sizeof(float) = 4
sizeof< double) = 10
sizeof< long double) = 10

myFloat = 12345 .678711
myOouble = 12345.678901
mylongOouble = 12345 .678901

myFloat = 12345.6787109375000000
myDouble = 12345 .6789012345678900
mylongDouble = 12345. 6789012345678900

myFloat = 12345. 7
myFloat = 12345.68
myFloat = 12345.678710937500
myFloat = 12345.678710938

myFl oat = 1. 234568e+04

myFloat = 100000
myFloat = 1e+06

Figure 8.1 The output from floatSizer .

Stepping Through the Source Code

The code starts with the standard #include:

#include <stdio.h>

Then main () defines three variables: float, a double, and a long double:

int main(void
{

float
double
long double

myFloat ;
myDouble;
myLongDouble;

Next, we'll assign a value to each of the three variables. Notice that we've assigned
the same number to each:

myFloat = 12345.67890123456789;
myDouble = 12345.67890123456789;
myLongDouble = 12345.67890123456789;

153

VARIABLE DATA TYPES

By the Way

Important

154

Now comes the fun part. We'll start by using C's sizeof operator to print the
size of each of the three floating-point types. Even though sizeof doesn't look
like the other operators we've seen(+,*,<<, and so on), it is indeed an operator.
Stranger yet, sizeof requires a pair of parentheses surrounding a single parame­
ter, much like a function. The parameter is either a type or a variable; sizeof ()
returns the size, in bytes, of its parameter.

Like return, sizeof doesn't always require a pair of parentheses. If the
sizeof operand is a type, the parentheses are required. If the sizeof
operand is a variable, the parentheses are optional. Rather than trying to re­
member this rule, avoid confusion and always use parentheses with sizeof.

Did you notice the (int) to the left of each sizeof? This is known as a type­
cast. A typecast tells the compiler to convert a value of one type to a specified type.
In this case, we are taking the type returned by sizeof and converting it to an
int. Why do this? The reason is that sizeof returns a value of type size_t
(weird type name, eh?), and printf () doesn't have a format specifier that corre­
sponds to a size_t. By converting the size_t to an int, we can use the format
specifier %d to print the value returned by sizeof. Notice the extra \n at the end
of the third printf () , which gives us a blank line between the first three lines of
output and the next line of output:

printf("sizeof(float) = %d\n'', (int)sizeof(float)) ;

printf("sizeof(double) = %d\n", (int)sizeof(double));

printf("sizeof(long double) = %d\n\n" , (int)sizeof(long double));

If the concept of typecasting is confusing to you, have no fear. We'll get into
typecasting in Chapter 11. Until then, you can use this method whenever you
want to print the value returned by sizeof. Alternatively, you might declare
a variable of type int, assign the value returned by sizeof to the int, and
then print the int:

int myint;

myint = sizeof(float);

printf("sizeof(float) = %d\n" , myint) ;

Use whichever method works for you.

OTHER DATA TYPES

The rest of this program is dedicated to various and sundry ways you can print
your floating-point numbers. So far, all of our programs have printed ints using
the format specifier %d. The Standard Library has a set of format specifiers for all of
C's built-in data types, including several for printing floating-point numbers.

First, we'll use the format specifer % f to print our three floating-point numbers
in their natural, decimal format:

printf("myFloat = %f\n", myFloat);
printf("myDouble = %£\n", myDouble);
printf("myLongDouble = %£\n\n", myLongDouble);

Here's the result:

myFloat = 12345.678711
myDouble = 12345.678901
myLongDouble = 12345.678901

As a reminder, all three of these numbers were assigned the value:

12345.67890123456789

Hmmm ... none of the numbers we printed matches this number. And the
first number we printed is different from the second and third numbers. What
gives? There are several problems here. As we've already seen, this development
environment uses 4 bytes for afloat and 10 bytes each for a double and a long
double. This means that the number:

12345.67890123456789

can be represented more accurately using a double or a long double than it can
be using a flea t. In addition, we are printing using the default precision of the % f
format specifier. In this case, we are printing only six places past the decimal point.
Although this might be plenty of precision for most applications, we'd like to see
how accurate we can get.

We then use format specifier modifiers to more closely specify the output pro­
duced by each printf ().By using %25 .16f instead of %f, we tell print£ () to
print the floating-point number with an accuracy of 16 places past the decimal and
to add spaces if necessary so the number takes up at least 25 character positions:

155

VARIABLE DATA TYPES

By the Way

156

printf("myFloat = %25.16£\n" , myFloat);
print£ ("myoouble = %25 .16£\n", myDouble) ;
printf("myLongDouble = %25. 16£\ n\n", myLongDouble);

Here's the result:

myFloat = 12345 .6787109375000000
myDouble = 12345.6789012345678900
myLongDouble 12345.6789012345678900

As requested, printf () printed each of these numbers to 16 places past the
decimal place (count the digits yourself), padding each result with zeros as
needed. Since adding the 16 digits to the right of the decimal, plus 1 space for the
decimal, plus 5 for the 5 digits to the left of the decimal equals 22 {16+ 1 +5=22) and
we asked printf () to use 25 character positions, printf () added 3 spaces to
the left of the number.

We originally asked printf () to print a float with a value of:

12345.67890123456789

The best approximation of this number we were able to represent by a
float is:

12345.6787109375000000

Where did this approximation come from? The answer has to do with
the way your computer stores floating-point numbers.

The fractional part 0£ a number (the number to the right of the decimal)
is represented in binary just like an integer. Instead of the sum of powers of
2, the fractional part is represented as the sum of powers of ~. For example,
the number 0.75 is equal to ~ + K In binary, that's 11.

The problem with this representation is that it's impossible to represent
some numbers with complete accuracy. If you need a higher degree of accuracy,
use double or a long double instead of float. Unless you cannot afford the
extra memory that the larger data types require, you are probably better off
using a dpuble or a long double in your programs instead of a float for all
your floating-point calculations.

OTHER DATA TYPES

The next portion of code shows you the result of using different modifer val­
ues to print the same float:

printf("myFloat
printf ("myFloat
printf("myFloat
printf ("myFloat

%10.lf\n", myFloat);
%.2f\n", myFloat);
%.12f\n", myFl oat);
%.9f\n\n", myFloat);

Here's the output produced by each printf ():

myFloat
myFloat
myFloat
myFloat

12345 . 7
12345 . 68
12345 . 678710937500
12345 . 678710938

The specifier % 10 . 1 f told pr intf () to print 1 digit past the decimal and to
use 10 character positions for the entire number. The specifier % . 2f told
printf () to print 2 digits past the decimal and to use as many character posi­
tions as necessary to print the entire number. Notice that printf () rounds off the
result for you and doesn't simply cut off the number after the specified number of
places.

The specifier% . 12f told printf () to print 12 digits past the decimal, and the
specifier% . 9f told printf () to print 9 digits past the decimal. Again, notice the
rounding that takes place.

Unless you need to exactly control the total number of characters used to
print a number, you'll probably leave off the first modifier and just specify
the number of digits past the decimal you want printed, using specifiers such
as % • 2 f and % • 9 f .

If you do use a two-part modifier, such as %3. 2£, printf () will never
cut off numbers to the left of the decimal. For example, the output
myFloat 255. 54 will be produced by the following code:

myFloat = 255.543;
printf("rnyFloat = %3.2£", rnyFLoat);

Even though you told print f () to use three character positions to print
the number, print£ () was smart enough to not lose the numbers to the left
of the decimal.

By the Way

157

VARIABLE DATA TYPES

158

The next printf () uses the specifier %e, asking print£ () to print the
float using scientific, or exponential, notation:

printf("myFloat = %e\n\n", myFloat);

Here's the corresponding output:

myFloat = 1.234568e+04

The result, 1. 234568e+04 is equal to 1.234568 times 10 to the fourth power, or
1. 234568* 104

, or 1.234568*10000==12,345.68.
The next two printf () calls use the specifier %g, letting printf () decide

whether decimal or scientific notation will be the most efficient way to represent
this number. The first %g deals with a myFloat value of 100,000:

myFloat = 100000;
print£ ("myFloat %g\n", myFloat) ;

Here's the output:

myFloat = 100000

Next, the value of myFloat is changed to 1,000,000, and %g is used once again:

myFloat = 1000000;
print£ ("myFloat %g\n", myFloat) ;

return O;
}

Here's the result of this last print£ ().As you can see, this time printf () de­
cided to represent the number using exponential notation:

myFloat = le+06

The lesson here is: Use float if you want to work with floating-point num­
bers. Use double or long double for extra accuracy, but beware the extra cost in
memory usage. Use int for maximum speed, if you want to work exclusively
with whole numbers, or if you want to truncate a result.

OTHER DATA TYPES

The Integer Types

So far, you've learned about four types: three floating-point types (float, dou­
ble, and long double) and one integer type (int). In this section, we'll intro­
duce the remaining integer types: char, short, and long. As was the case with
the three floating-point types, the size of each of the four integer types is imple­
mentation dependent. Our next program, intSizer proves that point. You'll find
intSizer, in the Learn C Projects folder, in the 08 . 02 - intSizer subfolder.

Although these forms are rarely used, a short is also known as a short
int, and a long is also known as a long int. As an example, these declara­
tions are perfectly legal:

short int
long int

myShort ;
myLong;

Although the preceding declarations are just fine, you are more likely to
encounter declarations like these:

short
long

myShort;
myLong;

As always, choose your favorite style and be consistent.

The intSizer program contains one printf () for each integer type:

printf ("sizeof (char) = %d\n", (int) sizeof (char)) ;
printf("sizeof(short) = %d\n", (int)sizeof(short));
printf("sizeof(int) = %d \n'' , (int) s izeof(int));
printf("sizeof(l ong) = %d\n", (int)sizeof(long)) ;

Like their floatSizer counterparts, these printf () calls use sizeof to
determine the size of a char, a short, an int, and a long. When intSizer was
compiled using the 68000 version of CodeWarrior, here's what came back:

sizeof(char) = 1
sizeof(short) = 2
sizeof(int) = 2
sizeof(long) = 4

Important

159

VARIABLE DATA TYPES

Warning

160

Here's the result when intSizer was compiled with the PowerPC native version
of CodeWarrior:

sizeof(char) = 1
sizeof(short) = 2
sizeof(int) = 4
sizeof(long) = 4

As you can see, an int is 2 bytes in the 68000 version of Code Warrior and 4
bytes in the PowerPC version of CodeWarrior. Again, the point to remember is:
There are no guarantees. Don't assume that you know the size of a type. Write a
program and check for yourself.

The 68000 version of Code Warrior uses 2-byte ints by default but does allow
you to specify 4-byte in ts and 8-byte doubles. Select Preferences... from
the Edit menu, then click on the Processor icon. Be warned, however. The
libraries ANSI(2i) C.68K.Lib and MathLib68K(2i) .Lib were built
specifically to work with 2-byte in ts and will not work properly with 4-byte
ints. You'll need to replace these libraries with ANSI (4i)C. 68K.Lib and
MathLib68K(4i) .Lib, something you may not be able to do with
CodeWarrior Lite.

Type Value Ranges

All the integer types can be either signed or unsigned. This obviously affects
the range of values handled by that type. For example, a signed 1-byte char can
store a value from -128 to 127, and an unsigned 1-byte char can store a value
from 0 to 255. If this clouds your mind with pain, now might be a good time to go
back and review Chapter 5.

A signed 2-byte short or int can store values ranging from - 32768 to 32767.
An unsigned 2-byte short or int can store values ranging from 0 to 65535.

A signed 4-byte long or int can store values ranging from -2,147,483,648 to
2,147,483,647. An unsigned 4-byte long or int can store values ranging from 0
to 4,294,967,295.

A 4-byte float can range in value from -3.4e+38 to 3.4e+38. An 8-byte dou­
ble or long double can range in value from - l.7e+308 to l.7e+308.

OTHER DATA TYPES

Memory Efficiency Versus Safety

Each time you declare one of your program's variables, you'll have a decision to
make. What's the best type for this variable? In general, it's a good policy not to
waste memory. Why use a long when a short will do just fine? Why use a dou­
ble when a float will do the trick?

There is a danger in being too concerned with memory efficiency, however. For
example, suppose that a customer asked you to write a program designed to print
the numbers 1through100, one number per line. Sounds pretty straightforward.
Just create a for loop and embed a printf () in the loop. In the interests of mem­
ory efficiency, you might use a char to act as the loop's counter. After all, if you
declare your counter as an unsigned char, it can hold values ranging from 0 to
255. That should be plenty, right?

unsigned char counter;

for (counter=l; counter<=lOO; counter++)
printf (11 %d\n 11

, counter) ;

This program works just fine. But suppose that your customer then asks you
to extend the program to count from 1 to 1000 instead of just to 100. You happily
change the 100 to 1000 like so:

unsigned char counter;

for (counter=l; counter<=lOOO; counter++)
printf(11 %d\n 11

, counter);

What do you think will happen when you run the program? To find out, open the
Learn C Projects folder, open the 08. 03 - typeoverflow subfolder, and
open and run the project typeOverflow. µ .

Keep an eye on the numbers as they scroll by on the screen. When the number
255 appears, a funny thing happens. The next number will be 0, then 1, 2, and so
on. If you leave the program running for a while, it will climb back up to 255, then
jump to 0 and climb back up again. This will continue forever. Type command-pe­
riod (00.) to halt the program, then quit.

If you can't get the program to quit, hold down the command (00) and option
keys and press the Escape key. When the dialog box appears, click on the
Force quit button. You can use this trick to quit almost any program, but be
aware that you'll lose any unsaved changes.

Warning

161

VARIABLE DATA TYPES

162

The problem with this program occurs when the for loop increments
counter when it has a value of 255. Since an unsigned char can hold a maxi­
mum value of 255, incrementing it gives it a value of 0 again. Since counter can
never get higher than 255, the for loop never exits.

Just for kicks, edit the code and change the unsigned char to a signed
char. What do you think will happen? Try it!

The real solution here is to use a short, int, or long instead of a char. Don't
be stingy. Unless there is a real reason to worry about memory usage, err on the
side of extravagence. Err on the side of safety!

Working with Characters
With its minimal range, you might think that a char isn't good for much. Actually,
the C deities created the char for a good reason. It is the perfect size to hold a sin­
gle alphabetic character. In C, an alphabetic character is a single character placed
between a pair of single quotes (').Here's a test to see whether a char variable
contains the letter ' a ' :

char c;

c = 'a';

if (C == I a I)

printf("The variable c holds the character 'a'.");

As you can see, the character ' a' is used in both an assignment statement and
an if statement, just as if it were a number or a variable.

The ASCII Character Set

In C, a signed char takes up a single byte and can hold a value from -128to127.
How can a char hold a numerical value, as well as a character value, such as 'a'
or ' +'? The answer lies with the ASCII character set. The ASCII (American
Standard Code for Information Interchange) character set of 128 standard charac­
ters features the 26 lowercase letters, the 26 uppercase letters, the 10 numerical dig­
its, and an assortment of other exciting characters, such as} and=. Each of these
characters corresponds exactly to a value between 0 and 127. The ASCII character
set ignores the values between-128 and-1.

For example, the character 'a' has an ASCII value of 97. When a C compiler
sees the character ' a' in a piece of source code, it substitutes the value 97. Each of

WORKING WITH CHARACTERS

the values from 0 to 127 is interchangeable with a character from the ASCII char­
acter set.

Although we use the ASCII character set throughout this book, you should
know that there are other character sets out there. Another commonly used
character set is the EBCDIC character set. Each EBCDIC character, like an
ASCII character, has a value 'between 0 and 127 and, therefore, fits nicely in­
side a char.

Some foreign alphabets have more characters that'l can be represented by
a single byte. To accommodate these multi.byte characters, ISO C features
wide-character and wide-string data types.

Although we won't get into EBCDIC and multi.byte character sets in this
book, you should keep these things in mind as you write your own code.
Read up on the multi.byte extensions introduced as part of the ISO C stan­
dard. There's an excellent writeup in Harbison and Steele's C: A Reference
Manual (see the bibliography at the back of this book).

Learn how to localize your programs, how to isolate the portions of your
programs that depend on human language from the rest of your source code.
Read about the Script Manager, the Macintosh system software tl:tat simpli­
fies the process of translating your program's human-language features from
one language to another. There's a nice write-up (called. "Weddwide Com­
patibility") in the Macintosh Human Interface Guidelines,.

ascii.µ

Here's a program that will make the ASCII character set easier to understand. Go
into the Learn C Projects folder, then into the 08. 04 - ascii subfolder, and
open the project ascii.µ.

Before we step through the project source code, let's take it for a spin. Select
Run from the Project menu. A console window similar to the one in Figure 8.2
should appear. The first line of output shows the characters corresponding to the
ASCII values from 32 to 47. Why start with 32? As it turns out, the ASCII charac­
ters between 0 and 31 are nonprintable characters, such as the backspace (ASCII 8)
or the carriage return (ASCII 13). A table of the nonprintable ASCII characters is
presented later on.

Warning

163

VARIABLE DATA TYPES

164

Notice that ASCII character 32 is a space, or ' '.ASCII character 33 is ' I ' .

ASCII character 47 is ' I '. This presents some inter-esting coding possibilities. For
example, this code is perfectly legitimate:

int sumOfChars;

sumOfChars = '!' + ' /';

What a strange piece of code! Although you will probably never do anything
like this, try to predict the value of the variable s urnOfChars after the assignment
sta tement. And the answer is ...

The character ' ! ' has a value of 33, and the character ' I ' has a value of 47.
Therefore, sumOfChars will be left with a value of 80 following the assignment
statement. C allows you to represent any number between 0 and 127 in two differ­
ent ways: as an ASCII character or as a number. Let's get back to the console win­
dow in Figure 8.2 .

ascii.out
S IOUX sta te : application has t erminated .

32 to 4 7 ---> ! "•$IS& ' <)*+, - . I
48 to 57 ---> 0123456789
58 to 64 ---> :;<=>?@
65 to 90 ---> ABCOEFGHI JKLMNOPQRSTUUWXYZ
91 to 96 ---> C\ J"_ '
97 to 122 ---> abcdefghi jk lmnopqrstuvwxyz
123 to 126 ---> <1>-

Figure 8.2 The printable ASCII characters.

WORKING WITH CHARACTERS

The second line of output shows the ASCII characters from 48 through 57. As
you can see, these 10 characters represent the digits 0 through 9. Here's a little
piece of code that converts an ASCII digit to its numerical counterpart:

char digit;
int convertedDigit;

digit= '3';

convertedDigit =digit - '0';

This code starts with a char named digit, initialized to hold the ASCII char­
acter ' 3 ', which has a numerical value of 51. The next line of code subtracts the
ASCII character ' O ' from digit. Since the character ' O ' has a numerical value of
48, and digit started with a numerical value of 51, convertedDigit ends up
with a value of 51- 48, or 3. Isn't that interesting?

Subtracting 'O' from any ASCII digit yields that digit's numerical counter­
part. Although this is a great trick if you know you're working with ASCII,
your code will fail if the digits of the current character set are not represented
in the same way as they are in ASCII. For example, if you were on a machine
that used a character set in which the digits were sequenced from 1to9, fol­
lowed by 0, this trick wouldn't work.

The next line of the console window shown in Figure 8.2 shows the ASCII
characters with values ranging from 58 to 64. The following line is pretty interest­
ing. It shows the range of ASCII characters from 65 to 90. Notice anything familiar
about these characters? They represent the complete uppercase alphabet.

The next line in Figure 8.2 lists ASCII characters with values from 91 through
96. The next line lists the ASCII characters with values ranging from 97 through
122. These 26 characters represent the complete lowercase alphabet.

Adding 32 to an uppercase ASCII character yields its lowercase equivalent.
Likewise, subtracting 32 from a lowercase ASCII character yields its upper­
case equivalent.

Guess what? You never want to take advantage of this information!
Instead, use the Standard Library routines tolower () and toupper () to
do the conversions for you.

Warning

Warning

165

VARIABLE DATA TYPES

166

As a general rule, try not to make assumptions about the order of charac­
ters in the current character set. Use Standard Library functions rather than
working directly with character values. Although it is tempting to do these
kinds of conversions yourself, by going through the Standard Library, you
know that your program will work across single-byte character sets.

The final line in Figure 8.2 lists the ASCII characters from 123 to 126. As it turns
out, the ASCII character with a value of 127 is another nonprintable character.
Figure 8.3 lists these "unprintables." The left-hand column shows the ASCII code;
the right-hand column shows the keyboard equivalent for that code, along with
any appropriate comments. The characters with comments by them are probably
the only unprintables you'll ever use.

Stepping Through the Source Code

Before we move on to our next topic, let's take a look at the ascii . c source code
that generated the ASCII character listing in Figure 8.2. This code begins with
the usual #include, followed by a function prototype of the function
Pr intChars () . Pr intChars () takes two parameters, which define a range of
chars to print.

#include <std io.h>

/***********************/
/* Function Prototypes */
/***********************/
void PrintChars(char low, char high);

The main () function calls PrintChars () seven times in an attempt to func­
tionally organize the ASCII characters:

int main(void)

{

PrintChars(32, 47) i
PrintChars(48, 57) i
PrintChars(58 , 64) i
PrintChars(65 , 90) i

}

PrintChars(91, 96);
PrintChars(97, 122);
PrintChars(123, 126);

return O;

ASCII Unprintables
O Used to terminate text strings (Explained later in chapter)
1 Control-A
2 Control-B
3 Control-C
4 Control-0 (End of file mark, see Chapter 10)
5 Control-E
6 Control-F
7 Control-G (Beep character - Try it!)
8 Control-H (Backspace)
9 Control-I (Tab)

1 O Control-J (Line feed)
11 Control-K (Vertical feed)
12 Control-L (Form feed)
13 Control-M (Carriage return, no line feed)
14 Control-N
15 Control-0
16 Control-P
17 Control-a
18 Control-A
19 Control-S
20 Control-T
21 Control-U
22 Control-V
23 Control-W
24 Control-X
25 Control-Y
26 Control-Z
27 Control-[(Escape character)
28 Control-I
29 Control-]
30 Control-"
31 Control-_
127 del

Figure 8.3 The ASCII unprintables.

WORKING WITH CHARACTERS

167

VARIABLE DATA TYPES

168

PrintChars () declares a local variable, c, to act as a counter as we step
through a range of chars:

void PrintChars(char low, char high)
{

char c;

We'll use low and high to print a label for the current line, showing the range
of ASCIT characters to follow. Notice that we use %d to print the integer version of
these chars; %d can handle any integer types no bigger than an int:

printf("%d to %d ---> ", low, high);

Next, a for loop is used to step through each of the ASCII characters, from
low to high, using printf () to print each of the characters consecutively on the
same line. The printf () bears closer inspection. Notice the use of %c (instead of
our usual %d) to tell printf () to print a single ASCil character:

for (c = low; c <= high; c++)
print£ ("%c", c) ;

Once the line is printed, a single new line is printed, moving the cursor to the
beginning of the next line in the console window. Thus ends PrintChars () :

print£("\n") ;
}

The char data type is extremely useful to C programmers. The next two top­
ics-arrays and text strings-will show you why. As you read through these two
topics, keep the concept of ASCII characters in the back of your mind. As you
reach the end of the section on text strings, you'll see an important relationship de­
velop among the three topics.

Arrays
An array turns a single variable into a list of variables; for example:

int myNumber [3];

This declaration creates three separate int variables, referred to in your program
as myNumber [0] , myNumber [1] , and myNumber [2] . Each of these vari­
ables is known as an array element. The number enclosed in brackets ([]) is called
an index.

char myChar[20];

In this declaration, the name of the array is myChar. This declaration will create an
array of type char with a dimension of 20. The dimension of an array is the
array's number of elements. The array elements will have indices that run from 0
to 19.

In C, array indices always run from 0 to one less than the array's dimension.

This slice of code first declares an array of 100 ints, then assigns each int a
value of 0:

int myNumber[100], i;

for i=O; i<lOO ; i++
myNumber[i] = O;

You could have accomplished the same thing by declaring 100 individual
in ts, then initializing each individual int. Here's what tha t code might look like:

int myNumberO, myNumberl, , myNumber99;

myNumberO O;
myNumberl O;

myNumber99 = O;

It would take 100 lines of code just to initialize these variables! By using an
array, we've accomplished the same thing in just a few lines of code. Look at this
code fragment:

ARRAYS

Important

169

VARIABLE DATA TYPES

Important

170

sum = 0;
for (i=O; i<lOO; i++

sum+= myNumber[i];

printf ("The sum of the 100 numbers is %d . ", sum) ;

This code adds the value of all 100 elements of the array rnyNumber.

In this example, the for loop is used to step through an array, performing
some operation on each of the array's elements. You'll use this technique fre­
quently in your own C programs.

Why Use Arrays?
Programmers would be lost without arrays. Arrays allow you to keep lists of
things. For example, if you need to maintain a list of 50 employee numbers, declare
an array of 50 ints. You can declare an array using any C type. For example, the
following code declares an array of 50 floating-point numbers:

float salaries[50];

This might be useful for maintaining a list of employee salaries.
Use an array when you want to maintain a list of related data. Here's an ex­

ample.

dice.µ

Look in the Learn C Projects folder, inside the 08. 05 - dice subfolder, and
open the project dice .µ. This program simulates the rolling of a pair of dice. After
each roll, the program adds the two dice, keeping track of the total. It rolls the dice
1000 times, then reports on the results. Give it a try!

Run dice by selecting Run from the Project menu. A console window
should appear, similar to the one in Figure 8.4. Take a look at the output-it's
pretty interesting. The first column lists all the possible totals of two dice. Since the
lowest-possible roll of a pair of six-sided dice is 1 and 1, the first entry in the col­
umn is 2. The column counts all the way up to 12, the highest-possible roll
(achieved by a roll of 6 and 6).

The number in parentheses is the total number of rolls (out of 1000 rolls) that
matched that row's number. For example, the first row describes the dice rolls that
total 2. In this run, the total is 28. Finally, the program prints an x for every 10 of

dice.out
SIOUX state : app licati on has terminated.

2 < 28): xx
3 < 63): xxxxxx
4 < 77) : xxxxxxx
5 < 110) : xxxxxxxxxxx
6 < 146) : xxxxxxxxxxxxxx
7 < 160): xxxxxxxxxxxxxxxx
8 < 132) : xxxxxxxxxxxxx
g < 116): xxxxxxxxxxx

10 < 82): xxxxxxxx
11 < 60): xx xx xx
12 < 26) : xx

Figure 8.4 dice in action. Your mileage may vary!

these rolls. For the total 28, for example, the program prints two x's at the end of
the 2s row. Since 160 7s were rolled, 16 x 's were printed at the end of the 7s row.

Recognize the curve depicted by the x's in Figure 8.4? The curve represents a
"normal" probability distribution, also known as a bell curve. According to
the curve, you are about six times more likely to roll a 7 as you are to roll a 12.
Want to know why? Check out a book on probability and statistics.

Let's take a look at the source code tha t makes this possible.

Stepping Through the Source Code

The source code starts off with three #includes: <stdlib. h> gives us access to
the routines rand () and s rand () , <time. h> gives us access to clock () , and
<stdio. h> gives us access to printf ().

#include <s tdlib.h>
#include <tirne.h>
#include <stdio.h>

ARRAYS

.Q

tzy
~

By the Way

171

VARIABLE DATA TYPES

By the Way

172

Following are the function prototypes for RollOne () , Pr intRolls () , and
Pr intx () . You'll see how these routines work as we step through the code.

/***********************/
/* Function Prototypes */

/***********************/
int
void
void

RollOne (void) ;
PrintRolls(int rolls[));
PrintX(int howMany);

main () declares an array of 13 ints named rolls, which will keep track of
the 11 possible types of dice rolls. For example, rolls (2) will keep track of the
total number of 2s, rolls [3] will keep track of the total number of 3s, and so on,
up until rolls (12), which will keep track of the total number of 12s rolled. Since
there is no way to roll a 0 or a 1 with a pair of dice, rolls (0] and rolls (1) will
go unused.

int main(void)
{

int rolls[13], twoDice, i;

We could have rewritten the program using an array of 11 ints, thereby sav­
ing 2 in ts worth of memory. 1f we did that, rolls [0] would track the
number of 2s rolled, rolls [1] would track the number of 3s rolled, and so
on. This would have made the program a little more difficult to read, since
rolls [i) would be referring to the number of (i+2) 's rolled.

In general, it is OK to sacrifice memory to make your program easier to
read, as long as program performance isn't compromised.

The function srand () , part of the Standard Library, initializes a random­
number generator, using a seed provided by another Standard Library function,
clock () . Once the random-number generator is initialized, another function,
rand () , will return an int with a random value.

srand(clock());

Why random numbers? Sometimes, you want to add an element of unpre­
dictability to your program. For example, in our program, we want to roll a pair of

dice again and again. The program would be pretty boring if it rolled the same
numbers over and over. By using a random-number generator, we can generate a
random number between 1 and 6, thus simulating the roll of a single die!

The next step is for main () to initialize each of the elements of the array
rolls to 0:

for (i=O; i<=l2; i++
rolls[i] = O;

This is appropriate, since no rolls of any kind have taken place yet.
The next for loop rolls the dice 1000 times. As you'll see, the function

RollOne () returns a random number between 1 and 6, simulating the roll of a
single die. By calling it twice and storing the sum of the two rolls in the variable
twoDice, we've simulated the roll of two dice:

for (i=l; i <= 1000; i++)
{

twoDice = RollOne() + RollOne();

The next line is pretty tricky, so hang on. At this point, the variable twoDice
holds a value between 2 and 12, the total of two individual dice rolls. We'll use that
value to specify which int to increment. If twoDice is 12 (if we rolled a pair of
6s), we'll increment rolls [12]. Get it? If not, go back and read through this again.
H you still feel stymied (and it's OK if you do), find a C buddy to help you through
this. It is important that you get this concept. Be patient.

++rolls[twoDice];
}

Once we're finished with our 1000 rolls, we'll pass rolls as a parameter to
Pr intRolls () :

PrintRolls(rolls);

return O;
}

Notice that we used the array name without the brackets (rolls instead of
rolls []). The name of an array is a pointer to the first element of the array. H you

ARRAYS

173

VARIABLE DATA TYPES

Important

174

have access to this pointer, you have access to the entire array. You'll see how this
works when we look at PrintRolls ().

Just remember that passing the name of an array as a parameter is exactly the
same as passing a pointer to the first element of the array. To prove this, edit
dice . c and change PrintRolls (rolls) ; to:

PrintRolls(&(rolls[O]));

The two lines of code are equivalent! The second form passes the address
of the first array element. If you think back to Chapter 7, we used the & oper­
ator to pass a parameter by reference instead of by value. By passing the ad­
dress of the first array element, you give PrintRolls () the ability to both
access and modify all of the array elements. This is an important concept!

RollOne () first calls rand () to generate a random number ranging from 0
to 32,767 (in fact, the upper bound is defined by the constant RAND_MAX, which is
guaranteed to be at least 32,767). Next, the % operator is used to return the remain­
der when the random number is divided by 6. This yields a random number rang­
ing from 0 to 5. Finally, 1 is added to this number, converting it to a number
between 1 and 6, and that number is returned:

int RollOne(void
{

return (rand() % 6) + l;
}

PrintRolls () starts off by declaring a single parameter, an array pointer
named rolls. Notice that rolls was declared using square brackets, telling the
compiler that rolls is a pointer to the first element of an array (in this case, to an
array of in ts).

void PrintRolls(int rolls [])
{

int i;

PrintRolls () could also have declared its parameter using this nota­
tion:

void PrintRolls(int *rolls)

Instead, it used this notation:

void PrintRolls(int rolls[])

Both of these notations describe a pointer to an int, and both can be used
to access the elements of an array. You'll learn more about the close rela­
tionship between pointers and arrays as you make your way through the
rest of the book.

For now, remember this convention. If you are declaring a parameter
that will point to an array, use the square-bracket form. Otherwise, use the
normal pointer form.

Let's get back to our program. We had just started looking at PrintRolls ().
The for loop steps through the rolls array, one int at a time, starting with
rolls [2] and making its way to rolls [12] . For each element, PrintRolls ()
first prints the roll number and then, in parentheses, the number of times (out of
1000) that roll occurred. Next, Pr i ntx () is called to print a single x for every 10
rolls that occurred. Finally, a carriage return is printed, preparing the console win­
dow for the next roll.

}

for (i=2; i<=12; i++)
{

printf("%2d (%3d): , i, rolls [i]);
PrintX(rolls[i] I 10);
printf("\n");

}

PrintX is pretty straightforward. It uses a for loop to print the number of x's
specified by the parameter howMany:

void PrintX(int howMany)
{

ARRAYS

By the Way

175

VARIABLE DATA TYPES

Warning

176

}

int i;

for i=l; i <=howMany ; i++)
printf ("x") ;

Danger, Will Robinson!!!

Before we move on, there is one danger worth discussing at this point. See if you
can spot the potential hazard in this piece of code:

int myints[3];

for i=O; i<20; i++
myints[i) = 0;

Yikes! The array myints consists of exactly three array elements, yet the for
loop tries to initialize 20 elements. Th.is is called exceeding the bounds of your
array. Because C is such an informal language, it will let you "get away" with this
kind of source code. In other words, Code Warrior will compile this code without
complaint. Your problems will start as soon as the program tries to initialize the
fourth array element, which was never allocated .

What will happen? The safest thing to say is that the results will be unpre­
dictable. The problem is, the program is trying to assign a value of 0 to a block of
memory that it doesn't necessarily own. Anything could happen. The program
would most likely crash, which means that it stops behaving in a rational manner.
I've seen some cases where the computer actually leaps off the desk, hops across
the floor, and jumps face first into the trash can.

Well, OK, not really. But odd things will happen if you don't keep your array
references in bounds.

As you code, be aware of the limitations of your variables. For example, a
char is limited to values from -128 to 127. Don't try to assign a value such as
536 to a char. Don't reference my Array [2 7] if you declared my Array with
only 10 elements. Be careful!

TEXT STRINGS

Text Strings
The first C program in this book made use of a text string:

print£("Hello, world!");

This section will teach you how to use such text strings in your own programs. It
will teach you how these strings are stored in memory and how to create your own
strings from scratch.

A Text String in Memory

The text string "Hello, world!" exists in memory as a sequence of 14 bytes
(Figure 8.5). The first 13 bytes consist of the 13 ASCII characters in the text string.
Note that the seventh byte contains a space (on an ASCII-centric computer, that
translates to a value of 32).

The final byte (byte 14) has a value of 0, not to be confused with the ASCII
character ' 0 ' . The 0 is what makes this string a C string. Every C string ends with
a byte having a value of 0. The 0 identifies the end of the string.

When you use a quoted string like "Hello, world!" in your code, the com­
piler creates the string for you. This type of string is called a string constant. When
you use a string constant in your code, the detail work is done for you automati­
cally. In the following example, the 14 bytes needed to represent the string in mem­
ory are allocated automatically:

print£("Hello, world!");

The 0 is placed in the fourteenth byte, automatically. You don't have to worry
about these details when you use a string constant.

String constants are great, but they are not always appropriate. For example,
suppose that you want to read in somebody's name, then pass the name on to
print£ () to display in the console window. Since you won't be able to predict
the name that will be typed in, you can't predefine the name as a string constant.
Here's an example.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

[8J~[J][J]@]CTSJ~@][U[JJ@TI][QJ
Figure 8.5 The "Hello, World 111 text string.

177

VARIABLE DATA TYPES

178

name.µ

Look in the Learn C Projects folder, inside the 08. 06 - name subfolder, and
open the project name.µ. The program will ask you to type your first name on the
keyboard. Once you've typed your first name, the program will use your name to
create a custom welcome message. Then, name will tell you how many characters
long your name is. How useful!

To run name, select Run from the Project menu. A console window will ap­
pear, prompting you for your first name, like this:

Type your first name, please:

Type your first name, then enter a carriage return. When I did, I saw the out­
put shown in Figure 8.6. Let's take a look at the source code that generated this
output.

Stepping Through the Source Code

At the heart of name. c is a new Standard Library function called scanf () . This
function uses the same format specifiers as print£ () to read text in from the key­
board. This code will read in an int:

name.out
SIOUX state : application has terminated .

Type your first name, please : Dave
~elcome, Dave.
Your name is 4 characters long .

Figure 8.6 name prompts you to type in your name, then tells you how long your name is.

int myint;

scanf (11 %d 11
, &mylnt) ;

The %d tells scanf () to read in an int. Notice the use of the & before the
variable myint. This passes the address of myint to scanf () , allowing scanf ()
to change the value of myint. To read in a float, use code like:

float myFloat;

scanf (11 %£ 11
, &myFloat) ;

The program name. c starts off with a pair of #includes: <string. h> gives
us access to the Standard Library function strlen (),and <stdio. h>, well, you
know what we get from <stdio. h>-pr intf () , right? Right.

#include <string.h>
#include <stdio.h>

To read in a text string, you have to first declare a variable to place the text
characters in. The program uses an array of characters for this purpose:

int main(void)
{

char name(50];

The array name is big enough to hold a 49-byte text string. When you allocate
space for a text string, remember to save 1 byte for the 0 that terminates the string.

The program starts by printing a prompt. A prompt is a text string that lets the
user know that the program is waiting for input, as in the following:

print£(11 Type your first name, please: ");

Before we get to the scan£ () call, it helps to understand how the computer
handles input from the keyboard. When the computer starts running your pro­
gram, it automatically creates a big array of chars for the sole purpose of storing
keyboard input to your program. This array is known as your program's input
buffer. Every time you enter a carriage return, all the characters typed since the
previous carriage return are appended to the current input buffer.

When your program starts, the input buffer is empty. If you type 12 3 abed
from your keyboard, followed by a carriage return, the input buffer will look like

TEXT STRINGS

179

VARIABLE DATA TYPES

By the Way

180

End of
Input Buffer

~,

ITJ~@JLSJ~@J@J@JrsJDDD · · •
Figure 8.7 A snapshot of the input buffer.

Figure 8.7. The computer keeps track of the current end of the input buffer. The
space character between the ' 12 3 ' and the ' abed' has an ASCII value of 32.
Notice that the carriage return was placed in the input buffer.

The ASCII value of the character used to indicate a carriage return is imple­
mentation dependent. In most development environments, an ASCII 10 indi­
cates a carriage return. On some (most notably, MPW), an ASCII 13 indicates
a carriage return. Use ' \n' and you'll always be safe.

Given the input buffer shown in Figure 8.7, suppose that your program called
scanf () , like this:

scanf ("%d", &my Int) ;

Starting at the beginning of the input buffer, scanf () reads a character at a
time until it reaches one of the nonprintables, such as a carriage return, tab, space,
or 0, until it reaches the end of the buffer or a character that conflicts with the for­
mat specifier (if %d was used and the letter 'a' was encountered, for example).

After the scanf () , the input buffer looks like Figure 8.8. Notice that the char­
acters passed on to scanf () were removed from the input buffer and that the rest
of the characters slid over to the beginning of the buffer. In fact, scanf () took the
characters '1 ', '2 ',and '3' and converted them to the integer 123, placing 123
in the variable rnyint.

If you then typed the line:

3.5 Dave

followed by a carriage return, the input buffer would look like Figure 8.9. At this
point, the input buffer contains two carriage returns. To the input buffer, a carriage

End of
Input Buffer

, '
~[§J@J@Jr9DDDDDDD · · ·

Figure 8.8 A second snapshot of the input buffer.

return is just like any other character. To a function like scanf () , the carriage re­
turn is white space.

If you forgot what white space is, now would be a good time to turn back to
Chapter 5, where white space was first described.

Before we started our discussion on the input buffer, main () had just called
printf () to prompt for the user's first name:

printf("Type your first name, please: ") ;

Next, we called scanf () to read the first name from the input buffer:

scanf ("%s", name) ;

Since the program just started, the input buffer is empty; scanf () will wait
until characters appear in the input buffer, which will happen as soon as you type

TEXT STRINGS

By the Way

End of
Input Buffer

Figure 8.9 A third snapshot of the input buffer.

181

VARIABLE DATA TYPES

By the Way

Warning

182

some characters and enter a carriage return. Type your first name and enter a car­
riage return.

Note that scanf () will ignore white-space characters in the input buffer. For
example, if you type a few spaces and tabs and then enter a carriage return,
scanf () will still sit there, waiting for some real input. Try it!

Once you type in your name, scanf () will copy the characters, a byte at a
time, into the array of chars pointed to by name. Remember, because name was
declared as an array, name points to the first of the 50 bytes allocated for the array.

If you type in the name Dave, scanf () will place the four characters 'D',
'a', ' v ' , and 'e' into the first four of the 50 bytes allocated for the array. Next,
scanf () will set the fifth byte to a value of 0 to terminate the string properly
(Figure 8.10). Since the string is properly terminated by the 0 in name [4], we
don't really care about the value of the bytes name [5] through name [4 9].

Next, we pass name on to printf () , asking it to print the name as part of a
welcoming message. The %s tells printf () that name points to the first byte of a
zero-terminated string. Stepping through memory, one byte at a time, printf ()
starts with the byte that name points to and prints each byte in tum until it reaches
a byte with a value of 0, marking the end of the string.

printf ("Welcome, %s. \n", name) ;

If name [4] didn't contain a 0, the string wouldn't be properly terminated.
Passing a nonterm.inated string to printf () is a sure way to confuse
printf (),which will step through memory one byte at a time, printing a
byte and looking for a O. It will keep printing bytes until it happens to en­
counter a byte set to 0. Remember, C strings must be terminated!

name
points here

Figure 8.10 The array name after the string "Dave" is copied to it. Notice that name [4 J
has a value of O.

The next line of the program calls another Standard Library function, called
strlen(), which takes a pointer as a parameter and returns the length, in bytes,
of the string pointed to by the parameter. This function depends on the string
being terminated with a 0. Just like sizeof () , strlen () returns a value of type
size_t. We'll use a typecast to convert the value to an int, then print it using %d.
Again, we'll cover typecasting later in the book.

#define

printf("Your name i s %d c haracters long.", (int)strlen(name));

return 0;
}

Our last program for this chapter demonstrates a few more character-handling
techniques, a new Standard Library function, and an invaluable programmer's
tool, the # define.

#define
The #define (pronounced pound-define) tells the compiler to substitute one
piece of text for another throughout your source code. The following statement,
for example, tells the compiler to substitute 6 every time it finds the text
kMaxPlayers in the source code.

define kMaxPlayers 6

The text kMaxPlayers is known as a macro. As the C compiler goes through
your code, it enters each #define into a list, known as a dictionary, performing
all the #def i ne substitutions as it goes.

It's important to note that the compiler n ever modifies your source code. The
dictionary it creates as it goes through your code is separate from your
source code, and the substitutions it performs are made as the source code is
translated into machine code.

Here's an example of a #define in action :

#define kMaxArraySize 100

int main(void)

Important

183

VARIABLE DATA TYPES

Warning

184

{

}

char
int

myArray[kMaxArraySize];
i;

for i=O; i<kMaxArraySize; i++)
myArray [i] = O;

return 0;

The #define at the beginning of this example substitutes 100 for
kMaxArraySize everywhere it finds it in the source code file. In this example, the
substitution will be done twice. Although your source code is not modified, here's
the effect of this #define:

int main(void)
{

}

char myArray[100];
int i;

for i=O; i<lOO; i++
myArray[i] = O;

return 0;

Note that a #define must appear in the source code file before it is used. In
other words, this code won't compile:

int main(void)
{

char myArray[kMaxArraySize];
int i;

#define kMaxArraySize 100

for (i=O; i<kMaxArraySize; i++)

myArray[i = O;

return O;
}

Having a #define in the middle of your code is just fine. The problem
here is that the declaration of myArray uses a #define that hasn't occurred
yet!

If you use #defines effectively, you'll build more flexible code. In the previ­
ous example, you can change the size of the array by modifying a single line of
code, the #define. If your program is designed correctly, you should be able to
change the line to:

#define kMaxArraySize 200

You can then recompile your code, and your program should still work properly.
A good sign that you are using #defines properly is an absence of constants in
your code. In the example, the constant 100 was replaced by kMaxArraysize.
You can also use the Preprocess command from the Project menu to get a pre­
view of the result of all your #define substitutions.

Most Macintosh programmers use the same naming convention for #de­
fines as they use for global variables. Instead of starting the name with a g
(as in gMyGlobal), a #define constant starts with a k (as in kMyConstant).

UNIX programmers tend to name their #define constants using all up­
percase letters, sprinkled with underscores (_) to act as word dividers (as in
MAX_ARRAY_SIZE).

As you'll see in our next program, you can put practically anything, even
source code, into a #define. Take a look:

#define kPrintReturn printf("\n") ;

Although not particularly recommended, this #define will work just fine:

printf ("\n") ;

#define

Important

185

VARIABLE DATA TYPES

By the Way

186

It will substitute that statement for every occurrence of the text kPrintReturn in
your source code. You can also base one #define on a previous #define:

#define kSideLength 5
#define kArea kSideLength * kSideLength

Interestingly, you could have reversed the order of these two #def in es, and
your code would still have compiled. As long as both entries are in the dic­
tionary, their order of occurrence in the dictionary is not important.

What is important is that #define appear in the source code before any
source code that refers to it. If this seems confusing, don't sweat it. It won't
be on the test.

Functionlike #define Macros

You can create a #define macro that takes one or more arguments. Here's an
example:

#define kSquare(a) ((a)* (a))

This macro takes a single argument. The argument can be any C expression; for
example:

rnyint = kSquare(rnyint + 1);

If you called the macro like that, the compiler would use its first pass to tum the
line into this:

rnyint = ((myint + 1) * (myint + 1));

Notice the usefulness of the parentheses in the macro. Suppose, however, the
macro were defined like this:

#define kSquare(a) a * a

The compiler would have produced:

rnyint = myint + 1 * myint + l;

But that is not what we wanted. The only multiplication that gets performed
by this statement is 1 * my Int, because the * operator has a higher precedence
than the + operator.

Be sure that you pay strict attention to your use of white space in your
#define macros. For example, there's a world of difference between these two
macros:

#define kSquare(a) ((a) * (a))

#define kSquare (a) ((a)* (a))

(Note the space between kSquare and (a) .) The second form of the macro cre­
ates a #define constant named kSquare, which is defined as:

(a) ((a) * (a))

This won't even compile (see the error message in Figure 8.11), because the com­
piler doesn 't know what a is.

~Eli Messa e Window

Figure 8.11 An error generated by adding one space to a macro.

#define

187

VARIABLE DATA TYPES

188

Here's another interesting macro side effect. Suppose that you wanted to call
this macro:

#define kSquare(a) ((a)* (a))

But instead, you called it like this:

mySquare = kSquare(myint++);

The preprocessor pass expands this macro call to:

mySquare = ((myint++) * (myint++));

Do you see the problems here? First, myint will get incremented twice by this
macro call (probably not what was intended). Second, the first myint++ will get
executed before the multiply happens, yielding a final result of
myint* (myint+l), definitely not what you wanted! The point here: Be careful
when you pass an expression as a parameter to a macro.

A Sample Program: wordCount
Look in the Learn c Projects folder, inside the 08. 07 -wordCount subfolder,
and open the project wordCount. µ.This program will ask you to type in a line of
text and will count the number of words in the text you type.

To run wordCount, select Run from the Project menu. The program will
then prompt you to type in a line of text:

Type a line of text, please:

Type in a line of text, at least a few words long. End your line by entering a car­
riage return. When you do, wordCount will report its results. The program will
ignore any white space, so feel free to sprinkle your input with tabs, spaces, and
the like. My output is shown in Figure 8.12. Let's take a look at the source code that
generated this output.

Stepping Through the Source Code

The program begins with the usual #include and then adds a new one­
<ctype. h>-which includes the prototype of the function is space (). This
function takes a char as input and returns true if the char is a tab (' \ t'), hard
carriage return (a return without a line feed: '\r '),newline (a return with a line
feed: 1 \n'), vertical tab (' \ v'), form feed (' \f '),or space (' ').Otherwise, it re­
turns false.

wordCount .out
SIOUX state : application has terminated.

Type a I ine of text, please:
I find de l ight in the gruesome and

---- This I ine has 8 words ----
I f i nd de l ight in the gruesome and

Figure 8.12 wordcount, doing its job.

#include <stdio . h>
#include <ctype .h>

grim!!!

grim!!!

Older C environments may include a variant of is space () called
iswhite ().

Next, we define a pair of constants: kMaxLineLength specifies the largest
line this program can handle (200 bytes should be plenty); kZeroByte has a value
of 0 and is used to mark the end of the line of input. More of this in a bit.

#define kMaxLineLengt h
#define kZeroByte

200
0

Here are the function prototypes for the two functions ReadLine () and
CountWords () . ReadLine () reads in a line of text, and CountWords () takes a
line of text and returns the number of words in the line:

#define

.Q

-01
im

By the Way

189

VARIABLE DATA TYPES

By the Way

190

/***********************/
/* Function Prototypes */
/***********************/
void ReadLine(char *line);
int CountWords(char *line);

The main () function starts by defining an array of chars that will hold the
line of input we type and an int that will hold the result of our call to
Count Words () :

/**> main <*/
int main(void)
{

char
int

line[kMaxLineLength];
numWords;

Notice that we've added a comment line that appears immediately before
each of the wordCount functions. As your programs get larger and larger, a
comment like this makes it easier to spot t1le beginning 0f a function and
makes your code a little easier to read.

Once we type the prompt, we'll pass line to ReadLine () . Remember that
line is a pointer to the first byte of the array of chars. When ReadLine () re­
turns, line contains a line of text, terminated by a zero byte, making line a le­
gitimate, 0-terminated C string. We'll pass that string on to CountWords () :

printf("Type a line of text, please:\n");

ReadLine(line);
numWords = CountWords(line);

We then print a message telling us how many words we just counted:

printf(" \ n---- This line has %d word", numWords);

if (numWords != 1
printf("s") ;

printf(" ----\n%s\n", line);

return O;
}

This last bit of code shows attention to detail, something very important in a
good program. Notice that the first print£ () ended with the characters 11 word".
If the program found either no words or more than one word, we want to say ei­
ther of the following:

This line has 0 words.

This line has 2 words.

If the program found exactly one word, the sentence should read:

This line has 1 word.

The last if statement makes sure that the "s" gets added if needed.
In main () , we defined an array of chars to hold the line of characters we

type in. When main () called ReadLine () , it passed the name of the array as a
parameter to ReadLine () :

char line[kMaxLineLength];
ReadLine(line);

As we said earlier, the name of an array also acts as a pointer to the first ele­
ment of the array. In this case, line is equivalent to & (line [O]) • ReadLine ()
now has a pointer to the first byte of the line array in main () .

/**> ReadLine <*/
void ReadLine(char *line)
{

This while loop calls getchar () to read one character at a time from the
input buffer; getchar () returns the next character in the input buffer. Or, if
there's an error, it returns the constant EOF. You'll learn more about EOF in
Chapter 10.

#define

191

VARIABLE DATA TYPES

By the Way

Important

192

As was the case with scanf (), when a character is read from the input
buffer, the character is removed, and the rest of the characters in the buffer
move over to take the place of the removed character.

The first time through the loop, line points to the first byte of the line array
in main () . At this point, the expression * 1 ine is equivalent to the expression
line [OJ. The first time through the loop, we're getting the first character from the
input buffer and copying it into line [0] .

The while loop continues as long as the character we just read in is not '\n'
(as long as we have not yet retrieved the return character from the input buffer):

while ((*line= getchar()) != '\n')
line++;

Each time through the loop, we'll increment the local copy of the pointer line
in ReadLine () to point to the next byte in the line array of main () . The next
time through the loop, we'll read a character into the second byte of the array, then
the third byte, and so on, until read in a '\n' and drop out of the loop.

This technique is known as pointer arithmetic. When you increment a
pointer that points into an array, the value of the pointer is incremented just
enough to point to the next element of the array. For example, if line were
an array of 4-byte flea ts instead of chars, the fol1owing line of code would
increment line by 4 instead of by 1:

line++;

Jn both cases, 1 ine would start off pointing to 1 ine [0 J; then, after the
statement line++, line would point to line [1).

Take a look at this code:

char
float
double

charPtr;
floatPtr;

doublePtr;

charPtr++;

floatPtr++;
doublePtr++;

In the last three statements, charPtr gets incremented by 1 byte, floatPtr
gets incremented by 4 bytes, and doublePtr gets incremented by 8 bytes
(assuming 1-byte chars, 4-byte floats, and 8-byte doubles).

This is an extremely important concept to understand. If this seems
fuzzy to you, go back and reread this section, then write some code to make
sure that you truly understand how pointers work, especially as they relate
to arrays.

Once we drop out of the loop, we'll place a 0 in the next position of the array.
This turns the line into a 0-terminated string we can print using pr intf () :

*line = kZeraByte;
}

CountWards () also takes a pointer to the first byte of the main () function's
line array as a parameter. CauntWards () will step through the array, looking
for nonwhite space characters. When one is encountered, Countwards () sets
inward to true and increments numWards, then keeps stepping through the
array looking for a white-space character, which marks the end of the current
word. Once the white space is found, inward is set to false:

#define

/**> CountWords <*/
int CountWords(char *line)
{

int numWords, inward;

numWords = O;
inward = false;

This process continues until the zero byte marking the end of the line is en­
countered:

while
{

*line ! = kZeroByte

if ! isspace(*line)

193

VARIABLE DATA TYPES

194

{

if (1 inward)

{

numWords++;
inward = true;

}

}

else
in Word false;

line++;
}

Once we drop out of the loop, we'll return the number of words in the line:

return numwords;
}

What's Next?
Congratulations! You've made it through one of the longest chapters in the book.
You've mastered several new data types, including floats and chars. You've
learned how to use arrays, especially in conjunction with chars. You've also
learned about C's text-substitution mechanism, the #define.

Chapter 9 will teach you how to combine C's data types to create your own
customized data types, called structs. So go grab some lunch, lean back, prop up
your legs, and turn the page.

Exercises
1. What's wrong with each of the following code fragments:

a. char c· ,
int i;

i=O;
for (C=O; c<=255; c++)

i += c;

b. float myFloat;

myFloat = 5.125;
print£("The value of myFloat is %d.\n", f);

c. char c;

c = "a";

print£("c holds the character %c.", c);

d. char c[5];

c = "Hello, world!";

e. char c[kMaxArraySize

#define kMaxArraySize 20

int

for
c(

i;

i=O; i<kMaxArraySize; i++)
i] = O;

f. #define kMaxArraySize 200

char c[kMaxArraySize];

c[kMaxArraySize] = O;

g. #define kMaxArraySize 200

char c[kMaxArraySize], *cPtr;
int i;

cPtr c;
for (i=O; i<kMaxArraySize; i++)

cPtr++ = O;

EXERCISES

195

VARIABLE DATA TYPES

196

h. #define kMaxArraySize 200

char c(kMaxArraySize];
int i;

for i=O; i<kMaxArraySize; i++)
{

}

*c = O;
c++;

i. #define kMaxArraySize 200;

2. Rewrite dice. c, showing the possible rolls using three dice instead of two.

3. Rewrite wordCount. n, printing each of the words, one per line.

-----------Chapter 9
Designing Your Own

Data Structures
In Chapter 8, we introduced several new data types, such as float, char, and
short. We discussed the range of each type and introduced the format specifica­
tion characters necessary to print each type using print£ ().Next, we introduced
the concept of arrays, focusing on the relationship between char arrays and text
strings. Along the way, we discovered the #define, C's mechanism for text substi­
tution.

This chapter will show you how to use existing C types as building blocks to
design your own customized data structures. Sometimes, your programs will
want to bundle certain data together. For example, suppose that you were writing
a program to organize your compact disc collection. Imagine the type of informa­
tion you'd like to access for each CD. At the least, you'd want to keep track of the
artist's name and the name of the CD. You might also want to rate each CD's lis­
tenability on a scale of 1 to 10.

In the next few sections, we'll look at two approaches to a basic CD tracking
program. Each approach will center on a different set of data structures. One ap­
proach (Model A) will use arrays, and the other (Model B) will use a set of custom­
designed data structures.

Using Arrays (Model A)
One way to model your CD collection is to use a separate array for each CD's at­
tributes:

#define kMaxCDs 300
#define kMaxArtistLength 50
#define kMaxTitleLength 50

char rating[kMaxCDs];
char artist[kMaxCDs][kMaxArtistLength + 1];
char title[kMaxCDs][kMaxTitleLength + 1];

197

DESIGNING YOUR OWN DATA STRUCTURES

198

This code fragment uses three #defines: kMaxCDs defines the maximum number
of CDs this program will track, kMaxArtistLength defines the maximum
length of a CD artist's name, and kMaxT i tleLength defines the maximum
length of a CD's title.

The array rating has of 300 chars, one char for each CD. Each char in this
array will hold a number from 1 to 10, the rating we've assigned to a particular
CD. For example, this line of code assigns a value of 8 to CD 37:

rating[37] = 8; /* A pretty good CD */

The arrays artist and title are known as multidimensional arrays. A nor­
mal array, such as rating, is declared using a single dimension:

float myArray(5];

This statement declares a normal, or one-dimensional, array containing five
floats:

myArray[0
myArray(1
myArray[2
myArray(3
myArray[4

The following statement, however, differs from a normal array:

float myArray[3][5];

This statement declares a two-dimensional array, containing 3*5 = 15 floats:

myArray[OJ[O]
myArray[O][l]
myArray[0][2]
myArray[0][3]
myArray[0][4]
myArray[l][O]
myArray[l][l]
myArray[l][2]
myArray[l][3]
myArray[l][4]

USING ARRAYS (MODEL A)

rnyArray[2][0]
rnyArray(2][l]
rnyArray(2][2]
rnyArray(2][3]
rnyArray[2][4]

Think of a two-dimensional array as an array of arrays. Thus, my Array (O) is
an array of five floats, as are rnyArray (l] and my Array (2].

Here's a three-dimensional array:

float rnyArray(3)[S)[10];

How many floats does this array contain? Tick, tick, tick. ... Got it? The answer:
3*5*10 = 150. This version of rnyArray contains 150 floats.

C allows you to create arrays of any dimension, although you'll rarely have
a need for more than a single dimension.

So why would you ever want a multidimensional array? lf you haven' t al­
ready guessed, the answer to this question is going to lead us back to our CD
tracking example.

Here are the declarations for our three CD tracking arrays:

#define kMaxCDs 300
#define kMaxArtistLength SO
#define kMaxTitleLength SO

char
char
char

r at i ng (kMaxCDs];
artist(kMaxCDs)[kMaxArtistLength + 1];
title[kMaxCDs)[kMaxTitleLength + 1);

Once again, rating contains one char for each CD; artist, on the other
hand, contains an array of chars for each CD. Each CD gets an array of chars
whose length is kMaxArtistLength + l. Each array is large enough to hold an
artist's name up to 50 bytes long, with one byte left over to hold the terminating
zero byte. To restate this, the two-dimensional array artist is large enough to
hold up to 300 artist names, each of which can be up to 50 characters long, not in­
cluding the terminating byte.

By the Way

199

DESIGNING YOUR OWN DATA STRUCTURES

200

A Sample Program: mul tiArray. µ

The sample program mul tiArray brings this concept to life. The program defines
the two-dimensional array artist (as described earlier), prompts you to type in
a series of artists, stores their names in the two-dimensional artist array, then
prints out the contents of artist.

Open the Learn C Projects folder, go inside the folder 09. 01 -
mul tiArray, and open the project mul tiArray. µ. Run mul tiArray by select­
ing Run from the Project menu. The program will first tell you how many bytes
of memory are allocated for the entire artist array:

The artist array takes up 15300 bytes of memory.

As a reminder, here's the declaration of artist:

#define kMaxCDs 300
#define kMaxArtistLength 50

char artist[kMaxCDs][kMaxArtistLength + 1];

By performing the #define substitution yourself, you can see that artist is
defined as a 300-by-51array;300 times 51is15,300, matching the result reported
by mul tiArray.

After mul tiArray reports the artist array size, it enters a loop, prompting
you for your list of favorite musical artists:

Artist #1 (return to exit):

Enter an artist name, then enter a return. You'll be prompted for a second artist
name. Type in a few more names, then enter an extra return. The extra return tells
mul tiArray that you are done entering names.

The program will step through the array, using print£ () to list the artists
you've entered. In case your entire music collection consists of a slightly warped
vinyl copy of Leonard Nimoy singing some old Dylan classics, feel free to use my
list, shown in Figure 9.1.

Let's take a look at the source code.

USING ARRAYS (MODEL A)

multlArr~_y_.out
SIOUX state : applicat ion has terminated .

The arti st array takes up 15300 bytes of memory.

Arti s t •1 <return to exit> Frank Zappa
Artist •2 <return to ex it> Elvi s Cos tello
Artist •3 <re turn to ex it> Kirsty MacCo l I
Ar ti st •4 <re tur n to ex it>
--·--
Art st •1 Frank Zappa
Art st •2 Elvis Coste I lo
Art st •3 Ki rsty MacCo I I

Figure 9.1 multiArray in action.

Stepping Through the Source Code

The program starts off with a standard #include; <stdio. h> gives us access to
both pr intf () and gets () . After reading a line of text from the input buffer,
gets () converts it into a zero-terminated string.

#include <stdio . h>

You've seen these two #defines before:

#define kMaxCDs 300
#define kMaxArtistLength 50

Here's the function prototype for Pri ntArtists () , the function we' ll use to
print out the artist array. Notice anything unusual about the declaration of
artist? More on that in a bit.

/***********************/
/* Function Prototypes */
/***********************/

~

tzy
~

201

DESIGNING YOUR OWN DATA STRUCTURES

202

void PrintArtists(short numArtists,
char artist[][kMaxArtistLength + 1]);

First, main() defines artist, our two-dimensional array, which is large
enough to hold 300 artists. The name of each artist can be up to 50 bytes long, plus
the zero terminating byte.

/**> main <*/
int main(void
{

char artist[kMaxCDs][kMaxArtistLength + 1];

The number of artist names you've typed in is contained in numArtists.
Notice that numArtists is a short. Since kMaxCDs is 300, even an unsigned
char would not be large enough for numArtists. Since the maximum value of a
signed short is 32767 (an implementation-dependent value), a short will be
plenty big enough.

short numArtists;

Beginning as false, doneReading will get set to true once we are ready to
drop out of our artist-reading loop; result will hold the result returned by
gets ():

char doneReading, *result;

This printf () prints out the size of the artist array. Notice that we've
used the %ld format specifier to print the result returned by sizeof; %ld indi­
cates that the type you are printing is the size of a long, which is true for size_ t,
the type returned by sizeof. If you use %ld, you won't need the (int) typecast
we used in earlier programs.

print£("The artist array takes up %ld bytes of memory.\n\n",
sizeof(artist));

doneReading = false;
numArtists = 01

USING ARRAYS (MODEL A)

Note that size_t is not guaranteed to be an unsigned long, although it
usually is. The only guarantee is that size_t is the same size as that re­
turned by the sizeof operator. In our case, size_t is defined as an un­
signed long, so the %ld format specifier will work just fine.

Here's the loop that reads in the artist names. We'll drop out of the loop once
doneReading is set to true.

while (! doneReading
{

Inside the loop, we'll start off by printing a prompt that includes the artist
number. We want the artist number to start at 1, but we don't want to increment
numArtists until we are sure that the user has entered an artist number, so we'll
just use nwnArtists+ 1 in this printf () .

printf("Artist #%d (return to exit): ", numArtists+l);

Next, we'll call gets () ; gets () is pretty much the same as the ReadLine ()
function from the wordCount program in Chapter 8. This gets () reads charac­
ters from the input buffer until it encounters a ' \ n ' , then converts the read char­
acters into a zero-terminated string. gets () takes a single parameter, a char
pointer that points to the first byte of the memory where the finished string will be
written:

result= gets(artist[numArtists]);

Once it is done, gets () returns a pointer to the beginning of the string (es­
sentially the same pointer you passed in as a parameter), allowing you to use the
result of gets () as a parameter to another function, such as printf () .

If an error occurs while reading from the input buffer, gets () returns the
constant NULL, C's symbol for an invalid pointer. In all the time I've been
writing C code, I've never seen this happen, but you never know.

Take a look at the parameter we passed to gets () :

Warning

Warning

203

DESIGNING YOUR OWN DATA STRUCTURES

Important

204

artist(numArtists

What type is this parameter? Remember, artist is a two-dimensional array, and
a two-dimensional array is an array of arrays. Thus, artist is an array of an array
of chars; artist (numArtists] is an array of chars, and so is exactly suited as
a parameter to gets () .

Imagine an array of chars named blap:

char blap[100];

You'd have no problem passing blap as a parameter to gets () , right? In that
case, gets () would read the characters from the input buffer and place them in
blap. Our artist (O] is just like blap. Both are pointers to an array of chars.
blap (0] is the first char of the array blap; likewise, artist [0] [0] is the first
char of the array artist (0].

OK, back to the code. If gets () fails (which it won't) or if the first byte of the
string we jus t read in is the zero terminator (more on this in a sec), we'll set
doneReading to true so we drop out of the loop. If the read was successful and
we got a string bigger than 0 bytes long, we'll increment numArtists and go back
to the top of the loop.

}

if ((result == NULL) I I
(result[O] == '\0'))
doneReading = true;

else
numArtists++;

There are two important questions, both relating to this expression:

(result[O] == '\0')

What is '\ O ', and why are we comparing it against the first byte of the
string stored in result? Just like ' \n', ' \ O' is a character constant, a short­
hand for a char with specific meaning. Here, ' \ O ' is the zero terminator C
places at the end of its strings. In earlier programs, when we wanted to add
a zero terminator at the end of a string, we used the constant O; ' \ 0 ' is a
character that has a value of 0 and works just as well.

USING ARRAYS (MODEL A)

Using ' \ 0 ' makes it pretty clear that you are talking about the zero ter­
minator instead of just an arbitrary numerical value. Once again, choose a
style that makes sense to you and be consistent.

To answer the second questionJ we compare ' \ o ' with the first byte of
the string returned by gets () to see whether the string contains more than
zero characters. A string that starts with the terminator is said to be a zero­
length string. That's what gets () returns if the first character it encounters
is a carriage return (' \n').

By the way, a zero-length string is represented in C as two consecutive
double-quotes: " ".

Once we drop out of the loop, we print a dividing line, then call
PrintArtists () to print the contents of our array of artist names. The second
parameter, artist, is a pointer to the first element of the artist array, that is,
& (artist [0]) .

printf("----\n");

PrintArtists(numArtists, artist);

return O;
}

Take a look at the definition of the second parameter of PrintArtists () .
Notice that the first of the two dimensions is missing (the first pair of brackets is
empty). Although we could have included the firs t dimension (k.MaxCDs), the fact
that we were able to leave it out makes a really interesting point. When memory is
allocated for an array, it is allocated as one big block. To access a specific element
of the array, the compiler uses the dimensions of the array, as well as the specific
element requested, to calculate an offset into this block.

/**> PrintArtists <*/
void PrintArtists(short numArtists,

char artist(][k.MaxArtistLength + 1])

{

205

DESIGNING YOUR OWN DATA STRUCTURES

Important

206

In the case of artist, the compiler allocated a block of memory 300 * 51 =
15,300 bytes long. Think of this block as 300 char arrays, each of which is 51 bytes
long. To get to the first byte of the first array, we just use the pointer that was
passed in (artist points to the first byte of the first of the 300 arrays). To access
the first byte of the second array (in C notation, artist [1) [0)), the compiler
adds 51 to the pointer artist. In other words, the start of the second array is 51
bytes farther in memory than the start of the first array. The start of the 10th array
is 9*51 = 459 bytes farther in memory than the start of the first array.

Although it is nice to know how to compute array offsets in memory, the point
is that the compiler calculates the artist array offsets using the second dimen­
sion and not the first dimension of artist (51 is used; 300 is not used).

The compiler could use the first array bound (300) to verify that you don' t
reference an array element that is out of bounds. For example, the compiler
could complain if it sees this line of code:

artist[305][0] = '\0';

The compiler would tell you that you are trying to reference a memory loca­
tion outside the block of memory allocated for artist.

Guess what. C compilers don't do bounds checking of any kind. If you
want to access memory beyond the bounds of your array, no one will stop
you. This is part of the "charm" of C. C gives you the freedom to write pro­
grams that crash in spectacular ways. Your job is to learn how to avoid such
pitfalls.

OK, let's finish up this code. PrintArtists () firs t checks to see whether
nurnArtists is zero or less. If it is, an appropriate message is printed:

/***> PrintArtists <*/
void PrintArtists(short nurnArtists,

char artist[] [kMaxArtistLength + 1))

{

short i;

if (nurnArtists <= 0)
pr intf("No artists to report. \n") ;

USING ARRAYS (MODEL A)

If we've got at least one artist to print, we'll step through the array, printing
the artist number followed by the zero-terminated artist string. Notice that we
used % s to print each string; % s is designed to print a ' \ O ' terminated string:

else
{

}

}

for (i=O; i<numArtists; i++)
printf("Artist #%d : %s\n" ,

i+l, artist[i]);

Although I tried to make this code reasonably safe, there is definitely a bug in
this program. Take a look at the output shown in Figure 9.2. I ran rnultiArray
and then typed the digits "1234567890" five times (for a total of 50 characters. I
then typed "12" to put the grand total at 52 characters. When I entered a return,
gets () read all 52 characters from the input buffer, copied them into the array
artist[O], and then stuck a '\0' at the end of the string. Do you see the prob­
lem here? Here's a hint. Each artist subarray is exactly 51 bytes long.

multiRrraJt.-OUt
SIOUX state : appl ication has terminated .

The artist array takes up 15300 bytes of memory .

Artist •1 <return to ex it) : 123455789012345578901 2345578901234557890123455789012
Artist •2 <return to ex it): Jimi Hendri x
Artist •3 <return to exi t):

Artist •1 : 123456789012345678901234567890123455789012345578901Jimi Hendri x
Arti st •2 : Jimi Hendri x

Figure 9.2 This output results from a bug in the program. Look at the end of both lines labeled

Artist #1.

207

DESIGNING YOUR OWN DATA STRUCTURES

208

When gets () wrote the 53 bytes (52 bytes plus the ' \ O ') starting at
artist [0] [O], the first 51 bytes fit just fine. The extra 2 bytes (the character '2 '
and the ' \ O ') were written to the next 2 bytes of memory, which happen to corre­
spond to the memory locations artist [1] [O] and artist [1] [1). When
gets () read the second artist name, it copied the string "J imi Hendrix 11 start­
ing at artist [1] [0]. Here's where things start to get skoongy. The string "Jimi
Hendrix" overwrites the last two bytes of the first string (the character ' 2 ' and
the '\ 0 '). Horrors! We just overwrote the first string's terminator.

When PrintArtists () prints the first string, it keeps printing until it comes
to a terminating' \0 ',which doesn't happen until the end of "Jimi Hendrix".
This is a pretty subtle bug. One solution is to make the "width" of the array larger.
Instead of 51 bytes for each artist, how about 100 bytes? Although this solution re­
duces the chances of an out-of-bounds error, it has the disadvantage of requiring
more memory and is still not perfect.

A better solution is to read each artist name from the input buffer one charac­
ter at a time. If you get 50 bytes of data and still haven't reached the end of a name,
slap a ' \ O ' in the 51st byte and drop the rest of the name in the bit bucket (that is,
ignore the rest of the name). Hmmm Something tells me that you'll be imple­
menting this solution as an exercise in the back of this chapter. Am I clairvoyant?
Could be.

Arrays and Memory
At the beginning of the chapter, we described a program that would track your CD
collection. The goal was to look at two different approaches to solving the same
problem. The first approach, Model A, uses three arrays to hold a rating, artist
name, and title for each CD in the collection:

#define kMaxCDs 300
#define kMaxArtistLength 50
#define kMaxTitleLength 50

char rating[kMaxCDs];
char artist[kMaxCDs][kMaxArtistLength + 1];
char title[kMaxCDs][kMaxTitleLength + 1];

Before we move on to Model B, let's take a closer look at the memory used by
the Model A arrays.

DESIGNING DATA STRUCTURES (MODEL B)

•The array rating uses 1 byte for each CD (enough for a 1-byte rating from 1
to 10).

• The array artist uses 51 bytes for each CD (enough for a text string holding
the artist's name, up to 50 bytes in length, plus the terminating byte).

• The array title also uses 51 bytes for each CD (enough for a text string hold­
ing the CD's title, up to 50 bytes in length, plus the terminating byte).

Add those three, and you find that Model A allocates 103 bytes for each CD.
Since Model A allocates space for 300 CDs when it declares its three key arrays, it
uses 300*103 = 30,900 bytes.

Since the program really needs only 103 bytes for each CD, wouldn't it be nice
if you could allocate the memory for a CD when you need it? With this type of ap­
proach, if your collection consisted of only 50 CDs, you'd have to use only 50 * 103
= 5150 bytes of memory instead of 30,900.

As you'll see by the end of the chapter, C provides a mechanism for allocating
memory as you need it. Model B takes a first step toward memory efficiency by
creating a single data structure that contains all the information relevant to a sin­
gle CD. Later in the chapter, you'll learn how to allocate just enough memory for a
single structure.

Designing Data Structures (Model B)
As stated earlier, our CD program must keep track of a rating (from 1 to 10), the
CD artist's name, and the CD's title:

#define kMaxCDs 300
#define kMaxArtistLength 50
#define kMaxTitleLength 50

char rating[kMaxCDs];
char artist(kMaxCDs][kMaxArtistLength + 1];
char title[kMaxCDs][kMaxTitleLength + 1];

The struct Keyword

C provides the perfect mechanism for wrapping all three of these variables into
one tidy bundle. A struct allows you to associate any number of variables to­
gether under a single name. Here's an example of a struct declaration:

209

DESIGNING YOUR OWN DATA STRUCTURES

210

#define kMaxArtistLength 50
#define kMaxTitleLength 50

struct CDinf o
{

}

char rating;
char artist[kMaxArtistLength + 1];
char title[kMaxTitleLength + 1];

This struct type declaration creates a new type, called CDinfo. Just as you'd
use a type such as short or float to declare a variable, you can use this new type
to declare an individual struct. Here's an example:

struct CDinfo myinfo;

This line of code uses the previous type declaration as a template to create an
individual struct. The compiler uses the type declaration to tell it how much
memory to allocate for the struct, then allocates a block of memory large enough
to hold all of the individual variables that make up the struct.

The variables that form the struct are known as fields. A struct of type
CD Info has three fields: a char named rating, an array of chars named
artist, and an array of chars named title. To access the fields of a struct,
use the • operator:

struct CDinfo myinfo;

myinfo.rating = 7;

Notice the • between the struct name (myinfo) and the field name (rating).
The • following a struct name tells the compiler that a field name is to follow.

A Sample Program: structSize.µ

Here's a program that demonstrates the declaration of a struct type, as well as
the definition of an individual struct. Open the Learn c Projects folder, go
inside the folder 09. 02 - structSize, and open the project structSize. µ.
Run structSize by selecting Run from the Project menu.

Compare your output with the console window shown in Figure 9.3. They
should be the same. The first three lines of output show the rating, artist, and

DESIGNING DATA STRUCTURES (MODEL B)

structSize.out
SIOUX state : application has terminated .

rating field : 1 byte
artist field: 51 bytes
title field : 51 bytes

mylnfo str uct : 104 bytes

Figure 9.3 structSize shows the size of a CDinfo s truct.

title fields. To the right of each field name, you' ll find printed the number of
bytes of memory allocated to that field. The last line of output shows the memory
allocated to the entire struct. Notice that the sum of the three individual fields is
not equal to the memory allocated to the entire struct. What gives? You'll find
out in the next section, when we step through the source code.

Stepping Through the Source Code

If you haven't done so alread y, quit structSize and take a minute to look over
the source code in structSize. c . Once you feel comfortable with it, read on.

The program structSize. c starts off with our standard #inc lude, along
with a brand new one:

include <stdio . h>
#include "structSize.h"

Notice the double quotes around "structSize. h "; they tell the compiler to
look for this include file in the same folder as the source code file. The compiler
compiles the source code it finds in "structSize. h" as if it were inside
structSize. c .

211

DESIGNING YOUR OWN DATA STRUCTURES

Important

Important

212

In general, angle brackets (<>) are used for system include files (such as
<stdio. h>). Double quotes (11 11

) should be used for include files that belong to
your application.

As you've already seen, C include files typically end in the two characters • h.
Though you can give your include files any name you like, the • h convention
is one you should definitely stick with. fuclude files are also known as
header files, which is where the h comes from.

Let's take a look at structSize. h. There are three ways you can do this. The
first way is to select Open from the File menu, then select and open
structSize . h. The second way is to double-dick on the word structSize to
select it, then either type ~D or select Open Selection from the File menu. Go
ahead, try it! Notice that this second method doesn' t work if you select only part
of the word structSize or if you select 11 structSize. h 11 instead of
structSize. It will work if you select structSize. h (without the quotes), but
why bother when "double-click, ~D" is so much easier?

The third method for opening include files works only if you've already got­
ten your code to compile. CodeWarrior builds a list of all the files included by a
specific source code file and attaches the list to a pop-up menu (look for the label
I!)). Selecting a file from the pop-up menu opens that file. You'll find the I!) pop­
up label in the lower-left comer of each of your source code files and to the right of
each source code file in the project window.

Include files typically contain things like #defines, global variables, global
declarations, and function prototypes. By embedding these things in an in­
clude file, you declutter your source code file and, more important, make this
common source code available to other source code files through a single
#include.

The structSize . h header file s tarts off with two #defines you've seen
before:

#define kMaxArtistLength 50
#define kMaxTitleLength 50

Next comes the declaration of the struct type, CD Info:

DESIGNING DATA STRUCTURES (MODEL 8)

/***********************/
/* Struct Declarations */

/***********************/
struct CDinf o
{

} ;

char
char
char

rating;
artist(kMaxArtistLength + 1];
title[kMaxTitleLength + 1];

By including the header file at the top of the file (where we might place our
globals), we've made the CD Info struct type available to all of the functions in­
side structSize. c. If we placed the CD Info type declaration inside of main ()
instead, our program would still have worked (as long as we placed the type dec­
laration before the definition of myinfo), but we would then not have access to the
CD Info type outside of main () .

That's all that was in the header file structSize. h. Back in structSize. c,
main () starts by defining a CDinfo struct named myinfo, which has three
fields: my Info. rating, my Info. artist, and my Info. title.

/**> main <*/
int main(void
{

struct CDinfo myinfo;

The next three statements print the size of the three myinfo fields. Notice that
we are again using the %ld format specifier to print the value returned by sizeof:

printf("rating field: %ld byte\n",
sizeof(myinfo.rating));

print£("artist field: %ld bytes\n",
sizeof(myinfo.artist));

printf("title field: %ld bytes\n",
sizeof(myinfo.title));

This next printf () prints a separator line, purely for aesthetics. Notice the
way everything lines up in Figure 9.3?

213

DESIGNING YOUR OWN DATA STRUCTURES

Important

214

printf (" --------- \n") ;

Here's where the surprise kicks in.Uthe rating field is 1 byte, artist 51
bytes, and title also 51 bytes, you'd expect the size of the entire struct to be
1+51+51=103 bytes long. As you can see by the output shown in Figure 9.3, 104
bytes of memory were allocated for myinfo.

}

printf ("myinfo struct: %ld bytes",
sizeof(myinfo));

return O;

Here's why. Some computers have rules they follow to keep various data
types lined up a certain way. For example, 680x0 compilers force all data larger
than a char to start on an even-byte boundary (at an even memory address). A
long will always start at an even address. A short will always start at an even
address. A struct, no matter its size, w ill always start at an even address.
Conversely, a char or array of chars can start at either an odd or an even address.
In addition, a struct must always have an even number of bytes.

In our example, the three struct fields are all either chars or arrays of
chars, so they are all allowed to start at either an odd or an even address. The
three fields total 103 bytes. Since a struct on a 680x0 must always have an even
number of bytes, the compiler adds an extra byte (known as padding, or a pad
byte) at the end of the struct. We won' t ever use this byte of padding, but it's im­
portant to know it's there.

Remember that these data alignment rules vary from machine to machine
and are not specific to the C language. When in doubt, write some code and
try it out.

Data Alignment: PowerPC Versus 680x0

This section talks about the difference in data alignment between computers based
on the 680x0 and those based on the PowerPC. If the last example brought tears to
your eyes, feel free to skim this section or to skip it entirely.

DESIGNING DATA STRUCTURES (MODEL B)

The previous example demonstrated the data alignment rules for a 680x0-
based computer. To restate them:

• All data larger than a char must start at an even address.

• All structs must start at an even address.

• All structs must contain an even number of bytes.

On the PowerPC, things aren't quite as simple. The specifics may vary from
compiler to compiler, but in general, a variable's alignment in memory (and within
a struct) depends on its size. For example, the compiler will allocate a 1-byte
variable anywhere in memory but will start a 2-byte variable only at an even ad­
dress. A 4-byte variable starts at an address that is a multiple of 4, and an 8-byte
variable starts at an address that is a multiple of 8.

Within a struct, the compiler follows these same rules, with two slight pro­
visos. The first is that the size of the largest data type in the struct determines
where the struct begins in memory. For example, if a struct contains a long,
a short, and an array of chars, the compiler uses the long to determine where
the struct begins in memory (in this case, at an address that is a multiple of 4).
Note that this is true even for an array of 100 chars. It's the size of the type that
counts, not the total size of a field.

The second proviso is that the compiler will use padding bytes to make sure
that the size of the struct is also a multiple of the largest data size within. For ex­
ample, if the largest data type in a struct is an 8-byte double, the struct will
start at an address that is a multiple of 8 and will be a multiple of 8 bytes in size.

Some examples should make this clearer. Take a look at this struct:

struct LongShortShort
{

} ;

long myLong;
short myShortl;
short myShort2;

Since this struct starts with a 4-byte long, the struct will start at an ad­
dress that is a multiple of 4. The compiler will allocate the long and the two
shorts one after another in memory, with no padding required. The long starts
at an address that is a multiple of 4, and the two shorts naturally follow at two
even addresses. The struct takes up a total of 8 bytes.

Here's a slightly scrambled version of the same struct:

215

DESIGNING YOUR OWN DATA STRUCTURES

216

struct ShortLongShort
{

} ;

short myShortl;
long myLong;
short myShort2;

This version also starts off at an address that is a multiple of 4, because the
largest type in the struct is a long. This time, however, some padding bytes are re­
quired. The compiler starts the first short at the multiple-of-4 address. Next comes
the long, but in order for it to start at a multiple-of-4 address, 2 padding bytes must
be placed after the short. Next, the second short is allocated immediately follow­
ing the long (it's OK there, since a short requires only an even address).

So far, our struct is 10 bytes long {the 2-byte short, 2 padding bytes, a 4-
byte long, and a 2-byte short). Since the largest data size in the struct is a 4-
byte long, the compiler adds 2 padding bytes, bringing the size of the struct up
to 12 bytes, a multiple of 4.

Here's another example:

struct DoubleChar
{

double myDouble;
char myChar;

} ;

This one is based on an 8-byte alignment (its largest data size is an 8-byte dou­
ble) and starts at a memory address that is a multiple of 8. The char is allocated
immediately after the double, since a char can fit anywhere. So far, the struct
weighs in at 9 bytes. To ensure that the size of the struct is a multiple of 8, 7
padding bytes are added. The struct ends up at 16 bytes in size.

If you are interested in learning more about 680x0 and PowerPC data align­
ment, check out the program structSize2 in the Learn c Projects folder, in
the subfolder named 09. 03 - structSize2. You'll find three different projects,
each of which declares a series of structs and then prints the size of each struct
according to the current data alignment model.

The first two projects were built using the 680x0 version of CodeWarrior. The
project structSize2. 68K.µ has its preferences set so that CodeWarrior will use
the 680x0 data alignment model. The second project, structSize2 • PPCon6 BK.µ,
has its preferences set so that Code Warrior uses the Power PC data alignment model
(even though the project generates 68000 object code).

DESIGNING DATA STRUCTURES (MODEL B)

The third project is in the subfolder labeled PowerPC Nati ve Version and,
as its name implies, was built using the PowerPC native version of CodeWarrior.
This project also uses the PowerPC data alignment model. Although you can get a
sense of the PowerPC data alignment model by running the PowerPC setting on a
680x0-based machine, there's no substitute for the real thing. If you want to learn
more about data alignment on the Macintosh, check out the book Inside Macintosh:
PowerPC System Software.

If you've been skimming or skipping, you can start paying attention again.
Before you go, you might want to dog-ear the first page of this section and,
take another shot at it later.

Passing a struct as a Parameter

Think back to the CD tracking program we've been discussing throughout the
chapter. We started off with three separate arrays, each of which tracked a separate
element: the rating field, the CD artist, and the title of each CD.

We then introduced the concept of a structure that would group all the ele­
ments of one CD together, in a single struct. One advantage of a struct is that
you can use a single pointer to pass all the information about a CD. Imagine a rou­
tine called Pr intCD () , designed to print the three elements that describe a single
CD. Using the original array-based model, we'd have to pass three parameters to
PrintCD():

void PrintCD(char rating, char *artist, char *title)
{

}

printf("rating: %d \ n", rating);
printf("artist: %s\n", artist);
printf("title: %s\n", title);

Using the struct-based mod el, however, we could pass the info by using a
single pointer. As a reminder, here's the CDinfo struct declaration again:

#define kMaxArtistLength 50
#define kMaxTitleLength 50

struct CDinfo

By the Way

217

DESIGNING YOUR OWN DATA STRUCTURES

218

{

} ;

char rating;
char artist[kMaxArtistLength + 1];
char title[kMaxTitleLength + 1];

This version of main () defines a CD Info struct and passes its address to a
new version of PrintCD () (we'll get to it next).

int main(void
{

struct CDinfo myinfo;

PrintCD(&myinfo);

return O;
}

Just as has been the case in earlier programs, passing the address of a variable
to a function gives that function the ability to modify the original variable. Passing
the address of myinfo to PrintCD () gives PrintCD () the ability to modify the
three myinfo fields. Although our new version of PrintCD() doesn't modify
myinfo, it's important to know that that opportunity exists. Here's the new,
struct-based version of PrintCD ():

void PrintCD(struct CDinfo *myCDPtr
{

}

print£ ("rating: %d\n", (*myCDPtr). rating) ;
print£("artist: %s\n 11

, myCDPtr->artist);
print£("title: %s\n", myCDPtr->title);

Notice that Pr intCD () receives its parameter as a pointer to (address of) a
CDinfo struct. The first print£ () uses the * operator to turn the struct
pointer back to the struct it points to, then uses the • operator to access the rat­
ing field:

(*myCDPtr).rating

DESIGNING DATA STRUCTURES (MODEL 8)

C features a special operator,->, that lets you accomplish the same thing. The
-> operator is binary, that is, it requires both a left and a right operand. The left
operand is a pointer to a struct, and the right operand is the struct field. The
notation myCDPtr->artist is exactly the same as (*myCDPtr) . rating.

Use whichever form you prefer. In general, most C programmers use the->
operator to get from a struct's pointer to one of the struct's fields.

Passing a Copy of the struct

Here's a version of main () that passes the struct itself, instead of its address:

int main(void
{

struct CDinfo myinfo;

PrintCD(myinfo);
}

Whenever the compiler encounters a function parameter, it passes a copy of
the parameter to the receiving routine. The previous version of PrintCD() re­
ceived a copy of the address of a CD Info struct.

In this new version of PrintCD () , the compiler passes a copy of the entire
CD Info struct, not just a copy of its address. This copy of the CD Info struct
includes copies of the rating field and the artist and title arrays:

void PrintCD(struct CDinfo myCD)
{

}

printf("rating: %d\n", myCD.rating);
printf("artist: %s\n", myCD.artist);
printf("title: %s\n", myCD.title);

When a function exits, all of its local variables (except for static variables,
which we'll cover in Chapter 11) are no longer available. This means that any
changes you make to a local parameter are lost when the function returns. If
this version of PrintCD() made changes to its local copy of the CDinfo
struct, those changes would be lost when PrintCD () returned.

Important

219

DESIGNING YOUR OWN DATA STRUCTURES

Important

220

Sometimes, you'll want to pass a copy of a struct. One advantage this tech­
nique offers is that there's no way that the receiving function can modify the orig­
inal struct. Another advantage is that it offers a simple mechanism for making a
copy of a struct. A disadvantage of this technique is that copying a struct
takes time and uses memory. Time won't usually be a problem, but memory usage
might be, especially if your struct gets pretty large. Just be aware that whatever
you pass as a parameter is going to get copied by the compiler.

There's a sample program in the Learn C Projects folder, inside a sub­
folder named 09. 04 - paramAddress, that should help show the differ­
ence between passing the address of a struct and passing a copy of the
struct. Basically, here's how the program works.

First, main () defines a CDinfo struct named myCD, then prints the
address of myCD's rating field:

printf ("Address of myCD . rating in main () :

&(myCD.rating));

%ld\n" I

Notice that we print an address using the % ld format specifier. Although
there are other ways to print a variable's address, this works just fine for our
purposes. Here's the output of this printf ():

Address of myCD . rating in main(): 26352526

Next, main () passes the address of myCD and myCD as parameters to a
routine named PrintParaminfo():

PrintParaminfo(&myCD, myCD);

Here's the prototype for PrintParaminfo () :

void PrintParaminfo(struct CDinfo •myCDPtr ,

struct CDinfo myCDCopy);

The first parameter is a copy of the address of main ()'s myCD struct.
The second parameter is a copy of the same s truct. Pr intParaminfo ()
prints the address of the rating field of each version of myCD:

DESIGNING DATA STRUCTURES (MODEL B)

printf("Address of myCDPtr->rating in PrintParaminfo(): %ld\n",

& (myCDPtr->rating)) ;

printf("Address of myCDCopy.rating in PrintParaminfo(): %ld\ n",

&(myCDCopy . rating));

Here are the results, including the line of output generated by main () :

Address of myCD. rating in main(): 26352526

Address of myCDptr->rauing in PrintParaminfo(): 26352526

Address of myCDCopy.rating in PrintParaminfo(): 26352414

Notice that the rating field accessed with a pointer has the same ad­
dress as the original rating field in main () 's myCD struct. If
PrintParaminfo () uses the first parameter to modify the rating field, it
will, in effect, be changing main () 's rating field. If PrintParaminfo ()
uses the second parameter to modify the rating field, the rating field will
remain untouched.

By the way, most programmers use hexadecimal (or hex) notation when
they print addresses. Hex notation represents numbers as base 16 instead of
the normal base 10 you are used to. Instead of the 10 digits 0 through 9, hex
features the 16 digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, and f. Each digit of a
number represents a successive power of 16 instead of successive powers of
10.

For example, the number 532 in base 10 is equal to 5*102 + 3*101 + 2*10° =
5*100+3*10+2*1. The number 532 in hex is equal to 5*162 + 3*161 + 2*16° =
5*256+3*16+2*1=1330 in base 10. The number ff in hex is equal to 15*16 +
15*1 = 255 in base 10. Remember, the hex digit f has a decimal (base 10) value
of 15.

To represent a hex constant·in C, precede it by the characters Ox. The con­
stant Oxff has a decimal value of 255. The constant OxFF also has a decimal
value of 255. C doesn't distinguish between upper- and lowercase when rep­
resenting hex digits.

To print an address in hex, use the format specifier %p instead of %ld.
Modify paramAddress by using %p, just to get a taste of hex.

221

DESIGNING YOUR OWN DATA STRUCTURES

222

struct Arrays

Just as you can declare an array of chars or in ts, you can also declare an array of
structs:

#define kMaxCDs 300

struct CDinfo myCDs[kMaxCDs];

This declaration creates an array of 300 structs of type CD Info. The array is
named myCDs. Each of the 300 structs will have the three fields rating,
artist, and title. You access the fields of the structs as you might expect.
Here's an example (note the use of the all-important. operator):

myCDs(10].rating= 9;

We now have an equivalent to our first CD-tracking data structure. Whereas
Model A used three arrays, we now have a solution that uses a single array. As
you'll see when you start writing your own programs, packaging your data in a
struct makes life a bit simpler. Instead of passing three parameters each time
you need to pass a CD to a function, you can simply pass a struct.

From a memory standpoint, both CD tracking solutions cost about the same.
With three separate arrays, the cost is:

300 bytes /* rating array */
300 * 51 15,300 bytes /* artist array */
300 * 51 15,300 bytes /* artist array */

Total 30,900 bytes

With an array of s tructs, the cost is:

300 * 104 = 31,200 bytes /* Cost of array of 300 CDinfo structs */

Why does the array of structs take up 300 more bytes than the three separate
arrays? Easy. Each struct contains a byte of padding to bring its size from an odd
number (103) to an even number (104). Since the array contains 300 structs, we
accumulate 300 bytes of padding. Since 300 bytes is pretty negligible, these two
methods are reasonably dose in terms of memory cost.

So what can we do to cut this memory cost down? Thought you'd never ask!

ALLOCATING YOUR OWN MEMORY

Allocating Your Own Memory
One of the limitations of an array-based CD tracking model is that arrays are not
resizable. When you define an array, you have to specify exactly how many ele­
ments make up your array. For example, this code defines an array of 300 CD Info
structs:

#define kMaxCDs 300

struct CDinfo myCDs[kMaxCDs];

As we calculated earlier, this array will take up 31,200 bytes of memory,
whether we use 1 array or 300 to track a CD. If you know in advance exactly how
many elements your array requires, arrays are just fine. In the case of our CD
tracking program, this just isn't practical. For example, if my CD collection consists
entirely of a test CD that came with my stereo and a rare soundtrack recording of
Gilligan's Island outtakes, a 300-struct array is overkill. Even worse, what hap­
pens if I've got more than 300 CDs? No matter what number I pick for kMaxCDs,
there's always the chance that it won't prove large enough.

The problem here is that arrays are just not flexible enough to do what we
want. Instead of trying to predict the amount of memory we'll need in advance,
what we need is a method that will allow us to get a chunk of memory the size of
a CD Info struct, as we need it. In more technical terms, we need to allocate and
manage our own memory.

When your program starts running, the Macintosh operating system (the soft­
ware that controls your Macintosh) sets aside a block of memory dedicated to your
application. To find out how much memory gets set aside for a particular applica­
tion, go to the Finder, click on the application's icon, and select Get Info from the
File menu. An info window will appear, similar to the one shown in Figure 9.4. In
the lower-right comer of the window, you'll see a series of fields labeled
Suggested size, Minimum size, and Preferred size. The numbers to the
right of each of these fields tells the operating system how much memory is sug­
gested, is required (at a minimum), and-in an ideal memory-rich world-how
much memory the application would prefer. The application shown in Figure 9.4,
eWorld, requires a minimum of HOOK in order to run. Since lK is equal to 1024
bytes, that's equal to 1,126,400 bytes.

When your application starts, some of this memory is used to hold the object
code that makes up your application. Still more memory is used to hold such
things as your application's global variables. As your application runs, some of
this memory will be allocated to main () local variables. When main () calls a

223

DESIGNING YOUR OWN DATA STRUCTURES

224

•
eWorld Info

e'w'orld
e'w'orld

Kind: appl;cat;on program
Size : 502K on disk (505, 906 bytes used)

Yhere: Mac;ntosh HD: Applfoatfons: e'w'orld
1.0:

Created: Mon, May 16, 1994, 11 :30 PM
Modified : Thu, Mar 16, 1 995, 7 :25 PM
Version : 1 .0, © Amerfoa On line, Inc. &

App le Computer, Inc. 1 987-94
Comments:

r·-Hemoriy Requirements ············:
~ Suggested size : 1 200 K ~

l M;n;mum size : I 11 00 I K !
D Locked j Preferred size : I 1200 I K !

: .. ;

Figure 9.4 The Get Info window for the eWorld application. This application requires

11 OOK of memory to run but prefers 1200K.

function, memory is allocated for that function's local variables. When that func­
tion returns, the memory allocated for its local variables is freed up, or made avail­
able to be allocated again.

In the next few sections, you'll learn about some functions you can call to allo­
cate a block of memory and to free the memory (to return it to the pool of available
memory). Ultimately, we'll combine these functions with a special data structure
to provide a memory-efficient, more flexible alternative to the array.

ALLOCATING YOUR OWN MEMORY

Using Standard Library Functions

malloc()

The Standard Library function malloc () allows you to to allocate a block of
memory of a specified size. To access malloc (}, you'll need to include the file
<stdlib. h>:

#include <stdlib.h>

The function malloc () takes a single parameter, the size of the requested
block, in bytes. malloc () returns a pointer to the newly allocated block of mem­
ory. Here's the function prototype:

void *malloc(size t size);

Note that the parameter is declared to be of type size_ t, the same type re­
turned by sizeof. Think of size_t as equivalent to an unsigned long.
Note also that malloc () returns the type (void *),a pointer to a void. A
void pointer is essentially a generic pointer. Since there's no such thing as a
variable of type void, the type (void *)is used to declare a pointer to a
block of memory whose type has not been determined.

In general, you'll convert the (void *)returned by malloc () to the
pointer type you really want. Read on to see an example of this.

If malloc () can't allocate a block of memory the size you requested, it re­
turns a pointer with the value NULL. NULL, a constant, is usually defined to have a
value of 0 and is used to specify an invalid pointer. In other words, a pointer with
a value of NULL does not point to a legal memory address. You'll learn more about
NULL and (void *) as we use them in our examples.

Here's a code fragment that allocates a single CD Info struct:

struct CDinfo *myCDPtr;

myCDPtr = malloc(sizeof(struct CDinfo));

The first line of code declares a new variable, myCDPtr, which is a pointer to a
CDinfo struct. At this point, myCDPtr doesn't point to a CDinfo struct.

By the Way

225

DESIGNING YOUR OWN DATA STRUCTURES

By the Way

226

You've just told the compiler that myCDPtr is designed to point to a CDinfo
struct.

The second line of code calls malloc () to create a block of memory the size
of a CDinfo struct; sizeof returns its result as a size_t, the type we need to
pass as a parameter to malloc () . How convenient!

On the right side of the = operator is a (void *) and on the left side a
(struct CDinfo *).The compiler automatically resolves this type differ­
ence for us. We could have used a typecast here to rnake this more explicit:

myCDPtr = (struct CDinfo *)malloc(sizeof(struct CDinfo));

It really isn' t necessary, however, and besides, we won't get into typecasting
until Chapter 11 !

If malloc () was able to allocate a block of memory the size of a CD Info
struct, myCDPtr contains the address of the first byte of this new block. If mal­
loc () was unable to allocate our new block (perhaps there wasn' t enough unal­
located memory left), myCDPtr will be set to NULL.

if (myCDPtr == NULL

printf("Couldn't allocate the new blockl\n");
else

printf("Allocated the new blockl\n");

If malloc () succeeded, myCDPtr points to a struct of type CDinfo. For
the duration of the program, we can use myCDPtr to access the fields of this newly
allocated struct:

myCDPtr->rating = 7;

It is important to understand the difference between a block of memory allo­
cated using malloc () and a block of memory that corresponds to a local variable.
When a function declares a local variable, the memory associated with that vari­
able is temporary. As soon as the function exits, the block of memory associated
with that memory is returned to the pool of available memory. A block of memory
that you alloca te using malloc () , by contrast, sticks around until you specifically
return it to the pool of available memory.

ALLOCATING YOUR OWN MEMORY

:free()

The Standard Library function free () returns a previously allocated block of
memory back to the pool of available memory. Here's the function prototype:

void free(void *ptr);

This function takes a single argument, a pointer to the first byte of a previously al­
located block of memory, for example:

free (myCDPtr) ;

This line returns the block allocated earlier to the free-memory pool. Use
malloc () to allocate a block of memory. Use free () to free up a block of mem­
ory allocated with malloc () . When a program exits, the operating system auto­
matically frees up all allocated memory.

Never pass an address to free () that didn't come from malloc () . Never
put a fork in an electrical outlet. Both will make you extremely unhappy!

Keep Track of That Address!

The address returned by malloc () is critical. If you lose it, you've lost access to
the block of memory you just allocated. Even worse, you can never free up the
block, and it will just sit there, wasting valuable memory, for the duration of your
program.

One great way to lose a block!s address is to call malloc () inside a function,
saving the address returned by malloc () in a 10cal variable. When the func­
tion exits, your local variable goes away, taking the address of your new
block with it!

One way to keep track of a newly allocated block of memory is to place the
address in a global variable. Another way is to place the pointer inside a special
data structure known as a linked list.

Warning

By the Way

227

DESIGNING YOUR OWN DATA STRUCTURES

By the Way

Global
Pointer

228

Working with Linked Lists
The linked list is one of the most widely used data structures in C. A linked list is
a series of structs, each of which contains, as a field, a pointer. Each struct in
the series uses its pointer to point to the next struct in the series. Figure 9.5
shows a linked list containing three elements.

A linked list starts with a master pointer. The master pointer is a pointer vari­
able, typically a global, that points to the first struct in the list. This first struct
contains a field, also a pointer, that points to the second s t ruct in the linked list.
The second struct contains a pointer fie ld that points to the third element. The
linked list in Figure 9.5 ends with the third element. The pointer field in the last el­
ement of a linked list is typically set to NULL.

The notation used at the end of the linked list in Figure 9.5 is borrowed from
our friends in electrical engineering. The funky three-line symbol at the end
of the last pointer represents a NULL pointer.

Why Use Linked Lists?

Linked lists allow you to be extremely memory efficient. Using a linked list, you
can implement our CD-tracking data structure, allocating exactly the number of
s t ructs that you need. Each time a CD is added to your collection, you 'll allocate
a new s t r uct and add it to the linked list.

A linked list starts ou t as a single master pointer. When you want to add an el­
ement to the list, call mal l oc () to allocate a block of memory for the new ele­
ment. Next, make the master pointer point to the new block. Finally, set the new
block's next element pointer to NULL.

Figure 9.5 A linked list containing three elements.

WORKING WITH LINKED LISTS

Creating a Linked List

The first step in creating a linked list is to design the main link, the linked list
struct. Here's a sample:

#define kMaxArtistLength 50
#define kMaxTitleLength 50

struct CDinf o
{

}

char
char
char

rating;
artist[kMaxArtistLength + 1);
title[kMaxTitleLength + 1);

struct CDinfo *next;

The change here is the addition of a fourth field, a pointer to a CDinfo
struct. The next field is the key to connecting two CDinfo structs. If
rnyFirstPtr is a pointer to one CDinfo struct and rnySecondPtr is a pointer
to a second struct, the following line connects the two structs:

rnyFirstPtr->next = rnySecondPtr;

Once they are connected, you can use a pointer to the first struct to access the
fields in the second struct! For example:

rnyFirstPtr->next- >rating = 7;

This line sets the rating field of the second struct to 7. Using the next
field to get from one struct to the next is also known as traversing a linked list.

Our next (and final) program for this chapter will incorporate the new version
of the CD Info struct to demonstrate a more memory-efficient CD tracking pro­
gram. This program is pretty long, so you may want to take a few moments to let
the dog out and answer your mail.

There are many variants of the linked list. If you connect the last element of a
linked list to the first element, you create a never-ending, circular list. You can
add a prev field to the struct and use it to point to the previous element in
the list (as opposed to the next one). This technique allows you to traverse the
linked list in two directions and creates a doubly linked list.

By the Way

229

DESIGNING YOUR OWN DATA STRUCTURES

230

As you gain more programming experience, you'll want to check out
some books on data structures. Three books well worth exploring are
Algorithms in C by Robert Sedgewick, Data Structures and C Programs by
Christopher J. Van Wyk, and Voll:lffie 1 (subtitled Fundamental Algorithms) of
Donald Knuth's Computer Science series. As always, these books are listed
in the bibliography in Appendix G.

A Sample Program: cdTracker. µ

This program implements Model B of our CD tracking system. The program uses
a text-based menu, allowing you to quit, add a new CD to the collection, or list all
of the currently tracked CDs.

Open the Learn C Projects folder, go inside the folder 09. 05 -
cdTracker, and open the project cdTracker. µ. Run cdTracker by selecting
Run from the Project menu. The console window will appear, showing the
prompt:

Enter command (q=quit, n=new, l=list):

At this point, you have three choices. You can type a q, followed by a carriage
return, to quit the program. You can type an n, followed by a carriage return, to
add a new CD to your collection. Finally, you can type an 1, followed by a car­
riage return, to list all the CDs in your collection.

Start by typing an 1, followed by a carriage return. You should see the message:

No CDs have been entered yet ••.

Next, the original command prompt should reappear:

Enter command (q=quit, n=new, l=list):

This time, type an n, followed by a carriage return. You will be prompted for the
artist's name and the title of a CD you 'd like added to your collection:

Enter Artist's Name: Frank Zappa
Enter CD Title : Anyway the Wind Blows

WORKING WITH LINKED LISTS

Next, you'll be prompted for a rating for the new CD. The program expects a
number between 1 and 10. Try typing something unexpected, such as the letter x,
followed by a carriage return:

Enter CD Rating (1-10): x
Enter CD Rating (1-10): 10

The program checks your input, discovers it isn't in the proper range, and re­
peats the prompt. This time, type a number between 1 and 10, followed by a car­
riage return. The program returns you to the main command prompt:

Enter command (q=quit, n=new, l=list):

Type the letter 1, followed by a carriage return. The single CD you just entered
will be listed, and the command prompt will again be displayed:

Artist:
Title:
Rating:

Frank Zappa
Anyway the Wind Blows
10

Enter command (q=quit, n=new, l=list):

Type an n, followed by a carriage return, and enter another CD. Repeat the
process one more time, adding a third CD to the collection. Now enter the letter l,
followed by a carriage return, to list all three CDs. Here's my list:

Enter command (q=quit, n=new, l=list): 1

Artist: Frank Zappa
Title: Anyway the Wind Blows
Rating: 10

Artist: XTC
Title: The Big Express
Rating: 8

231

DESIGNING YOUR OWN DATA STRUCTURES

232

Artist: Jane Siberry
Title: Bound by the Beauty
Rating: 9

Enter command (q=quit, n=new, l=list):

Finally, enter a q, followed by a carriage return, to quit the program. Let's hit
the source code.

Stepping Through the Source Code

The code for cdTracker. c starts by including three different files: <stdlib. h>
gives us access to malloc () and free () ; <stdio. h> gives us access to such
routines as pr int f () , getchar () , and gets () :

#include <stdlib.h>
#include <stdio.h>

The third include file is our own "cdTracker. h ", which starts off with three
#defines that you should know pretty well by now:

/***********/
/* Defines */
/***********/
#define kMaxCDs 300
#define kMaxArtistLength 50
#define kMaxTitleLength 50

Next comes the new and improved CDinfo struct declaration:

/***********************/
/* Struct Declarations */
/***********************/
struct CDinf o
{

char rating;
char artist[kMaxArtistLength + 1];
char title[kMaxTitleLength + 1];
struct CDinfo *next;

} *gFirstPtr, *gLastPtr;

WORKING WITH LINKED LISTS

Notice the two variables hanging off the end of this struct declaration. This
is a shorthand declaration of two globals, each of which is a pointer to a CD Info
struct. We'll use these two globals to keep track of our linked list.

The global gFirstPtr will always point to the first struct in the linked list;
the global gLastPtr will always point to the last struct in the Linked list. We'll
use gFirstPtr when we want to step through the linked list, starting at the be­
ginning. We' ll use gLastPtr when we want to add an element to the end of the
list. As long as we keep these pointers around, we'll have access to the linked List
of memory blocks we'll be allocating.

We could have split this declaration into two parts, like this:

struct CDinf o
{

char
char
char
struct

} ;

CDinf o

rating;
artist[kMaxArtistLength + 1);
title[kMaxTitleLength + 1];
*next;

struct CDinfo*gFirstPtr, *gLastPtr;

Either form is fine, although the shorthand version in cdTracker. h
does a better job of showing that gFirstPtr and gLastPtr belong with the
CDinfo struct declaration.

The header file cdTracker . h ends with a series of function prototypes:

/***********************/
/* Function Prototypes */
/***********************/
char GetCornmand(void);
struct CDinfo *ReadStruct (void);
void AddToList(struct CDinfo *curPtr);
void
void

ListCDs(void) ;
Flush(void);

By the Way

233

DESIGNING YOUR OWN DATA STRUCTURES

234

Let's get back to cdTracker. c; main () defines a char named command,
which will be used to hold the single-letter command typed by the user:

/**> main <*/
int main(void)
{

char command;

Next, the variables gFirstPtr and gLastPtr are set to a value of NULL. As
defined earlier, NULL indicates that these pointers do not point to valid memory
addresses. Once we add an item to the list, these pointers will no longer be NULL:

gFirstPtr = NULL;
gLastPtr = NULL;

Next, main () enters a while loop, calling the function Getcommand () .
GetCommand () prompts you for a one-character command: a 'q ' , ' n ' , or ' 1 ' .
Once GetCommand () returns a 'q ', we drop out of the while loop and exit the
program.

while ((command
{

GetCommand()) 1= 'q')

If GetCommand () returns an ' n ', the user wants to enter information on a
new CD. First, we call ReadStruct () , which allocates space for a CD Info
struct, then prompts the user for the information to place in the fields of the new
struct. Once the struct is filled out, ReadStruct () returns a pointer to the
newly allocated struct.

The pointer returned by ReadStruct () is passed on to AddToList () ,
which adds the new struct to the linked list:

switch(command
{

case 'n':
AddToList(ReadStruct());
break;

If GetCommand () returns an ' 1', the user wants to list all the CDs in his or
her collection. That's what the function ListCDs () does:

WORKING WITH LINKED LISTS

}

}

}

case 'l':
ListCDs{);
break;

Before the program exits, it says "Goodbye ••• ".

print£ { "Goodbye .•• 11
) ;

Next up on the panel is GetCommand () . Getcommand {) declares a char
named command, used to hold the user's command:

/***> GetCommand <*/
char GetCommand{ void)
{

char command;

Because we want to execute the body of this next loop at least once, we used a
do loop instead of a while loop. We'll first prompt the user to enter a command,
then use scan£ {) to read a character from the input buffer. The function
Flush () will read characters, one at a time, from the input buffer until it reads in
a carriage return. If we didn't call Flush(), any extra characters we typed after
the command (including the ' \ n ') would be picked up the next time through this
loop, and extra prompt lines would appear, one for each extra character. To see this
effect, comment out the call to Flush() and type more than one character when
prompted for a command:

do
{

}

print£("Enter command (q=quit, n=new, l=list): 11
);

scanf ("%c 11
, &command) ;

Flush();

while ((command!= 'q') && (command 1= 'n')
&& (command 1= 'l'));

We'll drop out of the loop once we get a ' q' , an ' n ', or an ' 1 ' .

235

DESIGNING YOUR OWN DATA STRUCTURES

By the Way

236

Here's a cool trick Keith Rollin (C guru extraordinaire) showed me. Instead
of ending the do loop with this statement:

while ((command I= 'q') && (command I= 'n')
&& (command!= 'l'));

try this code instead:

while (I strchr ("qnl 11
, command)) ;

The two parameters of strchr () are: a zero-terminated string and an
int containing a character. First, strchr () searches the string for the char­
acter and, if it was found, returns a pointer to the character inside the string.
If the character wasn' t in the string, strchr () returns NULL. Pretty cool, eh?

Once we drop out of the loop, we'll print a separator line and return the single­
letter command:

printf (11 \ n---------- \ n 11

) ;

return(command);
}

Next up is ReadStruct () . Notice the unusual declaration of the function
name:

/***> ReadStruct <*/
struct CDinfo *ReadStr uct(void)
{

This line says that ReadStruct () returns a pointer to a CDinfo struct:

struct CDinfo *ReadStruct (void)

ReadStruct () uses malloc () to allocate a block of memory the size of a
CDinfo struct. The variable infoPtr will act as a pointer to the new block.
We'll use the variable num to read in the rating, which we' ll eventually s tore in
infoPtr->rating.

WORKING WITH LINKED LISTS

struct CDinfo *infoPtr;
int num;

ReadStruct () calls malloc () to allocate a CD Info struct, assigning the
address of the block returned to infoPtr:

infoPtr = malloc(sizeof(struct CDinfo));

If malloc () cannot allocate a block of the requested size, it will return a value
of NULL. If this happens, we'll print an appropriate message and call the Standard
Library function exit () . As its name implies, exit () causes the program to im­
mediately exit.

if (infoPtr -- NULL)
{

}

printf ("Out of memory Ill Goodbye I \n") ;
exit(0) ;

The parameter you pass to exit () will be passed back to the operating sys­
tem (or to whatever program launched your program).

If we're still here, malloc () must have succeeded. Next, we'll print a prompt
for the CD artist's name, then call gets () to read a line from the input buffer and
place that line in the artist field of the newly allocated struct.

We then repeat the process to prompt for and read in the CD title:

printf ("Enter Artist's Name: ") ;
gets(infoPtr->artist);

printf("Enter CD Title: ");
gets(infoPtr->title);

This loop prompts the user to enter a number between 1 and 10. We then use
scanf () to read an int from the input buffer. Note that we used a temporary
int to read in the number instead of reading it directly into infoPtr->rating.
We did this because the %d format specifier expects an int, and rating is de­
clared as a char. Once we read the number, we call Flush () to get rid of any
other characters (including the ' \n'):

By the Way

237

DESIGNING YOUR OWN DATA STRUCTURES

Warning

238

do
{

}

printf ("Enter CD Rating (1-10): ") ;

scanf (" %d", &num) ;
Flush();

while ((num < 1) I I (num > 10));

This do loop is not as careful as it could be. If scanf () encounters an error
of some kind, num will end up with an undefined value. If that undefined
value happens to be between 1and10, the loop will exit, and an unwanted
value will be entered in the rating field. Although that might not be such a
big deal in our case, we probably would want to drop out of the loop or, at
the very least, print some kind of error message if this happens.

Here's another version of the same code:

do
{

}

printf("Enter CD Rating (1-10): ");

if (scanf("%d" , &num) I= 1)
{

printf("Error returned by scanf() ! \n") ;
exit(-1);

} ;
Flush();

while ((num < 1) I I (num > 10));

Now, scanf () returns the number of items it read. Since we've asked it
to read a single int, this version prints an error message and exits if we
don't read exactly one item. This is a pretty simplistic error strategy, but it
does make a point. Pay attention to error conditions and to function return
values.

Once a number between 1 and 10 is read in, it is assigned to the rating field
of the newly allocated struct:

infoPtr->rating = num;

WORKING WITH LINKED LISTS

Finally, a separating line is printed, and the pointer to the new struct is re­
turned:

print£("\n----------\n");

return(infoPtr);
}

AddToList () takes a pointer to a CD Info struct as a parameter. It uses the
pointer to add the struct to the linked list:

/***> AddToList <*/
void AddToList(struct CDinfo *curPtr)
{

If gFirstPtr is NULL, the list must be empty. If it is, make gFirstPtr point
to the new s truct:

if (gFirstPtr == NULL
gFirstPtr = curPtr;

If gFirstPtr is not NULL, there's at least one element in the linked list. In that
case, make the next field of the very last element on the list point to the new
struct:

else
gLastPtr->next = curPtr;

In either case, set gLastPtr to point to the new "last element in the list."
Finally, make sure that the next field of the last element in the list is NULL. You'll
see why we did this in the next function, ListCDs () .

}

gLastPtr = curPtr;
curPtr->next = NULL;

ListCDs () lists all the CDs in the linked list. The variable curPtr is used to
point to the link element currently being looked at:

239

DESIGNING YOUR OWN DATA STRUCTURES

240

else
{

/***> ListCDs <*/
void ListCDs(void)
{

struct CDinfo *curPtr;

If no CDs have been entered yet, we'll print an appropriate message:

if (gFirstPtr == NULL)
{

}

print£("No CDs have been entered yet .•• \n");
print£(11 \n----------\n");

Otherwise, we'll use a for loop to step through the linked list. The for loop
starts by setting curPtr to point to the first element in the linked list and contin­
ues as long as curPtr is not NULL. Each time through the loop, curPtr is set to
point to the next element in the list. Since we make sure that the last element's
next pointer is always set to NULL, we know that when curPtr is equal to NULL,
we have been through every element in the list and that we are done:

for (curPtr=gFirstPtr; curPtr!=NULL; curPtr curPtr->next)
{

Next, the first two print£ ()routines use the %s format specifier to print the
strings in the fields artist and title:

printf ("Artist:
print£("Title:

%s\n", curPtr->artist):
%s\n", curPtr->title);

Next, the rating field and a separating line are printed, and it's back to the
top of the loop:

printf("Rating: %d\n", curPtr->rating);

printf("\n----------\n");
}

}

}

Flush () uses getchar () to read characters from the input buffer until it
reads in a carriage return. Flush () is a good utility routine to have around:

/***> Flush <*/
void Flush(void)
{

}

while (getchar() != '\n')

Flush() was based on the Standard Library function fflush(), which
flushes the input buffer associated with a specific file. Since we haven't got­
ten into files yet, we wrote our own version, but as you can see, it wasn't that
difficult.

What's Next?
This chapter covered a wide range of topics, from #includes to linked lists. The
intent of the chapter, however, was to attack a real-world programming problem:
in this case, a program to catalog CDs. The chapter showed several design ap­
proaches, discussing the pros and cons of each. Finally, the chapter presented a
prototype for a CD tracking program. The program allows you to enter informa­
tion about a series of CDs and, on request, will present a list of all the CDs tracked.

One problem with this program, however, is that once you exit, you lose all of
the data you entered. The next time you run the program, you have to start all over
again.

Chapter 10 offers a solution to this problem. The chapter introduces the con­
cept of files and file management, showing you how to save your data from mem­
ory out to your disk drive and how to read your data back in again. The chapter
updates cdTracker, storing the CD information collected in a file on your disk
drive.

Exercises
1. What's wrong with each of the following code fragments:

a. struct Employee
{

char name[20];

EXERCISES

By the Way

241

DESIGNING YOUR OWN DATA STRUCTURES

242

int employeeNumber
};

b. while getchar() == '\n')

~ #include "stdio.h"

d. struct Link
{

} ;

name[50];
Link *next;

e. struct Link
{

struct Link next;
struct Link prev;

}

f. StepAndPrint(char *line
{

}

while (*line 1= O
line++;

printf("%s", line);

2. Update mul tiArray so it gets its input one byte at a time. If more characters
are entered than will fit in the struct, terminate the string with as many
bytes as will fit, and ignore the rest.

3. Update cdTracker.c so it maintains its linked list in order from the lowest rat­
ing to the highest rating. If two CDs have the same rating, the order is unim­
portant.

4. Update cdTracker. c, adding a prev field to the CD Info struct so it
maintains a doubly linked list. As before, the next field will point to the next
link in the list. Now, however, the prev field should point to the previous link
in the list. Add to the menu an option that prints the list backward, from the
last struct in the list to the first.

----------Chapter 10
Working with Files

Chapter 9 introduced cdTracker, a program designed to keep track of your com­
pact disc collection. The program cdTracker allowed you to enter a new CD, as
well as to list all existing Cds. However, cdTracker didn't save the CD informa­
tion when it exited. H you ran cdTracker, entered information on 10 CDs, and
then quit, your information would be gone. The next time you ran cdTracker,
you'd have to start from scratch.

The solution to this problem is somehow to save all of the CD information be­
fore you quit the program. This chapter will show you how. Chapter 10 introduces
the concept of files for the long-term storage of your program's data.

What Is a File?
A file is a series of bytes residing in some storage media. Files can be stored on
your hard drive, on a floppy disk, or even on a CD-ROM. The word processor you
keep on your hard drive resides in a file. Each document you create with your
word processor also resides in a file.

The CD that came with this book contains many different files. The
Code Warrior compiler lives in its own file. Each of the Learn C projects consists of
at least two files: a project file and at least one source code file. When you compile
and link a project, you produce a new kind of file, an application file. All of these
are examples of the same thing: a collection of bytes known as a file.

All of the files on your computer share a common set of traits. For example,
each file has a size. The file Finder in my System Folder has a size of 453,467
bytes. The file SimpleText in my Applications folder has a size of 53,589
bytes. Each of these files resides on a hard disk drive attached to my computer.

Working with Files, Part One
In the C world, each file consists of a stream of consecutive bytes. When you want
to access the data in a file, you first open the file using a Standard Library function

243

WORKING WITH FILES

By the Way

Important

244

named fopen (),pronounced eff-open. Once your file is open, you can read data
from the file or write new data back into the file, using Standard Library functions,
such as fscanf () and fprintf ().Once you are done working with your file,
you'll close it by using the Standard Library function fclose () .

Opening and Closing a File

Here's the function prototype for fopen () , found in the file <stdio. h>:

FILE *fopen(const char *name, const char *mode);

The const keyword marks a variable or a parameter as read-only. In other
words, fopen () is not allowed to modify the array of characters pointed at
by name or mode. Here's another example:

const int myint = 27;

This declaration creates an int named myint and assigns it a value of 27
(we'll talk in Chapter 11 about definitions that also initialize). More impor­
tant, the value of myint is now permanently set, and myint is now read­
only. As long as myint remains in scope, you can't change its value.

The first parameter, name, tells fopen () which file you want to open. For ex­
ample, the file name "My Data File" tells fopen () to look in the current folder
(the folder containing the currently running application) for a file named My Data
File.

The colon character (:) has a special meaning in a Macintosh file. A single
colon refers to the current folder, and a pair of colons refers to a folder's par­
ent folder. For example, the file name : : My Data File refers to a file named
My Data File in the folder containing the current folder. The file name
:folder:file refers to a file named file in a folder named folder,
which is in the current folder.

Be aware that different operating systems use different file-naming con­
ventions. UNIX uses a I instead of a : and I I instead of : : . DOS and
Windows use \ and \ \ instead of : and : : . Check with your operating sys­
tem's technical manuals and experiment for yourself!

WORKING WITH FILES, PART ONE

The second parameter, mode, tells fopen () how you' ll be accessing the file.
The three basic file modes are "r ", "w", and "a", for read, write, and append, re­
spectively.

Using "r" tells fopen () that you want to read data from the file and that you
won't be writing to the file at all. The file must already exist in order to use this
mode. In other words, you can't use the mode "r" to create a file.

The mode "w" tells fopen () that you want to write to the specified file. If the
file doesn' t exist yet, a new file with the specified name is created. If the file does
exist, fopen () deletes it and creates a new empty file for you to write into.

This last point bears repeating. Calling f open () with a mode of "w" will
delete the contents of an existing file, essentially starting you over from the
beginning of the file. Be careful!

The mode "a", similar to "w" , tells fopen() that you want to write to the
specified file and to create the file if it doesn't exist. If the file does exist, however,
the data you write to the file is appended to the end of the file.

If fopen () successfully opens the specified file, it allocates a struct of type
FILE and returns a pointer to the FILE struct, which contains information
about the open file, including the current mode(" r ", "w" , "a", or whatever), as
well as the current file position. The file position, acting like a bookmark in a book,
is a pointer into the file. When you open a file for reading, for example, the file po­
sition points to the first byte in the file. When you read the first byte, the file posi­
tion moves to the next byte.

It's not really important to know the details of the FILE struct. All you need
to do is keep track of the FILE pointer returned by fopen () . By passing the
pointer to a Standard Library function that reads or writes, you'll be sure that the
read or write takes place in the right file and at the right file position. You'll see
how all this works as we go through the chapter sample code.

Here's a sample fopen () call:

FILE *fp;

if (fp = fopen("My Data File", "r")) -- NULL)
{

}

printf("File doesn't existlll\n");
exit(l) ;

Warning

245

WORKING WITH FILES

By the Way

By the Way

246

This code first calls fopen (), attempting to open the file named My Data
File for reading. If fopen () cannot open the file for some reason (perhaps
you've asked it to open a file that doesn't exist or you've already opened the max­
imum number of files), it returns NULL. In that case, we'll print an error message
and exit.

There is a limit to the number of simultaneously open files. This limit is im­
plemented as a constant, FOPEN_MAX, defined in the file <stdio . h>.

If fopen () does manage to open the file, it will allocate the memory for a
FILE struct, and fp will point to that struct. We can then pass fp to routines
that read from the file. Once we're done with the file, we'll pass fp to the function
fclose ():

int fclose(FILE *stream) ;

Next, fclose () takes a pointer to a FI LE as a parameter and attempts to
close the specified file. If the file is closed successfully, fclose () frees up the
memory allocated to the FILE s t ruct and returns a value of 0. It is very impor­
tant that you match every fopen () with a corresponding fclose () ; otherwise,
you'll end up with unneeded FILE struct s floating around in memory.

In addition, once you've passed a FILE pointer to f close () , that FILE
pointer no longer points to a FI LE struct . If you want to access the file again,
you'll have to make another fopen () call.

If fclose () fails, it returns a value of -1. Many programmers ignore the
value returned by f c l ose () , since there's not a whole lot you can do about
it. On the other hand, you can never have too much error checking in your
code, so you might consider checking the value returned by fclose () and,
at the very least, printing an appropriate error message if fclose() fails.

Reading a File

Once you open a file for reading, the next step is to read data from the file. There
are several Standard Library functions to help you do just that. For starters, the
function fgetc () reads a single character from a file 's input buffer. Here's the
function prototype:

WORKING WITH FILES, PART ONE

int fgetc(FILE *fp);

The single parameter is the FILE pointer returned by fopen () . After reading a
single character from the file, fgetc () advances the file position pointer. If the file
position pointer is already at the end of the file, fgetc () returns the constant EOF.

Although fgetc () returns an int, the following also works just fine:

char c;

c = fgetc(fp);

When the C compiler encowrters two different types on each side of an assign­
ment operator, it does its best to convert the value on the right-hand side to the
type of the left-hand side before doing the assignment. As long as the type of
the right-hand side is no larger than the type of the left-hand side (as is the case
here, as an int is at least as large as a char), this won't be a problem.

We'll get into the specifics of typecasting in Chapter 11.

The function fgets () reads a series of characters into an array of chars.
Here's the function prototype:

char *fgets(char *s, int n, FILE *fp);

The first parameter is a pointer to an array of chars that you've already allo­
cated. Don' t just declare a (char *) and pass it in to fgets ().Instead, allocate an
array of chars large enough to hold the largest block of chars you might end up
reading in, then pass a pointer to that array as the first parameter (you'll see an ex­
ample in a second).

The second parameter is the maximwn number of characters you'd like to read.
The function fgets () stops reading once it reads in n-1 chars or if it encounters
an end-of-file or a ' \ n' before it reads n-1 chars. If fgets () successfully reads
n-1 chars, it appends a 0 terminator to the char array (that's why the array has to
be at least n chars in size). If fgets () encounters a ' \ n ' before it reads n-1
chars, it stops reading after the '\n' is read, then adds the 0 terminator to the
array, right after the ' \ n' . If fgets () encounters an end-of-file before it reads n-
1 chars, it adds the 0 terminator to the array, right after the last character read . If
fgets () encounters an end-of-file before it reads in any chars, it returns NULL.

Otherwise, fgets () returns a pointer to the char array.

By the Way

247

WORKING WITH FILES

248

Finally, the third parameter is the FILE pointer returned by fopen () . Here's
an example:

#define kMaxBuf f ersize 200

FILE *fp;
char buffer[kMaxBufferSize];

if
{

}

(fp £open("My Data File", "r")) -- NULL)

print£("File doesn't exist!11\n");
exit(l);

if (fgets(buffer, kMaxBufferSize, fp) -- NULL)
{

if (feof (fp))
print£("End-of-file111\n");

else

}

else

print£ ("Unknown error! 11\n 11
) ;

print£("File contents: %s\n", buffer);

Notice that the example calls a function named feof () if fgets () returns
NULL. NULL is returned no matter what error f gets () encounters. The function
f eof () returns true if the last read on the specified file resulted in an end-of-file
and a false otherwise.

The function fscanf () is similar to scanf (),reading from a file instead of
the keyboard. Here's the prototype:

int fscanf(FILE *fp, canst char* format, •.•);

The first parameter is the FILE pointer returned by f open () . The second pa­
rameter is a format specification embedded inside a character string. The format
specification tells f scanf () what kind of data you want read from the file. The
• • • operator in a parameter list tells the compiler that zero or more parameters
may follow the second parameter. Like scanf () and print£ (), fscanf () uses
the format specification to determine the number of parameters it expects to see.
Be sure to pass the correct number of parameters; otherwise, your program will
get confused.

WORKING WITH FILES, PART ONE

These are a few of the file-access functions provided by the Standard Library.
Check out the Standard Library function summaries found in Appendix D in this
book and in electronic form on the book's CD (search for the file name c Library
Reference.) Even better, get yourself a copy of C: A Reference Manual by Harbison
and Steele and check out Chapter 15, "Input/Output Facilities."

In the meantime, the next section provides an example that uses the functions
fopen () and fgetc () to open a file and display its contents.

printFile.µ

This program opens a file named My Data File, reads in all the data from the
file, one character at a time, and prints each character in the console window. Open
the Learn C Projects folder, go inside the folder 10. 01 - printFile, and
open the project printFile . µ. Run printFile by selecting Run from the
Project menu. Compare your output with the console window shown in Figure
10.1. They should be the same.

Quit the application and return to CodeWarrior. Let's take a look at the data
file read in by printFile. Select Open ... from the File menu. CodeWarrior will
prompt you for a text file to open. Select the file named My Data File. A win­
dow will open, allowing you to edit the contents of the file named My Data File.

printfile.out
Th s s the f irst I ine of the file named "My Data F i le".
Th s s the second I ine of the file .
Th s s the third and final I ine!

Figure 10.1 The printFile output, showing the contents of the file My Data File.

249

WORKING WITH FILES

250

Feel free to make some changes to the file and run the program again. Make sure
not to change the name of the file, however.

Let's take a look at the source code.

Stepping Through the Source Code
Open the source code file printFile. c by double-clicking on its name in the
project window. Take a minute to look over the source code. Once you feel com­
fortable with it, read on.

The source code starts off with the usual #include:

#include <stdio.h>

Then, main () defines two variables: f p is our FILE pointer, and c is an int
that will hold the chars we read from the file:

int main(void
{

FILE *fp;
int c;

This call of the function fopen() opens the file named My Data File for
reading, returning the file pointer to the variable f p:

fp = fopen("My Data File", "r") ;

If f p is not NULL, the file was opened successfully:

if (fp != NULL)
{

The while loop continuously calls f getc () , passing it the file pointer fp.
Next, fgetc () returns the next character in fp's input buffer. The returned char­
acter is assigned to c. If c is not equal to EOF, putchar () is called, taking c as a
parameter:

while ((c = fgetc(fp)) != EOF)
putchar(c);

Now, putchar () prints the specified character to the console window. We
could have accomplished the same thing by using pr intf () :

WORKING WITH FILES, PART ONE

printf ("%c" , c) ;

As you program, you'll often find two different solutions to the same prob­
lem. Should you use putchar () or printf () ? If performance is critical,
pick the option that is more specific to your particular need. In this case,
printf () is designed to handle many different data types, whereas
putchar () is designed to handle one data type, an int. Chances are, the
source code for putchar () is simpler and more efficient than the source
code for print f () when it comes to printing an int. If performance is critical,
you might want to use putchar () instead of printf () . If performance
isn't critical, go with your own preference.

Once we are done, we'll close the file by calling fclose () . Remember to al­
ways balance each call of fopen () w ith a corresponding call to fc lose () .

fclose(fp);
}

return O;
}

stdin, stdout, and stderr
C provides you with three FILE pointers that are always available and always
open. stdin represents the keyboard, stdout represents the console window,
and stderr rep resents the file where the user wants all error messages sent. These
three pointers are normally associated with command line-oriented operating sys­
tems, such as UNIX and DOS, and are rarely used on the Macintosh, but it's defi­
nitely worth knowing about them.

In printFile, we used the function fgetc () to read a character from a pre­
viously opened file. The following line will read the next character from the key­
board's input buffer:

c = fgetc(stdin);

Thus, fgetc (stdin) is equivalent to calling getchar () .
As you'll see in the next few sections, whenever C provides a mech-anism for

reading or writing to a file, C also provides a similar mechanism for reading from
stdin or writing to stdout. You probably won' t use stdin and stdout in your
code, but it's good to know what they are and what they do.

By the Way

251

WORKING WITH FILES

By the Way

252

Working with Files, Part Two
So far, you've learned how to open a file by using fopen () and how to read from
a file by using fgetc () . You've seen, once again, that you can often use two dif­
ferent functions to solve the same problem. Now let's look at some functions that
allow you to write data out to a file.

Writing to a File

The Standard Library offers several functions that write data out to a p reviously
opened file. This section will introduce three of them: fputc () , fputs () , and
fprintf () .

The first, fputc () , takes an int holding a character value and writes the
character out to the specified file. The function fputc () is declared as follows:

int fputc(int c, FILE *fp);

If fputc () successfully writes the character out to the file, it returns the value
passed to it in the parameter c. If the write fails for some reason, fputc () returns
the value EOF.

Note that:

fputc(c, stdout);

is the same as calling:

putchar(c);

The function fputs () is similar to fputc () but writes out a zero-terminated
string instead of a single character. This function is declared as follows:

int fputs(const char *s , FILE *fp);

fputs () writes out all the characters in the string but does not write ou t the
terminating 0. If the write succeeds, fputs () returns a 0. If the write fails,
fputs () returns EOF.

The third function, fprintf () , works just like printf () . Instead of sending
its output to the console window, fprintf () writes its output to the specified
file. It is declared as follows:

WORKING WITH FILES, PART TWO

int fprintf(FILE *fp, const char *format, •••);

The first parameter specifies the file to be written to. The second is the format­
specification text string. Any further parameters depend on the contents of that
string.

A Sample Program: cdFiler. µ

In Chapter 9, we ran cdTracker, a program designed to help you track your compact
disc collection. The big shortcoming of cdTracker is its inability to save your care­
fully entered CD data. As you quit the program, the CD information you entered
gets discarded, forcing you to start over the next time you run cdTracker.

Our next program, cdF iler, solves this problem by adding two special func­
tions to cdTracker. ReadFile () opens a file named cdData, reads in the CD
data in the file, and uses the data to build a linked list of cdinfo structs.
Wr i teF ile () writes the linked list back out to the file.

Open the Learn C Projects folder, go inside the folder 10. 02 - cdFiler,
and open the project cdFiler. µ. Check out the cdFiler. µ project window
shown in Figure 10.2. Notice that there are two separate source code files. Your
project can contain as many source code files as you like. Just make sure that only
one of the files has a function named main () , since that's where your program
will start.

--

cdFiler.jl
File Code '.Data l!I •

V source 0 i OT (fl .Q
files.c 0 i 0 ! ID
main .c . 0 i 0 i [ii ·-v·· .. i·i·ii:r.·i;;:i·;·; .. r crr cfi i:i ..
MacOS.lib j 0 j 0 j [tl
ANSI (2i) C.68K.Lib l 0 l 0 l ID
SIOUX.68K.Lib ! o! o! III

............... ~~!.~.~.~.~.~~-~J.~!).~.~.t~ L. Q.L. Q.L !il.

6 file(s) 0 0

Figure 10.2 The cdF iler. µ project window.

253

WORKING WITH FILES

Important

254

The file main. c is almost identical to the file cdTracker. c from Chapter 9.
The file files. c contains the functions that allow cdFiler to read and write the
file cdData.

Exploring cdData

Before you run the program, take a quick look at the file cdData. Select Open .. .
from the File menu. When prompted for a text file to open, select the file cdData.
A text editing window for cdData will appear on the screen. At first glance, the
contents of the file may not make much sense, but the text does follow a well-de­
fined pattern:

Frank Zappa
Anyway the Wind Blows
8
Edith Piaf
The Voice of t he Sparrow
10
Joni Mitchell
For the Roses
9

The file is organized in three-line clusters. Each cluster contains a one-line CD
artist, a one-line CD title, and a one-line numerical CD rating.

The layout of your data files is as important a part of the software design
process as the layout of your program's functions. The file described here fol­
lows a well-defined pattern. As you lay out a file for your next program,
think about the future. Can you live with one-line CD titles? Do you want the
ability to add a new CD field, perhaps the date of the CD's release?

The time to think about these types of questions is at the beginning of
your program's life, during the design phase.

Running cdFiler

Before you run cdFiler, close the cdData text editing window.

WORKING WITH FILES, PART TWO

To create this window, Cod_eWarrior had to open the file cdDat.a. If you
don't close the win<llow before you run the program, the file will remain
open. When you nm cdFiler, it will also open the file. You'll have the same
file open in two places. That is not a good idea. Although CodeWarrior al­
lows you to do this, your results can be somewhat unpredictable.

Once the window is closed, run cdFiler by selecting Run from the Project
menu. The console window will appear, prompting you for a 'q ' , ' n ' , or ' 1 ' :

Enter command (q=quit, n=new, l=list): 1

Type 1, followed by a carriage return. This will list the CDs currently in the
program's linked list. If you need a refresher on linked lists, now would be a per­
fect time to tum back to Chapter 9.

Enter command (q=quit, n=new, l=list): 1

Artist:
Title:
Rating:

Artist :
Title:
Rating:

Frank Zappa
Anyway the Wind Blows
8

Edith Piaf
The Voice of the Sparrow
10

Artist: Joni Mitchell
Title: For the Roses
Rating: 9

Enter command (q=quit, n=new, l=list) :

Whereas Chapter 9's cdTracker started with an empty linked list, cdFiler
starts with a linked list built from the contents of the cdData file. The CDs you just
listed should match the CDs you saw when you edited the cdData file.

Warning

255

WORKING WITH FILES

256

Let's add a fourth CD to the list. Type n, followed by a carriage return:

Enter Artist's Name: Adrian Belew
Enter CD Title: Mr. Music Head
Enter CD Rating (1-10): 8

Enter command (q=quit, n=new, l=list):

Next, type 1 to make sure that your new CD made it into the list:

Enter command (q=quit, n=new, l=list): 1

Artist:
Title:
Rating:

Artist:
Title:
Rating:

Frank Zappa
Anyway the Wind Blows
8

Edith Piaf
The Voice of the Sparrow
10

Artist: Joni Mitchell
Title: For the Roses
Rating: 9

Artist: Adrian Belew
Title: Mr. Music Head
Rating: 8

Enter command (q=quit, n=new, !;list):

WORKING WITH FILES, PART TWO

Finally, type q, followed by a carriage return. This causes the program to write
the current linked list back out to the file cdDa ta. To prove that this worked, run
cdF iler one more time. When prompted for a command, type 1 to list your cur­
rent CDs. You should find your new CD nestled at the bottom of the list. Let's see
how this works.

Stepping Through the Source Code

The file cdFiler. h contains source code that will be included by both main. c
and files. c. The first two #defines should be familiar to you. The third creates
a constant containing the name of the file containing our CD data:

/***********/
/* Defines */
/***********/
#define kMaxArtistLength
#define kMaxTitleLength

#define kCDFileName

50
50

"cdData"

This CD Info struct is identical to the one found in cdTracker:

/***********************/
/* Struct Declarations */
/***********************/
struct CDinf o
{

};

char
char
char

rating;
artist(kMaxArtistLength + 1];
title[kMaxTitleLength + 1];

struct CDinfo *next;

Just as we did in cdTracker, we've declared two globals to keep track of the
beginning and end of our linked list. The extern keyword at the beginning of the
declaration tells the C compiler to link this declaration to the definition of these
two globals, which can be found in main. c. If you removed the extern keyword
from this line, the compiler would first compile files. c, defining space for both
pointers. When the compiler went to compile main. c, it would complain that
these globals were already declared.

257

WORKING WITH FILES

258

The extern mechanism allows you to declare a global without allocating
memory for it. Since the extern declaration doesn't allocate memory for your
globals, you'll need another declaration (usually found in the same file as main ())
that does allocate memory for the globals. You'll see that declaration in main. c:

/***********************/
/* Global Declarations */
/***********************/
extern struct CDinfo *gFirstPtr, *gLastPtr;

Next comes the list of function prototypes. By listing all the functions in this
#include file, we make all functions available to be called from all other func­
tions. As your programs get larger and more sophisticated, you might want to cre­
ate a separate include file for each of your source code files. Some programmers
create one include file for globals, another for defines, and another for function
prototypes.

/********************************/
/* Function Prototypes - main.c */
/********************************/
char
struct
void
void
void
void

Getcommand(void);
CDinfo *ReadStruct(void);

AddToList(struct CDinfo *curPtr);
Listens(void);
ListCDsinReverse(void);
Flush{ void);

/*********************************/
/* Function Prototypes - files.c */
/*********************************/
void WriteFile(void);
void ReadFile(void);
char ReadStructFromFile(FILE *fp, struct CDinfo *infoPtr
) ;

The file main. c is almost exactly the same as the file cdTracker. c from
Chapter 9. There are four differences, however. First, we include the file
cdFiler. h instead of cdTracker. h:

WORKING WITH FILES, PARTTWO

#include <stdlib.h>
#include <stdio.h>
#include "cdFiler.h"

Next, we include the definitions of our two globals directly in this source code
file, to go along with the extern declarations in cdF iler. h. This definition is
where the memory gets allocated for these two global pointers:

/***********************/
/* Global Definitions */
/***********************/
struct CDinfo *gFirstPtr, *gLastPtr;

The last two differences are contained in main () . Before we enter the com­
mand-processing loop, we call ReadFile () to read in the cdData file and turn
the contents into a linked list:

/**> main <*/
int main(void)
{

char command;

gFirstPtr = NULL;
gLastPtr = NULL;

ReadFile();

while ((command
{

switch(command
{

case 'n':

GetCommand()) 1= 'q')

AddToList(ReadStruct());
break;

}

}

case 'l':
ListCDs();
break;

259

WORKING WITH FILES

260

Once we drop out of the loop, we call WriteFile () to write the linked list
out to the file cdData:

WriteFile();

printf("Goodbye ••• ") ;

return O;
}

For completeness, here's the remainder of cdMain. c. Each of these functions
is identical to its cdTracker. c counterpart:

/***> GetCommand <*/
char GetCommand(void)
{

}

char command;

do
{

}

printf("Enter command (q=quit, n=new, l=list): 11
);

scanf (11 %c 11
, &command) ;

Flush();

while ((command != 'q') && (command != 'n')
& & (command ! = ' 1 ')) ;

printf(11 \n----------\n 11
);

return(command);

/***> ReadStruct <*/
struct CDinfo *ReadStruct(void)
{

struct CDinfo *infoPtr;
int num;

inf oPtr malloc(sizeof(struct CDinfo));

WORKING WITH FILES, PART TWO

}

if (inf oPtr == NULL)
{

}

print£ ("Out of memory 11 ! Goodbye 1 \n") ;
exit (0) ;

print£ ("Enter Artist's Name: ") ;
gets(infoPtr->artist);

print£("Enter CD Title: ");
gets(infoPtr->title);

do
{

}

print£("Enter CD Rating (1-10): ");
scanf ("%d" , &num) ;
Flush();

while ((num < 1) I I (num > 10)) ;

inf oPtr->rating num;

print£("\n----------\n");

return(infoPtr);

/***> AddToList <*/
void AddToList(struct CDinfo *curPtr)
{

}

if (gFirstPtr == NULL
gFirstPtr = curPtr;

else
gLastPtr->next = curPtr;

gLastPtr = curPtr;
curPtr->next = NULL;

261

WORKING WITH FILES

262

/***> ListCDs <*/
void ListCDs(void)
{

}

struct CDinfo *curPtr;

if (gFirstPtr == NULL)
{

}

printf("No CDs have been entered yet ••• \n");
printf("\n----------\n")~

else
{

}

for (curPtr=gFirstPtr; curPtr!=NULL; curPtr = curPtr->next)
{

}

print£ (11Artist:
printf("Title:
print£ ("Rating:

%s\n", curPtr->artist);
%s\n", curPtr->title);
%d\n", curPtr->rating);

print£(11 \n----------\n");

/***> Flush <*/
void Flush(void)
{

}

while (getchar() != '\n')

The file files. c starts out with the same #includes as main. c:

#include <stdlib.h>
#include <stdio.h>
#include 11 cdFiler.h"

WriteFile() first checks to see whether there are any CDs to write out. If
gFirstPtr is NULL (the value it was set to in main ()), no CDs have been entered
yet, and we can just return:

WORKING WITH FILES, PARTTWO

/***> WriteFile <*/
void WriteFile(void
{

FILE *fp;
struct CDinfo *infoPtr;
int num;

if gFirstPtr == NULL
return;

Next, we'll open the file cdData for writing. If f open () returns NULL, we
know that it couldn't open the file, and we'll print out an error message and re­
turn:

if ((fp = fopen(kCDFileName, 11
W

11
)) == NULL

{

}

printf("***ERROR: Could not write CD file!");
return;

This for loop steps through the linked list, setting infoPtr to point to the
first struct in the list, then moving it to point to the next struct, and so on,
until infoPtr is equal to NULL. Since the last struct in our list sets its next
pointer to NULL, infoPtr will be equal to NULL when it points to the last struct
in the list and the third for statement is executed:

for (infoPtr=gFirstPtr; infoPtrl=NULL; infoPtr=infoPtr->next)
{

Each time through the list, we call £print£ ()to print the artist string, fol­
lowed by a carriage return, and then the title string, followed by a carriage re­
turn. Remember, each of these strings was zero-terminated, a requirement if you
plan on using the %s format specifier:

£print£(fp, 11 %s\n 11
, infoPtr->artist);

fprintf(fp, 11 %s\n 11
, infoPtr->title);

Finally, we convert the rating field to an int by assigning it to the int num,
then print it (as well as a following carriage return) to the file by using
£print£ () . We converted the char to an int because the %d format specifier
was designed to work with an int, not a char:

263

WORKING WITH FILES

264

}

num = infoPtr->rating;
fprintf(fp, "%d\n", num);

Once we finish writing the linked list into the file, we'll close the file by calling
fclose():

f close (fp) ;
}

ReadFile() starts by opening the file cdData for reading. If we can't open
the file, we'll print an error message and return, leaving the list empty:

/***> ReadFile <*/
void ReadFile(void
{

FILE *fp;
struct CDinfo *infoPtr;
int i;

if (fp = fopen(kCDFileName, "r")) == NULL)
{

}

print£("***ERROR: Could not read CD file!");
return;

With the file open, we'll enter a loop that continues as long as
ReadStructFromFile () returns true. By using the do-while loop, we'll exe­
cute the body of the loop before we call ReadStructFromF ile () for the first
time. This is what we want. The body of the loop attempts to allocate a block of
memory the size of a CD Info struct. If the malloc () fails, we'll bail out of the
program:

do
{

infoPtr = malloc(sizeof(struct CDinfo));

if (inf oPtr == NULL)
{

printf("Out of memorylll Goodbye!\n");

WORKING WITH FILES, PART TWO

exit (0) ;
}

}

while (ReadStructFromFile(fp, infoPtr));

ReadStructFromFile () will return false when it reaches the end of the
file, when it can't read another set of CD Info fields. In that case, we'll close the file
and free up the last block we just allocated, since we have nothing to store in it:

}

fclose (fp) ;
free (infoPtr) ;

ReadStructFromFile () uses a funky form of fscanf () to read in the firs t
two CDinfo fields. Notice the use of the format descriptor "% ["\n] \n". This tells
fscanf () to read characters from the specified file until it reaches an '\n', then
to read the '\n' character and stop. The characters ["\n] represent the set of all
characters except '\n'. Note that the % [format specifier places a zero-terminat­
ing byte at the end of the characters it reads in:

/**** ********************************> ReadStructFromFile <*/
char ReadStructFromFile(FILE *fp, struct CDinfo *infoPtr)
{

int num;

if fscanf(fp, "% ["\n]\n", infoPtr- >artist) != EOF)
{

The square brackets inside a format specifier give you much greater control
over scanf () . For example, the format specifier 11 % [abed] 11 would tell
scanf () to keep reading as long as it was reading an 'a' , a 'b', a 'c ', or
a 'd '. The first non-[abed] character would be left in the input buffer for
the next part of the format specifier or for the next read operation to pick up.

If the first character in the set is the character ", the set represents the
characters that do not belong to the set. In other words, the format specifier
11 % ["abed] " tells scanf () to continue reading as long as it doesn't en­
counter any of the characters ' a' , ' b', 'c ', or ' d' .

By the Way

265

WORKING WITH FILES

266

ff fscanf () reaches the end of the file, we'll return false, letting the calling
function know that there are no more fields to read. ff f scanf () succeeds, we'll
move on to the title field, using the same technique. If this second fscanf ()
fails, we've got a problem, since we read an artist but couldn't read a title.

if (fscanf(fp, "%[~\n]\n", infoPtr->title) == EOF)
{

}

print£("Missing CD titlel\n");
return false;

ff we got both the artist and title, we'll use a more normal format speci­
fier to pick up an int and the third carriage return:

else if (fscanf(fp, "%d\n 11
, &num

{

}

printf("Missing CD ratingl\n");
return false;

EOF)

If we picked up the int, we'll use the assignment operator to convert the int
to a char and add the now complete struct to the list by passing it to
AddToList () :

}

}

else
{

}

inf oPtr->rating = num;
AddToList(infoPtr);
return true;

else
return false;

Working with Files, Part Three
Now that you've mastered the basics of file reading and writing, there are a few
more topics worth exploring before we leave this chapter. We'll start off with a
look at some additional file-opening modes.

WORKING WITH FILES, PART THREE

The "Update" Modes

So far, you've encountered the three basic file-opening modes: 11 r 11
,

11 w11
, and 11 a 11

•

Each of these modes has a corresponding update mode, specified by adding + to
the mode. The three update modes- 11 r+ 11

,
11 w+ 11

, and 11 a+ 11 -allow you to open a
file for both reading and writing.

Alhough the three update modes do allow you to switch between read and
write operations without .reopening the file, you must first call f setpos () ,
fseek(), rewind(), or fflush() before you make the switch. (See
Appendix C or the C Library Reference on the book's CD.)

In other words, if your file is opened using one of the update modes, you
can't call fscanf () and then call fprintf () (or call fprintf () followed
by fscanf ()) unless you call fsetpos (), fseek(), rewind(), or
fflush() in between.

In Harbison and Steele's C: A Reference Manual, there's a great chart that sum­
marizes these modes quite nicely. My version of the chart is shown in Figure 10.3.
Before you read on, take a minute to look the chart over to be sure you understand
the different file modes.

C also allows a file mode to specify whether a file is limited to ASCil charac­
ters (text mode) or is allowed to hold any type of data at all (binary mode). To
open a file in text mode, just append a t at the end of the mode string (as in
11 rt 11 or 11 w+t 11

). To open a file in binary mode, append a b at the end of the
mode string (as in 11 rb" or 11 w+b 11

).

If you use a file mode that doesn't include a t or a b, check your devel­
opment environment manuals to find out which of the two types is the de­
fault.

Random File Access

So far, each of the examples presented in this chapter has treated files as a sequen­
tial stream of bytes. When cdFiler read from a file, it started at the beginning of
the file and read the contents, one byte at a time or in larger chunks, but from the
beginning straight through until the end. This sequential approach works fine if

Important

By the Way

267

WORKING WITH FILES

268

Mode Rules 11 r 11 11 w 11 11 a 11 11 r+ 11 "w+" 11 a+ 11

Named file must already exist yes no no yes no no

Existing file's contents are lost no yes no no yes no

Read OK yes no no yes yes yes

Write OK no yes yes yes yes yes

Write begins at end of file no no yes no no yes

Figure 10.3 My version of the Harbison and Steele file mode chart showing the rules
associated with the six basic file-opening modes.

you intend to read or write the entire file all at once. As you might have guessed,
there is another model.

Instead of starting at the beginning and streaming through a file, you can use
a technique called random file access. The Standard Library provides a set of func­
tions that let you reposition the file position indicator to any location within the
file, so that the next read or write you do occurs exactly where you want it to.

Imagine a file filled with 100 longs, each 4 bytes long. The file would be 400
bytes long. Now suppose that you wanted to retrieve the 10th long in the file.
Using the sequential model, you would have to do 10 reads to get the 10th long
into memory. Unless you read the entire file into memory, you'll continually be
reading a series of longs to get to the long you want.

Using the random-access model, you would first calculate where in the file the
10th long starts, jump to that position in the file, and then just read that long. To
move the file position indicator just before the 10th long, you'd skip over the first
nine longs (9*4 = 36 bytes).

The £seek(), £tell(), and rewind() Functions

There are five functions that you'll need to know about in order to randomly ac­
cess your files. One of those functions, f seek () , moves the file position indicator
to an offset you specify, relative to the beginning of the file, the current file posi­
tion, or the end of the file:

int fseek(FILE *fp, long offset, int wherefrom);

You'll pass your FILE pointer as the first parameter, a long offset as the sec­
ond parameter, and one of SEEK_ SET, SEEK_ CUR, or SEEK_ END as the third para­
meter. SEEK_SET represents the beginning of the file, SEEK_CUR represents the
current position, and SEEK_ END represents the end of the file (in which case you'll

WORKING WITH FILES, PART THREE

probably use a negative offset).
The function ftell () takes a FILE pointer as a parameter and returns a

long containing the value of the file position indicator:

long ftell(FILE *fp);

The function rewind () takes a FILE pointer as a parameter and resets the file
position indicator to the beginning of the file:

void rewind(FILE *fp);

The functions fsetpos () and fgetpos () were introduced as part of ISO C
and allow you to work with file offsets that are larger than will fit in a long.
You can look these two functions up in the usual places.

A Sample Program: dinoEdi t. µ

The last sample program in this chapter, dinoEdi t is a simple example of random
file access. The program allows you to edit a series of dinosaur names stored in a
file named My Dinos. Each dinosaur name in this file is 20 characters long. If the
dinosaur name is shorter than 20 characters, the appropriate number of spaces is
added to the name to bring the length up to 20. This is done to make the size of
each item in the file a fixed length. You'll see why this is important as we go
through the source code. For now, let's take dinoEdi t for a spin.

Open the Learn C Projects folder, go inside the folder 10. 03 - dinoEdit,
and open the project dinoEdit.µ. Run dinoEdit by selecting Run from the
Project menu. The program will count the number of dinosaur names in the file
My Dinos and will use that number to prompt you for a dinosaur number to edit:

Enter number from 1 to 5 (0 to exit):

Since the file My Dinos on your CD has five dinosaur names, enter a number
from 1to5:

Enter number from 1 to 5 (0 to exit): 3

If you enter the number 3, for example, dinoEdi twill fetch the third dinosaur
name from the file, then ask you to enter a new name for the third dinosaur. If you
enter a return without typing a new name, the existing name will remain un-

By the Way

269

WORKING WITH FILES

270

touched. If you type a new name, dinoEdi t will overwrite the existing name with
the new name:

Dino #3: Galimimus
Enter new name: Euoplocephalus

Either way, dinoEdi t will prompt you to enter another dinosaur number.
Reenter the same number, so you can verify that the change was made in the file:

Enter number from 1 to 5 (0 to exit): 3
Dino #3: Euoplocephalus
Enter new name:
Enter number from 1 to 5 (0 to exit): 0
Goodbye •••

Let's take a look at the source code.

Stepping Through the Source Code

The file dinoEdi t. h starts off with a few #defines: kDinoRecordSize defines
the length of each dinosaur record; kMaxLineLength defines the length of an
array of chars we'll use to read in any new dinosaur names; kDinoFileName is
the name of the dinosaur file. Note that the dinosaur file doesn't contain any car­
riage returns, just 5 * 20 = 100 bytes of pure dinosaur pleasure!

/***********/
/* Defines */
/***********/
#define kDinoRecordSize
#define kMaxLineLength
#define kDinoFileName

20
100
"My Dinos"

Next come the function prototypes for the functions in main. c:

/********************************/
/* Function Prototypes - main.c */
/********************************/
int
int
void

GetNumber(void);
GetNumberOfDinos(void);
ReadDinoName(int number, char *dinoName);

WORKING WITH FILES, PART THREE

char GetNewDinoNarne(char *dinoNarne);
void WriteDinoNarne(int number, char *dinoNarne);
void Flush(void);
void DoError(char *message);

First, main. c starts with four #includes: <stdlib. h> gives us access to the
function exit ();<stdio. h> gives us access to a number of functions, including
printf () and all the file-manipulation functions, types, and constants; and
<string. h> gives us access to the function strlen () . You've already seen what
11 dinoEdi t • h 11 brings to the table:

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include 11 din0Edit.h 11

ff you ever want to find out which of the functions you call are dependent on
which of your include files, just comment out the #include statement in
question and recompile. The compiler will spew out an error message (or a
whole bunch of messages) telling you it couldn't find a prototype for a func­
tion you called.

main () basically consists of a loop that first prompts for a dinosaur number
at the top of the loop, then processes the selection in the body of the loop:

/**> main <*/
int main(void)
{

int number;
FILE *fp;
char dinoNarne[kDinoRecordSize+l];

GetNumber () prompts for a dinosaur number between 0 and the number of
dinosaur records in the file. If the user types 0, we'll drop out of the loop and exit
the program:

while
{

(number GetNumber()) != 0)

By the Way

271

WORKING WITH FILES

272

If we made it here, GetNumber () must have returned a legitimate record
number. ReadDinoName () takes the dinosaur number and returns the corre­
sponding dinosaur name from the file. The returned dinosaur name is then
printed:

ReadDinoName(number, dinoName);

printf("Dino #%d: %s\n", number, dinoName);

GetNewDinoName () prompts the user for a new dinosaur name to replace
the existing name. GetNewDinoName () returns true if a name is entered and
false if the user just entered a return. If the user entered a name, we'll pass it on
to WriteDinoName (),which will write the name in the file, overwriting the old
name:

}

}

if (GetNewDinoName(dinoName))
WriteDinoName(number, dinoName);

printf ("Goodbye ••• 11
) ;

return O;

GetNwnber () starts off with a call to GetNumberOfDinos () . As its name
implies, GetNumberOfDinos () goes into the dinosaur file and returns the num­
ber of records in the file:

/***> GetNwnber <*/
int GetNumber(void)
{

int number, numDinos;

numDinos = GetNumberOfDinos();

GetN i.ll11ber () then continuously prompts for a dinosaur number until the
user enters a number between 0 and numDinos:

do
{

WORKING WITH FILES, PART THREE

}

}

printf("Enter number from 1 to %d (0 to exit): "
numDinos);

scanf (" %d" , &number) ;
Flush();

while ((number< 0) I I (number> numDinos));

return(number);

GetNumberOfDinos () starts our file-management adventure. First, we'll
open My Dinos for reading only:

/*********************************> GetNumberOfDinos <*/
i nt GetNurnberOfDinos(void)
{

FILE *fp;
long fileLength;

if (fp = fopen(kDinoFileNarne, "r")) == NULL
DoError ("Couldn't open file • .. Goodbye ! ") ;

Notice that we've passed an error message to a function called DoError ()
instead of printing it with printf () . There are several reasons for doing
this. First, since DoError () executes two lines of code (calls of printf ()
and exit ()), each DoError () call saves a bit of code.

More important, this approach encapsulates all our error handling in a
single function. If we want to send all error messages to a log file, all we have
to do is edit DoError () instead of hunting down all the error messages and
attaching a few extra lines of code.

Next, we'll call f seek () to move the file position indicator to the end of the
file. Can you see what's coming?

if (fseek(fp, OL, SEEK_END) != 0)
DoError("Couldn 't seek to end of file .. . Goodbye!");

Now, we' ll call ftell () to retrieve the current file position indicator, which
also happens to be the file length! Cool!

Important

273

WORKING WITH FILES

274

if ((fileLength = ftell(fp)) == -lL)
DoError ("ftell () failed ••• Goodbye 1 ") ;

Now that we have the file length, we can close the file:

£close(fp);

Finally, we'll calculate the number of dinosaur records by dividing the file
length by the number of bytes in a single record. For simplicity's sake, we'll con­
vert the number of records to an int before we return it. That means that we can't
deal with a file that contains more than 32,767 dinosaur records. How many di­
nosaurs can you name?

return((int)(fileLength I kDinoRecordSize));
}

ReadDinoName () first opens the file for reading only.

/*********************************> ReadDinoName <*/
void ReadDinoName(int number, char *dinoName)
{

FILE *fp;
long bytesToSkip;

if (fp = fopen(kDinoFileName, "r")) ==NULL
DoError("Couldn't open file ••• Goodbyel");

Since we'll be reading the numberth dinosaur, we have to move the file posi­
tion indicator to the end of the (number-l)th dinosaur. That means that we'll need
to skip over (number-1) dinosaur records:

bytesToSkip = (long)((number-1) * kDinoRecordSize);

We'll use f seek () to skip that many bytes from the beginning of the file
(that's what the constant SEEK_SET is for):

if (fseek(fp, bytesToSkip, SEEK_SET) 1= 0)
DoError("Couldn't seek in file ••• Goodbyel");

WORKING WITH FILES, PART THREE

Finally, we'll call f read () to read the dinosaur record into the array of chars
pointed to by dinoName. The first fread() parameter is the pointer to the block
of memory where the data will be read. The second parameter is the number of
bytes in a single record. Since f read () expects both the second and third para­
meters to be of type size_t, we'll use a typecast to make the compiler happy.
(Gee, by the time we talk about typecasting in Chapter 11, you'll already be an ex­
pert!) The third parameter is the number of records to read in. We want to read in
one record of kDinoRecordSize bytes. The last parameter is the FILE pointer
we got from f open () .

Because £read() returns the number of records read, we expect to return a
value of 1, since we asked f read () to read one record. If that doesn't happen,
something is dreadfully wrong (perhaps the file got corrupted or that Pepsi you
spilled in your hard drive is finally starting to take effect).

}

if (£read(dinoName, (size_t)kDinoRecordSize,
(size_t)l, fp) 1= 1)
DoError ("Bad f read () ••. Goodbye 1 11

) ;

Once again, we close the file when we're done working with it.
£close (fp) ;

GetNewDinoName () starts by prompting for a new dinosaur name, then call­
ing gets () to read in a line of text:

/******************************> GetNewDinoName <*/
char GetNewDinoName(char *dinoName
{

char line[kMaxLineLength];
int i, nameLen;

print£ ("Enter new name: 11
) ;

.gets (line) ;

H the line was empty (if the user just entered a carriage return), we'll return
false, letting the calling function know that the user has, in effect, decided not to
replace the dinosaur name:

if (line(O] == '\0'
return false;

275

WORKING WITH FILES

276

Our next step is to fill the dinoName array with spaces. We'll then call
strlen() to find out how many characters the user typed in. We'll copy those
characters back into the dinoName array, leaving dinoName with a dinosaur
name, followed by a bunch of spaces:

for (i=O; i<kDinoRecordSize; i++)
dinoName[i] = ' ';

strlen () takes a pointer to a zero-terminated string and returns the length
of the string, not including the 0 terminator:

nameLen = strlen(line);

If the user typed a dinosaur name larger than 20 characters long, we'll copy
only the first 20 characters:

if (nameLen > kDinoRecordSize
nameLen = kDinoRecordSize;

Here's where we copy the characters from line into dinoName:

for (i=O; i<nameLen; i++
dinoName[i] = line[i];

Finally, we'll return true to let the calling function know that the name is
ready:

return true;
}

WriteDinoName() opens the file for reading and writing. Since we used a
mode of "r+ 11 instead of 11 w+ 11

, we won't lose the contents of My Dinos (in other
words, My Dinos won't be deleted and recreated):

/*********************************> WriteDinoName <*/
void WriteDinoName(int number, char *dinoName)
{

FILE *fp;
long bytesToSkip;

WORKING WITH FILES, PART THREE

if ((fp = fopen(kDinoFileName, 11 r+ 11
)) ==NULL

DoError("Couldn't open file ••• Goodbye!");

Next, we calculate the number of bytes we need to skip to place the file posi­
tion indicator at the beginning of the record we want to overwrite, then call
fseek() to move the file position indicator:

bytesToSkip = (long)((number-1) * kDinoRecordSize);

if (fseek(fp, bytesToSkip, SEEK_SET) 1= 0)
DoError("Couldn't seek in file ••• Goodbye!");

We then call fwr i te () to write the dinosaur record back out. Note that
fwri te () works exactly the same way as f read () , including returning the num­
ber of records written:

}

if (£write(dinoName, (size_t)kDinoRecordSize,
(size_t)l, fp) != 1)
DoError("Bad fwrite() ••• Goodbyel");

fclose(fp);

You've seen this function before:

/***> Flush <*/
void Flush(void)
{

while (getchar() 1= '\n')

}

DoError () prints the error message, adding a carriage return, then exits:

/***> DoError <*/
void DoError(char *message)
{

}

print£("%s\n", message);
exit(0) ;

277

WORKING WITH FILES

278

What's Next?
Chapter 11 tackles a wide assortment of programming topics. We'll look at type­
casting, the technique used to translate from one type to another. We'll cover re­
cursion, the ability of a function to call itself. We'll also examine function pointers,
variables that can be used to pass a function as a parameter.

Exercises
1. What's wrong with each of the following code fragments:

a. FILE *fp;

f p £open("w"' "My Data File") ;
if f p 1= NULL)

print£("The file is open.") ;

b. char myData = 7;
FILE *fp;

fp = fopen(11 r 11
, "My Data File") ;

fscanf("Here's a number: %d", &myData);

c. FILE *fp;
char *line;

fp = £open(11 My Data File", "r") ;
£scan£(fp, 11 %s", &line);

d. FILE *fp;
char line[lOO];

fp = fopen("My Data File", "w 11
) ;

fscanf(fp, 11 %s", line);

2. Write a program that reads in and prints a file with the following format:

• The first line in the file contains a single int. Call it x.

• All subsequent lines contain a list of x in ts separated by tabs.

If the first number in the file is 6, all subsequent lines will have six ints
per line. There is no limit to the number of lines in the file. Keep reading and
printing lines until you reach the end of the file.

You can print each int as you encounter it or, for extra credit, allocate an
array of ints large enough to hold one line's worth of ints, then pass that
array to a function that prints an int array.

3. Modify cdFiler. n so that memory for the artist and title lines is allo­
cated as the lines are read in. First, you'll need to change the CDinfo struct
declaration as follows:

struct CDinf o
{

char rating;
char *artist
char *title;
struct CDinfo *next;

} ;

In addition to calling malloc () to allocate a CD Info struct, you'll call
malloc () to allocate space for the artist and title strings. Don't forget to
leave enough space for the terminating 0 at the end of each string.

EXERCISES

279

----------Chapter 11

Advanced Topics

Congratulations! By now, you've mastered most of the fundamental C program­
ming concepts. This chapter will fill you in on some useful C programming tips,
tricks, and techniques that will enhance your programming skills. We'll start with
a look at typecasting, C's mechanism for translating one data type to another.

What Is Typecasting?
There often will be times when you find yourself trying to convert a variable of
one type to a variable of another type. For example, the following code fragment
causes the line i is equal to 3 to appear in the console window:

float f;
int i;

f = 3.5;
i f;

printf ("i is equal to %d", i) ;

Notice that the original value assigned to f was truncated from 3.5 to 3 when
the value inf was assigned to i. This truncation was caused when the compiler
saw an int on the left side and a float on the right side of this assignment state­
ment:

i = f;

The compiler automatically translated the float to an int. In general, the
right-hand side of an assignment statement is always translated to the type on the
left-hand side when the assignment occurs. In this case, the compiler handled the
type conversion for you.

281

ADVANCED TOPICS

282

Typecasting is a mechanism you can use to translate the value of an expres­
sion from one type to another. A typecast, or just plain cast, always takes this form:

(type) expression

The type is any legal C type. Look at the following code fragment:

float f;

f = 1.5;

The variable f gets assigned a value of 1.5. Now look at this code fragment:

float f;

f = (int) 1. 5 ;

The value of 1.5 is cast as an int before being assigned to f. Just as you might
imagine, casting a float as an int truncates the float, turning the value 1.5 into
1. In this example, two casts were performed. First, the float value 1.5 was cast
to the int value 1. When this int value was assigned to the float f, the value
was cast to the float value 1.0.

Cast with Care

Use caution when you cast from one type to another. Problems can arise when
casting between types of a different size. Consider this example:

int i· I

char c;

i 500;
c = i;

Here, the value 500 is assigned to the int i. So far, so good. Next, the value in
i is cast to a char as it is assigned to the char c. See the problem? Since a char
can hold values only between -128 and 127, assigning a value of 500 to c doesn't
make sense.

WHAT IS TYPECASTING?

So what happens to the extra byte or bytes when a larger type is cast to a
smaller type? The matching bytes are typecast, and the value of any extra
bytes is lost.

Fo.t example, when a 2-byte int is cast to a 1-byte char, the leftmost
byte of the int (the byte with the more significant bits, the bits valued 28

through 215
) is dropped, and the rightmost byte (the bits valued 2° through27

)

is copied into the char.
Look at this:

int i· ,
char c;

i 500;
c = i;

The int i has a value of OxO 1E4, which is hex for 500. After the second as­
signment, the char ends up with the value OxE4, which has a value of 244 if
the char was unsigned or -12 if the char is signed.

To leam more about type conversions, check out Section 6.2 of Harbis0n
and Steele's C: A Reference Manual.

Casting with Pointers

Typecasting can also be used when working with pointers. The notation (int *)
myPtr casts the variable myPtr as a pointer to an int. Casting with pointers al­
lows you to link structs of different types. For example, suppose that you de­
clared two struct types, as follows:

struct Dog
{

struct Dog *next;
}

struct Cat
{

struct Cat *next ;
}

By the Way

283

ADVANCED TOPICS

284

I mgCat I
~_I __ ! __ I!

Figure 11.1 myDog. next points to mycat, and mycat. next points to NULL.

By using typecasting, you could create a linked list that contains both Cats
and Dogs. Figure 11.1 shows a Dog whose next field points to a Cat. Imagine the
source code you'd need to implement such a linked list.

Consider this source code:

struct Dog myDog;
struct Cat mycat;

myDog.next &myCat; /* <-Compiler complains */
myCat.next NULL;

In the first assignment statement, a pointer of one type is assigned to a pointer of
another type: &mycat is a pointer to a struct of type Cat; myDog. next is de­
clared to be a pointer to a struct of type Dog. To make this code compile, we'll
need a typecast:

struct Dog myDog;
struct Cat myCat;

myDog.next (struct Dog *)(&myCat);
myCat.next = NULL;

If both sides of an assignment operator are arithmetic types (such as float,
int, and char), the compiler will automatically cast the right-hand side of the as­
signment to the type of the left-hand side. If both sides are pointers, you'll have to
perform the typecast yourself.

There are a few exceptions to this rule. If the pointers on both sides of the as­
signment are the same type, no typecast is necessary. If the pointer on the right­
hand side is either NULL or of type (void *) , no typecast is necessary. Finally, if
the pointer on the left-hand side is of type (void *),no typecast is necessary.

The type (void *) is sort of a wild card for pointers. It matches up with any
pointer type. For example, here's a new version of the Dog and Cat code:

WHAT IS TYPECASTING?

struct Dog
{

void *next;
}

struct Cat
{

void *next;
}

struct Dog myDog;
struct Cat myCat;

myDog.next = &mycat;
myCat.next NULL;

This code lets Dog. next point to a Cat struct without a typecast. If you are
not sure what type your pointers will be pointing to, declare your pointers as
(void*).

The rules for typecasting are fairly complex and beyond the scope of this
book. To learn more about type conversions, check out Sections 6.2 through
6.4 in C: A Reference Manual by Harbison and Steele. If you plan on moving
on to C++ (and you should), check out the discussion of type conversions in
Learn C++ on the Macintosh by yours truly.

Unions
C offers a special data type, known as a union, which allows a single variable to
disguise itself as several different data types. A union data type is declared just
like a struct. Here's an example:

union Number
{

int i;
float f;
char *s;

} myNumber;

By the Way

285

ADVANCED TOPICS

Warning

286

This declaration creates a union type named Number, as well as an individual
Number named myNumber. If this were a struct declaration, you'd be able to
store three different values in the three fields of the struct. A union, on the other
hand, lets you store one and only one of the union's fields in the union. Here's
how this works.

When a union is declared, the compiler allocates the space required by the
largest of the union's fields, sharing that space with all of the union's fields. If an
int requires 2 bytes, a float 4 bytes, and a pointer 4 bytes, myNumber is allo­
cated exactly 4 bytes. You can store an int, a float, or a char pointer in
myNumber. The compiler allows you to treat myNumber as any of these types. To
refer to myNumber as an int, refer to:

myNumber.i

To refer to myNumber as a float, refer to:

myNumber.f

To refer to myNumber as a char pointer, refer to:

myNumber.s

You are responsible for remembering which form the union is currently occupying.

If you store an int in myUnion by assigning a value to myUnion. i, you'd
best remember that fact. If you proceed to store a float in myunion. f,
you've just trashed your int. Remember, there are only 4 bytes allocated to
the entire union.

In addition, storing a value as one type and then reading it as another
can produce unpredictable results. For example, if you stored a float in
myNumber. f, the field myNumber. i would not be the same as
(int) (myNumber. f) .

One way to keep track of the current state of the union is to declare an int to
go along with the union, as well as a #define for each of the union's fields:

#define kUnionContainsint
#define kUnionContainsFloat

1

2

WHAT IS TYPECASTING?

#define kUnionContainsPointer 3

union Number
{

int i;
float f;
char *s;

} myNumber;

int myunionTag;

If you are currently using myUnion as a float, assign the value
kUnionContainsFloat to myUnionTag. Later in your code, you can use
myUnionTag when deciding which form of the union you are dealing with:

if (myUnionTag == kUnionContainsint)
DointStuff(myUnion.i);

else if (myUnionTag == kUnionContainsFloat
DoFloatStuff(myUnion.f);

else
DoPointerStuff(myunion.s);

Why Use Unions?
In general, a union is most useful when dealing with two data structures that
share a set of common fields but differ in some small way. For example, consider
these two struct declarations:

struct Pitcher
{

char name(40];
int team;
int strikeouts;
int runsAllowed;

}

struct Batter
{

char name(40];
int team;

287

ADVANCED TOPICS

288

int runsScored;
int homeRuns;

}

These structs might be useful if you were tracking the pitchers and batters
on your favorite baseball team. Both structs share a set of common fields: the
array of chars named name and the int named team. Both structs have their
own unique fields as well. The Pitcher struct contains a pair of fields appro­
priate for a pitcher: strikeouts and runsAllowed. The Batter struct con­
tains a pair of fields appropriate for a batter: runsScored and homeRuns.

One solution to your program would be to maintain two types of structs: a
Pitcher and a Batter. There is nothing wrong with this approach. There is an
alternative, however. You can declare a single struct that contains the fields com­
mon to Pitcher and Batter, with a union for the unique fields:

#define kMets 1
#define kReds 2

#define kPitcher 1
#define kBatter2

struct Pitcher
{

int strikeouts;
int runsAllowed;

}

struct Batter
{

int runsScored;
int homeRuns;

}

struct Player
{

int type;
char name[40];
int team;
union
{

FUNCTION RECURSION

};

struct Pitcher
struct Batter

} u;

pStats;
bStats;

Here's an example of a Player declaration:

struct Player myPlayer;

Once you created the Player struct, you would initialize the type field with
one of either kPitcher or kBatter:

myPlayer.type = kBatter;

You would access the name and team fields like this:

myPlayer.team = kMets;
printf("Stepping up to the plate: %s", myPlayer.name);

Finally, you'd access the union fields like this:

if (myPlayer.type == kPitcher)
myPlayer.u.pStats.strikeouts = 20;

The u was the name given to the union in the declaration of the Player type.
Every Player you declare will automatically have a union named u built into it.
The union gives you access to either a Pitcher struct named pStats or a
Batter struct named bStats. The preceding example references the strike­
outs field of the pStats field.

unions provide an interesting alternative to maintaining multiple data struc­
tures. Try them. Write your next program using a union or two. If you don't like
them, you can return them for a full refund.

Function Recursion
Some programming problems are best solved by repeating a mathematical
process. For example, to learn whether a number is prime (see Chapter 6), you
might step through each of the even integers between 2 and the number's square
root, one at a time, searching for a factor. If no factor is found, you have a prime.
The process of stepping through the numbers between 2 and the number's square
root is called iteration.

289

ADVANCED TOPICS

By the Way

290

In programming, iterative solutions are fairly common. Almost every time you
use a for loop, you are applying an iterative approach to a problem. An alterna­
tive to the iterative approach is known as recursion. In a recursive approach, in­
stead of repeating a process in a loop, you embed the process in a function and
have the function call itself until the process is complete. The key to recursion is a
function calling itself.

Suppose that you wanted to calculate 5 factorial (also known as 51). The fac­
torial of a number is the product of each integer from 1 up to the number. For ex­
ample, 5 factorial is:

51 = 5 * 4 * 3 * 2 * 1 = 120

Using an iterative approach, you might write some code like this:

#include <stdio.h>

int main(void
{

}

int i, num;
long fac ;

num 5 i
fac 1 · I

for i=l; i<=num; i++)
fac *= i ;

printf(" %d factorial is %ld.", num, fac);

return O;

If you are interested in trying this code, it is provided on disk in the Learn C
Projects folder, under the subfolder named 11. 01 - iterate.

If you ran this program, you'd see this line printed in the console window:

5 factorial is 120 .

FUNCTION RECURSION

As you can see from the source code, the algorithm steps through (iterates) the
numbers 1through5, building the factorial with each successive multiplication.

A Recursive Approach
You can use a recursive approach to solve the same problem. For starters, you'll
need a function to act as a base for the recursion, a function that will call itself.
There are two things you'll need to build into your recursive function. First, you'll
need a mechanism to keep track of the depth of the recursion. In other words,
you'll need a variable or a parameter that changes, depending on the number of
times the recursive function calls itself.

Second, you'll need a terminating condition, something that tells the recursive
function when it's gone deep enough. Here's one version of a recursive function
that calculates a factorial:

int factorial(int num)
{

if (num > 1)
num *=factorial(num - 1);

return (num) ;
}

factorial () takes a single parameter, the number whose factorial you are
trying to calculate. First, factorial () checks to see whether the number passed
to it is greater than 1. If it is not, factorial () calls itself, passing 1 less than the
number passed into it. This strategy guarantees that, eventually, factorial ()
will get called with a value of 1.

Figure 11.2 shows this process in action. The process starts with a call to fac­
torial ():

result= factorial(3);

Take a look at the leftmost factorial () source code in Figure 11.2. facto­
rial () is called with a parameter of 3. The if statement checks to see whether
the parameter is greater than 1. Since 3 is greater than l, the following statement is
executed:

num *=factorial(num - 1);

291

~
int factorial< int num)
{
if < num > 1)
num *=factorial < num - 1);

I
r eturn(num); }+ qJ

int factorial< int num)
{
if < num > 1)
num *=factorial(num - 1);

Important

292

I

~
int factorial< int num)
{ .~-----rliF~aii11~s~#~scii;n;c~e~n~u;m;--;=;=;-t1~I
if num > 1) · ·

return(num >;
} --------4 2 * 1

num *=factoria l (num - 1);

return(num);
}

----~1

Figure 11.2 The recursion process caused by the call factorial (3).

This statement calls factorial () again, passing a value of n- 1, or 2, as the pa­
rameter. This second call of factorial () is pictured in the center of Figure 11.2.

It's important to understand that this second call to factorial () is treated
just like any other function call that occurs in the middle of a function. The
calling function's variables are preserved while the called function runs. In
this case, the called function is just another copy of factorial () .

This second call of factorial () takes a value of 2 as a parameter. The if
statement compares this value to 1 and, s ince 2 is greater than 1, executes the
statement:

num *=factorial(num - 1);

This statement calls factorial () yet again, passing num-1, or 1, as a parameter.
The third call of factorial () is portrayed on the rightmost side of Figure 11.2.

The third call of factorial () starts with an if statement. Since the input
parameter was 1, the if statement fails. Thus, the recursion termination condition
is reached. This third call of factorial () now returns a value of 1.

At this point, the second ca ll of factorial () resumes, completing the
statement:

num *=factorial(num - 1);

Since the call of factorial () returned a value of 1, this statement is equiva­
lent to:

num *= 1;

This leaves num with the same value it came in with, namely, 2. This second
call of factorial () returns a value of 2.

At this point, the first call of factoria l () resumes, completing the statement:

num *=factorial(num - 1);

Since the second call of factorial () returned a value of 2, this statement is
equivalent to:

num *= 2;

Since the first call of factorial () started with the parameter num taking a
value of 3, this statement sets num to a value of 6. Finally, the original call of facto­
rial () returns a value of 6. This is as it should be, since 3 factorial = 3 * 2 * 1 = 6.

The recursive version of the factorial program is also provided on disk. You'll
find it in the Learn c Projects folder, under the subfolder named 11. 02
- recurse. Open the project and follow the program through, line by line.

Binary Trees
As you learn more about data structures, you' ll discover new applications for re­
cursion. For example, one of the most-used data structures in computer program­
ming is the binary tree (Figure 11.3). As you ' ll see la ter, binary trees were just
made for recursion. The binary tree is similar to the linked list. Both consist of
structs connected by pointers embedded in each struct.

Linked lists are linear. Each struct in the list is linked by pointers to the
s t ruct behind it and in front of it in the list. Binary trees always start with a sin­
gle struct, known as the root struct, or root node. Where the linked-list
structs we've been working with contain a single pointer, named next, binary­
tree structs each have two pointers, usually known as l e ft and r ight.

Check out the binary tree in Figure 11.3. Notice that the root node has a left
child and a right child. The left child has its own left child, but its right pointer
is set to NULL. The left child 's left child has two NULL pointers. A node with two
NULL pointers is known as a leaf node, or terminal node.

BINARY TREES

Important

293

ADVANCED TOPICS

294

Root of
Binary Tree

0

_"I~

- --- ~

_t

. "' * ~ _"I~

l I -

1
~

I _t _I_

-:!:- ~ -!- _'llli' ~

I
....... ~

Figure 11.3 A binary tree. Why binary? Each node in the tree contains two pointers.

Binary trees are extremely useful. They work especially well when you are try­
ing to sort data having a comparative relationship. This means that if you com­
pare two pieces of data, you'll be able to judge the first piece as greater than, equal
to, or less than the second piece. For example, numbers are comparative. Words in
a dictionary can be comparative, if you consider their alphabetical order. The word
iguana is greater than aardvark but less than xenophobe.

Here's how you might store a sequence of words, one at a time, in a binary
tree. We'll start with this list of words:

opulent
entropy
salubrious
ratchet
coulomb
yokel
tortuous

Figure 11.4 shows the word opulent added to the root node of the binary
tree. Since it is the only word in the tree so far, both the left and right pointers are
set to NULL.

Figure 11.4 The word opulent is entered into the binary tree.

Figure 11.5 shows the word entropy added to the binary tree. Since entropy
is less than opulent (that is, comes before it alphabetically), entropy is stored as
opulent's left child.

opulent

entropy

Figure 11.5 The word entropy is less than the word opulent and is added as its left

child in the binary tree.

Next, Figure 11.6 shows the word salubrious added to the tree. Since salu­
brious is greater than opulent, it becomes opulent's right child.

opulent
--

. ~ l
entropy salubrious

~

-'- -'-
.,JI._ ~ ~

Figure 11.6 The word salubrious is greater than the word opulent and is added to

its right in the tree.

BINARY TREES

295

ADVANCED TOPICS

296

opulent

...
1

entropg salubrious
~ -- --
I I

~ * •Ir * ratchet

f

..ii... 4

Figure 11.7 The word ratchet is greater than opulent but less than salubrious and

is placed in the tree accordingly.

Figure 11.7 shows the word ratchet added to the tree. First, ratchet is
compared to opulent. Since ratchet is greater than opulent, we follow the
right pointer. Since there's a word there already, we'll have to compare ratchet
to this word. Since ratchet is less than salubrious, we'll store it as salubri­
ous's left child.

Figure 11.8 shows the binary tree after the remainder of the word list has been
added. Do you understand how this scheme works? What would the binary tree

opulent

'" 1
entropg salubrious

~ ~ --
I -

l *
coulomb ratchet gokel

I
-- ~

I I _f_

~ * * ... -:!:-
tortuous

~

1 --
I
~

Figure 11.8 The words coulomb, yokel, and tortuous are added to the tree.

look Like if coulomb were the first word on the list? The tree would have no left
children and would lean heavily to the right. What if yokel were the first word
entered? As you can see, this particular use of binary trees depends on the order of
the data. Randomized data starting with a value close to the average produces a
balanced tree. If the words had been entered in alphabetical order, you would
have ended up with a binary tree tha t looked like a linked list.

Data structure theory is one of my favorite topics in all of computer science.
I'd like to rattle on and on about variant tree structures and binary tree bal­
ancing algorithms, but my editors would like me to get this book out some­
time this year. This shouldn't stop you, though. Go to your library and check
out a book on data structures and another on sorting and searching algo­
rithms (which we'll get to in a minute). My favorite books on these topics are
listed in the bibliography in Appendix G.

Searching Binary Trees

Now that your word lis t is stored in the binary tree, the next step is to look up a
word in the tree. This is known as searching the tree. Suppose you wanted to look
up the word tortuous in your tree. You'd s tart with the root node, comparing
tortuous with opulent. Since tortuous is greater than opulent, you 'd fol­
low the right pointer to salubrious. You'd follow this algorithm down to yokel
and finally tortuous.

Searching a binary tree is typically much faster than searching a linked list. In
a linked list, you search through your list of nodes, one at a time, until you
find the node you are looking for. On average, you'll end up searching half of
the list. In a list of 100 nodes, you'll end up checking SO nodes on average. In
a list of 1000 nodes, you'll end up checking 500 nodes on average.

In a balanced binary tree, you reduce the search space in half each time
you check a node. Without getting into the mathematics (check Knuth's The
Art of Computer Programming, Volume 3, for more info), the maximum num­
ber of nodes searched is approximately log2n, where n is the number of
nodes in the tree. On average, you'll search log2n/2 nodes. In a list of 100
nodes, you'll end up searching 3.32 nodes on average. In a list of 1000 nodes,
you'll end up checking about S nodes on average.

As you can see, a binary tree provides a significant performance advan­
tage over a linked list.

BINARY TREES

By the Way

By the Way

297

ADVANCED TOPICS

298

A binary tree that contained just words may not be very interesting, but imag­
ine that these words were names of great political leaders. Each struct might
contain a leader's name, biographical information, and, perhaps, a pointer to an­
other data structure containing great speeches. The value, name, or word that de­
termines the order of the tree is said to be the key.

You don't always search a tree based on the key. Sometimes, you'll want to
step through every node in the tree. For example, suppose that your tree contained
the name and birth date of each of the presidents of the United States. Suppose
that also that the tree was built using each president's last name as a key. Now sup­
pose that you wanted to compose a list of all presidents born in July. In this case,
searching the tree alphabetically won't do you any good. You'll have to search
every node in the tree. This is where recursion comes in.

Recursion and Binary Trees

Binary trees and recursion were made for each other. To search a tree recursively,
the recursing function has to visit the current node, as well as call itself with each
of its two child nodes. The child nodes will do the same thing with themselves and
their child nodes. Each part of the recursion stops when a terminal node is en­
countered.

Check out this piece of code:

struct Node
{

int value;
struct Node *left;
struct Node *right;

} myNode;

Searcher(struct Node *nodePtr
{

}

if (nodePtr 1= NULL)
{

}

VisitNode(nodePtr);
Searcher(nodePtr->left);
Searcher(nodePtr->right);

The function Searcher () takes a pointer to a tree node as its parameter. If
the pointer is NULL, we must be at a terminal node, and there's no need to recurse
any deeper. If the pointer points to a Node, the function VisitNode() is called.
Visi tNode () performs whatever function you want performed for each node in
the binary tree. In our current example, Visi tNode () could check to see whether
the president associated with this node was born in July. If so, Visi tNode ()
might print the president's name in the console window.

Once the node is visited, Searcher () calls itself twice, once passing a pointer
to its left child and once passing a pointer to its right child. If this version of
Searcher () were used to search the tree in Figure 11.8, the tree would be
searched in the order described in Figure 11.9. This type of search is known as a
preorder search, because the node is visited before the two recursive calls take
place.

Here's a slightly revised version of Searcher () . Without looking at Figure
11.10, can you predict the order in which the tree will be searched? This version of
Searcher () performs an inorder search of the tree:

Searcher(struct Node *nodePtr
{

if (nodePtr != NULL)

1

opulent

salubrious

coulomb ratchet

tortuous

Figure 11.9 A preorder search of a binary tree. This search was produced by the first
version of Searcher () .

BINARY TREES

299

ADVANCED TOPICS

By the Way

302

int. The parentheses in the declaration are all necessary. The first pair tie the * to
myFuncPtr, ensuring that myFuncPtr is declared as a pointer. The second pair
surround the parameter list and distinguish myFuncPtr as a function pointer.

Suppose we had a function called DealTheCards () that took a float as a
parameter and returned an int. This line of code assigns the address of
DealTheCards () to the function pointer myFuncPtr:

myFuncPtr = DealTheCards;

Notice that the parentheses were left off the end of Deal TheCards () . This is
critical. If the parentheses were there, the code would have called
Deal TheCards () , returning a value to myFuncPtr. You may also have noticed
that the & operator wasn't used. When you refer to a function without using the
parentheses at the end, the compiler knows that you are referring to the address of
the function.

Now that you have the function's address in the function pointer, there's only
one thing left to do-call the function. Here's how it's done:

int result;

result= (*myFuncPtr)(3 . 5);

This line calls the function Deal TheCards () , passing it the parameter 3.5
and returning the function value to the int result. You could also have called
the function this way:

int result;

result= myFuncPtr(3.5);

Some older (non-ANSI compliant) compilers can't handle this form, but it is
easier on the eye.

There's a lot you can do with function pointers. You can create an array of
function pointers. How about a binary tree of function pointers? You can
pass a function pointer as a parameter to another function. Taking this one
step further, you can create a function that does nothing but call other func­
tions. Cool!

For your enjoyment, there's a function-calling example on the source code
disk. You'll find the project in the Learn C Projects folder, inside the 11. 03 -

funcPtr subfolder. The program is pretty simple, but it should serve as a useful
reference when you start using function pointers in your own programs.

Initializers
When you declare a variable, you can also provide an initial value for the variable
at the same time. The format for integer types, floating-point types, and pointers is
as follows:

type variable = initializer;

In this case, the initializer is just an expression. Here are a few examples:

float myFloat 3.14159;

int myint = 9 * 27;
int *intPtr &myint;

If you plan on initializing a more complex variable, such as an array, struct,
or union, you'll use a slightly different form of initializer, embedding the ele­
ments used to initialize the variable between pairs of curly braces. Consider these
two array declarations:

int
float

myints[] = { 10, 20, 30, 40 };

myFloats[5] = { 1.0, 2.0, 3.0 };

The first line of code declares an array of four ints, setting myints [O] to 10,
myints [1] to 20, myints [2] to 30, and myints [3] to 40. If you leave out the
array dimension, the compiler makes it just large enough to contain the listed data.

The second line of code includes a dimension but not enough data to fill the
array. The first three array elements are filled with the specified values, but
myFloats [3] and myFloats [4] are initialized to 0.0.

If you don't provide enough values in your initializer list, the compiler ini­
tializes all the remaining elements to their default initialization value. For
integers, the default initialization value is O; for floats, 0.0; and for pointers,
NULL.

INITIALIZERS

By the Way

303

ADVANCED TOPICS

304

Here's another example:

char s [20] = "Hello";

What a convenient way to initialize an array of chars! Here's another way to
accomplish the same thing:

char s [2 0] = { ' H' , 'e ' , ' 1 ' , ' l ' , 'o' , ' \ 0 ' } ;

Once again, if you leave out the dimension, the compiler will allocate just
enough memory to hold your text string, including a byte to hold the 0 terminator.
If you include the dimension, the compiler will allocate that many array elements,
then fill the array with whatever data you provide. If you provide more data than
will fit in the array, your code won't compile.

Here's a struct example:

struct Numbers
{

int i, j;
float f;

}

struct Numbers myNums = { 1, 2, 3.01 };

As you can see, the three initializing values were wrapped in a pair of curly
braces. This leaves myNums . i with a value of 1, myNums . j with a value of 2, and
myNums. f with a value of 3.01. If you have a struct, union, or array embedded
in your struct, you can nest a curly wrapped list of values inside another list. For
example:

struct Numbers
{

}

int i, j;
float f [4] ;

struct Numbers myNumsl { 1, 2, {3.01, 4.01, 5.01, 6.01} };

THE REMAINING OPERATORS

The Remaining Operators
If you go back to Chapter 5 and review the list of operators shown in Figure 5.7,
you'll likely find a few operators you are not yet familiar with. Most of the ones
we've missed were designed specifically to set the individual bits within a byte.
For example, the I operator (not to be confused with its comrade, the logical 11
operator) takes two values and "ORs" their bits together, resolving to a single
value. This operator is frequently used to set a particular bit to 1.

Check out this code:

short myShort;

myShort = OxOOOl I myShort;

This code sets the rightmost bit of myShort to 1, no matter what its current
value is. This line of code, based on the I = operator, does the exact same thing:

myShort I= OxOOOl;

The & operator takes two values and "ANDs" their bits together, resolving to
a single value. This operator is frequently used to set a particular bit to 0 (more fre­
quently referred to as clearing a bit).

Check out this code:

short myShort;

myShort = OxFFFE & myShort;

This code sets the rightmost bit of myShort to 0, no matter what its current value
is. It might help to think of OxFFFE as 1111111111111110 in binary. The next line of
code, based on the&= operator, does the exact same thing:

myShort &= OxFFFE;

The " operator takes two values and "XORs" their values together. It goes
along with the"= operator. The - operator takes a single value and turns all the ls
into Os and all the Os into ls. The &, I, ", and - operators are summarized in Figure
11.12.

305

ADVANCED TOPICS

By the Way

306

A B A&B A I B A"B -A
1 1 1 1 0 0
1 0 0 1 1 0
0 1 0 1 1 1
0 0 0 0 0 1

Figure 11 .12 A summary of the & , I . ~ , and - operators.

The previous examples assumed that a short is 2 bytes (16 bits) long. Of
course, this makes for some implementation-dependent code. Here's a more
portable example.

short myShort;

myShort = (-1) & myShort;

This code sets the rightmost bit of myShort, no matter how many bytes are
used to implement a short. You could also write this as:

myShort &= (-1) ;

The last of the binary operators,<<,>>,<<=, and >>=, are used to shift bits
within a variable, either to the left or to the right. The left operand is usually an
unsigned variable, and the right operand is a positive integer specifying how far
to shift the variable's bits.

For example, this code shifts the bits of myShort 2 bits to the right:

unsigned short myShort = OxOlOO;

myShort = myShort >> 2; /* equal to myShort >>= 2 ; */

Notice that myShort starts off with a value of 0000000100000000 and ends up with
a value of 0000000001000000 (in hex, that's Ox0040) . Notice that zeros get shifted in
to make up for the leftmost bits that are getting shifted over and that the rightmost
bits are lost when they shift off the end.

THE REMAINING OPERATORS

These operators were designed to work with unsigned values only. Check
with your compiler to see how it handles shifting of signed values.

The last two operators we need to cover are the , and : ? operators. The , op­
erator gives you a way to combine two expressions into a single expression. The ,
operator is binary, and both operands are expressions. The left expression is eval­
uated first and the result discarded. The right expression is then evaluated and its
value returned. Here's an example:

for (i=O, j=O; i <20 && j<40; i++,j+=2)
DoSomething(i, j);

This for loop is based on two variables instead of one. Before the loop is entered,
i and j are both set to 0. The loop continues as long as i is less than 20 and j is
less than 40. Each time through the loop, i is incremented by 1, and j is incre­
mented by2.

The ? and : operators combine to create something called a conditional ex­
pression. A conditional expression consists of a logical expression (an expression
that evaluates to either true or false), followed by the ? operator, followed by a
second expression, followed by the : operator, followed by a third expression:

logical-expression ? expression2 : expression3

If the logical expression evaluates to true, expression2 gets evaluated, and
the entire expression resolves to the value of expression2. If the logical expres­
sion evaluates to false, expression3 gets evaluated, and the entire expression
resolves to the value of expression3. Here's an example:

IsPrime(num) ? DoPrimeStuff(num) : DoNonPrimeStuff(num);

As you can see, a conditional expression is really a shorthand way of writing
an if-else statement. Here's the if-else version of the previous example:

if (IsPrime(num))
DoPrimeStuff(num);

else
DoNonPrimeStuff(num);

Warning

307

ADVANCED TOPICS

Warning

308

Some people like the brevity of the ? : operator combination. Others find it dif­
ficult to read. As always, make your choice and stick w ith it.

A word of advice: Don't overuse the ? : operator. For example, suppose that
you wanted to use ? : to generate a number's absolute value. You might
write code like this:

int value;

value - (value<O) ? (-value) : (value);

Although this code works, take a look at this code translated into its if­
else form:

int value;

if (value<O
value (-value);

else
value (value);

As you can see, the ? : operator can lead you to write source code that
you would otherwise consider pretty dam silly.

Creating Your Own Types
The typedef statement lets you use existing types to create brand new types you
can then use in your declarations. You'll declare this new type just as you would a
variable, except that you 'll precede the declaration with the word typedef, and
the name you declare will be the name of a new type. Here's an example:

typedef int *IntPointer;

IntPointer myintPointer ;

The first line of code creates a new type named IntPointer. The second line
declares a variable named myintPointer, which is a pointer to an int.

Here's another example:

CREATING YOUR OWN TYPES

typedef float (*FuncPtr)(int*);

FuncPtr myFuncPtr;

The first line of code declares a new type named FuncPtr. The second line de­
clares a variable named myFuncPtr, which is a pointer to a function that returns
a float and that takes a single int as a parameter.

Enumerated Types
In a similar vein, the en um statement lets you declare a new type known as an enu­
merated type. An enumerated type is a set of named integer constants, collected
under a single type name. A series of examples will make this clear.

enum Weekdays
{

} ;

Monday,
Tuesday,
Wednesday,
Thursday,
Friday

enum Weekdays whichDay;

whichDay = Thursday;

This code starts off with an enum declaration. The enum is given the name
Weekdays and consists of the constants Monday, Tuesday, Wednesday,
Thursday, and Friday. The second line of code uses this new enumerated type
to declare a variable named whichDay, an integer variable that can take on any of
the Weekdays constants, as evidenced by the last line of code, which assigns the
constant Thursday to whichDay.

Here's another example:

enum Colors
{

red,
green 5,
blue,

309

ADVANCED TOPICS

By the Way

310

magenta,
yellow = blue + 5

} myColor;

myColor = blue;

This code declares an enumerated type named Colors. Notice that some of
the constants in the Colors list are accompanied by initializers. When the com­
piler creates the enumeration constants, it numbers them sequentially, starting
with 0. In the previous example, Monday has a value of 0, Tuesday has a value of
1, and so on, with Friday having a value of 4.

In this case, the constant red has a value of 0. But the constant green has a
value of 5. Things move along from there, with blue and magenta having values
of 6 and 7, respectively. Next, yellow has a value of blue+S, which is 11.

This code also declares an enumeration variable named myColor, which is
then assigned a value of blue.

You can declare an enumerated type without the type name:

en um
{

};

chocolate,
strawberry,
vanilla

int iceCreamFlavor = vanilla;

This code declares a series of enumeration constants with values of 0, l, and
2. We can assign the constants to an int, as we did with i cecreamFlavor.
This comes in handy when you need a set of integer constants but have no
need for a tag name.

Static Variables
Normally, when a function exits, the storage for its variables is freed up, and their
values are no longer available. By declaring a local variable as static, the vari-

STATIC VARIABLES

able's value is maintained across multiple calls of the same function. Here's an ex­
ample:

int StaticFunc(void)
{

static int myStatic O;

return myStatic++;
}

This function declares an int named myStatic and initializes it to a value of
0. The function returns the value of myStatic and increments myStatic after the
return value is determined. The first time this function is called, it returns 0, and
myStatic is left with a value of 1. The second time StaticFunc () is called, it re­
turns 1, and my Static is left with a value of 2.

Take a few minutes and try this code out for yourself. You'll find it in the
Learn C Projects folder in the subfolder 11. 04 - static.

One of the keys to this function is the manner in which myStatic received its
initial value. Imagine if the function looked like this:

int StaticFunc(void)
{

static int myStatic;

myStatic = O; /*<-Bad idea */

return myStatic++ ;
}

Each time through the function, we'd be setting the value of myStatic back
to 0. This function will always return a value of 0. Not what we want, eh?

The difference between the two functions? The first version sets the value of
myStatic to 0 by initialization (the value is specified within the declaration). The
second version sets the value of myStatic to 0 by assignment (the value is speci­
fied after the declaration). If a variable is marked as static, any initialization is
done once and once only. Be sure that you set the initial value of your static
variable in the declaration and not in an assignment statement.

By the Way

311

ADVANCED TOPICS

By the Way

312

One way to think of static variables is as global variables that are limited
in scope to a single function.

More on Strings
The last topic we'll tackle in this chapter is string manipulation. Although we've
done some work with strings in previous chapters, there are a number of Standard
Library functions that haven' t been covered. Each of these functions requires that
you include the file <string . h>. Here are a few examples.

strcpy()

The function strcpy () is declared as follows:

char *strcpy(char *dest, const char *source);

This function copies the string pointed to by source into the string pointed to
by de st, copying each of the characters in source , including the terminating 0
byte . That leaves dest as a properly terminated string. The function returns the
pointer dest.

An important thing to remember about strcpy () is that you are responsible
for ensuring that source is properly terminated and that enough memory is allo­
cated for the string returned in dest. Here's an example of strcpy () in action:

char name[20);

strcpy(name, "Dave Mark") ;

This example uses a string literal as the source string. The string is copied into the
array name. The return value was ignored.

strcat()

The function strcat () is declared as follows:

char *Streat(char *dest, const char *source);

MORE ON STRINGS

The function strcat () appends a copy of the sh'ing pointed to by source onto
theendof thesh'ingpointed to bydest.Aswas the case with strcpy(), strcat ()
returns the pointer dest. Here's an example of strcat () in action:

char name[20];

strcpy(name, "Dave ") ;
strcat(name, "Mark") ;

The call of strcpy () copies the string "Dave 11 into the array name. The call
of strcat() copies the string "Mark 11 onto the end of dest, leaving dest with
the properly terminated string "Dave Mark". Again, the return value was ignored.

strcmp()

The function strcmp () is declared as follows:

int strcmp(const char *sl, const char *s2);

This function compares the strings s 1 and s 2 and returns 0 if the strings are
identical, a positive number if sl is greater than s2, and a negative number if s2
is greater than s 1. The strings are compared one byte at a time. If the strings are
not equal, the first byte that is not identical determines the return value. Here's a
sample:

if (strcmp{ "Hello", 11 Goodbye"))
print£(11 The strings are not equal!");

Notice that the if succeeds when the strings are not equal.

strlen()
The function strlen() is declared as follows:

size_t strlen(const char *s);

This function returns the length of the string pointed to by s. Look at this call,
for example:

length = strlen("Aardvark") ;

313

ADVANCED TOPICS

314

The value returned is 8, the number of characters in the string, not counting
the terminating zero.

More Standard Library

There is a lot more to the Standard Library than what we've covered in the book.
Having made it this far, consider yourself an official C programmer. You now have
a sworn duty to dig in to the C Library Reference that came on the CD in back of
this book. Start off with Chapter 15, which covers the functions declared in
<string.h>. Find out what the difference is between strcmp() and
strncmp () . Wander around. Get to know the Standard Library. You will be mak­
ing extensive use of it.

If you haven't done so already, go out and buy a copy of C: A Reference Manual
by Harbison and Steele. When it comes to a definitive answer to a C programming
question, having Harbison and Steele by your side is the next best thing to having
Keith Rollin's home phone number.

What's Next?
Chapter 12 answers the question, Where do you go from here? Do you want to
learn to create programs with that special Macintosh look and feel? Would you like
more information on data structures and C programming techniques? Chapter 12
offers some suggestions to help you find your programming direction.

Exercises
1. What's wrong with each of the following code fragments:

a. struct Dog
{

struct Dog *next;
}

struct Cat
{

struct Cat *next;
}

struct Dog myDog;
struct Cat myCat;

myDog.next = (struct Dog)&myCat;
myCat.next = NULL;

b. int *MyFunc(void);
typedef int (*FuncPtr)();

FuncPtr myFuncPtr = MyFunc;

c. union Number
{

int i;
float f;
char *s;

}

Number myUnion;

myunion.f = 3.5;

d. struct Player
{

int
char
int
union
{

int
float

} u;
} myPlayer;

type;
name[40];

team;

myint;
myFloat;

myPlayer.team = 27;
myPlayer.myint = -42;
myPlayer.myFloat = 5.7;

e. int *myFuncPtr(int);

myFuncPtr = main;
*myFuncPtr();

t char s[20];

strcpy(s, "Hello ") ;

EXERCISES

315

ADVANCED TOPICS

316

if (strcmp(s, "Hello"))
print£("The strings are the same!");

g. char *s;

s = malloc(20);
strcpy("Heeeers Johnny!", s);

h. char *s;

strcpy (s, 11 Aardvark") ;

i. void DoSomeStuf f (void)
{

/* stuff done here */
}

int main(void
{

}

int ii;

for ii = O; ii < 10; ii++)
DoSomeStuff;

return O;

2. Write a program that reads in a series of integers from a file, storing the num­
bers in a binary tree in the same fashion as the words were stored earlier in the
chapter. Store the first number as the root of the tree. Next, store the second
number in the left branch if it is less than the first number or in the right
branch if it is greater than or equal to the first number. Continue this process
until all the numbers are stored in the tree.

Now write a series of functions that print the contents of the tree using
preorder, inorder, and postorder recursive searches.

----------Chapter 12
Where Do You Go

from Here?
Now that you've mastered the fundamentals of C, you're ready to dig into the
specifics of Macintosh programming. As you've run the example programs in the
previous chapters, you've probably noticed that none of the programs sport the
look and feel that make a Mac program a Mac program.

For one thing, all of the interaction between you and your program focuses on
the keyboard and the console window. None of the programs take advantage of
the mouse. None offer color, pull-down menus, or a selection of different fonts.
These are all part of the Macintosh user interface.

The Macintosh Graphical User Interface
User interface is the part of your program that interacts with the user. So far, your
user interface skills have focused on writing to and reading from the console win­
dow, using such functions as printf(), scanf{), and getchar(). The advantage of this
type of user interface is that each of those functions is available on every machine
that supports the C language. Programs written using the Standard C Library are
extremely portable.

However, console-based user interfaces tend to be limited. With a console­
based interface, you can't use an elegant graphic to make a point. Text-based in­
terfaces can't provide animation or digital sound. In a nutshell, the console-based
interface is simple and, at the same time, simple to program. The Macintosh's
graphical user interface (GUI) offers an elegant, more sophisticated method of
working with a computer.

A Macintosh just wouldn't be the same without windows, pull-down and
pop-up menus, icons, push buttons, and scroll bars. You can and should add these
user interface elements to your C programs. The difficult part is deciding which
features to use and where to use them.

Once you've identified the pieces of the Mac interface you want in your pro­
gram, you're ready to take advantage of the Mac's version of the Standard Library:
the Macintosh Toolbox.

317

WHERE DO YOU GO FROM HERE?

By the Way

318

The Macintosh Toolbox

Every Mac that rolls off the assembly line comes with a slew of built-in user inter­
face functions. Each Mac comes with a read-only memory (ROM) chip that con­
tains the more than 2000 functions that make up the Macintosh Toolbox. The Mac
Toolbox contains functions that create windows on the screen and others that draw
text in these windows. There are functions for drawing shapes, lines, and dots in
color and in black and white. There's a set of functions that allows you to imple­
ment your own pull-down menus. The Mac Toolbox is huge.

Every program that supports the standard Macintosh interface relies on the
Mac Toolbox. That's why Macintosh programs have such a consistent look and
feel. Take a look at the pull-down menu in Figure 12.l. Notice the close resem­
blance to every other Mac pull-down menu. That's because the Toolbox provides
a set of functions that implements a standard Macintosh pull-down menu bar.
When Mac programmers want to implement a pull-down menu, they always tum
to this set of functions, collectively known as the Menu Manager. The Menu
Manager follows a set of rules when pulling down a menu. For example, a stan­
dard Macintosh menu is always drawn using the Chicago font. The Chicago
font is built into the Mac's ROM.

This particular menu comes from the Finder, the application that runs when
your Macintosh first starts up. The Finder is the application containing all of
the windows and icons you use to launch other applications.

Undo 3€2

Cut 3€H
Copy 3€C
Paste 3€U
Clear
Select All 3€A

Show Clipboard

Figure 12.1 An Edit menu. Do you know where it came from?

THE MACINTOSH GRAPHICAL USER INTERFACE

® Radio Button # 1

0 Radio Button #2

0 Radio Button #3

(Pushbutton D

Figure 12.2 A set of radio buttons, a push button, and a scroll bar. Each of these is cre­

ated and maintained with the Control Manager.

The Toolbox is divided into a series of managers. As you learn to implement a
standard Mac interface, you'll learn about the functions that make up each man­
ager. For example, you'll learn how to use the functions that make up the Window
Manager to create and maintain your program's windows. You'll use the Control
Manager to manage scroll bars, push buttons, and other standard Macintosh con­
trols, like the ones shown in Figure 12.2.

windowMaker.µ

Our final project, windowMaker, presents a complete Mac Toolbox application.
Although windowMaker doesn't do much, it does demonstrate some of the user
interface concepts you've been reading about.

Go into the Learn C Projects folder, then into the subfolder named 12. 01
- windowMaker, and open the project named windowMaker. µ.

Run the project by selecting Run from the Project menu. Once Code Warrior
recompiles your source code, the menu bar in Figure 12.3 will appear at the top of
your screen. If you have a color Macintosh with the color turned on, the 9 should
appear in color.

For starters, select the first item in the 9 menu, About WindowMaker
You should hear a short beep; then the window shown in Figure 12.4 should ap­
pear on the screen. This window is known as an "about box" and tells you a little

f"' -"
• File Edit

Figure 12.3 windowMaker's menu bar.

319

WHERE DO YOU GO FROM HERE?

320

Another fine program from the pages
of "Learn C on the Macintosh",
©1995 by Daue Mark

OK]

Figure 12.4 This window appears when you select About WindowMaker ••• from the 9
menu.

bit about WindowMaker. When you get tired of staring at this work of art, click on
the OK button to make the window disappear.

Next, click on the File menu. The menu shown in Figure 12.5 will appear.
Note the command-key equivalents located to the right of each menu item. A com­
mand-key equivalent equates a keyboard sequence to a menu item. For example,
if you hold down the command key (the key with the ~ on it) and type an N, the
item New will be selected.

Select the first item, New. A window will appear, bearing the title
WindowMaker (Figure 12.6). A jazzy picture of the sun will appear, centered in
the window. Select New several more times. Several more windows will appear.
Try clicking on a window's close box. The window should close. Open a few more
windows. Select [Io s e to close a window. Click on a back window to bring it to
the front. Notice that as a window is uncovered, its picture is automatically re­
drawn. When you are done, select Quit from the File menu to exit the program.

Close 8€W

Quit 8€Q

Figure 12.5 windowMaker's File menu.

GETTING STARTED WITH THE MAC TOOLBOX

WindowMaker

Figure 12.6 A windowMaker window.

Getting Started with the Mac Toolbox
The next step in your programming education is to learn how to use the Macintosh
Toolbox in your own programs. The first thing you should do is go out and get
yourself a real development environment. As you've probably noticed, the version
of Code Warrior we've been using won't let you create new projects. Although it's
just fine for running the programs in this book, this limited version of Code Warrior
definitely won't cut it when it comes to developing your own applications.

By far, the two leading Macintosh development environments are
CodeWarrior and Symantec C++ for Macintosh. Both environments can compile
source code written in C and C++ (more on C++ in a minute), and both environ­
ments are capable of producing native 680x0 and PowerPC object code. Although
there are differences between the two products, it would be difficult to recommend
one over the other.

321

WHERE DO YOU GO FROM HERE?

By the Way

322

If you know a group of people who use a specific development environment,
that's the one you should go with. If your best friend is a Mac programmer, stick
with what that person uses. It is much easier to learn if you use the same develop­
ment environment as your teacher.

Symantec makes a C and 680x0 only (no C++, no native PowerPC code) ver­
sion of its compiler for $199. MetroWerks has a 680x0-only version of its compiler
that does compile C++ for $99. Competition being what it is, these prices will prob­
ably have changed by the time you read this, but if you are a hobbyist and have no
plans for moving beyond C, one of these deals might be a good bet. On the other
hand, if you plan on moving to C++ eventually (and you should), investing in C++
now might not be a bad idea.

C++ is a superset of Candis the language of choice for Macintosh software de­
velopment. If you are serious about learning to program the Macintosh (and since
you are still reading this far into the book, this is probably a pretty reasonable as­
sumption), you should first spend some time with C and learn the basics of
Macintosh Toolbox programming, then move on to C++. Don't worry. Most every­
thing you learn in C will carry over into C++, and all of the Mac Toolbox stuff will
still work in the C++ universe. Learn the Toolbox. Master C. Then dig into C++.

If you just can't wait to get started with C++, check out the sequel to this
book, called Learn C++ on the Macintosh. It assumes that you know C and gets
you started with C ++.

Once you've purchased your copy of CodeWarrior or Symantec C++ for
Macintosh, you're ready to start using the Toolbox. Fortunately, there's a lot of lit­
erature available to help ease you through the Toolbox learning curve.

Useful Resources
If there is one item found on every Macintosh programmer's bookshelf, it's a well­
worn copy of Inside Macintosh, Apple's official Macintosh programmer's reference
guide. Inside Macintosh covers the Toolbox in depth, listing every Toolbox function,
along with the function's parameters and that function's place in the Mac universe.

Inside Macintosh is broken out as a series, starting with Inside Macintosh:
Macintosh Toolbox Essentials, with more than 30 volumes in the complete set. Get a
copy of Macintosh Toolbox Essentials and More Macintosh Toolbox. These two vol­
umes introduce the Macintosh graphical user interface and describe most of the
Toolbox functions you'll need to get started.

USEFUL RESOURCES

Once you get comfortable with the Toolbox, you'll probably want to pick up
the rest of the Inside Macintosh series. Unfortunately, unless your company is pick­
ing up the tab, the entire series is probably not in this year's programming budget.
Fortunately, the entire Inside Macintosh series is available on CD-ROM. You can
find the electronic version at most of the places that sell CodeWarrior and
Symantec C++ for Macintosh, including the MacTech mail-order store (310-575-
4343) and through Apple's Developer Tools Catalog (800-282-2732).

Another tool well worth checking out is Apple's Toolbox Assistant (also
known as TBA). Toolbox Assistant is a database filled with all the functions and
constants from the entire Inside Macintosh series. Type in the name of a Toolbox
function or constant, enter a return, and Toolbox Assistant displays a page show­
ing you everything you could want to know about the function or constant. Even
better, Toolbox Assistant can communicate with both CodeWarrior and with
Symantec C++ for Macintosh. Hold down the command key and double-dick on
a Toolbox function or constant in your code, and the Toolbox Assistant automati­
cally jumps to the correct page. This tool is absolutely worth the investment.

Although Inside Macintosh is an invaluable resource, it can be pretty intimidat­
ing when you are first learning about the Toolbox. There are a number of books out
there that help bridge the gap for first-time Macintosh programmers.

If you like the writing style in this book, check out the Macintosh C
Programming Primer by Dave Mark and Cartwright Reed. (This book is frequently
referred to as the Primer or the Mac Primer.) The Primer offers a step-by-step tour
through the mysteries of the Toolbox, punctuating each chapter with a variety of
sample programs. The Mac Primer takes the sting out of learning to program using
the Mac Toolbox.

The Primer also offers a lot of advice for programmers looking to get involved
with the Macintosh development community. Whether you are interested in de­
veloping your own best-selling Macintosh application or just want to hook up
with other Mac developers, the Mac Primer can help. Inside, you'll find descrip­
tions of Apple's developer relations programs, designed to help you get your
products out the door. You'll learn where the developers hang out, whether on
CompuServe, America Online, eWorld, or on the Internet.

In general, Cartwright and I tried to put everything into the Primer that we
were looking for when we were first learning to program the Macintosh. We hope
you enjoy it.

A book that I frequently tum to is Macintosh Programming Secrets by Scott
Knaster and Keith Rollin. This book is full of Macintosh programming tips, tricks,
and techniques. Scott and Keith take their years of experience as Apple employees
and put them to good use, revealing some of the deep, dark secrets that only a Mac
aficionado could know. Once you've mastered the basics of Macintosh Toolbox
programming, give this book a try.

323

WHERE DO YOU GO FROM HERE?

324

Get On-line
All of the major on-line services have a Macintosh development area where you
can get all your questions answered. For example, on CompuServe, type GO
MACDEV and check out Section 11, called "Learn Programming." This section is
an excellent place to meet other Mac programmers and post your questions.

On America Online, you can use the keyword "MDV" to jump to the
Macintosh development area; eWorld has a Mac development area as well. Take
the time to check out the Macintosh development forum on your online service.
Explore the libraries to see what kinds of tools and sample source code are avail­
able. Find out if there are regular meetings for beginners. You'll find that most of
the folks who populate these sections are friendly and more than willing to spend
some time helping you through a difficult concept or pointing you in the right di­
rection.

Go Get 'Em
Well, that's about it. I hope you enjoyed reading this book as much as I enjoyed
writing it. Above all, I hope you are excited about C. Now that you have C under
your belt, go out there and write some source code.

Enjoyr

-----------Appendix A
Glossary

68000 emulator: Software that runs on a PowerPC-based machine designed to
emulate a 68000 processor. The 68000 emulator allows you to run software
compiled for a 68000 on a PowerMac.

algorithm: The technical approach used to solve a problem.

ANSI C: The standard version of the C programming language established by
the American National Standards Institute.

append: A mode used when opening a file for writing. Append mode specifies
that any data written to the file is written after any existing data.

argument: Another word for parameter.

array: A variable containing a sequence of data of a particular type. For example,
you can declare an array of 50 ints.

array element: The smallest addressable unit of an array. In an array of 50 ints,
each int represents an element of the array.

ASCII character set: A set of 128 standard characters defined by the American
Standard Code for Information Interchange.

backslash combination or backslash sequence: A single character represented
by the combination of the backslash(\) and another character. For example,
the sequence '\n' represents a new line character.

backward compatibility: A computer design that allows a newer generation of
computers to run the previous generation of software. In this book, backward
compatibility refers to software compiled for the 68000 that still runs on a
68020, 68030, 68040, and even on a PowerPC.

balanced tree: A binary tree that maintains a uniform depth. The more unbal­
anced a tree becomes, the less efficient some tree-searching algorithms become.

325

APPENDIX A

326

bell curve: A bell-shaped statistical curve that represents a normal probability
distribution. Plotting the possible rolls of a pair of six-sided dice yields a bell
curve.

binary: A system of mathematics based on the two digits 0 and 1. Computers use
binary to represent the value stored in memory.

binary tree: A data structure that consists of a series of nodes, each of which fea­
tures a left and right pointer. These two pointers point to other nodes, linking
the group of nodes into a tree-like structure.

bit: The smallest unit of computer memory, a bit has a value of either 0 or 1.

bit bucket: A euphemism used to indicate a place where lost data goes. If your
data went into the bit bucket, you'll never see it again-it is irretrievably lost.

block: A sequence of memory.

call: Cause a function to be executed. When a function is called, its code gets ex­
ecuted and control is then returned to the calling function.

case-sensitive: Sensitive to the difference between upper- and lower-case letters.
C is a case-sensitive language and therefore distinguishes between names such
as MyFunction () and MYFUNCTION () .

cast: See typecast.

Central Processing Unit (CPU): The integrated circuit that controls the process­
ing of a computer. The Macintosh family of computers is driven by either a
68000 series or PowerPC series CPU.

child: A node in a tree pointed to by another node. The node that points to a
child node is known as the child's parent.

clearing a bit: Changing the value of a bit to 0.

code optimization: A process used by a compiler to increase the efficiency of the
object code it generates.

Command-key equivalent: A key sequence tied to a specific pull-down menu
item. Command-key equivalents always consist of a keyboard key combined
with the Command (~) key.

comparative operator: An operator that compares its left side with its right side,
producing a value of either TRUE or FALSE.

comparative relationship: The relationship between the two sides of a compar­
ative operator that determines whether the operator returns a value of TRUE

or FALSE.

compiler: A program that translates source code into the machine code under­
stood by a computer.

compound statements: Statements made up of several parts, and possibly in­
cluding other statements.

conditional expression: An expression built around the ? and : operators.

console: A terminal or window that receives the output from Standard Library
functions, such as printf () and echoes the input from the keyboard.

constant: A program value that doesn't change: 27, 1.1414, and '\n' are all ex­
amples of constants.

Control Manager: The functions in the Macintosh Toolbox that deal with con­
trols, such as radio buttons, push buttons, and scroll bars.

convention: A standard agreed upon by a group of people. For example, most
Macintosh programmers follow the convention of starting their global variable
names with the letter g.

counter: A variable whose sole purpose is to keep a running count of an event.
The variable that changes each time through a for loop is a counter.

CPU: See Central Processing Unit.

deallocate: The opposite of allocate. Memory is typically allocated using
malloc () and deallocated using free ().

declaration: A statement used to define a new variable, function, or type. A vari­
able declaration establishes both the name and type of the variable.

decrement: Decrease in value. Typically, decrementing a variable decreases its
value by 1.

default initialization value: The value used to initialize a global variable. The
default initialization value for an int is 0 and for a pointer is NULL.

definition: A declaration that causes memory to be allocated for the item being
declared.

dereference: Use a pointer to retrieve the contents of the memory location that
the pointer points to.

GLOSSARY

327

APPENDIX A

328

dictionary: The table used by the compiler to hold the list of #define substitu­
tions contained in the source code being compiled.

dimension: The number of array elements associated with an array.

doping: The process of using a laser beam to create impurities in the silicon of an
integrated circuit.

exceeding the bounds: Exceeding the bounds of an array means trying to access
an inappropriate element of the array, such as the 51st int in an array of 50 ints.

expression: A combination of variables and operators that resolves to a single
value.

fat binary or fat application: An application that contains both 68000 and
PowerPC object code.

field: An element of a struct. A field is normally accessed using either the • or
-> operator.

file: A series of bytes residing on some storage media. For example, a file might
be stored on a floppy disk, a hard drive, or even a CD-ROM.

file position: The current location in a file, indicating the next byte that will be re­
turned by a read operation or the location where a read operation will place its
first byte.

Finder: The application that runs when your Macintosh first starts up. The
Finder is the application with all of the windows and icons you use to launch
other applications.

floating-point numbers: Numbers that contain a decimal point. For example,
3.5, -27.6874, and 3.14159 are all floating-point numbers.

flow control: The ability to control the order in which your program's statements
are executed.

format specifier: A sequence of bytes, starting with %, that determines the format
of data being read or written.

format specifier modifier: A sequence of bytes that adds more detail to a format
specifier. For example, %6d is a format specifier and the 6 in %6d is the format
specifiermodifieL

fractional part: The part of a floating point to the right of the decimal point.

function: A sequence of source code that accomplishes a specific task. C func­
tions have a title and a body. The title contains the function's name and para­
meters. The body contains the function's code.

function declaration: A line containing a function's return value, name, and pa­
rameter list, followed by a semicolon. The function declaration is also known
as a function prototype and is used by the compiler to perform type checking.

function parameter: A class of variable that allows data sharing between a call­
ing function and a called function.

function pointer: A variable containing a pointer to a function. Function point­
ers can be used to call the function they point to.

function prototype: See function declaration.

function return value: The value returned by a function. Functions of type void
are the only types of functions that do not return a value.

function specifier: The first line of a function, basically, a function declaration
without the semicolon.

global variable: A variable that is accessible from inside every function in your
program.

graphical user interface (GUI): A user interface that features graphical elements,
such as pictures, icons, and windows. The Mac is a great example of a graphi­
cal user interface.

header file: A file that is included by another source code file using the
#include mechanism. Header files typically end with • h.

hexadecimal notation or hex notation: A notation that represents numbers in
base 16 instead of the traditional base 10.

HyperTalk: The programming language supported by HyperCard.

increment: Increase in value. Typically, incrementing a variable increases its value
byl.

index: The number used to refer to an individual array element. An array index
usually appears between the brackets following the array name.

indices: The plural of index.

infinite loop: A loop that repeats indefinitely. This is usually a bad thing.

GLOSSARY

329

APPENDIX A

330

initialization: The process of assigning a value to a variable for the first time.

initialized: Containing a known value.

inorder search: A binary tree search that recursively searches a node's left child,
visits the node itself, then recursively searches the node's right child.

input buffer: A block of memory designed to accumulate input from the key­
board for later retrieval by your program.

input device: A device that allows a user to provide input to your program. The
mouse and the keyboard are both input devices.

integer: A whole number, such as 1, -26, or 3,876,560.

integer part: The part of a floating-point number to the left of the decimal point.

ISO C: The international standard for C established by the International
Standards Organization. ISO C is based on ANSI C.

iteration: The process of stepping through a list or array. In C, iteration fre-
quently starts at 0 and proceeds to some upper limit.

key: The field in a tree struct that determines the search order of the tree.

I-value: The left-hand side of an assignment statement.

leaf node: A terminal node of a tree. In a binary tree, a leaf node has two NULL

pointers.

library: A file containing precompiled object code used as part of a project. The
routines in the Standard Library are compiled into a series of libraries.

linked list: A data structure consisting of two or more structs, linked together
by pointers.

linking: The process of joining the elements in a project into its ultimate form. For
example, a series of compiled files might be linked into an application.

literal: A constant of any type. The number 123 is an example of an int literal.
"Hello" is an example of a literal text string.

loading: The process of copying a library's object code into the project file.

local variable: A variable declared within a function (as opposed to a global
variable).

localize: Customize your software so it is readable in a specific country, using a
specific language. For example, you might localize your program for use in
Japan by replacing the English, ASCII text by the multibyte character system
used in Japan.

logical operator: The set of operators that resolve to either true or false. 1, & &,

and I I are examples of logical operators.

loop: Any repeating source code sequence. do, while, and for are examples of
C loop statements.

machine language: A machine readable translation of your source code.
Machine language is also known as object code.

Macintosh Toolbox: The collection of functions that make a Macintosh program
look and feel like a Macintosh program.

macro: A#define that takes a parameter.

master pointer: The pointer to the first element in a linked list.

memory: A portion of a computer, composed of specially designed integrated
circuits, used for the temporary storage of programs and data.

Menu Manager: The functions in the Macintosh Toolbox that deal with the menu
bar and pull-down and pop-up menus.

modification: The code within a loop that modifies the value of the loop's ex­
pression. Without modification, the loop will never terminate.

multi-dimensional array: An array declared with more than one index.

native mode: A program running on a PowerPC that was compiled into
PowerPC object code.

object code: See machine language.

open a file: Perform the necessary work prior to accessing a file's data. Files can
be opened using several different modes, among them read, write, and append.

operator: A special character (or set of characters) that represents a specific com­
puter operation.=,++, and I are examples of operators.

out of bounds: See exceeding the bounds.

output: The result of your program. In this book, all the output appeared in a
console window.

GLOSSARY

331

APPENDIX A

332

pad byte or padding: Characters appended to a block of memory used to bring
the block up to a predetermined size. Space characters are frequently used to
pad a string to a fixed record size. Pad bytes are used to bring a struct up to
a specific alignment in memory.

parameter: See function parameter.

parameter list The list of parameters associated with a function. A function's pa­
rameter list is found in the function specifier.

pointer: A special variable, designed specifically to hold the address of another
variable.

pointer arithmetic: The process of incrementing or decrementing a pointer to
point to a new memory location.

pointer variable: See pointer.

postfix notation: The use of the ++ or -- operator following a variable. In post­
fix notation, the value of the variable is returned before the variable is incre­
mented or decremented.

postorder search: A binary tree search that recursively searches a node's left
child, recursively searches the node's right child, then visits the node itself.

prefix notation: The use of the++ or -- operator preceding a variable. In prefix
notation, the variable is incremented or decremented before the value of the
variable is returned.

preorder search: A binary tree search that visits a node, then recursively searches
the node's left and right children.

prime number: A number whose only factors are 1 and itself. 2, 3, 5, and 7 are
the only primes less than 10.

processor: See Central Processing Unit.

project file: A special file CodeWarrior and Symantec C++ use to gather infor­
mation about your project. The project object code is stored in the project file.

project window: A window listing each of the source code files associated with
the project. The project window also lists the current size of the object code as­
sociated with each source code file.

prompt A text string that tells the user what your program expects him or her to
do. For example, a prompt might ask the user to type in a number between 1
and 10.

Random Access Memory (RAM): See memory.

random file access: Accessing the data in a file by seeking to a specific location,
as opposed to reading a byte at a time from the beginning of the file.

read a file: The process of transferring the data stored in a file into your program.

Read-Only Memory (ROM): A memory chip that can be read but not written to.
The Macintosh Toolbox is found on a set of ROM chips mounted on the Mac's
motherboard.

recursion: The process that occurs when a function calls itself. Recursive func­
tions normally feature a parameter that keeps track of the depth of the recur­
sion (the number of times the function has called itself). The recursive function
will stop calling itself once a terminating condition has been met.

return: What a function does when it is ready to exit. When a function returns, its
nonstatic local variables go out of scope (can no longer be accessed).

return type: The data type returned by a function.

ROM: See Read-Only Memory.

root node: The first node in a tree. A root node has no parents.

scientific or exponential notation: A notation for representing numbers as a
floating point number times a power of 10. For example, 2.5e3 is equal to 2.5
times 10 to the third power, which is equal to 2500.

scriptable program: A program designed to work with a scripting language like
AppleScript. The Finder is scriptable. So is CodeWarrior.

searching: The process of traversing a tree or list to look for a particular feature
or value.

sequential stream of bytes: A stream of bytes, one right after another. Accessing
a stream sequentially is the opposite of random file access.

shift bits: Move the bits within a byte either to the left or to the right.

signed: A variable capable of storing both positive and negative values.

simple statement: An assignment statement or function call. Simple statements
never have substatements.

source code: A sequence of statements that tells the computer what to do.
Source code is written in a specific programming language, such as C or
Pascal.

GLOSSARY

333

APPENDIX A

334

source code editor: A program that allows you to review and modify your
source code. CodeWarrior has a built-in source code editor.

Standard Library: A set of built-in functions that comes with every ANSI stan­
dard compiler.

star operator: Another name for the * operator (the pointer dereferencing operator).

statement: A combination of function calls, operators, and variables that per­
forms a set of computer operations. Statements are usually followed by a semi­
colon.

step through: Usually associated with an array or a linked list. Stepping through
an array or linked list means performing an operation on each element of the
array or linked list.

stream: A sequence of bytes, normally associated with a file.

string constant: A string literal, such as 11 Hello 11
•

string manipulation: The process of copying or altering a string variable. String
manipulation is normally performed on a 0-terminated string embedded in an
array of chars.

syntax error: An error in your source code that prevents the compiler from com­
piling your code. Code Warrior reports syntax errors by printing an error mes­
sage in a separate window.

terminal node: Another name for a leaf node.

termination: The condition within a loop that allows the loop to exit.

trace: A process that allows you to map the flow of your program's code. You can
trace your program's execution using the CodeWarrior debugger.

traversal: The process of stepping through a linked list, binary tree, or similar
data structure. Traversals usually follow a specific pattern, such as preorder,
inorder, or postorder.

two's complement notation: The notation used by a compiler to represent
signed integers.

type: The class a variable belongs to. A variable's type determines the type of
data that can be stored in the variable. char, int, and float are examples of
variable types.

typecast: A C mechanism for converting a variable from one type to another.

typecasting: The process of applying a typecast to a variable.

typo: Slang for a typographical error.

unary: Usually used with respect to an operator, this indicates that the operator
has a single operand.

union: A data structure that allows multiple fields but dedicates all its memory
to one of the fields.

unsigned: A variable capable of storing only values greater than or equal than
zero.

update mode: The file opening modes that allow you to switch between reading
and writing without reopening the file. Update modes are specified by includ­
ing a + in the mode specifier.

user interface: The part of your program that interacts with the user.

variable: A container for your program's data. Variables have a name and a type.

variable scope: Within a program, a variable's scope determines where in the
program the variable can be accessed. Local variables are only accessible
within the function they are declared in. Global variables are accessible
throughout the file they are declared in.

variable type: See type.

white space: An invisible character, such as a space, tab, or carriage return.
White space is ignored by the compiler.

whole number: An integer, as opposed to a floating point number. -256, 22, and
1,000,000 are all whole numbers, but 3.14159 is not a whole number.

wide character data types: Data types designed to hold characters represented
by more than one byte. ISO supports wide character types, ANSI does not.

wide string data types: String data types based on wide character data types. To
learn more about these, see the writeup in Harbison and Steele's C: A Reference
Manual.

Window Manager: The functions in the Macintosh Toolbox that deal with the
display and management of windows on the Mac's screen.

write a file: The process of transferring data stored in your program's variables
out to a disk file.

GLOSSARY

335

-----------Appendix B
Source Code Listings

02.01 - hello --------------------- hello.c
#include <stdio.h>

int main(void)
{

print£("Hello, world!\n");

return O;
}

04.01- hello2 -------------------- hello2.c

#include <stdio.h>

void SayHello(void);

int main(void
{

SayHello () ;

return O;
}

void SayHello(void)
{

print£("Hello, worldl\n");
}

04.02 - hello3 -------------------- hello3.c

#include <stdio.h>

337

APPENDIX&

338

void SayHello(void);

int main(void
{

}

SayHello () ;
SayHello () ;
SayHello () ;

return O;

void SayHello(void)
{

printf ("Hello, world! \n") ;
}

05.01 - operator

#include <stdio.h>

int main{ void
{

int myint;

my Int 3 * 2;
printf ("myint ---> %d\n", my Int

myint += 1;
printf ("myint ---> %d\n", myint

myint -::: 5;
printf ("myint ---> %d\n", my Int

myint *= 10;
printf ("myint ---> %d\n", my Int

my Int /::: 4;
printf ("myint ---> %d\n", my Int

my Int I= 2;
printf ("myint ---> %d", my Int) ;

return O;
}

operator.c

) ;

) ;

) ;

) ;

) ;

SOURCE CODE LISTINGS

05.02- postfix -------------------- postfix.c

#include <stdio.h>

int main (void)
{

}

int myint;

myint 5;
print£ ("myint ---> %d\n", myint++) ;
print£("myint ---> %d", ++myint);

return O;

05.03 - slasher --------------------- slasher.c

#include <stdio.h>

int main (void)
{

}

print£("0000000000\r");
print£("11111\n");

print£("0000\b\bll\n");

print£("Here's a backslash ••• \\ ••• for you.\n");
print£("Here's a double quote ••• \" ••• for you.\n");

print£("Here are a few tabs ••• \t\t\t\t ••• for you.\n");

print£("Here are a few beeps ••• \a\a\a\a ••• for you.");

return O;

06.01 .. truth Tester ------------------ truthTester.c

#include <stdio.h>

int main (void
{

int hascar, hasTimeToGiveRide;
int nothingElseon, newEpisode, itsARerun;

339

APPENDIX&

340

hasCar = true;
hasTimeToGiveRide = true;

if (hasCar && hasTimeToGiveRide
printf("Hop in - I'll give you a ride!\n" };

else
print£("I've either got no car, no time, or bothl\n" };

nothingElseOn = true;
newEpisode = true;

if (newEpisode I I nothingElseOn }
print£("Let's watch Star Trekl\n" };

else
print£("Something else is on or I've seen this one.\n" };

nothingElseon = true;
itsARerun = true;

if (nothingElseOn I I (1 itsARerun} }
print£("Let's watch Star Trekl\n" };

else
print£("Something else is on or I've seen this one.\n" };

return O;
}

06.02- loopTester

#include <stdio.h>

int main(void }
{

int i;

i O;
while (i++ < 4)

print£("while: i=%d\n", i);

print£("After while loop, i=%d.\n\n", i);

for (i = O; i < 4; i++)
print£("first for: i=%d\n", i);

printf("After first for loop, i=%d.\n\n", i };

loopTester.c

SOURCE CODE LISTINGS

for (i = 1; i <= 4; i++)
print£("second for: i=%d\n", i);

print£("After second for loop, i=%d.\n", i);

return O;
}

06.03-isOdd ------------------- isOdd.c

#include <stdio.h>

int main(void)

}

int i;

for i = 1; i <= 20; i++
{

}

print£("The number %dis , i);

if ((i % 2) == 0)
print£ ("even") ;

else
print£ ("odd") ;

if ((i % 3) == 0
print£(" and is a multiple of 3");

print£ (". \n") ;

return O;

06.04 - nextPrime ------------------- nextPrime.c

#include <stdio.h>
#include <math.h>

int main(void)
{

int startingPoint, candidate, last, i;
int isPrime;

startingPoint = 19;

341

APPENDIX B

342

}

if (startingPoint < 2)
{

candidate = 2;
}

else if (startingPoint == 2)
{

candidate = 3;
}

else

}

candidate = startingPoint;
if (candidate % 2 == 0) /* Test only odd numbers */

candidate--;
do
{

isPrime = true; /* Assume glorious success */
candidate += 2; /* Bump to the next number to test */
last = sqrt(candidate);/*We'll check to see if candidate */

/* has any factors, from 2 to last */
/* Loop through odd numbers only */

for (i = 3; (i <= last) && isPrime; i += 2)
{

}

if (candidate % i) == O)
isPrime = false;

} while (1 isPrime);

printf("The next prime after %dis %d. Happy?\n",
startingPoint, candidate);

return O;

06.05 - nextPrime2

#include <stdio.h>
#include <math.h>

int main (void)
{

int candidate, isPrime, i, last;

printf("Primes from 1to100: 2, ");

for (candidate=3; candidate<=lOO; candidate+=2
{

}

}

isPrime = true;
last= sqrt(candidate);

for (i = 3; (i <= last) && isPrime; i += 2)
{

if ((candidate % i) 0)
isPrime = false;

}

if (isPrime)
print£("%d, " candidate);

return O;

SOURCE CODE LISTINGS

06.06 - nextPrime3 ------------------ nextPrime3.c

#include <stdio.h>
#include <math.h>

int main (void)
{

int primeindex, candidate, isPrime, i, last;

print£("Prime #1 is 2.\n");

candidate = 3;
primeindex = 2;

while (primeindex <= 100)
{

isPrime = true;
last= sqrt(candidate);

for (i = 3; (i <= last) && isPrime; i += 2)
{

}

if ((candidate % i) == 0)
isPrime = false;

if (isPrime)
{

}

printf("Prime #%dis %d.\n", primeindex, candidate);
primeindex++;

343

APPENDIXB

344

candidate+=2;
}

return O;
}

07.01 - drawDots

#include <stdio.h>

/***********************/
/* Function Prototypes */
/***********************/
void DrawDots (int numDots) ;

int main (void)
{

DrawDots(30);

return O;
}

void DrawDots (int numDots)
{

int i;

for i = l; i <= numDots; i++)
print£(" ") ;

drawDots.c

07.02- squarelt ---------------------- squarelt.c
#include <stdio.h>

/***********************/
/* Function Prototypes */
/***********************/
void Square It (int number, int

int main (void
{

int square;

Squarelt(5, &square);

*squarePtr);

print£("5 squared is %d.\n", square);

return O;
}

void Squareit(int number, int
{

*squarePtr c number * number;
}

07.03 - addThese

#include <stdio.h>

/***********************/
/* Function Prototypes */
/***********************/

*squarePtr)

int AddTheseNumbers(int nwnl, int num2);

int main(void
{

int sum;

sum c AddTheseNumbers(5, 6);

printf ("The sum is %d.", sum) ;

return O;
}

int AddTheseNumbers(int numl, int num2)
{

return(numl + nwn2);
}

07.04- listPrimes ------------------

#include <stdio.h>
#include <math.h>

/***********************/
/* Function Prototypes */

SOURCE CODE LISTINGS

addThese.c

listPrimes.c

345

APPENDIX B

346

/***********************/
int IsitPrime (int candidate) ;

int main (void)
{

int i;

for (i = 1; i <= 50; i++
{

if (IsitPrime(i))
print£("%dis a prime number.\n", i);

}

return O;
}

int IsitPrime(int candidate)
{

int i, last;

if (candidate < 2)
return false;

else
{

last =sqrt(candidate);

for (i = 2; i <= last; i++
{

if (candidate % i) 0)

return false;
}

}

return true;
}

07.05- power ---------------------- power.c

#include <stdio.h>

/***********************/
/* Function Prototypes */
/***********************/

void DoPower(int *resultPtr, int base, int exponent);

/***********/
/* Globals */
/***********/
int gPrintTraceinfo;

int main(void
{

int power;

gPrintTraceinfo = false;

if (gPrintTraceinfo)
printf("--->Starting main() ••• \n");

DoPower(&power, 2, 5) ;
printf ("2 to the 5th = %d.\n", power) ;

DoPower(&power, 3, 4) ;
printf("3 to the 4th = %d.\n", power) ;

DoPower(&power, 5, 3) ;

printf ("5 to the 3rd %d.\n", power) ;

if (gPrintTraceinfo)
print£("--->Leaving main() ••• \n");

return O;
}

void DoPower(int *resultPtr, int base, int exponent)
{

}

int i;

if (gPrintTraceinfo
printf("\t---> Starting DoPower() ••. \n");

*resultPtr = l;
for (i = 1; i <= exponent; i++)

*resultPtr *= base;

if (gPrintTraceinfo)
print£("\t---> Leaving DoPower() ••• \n");

SOURCE CODE LISTINGS

347

APPENDIX&

348

07.06 - power2 --------------------- power2.c

#include <stdio.h>

/***********************/
/* Function Prototypes */

/***********************/
int DoPower(int base, int exponent);

/***********/
/* Globals */

/***********/
int gPrintTraceinfo;

int main(void
{

int power;

gPrintTraceinfo = false;

if (gPrintTraceinf o)
print£("--->Starting main() ••• \n");

}

print£("2 to the 5th
print£("3 to the 4th
print£("5 to the 3rd

if (gPrintTraceinfo)

%d.\n", DoPower(2, 5
%d.\n", DoPower(3, 4
%d.\n", DoPower(5, 3

print£("--->Leaving main() ••• \n");

return O;

int DoPower(int base, int exponent)
{

int i, result;

if gPrintTraceinf o
print£("\t---> Starting DoPower() ••• \n");

result = 1;
for (i = 1; i <= exponent; i++)

result *= base;

) ;
) ;
) ;

SOURCE CODE LISTINGS

if (gPrintTraceinfo)
print£("\t---> Leaving DoPower() ••• \n");

return result;
}

07.07 - nonPrimes ------------------- nonPrimes.c

#include <stdio.h>
#include <math.h>

/***********************/
/* Function Prototypes */
/***********************/
int IsitPrime(int candidate);

int main(void)
{

}

int i;

for
{

}

i 1; i <= 50; i++)

if IsitPrime(i))
{

}

if ((i % 3) == 0)
print£("%dis not a prime number and is a multiple of 3.\n", i);

else
print£("%dis not a prime number.\n", i);

return O;

int IsitPrime(int candidate)
{

int i, last;

if (candidate < 2)
return false;

else
{

last= sqrt(candidate);

for (i = 2; i <= last; i++

349

APPENDIXB

350

{

if ((candidate % i) 0)

return false;
}

}

return true;
}

08.01 - .floatSizer -------------------- .floatSizer.c

#include <stdio.h>

int main(void)
{

float myFloat;
double myDouble;
long double myLongDouble;

myFloat = 12345.67890123456789;
myDouble = 12345.67890123456789;
myLongDouble = 12345.67890123456789;

printf (11 sizeof (float) = %d\n 11
, (int) sizeof (float)) ;

printf("sizeof(double) = %d\n", (int)sizeof(double));
printf("sizeof(long double) = %d\n\n", (int)sizeof(long double));

printf(11 myFloat = %f\n", myFloat);
printf("myDouble = %f\n", myDouble);
printf("myLongDouble = %f\n\n", myLongDouble);

printf("myFloat = %25.16f\n", myFloat);
printf("myDouble = %25.16f\n 11

, myDouble);
printf("myLongDouble = %25.16f\n\n", myLongDouble);

printf ("myFloat %10.lf\n", myFloat) ;
printf ("myFloat %.2f\n", myFloat) ;
printf ("myFloat %.12£\n", myFloat) ;
printf ("myFloat %.9f\n\n", myFloat) ;

printf ("myFloat %e\n\n", myFloat } ;

myFloat = 100000;
print£("myFloat = %g\n", myFloat);

myFloat = 1000000;

SOURCE CODE LISTINGS

print£ ("myFloat %g\n", myFloat);

return O;
}

08.02 - intSizer -------------------- intSizer.c

#include <stdio.h>

int main(void)
{

print£("sizeof(char) = %d\n", (int)sizeof(char));
print£("sizeof(short) = %d\n", (int)sizeof(short));
print£("sizeof(int) = %d\n", (int)sizeof(int));
print£("sizeof(long) = %d\n", (int)sizeof(long));

return O;
}

08.03 - typeOverflow

#include <stdio.h>

int main(void
{

---------------- typeOverflow.c

unsigned char counter;

}

for (counter=l; counter<=lOOO; counter++)
print£("%d\n", counter);

return O;

08.04 - ascii -------------------------- ascii.c
#include <stdio.h>

/***********************/
/* Function Prototypes */
/***********************/
void PrintChars(char low, char high);

int main(void)

351

APPENDIX B

352

{

PrintChars(32, 47) ;
PrintChars(48, 57) ;

PrintChars(58, 64) ;
PrintChars(65, 90) ;

PrintChars(91, 96) ;
PrintChars(97, 122) ;

PrintChars(123, 126) ;

return O;
}

void PrintChars(char low, char high)
{

}

char c;

print£("%d to %d ---> ", low, high);

for (c = low; c <= high; c++)
printf("%c", c);

printf ("\n") ;

08.05- dice ------------------------ dice.c
#include <stdlib.h>
#include <time.h>
#include <stdio.h>

/***********************/
/* Function Prototypes */
/***********************/
int RollOne(void);
void PrintRolls(int rolls[));
void PrintX(int howMany) ;

int main(void)
{

int rolls[13], twoDice, i;

srand(clock());

for (i=O; i<=12; i++)

rolls[i] = O;

for (i=l; i <= 1000; i++)
{

twoDice RollOne() + RollOne();
++rolls[twoDice];

}

PrintRolls(rolls);

return O;
}

int RollOne(void
{

return (rand() % 6) + 1;
}

void PrintRolls(int
{

rolls ())

int i;

for i=2; i<=12; i++)

printf ("%2d (%3d):
PrintX(rolls[i] I
printf ("\n") ;

}

void PrintX(inthowMany)
{

int i;

, i,
10) ;

for i=l; i<=howMany; i++)
printf ("x") ;

}

08.06-name

#include <string.h>
#include <stdio.h>

int main(void)

rolls[

SOURCE CODE LISTINGS

i]) ;

353

APPENDIXB

354

{
char name[50 J;

print£("Type your first name, please: ");

scanf("%s", name);

print£("Welcome, %s. \n", name) ;
print£("Your name is %d characters long.", (int)strlen(name));

return O;
}

08.07 - wordCount ----------------- wordCount.c

#include <stdio.h>
#include <ctype.h>

#define kMaxLineLength
#define kZeroByte

/***********************/
/* Function Prototypes */
/***********************/
void ReadLine(char *line);

200
0

int CountWords(char *line);

/**> main <*/
int main(void)
{

char line[kMaxLineLength];
int numwords;

printf("Type a line of text, please:\n");

ReadLine(line);
numWords = CountWords(line);

print£("\n---- This line has %d word", numwords);

if (numwords != 1
print£("s") ;

print£(" ----\n%s\n", line);

SOURCE CODE LISTINGS

return O;
}

/**> ReadLine <*/
void ReadLine(char *line)
{

}

while ((*line= getchar()) 1= '\n')
line++;

*line = kZeroByte;

/**> CountWords <*/
int CountWords(char *line
{

}

int numWords, inWord;

numWords = O;
inWord = false;

while
{

*line 1= kZeroByte

}

if
{

1 isspace(*line

if (1 inWord)
{

}

numWords++;
inWord = true;

}

else
in Word false;

line++;

return numwords;

08.08 - dice2

#include <stdlib.h>
#include <time.h>
#include <stdio.h>

dice2.c

355

APPENDIXB

356

#define kMaxRoll 18
#define kMinRoll 3

/***********************/
/* Function Prototypes */
/***********************/
int
void
void

RollOne (void) ;
PrintRolls(int
PrintX (int howMany) ;

int main(void)
{

rolls[J) ;

int rolls[kMaxRoll + 1], threeDice, i;

}

srand(clock());

for (i=O; i<=kMaxRoll; i++)
rolls[i] = O;

for (i=l; i <= 1000; i++)
{

threeDice = RollOne() + RollOne() + RollOne();
++rolls[threeDice];

PrintRolls(rolls);

return O;

int RollOne(void
{

return (rand() % 6) + l;
}

void PrintRolls(int
{

rolls [J)

int i;

for (i=kMinRoll; i<=kMaxRoll; i++)
{

print£("%2d (%3d): , i, rolls[i));
PrintX(rolls[i] I 10);
print£("\n") ;

}
}

void PrintX(int howMany)
{

}

int i;

for i=l; i<=howMany; i++)
print£ ("x") ;

SOURCE CODE LISTINGS

08.09 - wordCount2 ---------------- wordCount2.c

#include <stdio.h>
#include <ctype.h>

#define kMaxLineLength
#define kZeroByte

/***********************/
/* Function Prototypes */
/***********************/
void ReadLine(char *line);

200
0

int CountWords(char *line);
void Printwords(char *line);

/**> main <*/
int main(void)
{

char line(kMaxLineLength];
int nwnWords;

print£("Type a line of text, please:\n");

ReadLine(line);
numwords = CountWords(line);

print£("\n---- This line has %d word", numwords);

if (numwords 1= 1
print£("s");

print£(" ----\n%s\n", line);

357

APPENDIXB

358

print£("\n---- Here are the words ");
PrintWords(line);

return O;
}

/**> ReadLine <*/
void ReadLine(char *line)
{

}

while ((*line= qetchar()) != '\n')
line++;

*line = kZeroByte;

/**> CountWords <*/
int CountWords(char *line
{

}

int numWords, inWord;

numWords = O;
inWord = false;

while
{

*line != kZeroByte

}

if 1 isspace(*line
{

}

if (! inWord)
{

}

numWords++;
inWord = true;

else
in Word false;

line++;

return numwords;

/**> PrintWords <*/
void PrintWords(char *line)

{

}

int inWord;

inWord = false;

while
{

*line I= kZeroByte

}

if 1 isspace(*line
{

}

if (1 inWord)
{

}

putchar('\n');
inWord = true;

putchar(*line);

else
in Word false;

line++;

SOURCE CODE LISTINGS

09.01 - multiArray ----------------- multiArray.c

#include <stdio.h>

#define kMaxCDs
#define kMaxArtistLength

/***********************/
/* Function Prototypes */
/***********************/

300
so

void PrintArtists(short numArtists,
char artist(][kMaxArtistLength + 1]);

/**> main <*/
int main(void
{

char artist[kMaxCDs][kMaxArtistLength + 1];
short numArtists;
char doneReading, *result;

printf("The artist array takes up %ld bytes of memory.\n\n",

359

APPENDIXB

360

sizeof(artist));

doneReading = false;
numArtists = O;

while (1 doneReading
{

print£("Artist #%d (return to exit): ", numArtists+l);
result= gets(artist[numArtists]);

}

}

if ((result == NULL) I I
(result[O] == '\0'))
doneReading = true;

else
numArtists++;

print£("----\n");

PrintArtists(numArtists, artist);

return O;

/**> PrintArtists <*/
void PrintArtists(short numArtists,

{

}

char artist[][kMaxArtistLength + 1])

short i;

if (numArtists <= 0)
print£("No artists to report.\n");

else
{

}

for (i=O; i<numArtists; i++)
print£ ("Artist #%d: %s\n",

i+l, artist[i]);

09.02 - structSize

#define kMaxArtistLength
#define kMaxTitleLength

so
so

structSize.h

SOURCE CODE LISTINGS

/***********************/
/* Struct Declarations */
/***********************/
struct CDinf o
{

} ;

char rating;
char artist[kMaxArtistLength + 1];
char title[kMaxTitleLength + 1];

09.02 - structSize

#include <stdio.h>
#include "structSize.h"

structSize.c

/**> main <*/
int main(void
{

}

struct CDinfo myinfo;

printf("rating field: %ld byte\n",
sizeof(myinfo.rating));

printf("artist field: %ld bytes\n",
sizeof(myinfo.artist));

printf ("title field: %ld bytes\n",
sizeof(myinfo.title));

printf (" ---------\n");

print£("myinfo struct: %ld bytes",
sizeof(myinfo));

return O;

09.03 - structSize2

/***********************/
/* Struct Declarations */
/***********************/

struct LongShortShort
{

long myLong;
short myShortl;

structSize2.h

361

APPENDIXB

362

short myShort2;
};

struct ShortLongShort

};

short myShortl;
long myLong;
short myShort2;

struct DoubleChar
{

double myDouble;
char myChar;

struct CharDoubleChar
{

} ;

char myCharl;
double myDouble;
char myChar2;

struct DoubleCharChar
{

};

double myDouble;
char myCharl;
char mychar2;

09.03 - structSize2 ------------------ structSize2.c

#include <stdio.h>
#include "structSize2.h"

/**> main <*/
int main(void)

print£ ("char: %ld byte\n", sizeof (char)) ;
printf("short: %ld bytes\n", sizeof (short)) ;
print£("long: %ld bytes\n", sizeof(long));
print£("double: %ld bytes\n\n", sizeof(double));

print£("LongShortShort: %ld bytes\n",
sizeof(struct LongShortShort));

}

print£("ShortLongShort: %ld bytes\n",
sizeof(struct ShortLongShort));

print£ ("DoubleChar: %ld bytes\n",
sizeof(struct DoubleChar));

print£("CharDoubleChar: %ld bytes\n",
sizeof(struct CharDoubleChar));

print£("DoubleCharChar: %ld bytes\n",
sizeof(struct DoubleCharChar));

return O;

SOURCE CODE LISTINGS

09.04 - paramAddress --------------- paramAddress.h

/***********/
/* Defines */
/***********/
#define kMaxCDs
#define kMaxArtistLength
#define kMaxTitleLength

/***********************/
/* Struct Declarations */
/***********************/
struct CDinfo
{

rating;

50
50

300

char
char
char

artist[kMaxArtistLength + 1];
title(kMaxTitleLength + 1];

} ;

/***********************/
/* Function Prototypes */
/***********************/
void PrintParaminfo(struct CDinfo *myCDPtr,

struct CDinfo myCDCopy);

09.04 - paramAddress

#include <stdio.h>
#include "paramAddress.h"

paramAddress.c

363

APPENDIXB

364

/**> main <*/
int main{ void
{

}

struct CDinfo myCD;

printf("Address of myco.ratinq in main():
&(myCD.ratinq));

PrintParaminfo{ &myCD, myCD);

return O;

/*********************************> PrintStructAddresses <*/
void PrintParaminfo(struct CDinfo *myCDPtr,

struct CDinf o myCDCopy)
{

%ld\n",

print£("Address of myCDPtr->rating in PrintParaminfo(): Ud\n",
&(myCDPtr->rating));

printf("Address of myCDCopy.rating in PrintParaminfo(): Ud\n",
&(myCDCopy.ratinq));

09.05 - cdTracker ------------------ cdTracker.h

/***********/
/* Defines */
/***********/
#define kMaxCDs
#define k.MaxArtistLength
#define kMaxTitleLength

/***********************/
/* Struct Declarations */
/***********************/
struct CDinf o
{

rating;

50
50

300

char
char
char

artist(kMaxArtistLength + 1];
title[kMaxTitleLength + 1];

struct CDinfo *next;
} *gFirstPtr, *gLastPtr;

/***********************/
/* Function Prototypes */
/***********************/
char
struct
void
void
void

GetCommand(void);
CO Info *ReadStruct (void) ;

AddToList(struct CDinfo
ListCDs(void);
Flush(void);

SOURCE CODE LISTINGS

*curPtr);

09.05 - cdTracker cdTracker.c

#include <stdlib.h>
#include <stdio.h>
#include "cdTracker.h"

/**> main <*/
int main(void)
{

char command;

gFirstPtr = NULL;
gLastPtr :;;: NULL;

while ((command
{

switch(command
{

case 'n':

GetCommand()) 1= 'q')

AddToList(ReadStruct());
break;

}

}

case 'l':
ListCOs ();
break;

print£ ("Goodbye ••• ") ;

return O;

/***> Getcommand <*/
char GetCommand(void
{

char command;

365

APPENDIXB

366

do
{

}

printf("Enter command (q=quit, n=new, l=list): ");
scanf (11 %c 11

, &command) ;
Flush();

while ((command 1= 'q') && (command 1= 'n')
&& (command!= 'l'));

printf("\n----------\n");
return(command);

/***> ReadStruct <*/
struct CDinfo *ReadStruct(void)
{

struct CDinfo •infoPtr;
int nwn;

inf oPtr malloc(sizeof(struct CDinfo));

if (inf oPtr == NULL)
{

printf("Out of memory!!! Goodbye!\n 11
);

exit(0);

printf("Enter Artist's Name: ");
gets(infoPtr->artist);

printf ("Enter CD Title: ") ;
gets(infoPtr->title);

do
{

printf ("Enter CD Rating (1-10): ") ;
scanf(11 %d 11

, &nwn);
Flush();

while ((nwn < 1) 11 (nwn > 10)) ;

inf oPtr->ratinq nwn;

printf("\n----------\n");

return(infoPtr);
}

/***> AddToList <*/
void AddToList(struct CDinfo *curPtr)
{

}

if (gFirstPtr == NULL
gFirstPtr = curPtr;

else
gLastPtr->next = curPtr;

gLastPtr = curPtr;
curPtr->next = NULL;

/***> ListCDs <*/
void ListCDs(void)
{

struct CDinfo *curPtr;

if (gFirstPtr == NULL)
{

}

printf("No CDs have been entered yet ••• \n");
printf("\n----------\n");

else
{

SOURCE CODE LISTINGS

for (curPtr=gFirstPtr; curPtr!=NULL; curPtr = curPtr->next)
{

}

}

}

printf ("Artist:
printf ("Title:
printf ("Rating:

%s\n", curPtr->artist);
%s\n", curPtr->title);
%d\n", curPtr->rating);

printf("\n----------\n");

/***> Flush <*/
void Flush(void)
{

while (getchar() != '\n')

}

367

APPENDIXB

368

09.06 - multiArray2 ----------------- multiArray2.c

#include <stdio.h>

#define kMaxCDs 300
#define kMaxArtistLength so

/***********************/
/* Function Prototypes */
/***********************/
void
void
void

ReadLine(char *line);
Flush(void);
PrintArtists(short numArtists,

char artist[][kMaxArtistLength + 1));

/**> main <*/
int main(void
{

char artist[kMaxCDs)[kMaxArtistLength + 1];
short numArtists;
char doneReading;

printf("The artist array takes up %ld bytes of memory.\n\n",
sizeof(artist);

doneReading = false;
numArtists = O;

while (! doneReading
{

printf("Artist #%d (return to exit): ", nwnArtists+l);
ReadLine(artist[numArtists));

if (artist[numArtists][O] ~= '\0'
doneReading = true;

else
numArtists++;

printf("----\n");

PrintArtists(numArtists, artist);

return O;

SOURCE CODE LISTINGS

}

/**> ReadLine <*/
void ReadLine(char *line)
{

}

char c;
short numcharsRead;

numCharsRead = O;

while (((c = getchar()) 1= '\n') &&
(++numCharsRead <= kMaxArtistLength))

{

}

*line = c;
line++;

*line = O;

if (numCharsRead > kMaxArtistLength)
Flush();

/**> Flush <*/
void Flush(void)
{

while (getchar() 1= '\n')

}

/**> PrintArtists <*/
void PrintArtists(short numArtists,

{

char artist(][kMaxArtistLength + 1])

short i;

if (numArtists <= O)
{

print£("No artists to report.\n");
return;

}

else

for (i=O; i<numArtists; i++)

369

APPENDIXB

370

}
}

printf("Artist #%d: %s\n",
i+l, artist[i]);

09.07 - cdTracker2 ----------------- cdTracker2.h

/***********/
/* Defines */
/***********/
#define kMaxCDs
#define kMaxArtistLength
#define kMaxTitleLength

/***********************/
/* Struct Declarations */
/***********************/
struct CDinfo
{

rating;

so
so

300

char
char
char

artist[kMaxArtistLenqth + 1];
title[kMaxTitleLenqth + 1);

struct CDinfo •next;
} *qFirstPtr, *qLastPtr;

/***********************/
/* Function Prototypes */
/***********************/
char
struct
void
void
void
void

Getcommand(void);
CD Info *ReadStruct (void) ;
AddToList(struct CDinfo *curPtr);
InsertinList(struct CDinfo *afterMeCDPtr,
ListCDs (void) ;
Flush(void);

struct CDinfo *neWCDPtr);

09.07 - cdTracker2 ------------------ cdTracker2.c

#include <stdlib.h>
#include <stdio.h>
#include "cdTracker2.h"

/**> main <*/
int main(void)

{

}

char command;

gFirstPtr = NULL;
gLastPtr = NULL;

while ((command
{

switch(command
{

case 'n':

GetCommand()) 1= 'q')

AddToList(ReadStruct{));
break;

}

}

case 'l':
ListCDs();
break;

printf ("Goodbye ••• ") ;

return O;

/***> GetCommand <*/
char Getcommand(void)
{

}

char command;

do
{

}

printf("Enter command (q=quit, n=new, l=list): ");
scan£("%c", &command);
Flush();

while ((command 1= 'q') && (command 1= 'n')
&& (command 1= 'l'));

print£("\n----------\n");
return(command);

/***> ReadStruct <*/
struct CDinfo *ReadStruct(void)
{

SOURCE CODE LISTINGS

371

APPENDIXB

372

}

struct CDinfo *infoPtr;
int num;

inf oPtr malloc(sizeof(struct CDinfo));

if (inf oPtr == NULL)
{

printf("Out of memory!!! Goodbye!\n");
exit(O) ;

}

print£("Enter Artist's Name: ");
gets(infoPtr->artist);

print£ ("Enter CD Title: ") ;
gets(infoPtr->title);

do
{

}

print£("Enter CD Rating (1-10): ");
scan£("%d", &num);
Flush();

while ((num < 1) I I (nwn > 10));

infoPtr->rating num;

printf("\n----------\n");

return(infoPtr);

/***> AddToList <*/
void AddToList(struct CDinfo *curPtr)
{

struct CDinfo *beforePtr;

/* First check to see if the list is empty */
if (gFirstPtr == NULL)

InsertinList(NULL, curPtr);
else if (curPtr->rating <= gFirstPtr->rating

/* Next check to see if curPtr should be the new first item */
InsertinList(NULL, curPtr);

else
/* Walk through the list till you find the first rating higher than us */

{

SOURCE CODE LISTINGS

}

}

beforePtr = gFirstPtr;

while ((beforePtr->next 1= NULL) &&
(beforePtr->next->rating < curPtr->rating)

{

beforePtr = beforePtr->next;
}

InsertinList(beforePtr, curPtr);

/***> InsertinList <*/
void InsertinList(struct CDinfo *afterMeCDPtr, struct CDinfo *newCDPtr)
{

if af terMeCDPtr == NULL)
/* This means we want to insert the new one as the first in the list */

{

}

newCDPtr->next = gFirstPtr;
gFirstPtr = newCDPtr;
if (gLastPtr == NULL)

gLastPtr = newCDPtr;

else if (afterMeCDPtr == gLastPtr
/* This means we want to insert the new one as the last in the list */

}

{

}

gLastPtr->next = newCDPtr;
neWCDPtr->next = NULL;
gLastPtr = newCDPtr;

else
{

}

newCDPtr->next = afterMeCDPtr->next;
afterMeCDPtr->next = newCDPtr;

/***> ListCDs <*/
void ListCDs(void)
{

struct CDinfo *curPtr;

if (gFirstPtr == NULL)
{

printf("No CDs have been entered yet ••• \n");

373

APPENDIXB

374

printf("\n----------\n");
}
else
{

for (curPtr=gFirstPtr; curPtr!=NULL; curPtr = curPtr->next)
{

print£("Artist:
print£("Title:
print£ ("Rating:

%s\n", curPtr->artist);
%s\n", curPtr->title);
%d\n", curPtr->rating);

print£("\n----------\n");

}

}

/***> Flush <*/
void Flush(void)
{

while (getchar() 1= '\n')

}

09.08 - cdTracker3

/***********/
/* Defines */
/***********/
#define kMaxCDs
#define kMaxArtistLength
#define kMaxTitleLength

/***********************/
/* Struct Declarations */
/***********************/
struct CDinfo
{

rating;

so
50

300

char
char
char

artist[kMaxArtistLength + 1];

title[kMaxTitleLength + 1];
struct CDinfo *next, *prev;

} *gFirstPtr, *gLastPtr;

/***********************/
/* Function Prototypes */

cdTracker3.h

/***********************/
char
struct
void
void
void
void

Getconunand(void);
CDinfo *ReadStruct (void) ;

AddToList(struct CDinfo *curPtr);
ListCDs(void);
ListCDsinReverse(void);
Flush(void);

SOURCE CODE LISTINGS

09.08 - cdTracker3 ----------------- cdTracker3.c

#include <stdlib.h>
#include <stdio.h>
#include "cdTracker3.h"

/**> main <*/
int main(void)
{

}

char command;

gFirstPtr = NULL;
gLastPtr = NULL;

while ((command= Getcommand()) != 'q')
{

}

switch(command
{

}

case 'n':
AddToList(ReadStruct());
break;

case 'l':
ListCDs();
break;

case 'r':
ListCDsinReverse();
break;

print£("Goodbye ••. ");

return O;

/***> GetConunand <*/
char GetCommand(void)

375

APPENDIXB

376

{

}

char command;

do
{

}

printf("Enter command (q=quit, n=new, l=list, r=list reverse): ");
scanf ("%c" , &command) ;
Flush();

while ((command 1= 'q') && (command!= 'n')
&& (command 1= 'l') && (command!= 'r'));

printf("\n----------\n");
return(command);

/***> ReadStruct <*/
struct CDinfo *ReadStruct(void)

struct CDinfo *infoPtr;
int num;

inf oPtr malloc(sizeof(struct CDinfo));

if (inf oPtr == NULL)
{

printf("Out of memory111 Goodbyel\n");
exit(0) ;

printf("Enter Artist's Name: ");
gets(infoPtr->artist);

printf("Enter CD Title: ");
gets(infoPtr->title);

do
{

}

printf("Enter CD Rating (l-10): ");
scanf("%d", &num);
Flush();

while ((num < 1) I I (num > 10));

infoPtr->rating num;

SOURCE CODE LISTINGS

print£("\n----------\n");

return(infoPtr);
}

/***> AddToList <*/
void AddToList(struct CDinfo •curPtr)
{

}

if (gFirstPtr == NULL
gFirstPtr = curPtr;

else
gLastPtr->next = curPtr;

curPtr->prev = gLastPtr;

gLastPtr = curPtr;
curPtr->next = NULL;

/***> ListCDs <*/
void ListCDs(void)
{

}

struct CDinfo *curPtr;

if (gFirstPtr == NULL)
{

}

print£ ("No CDs have been entered yet ••• \n") ;
printf("\n----------\n");

else
{

}

for (curPtr=gFirstPtr; curPtrl=NULL; curPtr = curPtr->next)
{

}

print£ ("Artist:
printf ("Title:
printf ("Rating:

%s\n", curPtr->artist);
%s\n", curPtr->title);
%d\n", curPtr->rating);

printf("\n----------\n");

/***> ListCDsinReverse <*/
void ListCDsinReverse(void)

377

APPENDIX B

378

{

struct CDinfo *curPtr;

if (gLastPtr == NULL)
{

print£("No CDs have been entered yet ••• \n");
printf("\n----------\n");

}

else
{

for (curPtr=gLastPtr; curPtrl=NULL; curPtr = curPtr->prev)

}

}

}

printf ("Artist:
print£("Title:
printf ("Rating:

%s\n", curPtr->artist);
%s\n", curPtr->title);
%d\n", curPtr->rating);

print£("\n----------\n");

/***> Flush <*/
void Flush(void)
{

while (getchar() 1= '\n')

}

10.01 - printFile

#include <stdio.h>

int main(void
{

FILE *fp;
int c;

fp fopen("My Data File", "r") ;

if fp 1= NULL
{

while ((c = fgetc(fp)) 1= EOF)
putchar(c);

fclose(fp);

printFile.c

}

return O;
}

10.02 - cdFiler

/***********/
/* Defines */
/***********/
#define kMaxArtistLength
#define kMaxTitleLength

#define kCDFileName

/***********************/
/* Struct Declarations */
/***********************/
struct CDinf o
{

char rating;

50
50

"cdData"

char artist[kMaxArtistLength + 1];
char title[kMaxTitleLength + 1);
struct CDinfo *next;

} ;

/***********************/
/* Global Declarations */
/***********************/
extern struct CDinf o *gFirstPtr, *gLastPtr;

/********************************/
/* Function Prototypes - main.c */
/********************************/
char
struct
void
void
void
void

GetCommand(void);
CD Info *ReadStruct (void) ;

AddToList(struct CDinfo *curPtr);
ListCDs(void);
ListCDsinReverse(void);
Flush(void);

/*********************************/
/* Function Prototypes - files.c */
/*********************************/

SOURCE CODE LISTINGS

cdFiler.h

379

APPENDIX&

380

void WriteFile(void);
void ReadFile(void);
char ReadStructFromFile(FILE *fp, struct CDinfo *infoPtr);

10.02 - cdFiler

#include <stdlib.h>
#include <stdio.h>
#include "cdFiler.h"

/***> WriteFile <*/
void WriteFile(void
{

}

FILE *fp;
struct CDinfo *infoPtr;
int num;

if gFirstPtr == NULL
return;

if ((f p = fopen(kCDFileName, "w")) == NULL

printf ("***ERROR: Could not write CD file!") ;
return;

}

for (infoPtr=gFirstPtr; infoPtrlcNULL; infoPtr=infoPtr->next
{

}

fprintf(fp, "%s\n", infoPtr->artist);
fprintf(fp, "%s\n", infoPtr->title);

num = infoPtr->rating;
fprintf (fp, "%d\n", num) ;

fclose(fp);

/***> ReadFile <*/
void ReadFile(void
{

FILE *fp;
struct CDinfo *infoPtr;
int i;

if { (fp fopen(kCDFileName, "r")) NULL)

files.c

}

}

do
{

printf("***ERROR: Could not read CD file!");
return;

infoPtr = malloc(sizeof(struct CDinfo));

if (inf oPtr == NULL)

}

printf("Out of memory111 Goodbye1\n");
exit(O) ;

}

while ReadStructFromFile(fp, infoPtr));

fclose(fp);
free(infoPtr);

/************************************> ReadStructFromFile <*/
char ReadStructFromFile(FILE *fp, struct CDinfo *infoPtr)
{

int num;

if fscanf(fp, "%[A\n]\n", infoPtr->artist) 1= EOF)
{

if (fscanf (fp, "%[A\n)\n", infoPtr->title) == EOF

}

}

printf("Missing CD titlel\n");
return false;

else if (fscanf(fp, "%d\n", &num)
{

}

printf("Missing CD ratingl\n");
return false;

else

inf oPtr->rating = num;
AddToList(infoPtr);
return true;

else

EOF)

SOURCE CODE LISTINGS

381

APPENDIXB

382

return false;
}

10.02 - cdFiler

#include <stdlib.h>
#include <stdio.h>
#include "cdFiler.h"

/***********************/
/* Global Definitions */
/***********************/
struct CDinfo *gFirstPtr, *gLastPtr;

/**> main <*/
int main(void)
{

}

char conunand;

gFirstPtr = NULL;
gLastPtr = NULL;

ReadFile();

while ((command= Getcommand()) 1= 'q')
{

}

switch(command
{

case 'n':
AddToList(ReadStruct());
break;

case 'l':
ListCDs();
break;

WriteFile();

print£ ("Goodbye ••• ") ;

return O;

main.c

/***> GetCommand <*/
char GetCommand(void)
{

}

char command;

do
{

}

print£("Enter command (q=quit, n=new, l=list): ");
scanf ("%c" , &command) ;
Flush();

while ((command 1= 'q') && (command 1= 'n')
&& (command!= 'l'));

print£("\n----------\n");
return(command);

/***> ReadStruct <*/
struct CDinfo *ReadStruct(void)
{

struct CDinfo *infoPtr;
int num;

inf oPtr malloc(sizeof(struct CDinfo));

if (inf oPtr == NULL)
{

}

print£("Out of memory!!! Goodbye!\n");
exit(O) ;

print£ ("Enter Artist's Name: ") ;
gets(infoPtr->artist);

printf("Enter CD Title: ");
gets(infoPtr->title);

do
{

}

print£("Enter CD Rating (1-10): ");
scanf ("%d", &num) ;
Flush();

while ((num < 1) I I (num > 10));

SOURCE CODE LISTINGS

383

APPENDIXB

384

inf oPtr->rating = num;

print£("\n----------\n");

return(infoPtr);
}

/***> AddToList <*/
void AddToList(struct CDinfo *curPtr)
{

}

if (gFirstPtr == NULL
gFirstPtr = curPtr;

else
gLastPtr->next = curPtr;

gLastPtr = curPtr;
curPtr->next = NULL;

/***> ListCDs <*/
void ListCDs(void)
{

}

struct CDinfo *curPtr;

if (gFirstPtr == NULL
{

print£("No CDs have been entered yet ••• \n 11
);

print£("\n----------\n 11
);

}

else
{

}

for (curPtr=gFirstPtr; curPtrl=NULL; curPtr = curPtr->next)
{

pr intf (11 Artist:
print£ ("Title:
pr intf (11 Rating:

%s\n 11
, curPtr->artist);

%s\n 11
, curPtr->title);

%d\n 11
, curPtr->rating);

printf("\n----------\n 11
);

/***> Flush <*/
void Flush(void)

{

while (getchar() != '\n')

}

10.03 - dinoEdit

/***********/
/* Defines */
/***********/
#define kDinoRecordSize
#define kMaxLineLength
#define kDinoFileName

20
100
"My Dinos"

/********************************/
/* Function Prototypes - main.c */
/********************************/
int
int
void
char
void
void
void

GetNumber(void);
GetNwnberOfDinos(void);

ReadDinoName(int number, char *dinoName);
GetNewDinoName(char *dinoName);
WriteDinoName(int number, char *dinoName);
Flush(void);
DoError(char *message);

10.03 - dinoEdit

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include "dinoEdit.h"

/**> main <*/
int main(void)

int nwnber;
FILE *fp;
char dinoName(kDinoRecordSize+l];

while ((number= GetNumber()) != 0
{

ReadDinoName(number, dinoName);

printf("Dino #%d: %s\n", number, dinoName);

if (GetNewDinoName(dinoName))

SOURCE CODE LISTINGS

dinoEdit.h

385

APPENDIXB

386

WriteDinoName(number, dinoName);

print£ ("Goodbye ••• ") ;

return O;
}

/***> GetNumber <*/
int GetNumber(void)

}

int number, numDinos;

numDinos = GetNumberOfDinos();

do
{

}

print£("Enter number from 1 to %d (0 to exit): "
numDinos) ;

scanf ("%d" , &number) ;
Flush();

while ((number< 0) I I (number> numDinos));

return(number);

/*********************************> GetNumberOfDinos <*/
int GetNumberOfDinos(void)
{

FILE *fp;
long f ileLength;

if (fp "" £open(kDinoFileName, "r")) == NULL
DoError("Couldn't open file ••• Goodbyel");

if (fseek(fp, OL, SEEK_END) != 0)
DoError("Couldn't seek to end of file ••• Goodbyel");

if ((fileLength =£tell(fp)) == -lL)
DoError("£tell() failed ••• Goodbye!") ;

£close (fp) ;

return((int)(fileLength I kDinoRecordSize));

}

/*********************************> ReadDinoName <*/
void ReadDinoName(int number, char *dinoName)
{

}

FILE
long

*fp;
bytesToSkip;

if (fp = fopen(kDinoFileName, "r")) ==NULL
DoError("Couldn't open file ••• Goodbyel");

bytesToSkip = (long)((nwnber-1) * kDinoRecordSize);

if (fseek(fp, bytesToSkip, SEEK_SET) l= 0)
DoError("Couldn't seek in file ••• Goodbyel");

if (fread(dinoName, (size_t)kDinoRecordSize,
(size_t) 1, fp) 1= 1)
DoError("Bad fread() ••• Goodbyel");

£close (fp) ;

/******************************> GetNewDinoName <*/
char GetNewDinoName(char *dinoName
{

char line[kMaxLineLength];
int i, nameLen;

printf("Enter new name: ");

gets(line);

if (line[O] == '\O'
return false;

for (i=O; i<kDinoRecordSize; i++)
dinoName[i] = ' ';

nameLen = strlen(line);

if (nameLen > kDinoRecordSize
nameLen = kDinoRecordSize;

for (i=O; i<nameLen; i++)

SOURCE CODE LISTINGS

387

APPENDIXB

388

dinoName[i] line[i];

return true;
}

/*********************************> WriteDinoName <*/
void WriteDinoName(int number, char *dinoName)
{

}

FILE
long

*fp;
bytesToSkip;

if (fp = fopen(kDinoFileName, "r+")) ==NULL
DoError("Couldn't open file ••• Goodbye!");

bytesToSkip = (long)((number-1) * kDinoRecordSize);

if (fseek(fp, bytesToSkip, SEEK_SET) 1= 0)
DoError("Couldn't seek in file ••• Goodbyel");

if (fwrite(dinoName, (size_t)kDinoRecordSize,
(size_t)l, fp) != 1)
DoError ("Bad fwr i te () ••• Goodbye! ") ;

fclose (fp) ;

/***> Flush <*/
void Flush(void)
{

while (getchar() != '\n')

}

/***> DoError <*/
void DoError(char *message)
{

}

printf("%s\n", message);
exit(O) ;

10.04 - fileReader ------------------- fileReader.c

#include <stdio.h>
#include <stdlib.h>

SOURCE CODE LISTINGS

/***********************/
/* Function Prototypes */
/***********************/
void
int
void

DoError(char *message);
Read.LineOfNums(FILE *fp, int numsPerLine, int *intArray);

PrintLineOfNums(int numsPerLine, int *intArray);

/***> main <*/
int main(void
{

}

FILE *fp;
int *intArray, numsPerLine;
size_t arraySize;

fp fopen("My Data File", "r") ;

if f p == NULL
DoError("Couldn't open file!");

if (fscanf(fp, "%d", &numsPerLine
DoError("Bad fscanf() call!");

if (numsPerLine <= 0)

1= 1)

DoError("Too few items per line!");

arraySize = numsPerLine * sizeof(int);

if ((intArray = malloc(arraySize)) NULL
DoError("Couldn't malloc() int array!");

while (Read.LineOfNums(fp, numsPerLine, intArray))
PrintLineOfNums(numsPerLine, intArray);

free(intArray);

return O;

/*************************************> Read.LineOfNums <*/
int ReadLineOfNums(FILE *fp, int numsPerLine, int *intArray
{

int i;

for i=O; i<numsPerLine; i++)
{

389

APPENDIX&

390

if (fscanf (fp, "%d", &(intArray[i J)) 1= 1)
return false;

}

return true;
}

/************************************> PrintLineOfNwns <*/
void PrintLineOfNwns(int nwnsPerLine, int *intArray)
{

int i;

for (i=O; i<numsPerLine; i++)
printf ("%d\t", intArray[i]) ;

printf ("\n") ;
}

/***> DoError <*/
void DoError(char *message)
{

}

printf("%s\n", message);
exit(0) ;

10.05 - cdFiler2 ------------------- cdFiler2.h

/***********/
I* Defines */
/***********/
#define kMaxLineLength
#define kCDFileName

/***********************/
/* Struct Declarations */
/***********************/
struct CDinf o
{

char rating;
char *artist;
char *title;
struct CDinfo *next;

};

200
"cdData"

/***********************/
/* Global Declarations */
/***********************/
extern struct CDinf o *gFirstPtr, *gLastPtr;

/********************************/
/* Function Prototypes - main.c */
/********************************/
char GetCommand(void) ;
struct CDinf o *ReadStruct(void) ;
void AddToList(struct CDinfo
void ListCDs(void);
void ListCDsinReverse(void) ;
void Flush(void);

*curPtr

char *MallocAndCopy(char *line) ;
void zeroLine(char *line) ;

/*********************************/
I* Function Prototypes - files.c */
/*********************************/

WriteFile(void);
ReadFile(void);

) ;

void
void
char ReadStructFromFile(FILE *fp, struct CDinfo *infoPtr);

SOURCE CODE LISTINGS

10.05 - cdFiler2 ---------------------- files.c
#include <stdlib.h>
#include <stdio.h>
#include "cdFiler2.h"

/***> WriteFile <*/
void WriteFile(void
{

FILE *fp;
struct CDinfo *infoPtr;
int num;

if gFirstPtr == NULL
return;

if ((f p = £open{ kCDFileName,
{

print£{ "***ERROR: Could not
return;

"w")) == NULL

write CD file!") ;

391

APPENDIXB

392

}

for (infoPtr=gFirstPtr; infoPtr!=NULL; infoPtr=infoPtr->next
{

}

fprintf(fp, "%s\n", infoPtr->artist);
fprintf(fp, "%s\n", infoPtr->title);

num = infoPtr->rating;
fprintf(fp, "%d\n", num);

£close(fp);

/***> ReadFile <*/
void ReadFile(void
{

}

FILE *fp;
struct CDinfo *infoPtr;

if ((fp = fopen(kCDFileName, "r")) == NULL)
{

}

do
{

printf("***ERROR: Could not read CD file!");
return;

infoPtr = malloc(sizeof(struct CDinfo));

if (infoPtr == NULL)
{

}

printf("Out of memory!!! Goodbye!\n");
exit(0);

}

while ReadStructFromFile(fp, infoPtr));

fclose(fp);
free(infoPtr);

/************************************> ReadStructFromFile <*/
char ReadStructFromFile(FILE *fp, struct CDinfo *infoPtr)
{

}

int num;
char line[kMaxLineLength);

zeroLine(line);
if (fscanf(fp, "%[A\n)\n", line) != EOF)
{

}

infoPtr->artist = MallocAndCopy(line);
ZeroLine(line);

if (fscanf(fp, "%[A\n]\n", line)
{

EOF)

}

printf("Missing CD title!\n");
return false;

else
{

}

infoPtr->title MallocAndCopy(line);

if (fscanf(fp, "%d\n", &num) == EOF
{

}

print£("Missing CD rating!\n");
return false;

else
{

}

infoPtr->rating = num;
AddToList(infoPtr);
return true;

else
return false;

SOURCE CODE LISTINGS

10.05 - cdFiler2 ~~~~~~~~~~~~~~~~~~~~~~~~ ntain.c

#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include "cdFiler2.h"

/***********************/
/* Global Definitions */
/***********************/

393

APPENDIXB

394

struct CDinfo *gFirstPtr, *gLastPtr;

/**> main <*/
int main(void)
{

}

char conunand;

gFirstPtr = NULL;
gLastPtr = NULL;

ReadFile () ;

while ((command= GetCommand()) 1= 'q')
{

}

switch(conunand
{

}

case 'n':
AddToList(ReadStruct());
break;

case 'l':
ListCDs();
break;

WriteFile();

printf ("Goodbye ••• ") ;

return O;

/***> GetCommand <*/
char GetConunand(void)
{

char command;

do
{

}

printf("Enter command (q=quit, n=new, l=list): 11)1
scanf ("%c" , &command) ;
Flush();

while ((command 1= 'q') && (command 1= 'n')

}

&& (command!= 'l'));

print£("\n----------\n");
return(command);

/***> ReadStruct <*/
struct CDinfo *ReadStruct(void)
{

}

struct CDinfo *infoPtr;
int
char

num;
line[kMaxLineLength];

inf oPtr malloc(sizeof(struct CDinfo));

if (inf oPtr == NULL)
{

}

print£ ("Out of memory! 1 ! Goodbye! \n") ;
exit(O) ;

print£("Enter Artist's Name: ");
gets(line);
infoPtr->artist = MallocAndCopy(line);

print£ ("Enter CD Title: ") ;
gets{ line);
infoPtr->title = MallocAndCopy(line);

do
{

}

print£ ("Enter CD Rating (1-10): ") ;
scanf ("%d", &num) ;
Flush();

while ((num < 1) I I (num > 10));

infoPtr->rating num;

print£("\n----------\n");

return(infoPtr);

/***> AddToList <*/

SOURCE CODE LISTINGS

395

APPENDIXB

396

void AddToList(struct CDinfo *curPtr)
{

}

if (gFirstPtr == NULL
gFirstPtr = curPtr;

else
gLastPtr->next = curPtr;

gLastPtr = curPtr;
curPtr->next = NULL;

/***> Listens <*/
void ListCDs(void)
{

}

struct CDinfo *curPtr;

if (gFirstPtr == NULL)
{

print£("No CDs have been entered yet ••• \n");
printf("\n----------\n");

}

else
{

for (curPtr=gFirstPtr; curPtrl=NULL; curPtr = curPtr->next)
{

}
}

printf ("Artist:
print£("Title:
printf ("Rating:

%s\n", curPtr->artist);
%s\n", curPtr->title);
%d\n", curPtr->rating);

printf("\n----------\n");

/***> Flush <*/
void Flush(void)
{

while (getchar() l= '\n')

}

/************************************> MallocAndCopy <*/
char *MallocAndCopy(char *line)
{

/*

*/

}

This function takes a string as a parameter and malloc()s
a new block of memory the size of the string, with an
extra byte for the 0-terminator.

strcpy() is called to copy the string into the new
block of memory and the pointer to the new block is
returned •••

char
if
{

*pointer;
(pointer= malloc(strlen(line)+l))

printf("Out of memory!!! Goodbye!\n");
exit(0) ;

strcpy(pointer, line);

return pointer;

NULL)

/************************************> zeroLine <*/
void zeroLine(char *line)
{

}

int i• ,

for i=O; i<kMaxLineLength; i++)
line(i] = O;

11.01- iterate

#include <stdio.h>

int main(void
{

int i, num;
long fac;

num 5;
f ac 1;

for i=l; i<=num; i++)
fac *= i;

SOURCE CODE LISTINGS

iterate.c

397

APPENDIXB

398

printf("%d factorial is %ld.", num, fac);

return O;
}

11.02 - recurse

#include <stdio.h>

long factorial(long num);

int main(void)
{

}

long num = SL, fac;

print£("%ld factorial is %ld.", num,
factorial(num));

return O;

long factorial(long num)
{

if (num > 1)
num *=factorial(num - 1);

return (num) ;
}

11.03 - funcPtr -------------------- funcPtr.c

#include <stdio.h>

int Squareit(int num);

int main(void)
{

int (*myFuncPtr)(int);
int num = 5;

myFuncPtr = Squareit;
printf("%d squared is %d.", num,

(*myFuncPtr)(num));

return O;

}

int Squareit(int num
{

return(num * num);
}

SOURCE CODE LISTINGS

11.04 - static ----------------------- static.c
#include <stdio.h>

int StaticFunc(void);

int main(void
{

int i;

for i=l; i<=5; i++)
print£("%d\n", StaticFunc());

return O;
}

int StaticFunc(void)
{

static int myStatic O;

return myStatic++;
}

11.0S - treePrinter

/***********/
/* Defines */
/***********/
#define kNumbersFileName

/***********************/
/* Struct Declarations */
/***********************/
struct Node
{

int number;

"treePrinter numbers"

399

APPENDIXB

400

struct Node *left, *right;
} ;

/***********************/
/* Global Declarations */
/***********************/
extern struct Node *gRootNodePtr;

/********************************/
/* Function Prototypes - main.c */
/********************************/
void BuildTree(void);
int GetNumberFromFile(int *numPtr, FILE *fp);
void DoError(char *message);

/*********************************/
/* Function Prototypes - tree.c */
/*********************************/
void
void
void
void
void
void

AddNumberToTree(int num);
AddNodeToTree(struct Node *newNodePtr, struct Node **curNodePtrPtr);
DescendTreePreorder(struct Node *nodePtr);
DescendTreeinorder(struct Node *nodePtr);
DescendTreePostorder(struct Node *nodePtr);
VisitNode(struct Node *nodePtr);

11.05 - treePrinter

#include <stdlib.h>
#include <stdio.h>
#include "treePrinter.h"

/***********************/
/* Global Definitions */
/***********************/
s truct Node * gRootNodePtr;

/**> main <*/
int main(void)

gRootNodePtr = NULL;

}

BuildTree () ;

pr intf ("Preorder: ") ;
DescendTreePreorder(gRootNodePtr);

printf ("\ninorder: ") ;
DescendTreeinorder(gRootNodePtr);

printf ("\nPostorder: ") ;
DescendTreePostorder(gRootNodePtr);

printf("\n\nGoodbye ••. ");

return O;

/***> BuildTree <*/
void BuildTree(void)
{

}

int
FILE

num;
*fp;

if (fp = £open(kNumbersFileName, "r")) NULL)
DoError("Could not read numbers filel\n");

printf ("Numbers: ") ;

while (GetNumberFromFile(&num, fp))
{

}

print£ ("%d, ", num) ;
AddNumberToTree(num);

printf("\n-------\n");

fclose (fp) ;

/***********************************> GetNumberFromFile <*/
int GetNumberFromFile(int *numPtr, FILE *fp
{

if (fscanf(fp, "%d\n", numPtr) == EOF)
return false;

else
return true;

SOURCE CODE LISTINGS

401

APPENDIXB

402

}

/***> DoError <*/
void DoError(char *message)
{

}

printf("%s\n", message);
exit(0);

11.05 - treePrinter

#include <stdlib.h>
#include <stdio.h>
#include "treePrinter.h"

/***********************************> AddNumberToTree <*/
void AddNwnberToTree(int num)
{

struct Node *nodePtr;

nodePtr = malloc(sizeof(struct Node));

if (nodePtr == NULL)
DoError("Could not allocate memory!\n");

nodePtr->nwnber = num;
nodePtr->left = NULL;
nodePtr->right = NULL;

AddNodeToTree(nodePtr, &gRootNodePtr);

/***********************************> AddNodeToTree <*/

tree.c

void AddNodeToTree(struct Node *newNodePtr, struct Node **curNodePtrPtr)
/*

This recursive function inserts a new tree node (pointed to by newNodePtr)
into the subtree pointed to by the pointer pointed to by curNodePtr. We use
two levels of pointer here so we can change the value of the pointer passed
in. See the call to AddNodeToTree a few lines up.

Here's the algorithm: AddNodeToTree first checks to see if *curNodePtrPtr
is NULL. If so, this is where the new node belongs: *curNodePtrPtr is
set to point to the new node and we are done.

If not, we'll check the node *curNodePtrPtr does point to and repeat the

SOURCE CODE LISTINGS

*/
{

}

search in either the left or right child, depending on whether the new
number being added to the tree is less than or greater than/equal to the
current node.

To help with the notation, think of:

*curNodePtrPtr

as equivalent to

gRootNodePtr

if (*curNodePtrPtr == NULL)
*curNodePtrPtr = newNodePtr;

else if (newNodePtr->number < (*curNodePtrPtr)->number
AddNodeToTree(newNodePtr, &((*curNodePtrPtr)->left };

else
AddNodeToTree(newNodePtr, &((*curNodePtrPtr)->right) };

/***********************************> DescendTreePreorder <*/
void DescendTreePreorder(struct Node *nodePtr }
{

if (nodePtr == NULL)
return;

VisitNode(nodePtr };
DescendTreePreorder(nodePtr->left };
DescendTreePreorder(nodePtr->right);

/***********************************> DescendTreeinorder <*/
void DescendTreeinorder(struct Node *nodePtr }

}

if (nodePtr == NULL)
return;

DescendTreePreorder(nodePtr->left);
VisitNode(nodePtr);
DescendTreePreorder(nodePtr->right);

/***********************************> DescendTreePostorder <*/

403

APPENDIXB

404

void DescendTreePostorder(struct Node *nodePtr)
{

if (nodePtr == NULL)
return;

DescendTreePreorder(nodePtr->left);
DescendTreePreorder(nodePtr->right);
VisitNode(nodePtr);

}

/***********************************> VisitNode <*/
void VisitNode(struct Node *nodePtr
{

printf("%d, ", nodePtr->number);
}

12.01 - windowMaker

/**/
/*
/* WindowMaker Code from Chapter 12 of
/*
/* *** Learn c on the Macintosh ***
/*
/* Copyright 1995, Dave Mark, All Rights Reserved
/*

/**/

#include <limits.h>

#define kMoveToFront (WindowPtr)-lL
#define kSleep LONG_MAX
#define kLeaveWhereitis false

#define mApple 128
#define iAbout 1

#define mFile 129
#define iNew 1
#define iClose 2
#define iQuit 4

#define mEdit 130

#define kPICTResID 128

*/
*/
*/
*/
*/
*/

*/

SOURCE CODE LISTINGS

#define
#define
#define
#define
#define

#define
#define
#define
#define

#define
#define
#define
#define
#define

#define

kAboutAlertResID 128
kWINDResID 128
kAppleMenuResID 128
kMBARResID 128
kErrorAlertResID 129

kErrorStrNoMBAR 128
kErrorStrNoMENU 129
kErrorStrNoPICT 130
kErrorStrNoWIND 131

kWindowHomeLef t 5
kWindowHomeTop 45
kNewWindowOf fset 20
kRightEdgeThreshold 200
kBottomEdgeThreshold 200

kFatalErrorString "\pGame over, man!"

ToolBoxinit(void);
MenuBarinit(void);
EventLoop(void);
DoEvent(EventRecord *eventPtr);
HandleMouseDown(EventRecord *eventPtr);
HandleMenuChoice(long menuChoice);
HandleAppleChoice(short theitem);
HandleFileChoice(short theitem);
CreateWindow(void);
DoUpdate(EventRecord *eventPtr);
DrawMyPicture(PicHandle pie, WindowPtr window);

void
void
void
void
void
void
void
void
void
void
void
void
void

CenterPict(PicHandle picture, Rect *srcRectPtr, Rect *destRectPtr);
ErrorHandler(short stringNum);

Boolean
short

gDone;
gNewWindowLef t kWindowHomeLeft, gNewWindowTop

/******************************** main *********/

int main(void
{

ToolBoxinit();
MenuBarinit();

EventLoop();

return O;

kWindowHomeTop;

405

APPENDIXB

406

}

/*********************************** ToolBoxinit */

void ToolBoxinit(void)
{

}

InitGraf(&qd.thePort);
InitFonts();
Ini tWindows () ;
InitMenus();
TEinit();
InitDialogs(OL);
Initcursor();

/*********************************** MenuBarinit *I

void MenuBarinit(void)
{

Handle myMenuBar;
Menueandle menu;

if ((myMenuBar GetNewMBar(kMBARResID))
ErrorHandler(kErrorStrNoMBAR);

SetMenuBar(myMenuBar);

if ((menu = GetMHandle(kAppleMenuResID))
ErrorHandler(kErrorStrNoMENU);

AddResMenu(menu, 'DRVR');
DrawMenuBar();

NULL)

NULL)

/******************************** EventLoop *********/

void EventLoop(void)
{

EventRecord event;

gDone
while

if

false;
gDone == false

WaitNextEvent(everyEvent, &event, kSleep, nil))

DoEvent(&event);
}

}

/************************************* DoEvent */

void DoEvent(EventRecord *eventPtr)
{

}

char theChar;

switch (eventPtr->what
{

}

case mouseDown:
HandleMouseDown(eventPtr);
break;

case updateEvt:
DoUpdate(eventPtr);
break;

case keyoown:
case autoKey:

theChar = eventPtr->message & charCodeMask;
if ((eventPtr->modifiers & cmdKey) != O)

HandleMenuChoice(MenuKey(theChar));
break;

/************************************* HandleMouseDown */

void eandleMouseDown(EventRecord *eventPtr)
{

WindowPtr window;
short part;
long int menuChoice, windSize;

part= FindWindow(eventPtr->where, &window);

switch (part)
{

case inMenuBar:
menuChoice = MenuSelect(eventPtr->where);
HandleMenuChoice(menuChoice);
break;

case inSysWindow:
SystemClick(eventPtr, window);
break;

case inDrag:

SOURCE CODE LISTINGS

407

APPENDIXB

408

DragWindow(window, eventPtr->where, &qd.screenBits.bounds);
break;

}
}

case inGoAway:
if (TrackGoAway(window, eventPtr->where))

DisposeWindow(window);
break;

case inContent:
Selectwindow(window);
break;

/************************************* HandleMenuChoice */

void HandleMenuChoice(long menuChoice)
{

}

short theMenu;
short theitem;

if (rnenuChoice != 0
{

}

theMenu = HiWord(rnenuChoice);
theitern = LoWord(rnenuChoice);
switch (theMenu)
{

}

case rnApple:
HandleAppleChoice(theitem);
break;

case mFile:
HandleFileChoice(theitern);
break;

HiliteMenu(O);

/******************************** HandleAppleChoice

void HandleAppleChoice(short item)
{

appleMenu; MenuHandle
Str255 accName;

accNumber; short

switch item)
{

*******/

}

}

case iAbout :
NoteAlert(kAboutAlertResID, NULL);
break;

default:
appleMenu = GetMHandle(mApple);
Getitem(appleMenu, item, accName);
accNumber = OpenDesk.Acc(accName);
break;

/******************************** HandleFileChoice

void HandleFileChoice(short item
{

}

WindowPtr window;

switch (item)
{

}

case iNew :
CreateWindow();
break;

case iClose :
if ((window= FrontWindow()) 1= NULL)

DisposeWindow(window);
break;

case iQuit
gDone = TRUE;
break;

/************************************ CreateWindow */

void CreateWindow(void
{

WindowPtr window;

if ((window = GetNewWindow(kWINDResID, NULL,
kMoveToFront)) == NULL)

ErrorHandler(kErrorStrNoWIND);

SOURCE CODE LISTINGS

*******/

if (((qd.screenBits.bounds.right - gNewWindowLeft) < kRightEdgeThreshold) I I
((qd.screenBits.bounds.bottom - gNewWindowTop) < kBottomEdgeThreshold))

{

409

APPENDIXB

410

}

}

gNewWindowLeft = kWindowHomeLeft;
gNewWindowTop = kWindowHomeTop;

MoveWindow(window, gNewWindowLeft, gNewWindowTop, kLeaveWhereitis);
gNewWindowLeft += kNewWindoWOffset;
gNewWindowTop += kNewWindoWOffset;

ShowWindow(window);

/************************************* DoUpdate */

void DoUpdate(EventRecord *eventPtr)
{

}

short pictureID;
PicHandle picture;
WindowPtr window;

window = (WindowPtr)eventPtr->message;

BeginUpdate (window) ;

picture= GetPicture(kPICTResID);

if (picture == NULL)
ErrorHandler(kErrorStrNoPICT);

DrawMyPicture(picture, window);

EndUpdate (window) ;

/******************************** DrawMyPicture *********/

void DrawMyPicture(PicHandle pie, WindowPtr window)
{

Rect myRect;

CenterPict(pie, &window->portRect, &myRect);

setPort (window) ;

DrawPicture(pie, &myRect);
}

SOURCE CODE LISTINGS

/****************** CenterPict ********************/

void CenterPict(PicHandle picture, Rect *srcRectPtr, Rect *destRectPtr)
{

}

Rect pictRect;

pictRect = (**(picture)).picFrame;

OffsetRect(&pictRect, srcRectPtr->left - pictRect.left,
srcRectPtr->top - pictRect.top);

OffsetRect(&pictRect,(srcRectPtr->right - pictRect.right)/2,
(srcRectPtr->bottom - pictRect.bottom)/2);

*destRectPtr pictRect;

/******************************** ErrorHandler *********/

void ErrorHandler(short stringNum
{

}

StringHandle errorStringH;

if ((errorStringH = GetString(stringNum)) == NULL
ParamText(kFatalErrorString, "\p", "\p", "\p") ;

else
{

HLock((Handle)errorStringH);
ParamText(*errorStringH, "\p", "\p", "\p") ;
HUnlock((Handle)errorStringH);

StopAlert(kErrorAlertResID, NULL);
ExitToShell();

411

-----------Appendix C

syntax:

if (expression
statement

example:

if (numEmployees > 20)
BuyNewBuilding();

alternate syntax:

if (expression
statement

else
statement

example:

if (temperature < 60
WearAJacket () ;

else
BringASweater();

CSyntax Summary

The while Statement ----------------------

syntax:

while expression
statement

413

APPENDIXC

414

example:

while FireTooLow())
AddAnotherLog();

The for Statement ----------------------

syntax:

for (expression!
statement

example:

expression2

int i, myArray[100];

for i=O; i<lOO; i++
myArray[i] = O;

expression3)

The do Statement ----------------------

syntax:

do
statement

while (expression

example:

do
CallMeAtLeastOnce();

while (KeepGoing()) ;

The switch Statement ----------------------

syntax:

switch
{

expression

case constant:
statements

}

case constant:
statements

default:
statements

example:

switch (theYear
{

) ;
}

case 1066:
print£("Battle of Hastings");
break;

case 1492:
print£("Columbus sailed the ocean blue");
break;

case 1776:
print£("Declaration of Independence\n");
print£(11 A very important document!l! 11

);

break;
default:

print£(11 Don't know what happened during this year 11

The break Statement

syntax:

break;

example:

i=l;

while (i <= 9)
{

}

PlayAninning(i);
if (ItsRaining()

break;
i++;

CSYNTAX SUMMARY

415

APPENDIXC

416

The return Statement ---------------------

syntax:

return;

example:

if (FatalError()
return;

alternate syntax:

return(expression);

example:

int AddThese(int numl, int num2)
{

return(numl + num2);
}

-----------Appendix D
Selections from the

Standard Library

This appendix contains excerpts reprinted from the C Library Reference found on the
CodeWarrior disk and is being reprinted with permission from MetroWerks. This is
only part of the C Library Reference so make sure you check out the original.

atof(), atoi(), atol() ----------------------

Purpose
Synopsis

Convert a character string to a numeric value.
#include <stdlib.h>
double atof(const char *nptr);
int atoi(const char *nptr);
long int atol(const char *nptr);

Remarks The atof () function converts the character array pointed to by
nptr to a floating point value of type double.
The atoi () function converts the character array pointed to by
nptr to an integer value.
The atol () function converts the character array pointed to by
nptr to an integer of type long int.
All three functions skip leading white space characters.
All three functions set the global variable errno to ERANGE if the
converted value cannot be expressed in their respective type.

Return value atof () returns a floating point value of type double.
atoi () returns an integer value of type int.
atol () returns an integer value of type long int.

See also errno.h
stdio.h: scanf()

bsearch() _______________________ ~

Purpose
Synopsis

Efficient sorted array searching.
#include <stdlib.h>
void *bsearch(const void *key,

417

APPENDIXD

418

Remarks

const void *base,
size_t runemb,
size_t size,
int (*compare)
(const void *,
const void*))

The bsearch () function efficiently searches a sorted array for an
item using the binary search algorithm.
The key argument points to the item to search for.
The base argument points to the first byte of the array to search.
The array must already be sorted in ascending order based on the
comparison requirements of the function pointed to by the com­
pare argument.
The nmemb argument specifies the number of array elements to
search.
The size argument specifies the size of an array element.
The compare argument points to a programmer-supplied function
that takes two pointers to different array elements and compares
them based on the key. If the two elements are equal, compare
must return a zero. The compare function must return a negative
value if the first element is less than the second. Likewise, the func­
tion must return a positive value if the first argument is greater
than the second.

Return value bsearch () returns a pointer to the element in the array matching
the item pointed to by key. If no match was found, bsearch ()
returns a null pointer (NULL) .

See also stdlib. h: qsort ()

exit()-------------------------­

Purpose
Synopsis

Remark

Return value

See also

Terminate a program normally.
#include <stdlib.h>
void exit(int status);
The exit () function calls every function installed with atexi t ()
in the reverse order of their installation, flushes the buffers and
closes all open streams, then calls the Toolbox system call
ExitToShell.
exit () does not return any value to the operating system. The
status argument is kept to conform to the ANSI C Standard Library
specification.
stdlib.h: abort(), atexit()

SELECTIONS FROM THE STANDARD LIBRARY

£close()--------------------------

Purpose
Synopsis

Remarks

Return value

See also

Close an open file.
#include <stdio.h>
int fclose(FILE *stream);
The £close () function closes a file created by £open (),
£reopen () , or tmpf ile () . The function flushes any buffered
data to its file and closes the stream. After calling £close (),
stream is no longer valid and cannot be used with file functions
unless it is reassigned using fopen () , £reopen () , or tmpf ile () .
All of a program's open streams are flushed and closed when a
program terminates normally.
£close () closes then deletes a file created by tmpfile ().
£close () returns a zero if it is successful and returns a -1 if it fails
to close a file.
stdio.h: fopen(), £reopen(), tmpfile()
stdlib.h: exit(), abort()

feof() ------------------------

Purpose
Synopsis

Remarks

Return value

See also

Check the end-of-file status of a stream.
#include <stdio.h>
int feof(FILE *stream);
The feof () function checks the end-of-file status of the last read
operation on stream. The function does not reset the end-of-file
status.
feof () returns a nonzero value if the stream is at the end-of-file
and return zero if the stream is not at the end-of-file.
stdio.h: clearerr(), £error()

£error()--------------------------

Purpose
Synopsis

Remarks

Check the error status of a stream.
#include <stdio.h>
int £error (FILE *stream);
The f error () function returns the error status of the last read or
write operation on stream. The function does not reset its error
status.

Return value £error () returns a nonzero value if stream's error status is on,
and returns zero if stream's error status is off.

See also stdio. h: clearerr () , feof ()

419

APPENDIX D

420

Purpose
Synopsis

Remarks

Empty a stream's buffer to its file.
#include <stdio.h>
int fflush(FILE *stream);
The ff lush () function empties stream's buffer to the file associ­
ated with stream.

Return value ff lush () returns a nonzero value if it is unsuccessful and returns
zero if it is successful.

See also stdio. h: setvbuf ()

fgetc() ----------------------­

Purpose
Synopsis

Remarks

Return value

See also

Read the next character from a stream.
#include <stdio.h>
int fgetc(FILE *stream);
The f getc () function reads the next character from stream and
advances its file position indicator.
fgetc () returns the character as an int. If the end-of-file has been
reached, f getc () returns EOF.
stdio.h: getc(), getchar()

fgetpos() -----------------------­

Purpose
Synopsis

Remarks

Get a stream's current file position indicator value.
#include <stdio.h>
int fgetpos(FILE *stream,

fpos_t *pos);
The fgetpos () function is used in conjunction with the fset­
pos () function to allow random access to a file. The fgetpos ()
function gives unreliable results when used with streams associated
with a console (stdin, stderr, stdout).
While the fseek () and £tell () functions use long integers to
read and set the file position indicator, fgetpos () and
fsetpos ()use fpos_t values to operate on larger files. The
fpos_ t type, defined in stdio. h, can hold file position indica­
tor values that do not fit in a long int.
The f getpos () function stores the current value of the file posi­
tion indicator for stream in the f pos _ t variable pos points to.

SELECTIONS FROM THE STANDARD LIBRARY

Return value fgetpos () returns zero when successful and returns a nonzero
value when it fails.

See also stdio. h: fseek () , fsetpos () , £tell ()

£gets()------------------------­

Purpose
Synopsis

Read a character array from a stream.
#include <stdio.h>
char *fgets(char *s, int n,

FILE *stream);
Remarks The £gets () function reads characters sequentially from stream

beginning at the current file position, and assembles them into s as a
character array. The function stops reading characters when n char­
acters have been read. The f gets () function finishes reading pre­
maturely if it reaches a newline (' \n') character or the end-of-file.
Unlike the gets () function, £gets () appends the newline char­
acter (' \n') to s. It also null terminates the character array.

Return value fgets () returns a pointer to s if it is successful. If it reaches the
end-of-file before reading any characters, sis untouched and
£gets () returns a null pointer (NULL). If an error occurs £gets ()
returns a null pointer and the contents of s may be corrupted.

Seealso stdio.h: gets(), fprintf(), print£()

Purpose
Synopsis

Remarks

Open a file as a stream.
#include <stdio.h>
FILE *fopen(const char *filename,

canst char *mode);
The f open () function opens a file specified by filename, and asso­
ciates a stream with it. The f open () function returns a pointer to a
FILE. This pointer is used to refer to the file when performing 1/0
operations.
The mode argument specifies how the file is to be used. Table 7
describes the values for mode. A file opened with an update mode
("+")is buffered, so it cannot be written to and then read from (or
vice versa) unless the read and write operations are separated by an
operation that flushes the stream's buffer or the last read or write
reached the end-of-file. The fseek(), fsetpos (),rewind(), and
£flush() functions flush a stream's buffer.

421

APPENDIXD

422

All file modes, except the append modes ("a", "a+", "ab", "ab+"),
set the file position indicator to the beginning of the file. The ap­
pend modes set the file position indicator to the end-of-file.

Return value fopen() returns a pointer to a FILE if it successfully opens the
specified file for the specified operation. fopen () returns a null
pointer {NULL) when it is not successful.

See also stdio.h: £close()

fprintf() --------------------

Purpose
Synopsis

Send formatted text to a stream.
#include <stdio.h>
int fprintf (FILE *stream,

canst char *format, •••);
Remarks The fprintf () function writes formatted text to stream and ad­

vances the file position indicator. Its operation is the same as
print£ () with the addition of the stream argument. Refer to the
description of printf () .

Return value fprintf () returns the number of arguments written or a negative
number if an error occurs.

Seealso stdio.h: print£(), sprint£(), vfprintf(),
vprintf(), vsprintf()

fputc() ------------------------

Purpose
Synopsis

Remarks

Return value

See also

Write a character to a stream.
#include <stdio.h>
int fputc(int c, FILE *stream);
The f putc () function writes character c to stream and advances
stream's file position indicator. Although the c argument is an int,
it is converted to a char before being written to stream. fputc ()
is written as a function, not as a macro.
fputc () returns the character written if it is successful, and re­
turns EOF if it fails.
stdio.h: putc(), putchar()

fputsO ------------------------

Purpose
Synopsis

Write a character array to a stream.
#include <stdio.h>
int fputs(const char *s,

FILE *stream);

SELECTIONS FROM THE STANDARD LIBRARY

Remarks The fputs () function writes the array pointed to bys to stream
and advances the file position indicator. The function writes all
characters in s up to, but not including, the terminating null char­
acter. Unlike puts (), fputs () does not terminate the output of s
with a newline (' \n ').

Return value fputs () returns a zero if successful, and returns a nonzero value
when it fails.

See also stdio. h: puts ()

Purpose
Synopsis

Remarks

Return value
See also

Read binary data from a stream.
#include <stdio.h>
size t fread(void *ptr,

size t size,
size_t mnemb,
FILE *stream);

The fread() function reads a block of binary or text data and up­
dates the file position indicator. The data read from stream are
stored in the array pointed to by ptr. The size and runemb argu­
ments describe the size of each item and the number of items to
read, respectively.
The f read () function reads runemb items unless it reaches the end­
of-file or a read error occurs.
f read () returns the number of items read successfully.
stdio.h: fgets(), £write()

free()-------------------------

Purpose
Synopsis

Remarkss

See also

Release previously allocated memory to heap.
#include <stdlib.h>
void free(void *ptr);
The free () function releases a previously allocated memory
block, pointed to by ptr, to the heap. The ptr argument should
hold an address returned by the memory allocation functions
calloc () , malloc () , or realloc () . Once the memory block
ptr points to has been released, it is no longer valid. The ptr vari­
able should not be used to reference memory again until it is as­
signed a value from the memory allocation functions.
stdlib.h: calloc(), malloc(), realloc()
Refer to the example for calloc ()

423

APPENDIXD

424

freopen<>~~~~~~~~~~~~~~~~~-~-~~-~-

Purpose Redirect a stream to another file.
Synopsis #include <stdio. h>

FILE *freopen(const char *filename,
canst char *mode,
FILE *stream);

Remarks The f reopen () function changes the file stream associated with
another file. The function first closes the file the stream is associated
with, and opens the new file, filename, with the specified mode,
using the same stream.

Return value f open () returns the value of stream, if it is successful. If £open ()
fails it returns a null pointer (NULL).

See also stdio. h: f open ()

fscanf() ------------------------

Purpose
Synopsis

Read formatted text from a stream.
#include <stdio.h>
int fscanf (FILE *stream,

canst char *format, •••);
Remarks The fscanf () function reads programmer-defined, formatted text

from stream. The function operates identically to the scanf ()
function with the addition of the stream argument indicating the
stream to read from. Refer to the scanf () function description.

Return value fscanf () returns the number of items read. If there is an error in
reading data that is inconsistent with the format string, f scanf ()
sets errno to a nonzero value. fscanf () returns EOF if it reaches
the end-of-file.

See also errno.h
stdio.h: scanf()

fseek() -------------------------

Purpose
Synopsis

Remarks

Move the file position indicator.
#include <stdio.h>
int fseek(FILE *stream,

long offset,
int whence);

The f seek () function moves the file position indicator to allow
random access to a file.

SELECTIONS FROM THE STANDARD LIBRARY

The function moves the file position indicator either absolutely or
relatively. The whence argument can be one of three values defined
in stdio.h: SEEK_SET, SEEK_CUR, SEEK_END.
The SEEK_ SET value causes the file position indicator to be set
offset bytes from the beginning of the file. In this case offset must be
equal or greater than zero.
The SEEK_ CUR value causes the file position indicator to be set
offset bytes from its current position. The offset argument can be a
negative or positive value.
The SEEK_END value causes the file position indicator to be set
offset bytes from the end of the file. The offset argument must be
equal or less than zero.
The fseek() function undoes the last ungetc () call and clears
the end-of-file status of stream.

Return value £seek() returns zero if it is successful and returns a nonzero value
if it fails.

See also stdio.h: fgetpos(), fsetpos(), ftell()

fsetpos() ------------------------­

Purpose
Synopsis

Remarks

Set the file position indicator.
#include <stdio.h>
int fsetpos(FILE *stream,

const fpos_t *pos);
The fsetpos () function sets the file position indicator for stream
using the value pointed to by pos. The function is used in conjunc­
tion with fgetpos () when dealing with files having sizes greater
than what can be represented by the long int argument used by
£seek().
fsetpos () undoes the previous call to ungetc () and clears the
end-of-file status.

Return value fsetpos () returns zero if it is successful and returns a nonzero
value if it fails.

Seealso stdio.h: fgetpos(), £seek(), ftell()

£tell()------------------------

Purpose
Synopsis

Return the current file position indicator value.
#include <stdio.h>
long int ftell(FILE *stream);

425

APPENDIXD

426

Remarks The £tell () function returns the current value of stream's file
position indicator. It is used in conjunction with f seek () to pro­
vide random access to a file.
The function will not work correctly when it is given a stream asso­
ciated to a console file, such as stdin, stdout, or stderr, where
a file indicator position is not applicable. Also, f tell () cannot
handle files with sizes larger than what can be represented with a
long int. In such a case, use the f getpos () and f setpos ()
functions.

Return value ftell () , when successful, returns the current file position indica­
tor value. If it fails, f tell () returns -lL and sets the global vari­
able errno to a nonzero value.

See also errno.h
stdio.h: fgetpos()

fwrite() ------------------------

Purpose
Synopsis

Write binary data to a stream.
#include <stdio.h>
size_t fwrite(const void *ptr,

size_t size,
size_t runemb,
FILE *stream);

Remarks The f write () function writes nmemb items of size bytes each to
stream. The items are contained in the array pointed to by ptr.
After writing the array to stream, fwr i te () advances the file posi­
tion indicator accordingly.

Return value fwri te () returns the number of elements successfully written to
stream.

See also stdio.h: fread()

getc() --------------------------

Purpose
Synopsis

Remarks

Read the next character from a stream.
#include <stdio.h>
int getc(FILE *stream);
The getc () function reads the next character from stream,
advances the file position indicator, and returns the character as an
int value. Unlike the f getc () function, getc () is implemented
as a macro.

SELECTIONS FROM THE STANDARD LIBRARY

Return value getc () returns the next character from the stream or returns EOF if
the end-of-file has been reached or a read error has occurred.

See also stdio. h: fgetc (), fputc (), getchar (), putchar ()

getchar() ------------------------

Purpose Get the next character from s tdin.
Synopsis #include <stdio. h>

int getchar(void);
Remarks The getch_ar () function reads a character from the stdin stream.
Return value getchar () returns the value of the next character from stdin as

an int if it is successful. getchar () returns EOF if it reaches an
end-of-file or an error occurs.

See also: stdio. h: f getc () , getc () , putchar ()

gets()------------------------

Purpose
Synopsis

Remarks

Return value

See also

Read a character array from stdin.
#include <stdio.h>
char *gets(char *s);
The gets () function reads characters from stdin and stores them
sequentially in the character array pointed to bys. Characters are
read until either a newline or an end-of-file is reached.
Unlike f gets () , the programmer cannot specify a limit on the
number of characters to read. Also, gets () reads and ignores the
newline character (' \n ')so that it can advance the file position
indicator to the next line. The newline character is not stored s.
Like £gets (),gets () terminates the character string with a null
character.
If an end-of-file is reached before any characters are read, gets ()
returns a null pointer (NULL) without affecting the character array
at s. If a read error occurs, the contents of s may be corrupted.
gets () returns s if it is successful and returns a null pointer if it
fails.
stdio.h: £gets()

malloc() ------------------------

Purpose
Synopsis

Allocate a block of heap memory.
#include <stdlib.h>
void *malloc(size_t size);

427

APPENDIXD

428

Remarks The malloc () function allocates a block of contiguous heap mem­
ory-size bytes.

Return value malloc () returns a pointer to the first byte of the allocated block if
it is successful and returns a null pointer if it fails.

See also stdlib. h: callee (), free (), realloc ()

Purpose Search for an occurrence of a character.
Synopsis #include <string. h>

void *memchr(const void *s, int c,
size_t n);

Remarks The memchr () function looks for the first occurrence of c in the
first n characters of the memory area pointed to bys.

Return value memchr () returns a pointer to the found character, or a null
pointer (NULL) if c cannot be found.

See also string. h: strchr () , strrchr ()

memcmpO~~~~~~~~~~~~~~~~~~~~~~~~

Purpose
Synopsis

Compare two blocks of memory.
#include <string.h>
int memcmp(const void *sl,

canst void *s2,
size_t n);

Remarks The memcmp () function compares the first n characters of s 1 to s 2
one character at a time.

Return value memcmp () returns a zero if all n characters pointed to by s 1 and s2
are equal.
memcmp () returns a negative value if the first nonmatching charac­
ter pointed to by s 1 is less than the character pointed to by s 2.
memcmp () returns a positive value if the first nonmatching charac­
ter pointed to by s 1 is greater than the character pointed to by s 2.

See also string.h: strcmp(), strncmp()

memcpyO~~~~~~~~~~~~~~~~~~~~~~~~~

Purpose
Synopsis

Copy a contiguous memory block.
#include <string.h>
void *memcpy(const void *dest,

SELECTIONS FROM THE STANDARD LIBRARY

Remarks

Return value
See also

const void *source,
size_t n);

The memcpy () function copies the first n characters from the item
pointed to by source to the item pointed to by dest. The behavior
of memcpy () is undefined if the areas pointed to by des t and
source overlap. The memmove () function reliably copies overlap­
ping memory blocks.
memcpy () returns the value of dest.
string.h: memmove(), strcpy(), strncpy{)
Refer to the example for memchr () .

memmoveO~~~~~~~~~~~~~~~~~~~~~~~~~­

Purpose
Synopsis

Remarks

Return value
See also

Copy an overlapping contiguous memory block.
#include <string.h>
void *memmove(void *dest,

const void *source,
size_t n);

The memmove () function copies the first n characters of the item
pointed to by source to the item pointed to by dest.
Unlike memcpy () , the memmove () function safely copies overlap­
ping memory blocks.
memmove () returns the value of dest.
string.h: memcpy(), memset(), strcpy(), strncpy()

perrorO~~~~~~~~~~~~~~~~~~~~~~~~~

Purpose
Synopsis

Remarks

See also

Output an error message to stderr.
#include <stdio.h>
void perror(const char *s);
The perror () function outputs the character array pointed to by s
and the value of the global variable errno to stderr.
abort.h: abort()
errno.h

print£()-----------------------­

Purpose
Synopsis

Output formatted text.
#include <stdio.h>
int printf(const char *format, •.•);

429

APPENDIXD

Remarks

430

The print£ () function outputs formatted text. The function takes
one or more arguments, the first being format, a character array
pointer. The optional arguments following format are items (inte­
gers, characters, floating point values, etc.) that are to be converted
to character strings and inserted into the output of format at speci­
fied points.
The print£ () function sends its output to stdout.
The format character array contains normal text and conversion
specifications. Conversion specifications must have matching argu­
ments in the same order in which they occur in format.
A conversion specification describes the format its associated argu­
ment is to be converted to. A specification starts with a percent sign
{%), optional flag characters, an optional minimum width, an optional
precision width, and the necessary, terminating conversion type.
Doubling the percent sign{%%) results in the output of a single%.
An optional flag character modifies the formatting of the output; it
can be left or right justified, and numerical values can be padded
with zeroes or output in alternate forms. More than one optional
flag character can be used in a conversion specification. Table 8
describes the flag characters.
The optional minimum width is a decimal digit string. If the con­
verted value has more characters that the minimum width, it is
expanded as required. If the converted value has fewer characters
than the minimum width, it is, by default, right justified (padded
on the left). If the - flag character is used, the converted value is
left justified (padded on the right).
The optional precision width is a period character (.) followed by
decimal digit string. For floating point values, the precision width
specifies the number of digits to print after the decimal point. For
integer values, the precision width functions identically to, and
cancels, the minimum width specification. When used with a char­
acter array, the precision width indicates the maximum width of the
output.
A minimum width and a precision width can also be specified with
an asterisk (*) instead of a decimal digit string. An asterisk indi­
cates that there is a matching argument, preceding the conversion
argument, specifying the minimum width or precision width.
The terminating character, the conversion type, specifies the con­
version applied to the conversion specification's matching argu­
ment. Table 9 describes the conversion type characters.

SELECTIONS FROM THE STANDARD LIBRARY

A conversion type can be prefixed with an h, 1, or L. Using h indi­
cates that the corresponding argument is a short int or unsigned
short int. The 1 indicates the argument is a long int or
unsigned long int. The L indicates the argument is a long dou­
ble.

Return value print£ (),like £print£ () , sprint£ () , vfprintf () , and
vprintf (),returns the number of arguments that were success­
fully output. pr intf () returns a negative value if it fails.

See also stdio. h: £print£ (), sprint£ (), vprintf (),
vprintf()

Purpose Write a character to a stream.
Synopsis #include <stdio. h>

int putc(int c, FILE *stream);
Remarks The putc ()function outputs c to stream and advances stream's

file position indicator.
The putc () works identically to the fputc () function, except that
it is written as a macro.

Return value putc () returns the character written when successful and return
EOF when it fails.

See also stdio.h: fputc(), putchar()

putcharO~~~~~~~~~~~~~~~~~~~~~~~~

Purpose
Synopsis

Write a character to stdout.
#include <stdio.h>
int putchar(int c);

Remarks The putchar () function writes character c to stdout.
Return value putchar () returns c if it is successful and returns EOF if it fails.
See also stdio. h: fputc () , putc ()

pu~O~~~~~~~~~~~~~~~~~~~~~~~~~

Purpose
Synopsis

Remarks

Write a character string to stdout.
#include <stdio.h>
int puts(const char *s);
The puts () function writes a character string array to stdout,
stopping at, but not including, the terminating null character. The
function also appends a newline (' \n') to the output.

431

APPENDIXD

432

Return value puts () returns zero if successful and returns a nonzero value if it
fails.

See also

Purpose
Synopsis

Remarks

See also

Purpose
Synopsis

Remarks

stdio.h: fputs()

Sort an array.
#include <stdlib.h>
void qsort(void *base,

size_t nmemb,
size_t size,
int (*compare)
(canst void *,
canst void*))

The qsort () function sorts an array using the quicksort algorithm.
It sorts the array without displacing it; the array occupies the same
memory it had before the call to qsort () .
The base argument is a pointer to the base of the array to be sorted.
The nmemb argument specifies the number of array elements to
sort.
The size argument specifies the size of an array element.
The compare argument is a pointer to a programmer-supplied com­
pare function. The function takes two pointers to different array
elements and compares them based on the key. H the two elements
are equal, compare must return a zero. The compare function must
return a negative number if the first element is less than the second.
Likewise, the function must return a positive number if the first
argument is greater than the second.
stdlib.h: bsearch()

Generate a pseudo-random integer value.
#include <stdlib.h>
int rand(void);
A sequence of calls to the rand () function generates and returns a
sequence of pseudo-random integer values from 0 to RAND_MAX.
The RAND _MAX macro is defined in stdl ib. h.

SELECTIONS FROM THE STANDARD LIBRARY

By seeding the random number generator using srand () , different
random number sequences can be generated with rand () .

Return value rand () returns a pseudo-random integer value between 0 and
RAND_MAX.

See also stdlib.h: srand()

Purpose Delete a file.
Synopsis #include <stdio.h>

int remove(const char *filename);
Remarks The remove () function deletes the named file specified by

filename.
Return value remove () returns 0 if the file deletion is successful, and returns a

nonzero value if it fails.
See also stdio. h: fopen (), rename ()

rename<>~~~~~~~~~~~~~~~~~~~~~~~~~~~

Purpose
Synopsis

Change the name of a file.
#include <stdio.h>
int rename(const char *old,

canst char *new);
Remarks The rename () function changes the name of a file, specified by old

to the name specified by new.
Return value rename () returns a nonzero if it fails and returns zero if successful
See also stdio. h: f reopen () , remove ()

rewind() ~~~~~~~~~~~~~~~~~~~~~~~~~~

Purpose
Synopsis

Remarks

See also

Reset the file position indicator to the beginning of the file.
#include <stdio.h>
void rewind(FILE *stream);
The rewind () function sets the file indicator position of stream
such that the next write or read operation will be from the begin­
ning of the file. It also undoes any previous call to ungetc () and
clears stream's end-of-file and error status.
stdio.h: fseek(), fsetpos()

433

APPENDIXD

434

Purpose
Synopsis

Remarks

Read formatted text.
#include <stdio.h>
int scanf (const char *format,

...) ;
The scan£ () function reads text and converts the text read to pro­
grammer specified types.
The format argument is a character array containing normal text,
white space (space, tab, newline), and conversion specifications.
The normal text specifies literal characters that must be matched in
the input stream. A white space character indicates that white space
characters are skipped until a non-white-space character is reached.
The conversion specifications indicate what characters in the input
stream are to be converted and stored.
The conversion specifications must have matching arguments in the
order they appear in format. Because scanf () stores data in mem­
ory, the matching conversion specification arguments must be
pointers to objects of the relevant types.
A conversion specification consists of the percent sign(%) prefix,
followed by an optional maximum width or assignment suppres­
sion, and ending with a conversion type. A percent sign can be
skipped by doubling it in format;%% signifies a single% in the input
stream.
An optional width is a decimal number specifying the maximum
width of an input field. scanf () will not read more characters for
a conversion than is specified by the width.
An optional assignment suppression character (*) can be used to
skip an item by reading it but not assigning it. A conversion specifi­
cation with assignment suppression must not have a corresponding
argument.
The last character, the conversion type, specifies the kind of conver­
sion requested. Table 10 describes the conversion type characters.
The conversion type may be preceded by u, U, 1, or L. When used
with integer conversion types, u and u specify unsigned integers.
The 1 and L, when used with integer conversions, signify long
integers. When used with floating point conversions, 1 signifies a
double and L signifies a long double.

SELECTIONS FROM THE STANDARD LIBRARY

Return value scanf () returns the number of items successfully read and returns
EOF if a conversion type does not match its argument or and end­
of-file is reached.

See also stdio.h: printf(), sscanf()

setbuf() ------------------------

Purpose
Synopsis

Remarks

See also

Change the buffer size of a stream.
#include <stdio.h>
void setbuf (FILE *stream,

char *buf);
The setbuf () function allows the programmer to set the buffer
size for stream. It should be called after stream is opened, but be­
fore it is read from or written to.
The function makes the array pointed to by buf the buffer used by
stream. The buf argument can either be a null pointer or point to
an array of size BUFSIZ, defined in stdio. h.
If buf is a null pointer, the stream becomes unbuffered.
stdio.h: setvbuf()
stdlib.h: malloc()

setvbuf() ------------------------

Purpose
Synopsis

Remarks

Change the buffering scheme for a stream.
#include <stdio.h>
int setvbuf (FILE *stream,

char *buf,
int mode,
size_t size);

The setvbuf () allows the manipulation of the buffering scheme
as well as the size of the buffer used by stream. The function should
be called after the stream is opened but before it is written to or
read from.
The buf argument is a pointer to a character array. The size argu­
ment indicates the size of the character array pointed to by buf.
The most efficient buffer size is a multiple of BUFSIZ, defined in
stdio.h.
If buf is a null pointer, then the operating system creates its own
buffer of size bytes.

435

APPENDIXD

436

The mode argument specifies the buffering scheme to be used with
stream. mode can have one of three values defined in stdio. h:
_IOFBF, _IOLBF, and _IONBF.
_IOFBF specifies that stream be buffered.
_ IOLBF specifies that stream be line buffered.
_IONBF specifies that stream be unbuffered.

Return value setvbuf () returns zero if it is successful and returns a nonzero
value if it fails.

See also stdio. h: setbuf ()
stdlib.h: malloc()

sprint£()----------------------­

Purpose
Synopsis

Format a character string array.
#include <stdio.h>
int sprintf (char *s,

const char *format,
...) ;

Remarks The sprintf () function works identically to printf () with the
addition of the s parameter. Output is stored in the character array
pointed to by s instead of being sent to stdout. The function ter­
minates the output character string with a null character.
For information on how to use sprintf () refer to the description
of printf ().

Return value sprintf () returns the number of characters assigned to s, not
including the null character.

See also stdio.h: fprintf (), printf()

Purpose
Synopsis

Remarks

See also

Set the pseudo-random number generator seed.
#include <stdlib.h>
void srand(unsigned int seed);
The srand () function sets the seed for the pseudo-random num­
ber generator to seed. Each seed value produces the same sequence
of random numbers when it is used.
stdlib.h: rand()

SELECTIONS FROM THE STANDARD LIBRARY

sscanf() -------------------------

Purpose
Synopsis

Read formatted text into a character string.
#include <stdio.h>
int sscanf (char *s,

const char *format,
...) ;

Remarks The sscanf () operates identically to scanf () but reads its input
from the character array pointed to by s instead of stdin. The
character array pointed to s must be null terminated.
Refer to the description of scanf () for more information.

Return value scanf () returns the number of items successfully read and con­
verted and returns EOF if it reaches the end of the string or a con­
version specification does not match its argument.

See also stdio. h: f scanf () , scanf ()

strcat() -------------------------

Purpose
Synopsis

Concatenate two character arrays.
#include <string.h>
char *strcat(char *dest,

const char *source);
Remarks The strcat () function appends a copy of the character array

pointed to by source to the end of the character array pointed to by
dest. The dest and source arguments must both point to null
terminated character arrays. strcat () null terminates the
resulting character array.

Return value strcat () returns the value of dest.
See also string.h: strncat()

strchr() --------------------------

Purpose
Synopsis

Remarks

Search for an occurrence of a character.
#include <string.h>
char *strchr(const char *s,

int c);
The strchr () function searches for the first occurrence of the
character c in the character array pointed to bys. The s argument
must point to a null terminated character array.

437

APPENDIXD

438

Return value strchr () returns a pointer to the successfully located character. If
it fails, strchr () returns a null pointer (NULL).

See also string • h : memchr () , s trrchr ()

strcmp() ------------------------­

Purpose
Synopsis

Compare two character arrays.
#include <string.h>
int strcmp(const char *sl,

const char *s2);
Remarks The strcmp () function compares the character array pointed to by

sl to the character array pointed to by s2. Both sl and s2 must
point to null terminated character arrays.

Return value strcmp () returns a zero if s 1 and s2 are equal, a negative value if
sl is less than s2, and a positive value if sl is greater than s2.

See also string.h: memcmp(), strcoll(), strncmp()

srrcpy() -~--~---------~--~------­

Purpose
Synopsis

Remarks

Return value
See also

Copy one character array to another.
#include <string.h>
char *strcpy(char *dest,

const char *source);
The s trcpy () function copies the character array pointed to by
source to the character array pointed to dest. The source argu­
ment must point to a null terminated character array. The resulting
character array at dest is null terminated as well.
If the arrays pointed to by dest and source overlap, the operation
of s trcpy () is undefined.
strcpy () returns the value of dest.
string.h: memcpy(), menunove(), strncpy()

strcoll() -------------------------

Purpose
Synopsis

Remarks

Compare two character arrays according to locale.
#include <string.h>
int strcoll(const char *sl,

const char *s2);
The strcoll () function compares two character arrays based on
the collating sequence set by the locale. h header file.

SELECTIONS FROM THE STANDARD LIBRARY

The MetroWerks C implementation of strcoll () compares two
character arrays using strcmp ().It is included in the string library
to conform to the ANSI C Standard Library specification.

Return value strcoll () returns zero ifs 1 is equal to s2, a negative value ifs 1
is less than s2, and a positive value if sl is greater than s2.

See also locale. h
string.h: memcmp(), strcmp(), strncmp()

srrcspnO~~~~~~~~~~~~~~~~~~~~~~~~

Purpose
Synopsis

Remarks

Return value

See also

Purpose
Synopsis

Remarks

Return value

Purpose
Synopsis

Count characters in one character array that are not in another.
#include <string.h>
size_t strcspn(const char *sl,

canst char *s2);
The strcspn () function counts the initial length of the character
array pointed to by s 1 that does not contain characters in the char­
acter array pointed to by s 2. The function starts counting charac­
ters at the beginning of s 1 and continues counting until a character
in s 2 matches a character in s 1.

Both s 1 and s2 must point to null terminated character arrays.
strcspn() returns the length of characters in sl that does not
match any characters in s 2.
string.h: strpbrk(), strspn()

Return an error message in a character array.
#include <string.h>
char *strerror(int errnum);
The strerror () function returns a pointer to a null terminated
character array that contains an error message. The errnum argu­
ment has no effect on the message returned by strerror () ; it is
included to conform to the ANSI C Standard Library specification.
strerror () returns a pointer to a null terminated character array
containing an error message.

Compute the length of a character array.
#include <string.h>
size t strlen(const char *s);

439

APPENDIX D

440

Remarks The strlen () function computes the number of characters in a
null terminated character array pointed to bys. The null character
(' \ o ') is not added to the character count.

Return value strlen () returns the number of characters in a character array not
including the terminating null character.

strncat() -------------------------

Purpose
Synopsis

Remarks

Append a specified number of characters to a character array.
#include <string.h>
char *strncat(char *dest,

canst char *source,
size_t n);

The strncat () function appends a maximum of n characters from
the character array pointed to by source to the character array
pointed to by dest. The dest argument must point to a null termi­
nated character array. The source argument does not necessarily
have to point to a null terminated character array.
If a null character is reached in source before n characters have
been appended, strncat () stops.
When done, strncat () terminates dest with a null character
(I \0 I).

Return value strncat () returns the value of dest.
See also string. h: strcat ()

stmcmp() ________________________ ~

Purpose
Synopsis

Remarks

Compare a specified number of characters.
#include <string.h>
int strncmp(const char *sl,

canst char *s2,
size_t n);

The strncmp () function compares n characters of the character
array pointed to by s 1 to n characters of the character array
pointed to by s2. Both sl and s2 do not necessarily have to be null
terminated character arrays.
The function stops prematurely if it reaches a null character before
n characters have been compared.

SELECTIONS FROM THE STANDARD LIBRARY

Return value s trncmp () returns a zero if the first n characters of s 1 and s 2 are
equal, a negative value ifs 1 is less than s2, and a positive value if
s 1 is greater than s 2.

See also string.h: memcmp(), strcmp()

Purpose
Synopsis

Remarks

Copy a specified number of characters.
#include <string.h>
char *strncpy(char *dest,

const char *source,
size_t n);

The strncpy () function copies a maximum of n characters from
the character array pointed to by source to the character .array
pointed to by dest. Neither dest nor source must necessarily
point to null terminated character arrays. Also, dest and source
must not overlap.
If a null character (' \ O ') is reached in source before n characters
have been copied, strncpy () continues padding de st with null
characters until n characters have been added to dest.
The function does not terminate dest with a null character if n
characters are copied from source before reaching a null character.

Return value strncpy () returns the value of dest.
See also string. h: memcpy () , memmove () , strcpy ()

strpbrk() ----------------------

Purpose
Synopsis

Look for the first occurrence of an array of characters in another.
#include <string.h>
char *strpbrk(const char *sl,

const char *s2);
Remarks The strpbrk() function searches the character array pointed to by

s 1 for the first occurrence of a character in the character array
pointed to by s2.
Both sl and s2 must point to null terminated character arrays.

Return value strpbrk () returns a pointer to the first character in s 1 that
matches any character in s2, and returns a null pointer (NULL) if no
match was found.

See also string.h: strcspn()

441

APPENDIXD

442

Purpose Search for the last occurrence of a character.
Synopsis #include <string. h>

char *strrchr(const char *s,
int c);

Remarks The strrchr () function searches for the last occurrence of c in the
character array pointed to bys. The s argument must point to a
null terminated character array.

Return value strrchr () returns a pointer to the character found or returns a
null pointer (NULL) if it fails.

See also string. h: memchr (), strchr ()

strspn() ________________________ ~

Purpose
Synopsis

Remarks

Return value

See also

Count characters in one character array that are in another.
#include <string.h>
size_t strspn(const char *sl,

const char *s2);
The strspn () function counts the initial number of characters in
the character array pointed to by s 1 that contains characters in the
character array pointed to by s2. The function starts counting char­
acters at the beginning of sl and continues counting until it finds a
character that is not in s2.
Both sl and s2 must point to null terminated character arrays.
strcspn () returns the number of characters in s 1 that matches
the characters in s 2.
string.h: strpbrk(), strscpn()

strstrO -------------------------

Purpose
Synopsis

Remarks

Search for a character array within another.
#include <string.h>
char *strstr(const char *sl,

const char *s2);
The strstr () function searches the character array pointed to by
sl for the first occurrence of the character array pointed to by s2.
Both s 1 and s2 must point to null terminated (' \ O ')character
arrays.

SELECTIONS FROM THE STANDARD LIBRARY

Return value strstr() returns a pointer to the first occurrence of s2 in sl and
returns a null pointer (NULL) if s2 cannot be found.

See also string. h: memchr (), strchr ()

Purpose
Synopsis

Extract tokens within a character array.
#include <string.h>
char *strtok(char *str,

const char *sep);
Remarks The s trtok () function tokenizes the character array pointed to by

str. The sep argument points to a character array containing
token separator characters. The tokens instr are extracted by suc­
cessive calls to strtok ().
The first call to strtok () causes it to search for the first character
in str that does not occur in sep. The function returns a pointer to
the beginning of this first token. If no such character can be found,
strtok () returns a null pointer {NULL).

If, on the first call, strtok{) finds a token, it searches for the next
token.
The function searches by skipping characters in the token instr
until a character in sep is found. This character is overwritten with
a null character to terminate the token string, thereby modifying
the character array contents. The function also keeps its own
pointer to the character after the null character for the next token.
Subsequent token searches continue in the same manner from the
internal pointer.
Subsequent calls to strtok() with a NULL str argument cause it
to return pointers to subsequent tokens in the original str charac­
ter array. If no tokens exist, strtok () returns a null pointer. The
sep argument can be different for each call to s trtok () .
Both str and sep must be null terminated character arrays.

Return value When first called strtok () returns a pointer to the first token in
str or returns a null pointer if no token can be found.
Subsequent calls to strtok() with a NULL str argument causes
strtok () to return a pointer to the next token or return a null
pointer (NULL) when no more tokens exist.
strtok() modifies the character array pointed to by str.

443

APPENDIXD

444

tmpfile() -----------------------

Purpose
Synopsis

Remarks

Return value

See also

Open a temporary file.
#include <stdio.h>
FILE *tmpfile(void);
The tmpf ile () function creates and opens a binary file that is
automatically removed when it is closed or when the program ter­
minates.
tmpfile () returns a pointer to the FILE variable of the temporary
file if it is successful. If it fails, tmpfile () returns a null pointer
(NULL).

stdio.h: £open(), tmpnam()

tmpnamO~---------------------~

Purpose
Synopsis

Remarks

Return value

See also

Create a unique temporary filename.
#include <stdio.h>
char *tmpnam(char *s);
The tmpnam () functions creates a valid filename character string
that will not conflict with any existing filename. A program can call
the function up to TMP_MAX times before exhausting the unique
filenames tmpnam () generates. The TMP _MAX macro is defined in
stdio.h.
The s argument can either be a null pointer or pointer to a charac­
ter array. The character array must be at least L _ tmpnam characters
long. The new temporary filename is placed in this array. The
L_ tmpnam macro is defined in stdio. h.
If s is NULL, tmpnam () returns with a pointer to an internal static
object that can be modified by the calling program.
Unlike tmpf ile () , a file created using a filename generated by the
tmpnam () function is not automatically removed when it is closed.
tmpnam() returns a pointer to a character array containing a
unique, nonconflicting filename. If s is a null pointer (NULL), the
pointer refers to an internal static object. Ifs points to a character
array, tmpnam() returns the same pointer.
stdio.h: fopen(), tmpfile()

SELECTIONS FROM THE STANDARD LIBRARY

tolower(), toupper() ____________________ _

Purpose
Synopsis

Remarks

Return value

See also

Character conversion macros.
#include <ctype.h>
int tolower(int c);
int toupper(int c);
The to lower () macro converts an uppercase letter to its lowercase
equivalent. Non-uppercase characters are returned unchanged. The
toupper () macro converts a lowercase letter to its uppercase
equivalent and returns all other characters unchanged.
to lower () returns the lowercase equivalent of uppercase letters
and returns all other characters unchanged.
toupper () returns the uppercase equivalent of a lowercase letter
and returns all other characters unchanged.
ctype.h: isalpha(), islower(), isupper()

ungetc() ------------------------

Purpose
Synopsis

Remarks

Return value
See also

Place a character back into a stream.
#include <stdio.h>
int ungetc(int c,

FILE *stream);
The ungetc () function places character c back into stream's
buffer. The next read operation will read the character placed by
ungetc ().Only one character can be pushed back into a buffer
until a read operation is performed.
The function's effect is ignored when an fseek (), fsetpos (),or
rewind() operation is performed.
ungetc () returns c if it is successful and returns EOF if it fails.
stdio.c: fseek(), fsetpos(), rewind()

vfprintf() ----------------------­

Purpose
Synopsis

Remarks

Write formatted output to a stream.
#include <stdio.h>
int vfprintf (FILE *stream,

const char *format, va_list arg);
The vfprintf () function works identically to the £print£ ()
function. Instead of the variable list of arguments that can be
passed to fprintf (), vfprintf () accepts its arguments in the

445

APPENDIXD

446

array of type va_list processed by the va_start () macro from
the stdarg. h header file.

Return value vfprintf () returns the number of characters written or EOF if it
failed.

See also stdio.h: fprintf(), print£()
stdarg.h

vprintf() -----------------------

Purpose
Synopsis

Remarks

Return value

See also

Write formatted output to stdout.
#include <stdio.h>
int vprintf (const char *format,

va_list arg) ;
The vprintf () function works identically to the print£ () func­
tion. Instead of the variable list of arguments that can be passed to
print£ (), vprintf () accepts its arguments in the array of type
va_list processed by the va_start () macro from the
stdarg. h header file.
vprintf () returns the number of characters written or a negative
value if it failed.
stdio.h: £print£(), print£()
stdarg.h

vsprintf() ------------------------­

Purpose
Synopsis

Write formatted output to a string.
#include <stdio.h>
int vsprintf (char *s,

const char *format,
va_list arg);

Remarks The vsprintf () function works identically to the sprint£ ()
function. Instead of the variable list of arguments that can be
passed to sprint£ (), vsprintf () accepts its arguments in the
array of type va_list processed by the va_start() macro from
the stdarg. h header file.

Return value vsprintf () returns the number of characters written to s or EOF
if it failed.

See also stdio.h: print£(), sprint£()
stdarg.h

Appendix E
About CodeWarrior ...

Although you've spent a lot of time with Code Warrior as you've made your way
through these pages, you've only skimmed its surface. This appendix (written by
Avi Rappoport, one of Metrowerks's finest!) offers a closer look at one of the lead­
ing Macintosh development environments.

It's important to note that this appendix describes the commercial version of
CodeWarrior, not the "Lite" version that came with the book. For example,
CodeWarrior Lite will not aUow you to create a new project, whereas the
commercial version obviously does.

Using CodeWarrior
As you've seen throughout this book, CodeWarrior provides you with an inte­
grated programming environment, including an editor, a project window, a com­
piler, and a linker. When you launch your program from within Code Warrior, it
runs as a separate application. Alternatively, the Metrowerks Debugger allows you
to view and modify your variables as you step through your source code.

Projects

To write a program using Code Warrior, you'll first need to create a project to store
the source file names, preferences, and object code. Choose New Project from
the File menu, and a dialog box will appear, allowing you to name your new pro­
ject. A pop-up menu will appear at the bottom of the dialog, allowing you to select
from a list of stationery that determine the files that are added to your new project.
The projects in this book were all built using the stationery -ANS I 68K (2i)C.µ
(ANSI library, 68K version of Code Warrior, C language, and 2-byte in ts). Figure
E.l shows the stationery for new 68K-based projects, and Figure E.2 shows the sta­
tionery for new PowerPC-based projects.

Important

447

APPENDIX E

448

f c:> CW Test..- I c:>CW Test

LJ (l:odelllaniorDocumentationJ <r
LJ ("101 Profiler /,2/

LJ ("101 ZoneRanger /,.5/ 111111

LJ (old Release Notes archiue) mm
LJ (Project Stationery) {}

Name the project as:

([jf~C1)

(Desktop)

(New LJ)

(Cancel J

Project Stationery: v Mac: C app-6BK .. u.
Mac C HCMD-68K.JJ
Mac C++ app-68K.JJ
PowerPlant app-68K.JJ
...... RNS I 68K (2i) C.JJ
...... RNS I 68K (2i) C++.JJ
...... RNS I 68K (2i/F /Bd) C++.JJ
...... RNS I 68K (2i/F /80) C.JJ
...... RNS I 68K (4i) C++.JJ
...... RNS I 68K (4i) C.JJ
...... RNS I 68K (4i/F) C++.JJ
...... RNS I 68K (4i/F) C.JJ
...... Strict RNS I 68K (2i) C++.JJ.
....,Strict RNS I 68K (2i) C.JJ
....,Strict RNS I 68K (4i) C++.JJ.
....,Strict RNS I 68K (4i) [.JJ
....,StrictRNS I (4i/F /Bd) C++.JJ
...... StrictRNS I (4i/F /Bd) C.JJ

Figure E.1 The New Project dialog box showing the list of stationery available in the

68K version of CodeWarrior.

ABOUT CODEWARRIOR •••

lc:.CWTest..,.l c:.CW Test

[?.:~MW lh~tm~j/6BK l ,2 0 (l:j~~ct)
lI!.:~ MU~ D(~hu~j/PP[L2

() Desktop

LJ Profiler Libraries (New LJ)
LJ Release Notes {7 ..

Name the project as: (Cancel

I PPC test.J.l I (Open

Project Stationery: ../Mac C app-PPC.J.1
Mac C++ app-PPC.J.1
PowerPlant app-PPC.J.1
...... ANS I PPC C++.J.l
····ANS I PPC C..u.
...... Strict ANS I PPC C++ • .u
...... Strict ANS I PPC [.J.l

)

J

Figure E.2 The New Project dialog box showing the list of stationery available in the

PowerPC version of CodeWarrior.

Stationery automatically sets the preferences and includes the correct libraries
for your project. We have stationery for making both ANSI console applications
and Macintosh graphical user interface applications. Once you name your new
project, the project window will appear, with the temporary source files and the
correct libraries installed (see Figures E.3 and E.4).

Projects include placeholder source code files and resource files, as well as ap­
propriate CodeWarrior libraries. You'll notice that you can use almost any Mac
character in the file names, including spaces. Most CodeWarrior projects end in
"µ" (mu, option-m), making the name distinct from other kinds of files, but this is
not required.

449

APPENDIXE

450

test . .u
File Code ·Data ~ -

"V" Sources 0 ~ 0 ~ • El i)
<replace me Mac>.c . 0 i 0 i • III t--

·v:···R·e;5·c;·i0·r:·c·e·s···1···············i0·1···············i0·r·················t:r
<replace me> .rsrc l n/a l n/a l III

·v:····L···1.:iir::ar:ie:5···r··············i0·r··············i0·r··················r.t·· . . . ~~

MacOS.lib 1 O ! 0 l III -0
3 file(s) 0 0 ~

Figure E.3 A 68K project window.

Source code files are like those you've been using in this book: text files with
code to be compiled. Resource files are a Macintosh-standard way of storing data
that the user will see, such as icons, strings, and alert boxes. You'll learn all about
resources when you read the Macintosh C Programming Primer.

Libraries are compiled code that your code can call. For example, a function in
the ANSI C library is printf (),and you can call it from your code, but you can't
see how it's written, because it's already compiled. The Mac Toolbox libraries are
called MacOS. lib on the 68K and Interf aceLib on the Power PC. Again, you'll
learn about the Mac Toolbox when you read the Primer. The CodeWarrior User's
Guide on the CodeWarrior CD tells you about all of the libraries that come with
Code Warrior.

D PPC test . .u BJ
File Code Data ~ -v sources . 0 i 0 i • El i)

<replace me ANSl>.d 0 l 01 • III t--
···oO>··················oO>··················oO>·························· v libraries 0 0 i El

lnterfacel ib 0 o! III
MYCRuntime. lib 0 o! III
Mathlib 0 01 III
ANS I C .PPC .Lib 0 o! III

-0 SIOUX .PPC .Lib 0 o! [El

6 file(s) 0 0 ~

Figure E.4 A PowerPC project window.

ABOUT CODEWARRIOR ...

In general, your source code file names will end in either ". c" or ". cp".
CodeWarrior uses the suffix to determine which compiler to use to compile the
source code in the file. C source code is in". c" files; and C++ source code is in
" • cp" files.

You can add any number of source, resource, and library files to your project
by using the Rdd Files command in the project menu or by dragging the file or
folder onto the Project window from the desktop. If you use the Saue Rs com­
mand from the File menu to save a source file, the new version with its new name
will be included in your project.

When you compile, Code Warrior will parse the code in each source file, locate
the headers, and generate an intermediate object format, which is stored in the
project. If you change a few files or a header file included in several files, those will
be updated, but the rest of the project does not have to be recompiled. When you
select Make, the linker connects the object with the Mac Toolbox and other li­
braries and generates an executable program on your disk.

Editing

The CodeWarrior Editor lets you work on up to 32 source code files at one time.
You can't see it here, but the editor automatically colors comments and C/C++
keywords, such as void and while. (Use the Preferences to add new words and
change colors.) The Editor automatically converts DOS and UNIX line endings, so
if you are using source code from these systems, you don't have to worry about
the format. The Editor also handles large amounts of text, up to several megabytes.

There are up to four icons in the lower-left comer of each Editor window
(Figure E.5). Three of these icons are connected to pop-up menus. The leftmost
icon (sideways triangle) shows all headers included in the file. When you select
one, that include file is opened for you. The curly-brace icon lists all the function
names found in the file. When you select a function name, the source code window
scrolls so that the function appears in the window. The document icon allows you
to set the line-end format (Mac, DOS, UNIX) and toggle the syntax coloring. The
lock or pencil icon shows whether the file is write-only or has Projector source
code control status.

CodeWarrior features a sophisticated search-and-replace mechanism. You can
also search and replace text in a single file, in sources and headers, and in saved
sets of files (Figure E.6). The Batch option lets you see the results of your search
in a list.

451

APPENDIXE

452

GetData.c

II**/
I* *I
/* "GetData" source code */
/* from Ultimate Mac Programming, Uolume I */
/* Copyright 1994, Dave Mark and Donald Olson */
I* main to one and al I... *I
I* Toolbox lnit *I
I** AE lnit ********************************I

DoOb jectSpecifier
OoGetData h >
Do Message . h >
Do2Message
DoError ~

Figure E.5 A sample source code editing window.

Compiling, Linking, and Running

As you write code, you should save and compile to see whether you're getting it
right. The fast Code Warrior compiler will list all errors, so you can fix them up be­
fore going on.

Using the stationery will automatically include the correct libraries in your
project. All you have to do is choose Make (or Run) from the Project menu, and
CodeWarrior will compile any uncompiled source files, and locate and link in the
libraries. If your code calls a function that is in a header file but not in any of the li­
braries, you'll see an error message during this phase and will have to add a li­
brary.

If you choose Run, Code Warrior will automatically launch the application that
you've just created. Or, you can double-click on the application on the desktop­
it's a real Mac program now.

Debugging

To track your program's execution and variables, choose Enable Debugging
from the Project menu, and CodeWarrior will automatically set all the debug­
ging options. Then, when you choose Run from the Project menu or double­
click on the symbol file (which ends in 11

• SYM" on 68K and 11
• xSYM" on PowerPC),

you'll launch the Metrowerks Debugger and be able to see your source code as
your program runs (Figure E.6).

ABOUT CODEWARRIOR •••

Find

Find: I block move

Replace: I BlockMoveData

G n~iiiii-Fiiii1 n-d iiiiiiii'ill]
G [__ R__;ep_la_ce_...J)

~
D Batch 181 Ignore Case
181 Wrap D Entire Word

D Regexp [--R-e p-la_c_e A-1-1 -)

Multi-File Search:

AboutBox.cp
AboutBox.h
AEObjects.h
AERegistry.h

¢ App 1 e Event Uti 1 i ti es .c p

Figure E.6 The dialog box to find and replace.

File Sets: G D Stop at EOF

s
I
{}

181 Sources
D System Headers
181 Project Heade rs
181 (Others...)

The debugger window allows you to set breakpoints, allowing you to stop the
program at any line in your source code. The upper-left pane shows the current
chain of function calls. The upper-right pane shows all variables in scope (along
with their current values). The lower section shows the source. You can control the
debugging process from the menu or the floating toolbar.

The Metrowerks Debugger shows variables in many useful formats, includ­
ings strings and structures; supports expression evaluation, conditional break­
points, hex dump of various memory locations, assembler, threads; and includes
many other features. The interface is the same on the 68K and PowerPC, so you
can debug both versions of your program easily. The Debugger will even debug
code resources and libraries.

CodeWarrior and ANSI C programming
As you know from this book, CodeWarrior includes the standard ANSI libraries
and allows you to write command-line, console-oriented programs. You can com­
pile and run programs written for other systems (with some changes) or use code
for statistics, data analysis, and other functions that do not require a Mac interface.
Then, you can write a Mac program that calls these functions but includes a stan­
dard graphical user interface.

453

APPENDIXE

454

main 0 I> errorString
MbjectS?Jcifier
DoGetData

!
!
! void DoError(Str255 errorString)

- i {
- ! ParamText< errorStr i ng, "\p", "\p", "\p" >; •I• StopAlert< kErrorALATid, kNilFI lterProc >;

! - ; Ex itToShell O;
- i
[!)!ill Line: 235 Source

Figure E.7 A CodeWarrior debugger window.

II

Metrowerks's Implementation of the ANSI C Standard

Metrowerks's C, C++, and Assembly Language Manual explains how the compiler
and linker implement the ANSI C standard. The standard leaves many definitions,
such as the length of an integer, "compiler-dependent," and this manual explains
how Code Warrior will treat these options.

The C Library Reference document describes the ANSI C Library shipped on the
Code Warrior CD. It describes each call, its parameters, and return value and pro­
vides general information on usage. This document also covers the Metrowerks
SIOUX console library, as well as the unix functions, which allow CodeWarrior
programs to use standard UNIX calls, such as creat () , to make a new file.

Notes on which ANSI library to include in your project, as well as error mes­
sages for the C compiler and linker, are described in the CD's CodeWarrior User's
Guide.

ANSI C++

C++ is an extension of C, designed for object-oriented programming. C++ allows
you to organize your programs in classes based on the data rather than the kind of
function and to reuse code rather elegantly. CodeWarrior supports C++, as described
in the Metrowerks's C, C++ and Assembly Language Manual, and the C++ Library
Reference (on the CodeWarrior CD, in QuickView interactive document format).

To learn ANSI Standard C++, you can follow the tutorials in Learn C++ on the
Macintosh.

ABOUT CODEWARRIOR .•.

Writing Mac Programs
As you've probably noticed by now, ANSI C is only part of programming the
Macintosh. You have to learn all about the Mac Toolbox to create programs with
the Mac user interface and functionality. The Macintosh C Programming Primer de­
scribes this kind of programming.

CodeWarrior makes it easy for you to write Mac programs with Macintosh
Toolbox headers and libraries, together with your resource files. The 68K and
PowerPC CodeWarrior environments are identical, so you can use the same pro­
ject organization and even the same source code (libraries are different). When
you're done programming, merge the applications, and you'll have a fat binary
that runs in native mode on both 68K and PowerPC Macintosh systems, just like
our CodeWarrior environment. The CodeWarrior User's Guide and CodeWarrior
Tutorials will help you with making Mac programs.

Beyond the standard libraries, the CodeWarrior CD includes special libraries
for QuickTrme, Sound, XTND, Thread Manager and QuickDraw GX.

You can also write code resources, such as HyperCard XCMDs; After Dark
screensaver modules; and Photoshop, illustrator, and Freehand plug-ins. This is an
easy way to start programming the Mac. Libraries for each of these external for­
mats are on the CodeWarrior CD.

The PowerPlant framework uses C++ and multiple inheritance to provide
many Macintosh standard elements, including menus, windows, controls, simple
file handling, and memory management. More esoteric features include QuickTrme
movies, off-screen bitmaps, Apple Events, and drag-and-drop.

What You Get with CodeWarrior
The Code Warrior CD comes with:

• C, C++, Pascal, and Object Pascal compilers and linkers (68K code generation
only in CW Bronze, 68K, PowerPC, and Intel code generation in CW Gold)

• Standard ANSI libraries

• SIOUX input-output console library (for command-line programs)

• Macintosh Toolbox libraries

• Source-level debugger

• Profiling and memory-tracking tools

• MPW shell and Metrowerks compiler and linker tools for 68K and PowerPC

455

APPENDIXE

456

• PowerPlant application framework

• More than 2500 pages of documentation

• Tutorials and examples

• APis for various Mac applications

• Helpful source code and libraries

• Demos of various programmer tools

CodeWarrior Subscription

When you buy Code Warrior, you get the first CD and two update CDs within the
first year; you can then renew your subscription at a reduced rate. Code Warrior re­
leases are in January, May, and September.

You will also get free, responsive technical support by phone, fax, or e-mail.

Prices

• $99 for Bronze (680x0 Mac native code only)

• $399 for Gold (680x0, PowerPC Mac, and Intel x86/Pentium native code)

If you are affiliated with an educational institution, you are eligible for the aca­
demic version, at $99, with all the features of the Gold version.

To order, contact your local software store, university computer store, or
Metrowerks Mail Order at (800) 377-5416 or fax (419) 281-6883.

Hardware and System Requirements

Metrowerks CodeWarrior CW6 requires a Macintosh computer with a Motorola
MC68020, MC68030, MC68040, or PowerPC processor; 8 megabytes of RAM;
Color QuickDraw; Mac OS System 7.1 or later; and a CD-ROM drive to install the
software.

Other Cool Stuff
The CodeWarrior CD includes many additional programming tools and docu­
mentation files. For a printed version of the core documentation, you can buy
Inside Code Warrior from your computer bookstore or Metrowerks Mail Order (see
above).

ABOUT CODEWARRIOR •..

CodeWarrior Information
Up-to-date information and help with Code Warrior is available on various on-line
services, including:

• Internet newsgroup: comp.sys.mac.programmer.codewarrior

• Web site: http:/ /www.iquest.com/ fairgate/ cw I cw.html

• America Online forum: metrowerks

Information is also available directly from Metrowerks:

Metrowerks Corporation
The MCC Building, Suite 310
3925 West Braker Lane
(at Mopac Expressway)
Austin, TX 78759-5321
Telephone: {512) 305-0400
Fax: (512) 346-0440

457

----------- Appendix F
Answers to Selected

Exercises

Chapter4 -----------------

1.

2.

Messa e Window

D le o

-

Messa e Window

: --RuntimeModule~: 'main' referenced from
' --8tartup' is undefined.

459

APPENDIX F

460

3.

Messa e Window

4.

Messa e Window

1. a.

Chapters~~~~~~~~~~~~~~~~~~~~~~~~~~

Missing quotes around "Hello, World".
b.
c.
d.

e.

f.

g.
h.

Missing comma between two variables.
=+ should be += (although this will compile with some older compilers).
Missing second parameter to printf () . Note that this error won't be caught
by the compiler and is known as a run-time error.
Another run-ti.me error. This time, you are missing the %d in the first argu­
ment to printf () .
This time, we've either got an extra \ or are missing an n following the \ in
the first printf () parameter.
The left- and right-hand sides of the assignment are switched.
The declaration of anotherint follows a nondeclaration.

2. a. 70
b. -6

ANSWERS TO SELECTED EXERCISES

c. -1
d. 4
e. -8
f. 2
g. 14
h. 1

Chapter6

1. a. The if statement's expression should be surrounded by parentheses.
b. We increment i inside the for loop's expression, then decrement it in the

body of the loop. This loop will never end!
c. The while loop has parentheses but is missing an expression.
d. The do statement should follow this format:

do
statement
while (expression) ;

e. Each case in this switch statement contains a text string, which is illegal.
Also, case default should read default.

f. The print£ ()will never get called.
g. This is probably the most common mistake made by C programmers. The

assignment operator(=) is used instead of the logical equality operator(==).
Since the assignment operator is perfectly legal inside an expression, the
compiler won't find this error, an annoying little error you'll encounter
again and again!

h. Once again, this code will compile, but it likely is not what you wanted. The
third expression in the for loop is usually an assignment statement-some­
thing to move i toward its terminating condition. The expression i * 2 0 is
useless here, since it doesn't change anything.

2. Look in the folder 06. 05 - nextPrime2.

3. Look in the folder 06. 06 - nextPrime3.

Chapter7 ~~~~~~~~~~~~~~~~~~~~~~~~~

1. a. Final value is 25.
b. Final value is 512. Try changing the for loop from 2 to 3. Notice that this

generates a number too large for a 2-byte int to hold.
c. Final value is 1024.

2. Look in the folder 07. 06 - power2.

3. Look in the folder 07. 07 - nonPrimes.

461

APPENDIX F

462

Chapters ~~~~~~~~~~~~~~~~~~~~~~~~~

1. a. If the char type defaults to signed (very likely), c can hold values only
from -128 to 127. Even if your char does default to unsigned, this is dan­
gerous code. At the very least, use an unsigned char. Even better, use a
short, int, or long.

b. Use%£, %g, or %e to print the value of afloat, not %d.
c. The text string 11 a 11 is composed of two characters: ' a' and the terminating

zero byte. The variable c is only a single byte in size. Even if c were 2 bytes
long, you can't copy a text string this way. Try copying the text one byte at
a time into a variable large enough to hold the text string and its terminat­
ing zero byte.

d. Once again, this code uses the wrong approach to copying a text string, and
there is not enough memory allocated to hold the text string and its zero byte.

e. The #define of kMaxArraySize must come before the first non-#def ine
reference to it.

f. The following definition creates an array ranging from c [0] to
c[kMaxArraySize-1]:
char c[kMaxArraySize];

The reference to c [kMaxArraySize] is out of bounds.
g. The problem occurs in the line:

cPtr++ ::;; O;

This line assigns the pointer variable cPtr a value of 0 (making it point to lo­
cation 0 in memory), then increments it to 1 (making it point to location 1 in
memory). This code will not compile. Here's a more likely scenario:

*cPtr++ = O;

This code sets the char that cPtr points to to 0, then increments cPtr to
point to the next char in the array.

h. The problem here is with the statement:

c++;

You can't increment an array name. Even if you could, if you increment c,
you no longer have a pointer to the beginning of the array! A more proper
approach is to declare an extra char pointer, assign c to this char pointer,
then increment the copy of c, rather than c itself.

i. You don't need to terminate a #define with a semicolon. This statement
defines "kMaxArraySize" to "200; ",probably not what we had in mind.

2. Look in the folder 08. 08 - dice2.

3. Look in the folder 08. 09 - wordCount2.

ANSWERS TO SELECTED EXERCISES

Chapter9 ---~
1. a. The semicolon after employeeNumber is missing.

b. This code is really pretty useless. If the first character returned by
getchar () is ' \ n ', the ; will get executed; otherwise, the loop just exits.
Try changing the == to ! = and see what happens.

c. This code will work, since the double quotes around the header file name
tell the compiler to search the local directory in addition to the places it nor­
mally searches for system header files. On the other hand, it is considered
better form to place angle brackets around a system header file:
<stdio.h>.

d. The name field is missing its type. As it turns out, this code will compile, but
it might not do what you think it does. Since the type is missing, the C com­
piler assumes that you want an array of in ts. Even though it compiles, this
is bad form!

e. Both next and prev should be declared as pointers.
f. There are several problems with this code. First, the while loop is com­

pletely useless. Also, the code should use '\ 0' instead of 0 (although that's
really a question of style). Finally, by the time we get to the pr intf () ,
line points beyond the end of the string!

2. Look in the folder 09. 06 - dice2.

3. Look in the folder 09. 07 - cdTracker2.

4. Look in the folder 09. 08 - cdTracker3.

ChapterlO --
1. a. The arguments to fopen() appear in reverse order.

b. Once again, the arguments to f open () are reversed. In addition, the first
parameter to f scanf () contains a prompt, as if you were calling
print£ ().Also, the second parameter to fscanf () is defined as a char,
yet the %d format specifier is used, telling fscanf () to expect an int. This
will cause fscanf () to store a value of size int in the space allocated for
a char. Not good!

c. The line is declared as a char pointer instead of as an array of chars. No
memory was allocated for the string being read in by f scan£ () . Also, since
line is a pointer, the & in the fscanf () call shouldn't be there.

d. This code is fine except for one problem. The file is opened for writing, yet
we are trying to read from the file by using fscanf () .

2. Look in the folder 10. 04 - fileReader.

3. Look in the folder 10. 05 - cdFiler2.

463

APPENDIXF

464

Chapter11

1. a. In the next-to-last line, the address of myCat is cast to a struct. Instead,
the address should be cast to a (struct Dog *).

b. The typedef defines FuncPtr to be a pointer to a function that returns an
int. MyFunc () is declared to return a pointer to an int, not an int.

c. The declaration of Number is missing the keyword union. Here's the cor­
rected declaration:

union Number myUnion;

d. The Player union fields must be accessed using u. Instead of myPlayer .my Int,
refer to myPlayer.u.myint. Instead of myPlayer.my:Float, refer to
myPlayer.u.myFloat.

e. First off, myFuncPtr is not a function pointer and not a legal I-value. As is,
the declaration just declares a function named myFuncPtr. This declaration
fixes that problem:

int (*myFuncPtr)(int);

Next, main () doesn't take a single int as a parameter. Besides that, calling
main () yourself is a questionable practice. Finally, to call the function pointed
to by myFuncPtr, use either myFuncPtr () ; or (*myFuncPtr) () ; instead
of *myFuncPtr () ; .

f. The function strcmp () returns zero if the strings are equal. The if would
fail if the strings were the same. The message passed to pr intf () is
wrong.

g. The parameters passed to strcpy () should be reversed.
h. No memory was allocated for s. When strcpy() copies the string, it will

be writing over unintended memory.
i. This is a common problem that tons of people, including battle-scarred vet­

erans, run into. The function call in the loop is not a function call. Instead,
the address of the function DoSomeStuff is evaluated. Because this ad­
dress is not assigned to anything or used in any other way, the result of the
evaluation is discarded. The expression "DoSomeStuf f;" is effectively a
no-op, making the entire loop a no-op.

2. Look in the folder 11. 05 - treePrinter.

-----------Appendix G
Bibliography

1. The C Programming Language, Brian W. Kernighan and Dennis M. Ritchie, 1988,
Prentice Hall, Englewood Cliffs, NJ.

2. C: A Reference Manual, Fourth Edition, Samuel Harbison, 1994, Prentice Hall,
Englewood Cliffs, NJ.

3. Macintosh C Programming Primer, Volume I.1 Second Edition, Dave Mark and
Cartwright Reed, 1992, Addison-Wesley Publishing Company, Reading, MA.

4. Macintosh C Programming Primer, Volume II, Dave Mark, 1990, Addison-Wesley
Publishing Company, Reading, MA.

5. Danny Goodman's AppleScript Handbook, Second Edition, Danny Goodman,
1995, Alfred A. Knopf, New York, NY.

6. Macintosh Human Interface Guidelines, Apple Computer, Inc., 1992, Addison­
Wesley Publishing Company, Reading, MA.

7. Inside Macintosh: PowerPC System Software, Apple Computer Inc., 1994,
Addison-Wesley Publishing Company, Reading, MA.

8. Algorithms in C, Robert Sedgewick, 1990, Addison-Wesley Publishing
Company, Reading, MA.

9. Data Structures and C Programs, Second Edition, Christopher J. Van Wyk, 1990,
Addison-Wesley Publishing Company, Reading, MA.

10. The Art of Computer Programming, Volume 1: Fundamental Algorithms, Second
Edition, Donald E. Knuth, 1973, Addison-Wesley Publishing Company,
Reading, MA.

11. Learn C++ on the Macintosh, Dave Mark, 1993, Addison-Wesley Publishing
Company, Reading, MA.

465

APPENDIXG

466

12. The Art of Computer Programming, Volume 3: Sorting and Searching, Donald E.
Knuth, 1973, Addison-Wesley Publishing Company, Reading, MA.

13. Inside Macintosh: Macintosh Toolbox Essentials, Second Edition, Apple
Computer, Inc., 1992, Addison-Wesley Publishing Company, Reading, MA.

14. Inside Macintosh: More Macintosh Toolbox, Second Edition, Apple Computer,
Inc., 1993, Addison-Wesley Publishing Company, Reading, MA.

15. Macintosh Programming Secrets, Second Edition, Scott Knaster, 1992, Addison­
Wesley Publishing Company, Reading, MA.

-----------------------------Index
! = operator, 81, 82-83
% operator, 104, 106
& (address of) operator, 118, 305, 306
&& (and) operator, 83-84, 85
&=operator, 305, 306
* operator, 56-57, 118, 119-20, 121
*= operator, 56-57
*/, 73
+ operator, 54
++operator, 54
+= operator, 55-56
, operator, 307-8
- operator, 54
-- operator, 54
-=operator, 55-56
->operator, 219
• operator, 218
I operator, 56-57
/*, 73
I= operator, 56-57
: operator, 307-8
:, 26, 27, 89-90
< operator, 81
<"" operator, 81
<< operator, 306-7
<<"" operator, 306-7
= (assignment) operator, 50
== operator, 81
> operator, 81
>= operator, 81
>> operator, 306-7
>>= operator, 306-7
? operator, 307-8
\ \, 70
\ ", 70
\0, 204-5
\ t (single tab character), 70
"operator, 305, 306
{} (curly braces), 26, 88-89
I operator, 305, 306
I I (or) operator, 84-85
- operator, 305, 306
68000 emulator, 22

680x0
data alignment rules on, 214-17
machine language instructions, 22

80486 machine language instructions, 22

\a, 70-71
Algorithms, 26-28

defined, 105
Alignment rules, data, 214-17
American National Standards Institute (ANSI),

29
America Online, 324
AND,305
and operator, 83-84, 85
ANSIC,29
Append mode, 245
AppleScript, 14-15
Application, fat, 23
Arguments. See Parameter(s)
Arithmetic, pointer, 192
Array(s), 168-76, 197-209

dimensions of, 169
elements of, 169
for loop to initialize, 170
index, 169
memory and, 205-6, 208-9, 223
multidimensional, 198-99
out of bounds reference to, 176, 206
pointers and, 174-75
reasons for using, 170
sample program, 170-76
of struct, 222

ascii.µ project, 163--68
ASCII character set, 162-68

printable, 164-66
unprintable, 166, 167

Assignment operator, 50
Assignment statement, 79

\b, 70
Backslash combinations, 69-71
Backward compatibility, 22
Balanced tree, 297

467

INDEX

468

Beep, generating a, 70-71
Bell curve (normal probability distribution), 171
Binary, fat, 23
Binary notation, 49
Binary operators, 83
Binary representation, 47
Binary trees, 293-301

balanced, 297
recursion and, 298-301
searching,297-98

Bit bucket, 208
Bits,47-49

clearing, 305
shifting, 306

Block,88
Boundaries, array, 176, 206
Bounds checking, 206
break, 101, 103
Buffer, input, 179-80
Buttons, 319
Bytes, 47-49

files as stream of, 243, 268
padding,214,215

C++, 15
commentingconvention,74

case, 100-101
Case sensitivity, 39
Cast. See Typecasting
Cast, variable, 80
cdfiler .µproject, 253-66
cdtracker. µ project, 230-41
Central processing unit (CPU), 21
char, 159, 162-83

arrays, 168-76
ASCII character set, 162-68
text strings, 177-83

Child of a node, 293
C language, 1-6

alternatives to, 14-15
equipment required, 3
prerequisite for learning, 2-3
reasons for learning, 2

Clearing a bit, 305
Closing files, 244-46
Code optimization, 96
CodeWarrior, 4, 7-12, 321

installing, 7-9
PowerPC native version of, 217
testing, 10-12

Coding habits, 71
Colon character (:), 244
Comparative operators, 81
Comparative relationship, 294
Compatibility, backward, 22
Compiling, 17-21
Compound expressions, 85-86
Compound statements, 90
CompuServe, 324
Conditional expression, 307
Consoles, 61
Console window, 35, 62, 77
const, 244
Constant(s)

define and, 185
FALSE,82
FOPEN_ MAX, 246
hex,221
numerical, 50
string,177
TRUE,82

Control Manager, 319
Conventions, 46
Counter variables, 92
CPU,21
ctype.h, 188

%d format specifier, 64, 179
Data alignment rules, 214-17
Data files, layout of, 254
Data structures, 5, 197-242

arrays and, 197-209
memory and, 208-9

linked lists, 227-41, 293
creating, 229-30
doubly linked lists, 229
reasons for using, 228
sample program, 230-41
traversing, 229
typecasting and, 284

memory management and, 223-27
struct and, 209-14

array of, 222
data alignment rules and, 214-17
FILE,245
passing as parameter, 217-19
passing copy of, 219-21
root, 293

Data types, 4, 45, 151-96
enumerated,309-10

floating-point, 152-58
integer, 159-62

char, 159, 162-83
long, 159, 214
memory allocated for, 159-60
short, 159, 214

memory efficiency versus safety in selecting,
161-62

programmer-created, 308-9
unions, 285-89
wide-string, 163

Deallocation of memory, 128
Declaration

enum, 309-10
of functions (function prototype), 33
of pointers, 119-22
struct, 209-10
of variables, 45, 50-51, 62-63

errors in, 51-52
as unsigned, 49

default case, 101
Default initialization value, 303
define, 183-94

constants and, 185
functionlike macros, 186-88
location in source code, 184-85, 186
namingconventions,185
sample program, 188-94
unions and, 286-87

Dereferencing pointer, 121-22
dice.µ project, 170-76
Dictionary, 183
Dimensions, array, 169
dinoEdi t. µ project, 269-77
Disk files, 5
Division

floating-point, 57
by zero, 87

do,99-100
double, 152, 156

memory allocated for, 155
Double linked lists, 229

%e format specifier, 158
EBCDIC character set, 163
Elements, array, 169
Enumerated data types, 309-10
enum statement, 309-10
EOF, 191
Error handling, 273

Errors
in functions, 36-39, 40
syntax, 26-28
in variable declaration, 51-52

Excel, 15
Exponential (scientific) notation, 158
Expressions, 79-81

compound, 85-86
conditional, 307
true, 80-81

extern, 257-58

%£format specifier, 155
FALSE constant, 80, 82
Fat binary (fat application), 23
£close(),246
feof (), 248
£flush(), 241, 267
fgetc () , 246-47
£gets (), 247-48
Fields, 210
File modes, 245
File-naming conventions, 244
FILE pointers, 246, 251
File position, 245, 247
Files, 243-79

closing, 244-46
defined, 243
include (header), 211-12, 258
layout of, 254
opening, 243-46
random access, 268-77

functions allowing, 268-69
sample program, 269-77

reading, 244, 246-51
sample programs, 249-51, 253-54
as stream of bytes, 243, 268
"update" modes, 267-68
'Writing,244,252-66

FILE struct, 245
Find command, 18
float, 152, 155
Floating-point division, 57
Floating-point types, 152-58

storage of, 156
floatSizer. µ project, 152-58
Flow control, 4, 77-111

break statement, 101, 103
comparative operators and, 81
compound expressions and, 85-86

INDEX

469

INDEX

470

Flow control (continued)
curly braces and, 88-89
defined, 77
do statement, 99-100
expressions and, 79-81
for statement, 93-100, 170
if statement, 77-79, 87, 307
logical operators and, 82-85
sample programs, 104-10
statements and, 86-88
switch statement, 100-103
while statement, 90-93, 94, 96, 103

fopen(), 244-46
FOPEN_MAX constant, 246
for,93-100

to initialize arrays, 170
Force quit button, 161
Format specifiers, 64, 155-57

square brackets inside, 265
fprintf () , 244, 252-53
fputc () , 252
fputs () , 252
Fractional numbers. See Floating-point types
fread () , 275
free(), 227
fscanf () , 244, 265-66
fseek(), 267, 268-69, 274
fsetpos (), 267
ftell () , 268-69, 273-74
Function(s), 4, 25-41, 77

calling,28-29
case-sensitivity and, 39
defined,25
errors in, 36-39, 40
function definition, 26
ISO C and Standard Library, 29-30
pointers to, 301-3
statements embedded in, 67
syntax errors and algorithms, 26-28
variable names distinguished from, 25

Function names, 73
Function prototype (function declaration), 33
Function recursion, 289-93
Function return values, 131, 134-39

passed-by-address parameters versus, 138-39
uninitialized, 137-38

Function specifier, 26, 33

%g format specifier, 158
getchar(), 191
gets () , 201, 203
Global variables, 63, 131-34, 146-47

Graphical user interface (GUI), 317

Header (include) files, 211-12, 258
Hexadecimal notation, 221
HyperCard, 14
HyperTalk, 14

if, 77-79, 87
if-else,78-79,307
include,32
Include (header) files, 211-12, 258
Index, array, 169
Infinite loops, 93
Initializers, 303-5
Initializing variables, 63, 303-5
Inordersearch,299-300
Input, keyboard, 179-80
Input buffer, 179-80
int

memory allocated for, 117
size of, 46-47

Integer data types, 159-62
char, 159, 162-83
long, 159, 214
memory allocated for, 159-60
short, 159, 214
unsigned, 48

Intel, 21
International Standards organization (ISO), 29
intSizer program, 159
ISOC,29-30
isOdd. c (flow control sample program), 104-6
isspace(), 188
iswhi te () , 189
Iteration, 289-90

Key,298
Keyboard input, 179-80

Languages,progranuning,13
Leaf node, 293
Learn C Projects folder, 9
Library, 17
License agreement, 8
Linked lists, 227-41, 293

creating, 229-30
doubly linked lists, 229
reasons for using, 228
sample program, 230-41
traversing, 229
typecasting and, 284

Linking,17

listPr imes. µ project, 139-42
Lists, linked. See Linked lists
Literals, 50

as expressions, 80
Loacling,20
Localizing programs, 163
Local variables, 128, 219
Logical operators, 82-85
lonq, 159, 214
lonq double, 152, 155, 156
Loops

break statements in, 101, 103
for, 93-100, 170
infinite, 93
while,90-93,94,96,103

L-value,50

Machine language, 17
Macintosh Toolbox, 317-22
Macros, 183. See also define
main (), 28-29, 43
malloc () , 225-26, 227
Master pointer, 228
Memory

arrays and, 208-9
data type selection and, 161-62
deallocation of, 128
global variables and, 134
program readability and, 172
random-access (RAM), 116
read-only (ROM), 318
text strings in, 177

Memory allocation
for arrays, 205-6, 223
for integers, 159-60

Memory management, 223-27
free(), 227
malloc () , 225-26, 227

Menu Manager, 318
Metrowerks, 322
Modes, file, 245
Motorola, 21, 22
mul tiArray. µ project, 200-208
Multidimensional arrays, 198-99

\n,31, 180
name.µ project, 178-83
Names

function, 73
variable, 45-46, 73

Native mode programs, 23
Nested statements, 88

nextPr ime. rr (flow control sample program),
107-10

Nodes on binary trees, 293
Normal probability distribution (bell curve), 171
NULL,203

pointer with, 225
Numerical constants, 50

Object code, 17, 19, 21-23
On-line services, 324
Openingfiles,243-46
Operator(s), 4, 50-75, 77, 305-8

1 =, 81, 82-83
%, 104, 106
& (address of), 118, 305, 306
& & (and), 83-84, 85
&=,305,306
*,56-57, 118,119-20, 121
*=,56-57
+,54
++,54
+=, 55-56
,, 307-8
-,54
--,54
-=,55-56
->,218
.,218
/,56-57
/=,56-57
:, 307-8
<,81
<=,81
<<,306-7
«=,306-7
=,50
==,81
>,81
>=,81
»,306-7
>>=,306-7
?,307-8
",305,306
l,305,306
I I (or), 84-85
-,305,306
assignment, 50
backslash combinations, 69-71
binary, 83
comparative, 81
logical, 82-85
postfix, 67

INDEX

471

INDEX

472

Operator(s) (continued)
precedence of, 57-59
prefix, 68
unary,83

Optintization,code,96
OR,305
or,84-85
Out of bounds array reference, 176, 206
Outpu~program,61

Padding bytes, 214, 215
paramAddress folder, 220
Paratneter(s), 63, 122-31

operation of, 125-26
passed by address, 129, 138-39
passing struct as, 217-19
pointers and, 128-31
temporary nature of, 126-28
variable scope and, 1~24

Paratneter list, 26
Parentheses, 73

in define tnacros, 186-87
operator order and, 57

Pascal, 15
Pentium, 21
Pointer(s), 4, 111, 113-22. See also Parameter(s)

& operator and, 118
arrays and, 174-75
declaring, 119-22
defined, 113
dereferencing, 121-22
FILE, 246, 251
file position, 247
function, 301-3
function parameters and, 128-31
invalid, 203
master,228
with NULL value, 225
reasons for using, 113-15
typecasting with, 283-84
as variable addresses, 116-18
void,225

Pointer arithmetic, 192
Portability, 30
Postfix notation, 54-55, 66-68
Postfix operator, 67
Postorder search, 300-301
power.µ project, 143-47
PowerPC, 21-23

data aligrunent rules on, 214-17
Prefix notation, 54-55, 66

Prefix operators, 68
Preordersearch,299
Preprocess command, 185
Prime numbers, 107
printf (), 30, 77

format specifier modifiers with, 155-57
printFile.µ project, 249-51
Processor, 21
Programming, 13-23

process of, 16-21
reasons for, 13

Programntlnglanguages,13
Program output, 61
Programs

native mode, 23
scriptable, 14

Project file, 10
Project window, 10-11
Prompt, 179
Prototype, function, 33
Push buttons, 319
putchar(), 250-51

Quoted text string, 63-64

\r,69-70
Radio buttons, 319
Random-access memory (RAM), 116
Random file access, 268-77

functions allowing, 268-69
sample progratn, 269-77

Random-number generator, 172-73
Range (scope) of variable, 1~24
Reading files, 244, 246-51
Read-only memory (ROM), 318
Rebuilding desktop, 10
Recursion

binary trees and, 298-301
function, 289-93

return, 33, 135, 136
Return type, 26
Return values, function, 131, 134-39

passed-by-address parameters versus, 138-39
uninitialized, 137-38

rewind () , 267, 268-69
Root node, 293

%s,182
scanf () , 178-82, 265
Scientific (exponential) notation, 158
Scope of variable, 1~24

Scriptable programs, 14
Scroll bars, 319
Searching binary trees, 297-98
Semicolon, 26, 27

placement of, 89-90
Shifting bits, 306
short, 159, 214
Signed bytes, 49
Simple statements, 89
sizeof, 154
Sound options, 70
Source code, 11

compiling, 17-21
location of define in, 184-85, 186
writing, 16-17

Source code window, 10, 11
Squaring a number, 130
srand(), 172-73
Stack, HyperCard, 14
Standard Library, 5, 29-30, 77, 314

Macintosh Toolbox implementation of, 317-22
memory management functions in, 225-27

Statements, 26. See also specific statements and
keywords

assignment, 79
block of, 88
compound, 90
embedded in functions, 67
flow control and, 86-88
nested, 88
simple,89

static, 310-11
Static variables, 310-12
stderr,251
stdin,251
stdout,251
strcat(), 312-13
strchr(), 236
strcmp(),313
strcpy () , 312
Stream of bytes, 243
String(s), 177-83

in memory, 177
quoted, 63-64
reading with scanf () , 179
zero-length, 205
0-terminated, 177, 179, 182, 193

string. h, 271
String constant, 177
String manipulation, 312-14
strlen(), 183, 271, 276, 313-14

struct, 209-14
array of, 222
data alignment rules and, 214-17
FILE,245
linked list of, 227-41
passing as parameter, 217-19
passing copy of, 219-21
root,293

structSize.µ project, 210-14
switch, 100-103
Symantec C++ for Macintosh, 321-22
Syntax, 5, 29-30
Syntax errors, 26-28

Tech blocks, 6
Temporary variable, 126
Terminal node, 293
Text strings. See String(s)
to lower () , 165
Toolbox Assistant (TBA), 323
toupper () , 165
Trees, binary, 293-301

balanced, 297
recursion and, 298-301
searchhig,297-98

TRUE constant, 82
True expressions, 80-81
Truthtables,82,85
Two's complement notation, 48-49
Type, size of, 46-47
Typecasting,154,281-84

care in using, 282-83
defined, 281-82
with pointers, 283-84

typedef statement, 308-9
typeOverflow.µ project, 161
Types. See Data types
Typos,27

Unary operators, 83
Underscore, 46
Uninitialized variables, 63
Unions, 285-89

define to keep track of state of, 286-87
reasonsforusing,287-89

Unsigned bytes, 49
Unsigned integers, 48
User interface, graphical (GUI), 317

Variable(s), 4, 43-50, 77. See also Pointer(s)
assigning values to, 50-53

INDEX

473

INDEX

474

Variable(s) (continued)
counters, 92
declaring, 45, 50-51, 62-63

errors in, 51-52
as unsigned, 49

defined,43
defining a, 62-63
global, 63, 131-34, 146-47
initializing, 63, 303-5
limitations of, 176
local, 128, 219
memory allocated to, 118
scope of, 123-24
static, 310-12
temporary, 126
type of, 45, 46-47 (see also Data types)
uninitialized, 63
working with, 45

Variable cast, 80
Variable names, 45-46, 73

function names distinguished from, 25
void, 80, 135
void pointer, 225

while, 90-93, 94, 96
break statements in, 103

White space, 71-73, 181
in define macros, 187

Whole numbers. See Integer data types
Wide-string data types, 163
windowMaker. µproject, 319-20
Window Manager, 319
wordCount. µ project, 188-94
Writing files, 244, 252-66

XOR,305

Zero, division by, 87
Zero-length string, 205
0-Terminated string, 177, 179, 182, 193

t

Addison-Wesley warrants the enclosed disc to be free of defects in materials and faulty
workmanship under normal use for a period of ninety days after purchase. If a defect is dis­
covered in the disc during the warranty period, a replacement disc can be obtained at no
charge by sending the defective disc, postage prepaid, with proof of purchase to:

Addison-Wesley Publishing Company
Editorial Department
Trade Computer Books Division
One Jacob Way
Reading, MA 01867

After the ninety-day period, a replacement will be sent upon receipt of the defective disc
and a check or money order for $10.00, payable to Addison-Wesley Publishing Company.

Addison-Wesley makes no warranty or representation, either express or implied, with
respect to this software, its quality, performance, merchantability, or fitness for a particular
purpose. In no event will Addison-Wesley, its distributors, or dealers be liable for direct, in­
direct, special, incidental, or consequential damages arising out of the use or inability to use
the software. The exclusion of implied warranties is not permitted in some states. Therefore,
the above exclusion may not apply to you. This warranty provides you with specific legal
rights. There may be other rights that you may have that vary from state to state.

Software License

PLEASE READ THIS LICENSE CAREFULLY BEFORE USING THE SOFTWARE. BY
USING THE SOFIWARE, YOU ARE AGREEING TO BE BOUND BY THE TERMS OF THIS
LICENSE. IF YOU DO NOT AGREE TO THE TERMS OF THIS LICENSE RETURN THE
SOFIWARE TO THE PLACE WHERE YOU OBTAINED IT AND YOUR MONEY WILL BE
REFUNDED.

1. License: The application, demonstration, system, and other software accompanying this
License, whether on disc, in read-only memory, or on any other media (the "Software") the
related documentation, and fonts are licensed to you by Metrowerks. You own the disc on
which the Software and fonts are recorded but Metrowerks and/ or Metrowerks' Licensor
retain title to the Software, related documentation, and fonts. This License allows you to use
the Software and fonts on a single Apple computer. You may use a copy of the software on
a home or portable computer, as long as the extra copy is never loaded at the same time the
software is loaded on the primary computer on which you use the Software.

You may make one copy of the Software and fonts in machine-readable form for
backup purposes. You must reproduce on such copy the Metrowerks copyright notice and
any other proprietary legends that were on the original copy of the Software and fonts. You
may also transfer all your license rights in the Software and fonts, the backup copy of the
Software and fonts, the related documentation, and a copy of this License to another party,
provided the other party reads and agrees to accept the terms and conditions of this
License.

2. Restrictions: The Software contains copyrighted material, trade secrets, and other propri­
etary material. In order to protect them, and except as permitted by applicable legislation,
you may not decompile, reverse engineer, disassemble, or otherwise reduce the Software to
a human-perceivable form. You may not modify, network, rent, lease, loan, distribute, or
create derivative works based upon the Software in whole or in part. You may not electron­
ically transmit the Software from one computer to another or over a network. If the
Software was licensed to you for academic use, you may not use the Software for commer­
cial product development.

3. Software Redistribution: The following list describes the Software and Materials that li­
censees of Code Warrior may incorporate into their own programs and distribute (in object
code form only), solely with their own programs, pursuant to the terms of the CodeWarrior
Software License as part of a linked binary:

All libraries in ":Metrowerks C/C++ f:Libraries f"
All libraries in ":Metrowerks Pascal f:Libraries f"
All libraries in ":Metrowerks MPW Tools f:MWPPCLibraries" folder
All libraries in ":Metrowerks MPW Tools f:MW68KLibraries" folder

The following list describes the Software and Materials that licensees of CodeWarrior may
incorporate into their own programs and distribute (in object code form only), solely with
their own programs, pursuant to the terms of the CodeWarrior Software License:

ColorSync system extension, ColorSync System Profile control panel, and related
profiles

Macintosh Drag and Drop, Dragging Enabler, and Clipping Extension system ex­
tensions

PowerTalk Extension and PowerTalk Manager extensions
QuickTrme, QuickTime Power Plug, and QuickTrme Musical Instruments system

extensions
Speech Manager system extension
StdCLiblnit system extension
Thread Manager system extension
AppleScriptLib and ObjectSupportLib shared libraries
DragLib shared library
MathLib shared library
XTND Interface and XTND Power Enabler shared libraries

In order to protect Metrowerks and Metrowerks' Licensors intellectual property rights in
the Software and Materials herein, you must reproduce on each copy a copyright notice that
clearly states "Copyright© by Metrowerks and its Licensors,"and distribute such Software
and Materials pursuant to a valid agreement that is at least as protective of Metrowerks and
Metrowerks' Licensors rights in the Software and Materials as this License.

4. Termination: This License is effective until terminated. You may terminate this License at
any time by destroying the Software, related documentation, and fonts and all copies
thereof. This License will terminate immediately without notice from Metrowerks if you fail
to comply with any provision of this License. Upon termination you must destroy the
Software, related documentation, and fonts, and all copies thereof.

5. Export Law Assurances: You agree and certify that neither the Software nor any other
technical data received from Metrowerks, nor the direct product thereof, will be exported
outside the United States except as authorized and as permitted by the laws and regulations
of the United States. If the Software has been rightfully obtained by you outside of the
United States, you agree that you will not re-export the Software nor any other technical
data received from Metrowerks, nor the direct product thereof, except as permitted by the
laws and regulations of the United States and the laws and regulations of the jurisdiction in
which you obtained the Software.

6. Government End Users: If you are acquiring the Software and fonts on behalf of any unit
or agency of the United States Government, the following provisions apply. The
Government agrees: (i) if the Software and fonts are supplied to the Department of Defense
(DoD), the Software and fonts are classified as "Commercial Computer Software" and the
Government is acquiring only "restricted rights" in the Software, its documentation, and
fonts as that term is defined in Clause 252.227-7013(c)(l) of the DFARS; and (ii) if the
Software and fonts are supplied to any unit or agency of the United States Government
other than DoD, the Government's rights in the Software, its documentation and fonts will
be as defined in Clause 52.227-19(c)(2) of the FAR or, in the case of NASA, in Clause 18-
52.227-86(d) of the NASA Supplement to the FAR.

7. Limited Warranty on Media: Metrowerks warrants the diskettes and/ or compact disc on
which the Software and fonts are recorded to be free from defects in materials and work­
manship under normal use for a period of ninety (90) days from the date of purchase as ev­
idenced by a copy of the receipt. Metrowerks' entire liability and your exclusive remedy
will be replacement of the diskettes and/ or compact disc not meeting Metrowerks' limited
warranty and which is returned to Metrowerks or a Metrowerks authorized representative
with a copy of the receipt. Metrowerks will have no responsibility to replace a disk/ disc
damaged by accident, abuse, or misapplication. ANY IMPLIED WARRANTIES ON THE
DISKETTES AND /OR COMPACT DISC, INCLUDING THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE LIMITED IN
DURATION TO NINETY (90) DAYS FROM THE DATE OF DELIVERY. THIS WARRANTY
GIVES YOU SPECIFIC LEGAL RIGHTS, AND YOU MAY ALSO HAVE OTHER RIGHTS
WHICH VARY BY JURISDICTION.

8. Disclaimer of Warranty on Metrowerks Software: You expressly acknowledge and agree
that use of the Software and fonts is at your sole risk. Except as is stated above, the
Software, related documentation, and fonts are provided "AS IS" and without warranty of
any kind and Metrowerks and Metrowerks' Llcensor(s) (for the purposes of provisions 8
and 9, Metrowerks and Metrowerks' Llcensor(s) shall be collectively referred to as
"Metrowerks") EXPRESSLY DISCLAIM ALL OTHER WARRANTIES, EXPRESS OR IM­
PLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER­
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. METROWERKS DOES
NOT WARRANT THAT THE FUNCTIONS CONTAINED IN THE SOFTWARE WILL
MEET YOUR REQUIREMENTS, OR THAT THE OPERATION OF THE SOFTWARE WILL
BE UNINTERRUPTED OR ERROR-FREE, OR THAT DEFECTS IN THE SOFTWARE AND
THE FONTs WILL BE CORRECTED. FURTHERMORE, METROWERKS DOES NOT WAR­
RANT OR MAKE ANY REPRESENTATIONS REGARDING THE USE OR THE RESULTS

OF THE USE OF THE SOFTWARE AND FONTS OR RELATED DOCUMENTATION IN
TERMS OF THEIR CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE. NO
ORAL OR WRITTEN INFORMATION OR ADVICE GIVEN BY METROWERKS OR A
METROWERKS AUTHORIZED REPRESENTATIVE SHALL CREATE A WARRANTY OR
IN ANY WAY INCREASE THE SCOPE OF THIS WARRANTY. SHOULD THE SOFTWARE
PROVE DEFECTIVE, YOU (AND NOT METROWERKS OR A METROWERKS AUTHO­
RIZED REPRESENTATIVE) ASSUME THE ENTIRE COST OF ALL NECESSARY SERVIC­
ING, REPAIR, OR CORRECTION. SOME JURISDICTIONS DO NOT ALLOW THE
EXCLUSION OF IMPLIED WARRANTIES, SO THE ABOVE EXCLUSION MAY NOT
APPLY TO YOU.

9. Limitation of Liability: UNDER NO CIRCUMSTANCES, INCLUDING NEGLIGENCE,
SHALL METROWERKS BE LIABLE FOR ANY INCIDENTAL, SPECIAL, OR CONSE­
QUENTIAL DAMAGES THAT RESULT FROM THE USE OR INABILITY TO USE THE
SOFTWARE OR RELATE DOCUMENTATION, EVEN IF METROWERKS OR A
METROWERKS AUTHORIZED REPRESENTATIVE HAS BEEN ADVISED OF THE POS­
SIBILITY OF SUCH DAMAGES. SOME JURISDICTIONS DO NOT ALLOW THE LIMITA­
TION OR EXCLUSION OF LIABILITY FOR INCIDENTAL OR CONSEQUENTIAL
DAMAGES SO THE ABOVE LIMITATION OR EXCLUSION MAY NOT APPLY TO YOU.

In no event shall Metrowerks' total liability to you for all damages, losses, and causes
of action (whether in contract, tort [including negligence] or otherwise) exceed that portion
of the amount paid by you which is fairly attributable to the Software and fonts.

10. Controlling Law and Severability: This License shall be governed by and construed in
accordance with the laws of the United States and the State of California, .. as applied to
agreements entered into and to be performed entirely within California between California
residents. If for any reason a court of competent jurisdiction finds any provision of this
License, or portion thereof, to be unenforceable, that provision of the License shall be en­
forced to the maximum extent permissible so as to effect the intent of the parties, and the re­
mainder of this License shall continue in full force and effect.

11. Complete Agreement: This License constitutes the entire agreement between the parties
with respect to the use of the Software, the related documentation, and fonts, and super­
sedes all prior or contemporaneous understandings or agreements, written or oral, regard­
ing such subject matter. No amendment to or modification of this License will be binding
unless in writing and signed by a duly authorized representative of Metrowerks.

Should you have any questions or comments concerning this license, please do not hes­
itate to call Metrowerks, (514) 747-5999, or to write to 1500 du College, suite 300, St-Laurent
QC H4L SG6 Canada. Attention: Warranty Information.

.\ladntosh/<: l'rog1~1mmi11g

IF YOU CAN USE A MACINTOSH, YOU CAN PROG INC.

tT you sick of pushing paper in a joh that 's taking you nowhere. except

A to the copy machint·? Did you enjoy BASIC as a kid, hut fed kft behind

by the programming world? Do you want to spend your span: Lime on

your compulL'I" doing something more productive than wandering the mazes of

Doom? Expnt .\tacintosh · programmer Dan· i\.lark offL'rs yo u solutions in this

completdy rL'\ 'iSL'd edition or his hL'Stsdling lear11 c Oil /be 1Uad11/os/J . With

this sell'-teaching . easy-to-utHkrstand hook and L·ndosed CD-RO.\'\ , you get evcry­

th ing you m:L'd to start programming in !his \\'iddy usL'd language.

New features of this edition of Learn C 011 the Maci11tosb include:

• updated and enhanced exercises that lead you step by step through
programmi11g fundamentals and C language basics , including
functions, variables, pointe rs, data types, data structures, and file input
and output- the author makes even the most difficult C programming
concepts easy to understand w ith his clear, fri e ndly w riting style

• completely rewritten code, p lus answers and source code for aU of
the exercises

• a CD-ROM with Metrowerks CodeWarrio r '" Lite, a special version of
one of the ho ttest Macintosh programming environments (includi ng a
native PowerPC version). The CD also includes a slew of games,
shareware, de mos, and o ther neat stuff for inspiration.

9 80201 484069
ISBN 0-20 J -48406-4

$34.95 us
$48.00

