
Analysis, Design, and Programming

NEAL GOLDSTEIN

JEFF ALGER

Developing
Object-Oriented Software
for the Macintosh®

Developing
Object-Oriented Software
for the Macintosh®
Analysis, Design, and Programming

Neal Goldstein

Jeff Alger

Addison-Wesley Publishing Company, Inc.
Reading, Massachusetts Menlo Park, California New York
Don Mills, Ontario Wokingham, England Amsterdam Bonn
Sydney Singapore Tokyo Madrid San Juan
Paris Seoul Milan Mexico City Taipei

Many of the designations used by manufacturers and sellers to distin
guish their products are claimed as trademarks. Where those designa
tions appear in this book and Addison-Wesley was aware of a trademark
claim, the designations have been printed in initial capital letters.

The authors and publisher have taken care in preparation of this book, but
make no expressed or implied warranty of any kind and assume no
responsibility for errors or omissions. No liability is assumed for inciden
tal or consequential damages in connection with or arising out of the use
of the information or programs contained herein.

Library of Congress Cataloging-in-Publication Data

Goldstein, Neal.
Developing object-oriented software for the Macintosh : analysis,

design, and programming I Neal Goldstein, Jeff Alger.
p. cm. - (Macintosh inside out)

Includes bibliographical references and index.
ISBN 0-201-57065-3
1. Macintosh (Computer)-Programming. 2. Object-oriented

programming. 3. Computer software-Development. I. Alger, Jeff.
IL Title. III. Series.
QA76.8.M3G643 1992
005.265-dc20 91-29046

CIP
Copyright © 1992 by Neal Goldstein and Jeff Alger

All rights reserved. No part of this publication may be reproduced, stored
in a retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, recording, or otherwise, without
the prior written permission of the publisher. Printed in the United States
of America. Published simultaneously in Canada.

Sponsoring Editor: Carole McClendon
Project Editor: Joanne Clapp Fullagar
Technical Reviewer: Steven Weyl
Cover Design: Ronn Campisi
Set in 10 1/2 point Palatino by Ruttle, Shaw & Wetherill, Inc.

1 2 3 4 5 6 7 8 9-MW-9 6 9 5 9 4 9 3 9 2
First printing, January 1992

To the real objects of our.affection, Linda, Sarah, and Evan Goldstein and Cindy,
Nicholas,]], and Bobby Alger, and in memory of Jack Goldstein.

~ Contents

Foreword by Scott Knaster xv
Acknowledgments xvii

...,. PART ONE Object-Oriented Software Development for
the Macintosh 1

1. Introduction 3
Solution-Based Modeling for the Macintosh 3
Who Should Read This Book 5

How to Read This Book 5
Macintosh Software Development Today 6

Where Does the Money Go? 7
Myths and Realities in Software Development 8
Traditional Software Development for the Macintosh ls Even Worse 12

Macintosh Software Development As It Should Be 15
What Is a Good Model? 15
Five Characteristics of a Good Methodology 16
Benefits of Object-Oriented Programming 18

Problems With Object-Oriented Programming 20
Where Are the Methodologies? 20
The Sheer Cliff Principle 21
"It May Be Obvious to You, But It Isn't to Me!" 21

vii

viii ..,. Contents

Object-Oriented Programming Is Still Worth the Effort 21
Summary 22

2. Object-Oriented Programming: The Technologist's Perspective 25
What This Chapter Is About 25
Objects 26

What Is An Object? 26
Terminology Review 31
Anthropomorphism 32

Inheritance and Polymorphism 33
Inheritance 33
Polymorphism 35
The Two Roles of Inheritance 38
Multiple Inheritance 38

Class Libraries 42
Variations on a Theme of OOP 44
Object-Oriented Programming on the Macintosh 46
Summary 47

3. The Folklore of Object-Oriented Software Development 49
What This Chapter Is About 49
Software and the Human Psyche 50
Objectivism 50
Object-Oriented Analysis, Design, and Programming 51

Creating High Fidelity Software 52
Discovering Objects 52
Discovering Relationships 54
Discovering Classes 55

Objectivist Methodology 57
Basic Steps 58
The Comfort of the Objectivist Approach 59
Program Evolution and the Four Itys 59

Problems With Objectivism 61
Summary 62

4. Sample Applications (Why Aren't They Easy?) 65
What This Chapter Is About 65
Model Railroad Computer-Aided Design 66

First Try: Lexical Analysis 67
Second Try: Top-Down Analysis 72
Third Try: Put It in Context 73

~ Contents ix

Fourth Try: Ask an Expert 74
Designing for the Macintosh and Its User Interface 76

Payroll 80
Current Business Model 81
Systems Objectives 82
First Try: Simulation 83
Second Try: Shuffling Responsibilities 84
Third Try: Ask an Expert 86
What Are the Macintosh Documents? 87

Summary 89

5. The Way We Think 91
What This Chapter Is About 91
Categories 92

Basic Level Categories 92
Not-So-Basic Categories 93
Categories and Classes Are Not the Same 96
Reconciling Categories and Classes 97

Schemas and Contexts 97
Image-Schematic Relationships 98
Propositional Relationships 99
Metaphoric Relationships 99
Metonymic Relationships 100
The Importance of Context 100

The Myth of Reusability 101
The Sheer Cliff Principle Explained 102

When Does the Folklore Work? 102
Why the Sheer Cliff Exists 103
Avoiding the Sheer Cliff: Solution-Based Modeling 103
Categories and Image Schemas in Macintosh User Interfaces 104

Summary 108

~ PART TWO Solution-Based Modeling for the
Macintosh 109

6. The Visual Design Language 111
What This Chapter Is About 111
Overview of VOL 111

Visual Communication 111
Escaping Flatland 112

x ~ Contents

Using Image Schemas 115
Constraints on the Notation 115
Contents of the Models 116
Examples of VDL 117

Elements 122
Natural World Elements 122
Program Elements 123
Attributes 124
Responsibilities 125

Relationships 125
Structural Relationships 125
Behavioral Relationships 127
Calibration Relationships 128
Same As 130

Spatial Effects 130
Planes and Regions 130
Time Sequence 131
Relative Importance 131

Frames 133
Scenarios 133
Vertical Slicing 135
Extensions 136
Summary 136

7. Solution-Based Modeling 139
What This Chapter Is About 139
Objectives 139

Solve the Right Problem 140
Create Reliable, Maintainable Programs 141

Solution-Based Models 141
Business Plane 143
Technology Plane 145
Execution Plane 150
Program Plane 152
Relationships 153
Frames 154
Scenarios 155

Solution-Based Modeling 159
Processes 159
Project Organization 163

Summary 167

8. Analysis Part I: The Business Plane 169
What This Chapter Is About 169
Overview of the Analysis Phase 170

Objectives 170
Business Modeling 171
Conceptual Design 171
Design and Programming During Analysis 171
Activities 172

The Business Plane 172
Reference Model 173

Overview 17 4
Frame 174
Model 178

Calibration Part I: Synthesis 183
Solution Model 187

Overview 188
Frame 189
Model 195

Impact Analysis 199
Existing Computer Systems 201
Summary 202

Ill- Contents xi

9. Analysis Part II: The Technology Plane and Beyond 205
What This Chapter Is About 205
Content Model 206

Overview 207
Content Frame 207
Elements and Relationships 207
Building the Content Model 208

Object-Oriented Software Engineering, Part I 213
Achieving Independence: An Overview 214
Limiting Responsibilities 215
Limiting Data Knowledge 215
Limiting Implementation Knowledge 216
Limiting Relationships 217
Conflicts among the Limits 218

Calibration, Part II: Correlation 219
User Interface Model 223

Overview 223
User Interface Frame 224
Elements and Relationships 225
Building the User Interface Model 231

xii ..,.. Contents

The Environment Model 232
Elements and Relationships 233
Building the Environment Model 233

The Execution and Program Planes During Analysis 233
Prototyping 234
Advance Scouting 237

Completing the Analysis Phase 238
How Do You Know When You Are Done? 238
Estimating, Scheduling, and Planning 239

Summary 240

10. Design 243
What This Chapter Is About 243
Overview 244

Using CPC During Design 244
Program Objects vs. Conceptual Objects 245
Adding Detail 245
Adding New Objects 246

Run-Time Objects 246
How Are Objects Implemented? 247
Classes vs. Abstractions 251
Categories vs. Abstractions 252

Building the Execution Plane 253
All Regions 253
Content Architecture 259
User Interface Architecture 261
Environment Architecture 263

Dependency Management 264
Basic Principles 265
A Generic Scenario for Dependency Management 267
Implementing Dependency Management 268

Calibration, Part III: Synchronization 269
Knowledge of Other Objects and Data 270
Creation and Initialization 271
Destruction 272
Protocol 273
Connectedness 273
Applying Synchronization 275

Managing the Design Phase 275
Use of Scenarios 276
Priorities 276
Prototyping 277

When Is the Design Phase Complete? 278
Managing the Transition to Implementation 278

Summary 279

11. Programming 281
What This Chapter Is About 281
Overview 281
Designing Class Hierarchies 283

(At Least) Six Ways to Implement Abstractions 284
Choosing the Best Strategy 290

~ Contents xiii

Object-Oriented Software Engineering Using Inheritance 300
What Does a Class Inherit? 301
Normal Inheritance 304
Inheritance: The GOTO of the '90s? 308

Programming 309
Managing the Programming Phase 315

Use of Scenarios 315
Quality Assurance 316
Use of Prototype Code 316
Wizen Is the Programming Phase Complete? 316

Beyond Programming 317
Summary 318

Appendix A Manual Database for Solution-Based Modeling 319

Bibliography 323

Index 329

~ Foreword by Scott Knaster

Books of methods and techniques that tell you how to make good pro
grams aren't a new idea. They've been around probably almost as long as
the glorious invention of Fortran itself. Anyone who has studied college
level computer programming has gotten an earful of the latest fads that
show the "right" way to build software, and any good (or bad) technical
bookstore is loaded with volumes containing nifty ideas on programming
methodology.

As methodology theories have come and gone over the years, program
mers have also had their choice of various new toys and technologies to
help them in their work. Of these, the current darling is object-oriented
programming, now the star of screen, book, and Apple-IBM joint venture.
Though frequently represented as a new idea, object-oriented program
ming has been around so long that it's just about old enough to drink. This
makes it mature enough to be taken seriously in the computer biz.

You've probably read and heard a lot about object-oriented program
ming over the last few years, and since you're probably a hip Macintosh
programmer, chances are that you've even done some real object-oriented
programming yourself. As you've learned about objects and passed
through what John Barlow calls "the learning curve of Sisyphus," you've
probably written code, read books, and pulled your hair out discovering
the joys of this nifty technology.

Developing Object-Oriented Software for the Macintosh: Analysis, Design,
and Programming represents the harmonic convergence of an old and
revered idea (methodologies) with an upstart, relatively new technology
(object-oriented programming). This book will help you get a handle on

xv

xvi ..,.. Foreword

how you might deal with all the power and freedom that object-oriented
programming provides.

In all your object-oriented travels, you probably haven't seen anything
quite like this book. Neal Goldstein and Jeff Alger have been to object
land and have spent quite a lot of time there. Having seen more method
calls than most people have breakfast cereals, Neal and Jeff devised the
rules, methods, tests, and philosophies that they present in this book.

I think that crystallizing their ideas and writing this book has helped to
keep Neal and Jeff sane men, but that doesn't mean they went about it
sanely. This book was not written from some cold ivory tower of untested
theory. The stuff in here is real and field-tested, and Neal and Jeff have the
scars and rewritten drafts to prove it. If you follow their recipes, you'll
have a good chance of finding your way through the wonderful world of
object-oriented programming. Then maybe you, too, can start a joint
venture with IBM.

Scott Knaster
'Macintosh Inside Out Series Editor

~ Acknowledgments

Steve Weyl, what would we have done without you? At times when it
looked like this book might never be finished, you gave time and energy.
Throughout, we cquld count on praise for good work and frank and
sometimes blunt criticism where we screwed up. We are deeply in your
debt.

To the good folks at Addison-Wesley, we are indebted for your patience
and encouragement. Carole McClendon helped launch this project and
was always enthusiastic and supportive. Joanne Clapp Fullagar was a
terrific editor and sounding board. Kathy Traynor was also supportive
and patient during the trying final days of the manuscript. Scott Knaster,
series editor for Macintosh Inside Out, jumped onto our bandwagon at
the beginning and provided invaluable encouragement and insights.
Without these people, their professionalism and their patience, this book
would never have seen the light of day.

Rodney Jew and Jeff Eaton of Rodneys Strategic Design and Communi
cations provided the creative genius behind VDL and put up with our
clumsy attempts to explain their craft to them. In the end, we learned that
as graphic artists we are great methodologists.

Matt Melmon created many of the illustrations herein. Steve Burbeck
and Roger Dunn reviewed drafts of the early chapters and provided
valuable criticism and advice. It is impossible to name everyone else
individually who has at some time critiqued this book or the ideas behind
it, so what follows is a partial list in alphabetic order. If we've left anyone
out, rest assured that your contributions were important to us and the
omission is unintentional. Here goes: Harvey Alcabes, Harriet Alger, Eric
Berdahl, Tom Condon, Steve Friedrich, Lee Harris, Clyde Kelley, Robin

xvii

xviii ~ Acknowledgments

Mair, Tony Meadow, Carl Nelson, Mark Neumann, Keith Rollin, Kent
Sandvik, Andy Shebanow, Steve Strong, Dave Wilson, and Hal Wine; just
about every client or student we've had in recent years; and the many
contributors to MacApp.Tech$. In addition, our friends have put up with
general crankiness and unreliability for the past two years and, thank
fully, continued to be friends anyway.

We are also deeply indebted to the pioneers and giants, living and
dead, of several key concepts in this book. There are others, but the short
list includes Gregory Bateson, George Lakoff, Bertrand Russell, Edward
R. Tufte, and Jean Piaget.

Whatever good ideas emerged in the form of this book are largely due
to the contributions of these and many others who have come before us.
As to the authors themselves, this was a true collaboration; alone, neither
of us could have written this book and each is grateful for the contribu
tions of the other. Books, like software, usually have bugs and any you
may find in these pages are of our own breeding.

Our families endured far too many missed meals and ruined weekends,
but remained supportive anyway. Anyone who has ever written a book
can tell you that you do it because deep inside you have to, not because
you want to, and our wives and children somehow seemed to understand
and accept that. Vacation, anyone? Our parents also provided consistent
support and encouragement. We are very sorry that Jack Goldstein is not
here to see this book reach publication.

PART ONE

_..... Object-Oriented Software
Development for the

Macintosh

1 ~ Introduction

..._ Solution-Based Modeling for the
Macintosh
One of the authors of this book recently taught an advanced seminar to a
group of some two dozen highly seasoned object-oriented Macintosh
software developers. As an opener, he asked, "How many of you have
ever worked on a Macintosh software project where you felt you used a
development methodology?" Not a single hand went up. Everyone felt
that they had made up their strategies as they went along. Many of these
developers would have been appalled at proceeding this way in other
environments. They clearly did not lack familiarity with software engi
neering principles and all wanted to better structure their projects. Nev
ertheless, none had yet found any techniques that really worked in the
Macintosh environment.

The motivation for this book came from the author's experience at that
seminar. The pages that follow describe a software development method
ology, Solution-Based Modeling (SBM), that is specifically designed for
use with object-oriented programming and tailored for the Apple Macin
tosh. SBM is a recipe resulting from years of experience with and research
into the unique needs of this most demanding of environments: a dash of
original material, a pinch of cognitive science, and a gallon of carefully
chosen siftings from the best of many other methodologies. The best
advances are those that take place in small increments and make original
use of old material. So it is with SBM.

Among development methodologies designed for object-oriented soft
ware, Solution-Based Modeling is unique in an important respect. Unlike

3

4 ..,. Chapter 1 Introduction

the flood of recent books and articles on object-oriented analysis (OOA),
object-oriented design (OOD), or object-oriented programming (OOP),
SBM is a complete life cycle methodology that deals with all phases of
software development and maintenance. We use the term object-oriented
software development (OOSD) to encompass all that goes into creating an
object-oriented program, not just the programming. One Macintosh
developer had this reaction to an otherwise very popular book on OOD:
"It had a lot of good material, but I felt like I was missing pages from
the beginning and the end." SBM covers the entire process, from setting
requirements through maintenance. It begins with a model of the
business in the absence of the proposed program, proceeds through
analysis, design, programming, testing, and implementation, then con
tinues to follow the program through its useful life of enhancements and
corrections.

SBM is based not only on sound principles of object-oriented design
and programming, but on the way end users, managers, analysts, pro
grammers, and the myriad other players in the game interact to create
software. Among the claims that have been made for an object-oriented
approach to software is that it is a "natural" way to describe the world. As
you will see, that assumption, which underlies much of OOA today, is
suspect at best and harmful at worst. SBM deals with cognitive science
(the way people really think and communicate) and OOP (the way they
program) as similar but not identical activities, with clear bridges
between the two. The result is a single framework that can be discussed
and understood by everyone-not just programmers and other experts,
but end users and management as well.

Although SBM can be used on any computer and with any object
oriented language, there is a good reason the authors have tailored this
book specifically for the Mac. Since its first release, the Macintosh has
been a groundbreaking machine. Breakthrough programs-those that
are exciting, innovative, and have the slick look and feel we Mac enthusi
asts have come to know and love-are developed first for the Mac. Some
are later ported to other machines, but they remain in their hearts Macin
tosh products.

At the same time it has been making life easier for computer users, the
Macintosh has brought to the forefront many of the most daunting
problems facing the software community today: modeless operation,
graphical user interfaces, WYSIWYG ("what you see is what you get"),
and copy /paste between applications. While other platforms now have
similar features, the Macintosh Toolbox and most Mac development
environments are in their third or fourth generation in dealing with these

~ Who Should Read This Book 5

problems; other graphical environments are still getting off the ground. It
is altogether appropriate to launch Solution-Based Modeling the same
way the authors would launch a new program: on the Mac first.

~ Who Should Read This Book
This book is designed to appeal to a wide spectrum of Macintosh soft
ware professionals. To get the most out of it, you should have average or
better experience in Macintosh software development and be familiar
with, but perhaps not expert in, one or two object-oriented programming
languages like C++ or Object Pascal. Although fascinated with the
potential of object-oriented programming, you have probably already
decided for yourself that it is not as easy as some purport it to be and you
have some tough, skeptical questions. Why was it so easy at first, why is
it so hard now, and why do object-oriented solutions frequently seem so
artificial? Why don't your old techniques of organizing projects and
programs work any more? This book answers these and many other
questions.

We assume that you are already familiar with Macintosh programming
fundamentals and the basic concepts of object-oriented programming. If
not, you may wish to consult_ one of the many fine books available on
these subjects. If you know little or nothing about object-oriented pro
gramming, you should be able to read and understand this book on a first
reading, but will probably return to it again after using these principles to
develop a project or two. If you are already an object-oriented program
ming expert, we hope that this book will resonate with truths from your
own experiences, put object-oriented programming into a fresh perspec
tive, and provide practical, hands-on ways to organize your projects.

~ How to Read This Book

This book is divided into two parts. Part One provides background
information about object-oriented software development, compares it to
other techniques, and discusses problems and misperceptions in object
oriented software development as it is widely practiced today. Part One
concludes with a brief review of research in cognitive sciences and what
lessons it provides for developers of object-oriented software. Part Two
presents Solution-Based Modeling (SBM), a methodology that comprises
the best of both worlds by combining an intuitive, natural way to perform
analysis based on sound cognitive principles with techniques that lead to
good object-oriented designs and programs.

6 ~ Chapter 1 Introduction

Part One is intended to be read straight through. Because each chapter
depends on the previous, jumping around is not recommended. Part Two
is intended to become your reference guide to SBM for the Macintosh. It is
organized to facilitate its use as an on-going reference, and we hope that
you will refer to it again and again.

~ Macintosh Software Development Today
Before proceeding, it is important to answer the question no doubt
already in your mind: Why bother with yet another software develop
ment methodology? Put simply, current methods are not working. If you
cannot accept this at face value, we invite you to take The National Object
Programming Test. If you can answer "true" to each statement below, you
probably don't need this book. The rest of you are part of the silent but
vast majority.

The National Object Programming Test

• I am consistently on time and within budget in software projects.

• I look forward to requests for useful enhancements to my software.

• Bonus: Users of my software love me!

The fact is that software development today remains largely a hit-or-miss
affair. Despite decades of experience with top-down, bottom-up, inside
out, flowcharts, pseudocode, structured walk-throughs, software devel
opment life cycles, data flow diagrams, entity-relationship models,
structured analysis and design, and an alphabet soup of acronyms, soft
ware engineering as we know it today receives at best a "D" grade in the
one area that counts: bottom-line results. The Macintosh is no exception;
you need only look at any edition of Mac Week to read of yet another major
Macintosh product that is over budget and behind schedule.

Suppose you wanted to have a house built from scratch. Would you
hire someone to build that dream home who had a consistent track record
over several decades of not finishing the job? Yet, that is exactly the track
record of the software industry. Fortune Magazine recently reported that
75 percent of all software projects are either never completed or are never
used even when complete. This is remarkably consistent with similar
surveys conducted ever since the days of coding pads and punch cards.
One has to conclude that the "progress" in software engineering during
that time has made no real difference in delivering quality software on
time and in budget.

..,.. Macintosh Software Development Today 7

Suppose further that you were told that it would cost $335,000 to build
the house: $85,000 for construction and $250,000 to fix errors or omissions in
the design! Multiply those numbers by 1,000 and you have the software
budget for the U.S. Air Force's F-16 fighter . Nor is this an isolated case:
typically 60 percent to 85 percent of the overall cost of software is spent on
maintenance. Yet, this is not the popular perception. Most people assume
that the lion's share of software dollars goes to development, as shown in
Figure 1-1.

Development Maintenance Development Maintenance

Perception Reality

Figure 1- l . Software costs: perception versus reality

~ Where Does the Money Go?

Start by lopping off about 30 percent for development costs. What do we
spend the remaining 70 percent on? 14 percent is spent on taking correc
tive action. Another 14 percent is spent on adaptive changes, making the
software keep up with changes in the software, hardware, and environ
ment within which it is used. A whopping 42 percent is spent on perfec
tive changes that make the software better fit the problem at hand. Taken
together, this means that the problem does not lie with poor program
ming. It is our poor understanding of the need that is the real problem.

Figure 1-2 recaps these numbers. Still think high software maintenance
costs· are the result of errors made by programmers? Even if we com
pletely eliminate them, the net effect will be a mere 14 percent of the total!
Forty-two percent of total costs are due to the software not performing the
right job once it is completed (if it ever is). There is also evidence to
suggest that a good chunk of that 30 percent initial development cost can
be traced to a poor understanding of the problem.

8 ~ Chapter 1 Introduction

Perfective

Figure 1-2. Software development costs

Can these proportions be "fixed," or should we simply adjust our
expectations? We have already seen that better programming can have, at
best, a minor effect on the results. Better programmers are not the answer,
nor are better languages, compilers, linkers, editors, or structured code
walk-throughs. Although such advances are valuable, they do not help us
understand the problem better, the real source of software costs. "Fixes,"
if they exist, must come from solving the right problem .

...._ Myths and Realities in Software Development

Traditional software development methodologies are based on the linear
or "waterfall" model shown in Figure 1-3.

Figure 1-3. Linear ("waterfall") model

First one writes the requirements, then specifications, then design takes
place, then programming, and finally implementation and on-going
maintenance. None of these tasks overlaps the others; they are performed
end-to-end. In theory, this is great. By having distinct hand-off points
among the different groups involved in the project (management, end

.,... Macintosh Software Development Today 9

users, analysts, designers and software architects, programmers, trainers,
installers, and maintainers) we can easily manage such a process. In
practice, however, the result is more like Figure 1-4.

Figure 1-4. Black hole model

Once the software is completed (if it ever is) the software is so compli
cated and obscure that no one understands how it is built. This is the
"black hole" model. Before we talk about new ways of doing things, it is
important to understand why the linear model fails .

The Software Uncertainty Principle

In an ideal world,

• the user knows what is needed,
• the world does not change (at least, not once we start!),

• we fully understand the user's expressed needs, and

• we implement the user's needs flawlessly.

In reality,

• the user cannot know what is needed,

• the world changes-in fact, in addition to normal change, it changes
because of the system we are developing,

1 O ...,. Chapter 1 Introduction

• either the user does not communicate well, we don't listen and take
notes well, or both, and

• we make mistakes.

Note that we did not say "the user frequently does not know what is
needed" or "the user knows but cannot articulate what is needed" but
"the user cannot know what is needed." This statement requires some
justification.

Physicists live with the Heisenberg Uncertainty Principle, which states
that in order to observe something you must in some way affect it. In
other words, observation itself introduces change. The same phenom
enon can be observed in developing software. By analyzing the need for
and introducing a computer system, you change the business and, there
fore, its requirements for software.

An example: Several years ago, when one of the author's first children
was born, he decided to go out and buy a video recorder and camera. He
thoroughly researched the subject by reading reviews, talking to friends
in the video business, and asking lots of questions of the sales people. He
made his decision based on the "facts," and purchased the "best" unit.

What happened? To those of you who owned the old style separate
video camera and recorder, this will come as no surprise. He used it once
an hour for the first day, once a day for the first week, once a week for the
first month, once a month for the first year, and annually on birthdays
after that. Why? The unit was too big, lacked autofocus, had a 20-minute
battery, and required lots of light.

A few years later, he decided to buy a new video camera. This time, he
knew exactly what he needed. It had to be lightweight, have a long battery
life, focus itself, and be able to take movies in very low light. Was he
upset? Not really. He realized that no matter how much research he had
done the first time, he could not possibly know features that were
important to him until he actually used a camera.

Software development, especially for graphical user interfaces like that
of the Macintosh, is very much like this. At the beginning of the software
development process, people understand their needs in the context of
their existing environment. Once the system is implemented, in fact, once
the analysis begins, the environment itself changes largely as a conse
quence of the system. Work flow is redirected, responsibilities are
shuffled, costs and revenues change, and old bedrock assumptions about
the business are undermined. In short, the business adapts to the system
as the system adapts to the business.

Figure 1-5 shows the real cycle of software development. Every change
results in new perceptions, which lead to more change. There is no way to

..,.. Macintosh Software Development Today 11

stop it. We must simply accept that there is no final equilibrium in
software development; there are only passing phases which approach
equilibrium. In Greek mythology, Sisyphus was condemned to push a
rock up a mountain, only to have it roll back down whenever he got close
to the summit. If Sisyphus were alive today, he would be in the software
business.

Figure 1-5. The cycle of software development

Faulty Assumptions

At the Ninth Annual IEEE Conference on Software Engineering, a talk
was given exposing four common myths of software development. Taken
together, they strongly suggest that traditional software development
methodologies are out of touch with the way software development is
really practiced.

Myth #1: The software team understands the requirements. The re
searchers found that, although this assumption was commonly made, the
collective software team rarely had a good understanding of the problem
it was supposed to solve. The damage was as much in the wrong assump
tion as in the fact.

Myth #2: There are fixed specifications to guide programming. The
assumption was that the traditional linear model of software develop
ment could be relied on. First you define requirements, then specifica
tions, then do the design, then program. No task overlaps any other; they
are performed end-to-end. In reality, the written specifications were
never correct and were constantly changed. Again, the false assumption
was as damaging as the phenomenon itself.

12 ._ Chapter 1 Introduction

Myth #3: Decisions on a project team are made by a process of reasoned
analysis. Wrong! One or a small few dominant individuals seemed to
always have their way through force of personality, not force of logic.
Thus, the results depended solely on how well those people blessed with
forceful personalities happened to understand the problem.

Myth #4: Information flows between project teams from team leader to
team leader. Wrong again. Lunchroom conversations between team
members were the real communications channels; communications be
tween team leaders invariably just documented formally what had al
ready occurred informally.

The reality behind these myths shatters any notion that traditional
software development methodologies are well grounded in reality. That
they are subject to frequent and spectacular breakdowns should surprise
no one .

...,_ Traditional Software Development for the
Macintosh Is Even Worse

If these problems exist for software development in general, they are
particularly severe in development for the Macintosh. This is not just
another pretty machine. Macintosh applications tend to be sophisticated,
complex, and altogether different compared to programs on other
machines. There are several distinctive characteristics of the Mac that give
developers fits.

Graphical User Interface

The Macintosh uses a Graphical User Interface (GUI, pronounced
"gooey''). Instead of typing in cryptic commands, the user manipulates
graphic images on the screen by using a mouse to point a cursor, then
clicking with the mouse. The cursor and mouse together mimic one's
index finger pointing to a piece of paper. Another cornerstone of
Macishness is WYSIWYG, "what you see is what you get." The image on
the screen should match precisely the printed result.

Figure 1-6 shows a fairly typical user interface for the Macintosh.
Although the overall effect is one of simplicity, myriad details are in fact
presented to the user.

~ Macintosh Software Development Today 13

Menu

• Fiie Edit
New

Edit
Employee lest jGoldlteln
:i:~Joff Reissue Checllc Finl ._l:::N:ool~:::.;-:1 M:-::1:-:-dd::-le-:._11.my;::: ~= = _=_ =,~

Bo.i-n,Gmpy Department~ Employee# ~
iricban. Milton

Hendrlckl, Jimmy
Holly.Bwldy
Joplin. Janloe
Mormon. Jim

Rddre11 lt234 Thlt Sbeel

City !Palo Alto

State ~ Zip I M30t-t234I

Phone ~ I 5151;.121~ Uoc. Days D

Comp------~ Modify Noun crn1 [001 [!ii
@Hourly Rate ~

Worked LI
O s11111rted ~e111r1,1 C:=J uacatlon []

..... 1Wc6.0

Window

Deductions D Slcllc LI
Start Date OJI [lit [!ii ~cons

Cancel

Figure 1-6. Typical Macintosh user interface

As anyone who has written a Macintosh program knows, this may look
simple to the user, but is not at all simple to implement. Traditional, linear
development does not work well where the look and feel of the interface
is important. Why? The Software Uncertainty Principle at work. The user
cannot possibly know what he or she wants until there are tires to kick
and doors to slam. In order to tell the programmer what he or she wants,
the user must conceive of a metaphorical, graphical interface and grasp
details of data flows and algorithms, all while keeping track of the origi
nal objective. This is simply asking too much of any human being, no
matter how well trained. A Macintosh programmer recalled some of the
earliest advice he got when learning to program the Mac: "Remember:
The trash can is your friend."

Macintosh development requires instead a process of prototyping and
cyclical refinement. Study a little, think a little, develop a little, review a
little, revise a little, then loop. At all stages, intermediate results guide the
remaining work. This is generally true for GUI. The better the look and
feel of the interface, the greater the need to abandon traditional, linear
techniques.

14 ~ Chapter 1 Introduction

Modeless Operation

In a traditional computer program, the program is in control. The user is
guided through a hierarchy of choices, one at a time, with very few
options at any one point. In the Mac's so-called "modeless" interface, the
user is allowed to roam about the program almost at random, choosing
the order in which to accomplish tasks and issuing commands willy-nilly
to the program. For example, the user may click in a text editing window,
double click on a word, copy it to the clipboard, pull down the Apple
menu and launch a desk accessory, paste the text, then return to the
application in an entirely different window. This plays havoc with tradi
tional top-down approaches to software specification because there really
isn't any hierarchy to the flow from step to step. Traditional methodolo
gies are generally organized to mimic the hierarchy of choices available to
the user. The Macintosh interface begs instead for an approach based on
small, independent modules whose sequence of firing is not important to
the design.

Attention to Detail

The Macintosh environment requires meticulous attention to a tremen
dous amount of detail, including each element of the user interface, the
clipboard, cooperation with desk accessories and other applications, and
the usual file and data management. The software environment of the
Macintosh is complex enough that everything becomes closely interre
lated. It is a standing joke in the Mac community that in order to
thoroughly understand any chapter of the six-volume Inside Macintosh
reference manuals, you must first thoroughly understand all of the others.
Some of these "details" are not minor considerations and cannot simply
be postponed until it is convenient. Yet, somehow they seem out of the
mainstream of what the program is about. In a traditional top-down
approach, they would not be considered candidates for top-level treat
ment, but would have to be jammed into bottom layers. By the time you
reach those layers, you may have introduced a serious error that undoes a
lot of high-level work.

Ambition

The Macintosh simply encourages more ambitious projects and attracts
more ambitious programmers than other computers. A "simple" word
processing program can easily consume 100,000 lines of code. The Macin
tosh is not inherently more difficult to program, but the standards for
Macintosh software are the highest of any computer today. As in the song,
if you can make it here, you'll make it anywhere.

..,.. Macintosh Software Development As It Should Be 15

....,. Macintosh Software Development As It
Should Be
Let us start over. Forget for a moment limitations of technology and
concentrate on what characteristics we would like to see in a software
development methodology .

..,.. What Is a Good Model?

A model is an approximation of some system. A computer program is a
model of a real-world situation. Software development methodologies
are models as well, of how people think and behave in a software project.
A large part of the software developer's task is to create accurate, useful
models of the business, while the software methodologist seeks to create
models of the software development process that conform to the way
good software is created. Thus, we must deal with models in both
contexts.

In general, a good model helps you and others understand what a
system contains, how it works, and why it works that way. It provides
structure as an aid in learning about the system and, therefore, in refining
the model itself. To support this, a good model should provide a natural
way to create and test hypotheses about the not-as-yet understood details
of the system it mimics. The model of the world used by physicists is not
the real world, yet it allows us to explore the real world in a structured,
systematic manner, updating our physical model as we go. We can derive
apparent details from the model, test them against the real system, then
update the model accordingly. Similarly, we can deduce cause and effect
relationships within the model, then check whether the real system also
behaves according to the same laws we derive from the model.

Models are not inherently good because they are accurate; models
should also facilitate this kind of discovery and feedback. This means that
human factors in understanding the model must be taken into account.
This, in fact, is the real problem with traditional software. You may or
may not have an accurate model, but no one can tell whether you do
because the model itself is too complex or too far removed from human
cognition!

To cope with human abilities, good models allow us to perceive a
system at varying levels of detail. Human short-term memory only holds
7±2 "facts" at once. Any model, in order to be useful, must, therefore,
allow us to deal with about seven pieces of information at a time. We
should be able either to temporarily ignore the detail in order to under
stand the whole or to focus on details without regard to the big picture.
Complete accuracy at all levels of detail is neither necessary nor desirable.

16 ...,. Chapter 1 Introduction

We should be able to explore only "differences that make a difference,"
viewing the model from many different directions with only the appro
priate facts visible.

A good model should also be stable. Think of a model as a road map.
One can add additional cities and routes in the real world without
invalidating the map. Similarly, in a good model of a business system, one
should be able to add new functions and facts without changing the
underlying characteristics of the model. This implies that the model is
somehow based on that which is relatively unchanging and that elements
of the model are as independent of one another as possible. With this
independence comes the flexibility to change things easily without
dramatically upsetting prior results. In the real world, the characteristics
of ice cream do not really depend on the characteristics of the cone, and
the whole arrangement does not depend much on the flavor chosen. Our
model should have similar independence.

Finally, a good model should have high fidelity, introducing only the
minimum possible distortion. A simple question serves to measure fidel
ity: to what degree can you and others recognize the real world in the
model? If you must do a good deal of explaining and translating, distor
tion has been introduced. High fidelity models allow our users to be able
to understand the structure and content of programs we create for them.

Traditional software development results in programs that are not
good models in the above sense. The structure of the program has very
little in common with the natural system it simulates, and a great deal of
distortion results. It does not allow us to quickly focus on the relevant
7:±:2 facts. And experience has shown that software is notoriously
unstable. Linear methodologies are similarly out of synch with what we
require of models. They introduce distortion, as the four myths so clearly
demonstrate. Since end users are taken out of the loop early, discovery
and feedback cycles are discouraged. At each stage, all of the detail must
be dealt with before the next stage can begin.

~ Five Characteristics of a Good Methodology

There are five characteristics we can use to judge whether a new software
development methodology is a good one. These will guide us as we
construct such a methodology for use with object-oriented software
development and the Macintosh.

1. It Has to Work
The methodology has to work. It should consistently provide high
quality software that is on time, within budget, and meets the needs
of the users of the software. No other measure of success matters.

~ Macintosh Software Development As It Should Be 17

2. It Must Allow for Continual Evolution

Since we know that it is futile to try to develop fixed specifications,
let's not try. Instead, our methodology should correspond to the way
people think and businesses operate: by cyclical refinement. There
will be no fixed ending point. Rather, there will be an on-going
evolution that never ends, but with points of equilibrium along the
way. Release of software will be based on utility of the "intermedi
ate" result, not any notion of finality.

3. There Must Be Rapid Turnaround

Because we know that the software itself will change the need, it is
doubly important to start reaping results quickly. No six-month to
two-year turnaround here: initial results should be available in days
or weeks.

4. It Must Minimize Distortion

Figure 1-7 illustrates a popular childhood game called "Telephone,"
in which a person at one end of a long line of people whispers some
complicated story into the next person's ear. That person quickly
turns to the next one in line and repeats the story, and so on until the
last one in the line tells the story-or such of it as has survived-to
the prolonged laughter of the group. Seldom does the end result
even resemble the initial story.

Figure 1-7. "Telephone" and the communications gap

This game illustrates an important point: The more people we have
involved in developing the software, the more important smooth
communication becomes. There once was a time, long, long ago,
when software development was considered to be a task relegated to
a few specialists in the back room. Today, software projects require
multi-disciplinary teams. Programmers alone don't have all of the
answers, nor do systems analysts, end users, management, support
personnel, or any one other group. Each has some unique contribu
tion to make. In this environment, communication, not program-

18 ~ Chapter 1 Introduction

ming technology, is the single biggest problem in delivering quality
software. Each community has a collectively different perspective,
background, and agenda.

Ideally, everybody involved should be able to explain perceptions
and needs ~n ways that translate directly into software, and should
be able to understand the structure of the resulting software without
knowing much about computers. Put another way, we need a com
mon lexicon and structure throughout the process of creating soft
ware, from analysis through code.

5. The Process Must Be Stable
We should be free to roam through the needs and design of the
software, confident that short-term mistakes will be picked up and
corrected in due course. It should matter little the order in which
we explore the relevant topics. If the methodology is stable, compa
rable results will be produced regardless. In particular, we should be
able to focus first on central issues. Stability also implies-assuming
that the right people are brought into the team-that the order
or manner in which we talk to various participants will at worst
affect the time it takes to produce results, not the accuracy of the
results. The methodology should not present a canvas on which
we paint, but a chalkboard, portions of which can be erased and
modified at any time.

..... Benefits of Object-Oriented Programming

Few would dispute the value of this list. Unfortunately, the technology to
achieve these goals has traditionally not been available. Programming
languages are still much closer to the way a computer processes data than
to the way people think. Because the structure of programs has been so far
removed from the way users perceive their world, it has always been
necessary to interpose systems analysts and programmers between users
and their programs, thereby creating a high-tech game of telephone.

As soon as you get so many people into the picture, with no one really
understanding what anyone else is saying, the need arises for a great deal
of structure. Development must proceed in stages and be handed off from
one community to the next at specific points in time. Otherwise, we
would spend all our time translating between programmers, analysts,
end users, management, operations, and everyone else who has a hand in
the creation of the software. Each group uses a different jargon and we
can handle at most two different lexicons at one time.

~ Macintosh Software Development As It Should Be 19

Traditional analysis, design, and programming techniques fold,
spindle, and mutilate users' observations into forms so completely
unnatural to the non-programmer that it is a wonder that software ever
comes close to the "right" solution. The situation is somewhat akin to
translating poetry: It never retains quite the same meaning in another
language. Except that we have several languages, one for each commu
nity involved.

It is widely claimed that object-oriented software development rewrites
the rules. This is not because object-oriented programming languages are
faster, bigger, smaller, or more expressive than other languages. People
think in objects, so a language oriented around objects can allow pro
grams to mimic much more closely the way people, especially end users,
perceive their world. In a sense, OOSD is important precisely because we
no longer need care very much about the programming language; we can
and should concentrate on the problem, confident that a particular solu
tion in a particular language will follow smoothly. OOSD provides a
common lexicon that can be understood by everyone involved.

Yet, for many software professionals, these strategic goals quickly
become obscured in a haze of object-oriented technobabble (OOTB):
dynamic binding, polymorphism, objects, classes, inheritance, messages,
encapsulation, and so on. There are, in fact, so many concepts, techniques,
and technologies in object-oriented software development that it is easy
to equate OOSD with technology. Granted, the technology has to exist,
but object-oriented programming languages such as C++, Smalltalk, or
Object Pascal are not the same as object-oriented software development.
The languages are simply a means of implementing object-oriented soft
ware concepts and designs. Languages alone do not accomplish sweeping
results. In fact, the game of software development has already been won
or lost before the first line of code is written!

Used correctly, the object-oriented paradigm matches our natural abil
ity to make distinctions; that is, we naturally perceive the world as
divided into objects with specific behaviors. It closely models our tenden
cies to classify objects into wholes and parts or into types.

Look at an ice cream cone. What do you see? "Cold" described as a
Boolean condition or perhaps a 32-bit integer? Algorithms?

for i := 1 to 10 do drip;

No. Chances are that your first glance will reveal a single "object," in the
common usage of the word. Closer inspection reveals parts of the object: a

20 ..,.. Chapter 1 Introduction

scoop of ice cream (two on a hot day), a cone, a napkin. Reflection may
cause you to assign·types, perhaps based on other desserts or with "things
you eat after a softball game." Extended observation yields some behavior
as well: it is cold at first, but if you don't eat it fast, it drips!

With object-oriented programming, these ideas can translate pretty
directly into a computer program. In fact, the process described in this
book is largely based on such intuitive notions: objects, wholes and parts,
types, and behaviors. Thus, we cut out much of the potential for faulty
translation. Put another way, object-oriented software development
allows us to construct models of the problem and the solution that bridge
the way people think with the way object-oriented programs are con
structed. Used properly, OOSD allows a quantum leap forward .

....,. Problems With Object-Oriented
Programming
Somehow all of this seems too good to be true. More seasoned readers
have probably already thought back to similar claims for any of the
software development methodologies introduced over the past thirty
years. What makes object-oriented software development different?
What are its problems? Can OOSD really be so revolutionary? Have the
authors already started lying through their teeth right here in Chapter 1?
The answer to the last question is . . . yes and no. What we have talked
about so far could be called the "folk theory" of 0050. As we will see in
later chapters, the folk theory is not wrong, just oversimplified. Before
proceeding, let's look at three skeletons in the object-oriented closet.

~ Where Are the Methodologies?

Any software manager who has managed an object-oriented software
development project knows the single biggest problem in using 0050:
Object-oriented programming by itself is not enough. There is still a need
for a well-defined process that converges on the right results and fully
exploits the power of object-oriented programming. Done poorly,
object-oriented software development can be just as bad as traditional
techniques. Unfortunately, methodologies for use with 0050 are still
emerging. This book and Solution-Based Modeling are modest attempts
in that direction.

..,. Object-Oriented Programming Is Still Worth the Effort 21

..... The Sheer Cliff Principle

The second problem is that object-oriented software development is easy
to use only for small, simple projects. It is easy to learn object-oriented
programming basics and to write simple programs. In fact, it is easy to
write some fairly complex programs. However, it is a myth that object
oriented programming remains "natural" in most large, complex sys
tems. Listening to a roomful of OOSD experts discussing what the "right"
design is can remind you of a roomful of economists discussing whether
the economy is going to grow or shrink a year from now: ten experts,
twelve opinions. If the experts cannot agree, how can a neophyte get it
right? In the real world, object-oriented software development is not
always simple and is seldom obvious. We call this the "sheer cliff"
principle of OOSD: Problems tend to be either as simple as a stroll in a
meadow, or as difficult as a sheer cliff, but are seldom in between .

...,. "It May Be Obvious to You, But It Isn't to Me!"

Compounding this problem is the mystique that surrounds the "experts."
Yes, they do produce better results. But how? Despite the dozens of books
on the subject, no one yet has clearly articulated just how the expert's
approach differs from that of mere mortals. It seems that the object
oriented software development expert is tuned in to some hidden channel
of understanding and that, "the problem isn't OOSD, it's you." If only you
turn the problem over in your hand and view it from different angles,
maybe shake it a little and listen to the sounds it makes; if only you
concentrate so hard your puzzler starts hurting; if only you can just see
it in the right light, the solution will become obvious to you, too. Unfortu
nately, real software managers and real programmers need more than
just faith backing their basic tools. They need blueprints and tools that
produce consistently good results without a two-year learning curve .

....,. Object-Oriented Programming Is Still
Worth the Effort
OK, we've said it. Object-oriented software development is not as easy as
it seems. What is? OOSD is still one of the major advances in computer
software of the past twenty years. It is, indeed, a better way to create

22 .,.. Chapter 1 Introduction

software. It is closer to the way people organize their own thoughts and,
therefore, likely to produce better results than other approaches. It just
isn't perfect. Fortunately, perfection isn't a requirement. OOSD need only
be significantly better than other approaches in order to be useful, and
that it most certainly is.

We will reconcile the problems outlined previously as this book un
folds and show how they can be recognized and overcome. No, we will
not make OOSD simple to use for all problems, just simpler than other
approaches and yielding substantially better results. In the real world,
that is what counts. There is a difference between excellence and perfec
tion: excellence is achievable. Let's set excellence as our goal.

...,. Summary
• Traditional software engineering is failing to produce good results,

especially for the Macintosh. Forty-two percent of all money spent on
software is spent to make a program fit the problem at hand better.
Only 30 percent is spent on initial development and 14 percent on
fixing bugs. Dramatic improvements can only result from doing a
better job of solving the right problem.

• Software development is essentially an exercise in model building.
Both software methodologies and the programs they produce are
models of real systems. A good model

- Helps you and others understand what a system contains, how it
works, and why it works that way.

- Provides structure as an aid in learning about the system you are
studying.

- Takes into account human factors in understanding the model.
- Enables one to explore only "differences that make a difference."
- Is stable.
- Has high fidelity.

• A good software development methodology works, accepts con
tinual change, provides rapid turnaround, minimizes distortion, and
is stable.

• The biggest potential benefit of object-oriented software develop
ment is in bridging the gap between highly trained experts and end
users in describing problems and solutions, not in pure technology.

..,. Summary 23

For all of its promise, OOSD suffers from several problems today.
- Methodologies have been slow to emerge.
- There is a sheer cliff phenomenon with OOSD: simple problems

are simple to solve, but complicated problems seem insurmount
able.

- There is too much "magic" to OOSD and OOSD experts.

Despite these problems, OOSD remains a considerable leap forward in
software technology.

2 Object-Oriented
Programming: The
Technologist's Perspective

....,. What This Chapter Is About
This book focuses on the object-oriented approach primarily as a great
way to organize software development and only secondarily as a collec
tion of programming languages. However, it is important to understand
the technology in order to grasp how concepts and models get turned into
real programs. This chapter does not replace the many fine books on
object-oriented programming basics. Instead, it explains the differences
between object-oriented and conventional software and how to capitalize
on those differences to produce great programs. Because there seem to be
as many definitions of OOP as there are experts on the subject, an authori
tative list of the concepts and terms involved isn't possible. What follows
is a synthesis of opinion that you should, over time, modify to suit your
own experiences.

We use C++ as the language for most discussion in this book, with
examples in Object Pascal where there are significant differences between
the languages. Why C++? Why Object Pascal? Why not? It is a central
message of this book that it shouldn't really matter what language you are
using; in fact, you can apply the techniques of this book without an OOP
language at all! The methodologies are as applicable to Smalltalk, Object
Pascal, Lisp, or AMOL (Aunt Millie's Object Language.) C++ is very
popular a~d can be understood by anyone with a reading knowledge of C
or, with a little effort, similar high-level languages like Pascal. Do not
expect a rabid defense of C++ as "the" OOP language. The authors admit
to having a soft spot for C++, but don't much care which language you
use. There are too many other things involved in software development
that have a far greater impact on the bottom line.

25

26 ..,.. Chapter 2 Object-Oriented Programming: The Technologist's Perspective

.,... Objects
There is vigorous disagreement over which languages are and are not
object-oriented and what features simply must be present in order for an
object-oriented language to qualify for the term. We thus start with only
the most basic notions of objects on which there is general agreement.

...,_ What Is An Object?

Everyone can agree on one point: an "object" is a combination of data and
program code. This in itself is a radical departure from traditional pro
gramming practice. In traditional programming, data structures are
designed separately from the software modules that access and modify
them. In OOP, the two are developed in lockstep.

Consider the following code fragment in C for a simple calculator
application. Each "node" of a binary tree is either a number or a binary
arithmetic operator (+, -, *,or I.) The field node_ type tells us which class
of node we are dealing with. We will declare both the data structure
(node) and a function that operates on nodes. The interface looks some
thing like this:

Interface

struct node {
enum {value,plus,minus,times,divided} node_type;
int a_number; /* applies only when node_type == value */
struct node *left, *right; /* operands of a binary operator */
};

int eval(struct node *node);

struct node and the material that follows inside the braces { ... }
declares a template for construction of and access to data of a certain type.
eval () operates on data of that type. Note that the data is described
separately from the code. The implementation of eval () might be as
follows:

Implementation

int eval(node)
struct node *node;
{

switch(node->node type) {
case value: -

return node->a number;
case plus: -

}

..,.. Objects 27

return eval(node->left) + eval(node->right);
case minus:

return eval(node->left) - eval(node->right);
case times:

return eval(node->left) * eval(node->right);
case divided:

return eval(node->left) I eval(node->right);
}

In a real program, one might use the following code to call the function
eval ():

Usage

the result= eval(a_node);

Now, let's try the same thing using objects in C++, then Object Pascal.
(What follows would make OOP purists blanch, but be patient. We will
return with a better implementation later.)

C++ Interface

class node {
private:

enum {value,plus,minus,times,divided} node_type;
int a number;
class-node *left, *right;

public:
int eval();

} ;

Object Pascal Interface

TypeOfNode = (value,plus,minus,times,divided);
node = OBJECT

node type : TypeOfNode;
a nuiiiber : INTEGER;
left, right : node;
FUNCTION eval: INTEGER;

END

This simultaneously declares that we have a new type of data structure
called node (a class of object) that contains fields or data members
node_ type, a_number, left, and right, as well as a function that

28 ~ Chapter 2 Object-Oriented Programming: The Technologist's Perspective

operates on occurrences of that data structure, eval (). A function de
clared as part of the declaration of a class in this way is called a method.
Data members and methods are called members of a class and its objects.

As with a normal C structure, simply declaring a class interface does not
create any objects; it simply provides a template for constructing and
using objects. Think of an object class as a blueprint that tells you how to
build a house of a certain design. The house itself is an object created from
that blueprint. This relationship between class and object is sometimes
difficult to grasp, but it is very important. An object is variously called an
instance or member of its class. A class is also sometimes called a type of
object. To create an object is to instantiate one using some class as the
blueprint. Any time this many terms swirl around one concept, you can
bet that it is a frequently used concept!

Note that eval () does not have any arguments. How does it know
what structure to operate on when called? The answer is that the object is
implied by the way a method is called. You cannot refer to a field in a data
structure directly, but must somehow name the data structure first. Con
sider the following:

struct house {
char address[20];

} ;

the address_I_want = my_house->address;

The variable my_ house tells us which address we are talking about.
The name address may have been used extensively elsewhere in the
program, perhaps in other data structures for offices or as itself a data
type describing speeches. By naming the structure with my_ house->, we
focus on the use of the symbol address within the structure type of the
variable my_ house. We also know that each copy of a data structure has
a copy of each of its fields. There may be hundreds of house structures in
our program at one time, each of which has its own copy of the field
address. By naming the particular structure with a variable, we identify
which of the many copies of address we want.

OOP languages take this idea one step further. Conceptually, copies are
made of the methods named in the class for each instance we create. As
with a field in a structure, you must identify the object you are talking
about in order to call one of its methods or refer to one of its data
members. For efficiency, OOP languages have clever ways of maintaining
this illusion without really making copies, but it is the illusion that counts.
We will return to this illusion in a moment. For now, consider the follow-

IJll- Objects 29

ing code which calls our method eval () . The resemblance to the way
one references a field in a structure is more than coincidence.

the_result = a_node->eval()~

The keywords public and private illustrate another fundamental
concept in OOP. Members that are declared private are accessible only
within the implementation of methods of the class. To every other part of
the program, they are syntactically hidden. public members constitute
the entire interface to the object. This ability to hide implementation
details, while publishing the interface, is a fundamental tool of OOP
called encapsulation. This kind of encapsulation is not available in all OOP
languages. In Object Pascal, for example, all methods and data members
are public; in fact, no counterparts to the key words public, private,
and protected exist. However, it is still considered good programming
practice to document and use methods according to these conventions,
even where the language does not enforce the concepts.

It is very common, in fact, considered good practice, to make all data
members in the object private, as was done in the C++ example, basing the
entire interface to the object on methods. This technique of hiding data
structures behind a functional interface is known as creating an Abstract
Data Type (ADT). ADTs are very useful tools for creating maintainable,
reusable code, even in non-OOP environments. OOP languages carry on
this trend and make it an explicit part of the language. As with methods,
in a language that does not enforce privacy, it is still a good idea to
adopt conventions that call for accessing data members entirely through
methods.

C++ Implementation

int node: :eval()
{

}

switch(node_type) {
case value:

return this->a_number;
case plus:

return this->left->eval() + this->right->eval();
case minus:

return this->left->eval() - this->right->eval();
case times:

return this->left->eval() * this->right->eval();
case divided:

return this->left->eval() I this->right->eval();
}

30 ..,. Chapter 2 Object-Oriented Programming: The Technologist's Perspective

Object Pascal Implementation

FUNCTION node.eval: INTEGER;
BEGIN

END

CASE node_type of

END

value: eval .:= self .a_number;
plus: eval := self .left.eval + self.right.eval;
minus: eval := self.left.eval - self.right.eval;
times: eval := self .left.eval * self .right.eval;
divided: eval := self.left.eval I self.right.eval;

this is the name of the object for which the method was called (self in
Object Pascal). This is the magic for which we have been searching: a
method can refer to the rest of the object by using this. As we have
already discussed, the function eval () is every bit as much a part of the
object as a_ number, left, right, and node_ type. In the implementa
tion of eval () , note that a_ number and the other fields are directly
accessible as if we were dealing with a normal structure. Also note the
way that the left and right branches of the tree were evaluated:

this->left->eval()
this->right->eval()

This is the way one calls a method: by giving the variable which is, or
points to, the object (in this case, this,) then the name of the method.

In this example, this-> and self. are actually not necessary. C++,
Object Pascal, and most OOP languages prefix names of members with a
reference to the object for which the method was called. One uses this->
and self. in situations where there may be some ambiguity. For ex
ample, suppose that there was a global variable called left? We could
not tell whether the data member or the global variable was meant
without some way to identify the target. this-> is the identification.
Absent some such problem, the eval () method could be rewritten as
follows:

int node::eval()
{

switch(node type) {
case value:

return a number;
case plus: -

return left->eval() + right->eval();
case minus:

}

..,._ Objects 31

return left->eval() - right->eval();
case times:

return left->eval() * right->eval();
case divided:

return left->eval() I right->eval();
}

C++ Usage

the result= a_node->eval();

Object Pascal Usage

the_result := a_node.eval;

Note the distinction between the two usages:

the result= eval(a node); /* straight c version */
the=result = a_node~>eval(); /* C++ version*/

Both accomplish exactly the same thing.

..... Terminology Review

Let's quickly review the concepts and terminology introduced so far.

• An object is a combination of a data structure and program code that
accesses and/ or changes that data structure.

• A member of an object is the equivalent of a field in a data structure. A
member can be either a data member or a method.

• A method is a function or procedure attached to an object.
• An object class is the description of a generic type of object; all of the

data and methods will be the same for objects in a given class. node is
a class in the above example; a_ node refers to an object of that class.

• Members of an object are encapsulated by the interface to that object.
That is, we need not make visible all of the details of an object in order
to allow the rest of a program to interact with the object. The eval ()
example used private and public to encapsulate all objects of the
node class within the public interface.

Not everyone agrees on even this much terminology. For example, it is
possible to have an OOP language in which there are no classes. All

32 ..,. Chapter 2 Object-Oriented Programming: The Technologist's Perspective

objects are constructed from scratch by painstakingly adding in one
member at a time. In some languages, one can shortcut the process by
cloning, or copying, an existing object. There are also hybrids in which
classes function as starting points, but objects can be modified on the fly to
add to or subtract from from their class. Calling a method is frequently
described as sending a message to the object. The term "member" is popular
in C++ circles but "field" and "instance variable" are more common with
other languages, including Object Pascal. Many OOP languages, Object
Pascal among them, do not allow true encapsulation since all members
are public.

One fine day, the clouds will part, the sun will radiate true enlighten
ment, the Cleveland Indians will win the World Series again, and all of the
terminology used with OOP will settle down into something on which we
can all agree. But don't hold your breath. Especially for the Indians. Until
then, concentrate 90 percent on the concepts and 10 percent on the names
and you will not go far wrong.

~ Anthropomorphism

The species Homo sapiens is incredibly egocentric. We like to ascribe
human characteristics to everything: animals, cars, food, whatever
("Martha, this fool car is just too lazy to start this morning" or "What do
you think of Mozart, Rover?") This anthropomorphism explains much of
the appeal of OOP as a way of organizing software. The idea of a "thing"
that can remember things, take actions, and exhibit behavior corresponds
pretty closely to the way we as humans tend to organize our perceptions
of the world.

From this point on, think of an object in a computer program in those
terms. How about this for a paycheck object?

First, he asks the employee object how much her salary is. Then, he
asks the deductions to compute themselves. Finally, when he's all
done thinking about it, he computes the amount to pay and packs
himself off to the printer.

Seem a little foolish? Perhaps. But didn't it seem much more natural
than a data flow diagram? You can almost imagine a smile on the face of
the paycheck object as he smells the fresh ink being deposited on his face.
On the other hand, what vision does a structure chart produce? The flow
chart template you had to buy from the college bookstore years ago?

..,.. Inheritance and Polymorphism 33

Which image is more useful in discussing software and understanding
what it does?

The nice thing about objects is that they really do lend themselves to
implementations of these seemingly absurd descriptions of programs and
systems. By combining data and algorithms into one neat package, we can
turn this kind of anthropomorphic thinking into software. Objects are
things that operate on their own data; they have an awareness of them
selves and of other objects and the rest of their environment. This smacks
of consciousness, the notion of "self," which is the hallmark of human
intelligence. No, objects are not really intelligent, but neither are a lot of
other things that we describe as "thinking this" or "feeling that." It is the
fit of the analogy that counts. If it walks like a duck and quacks like a
duck, it might as well be a duck, even though a biologist might beg to
differ. No wonder that the OOP industry gravitates toward human terms
like "responsibilities" to describe objects and their interactions!

Objects are the things that you would see if you could open up the
computer and peer inside as the program runs. Classes are merely ways
of categorizing objects and templates for creating them. If people are
objects, then "big people," "people who live in Milwaukee," and "people
who read books on OOP" are examples of classes of people. Even though
much of the art of creating software using objects is to choose the right
classes, it is important to keep focused on the objects themselves as the
ultimate program. To paraphrase Shakespeare, "the object's the thing."
Classes that do not make it easier to create and understand the objects in
a program are not much good. We will have much, much more to say on
this subject.

...,_ Inheritance and Polymorphism
So far, we have talked about classes as blueprints for creating objects.
Most object-oriented languages, however, allow classes to be used as a
way of grouping other classes based on the data members and methods
they have in common .

..,._ Inheritance

Take another look at our implementation of the eval () method above.
You have to admit, there is something a little distasteful about the big,
ugly, switch-case block. Let's try again by describing several different
classes of objects, one for each kind of node. Bear with the syntax until we
have a chance to explain.

34 ..,_ Chapter 2 Object-Oriented Programming: The Technologist's Perspective

C++ Interface

class node {
I* This class is a placeholder only. We don't expect to really
create one. */

public:
virtual int eval() = O; /*a dununy eval() placeholder*/

};

class value_node: public node {/* a leaf node */
private:

int a_number; /* the only field which applies to a leaf */
public:

virtual int eval(); /*a custom eval() for leaves */
};

class plus_node: public node { /* a + operator node */
private:

node *left, *right; /* the only fields for interior nodes */
public:

virtual int eval(); /* a custom eval() for+ nodes */
} ;

/* similarly for minus node & etc. */

Implementation

int value_node: :eval() /* the leaf version of eval() */
{

return a_number;
}
int plus_node::eval() /*the+ version of eval() */
{

return left->eval() + right->eval();
}
/* similarly for minus node & etc. */

Usage

node *a_node;

the result= a_node->eval();

What does all this mean? Let's walk through the interface first. The line

class value_node: public node { /* a leaf node */

means that we have declared value node to be a subclass of the class

..,. Inheritance and Polymorphism 35

node. This means that it has all of the features of a node, plus the custom
features listed in the definition for value_ node. The colon (:) separates
the class being declared (value_ node) from its base classes (node). Base
classes are also called superclasses. This technique, which combines two or
more classes into a hierarchy in which subclasses automatically assume
the characteristics of their base classes, is called inheritance. Inheritance
can span multiple levels or generations. A base class may, itself, inherit
from another base class and so forth. Base classes of a class, perhaps
indirect, are called ancestors of that class; similarly, subclasses, perhaps
indirect, are sometimes called descendants. Figure 2-1 shows a simple
notation for the classes in our example.

Figure 2- l . Notation for class inheritance

Another image to carry with you: Objects can put on disguises. Any
object can appear to be any of its ancestors. In this example, a
value_node can appear to be either a value_node or a node. A
plus_node can appear to be either a plus_node or a node.

..... Polymorphism

The keyword virtual says that the method eval () can have a meaning
that varies from one subclass to another. In this example, eval () for
value_node is clearly a different operation from that of eval() for
pl us_ node. In effect, they are two different functions that share a com
mon interface and a common purpose, operating out of sibling object
classes. This ability to use the same name, in this case, eval () , to
represent several different functions is called polymorphism (Poly is no
relation to Anthro). When a subclass changes the meaning of a method
inherited from its base class(es), it overrides that method. value node
and plus_node both override the method eval() in this example.

36 Chapter 2 Object-Oriented Programming: The Technologist's Perspective

Polymorphism is one of the most powerful tools in the OOP arsenal for
simplifying the structure of a program. Essentially, it allows you to rely
on the object being able to figure out what you're talking about based on
its own context. The line

virtual int eval() = O;

means that there is no meaning for the method eval () in the base class.
It is declared in the base class only as a placeholder. Because it is in the
base class, we know that some definition of it will be available in objects of
all subclasses. Remember: the class node is now an abstract category of
nodes. We do not really expect there to ever exist an object of that class,
just its subclasses. Thus, you can think of the class node as a prototype for
its subclasses.

Note that in the usage we declare a_ node to be a pointer to an object of
type node. In practice, it is set to point to an object of one of the subclasses
of node, such as a plus_ node. This is OK because an object can be
referred to as if it were an object of any of its superclasses. Because
eval () is declared to be virtual, the right version of eval () will be
called in the line

the result= a_node->eval();

regardless of the real class of a_ node.
C++ is somewhat unique in requiring a keyword-virtual-to iden

tify methods that can be overridden. In most OOP languages, no such
distinction is made and every method that is not private can be overrid
den by any subclass. Let's look at the same example in Object Pascal.

Object Pascal Interface

node = OBJECT

{This class is a placeholder only. We don't expect to really create
one.}
FUNCTION eval : INTEGER;

ENDj

value_node =OBJECT (node) { a leaf node, inherits from class 'node' }
a_number : INTEGER; { the only field that applies to a leaf }
FUNCTION eval : INTEGER; OVERRIDE; { overrides the version in 'node' }

ENDj

plus_node = object (node) { a + operator node }
left, right node; { the only fields for interior nodes }
FUNCTION eval : INTEGER; OVERRIDE;

ENDj

{ similarly for minus node & etc. }

.,.. Inheritance and Polymorphism 37

Implementation

FUNCTION node. eval : INTEGER; { a placeholder }
BEGIN

write ('warning: pure virtual function node.eval called');
no;
FUNCTION value_node.eval : INTEGER; OVERRIDE; { the leaf version of eval }
BEGIN

eval := a_number;
no;
FUNCTION plus_node.eval : INTEGER; OVERRIDE; { the +version of eval}
BEGIN

eval := left.eval + right.eval;
END;

{ similarly for minus_node & etc. }

Usage

the result := node.eval;

Since there is no such thing as a pure virtual (=O) method in Object
Pascal, we have to add error-checking code for a method we never intend
to call. No keyword is needed to identify a method as overridable, but you
must use the keyword OVERRIDE when you override a method. And
Pascal does not support the concepts of public and private interfaces.
Otherwise, the two implementations are very similar.

Why did we bother? Take another look and see how much simpler the
code is now! No more massive switch-case blocks. We have used
polymorphism and the ability to set up hierarchies of classes to decom
pose one big problem into a bunch of small, simple problems. Each of the
subclasses contains a single method with a single line of code doing the
work. We can explain the whole program by concentrating on only one
type of node at a time, along with our prototype for all nodes.

In addition to being simpler to write and understand, the program is
more maintainable as well. If we now want to add more operators to the
calculator, for instance, modulo division, we need only declare more
subclasses of node and figure out how to create them in the enclosing
program. Not a single line of code in the existing interface need change to
accommodate new types of nodes!

This, in fact, is characteristic of well-designed OOP programs: They are
simpler to write, easier to understand, and easier to maintain. But notice
the caveat: well-designed. This example does not have any other obvious
ways to categorize the objects. In any project of reasonable size, that will
not be the case. You will be inundated with the possibilities and have no

38 ..,. Chapter 2 Object-Oriented Programming: The Technologist's Perspective

way to prove that any one is right and the others wrong by sheer force of
logic. Identifying objects can be tricky. Properly categorizing them into
classes, armed only with logic, is like trying to eat soup with a fork. You
must take into account very human factors in choosing from the alterna
tives. The question is not "Is this the right set of classes?" but rather "Is
this a natural way to categorize my objects?"

~ The Two Roles of Inheritance

We asserted earlier that classes are not strictly needed in order to have
objects. Since inheritance is a class-based concept, it follows that inherit
ance is not strictly necessary in order to have objects or object-oriented
software. What reasons are there for using inheritance?

• Inheritance directly expresses a way of classifying things, which is
natural for people in describing their environment. Words like
"ancestor" and "inheritance" convey a strong intuitive sense of a
program's structure based purely on their conversational meanings.
And, what could be more anthropomorphic than to ascribe lineage or
role-playing to objects? In other words, inheritance is a convenient way
to describe things.

• As with classes, inheritance is a convenient way to save a lot of time
with objects that have a lot in common. We have already seen a good
example of this in the use of the class node as a prototype for its
subclasses. That is, inheritance is an implementation convenience.

Both of these are strong reasons to include inheritance in almost
everyone's short list of must-have features for an OOP language. How
ever, it is very important to keep the two uses of inheritance straight.
Inheritance used to capture requirements must correspond to human
cognition; inheritance used as a nifty way to write a program must be
nifty but well hidden from the real definition. Keeping these two uses
straight is not as easy as it seems, but is absolutely critical to producing
quality results.

~ Multiple Inheritance

In an old segment of "Saturday Night Live," two actors in a television
commercial spoof argue over a new consumer product. One insists that it
is a dessert topping; the other claims it is a floor wax. A third actor,
obviously a representative of the manufacturer, comes in the kitchen door

..,.. Inheritance and Polymorphism 39

and declares that it is both! How would you classify that object in the
world of items in your kitchen? It is correct to say that it is a dessert
topping, but it is equally correct to call it a floor wax. Yet, those two classes
are as different as can be. Neither is an ancestor of the other, nor are
they siblings. They are not even seventh cousins eleven times removed.
There is really only one solution: use both dessert toppings and floor
waxes as base classes of the new product! Figure 2-2 shows this dual
inheritance.

Figure 2-2. Inheritance of sweet_n_shiny

Here is a fragmentary interface for this class in C++.

class sweet_n_shiny: public dessert_topping, floor wax {

};

This declares class sweet_n_shiny to have the characteristics of two
alternative lineages: that of dessert toppings and floor waxes and their
respective ancestors. Objects of this class will have all of the members of
both base classes.

Whenever a class inherits from more than one base class, it is said to use
multiple inheritance. Many OOP languages, Object Pascal among them, do
not support this idea and there is even some controversy as to whether it
is ever appropriate to use it. After all, there are alternatives, diagrammed
in Figure 2-3 and outlined in the following code.

40 ..,. Chapter 2 Object-Oriented Programming: The Technologist's Perspective

Plaarwaua~ofS.... 'nShlnr

Figure 2-3. Multiple inheritance work-arounds for sweet_n_shlny

~ Inheritance and Polymorphism 41

class sweet_n_shiny: public dessert_topping {
private:

floor wax as_wax;

} ;

or

class sweet n shiny: public floor_wax {
private: - -

dessert_topping as_dessert;

} ;

or even

class sweet_n_shiny {
private:

} ;

dessert topping as dessert;
floor wax as_wax; -

Of course, each of these requires some extra overhead. Methods of class
floor_ wax must in some way be replicated by methods of
sweet n shiny in the first version. In the extreme of the last version, all
members of the base classes are private and, therefore, must exist under
the umbrella of methods of sweet_n_shiny. The technique of using a
member to indirectly "inherit" characteristics of a class is frequently
called the multiple inheritance work-around.

Later, we will have a great deal to say about when multiple inheri
tance is a good idea and when it is not. For now, a few general observa
tions will do.

1. As with classes and inheritance, multiple inheritance can be used
either to express a concept or to make implementation easier. Even more
so than with single inheritance, it is critically important to keep the
two straight.

2. Multiple inheritance is seldom used properly. It is a powerful tech
nique used well; it is a disaster used poorly.

42 ~ Chapter 2 Object-Oriented Programming: The Technologist's Perspective

3. The use of multiple inheritance as a concept in specifying objects is
more important than the actual implementation. Without it, you
can't create natural descriptions of consumer products like
sweet_n_shiny. In the end, it doesn't really matter whether you
use multiple inheritance in your program or not, since you can
always simulate multiple inheritance using the work-around.

~ Class Libraries
In a normal programming environment, libraries of software are orga
nized into data structures and program modules that use them. Let's take
a look at a hypothetical library.

typedef struct {
int foe;
char bar[10];
} Foo Bar;

void do-something to a foe bar (a_foo)
Foo_Bar-*a_foo; -
{

a_foo->foo = 17;
}
void do something else to a foo bar(a foo)
Foo_Bar-*a_foo; - - - -
{

}

/*set a foo-> to a meaningful value */
do something to a foe bar (a foe) ;
I* -convert foo to a string store in bar *I
sprintf(a_foo->bar, "%d",a_foo->foo);

This example may be trivial, but it still points up a big problem with
conventional libraries. Suppose that we have a situation that differs
slightly from what the designers of this library intended.
do_ something_ else_ to_ a_ foe_ bar does exactly what we want, but
do_ something_ to_ a_ foe_ bar does not. Instead of setting foe to 1 7,
we want to ask the user for the value. Seems simple enough, but even this
simple change forces us to throw out the entire library! We cannot use
do_something_else_to_a_foo_bar without getting the wrong be
havior from do something to a foe bar.

Since it is simply not posSible to-conshler all of the permutations of
usage at the time you create a library, this problem can seldom be blamed
on the writer of the library; this sort of problem can arise whenever you
have one library function calling another.

~ Class Libraries 43

Let's assume that our do_something functions are all right, but that
we want to add data to the structure Foo Bar. We can do this in a
backhanded way as follows:

typedef struct {
Foo Bar a foo;
char my data[lO];
} Slightly_Different_Foo_Bar;

This leads to messy code. We have added another level of indirection to
the fields: my_ foo->a _ foo. foo replaces my_ foo->foo. More omi
nously, what if some library function does something like this:

write (fd, a_foo, sizeof (Foo_Bar)); /*write the foobar to a file */

There is no convenient way to communicate the impact of simple
additions to structures to the library functions that use them. Because of
these and other problems, libraries can actually act to stifle otherwise
beneficial creativity by forcing programmers to live within the structure
of the library.

Now let's try this as a class library, which is a collection of object classes.

class Foo Bar {
private:

int foo;
char bar[lO];

protected:
virtual void do_something ();

public:
virtual void do_something_else ();

};
void Foo_Bar::do_something ()
{

foo = 17;
}

void Foo_Bar::do_something_else ()
{

}

do_something (); /*set foo to a meaningful value*/
sprintf(bar,"%d",foo); /*convert foo to a string, store in bar*/

Now let's make both of the changes that caused such trouble in the
conventional version.

44 ..,. Chapter 2 Object-Oriented Programming: The Technologist's Perspective

class My Foo Bar : public Foo Bar {
private: -

char my data[lO];
protected: -

virtual void do_something ();
} ;

void My_Foo_Bar::do_something ()
{

scanf ("%d", &foo);
}

Not bad! We recovered everything except the one behavior we wanted
to change anyway. Now, when you create a My_Foo_Bar, the library
method do_something_else automatically calls your version of
do something, not the version in Foo Bar.

Handling problems like sizeof depends on the language you are
using. Many languages have a way to ask for the actual size of an object,
not the size of the class you think it is. In other languages, you would tend
to use a polymorphic method Get_ Size () to return the actual size,
which you can override for each subclass. Either way, the problem is
easily solved.

Class libraries take libraries of software out of the closet. Instead of
spending most of your time working around the limitations of the library,
you can spend most of your time leveraging its benefits. However,
despite their power, it is a mistake to assume that all class libraries are
alike for a given computer and language. As we will see, simply using
object classes to build a library does not completely free the programmer
from dependence on architectural decisions of the library's authors. Nor
is the language a trivial issue when using a class library. Features such as
encapsulation (private and protected interfaces), multiple inheritance,
and dynamic behavior in the language can have a .dramatic impact on the
ease of use and power of a class library. We will have more to say about
such language and platform dependencies in the appropriate chapters on
the Solution Based Modeling methodology .

.,... Variations on a Theme of OOP
There are two fundamentally different ways of handling OOP at the
language level, nicely represented by Smalltalk and C++. Smalltalk
allows new classes to be created and old ones modified while the program
is running. It is so flexible that your program can even change the way
Smalltalk builds and uses objects. Since Smalltalk looks up methods as

..,. Variations on a Theme of OOP 45

they are called, it is not necessary to know the true class of an object in
order to use it; you need only have a reference to the object and Smalltalk
will take care of the rest. Smalltalk programs are highly dynamic. C++, on
the other hand, is a compiled language. (Actually, most C++ "compilers"
actually translate into standard C, which is then compiled.) This means
that all classes must be explicitly declared before they can be used, and no
new classes can be created at run time. The mechanisms for dispatching to
methods are built into the language and cannot be changed. In order for
an object's methods to be properly called, your program must tell the
compiler enough for it to deduce the class to use. C ++ programs are static.

In Smalltalk, everything is an object-integers, records, even program
code. All objects are encapsulated behind a procedural interface. To add
two integers, you call the + method of one with the other as argument. In
C ++, all data types available in C are at your disposal. In practice, at some
level of detail you stop using objects and start using C data types such as
integers and arrays of characters. These are not encapsulated.

When you use Smalltalk, the language interpreter takes over the
machine. In C++, the language is compiled and is easily integrated with
other programs or fragments. Smalltalk is interpreted and comes with a
rich set of development tools for creating and debugging your programs.
C++, like C, is a compiled language to which one must separately add
software tools.

Virtually all OOP languages can be placed somewhere on the spectrum
between Smalltalk and C++. Why the variety? Put simply, Smalltalk is
built for elegance and features, C++ for speed and po:r;tability. Other
languages have made their own tradeoffs in the above areas and each is
targeted to a particular niche. It is silly to argue over which one is ''best."
They all have more in common with each other than with conventional
languages, and for each there is some application out there crying
"AMOL is the only language for me!" Here is a sampling of major OOP
languages for the Macintosh:

• C++ is a standard widely available on other computers, making C++
programs more portable than programs written in Object Pascal.
However, in order to make C++ compatible with MacApp and Object
Pascal, Apple had to modify the standard C++ grammar. Some of
these changes, if you choose to use them, remove good points of C++,
among them multiple inheritance and private interfaces.

• Smalltalk V /Mac. A solid Smalltalk that carries all of the penalties of
Smalltalk.

46 ~ Chapter 2 Object-Oriented Programming: The Technologist's Perspective

• Object Pascal. The grandparent of OOP for the Mac. Many Mac
programmers will not even consider anything else. However, C pro
grammers are equally fervent in their dislike for Pascal. "Pascal
makes you say 'please,' but C makes you say 'I'm sorry."'

• Macintosh Common Lisp. If you like Lisp, a great environment. Be
prepared for large, slow programs.

• AMOL. There are always a few dozen new OOP languages in the
wings. Most are being written by small companies trying to do spiffy
things with OOP that C++ and Object Pascal do not support and that
require better performance than Smalltalk; or that need to run their
products across several different computers. It is also no great trick to
throw together a simple object system from scratch tailored for a
specific application.

Again, most of our examples are in C++ because of its popularity, not
because the authors consider it substantially better than other languages.
There are more C programmers of small computers out there than any
other kind and more books and classes on C++ than all other OOP
languages put together.

~ Object-Oriented Programming on the
Macintosh
Why were Macintosh programmers among the first to seize on OOP
languages and practices? Principally due to the graphical user interface
(GUI) presented by the Mac. In conventional user interfaces, a control
program guides the user through a hierarchical menu of actions. The only
real choices left to the user are to move up and down the hierarchy and to
decide when to take a coffee break. Boring and not too productive.

On a Macintosh screen, one sees windows, buttons, menus, icons, and
other "things." Each thing responds in a certain predictable way to mouse
clicks; some will also respond to keystrokes on the keyboard. Each thing
also has some current state: highlighted or not, open, closed, and so forth.
The user is free to roam about, clicking with childish delight on anything
that catches the eye, unfettered by a control program's dictatorial 'se
quencing of activity.

Figure 1-6 showed a number of these typical features in the Macintosh
user interface. These are very naturally implemented as objects. Each
holds its state in its data members. Each responds to certain stimuli
through methods. Objects in the user interface can know about and send
messages to other objects. Nothing happens until the user injects an

1111- Summary 47

outside stimulus into the system, typically a mouse click. Little wonder
that all the way back to the Lisa (may it rest in peace) Apple engineers saw
OOP as a natural way to program such interfaces. There are lots of other
reasons to use OOP in non-GUI environments, but when creating a GUI
program the choice is obvious.

But hold on a minute! GUI does not equal OOP; it is simply a good fit for
problems-for-which-OOP-is-well-suited-as-a-nifty-way-to-implement.
Simply having a GUI does not take away the need to analyze one's
business requirements carefully and implement them using sound,
non-GUI practice! Remember that we said that inheritance can be used in
two ways: as a way of expressing concepts and as a trick of implementa
tion. The use of OOP specifically for GUI definitely falls into the trick
category: important, but not central to what this book is about.

We can more fruitfully turn the case around: GUI is a very good way to
paint objects on a computer screen and allow the user to interact with
them. We have asserted that the central contribution of OOP is to make
computers think more like people think; GUI is a good way of allowing
people to see their objects and control them. OOP has been around ever
since GUI was invented and it is arguable which has driven development
of the other over the years; however, we believe that objects are the more
significant concept and that GUI is simply the natural expression of
objects. We will deal with GUI, as it is practiced on the Macintosh, in this
context throughout this book.

~ Summary
• An object is a combination of a data structure and program code that

accesses and/ or changes that data structure. A member of an object is
the equivalent of a field in a data structure. A member can be either a
data member or a method. A method is a function or procedure attached
to an object.

• An object class is the description of a generic type of object; all of the
data and methods will be the same for objects in a given class.
Members of an object are encapsulated by the public interface to that
object.

• Anthropomorphism is commonly used to ascribe human qualities to
objects in a program, particularly behaviors. This leverages our
human abilities to usefully form such metaphors.

• When one object class assumes by default the characteristics (mem
bers) of another, it is said to inherit from the other class. The ability to
use the same name to represent several different functions is called

48 ~ Chapter 2 Object-Oriented Programming: The Technologist's Perspective

polymorphism. This is closely related to inheritance, since inherited
methods have the same names as overridden ones. Inheritance has
two distinct uses in object-oriented programs: as a natural way to
describe things, and as an implementation convenience. Whenever a
class inherits from more than one base class, it is said to use multiple
inheritance. As with classes and single inheritance, multiple inherit
ance can be used either to express a concept or to make implementa
tion easier.

• OOP languages come in all flavors and sizes. One key difference is the
tradeoff of performance versus dynamic changes at run time. C++ is
at one extreme with all classes and behaviors compiled in. Smalltalk is
at the opposite extreme. Almost any behavior of the Smalltalk lan
guage and your application can be changed at run time. Most other
languages, such as Object Pascal, fall somewhere in between.

• Class libraries are reusable sets of object classes that serve the same
basic purpose as conventional libraries of data types and functions
that operate on them. Class libraries tend to be much more usable
than their non-object counterparts due to the use of polymorphism.
The structure and utility of a class library can be heavily influenced
by the platform and language chosen for it.

• Macintosh programmers adopted OOP early on because it is a natural
way to model the Macintosh graphical human interface. Icons, scroll
bars, and other things-you-can-click-on are easily implemented as
objects.

3 The Folklore of
Object-Oriented Software
Development

.._.. What This Chapter Is About
Few people would argue that computer programs are "natural." "Natu
ral" for a computer, perhaps, but not for people! Yet, there is something
about object-oriented programming that seems to have great intuitive
appeal. Even people new to programming seem to grasp object-oriented
software development (0050) in a fraction of the time it takes to learn
about conventional software. There is a commonly held explanation for
this which we have already discussed: 0050 corresponds to the way
people perceive and organize their thoughts about the world. This chap
ter explores whether this explanation is true and what the implications
are. In particular, this chapter explores the objectivist approach to object
oriented software development. The objectivist approach is based on the
commonly held belief that the world consists of objects, grouped into
classes, that correspond to the kinds of objects and classes used in an
object-oriented programming language. If the objectivist approach is
correct, creating object-oriented software should be tremendously easier
and have better results than conventional techniques. All we need do is
carefully observe the real world, then create classes that implement what
we see.

We call this the folklore of object-oriented software development. Like
most folklore, the objectivist approach handles many simple situations
quite well but breaks down when confronted with complicated or subtle
problems. Yet, because objectivism resonates so deeply in the human
psyche and because it maps so well to object-oriented programming,
objectivism remains one of the dominant philosophies of object-oriented

49

50 ~ Chapter 3 The Folklore of Object-Oriented Software Development

software development. This chapter explores the basic premises of the
folklore. The next chapter applies the folkloric methodology to two
sample applications. As we will see, the folklore is not wrong, but it is
simplistic .

....,. Software and the Human Psyche
In Chapter 2 we talked about anthropomorphism, thinking of an object as
an autonomous "being" capable of remembering certain facts and inter
acting with other objects. Although anthropomorphism explains some of
the appeal of OOP, there are much deeper reasons rooted in the way
people perceive the world around them. People come prewired with
certain abilities to organize perceptions of their world, including

• making distinctions between "things,"
• creating mental images of objects to represent those distinctions, and
• perceiving relationships between objects, between parts and wholes,

and between members and classes of objects.

These concepts are not drawn from computer science, but from cogni
tive science. They are well supported by what we know of the way people
think and perceive. The folklore springs from two additional assumptions
which are difficult to support:

• It is not just our perception that the world is composed of objects and
classes; the world really is that way. This is the objectivist philosophy.

• The objects and classes of the real world are easily modeled using
object-oriented software. This is the objectivist approach to OOSD.

The evidence is against both of these assumptions, but they remain
strong undercurrents in OOSD. They have a strong intuitive appeal that
must be carefully explored if we are to build a methodology for OOSD
that truly works. Let's start by tracing these ideas back to their philosophi
cal roots, remembering that we are exploring a myth, albeit one com
monly mistaken for reality. Later, we will explain what is and is not valid
in the folklore .

....,. Objectivism
Objectivism, which dates at least to the Greek philosophers, has two major
tenets.

.,.. Object-Oriented Analysis, Design, and Programming 51

1. There is a real world "out there," independent of any one person's
perceptions. If two people have different perceptions of the world,
either one of them is wrong, both of them are wrong, or they are
talking about different things.

2. That world is composed of discrete objects, each of which has proper
ties that characterize it. Objects do not overlap; there is a sharp
boundary that separates each object from everything else. Prop
erties can be attributes, such as color, or behaviors, such as a tendency
to bite.

Corollaries to these tenets include the following.

3. There are classes of objects based on their shared properties. If objects
A and Bare both members of a class, they share the properties of the
class.

4. Classes can be part of superclasses which have the shared properties
of the classes.

5. Classes exist in the real world. The taxonomy used by biologists is a
good example: family, genus, species, and so on, represent a natural
division of the class of living things into a hierarchy of subclasses
based on shared properties.

6. The properties of an object do not depend on the observer or the
context of the observation. We may not see everything correctly, but
the real object does not depend on the way we see it.

7. Since the real world is independent of the observer, the principal job
of someone attempting to understand the world is to transcend
human perceptions and capture the world "as it really is," not as that
person thinks it is .

...._ Object-Oriented Analysis, Design, and
Programming
Objectivism has been at the core of much of the field of semantic modeling,
a discipline within computer science that seeks to simulate the structures
of the mind with computers. Although object-oriented languages are not
specifically designed for this purpose, many authors have pointed out the
striking parallels between OOP structures and the way we deal with
objects in our minds. They have therefore suggested that OOP is a good
basis for semantic modeling. But this goes beyond what we normally
think of as programming. Is object-oriented programming enough?

52 ..,.. Chapter 3 The Folklore of Object-Oriented Software Development

In traditional data processing, we more or less organize our programs
around procedures that operate on data. The data is passive and cannot
do anything to or by itself. Of course, in the natural world things are not
passive but exhibit behaviors. A procedure, pure action and no substance,
is at best a clumsy approximation of the way real-world objects behave.
As a result, most people have some difficulty getting used to this sepa
ration when they are learning to program. OOP abandons this arbitrary
separation of data and behaviors and replaces it with something we can
all understand: objects that combine both .

..,.. Creating High Fidelity Software

Remember from Chapter 1, though, that the principal challenge in creat
ing great software is to create the right solution to the right problem;
programming is only a small part of what you need to achieve that goal.
Of more importance is creating software with high fidelity, software that
better fits the real world. Key to achieving this goal is finding better ways
to foster communication between users of software, systems analysts,
software designers, programmers, and management.

It seems obvious that a good deal of the problem is the dramatic
difference between the real world and traditional computer programs.
Enter the twi11 disciplines of Object-Oriented Analysis (OOA) and Object
Oriented Design (OOD). OOA seeks to capture requirements and specifi
cations in terms of objects on the premise that objectivism is the one
common thread among all people involved. OOD also expresses software
designs in terms of objects and their properties, with the hope that
non-programmers will be able to understand and comment on the design.

Clearly, we should be able to integrate all of these into one cohesive
methodology so that the program is based on objects of the design, which
are based on objects of the requirements, which are, in tum, a very good
model of the real world objects present in the problem. The authors feel so
strongly about the need for such a synthesis that we refuse to discuss
object-oriented programming by itself. We use the term object-oriented soft
ware development (OOSD) in this book to represent the combination of all
three practices, not just programming .

..,.. Discovering Objects

This approach to object-oriented analysis and design makes us feel com
fortable since we are leveraging what we already do naturally. All we
have to do is select the real world objects, model in software those
behaviors that will achieve whatever we want the system to do, and place

~ Object-Oriented Analysis, Design, and Programming 53

them in class hierarchies according to their natural groupings. Of course,
this is not quite as simple as it sounds, but since it based on the real world
it should be easier than other methods. Recall the basics of objectivism:
there is a real world "out there," independent of any one person's per
ceptions, composed of objects that are naturally members of classes. This
means that our goal in creating object-based software is not so much to
create objects and classes as to discover them.

Let's apply these principles to constructing a computer program for
building things (electronically) with snap-together blocks. Each block has
distinct bom1daries and properties such as color, smoothness of the sur
faces, sizes and locations of connectors, and weight. Seems pretty
straightforward, doesn't it? So obvious, in fact, that the natural way to
organize a computer program is according to these objects.

The objects in our program are blocks and their parts. Presumably, all
blocks are pretty much alike and therefore share all properties. Let us,
then, create a single class called block to represent all BLOCK objects. What
about parts? We have used the term "connector" to represent a snap
arrangement, so let's also create a class called CONNECTOR. That's it for
objects and the most basic level of classes; now for the superclasses.
Blocks and connectors seem to have some characteristics in common if
one really stretches, but they are more different than alike. There don't
appear to be any pertinent superclasses. Figure 3-1 shows our blocks
world.

Figure 3- l. Blocks world

54 ..,.. Chapter 3 The Folklore of Object-Oriented Software Development

Now that we have classes, let's talk about properties. We have already
talked about a few attributes: color, surface characteristics, and so on.
Clearly dimensions will be needed. But where do we draw the line? We
could start talking about the date and time of manufacture, the retail store
that sold the block ... where do we stop? At some point, properties
become irrelevant to the problem at hand. Time to come back to earth and
take into account what the program is to accomplish, not just what objects
are in it. We don't want all properties, just relevant properties.

Assume that our program allows placement of blocks either on a
surface, such as a table, or connected to one another. Color is important
because the program draws the configuration on a color monitor. How
ever, we don't need photorealistic drawings, so the smoothness property
doesn't really matter. Certainly we need to know the locations of all
connectors on each block in order .to tell when connections are possible.
As to properties of connectors, we need only know enough information to
say whether a given pair actually connects.

We now need methods to go with these attributes. Since all objects
should draw themselves, a draw method is in order. For a connector we
would like a method that tells us what, if anything, it is currently con
nected to. We might want to create methods that allow our blocks to move
themselves around or connect and disconnect with other blocks.

This, of course, is just a quick sketch. We didn't invent any objects or
classes but picked from those already in the problem. We also picked and
chose properties based on what our program is to accomplish rather than
elaborating everything possible. We also engaged in a little projection. In
real life, there would exist an agent of some sort that would cause move
ment to take place. Because we have an invisible agent in this program,
we merely project the illusion that the block is moving itself. At the risk of
stretching a point, imagine a block blown about by the wind. Absent
knowledge of the wind, it would appear to an observer that the block
moves itself. Since some agent still causes the change by calling the move
method, our model of causality is still the natural one. For that matter,
methods like draw fall into the same category. Nonetheless, we really
didn't invent anything; we just discovered objects, classes, attributes and
behaviors.

~ Discovering Relationships

In the real world, relationships exist between objects. One kind of rela
tionship is that of a whole to its parts, as shown in Figure 3-2.

We have already seen an example of this in the relationship between a
BLOCK and a CONNECTOR. We can take this one step further. When we

~ Object-Oriented Analysis, Design, and Programming 55

I I
~- ([(!I:

Figure 3-2. Wholes and parts

snap several blocks together, we create a single object whose parts are the
individual blocks. This suggests that there is another class of object in the
problem that we can call an ASSEMBLY. By examining relationships, we
can discover further objects and classes.

Recall that objects communicate or interact with one another. We said
that calling a method is commonly called "sending a message" to the
object. This suggests another type of relationship between objects, based
on the type of communication taking place. For example, one block may
send a message to another that it is now disconnecting, perhaps as part of
a move operation. These are rela!ionships that depend on the objects; the
relationships generally have some name. Some examples follow.

l. An object can have OWNERSHIP of another object. This means that if
the owning object is deleted, the owned object is deleted as well. This
frequently is a special case of WHOLE-PART relationship.

2. An object can be an ANTECEDENT of another. This may apply if we are
interested in different versions of an object over time.

3. In spatial applications, such as our blocks world, we can have other
relationships such as IN FRONT OF or ABOVE .

..,_ Discovering Classes

Objects group into classes based on their shared properties. Similarly,
classes group into superclasses based on their shared properties. We can
take advantage of this fact in creating object-oriented programs by map
ping natural world classes onto object classes. This can be viewed as a
special kind of relationship between objects and classes: membership.

56 ..,. Chapter 3 The Folklore of Object-Oriented Software Development

Each object exists in the world and also exists as a member of some class.
The real objects, such as Joe Smith, President of XYZ Corporation are
called concrete objects. They exist in the real world.

Abstraction

Concrete objects can be combined into classes such as "presidents of
companies," through a process called abstraction. The dictionary defines
abstraction as dealing only with relevant information, ignoring details
not important to the present situation. However, abstraction has a more
restricted meaning in the formation of object classes: the identification of
classes, all of whose members share some set of properties.

Abstraction is a fairly mechanical process, as shown in Figure 3-3.
Suppose we have two objects, one with properties A, B, and C, the other
with properties B, C, and D. There is thus a natural class encompassing
both objects defined by properties B and C.

Figure 3-3. Abstraction

Specialization

Specialization is the opposite of abstraction and always starts with a class.
Let's take our above example in reverse. We have a class with properties
Band C. We notice an object with properties A, B, and C and see that the

..., Objectivist Methodology 57

overlap is not complete. The object is a specialization of the class, with one
additional property, A A cornerstone of objectivist methodologies is,
when faced with a class, to use specialization to derive subclasses and so
forth until the objects themselves pop out.

Concrete Classes

This leads to an interesting side note. In most OOP languages, it is
impossible to directly describe a single object. Instead, the entire
description of an object must be contained in its class. This means that we
cannot map real world objects to program objects without using a concrete
class as an intermediary. In an object-oriented program, a concrete class is
like a template or mold for creating objects. The concrete class is a
complete description of one or more concrete objects and forms the
bottom of our inheritance hierarchy. Since we naturally classify and our
classes naturally occur in the real world, all we have to do is use the
natural way we think to judge our objects as concrete or abstract, then find
abstractions for concrete objects and derive concrete objects from
abstractions.

Three Ways to Discover Classes

Let's recap the ways we have discussed to discover classes.

• We intuitively recognize the existence of a class. Typically, we then
derive subclasses and so forth until reaching objects through spe
cialization. In our blocks world example, we concluded without
much trouble that there is a class of objects called BLOCK. We told
ourselves that we were really discussing objects, but we already knew
that the class existed. This ability to perceive classes is part of our
inborn cognitive ability and much of the success of the object-oriented
approach rests upon it.

• We derive a class through abstraction of one or more objects or
subclasses, by comparing their properties.

• We derive a subclass as a specialization of some other already-known
class .

..._ Objectivist Methodology
Although methodologies for object-oriented software development are
still in their formative stages, a good deal of commonality has already
emerged.

58 Chapter 3 The Folklore of Object-Oriented Software Development

..,._ Basic Steps

In Object-Oriented Software, Ann Winblad lists the following common
sequence of steps.

I. Identifying and defining objects and classes.
2. Organizing relationships between classes.
3. Cultivating frameworks in a hierarchy of classes.
4. Building reusable classes and application frameworks.

In Object-Oriented Design, With Applications, Grady Booch, one of the
most widely-respected experts on object- oriented design, follows the
same general lines.

I. Identify classes and objects at a given level of abstraction.
2. Identify semantics of objects and classes.
3. Identify relationships among classes and objects.
4. Implement these classes and objects.

These and other writings all urge the same basic three-step approach:
Discover the objects and classes, discover their relationships, then imple
ment. Of course, the cornerstone is the discovery of objects and classes.
This remains a relatively informal process; some would call it a black art.
For example, a currently popular technique is the lexical approach. Write
a verbal description of the problem; the nouns will be your object classes,
the verbs the methods. This approach depends heavily on the analyst's
writing skills and knowledge of the problem, but despite the lack of
formality, practitioners continue to flood the trade press with good
results.

Once the low-hanging fruit of a problem has been harvested, specific
techniques can be brought to bear on the hard-to-reach yield. Abstraction
and specialization can be used to extend class hierarchies and encapsula
tion and various measures of what is a "good" class can be used to refine
the design. Also, there is no end of notational conventions for communi
cating design ideas once they are discovered. Yet, most current method
ologies are still based upon the assumption that we are intrinsically
capable of discovering the objects and classes of the real world. The
methodologies simply try to capture this intrinsic ability and put it to
practical use.

~ Objectivist Methodology 59

..,. The Comfort of the Objectivist Approach

Let's recap the objectivist approach. Object-oriented programming is
natural because the world is made up of objects that are parts or wholes
and members of classes. People have been using these ideas for several
thousand years in areas such as biology, zoology, and mathematical logic.
We build on this long tradition, our innate abilities, and the nature of the
physical world to find objects, define relationships, build class structures,
and ultimately build a program.

This approach is based on the way that most people think that we
think-the objectivist philosophy we spoke of earlier. Objectivism is
what George Lakoff, in Women, Fire and Dangerous Things, has called a
"folk theory" of human thought. It explains to a large degree why
object-oriented software has become so popular so quickly. Object
oriented programs are, after all, organized along just these lines: distinct
objects, grouped into classes according to shared properties. Methods and
data members are the properties, objed classes the classes. This concept of
software organization resonates so deeply because it is a direct metaphor
for the way we perceive our own perceptions of the world. Thus, people
new to OOP find themselves making remarkable progress when they first
approach it because they need do little more than mimic their own
perceptions of the world in software.

This is the approach that natural scientists have used to develop tax
onomies. Biologists and zoologists place an animal or plant in its appro
priate subspecies, species, genus, and so forth, based on the properties of
the organism. Each level of the taxonomy becomes more and more com
plex, until we reach a point were we have defined particular plants or
animals.

The objects in our programs are analogous to real world objects, the
relationships between objects analogous to the real world relationships.
Taking a page from the success of the natural world scientists, we use this
taxonomic approach and take the shared properties that objects have and
turn them into classes .

..,. Program Evolution and the Four ltys

So far, we have talked only about the success of modeling the real world
using objects when we start from scratch. There are, however, a number
of side benefits that extend beyond the initial implementation. Let's call
these the Four ltys: modularity, extensibility, maintainability, and reusability.

60 Chapter 3 The Folklore of Object-Oriented Software Development

Modularity

We talked a little in Chapter 2 about the advantages of coupling proce
dure~ and the data on which they operate. For purely technical reasons,
this, in itself, yields better modularity than traditional programming.
However, remember one of our earlier corollaries about objectivism: A
given object or class in the real world is independent of all others. If I pick
up a rock lying in a meadow and put it on top of a mountain, the
properties of the rock do not change. Objectivism and OOP draw on this
to achieve a much deeper level of modularity. The real world has been
around longer than any computer and has had a lot longer to settle issues
of modularity. We observe and learn and, in the process, divide our
program according to the relatively stable principles of nature.

Extensibility

This is a purely technical advantage that results from encapsulation,
especially if we make all data members private. Because every class is
defined entirely by its public interface, we can adapt our program to
changes and extensions by changing the implementation of methods
internally to existing classes. In theory, this creates no side effects because
the implementation is hidden.

Even better, we can always create a subclass that adds any additional
methods and attributes we may need without changing the existing class.
By using inheritance, we can extend classes while leaving the existing
classes alone.

Maintainability

This is largely the result of three factors: modularity and extensibility, as
discussed above, and the stability of real world objects and classes. The
real world seems to have a good deal of stability and consistency. By
directly modeling it, we provide a sounder foundation for our programs.
Recall from Chapter 1 that a large proportion of changes to programs are
adaptive and perfective in nature; that is, they are refinements that make
the program better fit the real world. If our software is already structured
similarly to the real world, the changes should amount to simple exten
sions, not changes. We expect new methods, more capability in old ones,
new classes, and new objects. We do not expect major changes or whole
sale deletions of old methods, objects, and classes; most changes will be
extensional. Since traditional programs are too far removed from the
structure of the real world, their structure depends on the particular
problem you are trying to solve. The structure is likely to come tumbling
down when the problem changes or expands.

..,. Problems With Objectivism 61

Reusability

Code reuse is one of the time-honored goals of software. Ideally, we can
build a library of software over time and reuse it for new projects. We
should be writing less and less code for new projects as we reuse more
from our library. In traditional software, this goal is seldom achieved,
despite the prominent position it holds in development methodologies.
Can we do better with object-oriented software development?

The independence of objects and classes looms large here. If we have
done a good job of describing a real world object or class in one applica
tion, the result should be reusable in any other application that requires
the same object or class. After all, since each object and class stands on its
own, it should be like moving a rock to a new setting. We would hope, for
example, that an employee class created for a payroll application would
be reusable for a later personnel scheduling application. Reusing incom
plete objects and classes should be simply adaptive or perfective. Over
time, our object library should come to approximate the real world better
and better. As long as our projects have some degree of overlap, we
should be able to write less code for each new project. Finally, on a purely
technical level inheritance and polymorphism are very powerful tools for
reusing stock libraries; we can keep what we want and throw out the rest.

Of all of the benefits cited for OOP, code reuse is one of the most talked
about. It has the potential to drastically reduce costs and improve quality
over time and can go a long way toward recovering the cost of the shift
from traditional to OOP technologies-if it works.

~ Problems With Objectivism
This is the folklore, but what is the reality? Somehow the objectivist
approach seems too easy. All you have to do is pick out the objects,
implement them, and out pops an object-oriented program with all the
benefits of good design and the Four Itys. As we will see, this view is not
really wrong, but it is simplistic. The folklore does, in fact, work very well
for simple programs and simple problems. That it breaks down on more
complex projects will surprise few; the reasons, we suspect, will surprise
many.

In the next chapter, we will see how this naive view works on two
realistic applications representing computer-aided design and business
systems. As we will see, the simple approach can work well, but often
does not. In Chapter 5, we will locate the source of the problem: People may
think they think in objects, but in reality they don't! We will explain when to
expect the folklore to work well and when to expect trouble. Chapter 5 is

62 ~ Chapter 3 The Folklore of Object-Oriented Software Development

followed by a series of chapters that reconcile the appeal of the folklore
with the realities of OOSD through the authors' Solution-Based Modeling
(SBM) methodology.

Have the authors wasted their time and yours with this chapter? Not
really; remember that the objectivist approach does work for simple
projects and many projects are, in fact, simple. Even when it doesn't work,
objectivism is far from a complete failure. There is a strong parallel here to
the difference between Newtonian and Einsteinian physics. Newtonian
mechanics says nothing about time itself being affected by speed, but in
most circumstances, who cares? How many of us will ever travel close to
the speed of light in the ordinary course of affairs? Newtonian mechanics
is not wrong, just imprecise in some reference frames. So it is with
objectivism: It is a useful approximation that deserves to be understood as
such.

Most of the goals and claims for object-oriented software development
that are based on objectivist philosophy are achievable using a more
accurate model for the way people think. The authors have had a great
deal of success in object-oriented software projects. Our experience has
shown that OOSD can provide better results both on initial development
and during the maintenance life cycle. It is absolutely essential before
suggesting a new way of developing software to thoroughly explore the
current state of the art. Because objectivism is so ingrained in our thinking
about our thinking, it is necessary to contrast it point by point against any
alternative.

~ Summary
• Objectivism is the commonly held belief that the world consists of

objects and that those objects naturally group into classes based on
shared properties. This corresponds closely to the way object
oriented software is organized. There are two tenets of objectivism:
that there is a real world "out there," independent of any one person's
perceptions, and that that world is composed of discrete objects, each
of which has properties that characterize it.

• People come prewired with certain abilities to organize perceptions
of their world, such as making distinctions, creating mental images to
represent those distinctions, and perceiving relationships. The notion
of an object as a mental building block underlies all of this.

• Object-oriented analysis (OOA) seeks to capture requirements and
specifications in terms of objects and classes. This approach makes
us feel comfortable since we are leveraging what we already do

..,. Summary 63

naturally. According to the folklore, our goal is not to create objects
and classes but to discover them. Similarly, we discover relationships
among the objects and classes. We need not capture everything there
is to know about the real world. We don't want all properties, just
those that are relevant to our program.

• Objects group into classes based on their shared properties, and
classes group into superclasses based on their shared properties.
Abstraction is the process of discovering new classes based on
observing the sharing of properties among multiple objects or other
classes. Specialization is the opposite process in which we discover
subclasses that contain additional properties not present in their
superclass.

• There are several ways to discover classes. We can intuitively recog
nize the existence of a class, use abstraction, or use specialization. In
an object-oriented program, a concrete class is like a template or mold
for creating objects when the program runs. The concrete class is a
complete description of one or more concrete objects.

• Object-oriented software methodologies commonly consist of three
generic steps:
1. Discover classes and objects.
2. Discover relationships among classes and objects.
3. Implement the classes and objects.

• The objectivist approach is based on the way that most people think
that we think. This explains to a large degree why OOP has become so
popular so quickly. Although it has problems, the objectivist
approach can work very well for simple programs and simple prob
lems. Even on larger projects, it is not really wrong, but oversimpli
fied. Beyond these cognitive reasons to use object-oriented
approaches, there are four classical goals of software engineering
that are well satisfied by the folk theory of OOSD: modularity, exten
sibility, maintainability, and reusability.

4 ~ Sample Applications
(Why Aren't They Easy?)

...._ What This Chapter Is About
This chapter outlines the development of two applications as object
oriented programs. The first application concerns computer-aided design
(CAD) for creating model railroad layouts. In theory, this application
should fit quite well with the folklore because it involves physical things
with well understood behaviors in the real world. In practice, it is not so
clear how to proceed. The principal challenges are knowing where to stop
in the modeling process and how to organize the classes into an inherit
ance hierarchy.

The second application is a case study of a relatively naive programmer
tackling an object-oriented payroll application, armed only with his talent
and the folklore of object-oriented software development. This is decid
edly less physical than the CAD application, because it deals with more
abstract business entities and concepts. The principal challenges in this
application are picking out the objects and deciding where to place the
behaviors.

We will not go through the entire development process. Instead, we will
skip around and highlight the ways in which the folklore succeeds and fails.
As you will see, much of the objectivist folklore starts to crack when used for
more complex projects.

65

66 ~ Chapter 4 Sample Applications (Why Aren't They Easy?)

...._ Model Railroad Computer-Aided Design
Here's the letter Sandy sent to Jean asking her to create a program that

could be used to design model railroad layouts. Figure 4-1 shows her
drawing of the model.

Jean,

You know, I've been thinking about your suggestion the other day to use the
Macintosh to design model railroad layouts. For my more experienced customers, it
would be a great way to design complex layouts. It would also make it easier for
beginners to get going, since they could make all their mistakes on the computer
where it doesn't cost anything. If you're interested in creating the program, I'm
interested in funding it, provided it doesn't cost too much.

Here's what I have in mind. The user should be able to start with a blank table top
of whatever size he wants. The program should let him add scenery, track, controls,
trestles, and so forth; the results should display on the screen. At any time, the
program should be able to print out the diagram currently on the screen, along with
a bill of materials ready to bring to my store. I have included a mock-up of what the
screen might look like.

The program has to be able to handle tracks that pass over one another on trestles
and bridges, or through tunnels. It should allow for mountains and lakes made out
of papier-mache or clay or whatever, not just finished goods off my shelf. I want it
to include all the different kinds of track and scenery I sell. That's a long list and it
changes all the time. I need some way to send customers a new catalog on a floppy
disk or something. I've enclosed a current catalog (not that you really need another
one). It would be nice if the user could choose from a library of standard designs
that I will supply. Even better if more than one design could be merged together!

Did I mention trains? I want the program to include the cars themselves. You
should show an actual picture of each type of car I sell, but only for the gauge of
track the designer has chosen for the layout. The ultimate would be to simulate the
train running around the track, with switches and controls operating in the pro
gram the way they do in real life. If you can do that, I can sell a lot of equipment to
people who otherwise might not buy.

Remember: Since the people who will use this probably don't know much about
computers, the program has to be really easy to use. I like the Macintosh for this. If
the user sees something on the screen, he or she can use the mouse to point to it and
move it around. Be sure you keep that way of interacting in mind.

What do you think? Can you do it, how much will it cost, and how long will it take?

Sandy

..,.. Model Railroad Computer-Aided Design 67

Figure 4- 1. Model railroad layout

..... First Try: Lexical Analysis

This sounds pretty easy. The program is concerned with physical things
such as tracks, cars, and scenery. Let's see how well the lexical approach
discussed in Chapter 3 works here.

Finding Objects and Classes

We start by identifying the objects and classes in the letter by underlining
the first instance of all nouns that imply some requirement for the pro
gram (this requires exercising a little judgment.)

You know, I've been thinking about your suggestion the other day to use the
Macintosh to design model railroad layouts. For my more experienced customers. it
would be a great way to design complex layouts. It would also make it easier for
beginners to get going, since they could make all their mistakes on the computer
where it doesn't cost anything. If you're interested in creating the program, I'm
interested in funding it, provided it doesI).'t cost too much.

Here's what I have in mind. The user should be able to start with a blank table top
of whatever size he wants. The program should let him add scenery. track. controls.
trestles, and so forth; the results should display on the screen. At any time, the
program should be able to print out the diagram currently on the screen, along with
a bill of materials ready to bring to my store. I have included a mock-up of what the
screen might look like.

68 Chapter 4 Sample Applications (Why Aren't They Easy?)

The program has to be able to handle tracks that pass over one another on trestles
and bridges, or through tunnels. It should allow for mountains and lakes made out
of papier-mache or clay or whatever, not just finished goods off my shelf. I want it
to include all the different kinds of track and scenery I sell. That's a long list and it
changes all the time. I need some way to send customers a new catalog on a floppy
disk or something. I've enclosed a current catalog (not that you really need another
one). It would be nice if the user could choose from a library of standard designs
that I will supply. Even better if more than one design could be merged together!

Did I mention trains? I want the program to include the cars themselves. You
should show an actual picture of each~ of car I sell, but only for the gauge of
track the designer has chosen for the layout. The ultimate would be to simulate the
train running around the track, with switches and controls operating in the pro
gram the way they do in real life. If you can do that, I can sell a lot of equipment to
people who otherwise might not buy.

Candidate Objects and Classes
LAYOUT RESULTS CATALOG

CUSTOMER DIAGRAM LIBRARY

BEGINNER BILL OF MATERIALS DESIGN

MISTAKE STORE TRAIN

USER BRIDGE CAR

TABLE TOP TUNNEL PICTURE

SIZE MOUNTAIN TYPE (of TRAIN CAR)

SCENERY LAKE GAUGE

TRACK PAPIER-MACHE DESIGNER

CONTROLS CLAY SWITCH

TRESTLES FINISHED GOODS EQUIPMENT

Even before looking at the catalog and other sources of information, we
have quickly identified 33 candidates. Obviously, there is some overlap
within this list and there are a few terms that we can obviously discard.
For example, CUSTOMERS are the same as end USERS and DESIGNERS, and
BEGINNER is a type of CUSTOMER. There are also some relationships among
these nouns. MOUNTAINS and LAKES are specific kinds of SCENERY, EQUIPMENT

covers a lot of other terms, and a SWITCH is a kind of TRACK. After some
sorting and sifting, the list can be arranged in an outline in which a slash
(/) indicates synonyms.

...,. Model Railroad Computer-Aided Design 69

LAYOUT I DESIGN I RESULTS/ DIAGRAM

USER/ CUSTOMER/ DESIGNER/ BEGINNER

FINISHED GOODS
EQUIPMENT

TRACK
SWITCH

CONTROL
TRESTLE
BRIDGE
TRAIN
CAR

SCENERY
MOUNTAIN
LAKE
TUNNEL

MISTAKE
TABLE TOP

BILL OF MATERIALS
PAPIER-MACHE

CLAY

CATALOGUE

LIBRARY
PICTURE
TYPE (OF TRAIN CAR)

Notice that we made a few somewhat arbitrary calls. For example, do
we classify BRIDGE as EQUIPMENT or SCENERY or both? What about a TUNNEL?
A TRESTLE? Is a TYPE OF CAR an object? Is a SIZE an object or just an attribute of
'the TABLE TOP? Is GAUGE an object or an attribute of a piece of TRACK? The
right answers are not at all obvious.

The more experienced OOP analyst recognizes some groupings, or
abstractions, that are implicit in this list but not named in the require
ments. For example, since PAPIER-MACHE and CLAY are clearly related, we
might want to group them under MODELING MATERIAL. They share certain
properties: both can be formed into an arbitrary shape, then hardened to
retain that shape. Even though we have not yet listed such properties, it is
useful to grab the low-hanging fruit at an early stage. The same analyst
also forms relationships among classes that are not abstractions of one
another, based on one-to-one and one-to-many associations. One TRAIN
has many CARS and one LIBRARY has many DESIGNS. These are all well within
the realm of what we perceive as real-world characteristics.

Finding Methods

In order to discover methods, we start with the verbs in our requirements
and associate them with the nouns they reference.

You know, I've been thinking about your suggestion the other day to use the Macin
tosh to design model railroad layouts. For my more experienced customers, it would
be a great way to design complex layouts. It would also make it easier for beginners to
get going, since they could make all their mistakes on the computer where it doesn't
cost anything. If you're interested in creating the program, I'm interested in funding
it, provided it doesn't cost too much.

70 ..,. Chapter 4 Sample Applications (Why Aren't They Easy?)

Here's what I have in mind. The user should be able to start with a blank table top of
whatever size he wants. The program should let him add scenery, track, controls,
trestles, and so forth; the results should display on the screen. At any time, the
program should be able to print out the diagram currently on the screen, along with a
bill of materials ready to bring to my store. I have included a mock-up of what the
screen might look like.

The program has to be able to handle tracks that pass over one another on trestles and
bridges, or through tunnels. It should allow for mountains and lakes made out of
papier-mAche or clay or whatever, not just finished goods off my shelf. I want it to
include all the different kinds of track and scenery I sell. That's a long list and it
changes all the time. I need some way to send customers a new catalog on a floppy
disk or something. I've enclosed a current catalog (not that you really need another
one). It would be nice if the user could choose from a library of standard designs that
I will supply. Even better if more than one design could be merged together!

Did I mention trains? I want the program to include the cars themselves. You should
show an actual picture of each type of car I sell, but only for the gauge of track the
designer has chosen for the layout. The ultimate would be to simulate the train
running around the track, with switches and controls operating in the program the
way they do in real life. If you can do that, I can sell a lot of equipment to people who
otherwise might not buy.

Candidate Methods
DESIGN (LAYOUT)

MAKE (MISTAKE)

START (TABLE TOP)

ADD (SCENERY, TRACK, CONTROLS, TRESTLES)

DISPLAY (RESULTS)

PRINT (DIAGRAM, BILL OF MATERIALS)

HANDLE

ALLOW FOR (MOUNTAINS, LAKES, things made of PAPIER-MACHE and CLAY,

FINISHED GOODS)

INCLUDE (FINISHED GOODS)

CHANGES (CATALOG)

SEND (CATALOG)

CHOOSE (DESIGN)

MERGE (DESIGN)

SHOW (PICTURE)

CHOOSE (GAUGE OF TRACK)

SIMULATE
RUN (TRAIN)

• Model Railroad Computer-Aided Design 71

OPERATING (SWITCHES, CONTROLS)

It looks like this list isn't going to be very useful. INCLUDE as a method?
ALLOW _FOR? HANDLE? This last is even more vexing because a literal read
ing is not the correct interpretation. To "handle track that ... " does not
mean that it is TRACK that must be handled. It is overall patterns of use of
TRACK, TRESTLES, BRIDGES, TUNNELS, and the like that must be HANDLED. There
is no object to represent entire scenarios of this sort, nor is there~an
intuitive one available. And just what is it that we SIMULATE? Again, it is the
operation of an overall system of TRACK and so on that is the subject. The
same is true of the verb RUN. We must associate these verbs either with the
DESIGN as a whole (SIMULATE, RUN) or with the program itself (INCLUDE,
HANDLE.)

Problems with Lexical Analysis

Still think it's easy and intuitive? Proceeding purely from our user
supplied requirements, we have already seen examples of the following
common phenomena.

1. It is often not clear whether a noun is relevant or not. Is a BEGINNER
somehow different from a USER or DESIGNER and, therefore, worthy of
separate consideration?

2. It is often not clear whether a noun represents an object, a class, or
just an attribute of some other class. SIZE and GAUGE are good
examples.

3. Using verbs as templates for methods can range from useless to a
rough starting point, but that is about it.

4. Verbs often refer to implicit objects not named by any noun.
5. Those implicit objects are often complex and non-intuitive, which is

exactly the opposite of what we expected of the lexical approach! For
example, a DESIGN is certainly an overloaded concept since it can have
different meanings depending on the context.

Taken as a whole, these problems mean that our user's description of
the problem does not lend itself well to being modeled as an object
oriented program. This does not condemn the lexical approach or the
intuitive nature of object-oriented analysis; perhaps it means we haven't
gone far enough yet.

72 ~ Chapter 4 Sample Applications (Why Aren't They Easy?)

..._ Second Try: Top-Down Analysis

Clearly, the requirements we have been given are not enough and more
study is in order. But how do we proceed? Building from the bottom up is
not the answer. Fully enumerating all possible objects is just too time
consuming. The catalog would be huge, with hundreds of thousands of
items, each a candidate object. Dealing with every possible item and
attempting to build a class hierarchy on top we would never finish. There
are so many objects that discovering relationships among all of them at
once will be like trying to take a sip from a fire hose. Bottom-up methods
won't work.

Top-down methods work a little better. We can start with high-level
classes such as EQUIPMENT and SCENERY and drill down into more specific
classes. Within EQUIPMENT, we have TRACK, CAR, SWITCH, CONTROL, and so on.
But how do you break down SCENERY into more specific classes? Is a LAKE
different from a MOUNTAIN (both are fashioned out of some modeling
material)? For that matter, is PAPIER-MACHE a superclass of a MOUNTAIN or
just somehow related to it?

How Do You Know When to Stop?

How do we know when to stop reaching into the treasure chest of detail?
Do we really care enough about the differences to distinguish a class TREE
from a class HOUSE? After all, we can readily come up with a long list of
attributes of each, most of which are not shared.

Tree
HEIGHT

DIAMETER

FOLIAGE
HEIGHT TO LOWEST BRANCH

House
STORIES

AMPERAGE (FOR LIGHTS)

COLORS

TYPE OF ROOF SHINGLE
SQUARE FEET (LIFE SIZE)

SCALE

All of these are differences, but there is nothing in the catalog or in our
intuition that tells us what is relevant and what is not. Nor do the
questions stop with objects, classes, and attributes; it is not always obvi
ous what methods are relevant and where methods stop and attributes
begin. For example, consider connections between EQUIPMENT such as
TRACK and TRESTLES. We can describe the precise geometry of the CONNEC
TORS and thereby capture the real-world characteristics pretty well, but

... Model Railroad Computer-Aided Design 73

that is not enough. If a CONNECTOR sits empty, we want to take notice of
that fact as a probable shortcoming in the design (we can't have a train run
off into oblivion!). Yet, there is no "I'm not connected" property to a piece
of track in the real world; it springs solely from our program and our
knowledge of its intended use. How can we account for the concept of
desired behavior when we are armed solely with the ability to "see the
world as it really is?"

Simulating the Real World Is Not the Answer

This is a hole in the folklore of OOP big enough to drive a truck through.
The folklore holds that we need merely simulate real-world characteris
tics. However, we can't simulate everything if we expect to get any project
done on time and in budget! There is always infinite detail available, even
on casual examination, and we simply must choose a very small subset of
that which is possible. Since even considering detail that is later thrown
out is very expensive, we must be able to focus in on the "right" properties
and objects quickly. Yet, there is nothing in the real world that tells us where to
prune or even how to tackle the issue. In other words, there is no methodology for
OOP development that can be based solely on "discovering th~ real world."

...,. Third Try: Put It in Context

Perhaps we are going overboard. Clearly there is a role for experience
here. A skilled analyst should be able to look at requirements through the
lens of the application's needs and discard detail from the real world that
does not directly relate to actions of the program. Thus, the requirements
of the program act as a filter against the real-world characteristics and tell
us what to keep and what to discard. A good analyst should spot the kind
of implied classes and relationships we discussed earlier. A good analyst
should also be able to draw out more detail from the user and comb other
sources such as the catalog for more information.

This helps a great deal with physical properties. It might help us
discover, for example, that we really don't care about the differences
between most kinds of scenery, such as TREES and PARK BENCHES since the
user does the same thing with both items: ORDERS them, PLACES them
somewhere in the DESIGN, or vrnws a picture on the screen. Other proper
ties, which distinguish one from the other, certainly exist in the real
world, but just aren't relevant to this program. One class may do for all.

74 ~ Chapter 4 Sample Applications (Why Aren't They Easy?)

Programs Do More Than Simulate

Context alone, however, does not tell us about how to handle our CON

NECTOR problem. "Disconnectedness" is not a real-world property of a
piece of TRACK, unless you stretch the point. It depends on the intended
use of the product and the activity-layout design-of the observer, not
purely on physical properties. There are always going to be artificial fea
tures of a program that do not spring directly from the real world, and the
folklore provides no theory to account for them or methodology for discovering
and designing them.

The clear message is that discovering real-world objects and classes is
not enough to formulate our design. There must be an infusion of other
principles as well .

....,. Fourth Try: Ask an Expert

Let's jump in here with a typical "expert" treatment of this problem. One
expert faced with the problem of "disconnectedness" in this sample
application developed the following three-prong approach:

1. Virtually everything in the layout is a subclass of EQUIPMENT, includ
ing TRACK, TRESTLE, and CONNECTOR. This expert even made SCENERY a
subclass of EQUIPMENT.

2. A single EQUIPMENT object can own one or more CONNECTOR objects.
3. Each EQUIPMENT object has a CHECKFORERRORS method that reports all

anomolies to the screen. The default method simply calls the
CHECKFORERRORS method of each of its owned CONNECTOR objects. The
CONNECTOR class overrides this method to report an error if and only if
the CONNECTOR object is not connected to a compatible CONNECTOR

object.

This is probably as good as anything, but where did it come from?
There is no such error-state property in the real world! And what of this
idea of "ownership?" The pin in the end of a piece of track has the same
characteristics in the real world whether you leave it in the track or
remove it from the track and throw it on the ground. This is our "rock on
the top of the mountain" principle from the folklore. The real connector
pin does not depend on the track for its existence, yet in the expert design
the CONNECTOR object does exhibit dependence on the track.

The expert may also develop concepts such as TRACK that LAYS itself,
DESIGNS that VERIFY themselves, EQUIPMENT that knows how to DRAW itself
on a computer screen, TABLE TOPS that know how to ask the user for their

..,. Model Railroad Computer-Aided Design 75

SIZE ••• you get the idea. Although this would generally be considered
"good" design, these are not concepts drawn from the real world! Show
them to a typical end user and claim they are the "real world" and you
might just get locked in a padded room. The "things" are real, but the
behavioral properties are artificial.

Enter Anthropomorphism

In Chapter 2 we introduced the concept of anthropomorphism whereby
human qualities are ascribed to non-human things. This is a much closer
description of what the expert does intuitively than real-world analysis
alone. Real-world analysis can help yield the "things" and certain proper
ties, such as physical dimensions. Many properties, particularly behav
iors, must come from elsewhere. If we go back to the drawing board with
this in mind, we will find the going much easier. The real world yields the
"things," and we project onto those things the abilities to do that which
the user of the program wants done. Suppose the user clicks on a piece of
track and moves the mouse. The intention is to move the track along with
the cursor. We can project this onto the track as a behavior: mouse
tracking. The user wants to make sure that the overall design is without
major flaws, so the design itself can be empowered with the ability to
self-examine.

Outline of a Methodology

This suggests the outline of a methodology.

Step 1. Discover the real-world objects and classes, along with relevant
real-world properties such as dimensions, color, and so on.

Step 2. Enumerate the behaviors expected of the program.
Step 3. Project those behaviors anthropomorphically onto the objects.

Of course, we expect to apply these steps iteratively. This approach
keeps much of the intuitive appeal of the objectivist school because we
still base our objects and classes on the real world. At the same time, we
take into account the specific requirements of the program and allow
real-world objects to absorb artificial behaviors that derive from those
requirements.

The key word "relevant" slipped into the first step and requires further
exploration. Just how do we determine what is relevant and what isn't?
The answer is that .we can't make that determination until we have
considered the desired behaviors of the program. A property is relevant

76 ...,.. Chapter 4 Sample Applications (Why Aren't They Easy?)

when it is used to accomplish something. Even such "obviously relevant"
properties as dimensions are relevant only if they are needed to draw an
image, verify connections, or carry out some other behavior that derives
from the requirements. Thus, we need to use the program requirements as
a filter, not just for objects, classes, and behaviors, but for all other
properties as well. The result may well be to combine classes that are
distinct in the real world but have only common properties and behaviors
for the purposes of the program, as in our example of TREES and PARK

BENCHES.

Consequences of the Expert Approach

Using this methodology, we can make great progress provided that
everyone understands what we are doing. We can avoid confusion by not
portraying the design as the real world but rather as a part of the real
world plus a metaphor (anthropomorphism.) Since anthropomorphism
and metaphor are things we all do well (OOP programmers and model
train designers alike), this should be an acceptable explanation. It is
intuitive, but not necessarily natural; that is, the process is comfortable,
but the results are not a direct reflection of nature.

One painful loss, however, is the idea of reusability. Remember that we
tied reusability to the autonomous nature of objects in the real world.
Projecting behaviors that do not really exist in the real world onto our
program objects compromises this autonomy. As we project more behav
iors our classes become less stable and reusable. This is unfortunate
because the largest projects usually have the most requirements and,
therefore, the least reusability .

...,_ Designing for the Macintosh and Its User Interface

Hold on: we have only begun! So far, we have discussed the relationship
of the real world to program objects and classes, but we have yet to
consider the impact of our chosen computer and class library. Neither of
these is part of the real world that we seek to automate: they are tools that
we bring to the party. The "simple" problem is figuring out how to draw
all of the things in the program since a good Macintosh program visual
izes its contents. This is a quite natural extension of the folklore in this
example since we are dealing with real things that we can see and,
therefore, reproduce visually. The more complex problems arise from
conforming to the rest of the rules separating "good" from ''bad" Macin
tosh applications.

..,.. Model Railroad Computer-Aided Design 77

Macintosh User Interface Features the Folklore Never
Told You About

The Macintosh owes much of its popularity to Apple's published human
interface standards. Things like windows, scroll bars, icons, and menus
are just the beginning. There are metaphors that must be supported, such
as direct manipulation of items on the screen. Clearly, we wish to imple
ment these features using object classes, but where do these classes come
from and how should we discover them? Certainly not from the real
world we are modeling! Without a real world to classify, the folklore is no
help. In its place, we must rely on experience with designing Macintosh
use~ interfaces-yet another black art mastered by only a select few.

Just how many classes are we talking about here? Is it mere icing on an
application which otherwise is based heavily on the real world, or is it a
dominant aspect of programming the Macintosh? Take a look at Figure
4-2, which shows just a few user interface-related classes of MacApp, and
judge for yourself. The folklore cannot, by its very assumptions, give us
much help in laying out the user interface, yet clearly that is one of the
most important things we must do to create this application.

B
B ~umberText

~TSSrollBar TEditTex~

B TScrollBar ..d:::7I B
TCheck~~ B taticText utton TPopu

~ B
TC!IMgi-.----

TView

TObr!LioV' B B ie< st •ew B TTextListVlew

~-~
.-~ •,·,!View TTextGridView

~-----Ri1ridView

Figure 4-2. MacApp user interface classes

78 .,. Chapter 4 Sample Applications (Why Aren't They Easy?)

Edit Moue Not
•N
•o

Preferences ...
Get Info ...
Doc layout ...
Doc Setup ...

Page Setup ...
Print... h? 1

Quit •a an:l t

Figure 4-3. The file menu

Documents

Nor is the problem limited to visual direct manipulations. There are
organizational issues, such as the concept of a document. Using a Macin
tosh, one should be able to double click on a file in the Finder, launch the
file's creator (a program), and bring the document up in a window. As
Figure 4-3 illustrates, at all times we have options like "Open," "Close,"
"Save," and "Revert," which apply to the frontmost window and the data
it represents, its document. Thus, rather than being another name for a
file, a document is a fundamental metaphor that all "good" Macintosh
applications must support through their user interfaces.

In the simplest cases, a document in the Macintosh is simply an analog
to a piece of paper. Thus, in the railroad program, we will probably
choose to make a layout into a document, so that the user opens, closes,
and saves entire layouts. We will also need another kind of document to
represent catalogs and perhaps others as well. But what about a window
like that of Figure 4-4, which shows a single railroad car from the catalog?

Is this a document, or is it merely part of the catalog document? What
about the BILL OF MATERIALS? Is that a separate document or part of the
LAYOUT? Again, the folklore is no help.

.,. Model Railroad Computer-Aided Design 79

Steam En Ina - := - _-;:_ - - - - JE

Figure 4-4. Is this a document?

Editing and the Clipboard

Everyone who has developed large applications for the Macintosh knows
that supporting the clipboard-Cut, Copy, and Paste-as shown in
Figure 4-5 is not trivial.

You would not, for example, allow someone to copy a catalog to the
clipboard and paste it into a bill of materials. It simply doesn't make
sense. Yet, even some odd combinations can seem sensible when viewed
in the right way. Pasting one design over another might merge the
designs. Pasting a picture of a railroad car over a bill of materials might
add an order for one of that car to the list. Cutting does not always make
sense, either. Do you really want to allow the user to be able to select
something from the catalog and cut it? And how will you decide what to
place on the clipboard for the use of other applications like Excel or
HyperCard? Since these are not questions that spring from the problem
and its real-world environs, the folklore does not cover them. The folklore
does not account for the degree to which software development activities
are dependent on the Macintosh, its user interface standards, and its
software.

80 ~ Chapter 4 Sample Applications (Why Aren't They Easy?)

' Clear :J :
~ ·.t--~~~~~-f

Dupllcate an
:> · · · · : Select RH ace
~ .1--~~~~~~
;i : Resh•pe IJ(cR ... :

~ Smoo1h
Unsmoo1h
Round corners : ~ : ; :

Figure 4-5. The edit menu

..._.. Payroll
This is the story of Ace and his efforts to create an object-oriented payroll
system. Ace is one of the best programmers in the business, though
relatively new to object-oriented programming. There is little that he
hasn't done in his fifteen years in the business: systems programmer on
large IBM mainframes, programming manager for a Fortune 500 com
pany responsible for distributed executive information systems, consult
ant, lecturer. Ace has extensive experience with conventional software
engineering, from structured analysis and design to information model
ing. In short, a pretty capable .fellow.

Ace became enamoured of the Macintosh about four years ago after
tiring of the mainframe world. Since then, he has mastered the Macintosh
Toolbox, C, Pascal, and 68000 assembler for the Mac. He has garnered
impressive experience in almost every aspect of programming the Macin
tosh, from specifications to designing and programming user interfaces.
About a year ago, Ace decided to tum his talents to object-oriented
software and, true to form, quickly devoured all the material he could

·find on the subject: Object Pascal, C++, MacApp, OOA, OOD, OOP. To
Ace, object-oriented programming was no more than a convenient way to
do what his training told him he should always do: Write programs in
small, highly cohesive and only weakly linked modules, reusing code
wherever possible. He had several small object-oriented projects under
his belt when his story begins.

~ Payroll 81

"My cousin Frank called and asked me to help him automate payroll for
his company. He has about fourteen employees and his manual system
was beginning to worry him. Frank looked at this as an opportunity, the
first step in developing a company-wide information system. I suggested
he simply buy an off-the-shelf accounting package, but he wouldn't hear
of it. He had looked at all of them and none did exactly what he wanted,
especially regarding company-wide integration, his eventual goal.
You've seen it before: Users have no systems at all, then suddenly it's
critical to have everything on line. I'd used object-oriented programming,
but always for basically graphical programs, not a strictly data processing
problem like payroll. It sounded like a challenge, so I talked to him."

...,. Current Business Model

Frank's survey of the way payroll was at that time done went like this.

1. Daily, employees fill out time sheets.
2. Every Friday, time sheets are collected. On Monday morning, Rachel

takes each time sheet and places it in the employee's payroll file. This
is a manila folder in a filing cabinet, one per employee. In this folder
is the employee's employment application, other personnel informa
tion such as name, department, date hired, supervisor, and type of
employee.

3. Frank has two types of employees, salaried and hourly. A salaried
employee's payroll file contains a weekly salary; an hourly em
ployee's file contains an hourly rate. As Rachel files each time sheet
in the hourly worker's employee file, she adds the totals to a report
summarizing hours worked, which, when finished, is given to Frank.
For each employee, this report lists the hours that employee worked
that week. For salaried employees she simply lists 40 hours, less any
sick time. All hours worked by hourly employees are listed, sepa
rated into regular and overtime.

4. Frank allows unlimited sick time for salaried employees (they've all
been with him for a long time and have earned this trust), but he does
not pay hourly employees for hours not actually worked. Hourly
workers are paid time and a half for overtime hours, but salaried
workers do not receive overtime. Each employee is entitled to 1 day
of vacation for each 160 hours worked, plus 1 day for each year of
service, up to 28 days. Vacation can be accrued if not taken in a given
year. It is up to each employee and his or her supervisor to keep
track of vacation and to let Rachel know if an employee will be on

82 ~ Chapter 4 Sample Applications (Why Aren't They Easy?)

vacation. Usually this consists of a Post-it note in the employee's file.
If an employee is on vacation, Rachel simply enters "vacation" on the
hours worked report.

5. On Tuesday, Christine, who is in charge of computing payroll, takes
each employee's file, computes wages, and using the IRS and state
circulars, computes the deductions. She fills out a payroll check
request form and puts it in the payroll check request file. She also
computes the necessary information for the IRS bank deposits and
places that in the IRS file.

6. Every Thursday, John who is in charge of actually writing the checks,
takes the payroll check request file and writes a check for each
payroll check request. In addition, John writes checks for the IRS and
the state and fills out the IRS and state bank deposit slips. Quarterly
the accountant fills out the necessary reports.

7. As he writes the checks, John creates a weekly payroll report with
employee name, hours worked, and the amount of the gross pay.
There is no blank for hours worked on the check request form, but
Rachel is nice enough to put it there. This saves John a trip to the
employee files to get the hours.

In addition, Ace wrote down all of the details of the calculations
involved and a number of other factors .

...,. System Objectives

1. Frank is a little worried that vacation tracking is not being done
accurately since it is a very informal process. Better accounting for
vacation is a major objective.

2. Frank also wants more management reports regarding overtime.
This, in turn, will be used to determine when to hire more people
rather than paying time and a half.

3. He is also worried about the overall accuracy of the payroll computa
tions. There are a lot of people involved and some redundancy, but
Frank worries about dishonesty and wants to have at least two
people looking at all computations.

4. Finally, this is to be the anchor tenant in a larger office automation
effort. Eventually, Frank wants to be sitting at home next to his pool
with his laptop Macintosh and a cellular modem, able to dial in to his
computer system and get an immediate picture of his business.

..,.. Payroll 83

.... First Try: Simulation

"I thought, piece of cake, right? The first thing I did was to try and pick
out the objects. It seemed obvious that the best thing to do was to map the
process onto a series of objects. I decided to start with the objects in the
current system then just add the ones I needed to implement the new
features. I thought about what payroll was supposed to do and picked out
the objects that would do that."

Ace developed an object candidate list with the following set of objects
and their behaviors:

EMPLOYEE

• Fills out time sheet
TIME SHEET

• Holds hours worked
PAYROLL RECORD

• Holds salary or hourly rate, vacation information, hours worked, and
soon

TIME SHEET FILER

• Takes the hours worked and puts it in the payroll record
• Creates Hours Worked Report and tells it to print itself

HOURS WORKED REPORT

• Knows how to format and print itself
COMPENSATION COMPUTATION OBJECT

• Gets the hours worked and salary or hourly rate, then computes
compensation and deductions

• Creates a check request
• Creates IRS and state bank deposit forms

BANK DEPOSIT FORM

• Knows how to format and print itself
CHECK WRITER

• Takes the check request and writes out the checks
• Creates the Payroll Report and tells it to print
• Tells the bank deposit form to print

PAYROLL REPORT

• Knows how to format itself
• Knows how to print itself

84 ..,. Chapter 4 Sample Applications (Why Aren't They Easy?)

CHECK

• Knows how to format and print itself

New Objects

OVERTIME REPORT

• Created by CHECK WRITER

Enhanced Objects

PAYROLL RECORD

• Keeps track of vacation
TIME SHEET FILER

• Computes accrued vacation

Simulation Yields Few Benefits

It was at this point that Ace realized that something was wrong, though
he couldn't quite put his finger on it. "The way I wanted this to work was
to have the check writer get the information it needed from the payroll
record and compute the pay. This seemed like a pretty straightforward
interpretation of the way it was done, but somehow it didn't seem quite
right. It felt more like an old-fashioned procedural data processing pro
gram rather than an object-oriented one. What was the benefit of creating
objects?"

What Ace had created was essentially a simulation of the real world,
with one object in the real world corresponding to one object in the
program. In place of TIME SHEET FILER, read "Rachel." In place of SALARY

COMPUTATION OBJECT, read "Christine." For CHECK WRITER, read "John." Ace
found out the hard way that this approach doesn't, in general, yield very
good results. Objects have to know a great deal about other objects, which
violates a basic rule of modularity. Furthermore, there is overlap between
objects, leaving little or no chance of reusing code for more than one class.
Ace intuitively understood that there must be a better way and set out to
find it.

~ Second Try: Shuffling Responsibilities

"It was unclear to me what should be an object and what shouldn't. Did I
really need a check request object? Couldn't I just have the check writer
ask the employee object what its pay is? But if I did that, I'd have to store
the computed pay in the employee object. Why couldn't the check writer

...., Payroll 85

do the pay computation itself? I followed that train of thought for a while
and ended up with one object-the check writer-computing the pay,
creating the check, creating the payroll report, and creating the bank
deposit forms. Where did my modularity go? Furthermore, this was
nothing like the real world process.

"Then I thought that the check might compute its own pay. That felt a
little better, but how? All I came up with were exotic solutions I didn't
really want to implement. For example, one idea was to have the program
create a blank check that would search for the first unpaid employee and
ask it for its rate, hours, and other information, then compute the pay and
print itself. But then the check object would need to know all about both
kinds of employees, salaried and hourly, in order to do the computations.
That didn't seem right; shouldn't salaried and hourly be subclasses of
employees to hide this kind of knowledge? I could have had the employee
compute its own pay, but it wasn't clear whether that was any better.

"I realized that a literal interpretation of the real world in objects wasn't
good, but nothing I had read told me how to do anything else." Ace
experienced a lot of basic problems.

1. Should real-world objects like a check request stay around in the
implementation, given that they serve only to pass information from
one real-world object to another?

2. Where should computations performed by people in the real world
reside in an artificial world of program objects?

3. Ace created a number of objects that store and return data, but are
otherwise passive. How do you turn a passive collection of data in
the real world into objects that exhibit non-trivial behavior?

4. Who arranges for timing? For example, check objects must be created
at a specific point in the payroll cycle. Who has that responsibility?

5. How do you limit type knowledge (for example, the knowledge that
there are different ways of computing payroll for different types of
employees)? It is messy to pass that information around. Further
more, even though the program consists .of lots of small modules
(good), the modules are very dependent on one another (bad).

Ace was not alone with these problems. After hearing Ace's story one of
the authors has used this problem as an in-class exercise in his seminars
on object-oriented design. The problems Ace experienced are absolutely
typical of beginning OOP programmers. In frustration, Ace solved the
problem in the usual way by turning to an OOSD expert for help.

86 ..,. Chapter 4 Sample Applications (Why Aren't They Easy?)

...,. Third Try: Ask an Expert

The object-oriented software development expert has none of Ace's prob
lems. Within a few minutes, her list of candidate classes and behaviors
might look something like this:

EMPLOYEE

• Computes its compensation and deductions on demand
• Stores its name, address, date of hire, and other information, and

returns them on demand
• On payday, creates a PAYCHECK object and tells it to print itself
• Maintains a list of TIME SHEETS

• Keep a running balance of vacation hours accrued but not taken
• Returns daily hours on demand
• Returns summarized hours by week on demand (totals only)

SALARIED EMPLOYEE

• Subclass of EMPLOYEE

• Stores its weekly salary
• Computes its compensation and deductions on demand using the

salary computation
HOURLY EMPLOYEE

• Subclass of EMPLOYEE

• Stores its hourly rate
• Computes its compensation and deductions on demand using the

hourly computation and the time sheet
TIME SHEET

• Tracks regular, overtime, vacation, and sick hours for each day for
one EMPLOYEE

• Prints itself
PAYCHECK

• As part of creation, EMPLOYEE supplies amounts, name, address, and so
on

• Formats and prints itself
HOURS WORKED REPORT

• Asks all employees for their summarized hours
• Prints itself

..,._ Payroll 87

Foundations of the Design

More information is required to handle quarterly and other reports, but
this is a pretty good foundation. There are really two cornerstones of this
design.

• Employees keep track of data about themselves and perform compu
tations on that data.

• Computations of compensation and deductions are handled by set
ting up a pure virtual method in the EMPLOYEE class, then overriding it
in the SALARIED and HOURLY subclasses.

Experfs Don't Simulate the Real World

This is certainly far removed from the "real world" of payroll. Frank
would be horrified at the thought of allowing his employees to pay
themselves and keep track of a history of their own hours. One of the
reasons for automating in the first place was that he didn't trust them to
keep track of their vacation hours. Furthermore, reports that print them
selves-as opposed to having someone cause them to be printed-and
reports that know how to ask intelligent questions of employees are
decidedly unnatural. Where did these concepts come from? Certainly not
from the folklore! OOSD experts leap to these sorts of designs in their
sleep, yet otherwise talented people like Ace are left scratching their
heads. That which is natural is not workable, while that which is workable
is not intuitive to the common folk. We need to look further for an
explanation of how these designs come about.

...,. What Are the Macintosh Documents?

Ah, yes. Lest we forget, this design must be made to run on a Macintosh.
Remember the Macintosh-specific problems with the railroad example?
They are redoubled here, for the "documents" are anything but obvious.

Faced with the need to define documents, Ace initially had the idea that
all printed reports should be treated as documents: TIME SHEET, PAYCHECK,

HOURS WORKED REPORT. He set up a separate file for each document, but
found that the idea quickly fell apart. Consider the following scenario: (1)
The user double clicks on a TIME SHEET file, launching the payroll applica
tion, changes the employee's address and quits the application then (2)
the user double clicks on a PAYCHECK file for the same employee,
relaunching the application for this separate document.

88 ..,.. Chapter 4 Sample Applications (Why Aren't They Easy?)

Will the new address provided in the TIME SHEET document show up
here in the PAYCHECK document? Not unless Ace takes extreme measures
to propagate changes across files . Keep in mind also that this will generate
hundreds or thousands of files, all interdependent and all subject to the
whim of a casual user browsing through the Finder. All in all, not a very
workable design.

A properly designed application should store an employee's name
once, then reference it from everywhere it is needed. Since this was clearly
a database problem, Ace chose a database management system to use in
storing and retrieving data. Since objects in an object-oriented program
and records in a database do not, in general, match up very well, Ace was
forced to spend a great deal of effort gluing the two together.

Ace also had to figure out the meaning of Open, Save, and Revert when
windows correspond not to files but to records in a shared database.
Suppose you as a user change an employee's address in one window and
his hours worked in another? The windows are shown in Figure 4-6.

Time Sheet Entr ;o Add Emplllllee

Weelc Ending [ITll [fill [fil Hours Last IGoldslein
Employee
Nt1me

Alger, Jeff Monday
Bateson, Gregory

Tuesday Erickson, Milton
Goldstein, Neal

Wednesday Hendricks, Jimmy
Holly, Buddy Thursday
Joplin, Janice
Morrl1on, Jim Frid BU

1002 Gold1tein, Neal Tot el

Worked Uac.

[]] OJ
[]] OJ
[]] OJ
[]] OJ
u u

52 8

Slclc

OJ
OJ
OJ
OJ
DJ

0

first INeal I Middle ._IL_•ny_,__ _ _,

Department ~ Employee# ~

Address 11234 This Street

City IPalo Alto

State 0 Zip I Q4301-1234I

Phona ~ I 555·12121

Start D11t1 m:JI m:JI [Jru

U11c11tlon D11y1 Taken 2 r- Comp---------.

(I Hourly R11t1 I 100,991 U11c11t1on Daye Rccum 6 q J Sick Daye T11k1n 2 c11nc11 £nt1r O S11lul1d \11111r1JI ._ __ _,

Deduction• LI

C11nc11 J K Entlr JI

Figure 4-6. Payroll application windows

Bring the employee general information window to the front. What
does it mean when you choose Save? Save only the changes made in that
frontmost window (the address) or save all changes made to employee

..,. Summary 89

information in all windows (address plus hours)? What about Revert?
Should the program undo changes made in a window that is not on top?
What options should be presented when the user chooses Open? Data
base files? Record types? Reports? Specific employee numbers?

These questions cannot be answered from the real world. They derive
from the world of the Macintosh, its software, and its standards .

...,.. Summary
• Analyzing the "real world" is fine, but you must first decide how to

observe it and record your observations. One popular technique is
lexical analysis in which the programmer writes a description, then
uses the nouns to create candidate lists of objects and classes and
verbs for methods. This technique suffers from a number of common
problems that render it suspect at best and very dependent on the
skill of the practitioner.

• Top-down methods work a little better but cannot tell you where to
stop, where to prune, or how to tackle the issue. Instead, the program
mer must judge the relevance of each object and class. An additional
problem is that there are always going to be artificial features of a
program that do not spring directly from the real world. The folklore
provides neither a theory to account for them nor a methodology for
discovering and designing them.

• Simulation of the real world in general does not yield benefits in
designing object-oriented software. Instead, behaviors should be
assigned to objects in the program in ways that often don't make
sense in the real world. OOSD experts are able to do this intuitively
and achieve great results in little time, even though they may be
unable to articulate exactly why their approach is better.

• The folklore cannot account for the unique characteristics of the
Macintosh, its op~rating system, Toolbox, and user interface stan
dards. In fact, the folklore presumes that such considerations are
mere implementation details, not the dominant factors they are. As a
result, the folklore, which bases object-oriented software develop
ment on objectivist approaches, is frequently unworkable.

• The folklore ties reusability to the autonomous nature of objects in the
real world. Projecting behaviors that do not really exist in the real
world onto our program objects compromises this autonomy. The
more behaviors we project, the less stable and reusable are the classes.
The largest projects usually have the most requirements and, there
fore, the least reusability.

5 ~ The Way We Think

...,. What This Chapter Is About
We have spent a great deal of time so far tearing down the simplistic,
objectivist approach to object-oriented software development. This chap
ter starts the process of building a replacement methodology that is based
on sound principles of the way people actually perceive their world. The
central message of this chapter is that people do not perceive their world
in terms of classes based on shared properties. Although the folklore
assumes that the world is naturally organized into classes, people really
organize their thoughts and perceptions into cognitive categories. Although
cognitive categories resemble the classes we use in object-oriented pro
grams, there are important differences. If we are to create a truly natural,
intuitive way to develop software, we must start by reconciling the world
of human thought and the world of the program. It is only in the simplest
situations that categories are the same as classes; in those cases, the folklore
works. In all other cases, we must have a framework for software develop
ment that takes into account both categories and classes without insisting
that they correspond. A secondary message of this chapter is that neither
top-down nor bottom-up approaches are natural. Instead, people natu
rally gravitate first to the solid center. A sound software development
methodology should do likewise.

91

92 .,. Chapter 5 The Way We Think

...._ Categories

So far, we have assumed the objectivist view of the way we perceive our
world. However, there is a serious problem with objectivism: The evidence
doesn't support it! Objectivism may be the way we think we think, but it
isn't the way we really think. Instead, humans categorize in far more
intricate ways than by simple sharing of properties. We will present
supporting evidence from the cognitive sciences that focuses on implica
tions for the way we create object-oriented software. (For the curious, an
in-depth, fascinating study of this phenomenon can be found in the book,
Women, Fire and Dangerous Things: What Categories Reveal About the Mind, by
George Lakoff. This and other sources are listed in the bibliography at the
end of the book.)

To avoid confusion, we are adopting a strict convention from this point
on in which category refers to groupings in the real world as perceived by
people, and class refers to groupings of objects based on shared properties
in an object-oriented program. It is a common point of confusion to think
that classes naturally correspond to the way we form categories; in fact, we
have deliberately propagated this idea up to now. As we saw in the
discussion of our sample applications, however, this assumption does not
hold. As a start toward unraveling this problem, let's look at the way
people form and structure categories. We will return to class formation
only after a thorough discussion of categories and the human mind .

...,. Basic Level Categories

People are not computers. We do not run computer software in a mental
digital machine. Instead, we have a complex physiology in which certain
categories are formed preconceptually (that is, before any process of reason
ing takes place). Take perceptions of colors. Human beings recognize
eleven basic colors. for which signals of recognition are sent from the eye to
the brain: black, white, red, yellow, green, blue, brown, purple, pink,
orange, and gray. This recognition is not according to some process of
reasoning; instead, neurons fire in response to parts of the spectrum of
visible light that determine this response. These categories of colors are
determined by physiology before they even reach the brain.

This example is not an isolated case. In fact, people have built-in wiring
that leads them to form many such basic level categories. These are neither
the lowest nor the highest level categories people form, but they are the
natural level. By this we mean that people have a physiology that assists in
the formation of this basic level. There is no process of reasoning that
supports forming basic level categories; it is just something we can do by

..,. Categories 93

virtue of being human. People from different walks of life, even from
dramatically different cultures, are remarkably consistent at this basic
level. Basic level categories are the first ones we learn and the first ones to
which we assign names. Names tend to be shortest at the basic level and are
the names used most frequently. Most importantly, basic level categories
can be discerned without picking out details; basic level categories are
perceived holistically as gestalts.

Basic level categories are determined in large measure by the distinctive
ways we as humans interact with their members and, for this reason, tend
to be functional and visual in nature. Put another way, basic level categories
are not intrinsic to the "things" in the real world, but are determined in
large measure by what we do with them. They are the elementary building
blocks of our understanding of the world. Thus, something that we can
pick up, shake, perhaps eat, is inherently easier to categorize than an
abstract concept like "event." Basic level categories are formed, not based on
shared attributes, but due to the firing of the right neurons.

Preconceptual categorization results in basic level categories as gestalts. We
do not find them as primitives, nor are they composed of primitives. They
are simply taken as a whole. These basic levels are things that all human
beings, even from radically different cultures, can share.

~ Not-So-Basic Categories

People from all backgrounds seem to be able to distinguish one genus of
tree from another (for example, oaks from maples). However, when we
drop down to the level of species (for example, sugar maple), the ability to
distinguish one category from another is very dependent on culture and
experience. Surprisingly, going up the ladder to the category "tree" seems
to be somewhat difficult for everyone because of tree-like bushes and
bush-like trees. We need to pick out specific characteristics and apply a
process of reasoning to answer the question, '1s this a tree?" For example,
are both of the plants shown in Figure 5-1 trees?

Higher levels like "plant" and "life form" are even more uncertain. In
fact, it is generally true that the genus level of biological taxonomy is
formed of basic level categories, but species and subspecies (lower level)
and families and so on (higher level) are not. Categories like "emotion,"
and "event," which are not even composed of things in the real world, are
far less likely to be recognized in the same way by different people,
especially at the fringes of the category, because there is no built-in wiring
to preconceptually recognize members of the category.

Certainly people do not stop categorizing when the basic level has been
exhausted. Reasoning extends our categories from the basic level, both up

94 ..,.. Chapter 5 The Way We Think

Figure 5- l . Are both of these plants trees?

and down, in detail. However, non-basic categories are fundamentally
different: They are formed through a complex and somewhat unpredict
able, but nonetheless consistent, cognitive process. Classification, based
on shared properties, does not begin to do justice to cognitive categories.

Cognitive categorization is used to create other than basic level categories,
extending above and below the basic level. It is in nonbasic categories that
we find the remarkable differences between cultures or members of a
culture. It is here that individual cultures make their unique contributions
to understanding the world around us.

Consider the category GAMES. Games really have no properties common
to all members of the category. Some games use boards, others do not.
Some use dice, others cards; then there are games like leapfrog that don't
use any equipment at all. Some are individual, others involve pairs or
teams of people. Some, like "baseball games," are not limited to partici
pants ("fans are part of the game" is commonly said of most professional
sports). Yet, the category is recognizable, at least in our culture. If we try to
use abstraction, or any of the other classical tools for modeling based on
shared properties, we fail to properly model GAMES. What is it that allows
people to so readily form such categories without apparent use of shared
properties?

Non-basic categories are often subject to what psychologist Eleanor
Rosch labeled prototype effects, which means that membership in a category
is not always clear. Some members or subcategories are better fits for the
category than others. Although people have traditionally tried to write this
off to a certain degree of unavoidable inconsistency or randomness in
human reasoning, there is a deeper structure to categories that makes this
anything but random. Membership in a category is not a simple yes/no
matter. Rather, a category itself may well contain a rich structure describ
ing the relationships of its members to the category and to each other. A

..,.. Categories 95

category is a complex cognitive model, which some things fit better than
others. As illustrated in Figure 5-2, Joe Montana is a better example of a
quarterback than a high school player playing the same position. And
certainly both are better than one of the authors as examples.

Joe Montana

High School Quarterback

Figure 5-2. Who is the best example of a quarterback?

One type of category that exhibits prototype effects is a radial category.
The title of Lakoff' s book comes from the category BALAN from the language
of the Dyribal aboriginal tribe of Australia. BALAN contains, among other
things, the subcategories WOMEN, FIRE, and DANGEROUS THINGS. What on earth
can these have in common and why put them in the same category? It
appears at first glance that they have nothing at all in common, and that the
category is just a random, culturally derived grouping. But it starts to make
sense when one takes into account not just the language but the Dyribal
culture and mythology. BALAN has as its central member the subcategory
WOMEN. According to Dyribal mythology, the sun is a woman and therefore
belongs in the same category BALAN. The sun causes sunburns, which, by a
similar chain of links, leads to the inclusion of spears and other DANGEROUS
THINGS. While individuallinks may represent shared properties-WOMEN to
SUN, SUN to DANGEROUS THINGS-it is not true that there are any shared
properties throughout the category. In a radial category consisting of A, B,
and C, A may be linked to B, which is linked to C, but A and C need have
nothing whatsoever in common beyond membership in the category.

96 ..,. Chapter 5 The Way We Think

....,. Categories and Classes Are Not the Same

Let's pause and reflect on what we can conclude already about the
relationship between categories and classes. These are the realities we
must take into account when using object-oriented software development
(or any other methodology) to develop software.

1. People have a natural way of forming categories.
2. There are (at least) two different ways that categories are formed.

Precognitive categorization is physiologically based and non-cognitive.
These are basic level categories that are shared across cultures. Cogni
tive categorization is culturally, even individually, based, and it is at
this level that cultures can radically differ. The way an Australian
aborigine views the world, for example, is radically different from our
perceptions as Americans. This is not a value judgment, merely a
statement of fact. Australian aborigines are not simply Westerners
who wear different clothes and speak a different language.

3. Even across cultures, people tend to agree strongly on basic level
categories (those based on precognitive categorization). Unfortu
nately, few basic level categories are relevant to computer programs,
especially business systems.

4. We should expect people to differ with equal vigor over categories at
other levels (that is, levels based on cognitive categorization). These
differences occur even among those in the same culture and with
similar backgrounds.

5. Membership in a cognit~ve category is not necessarily a simple yes/
no proposition but may be graded by prototype effects. Some members
are better examples of (that is, more central to) a category than others.
Thus, we should be surprised to find authoritative answers to many
seemingly simple questions.

6. Categories cannot be modeled by mere classification using shared
attributes. Put another way, categories do not equal classes.

7. The natural way in which people form categories does not correspond
to either of the dominant ways of constructing software: top down
and bottom up. There is a natural center (basic level categories) and
context- and culturally-determined super- and subcategories. The
only "natural" way to form hierarchies of categories is through a
center-out process.

8. In light of all of the previous observations, it is rare when two people
agree on a single definition of the "natural" way to organize a
program, let alone an entire project team. Based on the authors'

~ Schemas and Contexts 97

experience teaching a class on object-oriented design, people work
ing in teams of three or more spend most of their time arguing over
categorizations and make little or no progress. Those who work
independently or in groups of two make progress .

..._ Reconciling Categories and Classes

If people think in categories, and object-oriented software uses classes, and
the two do not correspond, we have then cut the very foundation out from
under the objectivist approach to object-oriented software development. It
is already clear where many of our difficulties in using object-oriented
programming in large, complex projects come from. Processes we as
sumed were natural and universal turn out to be anything but. Is there a
reason for pushing forward?

The easy way out is to say "Forget about categories; forget about
analysis and design; I'll develop object-oriented software based on the
strength of object-oriented programming language features." This is, in
fact, a popular idea in theoretical computer science circles. It is the practi
tioners, not the theorists, who have latched on to OOSD as a tool for
analysis and design. But remember, there must be something good about
mixing up categories and classes, or so many people wouldn't be report
ing such great results. Furthermore, classes may not be an exact match for
categories, but they are certainly closer than data flow diagrams and
functional decompositions! As we will see in the next two chapters, it is
indeed possible to create methodologies that capitalize on the best of both
worlds by learning to include both categories and classes in software
development. But first, we must gain some further understanding of the
way we categorize. We can then start the process of reconciliation .

...,.. Schemas and Contexts
Lakoff has proposed a convincing model for cognitive categorization. It is
by no means the only model, although it is one the authors find appealing.
To account for this rich structure of categories, Lakoff argues that non-basic
categories exist within the scope of schemas. Each schema represents the
following.

1. A set of categories
2. Relationships among the categories
3. Background assumptions of the schema
4. Relationship of the schema to other schemas

98 ..,. Chapter 5 The Way We Think

There are four kinds of relationships within and among the schemas.

I. Image-schematic: based loosely on visual image structures
2. Propositional: logical relationships, such as shared properties
3. Metaphoric: one category or schema is analogous or similar to another

4. Metonymic: one subcategory or member is used to represent an entire
category

Because categories are defined in terms of schemas, no category can be
completely defined in isolation from some schematic backdrop or context.
Both the relationships and background assumptions are critical, not just to
using a category, but to its definition as well. Discussion of each of these
types of relationships follows .

..,_ Image-Schematic Relationships

Since people receive much of their information about the world through
sight, it is no surprise that much of our knowledge about the world is
structured in spatial terms. Figure 5-3 illustrates some common image
schemas.

Source

Figure 5-3. Image schemas

Although this way of categorizing and comparing categories is
extremely common, it is little used in computer programming. Although
human beings may have the built-in ability to handle spatial information,
our computers do not! It is hard work to adequately represent these and
other image schemas in a computer.

..,.. Schemas and Contexts 99

In addition to perceiving images that really exist, we also tend to use
images to represent many complex concepts. A home run in baseball is a
complicated concept; part of that concept is not of just the ball itself, but also
of the trajectory traced by the ball as it travels from home plate to the stands.
That arc is itself an image schematic way to think of a home run.

~ Propositional Relationships

This is the type of relationship with which most object-oriented program
mers are familiar. Examples includewHOLE-PARTrelationships (e.g., cARand
DOOR) and SUBCATEGORIES (that is, CAR and 1979 FORD STATION WAGON).

These are the most common but by no means the only relationships. It is
common for propositional relationships to be based on shared properties
and, therefore, to be easy to represent in a computer program. This is, in
fact, the way in which database schemas are designed to represent relation
ships within the data in a system.

Propositional relationships are based on properties of the categories and
rules for using them. They might be used, for example, to represent control
of one object by another: LIGHT SWITCH and LIGHT, or ancestral order: PARENT
and CHILD, or more general temporal order: EARLIER-LATER. Several distinct
relationships might exist between PERSON and DOG:

• PERSON owns DOG

• PERSON is VETERINARIAN of DOG (clearly there are background assump-
tions about PERSON here!)

• DOG bites PERSON
• PERSON sold DOG

• PERSON feeds DOG

~ Metaphoric Relationships

Metaphors are everywhere in human thought and discourse: "He lit up
(like a light bulb)"; "We bowled' em over!"; "My car is like Uncle Al's corns:
It aches on a wet day".

Metaphorical relationships among categories are equally common.
Whenever we allow one situation to stand for another for purposes of
reasoning, we are using metaphor as a tool for reasoning about concepts.
When we talk about categories and relationships among them, metaphor
becomes a tool for forming and reasoning about categories.

100 ..,. Chapter 5 The Way We Think

...,. Metonymic Relationships

Metonymic relationships sometimes exist among the members of a cat
egory when some member can be used to stand for the entire category.
Asked to describe the category, SANDWICH, you might be tempted to say" A
SANDWICH has two slices of bread separated by some edible stuff." But what
about open-faced sandwiches? Sandwiches made from crackers, rather
than bread? What about an important letter "sandwiched among junk
mail?" The category SANDWICH includes a lot more than a simple ham on
rye! Yet, for most purposes, you use the simplest type of SANDWICH to
answer questions about all sandwiches. This is metonymy: one member or
subcategory is used to represent the entire category .

...,. The Importance of Context

Recall that we stated that categories are defined in terms of schemas, which
in turn have background assumptions. The background assumptions are
important because they determine when a given schema and its cognitive
categories are a good fit for reality and when they aren't. Put simply, the
categories you choose are highly dependent on their context. For example, one
can create a category CAR and in a schema associate with it categories DRIVER,

DOOR, GARAGE, and so on. However, this schema can lose much of its
meaning if we try to apply it to a TOY CAR. The category CAR for most people
includes both the real thing and the toy, but the relationship of CAR to the
other categories is simply not valid for all kinds of CAR. In the context of
driving someplace, a toy car is not that kind of a car. The TOY CAR is not
categorized as a CAR when you examine it in a context in which CAR implies
ability to go someplace.

Categories as cognitive models shoot a gaping hole into our Four Itys.
Remember the fundamental assumption that classes and objects are
autonomous entities? It is not, in fact, true that a category is independent
of all other categories; instead, it is completely defined within and intri
cately interwoven into the fabric of context, those complex and ill-defined
background assumptions that we cannot hope to capture with any rigor.
It is the meaning of a category in a context that gives meaning to other
categories in that context; the other categories affect its own meaning as
well. There are some critical implications from this.

• Category formation and definition is a recursive process. Refinement
of one category can lead to refinement of others, which can affect the
original category, and so on. This destroys any notion of exploring and
defining each category in sequence. The category PROGRAMMER is a good
example of this. You might start by thinking of the category in terms

..,.. The Myth of Reusability 1O1

of either Cobol business programmers wearing suits and ties or
perhaps systems programmers in hiking boots and T-shirts working
late into the night. The more you examine the category in different
contexts, the more it changes. Is someone who writes Excel macros a
programmer? How about 4th Dimension programmers? HyperCard
programmers? Each time you introduce the context of a new product,
you use the category PROGRAMMER as it is then understood to help
categorize that product according to its intended use; as products are
categorized, PROGRAMMER itself is refined. You might, for example,
rebel against calling a user of HyperCard a PROGRAMMER until you
distinguish someone who writes scripts from someone who merely
adds cards to existing stacks. As the context of the question "What is
a PROGRAMMER" expands, the category grows as well. In short, there is
no fixed answer to the question "What is a PROGRAMMER?"

• Background assumptions allow us to place the "same" thing in
different categories based on the context. For example, a hug can
mean many things. From a child, it is a sign of love. From a burly
stranger wearing a mask in a dark alley, it is quite something else. Did
you catch the implication of those simple statements? There is no one,
unique way to categorize the things in the world!

• So much for the Big R: Reusability. We should expect it to be the norm,
rather than the exception, when a category is applicable only to the
problem at hand .

....,. The Myth of Reusability
The preceding statement is worth repeating:

We should expect it to be the norm, rather than the exception, when a category
is applicable only to the problem at hand.

This explains why most reusable object-oriented code is in the form of
application-independent libraries such as MacApp: They carry only the
background assumptions required of the Macintosh, its operating system
and Toolbox, not those of the application. The further we drift away from
our little machine- and operating-system-defined island, the less relevant
our previous categories, and therefore, our code, will be.

Earlier, in discussing the folklore, we hoped that an employee class in a
payroll application would prove highly reusable in a manpower planning
application. We can now recognize the ugly truth: it isn't likely to happen,
no matter what our exertions. The manpower planning application
requires a whole new set of extensions to the class and its relationships to

102 ..,. Chapter 5 The Way We Think

other classes. A few of these might include employee skill levels and
experience; advance scheduling, rather than merely logging past hours;
and contingencies involving positions not yet filled or even defined. Who
can predict what will be needed without first taking a good, hard look at
this new context? Some of these are likely to conflict with our original class,
such as positions without specific people in them. Even if we get lucky with
the manpower planning program, we likely face an uphill struggle in
building a human resources application or an office-wide calendar and
appointment book system. There is no easy way out. Such situations have
always been and continue to be difficult, even using object-oriented
techniques. The problem, however, lies not with the technology, but with
the dominant role of contexts that are not yet known.

For applications, it is far better to concentrate on the other three Itys
Maintainability, Extensibility, and Modularity-and on techniques for
lowering the costs and time required to create an application's new code.
These three Itys are limited in scope to the application at hand and
therefore depend only on the context of a single application. We can
construct good arguments for the benefits of OOSD for these three Itys
without having to make the dubious claim of reusability.

This is not to say that application-independent class libraries are not
useful or important, but they are not the major problem. There will always
be many more applications than libraries. Otherwise, a library wouldn't be
much of a success, would it? Class libraries are the low-hanging fruit of
object-oriented software development: juicy, but a small fraction of the
fruit of the entire tree. Even so, we can learn an important lesson for code
that is specifically required to be reusable: we must be careful to stick to
only those categories which, if they carry any dependence on context at all,
directly and unambiguously derive from the platform. A sorted list class
carries no context; a window class carries (one hopes) only the context of
the Macintosh and its user interface features; a "person" class is probably
too context-sensitive to be truly reusable .

....,. The Sheer Cliff Principle Explained
By now, it is clear why objectivism does not work for complex projects.
It's worth taking a look at why it works for simple ones.

~ When Does the Folklore Work?

We earlier stated that the folklore is not wrong, just oversimplified. The
assumptions that make it oversimplified are that categories and classes are
the same thing and that categories or classes are independent of one
another and of their context.

..., The Sheer Cliff Principle Explained 103

The explanation for the success of objectivism in some situations and its
failure in others is simple: Under certain conditions, the previous two
assumptions do, in fact, hold. Some of these conditions are listed below.

1. The "things" in the problem have a physical and visual reality that is
familiar to the programmer and the target audience. Under such
conditions, the chances of differences in categorization from one
person to the next are drastically reduced.

2. The categories/ classes are simple enough so that there are very few
choices available in classifying/ categorizing. Certainly this is the case
in most sample applications designed for teaching purposes. How
many ways are there to categorize the tools in a simple drawing
palette: a rectangle, an oval, a line, and a polygon?

3. The relationships between the categories/ classes are simple and
unambiguous and do not depend on complicated, unstated assump
tions. In other words, we are dealing with only one or a very few
contexts and the background assumptions are either obvious or
irrelevant to that program. In a simple drawing application, it is hard
to find more than one way to describe the relationship between a
rectangle and the electronic page it sits on.

~ . Why the Sheer Cliff Exists

Under most combinations of these conditions, classification corresponds
quite accurately to categorization and the process seems "natural." In
complex projects, however, these conditions do not generally hold and the
gnawing feeling starts to rise that something is not quite right. In fact,
sticking to objectivism in such circumstances makes things harder as you
search for a "natural" classification that does not exist. The source of the
Sheer Cliff Principle is that something that works beautifully for a certain
kind of project can quickly become irrelevant or even damaging in another.
It is the assumption that the folklore always works that results in the sheer cliff.

~ Avoiding the Sheer Cliff: Solution-Based Modeling

Is this a reason to give up on a cognitive view of object-oriented software
development? No, and the reconciliation between the points of view forms
the major motivation behind Solution-Based Modeling and the following
chapters. We will show that the two can and should coexist inside a single
model of software development. We must allow categories and human

104 ..,. Chapter 5 The Way We Think

thought to be what they are and objects and classes to be what they are,
always taking care not to confuse the two. Categories will form the basis
of our understanding of what a program is and does-the program's
meaning. Classes will be used to implement that understanding in an
object-oriented programming language .

...,. Categories and Image Schemas in Macintosh
User Interfaces

This chapter has explored some facts and theories about how people
perceive their world, information that has very interesting implications for
the design of graphical user interfaces yet seems to have been left out of the
mainstream literature on the subject. Specifically, the concepts of cognitive
categories and image schemas can be applied to create intuitive, "friendly"
and, above all, approachable interfaces for Macintosh programs. If people
organize their perceptions in terms of categories, and if image schemas are
a dominant way of understanding our world, interfaces that make use of
those innate abilities of the user will be better than interfaces created for
their technical merit. Put simply, we seek to design for the benefit of the
user, which requires understanding how the user perceives the program.

Categorical User Interfaces

Ever wonder why menus are organized the way they are? Why do certain
menu items end up in the Edit menu, rather than, say, the File or Whatever
menus? It is very common for the items in a menu to have very few
properties or actions in common. Figure 5-4 shows an example of this, the
Edit menu from Ashton-Tate's FullWrite word processing program. What
do the clipboard operations, outlining, sorting, a glossary, a thesaurus,
spell checking, and hyphenation have in common? Not much. Yet, there is
a sense of common purpose: Applying some sort of well-defined change to
the text. In the actual implementation, these could hardly be more different
as command objects, but in the user interface it makes a lot of sense to group
them in this way. In other words, they form a category, but not a class.

Moue Notes
Undo Paste XZ

Cut Append XH
Copy Append XC
Paste XU
Clear
Select Chapter XA

Make Outline
Sort ... ,

Glossary... XG
Uariables ••• XY

Hyphenate •..
Check Selection
Thesaurus •••

..,. The Sheer Cliff Principle Explained 105

Figure 5-4. FullWrite "Edit" menu

Categories occur throughout user interfaces. Palettes are categories, as
are dialog boxes and, more generally, windows. Files and documents
represent categories of information, largely determined by the user. Dialog
items that are physically grouped together are often categories. Consider
the dialog box shown in Figure 5-5.

See the check boxes arranged close to one another? These all act inde
pendently of one another, but the grouping makes sense-it's a cognitive
category of otherwise unrelated check boxes.

One of the most common user interface design mistakes the authors find
among their clients is confusing categories with classes in user interfaces.
One of the authors was guilty of this in a past project in designing a palette
of different kinds of furniture. There were too many types of furniture to
appear on the screen at once, so the palette had to switch among several

106 ..,. Chapter 5 The Way We Think

=L=as=e=r=W=r=it=e=r=P=a=g=e=S=e=t=u=p=======================7=.o'-===(OK i
Paper: ® US Letter O R4 Letter

O US Legal O 85 Letter 0 l._T_ab_l_o_id ___ ,..__.I (Cancel)

Reduce or 1Hmil%
Enlarge:

Orientation

-~

Printer Effects: (Options)
[81 Font Substitution?
[81 TeHt Smoothing?
[81 Graphics Smoothing?
[81 Faster Bitmap Printing?

Figure 5-5. Categories in a dialog box

groupings of furniture. The author tried in vain to explain abstraction and
classes to the client in justifying why some pieces belonged together in a
group and others did not, but in the end the groups were formed in ways
that left little behavior in common within each group. One group contained
some furniture that rolled under work surfaces, others that fastened in
place there, other pieces that attached above the worksurface, and others
that simply stood alone. Some pieces, in fact, showed up in more than one
group! Yet, these groups made perfect sense to interior designers and
architects. In fact, they corresponded to the major headings in the
manufacturer's catalog. Categories were the correct, user-centered way to
group the furniture, not according to classes of shared properties.

The lessons here are to leave the classes behind when designing user
interfaces and to seek out the categories that users naturally form when
dealing with the sorts of problems to which the computer is being applied.
Classes, based on shared properties, will be used to implement the user
interface, but are irrelevant when designing it.

..,. The Sheer Cliff Principle Explained 107

Image Schemas

Image schemas are important in user interface design as well. Up I down,
foreground / background, source-path-goal, bigger I smaller, left/ right,
inside/ outside, and other image schemas are powerful ways to convey
information to the user without having to resort to text. The Macintosh user
interface is largely based on image schemas. One of the best but most trivial
examples of this is the trash can-put something in it and it bulges. Size
denotes quantity in visual terms. Windows use the foreground/back
ground image schema to indicate the current context of the program-the
foreground window. The modal dialog that appears when you copy files
uses a left/right image schema to denote the passage of time, as shown in
Figure 5-6.

Copy

I terns remaining to be copied: 3

Writing: DataPak

Stop

Figure 5-6. Passage of time while copying files

Relative size, line weight, shading, center-periphery organization, color,
and other visual tricks can go a long way toward conveying the meaning
of the program visually. Perhaps most powerful are simulated 3D inter
faces, as with System 7's Finder. People do not perceive their world in two
dimensions, but three. Flat interfaces are disorienting and cause the user to
have to think about how the objects behind the interface are organized.
Now, let's see . .. what does a button that turns black mean? Ah, that's
right, the button has been "pushed."

Image schemas are the meat and potatoes of graphic design. User
interface design can benefit greatly from the techniques developed over
centuries by that discipline. The result when this is done is not just a more
pleasant-looking program, but a more effective one. The user is given
visual cues about what can be done and how to proceed. If you don't
happen to have a degree in graphic arts, don't despair; the basic principles
are not that difficult to master. Two works by Edward R. Tufte which
should get you on the right track are listed in the bibliography.

In the next chapter we will apply these principles using the authors'
notational system for object-oriented analysis and design, the Visual
Design Language (VDL).

108 ..,.. Chapter 5 The Way We Think

...._ Summary
• People organize their thoughts and perceptions in terms of cognitive

categories, not classes based on shared attributes. Categories cannot
be modeled by mere classification using shared attributes. Categories
do not equal classes. A software development methodology should
make provision for both categories and classes without insisting that
they be the same. Categories correspond to the way people under
stand the program; classes are a convenient way of implementing
that understanding. -

• Although people have a natural way of forming categories, forming
and choosing categories is highly dependent on their context. There are
at least two different ways that categories are formed. Precognitive
categorization is physiologically based and non-cognitive. Precogni
tive categorization produces basic level categories that are shared
across cultures. Cognitive categorization is culturally based. It is at this
non-basic level that people and cultures can radically differ, even
among people with similar backgrounds.

• Membership in a cognitive category is not necessarily a simple yes I no
proposition, but may be graded by prototype effects; some members are
better examples of a category than others. Although pairs of members
of a category may share attributes, it is not generally true that all
members of a category must have attributes in common with all other
members.

• The natural way people form ca~egories does not correspond to either
of the dominant ways of constructing software: top down or bottom
up. There is a natural center (basic level categories) and context and
culturally determined super- and subcategories. Rather than being
defined in isolation, categories are defined based on the context(s) in
which they are used. The dependence of categories on their context
undermines Reusability for all but application-independent class
libraries.

• The folklore of object-oriented software development has a strong
intuitive appeal, partly because classes have a strong correspondence
to categories in the simple cases encountered by the beginner. In more
complex projects, the correspondence between classes and categories
does not hold.

• The principles of this chapter apply to the design of graphical user
interfaces. Image schemas, categories, and simulated 3D all contribute
to the user's perception of how the program operates.

PART TWO

~ Solution-Based
Modeling for the

Macintosh

6 ~ The Visual Design Language

....,. What This Chapter Is About
This chapter sets the stage for Solution-Based Modeling (SBM) by intro
ducing the principal language of discourse we use with SBM, Visual
Design Language (VOL). The specific use of VOL to construct solution
based models will be illustrated in subsequent chapters.

VOL was developed to use the principles of human cognition discussed
in the previous chapter by harnessing images as fundamental tools for
communicating ideas. VOL provides a rich set of symbols for representing
object-oriented software development concepts, together with standards
for their use in relation to one another.

VOL has symbols for all of the concepts discussed in earlier chapters
categories, objects of the natural world, program objects and classes,
requirements and constraints, and a wide variety of relationships among
these elements. VOL is the cornerstone of our effort to bring analysis,
design, and programming for object-oriented software under one roof.
These symbols, and the standards for their use, are intended to appeal to
the intuition as much as the intellect.

....,. Overview of VOL

..,.. Visual Communication

The primary purpose of any notation should be to communicate. Unfortu
nately, diagrams and formal notations are frequently used only to docu
ment what has already been developed. What we present here is a working

111

112 ..., Chapter 6 The Visual Design Language

tool to be used at all phases of development. Ideas are explored using
images whenever possible, and those images form the basis of communi
cating ideas to others. Of course, it is not possible or even desirable to use
images for everything. There will always be a role for text. However, all
people involved-end users, systems analysts, programmers, and man
agement-should have an intuitive grasp of what the model contains and
how it works before resorting to text. This, more than anything, is the
objective of the VOL.

~ Escaping Flatland

Notations have a long history in computer software, starting with flow
charts and proceeding through structure charts, data flow diagrams,
logical data models, and, in the present object-oriented world, various
ways of visualizing objects and classes. However helpful these notations
have been, they are quite crude by graphic design industry standards.
The authors know this first-hand. They enlisted the help of a professional
design firm to help develop a notational scheme for use with Solution
Based Modeling, only to endure their amazement and, at times, benevo
lent laughter over our early, two-dimensional attempts at graphic sym
bols. Once we managed to break out of our combined thirty-plus years of
indoctrination with flat, boring rectangles and arrows, the results became
VDL.

In his landmark book, Envisioning Information, Edward R. Tufte states
that the principal job of the designer in conveying information is "escaping
flatland." People visualize in three dimensions, not two. Yet, all major
notational systems for software analysis and design are based on two
dimensions. Furthermore, these systems are separated from the real world
by a gaping chasm. Look at the flow chart in Figure 6-1.

Although this diagram contains much data about the program fragment
it represents, it is useful only to a person trained in the meanings of
rectangles, ovals, and diamonds. Furthermore, this "language" is focused
squarely on the programming, not on the business. There is nothing in this
diagram to suggest the relationship between people and processes in the
business on the one hand to conditional branching and steps of the
program on the other. Even worse, it has a "techy" look that might scare off
people who do not have a formal background in computers.

..,. Overview of VOL 113

I:= 0

Figure 6-1. What does this mean?

Now look at Figure 6-2, which is a diagram illustrating the relationship
between a class BUS and a class PERSON in an object-oriented program.

Figure 6-2. What does this mean?

It takes a great deal of explaining to communicate to someone else that
this simply means that a bus contains some people. We have to explain
that each blob represents a class of objects, that the double line means that
BUS uses PERSON in its implementation (which, in turn, requires some

114 ~ Chapter 6 The Visual Design Language

Good

Even better

Figure 6-3. People in a bus

explanation!) and that the 1 on one end and n on the other means that
there are one or more people in the bus. Now consider Figure 6-3, which
shows how to present the same concept in VDL.

Figure 6-3 conveys much more information than the previous diagram.
The three-dimensional character communicates that these are things, not
just abstract shapes. This corresponds to the intuitive notion of an object as
a thing that has three dimensions. Second, we use an image schema to
represent the fact that one is inside the other. The arrow clearly indicates
that the PERSON is inside the sus. This is still not ideal. The best version would
show a bus with people inside it, but we need a notation that can be quickly
sketched by hand in order for it to be useful as a working tool of commu
nication. This is a quick glimpse at the kind of notation we will present: one
that uses to advantage people's ability to grasp more information from
image schemas than from words. As a result, we can communicate much
more information at a glance.

The illusion of three dimensions in the design is a key element of this
strategy. In two dimensions, people must make the mental translation
from shape to "thing"; in three dimensions, the idea of a "thing" is
apparent. The third dimension also provides a critical boost to the amount
of information we can convey. In two dimensions, we can organize things
only in horizontal and vertical dimensions using left/right, front/back

..,. Overview of VOL 115

and foreground/background image schemas. Adding the third dimension
adds above/below as well. The addition of the third dimension dramati
cally increases the amount of detail we can present without clutter. Perhaps
most important is thaf the results are more pleasing to the eye. A diagram
that looks better also communicates better. It encourages exploration and
doesn't scare people off. Because it is a more intuitive, comfortable way to
communicate, everyone's confidence in the process increases.

~ Using Image Schemas

We will talk more about the use of specific kinds of image schemas later,
but it is appropriate to give some examples now. Western culture uses
many visual cues to compare things. For example, flows from left to right
are interpreted as a time sequence, and items behind other items are
considered ancestral. The larger an element is drawn, the more important
it is in the context of the diagram. This can also be true of above/below
schemas in which the more significant information is contained in progres
sively higher schemas. Likewise, foreground/background schemas con
vey context by using the foreground for the topic of discussion and the
background for the context.

Grouping of related elements can be represented by using containers, as
we did in Figure 6-3; using center-periphery schemas; by physical proxim
ity in the diagram; and by separation into layers (a form of container).
Communication of information from one element to another is understood
as a flow or movement along a conduit or path. This is a particularly natural
thing to do on the Macintosh, which is already rich in image schemas. A
window is a metaphor for a container of information. The trash can and
other icons have a three-dimensional look. It is becoming increasingly
common, especially with System 7.0, to use simulated three-dimensional
buttons and other interface features in Macintosh applications. Why not
apply the same principles we use in Mac interfaces to our process for
developing the software behind them?

~ Constraints on the Notation

In order to make it a practical tool, the authors placed the following
constraints on the development of VDL.

1. Users must be able to quickly and easily sketch all symbols. One of the
authors-never in serious danger of being mistaken for an artist
sketched the diagram in Figure 6-4 in under ten seconds.

2. We do not rely on the use of color or any computer-aided tool. A pencil
and paper should be the minimum configuration required.

116 ..,.. Chapter 6 The Visual Design Language

Figure 6-4. Hand-drawn sketch using VDL

3. At the same time, the notation should become even more powerful
when automated. Color, information hiding, shadowing, and other
advanced techniques should smoothly integrate with the notation
where the right tools are available.

The end of this chapter contains a section on extensions to the notation
to include color, shading, and other advanced techniques. We hope that
others will be encouraged by this book to develop computer-aided tools for
use with VOL.

...,_ Contents of the Models

The models consist of elements, relationships among those elements, and
frames. Elements include natural world and program objects, categories,
classes, and a few other related pieces of.information we will describe.
Relationships between a pair of elements might describe the relationship
of a whole to its parts or the sending of a message from one object to
another. Frames are far less formal and represent constraints and require
ments that are outside the model. For example, a constraint that response
time to all actions must be under ten seconds becomes part of a frame.

1111- Overview of VOL 117

Certain types of relationships are represented by lines and arrows.
Others involve more subtle techniques of organization that we call spatial
effects. We use a plane to organize elements into a single altitude, thereby
implying, rather than explicitly stating, that the elements are somehow
related to the topic of the plane. Planes are divided into regions for similar
reasons. We use various other image schemas to represent relationships:
front to back and other orderings, layering, relative size, and stroke weight
of lines, among others .

...,. Examples of VDL

The best way to introduce VOL is to show some examples of its use. Figure
6-5 shows a simple scenario, or diagram, in VDL.

Scenario#: 123-a Reference Model
Authors: JV A, NLG
1/15/92

Collaborations of Hobbyist and Hobby Shop (partial)

To Do:
- Scenarios for other collaborations

Figure 6-5. Relationship between model railroad designer and
hobby shop

118 ..,.. Chapter 6 The Visual Design Language

This scenario tells a simple message: The designer designs layouts and
orders parts and is aided in those efforts by the hobby shop. This scenario
describes a business situation with natural world objects and their respon
sibilities as the elements. Figure 6-6 shows a new scenario in which the
Macintosh is now an element.

Scenario #: 131
Authors: JV A, NLG
1/16/92

To Do:
- Layout validation
- Detailed scenarios

Solution Model

-- ~ Display Catalog

~ - "-~~---
-~ Edit 4Y!1ut" Macintosi!)

Design Layout (partial)

Figure 6-6. Using a Macintosh for model railroad layout

..,.. Overview of VOL 119

This is still at the level of business modeling with the Macintosh now
included as an element of the business world. Figure 6-7 leaves the world
of business modeling and presents a storyboard of the model railroad
design program.

Scenario #: 205 User Interface Model
Authors: JV A, NLG
2/5/92

·-~-It !

1.1.1.1.1.IW i 111111111111111111 j IIll

!.. ~

User positions cursor User clicks. Selection User drags an All objects fully
over window. is cleared. enclosing marquee. enclosed are selected.

Clear ~1
(Selection)--- - - - - - -.y=--- -- ---=- - - - l/- -

!Tracker~ Draw Marquee I Mouse Up
~r;:c~- - /.. _____ L ___ _:_ ___

Marquee Selection

To Do:
- Shift-Drag

Figure 6-7. Storyboard of model railroad design program

The elements in this diagram are conceptual objects that represent the
features found in the user interface snapshot shown. The left-to-right
ordering reflects progression of time. Responsibilities are called in the
order shown. This is still a conceptual model, not yet constrained by the
specific technology of object-oriented software. That is, this is a descriptive
model, as opposed to a technical architecture (design) or implementation. We
will have much more to say about these three terms-model, architecture,
and implementation, in later chapters. Figure 6-8 contains a much finer
grain of detail. This is an example of the architectural level of a solution
based model.

120 .,... Chapter 6 The Visual Design Language

Scenario #: 301
Authors: JV A, NLG
2/25/92

User Interface Architecture DoMouseCommand
(VPoint&: theMouse,
TioolboxEvent• event,

1--------' Point hysteresis)

A-"7';]~~~--------------
' CVPoint&: theMouse,

+ TVieW- its View)

qTracker - /. ~ - !Tra~ker~ar~~~I~md: - -

its View, kCantUndo,

6L ... Cl-------J "~~~~;.:t__
~-------L~~~~------------

Marquee Selection Initialization

To Do:

Figure 6-8. Architecture of model railroad design program

The conceptual description of the previous figure has been considerably
expanded to include calling sequences for responsibilities and relation
ships between features of the user interface and the class library, in this case
MacApp. What had been one object in the previous scenario has become
two objects: a view object and a mouse tracking object. Figure 6-9 shows the
relationships between these two scenarios by specifying how the objects
and responsibilities of the conceptual model correspond to those of the
architecture. The double-headed arrows mean "implements." Item by
item, we compare elements of the two levels of detail to make sure that
nothing has been lost in the translation from conceptual model to software
architecture. Finally, Figure 6-10 shows the final level of detail, in which
objects have been implemented using inheritance from specific classes in
a class hierarchy. The box-like objects are classes; the arrows emanating
from them are inheritance.

Scenario #: 321
Authors: JV A, NLG
2/113/92

To Do:

..,.. Elements 121

!Tracker DrawMar uee

ser Interface Model

Trackfeedback

~qTracke) ~~T!..!.r.,.c""""""'"'"""'"
youtVie

User Interface Architecture

MqTracker Correlation

- Remaining methods ofMqTracker

Figure 6-9. Correlation of model and architecture

This brief tour of VDL is intended only to whet your appetite. Now let's
take an in-depth look at all of the symbols and conventions that make up
the notation. Later chapters will use VDL almost exclusively to present
examples and concepts.

Scenario #: 335
Authors: JV A, NLG
3/5/92

To Do:

User Interface Implementation

Inheritance of Layout View and MqTracker

Figure 6-10. Implementation

122 ..._ Chapter 6 The Visual Design Language

~ Elements
Elements are the individual items that provide the content of a model. VDL
has as its elements natural world, or conceptual, objects and categories;
program objects and classes; attributes; and responsibilities.

~ Natural World Elements

We use the term "natural world" to describe objects and categories of the
real world as well as conceptual objects or categories that describe the
program. Natural world and conceptual elements are drawn using curves,
and program elements are drawn using hard angles. This simple conven
tion clearly indicates when we are talking in the user's terms and when we
are using the technician's concepts. The symbology for natural world
elements is shown in Figure 6-11.

(a) Natural World Object (b) Natural World Object
(Containter)

(c) Natural World Category

Figure 6-11. Natural world elements

Natural World Objects

A natural world object can be "John Smith" or "the Macintosh with CPU
Serial Number 12345." A natural world object may or may not be capable
of containing other objects. For example, a bus can contain passengers. If
the object is a container, it appears as an open-topped disc, as in Figure
6-1 l(b); if it is not a container, it appears as a solid disc as in Figure 6-1 l(a).

Natural World Categories

Natural world categories are represented by the "bowl" shape shown in
Figure 6-ll(c), whose members are natural world objects. Note that it is
open-topped, since every category is by definition a container of its
members.

.,.. Elements 123

...,.. Program Elements

Program elements include program objects, abstractions of program ob
jects, and object classes. These are directly analogous to, respectively,
natural world objects and categories. We use hard angles with program
elements to identify them as technological creations rather than the real
world or concepts. Figure 6-12 shows the symbols we use.

(a) Program Object

(c) Program Class

(b) Program Object
(Container)

~/ __ ..,7
(d) Abstraction

Figure 6-12. Program elements

Program Objects

Program objects are the objects created at run time by the object-oriented
program. Where natural world objects can be somewhat imprecise, pro
gram objects must conform to strict rules imposed by the language of
choice and our design. As with natural world objects, some program
objects can also be containers. Those that are not containers appear as
rectangular solids, as in Figure 6-12(a). Containers are open-topped,
shallow boxes, as in Figure 6-12(b).

Program Classes

Classes are the substance of the program at compile time. They correspond
to classes we directly implement in an object-oriented language. There are
two kinds of classes, concrete and abstract. Concrete classes are those that
we will actually instantiate as the program runs. Abstract classes exist only
to share properties between other classes. For example, in MacApp the
class TObject is the ultimate ancestor of all other classes. Although one
never creates an instance of a TObject, all classes share its methods. TObject
is an abstract class. Figure 6-12(c) shows the symbol for classes.

124 .,.. Chapter 6 The Visual Design Language

Abstractions

Closely related to program classes are abstractions of run-time objects. An
abstraction is an assertion that certain objects share the attributes and
responsibilities listed for the abstraction. Think of an abstraction as a short
cut that avoids the need to separately describe each run-time object. The
symbol for an abstraction is shown in Figure 6-12(d). Abstractions are
discussed in considerable depth in Chapters 10 and 11 .

...,. Attributes

An attribute is a quantity or other piece of data about an object, category,
or class. For example, for a freight train we might have attributes of gross
weight, carrying capacity, and so forth. Creating symbols for attributes is
a little tricky for two reasons. First, we generally want to hide them.
Representing attributes as data goes against the idea of behavioral model
ing, a cornerstone of SBM. If an object has the attribute "weight," we want
to express that fact in terms of relevant behaviors: tell me your weight,
change your weight, compute your weight. The second problem is
language-specific. In some object-oriented languages, notably Smalltalk,
everything is an object, including numbers. Thus, in those languages there
is no such thing as an actual attribute. Nevertheless, it is useful to draw
attributes where they apply and we need symbols for them. Figure 6-13
shows how to do this.

~Weight ~ _ ____.

~ ~==~
Natural world attributes

(Weight :(' /,..-------_/ _ __,7
I ~

Program attributes

Figure 6-13. Attributes

.,.. Elements 125

Do Something

% 7
Figure 6-14. Responsibility

Notice that attributes take on the shape of the object or class they belong
to. A natural world attribute, is a flat, oblong disc, and a program attribute,
is a rectangle. This reflects the idea that an attribute is a small piece of an
object or class. Notice also that we move attributes onto their own layer,
slightly above the plane of objects, categories, and classes. This avoids
confusion over what is an attribute and what is an object, category, or class.

..... Responsibilities

Simplicity is the key for responsibilities because we have many of them.
Furthermore, responsibilities do not have a ready visualization. For both
reasons, we use text over a line connecting the responsibility to the element
to which it belongs, as in Figure 6-14. As with attributes, we achieve a
layering effect by use of the diagonal line that connects the responsibility
to the element.

...,. Relationships
Most relationships between elements are visualized by drawing lines and
arrows connecting the elements.

..... Structural Relationships

Most of the relationships with which we are concerned are behavioral, but
there are three important and common types of structural relationships to
handle. Their symbols are shown in Figure 6-15.

Membership and Instance

Categories, classes, and abstractions have members. A category can have as
its members any combination of objects and other categories. A class or
abstraction can have as members any combination of objects and other
classes. When an object is a member of a category, it is an instance of that
category; similarly, program objects that are members of a class are
instances of that class. We represent both membership and instances using

126 ~ Chapter 6 The Visual Design Language

an arrow emanating from inside the enclosing category, class, or abstrac
tion and pointing to the member. This shows that the member springs from
or is derived from the category or class or is described by the abstraction.
Figure 6-15 (a) and (b) show the symbols for these relationships.

(a) Bird is a sulH:lass of Animal (b) Mary Jones is an Instance of Salesperson

Car I Passenger/

(c) Bus contains passengers (d) Whole and parts

Figure 6-15. Structural relationships

Containers

Containment is visualized by drawing an arrow from the contained
element into the open top of the container, as shown in Figure 6-15 (c).

Whole/Part Relationships

The relationship of a whole to its parts is modeled on the kind of parts
explosion diagram you might struggle with when assembling a bicycle on
Christmas eve. We use right-angle lines coming from the top of the part and
into the bottom of the whole, as shown in Figure 6-15 (d). It is not necessary
that the whole be spatially above the parts, as in this example, but the
right-angle lines must be used as described.

..,. Relationships 127

....,. Behavioral Relationships

There are three basic kinds of behavioral relationships: messages (also
called collaborations, for reasons discussed later), creation of one object by
another, and destruction of one object by another. The symbols for these
relationships are shown in Figure 6-16. Figure 6-16 uses program objects
throughout, but the same symbols apply to behavioral relationships
involving categories and classes as well.

Messages/Collaborations

Communication between objects, whether described as a message or a
collaboration, is represented by an arrow passing through a conduit, as in
Figure 6-16 (a) and (b). In order to send information or commands from one
object or class to another, there must be a responsibility for the sender that
sends the message and one for the receiver to receive and act on the
message. Figure 6-16 (a) shows a collaboration between unnamed respon
sibilities. Figure 6-16 (b), on the other hand, specifically names the respon
sibilities on each end. Eventually, Figure 6-16 (a) must be made more

/
I

A 7 • ~ B 7
(a) Message from A to B

Do This

~~? L I A B 7 I
(b) Collaboration between responsibilities

ofAandB

/
I

A 7 + / c=:
B 7

(c) A creates B

/ t- A 7 /
I

B 7
(d) A destroys B

Figure 6-16. Behavioral relationships

128 ..,. Chapter 6 The Visual Design Language

specific by naming the responsibilities, but it is perfectly acceptable to
suppress that information at an early stage of the project.

Creation

Objects are created by other objects. To show this relationship, draw a
simple line with a plus sign(+) on the end toward the created object, as in
Figure 6-16 (c). This line can either be drawn from objects, categories, and
classes or it can be drawn from specific responsibilities, depending on the
level of detail desired.

Destruction

Objects can choose to destroy themselves, but this generally happens in
response to a specific request to do so from some other object. To repre
sent destruction of one object by another, draw a simple line with a minus
sign(-) on the end toward the destroyed object, as in Figure 6-16 (d). As
with creation, this line can either connect a pair of objects, categories, or
classes, or it can connect a responsibility to an object.

...,. Calibration Relationships

In SBM, we frequently deal with overlapping descriptions of concepts.
Categories can be used to capture some grouping of objects in one plane,
but on the next plane one or more classes or abstractions can be defined to
represent the same thing (though in terms we can implement in a pro
gram). Natural world objects and categories used to describe the way the
business runs today may be reused, extended, or made obsolete by objects
and categories used to describe the way the business will run with the
system in place. For example, in a payroll application, we may learn that
today Rose computes deductions, but the computer will do so in the new
environment. We call these calibration relationships, since they are designed
to validate that different slices of the same pie are consistent with one
another. Figure 6-17 shows the two kinds of calibration relationships used
inSBM.

Implements

An implementation relationship most often exists between a natural world
element and a program element. We do not insist that our natural world
elements maintain the level of rigor required of program elements. If a
program element is the realization in an object-oriented program of a

~ Relationships 129

(a) A is implemented by B

8"*><--- B

(a) A is replaced by B

Figure 6- 17. Calibration relationships

natural world element, we say that it implements the natural world
element. Figure 6-17 (a) shows the symbol for an implementation relation
ship, a double-headed arrow from the implementee to the implementor.
This arrow can be drawn between objects, categories, classes, responsibili
ties, and attributes.

Replaces

It is often the case that something becomes obsolete in the process of
developing software. Natural world elements describing the way the
business functions today may not be relevant in the new, automated
scheme of things. In later chapters, we will discuss the importance of not
allowing anything to simply "fall off the face of the earth," even if it is made
obsolete. Every change must be accounted for. To account for obsoles
cence, we use a replacement relationship, in which one element renders
another obsolete. For example, in a payroll application, the need for certain
staff functions-represented by natural world objects or categories-can
be made obsolete by the computer.

The line between implementation and replacement is subtle. Implemen
tation is used to indicate satisfaction of some requirement, and replace
ment is used to indicate that something is no longer required or relevant.
Figure 6-17 (b) shows the symbol for a replacement relationship.

130 .,.. Chapter 6 The Visual Design Language

..... SameAs

There are only so many ways to organize symbols on a page, even in three
dimensions. At times, whether for clarity or necessity, it is convenient to
have the same element appear in two or more places in a single diagram.
To indicate that two elements are, in fact, the same thing, use the symbol
shown in Figure 6-18 .

.,... Spatial Effects
The kinds of relationships discussed so far are formal parts of the models
you build using Solution-Based Modeling. For each of these we use a
symbol. Other types of relationships are better illustrated by position, size,
and other spatial effects than by lines and arrows. These are techniques of
graphic design that organize and present the models, often in ways that
indicate emphasis as well as content. You can use layering and separation,
relative positioning: left/right, front/back, above/below, foreground/
background, and size and line weight or any other technique that clearly
presents the information.

..... Planes and Regions

A solution-based model is organized into planes that roughly correspond
to the activity required to construct that part of the model. One plane
represents the way the business runs today and the way it will run with the
new system in place. Another represents the objects that exist as the
program is running, and another includes the classes, both concrete and
abstract, that makeup the program itself. Separate regions exist within each
plane. We will talk more about the specific planes and regions of solution
based models in Chapter 7.

Note the altitude effect in which planes appear to be above or below
other planes. Regions are simply subdivisions of planes; the choice of ovals
or lines to delimit regions is up to you. By placing other elements on these
planes and regions, we communicate a great deal about the overall

,_/~A__,/l------,_-/~A--,7
Two copies of A

Figure 6-18. Same-as relationship

~ Spatial Effects 131

organization of the model. We can put a lot more detail onto a single page
without generating clutter.

We also use planes in more limited ways. For example, we drew
attributes and responsibilities as if they are slightly above the plane of the
elements they belong to.

~ Time Sequence

Western culture interprets left to right as a time sequence. We use that
automatic interpretation to describe the time sequence of messages
between objects in VOL. Figure 6-7 shows an example. Rather than draw
the same element repeatedly, we extend a dashed time line. Responsibilities
involved in the interaction are placed along these lines at the point in time
at which they are called. If an object is created at some point, it first appears
at that left/right location; likewise, if an object is destroyed, its time line
disappears. Figure 6-17 also shows a variation of this technique that
communicates repetition. The convention used is borrowed from musical
notation. The segment between vertical lines repeats.

,...

~ Relative Importance

Not all elements and relationships in a model are equally interesting. There
are several ways in which we can at once draw the viewer's attention
toward some symbols and away from others. Remember the critical role
centrality plays in human categorization. We dramatically increase the
viewer's intuitive grasp of the model by communicating what is central
and what is peripheral in importance.

Size

Since things that are bigger automatically attract more attention than
things that are smaller, the simplest way to emphasize elements is to draw
them bigger than others. This effect is demonstrated in Figure 6-19.

e__ A 7 / B

I I

I c7

Figure 6-19. Use of size to emphasize importance

132 ..,.. Chapter 6 The Visual Design Language

Line Weight

We have avoided using line weight for any purpose in VDL so that it can
be used as a tool of emphasis. Look at Figure 6-20. To what is your attention
immediately drawn?

/
I 7 L.. I

7 / 7
Figure 6-20. Use of line weight for emphasis

Center-Periphery Organization

7

Figure 6-21 illustrates that an element in the center is somehow more ...
well, central to the diagram than the other elements are.

c:::/=~7

Figure 6-21. Use of center as a cue

Foreground/Background Organization

/--~
I

Foreground/background organizations can also help focus attention.
We naturally concentrate on things in the foreground, looking at the
background only to establish context. Our use of regions is based on a
foreground/background organization in which the elements and relation
ships above the plane or region are foreground and the plane or region is
background.

~ Scenarios 133

...,.. Frames
Elements, relationships, planes, and regions are internal to the model.
Frames represent external considerations, principally constraints. Ex
amples might be, "it has to be implemented using a Macintosh"; "response
time must average less than two seconds"; or "overall labor must be
reduced." These are more like notes than "things."

We use a foreground/background schema to place the model frame in
the negative space surrounding the model itself, as shown in Figure 6-22.
Constraints and other features of the frame are simply noted in the
background using text.

Scenario#: 17
Authors: JV A, NLG
1/5/92

To Do:

Solution Model

Allow only authorized access
to salary information.

Enforcement of Data Security (partial)

- Scenarios for other secure information

Figure 6-22. Drawing frames in the background

...,.. Scenarios
Any useful program is complicated enough so that it is not comprehensible
in a single model. Even with a large piece of paper, a model encompassing
all of the detail of an application would look like a city viewed from an
airplane at 20,000 feet. People need to deal with a small piece at a time. In
addition to human cognitive limits, there are practical considerations.
Organizing elements into a time sequence is frequently at odds with the

134 ~ Chapter 6 The Visual Design Language

way we organize them structurally. For that matter, two different se
quences of events might require entirely different left to right orderings of
the same elements! Emphasizing relative importance, centrality, and other
spatial effects are usually only meaningful in relationship to some limited
topic of interest. An element may be important in one sense and unimpor
tant in another.

For all of these reasons, we try to deal with small models called sce
narios, which collectively make up the overall solution-based model. Each
scenario has a single topic, generally consists of fewer than a half dozen
elements and a subset of their relationships, and makes its own use of
spatial effects, independent of the overall model and other scenarios.
Ideally, a scenario should be a gestalt, a whole that is taken by the viewer
as being more than just the sum of its parts. Figures 6-5 through 6-10 and
6-22 are all examples of scenarios. Notice the characteristic features that
provide document control: an identifying scenario number, including a
version suffix if appropriate; author initials; date; title, and a "To Do" list
at the bottom. For most scenarios, the part of the model addressed is
indicated, as in the top right corner of Figure 6-5.

At times it is useful to organize scenarios hierarchically so that a single
scenario as a whole is represented as a single element in a larger scenario
or in the overall model. For example, we might wish to represent an entire
car as a single "element" in the overall model and break out the relation
ships to its parts in a smaller scenario. Figure 6-23 shows the symbol for
this.

_r_1
Figure 6-23. Scenario element

This symbol is allowed in the overall model or in any scenario drawn
from it. A special use of the scenario symbol is to indicate if-then or switch
case logic. Figure 6-24 shows an example of this. Only one of the indicated
paths will be followed.

~ Vertical Slicing 135

,
' / "' ,

---< Compute ----
'

, Bonus

"' / ,

Compute Employee Compensation

Figure 6-24. If-then logic using scenarios

~ Vertical Slicing
Planes are the primary spatial organization of elements in our models,
but there are times when our interest is in some topic that spans planes.
We call this vertical slicing, to contrast it with the horizontal organiza
tion into planes. Vertical slicing can be represented using shading to
visually connect regions or elements from different planes, as illustrated
in Figure 6-25.

Figure 6-25. Vertical slicing: the shaded regions are associated

136 ..,. Chapter 6 The Visual Design Language

..,._ Extensions
So far, we have touched only on what could be called "standard usage" of
VDL, but there is certainly much more that could be done. Making the
symbols appear more realistic is a great aid to understanding, but requires
the use of a computer to do the copying and pasting. Similarly, the power
of front/back, above/below, and other spatial schemas is tremendously
enhanced if perspective is introduced, and shading amplifies the effect of
layering. These are techniques that are amenable to automation, but are too
time consuming when done by hand.

Used wisely, color is also a helpful tool. For example, drawing important
features-elements and relationships-in the normal black while casting
everything else in a light red can impart a remarkable sense of separation.
Color can also be used to group features to much the same effect as planes
and regions, but without having to worry about spatially organizing them.
Progressions of colors from left to right can also amplify the role of left/
right schemas to represent time sequences. However, it is important not to
go overboard with color. It needs to be used sparingly as a supplement.

Finally, as costs of the technology continue to fall, photorealistic render
ing and full 30 editing of scenarios promise to make VDL even more
powerful and expressive .

..,._ Summary
Figure 6-26 recaps all symbols and conventions in VDL.

...., Summary 137

Visual Design Language Symbols

~ ~ G ~
Object Container Category Attribute

/ ? /r-
I ? r:=iJ t.. L I

Object Container Class Attribute

_1 __ ..,,7
Abstraction Responsibility Scenario

Time Sequence

(a) Elements

/LJ-,
---()--

'CJ/
Selection

(If-Then/Switch-Case)

(b) Control Flow

r +

-~---~I-
Iteration

Collaboration Creation Destruction

Membership Containment Part/Whole

Implements Replaces Same As

(c) Relationships

Figure 6-26. Summary of all symbols and conventions in VDL

7 ~ Solution-Based Modeling

..._ What This Chapter Is About
This chapter introduces Solution-Based Modeling (SBM) for the Macin
tosh. We start by clearly stating our objectives, then proceed through
solution-based models and Solution-Based Modeling, covering the con
tent and process, respectively. At the end of this chapter you will under
stand how to use the methodology and what you will produce as a result.

This chapter is divided into three parts: objectives motivating SBM,
discussions of the models, and the process used to create them. The models
consist of four planes and eleven regions that together run the gamut from
business analysis to design to program code. The process uses a technique
called Center-Periphery-Calibrate (CPC) to build the models. CPC starts
with the center of the problem, explores it at several levels of detail, then
expands outward toward peripheral issues. Along the way, new work is
constantly calibrated to old to ensure consistency.

A Solution-Based Modeling project has four phases: analysis, design,
programming, and ongoing evolution. However, these phases are not the
same as in a traditional, linear process. During each phase, activity spans
business analysis, design, and programming. The phases differ only in the
relative mix of these activities .

..._ Objectives
The two fundamental objectives of Solution-Based Modeling are solving
the right problem and creating reliable, maintainable programs. These
objectives address the findings presented in Chapter 1, namely that

139

140 ..,.. Chapter 7 Solution-Based Modeling

(1) software projects fail most often because they solve the wrong problem
or create the wrong solution; and (2) most software dollars are spent on
maintenance, not development.

~ Solve the Right Problem

In order to solve the right problem, programmers and non-programmers
must each be able to understand what the other is doing and saying.
Neither programmers nor end users alone have all the answers. A team
effort is needed with good communications. Two specific objectives fol
low.

1. Create requirements and designs that non-programmers under
stand. This allows end users and others to contribute new ideas and
critique work done to date.

2. Create business models that software engineers understand. Remem
ber one of the realities of software development from Chapter 1: The
project team seldom has the necessary knowledge of the problem to
be solved. In order to arrive at.the right program, the problem and its
solution must be expressed completely and in a way that makes sense
to the technical staff.

Several tactics can be used to achieve these twin objectives.

• We rely heavily on the techniques of visualization discussed in Chap
ter 6 because people best understand abstract concepts like business
problems and computer software visually .

. • A solution-based model is built on a foundation of categories, not
classes, because people organize their perceptions in terms of
categories.

• Solution-Based Modeling starts with models of the natural world
around us before plunging into software and other abstract concepts
because people agree most when discussing the real world and the
things with which they interact.

Solution-Based Modeling also recognizes the impossibility of getting
the solution right or even knowing all the right questions the first time.
This is one of the worst-kept secrets of software development: Seasoned
software professionals, even those supposedly using structured, linear
methodologies, know that good software is not really created in an
orderly, linear manner. That emperor has no clothes. Good software is

._ Solution-Based Models 141

only built in a series of incremental steps. Instead of the traditional
handoff from analysis to design to programming, SBM combines all three,
using a procedure called Center-Periphery-Calibrate. CPC corresponds to
the way expert designers work, not just in software, but in all creative
fields-you address a few central problems first at several levels of detail,
then expand outward toward the periphery. As you add more detail,
constantly calibrate the new to the old to maintain consistency through
out the model. This is the natural way to develop software .

...,. Create Reliable, Maintainable Programs

Solution-Based Modeling uses sound software engineering principles
specifically adapted for the world of object-oriented programs. This, plus
its grounding in the relatively stable natural world, yields efficient, reli
able, and, above all, maintainable programs. Modularity, independence,
code reuse, and other traditional software engineering concepts have their
counterparts in SBM, even though object-oriented software does not lend
itself well to the traditional interpretations .

.,... Solution-Based Models
Solution-Based Modeling is based on the idea that any software develop
ment project is a process of constructing models. In SBM, we build models
of the business before automation (the Reference Model), and then project
them into the future, after the program is put in place (the Solution
Model). We build architectures for the program that, when implemented,
achieve the intended business solution. The program itself is an imple
mentation of that architecture. The combination of all of these is a single
Solution-Based Model, which describes the business today, where it must
be tomorrow, and the technology used to get there.

Four planes divided into a total of eleven regions comprise a single
Solution-Based Model.

• Business Plane. The way the business runs today and the way it will run
with the new program in place. The regions of this plane are models of
the business.

• Technology Plane. A conceptual model of the program. The regions of
this plane are models of the user interface and contents of the program.

• Execution Plane. The objects that exist in the computer as the program
executes. The regions of the Execµtion Plane together provide a
detailed architecture for the program.

142 ..,. Chapter 7 Solution-Based Modeling

• Program Plane. The program itself. We call the regions of this plane
implementations.

Figure 7-1 shows all planes and regions in a solution-based model. Note
the parallelism of the regions across the planes.

9
UIFModel

Solution Model

c::::> Environment Model

Content Model

B Environment Architecture .c::7

Environment Implementation B

Content
Implementation

Figure 7-1. Planes and regions in a solution-based model

Elements of the planes and regions were described in Chapter 6 and are
summarized in Figure 7-2.

..,.. Solution-Based Models 143

Natural World Attributes ,
Natural World Res onsibilities

Natural World Categories

Business Plane

Conceptual Attributes

~
Conceptual R_e_,s'--'-'-'-'-'-'-'=

Conceptual Categories

Technolo y Plane

Run-Time Attributes

(~C========#
/ / Run-Time Objects

Abstractions

Execution Plane

Pro ram Attributes Program Methods

Pro ram Plane

Figure 7-2. Elements of solution-based models

...,. Business Plane

The business environment that surrounds the computer system is modeled
in the Business Plane, which contains the Reference Model and the Solution
Model as regions. In order to know your objectives, you must first under
stand the business as it exists before automating. This is captured in the
Reference Model. The Solution Model describes the way the business will
run with the program in place.

144 ..,.. Chapter 7 Solution-Based Modeling

Natural World Categories and Objects

The Business Plane has as its elements categories of the world around us
and natural world objects-people, machines, processes, existing com
puter systems. As categories, they represent groupings that make sense to
the people in the business. They need not share properties other than the
simple fact of membership. Properties that are assigned need not corre
spond to data types or calling sequences in a programming language. They
are descriptive of the business, not statements in a programming language.
There are several advantages to using natural world categories in the
Business Plane.

• They are meaningful to people who have knowledge of the problem
but are unfamiliar with computers or object-oriented software.

• They are based on the relatively stable "things" of the real world rather
than abstractions of computer science.

• Since natural world categories and objects model the real world, they
allow us to easily demonstrate how things will change in the business
once the new program is put to use.

Both models seek to capture the real behaviors of the world. As discussed
in Chapter 5, there are often conflicting, overlapping ways to form catego
ries or perceive objects. It is not necessary to rely on objectivism, we just
need to form models that are meaningful to the people involved.

Reference Model

The Reference Model is critically important. It is grounded in the things
that really exist and the way things really are today. This makes it the
easiest model for all parties to understand in the same way. All other parts
of a Solution-Based Model are hypothetical. The Reference Model is our
stake in the ground, the "you are here" on the map of the development
project.

Solution Model

The Solution Model also consists of real things and real behaviors, but
projected into a future in which the program is in use. This, too, is a model
that everyone should be able to comprehend and use. Two kinds of
elements are especially important here: people who use the computer and
the computer itself. Users have behaviors that require use of the computer
to achieve objectives, and the computer has behaviors that allow it to
collaborate with those users in carrying out their responsibilities.

...., Solution-Based Models 145

The Solution Model must be consistent with user requirements, human
factors, capabilities of the technology, comparisons of costs to benefits, and
many other factors. The Solution Model sets the scope of the project and
drives the creation of the other planes.

Impact Analysis

Differences between the Reference Model and Solution Model are col
lected into an Impact Analysis, which accounts for all changes to the
business as the result of installing the new program. Especially important
are changes and additions to the responsibilities of people. If the computer
is already in use, the Impact Analysis also accounts for changes and
additions to the responsibilities and behaviors of the computer. The Impact
Analysis serves as an important cross-check that helps to locate errors or
omissions in either model through an item-by-item comparison.

The Impact Analysis is as important an outcome of Solution-Based
Modeling as the software itself. Impact Analysis allows you to take into
account the fact that introducing a new computer system changes the way
you do business. Analysis and design should take into account all
changes for everyone in the organization who will be affected in any way
by the application. Put another way, the entire organization, not just the
technical staff, must be involved in order to deliver critical software
projects. The Impact Analysis and the use of categories are both tools to
facilitate reaching out beyond the walls of the software department to
include the entire organization.

~ Technology Plane

To speak meaningfully about the role of the computer in the business
requires having a model of what the computer contains and how it
interacts with its users. This is the Technology Plane, and it contains three
regions: a Content Model, which describes the interior of the program; a
User Interface Model, which describes its exterior; and an Environment
Model, which describes how the program interacts with other programs,
hardware devices, and networks.

Cognitive Categories and Objects

Like the Business Plane, the Technology Plane is composed of categories
and objects, but these elements might not really exist in the world. The
program isn't yet written or in use, so its content and user interface are not
yet real. We are taking part of the real world and replacing it with a
computer. We make up what the computer's "inner world" looks like.

146 Chapter 7 Solution-Based Modeling

Thus, the content of the program is not a real world structure, but a
creature of the mind.

This does not mean that we have to abandon categories just yet. People
form new cognitive categories all the time in response to need and
experience. Eighteenth-century English farmers did not have a category
"Graphical User Interface." We rely on this ability to form new categories
in building models of the content and interface of the computer.

Some of the new categories will be metaphors for "things" in the real
world. Metaphor is a familiar technique on the Macintosh. For example, the
Macintosh "desktop" simply describes some of the contents and opera
tions of the computer. We don't insist that the Content Model be the real
world. To the extent that we can metaphorically project the real world, we
can create models that are easily understood.

We have already seen a few examples of the use of metaphor in the expert
solutions of Chapter 4. In the payroll program, employee objects compute
their own pay and paycheck objects format and print themselves. In the
model railroad example, track lays itself and layouts validate themselves.
By extending the use of categories down to the Technology Plane, we keep
end users and other non-programmers in the loop as long as possible. The
Technology Plane is understandable by end users because it is created and
described in terms of metaphor and categories, not technobabble. It is
parallel to the structure of the program. From here, it is simple to derive
program classes and program objects. The Technology Plane brings
together people who understand the problem and people who understand
the technology.

Content Model

The Content Model contains an idealized model of the objects, categories
of objects, and categories of categories that the computer system contains.
It is perhaps easiest to describe the Content Model by outlining the way it
is built: (1), collect the responsibilities of the computer from the Solution
Model; (2), create a series of conceptual objects and categories based as
much as possible on the metaphors for natural world; (3), map the com
puter's responsibilities onto those objects; (4), refine the objects· and their
categories.

User Interface Model

The Solution Model contains the specifications for the User Interface
Model. It lists all responsibilities of the people who use the computer, as
well as the responsibilities of the computer itself. For each responsibility

..,. Solution-Based Models 147

of a computer user in the Solution Model that calls for use of the com
puter, there must be one or more corresponding features of the user
interface that allow that responsibility to be carried out. For each respon
sibility of the computer in the Solution Model, there must be some way,
through the user interface, to cause that responsibility to be executed.

It is in the User Interface Model that we start to introduce dependencies
on the Macintosh platform. The Macintosh human interface guidelines and
Toolbox provide much of the available user interface "language" such as
radio buttons, scroll bars, icons, windows, menus, and so on.

Using categories, not classes, to build the User Interface Model is a
critically important decision. Let's consider an example to see why. In the
model railroad application, various things have been lumped into the
category "Scenery." These items include buildings, trees and shrubs,
modeling material, and a long list of other kinds of objects. To the user, it
may make perfect sense to create a palette that represents this category, as
shown in Figure 7-3.

Scenery

~ ~

~ &
~ [iMll .
& !;aatB!

~ 9 ~~

Figure 7-3. Scenery palette

However, this grouping is not based on any shared properties of these
subcategories. What does modeling material have in common with a
building? Not much. If we really reach, we can say that they both draw
themselves on the screen and respond to mouse clicks, but that is equally
true of components in other palettes, like those in the track palette shown
in Figure 7-4.

In fact,· if we built the palettes based on shared properties, we would
probably arrive at a totally different arrangement. Based solely on shared
properties, it is not unreasonable to put buildings that have electric lights
in the same palette with controls for switches because both require power.

148 ..,. Chapter 7 Solution-Based Modeling

Track

Figure 7-4. Track palette

This arrangement would be convenient for the programmer, who could
use a class for two purposes, but not for the user, who will perceive this as
an arbitrary, jumbled collection of unrelated things.

This is only one example of the importance of using categories rather
than classes sharing properties to create the user interface. One of the
trickiest decisions in designing a user interface is how to groupthings into
windows, palettes, menus, lists, radio buttons and other controls, and
views within windows. These decisions become easier when you stop
looking for mathematical purity and accept that the categories that make
sense to the user may share no properties whatever, may overlap, or may
appear to be totally arbitrary. It is the user's perception that counts. The
user interface1 s sole purpose is to communicate with the user. It need not
be a direct reflection of underlying program structure, but rather a direct
reflection of the way users think about their jobs. It is the developer's job
to provide the most natural medium of communication possible.

Environment Model

Some programs stand alone, while others interact with other programs,
specialized hardware devices, or computer networks. These external enti
ties are represented by objects in the Environment Model. These objects
and their responsibilities are used to describe interactions with the pro
gram being developed. They are not literal models of the entities. There are
strong analogies between the User Interface Model and Environment
Model; both describe external ways of interacting with the underlying
content of the program.

Separating Content from Interface

Why do we separate content from user interface? If you need to explain
how to drive a car to someone who has never seen one before, you would
start not with the basic principles of carburation and hydraulics but with
the basic function of a car-transportation-then describe its most impor-

~ Solution-Based Models 149

tant controls, gas pedal, steering wheel, and brakes. A car contains thou
sands of parts, a small few of which the typical driver sees or uses in order
to drive. Those controls are collectively the user interface to the car, directly
analogous to the user interface of a computer program.

Once the basics have been mastered, you can move on to other subjects,
such as fuel. You can stick to directions like, "When the needle on the fuel
gauge approaches E, unscrew the cap on the rear fender and pour gasoline
into it." This deals only with external features of the car. More likely, you
would say, "The car has an engine that burns fuel. It also has a gas tank that
holds the fuel. The gas gauge on the dashboard shows how much gas is left
in the gas tank. When it shows that the fuel is getting low, you have to put
more gas into the tank, and here is how." You have now created a model
of the contents of the car, engine and fuel tank, in order to explain how to
use its interface.

The Technology Plane is organized along the same basic lines of use
and content. The User Interface Model explains in great detail how the
computer can be used. The Content Model describes the inside of the
program in terms of objects that hypothetically exist behind the user
interface.

It is untru~ that the Content Model exists only to describe the User
Interface Model. If anything, the opposite is true: The Content Model is
more stable and a more direct reflection of the Solution Model than the
User Interface Model; it is a short step from being a business model. It
contains as elements conceptual objects and cognitive categories that are
derived, perhaps metaphorically, from the natural world. The behaviors
assigned to those elements are taken directly from the Solution Model,
which, as a pure business model, is relatively independent of platform
and technology. In fact, it is common to build ahead in anticipation of
future changes by putting objects and responsibilities into the Content
Model for which there is initially no control in the User Interface Model.
We can do this because the elements in the Content Model are familiar
and, therefore, relatively easy to flesh out.

The User Interface Model, on the other hand, is heavily dependent on the
Macintosh and, to a lesser extent, the class library you choose. This grounds
it more in technology than in the natural world. In order to understand it,
you must have a good command of how a Macintosh works and what
makes for good and bad interfaces. As a creature of technology, the User
Interface Model is relatively unstable. One of the most common changes
over the life cycle of a program is to change its user interface while retaining
the same basic functionality. Changes in system software can also cause
changes in the interface. By separating the content and user interface, you
minimize the side effects and complexity of such changes.

150 ..,. Chapter 7 Solution-Based Modeling

The biggest motivation for separating content from interface is to sepa
rate clearly what is grounded in the natural world from what is purely
technological. To the extent that we rely on the natural world, we build in
stability and build models that are easily understood by all parties. The
further we move from the natural world, the more difficult it is to build
stable, understandable models .

.,.. Execution Plane

Any object-oriented program can be viewed either as run-time objects
scurrying around doing useful things or as a set of statements written it. d

specific programming language. The objects that exist at run time and their
characteristics are in the Execution Plane of the model, and the program
itself is in the Program Plane.

In Chapter 2 we pointed out that inheritance and polymorphism are not
strictly required to call a program object oriented, although few people
would want to write programs without them. As a run-time concept, each
object contains only data members for attributes and methods that carry
out its behaviors. Although inheritance and polymorphism are concepts
that can implement data members and behaviors in different ways, they
are only tricks of the implementation. The Execution Plane sticks to objects
and behaviors, the bare essentials of object-oriented software. Because it
strips away all but the final result of specific objects in the computer
carrying out specific tasks, the Execution Plane serves as the overall
architecture for the program. The architecture described in the Execution
Plane is independent of any specific programming language and imple
mentation. The Execution Plane has another, subtle benefit. Because it
relies on only the bare minimum of object-oriented concepts, it is accessible
to people who are neither programmers nor fluent in object-oriented
languages.

There are three regions in the Execution Plane.

1. Content Architecture. Run-time objects that together implement the
Content Model.

2. User Interface Architecture. Run-time objects that together implement
the User Interface Model.

3. Environment Architecture. Run-time objects that implement the Envi
ronment Model, plus the structure (in objects) of the program itself,
including the main event loop, event dispatching, file handling, and
the like.

..,.. Solution-Based Models 151

Classes and Program Objects

The Execution Plane has as elements program objects and abstractions of
objects. It is the objects themselves in which we are really interested.
Ideally, we would list each run-time object individually, but it is usually
not possible to do this. Therefore, we use abstractions as a shorthand
notation for sets of run-time objects that share all or part of their features.
We do not worry about inheritance or polymorphism.

In the payroll example, all EMPLOYEE objects have a responsibility to
compute their gross compensation. This saves saying, "The object repre
senting Maribelle Fernwilder computes its gross compensation, the object
representing Pete Peterson computes its gross compensation," and so on.
In this abstraction, we describe an entire set of objects (EMPLOYEES) in terms
of strictly shared properties.

Where the Technology Plane has responsibilities, the Execution Plane
has interfaces in either pseudocode or whatever object-oriented language
you are using. Each element is described in terms of its interface.

Content Architecture

The Content Architecture specifies the run-time objects that together
implement the Content Model of the Technology Plane. It is not necessary
that the objects in the Content Architecture correspond one for one to
objects of the Content Model. However, every object in the Content
Architecture should be accounted for in some way, either as the implemen
tation of an object in the Content Model, replacing some object in the
Content Model, or simply as something new. Similarly, responsibilities in
the Content Model must be accounted for in the Content Architecture, in
many cases as method interfaces.

User Interface Architecture

The User Interface Architecture maps the user interface elements of the
User Interface Model onto classes of whatever class library is being used.
It is in this area that class libraries are the most help. Class libraries like
MacApp or the Think Class Library provide a wide variety of classes to
ease the implementation of standard Macintosh user interface features.
The better the class library, the less effort is expended in this mapping.

Environment Architecture

Strip away all drawing and all data content from a Macintosh application
and you are still left with a control structure that glues everything else
together and to the Macintosh platform. This is the Environment Architec-

152 ..,. Chapter 7 Solution-Based Modeling

ture. The Environment Architecture refines and expands the Environment
Model much as the Content Architecture refines the Content Model. To
features derived from the Environment Model we add those control
structures common across Macintosh applications:

• Main event loop
• Event handling and dispatching
• Interrupt handling
• File management
• Networking
• Other operating system and Toolbox services

These are the features of the Macintosh, its operating system, and
Toolbox. As with the User Interface Architecture, it is likely that this
Architecture consists of subclassing off-the-shelf classes from a class
library. For example, in MacApp, the classes TApplication and TDocu
ment handle most of the details one normally needs in this area.

~ Program Plane

Viewed through a text editor in a development environment like the
Macintosh Programmer's Workshop or Think C, our object-oriented pro
grams contain classes, abstractions, polymorphic methods, and a host of
other technological tricks intended to make the program easier to write,
more reusable, faster, smaller, and cheaper. More is involved than simply
breaking down the system into objects: there are optimizations such as
using inheritance to reuse code and classes to act as templates for object
creation. The program itself, with all its technobabble, is the Program
Plane. The Program Plane is an attempt to optimally implement the
architecture created in the Execution Plane. Its regions parallel those of the
Execution Plane: Content Implementation, User Interface Implementa
tion, and Environment Implementation. The Program Plane is responsible
for producing at run time the objects specified in the Execution Plane.

Attributes and Abstractions

The Program Plane contains classes as elements. Concrete classes are
instantiated at run time to produce the objects of the Execution Plane. The
Program Plane also contains abstract superclasses, which are classes that
exist only to pass along their interface and/ or implementation to their
subclasses. An abstract superclass is the opposite of a concrete class. It is

~ Solution-Based Models 153

never instantiated directly to create a run-time object. We make decisions
in the Program Plane about when to use multiple inheritance vs. the
work-arounds discussed in Chapter 2. The actual program code is consid
ered part of the Program Plane.

Although it is generally true that each object and abstraction in the
Execution Plane becomes a class in the Program Plane, this need not be the
case. In the Execution Plane, we are concerned with describing real objects;
in the Program Plane, we are concerned with a program that generates
those objects. Many decisions regarding the inheritance hierarchy are
made in the Program Plane, including the use of multiple inheritance,
optimization and code reuse, that may impact how classes in the Program
Plane are determined based on those in the Execution Plane. However,
regardless of the decisions made in the Program Plane, the description in
the Execution Plane must still hold at the level of the run-time object itself .

..,.. Relationships

The relationships in the models are drawn from Chapter 6 and reproduced
in Figure 7-5.

-- .. Collaboration~
___ + __ Creation

~=-:::;:::"' - Destruction

Implements

Replaces

Figure 7-5. Relationships in solution-based models

154 ...,. Chapter 7 Solution-Based Modeling

Relationships of all kinds-structural, behavioral, and calibration-can
exist between elements within any one region. Relationships between
elements of two different regions of the same plane tend to be behavioral
in sending messages, creating, and destroying. An object of the User
Interface Architecture may need to send messages to an object of the
Content Architecture to record or retrieve information. The objects must
exist on each end. Both must agree on the protocol, or interface, for the
messages.

Relationships between elements in different planes are always calibra
tion relationships in which the element on the lower plane implements or
replaces the one on the upper plane. The Macintosh in the Solution Model
must be implemented by the collective elements of the Technology Plane.
Elements of the Content Model must be implemented or replaced by
elements of the Content Architecture which, in turn, must be implemented
or replaced by elements of the Content Implementation.

~ Frames

Certain information such as constraints and some user requirements are
difficult to represent as elements in a formal model. For example, it is
difficult to visualize the constraint that there must be a net manpower
savings through the use of the new program or that the program must
exhibit sound software engineering principles. These factors are collected
into the frames of each region. As noted in Chapter 6, elements of the frames
are defined in simple text. Following is a brief outline of each frame.

Reference Frame

The Reference Model is constrained in two ways. It must be an accurate
reflection of reality and it must focus on the problem at hand. The frame of
the Reference Model consists of these constraints.

Solution Frame

The Solution Model contains in its frame the following four groups of
constraints.

• User requirements
• The Macintosh platform and other technology to be used
• Human factors, such as ease of use, frequency of use, and access to the

computer
• Business factors, such as comparisons of costs and benefits; time and

..,.. Solution-Based Models 155

budgetary constraints on development; organizational culture; com
pany policies and procedures; and strategic goals of the organization

Technology Frame

The Content, Environment, and User Interface Model, are framed by the
technology being used-the Macintosh platform, any specialized hard
ware, and, to a lesser extent, the capabilities of the class library chosen
(more aggressive designs are used in places where the class library makes
it easy). The User Interface Model is also framed by standards for user
interfaces on the Macintosh. Constraints that are implicit in the choice of
technology need not be formally noted.

Execution Frame

Regions of the Execution Plane are constrained by the technology of object
oriented programming. Objects must be expressed in terms of interfaces
containing methods and data members; objects classes must strictly share
their interface with their instances. Most of these constraints are implicit
and need not be formally noted.

Program Frame

The regions of the Program Plane have as their frame the technology in use,
particularly the programming language and class library used for imple
mentation. These are implicit constraints .

...,.. Scenarios

A solution-based model for even a small program contains a tremendous
amount of detail. It is simply not productive to work with it as a single,
overall model. Instead, solution-based models should be organized into
small, overlapping scenarios, with each scenario dealing with a single topic
or concept. Ideally, a scenario is a gestaltin which the whole is immediately
recognizable as a single unit and is more than the sum of its parts. A
scenario should always fit onto a single page. As noted, scenarios are not
mutually exclusive. They can overlap in planes, regions, elements, rela
tionships, and topics-in fact, overlap is an asset. The more ·scenarios
blanket a given part of the model, the easier it is to explore and understand
the model, one scenario at a time. Here are a few examples of the kinds of
topics suitable for scenarios.

156 ..,.. Chapter 7 Solution-Based Modeling

• A single element's responsibilities and the collaborators in carrying it
out. Figure 7-6 is a scenario showing how a layout's responsibility to
validate itself is carried out with the help of collaborators.

• A whole/part assembly hierachy. Figure 7-7 is a scenario showing the
parts of a layout.

• A container, some or all of the elements it contains, and perhaps
elements that use the container to store and retrieve objects. Figure 7-8
shows the use of a "portfolio" object to hold layouts and its partial
implementation using the MacApp class TSortedList.

• Calibration relationships across planes for a given topic, particularly
"implements" relationships. In Figure 7-9, the employee object imple
ments the computer's responsibility to compute gross compensation.

• Time sequences of the execution of responsibilities and creation and
destruction of objects. Figure 7-10 shows the sequence of certain
payday events in the payroll program.

Scenario #: 98 Content Model
Authors: JV A, NLG
1/17/92

Validate -- .. ~ === .. Check Connectors -
~ '" /

~
(Track~

Validate

~
Validate Layout (partial)

To Do:
- Remaining components of layout

Figure 7-6. Responsibility and collaborators

.,.. Solution-Based Models 157

Scenario #: 102
Authors: JV A, NLG
1/17 /92

To Do:
- More detailed breakout

Layout Components

Figure 7-7. Whole and parts

Scenario #: 235
Authors: JV A, NLG
3/7/92

TLa

Arraylndex GetEqualltemNo
(TObject• item)•

2:1 71 I TSortedList V

Content Model

Content Architecture

Layout

Implementation of Portofolio Using TSortedList

To Do:
- Remaining methods of Portfolio object

Figure 7-8. Containment

158 Chapter 7 Solution-Based Modeling

Scenario #: 53
Authors: JV A, NLG
1/13/92

To Do:

Compute Gross Compensation Correlation

Figure 7-9. Calibration

Scenario #: 76 Content Model
Authors: JVA, NLG
2/1/92

_/~~ - -- - - - - - - - - - - -- - - -
:

~- t- - -

'~ cE3- _/''-~---~C~~,/PTI' _ 1-- - -

+ Store Data Print
~ ____ __/ ______ ,(-- ---

Paycheck Creation and Printing

To Do:
- Detailed scenarios for all responsibilities
- Destruction of paycheck objects

Figure 7-10. Time sequence

..,. Solution-Based Modeling 159

This is not a comprehensive list. The variety of types of scenarios is
limited only by the need to be useful and communicative. A solution-based
model is the sum total of its scenarios, each of which is a small slice of the
whole. Just as we use planes and regions to view parts of the model, so do
we use scenarios on a smaller scale .

...,. Solution-Based Modeling
We have finished our overview of solution-based models, and it is now
time to describe how to build them using Solution-Based Modeling. Just as
the models are based on how people's perceptions of the world are
organized, the methodology is based on the way people really work on
complex projects. The process for building these models is not unique to
software. It is the same process that people use to design buildings, paint
masterpieces, build models, and develop theories. We merely observe how
people naturally work on such projects, left to their own devices, and
incorporate it into the process of developing software.

There are two basic activities in Solution-Based Modeling: forming
scenarios and calibrating. Forming scenarios uses the notion of centrality,
which holds that some things are more central to a project than others and
should be dealt with first. Taken together, these activities form a sequence
of steps called Center-Periphery-Calibrate (CPC). CPC is an iterative
approach to modeling that emphasizes dealing with what is important or
central first, then expanding outward to the periphery. As work proceeds,
we constantly calibrate new work to old and old to new to ensure consis
tency and completeness of the results. CPC is consistent with the basic
cognitive principles laid out in Chapter 5. The remainder of the methodol
ogy takes into account the myths and realities of software development
discussed throughout this book.

...,_ Processes

There are three principal processes involved in Solution-Based Modeling.

1. Forming Scenarios. This is how new information is added to the model.
2. Calibrating. This ensures consistency as new scenarios are added.
3. Center-Periphery-Calibrate. This is the process followed to systemati

cally explore the problem, its solution, and the implementation of the
solution.

160 ..,. Chapter 7 Solution-Based Modeling

Forming Scenarios

One benefit of using scenarios to organize the model is that they are also
available to build it. People tend to deal with a single, limited topic at a
time. Complex models are built not by adding in one element at a time to
a single, ever-growing model, but by constructing sets of small scenarios,
then combining, or synthesizing, them. The result is a single model
together with a set of logically consistent scenarios.

There is a direct analogy here to the way database analysts design data
dictionaries. Databases are designed by interviewing various people asso
ciated with the topic of the database. Their perceptions of the data are
captured in the form of "views" of the data, each of which has perhaps a
half-dozen record types and their relationships to one another. Once
gathered, the views are synthesized into a single data dictionary. Each
original view is still a valid way to describe some part of the database. The
views have not been synthesized out of existence but simply made consis
tent with one another.

Scenario formation is used in much the same way in Solution-Based
Modeling as the fundamental technique of gathering new information to
be added to the model. The topics used to form new scenarios vary
according to the type of scenario and the planes and regions that are
involved. In the Business Plane, the principal skill is asking good questions
and being a good listener (in other words, being a good analyst). In the
Technology Plane, analysis still applies, but so too does experience with
Macintosh human interface guidelines. Issues of language, operating
system, Toolbox, and class library are good sources of scenario topics in the
Execution and Program Planes. Software engineering considerations,
always present, become especially important in the Program Plane. Each
plane and region also suggests topics for other planes and regions. The
Reference Model suggests central topics for the Solution Model. The
Solution Model suggests topics for the User Interface and Content Models,
which, in turn, each suggest topics for the other.

Scenarios should be relatively small and each should deal with a single
topic. Ideally, a scenario should contain about two to four elements and a
small number of relationships. This leverages the capabilities of human
short-term memory to take in an entire model of small size at a single
glance.

Calibrating

People do not understand complex things or phenomena as wholes, but as
a myriad of small, overlapping perceptions. This is also the way they
conceive of and build complex things: not one "piece" at a time, but one
concept or topic at a time. Accordingly, solution-based models are divided

..,. Solution-Based Modeling 161

coarsely into planes and regions and, on a finer scale, scenarios. Scenarios,
planes, and regions are like windows on the model: multiple, overlapping
views of a single entity. The more views you have of the problem, solution,
and technology, and the greater the overlap between them, the higher the
odds of getting the overall model right. Overlap, however, carries with it
the potential for contradictions. If two views of a model disagree with one
another, the differences must be ironed out; this is as true of overlapping
scenarios as it is of planes and regions. The differences are addressed by
calibrating. There are three techniques of calibration in Solution-Based
Modeling.

1. Synthesis. This process takes two scenarios, or a scenario and a model,
and creates a single model consistent with both. Synthesis expands
the scope of the model.

2. Correlating. This ensures logical equivalence of those parts of the
model that represent the same thing in different ways. Specifically,
correlating ensures that a given plane is consistent with the planes
abo:ve and below.

3. Synchronizing. This ensures that protocols are agreed to and followed
for sending messages and creating and destroying objects. Synchro
nizing assures consistency and completeness within the Execution
Plane.

Center-Periphery-Calibrate

In addition to working on a small piece of the puzzle at a time, we also deal
with the most important topics first, then add in more detail in small
increments. We choose a central topic, blanket it with scenarios covering a
variety of planes, regions, and angles on the topic, then expand to less
central, or peripheral, topics. This, too, corresponds to the way people
naturally work on complex projects. As we drill down and expand out
ward, we constantly calibrate the new with the old and the old with the
new. The resulting process is called Center-Periphery-Calibrate, as illus
trated in Figure 7-11.

CPC is used within each phase, each plane, and each region of the project.
Whenever there is new material to be explored, CPC provides an orderly
way to proceed. The Center-Periphery-Calibrate process is outlined by the
following steps.

1. Pick a central topic. Distinguishing center from periphery is something
people do quite well. Central topics are generally easy to spot. For
example, parts of the problem that cause the greatest headaches or
that seem to have the greatest potential for improvement; parts of the

162 ..,.. Chapter 7 Solution-Based Modeling

Maintain HR Records
File Govt Forms

Audit Trails
@yEmploye~

Track Sick Time
Maintain Deductions

Maintain Compensation

(1) Pick a central topic (2) Blanket that topic
with scenarios at
multiple levels

(3) Synthesize new
scenarios with each
other to ensure
consistency

-(4) Synthesize new
scenarios with earlier ones

(5) Correlate and
synchronize to ensure
completeness

Figure 7-11. Work flow in Center-Periphery-Calibrate

solution that yield the greatest benefit for the least apparent effort;
cornerstone techniques or technologies, without which nothing can
work; and major features of the user interface. Selecting the definitive,
most central of all central things is not necessary; using centrality is a
strategy, not a specific algorithm. Everything will be picked up in due
course. If you pick what turns out to be a broad central topic, pick
something central about that central topic and so forth until it is of
manageable scope.

2. Blanket that topic with scenarios. If dealing with the Business Plane,
interview experts in that topic. If in the Execution Plane, run through
time sequences of messages needed to carry out each responsibility.
Don't be concerned that you will lack topics. Scenario formation is like
eating potato chips-it is hard to stop once you start. Continue
forming new scenarios, sticking to the central topic, until it seems to
be adequately covered. Do not be constrained to one-dimensional
thinking; scenarios can span regions and planes. When they reach the
Program Plane, they can result in working prototypes of parts of the
program.

..,. Solution-Based Modeling 163

3. Synthesize the scenarios with each other. This probably suggests more
scenarios and changes to the ones just formed.

4. Synthesize the scenarios with the model. Changes to scenarios and ideas
for more new scenarios will result.

5. Correlate and synchronize what has been newly added to the model with
other parts of the model. Make sure that the parts of the model that
represent the same thing actually do and that the objects that are
supposed to be included are there. Make sure that responsibilities
have sufficient collaborators to be carried out.

6. Return to step 1 until all central topics have been exhausted, then start
working outward toward less central, or peripheral, topics, repeating the
same sequence of steps. As you do, less and less time will be spent on
expanding the upper planes and more time on expanding the lower
planes. This corresponds to a shift from a primary emphasis on
analysis to a primary emphasis on design and, eventually, program
ming. Peripheral topics are usually chosen by picking some aspect of
the work already performed and saying, "What is central to that
which is left to do?" or "What is central to expanding this one topic I
dealt with earlier?" In other words, continue using centrality, but on
a finer and finer scale .

...._ Project Organization

The linear model of software development provides the illusion of a
controlled, orderly process, which may explain its perennial appeal. Of
course, we know that this is not the way things really work.

Project Phases

Each stage of a Solution-Based Modeling project uses a combination of
analysis, design, and programming skills, spread over more than one
plane of the model. However, there is a great deal of underlying structure
to the process that is not immediately apparent. In fact, despite this overlap
in activities, it is still possible to identify phases of a project.

Not all planes expand at the same rate at any given point in the project.
At first, you will do a lot of work on the Reference Model, slightly less on
the Solution Model, a little on the Technology Plane, and little or nothing
on the Execution and Program Planes. Soon, work is taking place on all
planes at once. At some point, the Reference Model starts to approach
equilibrium and the Solution Model expands faster than all other models.
When that starts to stabilize, the Technology Plane expands the fastest for
a while, and so on until the Program Plane is the scene of most of the
activity. The effect is shown in Figure 7-12.

164 ..,. Chapter 7 Solution-Based Modeling

Analysis Design Programming

Figure 7-12. Development of a solution-based model

Although they broadly overlap, we can describe four phases of a
Solution-Based Modeling project:

1. Phase I: Analysis. Most effort is expended on the Business and Technol
ogy Plcines. Work done in the Execution and Program Planes is
primarily proof of concept and prototype. Phase ends when the scope
of the project is firmly established in the Solution Model.

2. Phase II: Design. Most effort is spent in the Execution Plane, with a
great deal of calibration to the Technology Plane and significant work
in the Program Plane. Revisions continue in the Business Plane as the
result of calibrations. Prototypes in the Program Plane become more
sophisticated. Phase ends when the Technology Plane and Execution
Plane reach a state of equilibrium and cover the complete scope
defined in the Business Plane.

3. Phase III: Programming. Almost all work is in the Program Plane, with
calibrations to the Execution Plane. Changes to the Execution Plane
result in calibrations to the Technology and Business Planes as well.
Phase ends when the program covers the defined scope.

4. Phase IV: Evolution. The initial scope of the project has been imple
mented and the software goes into production use. The Solution
Model now becomes the core of the new Reference Model for subse
quent work, closing the software lifecycle.

It is important not to confuse the names of the phases with the names of the
activities taking place in them. During all phases you perform analysis,
design, and programming activities and work is performed on all planes

..,.. Solution-Based Modeling 165

and regions. The differences between the phases lies in which plane is
expanding most quickly at that point in time.

Center-Periphery vs. Top-Down

Most software methodologies are organized around a top-down strategy
that starts with a high level description of a system and then breaks it down
into finer and finer detail. This process of breaking a system's complexity
into smaller and smaller pieces can be based on either control or structure.
If it is based on control, you start by defining the highest level of flow of
control within the program then refine each step. If it is based on structure,
start at the highest level of abstraction or modularity of the program then
refine each component.

As discussed in Chapter 5 and seen in the examples in Chapter 4, neither
top-down approach works very well with object-oriented programs.
People naturally deal at the basic level or close to it first, then go both up
and down in level of detail. It is better to start at the basic level in
developing software. The problem is that this basic level is too large to

· attack all at once. A targeted approach is needed and CPC fills the need.

Prototyping

Solution-Based Modeling emphasizes the role of prototyping as a develop
ment tool. There is a smooth continuum from the Business Plane, which is
pure business analysis, to the Program Plane, which is pure design and
programming. However, SBM is different from many "rapid prototyping"
methodologies in two key ways. First, it does not insist that the prototype
be based on a high level overview of the overall program. SBM is oriented
toward prototyping limited topics that arise from the CPC strategy.
Second, it does not presume that priq_totypes, once built, are retained
through subsequent iterations. Most of the time you spend is in analysis
and design, not programming, and most of the risk is in solving the wrong
problem. It is best to get quick results in code to provide more feedback for
analysis and design, even at the expense of throwing that code away. Don't
beat your head against the wall trying to perfect analysis and design before
coding starts. You can't do it, and the cost to throw out a prototype and
replace it is considerably less than making a big mistake in specifying the
solution.

Testing

The fundamental purpose of testing a program is to make sure it has the
right behaviors to solve a specific problem in a specific way. Only part of
that involves searching for bugs in the software. The majority of the work

166 ... Chapter 7 Solution-Based Modeling

in testing is, in fact, what we have been calling calibration: comparing the
program with the design and the underlying business requirement.
Because we constantly calibrate our model from program code through
business issues, testing is an integral part of the process.

There are more specific techniques for testing the program itself that
arise out of the division of the Execution Plane into three separate Archi
tectures-Content, User Interface, and Environment. We can leverage this
architecture to build in testability across the interfaces, which is where the
most serious problems tend to arise in software of any kind. We also use
scenarios as a fundamental tool of quality assurance.

Project Management

Solution-Based Modeling emphasizes a team approach to developing
software. There is room in the process for end users, analysts, software
architects, programmers, managers, marketers, and support personnel at
every stage of development. During all phases, calibration results in
changes to all four planes and all regions. The Business and Technology
Planes cannot be created or changed in the vacuum created by letting
non-programmers walk away too early. The relative amounts of effort shift
as the project proceeds, but everyone must stay involved to some extent
throughout in order to get maximum benefit from the methodology and
models.

Since the models are the chief medium of discourse among the people
involved, it is important to make sure that information gathered in the
development process is captured in the solution-based model. The volume
of detail that is gathered and the number of scenarios formed points to the
advantages of a project librarian who should work full time for large
projects and part time for smaller ones. The librarian is more than a paper
pusher. He or she is the key person in the calibration process and has access
to the documents that can verify or deny the consistency of the different
parts of the model. The librarian need not personally resolve problems, but
should be able to trace relationships to expedite and catalyze calibration.

At all times, the Solution Model directs estimates and schedules and
defines the scope of the project and the expected outputs.

To a lesser extent, the Technology Plane bounds the technical approach
and, therefore, costs and schedules. Significant expansions to the Solution
Model or Technology Plane have significant impacts on estimates.
Changes in other regions tend not to be as closely associated with varia
tions in costs and time.

..,. Summary 167

~ Summary
The two fundamental objectives of Solution-Based Modeling are solving
the right problem and creating reliable, maintainable programs. In order
to achieve these objectives, SBM uses the techniques of visualization
discussed in Chapter 6; it uses categories, not classes, as the foundation of
the models; it grounds the model in categories and objects of the natural
world wherever possible; and it suggests software development be done
in an incremental, iterative fashion.

• A Solution-Based Model contains four planes, divided into the re
gions shown in Figure 7-1. The elements and relationships of the
model are those of the notation introduced in Chapter 6. The Business
Plane contains as elements categories and objects drawn chiefly from
the natural world: people, processes, machines, and other "things."
The Technology Plane also uses objects and categories, but these are
conceptual, created for the purpose of the project. The Execution
Plane has program objects and abstractions, and the Program Plane
adds concrete classes and abstract superclasses, polymorphism, and a
variety of other optimizations. Because categories are used both for
business modeling and designing the interface and content, non
programmers can meaningfully participate through the development
of the Business Plane and Technology Plane and, to a lesser extent, the
Execution Plane as well. Certain information, such as constraints and
some user requirements, are difficult to represent as elements in a
formal model. These factors are collected into the frames of each
region.

• Solution-Based Models are organized into small, overlapping sce
narios. These scenarios are refined and calibrated following the
Center-Periphery-Calibrate process. There are three techniques of
calibration in Solution-Based Modeling: synthesis, or combining
scenarios; correlating, or making sure that parts of the model that are
supposed to be the same, are; and synchronizing, or making sure that
protocols are established and followed for sending and receiving
messages and creating and destroying objects.

• A Solution-Based Modeling project can be described as being in one of
four overlapping phases: analysis, design, programming, and evolu
tion. The phases are identified according to which plane is expanding
fastest at that point in time.

8 _.... Analysis Part I:
The Business Plane

....,. What This Chapter Is About
The objectives of the analysis phase are to establish the scope of the project
and produce a work plan for completion of the remaining work. At the end
of this phase, the Business arid Technology Planes are substantially com
plete, although subject to refinement later in the project. The Execution
Plane is underway and the Program Plane may also have been initiated.
Work in the Execution and Program Planes during the analysis phase
assumes a support role, since the top two planes yield the most benefit in
this phase.

Because analysis is a large topic, the subject is divided into this chapter
and the next. In this chapter, we talk about how to build the Business Plane.
In Chapter 9, we explore the Technology Plane in depth and briefly talk
about how and why to descend to the Execution and Program Planes as
part of the analysis phase. These two chapters should be read as if they
were one long chapter because the material of both chapters is inter
mingled in a real project. The material has been divided into two chapters
solely to provide this information in more manageable chunks.

This chapter centers on the two regions of the Business Plane: the
Reference Model and Solution Model. As we discuss how to build each
model, we will pause from time to time to explore some of the skills
introduced in Chapter 7 in greater depth. Specifically, this chapter covers
synthesis, the first of the three basic forms of calibration.

The best way to learn a software engineering methodology is to observe
its use in a real project. As the chapter unfolds, we draw examples from the
model railroad design and payroll applications introduced in Chapter 4. It

169

170 ..,.. Chapter 8 Analysis Part I: The Business Plane

is not possible to complete! y build each program in the span of a book such
as this; each is enough for a book in its own right. However, we will use
examples from those two applications and try to give a flavor of how the
methodology works in a real project.

....,. Overview of the Analysis Phase
The analysis phase is the single most critical phase in a development
project. It is common for this phase to consume half of the total develop
ment time-gathering, sifting, and integrating information into the
solution-based model. Later phases are primarily concerned with refine
ments and implementations of information already gathered. The analysis
phase is also concerned with organizing and presenting the information
gathered in a way that is suitable for decision making by management,
customers, product marketing, and others who must buy into the concept,
budget, and schedule for the computer system .

...,. Objectives

The analysis phase ends when the following conditions are met.

• The concepts and scope of the software have been agreed to.

• The impact of the new software on the business has been clearly
defined.

• The user interface and conceptual design have been agreed to.
• Enough is known about the technical aspects of implementation to

allow reliable estimates of resources and schedules to be established.

Each condition ultimately requires someone in authority to certify that
the analysis phase is complete and that the estimates are reasonable. Both
judgments are based on that person's level of confidence in the information
available. It is not possible to construct precise formulas that predict the
length of a project or whether the requirements are solid enough to warrant
commiting to a development budget, but these issues are not entirely
subjective. The job of the development team during the analysis phase is to
gather the right kinds of information and to organize and present that
information in the right way to the right people. As we will see, the
structure of a solution-based model and the discipline used in building it
facilitate all of these objectives.

..,. Overview of the Analysis Phase 171

~ Business Modeling

Much of the analysis phase is concerned with studying the "whole sys
tem," by which we mean both the new program and the business environ
ment into which it is placed. This roughly corresponds to the classical
activities of requirements definition and systems analysis from tradi
tional software methodologies. However, we attempt to capture the infor
mation in a much more rigorous, usable form. We seek to understand the
business as it currently operates and as it will operate with the future
system.

The chief benefit of this approach to those developing for in-house use
is that the overall impact on the business can be managed, not just the
development of the software. For those developing software for sale,
business analysis is even more critical because it links decisions on features
and the structure of the program to product definition, positioning in the
marketplace, and even pricing.

~ Conceptual Design

An equally valuable part of the analysis phase is the conceptual design of
the software. This includes both the user interface (how the program can
be used) and a conceptual model of the information content of the system
and the processes it can support (what the program can do). For the user
interface, we create storyboards or software prototypes to demonstrate
how the program will look and feel and how it is used to accomplish tasks.
For both user interface and content, we create a conceptual description in
terms of objects and categories that completely explains the inner workings
of the program. Conceptual design is covered in Chapter 9.

~ Design and Programming During Analysis

Though this is the "analysis" phase of the project, the work performed is
not limited to analysis alone. At specific junctures, it is necessary to work
in the Execution Plane and Program Plane by designing portions of the
software architecture and writing prototypical code. It is important to
remember that a phase may consist of multiple activities. Phases are
organizational units that allow management to commit to budgets and
schedules and track the progress of the project against those commitments.
Transitions from one phase to the next represent movement from one box
to another on a project plan or a shift in emphasis on one activity over
another, not a fundamental change in the nature of the work. Our phases
are based on achieving certain objectives, not on completion of specific

172 ..,,. Chapter 8 Analysis Part I: The Business Plane

activities. Forays into the Execution and Program Planes during the
analysis phase are generally considered to be prototyping, although we
use the term "prototype" in a broad sense to include much more than just
user interface mockups. This activity is discussed in Chapter 9 .

...,. Activities

As discussed in Chapter 7, scenario formation and calibration are the two
basic activities in a Solution-Based Modeling project. Both are put to
immediate use in the analysis phase. Scenario formation is the principal
tool for obtaining new information and calibration is the technique used
to integrate new information into the model, ensure consistency in the
model, and keep track of what remains to be done. Scenario formation is
based on the Center-Periphery-Calibrate (CPC) process described in
Chapter 7.

Two forms of calibration predominate in the Business and Technology
Planes. Synthesis combines scenarios to maintain one consistent model
and correlation ensures that the various planes are consistent. For example,
each responsibility of the computer as a whole should be supported by
some specific user interface features. Both forms of calibration are covered
in great detail in this chapter. The third form of calibration, synchroniza
tion, has minimal use in the Business and Technology Planes.

Calibration is a sequence of detailed verifications, not all of which take
place as new information is added. For example, we might add a scenario
to the Solution Model but defer correlating it to the Reference Model until
later. When calibration is deferred, dangling threads are produced. Dan
gling threads are elements of the model that must be revisited later. By
allowing ourselves to leave dangling threads, we can blast ahead, staying
as productive as possible for as long as possible, confident that we can
retrace our steps and examine the dangling threads later.

The Technology Plane provides the first opportunity to apply specific
techniques to achieve some of the Four Itys: modularity, maintainability,
extensibility, and reusability. The trick is in choosing the objects to use in
creating a conceptual model of the program and in assigning them respon
sibilities. Limits must be placed on each object's scope of responsibilities
and its knowledge of data, other objects, and how objects are implemented.

~ The Business Plane
The Business Plane contains the Reference and Solution Models. The
Reference Model is a description of the people, documents, machines and
other "things" of the real world that make up the business environment

~ Reference Model 173

into which the program will be dropped. For each real-world object, we
define its responsibilit!_es and collaborations. For example, a payroll clerk
has the responsibility to calculate compensation and the employees have
a responsibility to report their hours worked. The Solution Model is best
thought of as tomorrow's Reference Model. We project ahead to a time
when the new software is up and running and describe that environment
in the same terms as in the Reference Model. Rounding out the Business
Plane is the Impact Analysis. Conceptually, the Impact Analysis is arrived
at by subtracting the Solution Model from the Reference Model. It accounts
for all changes in the system, where "system" refers to the entire environ
ment and not just the computer and software.

Building the Business Plane requires an understanding of the business
and the nature of the problem we are trying to solve. Talking to domain
experts, the individuals who are knowledgeable in the part of the busi
ness being automated is very helpful, but making them part of the team is
even better. This includes, but is certainly not limited to, management,
knowledgeable end users, marketing, accounting or finance personnel,
and others. Domain participants, individuals who are not expert in their
part of the business but are nevertheless part of it, should also either be on
the team or be interviewed.

~ Reference Model
The Reference Model is the starting point for the project. The authors have
noted that many clients are surprised that we start with a description of the
way things are today before plunging into a hypothetical future. Yet, in the
absence of such a model, there is no coherent way to explain what problem
you are trying to solve, what the economic value of the solution will be,
and what overall changes to the business will result from the use of the
new software. For in-house development, this is the place where manage
ment can begin by identifying a problem and determining the value of a
solution. For commercial software products, this is where product market
ing begins by understanding the environment into which you will sell the
product and what the product is worth. By developing Reference Models
for competitive products, you can begin to develop a positioning strategy
by comparing the effectiveness of competing products in the customer's
business rather than by comparing one product to another. When your
own product is described in the Solution Model, you can compare through
an Impact Analysis your product with the others in terms your customers
will understand-how their businesses will run differently with the vari
ous products. The ability to say, not just "Here's our product,"but "Here's
the impact our product will have," sharpens everyone's focus.

174 ~ Chapter 8 Analysis Part I: The Business Plane

On a more basic level, understanding the present is the key to predicting
the future. It is relatively easy to analyze the ways things are today; you are
limited only by your perceptions and skills at organizing information.
Once we leave the present everything becomes guesswork to some degree.
Rather than creating a Solution Model and, ultimately, a piece of software
in a vacuum, the odds of success improve dramatically if you can trace
back, point by point, to the present environment. In this way, the good
aspects of the current system can be retained and the aspects that are not
so good can be accounted for in new and better ways.

~ OveNiew

The Reference Model's frame defines the overall function of the business
unit and the nature of the problem to be solved through software. The
Reference Model describes the real "things" that exist in the business:
people, documents, machines, and equipment. We are concerned with
who or what does what, to, for, and in conjunction with whom. In other
words, we model the objects of the world in terms of their actions. Our
descriptions are in terms of natural world objects, grouped into categories
as appropriate, together with their responsibilities for accomplishing
objectives. Expressed in terms of VDL notation, the Reference Model is
illustrated in Figure 8-1.

Reference

Figure 8- 1. Building the Reference Model

~ Frame

The Reference Model frame defines and focuses the scope of what we are
trying to model. The Reference Model frame captures what is central to the
business.

~ Reference Model 175

Behavior Set

One of the most important parts of the Reference Model's frame is a capsule
summary of the major purposes and activities of the business unit as a
whole. It is a tenet of management consulting that you need to do a better
job of defining a unit's mission if you cannot articulate a small, succinct set
of primary functions or objectives for a business unit. In payroll, we can
start with two central functions for the department: pay employees and file
appropriate government documents, as shown in Figure 8-2.

Pay Employees File Govt. Forms

~oll[)e~
Figure 8-2. Reference Model frame for payroll department

To design model railroad layouts, one creates a design, then orders parts
using a bill of materials, as shown in Figure 8-3.

This level of description provides gestalts that solidify everyone's agree
ment about the nature of the business. The set of activities, outputs, or
objectives of the business system is the behavior set of the system. Behavior
sets are generally easy to diagram using the VDL conventions discussed in
Chapter 6. The business unit forms one natural world object. There may be
others that interact with the primary unit as well, as shown in the expanded
model railroad frame of Figure 8-4.

Figure 8-3. Reference Model frame for model railroad design

Create De>ign c °""""" ::5 O<d-e-:r:P:art=s=:-"' .. ~

The designer collaborates with the hobby store.

Figure 8-4. Expanded Reference Model frame for model railroad
design

176 ..,. Chapter 8 Analysis Part I: The Business Plane

Defining the Problem

The second part of the Reference Model frame is a clear and succinct
statement of the problem to be solved. This is difficult to diagram and is
best described in text. For the payroll example, any of the following might
apply.

• "Business expansion has exceeded (or will exceed) the capacity of the
department."

• "Costs must be reduced."
• "Accuracy (or service or auditability) must be improved."

For the model railroad design example, any of the following might
apply.

• "It is difficult to change designs in progress, and this suppresses
creativity."

• "Catalogs are too big to be useful in design."
• "It is very labor-intensive to translate a design into a bill of materials." .
• "Mistakes are often not apparent until the design is actually built."

The simplicity of these descriptions is deliberate. In practice, one pro
vides more textual background material, but those elaborations should be
held in the background until the simple version has been absorbed.

Building the Frame

In building the Reference Model frame, one must consider not so much the
facts as the mission and strategies of the business. This involves interview
ing both domain experts and domain participants. Management often has
a clear vision of where the business should be but can be out of touch with
the way things really are today. It is only by bringing together these two
perspectives that the frame can be properly defined.

We use CPC to build the frame incrementally. For example, Figure 8-2
showed a first attempt at the frame for the payroll example. These two
functions, paying and filing forms, come immediately to mind as the
central objectives or activities of the payroll department. Closer examina
tion yields some peripheral but vital functions, shown in Figure 8-5.

Notice that Figure 8-5 shows one central diagram for the frame, together
with scenarios that cover subsidiary aspects of the department's operation.

It is not necessary in the beginning to "complete" the frame; in fact, it is
probably not even possible for all but the simplest systems to be completed

.,.. Reference Model 177

File Govt Forms

(a) Payroll Deparbnent

& Deductions

(b) Pay Employees

(c) File Govt Forms

Create Hours Worked Re
Create Pa roll Summa

(d} Create Reports

Track H urs Worked

(e) Track Hours Worked

Figure 8-5. Expanded payroll Reference Model frame

178 ~ Chapter 8 Analysis Part I: The Business Plane

in one pass. Instead, start with the center of the frame, as you and others
involved perceive it, and proceed on to the model. You can also develop the
frame and model in parallel rather than putting the frame first. As you will
see, subsequent steps expand and refine the frame smoothly as more
information becomes available. In any complex project, it is common to
have a feeling of being stalled or hung up from time to time. When this
happens, focus in on the center of the sticking point and leave the rest for
later. If necessary, focus on the center of the center. That is the essence of
CPC: A void stalling by quickly refocusing on the center or the center of the
center whenever things bog down. The periphery arrives in due course
and the methodology ensures that everything remains consistent while
keeping track of loose ends.

~ Model

If the frame defines what the system does, the rest of the model defines how
it does it. In the model, we identify the main players, such as people,
equipment, business records, and their functions within the overall sys
tem.

Double Descriptions and Correlation

The relationship of the Reference Model to its frame is the first of many
examples we encounter of double description: two models or descriptions of
something taken from different perspectives. In the case of the Reference
Model frame and model, the double description can be described as the
exterior and interior of the business unit. The unit as a whole cannot
accomplish anything not accomplished in sum by its parts. Yet, looking at
the parts does not give a complete description either; the sense of the whole
system as a complete functional unit is lost. Thus, the frame and model
complement one another in building our understanding of the business.

We will see many other examples of double descriptions as we proceed
through the various parts of a Solution-Based Model. This is deliberate.
Any time we add information to one part of the SBM, we synthesize the
new information into the appropriate part of the model, then correlate that
information against other parts of the SBM that doubly describe the same
information. By operating in this way, omissions and mistakes are discov
ered (half the battle) and appropriate corrections can be made at the right
points in time (the other half). Since this correlation occurs whenever new
information is added, the corrections come at the earliest possible time
when the errors might cause problems. Here, we correlate the Reference
Model frame to the Reference Model and vice versa to ensure that both
descriptions are consistent with one another. This is the simplest form of

.,.. Reference Model 179

correlation-making sure a model is consistent with its frame. Unlike
top-down strategies, this use of correlation and double description does
not penalize early mistakes and encourages you to explore the problem in
the most natural sequence.

Elements and Relationships

The elements of the Reference Model are objects that really exist in the
natural world and categories, or groupings, of those objects. For each
object or category of objects, we describe their responsibilities and col
laborators. Responsibilities are actions or objectives associated in the
natural world with specific objects. For example, a payroll clerk might
have the responsibilities to compute compensation and deductions, then
issue check requests to a typist. The typist is a collaborator in an implied
responsibility of the clerk (ensuring that checks are typed). Figure 8-6
shows this in the form of a scenario.

Type Check 4 -- Act On Check Request

0
Generate Check

Figure 8-6. Preparing and typing paychecks

Certain responsibilities of objects in the model correspond directly to the
behavior set of the overall business unit, as defined in the frame. These are
essential responsibilities because they directly implement the objectives of
the business. Incidental responsibilities exist only to support the essential
ones, such as issuing a check request. We continue to use this distinction
within each region of the SBM.

180 Chapter 8 Analysis Part I: The Business Plane

Objects and categories in the model can represent a wide variety of
"things" as shown in the following examples:

• People: employees, customers, vendors
• Machines: computers, tools, manufacturing equipment, paper han

dling equipment
• Documents and files: reports, forms, index cards, computerized

records, filing cabinets

Everything described in the Reference Model should be true of the real
world, but not everything known of the real world should be in the model
and its frame. The ideal model is one whose description covers the scope
of the frame but uses no unnecessary elements or relationships.

Building the Reference Model

The process of building the Reference Model starts with the selection of one
or a few central objects or categories, based on what is central to the frame.
We then take the behavior set of the frame-the essential responsibilities
for the model-and assign them to the objects. As we proceed toward the
periphery of the model, we add incidental responsibilities and other
non-central el~ments. Each time new information is added to either the
frame or the model, we correlate the two.

The calibration process works in two directions: Information from the
frame is pushed into the model and expansions of the model can alter or
expand the frame. Essential responsibilities are key to calibrating with the
frame. Every behavior of the frame should be accounted for by essential
responsibilities in the model. Any frame behavior not accounted for is a
dangling thread that must be picked up before the modelcan be considered
complete. Expansions of the frame are pushed down to the model,
although not necessarily right away. Similarly, it is very common to
identify a responsibility in the model and realize that it is essential (that is,
part of the behavior set of the business unit as a whole), even though it does
not correspond to any behavior yet identified in the frame. This eventually
results in an expansion of the frame. Again, this correlation to the frame
can take place right away or be deferred by identifying the dangling
threads.

Initially, we build the model by choosing central topics of the frame or
central players in the business unit. The model and frame are then
expanded in tandem until those central topics are adequately covered.
When the central topics have stabilized in the model and we are ready to
look for more to do, we pick up dangling threads in the frame and push

.,.. Reference Model 181

them into the model. Going the other way, any time we add an essential
responsibility to the model, we either revisit the frame right away or mark
the new responsibility as a dangling thread. Again, we eventually sweep
along picking up dangling threads of the model and correlate them to the
frame.

Where do the elements of the model come from? Identifying objects,
categories, and responsibilities is not always a one-way street from frame
to model. Often, the most effective way to build the model and refine the
frame is to go searching for objects and categories directly. Here are some
approaches to try.

1. Reflect. Sit and think about the problem and the Reference Model.
2. Interview. Conduct interviews with users or domain experts.
3. Read. Consult textual descriptions of the system being studied.

Remember that nouns often represent relevant objects or categories
and verbs sometimes represent responsibilities.

4. Analyze forms. Review and catalog documents and forms used in the
organization.

5. Synthesize and decompose. Identified elements can be a rich source of
new elements. If an object in your model has parts, examine the parts;
if an object is part of something, look at the whole; if you have a
category, examine the members. For any element, consider categories
that naturally describe how it groups with other elements.

6. Follow responsibilities and collaborations. Look at each member of a
category for responsibilities and collaborations that are in addition to
or perhaps in conflict with those of the category.

7. Generalize. Similarly, consider categories to which objects in your
model belong.

The underlying objective of these tactics is to nudge your thinking and
perceptions and those of the others on the team, then capture the informa
tion that bubbles to the surface in the form of scenarios. We are really
looking for a good description of the objects, but categories can help to
define them.

Without saying so, we have already implied many different sources of
scenarios---central topics, dangling threads, correlation of specific ele
ments, and part/whole assemblies and other structural relationships. As
you gather information, do it in the form of scenarios and follow the
process above to integrate the results into the overall solution-based
model.

182 .,.. Chapter 8 Analysis Part I: The Business Plane

Create New Layout --- .
/Design Track --::... ~

~/DesignScenery --• ~
~/Design Controls - -- .,..

/

(1) Creating a layout

Design Track - ---- ..._
~/DesignScenery -- • ~
~/DesignControls - - .,.. ~

/

(2) Using the catalog to aid design

(3) A higher level of abstraction for 'Design'

~ Design Tr~h Shape Choose Pieces
~/ ----- ,-: _____ / __ , ____ __

~------ ------- /L~s~~a~b~e~a~~--

(4) Iterative nature of designing track

Figure 8-7. Reference Model for model railroad design

Let's look at how this process works in our two case studies. Figure 8-7
shows a typical evolutionary sequence for the Reference Model in the
model railroad design problem. Notice that the work quickly centers on
designing track.

Figure 8-8 shows a typical evolutionary sequence for the Reference
Model in the payroll example. In neither of these examples is work
conducted top-down, yet the progression seems quite natural.

.,. Calibration Part I: Synthesis 183

(1) Creating check requests

Compute Compensation •Compute Salaried

~~omuitml

(2) Computing compensation

Collect Time Sheets •Provide Time Sheet
/ File Ijme Sheets ~

~ut O~ate Hours Worked Report ~ploy~
r ~ ~;;;::;:: -=:::;;;;-

~
(3) Creating the Hours Worked Report

Figure 8-8. Reference Model for payroll

~ Calibration Part I: Synthesis
From this point on, we will create numerous scenarios and we will need
continually to integrate them with each other and with the solution-based
model as a whole. Let's assume that you are starting with an empty model
and have a set of scenarios stacked in front of you. The process goes like
this.

184 ..,.. Chapter 8 Analysis Part I: The Business Plane

1. Pick a scenario and make it the initial model.
2. Pick another scenario.
3. Synthesize the new scenario with the model. This may change the new

scenario as inconsistencies are discovered. Alternatively, the model
may need to be changed. If so, trace back the changes to the scenarios
that have already been synthesized with the model.

4. Repeat steps 2 and 3 until all scenarios have been synthesized.

The outputs of this process are a unified model plus a set of scenarios
derived from the originals but possibly corrected to ensure consistency.
The scenarios are not thrown away at this point. They remain the defini
tive statements of their respective topics.

This process allows us to concentrate on one scenario plus the model at
any point in the process. The precise details of synthesizing a single
scenario with a model are summarized below.

1. Pick an object or category from the scenario that also exists in the
model. Consider the possibility of two different names for the same
thing (synonyms). Also consider the problem of one name for two
different things (homonyms).

2. If the scenario element is an object and the model element is a category
or vice versa, resolve the discrepancy.

3. If the scenario element and the model element are both categories,
make sure they have the same members and that the semantics
(meanings) of the categories are not contradictory.

4. Verify all structural relationships of the scenario and model elements:
whole/part, membership, and containment. Resolve any discrepan
cies. In order to do this, you may need to temporarily set aside the
scenario element until other, related elements have been synthesized.

5. For each responsibility of the scenario element, look for a matching
responsibility in the model element. Again, watch for synonyms and
homonyms. If no matching responsibility exists, add the responsibil
ity to the model element. If a match exists, make sure that the
semantics and collaborators of the scenario element's responsibility
are not contradicted by those of the model element. If there is a
contradiction, resolve it.

6. If the model element in the scenario being added belongs to a cat
egory, apply step 4 to the responsibilities and collaborators of the
category. Also, verify that any responsibility or collaboration of the
category also applies to the scenario element. If there is any discrep
ancy, resolve it.

~ Calibration Part I: Synthesis 185

7. Verify all remaining behavioral and calibration relationships of the
element and its responsibilities-creation, destruction, implementa
tion, and replacement.

8. Repeat steps 1-7 until there are no more elements in common.

9. Add each remaining element, along with its responsibilities and
relationships, to the model.

The appendix illustrates a simple manual database that greatly facili
tates this process and also helps with correlation and synchronization.
When comparing a scenario element with the "overall model," you will
refer back to scenarios that were previously synthesized and that contain
that element. These are the gestalts that are easily digestible; the model as
a whole is nothing more than the sum of its scenarios. We speak of "the
overall model" as a concept, but in reality it is only the set of synthesized
scenarios that counts.

As you can see from this algorithm, there are five kinds of discrepancies
that can arise:

1. Synonyms and homonyms.

2. One scenario says something is an object and another says it is a
category.

3. Semantic differences between categories.
4. Relationships may differ, particularly collaborations.

5. There may be a contradiction between responsibilities and/ or col
laborators of a category and a member of that category, that is, a
counterexample for the category. As in the "metonymic" schema in
Chapter 5, all members of a category are often assumed at an early
stage to have the characteristics of one or more central members. As
the other members are synthesized, it is common to discover
counterexamples that do not have the shared characteristics.

The remedy for these problems is common sense. For example, when a
counterexample is found for a category-say, a member that does not have
a responsibility attributed to the category-the characteristics are usually
reassigned to the members that do have those responsibilities.

When resolving discrepancies, we seek only to avoid contradictions
and not to make the treatments identical in all scenarios. Consider a
scenario that says that all pieces of track (a category) have two connectors,
as in Figure 8-9. Another scenario states that straight track has two
connectors but does not assert that this is true of all other types of track, as
in Figure 8-10. This does not necessarily mean that one of these scenarios

186 ..,.. Chapter 8 Analysis Part I: The Business Plane

Figure 8-9. Connectors on all types of track

Figure 8- 10. Connectors on straight track

~ Calibration Part I: Synthesis 187

is wrong and in need of revision. If, as in Figure 8-9, all track has two
connectors, then Figure 8-10 is also true and neither scenario needs to be
changed. If, on the other hand, the author of Figure 8-10 knew of a
counterexample, such as a Y-shaped piece of track with three connectors,
then Figure 8-9 is wrong and needs to be changed. As you can see from
this example, it is not possible to make these decisions without knowl
edge of the problem domain. If both scenarios are correct, there is still
only one treatment that is correct for the overall model, and the correct
treatment is the one that preserves the most information. Figure 8-9
contains more information than Figure 8-10, because it carries informa
tion about more than just straight track. As in Figure 8-10, each scenario
may contain less information, but the model must contain the sum of the
information in all of its scenarios.

A final note on synthesis. You usually have a stack of scenarios sur
rounding a single topic, all of which need to be synthesized with the model.
In such a case, proceed by first synthesizing the scenarios with each other,
forming an intermediate model, then synthesizing the intermediate model
with the full model. Because of the overlap between them, differences can
be resolved much faster among the new scenarios before combining them
with the overall model.

...,. Solution Model
The Solution Model directs our attention away from the way things are
today to the way they will be in the future. The best way to think of the
Solution Model is as tomorrow's Reference Model. The two models have
the same structure, types of elements, and relationships. The only signifi
cant difference is the focus: Central to the Solution Model is the Macintosh
running the program being developed. Slightly off to the side are users of
the program and any devices or networks connected to the computer and
relevant to the program. Figure 8-11 illustrates the relationship between
the Reference and Solution Models.

188 ..._ Chapter 8 Analysis Part I: The Business Plane

Reference Solution

Figure 8-11. Building the Solution Model

...,_ Overview

The Solution Model defines the overall function of the business unit in the
automated environment and the nature of the solution to the problem(s)
identified in the Reference Model frame. The solution generally involves
a combination of many changes: shifting duties of personnel, redirecting
funds or priorities, training, adoption of new techniques or policies, and,
of course, the strategic and tactical uses of the computer. The computer is
one part of the solution, not by itself the entire solution. The best way to
think of this is to make the computer running the new program an element
in the model in its own right.

We build the Solution Model from two directions. Central topics of the
Reference Model are pushed down into the Solution Model and modified
to suit the intended changes to the business. Equally important is direct
exploration of the Solution Model. You generally go into a software project
with some notion of what the new environment should be like, probably
without having yet fully defined what impact that has on current opera
tions. Thus, you should feel free to directly develop the Solution Model in
parallel with the Reference Model, as long as the two are calibrated
properly.

As information is added to the Solution Model, correlation is used to
propagate new insights into the business today back to the Reference
Model. In most projects, the process works both ways and information
both filters down from the Reference Model and directly enters the

~ Solution Model 189

Solution Model from outside. In either case, we continue to use the tools of
scenario formation and CPC to start at the center and expand out toward
the periphery.

As with the Reference Model, we are concerned with real world objects
and categories of them. Again, the emphasis is on the "system" in the broad
sense, incorporating not just the computer and program but the organiza
tion surrounding it as well. The Solution Model cannot be said to derive
from the Reference Model because we are not really constrained by the way
things are today. However, we carefully correlate the two models, clearly
identifying all differences and collecting them into an Impact Analysis. In
the case of a commercial product, there are as many Reference Models and
Impact Analyses to consider as there are competitive positions to define.
Figure 8-12 shows the notation used to correlate the Reference and Solution
Models.

Reference Solution

Figure 8-12. Correlating the Reference and Solution Models

The double-headed arrow means "implements" and the line with an "X"
means "replaced by." The dashed line means "is the same as" or
"unchanged." This system accounts for everything in the Reference Model
in terms of the Solution Model and vice versa. This includes objects,
categories, responsibilities, and relationships. This detailed work is the
basis for the impact analysis, which is critical to the business. Correlation
of these models also helps develop each one, by providing two-way
feedback.

..,.. Frame

The Solution Model frame describes the portion of the Reference Model we
seek to change:--what is kept, what is extended, and what is simply new.
It is here that overall objectives for the development project are set. It is also

190 ..,,. Chapter 8 Analysis Part I: The Business Plane

in the frame that we describe the overall role of the new computer system
within the business system. The Solution Model frame contains a concise
statement of the intended solution to the problem(s) identified in the
Reference Model frame, the behavior set of the business unit, and con
straints on the solution.

Defining the Solution

The general form of the solution must be laid out as early as possible. This
is generally difficult to diagram and is best described using text. For the
payroll example, suppose that we had made the following determination
in the Reference Model frame.

• "Business expansion has exceeded the capacity of present staffing in
the department."

In the Solution Model frame, we might identify the following combined
solution.

• "Automate the computations for and production of paychecks."
• 11 Automate the generation of government forms and reports."

We might, however, have identified the problem in the following way.

• "Mistakes are made in processing payroll, resulting in unhappy
employees and wasted labor when corrections are necessary."

We might then substitute the following solution.

• "Make sure that information is captured only once, then reused as
needed by the computer."

• "Maintain automated audit trails for all activity."
• "Integrate the recording of time cards, personnel records, and payroll

processing."

These two solutions overlap, but there are subtle differences that corre
spond to the different priorities of the Reference Model frame. We might,
for example, be faced at some point in the project with a tradeoff of
manpower to operate the program versus double-checking input. The
frames help guide those decisions (in this case, perhaps in different
directions).

~ Solution Model 191

Behavior Set

The behavior set in the Solution Model frame describes the new business
environment. Everything said about the Reference Model frame's behav
ior set applies here, but with an emphasis on the changes we wish to bring
about. The Reference Model frame is compared detail by detail with the
Solution Model frame in the Impact Analysis to identify changes in the
mission, scope, or capabilities of the business unit as the result of automa
tion. It is therefore critical that the behavior set of the two frames be
correlated completely and carefully. Figure 8-13 shows a Solution Model
frame for the payroll example. Compare this with the Reference Model
frame shown earlier in Figure 8-5.

Scenario#: 14
Authors: JV A, NLG
1 /5/92

General Solution:
• Automate the design of layouts
• Automate the ordering of parts
• Provide portfolio of store-provided layouts

General Constraints:
• Ease of use is critical
• Macintosh-savvy user needs no more than one hour
of training to do simple layouts and place an order
• The catalog should limit choices to available components
• It must be easy to correct mistakes

Performance Constraints:

Solution Frame (partial)

To Do:
- Additional constraints

Solution Model frame

Figure 8-13. Solution Model frame for payroll automation

Constraints

When solving business problems, we are always operating under con
straints on the solution. These constraints may be those of the available
technology, limited resources, time, or other factors. We capture these as
part of the Solution Model frame. Constraints are usually difficult or

192 1111- Chapter 8 Analysis Part I: The Business Plane

impossible to diagram, so we rely on simple text. Some types of constraints
to consider are listed below.

• Managerial: ability to measure success, auditability, accountabil
ity, operations, maintenance requirements, on-going review, and
assessment.

• Technology: what the technology is capable of, price/performance
ratios, technological risk, expected advances in technology, and price
performance in the near future.

• Financial: absolute constraints on cost and comparisons of costs to
benefits.

• Resources: time, people, use of equipment or space.
• Performance: speed, security, accuracy, and accessibility.

• Qualitative intangibles: corporate culture and environmental con
straints, corporate policy, image, and history.

• Existing systems: interfaces, dependence on technology and people,
impact on operations, replacement policies or objectives, and audit
ability of and accountability for the combined system.

• Strategic goals: relationship of mission critical applications to corpo
rate strategy.

Although this is not an exhaustive list, most large projects take these
constraints into account. Note that very little of this list can be traced to the
definition of the problem or its intended solution. Instead, constraints tend
to be imposed from outside the project and apply across all similar projects.
Thus, the time spent in this area should in most cases be highly reusable on
other projects.

It is often arguable whether something is a constraint or a behavior or
part of the solution definition. It doesn't really matter; as long as the fact is
recorded somewhere in the frame, the placement is not that important. For
example, we might say that part of our solution is to reduce labor, but we
can also express as a constraint the fact that labor costs must be reduced.
It might also be implicit in the way the behavior set is defined. In Solution
Based Modeling, most divisions of information-frames, planes, regions,
and so forth-exist principally to stimulate thought and perception and
provide a framework for organizing known facts, not to generate argu
ments about where things belong. Since calibration is applied throughout
the model, placement is not critical; leaving something out altogether,
however, is a serious matter.

~ Solution Model 193

A final note on constraints. It is not always possible to calibrate con
straints in the Solution Model frame right away. Performance constraints,
for example, almost always require calibration against the architecture of
the Execution Plane or against specific algorithms of the Program Plane.
Constraints that are not satisfied within the Business or Technology Planes
simply continue as dangling threads until we can resolve them.

Building the Frame

As with the Reference Model frame, we interview domain experts and
participants in addition to our own snooping and thinking. There is,
however, a fundamental difference in the interviewing process. In the
Reference Model, we seek to describe the reality of today. In the Solution
Model, we deal with some facts, but also with suppositions and projec
tions. This places a greater burden on the team in analyzing feedback. Here
are some of the "noise factors" to take into account.

1. Management may have a clear vision of the new mission but be
unaware of many constraints on the solution, particularly technical
ones.

2. Domain experts frequently are wedded to the way things are done
today. They may simply have difficulty conceiving of new ways of
doing things or may even feel that their expertise is threatened by
change.

3. Domain participants have an even greater tendency to resist change.
4. Software and systems analysis professionals often don't know the

current system well enough to understand the relative merits in
business terms of various proposals for change. They may also be
insensitive to issues of management or culture, concentrating prima
rily on technology.

As is often the case with software development, much of this noise can
be traced to poor communications or a lack of cooperation. Dealing with
gestalts in the frame helps quiet some of this noise by providing a
common forum for communication. Another useful technique is to clas
sify proposed solutions as "mechanization" or "automation." Mechaniza
tion basically means doing the same things faster or better as the result of
using the computer, projecting manual operations onto the computer
with little change. No one is threatened by mechanization, since job
functions change little and the power structure of the organization
remains intact. Little new training is needed beyond the mechanics of

194 .,... Chapter 8 Analysis Part I: The Business Plane

using the computer. However, mechanization rarely yields strategic ben
efits to the organization; there may be a slight cost savings or improve
ment in quality, but that is the most that can be hoped for. It is automation
that yields breakthroughs in new markets, new product lines, or new
ways of doing things, redirection of the business, or repositioning in the
marketplace. Automation requires going back to basic questions: What is
the mission of the organization? What do we want to achieve? What are
the real constraints, as opposed to historical assumptions?

Automation applies not only in the stratosphere of corporate strategy
but in almost every decision made on the definition and design of a
computer system. As shown in Figure 8-14, the rectangle drawing tool of
various Macintosh drawing applications is a good example of automation.

~
T
+
'-

Untitled

Figure 8- 14. A typical Macintosh rectangle tool

Mechanization involves drawing four separate lines; automation con
ceives of the task at a higher level-construction of a rectangle, rather
than drawing four lines-and results in the dragging behavior so familiar
to Macintosh users. With the equivalent of one stroke on the page, we
draw a complete rectangle, perhaps even filled with a pattern or
using a non-standard line width. Now consider the other tools of a
modern drawing program such as bezier curves, dashed lines, com
pound (grouped) objects that move and resize together, stretching, skew
ing, or rotating of shapes and compare the results to straightforward
mechanization.

Tradeoffs of mechanization vs. automation begin in the earliest stages of
a software project, usually without anyone consciously aware of the
implications. In SBM, we take the time to develop a Solution Model frame
that deals in objectives and priorities. This then becomes the basis for

..,. Solution Model 195

discussion of later, more detailed decisions. If our frame says, "Speed the
drawing of lines" we will fail to see the larger opportunities. If instead we
say, "Reduce the turnaround time and increase the quality of our design
documents," we have a yardstick that measures automations larger than
mechanizations.

Of course, we continue to use CPC to develop and refine the frame.
Central topics come from the Reference Model or by direct examination. As
we expand the frame, we correlate it to the Reference Model frame and
Solution Model to account for all differences between the models. Every
part of the Reference Model frame must be accounted for through correla
tion in the Solution Model frame, and every element and relationship of the
Reference Model must be accounted for through correlation in the Solution
Model frame and Solution Model combined. Anything defined in the
Reference Model and not accounted for is a dangling thread that must be
picked up later. Similarly, we cannot add to the Solution Model frame
without correlating back to the Reference Model and frequently expanding
the Reference Model during correlation. Dangling threads in the Solution
Model frame can occur when this correlation is postponed .

...,. Model

Because the Solution Model is tomorrow's Reference Model, it is structur
ally similar. We still deal with objects of the real world. In almost all cases,
the computer and program together become one central element of the new
model and principal users become other central elements. If the computer
is attached to other devices or networks, those, too, become elements of the
model. For most projects, the primary focus of the Solution Model is on
how the computer and its users interact (that is, what the users are
responsible for, what the computer is responsible for, and how they
collaborate to carry out those responsibilities).

Elements and Relationships

The Solution Model contains as elements real world objects, categories of
real world objects, and responsibilities of the objects. In most cases, the
Macintosh, running the application in question, becomes a single element
of the model. If the applications to be developed cooperate with each other,
simultaneously running applications, each application is an element in its
own right. If there are other computer systems or specialized devices
collaborating with the target application, they, too, become elements. Each
user of the computer becomes an element as well. In addition, we retain
other people, machines, equipment, and records as elements, as in the
Reference Model. Relationships are the same as those of the Reference

196 ..,. Chapter 8 Analysis Part I: The Business Plane

Model. We are primarily concerned with collaborations, but the other
types of relationships discussed in Chapter 6, especially structural rela
tionships, may apply as well.

Building the Solution Model

We build the Solution Model in much the same way as the Reference
Model by starting with central features of the frame, then expanding
and correlating. It is also useful to bring across elements and relation
ships of the Reference Model to the Solution Model, although these
should be carefully considered. Do they retain the same meaning? Are we
unconsciously mechanizing rather than automating? The objects and
categories themselves rarely change much from the Reference Model to
the Solution Model, but their responsibilities and relationships may
change significantly.

We can also add to the Solution Model through direct examination. In the
Reference Model, this is done by looking around at the world as it is today.
In the Solution Model, you must place yourself forward in time. Whenever
we add an element or relationship to the Solution Model, we must correlate
to the frame and to the Reference Model. Keep in mind the two basic
calibration relationships of "implements" and "replaces." If some element
or relationship of the Reference Model is made obsolete as the result of
something in the frame or model of the Solution Model, we use the
"replaces" relationship. If an element just added to the Solution Model is
truly new, it should be marked as such and not treated as a dangling thread.
More often, it is a variation on some previously discovered part of the
Reference Model or a replacement for one, in which case the calibration
relationships should be drawn. Figure 8-12 showed an example of the use
of calibration relationships between the Reference Model and Solution
Models.

CPC applies in the same way as for the Reference Model, except that
there tend to be more interviews, more scenarios, and more conflicts.
People naturally expand their categories when they project into the future,
and not everyone does it in the same way. When categories present
problems, fall back on the objects themselves, about which there tends to
be less disagreement. (Objects of the world tend to be either basic level or
close to it, while most categories are far enough from the basic level to
generate disagreements.) As with the Reference Model and the frames of
both models, we both push information from other parts of the model into
the Solution Model and directly expand the model from outside sources of
information. '

..,.. Solution Model 197

Let's consider an example from the model railroad application. In the
Reference Model, we had the scenario shown in Figure 8-15.

Scenario #: 17
Authors: JV A, NLG
1/5/92

To Do:
- Detailed scenarios

Design Layout

Figure 8-15. Layout design scenario

Reference Model

There is a single responsibility called "Design Scenery." In the Solution
Model, we wish to automate that process. In order to do so, we need to
know more about how the designer works now. As part of defining the
solution, we can expand the Reference Model to the scenario shown in
Figure 8-16. Adding this finer level of granularity to the Reference Model
permits us to develop the Solution Model further, as in Figure 8-17.

Notice the emphasis on the user-computer interaction. Solution Model
scenarios collectively define what the computer can be told to do, what the
user needs to do, and how the two mesh.

As with the Reference Model, we draw a distinction between essential
and incidental responsibilities. Essential responsibilities implement the
behavior set of the frame. Wherever meaningful, we also attempt to draw
implementation relationships between constraints and parts of the model.
For example, a reduction in labor can be tied to specific responsibilities of
the computer in the model. Not all constraints can be treated in this way,
however. A constraint that "all operations must complete within five
seconds" must wait for the lower planes of the model, particularly the
Execution and Program Planes. Other constraints are best implemented in

198 ..,. Chapter 8 Analysis Part I: The Business Plane

Scenario #: 53
Authors: JV A, NLG
1/12/92

To Do:
- Detailed scenarios

Design Scenery

Reference Model

Figure 8-16. Expanded layout design scenarios

Scenario #: 54 Solution Model
Authors: JV A, NLG
1/12/92

Sculpt Landscape =- ., Specify Elevations

~--~ - T-~·~·-
Compute Volume Macintos

'

Sculpt Landscape

To Do:

Figure 8-17. Solution Model scenario for layout design

..,.. Impact Analysis 199

terms of the correlation relationships between elements of the Reference
and Solution Models. These relationships indicate the changes being
made in the business. Improvement in accuracy might be associated with
the shift in responsibilities from people to the computer; that shift is
illustrated through correlation relationships, not purely in terms of the
Solution Model.

~ Impact Analysis
Figure 8-18 shows that the Impact Analysis comes from the correlation
relationships between the Reference and Solution Models. The Impact
Analysis contains all of the correlation relationships between the Reference
and Solution Models, along with the elements at each end of the relation
ships and analysis of what the changes mean to the business. When we talk
about reassigning staff or shuffling lines of authority, it is not enough to
draw lines on a page. Textual backup is also needed to translate these
changes into a plan for managing the transition. Figure 8-19 shows corre
lation relationships between parts of the Reference and Solution Models
for payroll.

Reference Solution

Figure 8-18. Impact Analysis

The difference between these two models is more than the computer. We
have abolished broad areas of responsibility from some people and shifted
others to different people. Figure 8-20 annotates this to account for the
impact on the business.

The Impact Analysis is one of the most important business tools avail
able within SBM. For in-house development, it allows management to
understand the changes in business, not just technical, terms. Provision for
training, accountability, the transition to automation, and a host of other
decisions can be made at the same time the computer system is designed
rather than later. The Impact Analysis also is key to analyzing costs versus
benefits since it directly compares the before and after images of the
business and provides keys to the cost of the transition. For commercial

200 ~ Chapter 8 Analysis Part I: The Business Plane

Scenario #: 75
Authors: JV A, NLG
1/18/92

To Do:

Correlation of 'Cut Paychecks'

Impact Analysis

Figure 8-19. Correlation of Reference and Solution Models in payroll

developers, this is the acid test. The Impact Analysis, used against Refer
ence Models for competition and the "null" case (no product currently in
use), clarifies product position and can be the cornerstone of pricing by
identifying all costs and benefits to the customer. It can isolate potential
buying objections by identifying what the customer must change in order
to use the product. Finally, it can form the backbone of sales by expressing
the product in terms the customer will understand: "What does this change
in my business?"

~ Existing Computer Systems 201

Scenario #: 75
Authors: JV A, NLG
1/18/92

Impact Analysis

Job function of Processing Clerk to be replaced with that of Payroll Operator.
Processing Clerk will have to provide initial training to Payroll Operator. This must be
coordinated with running parallel automated/manual during shakeout
period.

Correlation of 'Cut Paychecks'

To Do:

Figure 8-20. Annotated Impact Analysis for payroll

....,_ Existing Computer Systems
So far, we have rather naively assumed that no computer is in use in the
Reference Model, and that we have introduced our (one) new system in
the Solution Model. Such assumptions are not realistic. In reality, any of
the following statements might be true.

• Other systems are being replaced by the Macintosh.
• Other systems are being used with the Macintosh.
• Other applications are in use on the Macintosh already and have some

relevance to the problem at hand.
• The project is broken down into multiple, cooperating but separate

applications co-resident on the Macintosh.
• We are upgrading an existing application on the Macintosh.

202 ~ Chapter 8 Analysis Part I: The Business Plane

In all cases, we need to develop Reference Models that incorporate the
current state of affairs, computers and all. We also need to draw a distinc
tion here between systems being replaced or upgraded versus systems
that will collaborate with the new program. Replaced systems will appear
in the Reference Model but not in the Solution Model; collaborative
systems will appear in both. Collaborative systems are treated as users of
the new program of a sort. In the Technology Plane, we provide an
Environment Model to describe these collaborations in much the same
way we describe user interactions in the User Interface Model.

~ Summary
The objectives of the analysis phase are to establish the scope of the work
and develop a plan for completing the project. To accomplish these
objectives, we combine three basic activities: business analysis, conceptual
design, and prototyping. Business analysis centers in the Business Plane,
which has a Reference Model representing the way the business runs
today and a Solution Model, which represents the way the business will
run in the automated future.

• The frame of the Reference Model contains a definition of the problem
to be addressed by the new program and a description of the major
purposes of the business unit as a whole. Behaviors of the business unit
become the essential responsibilities of the model, as opposed to the
incidental responsibilities that support the essential ones through
collaboration.

• The frame of the Reference Model and the model itself form a double
description. The collective elements of the model and their responsi
bilities must correlate to the behavior set defined in the frame. We use
the CPC process to build both the frame and the model, pushing central
issues of the frame into the model and correlating back to the frame all
additions to the model. As we add scenarios, we use synthesis to
maintain the integrity of the model. We resolve several types of
possible problems including synonyms and homonyms, object/ cat
egory conflicts, semantic differences, relationship conflicts, and cat
egory I member conflicts.

The Solution Model is tomorrow's Reference Model. It focuses on the
interaction of the computer with the users and attached devices. The
Solution Model is built both by pushing central issues of the Reference
Model to the Solution Model and by direct expansion of the Solution
Model. As information is added to either model, correlation is used to keep

~ Summary 203

track of all changes to the business that will result from the project. These
correlation relationships ultimately become the Impact Analysis.

If we are upgrading or replacing an existing computer system or pro
gram, the process is the same. The only real difference is the presence in the
Reference Model of the existing system. Collaborative systems interact
with the program under development in the Solution Model in much the
same way that users do.

9 ~ Analysis Part II:
The Technology Plane
and Beyond

...,.. What This Chapter Is About
This chapter continues our discussion of the analysis phase. We now turn
our attention to the Technology Plane and conceptual design of the
program. The Technology Plane has three regions: The Content Model
holds a description in objects of the inner workings of the program, shorn
of its user interface and interfaces to other devices. This describes the
underlying capabililities of the software. The User Interface Model allows
us to describe interactions between users and the computer at a very fine
level of detail, again using objects and categories. The user interface
portion of the design cannot do much by itself; instead, it maps the
capabilities of the Content Model onto specific buttons, windows, and
other features of the user interface. The Environment Model describes how
our system controls or is connected to other computers, devices, or net
works. The Environment Model functions for those devices much as the
User Interface Model functions for the user by isolating specific interac
tions from the underlying content of the program.

This chapter also discusses in more depth correlation, the second of the
three forms of calibration. Correlation ensures consistency across planes.
During the analysis phase, it is used principally between the Solution
Model and the three regions of the Technology Plane. This chapter also
introduces the first of our strategies for achieving the Four Itys: maintain
ability, extensibility, modularity, and reusability. In building the Content
Model, we create objects to suit our purposes. The choice of objects and the
methods used to assign responsibilities to them largely determines how
successful we will be in achieving the Four Itys. The third major skill

205

206 ~ Chapter 9 Analysis Part II: The Technology Plane and Beyond

covered in this chapter is prototyping. This includes mockups of user
interfaces as well as uses of the Execution and Program Planes to support
the analysis process.

The chapter closes with a discussion of how one knows when the
analysis phase is complete. The quick answer is, "When someone in
authority says it is done." However, there is more to that statement than
meets the eye .

...._ Content Model
The Content Model is a description of the entire capability of the program,
independent of its user interface. The Content Model is an idealized model
of the objects that make up the interior of the program. "Idealized" means
that it is a simplified description rather than a literal blueprint. The Content
Model stores the data held by the application. The collective responsibili
ties of the Content Model objects implement all responsibilities of the
computer or program element of the Solution Model. Figure 9-1 shows the
relationship between the Solution and Content Models.

Solution Model

Content Model

Figure 9- l . Building the Content Model

~ Content Model 207

...,. Overview

The Content Model is composed of conceptual objects and categories, their
responsibilities, and relationships. The word "conceptual" is very impor
tant here. Content objects are seldom real-world objects in a literal sense.
More commonly, they are metaphors for the objects of the real world; some,
in fact, may have no relationship to the real world at all. We create the
objects in the Content Model to suit our program; they are creatures of
mind, not fact. Yet, at the same time we are still prepared to use all of the
cognitive machinery discussed in Chapter 5-basic level types and cogni
tive categories-through metaphors for and simulation of real-world
objects.

We build the Content Model by first developing an object candidate list, a
set of names we can potentially turn into conceptual objects, then assign
responsibilities to them. Many of these responsibilities come from those of
the computer element of the Solution Model; these form the center of the
Content Model. Others are the result of expansion of the Content Model
toward the periphery .

...,. Content Frame

The Content Model has as its frame the set of responsibilities assigned to
the computer in the Solution Model. Each responsibility of the computer
is transferred to one or more specific elements of the Content Model. The
Content Model is thus an explosion of the computer element of the
Solution Model into constituent parts, that is, objects and categories.
The Content Model is framed by and also frames the User Interface and
Environment Models .

...,. Elements and Relationships

The elements of the Content Model are objects, categories, and their
responsibilities. Both structural and behavioral relationships apply within
the model. Correlation relationships are drawn to the Solution Model.
Behavioral relationships exist between objects of the three regions of the
Technology Plane. Responsibilities of the computer element of the Solu
tion Model become the essential responsibilities of the Content Model; all
others are incidental and should serve to directly or indirectly support the
essential ones.

In the Content Model we see the beginnings of the "expert" ideas
explored in Chapter 4 such as track that lays itself, layouts that validate
themselves, employee objects that pay themselves. We use anthropomor-

208 ... Chapter 9 Analysis Part II: The Technology Plane and Beyond

phism and other more targeted techniques in deciding what objects should
be created and what responsibilities they should have. Although we are no
longer dealing with the real world, we still want to keep our concepts and
designs accessible to non-programmers by applying the cognitive prin
ciples of Chapter 5 .

....,. Building the Content Model

In order to build the Content Model we must be able to do two central
things: define objects and categories and assign responsibili'ties to them.
Defining the objects and categories is itself no trivial task. Simply simulat
ing real world objects and categories in software is seldom the best
solution. We need guidelines on how to decide what is a good object or
category and what isn't. We must also have some mechanism for assigning
the right responsibilities to the right elements. Remember the expert
treatment of the problems in Chapter 4? These are not, despite all appear
ances to the contrary, plucked out of thin air, nor are they simply the use
of anthropomorphism. We will talk a great deal about how to choose the
objects and categories and how to assign them responsibilities.

The Content Model is initially built by constructing an object candidate
list then assigning the essential responsibilities from the frame to those
objects and categories. The object candidate list is just that: a set of potential
objects and categories from which we can choose those that make the most
sense for our program. Once this initial set of elements is in place, the
Content Model is expanded and refined from five different directions.

1. The Content Model can be directly expanded by fleshing out respon
sibilities and elements already in'the model.

2. As the User Interface Model is expanded, it is correlated to the
Solution Model which, in turn, correlates to and expands the Content
Model.

3. Changes to the Solution Model propagate through correlation with
the Content Model.

4. As the Environment Model expands, correlation to the Solution
Model indirectly expands the Content Model.

5. When the Content Architecture of the Execution Plane is expanded,
correlations with the Content Model expand both.

This places the Content Model at the center of a whirlwind of activity for
much of the project.

~ Content Model 209

Building the Object Candidate List

One of the benefits of structuring our programs and models around
objects is the comfort it brings that results from the sense of recognition by
both programmers and non-programmers. However, objects alone are
not enough. We must be careful to choose names for them that bring a
similar sense of comfort and familiarity. A program that uses only names
like "X" and" A001" may, in theory, function identically to one that uses
"Employee" and "Paycheck," but the latter program is more likely to turn
out correct. The correctness of a program relies on the degree to which
people can examine it, understand its structure, and relate it to the world
they perceive. Even though we seldom use objects in the same way as they
occur in the world, there is great value in selecting names that encourage
people to use anthropomorphism and metaphor as aids to understanding
and exploration. The most effective names, therefore, are objects and
categories that are familiar to people involved in the business. The least
effective names are "computerese" names like "Sorted Doubly Linked
List" or "X.25 Packet."

Kinds of Objects. We can look for six basic kinds of objects and categories
to build the object candidate list. This list is used to create the Content
Model, but we also refer back to it when building other regions of the
model.

1. Directly manipulated. These are the "things" from the world that are
directly visualized on the screen and that the user can manipulate
with the mouse. Railroad track in our railroad design example is
directly manipulated: The user can click on it and drag it around.
These tend to be perceived as basic types translated directly into
software, but the actual responsibilities and collaborators in the
computer model can add to or modify those of the real world.

2. Manufactured. These are objects the system must produce in order to
carry out its responsibilities, such as reports, checks, and other out
puts. They frequently do not exist in the unautomated environment
or are substantially different from their real-world counterparts.
On-screen manufactured objects, such as those of a data entry screen,
may have no real-world counterpart at all. However, we still attempt
to cast them as analogous to real-world documents. Hard-copy out
puts are a curious mixture. They really exist in the world-you can
pick them up, turn them over, and put them away-but they are
created by your program. These are truly manufactured objects.

210 ..,. Chapter 9 Analysis Part II: The Technology Plane and Beyond

3. Reconstructed. These are metaphors for familiar real-world objects
and categories. The name is the same as that of something familiar,
but the responsibilities and behaviors may be mostly or completely
different. This is best illustrated by example. In an object-oriented
program, payroll records kept manually in the real world become
employee objects that store their own data and perform computa
tions on it, such as calculating deductions. It is easier to
anthropomorphise a person object than a document object. Thus,
"The employee pays herself" is easier than "The payroll record pays
itself." More generally, the closer the object is to the basic level, the
better are the prospects for use in reconstruction. When you use
reconstructed objects and categories, responsibilities of the Macin
tosh and program as a whole get redistributed from their owners in
the real world to their "natural" owner in the program. As we will
see later, this often requires assigning behaviors that use data to the
objects that contain or own the data. It is this type of object that prints
itself, draws itself, does computations on its own data, or sends itself
messages.

4. Temporal. These are objects that bridge time and space, such as
transactions. In an automated teller machine, we can accept data
from the customer, assemble it into a transaction until all of it has
been received, then send the transaction object to a host mainframe.
Another use might be to keep an audit trail of all transactions.

5. Automation. These objects are created solely to represent concepts of
the program. They often occur when part of a business is being
automated in such a way that new concepts and responsibilities are
being introduced. They also may exist when previously distributed
responsibilities can be combined for efficiency on the computer. For
example, a date object might be able to add and subtract days from
itself. Automation objects also exist to account for things that cannot
be done in the natural world. We might conceive of an "animation
object" in a program that moves things around in a window.

6. Auxiliary. These are service providers required by implementation
on a computer. Pure container classes like lists and sets are good
examples. Other examples arise in interfacing to the platform
Macintosh, Toolbox, and so on-in the Execution and Program
Planes.

It is not important into which of these six categories a candidate falls;
many are good candidates in several of these categories. Instead, think of
the previous list as a set of filters through which to view the world in
search of candidate objects.

~ Content Model 211

Finding Objects. Where should you look? Two great places to start are
with the elements of the Reference and Solution Models. These make good
targets for reconstruction since they are already familiar in the business.
Outputs of the program such as reports, display screens, and so forth are
obvious candidates for use as manufactured objects. The general concepts
behind the user interface often yield direct manipulation and manufac
tured objects. Anything the user drags around on the screen, such as pieces
of track on the layout, is an obvious candidate for use as a direct manipu
lation object or category. If you are dealing with changes to a database or
other store of data, or otherwise have activity that spans time or space,
temporal objects can be spotted wherever there is an action that the user or
the program can initiate. Automation objects and categories generally
come into play after the first round or two of development of the Content
Model when it becomes clear that there are no good candidates for certain
responsibilities. Auxiliary objects are the least likely to have any relation to
the real world and apply chiefly to the Execution and Program Planes.

The best candidates are those that are close to the basic level, immedi
ately relevant to the probl~m in the real world, and easy to anthro
pomorphise:Categories of people are good candidates as are things that
people interact with, such as track. Forms, documents, and records are
common in the real world, but as a rule they tend to make poor object
candidates. Often they are artifacts of an existing manual process that get
in the way of automation. They are not at the basic level and so make bad
targets for metaphor or anthropomorphism. Remember our example of
choosing an "employee" object over a "payroll record" object. Exceptions
are documents that come from outside sources, such as catalogs, phone
directories, and the like. Documents generated internally purely as an
incidental part of the business's operations are the worst candidates.

An object candidate list emerges from all of these views of the world.
Not all candidates are used and, once the list is drafted, we don't care
about which of the six types a given candidate represents. However, we
now have a rich source of names to use in making concepts concrete.

Let's see how these principles apply in our two running examples.
Figure 9-2 shows part of the object candidate list that the authors con
structed for the model railroad design application. For each item on the list,
the type or types of the object from the list of six types is indicated.

212 ..,. Chapter 9 Analysis Part II: The Technology Plane and Beyond

Directly Manipulated:
Track
Scenery
Car
Layout

Manufactured:
Bill of Materials
Layout
Portfolio

Reconstructed:
Bill of Materials
Catalog
Layout
Portfolio

Figure 9-2. Object candidate list for model railroad design

Figure 9-3 shows part of the object candidate list for payroll. Almost all
of the items on this list were already in some way present in the Business
Plane, particularly in the Reference Model. This includes people and
documents already in use in the manual environment.

Directly Manipulated:

Manufactured:
Check
Hours Worked Report (and other reports)
Time Sheet

Reconstructed:
Employee
Check
Time Sheet

Temporal:
Check
Transaction

Automation:
Database

Auxiliary:
Employee List

Figure 9-3. Object candidate list for payroll

~ Object-Oriented Software Engineering, Part I 213

Mapping Responsibilities onto Objects and Categories

Once the object candidate list is in place, the next step is to take the
essential responsibilities-the responsibilities of the computer element of
the Solution Model-and assign them to names on the list. In the process,
it is common to break one responsibility into several collaborating
responsibilities, or even to determine that there are several distinct
responsibilities that should be in the frame. This sounds simple, but it is
not always obvious what the best distribution is. Should a check compute
an employee's compensation, should an employee object, or should there
be some sort of "compensation computation object?" Should a layout
know how to instruct all of its parts to simulate the operation of the
layout, or should there be a "simulation object" that contains parameters
of the simulation such as speed? These are not easy questions to answer in
general, and they mark the sharpest break between the productivity of
experts and mere mortals.

Before exploring this issue of assigning responsibilities in greater
depth, let's close this section with a discussion of incidental responsibili
ties. Many incidental responsibilities are added to the model as the result
of decomposing other responsibilities. Others, however, are the result of
direct examination. It makes sense, given an employee object, to give it
incidental responsibilities to supply its name, address, and social security
number upon request. We can add these to the model even at a time when
it is not clear what client objects and responsibilities, if any, might be
interested in that information or those actions. In the Business Plane, we
asserted that incidental responsibilities should not be included unless
they directly or indirectly support essential responsibilities. In the Con
tent Model, that is not always true. Incidental responsibilities can be
added at an early stage in anticipation of a need for them later, or as a way
of building in future expansion capability at an early stage of design. They
can also be used as a way of expanding the model by saying, "It makes
sense that the scenery object should know its own cost; what other objects
should be interested in that information?"

...._ Object-Oriented Software Engineering,
Part I
In the Content Model, we assign responsibilities according to our metrics
for "good" design, not based on the real behavior of real objects in the real
world. We rely on metaphor and anthropomorphism to keep the designs
accessible. One of the most basic objectives in assigning responsibilities,
which also influences which relationships we set up, is achieving

214 ..,.. Chapter 9 Analysis Part II: The Technology Plane and Beyond

independence in the model. We want the model and, ultimately, the
program to allow evolution of one or a few objects and methods at a time
without interacting detrimentally with other parts of the whole. Our goal
is to be able to say, with a straight face, "Don't bother to test the whole
thing, I only changed one line of code." This is not as easy as it sounds.

~ Achieving Independence: An Overview

There are five objectives that can be used to achieve independence in an
object-oriented design, and they apply to the Content Model as well.

1. Limit responsibilities. Form objects that have a narrowly defined pur
pose and a small set of responsibilities dedicated to that purpose.

2. Limit data knowledge. Minimize the amount of information that is
passed around from one object to another, and avoid the duplication
of information in multiple objects.

3. Limit implementation knowledge. Care only about results, not the steps
used to obtain them.

4. Limit relationships. Limit the set of objects of which any given object
has knowledge.

5. Limit type knowledge. This applies only when we impose classes and
inheritance on the model, which does not occur until the Program
Plane. For this reason, limiting type knowledge is deferred to
Chapter 10.

We can label two general approaches as the "black box" and "client/
server'' architectures. In a black box design, one or more objects are
hidden through an interface provided by another object. Take the ex
ample of a whole/part assembly such as a model railroad layout. Rather
than having a client call each individual component of the layout to tell
them to draw themselves on the screen, we tell the layout object to draw
itself and it, in tum, tells its components to draw themselves. In other
words, we make the entire layout a black box, with the entire interface
funneled through the whole, and hide the parts from prying eyes. This is
whole/part encapsulation. A client/server relationship exists whenever one
object (the client) has knowledge of another (the server), but not the other
way around. Since the relationship knowledge is one-way, the client can
evolve without causing side effects for the server. These two strategies
can work in concert, as in an assembly in which the parts are ignorant of
the whole. A discussion follows regarding general strategies for each of
the types of limits we seek to achieve.

.,.. Object-Oriented Software Engineering, Part I 215

...,. Limiting Responsibilities

We start by defining objects that are highly specialized and single purpose.
Wewantanobjecttobeabsolutelybrilliantaboutwhatitcando,andtotally
ignorant about everything else except other objects it needs as collabora
tors. In addition, we want to take our objects and decompose them into
parts and wholes. Often this is a strategy used in the Execution or Program
Planes, but it is wise to keep in mind even early in the process. If an object
must do too much, you should either split it into multiple objects or break
it down into a whole with component parts or even a container of separate
objects. Individual responsibilities should be highly specialized. Ulti
mately, most methods in the program are between one and ten lines of
code. Although we are not concerned with code in the Technology Plane,
that ultim~te objective helps set the tone for when to split responsibilities .

...,. Limiting Data Knowledge

In analysis and design we are concerned only with identifying who is
responsible for providing information on demand, not how that is done or
the details of information storage. For example, an employee object can be
given a responsibility to provide its name and hourly wage; we need not
specify where or how that information is stored. All information is
accessed functionally through responsibilities. Nevertheless, certain infor
mation can be described as having an "owner," which is the object
ultimately responsible for providing the information directly. Continuing
our example, the employee name and wage might be passed along from
object to object (though we hope not!) but the employee object is the
ultimate source if it owns that information. The concept of information
ownership is extremely important in deciding where to place responsibili
ties and is used in the following fundamental rules of information hiding
in object-oriented programs.

1. Owners are responsible for their information. Responsibilities that
use information should generally reside with the owner of that
information.

2. Minimize information transmission. Where information is passed from
object to object, minimize the overall transmission of information. A
good way to think of this is to visualize the information sent from one
object to another over expensive phone lines.

3. Minimize redundancy. Minimize redundancy in the information; that
is, for a given datum have a single owner and ask the owner for the
information when it is needed. A corollary of this rule is to recompute

216 ..,. Chapter 9 Analysis Part II: The Technology Plane and Beyond

derived information when it is needed rather than storing it redun
dantly with the source information used to compute it, unless there is
a serious performance problem with the computation.

4. Use accessors. Within the owner, information should be accessed
through a single responsibility and changed through a single respon
sibility. These accessors are probably incidental responsibilities, used
only to insulate the information from the rest of the design; that is,
they exist for software engineering reasons, not because they are part
of the conceptual outline.

The combination of these rules encapsulates the information nicely.
This is why, for example, we shift the responsibility to compute compen
sation from a clerk to the employee herself. The employee is the natural
owner of the underlying information used in the computation and, there
fore, should have the responsibilities that make use of that information.
An object-in this case, the clerk-that does nothing more than ask some
other object for information, perform a computation on it, and pass the
results along to someone else may not even need to exist in a program
once its responsibilities have been distributed to the owners of the infor
mation. This is one of the expert tricks of object-oriented design, since on
the surface it appears to have no grounding in the real world. Real-world
objects do, in fact, contain lots of information in the form of their at
tributes; take the employee object, for example. They just don't do the
kinds of operations on their own information that we would like to see in
a modular software architecture.

If a computation requires information from two different objects, the
following should be considered:

1. Computations should stay with the most stable information of the
two; that is, the information that changes least as the program runs.

2. Consider merging the two objects to achieve better encapsulation of
information. Balance this against other objectives, since taken to its
extreme it would mean combining all information and all responsi
bilities into a single object!

3. Consider who really should own the information. It is possible that
one or both sets of information belong with a different owner .

...,_ Limiting Implementation Knowledge

Data encapsulation-hiding data behind a functionalinterface-is usually
what comes to mind when people first learn about encapsulation in
object-oriented programs. Just as important is the encapsulation of imp le-

..,.. Object-Oriented Software Engineering, Part I 217

mentation. Objects as black boxes allow us to encapsulate algorithms. As
with information, there should be a single path to a critical algorithm or
procedure, rather than bundling it with other functions. In fact, often one
spins off an algorithm to a separate object simply to isolate it further from
clients. Many examples arise in interacting with the host operating system,
where we can use some objects to isolate other objects from lower-level
operating system functions and even the computer itself. Another com
mon strategy is to decompose a whole into parts to isolate key implemen
tation knowledge in a single, small object, hiding that knowledge from the
whole and its other parts .

..,_ Limiting Relationships

Finally, we want all of our objects to be as ignorant as possible of the
existence and characteristics of other objects. For example, a car object
might have as components a steering wheel, a brake pedal, and a gas pedal.
A driver object probably has knowledge of the whole and its three parts:
the driver turns the wheel, presses on the gas pedal, and presses on the
brake pedal, as shown in Figure 9-4. Or does he? If we recast the concepts

I I
~ --====-.. ~~ Press -e

'Tum
~

Figure 9-4. Driving a car

218 ..., Chapter 9 Analysis Part II: The Technology Plane and Beyond

/~~s (:.keP~

~---- Press

'
~

~
~

Figure 9-5. Driving an object-oriented car

a little, it turns out that the driver need know nothing about the compo
nents, as shown in Figure 9-5. In the latter scenario, the components of the
car are encapsulated within the car itself. The driver issues general instruc
tions like "speed up" or "turn" and the car object knows how to accomplish
the feat using its components. We have significantly limited the relation
ships in the model. This is a good example of part/whole encapsulation,
which limits relationship knowledge at the expense of a few extra methods
and more relationship knowledge in the whole. The driver must interact
with more methods of the car (the whole) but now need have knowledge
of only one object rather than four .

..,. Conflicts among the Limits

We just said that the whole should be decomposed in order to limit
implementation knowledge, but that parts should be encapsulated into
their wholes in order to limit relationships. In this example, these state
ments are not really in conflict. In the process of encapsulating the car's
components, we recast the responsibilities in such a way that implemen
tation knowledge was also limited. We could reasonably construct an
alternative car without a steering wheel or pedals that would still respond
properly to the responsibilities to turn, speed up, and slow down as
requested by the driver object. However, it is not unusual for conflicts to

..,.. Calibration, Part II: Correlation 219

exist among the limiting objectives. One sacrifice made here, for example,
is that the car object is no longer as narrowly defined as it would be if
clients had to directly operate its parts. Building an object-oriented car is
likely to be expensive! More generally, it seems that there is always a
dynamic tension between independence of data, responsibilities, and
implementation on the one hand and the need to limit relationships and
design limited-purpose objects on the other.

Some dependencies such as those of wholes and their parts or between
collaborators are unavoidable. This points the way to a partial solution.
Where a relationship has to exist for structural or other reasons, you
should prefer to eliminate other relationships. This is what we did with
the car: The car had to have knowledge of its parts, but the driver did not.
After taking this factor into account, one can roughly prioritize from the
most important to least the remaining objectives in this order.

1. Limit data knowledge.
2. Limit implementation knowledge.
3. Limit relationships.
4. Limit responsibilities.

In fact, we often add responsibilities in the interest of achieving the other
objectives. It is only when there is no conflict with the first three objectives
that limiting responsibilities becomes an important goal.

Before leaving this discussion we should define what we mean by
"dependence" and "independence." Most programmers are used to hav
ing a control structure that "runs" the program. Object-oriented software
is very different. The flow of control and, therefore, dependencies, are
defined by the passing of messages from object to object, not as a formal
control structure. An object-oriented program is a system of independent
entities in equilibrium, with control implicit in the system of messages. For
all of these reasons, we should not expect traditiona 1 top-down methods of
analysis or design to result in good modularity. It is only through analysis
of often overlapping scenarios that we can reveal the best strategies for
achieving the types of limits we seek.

...., Calibration, Part II: Correlation
Thus far, we have dealt with correlation quite informally. However, we
have now reached a part of the project where correlation becomes a more
complicated affair of correlating the Content Model with the Solution
Model. Previously, we dealt with correlation of the two business models,
both of which contained real-world objects and both of which shared a

220 ..., Chapter 9 Analysis Part II: The Technology Plane and Beyond

common structure. The Content Model is different structurally and in
purpose from the Solution Model and requires more careful treatment. The
methods we are about to cover will then guide us through the rest of the
Solution-Based Model.

The basis of correlation is the concept of double description in which two
parts of the SBM describe the same thing. We have used this to make sure that
the Reference and Solution Models correspond and collected all differences in
the Impact Analysis. That is the only example we will see where correlation is
used between models of the same plane. Throughout the rest of Solution
Based Modeling, correlation is used between a region of one plane and a
corresponding region of the plane immediately above or below. Specifically,
correlation is used with the pairs of regions shown in Figure 9-6.

Reference Model

UIF Architecture

Content Model

Content
Implementation

Figure 9-6. Correlation in a Solution-Based Model

..,. Calibration, Part II: Correlation 221

The process and the basic principles are the same for correlating all of
these pairs. In each case, we can refer to an "upper" and a "lower" region,
the upper region being the one on the higher plane. No element or
relationship of a lower region should be unaccounted for in some way with
respect to the upper region. Given an element (object, category I class,
responsibility /behavior I method, or attribute) or relationship in the lower
region, we must use one of the following justifications:

1. The element or relationship implements-or is part of the implemen
tation of-at least one element or relationship of the upper plane.

2. The element or relationship replaces, in whole or in part, at least one
element or relationship of the upper plane.

3. The element or relationship is new and does not correspond to
anything in the upper plane. This should never be a default assump
tion, but should instead require someone to positively state that it is
so. For example, the computer element of the Solution Model may be
completely new if in the Reference Model no computer is in use for the
intended purpose.

Any element or relationship of the lower region that has not been
correlated in one or more of these ways is a dangling thread that must be
accounted for at some point. Similarly, we do not allow elements or
relationships of the upper region to go unaccounted for in the lower
region. Generally, every element must be implemented or replaced by
something or it is a dangling thread. The sole exception is in correlating
the Solution Model to the Content and User Interface Models, where we
need only correlate the computer or program element to the Technology
Plane. With this one exception, any element of the upper region that is not
accounted for by implementation or replacement is a dangling thread. In
the case of the Solution Model, the same principle applies to all responsi
bilities of the computer or program element.

Does this seem like a lot of work? It is. Does it seem mentally taxing to
classify all correspondences as "implementation" or "replacement," even
at times where this is not a straightforward one-to-one relationship
between a pair of elements? This is also hard work. However, not taking this
step of correlation does not save time over the course of a project. The process of
correlation ensures that communications have not broken down and that
distortion has not been introduced in proceeding from one aspect of the
project to another. Put more simply, we want to make sure that we end up
solving the same problem in the same way we initially intended. Recall
from Chapter 1 that communications problems and distortion are major
components of software costs, both in initial development and on-going

222 ..,. Chapter 9 Analysis Part II: The Technology Plane and Beyond

maintenance. Because that cost is chiefly labor, we can conclude that the
time will be spent, one way or another. It is better to get the problems
ironed out at the earliest possible time to minimize the side effects when
mistakes are made. This minimizes the total labor required and makes
sure that time is spent constructively, rather than in fixing mistakes or
false assumptions.

Correlation is also a way of allowing freedom of movement. Because we
know that dangling threads will not be forgotten, we need not attempt to
complete one part of the model before exploring another. People naturally
jump around a great deal in solving problems; we should encourage this
process, not work against it. By providing a way to smoothly shift from
business modeling to analysis to design to programming and back, we
encourage people to spend their time on whatever makes them most
productive. This also avoids "stuckness," the feeling that you are not
making any progress. When stuck on any part of the model, we refocus
either on another plane or on the center and move on. Correlation-indeed,
all three forms of calibration-ensures that we eventually return to pick up
the dangling threads left behind. In Robert Pirsig's Zen and the Art of
Motorcycle Maintenance, a passage describes a student suffering from
writer's block in composing an essay on the United States of America. Her
teacher breaks the block by suggesting that she start with the upper left
brick of the front wall of the Opera House in Bozeman, Montana. We have
described this process before as central to CPC: If you get stuck or even
slow down, focus on the center, or the center of the center, or shift to a
slightly difference perspective, but in any case keep moving. Calibration
makes this process manageable as part of a large project involving many
people. Correlation allows focusing on different planes that are at a finer
level of detail or take a different perspective; synthesis allows us to shift our
gaze to different, overlapping snapshots of the problem; synchronization,
which we will describe more fully soon, is within a single plane what
correlation is across planes ..

Finally, correlation is a tool of managing a complex project. At any point
in time, you know what correlation remains to be done: tying up the
dangling threads. This does not necessarily help with expansion into new
topics, but it does give a very accurate picture of how close to completion
the current scope is. This, in turn, can be used as a tool of scheduling,
-budgeting, and progress assessment.

The one thing we have not discussed is when to correlate immediately
and when to leave dangling threads for later. This is based on marginal
progress. As long as you are quickly and productively expanding one
region, continue to do so and defer correlation to its upper and lower
counterpart regions. As soon as progress slows, even slightly, correlate to

..,. User Interface Model 223

the region above, then either push the center down to the region below,
refocus on the center in the same region, or expand toward the periphery .

....,. User Interface Model
Remember that this is not a book on user interface design, but on overall
development methodology. There are a number of excellent books on user
interface design available, starting with Apple's Human Interface Guide
lines . We deal with user interface design issues only in the limited sense of
how to integrate your user interface concepts into the Solution-Based
Modeling methodology .

...,. Overview

The User Interface Model is based on the computer element of the Solution
Model, along with elements representing users of the computer, as shown
in Figure 9-7. The Solution Moqel identifies what the users are responsible
for doing and what responsibilities the computer must have in order to
support their efforts. For each responsibility of the user, we provide a
sequence of events in the user interface that allows the user to carry out that
responsibility.

Solution Model

User Interface Model

Figure 9-7. Building the User Interface Model

224 IJI> Chapter 9 Analysis Part II: The Technology Plane and Beyond

The scenarios we form in th~ User Interface Model use the normal VDL
conventions, but add snapshots of the screen and output reports. Static and
time-sequence scenarios are used to completely describe both the look and
feel and the function of the interface.

The User Interface Model is built by starting with the collaborations of
the computer and user as identified in the Solution Model, mapping those
onto specific user interface features such as buttons, windows, and
scrollable lists, then expanding the User Interface Model and Solution
Model in lockstep toward the periphery. Calibrations are also needed with
the Content Model throughout the process.

~ User Interface Frame

The User Interface Model is framed in several ways.

1. The Solution Model tells us the set of responsibilities the user relies on
to use the computer. We seek to provide concrete mechanisms for
invoking them through the User Interface Model.

2. The Content Model defines the functional capabilities of the program,
independent of the interface. The user interface can determine the
sequence in which these functions are carried out but cannot expand
them.

3. The user interface is obviously constrained by the Macintosh platform
and the technology behind it. To a lesser extent, we take into account
the characteristics of the class library as a very practical constraint on
the expense of implementing our designs.

4. We are constrained by human factors. People need to understand the
program and use it pi:oductively. Many human factors are discussed
in the Apple Human Interface Guidelines; if you have not already done
so, read it cover to cover. Beyond those guidelines, you cannot
separate sound principles of the visual arts from the design of Macin
tosh user interfaces. Certain colors carry implied meanings-red, for
example, often denotes danger in our culture. Aesthetics are a factor
do you really want to put a black menu bar with yellow letters on the
screen? Chapter 5 discussed some of these factors in light of categories
and image schemas.

5. Company policies and procedures, laws and regulations, security,
and a variety of other external factors constrain or influence the User
Interface Model.

.,.. User Interface Model 225

Most of these factors are implicit parts of the frame, including the other
regions of the SBM, the technology used, and, if one includes the Execution
and Program Planes, the class library. "Human factors" is too broad a
subject to completely describe in the User Interface Model frame, but we
can and should capture any central issues. For example, one could lay
down rules such as "Fully conform to the Macintosh human interface
guidelines," or "If it's visible, it's clickable." (That is, anything you can see
on the screen will respond to a mouse click.)

The same human factors tend to apply to all projects, but the set of factors
that are central to the success of any one project vary. In an accounting
system, it is not as critical to worry about the use of color as it is in a circuit
layout design program that must represent multi-layer PC boards using
color. It is strictly a judgment call when human factors are an analysis issue
versus when they apply only to the details of design and programming .

. .,... Elements and Relationships

The User Interface Model contains objects that represent the visible exte
rior of the program: buttons, icons, windows, reports, and so on. These
objects normally are not described as holding data of their own. Rather,
they both obtain and update data by interacting with objects in the Content
Model. In other words, the User Interface Model is a content-free descrip
tion of the program. Returning to an earlier analogy, the Content Model
contains the fuel tank, fuel pump, and engine, while the User Interface
Model contains the gas pedal, fuel gauge, and the cap and hole through
which you pump gas.

Manufactured Objects

Objects in the User Interface Model are a curious cross between the
real-world objects of the Business Plane and the conceptual objects of the
Content Model. It is true that the objects of the user interface are not quite
like the people, computers, machinery, and so forth of the Business Plane.
You can't pick them up or touch them. Yet, neither are they purely
conceptual; they are visible to the eye and you can manipulate them by
using the mouse and keyboard. When the program is running, they really
do exist, but only on the surface of the computer and on the printed page. They are
best thought of as real-world objects that are added to the world as the
result of creating the program. In the terms we discussed for object
candidate lists, most user interface objects are manufactured.

226 ~ Chapter 9 Analysis Part II: The Technology Plane and Beyond

Command Objects

There may be additional objects that are implied but not visible. The user
must understand the existence of such objects in order to fully compre
hend what the program is doing and how to use it. One example is a
command object. When the user selects a menu item, presumably the
program takes some action as a result. The action itself is a temporal object
in the sense described earlier for the object candidate list. When the user
chooses the menu item, the command object is created and becomes part
of the program. It generally persists until it can no longer be undone, but
in some cases command objects might stay around longer to maintain an
audit trail.

This is more flexible than associating the action with the menu item
"object" itself, since it allows a single command to be represented in
several ways in the interface. The same command can be invoked through
a menu item, clicking in a palette, through some action in a window, or
even remotely when an event is received from another program. Com
mand objects can also implement the sometimes complex sequences
required to support Undo and Redo commands. These types of objects are
common features of class libraries.

There are different types of command objects, but most share the
following characteristics.

1. They change the state of the program.
2. They are capable of undoing that change in response to a choice of

"Undo" from the Edit menu.
3. They can almost always be invoked from a menu. In addition, they

can be invoked through other means as well, such as palettes or
Apple Events messages from other programs.

4. They represent a single unit of work as perceived by the user. This is a
critical point and is the reason we take command objects into account
in the analysis phase as part of the user interface design. Commands
represent concepts we want our users to be able to understand, actions
they know they can take in using the program. They are not "mere
implementation details," but a critical part of the user's overall
understanding of the program.

Some command objects act immediately, while others may introduce
modes that prohibit other actions by the user until the command is
completed. For example, a command object may pose a modal dialog, then
take action when the user clicks on the "OK" button. As a final note,

~ User Interface Model 227

command objects are sometimes confused with trackers, which are objects
that track the mouse and provide "rubber band" or other visual feedback.
Trackers usually do not change the state of the program; they merely
provide feedback to the user.

Document Objects

Another, more subtle, implied object is the document. The concept of a
document in a Macintosh program is often misunderstood and, even
when understood, can be difficult to apply. Let's carefully define what a
document is, then explore how to use them in the User Interface Model.

Many menu items are polymorphic; that is, a single menu item may
invoke any of a number of commands, depending on the current context
of the program. "Undo" comes immediately to mind: undo what? The
action taken depends on the state of the program at the time that the user
chooses "Undo." One way to inform the user of the context is to change
the title of the menu item as the context shifts. Thus, instead of simply
"Undo," we might display "Undo Paste" or "Undo Copy" to clarify what
happens when the item is chosen. The most typical way to determine the
context of a Macintosh program, however, is by associating context with
the frontmost window. This is especially true of the File menu items
Close, Save, Save As, Revert, and Print. Each window has its own inter
pretation of these commands. When the command is invoked, the pro
gram looks at the topmost window and takes action accordingly. In
object-oriented terms, the event is sent through a message to the window
object for the topmost window.

This works fine for simple paint or draw programs that have a
one-to-one correspondence between a window and a file on the disk. In
fact, in such cases there really is no need for a document object. The File
commands are passed by the window directly through to the associated
file object (in the Content Model). There are, however, a number of other
less straightforward situations that may arise. For example, several win
dows may share all or part of their data. In a spreadsheet program, you
can have one window display the grid of numbers, while another shows
the same information in the form of a pie chart. Also, the data may not be
in a file, but in a database. The data may even be shared by other users and
other programs. In such cases, it quickly becomes clumsy to force win
dows to handle the File commands by themselves.

Let's try the first variation: multiple windows sharing data. In this case,
choosing Save in any one of the windows should save the data in all the
windows. Yet, we really don't want to force each window to know about
all the other windows; that would be a gross violation of modularity.

228 ..,.. Chapter 9 Analysis Part II: The Technology Plane and Beyond

Enter the document object. The document knows about the underlying
data and how to save it, revert it, and so on. Each window knows how to
find its document. When a window gets a Save command, it passes that
command through to its document. Viewed in this light, a document is
nothing more than an abstraction, the common actions of its windows.
This is a restrictive view, however, since the whole idea of the File menu is
to set up a concept in the user's mind, a metaphorical piece of paper
containing information. Windows can show that information in different
ways, but the information itself comes from the document. In other
words, a document is more than an abstraction: it is something meaning
ful to the user.

What restrictions are there on the metaphor of a document? The most
obvious is the one-to-many relationship with windows. A document may
be associated with any number of windows, but in general a single window
can have only one document. If this were not the case-for example, if a
window had two or more documents-the user could not understand the
context of the program by looking at the topmost window and would
wonder which document for this window she was saving or reverting. The
second restriction is that documents usually represent partitions of the
data available to the user. A partition of a set, in mathematics, is a division
into smaller subsets in such a way that every element of the set is assigned
to precisely one subset. In other words, the subsets do not overlap but
together cover the entire set. Applying this to documents, we say that no
two documents are allowed to share data. The reason is subtle and is
related to the Revert and Save commands. Suppose you have two windows
that share some piece of data, as shown in Figure 9-8. Assume that
everything in both windows is editable.

Make a change in the topmost window to shared data and another
change to non-shared data. Now switch to the other window and make a
change in the shared data-a change that overrides at least part of what
you did in the first window-and also make a change to non-shared data.
Now switch back to the first window and choose Revert. What happens?
The only consistent interpretation is to undo all changes made in both
windows, both in overlapping and non-overlapping data. But this implies
that the Revert command is a property of the two windows combined; in
other words, since they share data, they must both use the same document.
If we use separate documents for the two windows, the documents must
share data, meaning that the Revert command cannot be applied to just the
document of the topmost window. The same line of reasoning applies to
the Save command. This problem arises whenever windows are allowed
to share data and overlapping updates are permitted.

Part t

Part Name
OUr Price

Qty on Hand

Parts

.,.. User Interface Model 229

-·----- Suppliers ~

I
I ~.,,, .. ·-

Add re a a

Supplier t Supplier Na111e Order t Cost

·-"... I
I

Part t Part Name Order t Cost

Figure 9-8. Windows that share data

This is a severe restriction when designing programs that use databases,
particularly when ad hoc queries are allowed. There is no way of predict
ing in advance when queries will overlap. The only practical solutions in
such cases are to use a single document for the entire database, which
trivializes the role of Save and so forth, or not allow Revert, Save, and
possibly other commands of the File menu. A notable example of the latter
approach is Apple's HyperCard, which does not allow Revert in the
interest of handling data shared across windows and which automatically
saves changes as they are made.

It is important to draw a distinction here between the document para
digm in the user interface and the content objects in the Content Model.
Documents first and foremost are user interface objects that determine the
context of certain commands, such as Revert. They do not contain data, but
they can cause change to occur in the data held in the Content Model. A
document object does not determine the actual organization of the data
inside the program; it determines the apparent organization of data as
perceived by the user. For example, a draw or paint program could be
rewritten to store its data in a DB2 database residing halfway across the
continent in a mainframe and a user would be none the wiser (other than
possible performance problems). The User Interface Model would not
change in switching from simple files to the host database architecture,
even though the Content Model might need a big expansion. It is perfectly

230 ..,. Chapter 9 Analysis Part II: The Technology Plane and Beyond

possible to design document objects, then behind the scenes flip between
files, local databases, and even remote sources of data in the Content Model
to provide the actual data. To the user, there isn't any difference between
these sources, since the document provides all the context that is needed.

As with command objects, the document, though not necessarily visual
ized, is an important concept to the user. It explains why the commands in
the File menu behave the way they do. Documents should not be designed
based on the characteristics of the data and specifically not the way the data
is stored, but on the user's cognitive categories of data.

Common Responsibilities in the User Interface

Although the exact set of responsibilities varies with the program, the user
interface is constrained in ways that force certain kinds of responsibilities
on most elements: responding to mouse clicks, keypresses, and commands
to draw in a window. Class libraries commonly provide abstract classes to
provide a common interface to such responsibilities.

Relationships

Relationships may be any of the structural or behavioral kinds discussed
in Chapter 6.

1. Membership relationships apply in the usual way: We form categories
as a shorthand way to describe features of the interface.

2. Part/Whole relationships are very common. Perhaps the best example
is a cluster of radio buttons. The cluster is the whole, each button a
part.

3. Containment relationships are also common. Menus contain menu
items; dialog boxes contain buttons, editable text, static text, and so on;
palettes contain icons, each of which represents a command or state;
windows contain visible things, perhaps within a scrollable view.
Many containers in a user interface are, in fact, implementations of
cognitive categories, since the items contained may have few or no
common properties.

4. Collaboration relationships exist throughout the user interface. For
example, when a button is pushed, it may need to collaborate with
other objects to dim or highlight other parts of the interface. It may
also collaborate with one or more content objects to change the state
of the program.

5. Creation and destruction relationships occur whenever windows are
opened or closed and at many other times in a user interface.

~ User Interface Model 231

Calibration relationships also exist between objects of the User Interface
Model and specific features of the visible user interface, responsibilities of
the computer in the Solution Model, and elements of the User Interface
Architecture in the Execution Plane.

.... Building the User Interface Model

The User Interface Model is intricately woven in with the Solution Model
and Content Model and as one expands, so must the other two. However,
there is a natural sequence to the development of the User Interface Model
during analysis.

1. Start with the Business Plane as already described.
2. Push central aspects of the Solution Model to the Content Model and

iterate until the central aspects are stable and well covered.
3. Create user interface snapshots for central responsibilities of the

computer in the Solution Model. These suggest additional responsi
bilities for the computer which must be calibrated with the Content
and Solution Models. Iterate until the central responsibilities stabilize.

4. Through scenarios, define the objects-windows, controls, and so
forth-in the snapshots. Identify their responsibilities and relation
ships. Form scenarios that illustrate how a user carries out his or her
responsibilities, as shown in the Solution Model, using the objects in
the User Interface Model. Iterate until stable.

5. Expand the User Interface, Content, and Solution Models toward the
periphery. There is no order to the three models at this point. Work
tends to jump around among the three models. Use calibration to keep
the three models in sync. Keep track of all dangling threads, tying
them up whenever it is convenient to do so.

The snapshots you use in the User Interface Model may be simple
mock-ups done using a paint or draw program, or they may be more
sophisticated prototypes. We will talk more about prototypes in a few
moments. Remember, though, that we shouldn't "complete" the User

232 IJll. Chapter 9 Analysis Part II: The Technology Plane and Beyond

Interface Model before descending to the User Interface Architecture and
User Interface Implementation. Just as we iterate between the Solution
Model and User Interface Model, so do we iterate between the User
Interface Model and the lower planes.

..... The Environment Model
The Environment Model rounds out the Technology Plane. There are
certain objects that do not naturally fall into either the User Interface or
Content Model. Consider, for example, objects needed to communicate
with an external database. These are not really content, since they them
selves hold no information. Neither are they user interface, since they are
invisible to the user. However, they are not "mere implementation
details," since the use of a given database may be a major feature of the
end product. It is appropriate, at times essential, to include them as part of
the analysis phase. Figure 9-9 shows the relationship between the Solu
tion Model and the Environment Model.

As you can see, we focus on interactions between the program and other
objects in the environment in which it is used.

Solution Model

Environment Model

Figure 9-9. Building the Environment Model

..,. The Execution and Program Planes During Analysis 233

lllli- Elements and Relationships

The objects in the Environment Model hold no data of their own, are not
directly visible through the user interface, and communicate with one or
more external entities. These objects are not the external entities, but
encapsulations of them. Let's assume that your program needs to commu
nicate with a remote host computer over a network. You might create a
single object or network of objects in your program that presents the entire
interface to that host to the rest of the program. Examples of entities for
which we might create objects in the Environment Model are databases,
networks, and specialized devices that either communicate with or are
controlled by the computer. Such objects are not properly part of the
Content Model, since their purpose is to communicate, not hold knowl
edge. They are not part of the User Interface Model, since they are not
directly visible to the user. They are to the external objects what the User
Interface Model objects are to the user.

As with the User Interface Model, we may have temporal (command) or
automation (document) objects to consider in the Environment Model.

lllli- Building the Environment Model

The objects in the Environment Model vary greatly, depending on the
complexity of the interactions between the program and its environment.
In many cases, an external device is completely encapsulated by a single
object of the Environment Model. In other cases, more complex models
may apply. In all cases, however, we can use the Solution Model as a
starting point. If a specialized device is attached to the computer, it should
exist as an object in the Solution Model with the essential responsibilities
and collaborations laid out. These can then be pushed down to the
Environment Model as the central starting points. Of course, the usual CPC
process also applies: direct examination of the Environment Model causes
expansions, which are correlated to the Solution Model and the other
regions of the Technology Plane. As those other regions are expanded,
synchronization with the Environment Model takes place .

....,. The Execution and Program Planes
During Analysis
Most activity during the analysis phase of a project is on the Business and
Technology Planes. However, there are times when it is appropriate to
proceed down to the Execution or even the Program Plane, even though the
project is still formally in an analysis phase. There are at least four basic

234 Chapter 9 Analysis Part II: The Technology Plane and Beyond

reasons for doing so: to develop prototypes, to aid in estimation or
scheduling, to refine the concepts in the Technology Plane to take into
account the class library to be used, and to keep people busy while other
reviews or approvals are pending. The first three reasons are under the
broad umbrella of "prototyping" in Solution-Based Modeling .

..,.. Prototyping

A prototype can be anything from sketches on index cards spread over a
table to working software that has a good chunk of the functionality of the
finished product. In fact, we have already used prototyping without
identifying it as such in the example of the screen snapshots included in
the User Interface Model scenarios. Before discussing how the different
kinds of prototypes can be used in Solution-Based Modeling, we should
first set some objectives we hope our prototypes can help us achieve.

Objectives of Prototyping

Prototyping can serve several purposes, from simply communicating
progress to demonstrating that certain problems do, in fact, have solutions
in actual code. It is important to keep in mind that prototyping can at
various times serve the objectives of different people: engineering, man
agement, users, systems analysts, and so on. Although other purposes can
no doubt be served by prototypes, the following objectives are found in
most Macintosh software projects in varying degrees.

Heisenberg Prototyping. In Chapter 1, we talked about the Heisenberg
Uncertainty Principle of physics, which states that in order to observe
something you must somehow affect it. A good prototype should first
and foremost stimulate our perceptions-that is, it should add to our
observations-but in the process we should expect earlier assumptions to
be invalidated or refined. Prototypes are not really additive. You will not
start with a stable body of knowledge and expand it by developing a
prototype. Instead, as you prototype you constantly fine-tune and occa
sionally overhaul the work that has gone before. The authors call this
Heisenberg Prototyping-deliberately jiggling the problem and your
assumptions about it in the hope that anything that is not fastened
securely comes loose. When choosing topics for this kind of prototyping,
you should seek out controversy, not shy away from it. It is precisely in
the less well-understood parts of the model that prototyping yields the
greatest insights. In fact, Heisenberg prototyping can be a very effective
tool in smashing through the conceptual brick walls that frequently arise

..,. The Execution and Program Planes During Analysis 235

in a software project. If a problem seems sticky in the Technology Plane,
choose some central aspect of the problem and work on a prototype of
that center in the Execution or Program Planes. If that still bogs down,
deal with the center of the center and so forth until something jiggles
loose. This is technological brainstorming, so dare to be creative and
occasionally outrageous, as long as you remember that backtracking to
more solid ground is also part of the process.

Validating Abstractions. When you are working on the Content Model,
things often seem a little vague. A second role for prototyping is to add
crispness to the concepts of the Technology Plane in general and the
Content Model in particular. In the Content Model, we form abstractions
such as, "These objects are all examples of reports, and all reports print
themselves." Is this really true? Do we mean the same thing when we say
"print a paycheck" that we mean when we say "print an hours worked
report?" These questions are best answered in the Execution Plane which,
as we will see in the next chapter, can add a great deal of clarity to the
responsibilities and relationships of objects. This use of prototyping can be
thought of as validating the abstractions and definitions of the higher
planes of the SBM.

Estimation, Scheduling, and Engineering Feasibility. A third role of
prototyping is to aid in project management by reducing the risk involved
in project scheduling. In every software project, certain parts of the project
cause sleepless nights for both engineering and general management.
These are either the cornerstone algorithms or structures without which
the project will fail or performance constraints on key aspects of the
application. It may be unknown whether they are even possible, but more
likely it simply isn't known how long it takes to implement them or what
resources are necessary. These are central issues to the design and imple
mentation, even if they aren't central to the user's perception of the
program. Prototyping can be a great help in developing estimates and
schedules or in establishing the engineering feasibility of the solution.

Minimizing Costs. In the Technology Plane, there are often many differ
ent approaches to a problem, particularly in the user interface. If one
approach clearly stands out as best, use it. If it is unclear which approach
is best, considerations of which approach best utilitizes the class library
often tip the balance. For example, in MacApp, one can nest views within
a window to an arbitrary level, but the standard print handling classes
cannot handle subviews. A decision in the User Interface Model to print
exactly what is on the screen at any time can prove prohibitively expensive

236 ..,. Chapter 9 Analysis Part II: The Technology Plane and Beyond

since the standard print handling classes give no support for nested views.
It may be more economical and almost as effective to create a separate print
image for each report, rather than attempt to unify the print image with the
editable, displayed image. It is difficult to identify these kinds of tradeoffs
without resorting to prototypes in the Execution Plane, where user inter
face objects are mapped onto the classes of the class library. This is true in
inverse relation to your experience with the class library: The less you
know about the class library, the more valuable this objective becomes.

Demonstration and Confidence Building. Finally, prototypes can be
used to demonstrate progress and build confidence in the process being
followed. These prototypes have entirely different objectives and audi
ences than the ones we have talked about so far. They should shy from
controversy, not stimulate it. They should target central features as per
ceived by the target audience, whether end users, management, product
marketing, or members of the target market, not central features as
perceived by the project team. Demonstration prototypes are important for
their own reasons, but they should not be confused with prototypes whose
purpose is to further develop the model. They communicate work in
progress, but are not necessarily part of that work.

Kinds of Prototypes

Now let's look at the different approaches you can take to implement
prototypes and relate them to the objectives just discussed.

Storyboards. The simplest form of prototype is the storyboard. This can
be constructed by assembling a series of screen shots associated with the
scenarios of the User Interface Model. They can be prepared using pencil
and paper, paint programs, HyperCard, or white boards and markers.
Storyboards need not be electronically linked through on-screen buttons;
simply posting them on a large wall or spreading them over a table is quite
adequate. Storyboards are especially good for demonstration and
Heisenberg prototypes. They can be put together in a hurry, which allows
them to be up-to-the-minute. They can be changed equally quickly, espe
cially if you use some sort of cut-and-paste technique for drafting them.
They don't take a huge chunk out of your budget. Storyboards are also
useful in clarifying the User Interface Model; in fact, it is difficult to proceed
without them. Storyboards are not as useful for achieving the other
objectives of prototyping.

.... The Execution and Program Planes During Analysis 237

Simulations. Simulation prototypes show the screen snapshots and pro
vide them on-line with simulation of much of the functionality of the
finished program. Providing on-line simulation can sometimes be a help,
but you must seriously question the time spent on that linkage compared
to simple storyboards. The ability to see lots of snapshots spread over a
table at once is a distinct advantage of the manual methods. Simulations
are typically constructed using HyperCard, prototyping tools like
AppMaker or Prototyper, or by writing code that implements the proto
type. All but the last of these-writing code-are extensions of the
storyboard approach. They do not yield much information about feasibil
ity, cost, or other information you typically want from a prototype.
Creating actual code is a good way to establish engineering feasibility,
develop estimates, and explore the relationship between your program's
interface and content and the features of your class library.

Scenarios. Simulation prototypes are not very effective at validating
abstractions because they require too much work in return for the informa
tion they provide. Simply forming scenarios in the Execution Plane is far
more valuable and productive in adding crispness. This, in fact, is the most
effective form of "prototyping" for achieving many of the objectives we
have laid out: validating abstractions of the Technology Plane, estimating,
demonstrating engineering feasibility, and minimizing costs by making
the most effective use of the class library. The scenarios of the Execution
Plane are close to the level of code, but without classes and inheritance. We
can achieve much of the benefit of actual code without the extra baggage
of compilation and linking, user interface, and the other hassles which
accompany programming. It is also an easy way to proceed deeper into the
design without the need for coding a user interface .

...,. Advance Scouting

In addition to prototyping, the Execution and Program Planes can be
explored during the analysis phase simply to allow more parallel activity
to take place. It is common for the User Interface Model to require much
more review and with more people than the Content Model, resulting in
idle time for some members of the team. In such cases, it is often productive
to allow the team to proceed on to the Content Architecture or other parts
of the Execution Plane while the rest of the Technology Plane fills out. This
is actually design work, but remember that we have defined our analysis
phase separately from analysis activities. Until we reach the milestones for
completion of the analysis phase, all work that takes place is part of this
phase, regardless of on which plane and for what purpose the work takes

238 ..,. Chapter 9 Analysis Part II: The Technology Plane and Beyond

place. This parallel activity can only strengthen the results of the analysis,
at the risk of some wasted effort. For this reason, it is important when doing
advance scouting to choose stable topics and stay within the scope already
established during analysis .

..,.. Completing the Analysis Phase
We have now covered all of the activities of the analysis phase. We now
need to talk only about the transition from analysis to design .

...,. How Do You Know When You Are Done?

The objectives of the analysis pha·se are to establish scope and to develop
schedules and estimates for the remaining work. Since the Business and
Technology Planes together define the scope as it is understood at any one
point in time, we should complete these planes before moving on. How
ever, as we know, these planes are never really complete. The best we can
hope to accomplish is to have someone in authority certify in writing to the
following ..

1. The Business and Technology Planes, while subject to refinement as
work proceeds, represent the intended scope of the project. We know
of no expansions of these planes required to make the product
complete; all expansions from this point through delivery will be the
result of calibrations from the lower planes.

2. The project schedule, resource allocations, and estimates are credible
and backed by sufficient detail.

3. The Solution Model is fully correlated to the Reference Model and
Technology Plane.

This person relies on the opinions of others and his or her own impres
sions of the credibility of the project team. Once again, one reaps the
benefits here of a team approach to the development. Solution-Based
Modeling is designed to keep everyone in touch throughout the process.
VDL, the use of scenarios, performing analysis in terms of cognitive
concepts, rather than computer technology-all are intended to maintain
communications throughout the analysis phase. By the end, there should
be few questions left to answer in deciding whether the phase is over,
since management has been kept in the loop. (If you haven't done this, go
back and reread Chapter 7!)

~ Completing the Analysis Phase 239

There is a necessary, mechanical condition that must be met before one
can declare analysis complete. Dangling threads in the Business and
Technology Planes must be tied up, with the exception of threads that can
be resolved only in the Execution Plane. In other words, the planes must be
self-consistent and, within the scope they cover, complete. Note that
"complete" here is a relative term, meaning only that dangling threads
have been tied up. Absolute completeness can only be determined by
someone exercising individual judgment.

~ Estimating, Scheduling, and Planning

Part of wrapping up the analysis phase is planning what happens next. In
fact, the development of a sound project plan is a major objective of the
analysis phase. The authors hope that you haven't skipped straight to this
section expecting to find a magic wand you can wave to produce good
estimates. This is still an area that requires judgment and experience, both
with software development in general and with the unique circumstances
of your organization. In other words, estimating is still more art than
science. That said, we can provide a few pointers on how to proceed and
structure the estimates.

Each element of the Technology Plane-objects, categories, responsi
bilities-and all relationships must be designed and implemented. In
fact, these constitute the vast majority of the effort through completion.
This provides a ready-made basis for estimation. However, this is an
overwhelming amount of detail, certainly too much to build into a sched
ule. (It is, however a checklist for completion. It is just too fine a grain of
detail for use in estimating.) It is better to base estimates for design and
programming on scenarios: how long will it take with what resources to
implement this and this and this scenario? The key here is to choose
scenarios that together cover the entirety of the Technology Plane. This
means not just scenarios that define all the elements and relationships, but
time-sequence scenarios that show their dynamic interactions as well. It
has been the authors' experience that the time per scenario is relatively
constant across a project. In the early going, scenarios take longer due to
the foundation work taking place; later scenarios can start from an estab
lished base. However, since calibration increases as the scenarios pile up,
the net result is a relatively steady pace. The average time per scenario
depends on the nature of the application and the organization and team
doing the work.

Schedules should also be based on completion of scenarios. Completion
of a single object means nothing; only when it is successfully placed in all

240 ..,. Chapter 9 Analysis Part II: The Technology Plane and Beyond

relevant contexts can one call an object "complete." Dependencies of one
task on another can be traced to shared elements of the scenarios .

..._ Summary
The Technology Plane has three regions: the Content, User Interface, and
Environment Models. The Content Model holds the data content of the
program and represents the capabilities of the program shorn of its user
interface. The User Interface Model contains the objects that make up the
visible part of the program. The Environment Model contains objects that
encapsulate external programs or devices, such as host computers, net
works, and specialized equipment attached to the computer.

• The Content Model contains conceptual objects that do not exist in the
real world. We attempt to create metaphors for real-world objects to
make the analysis and design easy to grasp. Creative construction and
review of object candidate lists can help us identify these conceptual
objects.

Responsibilities are assigned in the Content Model according to four
principles: limit responsibilities, limit data knowledge, limit imple
mentation knowledge, and limit relationships. A fifth consideration,
limiting type knowledge, applies to the Program Plane. Two general
strategies help achieve these objectives: the black box approach and
client/ server architectures. The inevitable dynamic tension among
these five objectives requires judgment and experience to resolve.

Correlation takes place across planes of the SBM ensuring that each
element is implemented or replaced by elements in the planes below it.

• The User Interface is framed by the Solution Model. It is also con
strained by the other regions of the Technology Plane, the Macintosh
platform, and underlying technology, the class library chosen, human
factors, and company policies and procedures. Most elements of the
User Interface Model are manufactured objects: They really exist, but
as artifacts of the computer. There are also objects that are added to
represent concepts important to the user such as documents and
commands.

• The Environment Model encapsulates in objects all interactions be
tween the Content Model and the external, but non-user interface,
environment.

While in the analysis phase of a project, one might work in the
Execution or Program Planes for two basic reasons: prototyping or
making progress while awaiting reviews or approvals. Prototyping

.,.. Summary 241

can serve several different objectives addressing different audiences:
enhancing observations of the problem or solution, assisting estima"'
tion or scheduling, establishing engineering feasibility, or allowing
demonstrations.

The analysis phase ends when someone in authority says it does.
Ideally, it should not end until no further expansions of the Business
and Technology Planes are needed to establish scope and the sched
ules, estimates, and resource allocations are acceptable. To ensure this,
there should be no dangling threads in the Business Plane and none in
the Technology Plane except those which can only be resolved in the
Execution Plane.

10 ~ Design

....,. What This Chapter Is About
This chapter begins where Chapter 9 ended: at the conclusion of the
analysis phase. Now we turn our attention to design and the construction
of the Execution Plane.

This chapter discusses a number of concepts and skills used for the first
time in this plane. The Execution Plane contains run-time objects that do
not rely on inheritance or polymorphism. The distinction between
run-time objects and their language-based implementation can be difficult
to grasp, so we'll spend some time clarifying just what is relevant in
describing the Execution Plane. We will distinguish between an "abstrac
tion," a shorthand for two or more run-time objects that share properties,
and a class, which is something used to write a program. Also new to the
Execution Plane is the last of the three methods of calibration, synchroni
zation, which is used to ensure consistency within the plane. The Environ
ment Architecture contains new objects that represent application-level
concepts, including event dispatching and event handling.

The discussion of the User Interface Architecture leads naturally to more
general topics of object-oriented software architecture. The user interface
is broken down into three types of objects: renderings, display containers,
and managers. Also addressed is the general subject of dependency
management, which holds that one object may need to be notified when
ever another changes its state.

Following these topics, each of the four regions, content, user interface,
and environment, is discussed separately. This leads into a general discus
sion of a number of important architectural concepts in object-oriented

243

244 Chapter 1 O Design

systems. The chapter concludes with a discussion of project management
issues in the design phase .

...,.. Overview
The analysis phase centers on defining a business solution and a concep
tual design that implements the Macintosh portion of that solution. These
are captured in the Business and Technology Planes. During the design
phase, you express those concepts in software by describing the objects that
will exist in the running program, stripped of classes, inheritance, poly
morphism, and other object-oriented language tricks. The Execution Plane
differs from the Technology Plane in four ways:

• It uses program objects instead of conceptual objects.
• It is more detailed.
• It divides objects according to principles of software architecture.
• It uses very rigorous validation procedures, especially the third and

final form of calibration, synchronization.

The design phase begins where the analysis phase leaves off and ends
when the Execution Plane covers the entire scope ofthe Technology Plane
and is fully validated. Where a great deal of judgment was required to find
the end of the analysis phase, there is a much more precise set of tests to
detect the end of the design phase.

~ Using CPC During Design

The basic processes introduced in the previous chapters apply equally to
the design phase.

• Use CPC to determine the order in which the plane is constructed.
• Build and synthesize scenarios to gather and assimilate new

information.
• Correlate to make sure that all work is consistent across planes.

In addition, you will now use synchronization as a way of performing a
very meticulous audit of the design within the Execution Plane.

New information in the design phase consists mostly of expansions and
refinements of the Technology Plane, rather than the new concepts and
original solutions to problems that are developed during the analysis
phase. You will undoubtedly have already done some work on the Execu
tion Plane as part of the analysis phase. This usually provides a good

..,. Overview 245

starting point for expansion. In addition, drill down central topics of the
Technology Plane, then expand them within the Execution Plane, correlat
ing to make sure the two planes continue to describe the same conceptual
solution.

..... Program Objects vs. Conceptual Objects

In the Technology Plane, you formed conceptual objects to describe design
ideas. In the Execution Plane, these objects must conform to three rigorous
requirements of object-oriented programming: (1) objects are completely
described by their responsibilities and attributes, (2) responsibilities have
precisely defined formal typed call parameters and return values, and (3)
attributes have specific data types. In the Execution Plane, you will impose
these restrictions as the first step toward code. For this reason, it is time to
switch from the conceptual model and notation to the programmatic
model and notation, as shown in Figure 10-1.

Figure l 0- l . Program objects vs. conceptual objects

..... Adding Detail

The Execution Plane contains a much finer level of detail than the Technol
ogy Plane. There are several specific sources of this added detail.

• As noted, in the Execution Plane, you completely specify all data sent
to and received from a collaborating responsibility. In the Technology
Plane, it is not necessary to specify arguments or return values when
invoking responsibilities.

246 ~ Chapter 1 O Design

• The Technology Plane makes no attempt to connect the Content Model
to the User Interface and Environment Models; the Execution Plane
connects objects across regions as needed.

• In the Technology Plane, objects are generally assumed to exist when
needed. In the Execution Plane, the creation and destruction of every
object must be precisely specified and coordinated with all cpllabora
tions of the object. This and other detailed issues are audited by the
process of synchronization.

• In the User Interface Architecture, objects are refined and divided
such that each fits neatly into one of three general categories: render
ings, display containers, and managers. These can be very roughly
described as "things that draw," "places for things to draw," and
"things that decide what to do when the user does something,"
respectively. In the Technology Plane, these concepts are frequently
jumbled together in the interest of a simple conceptual model of the
program .

...,. Adding New Objects

Certain kinds of objects make their first appearance in the Execution Plane.

• Application class libraries-The user interface objects of the run-time
program must be mapped onto classes of the application class library
(forexample,MacApp). Youwillnotdecideatthistimehowand when
to inherit from library classes, but you will identify which features of
the library will be used to implement the design. This is also done for
the other regions of the plane, but the task is dominated by the User
Interface Architecture.

• Automation and auxiliary objects-The Environment Architecture is
augmented with automation and auxiliary objects to account for the
application itself, event handling, and interactions with the Macintosh
platform, Toolbox, and operating system.

... Run-Time Objects
One of the most important principles underlying the Execution Plane is
that the designer must deal with two very different object-oriented envi
ronments: run-time and compile-time. In Solution-Based Modeling, these
environments correspond to the Execution Plane and Program Plane,
respectively. It is central to Solution-Based Modeling that the two con
cepts be kept separate, so it is appropriate to pause and discuss the
differences in some detail.

..,. Run-Time Objects 247

.,.. How Are Objects Implemented?

To demonstrate what run-time objects are and how they differ from
compile-time objects, we will make up a language called "C - ", which
uses a brute-force implementation of run-time objects from compile-time
classes. Once we have introduced C - , we will return to discuss a couple
of real languages. This is not a technical treatise on how to write
object-oriented programming languages, just an attempt to drive home
the important differences between a run-time object and a compile-time
object class.

Objects in "C-"

C- uses the syntax of C++, but isn't quite as smart in the way it imple
ments the objects. Nevertheless, it provides a perfect contrast between
run-time instances and compile-time objects. Start with the following
class definition.

class foo {
private:
int a;

protected:
void do_ something (void) ; I I A method that does something useful
public:
I I Does something else useful
virtual void do_ something_ else (void) ;
};

This is a signal to the compiler to create a structure something like this.

struct foo class {
void (*f)()[]; //A pointer to an array of method addresses
int a;
} ;

In other words, the class gets translated into a rather conventional data
structure, the first field of which is a pointer to an array of method
addresses. Let's call this array the "mtable." Following the mtable are fields
corresponding to the various data members. When the running program
needs to create an object of class foo it allocates space in memory for a
struct foo _class, initializes the mtable to point to the global array of
methods for that class, then calls the constructor method to initialize the
data members and take any other action you have defined. Put another

248 .,... Chapter 10 Design

way, each object is simply a data structure, part of which points to its
methods. Now let's throw in a subclass and see what happens.

class bar : public foo {
private:

long b;
public:

//Overrides superclass version
virtual void do_something_else (void);
//A new method for this subclass
void do_nothing_and_pretend (void);

} ;

Now the compiler must produce a structure that includes the features of
both the subclass and its superclass.

struct bar_class {
void (*f) () []; /I The mtable - methods of the superclass "foo"

int a;
long b;
};

II followed by methods of "bar"
II From the class "foo"
II From the class "bar"

The data members were combined to produce a new, big structure.
Because we were clever about the order in which things were defined in the
structure, the first two entries look just like a struct foo _class. This
is how one can address a bar as if it were its superclass foo and still get
the right results-the beginning of a bar is in fact a foo. We handle the
mtable in a similar way: The beginning of the table contains methods of
foo, except that wherever bar overrides one of those methods-in this
case, do something else-we substitute the address of the subclass
version in the same slOt of the array. This is followed by methods of bar
that are not overrides of inherited methods, such as do nothing
and _pretend. If someone, thinking this is really a foo whe:ilit is, in fact,
a bar, should call an overridden method, everything works fine, because
the address of the overridden version is at the same offset in the mtable as
the superclass version in the mtable of the superclass. The implementation
of that slot in the mtable is different, but the interface, calling sequence, and
offset into the mtable are all the same, regardless of which subclass has
grabbed control of that slot.

The next step is to change the calling sequence to methods. If the
program contains the call x->do something (list of args), we - - -

...,. Run-Time Objects 249

follow a two-step process: (1) look up the correct address of the
implementation in the mtable of x, then (2) translate the call into
the general form class_of_x_do_something (x, list_of_args),
where class_of_x_do_something is the implementation of
do_ something pointed to by the mtable of x. In other words, pass the
address of the target object (x) as an implied parameter to the method.
This allows the method to access both the fields of the structure and its
other methods.

Objects In C++ and Object Pascal

C++ actually uses a scheme fairly similar to C-, but the C++ compiler is
smart enough to optimize special cases. C++ has a vtable where we had an
mtable. If a method is not virtual, it need not go into the vtable at all. It is
simply assigned a global name and called as if it were a global function
with the object's address as the first argument. In fact, C ++ won't even
create a vtable if there are no virtual methods for a given class. Also, the
C++ compiler will not use friendly names in the generated code. In C-,
the method name was a combination of the class name and the method
name (for example, class_of_x_do_something()}. In C++, the real
name is a mishmash of the method name, the class name, and the data
types of its arguments, all encoded in a way that would do the CIA proud.
Despite these differences, the essential character of C - remains: to call a
virtual method, look up the method in a table for the class.

Object Pascal achieves the same results, but the order of method lookup
is the opposite of C++. Rather than put a vtable into each object, it puts a
16-bit integer class identifier at the beginning of each object record. Instead
of a table for each class, there is a table for each overridden method. In each
table is a set of (class ID, method address) pairs. When OP has to find the
right virtual method to use, it looks in this table of pairs, searching within
that entry for the class identifier matching that of the object. This is the
opposite of the strategy used by C++, but the effect is the same. Each
run-time object has a specific set of methods associated with it. The only
differences are related to optimizations provided by the compilers.

Figure 10-2 shows how one may visualize method lookup as a
two-dimensional array, with classes for rows and method names for
columns. In C++, you first find the row, then index to the correct column.
In Object Pascal, you first find the column, then search for the right row.

In both cases, the compiler takes care to hide the messy details of the
lookup table from the programmer.

250 ~ Chapter 1 O Design

Square
Circle
Triangle

El
El ns
ns !l CIJ

i ~ j ~ ~ ns
~ 1--.... L&. 1--Cl

(FrameRect(fBounds); I

...-_.

I FrameOval (fBounds);)

(MoveTo (fVertices[O] .h, fVertices[O] .v);
LineTo (fVertices[l) .h, fVertices[l) .v);
LineTo (fVertices[2) .h, fVertices[2) .v);
LineTo (fVertices[OJ .h, fVertices[OJ .v);

I

Figure 10-2. The two-dimensional structure of method dispatching

Where Did the Inheritance Go?

Look at struct bar_class again. Do you see inheritance there? No,
because there isn't any. That was all taken into account when the mtable was set
up: It was frozen at compile time. The compiler chose a very specific set of
attributes and methods to assign.to instances of this class at run time. In
fact, it is impossible to look solely at the definition of struct bar_ class
and deduce anything at all about its ancestors! You cannot tell what
superclasses it has-in fact, you can't even tell from what concrete class it
came! You also cannot tell from the mtable which methods were overrid
den and where. Inheritance and polymorphism are purely compile-time
concepts in C ++,as in most object-oriented languages. Object Pascal carries
around a little extra baggage called metainformation that allows you to
deduce more about an object's class and ancestry at run-time, but the
structure of a class and its methods are fixed at compile-time. The
metainformation only provides more information about what is already
frozen at compile time. In both cases, there is a sharp distinction between
the run-time object (a data structure accompanied by a method lookup
table) and the compile-time class, which must be combined with its
ancestors in order to make any sense of the class.

..,. Run-Time Objects 251

In fairness, we must point out that certain object-oriented languages
actually allow classes and objects to be dynamically changed at run-time.
These include Smalltalk and Macintosh Common Lisp with its CLOS class
library. However, these features are not commonly used outside develop
ment environments. It is still the objects themselves that do all the work;
except in unusual cases, the same principle of separating the run-time and
compile-time worlds still applies. Even when these dynamic features are
used, the concept of the Execution Plane remains valid, but some of the
clear distinctions between the Execution and Program Planes diminish.
Specifically, classes themselves become objects with responsibilities in the
Execution Plane in order to account for these specialized behaviors.

Still not convinced? Try using Neon, one of the first object-oriented
languages. There are no classes at all, only run-time objects. You start with
an empty object and add attributes and methods one at a time. In Neon, the
closest thing to instantiating a class is cloning an object to make an identical
copy. This is true object-oriented programming, but completely without
classes or inheritance, something we alluded to in Chapter 2.

~ Classes vs. Abstractions

Chapter 5 documented why classes are not all that "meaningful" in
complex projects, even though objects are. Classes may be useful for
software architecture, but not for semantics; they simply don't correspond
to the way we think. By sticking to objects, you use the most general and
powerful tools for describing the running program, keeping the design
accessible, and deferring most language dependencies to implementation.

Even within the realm of shared properties, a class is still a special case
of a much more general way to describe sets of run-time objects using
abstractions. In many programs, there are relatively few run-time objects
and they can all be enumerated in the Execution Plane. However, if your
program consists of hundreds or thousands of objects, many of which
appear and disappear in response to user actions, it is not practical to
describe each and every object individually in the Execution Plane.
Instead, you need a way to describe sets of instances. If two objects share
two attributes and three methods, we can describe "the set of objects that
have these two attributes and those three methods" as an abstraction in
the Execution Plane. More generally, any set of instances can be described
as an abstraction that contains the shared methods and attributes of the
members of the set. That abstraction may or may not ultimately become a class
in the program. It is useful as a description of the run-time architecture,
regardless of whether it becomes a class or not.

Abstractions are used to describe sets of instances in the Execution Plane
for two primary reasons. The first reason is that abstractions can be allowed

252 ~ Chapter 1 O Design

to overlap (intersect) one another in arbitrary ways. Classes can overlap
only according to the models of inheritance supported by the particular
language you choose. For example, Object Pascal does not support mul
tiple inheritance. Even in C++, multiple inheritance can get murky in a
hurry. What if you inherit from the same superclass more than once? In
abstractions of the Execution Plane, there is no need for such tomfoolery,
since the abstractions are only descriptions of or assertions about the
run-time objects. Multiple, overlapping abstractions provide an extremely
useful way to describe a run-time architecture that you should be able to
use long before worrying about the particular features of the language.

The second reason is that there are many different ways to implement an
abstraction in code, should one wish to do so. Some don't even directly
involve the compiler and language! We will talk about these techniques in
Chapter 11. The point here is that, faced with a variety of ways of
implementing a single concept, you should use the concept itself as the
basis of the architecture and leave the rest to implementation and optimi
zation.

For these reasons, you can describe a set of instances in the Execution
Plane using abstractions of their attributes and responsibilities. These
abstractions are created for convenience: They can overlap, form hierar
chies or not, and use any subsets of the attributes and responsibilities of the
instances that best describe the run-time objects.

For example, in our payroll application there are many objects that need
to be printed, including paychecks, W-2 forms, and so on. It may be useful
to define an abstraction for printable objects called REPORTS, which may
become one or several classes in the Program Plane, or it may turn out to
not be relevant to the implementation at all .

...,_ Categories vs. Abstractions

You might be wondering about the relationship between a category of the
Technology Plane and an abstraction in the Execution Plane. After all,
categories also provided a means of describing sets of either conceptual or
real-world objects. You assign responsibilities and attributes to categories
as a shorthand way of saying, "All members of category C have these
properties." Sounds an awful lot like an abstraction, doesn't it? Without
ever explicitly saying so, we have insisted, through the process of synthe
sis, that our categories either have no properties or that all members share
all properties assigned to the category; that is, we allowed, but did not
force, categories to also be abstractions. If no shared properties apply, you
can form categories without any properties. These function as conceptual
groupings of objects or other categories, but little else.

..,.. Building the Execution Plane 253

Categories without properties must be modeled using containers, not
inheritance and abstraction, since there is nothing to inherit or abstract.
There is always a trivial level of sharing due to the simple fact of member
ship in the category, but this is really a degenerate use of abstraction. This
might be the case among the tools in a tool palette in the user interface, for
example. Beyond a trivial level °(for example, containment in the palette
and handling a mouse click), these are likely to share no attributes or
methods. Each tool has its own agenda and probably shares little else,
beyond membership in the palette, with the other tools. On the other hand,
where shared properties exist and are considered helpful in describing the
model, you can superimpose abstractions on top of cognitive categories.
Such categories will often, but not always, turn out to be useful abstractions
for the Execution Plane. There is no rule that says categories need to
become abstractions in the Execution Plane or classes in the Program Plane.

..... Building the Execution Plane
For the most part, the Execution Plane is a straightforward expansion of the
Technology Plane. Before plunging into a detailed discussion of each
region, let's summarize that which is common across the entire plane.

~ All Regions

We listed the differences between the Technology Plane and Execution
Plane in the overview. Now let's expand on them.

Add Calling Sequences

Full calling sequences are now used for responsibilities, including return
data type and arguments. We recommend that you use the syntax of your
language of choice, but pseudocode is also acceptable. Adding calling
sequences frequently exposes problems with the Content Model, espe
cially synonyms (for example, two different names for the same responsi
bility). Figure 10-3 shows an example of a scenario from the payroll
Execution Plane concerning the category REPORTS.

As you can see, all REPORTS have been lumped into one category and
abstraction, with the same collaborators. However, consider what hap
pens when we fill in the calling sequence in the Execution Plane, as in
Figure 10-4. Paychecks, previously thought to be "the same" as other
members of the category REPORTS, can now be seen to require slight
differences in protocol. This exposes a synonym: the responsibility "Gen
erate Print Image" from the Technology Plane is seen to actually represent
two different responsibilities, one of which applies to paychecks and the

254 ~ Chapter 1 O Design

Scenario #: 53
Authors: JVA,NLG
2/3/92

~ .
~
~

Content Model

Generating, Printing and Saving Reports

To Do:
- Remaining reports
- Remaining Responsibilities

Figure 10-3. Payroll reports in the Execution Plane

Scenario #: 75
Authors: JV A,NLG
2/15/92

Content Architecture

GeneratePrintlma e (Date)

(Date)

Generating, Printing and Saving Reports

To Do:
- Remaining reports
- Remaining Responsibilities

Figure 10-4. Revised payroll reports In the Execution Plane

~ Building the Execution Plane 255

other to all other members of the category REPORTS. We say that paychecks
are a counterexample within the category REPORTS, since it violates the
abstraction of the category. In this case, we must also change the properties
of the category REPORTS or remove the erring member from that category. In
Figure 10-5, the latter approach was taken to resolve the differences.

Scenario #: 53-a
Authors: JV A,NLG
2/15/92 ~
~

~
~

Generating, Printing and Saving Reports

To Do:
- Remaining reports
- Remaining Responsibilities

Content Model

Figure 10-5. Resolving a category /member conflict

Synchronize

Another activity new to the Execution Plane is the use of synchronization.
Synchronization takes the conceptual design of the Technology Plane and
puts it through a thorough audit. Synchronization, for example, ensures
that objects have been created before they are needed as collaborators and
that objects have the addresses-or the means to get them-of their
collaborators. As a result of synchronization, it is common to spend a lot of
time jumping between the Technology, Plane and the Execution Plane,
ironing out the wrinkles exposed by synchronization. Much of this syn
chronization must be done across the boundaries of regions of the Execu
tion Plane. For example, key objects of the Content Architecture may be
created or destroyed by objects of the Environment or User Interface
Architectures. We will describe the details of the process of synchroniza
tion later in this chapter. For now, note that it is a critical process which
spans the entire plane.

256 ..,.. Chapter 1 O Design

Decompose Responsibilities

Responsibilities should be broken into as fine a grain of detail as possible.
Figure 10-6 shows an example of this.

Scenario #: 60
Authors: JV A,NLG
2/10/92

Content Model

~~
ComputeHourlyPay

~ ~

To Do:
- Deductions
- Salaried pay

Scenario #: 87
Authors: JV A,NLG
2/20/92

To Do:
- Deductions, sick time
- Salaried pay

Computing Hourly Pay

Content Architecture

~§/=====:..!!::::c.-·lar, Overtime)
ComputeTaxes(Gross)

/ '-/T~T•ble/
Computing Hourly Pay

Figure l 0-6. Detail in the Execution Plane

..,.. Building the Execution Plane 257

In the Technology Plane, we used a single responsibility to call several
collaborators. In the Execution Plane, this is broken out into a series of
responsibilities.

Use Accessors

Accessors come into play in the Execution Plane. Generally speaking, if an
object stores some given attribute, provide the corresponding "Return"
and "Accept" responsibilities to access it and change it, respectively. This
is in addition to whatever higher-level responsibilities may have already
been defined for the use of the attribute. In most cases, you should have a
single responsibility for storing the attribute and a single responsibility for
returning it. There are some trivial exceptions, such as the one shown in
Figure 10-7.

Figure l 0-7. Accessors for a Boolean-valued attribute

Here there are two different "Accept" responsibilities: one to set the
attribute to true and one to false, rather than a single responsibility with a
Boolean argument. These arise whenever a general data type, such as
Boolean, is being used to represent a more specific idea in the program.

It is important to maintain a sense of perspective on the subject of
accessors. There are those who advocate that there be a single "Return"
and a single "Accept" responsibility for each attribute. As with much
of object-oriented software development, this is a guideline and not a
commandment.

Implement Categories as Containers and Abstractions

You must also decide what to do with the categories of the Content
Model. Some of these represent useful abstractions that translate in a
straightforward fashion into the Content Architecture. Others, especially
those with no properties, may have no role to play in the architecture.
They may be valuable in describing the conceptual design of the Technol
ogy Plane, but need not have anything to do with the design or implemen
tation of the program beyond that. Some categories can actually be seen,
on close inspection, to represent groupings of run-time objects. These
invariably turn into containers in the architecture. This is almost always

258 ..,.. Chapter 1 o Design

the case when the only properties shared by all members of the category
have to do with the mechanics of membership in the category.

For example, in the model railroad application, it may be useful in the
Technology Plane to create a category for the combination of track objects
and certain connecting scenery objects such as bridges and switches.
However, this category may not be relevant to the design or implementa
tion of the program subsequently. Or it may be useful to create an
abstraction for all of the objects that make up a single layout. This may turn
out to be an important container object in the final implementation.

Map Objects onto Classes of the Class Library

Although we are still not prepared to decide exactly how to use inherit
ance, it is foolish not to consider the impact of the class library on the
architecture. If, for example, you choose a library that does not support
nested views or panes within a window, you should think long and hard
about whether to design in such features. On the other hand, if you know
that some sophisticated feature, such as floating windows, is available off
the shelf at little or no cost and that it might result in a better product, it is
foolish not to consider taking advantage of what the class library has to
offer. You can indicate how the class library will be used without resorting
to inheritance by describing the relationship between a run-time object and
a library class as a collaboration. Figure 10-8 shows an example of this,
drawn from the MacApp class TCheckBox.

TurnOnAutoVerify(yoid) ~
_____ / TumOlfAuto\lerify<ynjdl ~

/ Layout / j Boolean IoAutoVerifyOn?<void,

\. SetSt•te Boolean True ~BooleanlsOn void -.....----....

Figure 10-8. Use of TCheckBox in the architecture

Figure 10-8 shows clearly what responsibilities and attributes will be
used from the library class-at least as far as this scenario is concerned. It
does not yet impose a decision about how to implement this collaboration.
In practice, inheritance is used most of the time, but as we will see in
Chapter 11, this is not our only option and often not the best one.

~ Building the Execution Plane 259

The class library is most likely to have a big impact on the User Interface
Architecture. Container classes such as the MacApp class TList, abstract
data types (ADTs) and other similar classes may be useful in other
regions, and the application-level classes that do event dispatching and
interface to the Macintosh operating system and Toolbox affect the Envi
ronment Architecture. However, in most cases it is only in the User
Interface Architecture where the class library has a big impact on costs
and technical risk.

...,_ Content Architecture

The Content Architecture is a very straightforward expansion and refine
ment of the Content Model. There is very little to say about it beyond
restating general principles that apply to the entire plane. To build the
Content Architecture, start with central topics of the Content Model and
drill them down to the Content Architecture. Adding calling sequences
and refining responsibilities results in correlation to the Content Model,
and a cycle develops until both regions stabilize. You can then expand the
Content Architecture either by drilling down more of the Content Model
or by direct expansion. For example, in the payroll application, it may be
necessary to drill down the REPORT object into PAYROLL REPORT, TAX REPORT,

PAYCHECK, and w-2 objects before refining the responsiblities of each. On the
other hand, it may be possible to directly expand the responsibilities of the
CASH ACCOUNT object that is periodically credited to cover the payroll.

It is a good idea to start synchronizing the Content Architecture early.
Much of synchronizing the Content Architecture depends on your having
made substantial progress in the User Interface and Environment Archi
tectures, but that is no reason not to start synchronizing within the Content
Architecture as soon as enough scenarios have accumulated to make it
meaningful. Also, keep in mind one of the principal design objectives for
the Content Architecture: No object of the region should be aware of the
existence of objects outside the region. This is the only region of the plane
for which this is true, but it is one of the most important disciplines you can
apply to your design toward achieving the Four Itys.

As the design phase proceeds, the Content Architecture tends to expand
as the result of synchronization with the other regions of the plane. The
Content Architecture absorbs some of what used to be treated as user
interface or environment objects as their data content is brought to the
surface. Very little goes back: that which starts in the Content Architecture
tends to stay there. For example, in the payroll application, drawing from
the Reference Model we may have thought early on that a form was needed
to support the issuance of each check. Later, as we decide how to automate

260 ..,.. Chapter 1 O Design

the process and calibrate with the Reference Model, we realize that this
form was an artifact of the manual system. The data it contains is relegated
to the Content Architecture, where it remains through the implementation.

The final consideration in the Content Architecture is the use of
off-the-shelf object classes provided by the class library. Most class librar
ies for the Macintosh tend to revolve around the user interface. However,
there are a few types of classes that are useful in the Content Architecture.
A type of class often called a collection is useful in implementing your
container objects. A collection is a set of objects and they come in all flavors
and sizes: unordered, sorted, hash tables, bags (uniqueness is not guaran
teed), association lists, linked lists, queues, stacks-you name it, and
someone, somewhere has implemented a generic version. In SBM, we use
the term container rather than collection since our containers may be more
than simple sets of things; they may have responsibilities and possibly
attributes that have little to do with the objects contained. Our model
railroad program, for example, treated a layout object as a container, but its
responsibilities are certainly not limited to storing and retrieving its
contained objects! Another generally useful category of classes is that of
abstract data types (ADTs). This is most useful for C ++,which is specifically
designed to support them. Some examples of ADTs are classes for complex
numbers or numbers of unlimited precision, or perhaps specialized string
classes. A popular class library of ADTs has been developed by the
National Institutes of Health.

As already noted, the proper way to show the use of a library class in the
Execution Plane is to show a collaboration between your run-time object(s)
and the class. Figure 10-9 shows an example of this in the use of a MacApp
TList class as part of the design of the layout object in the model ~ailroad
example.

Figure 10-9. Use of Tlist in the model railroad program

.,.. Building the Execution Plane 261

..,. User Interface Architecture

The User Interface Architecture is developed in much the same way as the
Content Architecture, by drilling down from the User Interface Model.
One principal difference is the importance of mapping to the class library.
In the User Interface Architecture, most classes that draw on the screen in
some way use library classes. This is not imposing a class hierarchy, but
simply acknowledging the dominant role the class library plays in deter
mining the costs and risks of implementation. Figure 10-10 shows an
example from the payroll program, where an editable text box on the
screen collaborates with the MacApp class TEditText.

In addition, there are some special architectural issues in designing the
objects of the User Interface Architecture. Specifically, you must decom
pose objects into highly specialized units, each of which falls into exactly
one of the three types listed below.

Renderings

Renderings are the "things" of the user interface. They draw themselves,
have distinct boundaries, and know about their corresponding content
objects (if any). Examples of rendering objects for the model railroad
program are TRACK and SCENERY, both of which are basically drawings of
objects within some area of the screen. Renderings must almost always
have knowledge of one or more content objects, but it is still important to
limit these relationships to those that are strictly necessary. In most cases,
a rendering has no knowledge of its manager(s). Renderings ideally should
know nothing about their display container. When a rendering is asked to
draw itself, it should be handed a "drawing environment" object (for
example, one that encapsulates QuickDraw) as an argument. However,
in commercial class libraries like MacApp, it is often not feasible to design
this way because the user interface classes are structured otherwise.

DisplayName <void)

/•ti ~
SetText <Str?.55-i --cr

TEditText

Figure 10-10. Use of TEditT ext in the payroll program

262 ... Chapter 1 O Design

Renderings must ask their enclosing display container for the GraphPort
in which to draw and other related information. This is unfortunate, but in
the real world, class libraries seldom are structured the way you would
prefer.

Display Containers

Display containers provide drawing environments for the renderings.
Examples are windows and nested portions of windows. The terminology
for these nested, usually bordered areas within a window gets a little
confusing, since each class library seems to call it something different:
"view," "pane," even "window," used recursively. To add to the confu
sion, class library versions· of these concepts usually add functionality
beyond providing a drawing environment for a set of rendering objects.
We use the term display container to mean precisely that: a container of
renderings that provides them a drawing environment and nothing else.
Display containers may draw a border or background, but nothing else.
Display containers have within their borders renderings and other, nested
display containers. Other than borders and backgrounds, ultimately it is
the renderings that do the actual drawing. Display containers seldom need
to know about content objects, other than trivial knowledge connected
with drawing borders and backgrounds. Display containers usually have
no knowledge of their manager(s). A display container should generally
have as little knowledge as possible of the renderings and nested display
containers contained within its borders.

Managers

Managers translate events, chiefly from the user, into actions. For example,
a manager object might be responsible for receiving a mouse down event,
determining what the event means (for example, help click vs. drag vs.
double click), determining which rendering was hit by the mouse, and
carrying out changes as a result. Managers typically have a good deal of
knowledge about all of the objects they control: content, display contain
ers, renderings, and even environment objects.

Comparison to Model-View-Controller

A side note for those with some knowledge of Smalltalk. You may recog
nize similarities between this structure and the Smalltalk concept of
"model-view-controller" (MVC). The idea in MVC is to separate objects
into "model" objects that contain the pure encapsulation of data content,
"view objects" that draw, and "controller" objects that act on events. Our

~ Building the Execution Plane 263

model is embodied in the content regions. The V part of MVC is refined
through the distinction between renderings and display containers. The C
in MVC corresponds to our manager objects. The reason for the different
terminology is to avoid confusion with the "pure" Smalltalk usage of the
term model-view-controller, since our concepts are slightly different for
two of the three. The authors really don't want to introduce another
acronym, but if you absolutely must have one we suggest MDRC, for
"Manager-Display Container-Rendering-Content."

...,_ Environment Architecture

Everything in the Environment Model is carried forward to the Environ
ment Architecture in the same way the Content and User Interface Mod
els are carried forward. However, there are some new objects to consider
in the Environment Architecture, starting with the application object.

Conceptually, an object-oriented program for the Macintosh is a dor
mant beast that waits for someone to poke something into its cage. That
"something" is an event of some sort: mouse down, keyboard, network
activity, AppleEvents message, menu selection, and so on. One of the
biggest challenges in designing an object-oriented application for the
Macintosh is translating those events into actions. There are two compo
nents to this: event dispatching, which makes sure that the event is sent to the
right object and event handling, which involves translating the event into an
action or sequence of actions.

We have already discussed manager objects, which do the event han
dling. Event dispatching is principally the job of the application object. The
mechanism used in MacApp was discussed briefly in Chapter 9: offer the
event first to the "active" view of the frontmost window, then work up to
its enclosing view, and so on, until it is offered in succession to the window,
the window's document, and the application object. In most cases, you
won't have to change this mechanism, but if your application has special
needs in this area, you need to show the collaborations with the library's
application class.

The application object has other responsibilities that are often custom
ized to suit your application. When the user chooses "New" from the File
menu, who handles the event? This is typically done by the application
object, along with the "Open" menu item. Both of these can, on occasion,
be sent to a window or document, but more commonly they apply
throughout the application. The "About. .. " dialog is another example of
an application-level responsibility.

The application object also interacts with the operating system in a
number of ways. On startup, the application is given a list of Finder

264 ..,. Chapter 1 o Design

documents to open, usually because the user double-clicked on one or
more document icons. The application object must sort through this list,
deciding which ones can be opened, and create documents for those that
can. Many applications must be sensitive to what happens when the user
switches to another application. The operating system tells an application
when it is about to lose control to another application and when it has
regained control. Again, the application object must make sense of these
events and guarantee that the right objects are notified. Parceling out
idle-time processing to objects is another application-level concept, along
with processing commands. It is possible to have a single application object
cover all these areas and more, as in MacApp version 2.0, or the duties of
the application can be divided into multiple, specialized objects as in
MacApp3.0.

This is not a tutorial on a specific application class library (MacApp), but
rather a review of the general areas one must consider in laying out the
Environment Architecture. Whether a single application object takes care
of all such housekeeping details or multiple objects break down the
problem into bite-sized chunks, none of these responsibilities naturally
falls into either the content or user interface regions, nor do they derive
from the Solution Model. They deal with bookkeeping details of life in the
Macintosh environment. In a sense, you can think of the Macintosh
operating system and Toolbox as being much like the attached devices and
networks of the Environment Model, but relevant only when one is
prepared to address a lot of architectural detail.

These considerations can be easy or hard, depending on the chosen
class library and the nature of the application. In most cases, you will
simply use the facilities provided by the library and add a couple of
hundred lines of code to fill in the blanks. You should selectively refer
ence the library classes in your scenarios wherever they clearly affect
other parts of the design. This is particularly true where the application
creates or destroys your objects or initiates events such as switching in or
out that otherwise aren't accounted for in the Technology Plane. How
ever, keep in mind that your job is to document your program, not the
class library itself .

...,. Dependency Management
Consider the following example. A spreadsheet program has one window
containing grid-like data, another that shows a pie chart representation of
that data, and a third that shows that data embedded inside a report that
also contains text and data derived from elsewhere. Now change the data
in the grid. The user has a right to expect that the change will be propagated

..,. Dependency Management 265

to the pie chart and report automatically. That is, all three renderings of the
same underlying data are dependent on that data. In terms of our design
principles, one or more content objects contain the data and several user
interface objects depend on those content objects. Put another way, the
dependent objects must receive notification whenever the underlying con
tent objects change their state. In object-oriented design, this general
problem of dependency and change notification is part of dependency
management. Dependency management has been studied since the early
days of Smalltalk and several object-oriented class libraries provide
generic facilities in this area, including Smalltalk and MacApp version 3.0 .

..,.. Basic Principles

The basic idea in dependency management is to provide two facilities.

1. An object can register itself as being dependent on another object. We
use the terms dependent object for the object that receives subsequent
notifications and notifying object for the object on which it depends. In
almost all cases, the notifying object is a content object, while the
dependent object may be of any type.

2. Whenever a notifying object changes its state, it can send a change
notice to all dependents or cause such a notification to be sent
indirectly.

The exact mechanisms for implementing these concepts vary from one
environment to the next. The brute force implementation keeps the entire
implementation within the notifying and dependent objects, in ways that
we will discuss in a moment. The more elegant treatment is to set up a
dependency manager, which is a single, globally accessible object that
handles all aspects of registration and notification. A dependency manager
maintains a dependency graph, a data structure that encapsulates all
information about who is dependent on whom.

For architectural purposes, it really doesn't matter which implementa
tion you use. Either allows you to escape from a Hobson's choice; either
violate the rule that content objects know nothing about non-content
objects or adopt an ugly, inflexible architecture in which manager objects
have to know a great deal about one another. In the spreadsheet example,
suppose you did not use dependency management. There would only be
two ways to implement the notification required.

1. Have the content objects send messages directly to the user interface
objects, thereby giving them knowledge of those interface objects.

266 ..,.. Chapter 1 O Design

This is a gross violation of our rule for content objects that states they
should have no knowledge of the objects in other parts of the
architecture.

2. Have the manager that causes the content objects to update also send
along notification to the managers of the other renderings. If the
update comes through the grid presentation of the data, the manager
of that rendering needs to know about the other renderings (pie chart
and report) in order to send notification to their managers. This means
the manager objects are not independent of one another and, there
fore, are likely to be difficult to maintain and reuse.

Providing an abstract means of registering dependence and sending
change notifications avoids both of these problems. Dependency manage
ment is such a powerful technique and so easy to implement if it is not
provided for you, that the authors have trouble justifying ever not using it.
Because of this, a special variation of the collaboration symbol from VOL
is used to indicate a change notification that indirectly results from one
object changing state, as shown in Figure 10-11.

Scenario #: 153
Authors: JV A,NLG
3/17/92

Technology Plane

r:J"""-rMWLoatioru
.....,......,,.....,=...,..,C.,.o...,m1<>0,...ne""""+ -~- - · ·

iew::DoUpdate in response to notification

Dashed collaboration arrow indicates
dependency notification.

Figure l 0-11 . VDL convention for change notification

..,,. Dependency Management 267

This shows the sequence of events when the data in the grid is updated.
As you can see, the renderings indirectly receive change notification and,
therefore, know to redraw themselves. This notation avoids having to
constantly include the dependency manager object in scenarios.

..... A Generic Scenario for Dependency
Management

Figure 10-12 shows a generic scenario for dependency management. There
are three objects pictured: the dependency manager, a dependent object
and a supporting object.

As you can see, there isn't much involved. The dependency manager has
three responsibilities: register the dependency of one object on another,
remove a dependency, and send a change notification . .(The "remove"
responsibility actually takes three forms: remove a specific dependent/
notifying pair, remove all pairs for a given dependent, and remove all pairs
for a given supporting object. We have omitted the detail here.) The
notifying object has two responsibilities: tell the dependency manager
when it changes state and send a termination notice to the dependency
manager immediately before it is destroyed so that all references to it can
be removed from the dependency graph. The dependent object has three
responsibilities: register its dependencies, accept change notifications
from the dependency manager, and notify the dependency manager
immediately before the dependent object is destroyed so that all references
to it can be removed from the dependency graph. The arguments to the
change notification are the object that has changed, the type of change, and
the locus of change. The latter two data types vary according to the
implementation and the needs of the application, but in the spreadsheet
example they might be, respectively, "update" (vs. deletion or creation)
and a range of cells affected.

DoesntDependOn <Dependent Notifier)

DependsOn (Dependent, Notifier) '-. Changed <Notifier. How. Where)

ti n=~ \
1
1
1 =C=ba=n-'<'lg=ed.,_,,,,.(H""o~w~,~W~h,=re..._

De endOn Notifier ,.."-~-----..
,,,,Changed <Notifier. How. Where) Notifier 7

Dependent- ,. ======9'-

Figure 10-12. Generic dependency management

268 .,.. Chapter 1 O Design

This might not correspond exactly to the implementation available
to you, but the basic structure is common to almost all dependency
managers .

...,. Implementing Dependency Management

If you don't have dependency management available, do not despair. It is
always possible to implement a simple version of dependency manage
ment in a few days. The guts of the implementation are in the dependency
graph, which has the responsibilities shown in Figure 10-13. Inside this
object, the actual graph can be treated as a set of dependent/notifying
object address pairs, implemented using your favorite data structure:
sparse array, linked list, hash table, binary tree, or anything else you can
steal from standard texts on sorting and searching. An alternate approach
is to have dependency management inherited from "dependent" and
"notifying" abstract classes (in single inheritance, combine these into a
master class such as MacApp' s TObject). This approach is shown in Figure
10-14. This approach has its drawbacks, but it is quick, simple, and reliable
to implement.

Note: An Iterator is an object that supports FJ.rst-Next iteration
over a set of objects, in this case Dependents and Notifiers.
The Each methods return iterators for use by the caller. The
EachDependentOf method is used by the Dependency Manager
to send notices to all dependents of a notifier.

void,. First (void)

/ 1 7/ void,. Next (void)
terator /

Figure 10-13. Dependency graph object

~ Calibration, Part Ill: Synchronization 269

Figure l 0-14. Using a master class to implement dependency
management

~ Calibration, Part Ill: Synchroniza.tion
So far, we have taken in-depth looks at two of the three forms of calibration:
correlation and synthesis. Correlation is the way you make sure that
double descriptions are consistent with one another. This applies between
the Reference and Solution Models and otherwise applies only between
regions of different planes. Synthesis allows you to integrate scenarios
with one another and with the overall model. Synchronization rounds out
the picture by providing a way to ensure consistency within a plane.

There are five basic types of synchronization, all of which derive from
common sense principles. However, even though the principles are
simple, it is a challenge to apply them rigorously. The types of synchroni
zation are

1. Knowledge of other objects and data
2. Creation and initialization
3. Destruction
4. Message protocol
5. Connectedness

270 ~ Chapter 10 Design

...,. Knowledge of Other Objects and Data

Ultimately, collaborations are messages sent from one object to another. In
order to send a message to a receiver, the sender must have its address.
How did the sender acquire that address? This may sound like a trivial
question, but it is one of the most important design issues you will face. On
the one hand, greater knowledge allows more flexible collaborations. On
the other hand, the more widely known an object is, the more difficult it is
to change it without side effects.

Let's look at an example from the Technology Plane of the payroll
application. Suppose we have a window that contains an editable text
field. In that field, we display the name of an employee. The name itself
resides in the Content Model, while the editable text field is part of the
User Interface Model. Clearly, the two must collaborate. Figure 10-15
shows one possible treatment of this collaboration in which the editable
text object asks the content object for the information and tells the content
object when to change the information.

DisplayNaroe (yojdl

(f-EName-vw/ ~

Str255 ProyideName Cyoi~

LEEName/

Figure 10-15. Collaboration between user interface and content
objects

This is all well and good, but how did the editable text field find out about
the content object? Does it have the address of the content object as an
attribute, as in Figure 10-16? If so, how did that attribute get set in the first
place? Did the user interface object create the content object, or was it
handed the address of the already created object at some time in the past?

I EEName (4 DisplayName (void)

/!ENameVie7

Figure l 0-16. Object address as an attribute

~ Calibration, Part Ill: Synchronization 271

Alternatively, does the user interface object ask some other object for
the address as needed, as in Figure 10-17? If so, how does it have knowl
edge of that third object, and how does that third object have knowledge
of the content object?

DisplayName Cvojd)

;f,---EName_V,, ~

EEName ProvideName (voi~

L_Employee/

Figure 10-17. Obtaining an object's address on request

In general, there are two choices: store the address as an attribute or ask
somebody for it. It is often necessary to recursively trace the knowledge
through several other objects. For the moment, we are not concerned with
which approach is correct, only that the decision be made and the knowl
edge accounted for. Any collaboration for which we have not explained the object
knowledge is a dangling thread.

Continuing on the same theme, if one object sends data to another, how
did it acquire the data to send? Again, there are two legitimate answers: the
data is stored within the object, or the sender has to ask someone else for
it as required. This can be an evolving issue, as data stored within an object
is distributed to subassemblies or other objects. However, as with knowl
edge of other objects, knowledge of data must be accounted for or be
treated as a dangling thread.

... Creation and Initialization

If one object is to collaborate with another, both must exist at the time. This,
too, sounds trivial at first, but actually making sure that objects are created
before they are needed is not so easy. For any given collaboration, we seek
to account for when and how the collaborator came into being and to verify
that the creation occurred in time. This becomes entwined with the first
type of synchronization, knowledge of other objects, since it is at the
time an object is created that its address comes to be known. This form
of synchronization should also be extended to initialization of non
object data.

272 ~ Chapter 1 O Design

~ Destruction

The flip side of synchronizing creation is synchronizing destruction of
collaborators and non-object data. In order to be a collaborator, an object
must not only have been previously created; you must also assure that it is
still around when needed! This requires tracing, for each collaboration,
how the collaborator will ultimately be destroyed and verifying that it is
not destroyed prematurely. The result is often a scenario like the one
shown in Figure 10-18.

/ 7- -r. ------------------1----
/ 7--t----------r--

/ /----------
Figure l 0-18. Creation and destruction of objects

Synchronization of destruction also requires demonstrating that each
object is properly destroyed when it has outlived its purpose. Recall that
in Chapter 9 we discussed the concept of "information ownership," in
which the object that ultimately must return information is described as
the "owner" of that information. It is important not to confuse information
ownership with object ownership, which describes which objects destroy
which others. Let's assume for the moment that you are using a language
like C++ or Object Pascal, which does not have automatic garbage collec
tion like Smalltalk and Macintosh Common Lisp. If object A is the only
object with the right (and responsibility!) to destroy object B, then A is
said to be the owner of B. If an object has any owner, it can have only one
owner.

It is also possible for an object to have no owner and to be a self-owned
object that destroys itself when it is no longer needed. Consider the
following example from the payroll application. Employee information is
stored in a file on a disk and retrieved in the form of employee records.
Each employee record is represented by an object in memory, but obvi
ously we only want some of the records in memory at any one time. When
a client object, such as a paycheck, needs an employee record, it asks the
file object to find it. The file object looks at its cache of in-memory record

~ Calibration, Part Ill: Synchronization 273

objects to see if it is already in memory. If not, it reads the information
from disk and creates a new memory-resident employee object, returning
its address and setting its initial "reference count" to 1. If the record is
already present, its address is returned after incrementing its reference
count. When a client is through with a record, it sends a message to the
record object releasing it, which results in decrementing the reference
count. Thus, at any point in time, the reference count is the number of
clients that are referencing the record. If that number goes to zero, the
employee record removes itself from the cache list, then destroys itself.
This is a classic self-owned object. There are many other ways to imple
ment the same basic idea of an object that is smart enough to know when
it is no longer needed and destroys itself at that time.

If you are fortunate enough to be using a language with automatic
garbage collection, ownership is not all that important a ·concept. Simply
by removing references to objects, you allow objects that are no longer
referenced to be cleared out automatically by the system. Unfortunately,
automatic garbage collection is expensive, and few systems have the
luxury of applying a single scheme uniformly .

.,._ Protocol

This form of synchronization verifies that the sender and receiver of a
message both expect the same protocol to be used. Specifically, the infor
mation passed as part of the message must be agreed to by both ends of the
line. This is taken into account as part of the synthesis process described in
Chapter 9 .

.,._ Connectedness

Except for deliberate provisions for future growth, everything in your
run-time architecture should somehow contribute to the program's func
tion. This means that every responsibility should under some circum
stances be called during execution, every attribute should be accessed at
some time, and every run-time object should be used. Object-oriented
programs for the Macintosh, as we have previously observed wait for
events to occur, then react to the events. Events include mouse and
keyboard activity, Apple Events messages, operating system interrupts or
other external inputs, or the initial launch of an application. As part of
synchronization, you should make sure that every feature of your run-time
architecture is ultimately connected to external events.

A responsibility called in direct response to some event is by definition
connected. A responsibility that collaborates with a connected responsibil-

27 4 ..,. Chapter 1 O Design

ity is also connected. The same definitions can be used to identify con
nected attributes, which are accessed by connected responsibilities. Test
ing for connectedness is a matter of recursively applying these rules. By
implication, the connectedness test also identifies a set of unconnected
responsibilities and attributes, which are not specifically marked as con
nected. An unconnected responsibility does not necessarily indicate a
design flaw, but it should raise a red flag. For an unconnected responsibil
ity, one of the following must apply.

1. The responsibility is truly not needed to implement the scope of the
Solution Model and Technology Plane. The only justification for
leaving it in is to simplify future expansion of the program or to use
it as a "hook" for maintenance and testing. The remedy is to remove
the method or classify it as "future expansion" or "maintenance." For
example, in the payroll application we might define a responsiblity
for ranking an employee based on annual earnings, but leave this as
an unimplemented future feature.

2. It may be a synonym for some other method. This is common. Early
in the design process, something is given one name and later, for
whatever reason, a new name is used in scenarios. This is uncovered
by the synthesis process described in Chapter 9 and, therefore, is not
really subject to a separate test as part of synchronization. In the
payroll application we may have defined two responsiblities: "Com
pute hourly compensation," and "Compute compensation" that may
turn out to be the same when we further define these behaviors.

3. There may be some missing but necessary connection. This is also
common. Often one will plunge into the middle of some area of the
design, planning on later connecting it to other parts of the design. It
is easy for connections to be missed. The remedy is to create scenarios
that connect the unconnected methods. In the payroll application, we
might discover that we neglected to use scenarios for employees to
elect periodic charitable contributions. We would have to add sce
narios that connect the scenarios that connect them to the methods to
the employee object.

The same logic can obviously be applied to attributes as well. There are
subtle implications for correlation of the Execution Plane to the Technol
ogy plane inherent in this test. If a responsibility is essential in the
Technology Plane-that is, it is an implementation of some responsibility
of the computer from the Solution Model but is unconnected in the
Execution Plane, you have a problem. You have specified that the program

..,.. Managing the Design Phase 275

is capable of doing something in the Solution and Technology Planes, but
have not provided any external events that can cause that activity to be
carried out! Perhaps you left out some feature of the user interface or some
interface to the operating system or external devices and networks, or
perhaps the capability was not really needed in the upper planes in the first
place. If you identify an unconnected responsibility, consider its correla
tion to the Technology Plane in deciding how to resolve the problem .

...,. Applying Synchronization

As noted, some synchronization tests are implicit in the way one performs
synthesis. Specifically, synthesis, properly applied, validates protocol
and synonyms for method names. Otherwise, synchronization is usually
the laggard in the analysis and design race. The tendency is to blast ahead
by creating lots of scenarios and synthesizing them, occasionally correlat
ing to tie up dangling threads. We don't need to immediately synchronize
those objects, as long as the synchronization is not put off for too long.
Synchronization tends to bring out of the woodwork all sorts of very
serious oversights in the conceptual or actual design. It is best to get these
problems on the table early, before the design sprouts deep roots. The first
time to synchronize is when an initial batch of scenarios has covered some
central topic pushed down from the Technology Plane. From this point
on, synchronization should occur whenever any sort of milestone of
expansion is reached in either the Technology Plane. Expect synchroniza
tion to take some time and to cause you to expand dramatically both the
User Interface and Content Models, particularly during the early stages of
the project.

....,. Managing the Design Phase
The design phase uses the same basic techniques used for analysis: CPC,
scenarios, synthesis, correlation, and prototyping. To this we add syn
chronization. The process is driven by the set of scenarios chosen at the
conclusion of the analysis phase to form the basis of project scheduling
and measurement, the design set. Each scenario in the set must be drilled
down to the Execution Plane at some point during the design phase.
Choosing an appropriate order in which to tackle these scenarios is not as
important as making sure that all are dealt with and that the cumulative
quantity correlated downward is consistent with the schedule at any
given point in time. Prototyping will be freely used for all the same
reasons cited in Chapter 9, resulting in a substantial body of code at the
conclusion of the phase.

276 .,.. Chapter 1 O Design

...,. Use of Scenarios

In Chapter 9, we talked about using scenarios, not just as a tool for
model-building and exploration, but for project management as well. The
schedule for the design phase should be based on a specific set of sce
narios chosen from all scenarios available at the end of the analysis phase
for the purpose of organizing the project. This design set should collec
tively cover all of the Technology Plane and any work performed on the
Execution and Program Planes during the analysis phase of the project.
No scenario in the set should be completely redundant with any other;
when in doubt, include borderline scenarios in the set. It is perfectly
acceptable to generate new scenarios from existing ones, specifically for
inclusion in the design set.

The design set then becomes the fundamental unit of organization
during the design phase. Schedules should be based on completion of
scenarios or groups of scenarios. Team members should be made respon
sible for completing the design and synchronization of scenarios or groups
of scenarios. This is a much better basis for scheduling, assigning tasks, and
monitoring progress than other schemes based either on a top-down
decomposition of the project or by object/ class.

You should expect that it will take roughly the same amount of effort per
scenario throughout the design process. In the early days, there will be little
other material to draw on, but calibration will be easy. Later, there will be
a good body of design scenarios as starting points, but calibration will take
longer as scenarios accumulate. A good way to develop the design sched
ule is to pick a few representative scenarios from the design set and drill
them down to the Execution Plane, keeping track of productivity as you go.
This can then be extrapolated to the rest of the design set.

...,. Priorities

Although the design phase need not proceed in any particular sequence,
the emphasis is usually in the following order of priority.

1. Content Architecture. As the ultimate source of the program's func
tionality, the Content Architecture is where most of the technological
hurdles must be jumped. These hurdles tend to be not just difficult
but also central to the design. Thus, it is common to spend much of
the early effort on the Execution Plane dealing with the tougher
content issues.

2. User Interface Architecture. As the look and feel of the program grows
in importance during the project, so does the user interface. As

..,. Managing the Design Phase 277

synchronization takes place, much of the consequent changes force
you to bounce between the content and user interface portions of the
design.

3. Environment Architecture. If your application deals with attached
devices or networks, this may move up in importance. In most
applications, however, there simply isn' tmuch there. The class library
handles most of the rote stuff for you; you need only customize the
behavior of the library.

~ Prototyping

You must drill down to the Program Plane in order to get the Execution
Plane right. All of the reasons cited for prototyping in Chapter 9 are
equally valid in the design phase. Prototypical code helps demonstrate
engineering feasibility, particularly acceptable levels of performance. It
serves the Heisenberg Prototyping objective of testing your designs in the
fire of running code. It can provide runnable code to use as the means of
obtaining critical feedback, both from the software engineers and others.
Prototyping provides good measures of implementation productivity,
which is useful in choosing from otherwise competing design alterna
tives. Finally, design proceeds somewhat unevenly in a typical project.
Some areas proceed rapidly and smoothly, while others bog down. Ev
eryone participates in some areas, while others are the province of spe
cialists. Whenever someone is not busy designing, there is no good reason
not to go ahead and make progress with the code.

A prototype should completely cover one or a small number of scenarios.
Your objective is to validate that those scenarios are correct or feasible or
desirable. This is best done by covering entire scenarios, not pieces of them.
It also makes it easier to perform the calibrations that result from new
insights gained through the prototype.

In general, it is best to use the most straightforward implementations
of run-time objects during the design phase. That is, in most cases
implement a single run-time object as a single concrete class that does not
inherit any more than is necessary to complete the prototype. When
choosing subjects for prototyping, focus on specific members of catego
ries or abstractions. Staying away from inheritance allows you to make ·
rapid progress, a key to successful prototyping. Don't worry about
throw-away code: much of the code you write will ultimately be cut and
repasted elsewhere in the final hierarchy, but little will be thrown away.
We stress the value of examples because they tend to expose problems
with generalizations. Counterexamples lead to very expensive problems
and should be exposed as early as possible. If you have described a single

278 ~ Chapter 10 Design

responsibility that turns out to require two or three distinct implementa
tions, or if you have created an abstraction that turns out to be flawed, it
will cost dearly if not discovered until a class hierarchy has been put in
place. Remember: Inheritance is the optimal way to implement the
run-time objects, but optimizations should come only after the basic
behavior of the objects is well understood .

...,. When Is the Design Phase Complete?

The design phase ends when three conditions are met.

1. The Technology Plane has been completely correlated to the Execu
tion Plane; that is, every feature of the Technology Plane is accounted
for in the architecture.

2. The Execution Plane is completely synchronized, according to the five
tests outlined in this chapter.

3. The Execution Plane covers all known sources of events, whether
from the user, the Macintosh systems software, or attached devices
and networks.

4. A credible project plan for completion of implementation is in place.

Unlike the rather fuzzy definition of when analysis ends, the first three
of these conditions provide a very precise, verifiable test of completion.
The last, preparation of a project plan, requires judgment regarding the
technical risks still faced. Ideally, these risks have already been managed
through prototyping before the design phase is declared complete.

Let's assume that your architecture has passed the above tests, meaning
that the design phase is now complete. Congratulations! You now have an
extremely detailed, well-validated design that is just short of code, along
with a body of prototypical code developed to support analysis and
design. Next comes the easy part: implementation .

...,. Managing the Transition to Implementation

As with the transition from analysis to design, the central problem in the
transition from design to programming is identifying a set of scenarios
that completely covers the scope of the Execution Plane. This implementa
tion set is then used as the basis for project planning, estimation, and
tracking. Scenarios of the implementation set should be handed to spe
cific individuals in related groups, with the groups appearing on the
project planas distinct tasks. The implementation set should not contain

.,. Summary 279

scenarios completely redundant with others in the set, but when in doubt,
include too many rather than too few. If it is not possible to estimate the
implementation effort for a scenario or group of scenarios, your design
phase is not complete. You need to do some prototyping to nail down the
implementation risks and estimates. Once the implementation set has
been constructed and the project plan for implementation is in place, you
are on the home stretch .

...,_ Summary
This chapter focuses on the Execution Plane, which describes the detailed
program objects we design to construct the system envisioned in the
Solution Model.

• We develop the Execution Plane by applying CPC, paying a great
deal of attention to calibration. The objects we design are program
objects, not real-world objects, and we must construct them to con
form to the rigorous requirements of object-oriented programming.
Many objects exist to support the implementation rather than to
model the external world. Some of these implementation-related
objects are supplied to us, such as pre-existing application class
libraries; some, such as automation and auxiliary objects, we have to
design ourselves.

• In the Execution Plane we describe sets of objects using abstractions,
which may or may not turn into classes in the final program. We add
a lot of detail to our solution-based model as we drill down the
Content, User Interface, and Environment Models. We define the
specific calling sequences for responsibilities and break them down
as far as possible. We define accessor functions for each attribute to
encapsulate objects. A major concern is synchronization: An object
must exist before it can send or receive a message, and the sender
must know the address of the receiver. We must also correlate to
ensure that all categories from the higher planes are mapped into
Execution Plane objects or abstractions. In the Execution Plane we
design how our application will exploit the objects associated with
the Macintosh platform.

• Again, in the Execution Plane we check that each responsibility has a
purpose that is ultimately used in response to some event. We use
design sets of scenarios to manage our efforts. Our general priority
order is to focus on the Content Architecture, followed by the User

280 ~ Chapter 1 O Design

Interface Architecture, and then the Environment Architecture.
Prototyping is necessary during this effort if we want to design the
Program Plane properly.

• We are done with the Execution Plane when the Technology Plane is
fully correlated to it, when it is synchronized, and when it covers all
known sources of events. The transition to the programming phase is
managed by identifying an implementation set of scenarios that cov
ers the Execution Plane, then using that set as the basis of project
estimation, organization, and planning.

11 ~ Programming

...,. What This Chapter Is About
This chapter describes the programming phase of Solution-Based Model
ing. In the programming phase you will create a program that, when
compiled and run, produces the run-time objects of the Execution Plane.
There are two central activities during this phase: designing a class
hierarchy that optimizes the implementation and implementing the meth
ods and attributes. One of the primary considerations during the program
ming phase is how to properly implement the abstractions of the Execution
Plane. As you will see, inheritance is only one of many techniques and it is
not always obvious which is best. The decision is driven by technical
objectives and the software engineering objectives embodied by the Four
Itys: Maintainability, Reliability, Extensibility, and Reusability.

This chapter also discusses management of the programming phase.
Finally, we will discuss how a program developed using Solution-Based
Modeling evolves after its initial release .

...,. Overview
Figure 11-1 shows the relationship between the Execution and Program
Planes.

281

282 ~ Chapter 11 Programming

B Environment Architecture CJ

UIF Architecture

Content
Implementation

Figure 11-1 . Implementing the Program Plane

The Program Plane is broken into the same regions as the Execution
Plane, but they are called "implementations," rather than "architectures."
The Program Plane is the implementation of the application, not just a
model or design of it. Here we deal with all of the restrictions and features
of the language and class library. Specifically, we take into account restric
tions on inheritance; restrictions on names of classes, methods, and
attributes; the need to create run-time objects from concrete classes; and
any peculiarities of the class library that prevent it from aligning precisely
with the desired architecture. Recall that in the Execution Plane you merely
indicate collaborations between library classes and run-time objects. In the
Program Plane, you must decide exactly what form those collaborations
will take, through inheritance or otherwise.

In the Program Plane, we leave behind objects and deal with classes. For
each run-time object in the Execution Plane, we must make sure there is a
fully implemented concrete class in the Program Plane. That concrete class
is instantiated at run time to produce the needed object. The concrete
classes are arranged into a class hierarchy that provides an optimal
implementation of the program, taking advantage of inheritance to share
code between objects and polymorphism to simplify the logic of the
program.

This is by far the easiest phase of a Solution-Based Modeling project. In
the Execution Plane, you recorded enough information to completely
specify the interfaces to all run-time objects. Their responsibilities were
decomposed to the point that most will be implemented as methods made
up of a few lines of code in the Program Plane. You have also probably
implemented a good deal of prototype code at this point, much of which

~ Designing Class Hierarchies 283

can be reused in the final implementation. The design has been reviewed
by interested parties external to the software team from several vantage
points: how it supports business needs, how it uses technology, and, to a
lesser extent, how understandable and robust the software architecture is.
All that remains is to design the class hierarchy and provide code that
implements the responsibilities as methods.

The first step, designing the class hierarchy, should be viewed as an
exercise in software engineering. Classes are designed to achieve soft
ware engineering objectives, rather than because they have "meaning."
The objectives are principally the Four ltys, Maintainability, Reliability,
Extensibility, and Reusability. The last of these takes two very distinct
forms. The first is reuse within the application. Where run-time objects
have code or attributes in common, inheritance is often, though not
always, the best way to avoid reimplementing the same code for each
object's concrete class. An entirely different issue is reuse of code from
one project in another. Reuse within this project is the main objective;
reuse across projects is generally a consequence of doing a good job of
design on this one.

Implementation of methods and attributes is a pretty mechanical pro
cess. Other than specialized algorithms for image processing, number
crunching, or the like, most methods are between one and ten lines of code
that directly reflect the architecture of the Execution Plane. By the time the
Program Plane is reached, all collaborators of each responsibility are
known. All that remains is to write specific code that calls the methods that
implement collaborating responsibilities, implements if-then and iterative
logic, declares and uses local variables, and so forth.

As you have probably already guessed, these two activities-designing
class hierarchies and implementing methods-play off each other. It is not
always possible to spot the best way to use inheritance until methods are
written for concrete classes. On the other hand, decisions on the use of
inheritance certainly affect the code. Neither comes before the other;
instead, as with all of Solution-Based Modeling, programming is a highly
iterative process.

As with the design phase, the programming phase of the project is
organized around scenarios. This applies equally to estimation and sched
uling, assigning tasks to team members, tracking progress, and testing .

...._ Designing Class Hierarchies
Let's start by getting one thing straight: Inheritance is only one of many
ways of implementing the abstractions of the Execution Plane. It is wrong
to assume that you can or should simply gather up all the abstractions left

284 ~ Chapter 11 Programming

lying around in the Execution Plane and turn each one into a class. It is
common to do so, but there are often better alternatives. In fact, depending
on the language you are using and other factors, it may not even be possi
ble to turn some abstractions into classes. One of the hallmark differences
between the expert and the novice is the ability to choose wisely from
among these alternatives.

..... (At Least) Six Ways to Implement Abstractions

Suppose we have two run-time objects in the Execution Plane that share
some abstraction, as shown in Figure 11-2.

Responsjbilityl
,------11/ L Objectl r

Abstraction

Figure 11-2. An abstraction

The most obvious way to implement these objects is to turn each into a
concrete class, each of which inherits from an abstract class that mirrors
the abstraction, as shown in Figure 11-3.

Res onsibilit 2

Figure 11-3. Implementing an abstraction using inheritance

..,. Designing Class Hierarchies . 285

However, there are at least five other approaches to implementing
an abstraction. Let's take a look at each of these to establish that alterna
tives exist, and then return to a discussion of when each technique is
appropriate.

Separate Implementations

The simplest alternative to Figure 11-3 is to provide a separate implemen
tation of each run-time object. This means creating a concrete class for each,
with no sharing via inheritance. An abstraction may, on rare occasions, be
a useful device for describing the run-time objects but turn out not to be all
that useful in the implementation. This is shown in Figure 11-4.

Figure 11-4. Separate implementations of an abstraction

Copy/Paste

A related strategy is to create one implementation, then duplicate it to
create the implementation of another class. This often requires nothing
more than the sequence of steps shown in Figure 11-5.

~ MalceNewQass -- ... CustomizeNewQass LeayeEarlyForOnc::e
You L _ -~ - - - - -~ - -"":- - --~ - ____ - _.

DuplkateFile EditFile

~/-~---------~- -----------

~--------
+

Gew Fi!i)- - - - - -- -: - - - - - -- - -

Figure 11-5. Using copy /paste to implement abstractions

286 .,.. Chapter 11 Programming

That is, you first implement one version, then copy it and customize the
copy to prod~ce the second version. Often this requires nothing more than
a global search and replace of the class name plus changes to a few lines of
code. A variation on this theme is to create MPW scripts or even simple
programs to do the copying and renaming automatically.

Helper Objects

Figure 11-6 shows an alternative implementation that uses helper objects,
first discussed in Chapter 2.

Res onsibilit 2

Figure 11-6. Implementing an abstraction using helper objects

Here, we create a class specifically to implement the abstraction's
methods and attributes, then attach an instance of that class to each of the
run-time objects we specified in the Execution Plane. A variation on this
theme uses inheritance, but not in the same way as in Figure 11-3. In
Figure 11-7, the abstraction is turned into an abstract class. For each
run-time object, we attach a helper object that comes from a subclass of the
abstract class.

Combinations of these strategies are also possible. One of the run-time
objects might descend from the abstraction's class, while the other uses a
helper. The helper may be a direct instance of the abstraction's class, or it
may be an instance of a descendant of that class.

Combine Abstractions

Figure 11-8 shows an expanded version of Figure 11-2, in which there are
now two abstractions that overlap.

There are many different strategies that present themselves here. The
ones we have already discussed certainly apply. In addition, we might
consider several ways to accommodate the overlap. Figure 11-9 shows one
technique: Form an abstraction of the two abstractions and assign it the
shared properties.

.... Designing Class Hierarchies 287

Figure 11-7. Another implementation using helper objects

Figure 11-8. Overlapping abstractions

Object2

Responsibilit;y3
-+---+---/ ResponsjbiHty4

/ Responsjbility6
/

Responsibility6
~--+---/

Figure 11-9. An abstraction of abstractions

288 ..,.. Chapter 11 Programming

This translates into a class hierarchy, diagrammed in Figure 11-10.
Another approach is to combine the two abstractions into a single

abstract parent for both concrete classes. This is done by combining all of
the properties of both abstractions to form a single class, then implement
ing each concrete class in such a way that it uses only those properties that
come from the original abstraction. This is shown in Figure 11-11.

Responsjbi!ity3
/R "bT 4 esponsu 1ty
/

Figure 11-10. Abstraction hierarchy implemented as a class hierarchy

Figure 11-11. Combining abstractions

Responsibility3
/ Responsibility4
/ Responsjbmtys
/R "hT f. espansu 1ty
/

A variation on this theme is called single-threaded inheritance, in which
you form an artificial class hierarchy that does not mimic the abstraction
hierarchy. Each of the two abstractions becomes a class, but now one of
them inherits from the other, as in Figure 11-12.

..,. Designing Class Hierarchies 289

Responsibility3
/ Responsibility4
/R 'hT ¥fi espons1 ut
/

Figure 11-12. Single-threaded inheritance

As you can see, this has the same net result: a concrete class that holds all
the required properties without requiring either multiple inheritance or
helper objects. The shared properties are usually assigned to the super
class, as in Figure 11-12.

Split Abstractions

The opposite strategy is also possible: Form one abstraction with the
shared properties and two more to represent the non-shared properties,
then implement each as an abstract class, as shown in Figure 11-13.

Figure 11-13. Splitting abstractions

290 ..,.. Chapter 11 Programming

Combination Strategies

Finally, there are myriad ways to combine these strategies. For example,
one can inherit from the common properties and use helpers for the
non-shared properties, as shown in Figure 11-14.

Figure 11-14. A combination approach to abstractions

~ Choosing the Best Strategy

Some of these strategies may seem a little contrived, especially the copy I
paste technique and its variants. The authors have had occasion to use
every one of these, including every variation listed. Each has its place and
choosing the best technique for a given situation is much of what sets the
expert apart from the beginner. The choice is dictated by many consider
ations, some of which follow.

•Are the abstractions static, or do they change over the running life of
the program?

• Does the language support multiple inheritance? Object Pascal does
not. Even if you are using C++, if you are using it with MacApp you
will have to stick to single inheritance with any class that descends
from a MacApp class.

• Does the language support dynamic inheritance or creation and modi
fication of classes at run time? Object Pascal and C++ do not, but
Smalltalk, Macintosh Common Lisp with CLOS, and a few other
languages do.

~ Designing Class Hierarchies 291

• What will yield the greatest potential code reuse, both within this
project and across projects?

• What is the phase of the project: analysis, design, or programming?
• Are you creating a prototype, developing the program, or polishing

the code in a final pass?
• How do classes of the class library collaborate with the run-time

objects and abstractions?

As you can see, this list spans issues of architecture, language, class
library, software engineering, and project management. Let's revisit each
of the five basic techniques, this time to formulate rules for when to use
each technique.

Copy/Paste

This is appropriate at almost any time, but particularly during
prototyping. When you write a prototype, it probably deals with one or
two specific types of run-time objects. These are implemented without
regard to other similar objects in the interest of making rapid progress. As
the prototype is expanded, more run-time objects are thrown into the pot,
but one or two at a time. It is still more productive to clone the existing
prototype code and customize it for the new objects, rather than spend a lot
of time on optimizing a class hierarchy. For all of the various reasons to
prototype, constructing a class hierarchy is not a high priority.

Copy/paste is also a good way to work around language restrictions.
Take, for example, the following linked list class.

class List {
private:

List *next in_list;
public:

List (void) {next_in_list =NULL;}
-List (void)

{if (next_ in _list l =NULL)
delete next_in_list;

}
List *GetNext (void) {return next_in_list;}
void SetNext (List *next) {next_in_list =next;}

} ;

This is a straightforward class that does nothing more than maintain a
linked list of instances of class List. Now look at the following subclass:

292 ..,. Chapter 11 Programming

class FunnyString private List {
private:

char c;
public:

void PrintString (void)
{

}
} ;

putchar (c);
if (GetNext() !=NULL)

((FunnyString*)GetNext())->PrintString();
else

putchar ('\n');

The details have been spared here in the interest of brevity. In the real
class, one also makes provision for setting the character values and so forth.
Notice the line

((FunnyString*)GetNext())->PrintString();

Doesn't this seem a little tortured? One would like instead to simply say

GetNext()->PrintString;

but that does not work: GetNext () has been defined to return a List,
not a FunnyString. Now envision a class that has many methods, not
just FunnyString, that need to walk through the list. Each time you
access GetNext () , you must coerce it to point to a Funnystring. If
client objects need to walk through the list, this only gets worse since they
also need to do the type coercion. Even if you are willing to put up with
the clumsy syntax, you will have lost the strong type checking otherwise
applied by the compiler; that is, the compiler cannot warn you if you stick
a Foo into the list instead of a FunnyStr ing and then attempt to print the
list. When you write ((FunnyStr ing *) x) ->DoSomething () , you
are saying to the compiler, "Trust me, I know what I'm doing." It is far too
easy to make a mistake in these situations; when you do, you will end up
in a low-level debugger trying to figure out where that bus error came
from.

This is a case where you might prefer to simply copy the text of the
List class and change the name List to FunnyString, adding new
methods and attributes like Printstring and c.

~ Designing Class Hierarchies 293

class FunnyString {
private:

} ;

FunnyString *next_in_list;
char c;

public:
FunnyString (void) { next in list NULL; }
-FunnyString (void)

{ if (next_in_list != NULL)
delete next_in_list;

}

FunnyString *GetNext (void) { return next_in_list; }
void SetNext (FunnyString *next) { next in list = next; }
void PrintString (void)

{

putchar (c);
if (GetNext() I= NULL)

GetNext()->PrintString;
else

putchar (' \n') ;
}

This is much better. There is no type coercion, which means the com
piler performs full type-checking. Also, it is easy to customize the code
without worrying about what happens to other sibling subclasses of a
List class. In C++, one can sometimes improve further on this by using
#define macros, at the expense of making the code more obscure. (This
does not work for Object Pascal, since there are no #define macros in
Pascal.)

These situations fall under the specific heading of genericity. Some
languages provide language-level support for generic classes (for
example, classes whose instance variables and method arguments can
hold different data types). Unfortunately, the current versions of Object
Pascal and C++ do not provide this support. Copy /paste or macros are
often the cleanest and most reliable way to share code across classes.

Other reasons to use copy I paste might include the following.

• There might be competing superclasses in a single-inheritance lan
guage. There are, of course, other work-arounds to make up for the
lack of multiple inheritance, but copy /paste is a viable strategy.

294 ~ Chapter 11 Programming

• You are borrowing code from another project or library, but using
inheritance to access the code is unworkable.

• The inheritance hierarchy is set and you need to make "just this last
change," usually with the boss standing, arms crossed, foot tapping,
eye glued on her watch while blocking the door out of your office.
Using inheritance in the optimal way often takes more, not less, time
than brute force techniques. Your Four Itys will be happier if you
polish the inheritance, but your boss may not be if it means slipping a
critical ship date.

Helper Objects

We already discussed one of the principal reasons to use a helper object in
Chapter 2: to implement multiple inheritance through a side door when
using a language like Object Pascal that only supports single inheritance.
Note that all MacApp classes and their descendants are restricted to single
inheritance, even if you use C ++with MacApp. This decision was made to
ensure compatibility with both languages.

A second reason is that in most languages, inheritance is compiled into
object code, although the behaviors may change dynamically as the
program runs. Consider a simple rectangle-drawing program. This is like
any typical Macintosh drawing program, except that it has only two tools
in its palette: an arrow tool used to select and drag objects and a rectangle
tool used to draw new on11s. A portion of the run-time architecture from the
Execution Plane is shown in Figure 11-15.

Note: exactly one of these four is
chosen, based on which tool is in use
and whether a rectangle was hit.

/RectObject• WbatsAt <Point) -- • Boolean lsTbisYou? <Point>

/,...-V-i-ew--/-~ L RectObjeci/

Figure 11-15. Rectangle-drawing program

~ Designing Class Hierarchies 295

Now consider what the drawing's manager must do when confronted
with a mouse click in the drawing.

1. If the arrow tool is in use and the mouse did not hit a rectangle, the
manager must launch a marquee-selection process to select all rec
tangles within the area dragged over.

2. If the arrow tool is in use and the mouse hits a rectangle, the rectangle
must be selected and possibly dragged.

3. If the rectangle tool is in use, a new rectangle must be formed with
corners at the locations of the mouse down and mouse up.

These are three distinct sets of behaviors. One way to account for these
behaviors is to sprinkle the manager with if-then or switch-case logic.
Another approach is illustrated by MacApp 3.0's TEvtHandler class.
TEvtHandler maintains a linked list of ''behavior" objects. When an event
arrives, it is handed off to each behavior in the list until one grabs the event.
If none grabs the event, the TEvtHandler itself does the work or hands it to
the next TEvtHandler, which then uses the same logic. This allows the
program to add and delete from the behavior list at run time rather than
compiling in the inheritance of all capabilities that might be used. Figure
11-16 shows what happens when the user clicks on the arrow tool, and
Figure 11-17 shows what happens when the rectangle tool is selected.

For the arrow tool, we install two behavior objects, the first of which
grabs a mouse down when nothing has been hit and the second of which
handles selection and dragging. For the rectangle tool, we install a single
behavior for drawing new rectangles. This is a nice, modular architecture
that replaces a very messy problem of inheritance. This is a good example
of using helper objects to achieve dynamic changes in behavior.

Finally, a helper object may be reusable, but direct inheritance may not.
A helper class that has no knowledge of the object being helped is a
particularly good candidate for reuse.

Combining Abstractions

There are three variations of this technique, each with its own distinct uses
and drawbacks. In the first variation, you form a hierarchy of abstractions
that is then turned directly into a class hierarchy, as in Figure 11-10.
This avoids implementing the shared properties separately for each
abstraction. Often this second-tier abstraction has an intuitive meaning, in
which case it provides a natural way to describe the concrete class. If the
shared methods or attributes are heavily referenced by the non-shared
methods, it can also produce clean inheritance by concrete classes. In

296 1111- Chapter 11 Programming

&;;;rus;IZ- -
Add CSelectBehavior) :

------~ --------

/ArrowMgrJ7- _

ninstall <void> /Ra<Mgr /-L-\ _____ _
tf-ectBehavi~ - - - - - - --

Figure 11-16. Selecting the arrow tool

+

Repeat for each arrow behavior
(marquee, move, etc.)

general, however, this imposes an extra layer of inheritance which, as we
will see, is to be avoided where no good justification exists.

The second technique involves implementing two or more abstractions
in a single abstract class, as shown in Figure 11-11. This achieves exactly
the same effect as the first variation, but does not require the use of
multiple inheritance. In a single-inheritance language like Object Pascal,
this strategy can sometimes be used to good effect as an alternative to
helper objects, but it hinders reuse of code for other concrete classes that
require only some of the combined properties.

The third variation, single-threaded inheritance, is really a compromise
between the first two. The higher of the two abstract classes remains
"pure," unpolluted by its subclass, but the subclass is, in effect, just the sort
of combined class produced by the second variation. This is also a popular

..,.. Designing Class Hierarchies 297

L . /SelectArrowTooJ(void)
V1ewMgr _ ___ ---------------------

,&'ha;orLis;;z- -

/ArrowMgr/- ____ _

/ RectMgr /- _____ _

Repeat for each arrow behavior
(marquee, move, etc.)

Figure 11-17. Selecting the rectangle tool

technique with single-inheritance languages, but carries the same baggage
as the second variation in addition to imposing an extra level in the class
hierarchy. Single-threaded inheritance is also a cheap way to change the
behavior of a whole class hierarchy with minimal changes to off-the
shelf classes. For example, if you want all descendants of MacApp's
TEvtHandler to record in a file all events received and their disposition,
you can transform the hierarchy in Figure 11-18(a) into that of 11-18(b).

The only change to the original TEvtHandler is its name. A new sub
class has been slipped in between the old TEvtHandler and the remaining
classes in your program, with the new capability built in. You would
never dream of designing such a monstrosity from scratch, but you are
stuck with an off-the-shelf hierarchy and instructions from your boss to
do minimal or no damage to the original MacApp source. Even if it were

298 ..,.. Chapter 11 Programming

(a)

Han l Event

(b)

ec r<iEvent 4 -- HandleEvent

~I~
HandleEvent

TOldEvtHandler is the original
TEvtHandler renamed. This can
be done with a single search and
replace editing operation.

Figure 11-18. Redirecting inheritance in TEvtHandler

available, multiple inheritance would not help here. Hold your nose and
use single-threaded inheritance.

Here are some specific rules for use of each technique.

1. First variation-Two-tiered hierarchy-Works with multiple inherit
ance if the shared properties are referenced by the non-shared meth
ods. If they are independent of the non-shared methods, split abstrac
tions should be used instead (next section). If only single inheritance
is available, this technique is obviously not available.

2. Second variation-Mash the abstractions together into a single class.
If multiple inheritance is available, the rule is simple: Don't do it. If
you are tempted anyway, take a walk, sip some herbal tea, then come
back and use some other technique. With single inheritance, make
sure that the separate abstractions are not going to be reused any
where else. In other words, look for other run-time objects that
conform to one, but not both, abstractions. If you find any, don't use
the mashing technique.

3. Single-threaded inheritance-Use with either single or multiple
inheritance to minimize changes to an off-the-shelf class library. In all

..,. Designing Class Hierarchies 299

other cases where multiple inheritance is available, this is a poor way
to implement any architecture the authors can think of. With single
inheritance, the technique can be used sparingly to cut down on the
number of objects created by eliminating helper objects, knowing that
reuse will suffer as a result. There are times when the number of
objects at run time is a significant factor in performance, particularly
the allocation and deallocation of memory for the objects. Eliminating
helper objects can then become an important implementation goal.

Splitting Abstractions

Splitting abstractions requires implementing the shared properties in their
own abstract class, then using multiple inheritance to combine the shared
and non-shared properties in the concrete class, as shown in Figure 11-11.
This achieves the same objective as creating a hierarchy of abstractions
(Figure 11-10), but does not create an extra layer of inheritance. This can be
very useful if the shared methods and attributes are not referenced by the
non-shared methods: The abstract class representing the overlap may
prove highly reusable. However, if the shared methods and attributes are
referenced by the non-shared methods, the result can be something that is
strongly discouraged in object-oriented programming: making inherit
ance from one class dependent on also inheriting from another class.
Consider Figure 11-19, in which one of the original abstractions is now
used to implement yet another concrete class. The new concrete class must
specify inheritance from two superclasses. If any of the combined abstrac
tion techniques had been used, inheritance from only one superclass
would have been required, as in Figure 11-20.

It is generally a good idea to minimize the levels of inheritance, but not
at the expense of creating complex networks of dependencies, in which
inheriting from a single class no longer works without also inheriting from

This does nothing but
Responsibility3 delegate to the inherited

._______,~/,,,, , .. ,.ion

Figure 11-19. Would you buy a used car from this programmer?

300 ~ Chapter 11 Programming

Figure 11-20. Use of a two-level abstraction

or using helper objects of other classes. This issue of dependencies in a class
hierarchy is complex and will be addressed further in a moment.

Combination Strategies

Combinations of different ways to implement abstractions can be used to
address special cases. For example, there may be overlapping abstrac
tions in which only one of the abstractions references the shared proper
ties from the non-shared properties, or in which one, but not both, of the
abstractions will be reused elsewhere. Copy /paste strategies combine
well with all of the other techniques, particularly during prototyping.

~ Object-Oriented Software Engineering
Using Inheritance
Interwoven with all of the practical rules we have just laid out are the
principles of object-oriented software engineering discussed in Chapter 9.

• Limit responsibilities
• Limit data knowledge
• Limit implementation knowledge
• Limit relationships

To these four we add a fifth objective, which applies to the use of
inheritance.

... Object-Oriented Software Engineering Using Inheritance 301

• Limit type knowledge; that is, make clients of an object unaware of
whether they are dealing with a subclass or the superclass by which
they know the object.

Of this list, three are important objectives in laying out the class hierar
chy: limiting data knowledge, limiting relationships, and limiting type
knowledge. Limiting responsibilities and implementation knowledge is
more a function of decisions you make in the Technology and Execution
Planes.

So far, we have discussed these limits in terms of objects, not classes, but
you should get used to thinking of each class as a module, separate from
its superclasses and subclasses. The separation is not as strong as with
distinct run-time objects, but many of the same principles apply. For
example, attributes and their use can be partitioned using a class hierar
chy. Attributes declared in a class can be hidden from subclasses and
superclasses by also placing the methods that use the attributes within the
class. This limits data knowledge through inheritance, one of our three
objectives. Relationships are the most important factor in code reuse, both
within a project and across projects; the more relationships a class has, the
less reusable it is. If you arrange your class hierarchy so that the
upper-level classes have only attributes, interfaces, and implementations
and few or no relationships, then implement relationships in lower-level
subclasses, the higher-level classes will probably be reusable, even if the
lower-level ones are not. Limiting type knowledge is a critical objective in
designing a class hierarchy. We will explore this subject in some depth
in a moment; for now, we simply observe that limiting type knowledge
can be tricky when using inheritance and almost impossible without
inheritance.

Although the use of inheritance is often perceived as one of the black
arts of the expert, we can quickly clear up some of the mystery by placing
inheritance in a clear theoretical framework. This involves revisiting just
what it is that a class inherits from its superclasses and looking at two
fundamentally different uses of inheritance, normal and non-normal. We
will condude with a final look at a somewhat controversial assertion
about inheritance: Object-oriented programming can be a step backward in
software technology when inheritance is not used properly .

...,.. What Does a Class Inherit?

The traditional view of inheritance simply observes that a subclass inher
its methods and attributes from its superclass(es). As we are about to
demonstrate, this is an accurate but woefully incomplete perspective.
Consider the following fragment of code.

302 ..,. Chapter 11 Programming

class foo {

} ;
class bar {

private:
foo *aFoo;

};
class subbar

} ;

public bar {

The traditional view states, "subbar inherits the attribute aFoo, which
is a pointer to an object of class foo." In reality, this should state,
"subbar inherits one or more relationships with an object of class foo."
An attribute that holds the address of another object is not the same as an
integer, string, or other piece of data. It represents structural and/ or
behavioral relationships between two objects. These relationships are
inherited along with methods and other kinds of data. Now consider the
following abstract class.

class drawthing {
public:

virtual void Draw (void) = O;
} ;

class square : public drawthing {
public:

virtual void Draw (void); //Draws a square
} ;

The seemingly trivial class drawthing may, in fact, form the top of an
entire class hierarchy. When the class square inherits from drawthing,
just what is it inheriting? There are no attributes, no relationships, and no
methods, the sum total of what one normally thinks of in connection with
inheritance. What is inherited is the interface to drawthing, which in this
case means the interface to the method Draw () . We need to be careful in
distinguishing what we mean by inheritance of a method; it might mean
the interface, the implementation, or both.

This alters our view of inheritance. Instead of simply inheriting methods
and attributes, a subclass may actually inherit any of the four features
shown in Figure 11-21: data, interface, implementation, and relationships.
When designing inheritance, all four must be taken into account.

..., Object-Oriented Software Engineering Using Inheritance 303

@ RectShape::DrawTrajectory (void)

@ { fTrajf tocy->Draw (); }

@ ~---====--t11~~~~y ©
<D

RectShape::Draw (void)
{ Rect r;

@ r = fBounds;
FrarneRect (&r);

Figure 11-21. Four aspects of inheritance

CD Data
@ Interface

@ Implementation
© Relationship

One of the authors recently came across a good example of this prin
ciple. When designing a MacApp 3.0 program, he implemented a series of
behavior objects, as described above for the rectangle drawing program.
These objects had little in common except for their relationships to the
display container (view, in MacApp parlance). He created an abstract
class that had nothing but the address of the display container and some
simple methods implementing the simple relationships. The subclasses
did all of the real work. This is an example of using inheritance to reuse
relationships and nothing else. The resulting program had the structure
shown in Figure 11-22.

304 ..,.. Chapter 11 Programming

Figure 11-22. Example of using inheritance of relationships

~ Normal Inheritance

Let's assume for a moment that we have a method in a superclass that has
an implementation; that is, it is not a pure virtual method. There are
two ways to override such a method in a subclass: inherit its interface
only, providing a completely different implementation, or inherit the
implementation as well as the interface by calling the superclass
implementation from within the subclass's override. In C++, this means
that somewhere in the implementation of the override, you place a call
to Superclass: :Method();, in Pascal, INHERITED Method;, where
Superclass is the name of the superclass and Method is the name of the
overridden method. When a method calls its overridden, inherited coun
terpart, we say that the inheritance is normal. If the implementation is
completely overridden, the inheritance is non-normal. Since a pure vir
tual method has no implementation, all overrides of pure virtual methods
are considered normal. We can extend this definition to inheritance of
entire classes: If all overridden methods of a subclass inherit normally, the
subclass as a whole inherits normally. This seemingly simple distinction
between normal and non-normal inheritance is actually one of the most
important factors in achieving the Four Itys.

Consider the inheritance shown in Figure 11-23.
In this scenario, the class YJunction inherits from the class Track. There

is a display container class, Layout View, which is a client of the superclass
Track. When you subclass Track, you must not only make sure that the

..,.. Object-Oriented Software Engineering Using Inheritance 305

ValidateConnections void

Figure 11-23. Simple inheritance-or is it?

class YJunction produces the right run-time objects; you must also make
sure that any clients of Track, such as the one shown, do not misbehave
when presented with a subclass like YJunction. In this example, suppose
we asserted that Track had relationships to two other instances of Track, a
"left-hand" instance and a "right-hand" instance, on the assumption that
most members of Track are straight pieces with two connectors. Those
relationships could, in theory, be completely overridden in the subclass
YJunction, which has three connectors. This, in turn, might upset a client
that relies on the two relationships of the superclass. LayoutView might,
for example, try to walk through the track by proceeding left-then-right
from any given piece of track. This may or may not be good design for that
particular task, but that is beside the point. If you use non-normal inherit
ance, at best you will end up spending a lot of time scratching your head
in designing the clients, convincing yourself that everything will work
properly. At worst, clients will have to constantly ask themselves, "Just
which subclass am I dealing with now?" This kind of type knowledge is to be
avoided wherever possible. It leads to very poor modularity, little or no
code reuse, and very confusing, unstable designs.

The problem gets worse if a method of the superclass that is overridden
by the subclass has side effects. Figure 11-24 shows just such a situation.
The problem is now not just maintaining relationships with other objects,
but maintaining the very consistency of the object itself! Furthermore,
anyone trying to understand what this program is doing cannot tell what
is going on without bouncing up and down the inheritance tree. This
problem has been called the "yo-yo" phenomenon of inheritance.

306 ..,.. Chapter 11 Programming

The superclass version of ComputeGross has a side effect -
setting the value of fGross - not shared by the overridden
version. Other parts of the program that rely on that side
effect will not work with the subclass, requiring type
knowledge to compensate. The override is suspect, but the
real problem starts with the design of the original
ComputeGross, which does not lend itself to normal
inheritance.

Figure 11-24. Calling an overridden method from the superclass

These problems are reduced, though not always eliminated, by using
normal inheritance. If each overridden method is required to call its
superclass counterpart, there is a good degree of assurance that relation
ships and behaviors of the superclass expected by clients will be main
tained. There may be additional behaviors in the subclass, but there are no
big surprises for clients of the superclass. It is also unlikely that the
superclass or its clients will need to use type knowledge in order to carry
on their business; that is, they will not need to have code like the following.

if (x->GetType() == kFoo)
do_this();

else if (x->GetType() == kBar)
do_that();

and so on. This use of type knowledge takes many subtle forms: returning
an integer type code of some sort, directly asking for the class identifier, or
asking for other information from the object that controls the sort of

..,. Object-Oriented Software Engineering Using Inheritance 307

Figure 11-25. Using a pure virtual interface to achieve normal
inheritance

if-then or switch-case logic seen above. One of the most important
objectives in designing a class hierarchy is to avoid this kind of type
knowledge in your program. Normal inheritance is a very important tool
in achieving that objective.

One key strategy in achieving normal inheritance is to make liberal use
of pure virtual methods in abstract superclasses. Suppose that you have
two run-time objects that differ only in the way they draw; say, a rectangle
and a piece of text. Figure 11-25 shows the correct way to handle this by
creating an abstract class from which both can inherit the same interface.
All methods other than Draw are either not overridden or are inherited
normally. The Draw method is completely different for the two run-time
objects, so the only abstraction that can be formed is the interface.

Figure 11-26 shows a common mistake in handling this situation. Here,
the text class inherits from the rectangle class. The Draw method is
completely overridden by the subclass, since they have nothing in com
mon. This non-normal inheritance may seem benign at first glance, but it

Figure 11-26. Non-normal inheritance for no good reason

308 ..,.. Chapter 11 Programming

isn't. Suppose the superclass version uses relationships with other objects
to carry out its purpose, such as asking some other object for its size?
Suppose we want to change the implementation of the superclass version
of Draw so that side effects are introduced. Can we do so by looking only
at that class, or must we consider all subclasses at the same time? What if
Draw is called from other objects, expecting the standard behavior pro
vided by the superclass? The Four Itys run for cover in these situations. It
is usually easy, and well worth it, to find ways to turn non-normal
inheritance into normal equivalents.

The most defensible reason to use non-normal inheritance is that we are
stuck with an existing class which is unusable otherwise. This may be an
indication of poor design, or it may mean that the program was designed
for one set of requirements and must now be changed minimally to add
additional capabilities. Though it is undesirable, non-normal inheritance
may be unavoidable under such circumstances. Another reason might be
the use of a single-inheritance language. Mashing two abstractions
together into a single superclass is most likely to make sense when you are
stuck with single inheritance. When that happens, it is inevitable that
some inheritance will end up being non-normal. If you really must use
non-normal inheritance, try to limit it to methods that do not use relation
ships with other objects, are not called directly from outside the super
class, and do not have side effects such as changing the values of at
tributes .

...,.. lnjleritance: The GOTO of the '90s?

The best way to view a class hierarchy is as a set of superimposed
modules. Modularity in object-oriented software can be achieved
through creating separate, collaborative objects, but it can also be
achieved by dividing the data, relationships, implementations, and inter
faces into superclasses. As with any technique of modularity, simply
forming modules is not enough to guarantee good design. Modules must
be independent of one another, simple, reusable, and maintainable in
order to provide benefits. This means that classes should be as indepen
dent of one another as possible, not just across relationships, but up and
down their inheritance structure as well. Subclasses will always depend
on their superclasses, but it is surprising how tempting it can be to make
superclasses dependent on their subclasses! Type knowledge and the
yo-yo phenomenon lead to just such violations of modularity through
inheritance.

Back in the language wars of the Dark Ages of Computing, circa 1970,
the most telling argument against using GOTO was that it prevented you
from looking at a line of code and telling exactly how your program got

~ Programming 309

there. No matter where you were, the program could suddenly swoop in
out of nowhere. Poorly designed inheritance has the same effect. Looking
at a method, it may be difficult or impossible to tell without examining the
entire program how, when, and why the program might execute that
method. For this reason, inheritance in object-oriented programs-par
ticularly non-normal inheritance-might well come to be known as the
GOTO of the 1990s .

...,. Programming
The implementation of methods and attributes is almost an anticlimax in
Solution-Based Modeling. For each method, the semantics of the method
and its collaborators have already been determined. Even the order and
circumstances in which collaborators are called by a method have in
many cases been defined through dynamic scenarios of the Execution
Plane. Furthermore, it is likely that by the time you reach the Program
ming Phase a good deal of prototypical code has been implemented. What
follows are some useful guidelines.

1. Write concrete classes for spedfic examples of objects first. This is true
of prototyping and the same strategy continues into the programming
phase. Worry about abstract classes and optimized class hierarchies
only after you have working, concrete classes.

2. Dare to reorganize. At any point during the programming phase, you
should be prepared to reorganize the class hierarchy and the accom
panying implementations as new ideas and information are uncov
ered. At a recent conference, one company told of overhauling a
MacApp application containing in excess of 150,000 lines of code. It
took less than three days. This is very common in object-oriented
software development and not to be feared. You lose very little code
during a reorganization; most ends up copy /pasted somewhere in
the revamped program.

3. Look for shrinkage in lines of code. In traditional programs, the
number of lines of code grows as the project goes forward. In
object-oriented software, the number of lines of code expands to a
point, then starts shrinking as completion is approached. This is due
to better reuse of code and elimination of type knowledge as the
design is optimized for final release. If the number of lines stabilizes
or starts to shrink, you are on the home stretch.

4. Keep up the paperwork. You will uncover new information during
programming, some of which will undermine scenarios previously

31 O ..,.. Chapter 11 Programming

drafted. Be sure to keep the scenarios up to date, despite the tendency
to take a" damn the torpedos, full speed ahead" attitude as the project
winds down. This will help prevent oversights that occur when
everyone is in the heat of programming and assures that quality
assurance and on-going maintenance will have a solid base of docu
mentation.

5. Implement scenarios, not classes. We have discussed this several
times before: Design and implementation should be organized
around scenarios, not objects or classes. It is important to maintain
control over the programming phase, and that is best done by work
ing from scenarios that can be checked off against a project plan as
they are completed.

One of the most common forms of reorganization of the code is illus
trated by the following sequence. Start with the following code fragment
(in pseudo-code).

class·foo {
public:

void Draw (void);
} ;

void foo::Draw (void) {

}

I I This may actually be several lines of code
do_some_of _the_drawing;
do_the_rest_of_the_drawing; //As may this

Now introduce a superclass and split the implementation as follows.

class bar {
public:

virtual void Draw (void);
} ;

class foo : public bar {
public:

virtual void Draw (void);
} ;

void bar::Draw (void) {
do_some_of_the_drawing;

}

void foo::Draw (void) {

}

bar: :Draw();
do_the_rest_of_the_drawing;

~ Programming 311

In Object Pascal, the initial form would be as follows.

foo = OBJECT
PROCEDURE Draw;

END;
PROCEDURE foe.Draw;
BEGIN

{ This may actually be several lines of code }
do_some_of_the_drawing;
do_the_rest_of_the_drawing; {As may this}

END;

The reorganized code then becomes

bar = OBJECT
PROCEDURE Draw;

END;

foo = OBJECT (bar)
PROCEDURE Draw; OVERRIDE;

END;

PROCEDURE bar.Draw;
BEGIN

do_some_of_the_drawing;
END;

PROCEDURE foe.Draw;
BEGIN

INHERITED Draw;
do_the_rest_of_the_drawing;

END;

Notice that no code was lost. The implementation was simply split up,
with one part assigned to the superclass and the rest left in the subclass.
This allows the initial part, do_some_of _the_drawing, to be reused by
other subclasses. An equivalent reorganization follows.

312 ~ Chapter 11 Programming

class bar {
protected:

void PartialDraw (void);
public:

virtual void Draw (void) O;
} i

class foo : public bar {
public:

void Draw (void);
} i

void bar::PartialDraw (void) {
do_some_of _the_drawing;

}

void foo::Draw (void) {

}

this - PartialDraw();
do_the_rest_of_the_drawing;

Or, in Object Pascal,

bar = OBJECT
PROCEDURE PartialDraw;
{ A pure virtual method - implementation does nothing}
PROCEDURE Draw;

END;

foo = OBJECT (bar)
PROCEDURE Draw; OVERRIDE;

END;

PROCEDURE bar.Draw;
BEGIN
END;

PROCEDURE bar.PartialDraw;
BEGIN

do_some_of_the_drawing;
END;

PROCEDURE foe.Draw;
BEGIN

SELF.PartialDraw;
do_the_rest_of _the_drawing;

END;

Figure 11-27
(a) Before optimization
Fool::Draw (void)
{ do_some_of_the_drawing;

do_the_rest_of_the_drawing;

f .
Draw v01d

..,. Programming 313

Foo2::Draw (void)
{ do_some_of_the_drawing;

do_something_different;

f
Draw void

(b) Putting common code into the overridden method

Fool::Draw (void)
{ Bar: :Draw();

do_the_rest_of_the_drawing;

f .
Draw v01d

~~awwid
1

Foo2::Draw (void)
{ Bar::Draw();

do_something_different;

f
Draw void

Bar::Draw (void)
{ do some of the_drawing;

314 ~ Chapter 11 Programming

(c) Splitting out common code into a separate method

Fool::Draw (void)
{ Bar::PartialDraw();

do_the_rest_of_the_drawing;

f
Draw void) = 0

Foo2::Draw (void)
{ Bar::PartialDraw();

do_something_different;

f
Draw void

Partia!Draw void

l
Bar: :Draw (void)
{ do_some_of_the_drawing;

Figure 11-27. Reorganizing the implementation to share code

Figure 11-27 (a) shows the "before" scenario and (b) and (c) show the two
alternative "after" scenarios for these code fragments extended to illustrate
code reuse by two concrete classes.

Both approaches use normal inheritance. The second is a little cleaner
because it separates the inheritance of an interface from the inheritance of
a partial implementation, but the authors have no quibble with either
approach. In both cases, if you measure the magnitude of the reorganiza
tion by lines of code affected, you must conclude that almost everything in
the program has changed. On closer examination, it is clear that almost
nothing in the implementation really changed; it was the class hierarchy
that got shuffled. This is very common, particularly as the program nears
completion and you start worrying more about optimization and less
about whether the project will finish in time. This sequence is especially
common if you heed the previous guidelines and work first on examples
of objects, then later design the class hierarchy. The tendency under those
circumstances is for code to migrate up the hierarchy, not down, as in this
example.

~ Managing the Programming Phase 315

We can illustrate the third guideline by continuing the example. It may
well be that do_ some_ of_ the_ drawing was repeated at first in several
classes and that the reason for creating the extra layer of inheritance was
specifically to share that code. If so, the net effect is likely to be a reduction
in the total lines of code. Or it may be that by introducing a pure virtual
interface, you eliminate some if-then or switch-case logic, again
reducing the overall size of your program. The combination of these two
factors explains much of the reduction in code experienced by companies
that have reengineered existing software products using object-oriented
techniques. The resulting programs have typically been one-fourth to one
tenth the number of lines of code used by the original program.

..... Managing the Programming Phase
The programming phase uses the same basic techniques used for analysis
and design: CPC, scenarios, synthesis, correlation, and synchronization.
The process is driven by the set of scenarios chosen at the conclusion of the
design phase to form the basis of project scheduling and measurement, the
implementation set. Each scenario in the set must be implemented at some
point during the programming phase. Choosing an appropriate order in
which to tackle these scenarios is not as important as making sure that all
are dealt with and that the cumulative quantity completed is consistent
with the schedule at any given point in time.

This chapter discusses techniques specific to object-oriented program
ming and SBM, but you will certainly use traditional tools of programming
as well: source code control systems such as the MPW Projector tools,
conventions for source code formatting and organization, debuggers and
the accompanying standards for initial testing of source code, and other
useful development tools and techniques. SBM does not replace any of
these techniques, but they are beyond the bounds of this book.

~ Use of Scenarios

In Chapters 9 and 10, we talked about using scenarios, not just as a tool for
model building and exploration, but for project management as well. The
schedule for the programming phase should be based on a specific set of
scenarios chosen from all scenarios available at the end of the design
phase. This implementation set of scenarios should collectively cover all of
the Execution Plane. No scenario in the set should be completely redun
dant with any other; when in doubt, include borderline scenarios in the
set. It is perfectly acceptable to generate new scenarios from existing ones,
specifically for inclusion in the implementation set.

316 ..,.. Chapter 11 Programming

The implementation set is the fundamental unit of organization during
the programming phase. Schedules should be based on completion of
scenarios or groups of scenarios. Team members should be made respon
sible for completing the implementation of scenarios or groups of sce
narios. This is a much better basis for scheduling, assigning tasks, and
monitoring progress than other schemes based either on a top-down
decomposition of the project or by object/ class. A good way to develop the
programming schedule is to pick a few representative scenarios from the
implementation set and code them, keeping track of productivity as you
go. This can then be extrapolated to the rest of the implementation set.

...,. Quality Assurance

The process you have used to get this far-scenarios, calibration, and an
overall team approach-means that testing and quality assurance began
with the start of the project. However, that is no substitute for a formal
software testing process at the completion of the programming phase.
Ideally, QA personnel have been part of the entire project, from analysis
through programming. In the early stages, QA got up to speed on the
requirements, saving time later; provided feedback on how testable the
scenarios drafted for the Business and Technology Planes are; and began
selecting scenarios of those planes to be the basis for the final check-out
testing. If you did not bring QA in at earlier stages, get them involved now,
as soon as the programming phase begins. They will have a good deal of
preparation to do before the software is released for its final check-out.

...,. Use of Prototype Code

Prototype code developed in early phases should not be treated as sacred.
Remember that 75 percent of your investment in developing that code was
in analysis and design, not programming. Recreating hastily drafted,
proof-of-concept code is much less expensive than was the initial drafting.
That said, it is likely that much or most of the prototypical code accumu
lated so far will end up being used in the finished product. It may be
shuffled around, as discussed previously, but there is usually a place for
good code in the finished product.

...,. When Is the Programming Phase Complete?

The programming phase ends when the program implements the sce
narios of the Execution Plane, has been accepted by QA, and has been
released for alpha and beta testing. This requires that someone in authority

..,.. Beyond Programming 317

says that the phase is done; there is no rigorous, air-tight test for comple
tion. However, if QA has selected scenarios of the Business and Technol
ogy Planes to use as the basis of testing, and if you have properly calibrated
the Execution and Program Planes, there is a firm foundation on which to
render that judgment.

~ Beyond Programming
What happens after the project T-shirts have been issued and everyone is
back from a well-needed vacation? The software, of course, must evolve.
So far, we have behaved as if every SBM project starts from scratch or from
software not developed using SBM. However, you are now ready to reap
one of the biggest benefits SBM has to offer: carrying forward the body of
scenarios and documents into the full life cycle of the software. When we
said earlier that the Reference Model was simply one region of the Business
Plane, we described only initial use of SBM, not changes to a prior SBM
project. If you are maintaining and changing a program developed using
SBM, the true Reference Model is actually the combination of all four
planes-the Solution Model, Technology Plane, Execution Plane, and
Program Plane-as of the last release of the software. As you work toward
the next release, you will correlate this entire model to its counterparts in
the new SBM in exactly the same way you correlated the Reference and
Solution Models at the beginning of this project. However, this correlation
will be at four levels, not one. The concept of an Impact Analysis also carries
forward. Where before the Impact Analysis was a measure of change to the
business, now it is a measure of change to the business, conceptual design,
architecture, and program.

This explains some of the curious, glossed-over inconsistencies in the
Business Plane. Why was it that correlation applied only across planes,
except between the Reference and Solution Models? The answer is that the
Reference Model was actually at the top of a four-tiered, separate model,
the bottom three tiers of which were, at that time, empty. Why is it
"Solution-Based Modeling," not "Reference-Based Modeling," since we
encouraged you to start with the Reference Model? Again, the true
solution-based model has only one region on its topmost plane, the
Solution Model.

By recasting the overall model in this way, evolution is seen as a natural
outgrowth of what you've been doing during the initial development. The
same techniques and principles apply over the useful life of the software.

We can now also, in the closing pages of the book, close one other open
issue. If you are developing several, cooperative programs at once, each
gets it own complete solution-based model. These models share all or part

318 ..,.. Chapter 11 Programming

of a unified Solution Model, but underneath can be treated as separate
projects. With this change, SBM can be easily extended to cover distributed
systems and multitasking networks of programs. It is beyond the scope of
this book to provide more details in this area, but the extensions should be
quite natural to anyone who has come this far .

...,.. Summary
This chapter focused on the programming phase of Solution-Based Mod
eling, the final step in constructing the initial version of the system
envisioned in the Solution Model. Since we are developing systems for
the real world, this initial system is actually the beginning of an evolving
series of systems that will satisfy your business needs. This is the easiest
phase of SBM, because we simply code the responsibilities defined in
minute detail in the Execution Plane to obtain the Program Plane.

• During the programming phase we spend a great deal of time deciding
how to properly implement the objects of the Execution Plane using
inheritance and other techniques. We have many strategies to choose
from, including copy /paste and other "low-tech" approaches. Our
choice of how to implement the abstractions and run-time objects of
the Execution Plane as class libraries and program modules will
greatly influence how well our application system satisfies the Four
Itys, Maintainability, Reliability, Extensibility, and Reusability. These
are best achieved by thinking of inheritance as passing along relation
ships, interfaces, and implementations and not just attributes and
methods.

• Implementation of methods and attributes is straightforward and uses
the same techniques and technology as for any other programming
project. Object-oriented programs are frequently reorganized, even up
to the closing days of a project. Prototypical code is often, but not
always, reused in the finished product.

• When our software has been tested, passed an independent quality
assurance process, and survived an appropriate, prescribed period of
user testing, we reap the reward of SBM: an application system
designed to serve the business needs set out in the Solution Model.
From that point, the entire Solution-Based Model becomes the new
Reference Model for subsequent work, thereby closing the life cycle on
the methodology.

Appendix

A Manual Database for
Solution-Based Modeling

This appendix describes a simple database that both facilitates all three
forms of calibration and functions as an index to the set of scenarios. It can
be maintained manually on paper or index cards but is also easy to
automate using HyperCard or database programs. To use this database,
each scenario should be assigned a unique identifier, typically a document
number. For each object, category, or class, we create a summary card and
for each responsibility, a relationship card. A sample summary card is
illustrated in Figure A-1.

Plane/Region: ---------
Element Name:----------

Scenarios:------

Attribute Name Data Type Scenarios

Figure A-1. Summary card

319

320 ..,. Appendix A Manual Databas for SBM

The plane, region, and name together uniquely identify the object, cat
egory, or class. The upper right of the card lists all scenarios in which the
object appears. The table lists all attributes, their data types, and the
scenarios for each. Figure A-2 shows a sample relationship card.

Plane/Region: ------------
Scenarios: _____ _

Element Name:
~~~~~~~~~~~-

Responsibility: 
~~~~~~~~~-~-

Relationship Plane/Region/Element Responsibility Scenarios
of Relative Type of Relative

Figure A-2. Relationship card _.......__,,,

The plane, region, and name are as in the summary card. Many relation
ships connect a responsibility of this object to another object. If that is the
case, the name of the responsibility is listed in the heading. The table lists
all relatives of this responsibility. The second column identifies the object.
The third column identifies the responsibility of the relative, which may
be blank. The relationship type is one of the VDL relationship symbols.
-- .., means "calls" while "" -- means "called by" the relative.

---~means "creates" and means "created by'' the rela-
tive. The last column lists scenarios that contain the relationship. The
scenarios listed in the upper right corner are those in which the responsi
bility occurs without relationships.

For a given element, there will be one relationship card with the respon
sibility left blank for relationships such as "created by'' or "is part of," plus
one card for each responsibility. The former is called the open relationship
card and has special significance for synchronization. A relationship is

~ Appendix A Manual Databas for SBM 321

always listed in two places, corresponding to the element on each end.
Responsibilities in the . Execution and Program Planes are listed with
complete calling sequences in addition to the name.

This is a simple and effective cross-reference to synthesized scenarios. Its
use for synthesis is obvious. It is the "overall model" we spoke of in
Chapter 9. For correlation, scan each relationship card for "implements,"
"implemented by," and "replaces" relationships. For synchronization, the
open relationship cards quickly identify scenarios in which objects are
created and destroyed. Dangling threads are indicated with an asterisk or
stick-on, color-coded dot. Cards should be maintained either in pencil or
on-line, as the information changes frequently.

All processes of Solution-Based Modeling are supported by this simple
database. More sophisticated database programs can provide automated
support for all three forms of calibration.

~ Bibliography

To help the reader, we list only books that we think are especially benefi
cial or that have been of special help in our own research. The bibliogra
phy is divided into three general subjects: software development, cogni
tive science, and graphic arts.

~ Software Development
Many books on object-oriented analysis and design are so at odds with
the authors' views on the subject that it would be misleading to list them
as part of this bibliography. The books that are listed are complementary,
though not perfectly consistent in their views .

...,_ Object-Oriented Design

Booch, G. 1991. Object-Oriented Design with Applications. Redwood City,
CA: Benjamin/Cummings Publishing Company. Packed with prin
ciples and insights, though it contains little methodology and falls into the
objectivist trap. You don't need any other book on object-oriented design.
You also don't need another bibliography on object-oriented software;
Booch' s is excellent.

323

324 • Bibliography

..... Object-Oriented Analysis

Rumbaugh, J ., et al. 1991. Object-Oriented Modeling and Design. Englewood
Cliffs: Prentice Hall. One of the few other good attempts at an overall
methodology for analysis, design, and programming called Object Mod
eling Technique (OMT). Takes a data-driven, not procedural, approach.

Wirfs-Brock, R., et al. 1990. Designing Object-Oriented Software. Englewood
Cliffs: Prentice Hall. Perhaps the best work available on the concept of
responsibility-driven design. This book is about more than design. It
discusses modeling and analysis as well, and only occasionally succumbs
to objectivism.

..... General Object-Oriented Software

Carr, R. and D. Shafer. 1991. The Power of PenPoint. Reading, MA:
Addison-Wesley. OK, this has nothing to do with the Macintosh, but in
many ways PenPoint, the operating system from GO Corporation, shows
the potential for object-oriented software. Every well-rounded OOPer
should at least peruse PenPoint, even if you never use it.

Kim, W. and F. H. Lochovsky. 1989. Object-Oriented Concepts, Databases
and Applications. New York: ACM Press/ Addison-Wesley. One of the
best collections of papers on the fundamentals of object-oriented soft
ware.

Winblad, A. L., S. D. Edwards, and D. R. King. 1990. Object-Oriented
Software. Reading, MA: Addison-Wesley. An outstanding who's who and
what's what review of the object-oriented software industry.

Zdonik, S. and D. Maier. 1990. Readings in Object-Oriented Database Sys
tems. Palo Alto, CA: Morgan Kaufmann. If you wade through this book
and still believe that there is such a thing as a single definition of object
oriented programming, check the cover because you grabbed the wrong
book. This huge volume contains so many academic papers so at odds
with one another on such fundamental subjects that you have to wonder
how object-oriented programming ever got past the starting gate.

..... General Software

Martin, J. and C. McClure. 1988. Structured Techniques: The Basis for CASE.
Englewood Cliffs: Prentice Hall. A remarkable book that attempts to
synthesize all that is common to software methodologies, with good

1111- Bibliography 325

success. (Note that we use the word "common," not "correct.") Must
reading for any serious methodologist.

~ Cognitive Science
We list many works here in the hope that you will read a few of them. Most
technologists are not familiar with the tremendous body of work available
in this area. We list works according to their relevance to this book as well
as their readability for a general audience.

..... Gregory Bateson

Gregory Bateson, anthropologist, philosopher, and cognitive scientist long
before the term came into use, has had a major impact on many people,
including the authors. His books are not easy reading, but well worth the
effort. His contribution to twentieth-century thought cannot be overstated,
particularly regarding the relationship of man to his own concepts and
environment.

Bateson, G. 1972. Steps to an Ecology of Mind. New York: Chandler.

Bateson, G. 1980. Mind and Nature: A Necessary Unity. New York: Bantam
Books.

Bateson, G. 1980. Naven. Stanford CA: Stanford University Press.

Bateson, G., and M. Bateson. 1987. Angels Fear: Towards an Epistemology of
the Sacred. New York: Macmillan Publishing Company.

..... Of Particular Interest

We have found the following books particularly useful in helping us
understand how people perceive the world around them. They have made
significant contributions (both positive and negative) to our approach to
categorization, how people build models, the calibration process, and the
interaction between language and perception.

Alexander, C. 1979. The Timeless Way of Building. New York: Oxford
University Press. Although computer people often refer to themselves as
architects, Christopher Alexander is one, and the issues he discusses,
related to architecture, are remarkably similar to the ones we have raised
in systems analysis and design. Well worth reading to get a different
perspective on the same truth. Alexander's other works also make fascinat
ing reading.

326 ~ Bibliography

Hardison, 0. B. 1989. Disappearing Through the Skylight: Culture and Technol
ogy in the Twentieth Century. New York: Penguin Books. A fascinating,
disturbing but ultimately exhilirating account of the inability of tradition
and traditional forms of expression to deal with twentieth century life and
the remarkably similar responses of artists, architects, poets, musicians,
and technologists to the problem.

Lakoff G. 1987. Women, Fire, and Dangerous Things: What Categories Reveal
about the Mind. Chicago, IL: University of Chicago Press. If you read no
other book on cognitive science, as an object-oriented sort of person you
owe it to yourself to read this one. The bibliography is also a good source
of additional reading.

Lakoff, G., and M. Johnson. 1980. Metaphors We Live By. Chicago, IL:
University of Chicago Press. Nicely complements Women, Fire, and Dan
gerous Things. Excellent discussion of the role of metaphor in human
perception and problem solving.

..... Interesting Reading

Bronowski, J. 1978. The Origins of Knowledge and Imagination. New Haven:
Yale University Press.

Brown, G. 1973. Laws of Form. New York: Bantam Books.

Bruner, J. 1986. Actual Minds, Possible Worlds. Cambridge MA: Harvard
University Press.

Campbell, J. 1982. Grammatical Man. New York: Simon & Schuster, Inc.

Goodman, N. 1985. Ways of Worldmaking. Indianapolis IN: Hackett.

Gregory, B. 1990. Inventing Reality: Physics as Language. New York: John
Wiley & Sons.

Miller, G. 1956. The Magic Number Seven, Plus or Minus Two: Some
Limits on Our Capacity for Processing Information. The Psychological
Review.

Nagel, E., and J. Newman. 1967. Godel's Proof. New York: New York
University Press.

Sapir, E. 1958. Culture, Language and Personality. Berkeley and Los Angeles:
University of California Press.

von Foerster, H. 1984. Observing Systems. Seaside, CA: Intersystems Publi
cations.

llll- Bibliography 327

Watzlawick, P. 1984. The Invented Reality: How Do We Know What We Believe
We Know? New York: W.W. Norton & Company.

Whorf, B. 1976. Language Thought & Reality. Cambridge, MA: M.l.T. Press .

...,.. Graphic Arts
You need look no further for graphic arts information than the following
two books by Edward R. Tufte, both of which are already cult classics
among those who work with graphical user interfaces for computers.

Tufte, E. R. 1983. The Visual Display of Quantitative Information. Cheshire,
CT: Graphics Press. Time only makes this book more compelling. The
book is every bit as sweeping as its title would have you believe.

Tufte, E. R. 1990. Envisioning Information. Cheshire CT: Graphics Press. A
landmark book on the importance of three-dimensional visualization
("escaping flatland") and the appropriate use of color.

Also of interest, although not quite a book on graphic arts:

Laurel, B. ed. 1990. The Art of Human-Computer Interface Design. Reading,
MA: Addison-Wesley. The best book yet published on the design of
Macintosh-like interfaces.

INDEX

3 Dimensional visualization, 107,
108, 136

and escaping flatland, 112-113
4th Dimension, 101

A
Aboriginal tribe, 95, 96
Above/below organization, 115,

130, 136
Abstract Data Types. See ADTs

(Abstract Data Types)
Abstraction(s), 58, 63, 93, 126,

152-153
vs. classes, 251-252
definition of, 56
and the Execution Plane, 257-

258, 279
and natural world models, 140
and the Programming Phase,

286-287, 295-299
single-threaded, 288-289
six ways to implement, 284-290
split, 289, 299-300
validation of, 235
and VDL, 124

Accessors,216,257
Accountability, 199
ADTs (Abstract Data Types), 29,

259,260
Advance Scouting, 237-238
Aesthetics, 224
Algorithms, 13, 19, 185, 217, 235
AMOL (Aunt Millie's Object

Language), 25, 46
Analysis Phase, 169-203

completion of, 238-240
design and programming

during, 171-172
and estimating, scheduling,

and planning, 239-240
objective of, 170-171
overview of, 170-173
and the Technology Plane, 205-

241
Ancestors, 35, 38, 39, 123, 250. See

also Inheritance
Angles, right, 126
Antecedent relationships, 55
Anthropomorphism, 32-33, 50,

209

329

330 Index

and the Content Model, 211
definition of, 47
and Model Railroad CAD, 75, 76

AppleEvents, 263, 273
AppMaker, 237
Architecture

black box, 214-215, 217, 240
client/server, 214...:215, 217
Content, 150-152, 154, 208, 237,

255,259-260,276,279-280
Environment, 150, 151-152,

255,259,263-264,277
User Interface, 150, 152, 231-232

Arrow tool, 296
Ashton-Tate, 104
Attributes, 96, 108, 150, 152-153

and basic categories, 93
definition of, 51
and lexical analysis, 71
and the Programming Phase,

301
and synchronization, 270
and top-down method, 72
and VOL, 122, 124-125

Aunt Millie's Object Language.
See AMOL (Aunt Millie's
Object Language)

Australia, 95, 96
Authority, lines of, 199
Automation, 136, 141

and the Content Model, 210
and the Impact Analysis, 199
and the Reference Model, 141,

143
and the Solution Model, 193-

195, 196
Automobiles, 217-219, 225
Autonomy, 76, 89

B
Background, 115, 133. See also

Foreground-background
organization

Behaviors, 124, 153-154
and astonomy, 89
the payroll example, 86-87
and Model Railroad CAD, 76
and OOSD, 51, 54
and real-world analysis, 75
and the Reference Model, 185
and VOL, 127

Behavior sets
definition of, 175-176
and Solution Model, 191

Binary trees, 26
Biology, 51, 59, 93
Black box architecture, 214-215,

217, 240
Black hole model, 9
Blocks World, 53-55
Boards, multi-layer, 225
Booch, Grady, 58
Budgets, 170, 171, 192. See also

Costs and benefits
Bugs, 45, 165-166. See also Errors
Business Plane, 141-145, 160, 162,

164-203, 238-241

c

and the Content Model, 212
and mapping responsibilities

onto objects and categories,
213

and the User Interface Model,
231

C (programming language), 28,
45,80

C + + (programming language),
5, 19, 80

and compilers, 45
general description of, 45, 46
and the Execution Plane, 249-

252, 260, 272
Apple extensions to, 45
and handling OOP at the

language level, 44-45

and implementation, 29-31
and inheritance, 39
and making all data members

in the object private, 29
and objects, definition of, 27
and OOP, 25, 27, 29-31, 34-35,

44-46, 48
popularity of, 25, 46
and the Programming Plane,

290,293,294,304
reasons for using, 25
and the tradeoff between

performance and dynamic
changes, 48

Calibration, 153-154, 156, 158,
160-163, 164, 166, 236. See
also CPC (Center-Periphery
Calibrate); Correlation;
Syncronization; Synthesis

and the analysis phase, 172
and the Content Model, 222
Correlation, 219-223
and dangling threads, 172
and essential responsibilities,

180, 181
and the Execution Plane, 243,

244,269-275,276
relationships, 128
and the Solution Model, 192
Synchronization, 161, 269-

275
Synthesis, 183-188
three techniques of, 161
and the User Interface Model,

231-232
Calling

a method, definition of, 32
sequences, 253-255

Candidate lists, 83-84, 89
Categories, 92-97, 180

basic, 92-93, 94-95, 96, 108
vs. abstractions, 252-253, 257-

258

..,. Index 331

cognitive, 97-98, 100-101, 105,
108, 145-146, 230

as containers, 257-258
and context, 100-101, 108
definition of, 92, 100-101
functional, 93
hierarchies of, 96
and Macintosh User Interfaces,

104-107
mapping responsibilities onto,

213
membership in, 108
"natural," 103
natural way of forming, 96-97
natural world, 122-123, 144,

179
non-basic, 93-95, 97-98
preconceptual,92,93,96, 108
and prototype effects, 108
refinement of, 100-101
rules for using, 99
and the sheer cliff principle,

102-103, 102-107
and reusability, 101-102
and VDL, 122-123

Cause and effect, 15
Center-Periphery-Calibrate. See

CPC
Center-periphery organization,

107
and VDL, 115, 132

Check boxes, 105
Class(es)

and abstraction, 56, 123, 251-
252

and ancestors, 35, 38
base class, definition of, 35-36
and categories, correspondence

of, 91, 96-97
concrete, 57, 63, 123, 152-153,

295-296, 309
and descendants, definition of,

35

332 ..,. Index

Class (continued)
and folklore, 55-57, 63, 67-69,

77
hierarchy, 51, 58, 72, 120, 261,

283-289,301,314-315
and inheritance, 35, 38, 301-304
and lexical analysis, 67-69, 71
master, 269
membership in, 50, 51, 55-56
definition of, 27, 31
and objectivism, 53-54, 58-59,

62
and OOSD, 49, 51, 55-57, 62-63
and shared properties, 51
and the sheer cliff principle,

102-107
sorted list, 102
sub-,34-35,36,37,51, 152
super, 35, 36, 51, 53-55, 63, 152,

301-308
and reusability, 58, 101-102
TEditText, 261
TEvtHandler, 295, 297-298
TList, 259, 260
TObject, 268
and VOL, 116, 122, 123.
See also Class libraries

Class libraries, 42-44, 151, 155,
160, 152

CLOS, 251
definition of, 43, 48
and the Execution Plane, 246,

251, 258-260, 262, 264-265,
279

and minimizing costs, 235
and Model Railroad CAD, 76
and prototypes, 237
and User Interface Architec

ture, 151
and the User Interface Model,

149,225
and VOL, 120

Clipboard, 14, 79-80, 104
Cloning, definition of, 32
Code

error-checking, 37
implementation of abstractions

in,252
and library classes, 264
and the myth of reusability,

102
and objects, 26, 47
and the Program Plane, 153
pseudo-, 151
prototypical, 165-166, 171, 237,

277, 278, 316, 318
reorganization of and the,

Programming phase, 309,
310-314

shrinking lines of, 309
Cognitive science, 50, 92-101
Cognitive categories, 97-98, 100-

101, 105, 108, 145-146
Collaborations, 127, 181, 270, 272-

273
Color

as an attribute, 51
and image schemas, 107
and interface guidelines, 224
and Model Railroad CAD, 75
and precognitive categories, 92
and VOL, 116, 136

Communications, 12,55, 127-128,
140, 159,233. See also Messages

and the Content Model, 221-
222

and demonstration and confi-
dence building, 236

and distortion, 17
and escaping flatland, 113-114
and noise factors, 193-194
and relative importance, 131
and VOL, 111-114, 127-128, 131

Compatibility, 45

Competition, 173, 200
Compilers, 45
Confidence building, 236
Connectedness, 273-275
Constraints, 191-192
Containers

definition of, 123, 126
and the Execution Plane, 243,

246,260,262
and VDL, 115, 122, 123, 126

Content Architecture, 150-152,
154, 208, 237

and the Execution Plane, 255,
259-260,276,279-280

Content Implementation, 154
Content Model, 145-146, 149-154,

160, 166,233-235,240
and the analysis phase, 205
building of, 208-213
and elements and relationships

of, 207-208
and the Execution Plane, 246,

259,270,279
expansion and refinement of,

from five directions, 208-209
and the object candidate list,

207, 209-213
overview of, 207
and the Solution Model,

correlation of, 219-222
and the User Interface Model,

224,225,227,229,230,231
Context, 100-101, 108
Copy I paste applications, 4, 285-

286, 291-294, 300, 318
Correlation, 161, 185, 189, 315
Costs and benefits, 15, 145, 166,

192, 235-236
and impact analysis, 199-200

CPC (Center-Periphery-Cali
brate), 139, 159-163, 167, 233.
See also Calibration

~ Index 333

definition of, 161-162
and the Execution Plane, 244-

245, 279
and frames, 176-178
process, outline of, 161-162
and the Programming Phase,

315
and the Reference Model, 202
and scenarios, 162-163
and the Solution Model, 189,

194, 196
and solving the right problem,

141
and "stuckness," 222
vs. top-down techniques, 165

Creation, 128, 271
Curves, 122, 194

D
Dangling threads, 180-181, 196,

221,241
in the Business and Technol

ogy Planes, 239
and calibration, 172
and correlation, 222

Data flow diagrams, 32, 97, 112
Data members, 27-28, 31, 33, 47.

See also Attributes
Debugging, 45, 165-166. See also

Error(s)
Decomposition, 97, 181, 276

and the Programming Phase,
316

and responsibilities, 256-257
Demonstrations, 236, 241
Dependence

definition of, 219
and the Execution Plane, 243,

264-269
Dependency Management, 264-

269

334 ..,. Index

Descendants, definition of, 35.
See also Inheritance

Design Phase
and the Execution Plane, 275-

279
management of, 275-279

Design set, definition of, 275
Destruction, 128, 272-273
Dialog(s)

boxes, 105-106
and the Execution Plane, 263
items, 105
modal, 107, 226

Display Containers, 262-263
Distortion, 17, 22
Documents, definition of, 78-79
Dyribal aboriginal tribe, 95

E
Elements

of the Content Model, 207-208
definition of, 122
and the Environment Model,

233
and models, contents of, 116
natural world, 122
program, 123-124
scenario, 134
and the User Interface Model,

225-231
and VOL, 116, 122, 123-124, 134

Encapsulation, 216-218
definition of, 29, 31, 47
whole/part, 214, 218-219

Engineering feasibility, 235
Environment Architecture, 150,

151-152, 255, 259, 263-264,
277

Environment Model, 112, 145,
148, 155, 166,232-233,240

building, 232, 233

and the Content Model, 208
and elements and relationships

of, 233
and the Execution Plane, 279-

280
Envisioning information, 112
Estimation,235,241
Event dispatching, 150, 152
Evolution, 17, 59-61, 164, 182, 214
Execution Plane, 141-142, 150-

152, 153, 160-161, 166, 167
and abstractions, 251-253, 257-

258
and accessors, 257
and adding calling sequences,

253-255
and adding detail, 245-246
and adding new objects, 246
building of, 253-264
and calibration, 269-275
and connectedness, 273-275
and the Content Architecture,

259-260
and the Content Model, 208,

210
and CPC, 244-245
and creation and initialization,

271
and decomposing responsibili

ties, 256-257
and dependency management,

264-269
design and construction of,

243-280
and destruction, 272-273
and display containers, 262-263
and Environment Architecture,

263-264
and knowledge of other objects

and data, 270-271
and limiting responsibilities,

215

and managing the Design
Phase, 275-279

and mapping objects onto
classes of the class library,
258-259

and Model-View-Controller,
262-263

overview of, 244-246
and priorities, 276-277
and the Program Plane, 294,

301, 315-317, 318
and program objects, vs.

conceptual objects, 245
and protocols, 273
and prototyping, 234-237, 277-

278
and Renderings, 261-262
and run-time objects, 246-253
and scenarios, use of, 237, 276
and synchronization, 255, 269-

275
and the transition to imple

mentation, 278-279
and User Interface Architec

ture, 261-263
Experts, 21, 22, 23, 207, 216

F
File handling, 150, 152
Finder (Macintosh), 78, 88, 107,

263-264
Folklore

and ask-an-expert method, 74,
86

and categories, 91, 108
definition of, 49-50
and the Macintosh User

Interface, 76, 77
and lexical analysis, 67
and Model Railroad CAD, 76,

79

..,.. Index 335

and the myth of reusability,
101

and objectivism, 61, 62
and OOA, 63
and OOSD, 61, 62, 63
and put-it-in-context method,

73
and sample applications, 65
and semantic modeling, 51-52
and the sheer cliff principle,

102-103
and simulation, 83
and top-down methods, 72, 89

Foreground-background organi
zation, 115, 130, 132

Four Itys, 59-61, 100, 102
and the analysis phase, 205-206
and the Programming Phase,

281, 283, 318
and the Technology Plane, 172

Frames, 133, 154-155, 167
building of, 176-178
and the Content Model, 208
and the Reference Model, 174-

176, 180-184, 190, 191
and the Solution Model, 189-

195
Front/back organization, 114-

115, 116, 130, 136

G
Generalization, 181
Gestalts, 93, 155
Global variables, 30
GOTO, 308-309 .
Graphical User Interface. See GUI

(Graphical User Interface)
Greek culture, 11, 50
Groupings, 92. See also Catego

ries; Class(es)
and calibration relationships,

128

336 ~ Index

Groupings (continued)
and the lexical approach, 69

GUI (Graphical User Interface),
12-13, 46-47, 108, 146

H
Hard angles, 122
Hardware devices, specialized,

148, 155
Helper objects, 286, 287, 294-295
Hiding data, 29, 116
Hierarchy

of categories, 96
class, 51, 58, 72, 120, 261, 283-

289, 301, 314-315
inheritance, 57
and prototypes, 277
and top-down method, 72

Homonyms, 184, 185, 202
Horizontal/ vertical organization,

114-115
Human Interface Guidelines, 223,

224
HyperCard (Apple), 79, 101, 229,

236,237

Icons, 14, 48, 77, 115, 264
Image schemas. See Schemas,

image
Impact Analysis, 145, 173, 189,

191
and the Evolution Phase, 317
and the Reference Model, 191,

199-203, 220-222
Implementation set, 278-279, 315-

316
Inheritance, 33-42, 150

and ancestors, 35, 38, 39, 123
class-based, 38
and concrete classes, 57

as a convenient way to de
scribe things, 38

definition of, 47-48
and the Execution Plane, 243,

250
and the expression of concepts

to make implementation
easier, 41

four aspects of, 302
as an implementation conve

nience, 38
multiple, 38-42, 48, 153
normal and non-normal, 301-

309
and OOSE, 300-309
and the Programming Plane,

293,296,301-304,318
and prototypes, 277-278
and scenarios, 237
single, 41
single-threaded, 288-289, 297-

300
and VDL, 120, 123
yo-yo phenomenon of, 305

Initialization, 271-272
Instance, 28
Instance variables, 32
Interrupts, 152, 273
Interviews, 181

K
Knowledge

L

of data, 214, 215-216, 219, 300-
301

of implementation, 214, 217-
219, 300-301

type,214,301,305,306-307

Lakoff, George, 59, 92, 95, 97-98
Layering, 116, 125, 130

Left/right organization, 114-115,
119, 130, 136

Librarians, project, 166
Libraries. See also Class

application-independent, 102,
108

and the myth of reusability,
101, 102

Line(s), 103, 195
weight, 107, 116, 130, 132
width, 194

Lineage, 38. See also Inheritance
Linear development techniques

(traditional), 12-14, 20, 139,
140-141, 171, 219

and the "waterfall" model, 8-9,
13

Lisp, 25, 46, 251, 272, 290
Logic, 59, 112

if-then and switch-case, 134-
135

and propositional relation
ships, 98

M
MacApp, 45, 77, 80, 101, 120, 152,

156,235,268
and the Execution Plane, 246,

258-259,260,261,264
and the Programming Phase,

290,294,295,297-298,303,
309

TObject class in, 123
Macintosh, 4-5

"desktop" concept, 146
documents, and the payroll

example, 87-89
drawing programs, 294
and the Execution Plane, 244
Finder, 78, 88, 107, 263-64

..,. Index 337

Macintosh Common Lisp, 25, 46,
251, 272, 290. See also Lisp

and OOP, 46-47, 48
as platform, 154, 155, 240, 279

Macintosh Programmer's Work
shop (MPW), 152,
315

standards, programming, 155,
160, 223, 224, 225

upgrading existing applica
tions on, 201

User Interfaces, and categories,
104-107. See also GUI;
Toolbox (Macintosh)

Main event loop, 150, 152
Maintainability, 59-63, 102
Maintenance, 167, 221-222, 274
Managers,243,246,262,265-

266
Marketing, 171, 173

and demonstration and confi
dence building, 236

and positioning strategy, 173-
174, 200

MDRC (Manager-Display
Container-Rendering
Content), 263

Mechanization, 193-195
Membership,55-56

definition of, 31, 47
in categories, 96, 108, 144
in classes, 28
and instance, definition of, 125-

126
and VDL, 125-126

Messages, 154, 167, 226. See also
Communication

AppleEvents, 263
sending a, definition of, 32
and Synchronization, 273, 279

Metainformation, 250

338 ~ Index

Metaphors, 59, 76, 77, 146, 240
and the Content Model, 209,

211
metaphoric relationships, 98,

99-100
and the User Interface Model,

228
Method(s), 28, 31, 32, 47

calling a, 32
Metonymic schemas, 185
Model(s). See also specific models

building of, approaches to, list
of, 181

and double descriptions and
correlations, 178-179

natural world, 140, 167
technical architecture, 119, 120
and VDL, 116-121

Model railroad, 65, 66-80,. 118-
119, 120, 169

and the ask-an-expert method,
74-76

and the Content Model, 209,
212,214

and defining the problem, 176
and the Execution Plane, 258,

260
and lexical analysis, 67-71
and the put-it-in-context

method, 73-74
and the Reference Model, 175-

176, 182, 187
and relationships, 195-196
and top-down analysis, 72-73

Modeless operation, 14
Modularity, 59-61, 63, 102, 219,

227-228
basic rule of, 84
and the payroll example, 84, 85

Montana, Joe, 95
Mouse, 13, 147,295

and the Macintosh screen, 46

andtracking,75, 120,227
and the User Interface Model,

230
Multiple inheritance work

arounds, 40-41, 42
MVC (Model-View-Controller),

262-263
Mythology, 95

N
Names

and basic level categories, 93
and polymorphism, 47

Nature, 60, 76
Nested views, 235-236
Networking, 152
Newtonian physics, 62
Node classes, 26, 35, 36
Notation, 35, 115-116. See also

VDL
Notification, 265-266, 268
Nouns, 68, 71

0
Object(s), 26-33

abstraction, 56
application, 263-264
automation, definition of, 210
auxiliary, definition of, 210
basic level, 196
c + +I 249-252
candidate, 68, 69
candidate lists, 83-84, 89
classes, 31, 43, 47
cognitive, 145-146
command,226-227,230
concrete, 56
content, 265-266
definition of, 26-31, 47
dependent, definition of, 265
directly manipulated, 209
document, 227-231

finding, and the Content
Model, 210-213

and folklore, 52-54, 67-69, 84
manufactured, definition of,

209,225
mapping responsibilities onto,

213
mental images of, definition of,

50
natural world, 122, 144, 174
new, addition of, 246
notifying, definition of, 265
program, 123-124, 151,245
reconstructed, definition of,

210
run-time, 124, 150, 151, 153,

246-253, 318
self-owned, 272-273
size of, 44
Smalltalk, 124
specialization, 56-57
temporal, definition of, 210
types of, definition of, 28
and VOL, 116, 120, 122, 123-124

Objectivism, 63, 92, 144. See also
Objectivist methodology

definition of, 50-51, 62
and high fidelity, 52
and OOSD, 52, 53, 57-62, 89
problems with, 61-62
and the sheer cliff principle,

103
and specialization, 57

Objectivist methodology, 57-61.
See also Objectivism

basic steps, 58
and categories, 92, 97
comfort of, 59
definition of, 49-50
and extensibility, 60
and maintainability, 60-61
and Model Railroad CAD, 75

...., Index 339

and modularity, 60
and program evolution and the

four Itys, 59-61
and reusability, 61
and sample applications, 65, 75

Object-Oriented Design, With
Applications (Booch), 58

Object-Oriented Software
(Winblad), 58

Object Pascal, 5, 19, 80
vs. C + +, use of, 25
and the Execution Plane, 249-

251, 252, 272
and OOP, 27, 29, 30-31, 39, 45-

46
and the Programming

Plane,290,293,294,296,
311-314

and the tradeoff between
performance and dynamic
changes at run time, 48

OOA (object-oriented analysis),
4,80

definition of, 62-63
and high fidelity, 52
and lexical analysis, 71

OOD (object-oriented design), 4,
5,52,80,216

OOP (object-oriented program
ming), 4, 5, 27-28, 31, 33, 47,
80. See also C + +; Object
Pascal; Smalltalk

and anthropomorphism, 32-33,
47, 50, 76

as worth the effort, 21-22
and C, 28, 45
and C + +, 25, 27, 29-31, 34-35,

44-46,48
and class libraries, 42-44, 48
and encapsulation, 29, 31, 47
and fields, 26, 27, 28, 32, 47
and files, 27, 28, 32, 47

340 ..,.. Index

OOP (object-oriented program
ming) (continued)

and inheritance, 38-42, 47-48
and Object Pascal, 27, 29, 30-31,

39, 45-46
and objectivism, 51-52
on the Macintosh, 45-47, 48
and OOSD, 51-57
and overriding, 35, 37, 47
and the payroll example, 85
and polymorphism, 33-42, 47-

48
and the sheer cliff principle,

104
and simulating the real world,

73
and Smalltalk, 25, 44-46
the technologist's perspective

on, 25-48
variations on a theme of, 44-46

OOSD (object-oriented software
development), 4-23, 63, 91.
See also Software develop
ment

and abstractions, 56, 58, 63
and attributes, 51, 54
benefits of, 18-20
and categories, 97
and five characteristics of a

good model, 16-18
folklore of, 20, 49-63
and methodologies, 20
and objectivism, 52, 53, 57-62,

89
and the payroll example, 85,

87
problems with, 20, 23
and relationships, 54-55, 63
and reusability, 59-61, 63, 102
and the sheer cliff principle, 21,

23
and simulation, 89

summary regarding, 22-23
use of the term, 52
and the way people perceive

and organize their thoughts,
49,51,59,62

and wholes and parts, relation
ships between, 50, 54-55

as worth the effort, 21-22
OOSE (Object-Oriented Software

Engineering), 213-219
and conflicts among limits,

218-219
and limiting data knowledge,

215-216
and limiting implementation

knowledge, 216-217
and limiting relationships, 217-

218
and limiting responsibilities,

215
overview of, 214
using inheritance, 300-309

OOTB (object-oriented
tecnobabble), 19

Optimization, 313-315
Outlining, 104
Overall model, concept of, 185
Overriding, 35, 37, 47, 75, 306,

313
Ownership, 55, 74

p
Palettes, 105-106, 146-148
Paradigms, 19
Paralellism in solution-based

models, 142
Pasting, 14, 79, 136
Payroll examples, 80-89, 169, 173,

175, 235
and the Content Model, 210,

211,212

and the Execution Phase, 254-
255, 259, 261, 270, 272-274

and the Reference Model, 176-
188, 200

and Solution Model, 190, 191,
200

Phone directories, 211
Physics, 9-10, 15, 62, 234-235
Physiology, 92, 96, 108
Pirsig, Robert, 222
Planes. See also specific planes

definition of, 116
and regions, 130-131
and VDL, 116, 130-131

Polymorphism, 33-42, 44, 150,
151, 152

definition of, 47-48
and the Execution Phase, 243,

250
and reusability, 61
and the User Interface Model,

227
Positioning, relative, 130
Preconceptual formation, 92
Primitives, 93
Program Plane, 141-142, 150-153,

160-169, 171-172, 193, 197,
233-238, 317

and advance scouting, 237-
238

and the Content Model, 210
and the Execution Phase, 276
and limiting responsibilities,

215
and the Programming Phase,

282-283, 317
and prototyping, 234-237

Programming Phase, 281-318
and choosing the best strategy,

290-300
classes, and inheritance, 301-

304

..,. Index 341

and combination strategies,
290, 300-301

and combining abstractions,
286-287, 295-299

completion of, 316-317
and copy /paste strategies, 285-

286, 291-294, 300
and designing class hierar

chies, 283-289
guidelines for, 309-315
and helper objects, 286, 287,

294-295
management of, 315-317
and object-oriented software

engineering using inherit
ance, 300-309

overview of, 281-283
and prototype code, 316-317
and quality assurance, 316
and scenarios, 315-316
and separate implementations,

285
and single-threaded inherit

ance, 288-289
and six ways to implement

abstractions, 284-290
and split abstractions, 289, 299-

300
Project teams, 11-12, 17-18, 96-97

276,316
Properties, 51
Protocols, 154, 273
Prototype(s), 165, 171, 172, 234-

237, 240-241
and the analysis phase, 206
and the Execution Phase, 275,

277-278
kinds of, summary of, 236-237
and the objectives of

prototyping, 234-235
and the Programming Phase,

291, 316-317

342_ Index

Prototype(s) (continued)
and the User Interface Model,

231-232
Public interface, and encapsula

tion, 47

Q
Quality, assurance, 166, 316

and mechanization, 194
and the Solution Model, 194

QuickDraw, 261

R
Railroad, model. See Model

railroad
Reasoning, and metaphor, 99
Redundancy, 215-216
Reference model, 143-145, 160-

164, 169, 172-189, 197-203,
238

and the Content Model, 212
and existing computer sys

tems, 201-202
and finding objects, 211
and frames, 180-184, 154, 190,

191, 194, 202
and the Programming Phase,

317
and synchronization, 269

Reflection, 181
Regions, 130-131, 139, 141-142

definition of, 116
Relationships, 152-154

and categories, 97-98
and classes, 63, 69, 73, 74
and the Content Model, 214
and the Environment Model,

233
image-schematic, 98-99
and implementation, 128-129,

156

and inheritance, 302
limiting, 217-219, 221-222, 300-

301
and membership, 125-126
Metaphoric, 98, 99-100
metonymic, 98, 100
and Model Railroad applica-

tions, 195-196
and models, contents of, 116
and OOSD, 54-55, 63
and OOSE, 217-218
propositional, 98, 99
and the put-it-in-context

method, 73, 74
and the Reference Model, 179-

180
and replacement, 129-130
and the Solution Model, 195-

196
and the User Interface Model,

225-231
and VDL, 125-130
and wholes and parts. See

Wholes and parts
Relative importance, 131-132
Relevance, 75-76
Renderings, 243, 246, 261-262
Resource allocations, 241
Responsibilities

connected, 273-275
and the Content Model, 214,

215,240
and the Execution Phase, 256-

257
and impact analysis, 199
limiting, 219
and OOSE, 215
and the Programming Phase,

300-301
and the Reference Model, 202
and the Solution Model, 197, 199

and the User Interface Model,
230

and VDL, 122, 124, 125
Reusability, 59-61, 63, 76, 84, 89,

108
and context, 101
myth of, 101-102

Run-time objects, 124, 150, 151,
153, 246-253, 318

s
SBM (Solution-Based Modeling),

20, 44, 110-318. See also
Analysis Phase; Design
Phase; Programing Phase

and architectural levels, 119-
120

and behavior modeling, 124
and calibration relationships,

128
and defining the problem, 176
definition and description of,

3-5, 6
eleven regions comprising, 139,

141-142
and essential responsibilities,

179, 180
and existing computer sys

tems, 201-202
and solving the right problem,

140-41, 167
and the foundation of catego

ries, 140
for the Macintosh, 139-167
models, discussions of, 139,

141-159
models, process used to create,

139, 159-166
and natural world models, 140,

167
objectives of, 139-141

~ Index 343

projects, four phases of, 164-
165, 167

project management, 166
project organization, 163-166
and spatial effects, 130
and the sheer cliff principle,

103-104
three principal process in

volved in, 159-163
and VDL, 111-137

Scenario(s), 133-135, 155-159, 167,
237, 239-240

and the analysis phase, 172
and calibration, 183-188
and CPC, 162-163
and symbol of, 117-118, 134
and the design phase, 275-279
examples of, 155-157
and the Execution Phase,

276
formation of, 159-163, 172
four phases of, 139
modified, 185-187
overlapping, 155, 160, 219
and the Programming Phase,

310, 315-316
and the Reference Model,

181
and the Solution Model, 197-

199
and synthesis, 183-188
and the User Interface Model,

231,234
Schedules, 170, 235, 238, 241

and the Execution Phase, 276
and the Programming Phase,

316
Schema(s) 97-101

and categories, 104-107
image, 108, 115

Self, notion of, 33

344 ..,. Index

Separation
into layers, 115
and VOL, 115, 130, 136

Shading, 107, 135
Shadowing, 116
Shakespeare, William, 33
Sheer cliff principle, 21, 23, 102-

107
avoidance of, 103-104
why it exists, 103

Side effects, minimizing, 222
Simulation, 73, 74, 89, 237

benefits of, lack of, 84
and the payroll examples, 83-

84, 87
Sisyphus, 11
Size

relative, 107, 116
and VDL, 116, 130, 131-132

Smalltalk, 19, 25, 48
and debugging, 45
and the Execution Plane, 262-

263, 272
general description of, 45, 46
and OOP, 25, 44-46
status of objects in, 124
and the Programming Plane,

290
Software Uncertainty Principle,

9-10, 13
Software development. See also

specific methods
and ambition, 14-15
and attention to detail, 14
black hole model of, 9
and communications, 12
four classical goals of, 63
and experts, mystique of, 21,

22,23
faulty assumptions about, 11-

12

five characteristics of a good
methodology, 16-18

and good models, characteris
tics of, 15-16

and the human psyche, 49,
50

and modeless operation, 14
and project teams, 11-12, 17-18,

96-97, 276, 316
successful, 15-20
traditional, 8-9, 13, 14, 16, 20,

139, 140-141, 171,219
and the Uncertainty Principle,

9-10, 13
Solid center, 91
Solution Model, 143-149, 154-155,

160-173, 188-203, 232-234,
238,240

building of, 196-199
and calibration relationships,

231
and connection, 274-275
and the Content Model, 206,

208, 219-222
definition of, 190
and existing computer sys-

tems, 201-202
and finding objects, 211
and frames, 189-195
and mapping responsibilities

onto objects and categories,
213

overview of, 188-189
and the Programming Phase,

318
and the Solution Model, 154-

155
and synchronization, 269
and the User Interface Model,

223,231
Space, negative, definition of, 132

Spatial relationships, 98-99
and extensions, 136
and VDL, 116, 130-132, 134, 136

Speed, 192
Storyboards, 119,236-237
Stretching, 194
Stroke weight, of lines, 116
Structure charts, 112
Symbology, 122
Synchronization, 161, 167, 185,

233, 269-275
and the analysis phase, 172
application of, 275
and the Content Model, 208
and correlation, 222
and the Execution Plane, 243,

244,255,269-275,279
and the Program Plane, 315
types of, summary of, 269-270

Synonyms, 184, 185,202
and the Execution Plane, 253-

255, 274
Synthesis, 161, 167, 181, 183-188
System 7, 107
System objectives, 82

T
Taxonomy,51,59,93
Technology Plane, 141-154, 160-

167, 169, 172, 193,202,240-
241

and connectedness, 274-275
and the Content Model, 207
and the Execution Phase, 244-

246, 253-256, 257, 270, 276,
278,280

and limiting responsibilities,
215

and the Program Plane, 301,
317

and scenarios, 237

..,.. Index 345

Testing, 165-166
Thesaurus, 104
ThinkC, 152
Time

and budgetary constraints,
155

compilation, 123, 250
lines, definition of, 130
run-, 48, 124, 150, 151, 153, 246-

253, 318
sequence, 131, 156, 158
turnaround, 194
and VDL, 119, 123, 130, 131

Toolbox (Macintosh), 4, 89, 80,
101, 147, 152, 160,210

and the Execution Plane, 246,
259,264

Top-down method (traditional)
12-14, 20, 89, 139, 140-141,
171, 219

and knowing when to stop, 71-
72

and simulating the real world,
73

Transmission, information, 215
Tufte, Edward R., 107, 112
Turnaround, rapid, 17, 22
Type(s), 20

u

and behaviors, 20
knowledge, 85
of objects, definition of, 28

Uncertainty Principle, 9-10, 13
User interface

and the analysis phase, 170
and content, separation of, 148-

149
mockups, 172

User Interface Architecture, 150,
152, 231-232

346 ..,. Index

User Interface, Macintosh,
and MacApp, 77
and OOP, 46-47, 48
standards, 77, 79, 89, 155, 160,

223,224,225
and VDL, 115

User Interface Model, 145-149,
155, 160, 166, 223-231, 233,
240

v

building of, 231-232
and command objects, 226-227
and the Content Model, 208,

221
document objects, 227-231
and elements and relation

ships, 225-231
and the Execution Phase, 243,

255,261-263,276,279-280
and manufactured objects, 225
overview of, 223-224
and responsibilities, 230

VDL (Visual Design Language),
107, 111-137

and abstractions, 124, 126
and attributes, 122, 124-125
and behavioral relationships,

124, 127
and calibration relationships,

128
and center-periphery organiza

tion, 115, 132
and communication, 111-114,

131
and collaboration, 127-128
and constraints on notation,

115-116
and the contents of the models,

116
and creation, 128

and dependency notification,
266

and destruction, 128
elements of, 122-125
and escaping flatland, 112-115
example of, 117-121
and the Execution Plane, 266
and extensions, 136
and foreground-background

organization, 115, 132
and frames, 133
and implementation relation

ships, 128-129
and line weight, 132
and messages/ collaborations,

127-128
and natural world objects, 122
and natural world categories,

122-123
and natural world elements,

122
and planes and regions, 130-

131
and program classes, 123
and program elements, 123-124
and program objects, 123
and relationships, 125-130
and relative importance, 131-

132
and responsibilities, 125
and scenarios, 133-135
and size, 116, 130, 131-132
and spatial effects, 116, 130-

132, 126
summary of, 37
and time sequence, 131
and vertical slicing, 135
and whole/part relationships,

116, 126-127, 134
Verbs, 71, 89
Vertical slice, definition of, 135

w
Wholes and parts, 19-20

and the Content Model, 217
and limiting responsibilities,

215
and OOSD, 50, 54-55
and propositional relation

ships, 99
and the Reference Model, 181
and scenarios, 134, 155, 156,

157, 159
and VOL, 116, 126-127, 134
and whole/part encapsulation,

214, 218-219
Whole system, emphasis on, 171,

178
Winblad, Ann, 58

..,._ Index 347

Windows, 14, 77, 88-89, 107, 227-
230

and the Execution Plane, 262,
263

nesting views within, 235-
236

and the User Interface Model,
227

Women, Fire and Dangerous Things
(Lakoff), 59, 92, 95

WYSIWYG (what you see is what
you get), 4

z
Zen and the Art of Motorcycle

Maintenance (Pirsig), 222
Zoology, 59

Titles in the Macintosh Inside Out Series

... Extending the Macintosh® Toolbox
Programming Menus, Windows, Dialogs, and More
f ohn C. May and fudy B. Whittle
A complete guide to programming the Macintosh interface.
352 pages, $24.95, paperback, order #57722

.,.. Programming QuickDraw™
Includes Color QuickDraw and 32-Bit QuickDraw
David A. Surovell, Fred M. Hall, and Konstantin Othmer
The first in-depth reference to the Macintosh graphics system.
352 pages, $24.95, paperback, order #57019

.,.. Programming for System 7
Gary Little and Tim Swihart
A complete programmer's handbook to the newest version of the Macintosh system software.
400 pages, $26.95, paperback, order #56770

.,.. Programming with AppleTalk®
Michael Peirce
An accessible guide to creating applications that run with AppleTalk.
352 pages, $24.95, paperback, order #57780

.,.. The AIUX® 2.0 Handbook
fan L. Harrington
A complete and up-to-date introduction to UNIX on the Macintosh.
448 pages, $26.95, paperback, order #56784

.,.. System 7 Revealed
Anthony Meadow
A first look inside the important new Macintosh system software from Apple.
368 pages, $22.95, pape:rback, order #55040

.,.. ResEdit™ Complete
Peter Alley and Carolyn Strange
Contains the popular ResEdit software and complete information on how to use it.
576 pages, $29.95, book/ disk, order #55075

.,.. The Complete Book of HyperTalk® 2
Dan Shafer
Practical guide to HyperTalk 2.0 commands, operators, and functions.
480 pages, $24.95, paperback, order #57082

.,.. Programming the LaserWriter®
David A. Holzgang
Now Macintosh programmers can unlock the full power of the LaserWriter.
480 pages, $24.95, paperback, order #57068

.,.. Debugging Macintosh® Software with MacsBug
Includes MacsBug 6.2
Konstantin Othmer and fim Straus
Everything a programmer needs to start debugging Macintosh software.
576 pages, $34.95, book/ disk, order #57049

.. Developing Object-Oriented Software for the Macintosh®
Analysis, Design, and Programming
Neal Goldstein and Jeff Alger . .
An in-depth look at object-oriented programnung on the Macintosh.
352 pages, $24.95, paperback, order #57065

.. Writing Localizable Software for the Macintosh®
Daniel R. Carter
A step-by-step guide which opens up international markets to Macintosh software developers.
352 pages, $24.95, paperback, order #57013

.. Programmer's Guide to MPW®, Volume I
Exploring the Macintosh® Programmer's Workshop
Mark Andrews
Essential guide and reference to the standard Macintosh software development system, MPW.
608 pages, $26.95, paperback, order #57011

.. Elements of C++ Macintosh® Programming
Dan Weston
Teaches the basic elements of C++ programming, concentrating on object-oriented style and syntax.
512 pages, $22.95, paperback, order #55025

.. Programming with MacApp®
David A. Wilson, Larry S. Rosenstein, and Dan Shafer
Hands-on tutorial on everything you need to know about MacApp.
576 pages, $24.95, paperback, order #09784
576 pages, $34.95, book/ disk, order #55062

.. C++ Programming with MacApp®
David A. Wilson, Larry S. Rosenstein, and Dan Shafer
Learn the secrets to unlocking the power ofMacApp and C++.
624 pages, $24.95, paperback, order #57020
624 pages, $34.95, book/ disk, order #57021

Order Number Quantity Price Total
Name

-- -- -- Address

-- -- --

-- -- -- City /State/ Zip

-- -- -- Signature (required)

TOTAL ORDER _Visa

Shipping and state sales tax will be added Account#

_MasterCard

automatically. Addison-Wesley Publishing Company
Order ~artment Credit card orders only please.
Route 1

Offer good in USA only. Prices and avail- Reading, MA 01867
ability subject to change without notice. To order by phone, call (617) 944-3700

_AmEx

Exp. Date

Macintosh Programming

Developing Object-Oriented
Software for the Macintosh®

NEAL GOLDSTEIN

J EFF ALGER

Based on Neal Goldstein's widely acclaimed
Object-Oriented Design and c++ seminars
at Apple Computer, Inc., Developing
Object-Oriented Software for the
Macintosh® takes Macintosh software
developers step by step through the
object-oriented software development
process. This is the first book to deal with
the complete process of developing
object-oriented software, from analysis
through design and programming.
Programmers, systems analysts, managers,
and anyone concerned with Macintosh
software development will benefit from the
concepts and methodology of this practical,
hands-on guide.

The book first covers the basics of creating
object-oriented software, focusing on the
essential concepts and principles. It then
presents the author's acclaimed Solution
Based Modeling methodology and notation
for analysis, design, and programming in
object-oriented development. Special
attention is paid throughout to problems
inherent in large-scale Macintosh
development, and code examples are
provided in C++ and Object Pascal.

You will also learn how to:

• Design efficient, maintainable

object-oriented programs

• Design for portablility to other computers

Cover design by Ronn Campisi

Addison-Wesley Publishing Company, Inc.

• Communicate object-oriented designs

effectively to both programmers and

non-programmers

• Control projects from initial requirements

through the development process.

Developing Object-Oriented Software
for the Macintosh is essential reading for

all Macintosh software professionals.

Neal Goldstein is widely

known for his Apple Developer

University courses on C++

and object-oriented design.

Jeff Alger lectures at the Apple Developer

University and is Chairman of the Board

of Directors of the MacApp Developers

Association, the leading organization for

the object- oriented development for the

Macintosh.

9 780201 570656

ISBN 0-201-57065-3
57065

