

Borland's No-Nonsense License Statement!
This software is protected by both United States copyright law and international treaty provisions.
Therefore, you must treat this software just like a book, with the following single exception. Borland
International authorizes you to make archival copies of the software for the sole purpose of backing-up our
software and protecting your investment from loss.

By saying, "just like a book," Borland means, for example, that this software may be used by any number of
people and may be freely moved from one computer location to another, so long as there is no possibility of
it being used at one location while it's being used at another. Just like a book that can't be read by two
different people in two different places at the same time, neither can the software be used by two different
people in two different places at the same time. (Unless, of course, Borland's copyright has been violated.)

Programs that you write and compile using Turbo Pascal for the Mac may be used, given away, or sold
without additional license or fees. You are not required to indicate that your programs were developed
using Turbo Pascal for the Mac, or that they contain source code provided with Borland language products
(toolboxes).

The sample programs on the Turbo Pascal for the Mac diskette provide a demonstration of the various
features of Turbo Pascal for the Mac. They are intended for educational purposes only. Borland International
grants you (the registered owner of Turbo Pascal for the Mac) the right to edit or modify these sample
programs for your own use, but you may not give them away or sell them, alone or as part of any program, in
object or source code form. You may, however, incorporate miscellaneous sample program routines into
your programs, as long as your resulting programs do not substantially duplicate all or part of a sample
program in appearance or functionality.

WARRANTY
With respect to the physical diskette and physical documentation enclosed herein, Borland International,
Inc. ("Borland") warrants the same to be free of defects in materials and workmanship for a period of 60 days
from the date of purchase. In the event of notification within the warranty period of defects in material or
workmanship, Borland wil l replace the defective diskette or d.ocumentation. If you need to return a product,
call the Borland Customer Service Department to obtain a return authorization number. The remedy for
breach of this warranty shall. be limited to replacement and shall not encompass any other damages, including
but not limited to loss of profit. and special, incidental, consequential. or other similar claims.

Borland International. Inc. specifically disclaims all other warranties, expressed or implied, including but not
limited to implied warranties of merchantability and fitness for a particular purpose with respect to defects in
the diskette and documentation, and the program license granted herein in particular, and without limiting
operation of the program license with respect to any particular application, use, or purpose. In no event shall
Borland be liable for any loss of profit or any other commercial damage, including but not limited to special,
incidental, consequential or other damages.

GOVERNING LAW
This statement shall be construed, interpreted. and governed by the laws of the state of California.

First Edit ion
Printed in USA

9 8 7 6 5 4 3 2

lo ~dee" p~id< Y"" w<h "" '"~' 1&m~~~~1~~~!ducts, announcements of future updates, and
up-to-the-minute information on new products, plea~ m and return this registration form. Be sure to read the
Borland No-Nonsense License Statement on the o~ sid

Technical Support-To receive telephone lechni· I support, you must be a registered owner of the Borland
product about which you are calling. Prompt tech~I su 1-t is available through the Borland SIG on CompuServe; just
type GO BOR at any CompuServe prompt. If yo~ed~ r assistance, call Borland and be prepared to give the product
name, version number, and the serial number~d on 'tWe label of your master diskette.

The READ ME File-If present on yo~~st ~kette, this file contains important information that may not be in
the manual. To view this file, simply type R~I he command prompt. Be sure to read this file before you call for
technical support. '

Thank you for completing this product registration card and returning it promptly. We want to keep you informed.

Product Name:---------------- Serial#-------- Date Purchased:___}___} __
M D Y

Name:---------------------.,-,,--- Title:-----------------
last first middle init.

Company Name: -------------------------Department: _________ _

Address: Mail Stop:-------

City: _______ State: ___ Zip: _____ Country: _____ Phone#(--)----·-----

I have read and agree to the terms of the Borland No-Nonsense License Statement

Signature---------------------------------- Date:___}___} __

In order to help us better serve your needs, please complete the following:

Nature of your business or occupation:
I. D health 2. D manufacturing
5. D construction 6. D retail/wholesale
9. D legal I 0. D consulting

l l D government D other

Number of employees:

l D business
7. D services

11. D finance

4. D programming
8. D education

12 D transportation

I. D 1-24 2. D 25-99 3. D 100-499 4. D 500-1999 5. D 2000-9999 6. D more than 9999

Number of PCs at your business:
L D !-9 2. D 10-49 3. D 50-249 4. D 250-999 5. D more than 999

What other Borland products do you own?
I. D Turbo Pascal 2. 0 Pascal Toolboxes J. D SideKick
4. D SuperKey 5. D Reflex 6. D Traveling SideKick
7. D Turbo Lightning 8. D Turbo Prolog D other

Where did you purchase this program?
I. D Borland mail order 2. 0 other mail order J. D full-service retailer
4. D discount retailer D other

What hardware peripherals do you use?
I. D modem 2. D hard disk J. D EGA card
4. D dot matrix 5. D plotter 6. 0 mouse

This software was bought for:
I. D self 2. D company I work for l 0 company I own

Where will you use this program?
I. D at home 2. D at work D other

Where did you hear about this program?
I. D ad in computer publication 2. D product review J. D.retailer
4. D ad in general interest publication 5. D trade show 6. 0 another user

D other------------------------~----------------~

What other software do you use?
I. D spreadsheet 2. D database 3. D word processor D utilities
5. D project mgmt. 6. D communications 7. D games 8. D languages
9. D acco1:1nting I 0. D network II. D business graphics 12. D CAD/CAM

1 l D RAM-resident utilities D other

What software would you consider buying from Borland?
I. D spreadsheet 2. D database J. D word processor 4. 0 utilities
5. D project mgmt. 6. D communications 7. D games 8. D languages
9. D accounting I 0. D network II. D business graphics 12. D CAD/CAM

I 3. D RAM-resident utihties D other

BOR0045B

Turbo Pascal for the Mac
Borland's No-Nonsense License Statement!

This software is protected by both United States copyright law and international treaty provisions. Therefore, you must treat this software just like a book, with
the following single exception. Borland International authorizes you to make archival copies of the software for the sole purpose of backing-up our software
and protecting your investment from loss.

By saying, "just like a book," Borland means, for example, that this software may be used by any number of people and may be freely moved from one computer
location to another, so long as there is no possibility of it being used at one location while it's being used at another. just like a book that can't be read by two
different people in two different places at the same time, neither can the software be used by two different people in two different places at the same time.
(Unless, of course, Borland's copyright has been violated.)

Programs that you write and compile using Turbo Pascal for the Mac may be used, given away, or sold without additional license or fees. You are not required
to indicate that your programs were developed using Turbo Pascal for the Mac, or that they contain source code provided with Borland language products
(toolboxes).

The sample programs on the Turbo Pascal for the Mac diskette provide a demonstration of the various features of Turbo Pascal for the Mac. They are intended
for educational purposes only. Borland International grants you {the registered owner of Turbo Pascal for the Mac) the right to edit or modify these sample
programs for your own use, but you may not give them away or sell them, alone or as part of any program, in object or source code form. You may, however,
incorporate miscellaneous sample program routines into your programs, as long as your resulting programs do not substantially duplicate all or part of a sample
program in appearance or functionality.

WARRANTY
With respect to the physical diskette and physical documentation enclosed herein, Borland International, Inc. ("Borland") warrants the same to be free of
defects in materials and workmanship for a period of 60 days from the date of purchase. In the event of notification within the warranty period of defects in
material or workmanship, Borland will replace the defective diskette or documentation. If you need to return a product. call the Borland Customer Service
Department to obtain a return authorization number. The remedy for breach of this warranty shall be limited to replacement and shall not encompass any
other damages, including but not limited to loss of profit, and special, incidental, consequential, or other similar claims.

Borland International, Inc. specifically disclaims all other warranties, expressed or implied, including but not limited to implied warranties of merchantability and
fitness for a particular purpose with tespectto defects in the diskette and documentation, and the program license granted herein in particular, and without
limiting operation of the program license with respect to any particular application, use, or purpose. In no event shall Borland be liable for any loss of profit or
any other commercial damage, including but not limited to special. incidental, consequential or other damages.

BOA 0168

GOVERNING LAW
This statement.shall be construed, interpreted, and governed by the laws of the state of California.

Fold at dotted line. Tape closed. Drop in mail. No postage necessary.

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO 200 SANTA CRUZ. CA

POSTAGE WILL BE PAID BY ADDRESSEE

BORLAND
INTERNATIONAL

4585 SCOTTS VALLEY DRIVE
SCOTTS VALLEY. CALIFORNIA 95066

11.1 ••• 1.1.11 •••• 11 ••• 11 •• 1.1 •• 1.1 •• 1.1 •• 11 ••• 1 ••• 11

18

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

TURBO PASCAL FOR THE MAC

User's Guide and Reference Manual

BORLAKD SCHOLAR

~~~~R~~X T MAS SPEC I ALL~ 
PREPARED FOR THE BORLAKD 
SCHOLAR PROGRAn • IT HAS 
BEEK SOLD Al A SPECIAL 
SCHOLAR PROORAH PR I CE 
FOR USE JH AH APPROUED 
COURSE CURRICULUH. on~~IDE 
i~ ~~I ~~~D~m~~, 
---~ 

Copyright © 1986 
All Rights Reserved 

BORLAND INTERNATIONAL, INC. 
4585 SCOTTS VALLEY DRIVE 

SCOTTS VALLEY, CA 95066 
USA 



Tab"le of Contents 

Introduction ............................................................................... 1 
The Manual ................................................................................. 2 
Typography ................................................................................. 3 
Acknowledgments ......................................................................... 4 
How to Contact Borland ................................................................. 4 

PART I. USER'S GUIDE 

Chapter 1. SETTING UP ............................................................. 5 
Making Working Copies ................................................................. 5 

What Ifl Only Have One Disk Drive? ........................................... 6 
What Ifl'm Using a Hard Disk? ................................................... 7 
Bypassing the Desktop ............................................................... 7 

The Files on the Disks ................................................................... 7 
What If I Don't Want to Use Turbo Pascal's System Files? .................. 9 
What If I Don't Want All the Turbo Pascal Files? .............................. 9 

Customizing Turbo Pascal ............................................................... 9 
Where to Go from Here ................................................................ 10 

Chapter 2. GETTING STARTED WITH TURBO PASCAL ................ 11 
Loading Turbo Pascal .................................................................... 11 
Writing Your First Program ............................................................ 12 

Saving Your First Program .......................................................... 13 



Stepping Up: Your Second Program ................................................. 13 
Programming Pizazz: Your Third Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 
Where to Go from Here .. . . . .. .. .. . .. . . . .. . . .. . .. .. . . . . .. . . .. . . .. . . . . . . .. . . .. . . . . .. . . . 16 

Chapter 3. USING THE EDITOR .. .. .. .. .. .. . .. . .. .. .. .. .. .. .. .. .. .. . . .. .. .. .. . 17 
A Quick Review of Clicking . .. . . .. . . . . . . . .. . . .. . . . .. . . . .. .. .. . . . .. . . . . . . .. . .. . . . . . . . . . 17 
Opening Turbo Pascal . . . . . .. .. . . . .. . . . . . . . .. .. .. . . . . .. . . . . .. .. .. . . . . . . . . . . . . . .. . . . . . . .. 18 
Editing a File . . . . . . . .. . . . . .. . . . .. . . . . . . . .. . .. . . .. . . . .. . . . .. . .. .. . . .. .. . .. . .. . . .. . . . .. .. . . 18 

Entering a New Program .......................................................... 19 
Changing a Program ................................................................ 21 
Selecting, Cutting, and Pasting Text ............................................. 21 

The Undo Command ................................................................... 23 
Formatting Text .......................................................................... 23 
Finding a Lost Bar Cursor ............................................................ 24 
Search and Replace ..................................................................... 24 
Saving Your Text ......................................................................... 25 

Chapter 4. USING THE COMPILER ........................................... 27 
An Overview of the Run Command ................................................. 28 
The Turbo Pascal Compiler ........................................................... 29 

So, What's a Compiler Anyway? .................................................. 29 
What Gets Compiled? .............................................................. 30 
Where's the Code? .................................................................. 30 

Syntax Errors ............................................................................. 31 
Run-time (System) Errors .............................................................. 32 
The Get Info Command ............................................................... 34 
The Options Command ................................................................ 34 

Chapter 5. WRITING TEXTBOOK PASCAL PROGRAMS ............... 37 
Creating a Program: A Quick Review ............................................... 38 
Sample Pascal Programs ............................................................... 39 
The Pascal Run-time Environment .................................................. 40 
Compiler Directives .................................................................... 40 

Input/Output Error Checking ..................................................... 41 
Range Checking: The {$R+/-} Directive ...................................... 43 
Include Files: The {$I(file)} Directive .......................................... 45 
Output (Code) Files: The {$0 (file)} Directive ............................... 46 

Chapter 6. HARNESSING THE FULL POWER OF YOUR MAC ...... 47 
The Macintosh Philosophy ............................................................ 47 

Graphics-Only Display ............................................................. 48 
Visual User Interfaces ............................................................... 48 
Event-Driven Software ............................................................. 49 
Extensive System Software ........................................................ 49 

Turbo Pascal for the Macintosh 



Bit-Mapped Graphics .................................................................. 49 
The Mac User Interface ................................................................ 50 
Event-Driven Programming ........................................................... 51 
Toolbox and Operating System Routines ........................................... 52 
Further Reading ......................................................................... 55 

Chapter 7. UNITS AND OTHER MYSTERIES .............................. 57 
What's a Unit, Anyway? ............................................................... 57 
How Are Units Used? .................................................................. 59 
Pascal Run-time Support Units ...................................................... 60 
Macintosh Interface Units .............................................................. 61 
Calling Assembly-Language Routines ............................................... 65 
Inline Code and Traps .................................................................. 66 

Chapter 8. WRITING YOUR OWN UNITS ................................... 69 
A Quick Review of Units .............................................................. 69 
A Unit's Structure ....................................................................... 70 
Interface .................................................................................... 71 
Implementation ........................................................................... 71 
Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 
Compiling a Unit ........................................................................ 73 
Using Your Units ........................................................................ 73 
An Example ............................................................................... 74 
Units and Large Programs ............................................................ 75 
UNITMOVER ........................................................................... 77 
Summary .................................................................................. 77 

Chapter 9. WRITING YOUR OWN MACINTOSH APPLICATIONS ... 79 
The Demo Program ..................................................................... 79 
Event-driven Programming ............................................................ 81 
A Note on Programming Style ....................................................... 82 
Program Organization .................................................................. 82 
Event Handling .......................................................................... 83 

Handling Mouse Events ............................................................ 85 
Menu Commands ................................................................ 86 
Clicking Windows ................................................................ 90 
The Close Box . . . .. . . . . . . . . . . . .. . . . . .. .. . .. .. . . .. .. . .. .. . . . .. . .. .. . . . . . . . . .. .. .. . . 90 
The Grow Box ..................................................................... 91 
The Drag Bar ..................................................................... 92 

Handling Keyboard Events ........................................................ 92 
Handling Update Events ........................................................... 93 
Handling Activate Events .......................................................... 94 
Handling Other Events ............................................................ 95 

Data Structures .......................................................................... 96 

Table of Contents iii 



Resource Files ........................................................................ 97 
Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 
Cleaning Up ......................................................................... 101 

Large Programs and Segmentation ................................................. 101 
Summary Exercises .................................................................... 102 

Editing Resources .................................................................. 103 
Adding Menu Items ................................................................ 103 
Adding a New Menu ............................................................... 104 

Chapter 10. GRADUATION: WRITING A DESK ACCESSORY ........ 107 
Basic Theory and Structure .......................................................... 107 
Data Structures ......................................................................... llO 

Driver Header ....................................................................... llO 
Device Control Entry ........................................................... ill 

Global Variables ...................................................................... ll4 
Initialization ............................................................................. ll4 

Setting Up the Device Control Entry .......................................... ll5 
Setting Up the Global Variables ................................................. ll6 
Setting Up the Resources ......................................................... ll7 

Resource IDs ..................................................................... ll7 
Opening the Window .......................................................... ll8 
Setting Up a Menu ............................................................. ll9 
Opening Other Resources ..................................................... ll9 

Handling Multiple Calls to Open ............................................... ll9 
Event Handling ......................................................................... 120 

The Control Procedure ............................................................ 120 
Event-Handling Routines ......................................................... 122 
Menu Handling ..................................................................... 125 
Support Routines ................................................................... 125 

Closing Down ........................................................................... 126 
Compiling and Installing a Desk Accessory ....................................... 127 
MYDA: A Desk-Accessory Template ............................................... 127 

Compiling MYDA .................................................................. 128 
Installing MYDA .................................................................... 128 
Writing Your Own Desk Accessory ............................................. 130 

More References ........................................................................ 131 

Chapter ll. USING UNITMOVER .............................................. 133 
Moving Units ............................................................................ 133 
Deleting Units .......................................................................... 136 

Chapter 12. USING RMAKER ................................................... 137 
A Quick Guide to Using Resources ................................................. 138 
Creating a Resource Text File ....................................................... 138 

iv Turbo Pascal for the Macintosh 



Resource File Header .............................................................. 140 
Defining Resources ................................................................. 140 

Resource Specifications ............................................................... 142 
ALRT (Alert template) ........................................................... 143 
BNDL (Bundling information) ................................................. 143 
CNTL (Control template) ....................................................... 143 
CURS (Cursor) .................................................................... 144 
DITL (Dialog item list) .......................................................... 144 
DLOG (Dialog template) ....................................................... 145 
FREF (File reference) ........................................................... 145 
ICN (Icon list) ..................................................................... 146 
ICON (Icon) ....................................................................... 146 
MBAR (Menu bar) ................................................................ 147 
MENU (Menu) ........................................................... .- ........ 147 
PAT (Pattern) ...................................................................... 148 
PAT # (Pattern list) .............................................................. 148 
PROC (Procedure) ................................................................ 149 
STR (String) ........................................................................ 149 
STR# (String list) ................................................................. 149 
WIND (Window) ................................................................. 150 

Defining Your Own Resources ....................................................... 150 
Using RMAKER ........................................................................ 153 
Using Your Resources ................................................................. 154 

Chapter 13. USING FONT/DA MOVER ...................................... 155 
Starting Up FONT/DA MOVER .................................................... 155 
Installing Desk Accessories . . . . . . . . . . . . .. .. . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . .. . . . . . . . . . . 157 
A Few Warnings ....................................................................... 159 

Chapter 14. DEBUGGING YOUR TURBO PASCAL PROGRAM ...... 161 
Compiler Errors ........................................................................ 161 
Run-time Errors ........................................................................ 162 
Input/Output Error Checking ....................................................... 163 
Range Checking ........................................................................ 164 
Invoking Your Own Run-time Errors .............................................. 164 
Tracing Errors ........................................................................... 165 
Using a Debugger (MACSBUG) .................................................... 165 

Invoking MACSBUG .............................................................. 166 
The MACSBUG Display .......................................................... 167 
MACSBUG Commands ........................................................... 168 

Chapter 15. THE TURBO PASCAL MENU REFERENCE .............. 177 
Selecting a Menu Command ......................................................... 177 
The Menu Bar .......................................................................... 178 

Table of Contents v 



The Apple Menu .................................................................... 179 
About Turbo... . .................................................................. 179 
Desk Accessories ................................................................ 180 

The File Menu ...................................................................... 180 
New ................................................................................. 180 
Open ............................................................................... 181 
Open Selection .................................................................. 181 
Close ............................................................................... 181 
Save ................................................................................ 181 
Save as... . ......................................................................... 182 
Page Setup... . .................................................................... 182 
Print... . ............................................................................ 183 
Edit Transfer. . . . ................................................................. 183 
Save Defaults .................................................................... 184 
Transfer ........................................................................... 184 
Quit ................................................................................ 184 

The Edit Menu ...................................................................... 185 
Undo .............................................................................. 185 
Cut ................................................................................ 185 
Copy ................................................................................ 185 
Paste ............................................................................... 186 
Clear ............................................................................... 186 
Shift Left .......................................................................... 186 
Shift Right ........................................................................ 186 
Options ............................................................................ 186 

The Search Menu ................................................................... 187 
Find... . ............................................................................ 188 
Find Next ......................................................................... 188 
Change... . ........................................................................ 189 
Home Cursor ..................................................................... 190 
Window ........................................................................... 190 

The Format Menu .................................................................. 190 
Stack Windows ................................................................... 190 
Tile Windows .................................................................... 191 
Zoom Window ................................................................... 191 
Character Sizes: 9, 10, 12, 14, 18, and 24 points ......................... 191 

The Font Menu ..................................................................... 191 
The Compile Menu ................................................................. 192 

Run ................................................................................. 192 
To Memory ....................................................................... 192 
To Disk ............................................................................ 193 
Check Syntax ..................................................................... 193 
Find Error ........................................................................ 193 
Get Info ........................................................................... 193 

vi Turbo Pascal for the Macintosh 



Options... . ........................................................................ 194 
The Transfer Menu ................................................................. 194 

PART II. REFERENCE SECTION 

Chapter 16. TOKENS AND CONSTANTS .................................... 197 
Special Symbols and Reserved Words ............................................. 197 
Identifiers ................................................................................ 199 
Labels ..................................................................................... 200 
Numbers ................................................................................. 200 
Character Strings ....................................................................... 202 
Constant Declarations ................................................................. 203 
Comments ............................................................................... 203 
Program Lines .......................................................................... 203 

Chapter 17. BWCKS, WCALITY, AND SCOPE .......................... 205 
Syntax ..................................................................................... 206 
Rules of Scope .......................................................................... 207 

Redeclaration in an Enclosed Block ............................................ 207 
Position of Declaration Within Its Block ...................................... 207 
Redeclaration Within a Block .................................................... 208 

Identifiers of Standard Objects ...................................................... 208 
Scope of Interface Identifiers ..................................................... 208 

Chapter 18. TYPES ................................................................. 209 
Simple-Types ............................................................................ 210 

Ordinal-Types ....................................................................... 210 
The Integer-Type ................................................................ 211 
The Longlnt-Type ................................................................ 211 
The Boolean-Type ............................................................... 212 
The Char-Type ................................................................... 212 
The Enumerated-Type ......................................................... 212 
The Subrange-Type ............................................................. 213 

The Real-Type ....................................................................... 214 
String-Types ............................................................................. 215 
Structured-Types ....................................................................... 215 

Array-Types .......................................................................... 216 
Record-Types ........................................................................ 217 
Set-Types ............................................................................. 220 
File-Types ............................................................................ 220 

Pointer-Types ........................................................................... 220 
Identical and Compatible Types ..................................................... 221 

Type Identity ........................................................................ 221 
Compatibility of Types ............................................................. 222 

Table of Contents vii 



Assignment Compatibility ........................................................ 223 
The Type Declaration Part ........................................................... 224 

Chapter 19. VARIABLES .......................................................... 225 
Variable Declarations .................................................................. 225 
Variable References .................................................................... 226 
Qualifiers ................................................................................. 226 

Arrays, Strings, and Indexes ...................................................... 227 
Records and Field Designators .................................................. 228 
Pointers and Dynamic Variables ................................................. 228 

Variable-Type-Casts .................................................................... 229 

Chapter 20. EXPRESSIONS ...................................................... 231 
Expression Syntax ...................................................................... 232 
Operators ................................................................................ 235 

Arithmetic Operators .............................................................. 235 
Logical Operators ................................................................... 237 
String Operators .................................................................... 238 
Set Operators ........................................................................ 238 
Relational Operators ............................................................... 239 

Comparing Simple-Types ...................................................... 239 
Comparing Strings .............................................................. 240 
Comparing Packed Strings .................................................... 240 
Comparing Pointers ............................................................. 240 
Comparing Sets .................................................................. 240 
Testing Set Membership ....................................................... 240 

The @ Operator .................................................................... 241 
@ with a Variable ............................................................... 241 
@ with a Value Parameter .................................................... 241 
@with a Variable Parameter ................................................. 242 
@ with a Procedure or Function ............................................. 242 

Function Calls ........................................................................... 242 
Set Constructors ........................................................................ 243 
Value-Type-Casts ....................................................................... 24Ji 

Chapter 21. STATEMENTS ....................................................... 245 
Simple Statements ..................................................................... 245 

Assignment Statements ............................................................ 246 
Procedure Statements ............................................................. 246 
Goto Statements .................................................................... 247 

Structured Statements ................................................................ 247 
Compound Statements ............................................................ 247 
Conditional Statements ............................................................ 248 

If Statements ..................................................................... 248 

viii Turbo Pascal for the Macintosh 



Case Statements ................................................................. 249 
Repetitive Statements ............................................................. 250 

Repeat Statements .............................................................. 250 
While Statements ............................................................... 251 
For Statements .................................................................. 252 

With Statements .................................................................... 254 

Chapter 22. PROCEDURES AND FUNCTIONS ........................... 257 
Procedure Declarations ............................................................... 257 

Forward Declarations .............................................................. 259 
External Declarations .............................................................. 259 
Inline Declarations ................................................................. 260 

Function Declarations ................................................................. 260 
Parameters ............................................................................... 262 

Value Parameters ................................................................... 263 
Variable Parameters ................................................................ 264 
Untyped Variable Parameters .................................................... 264 

Chapter 23. PROGRAMS AND UNITS ........................................ 267 
Program Syntax ......................................................................... 267 

The Program-Heading ............................................................. 267 
The Uses-Clause .................................................................... 268 
Segmentation ........................................................................ 268 

Unit Syntax .............................................................................. 269 
The Unit-Heading .................................................................. 269 
The Interface-Part .................................................................. 270 
The Implementation-Part ......................................................... 271 
The Initialization-Part ............................................................. 271 
Units that Use Other Units ....................................................... 272 

Chapter 24. INPUT AND OUTPUT ............................................ 273 
An Introduction to 1/0 ................................................................ 273 
Standard Procedures and Functions for All Files ................................ 274 

The Reset Procedure ............................................................... 274 
The Rewrite Procedure ............................................................ 275 
The Close Procedure ............................................................... 275 
The Rename Procedure ........................................................... 275 
The Erase Procedure .............................................................. 276 
The IOResult Function ............................................................ 276 

Standard Procedures and Functions for Typed-Files ............................ 276 
The Read Procedure ............................................................... 276 
The Write Procedure .............................................................. 276 
The Seek Procedure ................................................................ 277 
The Eof Function ................................................................... 277 

Table of Contents ix 



The FilePos Function .............................................................. 277 
The FileSize Function ............................................................. 277 

Standard Procedures and Functions for Textfiles ................................ 277 
The Read Procedure ............................................................... 278 
The ReadLn Procedure ............................................................ 279 
The Write Procedure .............................................................. 280 
The WriteLn Procedure ........................................................... 281 
The Eof Function ................................................................... 282 
The Eoln Function ................................................................. 282 
The SeekEof Function ............................................................. 282 
The SeekEoln Function ........................................................... 282 

Disk Files ................................................................................ 282 
Pathnames ............................................................................ 283 
File Types and Creators ........................................................... 283 

Devices in Turbo Pascal ............................................................... 284 
The Console Device ................................................................ 284 
The Printer Device ................................................................. 285 

Chapter 25. STANDARD PROCEDURES AND FUNCTIONS ......... 287 
Exit and Halt Procedures ............................................................. 287 

The Exit Procedure ................................................................. 287 
The Halt Procedure ................................................................ 288 

Dynamic Allocation Procedures and Functions .................................. 288 
The New Procedure ................................................................ 288 
The Dispose Procedure ............................................................ 288 
The MemAvail Function .......................................................... 289 
The MaxAvail Function ............................................................ 289 

Transfer Functions ..................................................................... 289 
The Chr Function .................................................................. 289 
The Ord Function .................................................................. 289 
The Ord4 Function ................................................................. 290 
The Pointer Function .............................................................. 290 
The Trone Function ................................................................ 290 
The Round Function ............................................................... 290 
The Float Function ................................................................. 290 

Arithmetic Functions .................................................................. 291 
The Abs Function ................................................................... 291 
The Sqr Function ................................................................... 291 
The Int Function .................................................................... 291 
The Sqrt Function .................................................................. 291 
The Sin Function ................................................................... 291 
The Cos Function ................................................................... 292 
The Exp Function .................................................................. 292 
The Ln Function .................................................................... 292 

x Turbo Pascal for the Macintosh 



The ArcTan Function .............................................................. 292 
Ordinal Functions ...................................................................... 292 

The Succ Function ................................................................. 292 
The Pred Function ................................................................. 293 
The Odd Function .................................................................. 293 

String Procedures and Functions ................................................... 293 
The Length Function .............................................................. 293 
The Pos Function ................................................................... 293 
The Concat Function .............................................................. 293 
The Copy Function ................................................................. 294 
The Delete Procedure ............................................................. 294 
The Insert Procedure .............................................................. 294 

Console Handling Procedures and Functions .................................... 294 
The ClearScreen Procedure ...................................................... 294 
The ClearEOL Procedure ........................................................ 295 
The DeleteLine Procedure ....................................................... 295 
The InsertLine Procedure ........................................................ 295 
The GotoXY Procedure ............................................................ 295 
The Key Pressed Function ........................................................ 295 
The Read Char Function ........................................................... 295 

Miscellaneous Procedures and Functions ......................................... 296 
The SizeOf Function ............................................................... 296 
The MoveLeft Procedure ......................................................... 296 
The MoveRight Procedure ........................................................ 296 
The FillChar Procedure ........................................................... 297 
The ScanEQ Function ............................................................. 297 
The ScanNE Function ............................................................. 297 
The Hi Function .................................................................... 297 
The Lo Function .................................................................... 298 
The Swap Function ................................................................. 298 
The HiWord Function ............................................................. 298 
The Lo Word Function ............................................................. 298 
The Swap Word Function ........................................................... 298 

Chapter 26. THE STANDARD APPLE NUMERIC 
ENVIRONMENT (SANE) LIBRARY ............................................ 299 
The SANE Data Types ................................................................ 300 

Choosing a Data Type ............................................................. 300 
Values Represented ................................................................ 301 
Range and Precision ................................................................ 302 
Formats ............................................................................... 302 

The Single Type ................................................................. 302 
The Double Type ............................................................... 303 
The Comp Type ................................................................. 303 

Table of Contents xi 



The Extended Type ............................................................. 303 
The SANE Engine ..................................................................... 304 

Extended Arithmetic ............................................................... 304 
Number Classes ..................................................................... 305 

Infinities ........................................................................... 306 
NaNs ............................................................................... 306 
Denormalized Numbers ....................................................... 307 

The Environment ................. : ................................................. 307 
Rounding Direction ............................................................. 308 
Rounding Precision ............................................................. 309 
Exception Flags .................................................................. 309 
Halt Settings ..................................................................... 310 

The SANE Library ..................................................................... 310 
Constants and Types ............................................................... 310 

The DecStrLen Constant ...................................................... 311 
Exception Condition Constants .............................................. 311 
The DecStr Type ................................................................ 311 
The DecForm Type ............................................................. 311 
The Rel Op Type ................................................................. 312 
The NumClass Type ............................................................ 312 
The Exception Type ............................................................ 312 
The RoundDir Type ............................................................ 313 
The RoundPre Type ............................................................ 313 
The Environment Type ........................................................ 313 

Conversion Procedures and Functions ......................................... 313 
The Num2Integer and Num2Longint Functions ......................... 313 
The Num2Extended Function ................................................ 314 
The Num2Str Procedure ....................................................... 314 
The Str2Num Function ........................................................ 315 

Arithmetic and Auxiliary Functions ............................................. 316 
The Remainder Function ...................................................... 316 
The Rint Function .............................................................. 317 
The Scalb Function ............................................................. 317 
The Logb Function ............................................................. 317 
The CopySign Function ....................................................... 317 
The NextReal Function ........................................................ 317 
The NextDouble Function .................................................... 317 
The NextExtended Function .................................................. 317 

Elementary and Trigonometric Functions ..................................... 318 
The Log2 Function ............................................................. 318 
The Lnl Function ............................................................... 318 
The Exp2 Function ............................................................. 318 
The Expl Function ............................................................. 318 
The Xpwrl Function ............................................................ 318 

xii Turbo Pascal for the Macintosh 



The XpwrY Function ........................................................... 318 
The Tan Function ............................................................... 319 

Financial Functions .................................. ." ............................. 319 
The Compound Function ...................................................... 319 
The Annuity Function ......................................................... 319 

Inquiry Functions .................................................................. 320 
The ClassReal Function ....................................................... 320 
The ClassDouble Function .................................................... 320 
The ClassExtended Function ................................................. 320 
The ClassComp Function ..................................................... 320 
The SignNum Function ........................................................ 320 

Miscellaneous Functions .......................................................... 321 
The RandomX Function ....................................................... 321 
The NaN Function .............................................................. 321 
The Relation Function ......................................................... 321 

Environmental Access Procedures and Functions ........................... 321 
The GetRound Function ....................................................... 321 
The SetRound Procedure ...................................................... 322 
The GetPrecision Function ................................................... 322 
The SetPrecision Procedure .................................................. 322 
The TextException Function .................................................. 322 
The SetException Procedure ................................................. 322 
The TestHalt Function ......................................................... 322 
The SetHalt Procedure ........................................................ 323 
The GetEnvironment Procedure ............................................ 323 
The SetEnvironment Procedure ............................................. 323 
The ProcEntry Procedure ..................................................... 323 
The ProcExit Procedure ....................................................... 324 

Chapter 27. INSIDE TURBO PASCAL ........................................ 325 
Macintosh Architecture ............................................................... 325 
Internal Data Formats ........................................................... ; .... 327 

Integer-Types ........................................................................ 327 
Char-Types ........................................................................... 328 
Boolean-Type ........................................................................ 328 
Enumerated-Types ................................................................. 328 
Real-Types ............................................................................ 328 
Pointer-Types ........................................................................ 329 
String-Types ......................................................................... 329 
Set-Types ............................................................................. 329 
Array-Types .......................................................................... 329 
Record-Types ........................................................................ 330 

·File-Types ............................................................................ 330 
Calling Conventions ................................................................... 331 

Table of Contents xiii 



Variable Parameters ................................................................ 331 
Value Parameters ................................................................... 332 
Function Results .................................................................... 332 
Entry and Exit Code ............................................................... 333 

Linking with Assembly Language ................................................... 334 
Procedures and Functions ........................................................ 334 
Variables .............................................................................. 335 
Operations on Relocatable Symbols ............................................. 335 
Register Saving Conventions ..................................................... 336 

Defining Your Own Devices ......................................................... 336 
The Device Procedure ............................................................. 336 
Device I/O Functions .............................................................. 337 
Examples of Device I/O Functions .............................................. 338 

PART ID. APPENDICES 

Appendix A. COMPARING TURBO PASCAL 
WITH OTHER PASCALS ........................................................... 341 
Turbo Pascal Compared to ANS Pascal ............................................ 341 

Exceptions to ANS Pascal Requirements ...................................... 341 
Extensions to ANS Pascal ......................................................... 343 
Implementation-Dependent Features .......................................... 345 
Treatment of Errors ................................................................ 346 

Turbo Pascal Compared to Lisa Pascal ............................................. 346 

Appendix B: ERROR MESSAGES AND CODES ........................... 351 
Compiler Error Messages ............................................................. 351 
System Error Messages ............................................................... 357 
IOResult codes .......................................................................... 358 
NaN codes ............................................................................... 359 

Appendix C: COMPILER DIRECTIVES ...................................... 361 
Set Bundle Bit .......................................................................... 362 
Generate Debug Symbols ............................................................ 362 
Compile Desk Accessory .............................................................. 362 
Check 1/0 Results ...................................................................... 363 
Include File .............................................................................. 363 
Link Object File ........................................................................ 363 
Define Output File .................................................................... 364 
Generate Range Checks ............................................................... 364 
Define Resource File .................................................................. 364 
Generate Segmented Code .......................................................... 365 
Define Segment Name ................................................................ 365 
Define Type and Creator ............................................................. 366 

xiv Turbo Pascal for the Macintosh 



Use Standard Units .................................................................... 366 
Search Unit Library ................................................................... 366 

Appendix D: MACINTOSH INTERFACE UNITS .......................... 367 
PaslnOut ................................................................................. 368 
PasConsole ............................................................................... 369 
PasPrinter ................................................................................ 370 
SANE ..................................................................................... 371 
MemTypes ............................................................................... 373 
QuickDraw .............................................................................. 374 
OSintf .................................................................................... 381 
Toollntf ................................................................................... 399 
Packlntf .................................................................................. 414 
MacPrint ................................................................................. 419 
FixMath .................................................................................. 425 
Gra£3D ............................................................ , ...................... 427 
Apple Talk ................................................................................ 429 
Speechlntf ............................................................................... 433 
SCSIIntf .................................................................................. 434 

Appendix E: MACINTOSH CHARACTER SET ............................. 435 

Appendix F: TURTLEGRAPfilCS: MAC GRAPHICS MADE EASIER 441 
Back ....................................................................................... 442 
Clear ...................................................................................... 442 
Forwd ..................................................................................... 442 
Heading .................................................................................. 442 
Home ..................................................................................... 442 
NoWrap .................................................................................. 443 
PenDown ................................................................................ 443 
PenUp .................................................................................... 443 
SetHeading .............................................................................. 443 
SetPosition ............................................................................... 443 
TurnLeft .................................................................................. 443 
TurnRight ................................................................................ 444 
TurtleDelay .............................................................................. 444 
Wrap ...................................................................................... 444 
Xcor ....................................................................................... 444 
Ycor ....................................................................................... 444 
Mac versus IBM Turtlegraphics ..................................................... 445 
An Example ............................................................................. 445 

Table of Contents xv 



GWSSARY ............................................................................ 447 

INDEX ................................................................................. 453 

~ . I 

xvi Turbo Pascal for the Macintosh 



Introduction 

Welcome to Turbo Pascal for the Mac. The programming language Turbo Pascal 
is designed to meet the needs of all types of Macintosh users: It's a structured, 
high-level language that can be used to write programs for almost any 
application. 

This manual walks novice programmers through writing, compiling, and sav­
ing Turbo Pascal programs. It also teaches you how to take existing Pascal pro­
grams and run them under Turbo Pascal. 

Sample programs are provided on your distribution disks for you to study and 
practice on. You can also tailor these sample exercises to your particular needs. 

You should be somewhat familiar with the basics of operating a Macintosh 
before you start this manual. That is, you should know about clicking on icons, 
using the mouse, opening folders, and other Macintosh features. If you're not 
comfortable with these terms, spend some time playing with your Mac and using 
your Macintosh's user's guide. You may also want to skim through the glossary at 
the end of this manual to get some understanding of the concepts we've used. 



The Manual 

This manual is divided into three main sections: the User's Guide (Part I), the 
Reference Section (Part II), and the Appendices. A glossary and index round out 
the manual. 

The User's Guide introduces you to Turbo Pascal, shows you how to use it, and 
includes chapters that focus on such specific features as units, desk accessories, 
and debugging. Here's a breakdown of the chapters: 

Chapter 1: Setting Up shows you how to set up your Mac for Turbo Pascal, 
describes the files on your distribution disk, and explains how to make backup 
disks. 

Chapter 2: Getting Started with Turbo Pascal leads you directly from loading 
Turbo Pascal into writing simple programs. It then suggests how you should go 
about reading the rest of the manual, depending on your familiarity with the Mac 
and with Pascal. 

Chapter 3: Using the Editor explains Turbo Pascal's menus (except for the Com­
pile menu, covered in the next chapter) and shows you how to use the editor to 
open, edit, change, and save files. 

Chapter 4: Using the Compiler describes how to implement the programs you 
learned to create in Chapter 3, using the compiler. It also shows you common 
programming errors and how to avoid them. 

Chapter 5: Writing Textbook Pascal Programs shows you how to take standard 
Pascal programs and use them with Turbo Pascal without having to know any­
thing about the Macintosh Toolbox and operating system. 

Chapter 6: Harnessing the Full Power of Your Mac is a quick guide to the 
Macintosh and the tools that exist to help you write more complex programs. 

Chapter 7: Units and Other Mysteries tells you what a unit is, how it's used, 
and what predefined units (libraries) Turbo Pascal provides. 

Chapter 8: Writing Your Own Units goes into the general structure of a unit and 
its interface and implementation portions. It shows you how to initialize and 
compile a unit. 

Chapter 9: Writing Your Own Macintosh Applications shows you how to put 
together your own Mac-style programs, complete with menus, windows, and 
cursors. 

Chapter 10: Graduation: Writing a Desk Accessory tells you all you need to 
know to design and write desk accessory programs. 

2 Turbo Pascal for the Macintosh 



Chapter 11: UNITMOVER, Chapter 12: RMAKER, and Chapter 13: FONT/DA 
MOVER give detailed instructions on these utilities, which come on your Turbo 
Pascal disks. 

Chapter 14: Debugging Your Turbo Pascal Program explains how to use 
MACSBUG to check for errors in your program. 

Chapter 15: The Turbo Pascal Menu Reference is a complete guide to the menu 
commands in Turbo Pascal. 

Now we move on to the Reference Section of the manual. The first 11 chapters 
offer technical information on the following features: 

Chapter 16: Tokens and Constants 
Chapter 17: Blocks, Locality, and Scope 
Chapter 18: Types 
Chapter 19: Variables 
Chapter 20: Expressions 
Chapter 21: Statements 
Chapter 22: Procedures and Functions 
Chapter 23: Programs and Units 
Chapter 24: Input and Output 
Chapter 25: Standard Procedures and Functions 
Chapter 26: The Standard Apple Numeric Environment (SANE) Library 

Chapter 27: Inside Turbo Pascal offers additional technical information for 
advanced Pascal programmers, including internal data formats, assembly-lan­
guage interfaces, and user-defined device drivers. 

Finally, there are six appendices in the manual: 

Appendix A: Comparing Turbo Pascal with Other Pascals 
Appendix B: Error Messages and Codes 
Appendix C: Compiler Directives 
Appendix D: Macintosh Interface Units 
Appendix E: Macintosh Character Set 
Appendix F: TURTLEGRAPffiCS: Mac Graphics Made Easier 

Typography 

The use of italic and boldface type in this manual follows certain conventions. 
Reserved words are set in lowercase, boldface type. Constant identifiers, field 
identifiers, and formal parameter identifiers are italicized when referred to 
within text. Other identifiers-unit and program names, labels, types, variables, 
procedures, and functions-begin with an uppercase letter; they also are itali­
cized when referred to within text. 

Introduction 3 



The command key (the cloverleaf key on the Mac keyboard) is represented by 
the keycap I!]. 

Pascal syntax is illustrated by diagrams. To follow a syntax diagram, start at the 
top left and follow the arrows through the diagram. Alternative paths are often 
possible; paths that begin at the left and end with an arrowhead on the right are 
valid paths. A path traverses boxes that hold the names of elements that are used 
to construct that portion of the syntax. 

The names in rectangular boxes stand for actual constructions. Those in circu­
lar boxes-reserved words, operators, and punctuation-are the actual terms 
that should be used in the program. 

Acknowkdgments 

Apple® is registered to Apple Computer, Inc. 
Macintosh TM is a trademark licensed to Apple Computer, Inc. 
Inside Macintosh© is a copyright of Apple Computer, Inc. 
Lisa® is a registered trademark of Apple Computer, Inc. 
Lisa®Pascal TM is a trademark of Aioi Seiki Kabushiki. 

How to Contact Borland 

If, after reading this manual and using Turbo Pascal, you would like to contact 
Borland with comments or suggestions, we suggest the following procedures. 

The best way is to log on to Borland's forum on CompuServe: Type GO BOR 
from the main CompuServe menu and follow the menus to section 4. Leave your 
questions or comments here for the support staff to process. 

If you prefer, write a letter describing your comments in detail and send it to 
the Technical Support Department, Borland International, 4585 Scotts Valley 
Drive, Scotts Valley, CA 95066, USA. 

As a last resort, you can telephone our Technical Support department. If 
you' re calling with a problem, please have the following information handy 
before you call: 

• Product name and version number 

• Computer make and model number 

• Operating system and version number 

4 Turbo Pascal for the Macintosh 



p A R T I 

Users Guide 



c H A p T E R 1 
Setting Up 

Before you actually begin using Turbo Pascal, you should make a backup copy of 
your disks so that you can put your master disks in a safe place. This chapter tells 
you how to do that. It also describes the files on your Turbo Pascal disks so that 
you can see what files are provided and which you 11 need. 

Before you go on, you should have some familiarity with the Mac. You should 
know how to turn your Mac on and oft how to move the mouse around, how to 
select commands from a menu, how to manipulate (move, resize, and close) 
windows with the mouse, and how to select and launch applications. If you have 
questions about using the Mac, please refer to your Macintosh owner's manual. 

Maki,ng Working Copies 

Borland' s philosophy-selling software without copy protection-is based on 
trust. As it says in the license statement at the beginning of this manual, you are 
authorized to make working copies of the distribution disks. You can then put the 
originals in a safe place. 

Here's how to copy your Turbo Pascal and Utilities & Sample Programs disks. 

First, with the Macintosh oft put your Turbo Pascal disk in the internal disk 
drive and turn the Mac on. The Mac boots up and displays a window with the 
contents of your Turbo Pascal disk. 

5 



Second, insert a blank disk, or a disk that doesn't contain anything you want to 
save, in your external disk drive. (If you don't have one, we'll tell you what to do 
in a few paragraphs.) If you've inserted a new disk or one that's been used with 
some other computer system, the Mac asks if you want to initialize it. If it is in a 
double-sided disk drive, you have the option of formatting it as single- or double­
sided; it's best to choose whichever corresponds to your internal disk drive. 
Remember, initializing erases all existing files on the disk. When initialization is 
done, you'll be asked to name the disk; give it something like "TP Mac." 

Third, point to the Turbo Pascal disk icon, press the mouse button, and hold it 
down. Now drag that icon to the icon of your work disk That disk's icon should 
now turn dark. Release the mouse button. You'll now get a dialog box that asks if 
you really want to replace the contents of the disk in your external drive with the 
contents of the disk in your internal drive. Point to OK and press the mouse 
button. All the files on your Turbo Pascal master disk will be copied over to your 
work disk 

Fourth, eject both disks: Click on the disk icon, then select Eject from the File 
menu, or press ~. Label your new working copy of Turbo Pascal, and store 
your Turbo Pascal master disk somewhere safe. Turn your Mac of( place your 
working disk into the internal disk drive, and turn the Mac back on. You now 
have a working copy of Turbo Pascal. 

Repeat with the Utilities & Sample Programs disk 

What If I Only Have One Disk Drive? 

Prepare yourself for some disk swapping. Boot up with your Turbo Pascal master 
disk, as described above, then eject it. 

Insert your blank work disk If necessary, initialize it as described above. You 
should now have two disk icons on your desktop (Macintosh screen). 

Drag the icon for the Turbo Pascal master disk onto the icon of your work disk 
You' re asked to reinsert the Turbo Pascal master disk; do so. At the "Replace all 
this?" prompt, click the OK button. 

The actual copying now takes place. You'll be asked to swap disks from time to 
time, so that your Mac can read from the master disk and write to the destination 
disk The actual number of swaps depends upon the size of your disk drive and 
the amount of memory in your Mac. 

Repeat this procedure with the Utilities & Sample Programs disk 

6 Turbo Pascal for the Macintosh 



What If t m Using a Hard Disk? 

Copy all the files and folders (except for the SYSTEM FOLDER) from your 
Turbo Pascal master disks to any volume or subdirectory on your hard disk. Store 
the masters. 

Bypassing the Desktop 

If your working copy of Turbo Pascal is a bootable disk (that is, if it is the disk you 
boot from when you turn your Macintosh on), you can make Turbo Pascal your 
startup application. This means that when you boot from your Turbo Pascal work 
disk, instead of having to wait for the desktop to come up and then double­
clicking on the Turbo icon, you will automatically go into Turbo Pascal. 

To do this, boot up using your Turbo Pascal work disk. Click once on the Turbo 
icon, so that it becomes dark but doesn't start executing. Go to the Special menu 
and select Set Startup. A dialog box comes up, asking you to verify that you want 
Turbo to be the startup application. Select the OK button. 

From now on, when you boot up using that disk, you'll bypass the desktop and 
go immediately into Turbo Pascal. 

The Files on the Disks 

Your Turbo Pascal master disks have quite a few files and folders (which contain 
more files). Unlike the other Pascal programs, however, Turbo Pascal can run on 
only the TURBO file. This simplicity makes Turbo Pascal easy to use and conser­
vative of your memory space. However, it doesn't skimp on options. 

Here's a quick rundown of the files, with descriptions showing what each file 
provides. The TURBO and SYSTEM FOLDER files are on the Turbo Pascal 
disk; all other files are on the Utilities & Sample Programs disk. 

Setting Up 7 



Table 1-1 Files on Your Distribution Disk 

TURBO 

SYSTEM FOLDER 
SYSTEM 

FINDER 

IMAGEWRITER 

UTILITIES 

UNITMOVER 

RMAKER 

FONT/DA MOVER 

MACS BUG 

MACINTALK 

ATALK/ABPACKAGE 

SAMPLE PROGRAMS 
MYDEMO.PAS 

MYDEMO.R 

8 

The Turbo Pascal compiler/editor. This file also contains 
the Pascal run-time and Mac interface units. You 
definitely need it. 

A folder containing the system files: 
The Macintosh operating system. This file also holds 
system resources, such as fonts and desk accessories. Your 
disk has only a limited number of these to conserve space. 
Essential if you are going to boot up using your Turbo 
Pascal work disk. 
The Macintosh user interface program. This is what 
brings up the desktop, allows you to select and run a 
program, and so on. Also essential if you plan to boot 
from your work disk. 
The printer driver for the Imagewriter printer. You need 
this if you're going to print anything, either from within 
Turbo Pascal or within your own program. 

This folder contains UNITMOVER, RMAKER, 
FONT/DA MOVER, MACSBUG, MACINTALK, and 
APPLE TALK: 
Utility for moving units (libraries) in and out of Turbo 
Pascal. You don't need it unless you write your own 
units and store them in Turbo Pascal. 
The Resource Maker. This converts resource source files 
(.R) into resource data files (.RSRC), which can then be 
used by your programs. If you're writing Mac-style 
programs, you'll need this file. 
Utility for moving fonts and desk accessories in and out 
of your SYSTEM file. You need it if you plan to write 
desk accessories. 
A debugger, that is, a program that helps you to track 
down and correct errors in your program. This is for 
more sophisticated users; after reading about it in 
Chapter 14, you can decide whether to include it. 
A resource file for speech synthesis. You'll need it to use 
the MacinTalk unit in any of your programs. 
A resource file for using the APPLETALK network. 
You'll need it to use the APPLETALK unit in any of 
your programs. 

This folder contains sample programs, including: 
A sample program that shows how to write Mac-style 
programs. Brings up a window and its own menu bar; 
allows you to run several different benchmarks 
(graphics, 1/0, etc.); supports desk accessories. 
A resource file for MYDEMO.PAS. You must run 
RMAKER on it (producing MYDEMO.RSRC) before 
you can compile and run MYDEMO.PAS. 

Turbo Pascal for the Macintosh 



Table 1-1 Files on Your Distribution Disks, continued 

MYDA.PAS A sample desk accessory whose code illustrates all the 
different events that you might need to handle in a desk 
accessory. 

MYDA.INC An include file for MYDA.PAS; it contains most of the 
event-handling routines. 

MYDA.R A resource file for MYDA.PAS. You must run RMAKER 
on it (to produce MYDA.RSRC) before you can compile 
MYDA.PAS. 

What If I Don't Want to Use Turbo Pascal's System Fires? 

Format a blank disk and copy onto it the system files you want to use. Boot up 
using it. Put the Turbo Pascal master disk in your external drive. Copy to your 
system disk all its files and folders, except for the one labeled SYSTEM 
FOLDER. 

Eject the Turbo Pascal master disk and put it somewhere safe. 

What If I Don't Want All the Turbo Pascal Files? 

Make copies of the Turbo Pascal master disks, using one of the methods 
described previously. Throw away (that is, move into the Trash icon) all the files 
you want to get rid of. 

Customizing Turbo Pascal 

There are two sets of options that you can change to customize Turbo Pascal. The 
first set can be examined and changed using the Option command in the Turbo 
Pascal Edit menu. With it, you can set the tab width, toggle the auto-indent 
mode, and tell Turbo Pascal whether or not you want it to bring up a new ("Unti­
tled") window each time you go into Turbo Pascal. Chapter 3 has more details on 
these options. 

The second set of options is under the Options command in the Turbo Pascal 
Compile menu. These options include toggling the auto-save mode, setting the 
size of the symbol table, and specifying default directories (path names) for units 
and include, resource, .REL, and output files. See Chapter 4 for more details. 

Setting Up 9 



Where to Go from Here 

By now, you should be set up to start using Turbo Pascal. Boot up your system (if 
it isn't on), double-click on the Turbo icon, and go on to Chapter 2. It explains 
the different menu commands in Turbo Pascal. 

You may want to quickly jump to the glossary and scan through the Turbo 
Pascal icons shown there. That way, you'll be more familiar with the different 
icons and the types of files they represent before you begin programming. 

10 Turbo Pascal for the Macintosh 



c H A p T E R 2 
Getting Started with Turbo Pascal 

Now that you're all set up, let's plunge right into writing your first Turbo Pascal 
program. By the end of this chapter, you'll have written three small programs, 
saved them, and learned a few basic programming skills. The last section offers a 
game plan for proceeding through the rest of the manual, depending on your 
programming experience. 

Load,ing Turbo Pascal 

If you' re using a floppy-disk drive, first tum off your Macintosh. Put your Turbo 
Pascal disk into the internal disk drive. Turn the Mac on. The Mac boots up and 
displays a window with the contents of your Turbo Pascal disk. Near the top of 
the window, you'll see an icon-labeled "Turbo" -of a hand waving a checkered 
flag. This is the Turbo Pascal compiler/editor. 

To launch it, just point at it with the mouse and click twice, rapidly. The 
desktop clears. A few moments later, a new menu bar appears, along with an 
empty window labeled "Untitled" (see Figure 2-1). You're now set up to write 
your Turbo Pascal program. 

II 



Writing Your First Program 

A blinking vertical bar is in the left-hand corner of the "Untitled" window. When 
you enter a program, the text you type appears here. Now type in the following 
program, pressing the !B key at the end of each line: 

program MyFirst; 
begin 

WriteLn('Hello, universe!'); 
ReadLn; 

end . 

Note the semicolons (;) at the end of the first, third, and fourth lines, as well as 
the period (.) after the last line. If you make a mistake while typing, press the 
IE key to erase what you have typed. (If you' re familiar with Mac-style editors, 
you can use the mouse to select and change text.) 

Now go to the Compile menu and select the Run command (or press[]}]]). 
Turbo Pascal compiles and runs your program. If there is a syntax error (that is, a 
Pascal language error), Turbo Pascal stops at that place in your program and tells 
you what the error is. Acknowledge the error by clicking the mouse button or 
pressing the !B key. Correct the error and then select the Run command again. 

After all errors are fixed, Turbo Pascal completely compiles your program and 
executes it. The menu bar and window disappear, a window labeled "MyFirst" 
opens, and the message Hello, universe! appears in the upper left-hand corner 
of the window. 

J 
Hello, universe! 

Figure 2-1 The Compiled MYFIRST Program 

The program then waits for you to press !B (this is what the ReadLn state­
ment does). When !Bis pressed, the window disappears, and you're back in 
Turbo Pascal. 

12 Turbo Pascal for the Macintosh 



Saving Your First Program 

Having written and compiled this masterpiece, you need to save it to disk, so 
that you can modify it later. Go to the File menu and select the Save option (or 
press ~). A file-save dialog box comes up. Type in a name for your program, 
say, "MYFIRST. PAS." Turbo Pascal isn't case-sensitive, so you can use uppercase 
or lowercase when entering information. Press IE) and your program is saved to 
disk. 

If you exit Turbo Pascal (select Quit from the File menu), you'll see your 
program file saved as a document icon with a checkered Hag on it. If you want to 
edit it some more, point the cursor to it and double-click. 

If you want to run your program outside of Turbo Pascal, go to the Compile 
menu and select the To Disk command (or press~- You don't need to save 
the file; just exit Turbo Pascal. You'll see your executable program, named 
MYFIRST, saved under a standard Mac application icon (a hand writing on a 
piece of paper). If you double-click on this icon, it will execute your Hello, 
universe! program again, then return you to the Mac desktop when you press 
IE). 

Steppi.ng Up: Your Second Program 

Now let's look at a second program that does a bit more. It prompts you for a 
location and a radius, then draws a black circle of that radius at the specified 
location. 

program MySecond; 

uses MemTypes,QuickDraw; 

var 
X,Y,Radius 
TRect 

begin 

Integer; 
Rect; 

Write('Enter X: '); 
ReadLn(X); 
Write('Enter Y: '); 
ReadLn(Y); 
Write('Enter radius: '); 
ReadLn(Radius); 
SetRect(TRect,X-Radius,Y-Radius,X+Radius,Y+Radius); 
PaintOval(TRect); 
ReadLn; 

end.< of program MySecond } 

Getting Started with Turbo Pascal 13 



The uses statement asks Turbo Pascal to let you use two units (program 
libraries), MemTypes and QuickDraw. This gives you access to the graphics data 
types and routines (Rect, SetRect, and so on). 

You've declared four variables in this program: X, Y, Radius, and TRect. X and 
Y are integers (numbers); they store the values you type in for the location of the 
center of the circle. Likewise, Radius is an integer that holds the radius (distance 
from the center to the edge) of the circle. TRect is a variable of type Rect, a 
special Macintosh data type that holds a description of a rectangle (top, left, 
bottom, and right values). 

The first six statements of the program consist of three Write statements and 
three ReadLn statements. Each Write statement writes the string inside of it out 
to the screen; each ReadLn statement waits for you to type a value and press 
IE), after which it stores the value in the enclosed variable. 

The next two statements call QuickDraw routines. SetRect gives the variable 
TRect the boundaries indicated (X-Radius and so on). The resulting rectangle 
determines the size of the circle you want to draw. PaintOval takes the informa­
tion in TRect and uses it to paint a black circle just within the rectangle's bound­
aries. The last statement, ReadLn, causes the program to wait for you to press 
IE) before it exits the program and returns to Turbo Pascal (or, if you've com­
piled to disk, to the Mac desktop). 

Programming Pizazz: Your Third Program 

You've now dabbled in graphics, so let's explore a more complex program. It 
offers more variety and interesting graphics. 

program MyThird; 

uses MemTypes,QuickDraw; 

const 
Start 
Finish 
Step 

= SD; 
= 250; 

2· , 

var 
X:L,X2,Y1,Y2 

begin 
Y1 := Start; 
Y2 :• Finish; 
X:L := Start; 

Integer; 

while XL <= Finish do 

14 Turbo Pascal for the Macintosh 



begin 

end; 

X2 := (Start+Finish) - X1; 
MoveTo( X1, Y1); 
LineTo(X2,Y2); 

X1 : = X1 + Step 

X1 := Start; 
X2 :=Finish; 
Y1 := Start; 

whilS Y1 <= Finish do 
begin 

Y2 := (Start+Finish) - Y1; 
MoveTo ( X1, Y1) ; 
LineTo(X2,Y2); 
Y1 : = Y1 + Step 

end; 
ReadLn; 

end.{ of program MyThird 

This program produces a square with a black center and some interesting 
patterns (known as Moire patterns) along the edges. The section labeled const 
defines three numeric constants (Start, Finish, and Step) that affect the size, 
location, and appearance of the square. By changing their values, you can change 
how the square looks. 

WARNING: Don't set Step to anything less than l; if you do, the program will 
get stuck in what is known as an infinite loap. You won't be able to exit except by 
pressing the interrupt switch or by turning your Mac off. 

The variables Xl, Yl, X2, and Y2 hold the values of locations along opposite 
sides of the square. The square itself is drawn by drawing a straight line from 
(Xl,Yl) to (X2,Y2). The coordinates are then changed, and the next line drawn. 
The coordinates always start out in opposite comers: The very first line drawn 
goes from (50,50) to (250,250). 

The program itself consists primarily of two loops. The first loop, as we men­
tioned, starts by drawing a line from (50,50) to (250,250). It then moves the X 
(horizontal) coordinates by two, so that the next line goes from (52,50) to 
(248,250). This continues until it finally draws a line from (250,50) to (50,250). 

The program then goes into its second loop, which pursues a similar course, 
changing the Y (vertical) coordinates by two each time. The routines MoveTo and 
LineTo are from the QuickDraw unit. MoveTo moves to the indicated spot on the 
screen without drawing anything, while LineTo draws a line from the current 
location to the one given. 

The final ReadLn statement causes the program to wait for you to press IE} 
before exiting. 

Getting Started with Turbo Pascal 15 



Where to Go from Here 

You've now gotten your feet wet and have written three quick programs using 
Turbo Pascal for the Macintosh. How do you proceed from here? 

If you' re a complete novice without any Mac or programming experience, read 
the rest of Part I very carefully, following all the examples shown. Make sure you 
understand each chapter before moving on to the next. If you' re an experienced 
Mac user but you haven't done any programming, a quick once-through is all you 
need on Chapter 3. The rest of the chapters will require careful attention, 
though. 

If you' re proficient on the Mac and have done a fair amount of programming, 
but not on the Mac, read Chapters 4 and 5 to familiarize yourself with Turbo 
Pascal. Then pay special attention to Chapters 6, 9, and 10. 

If you've done a lot of Mac programming but not in Pascal, then concentrate on 
Chapters 4, 5, 7, and 8. Chapters 6, 9, and 10 should then help you to see the 
dllferences in programming with Turbo Pascal and whatever language you were 
using. 

If you've already used Pascal on the Mac, Chapters 4 and 7 will require special 
attention, while you can probably skim the rest. 

Finally, there are a few other books you might consider reading after you've 
finished this manual. If you are planning to do much Mac-style programming 
with graphics, windows, menus, and so on, we recommend Inside Macintosh 
(Addison-Wesley, 1986). This consists of four softbound volumes (or hardbound 
and softbound set). It is the reference work for information on how to use the 
Mac Toolbox and operating system routines. If you're not familiar with Pascal, 
you'll probably want to pick up a good tutorial on the language. Many such books 
are available, including several that are specific to the Macintosh. 

We've tried to make this the best user's guide and reference manual possible. 
After working through it, you should feel at home with Turbo Pascal. Good luck, 
and happy programming! 

16 Turbo Pascal for the Macintosh 



c H A p T E R 3 
Using the Editor 

In this chapter, you'll learn the basic editing features of Turbo Pascal-how to 
enter a program, move and format text, undo commands, and save files. 

A Quick Review of Clicking 

Remember, you should be familiar with the Macintosh-be able to click on 
icons, open and close folders and disks, and select commands from menus­
before you go on. If you aren't, read the user's guide that came with your com­
puter and familiarize yourself with those operations first. Let's quickly review 
the technique of clicking, however. 

Any movement of the mouse is echoed by the arrow-shaped pointer on the 
screen. When you place the pointer on, say, an icon and quickly press-and­
release the mouse button, that's called clicking. It selects and highlights what­
ever you just clicked on. You can then go to the menu and choose the command 
you want performed on the highlighted item. 

As a shortcut, you can double-click on the item to select and open it-and skip 
the menu-selection steps. 

Shift-clicking is another option. If you hold (fil down and move the mouse to 
a second location, everything between the original mouse location and its cur­
rent location is selected and highlighted. 

17 



Opening Turbo Pa,scal 

Getting into Turbo Pascal is easy. Look for the Turbo Pascal icon, a hand waving a 
checkered flag, on your disk. Move the cursor to it and click on it twice, rapidly. 
After a few seconds, the Macintosh desktop is replaced by the Turbo Pascal menu 
bar, and a window (labeled "Untitledw) appears. 

You can also get into Turbo Pascal by clicking on its icon once, going to the File 
menu, and selecting the Open command (or press~). 

Close the "Untitled' file by clicking on the Close box, then select Quit from the 
File menu. You're back in the Mac desktop. Double-click on the MYFIRST.PAS 
file you created in the last chapter. A new window appears, called "MYFIRST.PAS; 
with the program you entered previously. 

You can identify programs written with the Turbo Pascal editor; they look like 
a sheet of paper with the top right corner bent down and a checkered rectangle 
centered on the sheet. When you open one of these files, you start up Turbo 
Pascal, which opens a window with that program in it. 

Return to the Mac desktop. This time, double-click on the MYFIRST icon (a 
hand writing on a sheet). Your compiled program appears. Exit it by pressing 
~·The Mac desktop reappears. 

Editing a File 

An editor is a program that allows you to edit text, that is, to enter, delete, or 
change what you've typed in. Turbo Pascal has a built-in editor that is available at 
all times. With it, you can write new programs and modify existing ones. You can 
add, delete, and change code. The Edit menu shows some of these features. 

18 Turbo Pascal for the Macintosh 



Ii Flle_lllDll Senrch Formnt Font Compile Trnnsfer 
iO~ Umin >!:< 2 - Untitled 

Cut 
Copy 
Pnste 
Clenr 

XH 
xc 
XU 

Sl1lf1 l.1'1 t >:!<[ 
Sh ift fli~Jh1 >i:< ) 

Options ... 

Figure 3-1 The Edit Menu 

Let's start by typing in a new program. 

Entering a New Program 

J 

Q 

Double-click the Turbo Pascal icon. An empty window (called "Untitled") covers 
most the screen. If someone has used this program previously and the window 
has text in it, close the window by clicking on the Close box in the upper left 
corner of the window. A blank screen with the desktop and Turbo Pascal menu 
bar remains; go to the File menu and select the New command (or press I!)])). 
Now you should have an empty window named "Untitled." 

There are two different cursors on the screen. One is a vertical blinking bar in 
the upper left corner of the window. If you type the following line 

program Quickie; 

this cursor moves to the right as you type. It indicates where the next letter you 
type will appear. Press S, and the cursor moves to the start of the next line. 
Now type the following two lines, pressing S after each one: 

var 
begin 

The bar cursor should now be at the start of the line underneath the word 
begin. 

The second cursor on the screen is larger and is shaped like an I-beam. It is 
"connected" to the mouse; that is, it moves on screen as you move the mouse on 
your desk top. When you move this cursor outside the window, it turns into an 
arrow; move it back into the window, and it becomes an I-beam again. Now, 
move it right after the word var, then click once. The bar cursor jumps from the 

Using the Editor 19 



beginning to the fourth line to where the I-beam cursor was when you clicked 
the mouse button. Press ~, indent two spaces, and type 

A,B,C : Integer; 

Your window should now have the following text: 

program Quickie; 
var 

A,B,C : Integer; 
begin 

The blinking bar cursor should be just after the semicolon (;) following the 
word Integer. Now move the I-beam cursor to the line below the word begin and 
click once. The bar cursor should jump down there. Add two space indents, type 
the following line, then press ~: 

WriteLn('Hello, world'); 

If you correctly typed two spaces before starting WriteLn, the bar cursor 
should be indented two spaces in: It lines up with the word WriteLn. This is 
known as auto-indenting, and it helps you follow your programming conven­
tions. (You can turn it off, if you like.) 

Now, press IE twice (it's located above ~). The bar cursor should be at the 
left margin again. Type end. (with a period) and press ~. Your entire program 
should now look like this: 

s Fiie Edit Search Format Font Compile Transfer 

i!D 
program Quick le; 
va" 

A,B , C : Int.gar; 
begin 

Ur-I taLnC ' Hal lo , world'>; 
and. 

p[ 

Untitled 

.. _.,1· .. ·' 

Figure 3-2 The Quickie Procedure Window 

20 Turbo Pascal for the Macintosh 



Changing a Program 

There are several ways to change or modify a program. The simplest way is to 
add new text. Move the I-beam cursor to just after the semicolon following 
(Hello, world) and click once. The bar cursor moves there. Press~ and type: 

WriteLn('What's your sign?'); 

You've added a new line to your program. Because of the auto-indenting, this 
statement lines up with the...cm.e above it. 

The next simplest change is to delete text. Press IE several times. You'll see 
that you' re erasing what you've just typed. If you keep pressing it, or if you hold 
it down, it continues to erase the characters to its left. When you get to the start 
of the line, it jumps back up to the end of the previous line, and all the text below 
(which right now is just the line end.) moves up. If you're still holding IE down, 
you'll find that your entire program will soon be erased, character by character. 
Stop, and retype all you've erased. 

Suppose you wanted to change the string Hello, world to Hi, world. Use the 
following steps: 

I. Move the I-beam cursor until it's between the 0 and the comma in 
Hello, world. Click the mouse once to move the bar cursor there. 

2. Press IE four times to delete ELLO. 

3. Type I (comma). 

Now, following the steps above, change the word WORLD to your own first 
name. 

The I Clear I key on the numeric keypad (or (DE if you don't have a numeric 
keypad) is also used to delete text. When the cursor is in the middle of a line, 
pressing I Clear I deletes all characters to the left of the cursor until the beginning of 
the line. This is handy in connection with the auto-indent feature when you want 
to un-indent a line, that is, remove blanks that were automatically inserted by 
pressing~- If you press I Clear I when,the cursor is at the beginning of a line, the 
line above is deleted. 

Selecting, Cutting, and Pasting Text 

A powerful feature of the Turbo Pascal editor is that it lets you cut portions of text 
and paste them elsewhere. You can use the I-beam cursor and the mouse to 
se"lect portions of text-like setting aside selected pages of a document-while 
you decide what to do with them. 

Using the Editor 21 



Let's say that you want to delete the variable declarations in your program. 
Move the I-beam cursor in front of the word var. Now, press the mouse button 
and hold, it down. While holding the mouse button down, slowly move the 
I-beam cursor down the screen. Each line that it passes turns black with the text 
reversing (called inverse or reverse video). The text is what you are selecting. 
Now, with the mouse button still pressed, move the I-beam cursor until it's right 
in front of the word begin. The two lines above it, 

var 
A,B,C : Integer; 

should be in reverse video. Release the mouse button. The lines remain black 
because they are selected. 

You now have several options. To do nothing, move the I-beam cursor any­
where and click once. The text will be de-selected; that is, it will return to 
normal. You can do this anytime you accidentally select text that you don't want 
selected. Try this out, then go back and re-select those two lines. 

The next option is to delete the selected text. You can press IE, and the text 
will vanish. You can restore it by selecting Undo from the Edit menu, which is 
explained in a later section. The same thing happens if you go to the Edit menu 
and select the Clear command. You can also select the Cut command from the 
Edit menu (or press l]Jil). That deletes the text but saves it in the Clipboard, a 
holding area for text that's been cut (or will be copied). Practice using these 
deletion options, then reenter the two lines. Select them again. 

The third option is to copy the selected text. Go to the Edit menu and select 
the Copy command (or press~). The selected text looks the same on the 
screen, but a copy of it has just been placed in the Clipboard. 

Fourth, you can replace the selected text. Whatever you start typing replaces 
the selected text. As soon as you press the first key, the entire selected text 
disappears and your new text replaces it as you type. 

If you have cut or copied text, so that you have text in the Clipboard, you can 
select the Paste command from the Edit menu (or press~). The text in the 
Clipboard automatically replaces the selected text. 

If you have cut or copied text into the Clipboard, you can insert or paste it 
anywhere in your program. Select a line of text, then cut or copy it using the 
Edit menu. Now move the I-beam cursor to where you want to insert the text, 
and click the button once. The blinking bar cursor appears there. Go to the Edit 
menu and select the Paste command (or press!]]])). The selected text is now 
pasted where the cursor is. A copy of that text is still in the Clipboard; you can 
move somewhere else and paste it in again. 

22 Turbo Pascal for the Macintosh 



Try out these commands, until you're comfortable with them. Then you can do 
the following exercises: 

1. Change the name of the program to Mortimer by selecting the word 
Quickie and then typing Mortimer. Practice selecting individual words 
and letters on a given line. 

2. Delete the var and fl,B,C: Integer; lines using three different means. 
Retype or paste them back in each time. 

3. Insert the statement WriteLn( 'A is A.'); between the first and second 
WriteLn statements. (Don't forget the semicolon at the end.) 

The Undo Command 

During the exercise above, you may have accidentally deleted or changed some­
thing. You probably went in and retyped the altered text. The Turbo Pascal 
editor helps protect you from your own mistakes with the Undo command in the 
Edit menu. 

Try the following exercise. Move the I-beam cursor to the start of the program, 
hold the mouse button down, and move the I-beam cursor to the end of the 
program. The entire program should now be selected. Now press !B. Presto! 
Your entire program has just disappeared! Don't panic. Instead, select the Undo 
command in the Edit menu (or press~). Your entire program resurfaces. 

You can only Undo the last action you did. Select var, for example, and press 
!B; var disappears. Now move the cursor to the end of the program. If you click 
on the Edit menu, Undo appears blurred; that is, it cannot be selected. Even if 
you move the cursor back to the empty line and select Edit, Undo will still be 
blurred. You have to retype var; the selection can't be undone. 

Spend some time experimenting with the Undo command, seeing what you 
can (and can't) undo. This is a really valuable command, so take the time to learn 
it well. 

Formatting Text 

Many Pascal programmers format their programs with indentation, aligning 
begin and end keywords, nested statements, and so on. Often a level of nesting 
will change: A set of statements will be moved out of an if .. then statement, or 
into a for loop. To maintain the correct nesting format, the programmer then has 
to shift all the code-line by line-left or right, according to the change. 

Using the Editor 23 



With the Turbo Pascal editor, such formatting changes are easy. Just select the 
text to be shifted, using the click-and-drag technique: Put the pointer at the 
beginning of the selected text, hold the button down, and move to the end of the 
text. Release the button. Then press ~ to shift left, or []JI) to shift right. 
Each press of the command sequence shifts the entire selected block of text one 
character left or right. You can also do this by selecting the Shift Left or Shift 
Right commands in the Edit menu. 

Finding a Lost Bar Cursor 

The location of the bar cursor-the short, blinking one that indicates where the 
next character you type will appear-is quite different from the location of the 1-
beam cursor, the one reflecting mouse movements. In a large file, it is possible to 
lose the bar cursor, because of scrolling to (that is, viewing) a different part of the 
program from where the bar cursor is. Two commands in the Turbo Pascal editor 
help you to deal with that. 

First, if you press fEl (or~. the text display will be scrolled upwards or 
downwards until the first or last line in the window is the line with the bar 
cursor. No text will be changed. Second, you can use the Home Cursor com­
mand in the Search menu (or press I])])). This moves the bar cursor to the very 
top of the file and adjusts the display to show it. 

Search and Replace 

The Turbo Pascal editor lets you search for a particular string (that is, a delimited 
group of characters). It also lets you change one string for another. 

To find a given string, such as a variable or procedure name, select the Find 
command in the Search menu (or press !!JI)). A dialog box comes up that asks 
you to specify what you want found. There are two checkboxes, Words Only and 
Case Sensitive. The first means that it won't recognize the string if it's embed­
ded in a larger string. For example, if you are looking for myGlobals and selected 
this option, then it wouldn't pick out the string in myGlobalsH. Second, specify­
ing Case Sensitive means that uppercase and lowercase letters are not consid­
ered to be equivalent. If you are looking for myGlobals, then M yGlobals doesn't 
match. 

Having typed in your string, start the search by pressing fEl or by selecting 
the OK button in the dialog box. The editor starts searching from the current 
position of the bar cursor until it either finds the string requested or hits the end 

24 Turbo Pascal for the Macintosh 



of the file. If it finds the string, that section of your program appears on the 
screen, with the specified string highlighted. If it doesn't find the string, it beeps 
at you, and the screen stays the same. 

Having found the first instance, you can find the next appearance of the string 
by selecting the Find Next command from the Search menu, or by pressing 
[])]). You can also select Change to replace one string with another. 

You can use key equivalents in the Search and Replace dialog box; that is, you 
can type W for Yes, I]) for No, 11) for All, and l]l for Cancel. 

Saving Your Text 

There are several ways of saving the text you have entered in a window: 

• Select the Save command in the File menu (or press l!lW). If your window 
already has a title, the text is saved on the disk, overwriting the old version of 
the file. If your window is untitled, the Save-file dialog box comes up. Select 
the proper drive and directory, type in a name for your text, and click the Save 
button (or press IB,). After saving the text, your window's title is changed to 
the file name you just entered. When naming your files, it's advisable to use 
extensions, for instance .PAS for Pascal programs and .R for RMAKER source 
files. This enables you to use the same name for different files relating to the 
same application, such as MYPROG.PAS and MYPROG.R. Furthermore, 
it makes it easy to determine the type of a textfile without having to actually 
read it. 

• Select the Save As command in the File menu. This corresponds to the Save 
command, except that it always brings up the Save-file dialog box, thus allow­
ing you to save the text under a new name. 

• Select the Close command in the File menu (or press~). This saves the text 
(corresponding to the Save command) and removes its window from the desk­
top. The Close command only saves the text if it has been modified since it was 
last saved, or since the window was opened. 

• Click on the window's Close box. This corresponds to selecting the Close com­
mand in the File menu. 

• Select the Quit command in the File menu. This closes all windows and 
returns to the Macintosh desktop (the FINDER). 

Now that you know how to edit your program, let's move on to Chapter 4. 
You'll learn how to tell the computer to carry out your program. 

Using the Editor 25 



c H A p T E R 4 
Using the Compfler 

You now know how to create a program and save it to disk. Now, let's look at how 
to tell the computer to carry out the instructions you've typed in. This is done 
with the commands in the Compile menu. 

s File Edit Search Format Font · Transfer 

m Qulckl Run XR 

program Qu ickle; 
var 

A, B, C : Integer; 
begin 

Ur i teln< 'He llo, world ' >; 
end . 

To Memory XM 
To Disk XK 
Check SyntoH KY 
rind Error >i« I' 

Get Info XI 

Options ... 

Figure 4-1 The Compile Menu 

J 

We'll briefly describe the Run command, then examine all the other com­
mands in the Compile menu: Run, To Memory, To Disk, Check Syntax, Find 
Error, Get Info, and Options. We'll also explain how Turbo Pascal handles syntax 
and run-time (system) errors. 

27 



An Overview of the Run Cammand 

Say you've typed in a program using the Turbo Pascal editor. To make it run, pull 
down the Compile menu (click on Compile in the menu bar) and select the first 
option, Run. You can avoid using the mouse by pressing I])]). Turbo Pascal 
then compiles your program, that is, changes it from Pascal (which you can read) 
to 68000 machine code for the microprocessor (which the Macintosh can exe­
cute). You don't see the 68000 machine code; it's stored off in memory some­
where. 

While the program is compiling, the cursor is changed to a racing Hag and a 
small box (or window) appears at the top of the screen, saying Compiling: <file 
name>. The box includes a button labeled Cancel. Use it to stop the compiler for 
any reason-for example, if you've suddenly remembered a change you forgot to 
make to your program. Just move the cursor over the word Cancel and click the 
mouse button. Turbo Pascal then returns you to the editor. 

Should an error occur during compilation, Turbo Pascal stops compiling and 
returns to the editor, with the cursor at the error location. A dialog box tells you 
what the error was. Click on the error box, correct the problem, and select Run 
again. 

Once the translation from Pascal to machine code is complete, Turbo Pascal 
tells the Mac to execute the code it has generated and your program runs. Your 
program takes control of the Mac and completely replaces the Turbo Pascal 
screen and menu bar. 

If a run-time error crops up-that is, an error occurs while your program is 
executing-you'll get the standard Mac system error box. This is a box with a 
bomb icon in it and two buttons: Restart and Resume. If you select the Resume 
button, you return to the Turbo Pascal editor. When possible, the cursor is at the 
section of code where the error took place; for some errors (such as pressing the 
Interrupt switch on the side of the Mac), there is no way of determining what 
part of the program was executing when the error occurred, so the cursor is 
placed at the beginning of the text. Restart reboots your computer. 

NOTE: You should not use the Interrupt switch on the Mac Plus unless the 
debugging program MACSBUG is loaded. Without MACSBUG, the program 
merely goes into a simple debugger built into the Mac; a bomb box showing you 
the error doesn't appear. 

When you press Resume, a box pops up, telling you what the error was (input/ 
output, division by zero, and so on). After you figure out how to fix the program 
bug, you can recompile and run the program again. 

When your program has finished executing, the Macintosh returns control to 
Turbo Pascal, and you're back where you started. You can now make changes to 

28 Turbo Pascal for the Macintosh 



improve or cause your program to do something different. If you select the Run · 
command at this point without changing your program, Turbo Pascal immedi­
ately executes it, without recompiling. 

The Turbo Pascal Cam-piler 

You can now run your programs. As you have seen, Turbo Pascal is very forgiving 
of errors and does its best to help you track down and fix them. Because of Turbo 
Pascal's accommodating structure and high speed of compilation, the cycle of 
entering, testing, and correcting your program wastes little time. Let's look at 
different aspects of that cycle in more detail. 

So, What's a Gompf/er Anyway? 

The Macintosh, like most microcomputers, has a central processing unit (CPU) 
that does most of the work. On the Mac, the CPU is a single chip: the 68000, a 
microprocessor designed by Motorola. The 68000 has a set of binary-coded 
instructions that it can execute. By giving the 68000 the right sets of instruc­
tions, you can make it draw objects on the screen, perform math, move text and 
data around-in short, do all the things that you want it to do. These instructions 
are known collectively as machine code. 

Since machine code consists of pure binary information, it's neither easy to 
write nor easy to read. You can use a program known as an assembler to write 
machine-level instructions in a form that you can read. This is known as pro­
gramming in assembly language. However, you still have to understand just how 
the 68000 microprocessor works. You'll also find that to perform simple opera­
tions-such as printing out a number-often requires a large number of instruc­
tions. 

If you don't want to deal with machine code or assembly language; you use a 
high-level language such as Pascal. You can easily read and write programs in 
Pascal, because it is designed for humans, not for computers. However, the Mac 
understands only machine code. The Turbo Pascal compiler translates (or com­
piles) your Pascal program into instructions that the computer can understand. 
The compiler is just another program that moves data around; in this case, it 
reads in the text of your program and writes out the corresponding machine 
code. 

Using the Compiler 29 



What Gets C ampi/,ed? 

You can edit up to eight different Turbo Pascal programs at the same time, each 
with its own window. If you have several windows open, which one is affected 
when you select a command from the Compile menu? As with the editing com­
mands, it's the program in the currently active window, that is, the window 
whose title bar has horizontal lines and a close box in it. All the other (inactive) 
windows have nothing in the title bar except for the window's title (either the file 
name or "Untitled"). 

As with the editor, to make a window active, you move the cursor into it and 
click the mouse once. If the windows overlap, this brings the one you just 
selected to the front, so that you can see the entire window. 

You can also use the Window command in the Search menu. Selecting the 
Window command brings the first window you opened to the front, and so on 
sequentially. 

Where's the Code? 

When you use the Run command, Turbo Pascal saves the resulting machine code 
in memory (RAM). This has several advantages. First, the compiler runs much 
faster, since it takes less time to write the machine code out to RAM than out to a 
floppy or hard disk. Second, since your program is already loaded into RAM, 
Turbo Pascal just tells the Macintosh to execute your code. Third, the Mac more 
easily returns to Turbo Pascal once your program stops executing, since Turbo 
Pascal also stays in RAM the whole time. Fourth, Turbo Pascal allows you to 
open several program windows and compile them to RAM. You can then execute 
each of them without recompiling. 

If compiling to RAM is so wonderful, why wouldn't you want to do it every 
time? Two reasons. First, you would be able to run your programs only from 
Turbo Pascal. If you compile only to RAM, the resulting machine code is never 
saved on the disk, so you have no way of executing your program from the 
Finder. You also have no way of copying your program. 

Though less likely, the second problem is memory: You might not have 
enough. It could happen if you're using a "thin" (128K) Mac, if your program is 
very large, if your program uses a lot of memory for dynamic data allocation, or if 
you have opened several windows and have compiled each of them. 

It's easy to produce a code file (application) that you can run from outside 
Turbo Pascal: Select the To Disk option in the Compile menu (or press!!)!)). 
This produces a code file that you can run from the Mac desktop by double-

30 Turbo Pascal for the Macintosh 



clicking its icon, or from within Turbo Pascal by using the Transfer command in 
the File menu. 

The file produced by a (Compile) To Disk command has the name used in your 
program header. In other words, if your program has the header 

program MyOwnProgram; 

then the resulting code file is named MYOWNPROGRAM. However, you can 
specify a different file name (and a particular volume or subdirectory) by using 
the $0 compiler option, such as 

<SO Turbo:code:MyProg> 

Appendix C, "Compiler Directives," has more details. In either case, the icon 
used is the standard Mac application icon of a hand writing on a piece of paper. 
You can create your own icon using a resource file; see Chapter 9 for further 
details. 

Unlike the Run command, the To Disk command does not automatically exe­
cute your program once the compilation is done. You can execute it using the 
Transfer command in the File menu or by leaving Turbo Pascal and clicking on 
the icon. Or you can recompile it to RAM with the Run command, which then 
automatically executes it. 

You may want to compile a program to RAM without running it. Perhaps you 
have several programs open, and you want to compile each of them to RAM 
before running them. In this case, select the To Memory command in the Com­
pile menu (or press~. It works just like the Run command with two ex­
ceptions. First, it does not execute the program once compilation is done; . 
instead, it leaves you in Turbo Pascal. Second, it always compiles the program, 
while the Run command recompiles only if you've modified the program since 
the last compilation. If you use the To Memory command, and select Run with­
out making any changes to the program, the Run command won't recompile your 
program. 

Syntax Errors 

Just like English, Pascal has rules of grammar that you must follow. However, 
Pascal's rules are fairly strict, much more so than those of English. You can use 
poor grammar in speaking and still be understood; if you use poor "grammar" in 
your Pascal program, however, the compiler won't understand what you want. 
The result is a syntax error, which happens when you don't use the appropriate 
words or symbols in a statement, or when you organize them incorrectly. 

When the compiler detects a syntax error, Turbo Pascal stops the translation 
and goes back to the editor. Once there, it moves the cursor to the spot in your 

Using the Compiler 31 



program where the error occurred. It then displays a box across the top of the 
screen, explaining (in brief terms) what the error was. Press ~ to make the box 
go away, or move the cursor (via the mouse) into the box and click the mouse 
button. 

What syntax errors are you likely to get? Probably the most common error 
novice Pascal programmers make is Unknown identifier. Pascal requires thatyou 
declare all variables, data types, constants, and subroutines-in short, all identi­
fiers-before using them. H you refer to an identifier that you haven't declared, 
or if you misspell it, you'll get this error. Other common errors are ' ; ' expected, 
which means that you need to put a semicolon at the end of the previous state­
ment, and ' : = ' expected, which means that you need to use the assignment 
operator(:=) instead of the equals sign(=). Appendix B, "Error Messages and 
Codes," lists all the compiler syntax errors. 

You can check for syntax errors without compiling the program by using the 
Check Syntax command in the Compile menu (or pressing WII). Turbo Pascal 
then checks your program's syntax, but doesn't produce any machine code. This 
is faster than compiling to disk, so it's a handy way to clean up syntax errors 
before producing a code file. On the other hand, it isn't significantly faster than 
compiling to memory, so consider using the Run or To Memory commands 
(unless you want to avoid compiling to memory for the reasons previously dis­
cussed). 

Run-time (System) Errors 

In programming, sometimes just following the rules governing correct syntax 
isn't enough. For example, suppose you write a simple program that prompts 
you for two integer values, adds them together, then prints out the result. The 
entire program might look something like this: 

program AddNums; 
var 

A,B,C : Integer; 
begin 

Write( 'Enter two integer values: '); 
ReadLn(A,B); 
C := A + B; 
llriteLn('The sum is ',C); 

end. 

In response to the prompt Enter two integer values:, say you type in real 
numbers (that is, numbers with decimal points), integer values that are too 
large, or even character strings instead of numbers. What happens? The Mac 
system error window appears, with the bomb icon and an error ID code in it. 
You are given two options, each presented as a button: Restart and Resume. 

32 Turbo Pascal for the Macintosh 



The Restart button, which you can always use, reboots your Macintosh, just as 
if you had turned your Mac off and on or you had pressed the Reset switch on the 
side of your Mac (assuming you have one installed; it's the one closest to the 
front). This button is best used only when you have no other option. 

If you are running from within Turbo Pascal, you can select the Resume button 
instead. It puts you back into Turbo Pascal, with your windows (and files) still 
intact. This means that even if you didn't have the Auto Save option selected, the 
program file you've been editing for the last hour isn't gone. It's still there-­
unless, of course, your program went totally amok and wrote over large portions 
of memory (in which case you wouldn't have been able to get back to Turbo 
Pascal anyway). 

For errors within a Turbo Pascal program, such as division by zero, range 
overflow, and 1/0 error, the cursor is moved to where the error took place, and a 
window with the bomb icon and a description of the error type appears. You 
must acknowledge the error by moving the cursor to the message window and 
clicking the mouse, or by pressing ~· The window goes away, and you can 
figure out what changes (if any) to make to your program. If, after moving around 
in your program, you want to find the error again, select the Find Error com­
mand from the Compile menu (or press CEl!)). Turbo Pascal quickly recompiles 
your program (without producing code) and places the cursor where the error 
took place, with the bomb box again explaining the error. 

Should the error occur within an include file (the next chapter has more infor­
mation on include files), Turbo Pascal automatically opens a window for that file, 
reads it in, and moves the cursor to the error's location. If a window for that file is 
already open, that window is brought to the front, and the error located. 

There's a way to go out on a limb and deliberately trigger a Mac system error: 
Press the Interrupt switch on the side of the Mac (assuming you have one 
installed; it's the one closest to the back). You might need to do this if, for exam­
ple, your program is stuck in some section of code, such as an infinite loop. You 
won't be able to use the Find Error routine to locate where your program was 
when you interrupted it, but you can get back to Turbo Pascal without losing 
your program text and the cursor may be positioned at the point in the program 
where the execution was. 

Using the Compiler 33 



The Get Info Command 

The Get Info command, which you can also invoke by pressing l])JJ, brings up 
a window that tells you how big the text of your Pascal program is, both in 
bytes and in lines. H you haven't compiled your program yet, or if you've made 
changes since your last compilation, it'll tell you that the program is Not 
compiled. Otherwise, it gives you the size of the code (in bytes) as well as the 
number of bytes that will be allocated for data when the program is run. Finally, 
it tells you how large the heap is and how much of that space is available. (The 
heap is where dynamic variables are created using the standard procedures New 
and Dispose.) Click on the OK button to make it go away, or press~-

The Options Command 

The last item in the Compile menu is the Options command, which doesn't have 
a keyboard equivalent. It allows you to set up some default information for use 
by the Turbo Pascal compiler. First, you can decide how much space (in kilo­
bytes) to allocate for the symbol table. The default is 32K, which is the maximum 
size. If you' re running on a 128K Mac, you might want to make it smaller to get 
some memory back for compilation. 

Second, you can set Auto Save to take effect when Run is selected. Auto Save 
automatically saves all edited windows to the disk when the Run command is 
selected from the Compile menu. Turbo Pascal keeps track of whether you've 
made changes in a given window since the last time you saved it to disk. When 
you select Run, Turbo Pascal first performs the Save command for all windows 
that have been modified. 

Finally, you can set the default directories for all the compiler directives that 
reference files: $U (units), $1 (include files), $R (resource file), $L (assembly 
language .REL files), and $0 (output file). These compiler directives are dis­
cussed in further detail in Appendix C. Having made the changes you want, 
select either the OK button, which allows you to use these options, or the Cancel 
button, which ignores whatever changes you've made to the options. In either 
case, you're returned to the Turbo Pascal editing window. 

If you want to make these options your standard settings, select the Save 
Defaults command in the File menu. 

The ability to specify directories is very useful if you' re running under Apple's 
Hierarchical File System (HFS) and want to keep these files in different sub­
directories. If you don't specify a directory for a given option, the current direc­
tory is assumed. However, if the compiler option itself contains the directory 

34 Turbo Pascal for the Macintosh 



(such as { $1 Turbo:otherstuff:linked. lib}), then the default directory (blank or not) 
is ignored completely. 

Now that you're acquainted with the commands in the Compile menu com­
pletely, you' re ready to move on to the next chapter. In it, you'll learn how to 
create a "textbook" Pascal program. 

Using the Compiler 35 



c H A p T E R 5 
Writing Textbook Pascal Programs 

This chapter gives you the information you need to take standard Pascal pro­
grams out of textbooks and get them to run under Turbo Pascal. We'll review 
briefly how to create and save a program, then go into the Pascal run-time envi­
ronment. We'll also cover compiler directives, input/output error checking, and 
range checking. 

Turbo Pascal makes it easy for you to create a standard or "textbook" Pascal 
program on the Macintosh. No special knowledge is required; you just type in 
your program, compile it, and run. Turbo Pascal sets up a window for you and 
treats it like a plain CRT monitor. You can write to the screen, prompt for (and 
receive) input, move the cursor around, have the screen automatically scroll, and 
so on. 

In other words, you don't have to know anything at all about the innards of a 
Macintosh to start writing Pascal programs on it. Most routines you find in text­
books run just fine under Turbo Pascal, with a few exceptions that we'll discuss 
later in this chapter. 

To start with, let's review how to get a new program typed in and running. 

37 



Creating a Program: A Quick Review 

To write and run a program, you need only follow the steps you've learned so far. 
Here's the procedure: 

38 

I. Move the mouse to the Turbo icon and double-click on it. Turbo Pascal 
brings up its menu bar and presents you with a blank program window 
labeled "Untitled". If this window doesn't appear (which could happen 
if you've disabled the Startup Window option using the Options com­
mand in the Edit menu), create a new window with the New command 
in the File menu (or press [])])). 

2. Type your program in, using the keyboard, mouse, and menu com­
mands discussed back in Chapter 3. Save it out to disk using the Save 
command in the File menu. Select the Options command in the Com­
pile menu, and enable the Auto Save option if it's not already enabled. 

3. Select the Run command from the Compile menu (or press~. If 
an error is found, Turbo Pascal returns you to the editor. Correct the 
error and select the Run command again. 

4. Once you've corrected all syntax errors, your program will execute. If 
you have run-time errors, the Mac System Error box will appear. If that 
happens, click on the Resume button. You'll find yourself back in the 
Turbo Pascal editor, with the cursor placed where the error occurred, if 
it can be located. Correct the error, and select Run again. If you totally 
crash the system somehow, reboot the Mac and double-click on your 
program document icon. You'll be returned to Turbo Pascal, and you 
can edit your program. (This is why you set the Auto Save command: 
So that your source code is automatically saved to disk before each Run 
command.) 

5. Once you've corrected all your run-time errors, save your program to 
disk again (select the Save command from the File menu, or press 
!])])). Now select the To Disk command from the Compile menu (or 
press l]J]}). When that's done, exit Turbo Pascal by selecting Quit 
from the File menu (or press~). 

6. Your program is now an executable file, appearing as the standard Mac 
application icon (a hand writing on a blank piece of paper). You can run 
it any time by double-clicking on that icon. 

Let's look at some sample programs based on Standard Pascal. 

Turbo Pascal for the Macintosh 



Samp"le Pascal Progranis 

Consider the following program: 

program Product; 
var 

A,B : Integer; 
c : Real; 

begin 
Write( 'Enter two integer values: '); 
ReadLn(A,B); 
C := A * B; 
WriteLn('The product is ',C:6:2); 
ReadLn; 

end. 

This program runs as written. A window (labeled "Ratio") is created. The 
prompt Enter two numbers: is written in the upper left corner of the window, and 
the blinking cursor sits a few spaces past the end of the prompt. The program 
then waits for you to type in two integer values. You may separate them with a 
blank or a carriage return, and you can use IE to delete and retype what you've 
entered. 

After you type the second value, press IE}. The program calculates A*B (con­
verting to real) and assigns the resulting value to C. It then writes out the mes­
sage The product is, followed by C's value in a field eight characters wide, with 
two digits appearing after the decimal point. 

The program then waits for you to press IE}, at which point it closes the 
window and returns either to Turbo Pascal (if executed with the Run command) 
or the Finder (if executed from the desktop or by using the Transfer option in the 
File menu). 

Here's a second, even quicker example: 

program Table; 
var 

I : Integer; 
begin 

for I := l to 100 do 
WriteLn(I:3,' ',(I•I):b); 

ReadLn; 
end. 

When you run this program, you'll notice a few things. First, the window is 
now labeled "Table" to match the name in the program header. Second, Turbo 
Pascal scrolls the screen, just like a regular monitor, when you get to the bottom 
of the display. You may, at any time, stop screen output by pressing the mouse 
button and holding it down. When you release it, output continues. This is 
handy to keep text from scrolling o:lf the screen before you have read it. 

Writing Textbook Pascal Programs 39 



The Pascal Run-time Environment 

The key to writing Standard Pascal programs is to simply type in the programs as 
you see them in your textbook. By default, Turbo Pascal links in a set of routines 
that implements Standard Pascal 1/0 on the Mac. These routines perform all the 
initialization that your program needs to be able to run on the Macintosh. They 
also create a simple Macintosh window that acts like the standard text screen of a 
terminal or personal computer. It displays 25 lines of text, with up to 80 charac­
ters on each line. The screen-like window disappears when your program ends 
execution. 

Within this environment, the procedures Read, ReadLn, Write, and WriteLn 
function as expected, handling carriage returns and form feeds. Turbo Pascal also 
scrolls the display when necessary, as the second example program demon­
strates. What's more, you can directly position the cursor using GoToXY and 
perform other screen operations using special Turbo Pascal procedures and func­
tions. These are described in Chapter 25. 

The Standard Pascal environment is actually implemented as a group of four 
units: PasSystem, PaslnOut, PasConsole, and PasPrinter. A unit is a library or 
collection of useful subroutines and other declarations. 

The unit PasSystem is always used, since it provides certain functions needed 
by all Turbo Pascal programs. The next two-PaslnOut, and PasConsole-are 
also automatically used unless you set the {$U-} option. The last one, PasPrinter, 
is used only if you explicitly request it. For more details on using (or not using) 
units, see Chapter 7. 

Com'{Jil.er Directives 

Most Pascal compilers allow some form of compiler directives. These are com­
mands to the compiler, embedded in comment statements within your program. 
They typically take one of two formats: 

{$<letter><+ or ->} 

or 

<S<letter> <filename>} 

The first form is used to turn some option on or off. For example, {$R+} tells 
the compiler to produce range-checking code, while {$R-} tells it not to. 

40 Turbo Pascal for the Macintosh 



The second form usually directs the compiler to read from or write to some 
file. For example, the directive { $1 MYLIB. PAS} tells the compiler to include the 
file MYLIB.PAS at this point in the program-in other words, to go to that file 
and read from it as if the text in that file had been inserted in the current pro­
gram file. 

All the compiler directives are documented in Appendix C, but here are some 
of the most commonly used directives. 

Input/Output Error Checking 

An issue often addressed in Pascal textbooks and classes is how to make your 
code "crashproof "; that is, how to set it up so that users can't cause your pro­
gram to stop due to input/output (1/0) errors. For example, say you ran the first 
example program, PRODUCT, and, at the prompt Enter two integer values:, 
typed in a real value (that is, a number with a decimal point). Your program 
would halt, with a Mac system error box popping up. In a short program like 
this, such an error isn't a big bother. What if you were entering a long list of 
numbers, however, and had gotten most of the way through before making this 
mistake? You'd be forced to start all over again. So, making your program crash­
proof is important. 

Like most compilers, Turbo Pascal allows you to disable automatic 1/0 error 
checking and test for it yourself within the program. To turn off 1/0 error check­
ing at some point in your program, include the compiler directive {$1-}. This 
instructs the compiler not to produce code that checks for 110 errors and brings 
up the Mac system error box when one does occur. For example, we could mod­
ify the program PRODUCT to look like this: 

program Product; 
var 

A,B : Integer; 
C : Real; 

be.gin 
Write( 'Enter two integer values: '); 
{$!-} { turn off I/O error checking 
ReadLn(A,B); 
{$!+} { turn it back on 
C := A * B; 
WriteLn('The product is ',C:8:2); 
ReadLn; 

end. 

Now, no matter what you enter for A and B, you won't get a Mac system error 
box. That doesn't mean that there are no errors nor that A and B will have the 
values you think they do. If you make a mistake, the corresponding variable just 
gets the value zero (0). 

Writing Textbook Pascal Programs 41 



With I/O error checking disabled, you can check for an error by calling the 
standard Turbo Pascal function IOResult. IOResult returns an integer value cor­
responding to the appropriate Mac 1/0 result code (see Appendix C). If the 
result is 0, then no error has occurred; otherwise, you'll probably want to take 
some action, even if it's just to ask for the values again. Your code might look like 
this: 

program Product; 
var 

A,B Integer; 
c Real; 

begin 
{$!-} 

repeat 
Write ('Enter two integer values: '); 
ReadLn(A,B) 

until IOResult = D; 
{$I+} 
C := A * B; 
WriteLn('The product is ',C:6:2); 
ReadLn; 

end. 

You need to be aware that each call to IOResult clears it; that is, sets it to zero. 
Also, each 1/0 call (Write, WriteLn, Read, ReadLn, Assign, Reset, Rewrite, and 
so on) sets IOResult to an appropriate value. For example, the following code 
wouldn't work properly: 

program Product; 
var 

A,B Integer; 
C Real; 

begin 
{$!-} 

repeat 
Write('Enter two integer values: '); 
ReadLn(A,B); 
if IOResult <> D then 

WriteLn('Error on input!') 
until IOResult = D; 
{$I+} 
C:=A*B; 
WriteLn('The product is ',C:6:2); 
ReadLn; 

end. 

There are two reasons this wouldn't work. First, the call to IOResult in the if 
statement if IOResult <> D clears it, so that the call in the until clause doesn't 
represent what happened with the ReadLn(A,B). Second, the call to WriteLn 
changes IOResult anyway. If you did want to print this message out, you'd have 
to do something like the following program. 

42 Turbo Pascal for the Macintosh 



program Product; 
var 

A,B,IOCode : Integer; 
c : Real; 

begin 
{$!-} 

repeat 
Write( 'Enter two integer values: '); 
ReadLn(A,B); 
IOCode := IOResult; 
if IOCode <> D then 

WriteLn('Error on input!') 
until IOCode = D; 
{$I+} 
C := A * B; 
WriteLn('The product is ',C:8:2); 
ReadLn; 

end. 

By saving IOResult in IOCode, we avoid both problems, since we only refer­
ence IOResult once (right after the place where we want to check for errors). For 
more sophisticated applications, you can take some action (for example, print a 
message) on the actual value of IOCode. 

Range Checking: The {$R+I-} Directive 

Another common compiler directive is {$R+/-}. It controls range checking of 
array and string indexes, and assignment to scalar data types. By default, range 
checking is turned off ({$R-}); you can turn it on with {$R+ }. 

This directive is used to track down errors caused by using array indexes that 
are out of bounds or by assigning out-of-range values to scalar variables. Suppose 
you had the following program: 

program RangeTest; 
var 

Indx : Integer; 
List: arrayCL .. LDl of Integer; 

begin 
for Indx := L to LD do 

ListCindxl := Indx; 
Indx := D; 
while (Indx < LL) do 
begin 

Indx := Indx + L; 
if ListCindxl > D then 

ListCindxl := -ListCindxl 
end; 
for Indx := L to LD do WriteLn(ListCindxl); 
ReadLn; 

end. 

Writing Textbook Pascal Programs 43 



If you type in this program, it will compile and run. And run. And run. It will, 
in fact, get stuck in an infinite loop. Look carefully at this code: The while loop 
executes 11 times, not just 10, and the variable Indx has the value 11 the last time 
through the loop. Since the array List only has 10 elements in it, List[ll] points 
to some memory location outside of List. Because of the way variables are allo­
cated, List[ll] occupies the same space in memory as the variable Indx. This 
means that the statement 

Listrindxl := -Listcindxl 

is equivalent to 

Indx := -Indx 

Since Indx equals 11, this sets Irulx to -11, which starts the program through 
the loop again. That loop now changes additional bytes elsewhere, at the loca­
tions corresponding to List[-11 .. 0]. 

In other words, this program can really mess itself up. And since Indx never 
ends the loop at a value greater than or equal to 11, the loop never ends. 

How do you check for things like this? Insert {$R+} at the start of the pro­
gram. When you run a faulty program, you'll get a Mac system error box. Press 
the Resume button, and you're back in Turbo Pascal, at the right bracket(]) in 
the statement if List[ Indx l > D. A box appears with the error message Range 
check failed. This tells you that Indx has some value outside of List's array 
bounds (1..10). 

You can leave range checking on all the time just by placing { $R +} at the start 
of each program you write. However, the code generated to do range checking 
does make the program larger and slower. Also, there are some situations­
usually in advanced programming-in which you might want or need to violate 
range bounds, most notably in working with dynamically allocated arrays, or in 
using Succ and Pred with enumerated data types. 

You can selectively implement range checking by placing the {$R+} directive 
at the start of the code that needs it, then placing the { $R-} directive at the end of 
the code. For example, you could write the loop above as: 

while Indx < 11 do 
begin 

Indx := Indx + 1; 
{$R+} 

if List[Indxl > D then 
List[Indxl := -List[Indxl 

{$R-} 
end; 

Range checking will only be performed in the if .. then statement and nowhere 
else in the program. Unless, of course, you have other {$R+} directives else­
where. 

44 Turbo Pascal for the Macintosh 



Include Fil.es: The {$I(fil.e)} Directive 

Another commonly used compiler directive, {$I(file)}, allows you to break one 
large program file up into several smaller files. (Don't confuse this with the 
{$1+/-} directive usedforl/O error checking.) {$1(6le)} directs Turbo Pascal to 
include (file) during compilation. Turbo Pascal then opens this file and reads the 
Pascal code from it, compiling it as if it were part of your program. When it 
reaches the end of the included file, it closes the file and continues to compile 
your program. 

Most Macintosh-style applications can be organized into chunks, each chunk 
containing related procedures and functions. If you were writing a bulky pro­
gram, you could organize it as follows: 

program BigJob; 
<SI BigJob.Def> 
<SI BigJob.Util} 
<SI BigJob.Menu> 
<SI BigJob.Bvent} 
<SI BigJob.Init> 
begin 

Initialize; 
repeat 

SystemTask; 

global declarations and definitions } 
< utility procedures/functions } 

< menu-driven procedures/functions } 
< event-handling procedures/functions } 
initialization and cleanup procedures } 

if GetNextBvent(theBvent) 
BandleBvent(theBvent) 

until Finished; 

then 

Cleanup 
end. < of program BigJob } 

This program text is placed in a file called BIGJOB.PAS. In addition, five 
other text files (BIGJOB.DEF, and so on) contain the appropriate parts of the 
program. Since Turbo Pascal allows you to have up to eight windows open at the 
same time, you can have all the files open for editing. That way, you can quickly 
switch between them just by clicking inside the different windows, instead of 
having to jump back and forth within one large file. You can also look at the 
different portions side by side by arranging the windows on the screen, using the 
Stack Windows or Tile Windows command in the Format menu. 

There is a better way to break up large programs into chunks: units. For 
example, you could place the definitions and routines in BIGJOB.DEF and 
BIGJOB. UTIL into a single unit, compile it, and use it with a uses statement. 
Likewise, you could turn BIGJOB.MENU, BIGJOB.EVENT, and BIGJOB.INIT 
into units. Chapter 8 gives more details on how to do this. 

Writing Textbook Pascal Programs 45 



Output (Code) Files: The {$0 <file)} Directive 

When you compile a Turbo Pascal program to disk, the resulting code file adopts 
its name from the program header. For example, if your program header is 

program Banzai; 

then the code file created on the disk is called BANZAI. However, you can 
override that default and request a specific code file name using the {$0 (file)} 
directive. This defines the name of the output (machine code) file. H you 
changed your program to read 

program Banzai; 
{$0 HyNeatProgram> 

then a compile to disk produces a code file named MYNEATPROGRAM. 

You now know how to get Standard Pascal programs running on the Mac 
under Turbo Pascal. However, you can refer to Part II and Appendix A as your 
programs grow more complex. They offer more information on the special fea­
tures that Turbo Pascal has to offer. 

Of course, you don't Want to stop with "textbook" Pascal programs. You want 
to write Mac-style programs, programs that use menus and windows and 
graphics. The rest of Part I is designed to help you to do just that. Let's lay some 
groundwork in Chapter 6. 

46 Turbo Pascal for the Macintosh 



c H A p T E R 6 
Harnessing {he Full Power of Your Mac 

The Macintosh has some of the most sophisticated system software ever put 
on a microcomputer. It gives most larger computers a run for their money. To 
programmers, however, sophisticated usually means complex, and complex 
rarely means easy to program. We'll discover whether that is true of the Mac in 
this chapter. We'll introduce you to the concepts behind the Mac, explore bit­
mapped graphics, and explain the Toolbox and operating system tools and 
resources that are at your disposal. 

The Macintosh Philosaphy 

The designers of the Macintosh had the stated goal of designing a "computer 
appliance," the microcomputer equivalent of a toaster-that is, a system that 
people with little computer experience or background could learn to use in a 
very short time. By this criterion, the Mac is a smashing success: It is, to date, 
the easiest computer for a naive user to learn. Most Mac software follows a 
standard user interface, or format, so the typical Mac user can start using new 
applications almost immediately. 

The use of a standardinterface is enforced by Toolbox (ROM-based) and oper­
ating system (RAM-based) routines that the Mac provides. Simply put, the 
obstacles to not using the Mac's routines are so great that most applications 
conform to them. However, the routines are so comprehensive and complex that 
the novice Mac programmer faces a steep learning curve. 

47 



The basic Macintosh isn't terribly complex in terms of hardware. It has a 
68000 (or 68000-related) processor, a monochrome (black-on-white) bit-mapped 
screen, RAM memory ranging from 128K in the older Macs to over 4M in 
upgraded systems, Read Only Memory of either 64K or 128K, and some 1/0 
hardware (serial ports, disk ports, and so forth). Fairly simple and straightfor­
ward stuff-until you look at what's in that ROM. 

The Mac pioneered four major microcomputer concepts: graphics-only dis­
play, visual user interface, event-driven software, and extensive system software. 

Graphics-Only Display 

Until the Mac appeared, most computers had text-only display or let you choose 
between text and graphics. In both cases, the text display was a fixed font with 
predetermined resolution and size (typically 80 columns of text in a 25-line dis­
play). 

The Mac doesn't have text-only display. Instead, everything is done with bit­
mapped graphics, including all text display. Bit mapping simply means that the 
Mac screen is made up of a grid of bits, which make up the shapes-characters or 
figures-that appear on your display. It's explained further in the following 
pages. 

Because of bit mapping, writing and editing text on the Mac screen is more 
complex than on other micros. But it also means that you have tremendous flexi­
bility in how that text is presented, in terms of size, style, and font design, and in 
mixing text with graphics. In addition, you can change any of these elements and 
redisplay them on screen countless times. 

The Mac almost single-handedly spawned desktop publishing, although this 
function is rapidly being adapted to other systems. The ability to produce high 
quality documents with professional layouts used to be limited to companies that 
could afford to buy or use very expensive typesetting equipment. Now, anyone 
with a Mac can lay out and prepare slick documents. With access to a laser 
printer (or even some of the newer typesetting machines), you can produce hard 
copy that is comparable to copy from a professional printer. 

Visual User Interfaces 

The second Mac design concept is the visual user interface based on menus, 
icons, windows, and a mouse as the input device. The concept itself isn't new. 
Neither is the interface unique to the Mac, since other microcomputers now 
offer similar approaches. However, the Mac represents the first (and still the 
best) attempt to make such a user interface available at a relatively low price. 

48 Turbo Pascal for the Macintosh 



Event-Driven Software 

The third major concept is event-driven software. As with the first two concepts, 
this concept did not originate with the Mac, but it was the first micro to exten­
sively use it and, in fact, to make it a requirement for just about any application. 

At the core of most Mac applications is an event wop that polls the Mac operat­
ing system for events (mouse clicks, keys pressed, menu selections, window 
operations, and the like), then calls the appropriate internal routines to handle 
those events. The goal is what Mac designers call modeless programs, where 
most functions are available at any point. In modal programs, you have to enter 
specific modes (insert mode, delete mode, command mode) to be able to per­
form the corresponding functions. 

Extensive System Software 

The fourth major concept is extensive system software (in ROM and on disk). The 
software supports the user interface and event-driven programming approach, 
and makes them standard for all applications. Earlier microcomputers had some 
software (usually the Basic Input/Output System or BIOS) in ROM, but this was 
usually on the order of SK to 16K of ROM and supported rather primitive screen 
and disk 1/0 functions. The original Mac came with 64K of ROM (increased in 
later versions). 

The current Mac ROM supports numerous and complex functions. The Mac 
operating system provides a large set of standard functions and procedures, and 
it also maintains an event queue that keeps track of events that applications must 
deal with. 

The irony of all this is that the original Macintosh was sorely crippled due to 
hardware limitations, with no means of adding memory and no expansion slots or 
hardware bus. However, Apple has learned some lessons since then, and the 
current Macintosh Plus represents a far better environment for the Mac software 
concepts. Future Mac products will undoubtedly continue to improve upon that. 

Bit-Mapped Graphics 

The standard Mac interface is a bit-mapped graphics display consisting of 342 
lines, each line containing 512 pixels (picture elements, that is, dots). There are 
175,104 pixels in all, each of which can be black or white. The display is called 
bit-mapped because each pixel on the screen corresponds to a single bit (0 or 1) 

Harnessing the Full Power of Your Mac 49 



in memory (RAM). For that reason, this type of display is also referred to as 
memory-mapped. 

Since there are 8 bits in a byte, simple math shows that the screen takes up 
21,888 bytes (or about 21K) of memory. By changing the values of those bytes, 
you change what's on the screen; it's that simple. To draw a line (or other shape), 
your program simply goes to the appropriate locations in memory and sets the 
appropriate bits to 0 or l. What's more, the Mac has an extensive and powerful 
graphics library ( QuickDraw) to make using these graphics even easier . 

. However, manipulating a bit-mapped display can be complicated and tedious. 
To draw a character on the screen, you can't just poke an ASCII value into a byte 
somewhere, as you can on most other microcomputers. Instead, the character 
must be drawn bit by bit. A programmer can simplify matters somewhat by 
maintaining a character font somewhere, with a bit map for each possible charac­
ter, but there are still issues of font size and style, of whether the font is letter­
spaced proportionally (that is, characters are spaced according to their width), 
and so on. In addition, adding, deleting, and modifying text can get very elabo­
rate. Fortunately, the Mac comes with a large set of routines for text display, 
manipulation, and editing. By using these, you don't have to reinvent the wheel. 

The real bonus of bit-mapped graphics is the marriage of graphics and text, 
and the ability to manipulate both on the same display. You can readily mix 
pictures and words, allowing diagrams to be inserted in documents and explana­
tions in schematics. On the Mac, you can draw a picture, then paste it into a 
letter or report. And, of course, it is this flexibility that has made the Mac pre­
eminent in the field of desktop publishing. 

The Mac User Interface 

Three interrelated ideas form the nucleus of the Mac user interface: 

• the mouse as an input device 

• using icons, menus, windows, and other (mostly) graphic devices for informa­
tion and command selection 

• an orientation toward modeless environments 

The mouse may well be the most controversial of the three ideas. Debates 
continue to rage over whether it aids or hinders user interaction. For that mat­
ter, users argue over whether the mouse should have one, two, or three buttons. 
A graphics-based, visual system does require some sort of pointing device, and 
the mouse works as well as or better than most. 

The second idea, simply put, is that graphics convey more information than 

50 Turbo Pascal for the Macintosh 



text (or, to abuse an old cliche, a picture is worth lK words). By presenting files 
as icons on a desktop, the selection and manipulation of files with the mouse is 
fairly self-evident, especially for novice users. Likewise, the pull-down menu 
makes it easy to view and choose available commands and options without having 
to remember obscure command names or wade through multiple levels of text­
based menus. Within applications themselves, there tends to be a heavy orienta­
tion towards presenting data in graphic (rather than textual or numeric) form. 

The third idea assumes that it is ideal to have as many options as possible 
available to the user at any given time. Rather than have multiple levels and 
numerous loads, the Mac attempts to keep all commands on one level, though 
some commands or options may be disabled when appropriate. 

For example, the File menu in Turbo Pascal is always on the menu bar, as are 
the Edit, Search, Format, Font, Compile, and Transfer menus. However, not all 
commands in those menus are available at all times. The user is spared the 
tedium of keeping track of which mode he or she is in and the commands that 
exist (or don't exist) on that level. 

Event-Driven Programming 

The basic structure of most Macintosh applications is nearly identical, with a 
main body that looks something like this: 

begin 
Initialize; 
repeat 

SystemTask; 
if GetHextBvent(eventMask,theEvent) then 

HandleEvent(theBvent) 
until Done; 
Cleanup 

end. 

The program does its setup with the user-defined routine Initialize. It then 
enters a loop that continues until some condition (such as the user selecting the 
command Quit in a menu) causes it to set the Boolean flag Done to True. 

Within that loop, it performs two major tasks. First, it calls SystemTask (a 
Toolbox routine), which allows the Mac operating system to update any desk 
accessories that might be in use. Second, it calls GetNextEvent (another Toolbox 
routine) to see if any events have occurred. If any have, it calls HandleEvent, 
which is a user-defined routine that handles all the different events that might 
occur. Such events include key presses; selection of menu items; mouse clicks; 
windows being opened, closed, uncovered, or resized; and similar occurrences. 

When the program is done, it calls the user-defined routine CleanUp, which 

Harnessing the Full Power of Your Mac 51 



takes care of any necessary tidying up. (This last task depends on the application 
itself; usually, it means freeing allocations made in memory by the application 
back to the system and similar tasks.) 

This is quite different from most interactive computer software developed 
before the Macintosh. In other systems, the program usually sits and waits for 
the user to type in a specific command, then handles it. The programs tend to be 
modal, with different levels and modes, each having its own command set. The 
commands themselves are usually context-sensitive, with the same command (or 
at least command sequence, that is, a given letter or word) holding different 
meanings depending upon the current mode or state. 

In a Macintosh application, most commands are usually available and applica­
ble. About the only time you can't use a given command is when there is nothing 
to use it on; for example, if you haven't opened a window to edit text, then most 
of the editing commands don't make any sense. In the modeless approach, how­
ever, those edit commands can work on any text window, whether it be one your 
application has opened, or one opened by a desk accessory. 

Event-driven programming takes some getting used to, but once you under­
stand how it works and have seen a number of examples using it, it becomes 
straightforward and easy to apply to different situations. In Macintosh applica­
tions, the format is so standard that you can move from program to program and 
see almost identical code in the main procedures and immediate supporting 
routines (such as HandleEvent). 

Toolbox and Operating System Routines 

To make the Mac user interface standard in most applications, Apple designed it 
to be easy to follow and difficult to deviate from. This was particularly true of the 
original Mac, which had 128K of RAM (much of which was consumed by the 
video display and the operating system) and 64K of ROM (the Toolbox). Since 
graphic applications tend to be memory intensive (that is, they need lots of 
RAM), most developers on the Mac just didn't have the extra memory to do 
things their way. So they were forced to use the extensive libraries of procedures 
and functions found in the Toolbox ROM and in the operating system itself 

The resulting uniformity in Mac software allows most Mac owners to use a 
brand-new software package with little or no reference to the manual. 

The Toolbox and operating system (OS) routines are organized into related 
groups, often labeled managers or packages (not unlike units, which you'll learn 
about in Chapter 7). A list follows with the routine name and a brief description 

52 Turbo Pascal for the Macintosh 



of what the routines and data types within each allow you to handle. The list is 
arranged more or less in order of what you need to learn before moving on to the 
next item, although some concepts are best understood as a group. 

Resource Manager: Files can contain resources, such as definitions of menus, 
windows, icons, and text strings, as well as chunks of code. These routines let 
you access, identify, and manipulate resources within a given file. 

QuickDraw: The heart of the Macintosh, this package contains the basic graphics 
routines used by the other managers and packages. 

Font Manager: You can display text on the Mac in different fonts, that is, with 
differently designed character sets. This package helps you (and QuickDraw) 
load or unload specific fonts from the disk for text display. 

Toolbox Event Manager: These routines form the foundation for event-driven 
programming. Besides GetNextEvent, this package also allows for direct polling 
of the mouse, the keyboard, and the system clock. 

Window Manager: The Mac allows you to set up multiple windows, each acting 
like its own screen. This package helps you create, move, modify, update, and 
delete windows. 

Control Manager: Mac software often uses graphic controls - buttons, dials, 
scroll bars, switches, and check boxes - for selection and display. These rou­
tines allow you to select and use predefined controls and to design your own. 

Menu Manager: A menu bar across the top of the screen shows you the pull­
down menu options; selecting a particular menu allows you to examine com­
mands and pick a specific one. This package lets you create, manipulate, and 
interrogate your menus (that is, go into the menu commands and find out how 
they were set up). 

TextEdit: TextEdit helps you edit text by providing routines to insert, delete, 
select, and scroll text within a window, and to transfer text from one location (or 
window) to another. 

Dialog Manager: When a Mac application wants to bring something to the user's 
attention, it usually does so via a didog box. This is a window with some infurma­
tion (graphics and/or text) in it and with one or more ways to enter a command 
(buttons, switches, text or numeric entry, and so on). This package helps you de­
sign and present dialog boxes, and to correctly interpret a user's response to it. 

Desk Manager: Most applications maintain the Apple menu option (the one on 
the far left with the Apple logo instead of a name), which contains special pro­
grams known as desk accessories (covered in Chapter 8). Desk accessories can be 
open and running even while your program is running, so you need to be able to 
accept and receive their messages. Desk Manager routines allow you to detect 
and handle actions required by the desk accessory. 

Harnessing the Full Power of Your Mac 53 



Scrap Manager: This package helps you transfer data (such as text) between 
applications or between locations in a given application. 

Toolbox Utilities: This is a collection of miscellaneous routines, including (but not 
limited to) fixed-point math; string, byte, and bit, including logical operations on 
long integers; and miscellaneous graphics-oriented routines. 

Package Manager: A package is a set of routines and data structures stored on 
disk (as resources in the SYSTEM file) and loaded into RAM as needed. Six 
different packages are available through the Package Manager: 

• the Binary-Decimal Conversion Package (conversions between decimal 
strings and internal binary representations); 

• the International Utilities Package (different languages' character sets); 

• the Standard File Package (selecting files for 1/0); 

• the Disk Initialization Package (formatting blank disks); 

• the Floating-Point Arithmetic Package (for IEEE-standard floating-point 
math); 

• the Transcendental Functions Package (for floating-point routines, such as trig-
onometric functions, logs, and financial functions). 

Memory Manager: The Mac has a complex way to allocate relocatable blocks of 
memory so that dynamic garbage collection can occur without disturbing any 
program currently executing. When used properly, these routines ensure that 
memory is correctly allocated or recovered. 

Segment Loader: Programs that are unwieldy because of size can be divided up 
into segments; each segment can be up to 32K in size. The Segment Loader 
governs the execution, segment loading, and termination of an application. 

Operating System Event Manager: The Toolbox Event Manager allows you to 
query the operating system for events; the routines in this manager allow you to 
work directly with the event queue that the operating system maintains. 

File Manager: This manager handles just about everything having to do with 
files, from high-level volume management to low-level file 1/0. 

Printing Manager: The Macintosh presents some special challenges in capturing 
what's on the screen or in a text file out to a printer. In conjunction with the 
printer drivers found on your system disk, these routines allow you to print the 
graphic images created by Mac software. 

Device Manager: This package is a general version of the File and Printing 
Managers. It lets you work with custom device drivers and perform 1/0 with 
those devices. 

54 Turbo Pascal for the Macintosh 



Disk Driver, Sound Driver, Serial Drivers: These routines give your software 
control of the corresponding hardware items (floppy drives, DAC, RS422 ports) 
on the Mac. 

AppleTalk Manager: Apple has defined a simple local-area network (LAN) for 
Apple products known as AppleTalk. This collection of data structures and rou­
tines allows you to communicate over that network. 

Vertical Retrace Manager: This allows you to create interrupt-driven tasks that 
are called every so many ticks, where a tick is one-sixtieth of a second and corre­
sponds to how often a vertical retrace interrupt occurs. A vertical retrace is one 
cycle of redrawing the screen, and you can use the cycle as a timer to trigger a 
routine. 

System Error Handler: The one routine in this package, SysError, brings up the 
system error dialog box (with the bomb in it). Not for casual use. 

Operating System Utilities: Another collection of assorted handy routines, 
including procedures and functions for pointer and handle manipulation, string 
comparison, date and time operations, parameter RAM operations, and other 
utilities. 

With the proper use of these routines, your application will fit into the stan­
dard Macintosh mold. A regular Mac user will then be able to easily start it up 
and use it. 

Further Reading 

If you want to do any serious programming on the Mac, there are a few standard 
reference works: 

• Inside Macintosh, written by a team at Apple and published in four volumes 
(softbound) by Addison-Wesley, documents the hundreds of routines available 
through the Toolbox and operating system. It is also available hardbound. 

• Macintosh Revealed, volumes 1 and 2, written by Stephen Chernicoff and 
published by Hayden (under its Apple Press line of books). 

• MacTutor is a magazine dedicated to programming on the Mac; each issue 
usually contains lots of short, working samples of code (call (714) 630-3730). 

• How to Write a Macintosh Application, written by Scott Knaster and pub­
lished by Hayden. 

• Macintosh Technical Notes, published by Apple Computer, Inc. 

Now, let's go on to the libraries-units-that the Mac provides. 

Harnessing the Full Power of Your Mac 55 



c H A p T E R 7 
Units and Other Mysteries 

In Chapter 5, you learned how to adapt standard Pascal programs for use by 
Turbo Pascal on the Mac. What about non-standard programming-more specifi­
cally, Mac-style programming? Before anything else, you have to understand the 
concept of units and of external and inline procedures and functions. 

This chapter explains what a unit is, how you use it, and what predefined units 
are available for your use. You'll also learn how to set up and use external and 
inline procedures and functions. Among the other mysteries we delve into here 
are traps and assembly-language routines. 

What's a Unit, Anyway? 

Turbo Pascal gives you access to a tremendous number of predefined constants, 
data types, variables, procedures, and functions. Some are specific to Turbo Pas­
cal; others are specific to the Macintosh. There are literally hundreds of them, 
but you hardly ever use them all in a given program. Because of their number, 
they are split up into related groups called units. You can then use only the units 
your program needs. 

A unit is a collection of constants, data types, variables, procedures, and func­
tions. Each unit is almost like a separate Pascal program. It can even have a main 
body that is called before your program starts and is used to do whatever initial­
ization is necessary. In short, a unit is a library of declarations that you can pull 
into your program and use. 

57 



All the declarations within a unit are usually related to one another. For exam­
ple, the Quick.Draw unit has all the declarations for Quick.Draw routines on the 
Mac. 

When a program uses a unit, all its declarations become available, just as if 
they had been defined ~thin the program itsel£ 

A unit consists of two parts: the interface and the impkmentation. The inter­
face is the "public" part of the unit. It contains constants, data types, and vari­
ables. It also has a list of procedure and function headers. Any program using the 
unit can use all these items. In other words, the program uses them as if they 
had been declared within the program itsel£ 

The implementation is the "private" section of the unit. The bodies of the 
procedures and functions declared in the interface reside here. Additional con­
stants, data types, and variables can be declared and used within the implemen­
tation. Likewise, additional procedures and functions may exist in this section. 
However, all these items are "invisible" to the program using the unit; the pro­
gram doesn't know that they exist and can't reference or call them. However, 
these hidden items can be (and usually are) used by the "visible" procedures and 
functions, that is, those routines whose headers appear in the interface. Chapter 
8 explains more about both these sections. 

The units your program uses have already been compiled; that is, they are 
stored as machine code, not as Pascal source code. They are not Include files. 
Even the interface section is stored in the special binary symbol table format that 
Turbo Pascal uses. Furthermore, all the standard units (listed in the next para­
graph) are stored in the Turbo Pascal compiler/editor file and are loaded into 
memory along with Turbo Pascal itsel£ 

As a result, using a unit or several units adds very little time (typically less 
than a second) to your program's compilation time. If the units are being loaded 
in from a separate disk file, a few additional seconds may be required because of 
the time it takes to read from the disk. 

Turbo Pascal provides 16 standard units for your use. Five of them-PasSys­
tem, PaslnOut, PasConsok, PasPrinter, and SANE-are known as the Pascal 
Run-time Support units and deal specifically with Turbo Pascal. The other 11 
units-MemTypes, QuickDraw, Oslntf, Toollntf, Packlntf, MacPrint, FixMath, 
Graj3D, AppkTalk, Speechlntf, and SCSIIntf-allow access to the full range of 
Macintosh Toolbox and operating system routines, including support for 
AppkTalk, MacinTalk, and the SCSI hard disk port. 

NOTE: In Turbo Pascal, each unit is assigned a specific unit number for iden­
tification purposes. You don't really need to know these numbers. Just be aware 
that negative numbers are reserved for the standard units and for assignment by 
the UNITMOVER; positive numbers are available for any units you create. 

58 Turbo Pascal for the Macintosh 



How Are Units Used? 

To use a specific unit or collection of units, you place a uses-clause at the start of 
your program. The uses-clause consists of the keyword uses, followed by a list of 
the unit names you want to use, separated by commas: 

program MyProg; 
uses thisUnit,thatUnit,theOtherUnit; 

When the compiler sees this uses-clause, it adds the interface information in 
each unit to the symbol table and links the machine code produced by the imple­
mentation to the program itsel£ 

The units are added to the symbol table in the order given; this ordering can 
be important when one unit uses another unit. For example, if thisUnit used 
thatUnit, the uses-clause would have to be: 

uses thatUnit,thisUnit,theOtherUnit; 

or 

uses thatUnit,theOtherUnit,thisUnit; 

In short, a unit must be listed after any units it uses. 

If you don't put a uses-clause in your program, Turbo Pascal links in three 
Pascal Run-time Support units anyway: PasSystem, PaslnOut, and PasConsole. 
These provide some of the standard Pascal routines, a number of Turbo-Pascal 
specific routines, and also a model Pascal environment (complete with an 80X25 
screen, cursor-control and printer routines, and so on). 

What if you don't want some or all of these run-time units? You tell Turbo 
Pascal not to use them by placing the {$U-} option at the start of your program; 
only the PasSystem unit will be linked in. Any additional units you want must be 
explicitly requested with the uses-clause. For example, if you are writing a Mac­
style application and don't want to use the PasConsole unit (since you don't need 
it), your program might look like this: 

program MyMacProg; 
{$0-} { don't automatically use the run-time stuff } 
uses PasinOut,MemTypes,QuickDraw,OSintf, 

Toolintf,MacPrint,Packintf; 

This program does use one of the run-time units: PaslnOut. However, since 
you've put the {$U-} option in, you have to explicitly request the unit to use it. 

Units and Other Mysteries 59 



Pascal Run-time Support Units 

Turbo Pascal provides a set of routines that make your Macintosh act like a stan­
dard terminal, allowing you to read from the keyboard and write to the screen 
without all the tedious mucking about that the Mac usually requires of you. 
These routines also let you do conversions, Pascal-style dynamic memory alloca­
tion, Pascal-style file 1/0, and so on. 

Turbo Pascal uses three units-PasSystem, PaslnOut, and PasConsole-to do 
all this. Two other units-PasPrinter and SANE-are provided for additional 
support. Here's a brief description of each unit, with its name and a listing of any 
units it might require. Appendix D lists the interface sections of these units. 

PasSystem 
Units used: none 

PasSystem implements the low-level support routines used by most programs, 
including Longlnt math, conversion between Real and Integer data types, string 
and set handling, dynamic memory allocation, and byte-oriented procedures. It 
is linked into every program, even if you use the {$U-} compiler option. (It's 
the only unit that doesn't have an interface listing in Appendix D.) 

PaslnOut 
Units used: none 

PaslnOut implements the standard Pascal 1/0 routines (Read, ReadLn, Write, 
WriteLn, Reset, Rewrite, and so on), as well as the Turbo-Pascal specific ones 
(Close, Seek, Rename, Erase, and so forth). It also does all 1/0 and range-error 
checking. If you look at the interface listing in Appendix D, you'll find that there 
is very little you can use directly; instead, the compiler makes calls to specific 
hidden routines in the implementation. 

PasConsde 
Units used: PaslnOut 

PasConsok is the unit that makes it easy to write textbook Pascal programs. It 
creates a window that emulates a terminal screen 80 characters wide by 25 lines 
deep. When this unit is used by a program or unit, any calls to Read or ReadLn 
without a file variable are made from the keyboard and automatically echoed to 
this window; likewise, any calls to Write or WriteLn without a file variable write 
to that window. A number of cursor- and screen-control routines are available: 
ClearScreen, ClearEOL, InsertLine, DeleteLine, and GoToXY. The functions 
KeyPressed and ReadChar are there, too, as are the file variables Input and 
Output. This unit also creates a new device ('Console:') that can be assigned to 
any file of type Text. The user can then send output to the screen (instead of to a 
disk file). 

60 Turbo Pascal for the Macintosh 



PasPrinter 
Units used: PasinOut 

PasPrinter declares the text-file variable Printer and connects it to a device 
driver that (you guessed it) allows you to send standard Pascal output to the 
printer using Write and WriteLn. For example, having included PasPrinter in 
your program, you could do the following: 

irite(Printer,'The sum of ',A:~,' and ',B:~,' is '); 
C := A + B; 
iriteLn(Printer,C:6); 

Like PasConsole, this unit creates a new device ('Printer:') which can be 
assigned to any file of type Text. The user can then send output to the printer 
(instead of to a disk file). 

SANE 
Units used: none 

The SANE unit implements the Standard Apple Numeric Environment 
(SANE). SANE is the basis for all floating-point mathematical calculations per­
formed by Turbo Pascal. Programmers who are interested in using SANE fea­
tures not directly supported by Turbo Pascal can access these features through 
the SANE unit. For detailed instructions about SANE, see Chapter 26 and the 
Apple Numerics Manual. 

Macintosh Interface Units 

The Macintosh is a complex, sophisticated microcomputer. Some of its power 
comes from the built-in procedures and functions in the 64K or 128K of ROM 
and the SYSTEM file on disk. These routines are documented in Inside Macin­
tosh, which breaks up the routines into a series of managers or packages: 
resources, QuickDraw (graphics), fonts, events, windows, controls, menus, 
TextEdit (text-editing), dialog boxes, and so on. In fact, you can think of these 
managers as units built into the Mac itsel£ 

The Macintosh Interface units that Turbo Pascal provides allow you to use 
these Mac routines. Some of the units encompass several Mac managers or pack­
ages. This is to make things more manageable; otherwise, you might need 20 to 
30 different units. Appendix D lists the interface sections of these units. 

As with the Run-time Support units above, a brief description of each unit is 
given, along with a list of the units it uses. Also, the Inside Macintosh chapters 
that you can refer to are noted; the first number is the volume number, the 
second is the chapter number. 

Units and Other Mysteries 61 



MemTypes 
Units used: none 
Chapters: "Mac Memory Management" (vol. I, chap. 3) 

MemTypes defines special Mac data types, such as SignedByte, Ptr, Handle, 
and Str255. That's all it does; there are no constants, variables, or routines 
defined. It is used by every unit in this list and so must be included in any Mac­
style applications. 

QuickDraw 
Units used: MemTypes 
Chapters: "QuickDraw" (I-6) 

QuickDraw is a Macintosh graphics package that lets you perform complex 
graphic operations quickly and easily. This unit defines all the constants, types, 
variables, procedures, and functions needed to use QuickDraw. Since Quick­
Draw resides entirely in ROM and uses standard Pascal parameter-passing con­
ventions, the routines are all inline (see next item), and the unit itself contains no 
actual code. 

OSintf 
Units used: MemTypes, QuickDraw 
Chapters: "Memory Manager" (II-1), "Segment Loader" (II-2), "OS Event 

Manager" (II-3), "File Manager" (II-4), "Device Manager" (II-6), "Disk Driver" 
(II-7), "Sound Driver" (II-8), "Serial Drivers" (II-9), "Vertical Retrace Manager" 
(II-11), "System Error Handler" (II-12), "OS Utilities" (II-13) 

The Macintosh operating system (Mac OS) is at the lowest level of Macintosh 
operations. It performs basic tasks such as input/output, memory management, 
and interrupt handling. Many of the Toolbox procedures and functions call Mac 
OS routines to support their operations. The OSintf unit declares the Pascal 
interface to the Mac OS, naming the many constants, data types, variables, and 
routines. Since few of the Mac OS routines abide by Pascal conventions, inline 
code can't be used; instead, the unit itself provides the "glue," consisting of var­
ious additional external assembly-language routines. OSintf is easily the largest 
of the interface units. 

Toollntf 
Units used: MemTypes, QuickDraw, OSintf 
Chapters: "Resource Manager" (I-5), "Font Manager" (I-7), "Toolbox Event 

Manager" (I-8), "Window Manager" (I-9), "Control Manager" (I-10), "Menu Man­
ager" (I-11), "TextEdit" (I-12), "Dialog Manager" (I-13), "Desk Manager" (I-14), 
"Scrap Manager" (I-15), "Toolbox Utilities" (I-16) 

The Toolbox implements the Macintosh's user interface features: windows, 
menus, controls, dialog boxes, text editing commands, and so on. This powerful 
set of tools hel_ps you create sophisticated applications with comparatively little 

62 Turbo Pascal for the Macintosh 



effort. A few of these routines need to be linked with routines via the Toollntf 
unit; most, though, can be taken care of with inline calls. 

Packl.ntf 
Units used: MemTypes, QuickDraw, OSintf, Toollntf 
Chapters: "Package Manager" (I-17), "Binary-Decimal Conversion Package" 

(I-18), "International Utilities Package" (I-19), "Standard File Package" (1-20), 
"Disk Initialization Package" (11-14) 

Packages are sets of data structures and routines that are stored as resources in 
the SYSTEM file and brought into memory only when needed. They serve as 
extensions to the Toolbox and Mac OS; the most useful (and most commonly 
used) is the Standard File Package, which brings up the standard Mac dialog box 
to open files or select a file name for output. Packlntf provides the interface to 
those packages. 

MacPrint 
Units used: MemTypes, QuickDraw, OSintf, Toollntf 
Chapters: "Printing Manager" (11-5) 

The MacPrint unit provides access to the Macintosh Printing Manager. The 
Printing Manager is a set of RAM-based data types and routines that allow you to 
use standard QuickDraw routines to print text or graphics on a printer. These 
provide a device-independent interface to printer drivers, which enable you to 
print on a specific device (ImageWriter, LaserWriter, and so on). One (or more) 
of these printer drivers-usually found in the SYSTEM folder-must be avail­
able in order to use this package. 

FixMath 
Units used: MemTypes 
Chapters: none 

The FixMath unit is a collection of types and functions that implement fixed­
point real numbers. This unit is very useful for applications that require real 
numbers but don't need the accuracy of Boating-point math. Fixed-point opera­
tions run much faster than regular Boating point, so you can choose to sacrifice 
precision for increased speed. 

Graf.JD 
Units used: MemTypes, QuickDraw, FixMath 
Chapters: none 

Graf.JD is a RAM-based, three-dimensional graphics package that sits on top 
of QuickDraw. It implements 3-D GrafPorts and provides a complete set of 3-D 
operations, including rotation, translation, scaling, and clipping. 

Units and Other Mysteries 63 



AppkTalk 
Units used: MemTypes, QuickDraw, OSintf 
Chapters: "AppleTalk Manager" (11-10), (see also Inside AppkTalk) 

AppkTalk is the Macintosh local-area network - that is, the means by which 
you connect a group of Macintoshes with printers, disks, other devices, and each 
other. The AppleTalk Manager is used to communicate with devices connected 
to an AppleTalk network. AppkTalk is implemented as two RAM-based device 
drivers, .ATP and .MPP, and the AppkTalk unit declares the necessary Pascal 
types and procedures for using them. 

The drivers are in the resource branch of the file ABPACKAGE on the distri­
bution disk. If an application will use AppkTalk, then these drivers should either 
be placed in the SYSTEM file or in the application itself The latter is preferable, 
since you can then move the application from disk to disk (and system to system) 
without having to worry about whether or not the drivers are there. To add the 
drivers to your file, put the following lines in your RMAKER resource file (see 
Chapter 6 and Appendix C for more details on RMAKER): 

Type atpl = GNRL 
, a (Lb l 
.R 
ABPackage atpl 0 

The atpl resource type must be in lowercase letters. 

NOTE: The AppkTalk drivers may not be redistributed. They are licensed by 
Borland International and are for your personal use only. 

Speechlntf 
Units used: MemTypes 
Chapters: none 

The Speechlntf unit provides an interface to MacinTalk, a speech synthesizer 
that runs under Mac OS as a driver. In real time, MacinTalk converts an ASCII 
string of phonetic codes into synthetic speech. MacinTalk uses a special program, 
READER, to convert English text into the phonetic codes used by MacinTalk. 
The MacinTalk driver must be in the SYSTEM folder in order for your program 
to work. 

More information on Speechlntf is contained in the MacinTalk Toolkit docu­
mentation, in the December 1985 Mac Software Supplement Document from 
Apple. 

NOTE: MacinTalk may not be redistributed. It is licensed by Borland Inter­
national and is for your personal use only. 

64 Turbo Pascal for the Macintosh 



SCSIIntf 
Units used: MemTypes 
Chapters: "The SCSI Manager" (4-31) 

The SCSIInef unit provides access to the Small Computer Standard Inte:rface 
(SCSI) port found on several models of the Macintosh. It allows you to determine 
what devices are connected to the SCSI port and to communicate with them. 

Calling Assemb"fy-Language Routines 

Yes, Turbo Pascal allows you to link in external subroutines written in 68000 
assembly language. Full details, including how to pass parameters and return 
function values, can be found in Chapter 27. Following is a quick explanation of 
how to call assembly-language routines. 

Before using an external procedure or function in a program, you must define 
it. To define it, you write its procedure or function header, followed by the 
keyword external: 

procedure LowToUp(var Str : string); external; 
function RotLeft(var L : Longint; D : Integer) : Longlnt; external; 

Note that there is no body to the procedure or function, just the header state­
ment. 

The procedure/function headers go wherever a regular procedure or function 
can go. If they're in a program, you can place them anywhere. If they're in a 
unit, they can go either in the interface (if you want the user to be able to call 
them) or in the implementation (if you don't). 

Next, write the appropriate routines, using Apple's Macintosh Development 
System (MDS) or an MOS-compatible assembler. The resulting .REL file mW!t 
be in MDS format (either version 1 or version 2). Refer to Chapter 27 for details 
on how Turbo Pascal passes parameters to external routines, and how external 
functions should pass values back. 

Finally, you must tell the compiler what file to link to it, using the { $L} com­
piler directive. If you had assembled your assembly-language routines into a file 
called MYSTUFF. REL, then you'd put the following directive somewhere in 
your program: 

{$L MyStuff .REL> 

This directive can appear anywhere before the begin of the main body of your 
program, or the begin of the initialization section in your unit (if you' re writing 
your own unit). 

Units and Other Mysteries 65 



When you compile your program, Turbo Pascal goes to MYSTUFF.REL, 
copies the machine code into your application file, and creates the necessary 
links. 

Inline Code and Traps 

In addition to external assembly-language subroutines, Turbo Pascal also allows 
you to write internal machine-language code for your program. The key phrase 
here is machine language, since the actual inline code is written as numeric 
constants (preferably, though not necessarily, hexadecimal). The format for defin­
ing inline code is 

<proc/func declaration>; inline <integer constant( s) >; 

The constants are of type Integer, not of type Longlnt. If more than one con­
stant is used, the constants are separated by commas. So, for example, you could 
write the following: 

procedure TextFace(Face: Style); 
inline $2DSF, $LDLD, $3FDD, $A666; 

This code would disassemble to the following 68000 code: 

MOVEA.L 
MOVE.B 
MOVE.Ii' 
DS.W 

(A7)+,AD 
(AD),DD 
DD,(A7)-
$A666 ; trap to ROM routine 

The Mac Toolbox implements most of its routines as traps. A trap is a special 
instruction that causes the CPU to stop what it's doing and attend to the trap. On 
the 68000, for example, any instruction with the bit pattern $Axxx causes a trap. 
The 68000 then calls a special trap-handling routine, which decodes the rest of 
the instruction and decides what to do about it. On the Macintosh, that trap 
handler looks at the rest of the bits and calls the appropriate ROM or RAM 
routine before returning to the program where the trap occurred. 

Confused? Just think of traps as do-it-yourself machine code instructions. If 
you'll look through the unit interface listings for, say, QuickDraw, you'll see that 
most of the procedures and functions are inline calls to traps. (The example 
above, in fact, was taken from QuickDraw.) 

One last bit of information about inline calls. An inline procedure or function 
is not set up as a separate subroutine, so there is no JSR (jump to subroutine) to 
an inline routine. Instead, whenever a call to an inline routine occurs, the com­
piler sets everything up as if it were going to make a subroutine call (pushing 

66 Turbo Pascal for the Macintosh 



parameters and the return address on the stack). It then inserts the actual inline 
code right after that. Say, for example, that you wrote the following code: 

if BFlag then 
TextFace(Cboldl) < use bold type > 

else TextFace(Cl); {use plain type> 

At each call to TextFace, the compiler would generate the code to push the 
parameter and return address onto the stack, then insert the four words found 
above ($205F, $1010, $3FOO, $A888). 

Now that you've been introduced to units, you have two options as to where to 
go next. If you're interested in writing your own units, go on to Chapter 8. If, 
instead, you want to start writing Mac-style programs, skip to Chapter 9. How­
ever, you should read through Chapter 8 at some time. 

Units and Other Mysteries 67 



c H A p T E R 8 
Writing Your Own Units 

In Chapter 7, you learned how useful units could be. They provide an efficient 
way to organize groups of data structures and subroutines for use in different 
programs. In this chapter, you'll learn how to write your own units. You'll be 
shown the general structure of a unit and its interface and implementation por­
tions, as well as initialization and compilation. Also included are a few program 
examples. 

A Quick Review of Units 

A unit is a collection of constants, data types, variables, procedures, and func­
tions. Like a complete Pascal program, it can even have a "main body» that is 
called before your program starts and does whatever initialization is necessary. 
In short, it's a library of declarations that you can pull into your program and use. 
All the program elements in a unit are usually related to one another, so that a 
unit tends to solve a set of problems or offer a set of capabilities. When a program 
uses a unit, all its declarations become available, just as if they had been defined 
within the program itself 

A unit consists of two parts: interface and implementation. The interfaCe is the 
actual collection of declarations that can be read by the program. This can 
include constants, data types, variables, and headers for procedures and func­
tions. The implementation is where the bodies (the code) of the procedures and 

69 



functions declared in the interface actually reside. Additional constants and the 
like also can be declared and used within the implementation. These items, 
however, are not available for viewing by the program using the unit. 

Let's talk in more detail about how a unit is laid out and what the dllferent 
sections do. 

A Unit's Structure 

As mentioned above, a unit has a structure not unlike that of a program, but with 
some significant dllferences. Here's a unit, for example: 

unit <identifier>(unit #); 
interface 

uses <list of units>; < optional > 
< public declarations > 

implementation 
< private declarations > 
< procedures and functions 

begin 
< initialization code > 

end. 

The unit header starts with the reserved word unit, followed by the unit's 
name (an identifier), just as a program has a name. A unit number, in paren­
theses, appears between the unit name and the semicolon terminating the 
header. This number-a positive 16-bit integer constant-should be dllferent 
from any other unit number that your programs might use. 

The next item in a unit is the keyword interface. This signals the start of the 
interface section of the unit, that is, the section visible to any other units or 
programs that use this unit. 

A unit can use other units by specifying them in a uses-clause. H present, the 
uses-clause appears right after the keyword interface. Note that the general rule 
of a uses-clause still applies: Ha unit named in a uses-clause uses other units, 
those units must also be named in the uses-clause, and their names must appear 
in the list before that of the unit using them. 

As with a program, if a unit does not include a {$U-} directive, the PaslnOut 
and PasConsole units are automatically used by that unit. This further means 
that a program using that unit would also have to use PaslnOut and PasConsole, 
even though they may not be required. In general, if a unit does not require any 
of the functions provided by PaslnOut and PasConsole, you should place a {$U-} 
directive in the beginning of the unit. 

70 Turbo Pascal for the Macintosh 



Interface 

A unit provides a set of capabilities through procedures and functions-with 
supporting constants, data types, and variables-but it hides how those capabili­
ties are actually implemented. It does this by breaking the unit into two sections: 
the interface and the implementation. 

The interface portion of a unit starts at the reserved word interface, which 
appears after the unit header, and it ends when the reserved word implementa­
tion is encountered. The interface determines what is "visible" to any program 
(or other unit) using that unit. In the unit interface, you can declare constants, 
data types, variables, procedures, and functions. As with a program, these can 
be arranged in any order, and sections can repeat themselves (for example, type 
.•. var ... <procs> ... const ... type •.• const ... var). 

The procedures and functions that are visible to any program using the unit 
are declared here, but their actual bodies-that is, implementations-are found 
in the implementation section. If the procedure (or function) is external, that 
keyword should appear in the interface, and no redeclaration of the procedure 
need occur in the implementation. If the procedure (or function) is inline, the 
machine code (list of integer constants) should appear in the interface section, 
and no redeclaration of the procedure should occur in the implementation. For­
ward declarations are neither necessary nor allowed. The bodies of all the regu­
lar procedures and functions are held in the implementation section, after all the 
procedure and function headers have been listed in the interface section. 

Implementation 

The implementation section starts at the reserved word implementation. Every­
thing declared in the interface portion is visible in the implementation: con­
stants, types, variables, procedures, and functions. Furthermore, the implemen­
tation can have additional declarations of its own, although these are not visible 
to any programs using the unit. 

If any procedures have been declared external, one or more {$L (.REL file)} 
directive(s) should appear before the begin marking the initialiution section. If 
there is no initialiution section, then it can be anywhere before the final end of 
the unit. 

The normal procedures and functions declared in the interface-those that are 
neither external nor inline--must reappear in the implementation. The proce­
dure/function header that appears in the interface should not appear in full in the 
implementation. Instead, just type in the keyword (procedure or function), fol-

Writing Your Own Units 71 



lowed by the routine's name (identifier). The routine should then contain all its 
local declarations (labels, constants, types, variables, and nested procedures and 
functions), followed by the main body of the routine itself. Say the following 
declarations appear in the interface of your unit: 

procedure Swap(var VL,V2 : Integer); 
function Max(VL,V2 : Integer) : Integer; 

The implementation should look like this: 

procedure Swap; 
var Temp : Integer; 
begin 

Temp := VL; VL := V2; V2 := Temp 
end; < of proc Swap > 

function Max; 
begin 

if VL > V2 then 
Max := VL 

else Max : = V2 
end; < of func Max 

Routines local to the implementation (that is, not declared in the interface 
section) should have their complete procedure/function header intact. 

Initialization 

The entire implementation portion of the unit is normally bracketed within the 
reserved words implementation and end. However, if you put the reserved word 
begin before end with statements between the two, the resulting compound 
statement-looking very much like the main body of a program-becomes the 
initialization section of the unit. When a program using that unit is executed, the 
unit's initialization section is called before the program's main body is run. H the 
program uses more than one unit, each unit's initialization section is called (in 
the order specified in the program's uses statement) before the program's main 
body is executed. 

The initialization section is where you initialize any data structures (variables) 
that the unit uses or makes available (through the interface) to the program using 
it. You can use it to open files for the program's later use. For example, the 
runtime unit PasPrinter uses its initialization section to make all the calls to open 
(for output) the text file PRINTER, which you can then use in your program's 
Write and WriteLn statements. 

72 Turbo Pascal for the Macintosh 



Compiling a Unit 

You compile a unit using the same commands as when you compile a program. 
Normally, you'd compile a unit to disk to be able to use it with all your programs. 
However, if you have windows open for a unit and for a program that uses it, you 
can compile the unit to memory. The compiler always looks in memory before 
looking on disk, when searching for a unit named in a uses-clause. 

When you compile a unit to disk, the resulting library file adopts its name from 
the unit header. For example, if your unit header is: 

unit MyUnit(L); 

then the library file created on the disk is called MYUNIT. As with a program, 
you can override that default and request a specific file name using the { $0 
(jiJename)} directive. If you changed your unit to read: 

unit MyUnit(L); 
{$0 MyLibrary} 

then a compile to disk produces a library file named MyLibrary. 

You may, in fact, compile several units to the same library file. Suppose you 
have two units and that both include a {$0 MyLibrary} directive. Every time 
you compile one of them, the newly compiled unit replaces the older version in 
the library file. 

The icon used for unit library files is dilferent from the one used for compiled 
programs; it is an attache-case (or briefcase), which represents something you 
can "carry" from program to program. Also, unlike a compiled program, if you 
double-click on a unit library file, the unit is not "executed." Instead, the UNIT­
MOVER is launched, and the library file is "opened." Chapter 11 contains a 
complete explanation on using the UNITMOVER. 

Using Your Units 

Say you've written a unit called MYUNIT.PAS and compiled it to disk; the 
resulting code file is called MYUNIT. To use it in your program, you need to 
include two things: a { $ U (filename)} directive to tell the compiler where to look 
for the unit and a uses statement to tell the compiler that you're using that unit. 
Your program might look like this: 

program MyProg; 
{$0 MyUniU 
uses MyUnit; 

Writing Your Own Units 73 



The unit name and the unit's code file name don't have to be the same. If you 
compile the unit with the directive {$0 MYUNITS. LIB} or change the code file 
name to that under the FINDER, then the {$U} directive in the program would 
have to read {$U MYUNITS.LIB}. 

Now, suppose you had compiled the units MyFirst and MySecond with the 
directive {$0 MyLibrary }. To use all three units, you would have to use two {$U} 
directives, both of them appearing before the uses-clause: 

prograa MyProg; 
{$0 MyOniU 
{$0 MyLibrary> 
uses MyOnit,MyFirst,MySecond; 

Depending on your Macintosh system, there is a limit to the number of files 
you can specify with {$U} directives; it is at least ten for all systems, though. 

The section at this end of this chapter, "UNITMOVER," explains how you can 
use this utility to simplify using units. Chapter 11 contains a complete explana­
tion on using UNITMOVER. 

AnExamp"/e 

OK, now let's write a small unit. We1l call it lntLib and put two simple integer 
routines, a procedure and a function, in it. Here's the unit: 

unit IntLib(:L); 
{$0-} 
interface 

procedure Swap(var I,J : Integer); 
function Max(I,J : Integer) : Integer; 

implementation 
procedure Swap; 
var 

Temp : Integer; 
begin 

Temp := I; I := J; J := Temp 
end; < of proc Swap > 
function Max; 
begin 

if I > J then 
Max := I 

else Max := J 
end; < of func Max 

end. { of unit IntLib 

Type this in, save it as the file INTLIB.PAS, then compile it to disk. The 
resulting unit code file is INTLIB. 

74 Turbo Pascal for the Macintosh 



Following is a program that uses this unit: 

program IntTest; 
{$0 IntLib} { where to look for IntLib 
uses IntLib; 
var 

A,B Integer; 
begin 

Write ('Enter two Integer values: '); 
ReadLn(A,B); 
Swap(A,B); 
WriteLn('The max is ',Max(A,B)); 
ReadLn; 

end. { of program IntTest } 

Units and Large Programs 

Up until now, you've probably thought of units only as libraries: collections of 
useful routines to be shared by several programs. However, units can do some­
thing just as important: break a large program up into modules. In fact, units 
give Turbo Pascal many of the advantages of Modula-2 and other modular lan­
guages, with few of their disadvantages. 

Two other aspects of Turbo Pascal make this function feasible: its tremendous 
speed in compiling and linking; and its ability to manage several code files simul­
taneously, such as a program and several units. 

Typically, a large program is divided into units that group procedures by their 
function. For instance, an editor application could be divided into initialization, 
printing, reading and writing files, formatting, and so on. Also, there would be a 
"global" unit-one used by all other units, as well as the main program-that 
defines global constants, data types, variables, procedures, and functions. 

The compiled version of each unit is stored in a unit library file. Each unit 
references this file twice. First, it should reference it in a { $0 (filename)} direc­
tive, since the compiled version of the unit should be put in that file. Second, 
that same file name would need to be the first { $U (filename)} directive, so that it 
could get the global declarations from the main unit (as well as any other unit it 
might happen to use). 

The skeleton program might look like this: 

program Editor; 
{$0 My Editor} 
{$T APPLMYED} 
UR Editor. Rsrc} 
{$0 Editor.Lib} 

{$B+} 
{$0-} 

Writing Your Own Units 

output file for application } 
application type; creator ID = MYED } 
resource file for this application } 
library file with application's units 

set bundle bit } 
disable automatic use of runtime units } 

75 



uses 
MemTypes,QuickDraw,OSintf,Toolintf,Packintf,MacPrint, 
EditGlobals, 
Editinit, 
EditPrint, 
EditRead,EditWrite, 
EditFormat; 

{ program's declarations, procedures, and functions } 

begin 
{ main program } 

end. { of program Editor 

One of the units-say, EditPrint-might look like this: 

unit EditPrint(3); 
{$0 Editor.Lib} 
{$U Editor.Lib} 
{$U-} 

output file • library file } 
but uses units in libarary file as well } 
disable use of runtime units } 

interface 

uses 
MemTypes,QuickDraw,OSintf,Toolintf,Packintf,MacPrint, 
EditGlobals; 

{ the rest of the interface } 

implementation 

{ implementation of the unit 

end. { of unit EditPrint } 

A further refinement involves segmentation. Turbo Pascal allows you to break 
your program up into segments, that is, chunks of machine code, each one no 
larger than 32K bytes. The {$S+} directive instructs Turbo Pascal to create a 
segmented code file, while the {$S (segname)} directive specifies into which 
segment a unit or a collection of subprograms (procedures and functions) will go. 

In the modified example below, the units are grouped into segments by their 
function. The Mac units, as well as EditGloba"ls, go into the "blank" (or main) 
segment, so that they will always be resident with the main body of the program. 
The initialization unit (Editlnit) resides in a segment by itself, so that it can be 
disposed of once it has done its job. Likewise, the printing unit (EditPrint) is in 
its own segment, so that it takes up memory only when printing is going on. The 
modified section of the application looks like this: 

{$B+} 
{$5+} 
{$U-} 

76 

{ enable segmentation } 

Turbo Pascal for the Macintosh 



uses 
us 
<SS Init 
<SS Print 
<SS InOut 
<SS Format 

} MemTypes,QuickDraw,OSintf,Toolintf,Packintf, 
MacPrint,EditGlobals, 

} Editinit, 
} EditPrint, 
} EditRead,Editirite, 
} EditPormat; 

Segments are loaded automatically by calling a procedure or function within 
that segment. To unload a segment, you call the OS routine UnloadSeg, passing 
to it the address of any procedure or function within that segment. For example, 
if Editlnit contained the procedure Initialize, then you would call 

OnloadSeg(tinitialize); 

You need to call this from somewhere outside of the segment containing Ini­
tialize. The main body of the application would probably be the safest place. 

UNITMOVER 

You don't have to use a {$U (filename)} directive when using the Pascal Run-time 
Support units or the Macintosh Interface units. That's because all those units 
have been moved into the actual Turbo Pascal compiler file. When you compile, 
those units are always "visible" and able to be used if you want. 

Suppose you have a well-designed and thoroughly debugged unit that you 
want to add to the standard units, so that you don't need a {$U} directive each 
time you want to use it. Is there any way to move it into the Turbo Pascal 
application file? Yes, by using the UNITMOVER utility. 

You can also use the UNITMOVER to remove units from the Turbo Pascal file, 
reducing its size and the amount of memory it takes up when loaded. 

Summary 

As you've seen, it's really quite simple to write your own units. A well-designed, 
well-implemented unit simplifies program development, since you just solve the 
problems once and not for each new program. Furthermore, once you've 
designed a useful unit, you can release it into the public domain without having 
to disclose your source code. Others can benefit from your expertise, but you 
won't have to divulge your methods. 

Writing Your Own Units 77 



c H A p T E R 9 
Writing Your Own Macintosh Applications 

In previous chapters, you learned how to write a standard Pascal program. Now 
you can move into the meat of this manual: Macintosh programming. We'll now 
show you parts of sample programs-contained in the EXAMPLES folder in the 
Utilities & Sample Programs disk-that illustrate general Macintosh program­
ming techniques. 

You're not going to learn everything in this chapter. Inside Macintosh, the 
book on the Toolbox and the operating system, is over 1,200 pages. Macintosh 
Reveal.ed, the two-volume work on how to program the Mac, is some 1,100 pages. 
Despite this chapter's comparative shortness, however, you should learn the 
basic skills necessary to program the Macintosh with Turbo Pascal. 

The Demo Program 

The EXAMPLES folder contains several sample programs. The following 
sections explain the parts of these programs that exemplify Macintosh program­
ming techniques. One example program, MYDEMO.PAS, uses most of the 
techniques mentioned in this chapter. It is a fairly simple Macintosh application 
that uses menus, windows, dialog boxes, and graphics. Let's start by making it 
run, so that as you learn about it, you'll have in mind what the finished program 
looks like. 

79 



MYDEMO uses a resource file to define its menus, windows, and icon. The 
source text describing the resources is located in the file MYDEMO.R (also in 
the EXAMPLES folder). You can think of the text in MYDEMO.R as being like 
an uncompiled Pascal program: It needs to be run through a "compiler" to be 
useful. That "compiler" is RMAKER (for Resource Maker), so first run 
RMAKER by double-clicking it (or use the Transfer menu, if you're in Turbo 
Pascal). (RMAKER is described in detail in Chapter 12.) 

Once you're in RMAKER, you'll get the standard file selector box; it only 
shows files ending with .R. Find MYDEMO.R, select it (point at it with the 
mouse, then click), and then click on the Open button. RMAKER then builds a 
resource file (MYDEMO.RSRC) based on the descriptions in MYDEMO.R. 
When it's done, exit by clicking on the Quit button near the lower left corner of 
the window. (You can also select the Other command in the Transfer menu, then 
choose Turbo when the file selector comes up.) 

Enter Turbo Pascal and open MYDEMO.PAS: Double-click directly on 
MYDEMO.PAS or double-click on the Turbo Pascal icon, close the Untitled 
window that's automatically opened, select the Open command from the File 
menu, find MYDEMO.PAS in the file selector list, and select it. Now, compile 
and run MYDEMO: Select the Run command from the Compile menu (or type 
~). The compilation takes just a few seconds; MYDEMO runs, and the win­
dow and the menu bar (with four menus) appears. 

Play around with MYDEMO for a while. Note that you can execute most 
commands with keyboard equivalents. You can resize the window,_ drag it around 
the screen, or close it (which will cause MYDEMO to halt execution and return 
you to Turbo Pascal). You can run desk accessories using the Apple menu, or 
bring up the About MYDEMO ... dialog box. 

When you're done, exit MYDEMO: Either click the Close box in the upper 
left corner of the window, select the Quit command from the Edit menu, or type 
~. Once you' re back in Turbo Pascal, select the To Disk command from the 
Compile menu (or type !])I)). Now exit Turbo Pascal. You should see the appli­
cation icon for MYDEMO. You can double-click the icon to run the program 
again. 

Let's now look at how Mac applications are designed, by studying the parts 
that make up a Mac program. 

80 Turbo Pascal for the Macintosh 



Event-driven Programming 

Back in Chapter 6, the concept of event-driven programming was introduced. As 
you saw, the basic structure of most Macintosh applications is nearly identical, 
with a main body that looks something like this: 

begin { main body of program 
Initialize; 
repeat 

SystemTask; 
cursorAdjust; 
if GetNextEvent(everyEvent,theEvent) 

HandleEvent(theEvent) 
until Finished; 
Cleanup 

end. < of program } 

< set everything up } 
< keep doing the following } 

< update desk accessories } 
{ update which cursor } 

then < if there's an event ... } 
< ••• then handle it } 

{ until user is done } 
{ clean everything up } 

The program sets up once with the user-defined routine Initialize. It then 
enters a loop that continues until some condition (such as the user selecting Quit 
in a menu) causes it to set the boolean flag Finished to true. 

Within that loop, it performs two major tasks. First, it calls SystemTask (a 
Toolbox routine), which allows the Mac operating system to update any desk 
accessories that might be in use. Second, it calls GetNextEvent (another Toolbox 
routine) to see if any events have occurred. If any have, the highest priority 
event is returned in the data structure theEvent. The program then passes the 
event to HandleEvent, which is a user-defined routine that handles all the differ­
ent events that might occur. Such events include key presses, selection of menu 
items, mouse clicks, and windows being opened, closed, uncovered, or resized. 
When the program is ready to terminate, it calls the user-defined routine 
Clean Up. 

Event-driven programming assumes that most of your commands will usually 
be available, so you need to anticipate how to handle them. That won't be true 
all the time; for example, a program may have editing capabilities, but any edit­
ing commands would be active and make sense only when there is a window 
open for text editing. It is difficult to select, cut, and paste text when there's no 
text to cut and no window open for the text to be pasted to. 

Event-driven programming takes some getting used to, but once you under­
stand how it works and have seen examples of it, it is easy to apply to different 
situations. With Macintosh applications, the format is so standard that you can 
move from program to program and see almost identical code in the main bodies 
and immediate supporting routines. 

Writing Your Own Macintosh Applications 81 



A Note on Programming Style 

Turbo Pascal programs should be written to be as easy to read and modify as 
possible. In the example programs on the disk, almost every line of code is 
commented on. This may seem excessive, but the often cryptic nature of Macin­
tosh system calls makes it helpful to understand exactly what each call is doing, 
and why. Too often, Macintosh sample programs assume too much understand­
ing on the part of the reader. 

Emphasis has been placed on organizing programs into small, manageable 
chunks of code. Mac hackers sometimes enjoy stuffing all the event handling into 
a few gigantic case statements, usually embedded in loops and if/then/else state­
ments, with so much indentation and nesting that the program is unreadable. 

Program Organization 

Although Macintosh applications tend to have the same structure, you might not 
notice it at first, given the way some of them are coded. Here is a skeleton 
structure for a sample Macintosh program: 

program SampleProgram; 
global declarations 
utility procedures and functions 
menu-driven procedures and functions 
event-handling procedures and functions 
initialization and cleanup procedures 
main body of program 

You've already seen what the main body of the program looks like; let's con­
centrate on another aspect, event handling. 

82 Turbo Pascal for the Macintosh 



Event Handling 

To understand Macintosh applications, you must understand how to handle 
events. Following is a sample of the HandleEvent procedure in a typical pro­
gram: 

procedure HandleEvent(theEvent : EventRecord); 
begin 

case theEvent.What of 
mouseDown DoMouseDown(theEvent); 
keyDown DoKeyPress(theEvent); 
autoKey DoKeyPress(theEvent); 
updateEvt DoUpdate(theEvent); 
activateEvt DoActivate(theEvent) 

end 
end; < of proc HandleEvent > 

{ mouse button pushed > 
{ key pressed down > 

< key held down > 
{ window need updating > 

{ window made act/inact } 

When an event occurs, the operating system creates an event record and 
sticks it in a queue, ready for you to handle. To see if there's one waiting, you call 
GetNextEvent, a boolean function that returns true if there's an event there for 
you. You give it a mask of the events you're interested in; you can use the 
predefined mask EveryEvent to look at all events. This event is passed to 
HandleEvent, which takes care of it. 

The key to all this is the predefined data type EventRecord, which is what 
GetNextEvent passes back to you (through the parameter list). The data structure 
looks like this: 

type 
EventRecord = 

record 
What 
Message 
When 
Where 
Modifiers 

end; 

Integer; 
Longint; 
Longint; 
Point; 
Integer 

Here's what each of the fields mean: 

< event code > 
event message > 

ticks since startup > 
< mouse location > 
{ modifier flags > 

• What tells you what type of event has just occurred. There are a total of 16 
predefined events, including 4 set aside for application use. Some common 
events include mouse down, key pressed, key repeated, window activate/ 
deactivate, window update, and disk inserted. 

• Message contains information specific to the event that has occurred. For key­
board events, it has both the ASCII and keyboard codes in it; for window 
events, it has a pointer to the window involved; for disk events, it has the 
drive number and File Manager result code. 

Writing Your Own Macintosh Applications 83 



• When is the time that the event occurred. This is given in the number of ticks 
(1 tick equals l/60th of a second) that have elapsed since you booted the Mac. 

• Where tells you the mouse's location, in global coordinates, when the event 
happened. The data structure Poi.nt is a variant record whose components can 
be accessed either as V (Y coordinate) and H (X coordinate) or as VH[O] and 
VH[l]. 

• Modifiers offers yet more specific information, when appropriate. Each piece 
of information is flagged with a single bit, though not all bits are currently in 
use. Items include the status of the mouse button, Command key, Shift key, 
Option key, and Caps Lock key, and whether a window is being activated or 
deactivated. 

All this information gets passed to HandleEvent via the variable theEvent (of 
type EventRecord). HandkEvent is just a case statement using the What field in 
theEvent to determine which of the four procedures to call. 

There are additional events you could check for (such as rrwuseUp, keyUp, and 
so on), but these are sufficient for most programs. Here's a brief explanation of 
the types of events mentioned and what the handling routines will have to do: 

• rrwuseDown: The user has moved the mouse to some point and pushed the 
button. DoMouseDown determines where the mouse currently is (in a menu, 
in a window, and so forth) and takes appropriate action (the following section 
explains this further). 

• keyDown: The user has pressed a key. All this program does is check to see if a 
command-key combination was pressed; if so, it checks if the key is a menu 
command and takes appropriate action. 

• autoKey: The user is holding a key down. This program takes the same action 
as for keyDown. 

• updateEvt: A window has to be updated (redrawn) because of some event 
(resizing or removing a blocking window, for example). 

• activateEvt: A window has just been activated (brought to the front and high­
lighted) or deactivated (another window was activated). 

As you can see, there can be a lot of background activity going on while your 
program is running. Fortunately, your program doesn't have to keep looking all 
over the place to figure out what to do because the operating system keeps it 
informed on what has happened, feeding it each event as the event occurs and is 
processed. Your program then decodes the event and uses a case statement to 
call the procedure best equipped to handle it. As you'll see, further decoding 
often takes place to pin down exactly what the event was. 

84 Turbo Pascal for the Macintosh 



Handling Mouse Events 

The greatest variety of events comes from clicking the mouse's button. The rou­
tine DoMouseDown determines which window (if any) the mouse was in when 
the clicking took place and where exactly it happened. Like HandleEvent, 
DoMouseDown is mostly a case statement: 

procedure DoKouseDown(theEvent:EventRecord); 
var 

Location : Integer; 
theiindow : WindowPtr; 
KLoc : Point; WLoc : Integer; 
begin 

KLoc :• theEvent.Where; < get mouse position > 
WLoc := PindWindow(KLoc,theWindow); < get window,window location > 

case WLoc of < handle locations > 
InMenuBar BandleMenu(MenuSelect(MLoc)); < in the menu > 
InContent BandleClick(theiindow,MLoc); 
InGoAway BandleGoAway(theiindow,MLoc); 
InGrow : BandleGrow(theiindow,MLoc); 
InDrag : DragWindow(theiindow,MLoc,DragArea); 
InSysiindow : SystemClick(theEvent,theWindow) 

< inside the window > 
< in the go away box > 

< in the grow box > 
< in the drag bar > 
< in a DA window > 

end 
end; < of proc DoMouseDown > 

DoMouseDown now has a number of sub-events to process, namely: 

• InMenuBar: The user has selected a command from one of the menus in the 
menu bar. Decode the command and take appropriate action. 

• InContent: The user has clicked the mouse down in the text or contents area of 
the window. If the window is the currently active one, take whatever action is 
appropriate (if any); otherwise, make it the active window. 

• InGoAway: The user has clicked the Close box in the window. If this is the 
active window, then you should close the window and possibly exit the pro­
gram as well. If it's not the active window, make it the active window. 

• InGrow: The user has clicked the mouse in the grow box in the lower right 
corner of the window. Call some standard Toolbox routines (GrowWindow, 
Size Window, InvalRect) to let the user change the size and redraw the now­
changed window. 

• InDrag: The user has clicked the mouse down in the drag bar at the top of the 
window. Call the Toolbox routine DragWindow, which handles everything for 
you. 

Writing Your Own Macintosh Applications 85 



• InSysWindow: The user has clicked the mouse in a desk accessory window. 
Call the Toolbox routine SystemClick, which passes the event information on 
to the desk accessory (which then handles things itself). 

Two of these events (InDrag and InSysWindow) are handled by a simple call to 
a Toolbox routine. The other four (InMenuBar, InContent, InGoAway, and 
InGrow) result in calls to other procedures (HarulleMenu, HarulleClick, Harulle­
GoAway, and HarulleGrow, respectively). Let's talk about each of these. 

Menu Commands 

The procedure HandleMenu decodes the mouse position and figures out which 
menu and which item in that menu were selected. It uses a case statement to 
select the action for the appropriate menu; the menu value is the ID assigned 
when the menu is created (more on this in the section on initialization near the 
end of this chapter). The commands in a menu are numbered from the top down, 
with the first command having a value of 1. The action itself is usually a second 
case statement, based on the menu item (or command) number. Here's a sample 
HandleMenu routine: 

procedure HandleMenu(Menuinfo 
var 

Longint); 

Menu 
Item 
B 

Integer; 
Integer; 
Boolean; 

< menu number that was selected } 
< item in menu that was selected } 
{ dummy flag for SystemEdit call } 

begin 

86 

if Menuinfo <> 0 then 
begin 

Cleariindow(MainPtr); 
PenNormal; 
HideCursor; 

{ we're clearing the window } 
{ set the pen back to normal } 

{ turn off the cursor } 
{ find which menu the command is in } 

< get the command number } 
{ and carry it out } 

Menu:= Hiiord(Menuinfo); 
Item:= Loiord(Menuinfo); 
case Menu of 

ApplMenu 

FileMenu 

EditMenu 

if Item = 1 then 
DoAbout { bring up "About ... " window } 
else DoDeskAcc(Item); { start desk accessory } 

case Item of 
1 NewFile; 
2 : OpenFile; 
3 : SaveFile; 
L; : Quit; 

end; 
case Item of 

1 Undo; 
3 Cut; 
L; Copy; 
5 Paste; 
b Clear; 
6 ShowClipBoard; 

end 

start a new file window } 
{ open an existing file } 

{ save file to disk } 
{ quit the program } 

undo last operation } 
< cut to clipboard } 

< copy to clipboard } 
paste from clipboard } 

{ clear clipboard } 
show clipboard window } 

{ other application menu case statments go here } 
end; { case of Menu } 

Turbo Pascal for the Macintosh 



HiliteMenu(D); 
if Menu = IOMenu then 
UpdateMenu; 

Showcursor 
end 

end; < of proc HandleMenu 

< reset menu bar } 

< make any changes needed } 
< turn the cursor back on } 

When an item in a menu is selected, the name of that menu (in the menu bar 
at the top of the screen) is highlighted, that is, inverted to white-on-black (called 
inverse or reverse video). When you are done processing the menu command, 
restore the menu bar to normal: call HiliteMenu(O), which is at the bottom of 
HarulleMenu. Another procedure is called before you can leave HarulleMenu: 
UpdateMenu, a local procedure that tests to see if certain items need to be 
enabled or disabled. 

Notice that in the EditMenu, item numbers 2 and 7 are not used. These are 
used by division lines and are not selectable as menu items. 

Enabling and Disabling Menu Items Just as the line separators in menus are 
disabled, you have the ability to disable (and enable) specific items in specific 
menus. For example, in the standard Apple edit menu, the paste item is not 
enabled until something is placed on the Clipboard. To enable and disable menu 
items, call the standard Macintosh procedures Enab"leltem and Disab"Leltem. 

Here's a sample UpdateMenu, with the SetltemState procedure it calls: 

procedure SetitemState(Mndx,Indx : Integer; Flag : Boolean); 
begin 

if Flag then { test enable/disable flag > 
Enableitem(MenuList!Mndxl,Indx) < enable menu item } 

else Disableitem(MenuList!MndxJ,Indx) { disable menu item } 
end; { of proc SetitemState > 

procedure UpdateMenu; 
begin 

SetitemState(EditMenu,L,True); 
SetitemState(EditMenu,2,True); 
SetitemState(EditMenu,3,ClipBoardFull) 

end; { of proc UpdateMenu } 

{ edit Cut is always active } 
< edit Copy is always active } 
{ edit Paste depends on flag } 

UpdateMenu calls the procedure SetltemState, passing the menu index, the 
item number, and a Boo"Lean flag. SetltemState, in tum, decides whether to 
enable or disable the item based on the Boolean value passed to it. It uses the 
menu index passed to it to choose the particular menu handle from MenuList 
(an array of type MenuHarulle), then uses that and the item number to call either 
Enab"Leltem or Disableltem-Toolbox routines that do just what their names sug­
gest. 

In the UpdateMenu procedure, the Edit menu command Paste is enabled or 
disabled depending on the Boolean flag ClipBoardFull. 

Writing Your Own Macintosh Applications 87 



Check Marks You can have a menu item that uses a check mark and a global 
flag to keep track of a particular option. When this option is selected, a check 
mark is placed by the item in the menu; when it is de-selected, the check mark 
disappears. 

The following general-purpose routine called ToggkF"lag provides check mark 
operations: 

procedure ToggleFlag(var Flag : Boolean; Mndx,Indx: Integer); 
var 

Ch 
begin 

: Char; 

Flag := not Flag; 
if Flag then 

Ch := Chr(CheckMark) 
else Ch := Chr(NoMark); 
SetitemMark(MenuListCMndxJ,Indx,Ch) 

end; { of proc ToggleFlag } 

{ toggle flag (for you) > 
{ if flag is true .•. } 

{ then check item in menu } 
{ else clear any checkmark > 
{ put char by item in menu } 

ToggkF"lag takes three parameters: a Boolean variable (F"lag), the menu num­
ber (Mndx), and the item number (Indx). ToggkF"lag then toggles Flag; that is, if 
F"lag was set to true, it is set to false, and vice versa. Having done that, it sees if 
F"lag is now true or false: If F"lag is true, it places a check mark at item Indx in 
menu Mndx; if F"lag is false, it places a blank there, erasing any existing check 
marks. The standard Macintosh procedure SetltemMark puts the character next 
to the menu item. 

The "About ... " Box Most menu commands call other procedures that take 
the desired action. The first menu (ApplMenu) is the Apple menu; it appears at 
the far left of the menu bar as the Apple logo. When you pull down this menu, 
the first item you see is About <the program name>. If this is selected, the proce­
dure DoAbout is called. Here's a sample procedure definition: 

procedure DoAbout; 
var 

theitem 
AboutPtr 
S1,S2,S3,S~ 

: Integer; 
: DialogPtr; 
: Str255; 

begin 
SetCursor(CursList!mycursorJ••i; 
ShowCursor; 
51 := 'This is a Sample Program'; 
52 :• ' brought to you by the '; 
53 := ' friendly folks at'; 
S~ := ' BORLAND INTERNATIONAL'; 

< set to my cursor > 
{ and turn it back on > 

{ set up four strings for the > 
{ About dialog box > 

ParamText(S1,S2,S3,S~); { set up as parameter text > 
AboutPtr := GetNewDialog(AboutID,NIL,Pointer(-1)); { get a dialog box > 
ModalDialog(NIL,theitem); {put dialog box up; get result> 
DisposDialog(AboutPtr); < get rid of dialog box > 
SetCursor(Arrow) 

end; < of proc DoAbout > 

88 Turbo Pascal for the Macintosh 



DoAbout is a small routine that displays a box with some information about 
the program, then waits for you to click on the OK button. Once that's done, it 
removes the box and lets the program continue executing. It uses a predefined 
dialog template in a resource file to create the display box. 

This dialog is known as modal dialog, because the entire program stops until 
you do something. The Toolbox routine ParamText provides a means of substitut­
ing text strings in parameter items in subsequent dialog or alert boxes. The 
Toolbox routine GetNewDialog uses the AboutID to retrieve a predefined dialog 
box from a resource file. This allows you to have standard dialog boxes whose 
items have similar types, locations, and contents. The Toolbox routine Modal­
Dia[tJg sets up the dialog box for you; the routine DisposDialog then gets rid 
of it. 

Handling Desk Accessories The Apple menu also allows you to bring up 
desk accessories from within your program. The idea behind desk accessories is 
that you should be able to access them while you' re in the middle of an applica­
tion. Chapter 10 discusses desk accessories and how to write your own; for now, 
let's see how to make sure your program supports them. 

First, you must be sure to set up the Apple menu. This should be the first 
(leftmost) menu. To define the Apple logo as the title, use the character with hex 
value 14; in the resource file, you can do this by giving the logo the title \14. 

Here's what a resource file would look like: 

TYPE MENU 
,iaaa 

\],t; 
About My Demo ... 
(-

resource ID number 
Apple symbol for title 
top item--for 'About' box 
line separator 

In the initialization procedure, after reading the menu data in (using Get­
Menu), you need to add the desk accessories to the menu. You do this by calling 
AddResMenu(<menuhandle>, 'DRVR'), where (menuharulle) is the handle of your 
first menu. 

Within your main loop, you need to call SystemTask to give the operating 
system a chance to pass control to any desk accessories that might be executing. 
If you get the mouse event inSysWindow, call SystemClick in order to let the 
desk accessory handle it; likewise, the mouse event inGoAway must call 
CloseDeskAcc if the window being closed is a desk accessory. 

If you select one of the desk accessories from the Apple menu, you need to 
start it up. The procedure DoDeskAcc-which HarulleMenu calls for any item 
from the Apple menu other than the first one-does this by calling Getltem to 
get the name of the desk accessory selected, then calling OpenDeskAcc with that 
name. 

Writing Your Own Macintosh Applications 89 



You should support the standard Edit commands-Undo, Cut, Copy, Paste, 
and Clear-since a number of desk accessories rely upon these. Set them up as 
items 1, 3, 4, 5, and 6, respectively, in a menu. When one is selected, pass its 
value (less one) to the OS function SystemEdit, which will return true if that edit 
command was for a desk accessory. If SystemEdit returns false, then handle the 
command in the manner appropriate for your application. 

Clicking Windows 

The following procedure handles clicking the mouse. The code checks to see if its 
own window is being clicked and if that window is the active window. If it isn't, 
then it makes its window active: 

procedure HandleClick(WPtr : WindowPtr; MLoc : Point}; 
begin 

if WPtr = MainPtr then 
if WPtr <> FrontWindow 

then SelectWindow(WPtr) 
end; { of proc HandleClick } 

if this is our window .. . 
and it's not in front .. . 
{ ... then make it active 

For other applications, though, more can (and needs to) be done. Some pro­
grams have a picture, layout, or graph of some kind in the window. In that case, 
you need to look at exactly where the mouse was clicked and determine what 
action to take. For example, pointing at a section of the picture could bring up a 
dialog box telling the user what that section is and allowing the user to modify . 
some data related to it. 

For a text-editing application, you click in the window in order to move the 
cursor to a different spot for text entry. In that case, you need to make the 
necessary calls to relocate the I-beam (text) cursor and to make sure that any text 
typed after that is inserted at the proper spot in the text record. 

The Close Box 

A window can have a Close (or go-away) box in its upper left corner. The user 
closes windows by pointing at the box with the mouse, then clicking once. On 
most text editors, including Turbo Pascal, the window closes, but the application 
continues to execute. In the following procedure, the flag Finished is set to true 
when that happens, leaving a procedure called CleanUp to actually close the 
window: 

procedure HandleGoAway(WPtr: WindowPtr; MLoc : Point}; 
var 

WPeek : WindowPeek; for looking at windows 
begin 

if WPtr FrontWindow then if it's the active window 
begin 

WPeek := WindowPeek(WPtr}; { peek at the window 
if TrackGoAway(WPtr,MLoc} then and the box is clicked 

90 Turbo Pascal for the Macintosh 



begin 
if WPeekA.WindowKind = userKind then 

Finished := true 
else CloseDeskAcc(WPeekA.WindowKind) 

end 
end 
else SelectWindow(WPtr) 

end; { of proc HandleGoAway 

< if it's our window } 
{ then time to stop } 

< else close DeskAcc } 

{ else make it active 

As you can see, HandhGoAway doesn't act immediately upon the Close box 
being clicked. Instead, it calls the Toolbox function TrackGoAway, which returns 
a value of true or false. TrackGoAway allows the user to have a change of mind; 
by moving the mouse away from the Close box without releasing the mouse 
button, the user cancels the close request. 

This routine also handles closing desk accessories. It does this by checking 
what kind of window is open. During initialization, the main window was set to 
type userKind (=8), while the desk accessories use their reference numbers to 
identify their windows. Indeed, that's how the desk accessory is closed: by using 
the WindowKind field as the reference number to identify which desk accessory 
to close. 

The Grow Box 

A window also can have a Grow box in the lower right corner. The user can point 
the mouse here, hold the button down, and resize the window by dragging the 
mouse around. More accurately, resizing takes place when the program calls 
GrowWindow, and what actually gets moved around is a dotted outline of the 
window. Grow Window then returns the new width and height, with the position 
of the upper left corner being the fixed point of reference. The window is resized 
by calling SizeWindow with the new width and height. InvalRect is then called 
to mark any portions of the window that might no longer be valid because of the 
resizing. Here's a sample routine: 

procedure HandleGrow(WPtr : WindowPtr; MLoc : Point); 
type 

GrowRec = 
record 

var 

case Integer of 
a : (Result Longint); 
1 : (Height,Width Integer) 

end; 

Growinfo : GrowRec; 
begin 

if WPtr = MainPtr then 
with Growinfo do 
begin 

Writing Your Own Macintosh Applications 

{ if it's our window } 

91 



Result := GrowWindow(WPtr,MLoc,GrowArea); 
SizeWindow(WPtr,Width,Height,true); 
InvalRect(WPtrA.portRect) 

end 
end; { of proc HandleGrow } 

get amt of growth } 
{ resize window } 

set up for update > 

This approach is a lazy one; the entire window is marked for updating. In your 
own applications, you can (and may want to) mark just those sections that have 
changed and need to be redrawn. In either case, the system issues update 
events (updateEvt) as needed to redraw things. 

You may notice that one of the parameters to GrowWindow is the rectangle 
GrowArea. This defines the bounds of growth, that is, the minimum and maxi­
mum width and height for the window. GrowArea is initialized in the procedure 
Initialize. The minimum size is set there (rather arbitrarily) to 50 pixels wide by 
20 pixels high. The maximum size is based on the screen dimensions, which are 
not assumed but instead are copied from Screenbits.Bounds and adjusted 
inwards slightly. 

The Drag Bar 

A window can have a drag bar across the top. The user can point at the drag bar, 
hold the mouse down, and move the window around the screen. This is an easy 
event to handle; just call the Toolbox routine DragWindow. If any update events 
are required-for example, if the window were partially off the screen and you 
just dragged it all the way back on-the system issues the necessary update 
events. 

Note that DragWindow, like GrowWindow, gets passed a bounding rectangle 
called DragArea. It determines how far off the screen you can move the window. 
The idea, of course, is to avoid moving the window off the screen in such a 
manner as to prevent you from moving it back in. As with GrowWindow, Drag­
Window is set using the values in Screenbits.Bounds. 

Handling Keyboard Events 

After this discussion of mouse events, keyboard events will seem relatively sim­
ple and straightforward. There are three keyboard events: keyDown (a key is 
pressed); keyUp (a key is released); and autoKey (a key is held down long enough 
for it to start automatically repeating). The second one is only of interest in 
special cases, and you can often handle the third the same as the first. So you 
only have to worry about one event at this point: A key (or combination of keys) 
has been pressed. 

92 Turbo Pascal for the Macintosh 



For a regular application, a key press signals one of three things. First, if text 
entry is active, it means that a text record is being modified, that is, you' re typing 
text in. Second, your program may interpret certain key combinations as special 
commands. Third, the key press may be the command-key (I])) equivalent of a 
menu selection. 

If you pull down most Macintosh application menus (except for the Apple 
menu), you'll see the command-key equivalents beside the items. To invoke a 
given command, hold the command (I]}) key down and press the appropriate 
letter. Here's the routine to handle it: 

procedure DoKeypress(theEvent : EventRecord); 
var 

KeyCh : Char; 
begin 

if (theEvent.modifiers and cmdKey) <> a then 
begin 

KeyCh := Chr(theEvent.Kessage and charCodeMask); 
HandleMenu(MenuKey(KeyCh)) 

end 
else SysBeep{t) 

end; < of proc DoKeypress > 

< menu key command > 

< decode character > 
< get menu and item } 

< do something > 

The Modifiers field in theEvent includes a bit that is set to 1 if the command 
key was held down when the event happened. You can test for that bit with a 
predefined mask, cmdKey. If you pass the character to the Toolbox function 
MenuKey, it will return a Longlnt value containing the menu and item numbers. 
Pass these numbers to your menu-handling routine, which will split them up 
into two integers to separate the menu and item numbers. 

Handling Update Events 

The Macintosh keeps track of a lot of things for you. For one, it tells you when 
some portion of a window needs to be redrawn, because of resizing or removing a 
covering window. This is known as an update event (updateEvt), and it requires 
special handling. For one thing, you need to be able to redraw your entire win­
dow (or some portion thereof) at any time. This isn't that difficult for a text­
editing window, since the text is stored off in memory and is written to the 
window as needed. However, it's a little trickier for a window with graphics. You 
either have a procedure (or set of procedures) that can recreate what you have on 
the screen, or you need to write to a bitmap that's in memory and copy it to the 
window as needed. 

Writing Your Own Macintosh Applications 93 



To handle an update event, follow a given sequence. Here's an example: 

procedure DoUpdate(theEvent : EventRecord); 
var 

SavePort,theWindow : WindowPtr; 
begin 

theiindow := WindowPtr(theEvent.Message); 
if theiindow = MainPtr then 
begin 

SetCursor(CursListCwatchCursorJAA); 
GetPort(SavePort); 
SetPort(theiindow); 
BeginUpdate(theiindow); 
and here's the update stuff! 
Cleariindow(theWindow); 
now, back to our program ... } 
EndUpdate(theWindow); 
SetPort(SavePort); 
SetCursor(Arrow) 

end 
end; < of proc DoUpdate } 

{ find which window 
{ only update ours 

{ set cursor to watch 
save current grafport 
{ set as current port 

signal start of update 

{ do update stuff 

signal end of update 
{ restore grafport 

{ restore cursor 

} 
} 

} 
} 
} 
} 

} 

} 
} 
} 

This saves the current grafport into SavePort and makes theWindow the cur­
rent port so that you can write to it. BeginUpdate limits all output to the section 
of the Window that needs updating. You then do whatever redrawing is needed. 
When you're done, ErulUpdate lifts those limits, and SetPort(SavePort) restores 
the old grafport. 

Handling Activate Events 

On the Macintosh desktop, only one window can be active at any one time. This 
doesn't mean that changes can't occur in other, inactive windows; it just means 
that, if there is more than one window on the screen, the highlighted front 
window is considered the active window. The Macintosh interface states that 
clicking on a window makes it active (and all others inactive); other processes 
(including a direct call to SelectWindow) can also make a window active. Here's 
an example: 

procedure DoActivate(theEvent : EventRecord); 
var 

I 
AF lag 

Integer; 
: Boolean; 

the Window 
begin 

: WindowPtr; 

94 

with theEvent do 
begin 

theWindow := WindowPtr(Message); 
AFlag := Odd(Modifiers); 
if AFlag then 
begin 

SetPort(theiindow); 
FrontWindow := theWindow; 

get 
{ get the window } 

activate/deactivate } 

if it's activated ... } 

{ make it the port } 

< know it's in front } 

Turbo Pascal for the Macintosh 



DrawGrowicon(theWindow); 
end 
else 
begin 

SetPort(ScreenPort); 
if theWindow = FrontWindow 

then FrontWindow := NIL 
end; 
if theWindow = MainPtr then 
begin 

SetitemState(EM,L,not AFlag); 
for I := 3 to b do 

SetitemState(EM,I,not AFlag); 
SetitemState(EM,6,AFlag); 
for I := PM to IM do 

SetitemState(I,D,AFlag); 
DrawMenuBar 

end 
end 

end; { of proc DoActivate 

{ set size box } 

{ else reassign port 
{ if it's in front 

{ .•. then forget that 

if it's our window 
{ update edit cmds 

{ update Quit command } 
{ update other menus > 

{ update menu bar 

You test for activate/deactivate using the lowest bit on the Modifiers field of 
theEvent. If the window is being activated, you need to call SetPort to make it 
the current grafport; if it's being deactivated, you need to do something else, 
depending on your application. SetPort is called with the variable ScreenPort, 
which earlier (in Initialize) had been set to the entire screen with a call to 
GetWMgrPort. Whether the window is being activated or deactivated, a call is 
made to DrawGrowlcon. 

Handling Other Events 

There are a few other events that can occur. The disk inserted event (diskEvt) 
can usually be ignored; the only time it's important is during file selection, and, 
in that case, the Standard File Package reacts automatically. The network event 
(networkEvt) has to do with getting a packet via AppleTalk; see the appropriate 
documentation in Inside AppleTalk, as well as Chapter 10 in Volume 2 of Inside 
Macintosh, for more details. Likewise, the nature of a driver event (driverEvt) is 
dependent upon the device driver issuing it. 

The last four events are application-defined events: applEvt, app2Evt, 
app3Evt, and app4Evt. Since they're application defined, how do they get into 
the event queue in the first place? Simple: you put them there with the OS 
function PostEvent. PostEvent takes two parameters: the event code (which 
should be app1Evt .. app4Evt), and the event message, a Longlnt value that can 
be almost anything you want it to be (including a pointer to some data structure). 
The event code gets assigned to What, and the event message to Message; 
the other fields (Where, When, Modifiers) are all set for you by PostEvent. 
PostEvent then returns a result code (O=Ok, l=Event code not allowed) telling 
you how it did. 

Writing Your Own Macintosh Applications 95 



Data Structures 

Until now, we've shown many program parts without talking too much about the 
data structures involved, other than the type EventRecord. 

First, you need to understand that Mac software is heavily based on the ideas 
of pointers and hand'les. H you've programmed in Pascal or C before, you are 
probably familiar with the concept of a pointer: It's a variable that contains, 
instead of data, the address of where some data is stored. A handle is just a 
pointer to a pointer. Handles are used heavily in Mac programs, because they 
allow the Mac to perform memory reorganization-moving data structures from 
one place in memory to another-without changing any values. 

Here's the way it works: A handle points to a pointer, which in turn points to a 
data structure somewhere in memory. H the Mac needs to move that data struc­
ture, the Mac relocates it and then changes the value of the pointer. The handle's 
value never changes-it's still pointing to the same pointer-and so the move­
ment is invisible to the program. 

Handles carry the analogy of pointers directly: To access the data structure a 
pointer points to, you say pA, that is, the pointer variable's name followed by a 
caret. For a handle, HA refers to the pointer that the handle points to, and HAA 
refers to the data structure. 

Menus are managed using handles. All the menu procedures and functions 
work with menu handles, such as GetMenu, SetltemMark, Enab'feltem, and 
Disab'leltem. Since almost all menu manipulation is done via predefined rou­
tines, you should never have to directly access any field of the menu records. 

Windows are managed in a two-fold way, with both a WindowPtr (MainPtr) 
and a WindowRecord (MainRec). MainRec is used in the initial call to GetNew­
Window, but is never really directly accessed. MainPtr, on the other hand, is 
used in almost all the window-based calls. MainPtr actually points to a structure 
of type WindowRecord, but you can't access it through MainPtr, since its 
declared data type is GrajPtr. Instead, you need to do the assignment MainPeek 
: = llindowPeek(MainPtr);, where MainPeek is defined to be of type WindowPeek 
(which is equivalent to AWindowRecord). You can then access the Window­
Record fields via MainPeekA. 

QuickDraw, the graphics package, has some of its own data structures, most 
notably the types Point and Rect. Point is a variant record that allows you to refer 
to its X and Y components either as separate fields (V, H) or as elements of an 
array (VH[O] and VH[l]). The type Rect builds upon that: You can access its four 
coordinates as either separate fields (Top, Left, Bottom, Right) or as two points 
(TopLeft, BottomRight), which in turn give you the options (V, H) or (VH[O], 
VH[l]). 

96 Turbo Pascal for the Macintosh 



There are many other predefined data types, as well as numerous predefined 
constants. Most can be found by looking at the Macintosh Interface units in 
Appendix D and at Inside Macintosh, especially Volume 1. 

Resource Files 

There are two ways of defining windows, menus, and other data constructs spe­
cific to your program. First, you can use calls to NewWindow, NewMenu, and so 
on, hardcoding the menu layout or window specs into the initialization section of 
your program. Or, you can lay it all out in a resource fi"le, compile it using 
RMAKER, and link it into your program. Your initialization section can then 
load in the menu, window, and other information from the resource section of 
the application. 

A resource file contains items of different resource types: STR (string), ICON 
(icon), MENU (menu), WIND (window), DWG (dialog box), and so on. Each 
item is associated with a resource ID, such as 1000, 1001, and so on. These IDs 
need to be unique within a type; you can't have, say, two menus with IDs of 
1000. But you can have the same numbers as IDs for different types. For exam­
ple, in the following resource file example, there are several items with 
ID=lOOO, but all are of different resource types: 

EXAMPLE 

TYPE MENU 
,:LDDD 

\],lj 
About My Demo ... 
(-

,:LDD:L 
File 
New 
Open 
Save 
Quit 

,:LDD2 
Edit 
Undo/Z 
(­
Cut/X 
Copy/C 
Paste/V 
Clear 
(-
Show Clipboard 

; more menus go here 

menus 
resource ID 
menu title (=Apple logo) 
first item 
second item: line separator 

resource ID 
menu title 
first item 

resource ID (another menu) 
menu title 
first item (with character command equiv) 
line separators 
and so on •.• 

Writing Your Own Macintosh Applications 97 



TYPE WIND 
,1aaa 

My Demo Program 
i;i; 7 335 sas 
Visible GoAway 
a 
a 

TYPE DLOG 
,lDDD 

About My Demo 
90 SD l!ID L;bD 
Visible NoGoAway 
lb 
a 
lDDD 

and so on. 

window 
resource ID 
window title 
coordinates: yl,x2, y2,x2 
window attributes 
window type = documentProc 
refCon: user-definable info 

dialog box 
resource ID 
box title 
coordinates 
attributes 
window type = rDocProc 
refCon 
ID for dialog item list 

These IDs are used when you want to read the resource items from within 
your program. 

How do you associate a given resource file with a program? Two steps are 
necessary. First, the very first line in a resource file names the file that the 
compiled resources should be written out to; by convention, that file has the 
extension .RSRC. Second, having run RMAKER on your resource file, you need 
to pull the resulting data file into your program when it compiles. You do that 
using the {$R (file)} compiler directive (not to be confused with the {$R+/-} 
range-checking directive). For example, 

<SR Example.Rsrc> 

tells Turbo Pascal to copy in the resources from EXAMPLE.RSRC whenever it 
compiles a program. H you compile to disk, then the resource information is 
placed in the resource fork of the resulting application. That way, you can move 
and copy the application as much as you'd like, and the resources automatically 
go with it. 

There are two other compiler directives that tie into using resources. The first 
is the {$B+} directive, which sets the lmndl.e bit. Briefly, the bundle bit tells the 
Mac desktop that the resources in your application should be installed and used 
as a group. This applies primarily to icons and file types. Using it allows you to 
define your own icon in your resource file, as well as icons for files produced by 
your application. 

The second directive is the { $T (filetype)}, which is used to define the file type 
and file creator for your program. The file type should (usually) be APPL, since 
you are producing an application. The file creator has two uses. First, it associ­
ates the application with an icon; second, it allows a document to invoke your 
application when it's double-clicked, if the document is associated with the cre­
ator type of your prograin. Again, this all ties in to the bundle concept. 

98 Turbo Pascal for the Macintosh 



Chapter 12 tells you how to use RMAKER and the format needed for your 
resource file. Additional information about resources can be found in Inside Mac­
intosh, Volume I, Chapter 5, and Volume III, Chapter 1. 

Initialization 

Like the overall program, the initialization procedure for most Macintosh pro­
grams follows a certain structure: 

• Call Init routines. 

• Set up menus. 

• Set up windows. 

• Do other graphics initialization. 

• Do program-specific initialization. 

• Handle clicked documents. 

There is an lnit routine for most of the major managers. The first, and most 
important, is InitGraf(@thePort). That sets up QuickDraw (which is used by 
just about everything else) and sets up a grafport for the screen. Other Init 
routines you'll probably want to call are 

InitGraf(@thePort); {create a grafport for the screen} 
InitFonts; { start up the font manager } 
InitWindows; { start up the window manager } 
InitMenus; { start up the menu manager } 
TEinit; start up the text manager for DAs } 
InitDialogs(NIL); { start up the dialog manager } 
FlushEvents(everyEvent,D); { clear events from previous state } 

Setting up menus involves four steps. First, you want to define the menus 
themselves. If you're using a resource file, just do a call to GetMenu for each 
menu handle, or even a single call to GetNewMBar. Otherwise, you have to 
build each menu using an initial call to NewMenu, followed by a call or calls to 
AppendMenu. Second, if you' re handling desk accessories, call AddResMenu, as 
described earlier in this chapter. Third, add all the menus to the menu bar by 
making successive calls to InsertMenu. Finally, call DrawMenuBar to display 
the menu titles and make them active, as in 

MenuListC11 := GetMenu(ApplMenu); 
MenuListC21 := GetMenu(FileMenu); 
MenuListC31 := GetMenu(EditMenu); 
{ get other menus in like fashion 
AddResMenu(MenuListC11,'DRVR'); 
for Indx := 1 to Menucnt do 

InsertMenu(MenuListCindxl,D); 
DrawMenuBar; 

Writing Your Own Macintosh Applications 

{ read menus in from resource } 

{ pull in all desk acccessories 
{ place menus in menu bar 

draw updated menu bar to screen 

99 



In addition to all that, you may want to make calls to Disahleltem to disable 
any commands that shouldn't be active when your program starts, such as edit­
ing commands (when no editing windows are open). 

As with menus, your window initialization takes several steps. If you need a 
window at startup, create it using either GetNewWindow (reading in from 
resources) or New Window (building it in place). In either case, you'll now have a 
pointer to your window, which is what you'll use for most window manager calls. 
Having created the window, make it the current grafport by calling SetPort, 
then make it the active window by calling SelectWindow. If it has a drag bar, 
define dragging limits (DragArea). Likewise, if it has a Grow box, define mini­
mum and maximum size (GrowArea); you should also call DrawGrowlcon. For 
example: 

{ set up window stuff } 
GetWMgrPort(ScreenPort); { get grafport for all windows } 
SetPort(ScreenPort); { and keep on hand just in case } 
MainPtr := GetNewWindow(MainID,8MainRec,Pointer(-l)); { get window > 
SetPort(MainPtr); { set window to current grafport > 
SelectWindow(MainPtr); { and make window active > 
FrontWindow := MainPtr; { remember that it's in front > 
DrawGrowicon(MainPtr); { draw the Grow box in the corner> 
MainPeek := WindowPeek(MainPtr); { get pointer to window record } 
MainPeek•.windowKind := UserKind; { set window type = user kind (ID=6) > 
ScreenArea := screenBits.Bounds; { get size of screen (don't assume) > 
with ScreenArea do 
begin 

SetRect(DragArea,5,25,Right-5,Bottom-lO); ! set drag region> 
SetRect(GrowArea,50,20,Right-5,Bottom-lO) ! set grow region } 

end; 

There is a fair amount of graphics initialization you can, but don't have to, do. 
This includes setting pen size, pattern, and mode; loading the cursor, either from 
the system or from your resource file; loading or defining patterns; loading icons 
and bitmaps; and similar tasks. 

Your program-specific initialization should probably come here. You've set up 
all you need to in order to do some work; if your program requires it, you're able 
to modify menus, windows, and other data structures and display elements. 

The last part of initialization happens only if you have an application that can 
be launched by opening a document associated with your application's creator 
type. For example, you can get into Turbo Pascal by double-clicking any program 
file created under it. You can detect this by making the following call: 

CountAppFiles(Msg,FCount); 

This returns two values: FCount, which tells you how many files were 
selected; and Msg, which tells you if the files were selected for printing or for 
opening. You can then set up a loop (Indx := 1 to FCount) and call GetApp­
Files(Indx,AFRec), which will return information on each file to you, one at a 
time. Once you've handled that file, you can remove it from the list by calling 
ClrAppFiles(Indx). 

100 Turbo Pascal for the Macintosh 



As is true with most aspects of Macintosh programming, the best way to learn 
is to see what others have done. You'll find a diverse variety of approaches in the 
sample programs on your Turbo Pascal disk(s); there's something to be gleaned 
from each one. 

Cleaning Up 

Cleaning up on the Macintosh is actually minor; most details are automatically 
taken care of when you exit your program. There is a specific procedure, 
ExitToShell, which you can (but don't have to) call. It's useful if you have to abort 
in the middle of a program, although the Turbo Pascal routine Halt performs the 
same function. 

large Programs and, Segmentation 

The Mac limits the code size of a program to 32,768 bytes. When you need to 
write programs that exceed this limit, you must segment your program. This 
means dividing it up into chunks of less than 32K bytes each. 

Turbo Pascal makes segmentation simple. At the start of your program, tell the 
compiler to produce a segmented code file by including the {$S+} compiler 
directive. 

This switch is off by default; you must explicitly turn it on to use segments. 
When segmentation is off, all subprogram (procedure and function) calls and 
subprogram address references are coded by the compiler using program coun­
ter-relative instructions. When segmentation is on and you're using the {$S+} 
directive, all calls and address references are routed through the segment loader 
jump table. 

To segment your program, organize your procedures and functions-including 
those in a unit-into different segments. When you want to specify which seg­
ment a procedure, function, or group of procedures and functions should be in, 
precede the specific item with the directive {$S segname}, where segname is a 
string of up to eight characters. 

NOTE: The $S directive is case-sensitive. {$S MySeg} and {$S mySeg} refer 
to two different segments. 

If segname is less than eight characters long, it will be padded on the right 
with blanks. All procedures and functions following it will be included in that 
segment until the next {$S segname} directive is encountered. 

Writing Your Own Macintosh Applications IOI 



The default segment, or blank segment, is one whose name consists of eight 
blanks. This is where any procedures and functions declared before the first 
{$S segname} directive are stored. 

You can repeat segment names within a program, collecting procedures and 
functions in different parts of the program into the same segment. You can also 
organize your units into segments, as you saw in the last section of Chapter 8. 

When you compile a segmented program, the compiler stores the code seg­
ments as resources in the code file. They have resource IDs starting at 1, which 
the compiler generates and uses to replace the segment names you assigned. 
Segments are mostly invisible to the program. To load in a segment, call any 
procedure or function located in that segment. If the segment isn't already in 
memory, it is loaded in. 

To remove a segment from memory, call the OS routine UnloadSeg, passing to 
it the address of any procedure or function in that segment. Suppose you had 
placed your Initialize and Cleanup routines in their own segment. The main 
body of your program might look like this: 

begin 
Initialize; 
UnloadSeg(®Initialize); 
repeat 

SystemTask; 
if GetNextEvent(everyEvent,theEvent) 

then HandleEvent(theEvent) 
until Finished; 
Cleanup 

end. { of prog MySegProg } 

{ do initialization code > 
{ unload the segment } 

{ let desk accessories work } 
{ see if there is an event } 
{ if so, handle the event } 

After calling Initialize, call UnloadSeg and pass to it the address of Initialize. 
This frees the memory that Initialize' s segment occupies, allowing the Mac to 
reclaim it if needed. When you call Cleanup at the end of your program, that 
segment is reloaded from the disk, if necessary. If that segment's memory wasn't 
used, then it has remained in memory and is called without any disk access. 

Summary Exercises 

Again, within the scope of this manual, much less this chapter, it is impossible to 
teach you all you need to know about programming on the Macintosh. But this 
manual gives you a good start, combined with the sample programs on the distri­
bution disk. 

Try making changes to the program MYDEMO.PAS. Before doing so, make 
sure you are not working from your master (original) Turbo Pascal disk, but that 
you' re using a backup copy. Each time you successfully modify something, be 

102 Turbo Pascal for the Macintosh 



sure to make a backup copy of that version. That way, if you later accidentally 
muck things up beyond recovery, you can always go back and start over again. 
Some exercises follow that review what you've learned so far. 

Editing Resources 

Edit the STR resources in MYDEMO.R, inserting your name and the name 
of your firm in the appropriate places. Run RMAKER on it, recompile 
MYDEMO.PAS, select the About My Demo command in the Apple menu, and 
watch your name come up in the middle of the screen. 

NOTE: If you start to change file names, make sure the changes are made in 
all the right spots. MYDEMO.R's output file name (MYDEMO.RSRC) is 
located at the beginning of the file. If you change that name, you must make 
exactly the same change to the name in the {$R MyDemo.RSRC} directive at the 
start of MYDEMO.PAS. 

Adding Menu Items 

Add a new item to one of the menus. This consists of the following steps: 

I. Think up a relatively short name for it, say, Yahoo. 

2. Go into MYDEMO. Rand add that name to the end of one of the menu 
lists. You can add a command-key equivalent for it, but it can't dupli­
cate any of the other command keys. For example, use Yahoo/Y. 

3. Run RMAKER on MYDEMO.R. 

4. Go into MYDEMO.PAS. Go to the procedure HandleMenu. Find the 
case statement handle for the menu you modified. Add a new state­
ment for the menu handler n : DoYahoo (where n is the next available 
number for the menu). 

5. Add the new procedure, Do Yahoo. It should have roughly the following 
structure: 

procedure DoYahoo; 
{ declarations } 
begin 

{ any setup for the procedure 
{ procedure body } 

end; { of proc DoYahoo 

Writing Your Own Macintosh Applications 103 



6. Save MYDEMO.PAS to disk. Select the Run command from the Com­
pile menu. Fix any bugs you discover. Once it compiles and runs, go to 
the menu you modified and select the Yahoo command. Watch it run. 

Adding a New Menu 

Add a new menu to the program. Call the menu (and its commands) whatever 
you'd like; for now, we'll call the menu Stooges, with the commands Larry, 
Curly, and Moe. 

104 

1. Go to MYDEMO.R. At the end of the menus, before the line TYPE 
WIND, type in the menu description as follows: 

,LOOS 
Stooges 
Larry 
Curly 
Moe 

Save MYDEMO.R and run RMAKER on it. 

2. Get into MYDEMO.PAS. Go to the const section at the top of the file. 
Change MenuCnt from 5 to 6. Right under the statement 

IOMenu = LOOt;; 

add the line 

StgsMenu = LOOS; 

Right under the statement 

IM = S; 

add 

SM = 6; 

3. Go to the procedure Initialize. Right under the statement 

MenuListCIMl := GetMenu(IOMenu); 

add 

MenuListCSMl := GetMenu(StgsMenu); 

4. Go to the procedure HandleMenu. Add a semicolon to the end at the 
end of the case statement for IOMenu. Add the following underneath 
it: 

StgsMenu 
L 
2 
3 

end 

: case Item of 
DoLarry; 
DoCurly; 
Do Moe 

Turbo Pascal for the Macintosh 



5. Go to the end of the procedure DoFileDelete. Right after its final end 
statement, add the following: 

procedure DoLarry; 
begin 
end; < of proc DoLarry } 

procedure DoCurly; 
begin 
end; < of proc DoCurly > 

procedure DoMoe; 
begin 
end; < of proc DoMoe > 

6. Save MYDEMO.PAS. Compile it until all the syntax errors are gone 
and it runs OK. Try out the new menu. 

7. Be creatiw•: Put something in each of the procedures DoLarry, 
DoCurly, and DoMoe. 

Practice with these exercises until you feel comfortable enough to move on to 
the next chapter. In it, you11 learn how to write a desk accessory. 

Writing Your Own Macintosh Applications 105 



c H A p T E R 10 
Graduation: Writing a Desk Accessory 

Desk accessories are analogous to final exams in Mac programming: Once you've 
written a desk accessory, you've graduated. Of course, there are still device 
drivers to wrestle with, but you can consider them graduate studies. In the 
meantime, get your cap and gown ready, because by the time you' re done with 
this chapter, you'll be writing your own desk accessories. 

There are a couple of sample desk accessory programs on the Turbo Pascal 
disk. This chapter discusses writing desk accessories in general. After you' re 
done reading, you can go and look at the samples to see working programs. 

Basic Theory ancl, Structure 

Let's start off by looking at the overall format of a desk accessory, much as we 
looked at the overall format of a Mac application back in Chapter 9. Here's how 
your source file might be laid out: 

program ThisDeskAcc; 
<SD PasDeskAcc> 
<SU-> 

uses <whatever units>; 

procedure Open(var Device: dCtlEntry); forward; 
procedure Control(var Device: dCtlEntry; Param: Longint; Code: Integer); 

forward; 

107 



procedure Close(var Device: dCtlEntry); 
forward 

< Global constants and data types > 
< Support procedures and functions > 

Body of Open, Control, and Close procedures > 

begin end. 

The Open, Control, and Close procedures must be the first three procedures 
declared in the desk accessory program. They may have other names, but they 
must be declared in the above order and with the above parameter lists. 

• Open This procedure is called when the desk accessory is launched. It should 
do all the initialization: windows, menus, and so on. 

• Control This procedure is called each time the system wants the desk acces­
sory to do something: respond to an event or handle a timer update, for ex­
ample. 

• Close This procedure is called when the desk accessory is shut down. It closes 
up and disposes of the various items: windows, menus, and so on. 

One easy solution to ensuring that these routines are the first three is to 
declare them all forward at the start of your program, then have their bodies 
located later on. That allows them to call one another, and also allows them to 
share other procedures and functions located between their declarations and 
their implementations. 

As you can see, the desk accessory structure is not unlike that of a standard 
Mac application, with procedures for initialization, event-handling, and cleanup. 
Unlike an application, though, a desk accessory has no main body; instead, the 
operating system makes all the appropriate calls to these routines. More accu­
rately, the current application-be it the FINDER or some other program­
makes the appropriate calls. 

Remember the discussion on supporting desk accessories back in Chapter 9? 
When a desk accessory (DA) is selected from the Apple menu, the application 
currently running launches it by calling OpenDeskAcc, which instructs the oper­
ating system (OS) to load that DA into memory and then call its Open procedure. 
When the application calls SystemTask-as it should in its main loop and, for that 
matter, any other persistent looi:r-the operating system can then check to see if 
it needs to call the DA's Control procedure. Finally, when the application calls 
CloseDeskAcc, the OS issues the call to the DA' s Close procedure, then purges it 
from memory. Likewise, when the application itself is finished, the OS issues 
calls to the Close procedure on any DAs still running (though it is possible to 
write a DA that continues to run after you exit an application). 

108 Turbo Pascal for the Macintosh 



Like an application, a desk accessory needs to handle most of the usual 
events-mouse down, key down, auto key, activate, update-and may have to 
provide support for windows, dialogs, and menus. As you might suspect, how­
ever, there are significant differences in event handling between desk accessories 
and applications. There are three major differences. First, many events do not 
have to be handled by the desk accessory at all, since the application takes care of 
them. For example, the mouse-down event in a DA usually just has to do with an 
in-content event. Other events, such as the drag bar and Close box, are handled 
by the application. 

Second, other events are predigested by the operating system. Instead of han­
dling the in-menu-bar version of the mouseDown event, the DA receives a code 
from the OS telling it that a menu item has been selected, along with the menu 
and item values. 

This is taken one step further with editing commands: When an application 
calls SystemEdit, passing to it a value in the set [l,3,4,5,6) (which correspond to 
the commands Undo, Cut, Copy, Paste, and Clear, respectively), the operating 
system calls the Control procedure with that specific information, so that the DA 
already knows which command has been selected. 

Third, a desk accessory has to respond to certain events that an application 
doesn't. For example, a DA can tell the operating system that it needs to be 
called periodically, such as once per second. The OS then issues those periodic 
calls-in addition to whatever other events might occur-telling the DA this is 
its periodic timed event, and the DA should do whatever it needs to. For exam­
ple, it may have been told to update a clock. 

A desk accessory differs from an application in other ways as well. Perhaps the 
most significant is in the area of global variables: A DA doesn't have any. You can 
declare global constants, global data types, and global procedures and functions 
(in addition to Open, Control, and Close), but not global variables. This could be 
quite a hindrance, if there were no way around it. But, as you might guess, there 
is a workaround. The operating system passes the same data structure-a record 
of type dCtlEntry-to all three routines. One of the fields in that record, 
dCtlStorage, can be used as a handle (a double pointer, remember?) to a chunk 
of memory that holds whatever "global" data you need to be passed from Open to 
Control to Close, or that you need to be preserved between calls to Control. 

The fact that a desk accessory cannot have global variables also means that a 
DA may not use any units that depend upon global variables. In particular, this 
means that the PaslnOut, PasConsole, and PasPrinter units cannot be used by a 
DA, since these units declare and use global variables (such as the Input and 
Output files). The QuickDraw unit also declares global variables (thePort and 
arrow, for example), but as an exception to the rule, you may use QuickDraw as 
long as you don't refer to any of those variables in your DA. 

Graduation: Writing a Desk Accessory 109 



Other differences and limitations exist. A desk accessory has to fit into a single 
segment, which restricts it to 32K. (Inside Macintosh suggests an SK limit, but 
this is due to historical reasons, namely the limited memory on the earliest 
Macs.) In addition, a DA shouldn't have more than one menu and one window 
for itself, although again exceptions are possible. 

A comment on desk accessory design: A desk accessory is, by nature, mode­
less. It runs concurrently with whatever application happens to be going on at 
the time, and you can usually switch back and forth between them. By the usual 
event handling, a DA can tell when it has been activated or deactivated, that is, 
when its window has been made the active one. Your design needs to accommo­
date this and to make sure (as far as is possible) that your DA doesn't seriously 
interfere with whatever application might be running at the time. 

Data Structures 

Before we dive into a more detailed discussion on how to write Open, Control, 
Close, and any supporting procedures, we need to talk about the data structures 
that you can (and have to) work with. Three in particular are critical: the driver 
header, the device control entry (dCtlEntry), and your global data record (what­
ever you name it). Let's discuss them in that order. 

Driver Header 

Device drivers-which include desk accessories-have a fixed format for the first 
20 bytes of their machine code. This section, documented in Inside Macintosh 
(Vol. II, Chapter 6, "The Device Manager"), contains information about the 
driver itself, as well as offset pointers to the Open, Control, and Close proce­
dures. Furthermore, device drivers (including desk accessories) must be of a 
particular file and creator type in order to be installed into your SYSTEM file as 
a resource. In short, if you want to produce a desk accessory, you have to ensure 
that the code file is properly set up. 

Turbo Pascal makes this easy to accomplish. Put the directive 

{$D PasDeskAcc} 

right after your program header. This tells Turbo Pascal to do all the massaging 
and changing necessary to turn your program into a desk accessory code file. It 
defines your output file type as DFIL, which makes the output file appear as a 
suitcase (the icon used for fonts and desk accessories). The output file creator is 
set to DMOV, which allows you to double-click on the file icon in order to run 

110 Turbo Pascal for the Macintosh 



FONT/DA MOVER. If necessary or desired, you can override these values using 
the { $T ttttcccc} compiler option, where tttt is the output file type and cccc is the 
output file creator. 

The code resource type is DRVR, which identifies the code as a driver. The 
resource ID is set to 12, which is the lowest possible value for a desk accessory. 
Since FONT/DA MOVER modifies the resource ID if needed in order to install 
the desk accessory into the SYSTEM file, you don't need to worry about whether 
other desk accessories already have this resource ID. However, if you are going 
to use a resource file for your desk accessory, you do need to know that those 
resources must have ID values in the range (-16000 .. -15969); more about this 
later on. 

As mentioned, the PasDeskAcc driver header initializes the driver information 
fields. Four of these are copied into the corresponding fields in the device control 
entry (dCtlEntry) record (see next section) when the desk accessory is opened. 
Here are the dCtlEntry fields, the values they get set to, and what the values 
mean: 

dCtlFlags 
dCtlDelay 
dCtlEMask 

dCtlMenu 

$0400 
$0000 
$016A 

$0000 

DA can respond to Control calls 
Delay (in ticks) = 0, if timer update desired 
Events mask; enables activateEvt, updateEvt, 
autoKey, keyDown, mnuseDown events for DA 
Menu ID associated with DA 

These are standard settings for most desk accessories. For many, they're the 
only settings you need, so that you won't need to initialize these fields in your 
Open procedure. However, when in doubt, initialize the fields anyway and don't 
assume what values have or have not been set. 

Device Control Entry 

The operating system uses a data structure known as the device control entry 
(dCtlEntry) to keep track of device drivers and desk accessories. Each driver or 
DA has its own device control entry, which is passed as a parameter to its Open, 
Control, and Cwse procedures. The driver or DA can then set different fields to 
either tell the operating system how to handle it or keep track of information 
specific to itself between calls to its procedures. 

Graduation: Writing a Desk Accessory Ill 



The device control entry has the following declaration: 

type 
dCtlEntry 

record 
dCtlDriver 
dCtlFlags 
dCtlQHdr 
dCtlPosition 
dCtlStorage 
dCtlRefNum 
dCtlCurTicks 
dCtlWindow 
dCtlDelay 
dCtlEMask 
dCtlMenu 

end; 

Ptr; 
Integer; 
QHdr; 
Longint; 
Handle; 
Integer; 
Longint; 
Ptr; 
Integer; 
Integer; 
Integer 

pointer/handle to the driver } 
{ status and control flags } 
{ driver I/O queue header } 

{ used by I/O drivers } 
{ handle to private storage } 
{ the driver's reference 1 } 

counter for system task calls } 
{ pointer to driver's window } 

{ 1 of ticks between Run calls } 
{ desk accessory event mask } 

{ menu ID associated w/driver } 

Don't feel overwhelmed if you don't understand what many of those fields are 
for. Remember, this data structure isn't just used for desk accessories: It's also 
used for all device drivers, and so many of the fields aren't applicable to desk 
accessories. Other fields are used only by the operating system and don't need to 
be dealt with. Here's a brief explanation of the fields that do matter: 

• dCtlFlags: This two-byte field holds bits called flags, used to keep track of 
certain information about the desk accessory (or device driver). Seven bits of 
the upper byte are used to let the operating system know what kind of calls 
the DA (or driver) can or needs to respond to. Here are the flags and their 
functions: 

dReadEnable 0100 Set if driver can respond to Read calls 
dW riteEnable 0200 Set if driver can respond to Write calls 
dCtlEnable 0400 Set if driver can respond to Control calls 
dStatEnable 0800 Set if driver can respond to Status calls 
dNeedGoodBye 1000 Set if driver needs to be called before appli-

cation heap is re-initialized 
dNeedTime 2000 Set if driver needs to be called on a periodic 

(=dCtlDelay) basis 
dNeedLock 4000 Set if driver needs to be locked in memory 

Two are of particular interest to the DA: bit 2 (dCtlEnable), which tells the OS 
if the DA can respond to Control calls, and bit 5 (dNeedTime), which is set if 
you want the DA to be called on a periodic basis (such as once per second). 
The lower byte has flags that the OS uses to keep track of the DA' s (or driver's) 
status; they aren't of much concern here. 

• dCtlStorage: This handle (a pointer to a pointer) is used to keep track of a 
chunk of memory in which the DA can store any "global" variables it needs. 
The standard approach is to define a type of record whose fields comprise the 
variables desired. A call to NewHandle is used to do the allocation; after that, 

112 Turbo Pascal for the Macintosh 



type casting can be used to reference the record and its fields. More on this a 
little later. 

• dCtlRefNum: Each DA (or driver) has a reference number used by the operat­
ing system (and application) to identify it. It is stored here, where it can be 
used by the DA to calculate (among other things) the appropriate ID for any 
resource (such as a menu) associated with the DA. This value is in the range 
-13 to -32 and is related to the DA's resource ID (12 to 31) by the following 
equation: 

ID = -L • (dCtlRefNum + L) 

Even though the header PasDeskAcc sets the resource ID to 12, FONT/ 
DAMOVER might change that (to avoid duplicate IDs) when it installs your 
desk accessory into the SYSTEM file. You cannot and should not assume that 
your DA has a dCtlRefNum of -13. 

• dCtlWindow: This field points to the window (if any) opened by the desk 
accessory. The operating system needs this information to pass certain window 
events to the current application, which is then responsible for handling them. 
The DA itself uses dCtlWindow to set the window as the current grafport 
before doing anything in it. Also, if the DA does open a window, this field can 
be checked at the start of the Open procedure to screen out any attempt to 
open a DA that is already open. 

• dCtlDelay: This field tells the operating system how often to issue a run event. 
It's only effective if you've set the dNeedTime bit in the dCtlFlags field. The 
value stored is in ticks (remember, 1 tick equals l/60th of a second), so that you 
would set this field to 60 if you wanted the DA to be called once a second. 

• dCtlEMask: This field tells the operating system what events the DA wants to 
respond to, just like the mask that an application passes as the first parameter 
in the procedure GetNextEvent. The event values should be set in Open, so 
that the operating system knows when (and when not) to call Control. The 
PasDeskAcc header initializes this field so that the desk accessory handles 
Oust) the following five events: 11W1JSeDown, keyDown, autoKey, updateEvt, 
and activateEvt. 

• dCtlMenu: If the DA has a menu associated with it, dCtlMenu should be set to 
that menu's ID. Resources associated with a desk accessory must have IDs 
that fall within a specific range of values. More on this in "Setting Up the 
Resources" several pages ahead. 

The same device control entry is passed to all three procedures (Open, Con­
trol, and Close), so information set in one procedure can be read or modified in 
another. For example, the DA might use dCtlWindow to point to the window 
opened in Open, set that window as the current grafport in Control, and close 
and dispose of that window in Close. 

Graduation: Writing a Desk Accessory 113 



Global Variabks 

Now you need to learn about the other major data structure in your desk acces­
sory: your global variables-equivalent record. Since you can't actually declare 
any global variables, this record is designed to hold all the information you want 
to preserve between calls to your desk accessory. Your first step is to define this 
record as a data type, in the following manner: 

type 

DAGlobals 
record 

theMenu 
theString 
thePlace 
CHandle 

end; 

DAGlobalsP 
DAGlobalsH 

MenuHandle; 
String; 
Point; 
CursHandle 

•nAGlobals; 
ADAGlobalsP; 

This record (DAG"lobals) assumes that you have four "global" variables that you 
want to maintain: theMenu, theString, thePlace, and CHandle. (NOTE: This is 
just an example. You do not have to have fields with those names or of those data 
types; instead, your global record should reflect what the DA you're writing 
needs.) You've also declared a data type that's a pointer (DAG"lobalsP) to this 
type of record and another that's a handle (DAG"lobalsH) to the same type of 
record. The pointer is actually just an intermediary step, since you can't directly 
declare a handle (such as DAG"lobalsH = AADAG"lobals). 

The example shows you how to define the proper data type, but not what to do 
with it. You need to set aside a block of memory large enough to contain a record 
of this type, then save a handle to that block in the device control entry. The next 
section shows you exactly how to do that. 

Initialization 

When a desk accessory is launched and its Open procedure is called, the proce­
dure's only parameter is the device control entry that the operating system has 
now associated with that DA. The Open procedure then takes care of three major 
tasks: setting the fields in the device control entry; allocating and initializing any 
global variables; and setting up any resources, such as windows, dialog boxes, 
menus, and so on. The first task is unique to the desk accessory (or driver), but 
the next two are similar to those found in the initialization procedure of any Mac 
application. These tasks overlap, but they're worth discussing individually. 

114 Turbo Pascal for the Macintosh 



Setting Up the Device Control Entry 

This record is passed to Open as a parameter of type dCtlEntry; we'll assume 
that the parameter is named Device. You need to set certain fields in Device, 
either for the use of the operating system or for your own use later on. Following 
are the fields you may need to initialize, with some guidelines on how to do so. 

The field dCtlFlags lets the operating system know what type of calls it can 
make to your desk accessory. The flag dCtlEnabl,e (bit 2 in the upper byte) is 
already set, thanks to PasDeskAcc. However, if your desk accessory needs to 
update something periodically, set the flag dNeedTime (bit 5 in the upper byte). 
The sample desk accessory (MYDA) moves a string of text a little bit down the 
window every half a second, so it sets this flag. The constant dNeedTime is 
defined in the program as $2000, again corresponding to the proper bit; a logical 
OR can be used to set this bit: 

dCtlFlags := dCtlFlags or dNeedTime; 

If this bit is set, then the operating system makes calls of the type accRun to 
Control on a regular basis. Note that these calls are made in addition to any 
control event calls made as a result of setting dCtlEnab'le. 

If your DA has requested periodic calls to Control, you must also specify how 
often those calls occur. You do this by assigning a value to the field dCtlDelay. 
This field is initialized to 0 by PasDeskAcc. This means that the operating system 
will make calls to Control as often as it can if you have set the. dNeedTime bit in 
dCtlFlags. Any value greater than 0 defines how long (in ticks) the operating 
system will wait before making another accRun call to Control; however, this 
delay will not stop the OS from making other control calls to Control. Since a tick 
is l/60th of a second, setting dCtlDelay to 60 asks the operating system to call 
your DA once a second. 

You may need to modify dCtlEMask, which serves as an event mask for your 
desk accessory. The event types include mouse down, key down, auto key, 
update event, and activate event. You can use the predefined constants 
(rrwuseDown, keyDown, autoKey, updateEvt, and activateEvt) and the logical 
OR instruction to set up the mask, as in: 

Device.dCtlEMask := mouseDown or updateEvt or activateEvt; 

By the way, Inside Macintosh states that you should never request rrwuseUp 
events if your desk accessory has a window, though it fails to explain exactly why. 

There .are three more fields that you may want or need to initialize: 
dCtlStorage, dCtlWindow, and dCtlMenu. The first is used to keep track of any 
private (global) data storage your desk accessory needs; the second is a pointer to 
the window that your DA opens (if it opens one); and the third contains the ID 

Graduation: Writing a Desk Accessory 115 



number of the menu that your DA creates (if it creates one). The next two sec­
tions explain more about these fields. 

Setting Up the Gwbal Variables 

Back in the section on global variables, you learned about how to define the data 
types you need for your global variables. You defined a record (DAGwbals) 
whose fields corresponded to the variables you . needed, and a handle 
(DAGwbalsH) to that type of record. However, if you remember, these are all 
just data types; no actual variables have been declared, and no storage has been 
set aside. Instead, in the Open procedure of your desk accessory, you should 
have the following statement: 

Device.dCtlStorage :• NewHandle(SizeOf(DAGlobals)); 

The OS function NewHarulle returns a handle to a chunk of memory; the 
parameter passed specifies the size in bytes. The built-in function SizeOf returns 
the size in bytes of the data type or variable passed to it. This statement allocates 
memory equal in size to a variable of type DAGwbals and assigns a handle to that 
memory to the field dCtlStorage. 

Fine, the memory is set aside, and dCtlStorage points (indirectly) to it. Now, 
how do you use this memory as a global variable? Use the following statements: 

HLock(Device.dCtlStorage); 
with DAGlobalsH(Device.dCtlStorage)AA do 
begin 

< use theMenu, etc., as desired 
end; 
HUnLock(Device.dCtlStorage); 

The OS procedure HLock ensures that the operating system (which has the 
ability to move chunks of memory around) doesn't move your chunk until you' re 
done using it. The with statement uses a form of type casting, that is, converting 
one data type into another. The expression DAGwbalsH(Device.dCtlStorage) 
takes the generic handle dCtlStorage and converts it to the data type 
DAGwbalsH, which is a handle to a record of type DAGwbals. The two pointer 
symbols or carets (AA) mean that you are now directly referencing a record of 
type DAGwbals, so that you can freely refer to the fields (theMenu, theString, 
and so on) by their names. When you're finished, the OS procedure HUnLock 
tells the OS that it is once again free to move that chunk of memory around­
until the next time you want to use it. 

116 Turbo Pascal for the Macintosh 



Setting Up the Resources 

Almost all desk accessories open a window or dialog box of some sort, since they 
need an area on the screen in which to perform their function. In addition, other 
resources-menus, strings, cursors, icons-may be associated with the desk 
accessory. As with an application, resources can be handled two ways: either by 
defining them in a resource file, or by building them right within the initializa­
tion section. For example, you can open a window by using GetNewWindow to 
read in the values from the resource fork (assuming that you've defined it there), 
or by using NewWindow and passing all the specifics as parameters. 

Resource IDs 

Like an application, a DA may have resources associated with it. Since the codes 
of all DAs and all their resources are stored in the SYSTEM file, the operating 
system needs a mechanism to identify which resources are related to a particular 
DA. Therefore, the operating system requires all DA-related resources to have 
IDs that follow this binary pattern: 

11 ODD rrrrrr xxxxx 

where rrrrrr is the DA' s resource ID (12 to 31), and xxxxx is a number deter­
mined by you. This gives you only 32 different resource ID values for a given 
desk accessory. However, since resources of different types (such as MENU and 
WIND) can have the same ID, this actually means that you can have up to 32 
instances of each resource type in your resource file. 

The PasDeskAcc header fixes your DA resource ID at 12. This means that the 
resource ID values in your resource file must be in the range $Cl80 to C$19F, 
which corresponds to - 16000 to - 15969. 

This numbering system is fine for compiling your desk accessory, but a compli­
cation occurs when you move it into the SYSTEM file, using FONT/DA 
MOVER. FONT/DA MOVER changes the resource ID of your DA if an existing 
DA in your SYSTEM file has the same ID. Similarly, it adjusts the IDs of all 
related resources by changing the (rrrrrr) field to the DA' s new resource ID 
value. This means that you can't use hard-coded constant values for resource IDs 
in a DA. Instead, you must calculate resource IDs at run-time. 

You can calculate the resource IDs using the field dCtlRefNum. Remember 
that dCtlRefNum and the desk accessory's resource ID are related by the expres­
sion 

resID ; -1 * (dCtlRefNum+1) 

Graduation: Writing a Desk Accessory 117 



Therefore, the equation for calculating the starting resource ID within your 
desk accessory is 

startID = $CODD - 32•(dCtlRefNum+t) 

A convenient place for storing this value is the dCtlMenu field, if you have a 
menu; this should be its resource ID anyway. If you don't have a menu, then this 
field should be set to 0, and you'll have to calculate the value as needed or store it 
as a field in your globals record. 

Opening the Window 

Most desk accessories open a window of some kind, which requests or displays 
information. The system must tell the current application, which needs to han­
dle many window events for the desk accessories, about this window. This is 
done via a pointer to the DA' s window, which is stored in the field dCtlWindow. 
Furthermore, the window's windowKind field must be set to the DA' s reference 
number (dCtlRefNum). All this involves some type casting (the programming 
equivalent of hand signaling), so that the compiler thinks dCtlWindow is first of 
type WindowPtr, then of type WindowPeek. The following statements open a 
DA' s window: 

WindowPtr(dCtlWindow) := GetNewWindow(dCtlMenu,NIL,Pointer(-l)); 
WindowPeek(dCtlWindow)a.windowKind := dCtlRefNum; 

The first reads the window data in from the resource fork and creates it; the 
second sets the windowKind field in the corresponding window record. 

Later on in Open, the window's contents should be set up as needed. The 
sequence of code should look something like this (assuming that SavePort is a 
variable of type GrafPtr): 

GetPort(SavePort); <save cur port } 
SetPort(GrafPtr(dCtlWindow)); <get our window} 
< do your window text or drawing 
SetPort(SavePort) < restore grfprt 

This code saves the current grafport, then sets up the DA' s window so that it 
can be written to. After you've set up the window, the current grafport is 
restored and continued. 

118 Turbo Pascal for the Macintosh 



Setting Up a Menu 

A desk accessory can have a menu associated with it. You've already seen how to 
calculate a DA's resource ID; having done that, you can read the DA in and set it 
up with the following statements (assuming theMenu is a variable of type 
MenuHandle): 

theMenu := GetMenu(dCtlMenu); 
theMenuAA.menuID := dCtlMenu; 
InsertMenu(theMenu,O); 
DrawMenuBar; 

get menu hndl } 
verify ID val } 

< add to bar } 
{ redraw bar } 

The first statement reads the menu in from the resource fork, while the second 
verifies that the menu record has the correct ID. This is necessary because some 
resource-moving utilities don't properly name the resource ID within the menu 
itself The last two statements put the menu at the end of the current menu bar, 
then redraw the bar so that the menu shows up. 

It is possible for a desk accessory to set up more than one menu. Should you 
choose to do so, however, you should create an entirely new menu bar and swap 
menu bars as the desk accessory is activated or deactivated (see Inside Macin­
tosh, Volume 1, Chapter 14, for more details). 

Opening Other Resources 

You can read in other resources in a similar fashion. One example would be to 
read in a new cursor from the resource file for use when the desk accessory is 
active and the cursor is over its window. Other resources, such as strings and 
patterns, can be read in the same way. 

Handling Multiple Calls to Open 

A desk accessory can be launched more than once. That is easily illustrated by 
starting one up, then pulling down the Apple menu. The desk accessory remains 
on the menu, just waiting to be selected again. You can prevent a new window 
(or whatever else) from being created each time the desk accessory is selected 
from the Apple menu. 

The key is to realize that the same Open routine is called with the same device 
control entry record (Device). By checking the fields in Device, you can tell if 
Open is being called again. For example, a test is performed to see if dCtlWin­
dow is nil: 
procedure Open; 
var 

SavePort GrafPtr; 
Temp Val Integer; 

Graduation: Writing a Desk Accessory 119 



begin 
with Device do 
if dCtliindow = nil then 
begin 

{ make sure not already open } 

{ do all the initialization > 
end 

end; < of procedure Open } 

If dCtlWindow equals is nil, then the initialization occurs; otherwise, Open 
knows that the desk accessory already has a window open (and, presumably, has 
everything else set up as well), and so skips all the initialization steps. 

Event Handling 

Desk accessories, like Mac applications, are event-driven programs. In fact, they 
are more event-driven than applications are, since they are only called when the 
operating system has some event it thinks the desk accessory should handle. 
When that happens, the DA calls the procedure Control, passing it three param­
eters: Device, Code, and Param. Device is the same old device control entry 
record, which you'll need to access its fields, as well as any global variables. Code 
is an Integer value that tells Control what type event the OS wants it to handle, 
while Param is a Longlnt value that contains (or points to) any parameters associ­
ated with the particular event. 

The Control Procedure 

Here's an example of what the Control procedure could look like: 

procedure Control(var Device: DCtlEntry; Param: Longint; Code: Integer); 
forward; 

procedure Control; 
var 

SavePort 
begin 

with Device do 
begin 

GrafPtr; 

HLock(dCtlStorage); 
with DAGlobalsff(dCtlStorage)•• do 

begin 
GetPort(SavePort); 
SetPort(GrafPtr(dCtliindow)); 
case Code of 

main body of proc Control > 

< access DCtlEntry > 
< freeze reloc block > 

{ access globals > 
save current port > 

< switch to ours > 

accEvent 
accRun 
acccursor 
accMenu 

HandleEvent(EventRecP(Param)); 
HandleTick; 

< deal with event } 
< deal with timer } 

< change cursor > 
< item from menu > 

120 

CursorAdjust; 
HandleMenu(Param); 

Turbo Pascal for the Macintosh 



accUndo .. AccClear 
: HandleEdit(Code); 

goodBye : Close(Device) 
end; 
SetPort(SavePort) 

end; 
HUnLock(dCtlStorage) 

end 
end; 

standard edit commands 
{ about to shut down 

{ restore old port } 

unfreeze rel block 

{ of proc Control 

Control first locks down the block that dCtlStorage points to, to prevent the 
operating system from moving it while it's in use. It then sets up its window as 
the current grafport and handles the event code (Code) that the operating sys­
tem has passed to it. Here's a description of the event codes, which should have 
been declared as constant values at the start of your desk accessory: 

• accEvent (64): Some system event (mouseDown, for example) has occurred, 
and the desk accessory must handle it. Param points to a record of type 
EventRecord; type casting is used to pass that record as a parameter to 
HandleEvent. 

• accRun (65): It's time for the periodic update requested by the DA via the 
dCtlFlags and dCltDelay fields. You should then do whatever it was you 
wanted the DA to do on a periodic basis. 

• accCursor (66): It's time to change your cursor, if you want a different cursor 
when your desk accessory is active and the cursor is over its window. This 
parallels putting a call to a CursorAdjust procedure in the main event loop of a 
Mac application. 

• accMenu (67): The user has just selected an item from the DA menu(s). Param 
now contains the menu and item values in its high and low words, respec­
tively. You should pass it to a menu-handling routine. 

• accUndo (68), accCut (70), accCopy (71), accPaste (72), accClear (73): The user 
has passed a value in the set [1,3 .. 6] to the SystemEdit function, signifying that 
the Undo, Cut, Copy, Paste, or Clear command has been selected from the 
Edit menu. You should take appropriate action, if there is any. The gap 
between accUndo and accCut accounts for the line separator. 

• goodBye (-1): The system, for whatever reason, is about to shut the desk 
accessory down and free up the memory it uses. You should call Close to do all 
your cleaning up. 

This version of Control handles all possible messages from the operating sys­
tem, but your desk accessory may not need to handle that many. If it doesn't 
have a menu, you can drop the check for accMenu; likewise, you can ignore any 
or all of the editing commands if they don't apply to your desk accessory. In 
addition, if you don't care about the cursor, you can remove the check for 
accCursor. If you haven't requested a periodic update, you don't need to worry 
about accRun. In short, the only two messages you must at least handle are 
accEvent and goodBye. 

Graduation: Writing a Desk Accessory 121 



Event-Handling Routines 

The Hand1eEvent procedure looks very much like its counterpart in a Mac appli­
cation: 

procedure HandleEvent(EPtr : EventRecP); 
begin 

case EPtrA.What of 
mouseDown DoMouseDown(EPtrA); 
keyDown DoKeyPress(EPtrA); 
autoKey DoKeyPress(EPtrA); 
updateEvt DoUpdate; 
activateEvt DoActivate(EPtrA) 

end 
end; 

{ mouse button pushed } 
< key pressed down } 

{ key held down } 
{ window need updating } 
{ activate/deactivate } 

of proc HandleEvent } 

It should handle the five basic events: mouseDown, keyDown, autoKey, 
updateEvt, and activateEvt. However, it probably won't have much to do for 
most events, since a lot of the DA' s event handling is done by the current appli­
cation or by the operating system itsel£ 

A mouseDown event is particularly simple to handle, since all the varieties 
except for inContent are dealt with by the application or the OS. Furthermore, 
you don't need to check to see if the event happened within the DA's window, 
since the event wouldn't have been passed to the DA otherwise. Here's a sample 
procedure: 

procedure DoMouseDown(theEvent:EventRecord); 
var 

MLoc Point; 
begin 

with Device, DAGlobalsH(dCtlStorage)AA do 
begin 

thePlace := theEvent.Where; 
GlobalToLocal(thePlace); 
Update Window 

end 
end; 

< find where click was } 
convert to local coord } 

{ and update window } 

{ of proc DoMouseDown } 

The location of the event, in global coordinates, is found in the field Where of 
the event record; you can convert it to local (window-based) coordinates by pass­
ing it GlobalToLocal. UpdateWindow, a user-defined procedure, is called to 
allow the desk accessory to respond to the mouse click. 

The keyDown and autoKey events should be handled as you would in a Mac 
application. You should check (as usual) to see if the event is a menu command 
and, if so, handle it accordingly; otherwise, do whatever the DA should do if 
someone just presses a key. Be aware, though, that the MenuKey function 
doesn't work properly within a desk accessory, so you'll have to do the conversion 
by hand, probably by using a case statement. 

122 Turbo Pascal for the Macintosh 



Here's an example: 

procedure DoKeyPress(theEvent EventRecord); 
var 

Ch : Char; 
begin 

with theEvent, Device, myGlobalsH(dCtlStorage)AA do 
begin 

Ch :a Chr(Message and charCodeMask); < get character pressed 
if (modifiers and cmdKey) <> a then < check for command key > 
begin 

if Ch in C'a' •. 'z'l then 
Ch :a Chr(Ord(Ch)-32); <convert to uppercase > 

case Ch of 
'Z' HandleEdit(accUnDo); 
'X' eandleEdit(acccut); 
'C' HandleEdit(acccopy); 
'V' HandleEdit(accPaste); 

< handle other menu command, if the DA has a menu > 
end 

end 
else SysBeep(l) < do something in response to the key > 

end 
end; < of procedure DoKeyPress 

HandkEdit, you may remember, is a user-defined procedure that talces care of 
the standard editing commands: Undo, Cut, Copy, Paste, and Clear. Its struc­
ture should be something like this: 

procedure HandleEdit (ECode : Integer); 
begin 

case ECode of 
accUnDo < handle Undo command >; 
accCut < handle Cut command >; 
accCopy < handle Copy command >; 
accPaste < handle Paste command >; 
accClear < handle Clear command > 

end 
end; < of procedure HandleEdit > 

The comment sections should be replaced by whatever code is needed to 
handle that particular command, even if it's just a beep (SysBeep(l)). 

The updateEvt event should also be handled as in a Mac application. It means 
that the window has just been moved or uncovered and needs to be redrawn, 
with the updating code bracketed between calls to BeginUpdate and EndUp­
date. For example: 

procedure DoUpdate; 
begin 

with Device, myGlobalsH(dCtlStorage)AA do 
begin 

BeginUpdate(GrafPtr(dCtliindow)); 
< perform DA window redraw > 
EndUpdate(GrafPtr(dCtliindow)) 

end 
end; < of procedure DoUpdate > 

Graduation: Writing a Desk Accessory 123 



Unlike the DoUpdate routine in Chapter 9, this one has no calls to GetPort 
and SetPort. That's because those calls have already been made back in the main 
body of the Control procedure. 

The DoActivate routine doesn't need to do window selection or similar tasks; 
that's handled by the current application. It does, however, need to take care of 
any functionality associated with whether the DA is active or inactive. The fol­
lowing procedure, DoActivate, enables or disables a DA' s menu, depending on 
whether the DA is being activated or deactivated: 

procedure DoActivate(theEvent: EventRecord); 
begin 

with theEvent, Device, myGlobalsH(dCtlStorage)•• do 
begin 

if Odd(modifiers) then 
Enableitem(theMenu,O) < enable entire menu } 

else Disableitem(theMenu,O); disable entire menu > 
DrawMenuBar 

end 
end; < of procedure DoActivate 

HandleTicks does pretty much as described: It takes whatever periodic action 
the user wants it to. In the following example, it moves the desired location of a 
string of text down, then calls UpdateWindow to draw the string in the new 
location: 

procedure HandleTicks; 
begin 

with Device, myGlobalsH(dCtlStorage)•• do 
begin 

thePlace.v := (thePlace.V + 5) mod 200; < do wraparound at bottom } 
UpdateWindow 

end 
end; < of procedure HandleTicks } 

Likewise, CursorAdjust (if present) tests for the current location of the mouse 
and sets the cursor accordingly. In the procedure below, a cursor defined in the 
resource file is read into a global variable and is used whenever the mouse is over 
the DA' s window: 

procedure CursorAdjust; 
var 

MLoc : Point; 
begin 

with Device, DAGlobalsH(dCtlStorage)••, 
begin 

WindowPeek(dCtlWindow)• do 

GetMouse(MLoc); 
if PtinRect(MLoc,Port.portRect) 

SetCursor(CHandle••) 
else InitCursor 

end 

then < if mouse over DA window } 
< then use DA's cursor } 

else use default cursor } 

end; of procedure CursorAdjust } 

Type casting the window pointer (dCtlWindow) is done in order to get the 
window's rectangle (Port.portRect). 

124 Turbo Pascal for the Macintosh 



Menu Handling 

If your desk accessory has its own menu, you need to be able to handle the 
commands as they come in. They'll be signalled by the Code parameter (Code= 
accMenu) in the Control procedure, instead of by a mouseDown event, and the 
menu information is passed in the Param parameter. Your menu-handling rou­
tine (HandleMenu) is called directly from Control and might look like this: 

procedure HandleMenu(Menuinfo : Longint); 
var 

Menu,Item : Integer; 
begin 

if Menuinfo <> a then 
with Device,DAGlobalsH(dCtlStorage)•• do 
begin 

Item := LoWord(Menuinfo); 
case Item of 

L : { handle first item in menu >; 
2 : { handle second item in menu >; 
{ and so on > 

end 
end; 
HiliteMenu(D) 

end; { of procedure HandleMenu > 

It is possible to implement more than one menu in a desk accessory, by saving 
the current menu bar and creating an entirely new one. In that case, you should 
make HandleMenu look like the version in a regular Mac application: have a case 
statement based on the menu ID, then internal case statements for the items of 
each menu. 

Support Routines 

The purpose of your desk accessory is, of course, to do something, which the 
support routines help you accomplish. These are the procedures and functions 
that your event-handling routines call, just as in a regular Mac application. Most 
look as they would in a regular Mac application, the major difference being that 
many probably have a main body that looks something like this: 

procedure Whatever(<any parms>); 
{ any local declarations > 
begin 

with Device,DAGlobalsH(dCtlStorage)•• do 
begin 
{ do whatever needs to be done > 
end 

end; 

Graduation: Writing a Desk Accessory 125 



These support routines are probably located in one of two places. First, they 
may be declared within one or more of the main procedures, such as Control. If 
they are included inside the procedure Control, this makes all those routines 
local to (that is, only able to be called by) Control. This approach allows all those 
routines access to Device, which is one of Controf s parameters and therefore is 
visible to all local routines. 

The other approach is to declare some (or all) of the support routines to be 
global; that is, to declare them outside of and before the procedures Open, Con­
trol, and Cwse. That way, these routines may be called by any or all of those 
three major procedures. The disadvantage is that Device must be explicitly 
passed to the support (and event-handling) procedures by the calling procedure. 

Closing Down 

Several things can bring about the termination of a desk accessory. An applica­
tion can explicitly terminate the DA by calling CwseDeskAcc. It should do this, 
for example, when handling the inGoAway version of the mouseDown event in a 
desk-accessory window. Second, the desk accessory may want to terminate itself, 
perhaps due to insufficient or missing resources. Third, the operating system 
may need (or want) to shut down the DA. In any case, the DA should be able to 
make a graceful exit, cleaning up after itself as best it can. 

To do all this, the desk accessory uses its Cwse procedure. This is the proce­
dure the operating system calls when it (or the application it's running) wants to 
close down the DA. The close routine should get rid of the DA' s window (if it 
has one), delete its menu (if it has one), and free up any space pointed to by 
Device.dCtlStorage. The calls to do all this are standard Toolbox and OS calls. 
Here's an example: 

procedure Close; 
var 

MHandle : MenuHandle; 
begin 

with Device, DAGlobalsH(dCtlStorage)•• do 
begin 

DisposeWindow(GrafPtr(dCtlWindow)); 
DeleteMenu(dCtlMenu); 
DisposeMenu(theMenu); 
DrawMenuBar; 
DisposHandle(dCtlStorage); 
dCtlWindow :a NIL 

end 
end; 

126 

< get rid of window } 

< remove from bar } 

< get rid of menu } 
{ and update menubar } 
{ get rid of globals } 

< clear window ptr } 

of procedure Close 

Turbo Pascal for the Macintosh 



If your DA has any data (such as text) that has been entered by the user, you 
may want to ask the user whether or not to save it to disk. At this point, there's 
no way to avoid having the desk accessory terminated, but you can at least mini­
mize the effects. 

In some cases, the procedure Control gets the notification that the application 
heap is about to be re-initialized. This happens if two conditions are met: First, 
the desk accessory has not been locked in RAM; second, the DA has specifically 
requested a goodBye event. In such a case, you should have a goodBye entry in 
the main case statement in the procedure Control, and that entry should call 
Close. 

Compiling and Installing a Desk Accessory 

Writing a desk accessory doesn't do much good unless you know how to correctly 
compile and install it. In this section, you11 learn how to compile MYDA, 
a sample desk accessory on your Turbo Pascal disk, and install it into your 
SYSTEM file. 

MYDA: A Desk-Accessory Template 

MYDA consists of three source files: 

• MYDA.PAS contains the global declarations, as well as the Open, Control, and 
Close procedures. 

• MYDA.INC contains the event-handling and support routines. The include 
{$1} directive for this file is just inside the Control procedure. 

• MyDA.R contains the resources-window, menu, and cursor-used by 
MYDA. 

MYDA opens a window, creates a menu, and sets up its own cursor. It then 
writes a text string into its window and starts moving the string down. When it 
reaches the bottom of the window, it starts over at the top. By moving the cursor 
to any part of the window and clicking, you can move the string to that point; it 
continues to move down from there. 

The three items in the DA' s menu all' change the string being moved. Like­
wise, the editing commands don't edit the string at all; they just set it equal to 
the corresponding command (Cut, for example), so that you can see where you 
would need to put the code to handle that command. 

Graduation: Writing a Desk Accessory 127 



Finally, you can change the string by typing on the keyboard, though you first 
may want to use the backspace key to delete whatever text is already there. 

Compiling MYDA 

Compiling MYDA is a two-step process. First, just as with a Mac application, 
you need to "compile" the resource file (MYDA.R) using RMAKER. Start up 
RMAKER by double-clicking on its icon from the desktop (or by selecting it from 
the Transfer menu). Open the file MYDA.R, using the file selection box that 
RMAKER brings up. When it is done, the file MYDA.RSRC is created. You can 
now go back to Turbo Pascal; either push the Quit button (to get back to the 
desktop first) or use the Transfer menu to go directly back into Turbo Pascal. 

From Turbo Pascal, open up MYDA.PAS. If you didn't transfer over from 
RMAKER, you can do this either by double-clicking on MYDA.PAS, or by dou­
ble-clicking on Turbo Pascal and using the Open item of the File menu to find 
and open the file. Having done that, go over to the Compile menu and select the 
To Disk option (or type []illl). The result is the file MYDA, which contains the 
machine code of the desk accessory in the proper format. 

Installing MYDA 

Having successfully compiled MYDA, you need to install MYDA into your sys­
tem file (named SYSTEM). Which brings up an important warning: Moving 
desk accessories in and out of system files can, in some cases, corrupt them (the 
system files, that is). Likewise, a desk accessory with significant bugs can also 
trash your system file. So, before going any farther-before doing anything else 
at all-make a copy of the system (boot) disk onto which you plan to install 
MYDA and use that copy, putting the original away in a safe place somewhere. 

If you are using a hard disk, be even more careful. Back up the entire hard 
disk once, just so you can restore it should anything terribly catastrophic occur. 
(You back up your hard disk periodically, anyway, right?) Then back up your 
SYSTEM folder and/or volume on the hard disk, so that you can restore just that, 
if necessary. This may seem like a lot of unnecessary work, but should anything 
really bad happen, you11 be glad you took the time. 

Do all that before you go any farther. Everything backed up? Now launch the 
program FONT/DA MOVER, which has a little truck icon, by double-clicking it 
(or by selecting it from the Transfer menu within Turbo Pascal). A dialog box con­
taining two windows appears. The window on the left automatically opens the 
current SYSTEM file; the window on the right is empty. The box comes up in 

128 Turbo Pascal for the Macintosh 



Font mode, so click on the Desk Accessory button under the Font button at the 
top of the screen. The left window now displays all the desk accessories currently 
installed in the SYSTEM file. If MYDA (a previous version) is already there, 
remove it: point at it with the cursor, click the mouse button, then click on the 
Remove button located between the two windows. 

You now need to open the file MYDA to copy your newly-compiled version 
into the SYSTEM file. Click on the Open button below the right window. This 
brings up a file selection dialog box. Find the file MYDA (you might have to click 
on the Drive button to look on different disks or volumes) and select it by double­
clicking on it. The file selection box goes away, and MYDA appears in the right 
window. Click on it once to select it, then click on the ((Copy(( button located 
between the two windows to copy MYDA into the SYSTEM file. (This may take 
a few minutes, especially if you' re working on floppy disks.) When the transfer is 
<lone and the cursor changes back from a watch to an arrow, select the Close 
button under each of the two windows. Then select the Quit button to leave 
FONT/DA MOVER and go back to the FINDER. 

If you installed MYDA in the current SYSTEM file, MYDA should appear in 
the Apple menu. Pull it down and, if it's there, select it. A window (labeled My 
DA) appears on the right side of the screen. The phrase Hello, world displays 
near the top of the window and starts moving down. Also, the DA menu is added 
to the menu bar. If you select any of the items in it, the corresponding string 
replaces the string in the window. 

Likewise, if you select any of the top five commands in the Edit menu, that 
command name replaces the string in the window. When you move the cursor 
over the DA's window, it turns into a "smiley face." Click the mouse and the 
string moves to where the cursor is, then starts moving down again. If you click 
on the title bar of another window, de-selecting the DA window, the DA menu is 
disabled, but the string keeps moving down. You can reactivate the DA window 
by clicking on it again; you can move it around using the drag bar at the top; and 
you can make it go away by clicking on the Close box. 

If you want to remove MYDA from your SYSTEM file, run FONT/DA 
MOVER again. Select the Desk Accessory button at the top. Look through the 
list of DAs until you find MYDA. Click on it to select it, then click on the 
Remove button to get rid of it. Click the Close button under the left window to 
close the SYSTEM file, then click the Quit button to get out of FONT/DA 
MOVER. MYDA should now be gone from the Apple menu. 

Graduation: Writing a Desk Accessory 129 



Writing Your Own Desk Accessory 

MYDA was created to help you write your own desk accessories. It's a very basic 
template that contains most of the event-handling code you'll need; in fact, it 
probably contains more than you need, since it attempts to handle all situations. 
If you print it out and study the code, you may get a better understanding of desk 
accessories than you would reading the sparse and sometimes cryptic comments 
in Ins-ide Macintosh. 

The first step in writing your own desk accessory should be to make some 
modification to MYDA (which you know works). Before doing this, back up the 
original MYDA files so that you don't modify or destroy the originals. Or make 
copies of them and rename the copies to something like NEWDA. If you do this, 
however, be sure to make corresponding changes to the {$R} and {$1} directives· 
inside the .PAS file. You'll probably want to change the name in the program 
header at the top of the .PAS file, as well. And you'll need to change the name of 
the resource output file (at the top of the .R file). 

To make the DA smaller, you can eliminate the smiley cursor by doing the 
following steps. Make a deletion in each of the three files (which, for now, 
we'll assume are called NEWDA.PAS, NEWDA.INC, and NEWDA.R). In 
NEWDA. R, delete the cursor definition, which is the last resource in the file 
and starts with the line Type CURS= GNRL. In NEWDA.INC, delete the proce­
dure CursorUpdate. In NEWDA.PAS, make changes to both the Open and 
Control procedures: In Open, delete the line CHandle: = Getcursor( dCtlMenu);. 
In Control, delete the line in the case statement that says acccursor : CursorUp­
date;. You could also delete the field CHand'le from the data type DAG"loba"ls. 
Now, run RMAKER, Turbo Pascal, and FONT/DA MOVER as described in the 
previous section. When you run NEWDA, you'll notice that the cursor no longer 
changes to a smiley face when it is moved over the DA window. 

In a similar fashion, you can delete other portions of MYDA. For example, you 
could stop handling the Edit commands: Delete the Hand'leEdit procedure, 
move the calls to Hand'leEdit in DoKeypress, remove the call to Hand'leEdit in 
Hand'leMenu, and remove the line ace Undo •• accClear : HandleEdit (Code) ; in 
Control. Likewise, you could remove the DA menu by deleting the menu from 
the resource file and eliminating the code to handle it from the source code files. 

Another sample desk accessory, after which MYDA was patterned, is 
CLOCK.PAS. This DA brings up an analog clock-with second, minute, and 
hour hands-and updates it as you watch. It is well worth studying, since it 
shows a working DA that does only as much event handling as it has to. Between 
CLOCK.PAS and MYDA, you should be able to design and implement the desk 
accessory you want to write. 

130 Turbo Pascal for the Macintosh 



More References 

There is more to writing desk accessories than is discussed here. The primary 
source, as always, is Inside Macintosh, especially Vol. I, Chapter 14, "Desk Man­
ager," and Vol. II, Chapter 6, "Device Manager." However, the information in 
Inside Macintosh isn't comprehensive, and it assumes that your desk accessory is 
written in assembly language. An excellent supplement is MacTutor, a magazine 
devoted to Macintosh programming. Back issues of MacTutor contain a number 
of articles on desk accessories, and while many of the DAs discussed are written 
in C or assembly language, almost all of the articles contain information worth 
knowing. 

Graduation: Writing a Desk Accessory 131 



c H A p T E R 11 
Using UNITMOVER 

When you write units, you want to make them easily available to any programs 
that you develop. You do this by moving the units into the TURBO file. You can 
then pull the TURBO file units back out to fix code errors or to make the 
TURBO file smaller by using the application UNITMOVER. 

Chapter 7 explains what a unit is; Chapter 8 tells how to create your own 
units. This chapter shows you how to use UNITMOVER to move units between 
two files. 

Moving Units 

Normally, when you write your own unit, it gets saved out to a file; to use that 
unit, you have to specify the file name in a {$U (filename)} compiler directive. 
You may have noticed, though, that you can use the standard Turbo Pascal units 
without giving a file name. That's because these units are stored in the Turbo 
Pascal application file, that is, in the actual editor/compiler file named TURBO 
that shows up on your desktop with the icon of a hand waving a checkered flag. 
Since the units are in that file, any program can use them without a {$U} direc­
tive. 

UNITMOVER is used to move your units in the TURBO file, so that they can 
be used as easily as the standard units. 

133 



UNITMOVER is a stand-alone application; its icon appears as a standard Mac­
intosh application icon (a hand writing on a piece of paper). To use it, point the 
mouse at it and double-click. Or, if you' re inside Turbo Pascal, exit Turbo Pascal 
and get into UNITMOVER by selecting it from the Transfer menu at the far right 
end of the menu bar. A third option is to double-click on any unit code file, that 
is, the file produced by compiling a unit to disk. 

However you get into it, UNITMOVER brings up a display like that shown in 
Figure 11-1. 

Turbo Pascal® Unit Mouer Uerslon 1.00R ©1986 Borland International 

~[ [ DPIJ 

flemm•e 

[ Help 

~[ Quit 

Open ••• Open ••• 

I~ 
Figure 11-1 Tlw UNITMOVER Screen 

If you've ever used the FONT/DA MOVER utility, you'll feel at home here, 
for the display and functions are very similar. 

Since UNITMOVER's purpose is to move units between two files, first select 
and open those two files. Click on the Open button beneath the left-hand win­
dow. A standard file selector display appears; you then select the file. 

134 Turbo Pascal for the Macintosh 



Turbo Pascal® Unit Mouer Uerslon 1.00R ©1986 Borland International 

I =Turbo P&Scal I =Turbo Pascal 

[) BlgUnlt lQ =Turbo Pascal 
Cl Unit Folder I l11Jiiliiiil•••• ( Ej<!< t J 
~Turbo [ Drlue ]] ~ 

[ Open . f=d., f!£ 
[ New ) 

[ cancel 

Figure 11-2 Tlie UNITMOVER File Selector Box 

The resulting display, with the file open on the left-hand side, appears in 
Figure 11-3. 

Turbo Pascal® Unit Mouer Uerslon I.DOR ©1986 Borland International 

Turbo 57K free 
PaslnOut ~( [ l>PIJ 
PasConsole 
PasPrlnter ( Flemm•e 
SANE 
MemTypes 
QulckDraw 
OSlntf 1~1 ( 

Help 
Toollntf 
Packlntf ( Quit 

Close ••• Open ••• 

I~ 
Figure 11-3 UNITMOVER with a File Open 

You should do the same thing on the other side (that is, click on the right-hand 
window's Open button), so that your source file (the one you're copying from) is 
open on one side, and your destination file (the one you're copying to) is open on 
the other. If you want to install a unit into Turbo Pascal, then one of the two files 
has to be TURBO. 

Select the unit to be copied by finding it in the appropriate display (using the 
scroll bar if necessary) and clicking on its name. You can select more than one: 
Hold (fil down and click on the name of each unit to be copied. 

Using UNITMOVER 135 



Turbo Pascal® Unit Mouer Uerslon 1.00R ©1986 Borland International 

Turbo 57K free lntllb 365K free 
'-p:-a--=sc=-o-ns-o.,...le-----r,,, » Copy » r.l"'nt,;-L"'lb------,,jQ"' 

PasPrinter 
SRNE Remoue 

Help 
Packlntr 
MacPrlnt Quit IQ 

Close ••. Close ... I 
QulckDraw Uses: Uni t# Slze(ln bytes) 

PRSSYSTEM -I 5251 
MEMTYPES -7 0 

OSlntr Uses: Unit# Slze(ln bytes) 
PRSSYSTEM -I 5251 
MEMTYPES -7 0 
QUICKORRW -8 24271 

Figure 11-4 UNITMOVER with Units Selected 

As you select each unit, information concerning it appears in the area at the 
bottom of the screen. The information box shows its size, the other units it uses 
(so that you can copy them as well, if necessary), and if the unit is not in the 
destination file. 

To copy the unit(s), just click on the Copy button located in the top center 
portion of the screen. A copy of the selected unit(s) is placed in the other file . 
Make sure you have enough room to receive them. 

Deleting Units 

You can remove units from a file using the same method. Open the file, select 
the units, and click on the Remove button. The units are deleted from the file. 
Be aware that they are gone forever; if you want to save them, copy them to 
another file first. 

136 Turbo Pascal for the Macintosh 



c H A p T E R 12 
Using RMAKER 

As mentioned in Chapter 9, there are two ways to define windows, menus, cur­
sors, icons, and other data structures specific to your program. One is to call 
routines such as NewWindow, NewMenu, Appendltem, and so on, embedding 
the information about these items in your program. The other is to create the 
structures as resources, store them in the resource fork of your program code 
file, and then pull them in using the appropriate Toolbox calls. 

The method is more flexible for a number of reasons. First, you specify the 
resources independent of the program itself, so it's easier to make changes to the 
resources without altering the program. Second, in applications such as ResEdit, 
you can edit the resource fork of a program without changing the machine code, 
which means that you can modify the resources without having to recompile the 
program. Third, you can more easily develop international software: You can 
store all text (menus, window titles, strings) as resources and simply have a dif­
ferent resource file for each language (such as English or Spanish). 

This chapter gives you enough information to get started on using resources. 
Also, Chapter 5 contains detailed information on resources. In addition, check 
the appropriate chapters of Inside Macintosh for the given data types (menus, 
and so on). 

137 



A Quick Guide to Using Resources 

There are five steps to follow to use resources in your programs. They are listed 
here and then explained in the subsequent sections. 

I. Create the resource text file. You can do this with the Turbo Pascal 
editor and save it with a file name ending in .R, such as MYPROG.R. 

2. "Compile" this resource text file into a resource "code" file by running 
RMAKER. The resulting file can be named just about anything you'd 
like, but the Turbo Pascal convention is to give it the same name as the 
resource text file with the file extension .RSRC, such as MYPROG. 
RSRC. 

3. Make the appropriate changes to your program so that it reads in the 
resources as needed. This chapter gives a list of the most commonly 
used routines. All other routines (for menus, windows, dialogs) are in 
the corresponding sections of Inside Macintosh. 

4. At the beginning of your program, put a {$R (filename)} compiler 
directive to tell the compiler which file the resources are located in. 
For example, if you are working on the file MYPROG. RSRC, then the 
compiler directive would be {$R MYPROG.RSRC}. 

5. Compile your program as usual. When running the program in mem­
ory, Turbo Pascal automatically opens the resource file before transfer­
ring control to the program. When it compiles the program to disk, 
Turbo Pascal copies all resources in the resource file into the resulting 
code file. 

That's all there is to it. If you' re already familiar with each of those steps, you 
can skim through the rest of this chapter. Otherwise, the following sections dis­
cuss each step in detail. 

Creating a Resource Text File 

The first step is to define your resources in a resource text file. It's almost like 
writing a program; however, instead of defining actions, you define menus, win­
dows, and other similar items. These are known as resources and can be stored 
for use in a number of places: within a document, an application, the SYSTEM 
file, or in a separate resource file. In all cases, they are placed in what is known 
as the resource fork of that file (as opposed to the data fork, which holds any data 
associated with that file). Your program can then load and use the resources as 

138 Turbo Pascal for the Macintosh 



needed. To get them there, however, you must first specify them in a resource 
text file, then use RMAKER to convert them to the proper resource formats. 

You must abide by certain rules when creating a resource text file. 

• All resource definitions must be separated by blank lines. 

• All resource types must be four characters long. Take particular care when 
defining a resource of type STR ; don't forget to put a blank after the R. 

• Comments are allowed. Any line beginning with an asterisk (*) is ignored. You 
can place comments on the same line as the information by preceding the 
comments with two semicolons (;;); the rest of the line (semicolons included) is 
then ignored. 

• Resource templates are fairly rigid; you can't rearrange them to suit your own 
preferences. 

• Trailing and leading blanks are ignored, except in strings and in separating 
numeric values on the same line. 

• If data (such as a string) can't fit on one line, end the data with two plus signs 
( + +) and continue on the next line. You can do this for several lines; remem­
ber, though, that strings are limited to 255 characters. 

• If you want to include resources from the resource forks of other files, just type 
Include <filename> such as 

Include MYOTHERDEMO.RSRC 

Note that these are "compiled" resources, that is, resources that have 
already been converted from text to binary format (by using RMAKER, for 
example). 

• All numbers are in decimal (base 10), unless preceded by the .H directive. In 
that case, they are assumed to be hexadecimal (base 16) for the duration of that 
resource definition, or until an .I (decimal Integer) or .L (decimal Longlnt) 
directive is encountered. You will probably use these directives ONLY in a 
GNRL resource. 

• Special characters (ASCII codes less than 32 or greater than 126) can be 
inserted using a backslash, followed by two hexadecimal digits. For example, 
the Apple character has an ASCII code of20; to use it as, say, a menu title, you 
would enter \14, since 14 in hexadecimal is equal to 20 in decimal. 

Using RMAKER 139 



Resource Ffle Header 

Every resource text file should start with the output file name. This should be 
the first non-comment, non-blank line of the file. As mentioned, the convention 
is to give the output file the same name as the text file, but ending with . RSRC 
instead of . R. The line following the output file name should either specify the 
file type and file creator, or be blank. For example, the two lines 

YPROG.RSRC 
APPLDMD1 

tell RMAKER to create the output file MYPROG.RSRC with the file type APPL 
and the file creator DMOl. 

The file type and creator bytes are normally left blank in the resource text file. 
To specify the file type and creator of the final application, you should place a 
{$T ttttcccc} compiler directive at the beginning of your program. For example, 

{$T APPLDM01} 

If you wish to add the resources defined in your resource text file to those in an 
existing resource file, place an exclamation point in front of the output file name. 
For example, 

!MYPROG.RSRC 

It's a common practice (for applications) to define a dummy string resource, 
whose type is the same as the application's signature (file creator), and whose ID 
is zero. This string, called the version data resource, specifies the program name 
and version, for instance: 

type DM01 = STR ; note: blank space after 'STR' 
,a ; zero ID 
MY PROGRAM, Version 1.0, 21 Apr 1qa7 

This forms the start of your resource file. The balance comprises resource 
definitions, which can then be read in by your program. 

Defining Resources 

Each resource or object to be defined has the following basic structure: 

type <resource type> 
<name>,<id> (<attributes>) 
<specifications> 
<blank line> 

140 Turbo Pascal for the Macintosh 



Groups of resources of the same type can be defined by repeating the (id), 
(specifications), and (blank line) sections. Remember, each instance of a resource 
must be separated from others by blank lines. 

The Macintosh supports over 30 standard resource types; however, only 12 of 
them are recognized by RMAKER: 

ALRT 
BNDL 
CNTL 
DITL 
DLOG 
FREF 
GNRL 
MENU 
PROC 
STR 
STR# 
WIND 

Alert box for error messages, warnings 
Bundling information (for icons, file types, etc.) 
Controls scroll bars 
Dialog item - objects in dialog or alert boxes 
Dialog box - user input, selection 
Ftle reference - linking file types, icons 
General - for defining other resource types 
Menus - menu title with list of commands 
Procedure - machine code 
String - text strings used within the program 
String list - a list of text strings 
Window - window title, size, attributes, type 

Some of the additional types recognized by the Toolbox and OS routines but 
not directly supported by RMAKER include ICON (icon), CURS (cursor), and 
others. To define them, you must use the GNRL type and start the definition 
with 

type <resource type> = GNRL 

The same method is used to define your own resource types. This is discussed 
in further detail at the end of the chapter. 

Each resource may be given a name. It can then be referenced by that name. 
The name can be up to 255 characters long, though you'll want to keep it fairly 
short to avoid eating up too much memory or disk space. If you choose not to 
give the resource a name (a common practice), you must still place a comma 
before the resource ID. 

Each resource must have an ID, an integer value that uniquely identifies it 
from all other resources of the same type stored in your program's resource fork. 

• The values from -32768 to -16385 are reserved for system use. 

• The values from -16384 to - 1 are reserved for system resources owned by 
other system resources (the private resources of a desk accessory for example). 

• The values from 0 to 127 are also reserved for system use. 

• You can use any value from 128 to 32767. 

Using RMAKER 141 



Note that resources of different types - say, MENU and WIND - can have 
the same ID, but all resources of a given type (such as MENU) must have differ­
ent IDs. 

Each resource has a set of attributes associated with it. Each attribute is repre­
sented by a single bit. To enable that attribute, you must set the bit to one. 
Here's a partial list of those attributes, their bit positions and values, and what 
happens if the attribute is set: 

Attribute Bit Val Effect on resource of setting bit 

resPreload 2 4 load after opening resource file 
resProtected 3 8 can't be changed by Resource Manager 
res Locked 4 16 can't be relocated or purged 
resPurgeable 5 32 can be purged 
resSysHeap 6 64 load in system heap 

To set one or more of these attributes for a given resource, just add the 
corresponding values together and place the sum (in parentheses) right after the 
resource ID. For example, a resource with the name of MyRes, an ID of 1000, 
and the attributes Preload (4) and Locked (16) would look like this: 

MyRes,:LDDD (20) 

Setting attributes is optional. If you do not specify any attributes, a value of 0 
(all attributes disabled) is assumed. Also note that you should not try to set any 
other attributes; all other bits are reserved for system use. 

Resource Specifications 

The resource specification depends entirely upon the resource type. The 
predefined types (including those not directly supported by RMAKER) have 
fixed formats; these must be adhered to when defining the resource. It is possi­
ble, though, to define your own resource and load it from your program. In that 
case, the data structure you use must match the resource as defined in the 
resource text file. 

Following is a list of commonly used resource types, including all those recog­
nized by RMAKER and some that are not. Each section tells where the resource 
is mentioned in Inside Macintosh, gives a very brief description of what the 
resource does, shows an example of one in a resource file, and states how you 
would load the resource from within your program. In the last case, the variable 
to which the result of a function call is being assigned is always assumed to be a 
handle to that resource type. 

142 Turbo Pascal for the Macintosh 



ALRT--Alert template 

Chapters: "The Dialog Manager" (I-13) 

An alert box is a special type of dialog box used to caution, warn, or even stop 
the user; it uses a list of dialog items (see DITL). 

type ALRT 
':L211 ( .t;) 
LOO sa LSD 250 
Laa a 
F72L 

preloaded to avoid disk access 
top left bottom right 
ID of item list (DITL) 
stages (.t;th 3rd 2nd Lst) 

BNDL--Bundling information 

Chapters: "The Finder Interface" (III-1) 

A bundle defines an application's signature (the same as its file creator) and the 
resource ID of its version data. It specifies (through a list of FREF resources) all 
file types related to the application and the icons (through a list ofICN resources) 
to be displayed by the FINDER. The local IDs in the list are needed only by the 
FINDER. For a bundle to be processed by the FINDER, set the bundle bit 
when compiling the application: Place a {$B+} directive in the beginning of the 
program. The DMOl signature must have its own resource, such as TYPE 
DMDL=STR ,a TEXT. 

type BNDL 
,L211 
DMDL 0 
ICNI 
0 L211 L L2q 
FREF 
a L211 :L L2q 

resource ID 
signature and version data ID 
ICNI map 
local ID a is resource ID L211; L is L2q 
FREF map 
local ID a is resource ID L211; L is :1.2q 

CNTL--Control template 

Chapters: "The Control Manager" (I-10) 

A control is a graphical object on the screen that the user can modify (using the 
mouse) as a form of setting or data input. Controls may be specified as Visible or 
Invisible. 

type CNTL 
,2Sb (.t;) 
Throttle 
LOO sa 250 bb 
Visible 
Lb 
a 
a qqq a 

preloaded 
control title 
top left bottom right 
attribute 
control de~inition ID (ProcID) 
reference value (RefCon) 
minimum, maxium, initial value 

An example of accessing a control template follows: 

theCntl := GetNewControl(2Sb,theWindow); 

Using RMAKER 143 



CURS-Cursor 

Chapters: "QuickDraw" (I-6), "Toolbox Utilities" (I-16) 

The cursor is the shape that moves around the screen as you move the mouse. 
Besides the default arrow, there are four standard cursors that you can load, or 
you can define your own. 

type CURS a GNRL 
, :L26 (.Ii) preloaded 
.H hexadecimal data follows 
• cursor data 
D7ED :Lill.II 3DDC bDDb :Lbx:Lb bitmap, top to bottom 
lili22 6.li2:L llli2:L llDD:L 
llDD:L qa:i.q 6C3:L li7E2 
bDDb 3DDC :Lll:Lll D7ED 
• cursor mask 
DODD DODD DODD DDDD :Lbx:Lb bitmap, top to bottom 
DDDD DODD DODD DDDD 
DDDD DODD DODD DDDD 
DODD DODD DDDD DODD 
• hot spot 
DDDll DDDll ; (y,x) a (6,6) 

An example of accessing a cursor resource follows: 

myCurs :a GetCursor(:L26); 

DITL-Dialog item list 

Chapters: "The Dialog Manager" (I-13) 

Specifies the items - texts, buttons, icons - used in dialog and alert boxes. 
Eight different item types are available: StatText, EditText, Button, RadioBut­
ton, CheckBox, Iconltem, Picltem, and Userltem. Items may be specified as 
Enabled or Disabled; they are assumed to be enabled if you don't specify any­
thing. All coordinates are relative to the window of the dialog or alert box using 
the items. Be sure to have blank lines between all item specifications. 

type DITL 
, :LDDD resource ID 
11 number of items in list 

StatText Disabled 
20 bD 3.li :LbD 
Print the document 

EditText Enabled 
:L2D liS :LliD ],q5 
Annual Report 

Button 
:LS :L7D 3.li 220 
Cancel 

144 

static text 
top left bottom right 
text 

edit box 
top left bottom right 
initial text 

rounded button 
top left bottom right 
text (in button) 

Turbo Pascal for the Macintosh 



RadioButton 
SO 1S bt; MO 
O 1/2" x 11" paper 

CheckBox 
9b 1S 110 200 
Stop after each page 

Iconitem Disabled 
10 20 t;2 S2 
120 

Picitem Disabled 
0 100 0 100 
120 

Userltem 
1SO 1SO 200 200 

DWG-Dial,og template 

radio-type button 
top left bottom right 
text (to right of button) 

check box 
top left bottom right 
text (to right of check box) 

icon 
top left bottom right 
ICON resource ID 

QuickDraw picture 
top left bottom right 
PICT resource ID 

user-defined item 
top left bottom right 

Chapters: "The Dialog Manager" (I-13) 

A dialog box displays information and allows user input or modification. Like 
an alert box, it uses a list of items (DITL) to determine its layout. A dialog may 
be specified as Visib/,e or Invisib/,e, followed by GoAway or NoGoAway to deter­
mine whether it has a Close box. 

type DLOG 
,1000 (t;) 
A Dialog Box 
SO 100 300 t;SO 
Visible NoGoAway 
0 
0 
1000 

preloaded 
title 
top left bottom right 
attributes 
window definition ID (ProcID) 
reference value (RefCon) 
item list ID (DITL) 

An example of accessing a dialog template is 

theDialog :; GetNewDialog(l.OOO,nil,Pointer(-1)); 

FREF-File reference 

Chapters: "The Finder Interface" (III-1) 

Used in conjunction with a bundle resource (BNDL). An FREF associates a 
file type with a local ID used in the bundle. This local ID in turn determines the 
resource ID of the icon (ICN#) to be displayed for files of that type created by 
the application. 

type FREF 
, 120 resource ID as found in BNDL 
APPL O file type and local ID 

Using RMAKER 145 



,129 
DMTX 1 

resource ID as found in BNDL 
file type and local ID 

ICN-Icon list 

Chapters: "The Finder lnteface" (3-1) 

An icon followed by a mask, used primarily for associating icons with files in 
the FINDER. 

type ICN GNRL 
,1211 
.ff 
• icon data 
FFFFFFFF 11aaaaaa1 
11aaaaaa1 11aaaaaa1 

11aaaaaa1 FFFFFFFF 
• icon mask 
FFFFFFFF FFFFFFFF 
FFFFFFFF FFFFFFFF 

FFFFFFFF FFFFFFFF 

ICON-Icon 

resource ID 
hex values 

32x32 bitmap 

32 longwords in total 

32x32 bitmap 

32 longwords in total 

Chapters: "Toolbox Utilities" (1-16) 

A single icon that can be associated with other resources (such as item lists for 
dialogs) or can be read in by your program. 

type ICON = GNRL 
,1211 
.ff 
FFFFFFFF 7FFFFFFF 
3FFFFFFF 1FFFFFFF 

aaaaaaa3 aaaaaao1 

,129 
.ff 
11aaaaaao caaaaaaa 
Eaaaaaaa Faaaaaaa 

FFFFFFFE FFFFFFFF 

resource ID 
hex values 
32x32 bitmap 

32 longwords in total 

resource ID 
hex values 
32x32 bitmap 

32 longwords in total 

An example of accessing an icon resource is 

thereon := Geticon(129); 

146 Turbo Pascal for the Macintosh 



MBAR-Menu bar 

Chapters: "The Menu Manager" (I-11) 

Defines an entire menu bar through a list resource IDs for individual menus 
(MENU). 

type MBAR = GNRL 
,1000 
.I 
5 
1000 
1001 
1002 
2000 
2001 

resource ID 
integer values 
number of menus in bar 
resource ID of 1st menu 
resource ID of 2nd menu 
resource ID of 3rd menu 
resource ID of 4th menu 
resource ID of 5th menu 

An example of accessing a menu bar resource is 

theMBar := GetNewMBar(2000); 

MENU-Menu 

Chapters: "The Menu Manager" (I-11) 

Defines a menu, that is, the menu title that appears on the menu bar and the 
listed commands, including any command-key equivalents. You can, as with 
other resources, list mutiple resources under one type statement. 

type MENU 
,1000 
\14 
About MyProgram ... 
(-

,1001 
file 
New/N 
Open/O 
Save/S 
Save As ... 
Close 
(-
Quit/Q 

,1002 
Edit 
Undo/Z 
(­
Cut/X 
Copy IC 
Paste/V 
Clear 
(-
{Options ... 

Using RMAKER 

resource ID 
title {Apple character) 
first command 
disabled dotted line 

resource ID 
title 
New command (mN 
Open command ( ~ o ) 
Save command ( ~ S ) 
Save As command 
Close command 
separator line 
Quit command (l]J]}) 

resource ID 
title 
Undo command ([]Jill) 
separator line 
cut command (~X 
Copy command ( ~ c 
Paste command ( ~ ) 
Clear command 
separator line 
Options command (disabled) 

147 



Here's an example of accessing a menu resource: 

theMenu := GetMenu(lDDD); 

PAT-Pattern 

Chapters: "QuickDraw" (I-6), "Toolbox Utilities" (I-16) 

Represents an 8 x 8 pattern that is used for drawing and filling. Be sure to 
leave the trailing space after PAT . 

type PAT = GHRL 
,SOD 
.e 

resource ID 
hex values 

FFDD FFDD 
FFDO FFDO 

alternating black/white lines 
total of eight bytes 

Example of accessing a pattern resource: 

thePat := GetPattern(SOD); 

PAT#-Pattern list 

Chapters: "QuickDraw" (I-6), "Toolbox Utilities" (I-16) 

List of patterns, all under one resource ID. The Getlni/Pattern procedure lets 
you specify which one (1,2, .. ,N) you want. 

type PATI = GHRL 
,bOD resource ID 
.I integer value 
5 number of patterns 
.e hex values 
FFDD FFDO FFDD FFDD lst pattern 
66~~ 2211 66~~ 2211 2nd pattern 
3F6A q5cq 36DA AAD3 3rd pattern 
DODD 0160 0160 ODDO ~th pattern 
AASS AASS AASS AASS 5th pattern 

Example of accessing a pattern in a pattern list (myPat is a variable of type 
Pattern): 

GetindPattern(myPat,bOO,~); 

148 Turbo Pascal for the Macintosh 



PROC-Procedure 

The PROC type is used to create resources that contain machine code. It reads 
the first code segment from an application file (the CODE resource with ID = 
1), strips the first 4 bytes off of it (these are used by the Segment Loader), and 
saves it as a resource of type PROC (unfoss retyped as shown below). It is mainly 
useful for defining other code resource types, such as CDEF, DRVR, FKEY, 
INIT, MDEF, PACK, PDEF, and WDEF. 

type PROC 
,126 
MyProcedure 

type CDEF = PROC 
,3 
MyControl 

STR-String 

create PROC resource 
; resource ID 
; filename 

create CDEF resource 
; resource ID 
; filename 

Chapters: "Toolbox Utilities" (I-16) 

Represents a text string; note the trailing blank after STR . If you need to 
continue a string onto another line, use the + + continuation mark. All leading 
and trailing blanks are significant. 

type STR 
,1000 (~) , resource ID (preloaded) 
Turbo Pascal for the Macintosh 

,1001 (~) ; and another string 
Copyright (C) 196b by Borland International 

,1002 (~) ; and another 
All rights reserved. 

Example of accessing a string resource: 

theStr := GetString(lOOl); 

STR#-String list 

Chapters: "Toolbox Utilities" (I-16) 

Represents a list of strings. Same rules apply as for STR #. 

type STR# 
,126 (~) ; resource ID (preloaded) 
3 ; number of strings 
Turbo Pascal for the Macintosh 
Copyright (C) 196b by Borland International 
All rights reserved. 

Using RMAKER 149 



Example of accessing a string in a string list (myStr is a variable of type 
Str255): 

GetindString(myStr,L26,2); 

WIND-Window 

Chapters: "The Window Manager· (I-9) 

Defines a window. A window may be specified as Visible or Invisible, followed 
by GoAway or NoGoAway to determine whether it has a Close box. 

type WIND 
,LDDD 
This Program 
Li.ii 7 335 505 
Visible GoAway 
a 
a 
,LDDL 
About This Program 
90 SD Laa .iibD 
Invisible RoGoAway 
Lb 
a 

resource ID 
window title 
top left bottom right 
attributes 
window definition ID (ProcID) 
reference value (RefCon) 

resource ID 
title 
boundaries 
attributes 
window definition ID (ProcID) 
reference value (RefCon) 

An example of accessing a window resource follows: 

theWindow := GetRewWindow(LDDD,nil,Pointer(-L)); 

Defining Your Own Resources 

You've already learned much of what you need to know about defining your own 
resources. Since RMAKER only supports twelve of the standard resource types, 
we've had to define the others in terms of the general resource type, GNRL. But 
what if you want to define a resource that isn't found among any of the standard 
types? Here's what you would do: 

• Define the resource in terms of a Pascal data structure - most likely an array 
or a record. 

• Determine the byte-by-byte mapping of the data structure, that is, the size 
and starting offset of each element or field. 

• Design a skeleton resource type based on the byte-by-byte mapping, and 
define resources in your file using this skeleton. 

• Read the resources into your program using the GetResource function. 

150 Turbo Pascal for the Macintosh 



Let's look at an example. Suppose you wanted to define a resource type called 
CUBE. Your data structure might look something like this: 

type 
Cube record 

vertex: arrayCL •. 6,L .• 3l 
color: Pattern; 
title: Str255; 

end; 
CubePtr = ACube; 
CubeHndl ACubePtr; 

var 
MyCube: CubeHndl; 

of Integer; 

The mapping of the Cube record is as follows: 48 bytes for the vertex list (2 
bytes each), followed by 8 bytes for the color, followed by between 1 and 256 
bytes for the title (the length is stored in the first byte). A resource based on this 
could be 

type CUBE = GHRL 
,LOOO resource ID 
.I decimal integers follow 
0 0 0 Lst vertex 
0 0 LOO 2nd vertex 
0 LOO 0 3rd vertex 
:LOO 0 0 t;th vertex 
0 LOO LOO 5th vertex 
LOO 0 LOO bth vertex 
LOO LOO 0 7th vertex 
LOO LOO LOO 6th vertex 
.H hexadecimal values follow 
AASS AASS AASS AASS pattern 
.P Pascal string follows 
This is my cube title 

Having defined such a cube in your resource file, you could read it into your 
program and process it with the following statements: 

MyCube := CubeHndl(GetResource('CUBE',LOOO)); 
with MyCubeAA do 
begin 

< do whatever you want to } 
end; 

You can use Turbo Pascal's retyping mechanism to convert from the generic 
handle that GetResource returns to the specific data type CubeHndl. 

If your resource includes a string, it should be the last item in the resource. 
When a string is declared in Pascal, say with a maximum length of 80, the com­
piler sets aside 81 bytes for that string, even though its dynamic length may be 
less. However, when RMAKER processes a string, it only stores as many charac­
ters as you write (plus the preceding length byte). 

Now, if the title field in the Cube record was the first field, you would have to 
write exactly 255 characters for the following fields to line up properly; by placing 

Using RMAKER 151 



it at the end, you can write a string of any length. Be aware, though, that the 
handle allocated by GetResource only has room for the string you write, not for 
the full 255 characters. 

Here's a list of the data type commands that you can use, with a brief explana­
tion of each: 

• .H Hexadecimal values follow. RMAKER accepts the values as integers (four 
digits) or long integers (eight digits) . 

. B 
OOFOO 123~-00FF ~321 
OOFFFFOO FFOOOOFF 

• .I Decimal integers follow. Values must be in the range -32768 to 32767, 
separated by blanks . 

. I 
32 -532 100~3 15 

• .L Decimal long integers follow. Values must be in the range -2147483648 to 
2147483647, separated by blanks . 

. L 
b~2393 -100101 o 3 

• .P Pascal string follows. A length is calculated and stored as the first bytes, 
followed by the text itsel£ Leading blanks are significant. Use the continuation 
symbol to extend to the next line. The maximum length is 255 characters . 

. P 
And still I persist in wondering if folly ++ 

must always be our nemesis. 

• .S String follows. Only the text is stored; no length is calculated. No maximum 
length . 

. s 
Four score and seven years ago, ++ 
our forefathers brought forth upon ++ 
<and so on> 

• .R Resource follows. The next line gives a file name, a resource type, and a 
resource ID; the corresponding resource is copied from the given file . 

. R 
MyStuff MENU 1000 

152 Turbo Pascal for the Macintosh 



Using RMAKER 

RMAKER itself is a very easy application to use. You can open it from the des­
ktop by double-clicking on it, or you can transfer to it using the Transfer menu 
from within Turbo Pascal. 

Once you've started it, RMAKER brings up a file selector dialog box as shown 
in Figure 12-1. 

Resource Compiler 

lei PosDemos I 
D \11er< h.R 
0 MyDemo.R 
0 MyDA.R 

=Turbo Posco I 

[:je<t 

Drlue 

Open 

Concel 

Figure 12-1 TIIB RMAKER File Selector Box 

It lists only those files ending with . R; to choose one click on it, then select the 
Compile button, or double-click on the file name. The file selector then disap­
pears, and the "compilation" starts. The left side of the display shows the con­
tents of the resource text file as it is read in, while the right side shows the size of 
the resulting resource code file. 

You can abort the process at any time by clicking the Stop button in the lower 
left corner of the display. 

When it's done and you want to exit RMAKER, click on the Quit button (same 
as the Stop button) or select the Quit command from the File menu. You may 
process another resource file by selecting the Compile command from the File 
menu. And you can transfer back to Turbo Pascal (or any other program): Select 
the Other... command in the Transfer menu, then select the appropriate pro­
gram from the file selector that appears. 

Using RMAKER 153 



Using Your Resources 

To let your program use a given resource file, just place the name of the resource 
code file in a {$R} directive at the beginning of your program, such as 

{$R MyProg.Rsrc} 

When you run your program in memory, Turbo Pascal automatically opens the 
resource file. When you compile your program to disk, Turbo Pascal copies all 
resources from the resource file into the final application code file. 

To actually use those resources within your program, you must read each one 
in as desired. Most often, this is done as part of an initialization procedure, 
which reads in the menus, windows, and other resources, setting up the desired 
display. Since you usually refer to these resources by their IDs, you must know 
the ID of each one that you are reading in. 

Again, a common practice is to declare those IDs as constants. For example, 
suppose you had defined five menus, with resource IDs 1001 through 1005, 
respectively. You might then write the following code to read them in: 

con st 
menuID = 1DDO; 
menucount = 5; 

type 
MenuList: arrayC1 .. menuCountl of MenuBandle; 

procedure Initialize; 
begin 

for I := 1 to menucount do 
MenuListCil := GetMenu(menuID+I); 

end; 

GetMenu reads in each of the menus from the resource file, points a handle to 
it, and then returns that handle, which is assigned to an element of MenuList. 

Similar techniques are used for other resources, though most other resources 
are assigned to individual handles, rather than to arrays. Again, Inside Macin­
tosh is the best reference for more details on using resources. 

154 Turbo Pascal for the Macintosh 



c H A p T E R 13 
Using FONT/DA MOVER 

This chapter tells you how to use the FONT/DA MOVER to install the desk 
accessories (DAs) that you write in Turbo Pascal. You can then apply these 
instructions on moving DAs to moving fonts. 

Fonts and DAs normally reside in the SYSTEM file of a Macintosh startup 
disk, but can also be kept in "suitcase" files (files with the suitcase icon) for later 
inclusion in a SYSTEM file. The FONT/DA MOVER utility is used to copy or 
remove fonts and DAs on Mac disks. Apple's FONT/DA MOVER program is 
included on your Turbo Pascal distribution disk. 

Text fonts are used by the system, the Turbo Pascal editor, and your applica­
tion programs. These fonts are usually provided as part of your Mac computer. 
Using the Macintosh, the handbook that came with your Mac, explains how to 
use FONT/DA MOVER. 

Starting Up FONT/DA MOVER 

There are three ways to start up the FONT/DA MOVER. First, if you are in 
Turbo Pascal and have included the FONT/DA MOVER in the Transfer menu, 
select that menu option, exit Turbo Pascal, and enter the FONT/DA MOVER. 
When adding the FONT/DA MOVER to the Turbo Pascal Transfer menu, 
remember to rename the file to change the slash (/ ) to another character. (We 

155 



suggest using the plus sign, +.) You must make this change both to the Transfer 
menu and to the FONT/DA MOVER file itself. 

(SR Speak .Rsrc} 
{SR+} 
<s~> 
us as 

UnltMouer 
Font•DA Mauer 
RMaker 

MernTIJPes , Qu lc:kOraw , OSlntf , Tool lnlf , Pack lntf , SpHchlntf; 

type 
CharArralJ • packed array[O . 99991 of Char ; 

const 
AppleMenu • 256 ; 
Fl lal"lanu • 257; 
SpeakMenu • 258; 
Creator • ' OHIO '; ( s i nce u ' re go i ng to un Mac fl le system cal I s } 
Fl leT!JP9: • ' OTA¥ '; ( direct l y , •• nH d to dd l na a these strings ) 

errno : Integer ; 
nu111Chars : lntagar; 
Error : SpHchErr; 
Text l n : CharArr01,I ; 
Phonetics : Hondla; 

Figure 13-1 The Transfer Menu 

You can also launch the FONT/DA MOVER from within Turbo Pascal by 
selecting the Transfer command from the File menu. This brings up a standard 
file selector window; scroll through until you find the FONT/DA MOVER, click 
on its name, and then click on the Transfer button. 

stnrtup • -: 
Font+DA Moue ... ~ 
MacPaint 1.5 
MncWrlte 4.5 ' 

PrlntMnnager I 
RMnker 
Sidekick® 

( Transfer 

Cancel Drlue 

Figure 13-2 The Transfer Command File Selector Window 

If you are in the FINDER, you can double-click on the FONT/DA MOVER 
icon or on a suitcase icon. The DA suitcase in the file results from compiling a 
Turbo Pascal desk accessory program to disk. 

156 Turbo Pascal for the Macintosh 



When the FONT/DA MOVER starts up, a dialog box is displayed. 

QFont 
@ Desk Accessory Mou er 

[ Olllj Clock 

I Control Pone! 
Drnwers 
MocClock 
MocDloler I MocTerm 
Notepad• 

:o Hemou•~ 

on startup • [ __ "_e•_P ~] 
System I I 

3752K free I ~ 
( Close ] [ Quit ] Open ... 

Figure 13-3 FONT/DA MOVER Dialog Box 

You'll notice two things. First, FONT/DA MOVER automatically opens the 
current SYSTEM file or, if you clicked on a DA suitcase icon, the DA file you 
selected. Second, the top of the dialog box has two buttons. If you launched 
FONT/DA MOVER directly by double-clicking on it or transferring to it, the 
Font button is selected. Click on the Desk Accessory button right below it. 
You' re now ready to go on. 

Installing Desk Accessories 

To use a desk accessory, you must copy it into your SYSTEM file. At this point, 
either the SYSTEM file or your DA file is open, probably in the left-hand dis­
play. Both need to be open, so click the Open button under the other empty 
display. A file selector box comes up; scroll through it and open the appropriate 
file. You should now have a list of desk accessories in each display, one for the 
SYSTEM file and one for your DA file (which probably has only one desk acces­
sory in it). 

Using FONT/DA MOVER 157 



QFont 
@ Desk Access ory Mauer 

Areo Code Lookup ~( [Ol)lj 'D Calculator+ 
CalendarBook I Bl'llll>ut~ I 
Cho oser 
Control Ponel 
Drnwers 
Macotaler 

System Clock 
on Startup 

I' 
Help 

I I on Turbo Pascal 
3085K free 4714K free 

( Close I Quit I Close I 

Figure 13-4 Selector Box with SYSTEM and DA Files Open 

Now you can copy your DA into the SYSTEM file . Click on the DA file name 
in the display. At this point, the Copy button is enabled, with arrows showing 
the direction in which the file will be copied. It also shows how large the desk 
accessory being copied is. 

To copy it, select the Copy button. The process may take a while, as the 
SYSTEM file is usually quite large and updating it may require some shuffiing. 
When it's done, your DA's name appears in the SYSTEM file display. 

QFont 
@Desk Accessory Mouer 

Areo Code Lookup ~ I «Copy« ) D 
Calculator• 
Colendareook I Remoue ) 
Chooser 
Control Ponel 
Drawers 8680 bytes 
MacDlaler selected 

o~~~!~:':,P I ' Help ] I on Tu~~~c;ascal 
3085K free 4714K free 

( Close [ Quit ) Close ) 

Figure 13-5 FONT/DA MOVER with DA Selected for Copying 

Close both files by clicking on their respective Close buttons, then exit 
FONT/DA MOVER by clicking on the Quit button. 

158 Turbo Pascal for the Macintosh 



You can copy DAs out of the SYSTEM file into other files (including other 
SYSTEM files). The same technique is used to move DA files into other DA files, 
so you can build libraries of desk accessories. Click the Open button and select 
the files desired, or create a new one. 

You can also remove DAs from files, including SYSTEM files. Select the DA as 
if you were going to copy it, but click on the Remove button instead. The DA is 
deleted from the file. It is lost for good, so if you wish to save it, copy it into 
another file first. 

You can select more than one DA to copy or remove at a time. Click on a 
name, then drag the mouse up or down while holding the button down to select 
other names. Or you can hold (fil down, then click on individual names to select 
them. Then copy or remove the whole group with a single operation. 

A Few Warnings 

You need to be careful of a few things when using the FONT/DA MOVER. First, 
be sure that you have enough free space (memory) on the disk to make a copy of 
the desk accessories selected. Under each file display, FONT/DA MOVER 
shows the amount of free space on the disk. That number must be somewhat 
greater than the size of the desk accessory(ies) being copied. If you cut it too 
close, the copy operation fails. 

Before removing desk accessories, you should have backup copies. Be very 
careful about removing some of the standard DAs (such as Scrapbook and Con­
trol Panel) that are crucial to using the Macintosh. 

Using FONT/DA MOVER 159 



c H A p T E R 14 
Debugging Your Turbo Pascal Program 

The term "debugging" comes from the early days of computers, when actual bugs 
(moths and the like) sometimes clogged up the machinery. Nowadays, it means 
correcting errors in a program. 

You'll undoubtedly have bugs to contend with - errors of syntax, semantics, 
and logic within your program - and you'll have to fix them by trial and error. 
However, there are tools and methods to make it less of a trial and to cut down 
on the errors. In this chapter, we'll look at common errors and at different 
methods of debugging these errors. 

Com,nl,er Errors 

The first type of error is a syntax or compiler error: You forget to declare a 
variable, you pass the wrong number of parameters to a procedure, you assign a 
Real value to an Integer variable. In other words, you are writing Pascal state­
ments that don't follow the rules of Pascal. Pascal has strict rules, especially 
compared to other languages, so once you've cleaned up your syntax errors, most 
of your debugging is done. 

Turbo Pascal won't compile your program, that is, generate machine code, 
until all your syntax errors are gone. If Turbo Pascal finds a syntax error while it 
is in the process of compiling your program, Turbo Pascal stops the compilation, 

161 



goes into your program, locates the error, positions the cursor there, and brings 
up a window at the top of the screen telling you what the error was. Once you've 
corrected it, you can start compiling again. 

s Fiie Edit Seorch Formal Font 

I $ Error 41: Unknown Identifier 

program He I I oL.lor Id; 
beg i n 

for D : .. I t.o 10 do 
Urite:Ln('He l lo l-lorld' >; 

ReadLn ; 
end . 

. ~lid 

HelloWorld._Pos 

Figure 14-1 Turbo Pascal Error Box 

You can even check for syntax errors without generating machine code at all, 
by using the Check Syntax command in the Compile menu. This goes through 
the same process as if you were compiling your program; however, no machine 
code is produced, even if there are no errors. 

Run-time Errors 

Another type of error that can occur is a run-time (or semantic) error. This hap­
pens when you compile a legal program, but then try to do something illegal 
while executing it, such as open a nonexistent file for input or divide an integer 
by 0. When this happens, Turbo Pascal brings up a Macintosh system error box 
that tells you an error has occurred and gives you the choice of restarting the 
system (essentially the same as turning your computer off, then on again) or 
resuming to find where in your program the run-time error occurred. 

162 Turbo Pascal for the Macintosh 



[ 
Hello World 

H• l lo Uorld 
He1r,====================;i 
Hel , .,. 
Hel 
Hel Sorry, o system error occurred. 
Hel 
Hel 
Hal 
Hal 
Hal 

ID= 04 

Figure 14-2 Mac System Error Box 

The second choice, when available, is preferable. Turbo Pascal again takes you 
inside your program, shows you where the error occurred, and tells you what the 
error was. As with a syntax error, you can then correct the error, recompile, and 
run the program again. 

Input/Output Error Checking 

This type of error is covered in Chapter 5 (pages 41-43), but it is briefly 
described here. 

Suppose you run a program that prompted for and read in two integer values. 
Instead of entering integer values, however, you type in a Real value (that is, a 
number with a decimal point). Your program then halts with a Mac system error 
box. 

Turbo Pascal allows you to disable automatic 1/0 error checking and test for it 
yourself within the program. To turn off 1/0 error checking at some point in your 
program, include the compiler directive { $1-}. This instructs the compiler not to 
produce code that checks for I/O errors (and that brings up the Mac system error 
box when one does occur). 

Debugging Your Turbo Pascal Program 163 



Range Checking 

Range checking is also covered in Chapter 5 (pages 43-44). 

Another common class of semantic errors involves out-of-range or out-of­
bounds values. Examples include assigning too large a value to an integer vari­
able, or trying to index an array beyond its bounds. H you want it to, Turbo 
Pascal will generate code to check for range errors. It makes your program some­
what larger and slower, but it can be invaluable in tracking down any range 
errors in your program. 

You turn range checking on using a compiler directive (see Appendix C for 
more on compiler directives). Insert {$R+} at the start of your program. 

You can leave range checking on all the time by placing {$R+} at the start of 
each program you write. Or, you can selectively implement range checking by 
placing the {$R +} directive at the start of the code that needs it, then placing the 
{$R-} directive at the end of the code. 

Invoking Your Own Run-time Errors 

Suppose your program is getting stuck somewhere, or the system error box 
doesn't let you select the Resume option, or (worse yet) the system error box 
never comes up. What if enabling range checking doesn't track down the error? 
How do you find it? 

You can create your own run-time errors if you want, by calling the Mac rou­
tine SysError. To do so, you must use the units MemTypes, QuickDraw, and 
OSintf- all of which you'll probably use if you're writing a Mac-style applica­
tion. You then just call SysError with an integer value, such as 

if <some condition> then SysError(32); 

When SysError is called, a system error box appears, just as it does for regular 
run-time errors. You can then select the Resume button, which puts you back 
into your program in Turbo Pascal. 

Theoretically, SysError accepts any integer value. In practice, it acts funny 
with negative values or with positive values above 99. The value 32 is a good 
one, since it doesn't conflict with any currently defined system error (see Volume 
II, Chapter 12, of Inside Macintosh). 

164 Turbo Pascal for the Macintosh 



Tracing Errors 

A tried-and-true debugging practice is to insert trace statements within your 
program. A trace statement is usually just a statement that writes something to 
the screen, telling you where you are and listing some current values. Often it's 
set up to execute only if a global boolean variable has been set to True, so that 
you can turn tracing on or off. 

Suppose you have a large program in which some variables are being set to 
wrong (but not necessarily illegal) values. The program consists of several proce­
dures, but you haven't been able to figure out so far which one has been causing 
the problem. You might do something like this for each procedure: 

procedure ThisOne({any parameters>); 
{ any declarations } 
begin 

if Trace 
then WriteLn('start of ThisOne: A= ',A,' B ',B); 

{ rest of procedure ThisOne > 
if Trace 

then WriteLn('end of ThisOne: A = ',A,' B = ',B) 
end; { of proc ThisOne > 

This code assumes that Trace is a global variable of type Boolean, and that you 
somehow set it to True or False at the start of the program. It also assumes that A 
and B are parameters to ThisOne or global variables of some sort. 

If Trace is True, then each time ThisOne is called, it writes out the values of A 
and B just after it is called and again just before it returns to where it was called 
from. By putting similar statements in other procedures, you can trace the 
values of A and B and find out where and when they change to the undesired 
values. 

Once the wrong values of A and B come out in a trace statement, you know 
that the changes occurred somewhere before that statement but after the previ­
ously executed one. You can then start moving those two trace statements closer 
together, or you can insert additional trace statements between the two. By 
doing this, you can eventually pinpoint where the error is happening and take 
appropriate steps. 

Using a Delmgger (MACSBUG) 

Sometimes, none of these approaches work. The nature of the problem(s) is such 
that either you can't track down where the errors are, or having located them, 
you can't figure out why they' re occurring or what's causing them. It's time to 
call in the heavy artillery: a debugger. 

Debugging Your Turbo Pascal Program 165 



A debugger is a program designed to allow you to trace the execution of your 
program step by step, one instruction at a time. There are many varieties of 
debuggers, but most require that you be familiar with assembly-language 
(machine code) instructions and with the architecture (registers, memory map, 
and so on) of your computer's microprocessor. 

Turbo Pascal comes with such a debugger, known as MACSBUG. To use 
MACSBUG, you just copy it into the SYSTEM folder on your boot-up disk. 
Then, when you boot up your Macintosh, MACSBUG will automatically be 
loaded into memory. The statement MACSBUG loaded appears right beneath the 
Welcome to Macintosh greeting that appears when you start your system. 

If it doesn't load, make sure that the file's name is MACSBUG. The operating 
system looks for that name specifically. This means, of course, that you can con­
trol whether or not it is loaded by renaming the file; a common "don't load this" 
name is MAXBUG. If you want to load or unload MACSBUG, then you have to 
reboot (which you can do by selecting the Shut Down option in the desktop' s 
Special menu, or by turning the Mac off, then on again). 

Invoking MACSBUG 

Once MACSBUG is loaded, you have three ways of invoking it, which you typi­
cally want to do from within your program. First, while your program is running, 
press the Interrupt switch on the left side of your Macintosh, assuming that you 
have such a switch installed. If you do have that switch, note carefully that it 
actually has two buttons, one closer to the front and the other behind it. The one 
in front is the Reset switch, which causes your Macintosh to act as though you 
had turned the power off and then on again: It is a switch of last resort. The 
switch in back is the Interrupt switch. Press that one to get into MACSBUG. 

The second method is automatic: If MACSBUG is installed, then it is invoked 
whenever you have a run-time (system) error. This is true only if the error actu­
ally occurred (such as a division by zero). If you produce the error yourself with a 
call to SysError, then the system error box appears as it normally does. 

The third means of invoking MACSBUG is to call it directly from within your 
program. Put the following statement somewhere in the declaration portion of 
your program, that is, after the program statement but before start of the main 
body of the program itself: 

procedure MACSBUG; inline $A9FF; 

You can now get into MACSBUG by calling it: 

if <some condition> then MACSBUG; 

166 Turbo Pascal for the Macintosh 



This causes the MACSBUG display to come up, and you can go on from there. 

To help you debug your programs, Turbo Pascal can include the names of your 
procedures and functions in the resulting machine code. It doesn't normally do 
this, because of the extra space required, but it will if you ask it to, using the 
{$D+} compiler directive. Just place the directive at the start of your program: 

{$0+} 
program Whatever; 

The information is compiled and saved for MACSBUG's use. 

The MACSBUG Display 

When you invoke MACSBUG, the screen goes blank, and you'll get a display 
like this: 

DIVO ERR 
027684: 3840 FEC2486D MOUE.IJ DO,$FEC2CAS:> 
PC=00027684 SR=00002004 TMaQQOOOF7E 
OO=OOOOOOOR 01=00000001 02cOOOOFFFF 03aQQOOOOOO 
04=00000000 05=00000000 06::i00000000 07::100000000 
A0=00027844 A l=OOOEEF76 A2a00001EOO A3cOOOEEFD6 
R4=00027844 ASuOQQEEFB4 A6 .. 000EEE6R R71:1QOOEEE6A 

Figure 14-3 The MACSBUG Screen 

Don't be intimidated by the display; it's actually rather easy to understand. 
The first line indicates what (if any) made MACSBUG come up, such as DIVD ERR 

(divide-by-zero error) or USERBRK (called directly from within your program). If 
you've brought MACSBUG up by pressing the Interrupt switch, then no mes­
sage is given. 

The second line shows where your program was when MACSBUG was 
invoked. It gives the address in base-16 (hexadecimal), then shows you the 
machine code instruction in disassembled form. This means that it has converted 
the machine code from binary format to something you can read, such as ORI. B 
#$02, (AD). (You might not find that particularly legible, but it beats trying to 

Debugging Your Turbo Pascal Program 167 



interpret 00103202, the machine-code equivalent.) This instruction, by the way, 
is the next to be executed, which is why its address is the same as the contents of 
the program counter (PC). 

The next line shows the contents of two important registers (special storage 
locations) of the 68000 microprocessor. The PC is where the 68000 keeps the 
address of the next instruction it wants to execute. The Status Register (SR) is 
where the 68000 sets and clears indivdual bits (Os and ls) to keep track of certain 
information. The third value, TM, keeps track of the number of instructions 
executed. 

The final four lines show the contents of the 68000' s data and address registers. 
There are eight of each, DO .. D7 and AO .. A7. A7 serves a special purpose as the 
stack register. 

If you' re completely lost at this point, don't worry. What you need to do is to 
find a good reference manual on the 68000 processor, so that you can become 
familiar with what all these things mean. There are several available; one you 
might consider is The 68000, 68010, 68020 Primer by Stan Kelly-Bootle and Bob 
Fowler, published by Howard W. Sams & Co. 

MACSBUG Commands 

We'll assume that you have become reasonably familiar with the 68000 proces­
sor, at least to the extent that you want to push ahead. We'll also assume that you 
have put MACSBUG onto your boot disk and rebooted, so that it has been 
loaded into memory. Type in the following program: 

{$D+} 
program Test; 
var 

!,Sum : Integer; 

procedure MACSBUG; iuline $A9FF; 
begin { main body of program Test } 

ffrite('press return to invoke MACSBUG'); 
ReadLn; 
MACSBUG; 
Sum := O; 
for I := 1 to 10 do 

Sum := Sum • I; 
ffriteLn('The sum is ',Sum) 

end. { of prog Test } 

Now, compile and run it. You'll get the prompt Press return to invoke 
MACSBUG. Press fE). The MACSBUG display has now come up, and you're ready 
to start debugging. 

168 Turbo Pascal for the Macintosh 



Table 14-1 follows showing all the MACSBUG commands, after which the 
commands are discussed in some detail. 

Table 14-1 Summary of MACSBUG Commands 
G 
EA 
ES 
RB 
DM (adr) (#bytes} 
IL (adr) (#lines} 
SM (adr) (v 1) (v2) (v2) 
F (adr) (#bytes} (val) (mask) 
TD 
PC [val] 
SR [val] 
DO [val] (ditto for Dl..D7) 
AO [val] (ditto for AO .. A7) 
s 
T 
MR 
GT (adr) 
ST (adr) 
BR (adr) 
CL 
CS (adr 1) (adr2) 
cs 
SS (adrl) (adr2) 
WH (trap) 
WH (adr) 
AT (tl) (t2) (al) (a2) (dl) (d2) 
AR (tl) (t2) (al) (a2) (dl) (d2) 
AB (tl) (t2) (al) (a2) (dl) (d2) 
AS (tl) (t2) (al) (a2) 

AX 
HD 
HT 
HS (tl) (t2) (al) (a2) 

continue execution from PC 
relaunch application 
relaunch FINDER 
reboot 
display memory 
disassemble memory 
change memory 
find value 
display all registers 
display (or change) program counter 
display (or change) status register 
display (or change) data register 
display (or change) address register 
single-step executing 
single step; execute traps completely 
single step; execute subroutines 
execute until PC = (adr) 
like GT, but (adr) can be in ROM 
set breakpoint 
clear all breakpoints 
set up checksum area 
test checksum area 
interrupt on change to checksum area 
locate trap 
find trap near (adr) 
log calls to traps in trap range 
log last call to trap in trap range 
break on any call to trap in range 
break on memory change from trap call 
clear all trap commands 
dump heap 
show heap totals 
scramble heap on trap call 

The first MACSBUG command you need to learn is l]J for Go, which causes 
your program to continue execution. It restores the Mac's display first, so that it 
appears as though you had never stopped. However, be aware that l]J means 
"Go from where I am right now." For example, if you've changed the PC so that it 
points to some other area of memory, that's where execution starts. Likewise, if 

Debugging Your Turbo Pascal Program 169 



you've changed register values or memory locations, the program continues with 
those changed values. 

Press[]) now and watch yourself go back into your program. Once your pro­
gram is done, run it again and get back into MACSBUG. 

There are similar commands to exit MACSBUG. The IIJ1l command restarts 
your program, so that you'll exit MACSBUG and begin to execute your program 
again. The~ command gets you back to the FINDER (desktop) or to Turbo 
Pascal if you executed your program in memory. The [])!) command reboots 
the entire system, that is, it acts as if you had turned your Mac off and then on 
again. 

The next few commands have to do with displaying the contents of your com­
puter memory. The values stored in memory can be interpreted as either data 
(information to be acted upon) or instructions (what to do with data). Part of a 
program's job is to keep track of which values are which, so that it doesn't try to 
execute data or manipulate instructions (although both those actions can be 
done). 

Similarly, when you display memory, you have to decide if you want to see it as 
data or as instructions. The Dump Memory ([])])) command shows memory as 
data. Specifically, it gives you a list of 4-digit hexadecimal (base-16) values, each 
value representing a 16-bit word. The format of this command is 

>DM addr #bytes 

The command DM 1E3FD 8D displays 128 bytes (64 words), starting at location 
1E3FO. Why 128 bytes? Because MACSBUG assumes all values are in hexadeci­
mal, unless you specifically request otherwise by putting an ampersand (&) in 
front of the number. If you actually want only 80 bytes, you have to put either DM 

1E3FD SD (since 50 hex equals 80 decimal) or DM 1E3FD &8D (to specify a decimal 
value). 

The I])]) command displays the contents of memory in two forms: first as hex 
values, and then at the end of the line as ASCII characters. If you are dumping 
memory that has text in it, you can easily detect and read that text. The com­
mand displays eight words (16 bytes) on each line. 

For the address, MACSBUG accepts a variety of expressions. You can, of 
course, put an absolute address there, as shown above. You can also use values in 
registers. For example, the command DM PC 3D displays three lines (48 words 
altogether), starting at the address found in the program counter. Likewise, DM 

TEST+3D 1DD displays 10 lines of data, beginning 30 bytes after the start of your 
program TEST, while DM RAD 2D shows data at the address contained in register 
AO. 

170 Turbo Pascal for the Macintosh 



What if the memory you want to examine has instructions instead of data in it? 
Do you have to disassemble (decode) those instructions yourself? No, you can 
use the OJI) command, which decodes the instructions for you. The format is a 
little different from that of the l]J!l command: 

>IL addr #lines 

The command IL :LE3FD 2D disassembles and displays 32 (20 is in hex, remem­
ber?) instructions, starting at location 1E3FO. You don't have to specify the num­
ber of lines; the default is 16. For that matter, you don't have to specify the 
starting address, either. MACSBUG keeps track of the memory location you're 
looking at, so that if you just type IL, it disassembles the next 16 instructions, 
and so on. In fact, you can just press ~. and MACSBUG executes the OJI) 
command again. This is also true for l]J!l and several other MACSBUG com­
mands. As with l]J!l, you can use registers (PC, AO, and so on) and symbols 
(TEST), along with offsets ( +50, -100), to express the address. 

What if you want to change memory? The SM command allows you to set the 
contents of specific memory locations as data. The format is 

SM addr val:L val2 val3 val~ ••• 

This stores the indicated values at the indicated address. The values can be 
bytes, words (2 bytes), or longwords (4 bytes); MACSBUG stores them appropri­
ately. If you want to enter instructions instead of data, you have to "hand assem­
ble" them yourself; MACSBUG can't convert them from assembly-language 
instructions to machine code for you, though other commercial debuggers (such 
as TMON) can. 

What if you' re looking for a given value in memory somewhere, but you don't 
know where it is? You can then use the Find (Ill) command. The format is 

>F addr 1bytes value mask 

The addr is the address you want to start at, while #bytes indicates how many 
bytes to examine. The value is what you're looking for; as with the ID!) com­
mand, it can be a byte, a word, or a longword. The mask allows you even more 
precision by specifying which bits in each location being examined to ignore. For 
example, you might search for a particular command, such as (ll!J!l (Load 
Effective Address). That instruction has the bit pattern OlOOxxxlllxxxxxx, where 
the x' s represent information about which registers are involved, and so on. You 
might then use the following instruction: 

>F TEST :LDD ~:LCD Fl.CD 

With this command, MACSBUG searches the range from TE.ST to 
TEST+256 for the (ll!J!l instruction, ignoring all the x bits in the pattern 
shown above. 

Debugging Your Turbo Pascal Program 171 



Having looked at memory, you might want to go back and look at the registers 
again. The OJ]) command brings up the same display you had when you first 
entered MACSBUG. 

You can also display the contents of a given register by typing its name: PC, 
SR, AO through A 7, and DO through D7. If you type a value after its name (such 
as '"D310FA"), then that value is stored in that register. 

To debug a program, you not only want to be able to examine and change 
memory, but to execute instructions. The most useful technique is to execute 
one instruction at a time and see what changes with each step. This is known as 
single-stepping or tracing. 

The basic single-step command is([). If you enter this command, MACSBUG 
executes the next instruction that the program counter (PC) is pointing at, then 
shows you the next instruction and the register contents. You'll note that the 
screen Hashes when you do execute this command; that's because MACSBUG 
momentarily switches back to your program's regular screen display. As with 
!])]) and WI), you can just press ~ each time to repeat the ([) command. 

There is one potential problem with using the ([) command. What if the 
instruction you execute calls a Toolbox or operating system routine? You then 
have to single-step through that entire routine before you get back to your pro­
gram. Obviously, this could be very tedious. The answer is to use the W com­
mand. When MACSBUG encounters a call (known as a "trap") to a Toolbox or 
OS routine, it just executes the routine without single-stepping. It then stops 
when it gets back to your program, so that the routine ends up looking like a 
single instruction. 

A similar case can occur within your own program. What if you're stepping 
through some instructions and come across a call to one of Turbo Pascal's subrou­
tines, or even one of your own? You may not want to single-step all the way 
through it. The solution is to use (for that instruction only) the ID!) command. 
This lets MACSBUG go to that subroutine, execute it, return to where you 
were, and put you back into single-step mode. 

Let's take this one step farther. What if you are stepping through your pro­
gram and want to quickly get through some code? You can then use the Go Until 
(lDJl) command. The syntax is 

>GT addr 

Your program then executes without stopping until the desired address is 
reached, at which point MACSBUG is again invoked. Notice that your program's 
regular display comes up again until MACSBUG is re-invoked. A variation of 
this instruction, Step Until ({I[!l), allows the address to be in ROM, that is, 
within the Toolbox and OS routines. 

172 Turbo Pascal for the Macintosh 



Let's make things even more complicated. What if there are several points in 
your program where you want to stop and reenter MACSBUG? You can set 
breakpoints, which are (as you might guess) locations in your program at which 
MACSBUG is automatically invoked. (The call to MACSBUG in the sample 
program can be thought of as a type of breakpoint.) To set a breakpoint, type 

>BR addr 

where addr is once again a standard address expression (absolute, register, pro­
cedure name, with or without offset). Once you've set breakpoints, you can see 
where they are by pressing (])]J without an address. To clear a breakpoint, you 
use the CL Addr (@)I)) command to clear an individual breakpoint, or just 
press @)I) to clear them all. 

Just as you can have MACSBUG stop or be re-invoked if and when a given 
instruction is executed, you can also have MACSBUG check if any memory 
location within a given range is changed. This is done using a checksum, which is 
simply the sum of all the locations in that range. If the checksum changes, then 
some location has been changed. Be aware, though, that if two locations are 
changed in certain ways - for example, if their values are swapped - the check­
sum remains the same, and MACSBUG won't be able to detect the modification. 

The command l])]J is for use during single-step debugging. To set things up, 
use this format: 

>CS addr1 addr2 

MACSBUG then computes the checksum in the memory locations from addrl 
to addr2 and remembers it. As you trace through your program, you can re­
check that range by pressing l]J]J. If any locations have been changed (that is, 
the checksum is different), then MACSBUG prints CHKSUM F; otherwise, it prints 
CHKSUM T. 

The second command, l]J]l, is for use during multiple-step debugging. It 
uses the same syntax, namely: 

>SS addr1 addr2 

You can now press I]), WI), WI), or whatever you want. The effect of this 
is that a l])]J command is done after every instruction is executed. As you 
might imagine, this makes your program run very, very, very slowly; it should be 
used only in desperate circumstances or if you're really bored. 

As mentioned before, calls to the Macintosh Toolbox and OS routines are 
known as traps. This is because they're implemented using a special 68000 
instruction called a trap. These instructions always have a hex value of $Axxx and 
(theoretically) range from $AOOO to $AFFF. In reality, most of the Mac traps 
have values of $A0xx, $Alxx, $A8xx, and $A9xx. You might have noticed that 

Debugging Your Turbo Pascal Program 173 



MACSBUG is smart enough to detect those traps with the OJI) command and 
print out the name of the corresponding routine on the same line. 

First, if you' re not sure which trap is which, use the lfil]) command. It has a 
varied syntax. The command 

>llH trap 

where trap is a trap's name or number, returns the trap's vector, address, and 
name. If you type 

>llH addr 

then MACSBUG looks for the trap nearest to and preceding that address. This 
last version doesn't refer to calls to that trap, but to where the routine itself is 
actually located. 

There are several MACSBUG commands to help you determine what traps 
your program is calling. The most useful one is !Il]), which has this syntax: 

>AT trapL trap2 addrL addr2 dOL d02 

The parameters are as follow: 

trapl low end of trap range 
trap2 high end of trap range 
addr 1 low end of address range 
addr2 high end of address range 
DOI low end of DO value 
D02 high end of DO value 

The IIl]) command checks for a range of traps; Appendix C in Volume 3 of 
Inside Macintosh contains a complete list. If you only want to check for one trap, 
then you can repeat its name for trap2. Note that trapl (= trap2. Also, you can 
use the trap names if you want, instead of the hex values. Trap2 may be left off if 
you aren't specifying an address or DO range. 

Addrl and addr2 specify a range in which to check for the trap values. Note 
that addr 1 ( = addr2. These follow the usual address conventions and may be left 
off if you aren't specifying a DO value range. Likewise, DOI and D02 specify a 
range of values in the DO register and are optional. 

Suppose you compile and run TEST, get into MACSBUG, then enter the 
command 

>AT SETPORT GETPORT TEST TEST+300 

Now press!]) to rerun your program. The screen flashes as MACSBUG reap­
pears each time a trap in the range is called. When you finally get back into 
MACSBUG, you'll see a display that looks something like this: 

A87~ GETPORT PC:OO~L3270 AO:aaaLqB3A DO:aaaaaaaa TM:OOOOOLEB 
A873 SETPORT PC:OO~L327~ AO:OOODOF72 DO:aaaaaaaa TM:OOOOOLEC 

174 Turbo Pascal for the Macintosh 



The first value is the trap number; the second, the trap name; the third, the 
memory location where the trap was called; the fourth and fifth, the contents of 
registers AO and DO; the sixth, the time (in ticks). 

What if you don't care about all the calls to those traps except for the last one 
before you get back into MACSBUG? Press ID!), which has the same syntax. 
When you run your program, there'll be no Hashing or other breaking in. 
Instead, when you get back into MACSBUG, press ID!). MACSBUG then 
gives you the information shown earlier on the last trap call, as well as dumping 
part of the stack. 

What if you want to stop and drop immediately into MACSBUG whenever a 
given trap (or range of traps) is called? Use the ID!) command. As with l!Jll 
and ID!), you can specify memory range and DO value range. Now, as soon as 
one of the specified traps is called (within the desired memory range and so on), 
MACSBUG is immediately invoked and stops at that location. 

The llJ!l command works like a trap-oriented version of the IDJl com­
mand, which checks for changes within a given memory range. Its syntax is 

>AS trapl trap2 addrl addr2 

However, addrl and addr2 do not refer to where the traps are; instead, they 
refer to the area to be checked for modifications. Each time a trap (located any­
where) in the range trapl..trap2 is called, the memory area addrl..addr2 is 
checked. Hthe checksum has changed, MACSBUG is invoked, and you get the 
same trap display as with previous commands. 

You can only have one trap command (l!Jll,ID]J,W!),ID!l) active at any 
one time. To clear the existing command, type ID!). 

There are also a few commands for examining the heap. A discussion of these 
commands and the heap itself is beyond the scope of this chapter, but here are 
the actual commands: 

>HD dumps the heap to the screen 
>HT shows only heap totals 
>HS trapl trap2 addrl addr2 scrambles heap if traps called 

There are quite a few reference books on debugging Macintosh programs. One 
is How to Write Macintosh Software, written by Scott Knaster and published by 
the Hayden Book Company's Apple Press. It has additional information on 
MACSBUG, TMON, and writing Macintosh programs in general. 

Debugging Your Turbo Pascal Program 175 



c H A p T E R 15 
The Turbo Pascal Menu Reference 

This chapter is designed to help you quickly review all the menu commands 
available in Turbo Pascal. You'll first learn how to select menu commands, then 
review all the menus and what each one does. Finally, you'll go through each 
menu in detail. 

Se"lecting a Menu Command 

Menu commands can be selected two ways. First, you can use the "point-press­
drag-release" method. Point to the menu by moving the cursor with the mouse. 
Press the mouse button down and hold it down; the menu's commands appear 
below the menu name. Drag the cursor down to the command you want; that 
command now appears as white text on a black bar. Release the mouse button; 
the command blinks a few times, the menu commands disappear, and the com­
mand is executed. Any menu command can be selected using this method. 

The second approach, available for most commands, is the command-key 
method. The command key, with the l]J (cloverleaf) symbol on it, sits just to the 
left of the space bar on the bottom row of your keyboard. If you pull a menu, 
you'll notice that some commands have a command-key equivalent listed: the 
l]J symbol, followed by some letter or character. You can select those commands 

177 



by holding~ down while you type the specified letter or symbol. For example, 
to select the New command from the File menu, hold down ~ and type the 
letter N. 

The Menu Bar 

Figure 15-1 The Menu Bar 

The menu bar in Figure 15-1 shows you Turbo Pascal's eight menus: 

• Apple--Use this menu to bring up Macintosh desk accessories while working 
in Turbo Pascal. 

• . File--Use this menu to open, save, and close programs and other text files 
that you edit with Turbo Pascal. You can also print files, save options, transfer 
to other programs, and exit Turbo Pascal with this menu. 

• Edit-Use this menu to perform editing and formatting commands, and to set 
certain options. 

• Search-Use this menu to search for given strings and, if desired, to replace 
them with others. It also allows you to bring the cursor home and to cycle 
through your editing windows. 

• Format-Use this menu to organize your editing windows (if you have more 
than one open) and to select the font size within a given window. 

• Font-Use this menu to choose the font to be used in each editing window. 

• Compile--Use this menu to compile and run your programs, to get informa­
tion about a given program, and to set certain options. 

178 Turbo Pascal fo r the Macintosh 



• Transfer-Use this menu to exit Turbo Pascal by transferring directly to one of 
a specific list of programs; you can edit this list. 

Having reviewed the basic functions of each menu, let's discuss each menu's 
commands in depth. 

The Apple Menu 

KJI Fiie Edit Search Format Font Compile Transfer 
About Turbo ... 

··-·· --~ MyFlrst.Pas 

' 
............... ___ .. ...... --·· 

Calculator+ 
CalendarBook rsal ' >; 
Chooser 
control Panel i 
MacClock 
MacDlaler 
MacTerm 
Notepad+ ' 
Talking Moose 

~L ... · ··~ '2l 

Figure 15-2 The App'le Menu 

This is a standard menu found in most Mac applications, and it is always the 
first menu on the menu bar. It has two parts: the About Turbo ... command and 
the current list of desk accessories. Since that list varies according to your system 
file, the example shown in Figure 15-2 may not match what you see when you 
pull your menu down. 

About Turbo .. . 

You can't select any of the commands in the Apple menu using the I!). All must 
be selected with the mouse. 

The About Turbo ... command brings up a window in the middle of the screen, 
giving the Turbo Pascal version number and copyright notice. Press ~ or click 
the mouse button to make it go away. 

The Turbo Pascal Menu Reference 179 



Desk Accessories 

The desk accessory commands activate the different desk accessories (DAs). 
Once activated, most DAs continue to run until you get rid of them (usually by 
clicking on the Close box in the upper left corner of the DA' s window). It's a good 
idea to close any DAs that you are no longer using. 

The Fil,e Menu 

'lfllml Edit Seorch Format Font Compile 

~ New XN ~ MJ!.Flrst.Pos 
~ Open... XO 

~~ 0(H~n Sc~ICH tion :•:P 
Close X . t • >; 

·~ Soue 
Soue Rs ... 

Page Setup •.. 
Print. .. 

Edit Transfer .•. 
Saue Defaults 

XS 

!----·-------
Transfer... XT 
Quit XQ 

Tronsfer 

Figure 15-3 The File Menu 

The File menu is concerned primarily with reading and writing programs (and 
other data) from and to the disk. The commands fall into three major groups: 
accessing files, printing files , and exiting Turbo Pascal. For more details on these 
commands, review Chapter 3. 

New~ 

Opens a new ("Untitled") window. That window becomes the current editing 
window. If eight editing windows (the maximum) are already open, this com­
mand is disabled. 

180 Turbo Pascal for the Macintosh 



Open~ 

· Edit seorch formot font Compile Tronsfer 

Untitled 

I jg) Turbo Poscoi! 

D BoHes.Pos 
D debug.pos 
D Drngon.Pos 
D Hosh.Pos 

•• I I I 
1 

D keycodes.pos 
D PrlntTest.Pos 
D Sleue.Pos 
D Test.Pos 

IQ; lg) Turbo Posco! 

Eject 

Drlue 

Open 

Concel 

Figure 15-4 The Mac Fik Sekctor 

Brings up the standard Mac file selector that allows you to select a file for 
editing. Disabled if eight windows are already open. 

Open S e"lection (!JI) 

Attempts to open a file whose name matches the currently selected text in the 
current editing window. Primarily used for opening include files. Disabled if no 
text is selected or if eight windows are already open. 

Close !!I:] 

Closes the current editing window. If the contents of that window have been 
changed since it was last saved to disk, a dialog box lets you choose to save or not 
save your changes before closing, or to cancel the command. Disabled if no 
windows are open. 

Save(!)]) 

Saves the contents of the current editing window out to disk. If that window isn't 
associated with a file (that is, it is "Untitled"), it brings up the standard file-name 
selector, allowing you to enter the file name. Disabled if no windows are open. 

The Turbo Pascal Menu Reference 181 



Save as ... (no command equiva"lent) 

~Edit Seorch Formnt Font Compile Trnnsfer 

HelloWorld.Pos 
proora111 Hal lo~orld ; 
var 

1, J,K , L : 
b•gin 

for I 
wrl t.e 

J := 10 

~ ~ = 3; 
raadhi; 

end . 

l=Turbo Pnscol I 
D MlJ[l<m10.fluc 
CJ PnsDemos 
CJ PosProgroms 
CJ PosUnlts 
q, ll[lllt 
q, fl••(dl1 

Soue teHt os: 

IBTI =Turbo Pos •.. 

illl ( [ jl'C1 J 

I ( Drlue ) 

Soue 

Cancel 

Figure 15-5 The Fil.e-Name Sel.ector 

Brings up the standard file-name selector, whether or not the current editing 
window is associated with a file. Saves the window's contents out to that file and 
associates the window with that file . Disabled if no windows are open. 

Page Setup .. . (no command equiva"lent) 

~Edit Seorch Formot Font Compile Tron sf er 

lmogeWrlter y23 cr:J) 
Pnper: ®US Letter O A4 Letter 

0 US Legol 0 lntemotlonol Fanfold [ cancel ) 
O Computer Poper 

Drlentntlon Speclol Effects: D Toll Adjusted 
D 50 '7. Reduction 
D No Gops Between Poges 

'"'.I. 

Figure 15-6 The Page-Setup Dialog Box 

Brings up the standard page-setup dialog box. Any changes made are erased 
when you exit Turbo Pascal. Disabled if no windows are open. 

182 Turbo Pascal for the Macintosh 



Print .. . (no command equiva"Lent) 

~Edit Search formnt Font Compile Tronsfer 

deb~as 

lmn~eWriler Vi~ CE:J) 
Qunilty: O Best @rester O Drnfl ' 
Pnge Runge: @Ril O From: D To: D ( Cnncel ) 

Coples: D 
Paper Feed: ® Rutomnllc O Hnnd Feed 

•no . ' i 

' 
! 

l[ PJ!lj, •' .. l2J 

Figure 15-7 The Printing Dial.og Box 

Brings up the standard printing dialog box. Disabled if no windows are open. 

Edit Transfer. . . (no command equiva"Lent) 

'* llllil Edit Search Format Font Compile Tronsfer 

pro9 r0111 Ca 11 Debugger ; 
(0+) 

de bu 

us•s MemTypes,QuickOra111,0Slntf; 
procedure GoDebugger; In I Ina $ABFF ; 
be.Q in 

Uri tel n ( ' Hello Uorld' >; 
GoOebugger; 
SysError<BS> ; 
wr I te In <' Goodbye' ) ; 
raad ln 

end . 

Tronsfer Menu I lems: 

RMnker 
UnltMouer 
Font•DR Mouer 
MOS 2:RSM 
Res Edit 

I 

OQ [cancel) 

l0~1[1 mmmmmm ... ... 1 .. iiiiil· · ., . !91'2l 

Figure 15-8 The Edit Transfer Dial.og Box 

Allows you to edit the list of programs found in the Transfer menu. (Not to be 
confused with the Transfer command in this menu; see next page. ) 

The Turbo Pascal Menu Reference 183 



Save Defaults (no command equivalent) 

Saves to disk any changes made using the Options commands in the Edit and 
Compile menus. Otherwise, any changes made are erased once you exit Turbo 
Pascal. 

Transfer~ 

D PasPrograms 
D PasUnlts I E)o< t 
<ll REdlt ,1 ( Drlue ) 
<i. ResEdlt 

D Screen Programs 

m 
( Transfer ) 

<i. Turbo 
D Turtle Folder Cancel 

Figure 15-9 The Transfer File Selector 

Closes all open editing windows, allowing you to verify whether changes 
made to each should be saved. Brings up the standard file selector, but only lists 
applications (executable programs). If you select one, it exits Turbo Pascal and 
executes that program without going back to the desktop first. 

Quit(!)]] 

Closes all open editing windows, allowing you to verify whether changes made to 
each should be saved. Exits back to the desktop. 

184 Turbo Pascal for the Macintosh 



The Edit Menu 

( C1oc:k Copy xc June 1986 ) 

($0 pas Poste XU 
($U-) Cleor 

--·---· .. -··-·----uses Me tr, Tool lnlf ; 
Shift l.»tt ,;,,[ 

c:onst Sl11ft fllfJt11 ,;<:] 

dCt.IE • to *'10b I e desk ac:c:esory ) 
dNHd Options ... • to tall OS that 111e need 

type 
( The OAGlobots record 11111 l be pointed to by a handle 

in the dCl1EnlNJ passed In by the operating syst.eni . 
This is the only may to hove global variables In a 
desk oc:c:essorv . ) 

DAO 1 oba Is • record 
lheTiaie : Oat.eTilllt!R.c:. ; 
Um.Map : packed arraylO . 151 of Bi.it.a ; 
patl.lhi te : Pattern; 

time ) 

Figure 15-10 The Edit Menu 

The Edit menu contains editing and formatting commands. The commands 
are discussed in greater detail in Chapter 3. 

Undo (!]I) 

Attempts to undo the last editing command or action you performed. You can 
undo the last undo performed, that is, restore the window contents to what they 
were before you did the first undo command. Disabled when not applicable. 

Cut(!JI) 

Cuts the currently selected text, deleting it from the editing window and saving 
it onto the Clipboard (a temporary storage area). Disabled when no text is 
selected. 

Copy IEJI) 

Copies the currently selected text onto the Clipboard, but does not delete it from 
the editing window. Disabled when no text is selected. 

The Turbo Pascal Menu Reference 185 



Paste~ 

Copies the contents of the Clipboard into the current editing window at the 
cursor's location. If text in the window has been selected, replaces that text with 
the Clipboard's contents. Disabled if the Clipboard is empty and no window is 
open. 

Clear (no command equivalent) 

Deletes the currently selected text from the editing window without saving it to 
the Clipboard. Disabled when no text is selected. 

Shift Left (!)]] 

Shifts the currently selected text one space to the left. Ignored if any part of the 
selected text is already at the left margin of the editing window. Disabled when 
no text is selected and when the selection starts or ends with a partial line. 

Shift Right(!)]] 

Shifts the currently selected text one space to the right. Disabled when no text is 
selected and when the selection starts or ends with a partial line. 

Options (no command equivalent) 

• Fiie llilII Seorch Formot Font c ompile Tronsfer 

HelloWorld.Pos 

Clock.PU 
program CI oc 

181 Au t o Indent 
p:! 

( Clock Desk Tobwldt h: [gl 181 Stortup Window 

i=~-~osdosko 

us•s Memlyp• QQ [ Concel J 

consl 

dCllEnab l • • $0400 ; { f I 09 to enob I e desk acc•sory } 
dNeedTl11e • $2000; ( flog lo lei I OS lha l we naad Ua:ie ) 

type 
( The DAG l obals record wl 11 be pointed to by a hand l e 

in the dCUEntr1.1 passed In by the operating system. 
This Is the onhJ •O\I to hav• g l obal varlablu In a 
desk ac:cessory . > ' 

DAGlobals • record 
th@Tlrne : OateTlmeRec; 

m ..... ,1 .. • 
,. 

'2l '· ·· 

Figure 15-11 The Options Diawg Box 

186 Turbo Pascal for the Macintosh 



Allows you to set the tabulator width and to enable or disable the auto-indent 
and Startup Window options. The tabulator width must be between 1 and 8. 
When auto-indent is enabled, each new line (created by pressing fB) is auto­
matically indented the same number of spaces as the line above. When Startup 
Window is enabled, Turbo Pascal automatically creates an "Untitled" window 
when started. The changes only affect the current session unless you use the 
Save Defaults command in the File menu to save them as the new defaults. 

The Search Menu 

s Fiie Edl~Format Font Compile Transfer 

10 Find... XF ~on Pas 
- !=ind Nt~Ht . ;;{:() . 

prograo graft. Change... XA 
{$U turll•) 
usH tn.mtypas , Home Cursor XH I in\f, SANE, turt le ; 

c:onst 

~!~\~n9th .. Window XW 

var 
duMfa\I : evenlr.cord; 
x , y : lnt•g•r; 

proc:•dur• plot.Cdl st : real; angle : Integer>; 
var 

d : Integer; 
begin 

d :• \n.nc(d is\>; 
setheadlng<angla >; 
forwd(d) 

end; 

procedure dragon(dlst : real ; angle, slgn : Integer>; 
begin 

Figure 15-12 The Search Menu 

J 

The Search menu allows you to search for strings (and, if desired, replace 
them), to move the cursor home, and to select the current editing window. 
These commands are discussed in more detail in Chapter 3. 

The Turbo Pascal Menu Reference 187 



Find . .. (!}Il 

• File Edit Formnt Font Compile Tronsfer 

Find Whnt: ldNeedllme I 
OD D Words Only D Cnse Sensltiue ( cancel ) 

($0 pasdeskcicc) 
(SU-) 

uses MemTypu·,Qu ic:kDraw,OSlnlf, Tool Int.<; 

const 

dCtlEnable • $0400; ( f I 09 to enab I e desk occ:esory ) 
dNudTi•• • $2000; { flag to hi I OS that we nHd time ) 

twe 
{ Th• DAGlobols record wl 11 be poinl• d lo by a handle 

I n the dCtlEntry passed In by the operating systeni . 
This Is the onlv way lo have global variables In a 
d.sk OCC:USQr\I . ) 

DAGlobols • record 
lhdlH : Dal•TIHR•c; 

19' ' Ii "' .. ,. 
'2l . -... , 

Figure 15-13 The Find Dialog Box 

Presents a dialog box that lets you enter the string to find and to select options 
for Words Only and Case Sensitive. The default search string is the currently 
selected text (if any). The search starts from the current location of the cursor. 
Disabled if no windows are open. 

Find Next~ 

Attempts to locate the next occurrence of the search string entered via the Find 
or Change command, starting at the current location of the cursor. Disabled if no 
windows are open or if no search string has been entered. 

188 Turbo Pascal for the Macintosh 



Change ... c:J]J 

S Fiie Edit Format Font Compile Transfer 

Find What: I readln 
Change To: 1-:. R,-e-ad_L_n----------------1 

'--------------------' 
O Words Only 0 Case Sensltlue 

.11. 

Figure 15-14 The Change Dialog Box 

Presents a dialog box that lets you enter both the string to find and the string 
with which to replace it, and to select options for Words Only and Case Sensi­
tive. 

Format Font Compile Transfer 

pro9ra 

vo7 , J , K\.';;, ==;;;;=;=~============!! 
begin 

for I := 1 to IO do 
wrl l•ln< 'He I lo Uorld ' >; 

J :• 10; 
K :- O; 
L :• J div K; 
Dl!llll; 

end . 

J.11 

Figure 15-15 

' ,., 

The Verification Box 

Each replacement is verified, with Yes, No, All, and Cancel options. Com­
mand-key equivalents are II), I]), 11], and II). Disabled if no windows are 
open. 

The Turbo Pascal Menu Reference 189 



Home Cursor(!]]) 

Moves cursor to the top of the currently active editing window and displays that 
portion of the window. Disabled if no windows are open. 

Win<Ww[DE 

Cycles through all opened editing windows, making each successive one the 
current editing window each time this command is selected. Disabled when no 
windows are open. 

The Format Menu 

s File Edit Search Font Compile Tronsfer 

m 
program graft.est; 

stock Windows li-s 
Tile Windows 
Zoom Window 

(SU turtle} 
uses 111e11bJPH, qu lckdro .,..,g point 

const 10 point 
~!o"-~"9th: ~ : 414 ; 12 point 

14 point 
var 18 point 

~~111:v ~ ~~::-;~ord; 24 point 

proc•dl..ar-9' plot<dlst : ,-.al; e1n9I• : lnte9er>; 
var 

d : Integer; 
be9ln 

d : • \l'V\c(dist>; 
Htheodln9<an9I•>; 
forwd(d) 

end ; 

proc•dw-• drCJ90f'l(dlst : r"9<11; Clf"l9I• , sl9f'l : Integer>; 
b•oln 

~· 
Figure 15-16 The Format Menu 

J 

ii~ 

The Format menu has two major functions: to organize windows and to select 
text size. Its commands are discussed in Chapter 3. None of the commands in 
this menu have any command-key equivalents. 

Stack Win<Wws 

Organizes the editing windows into a stack, that is, with the current editing 
window in the front and all other windows stacked behind it with only their title 
bars showing. Disabled when no windows are open. 

190 Turbo Pascal for the Macintosh 



Tfle Windows 

Organizes the editing windows into tiles, that is, shrinks the windows so that all 
can fit onto the screen at the same time. Disabled when no windows are open. 

Zoom Window 

Expands the current editing window so that it takes up most of the screen. If the 
current window is already at full size, shrinks it back down. Corresponds to 
double-clicking on the window's title bar. Best used with the Tile Windows com­
mand. Disabled when no windows are open. 

Character Sizes 
9, 10, 12, 14, 18, and 24 points 

Selects the character size to use in the current editing window. If no windows 
are open, selects the default character size for new windows. Each window may 
have its own font size. 

The Font Menu 

s Fiie Edit Search Format 11iJi1m C:omplle Transfer 
C:ourler 

program graft.st; 

($U turtl•) 

Heluetlca 
Toronto 
C:hlcago 

usu m•mtypu, Q'lickdnv , osintf, tooHntf, Yo'Geneuo 

const 
min..J•t19th•S; 
rooL.2 •1 .414; 

dunmy : ev.ntreco,.d; 
X,\I : inif9.,·; 

vor 
d : int.,.-r ; 

b•9YI 
d =- trv\c(dtrl) ; 
HthHd"'9(M91•); 
rorwd(d) 

end; 

::JI 

New York 
Monaco 

Figure 15-17 A Typical Font Menu 

The Font menu allows you to select the character font for the text in the 
current editing window. If no windows are open, you may select the default 
character font for new windows. The list of fonts available depends upon your 
system file; Figure 15-17 shows a typical Font menu .. Each window may have its 

The Turbo Pascal Menu Reference 191 



own font type, that is , not all windows have to use the same font. These com­
mands are never disabled, and none of the commands have command-key equiv­
alents. 

The Compile Menu 

s Fiie Edit Search Format Font 

ID ~MJLSeco 
proQrcn M\!Second; 

uses MemTypes,QulckDraw; 

var 
X,Y, Rad lus : lnteg•r; 
TRec t : Red; 

ba9ln 
\./rlte C' Entar X: · >; 
Readl.n<X>; 
l.lrlteC'Enter Y: '>; 
Reodl...nCY>; 
l.lrlteC'Enhr rad i us : '>; 
ReodLnCRadlus>; 

Transfer 
Run ICR 

To Memory ICM 
To Disk ICK 
Check ·syntaH ICY 
rln~ E 11'0r >::'E 

Get Info ICI 
r----·-----

Dptlons ... 

SetRectcTAect, X-Rad lus, Y-Rodl us, X+Radl us, Y+Rod lus >; 
PalntDvol <TRect>; 
Aeadln; 

end. {of pro9ra111 M1.1Second) 

Figure 15-18 The Compil.e Menu 

:10 

The Compile menu allows you to compile and execute your Turbo Pascal 
programs. The Compile menu commands are discussed in more detail in Chap­
ter 4. 

Run[!]]) 

Executes the program in the current editing window. If needed, compiles the 
program (to memory) first. Disabled when no windows are open. 

To M errwry (!)]) 

Compiles to memory the program in the current editing wind9w. The code file is 
disposed of if you in any way edit the text or exit Turbo Pascal. Disabled when no 
windows are open. 

192 Turbo Pascal for the Macintosh 



To Disk (!]]) 

Compiles to disk the program in the current editing window. The code file is 
saved as a clickable application. Disabled when no windows are open. 

Check Syntax (!JI) 

Compiles the program in the current editing window without producing 68000 
machine code; checks for any syntax errors. Disabled if no windows are open. 

Find Error (!Jil 

Positions the cursor at the statement that caused the last run-time error or, if 
that statement can't be found, at the beginning of the text. Disabled if no error 
has occurred or no windows are open. 

Get Info C!lIJ 

s Fiie Edit Search Format Font • • · Transfer 

Clock.Pas 

Pf"OV'C. Cloc::k; 

{$ 
{$ 

TeHt: Clock.Pas, 5826 bytes, 236 lines. 
Code: 8856 bytes code, 206 bytes data. 

Heap: 871 K bytes In total, 729K bytes free. 

dNeedTI,.. • $2000; ( flag to tel I OS that we need time } 

,,.,. 
( Th• OAOlobals record •1 11 ~ po inh d to by a hand le 

In the dCtlEnt.r\I passed in by the operating sys tem. 
This Is the only • Q\I lo have global variabl es In a 
desk acc:usory . ) 

DAOlobals • record 
lheTIM : DateTlaeRec; 
tlHMap : packed art"Q\110 . . ISJ of B1.1te; 
paUlilte : Pattern; 

Figure 15-19 The Get Info Box 

Displays information about the program in the current editing window: text 
size, number oflines, code size, and data size. Disabled if no windows are open. 

The Turbo Pascal Menu Reference 193 



Options ... (no command equivalent) 

ti File Edit Seorch Formot font • • · Tronsfer 

Clock.Pas 

progr~.J:U~"'"'~· ==================;] 
{ Clo 

($0 p 
(SU-) 

Symbol table K-Bytes ~ 
Default Directories: 

SU Turbo Pascal:PasUnlts: 

consl SI Turbo Pascal:lnclude Files: 

dCl 
dHa 

lype 
( Th 

In 
Th 
de 

SR 

SL 

SD 

181 Rulo Saue TeHt · 

OA~h[!,o~Tl;=••=,;=o:=o;=te'=T;=lm=eR:=e=c,=· =============~ 
t.lmeMap : packed ar,..ay[O .. 151 of Byle ; 
pat.Uhl le : Palt.rn; 

.!Ii ·'''''''' 
1·· 

Figure 15-20 The Compile/Options Diawg Box 

Brings up the compiler options dialog box. Allows you to enable or disable the 
auto-save option, set symbol table size, and specify default directories for the 
$U, $1, $R, $L, and $0 compiler directives. 

The Transfer Menu 

s Fiie Edit search Format Font Compile 

~D 
program MySecond; 

uses Me111Types,QuickOra111 ; 

var 
X, Y, Rod lus Integer ; 
TR eel · Re ct ; 

begin 
Ur i le ( ' Ent.er X : '>; 
Readln<X>; 
Uri l e('Enter Y: · >; 
Raadln <Y>; 
Uri la( 'Enter radius : ' >; 
Readln ( Radius >; 

M Second.Pas 

Sa tRec t<TRecl , X-Rod lus , Y-Rad ius , X+Rod i us, Y+Rod i us); 
Paint.Oval <TRec t>; 
AeodLn; 

end . (of program MySecond) 

RMoker 
UnitMouer 
Fonl+DR Mouer 

••• 1 

Figure 15-21 The Transfer Menu Default Setup 

The Transfer menu contains a list of applications to which you can directly 
transfer without having to go to the FINDER. Figure 15-21 shows the default 

194 Turbo Pascal for the Macintosh 



setup for the Transfer menu: RMAKER, UNITMOVER, and FONT/DA 
MOVER. The last application is normally called FONT/DA MOVER, but the 
slash has a special meaning within a menu item, and so the name here, as well as 
the actual file name on the disk, must be changed to accommodate that. 

You can edit the list of applications by selecting the Edit Transfer command in 
the File menu. This brings up a dialog box with the current Transfer Menu list; 
you then modify the list using standard editing methods. 

Edit Search Format Font Compile Transfer 

Untl 

Clock 
($U-) 

usu r1MType:s,QulckDraw,OSlntf,Tool lntf; 

cons\ 

dCtlEnabl• • $0400; ( flag lo enable 
cl'IHdT IH • $2000; { flag lo \al I OS 

\yp• 
( lhH DAOlobals record wl 11 b• pointed 

In th• dCtlEn\r\I pasHd In b\I the op• 
This Is t.he onlv •Olm! to hove global v 
cfuk OCCUSOf"\I . ) 

DAO I oba Is • record 
t.heTIH: OateTlaeRec; 
tl..nap : pack9d CIN"Q\1(0 
pa\l.1'11 le : Pattern; 
potBlack : Pattern; 

end; 

Transfer Menu Items: 

RMaker 
UnltMouer 
Font+DA Mouer 
(-

ASM<O 
GoofyWrlter/ G 

I 

Figure 15-22 Transfer Menu Dialog Box 

When you edit the Transfer menu, a number of meta-characters are available: 

"/" 
"(" 

"(" 

Separates multiple items on a single line. 
Item has a command-key equivalent. 
Item has a special character style. 
Item is disabled. 

A slash (/ ) followed by a character associates that character with the applica­
tion, allowing the application to be invoked from the keyboard with that com­
mand key. Remember to specify the character in uppercase if it's a letter, and 
not to specify other shifted characters or numbers. A less-than symbol (() fol­
lowed by a character specifies a special character style for the item. Five stylistic 
variations are available: B (bold), I (italic), U (underline), 0 (outline), and S 
(shadow). The text 

Goofyllriter>B/G 

defines an application called GoofyWriter, which is displayed in boldface and can 
be invoked by~. For a dividing line between the applications, use (-, which 
specifies a disabled dotted line. 

The Turbo Pascal Menu Reference 195 



Once you are done and have saved the list, the Transfer menu displays the new 
list of applications. Take care, however, that any name you add to the list is that 
of an actual application. If it isn't, selecting it will cause an error box to appear at 
the top of the screen with a File not found message. If you define any new 
command-key equivalents, make sure they don't conflict with command keys 
Turbo Pascal has already defined. Also, remember that any changes you make to 
the Transfer menu will be lost when you exit Turbo Pascal unless you select the 
Save Defaults command after making those changes. 

196 Turbo Pascal for the Macintosh 



p A R T II 

Reference Section 



c H A p T E R 16 
Tokens and Constants 

Tokens are the smallest meaningful units of text in a Pascal program, and they are 
categorized as special symbols, identifiers, labels, numbers, and character 
strings. 

A Pascal program is made up of tokens and separators, where a separator is 
either a blank or a comment. Two adjacent tokens must be separated by one or 
more separators if each token is a reserved word, an identifer, a label, or a num­
ber. 

Separators cannot be part of tokens, except in character strings. 

Special Symbols and Reserved Words 

Turbo Pascal uses the following subsets of the ASCII character set: 

• Letters-the English alphabet, A through Z and a through z. 

• Digits-the Arabic numerals 0 through 9. 

• Hex digits-the Arabic numerals 0 through 9, the letters A through F, and the 
letters a through £ 

• Blanks-the space character (ASCII 32), and all ASCII control characters 
(ASCII 0 to 31), including the end-of-line or return character (ASCII 13). 

197 



letter 

digit 

hex digit 

Special symbols and reserved words are symbols that have one or more fixed 
meanings. These single characters are special symbols: 

+-f/:()(]. I ():;A@{}$# 

These character pairs are also special symbols: 

<> <= >= := ( * *) ( • • ) 

Some special symbols are also operators. A single bracket,[, is equivalent to 
the character pair(.; similarly, ] is equivalent to the character pair.). 

Following are Turbo Pascal's reserved words: 

and else inline procedure type 
array external interface program unit 
begin file label record until 
case for mod repeat uses 
con st forward nil set var 
div function not shl while 
do goto of shr with 
down to if or string xor 
implementation otherwise then 
in packed to 

Reserved words appear in lowercase boldface throughout this manual. Turbo 
Pascal isn't case sensitive, however, so you can use either uppercase or lowercase 
letters in your programs. 

198 Turbo Pascal for the Macintosh 



Identifiers 

Identifiers denote constants, types, variables, procedures, functions, units, pro­
grams, and fields in records. An identifier can be of any length, but only the first 
63 characters are significant. 

label identifier, 
constant identifier, 
type identifier, 
field identifier, 
variable identifier, 
procedure identifier, 
function identifier, 
program identifier, 
unit identifier 

----.. ••letter 
letter 

digit 

underscore 

underscore ----+Q--+ 
An identifier must begin with a letter and may not contain spaces. Letters, 

digits, and underscore characters (ASCII $5F) are allowed after the first charac­
ter. Like reserved words, identifiers are not case-sensitive. 

Here are some Turbo Pascal standard identifiers: 

ClearEOL 
GotoXY 
Exit 
StringTOReal 
WriteLn 

In this manual, standard identifiers are italicized when they are referred to in 
text. 

Tokens and Constants 199 



Labels 

A label is a digit sequence whose value ranges from 0 to 9999. Leading zeros are 
not significant. Labels are used with goto statements. 

label 

As an extension to Standard Pascal, Turbo Pascal also allows identifiers to 
function as labels. 

Numbers 

Ordinary decimal notation is used for numbers that are constants of the data 
types Integer, Longlnt, Real, Single, Double, Extended, and Comp. A hexadeci­
mal integer constant uses $ as a prefix. Engineering notation (E or e followed by 
an exponent) is read as "times ten to the power of" in real-types. For example, 
7E-2 means 7 x 10-2; 12.25e+6 or 12.25e6 both mean 12.25 X 10+6 • Syntax 
diagrams for writing numbers follow. 

hex digit sequence t .,I hex digit .. 

digit sequence t .. 1 digit .. 

200 Turbo Pascal for the Macintosh 



unsigned integer 

unsigned 
real 

scale factor 

sign 

digit sequence 

unsigned number 

digit sequence 

~ hex digit sequence 

digit sequence 

scale factor 

unsigned real 

signed number .,I unsigned number L--
~~~ign µ .________.I -

Numbers with decimals or exponents are stored as type Extended (unless
explicitly assigned to a variable of another real-type). Other decimal numbers are
stored as type Integer or Longlnt as needed for that value.

Tokens and Constants 201

A one-to-four digit hexadecimal constant is stored as an Integer (2 bytes). A
five-to-eight digit constant is stored as a Longlnt (4 bytes). An integral hexadeci­
mal value with over eight significant digits produces an overflow error. The
resulting value's sign is implied by the hexadecimal notation.

Character Strings

A character string is a sequence of zero or more characters from the Macintosh
character set (Appendix E) written on one line in the program and enclosed by
apostrophes. A character string with nothing between the apostrophes is a null
string. Two sequential apostrophes in a character string denote a single charac­
ter, an apostrophe. The length attribute of a character string is the actual number
of characters within the apostrophes.

As an extension to Standard Pascal, Turbo Pascal allows control characters to
be embedded in character strings. The # character followed by an unsigned
integer constant in the range 0 to 255 denotes a character of the corresponding
ASCII value. There must be no separators between the # character and the
integer constant. Likewise, if several control characters are part of a character
string, there must be no separators between them.

character string

unsigned integer ------'

string character any char except Q or CR -~-~

A character string of length zero (the null string) is compatible only with
string-types. A character string of length one is compatible with any char-type
and any string-type. A character string of length n, where n is greater than or
equal to 2, is compatible with any string-type and with packed-string-types of n
characters.

These are examples of character strings:

'TURBO'
#L3#LD

202

'You"ll see'
'Line L'#L3'Line2'

I I I I I• I I I

' #7#7'Wake up!'#7#7

Turbo Pascal for the Macintosh

Constant Declarations

A constant declaration declares an identifier to denote a constant within the
block that contains the declaration. A constant identifier may not be included in
its own declaration.

constant declaration identifier constant

constant

--------1 .. character string

A constant identifier following a sign must denote a value of type Integer,
Longlnt, Real, Double, Extended, or Comp. Real-type constants are stored in
Extended precision.

Comments

The constructs

< any text not containing right-brace >
(* any text not containing star-right-paren *)

are comments. The compiler ignores them.

A comment that contains $ immediately after the opening { or (* is a compiler
directive. A mnemonic of the compiler command follows the $ character. The
compiler directives are summarized in Appendix C.

Program Lines

Turbo Pascal program lines have a maximum length of 128 characters.

Tokens and Constants 203

c H A p T E R 17
Bwcks, Locality, and Scope

A block is made up of declarations, which are written and combined in any order,
and statements. Each block is part of a procedure declaration, a function declara­
tion, or a program or unit. All identifiers and labels declared in the declaration
part are local to the block.

205

Syntax

The overall syntax of any block follows this format:

block ----+! declaration part i-I _-""1.,~I statement part ~

declaration part

label declaration part

constant declaration part

type declaration part

variable declaration part

procedure and function declaration part

The label declaration part is where all labels that mark statements in the
corresponding statement part are declared. Each label must mark only one state­
ment.

label declaration part label

The digit sequence used for a label must be in the range 0 to 9,999.

The constant declaration part consists of all constant declarations local to the
block.

constant declaration part --+- const constant declaration

The type declaration part includes all type declarations local to the block.

type declaration part type declaration ---

The variabk declaration part is composed of all variable declarations local to
the block.

206 Turbo Pascal for the Macintosh

variable declaration part variable declaration,...--1~

The procedure and function declaration part comprises all procedure and
function declarations local to the block.

procedure and function declaration part

function declaration

The statement part defines the statements or algorithmic actions to be exe­
cuted by the block when an activation occurs.

statement part ---1"1.. compound statement j----.

Rules of Scope

The presence of an identifier or label in a declaration defines the identifier or
label. Each time that the identifier or label occurs subsequently, it must be
within the scope of this declaration. The scope of an identifier or label basically
encompasses its declaration to the end of the current block, including all blocks
enclosed by the current block. Exceptions follow.

Redeclaration in an Enclosed Block

Suppose that Exterior is a block that encloses another block, Interior. Any iden­
tifier declared in Exterior with a further declaration in Interior excludes Interior
and all its blocks from Exterior's scope of declaration.

Position of Declaration Within Its Block

Identifiers and labels cannot be used until after they are declared. An identifier
or label's declaration must come before any occurrence of that identifier or label
in the program text, with one exception.

Blocks, Locality, and Scope 207

The base type of a pointer type can be an identifier that has not yet been
declared. However, the identifier must eventually be declared in the same type
declaration part that the pointer type occurs in.

Redeclaration Within a Bwck

An identifier or label can only be declared once in the outer level of a given block
except if it is declared within a contained block or is in a record's field-list.

A record field identifier is declared within a record type and is significant only
in combination with a reference to a variable of that record type. So, you can
redeclare a field identifier (with the same spelling) within the same block, but
not at the same level within the same record type. However, an identifier that
has been declared can be redeclared as a field identifier in the same block.

Identifiers of Standard Objects

Turbo Pascal equips you with a set of predefined constants, types, procedures,
and functions whose identifiers function as if they were declared in a block
enclosing the whole program. Their scope is the entire program.

Scope of Interface Identifiers

Programs or interface-parts containing uses clauses are provided the identifiers
belonging to the units in the uses clauses. These identifiers act as if they were
declared in a block enclosing the whole program.

208 Turbo Pascal for the Macintosh

c H A p T E R 18
Types

When you declare a variable, you must state its type. A variable's type circum­
scribes the set of values that it can have and the operations that can be per­
formed upon it. A type declaration specifies the identifier that denotes a type.

type declaration Identifier type

type simple type

pointer type

structured type

string type

type identifier

When an identifier occurs on the left side of a type declaration, it is declared
as a type identifier for the block in which the type declaration occurs. A type
identifier's scope does not include itself; except for pointer types.

209

The following list of terms distinguish the seven types of identifiers according
to what they denote:

• simple-type

• structured-type

• pointer-type

• ordinal-type

• integer-type

• real-type

• string-type

A simple-type identifier, for example, is declared to denote a simple-type vari­
able, and so on.

Simple-Types

Simple-types define ordered sets of values.

simple type ordinal type

real type i----'

realtype ~

An integer-type identifier is one of the standard identifiers Integer or
Longlnt. A real-type identifier is one of the standard identifiers: Real, Single,
Double, Extended, or Comp. See "Numbers" and "Character Strings" in Chapter
16 for how to denote constant integer-type and real-type values.

Ordinal-Types

Ordinal-types are a subset of simple-types. All simple-types other than real­
types are ordinal-types, which are set off by the following four characteristics.

210 Turbo Pascal for the Macintosh

• All possible values of a given ordinal-type are an ordered set, and each possi­
ble value is associated with an ordinality, which is an integral value. Except
for integer-type values, the first value of every ordinal-type has ordinality 0,
the next has ordinality 1, and so on for each value in that ordinal-type. An
integer-type value's ordinality is the value itsel£ In any ordinal-type, each
value other than the first has a predecessor, and each value other than the last
has a successor based on the ordering of the type.

• The standard function Ord can be applied to any ordinal-type value to return
the ordinality of the value.

• The standard function Pred can be applied to any ordinal-type value to return
the predecessor of the value. If applied to the first value in the ordinal-type,
Pred produces an error.

• The standard function Succ can be applied to any ordinal-type value to return
the successor of the value. If applied to the last value in the ordinal-type, Succ
produces an error.

The syntax of an ordinal-type follows.

ordinal type subrange type

enumerated type

ordinal type identifier

Turbo Pascal has four predefined ordinal-types: Integer, Longlnt, Boo'lean,
and Char. In addition, there are two other classes of user-defined ordinal-types:
enumerated-types and subrange-types.

The Integer-Type

Integer-type values are a subset of the whole numbers. An integer-type variable
can have a value within the -maxint-1 to maxint range, that is, -32,768 to
32, 767. The standard Integer constant maxint is defined as 32, 767. The range
encompasses 16-bit, two's-complement integers.

The Longlnt-Type

Longint-type values are also a subset of the whole numbers, a larger subset. A
longint-type variable can have a value within the -maxlongint-1 to maxlongint
range. The standard Longlnt constant maxlongint is defined as +2,147,483,647.
The range encompasses 32-bit, two's-complement integers.

Types 211

Arithmetic operations with integer-type operands uses Integer (16-bit) or
Longlnt (32-bit) precision according to the following rules:

• Integer constants in the range of type Integer are considered to he of type
Integer. Other integer constants are considered to he of type Longlnt.

• When both operands of an operator (or the single operand of a unary operator)
are of type Integer, 16-hit precision is used, and the result is of type Integer
(truncated to 16-hits if necessary). Similarly, if both operands are of type
Longlnt, 32-hit precision is used, and the result is of type Longlnt.

• When one operand is of type Longlnt, and the other is of type Integer, the
Integer operand is converted to Longlnt, 32-hit precision is used, and the
result is of type Longlnt.

• The expression on the right of an assignment statement is evaluated indepen­
dently of the size of the variable on the left.

An Integer value may he explicitly converted to Longlnt (and vice versa)
through type casting. Type casting is described in Chapers 19 and 20.

The Boolean-Type

Boolean-type values are denoted by the predefined constant identifiers False and
True. Because Bool.ean is an enumerated-type, these relationships hold: False (
True; Ord(False) = O; Ord(True) = l; Succ{,False) = True; and Pred(True) =
False.

The Char-Type

This type's set of values are characters, ordered according to the ordering of the
Macintosh character set (Appendix F). The function call Ord(Ch), where Ch is a
Char value, returns Ch's ordinality.

A string constant oflength 1 can denote a constant Char value. Any value of
type Char can he generated with the standard function Chr.

The Enumerated-Type

Enumerated-types define ordered sets of values by enumerating the identifiers
that denote these values. Their ordering follows the sequence in which the iden­
tifiers are enumerated.

212 Turbo Pascal for the Macintosh

enumerated type

identifier list $..

When an identifier occurs within the identifier list of an enumerated-type, it
is declared as a constant for the block in which the enumerated-type is declared.
This constant' s type is the enumerated-type being declared.

An enumerated constant' s ordinality is determined by its position in the iden­
tifier list in which it is declared. ni.e enumerated-type in which it is declared
becomes the constant's type. The first enumerated constant in a list has an
ordinality of 0 (zero).

An example of enumerated-type is

suit = (club,diamond,heart,spade)

Given these declarations, diammid is a constant of type suit.

When the Ord function is applied to an enumerated-type's value, Ord returns
an integer that shows where the value falls with respect to the other values of the
enumerated-type. Given the declarations above, for example, Ord{ club) returns
0, Ord(diamond) returns 1, and so on.

The Subrange-Type

A subrange-type is a range of values from an ordinal-type called the host-type.
ni.e definition of a subrange-type specifies the least and the largest value in the
subrange. Its syntax is

subrange type constant constant

Both constants must be of the same ordinal-type. Subrange-types of the form
a .. b require that a is less than or equal to b.

Examples of subrange-types:

a .. 99
-l.211 •• :L27
club .• heart

A variable of a subrange-type has all the properties of variables of the host­
type, but its run-time value must be in the specified interval.

Types 213

The Real-Type

A real-type has a set of values that is a subset of real numbers, which you can
represent in floating-point notation with a fixed number of digits. A value's float­
ing-point notation normally comprises three values---m, b, and e-such that
mXbe = n, where bis always 2 and both m and e are integral values within the
real-type's range. These m and e values further prescribe the real-type's range
and precision.

Arithmetic with real-type values includes results that floating-point notation
can't handle, such as dividing 0 by 0. Chapter 26 discusses the methods you can
use for such specialized calculations.

There are four kinds of real-types: Real, Doubk, Extended, and Comp. In
addition, the type Singk is identical to the type Real. The real-types differ in the
range and precision of values they hold:

Tabk 18-1 Range and Decimal Digits for Real Types

Type

Real
Double
Extended

Range

1.5 x 10-45 to 3.4 x Io""
5. 0 x 10-""' to 1. 7 x 10308

I. 9 x 10-•951 to 1.1 x 104932

DecimaLDigits

7 to 8
15 to 16
19 to 20

The Comp type holds only integral values within the range -263+ 1to263 - l,
which is approximately -9.2 x 1018 to 9.2 x 1018 •

All real-type values are converted to Extended before any operations are per­
formed on them, and the results of such operations are always of type Extended.
An Extended value may always be used where a Real, Doubk, or Comp value is
required, provided that the value (rounded to an integral value in the case of
Comp) falls within the required range.

Note: Calculations on Extended type variables are faster and more compact
than other real-type calculations, since the automatic conversion to Extended is
not required. You may want to declare all real-type temporary variables, formal
value parameters, and function results as Extended in order to improve execu­
tion time and code size.

214 Turbo Pascal for the Macintosh

String-Types

A string-type value is a sequence of characters with a dynamic length attribute
(depending on the actual character count during program execution) and a con­
stant size attribute from 1 to 255. A string-type declared without a size attribute
is given the default size attribute 255. The length attribute's current value is
returned by the standard function Length .

..... type----(......) L(D::i ~ •
[unsigned integer J

Ordering between any two string values is set by the ordering relationship of
the character values in corresponding positions. In two strings of unequal length,
each character in the longer string without a corresponding character in the
shorter string takes on a higher or greater-than value; for example, 'Xs' is greater
than· 'X'. Null strings can only be equal to other null strings, and they hold the
least string values.

Characters in a string can be accessed as components of an array as described
in "Arrays, Strings, and Indexes" in Chapter 19. String-type operators are
described in "String Operators" and "Relational Operators" in Chapter 20.
String-type standard procedures and functions are described in Chapter 25.

Structuredr Types

A structured-type, characterized by its structuring method and by its compo­
nent-type(s), holds more than one value. If a component-type is structured, the
resulting structured-type has more than one level of structuring. A structured­
type can have unlimited levels of structuring.

structured type -.....-----.....--- array type ____ _.

set type

file type

record type

The word packed in a structured-type's declaration tells the compiler to com­
press data storage, even at the cost of diminished access to a component of a

Types 215

variable of this type. Only the storage of record-types and array-types can be
packed. (String-types are always packed.)

Packed only affects the representation of one level of the structured-type it
occurs in. If a component is also a structured-type, then for it to be packed, its
declaration must also include the word packed.

You cannot use components of packed variables as actual variable parameters
to procedures or functions.

Array-Types

Arrays have a fixed number of components of one type, the component-type. In
the following syntax diagram, the component-type follows the word of.

array
type array

indextype~

type

The index-types, one for each (unlimited) dimension of the array, specify the
number of elements. The array can be indexed in each dimension by all values of
the corresponding index-type; the number of elements is therefore the number
of values in each index-type. Arrays may not occupy more than 32,767 bytes in
total, and index-types may not be Longlnt or subranges of Longlnt.

An example of an array-type is:

array[l .. 1001 of Beal

If an array-type's component-type is also an array, you can treat the result as
an array of arrays or as a single multi-dimensional array. For instance,

arraytBooleanl of arrayCl .. 101 of arraytSizel of Beal

is interpreted the same way by the compiler as

arraytBoolean,1 .. 10,s1zel of Beal

You can also express

packed arrayCl .. 101 of packed arraytl .. 61 of Boolean

as

packed arraytl .. 10 1 1 .. 61 of Boolean

216 Turbo Pascal for the Macintosh

You access an array's components by supplying the array's identifier with one
or more indexes in brackets (see '"Arrays, Strings, and Indexes" in Chapter 19).

An array-type of the form

packed arrayct •• nl of Char

is called a packed-string-type. A packed-string-type has certain properties not
shared by other array-types (see "Identical and Compatible Types" later in this
chapter).

Record-Types

A record-type comprises a set number of components, or fields, which can be of
different types. The record-type declaration specifies the type of each field and
the identifier that names the field.

record type -.(record),......,l..--:~~-=--=-~---!--.-.... (3-.
L..j field list tJ

field list Ice;
fixed part

Types 217

The fixed-part of a record-type sets out the list of fixed fields, giving an identi­
fier and a type for each. Each field contains information that is always retrieved
in the same way.

The following is an example of a record-type:

record
year:
month:
day:

end

Integer;
L •• L2;
L •• 3L;

The variant-part shown in the previous syntax diagram distributes memory
space for more than one list of fields, so the information can be accessed in more
ways than one. Each list of fields is a variant. The variants overlay the same
space in memory, and all fields of all variants can be accessed at all times.

variant
part -+ case tagfleldtype ~

identifier

tag field type ordinal type identifier

variant

field list

218 Turbo Pascal for the Macintosh

As you can see from the diagram, each variant is identified by at least one
constant. All constants must be distinct and of an ordinal-type that is compatible
with the tag-field-type. Variant and fixed fields are accessed the same way.

An optional identifier, the tag-field identifier, can be placed in the variant­
part. If a tag-field identifier is present, it becomes the identifier of an additional
fixed field, the tag-field, of the record. The program can use the tag-field's value
to show which variant is active at a given time. Without a tag-field, the program
selects a variant by another criterion.

Some record-types with variants follow.

record
firstName,lastName: stringC~Ol;
birthDate: Date;
case citizen: Boolean of

end

true: (birthPlace: stringC~Ol);
false: (country: stringC2Dl;

entryPort: stringC2Dl;
entryDate: Date;
exitDate: Date);

record
x,y: Real;
case kind: Figure of

end

rectangle: (height,width: Real);
triangle: (sizet,side2,angle: Real);
circle: (radius: Real);

Types 219

Set-Types

A set-type's range of values is the powerset of a particular ordinal-type (the base­
type). Each possible value of a set-type is a subset of the possible values of the
base-type.

A variable of a set-type can hold from none to all values of the set.

set type ordinal type

The base-type must not have more than 256 possible values. For that reason,
the base-type of a set cannot be Integer or Longl.nt. H the base-type of a set is an
integer-type subrange, the upper and lower bounds of the subrange must be
within the range 0 to 255.

Set-type operators are described in "Set Operators" in Chapter 20. "Set Con­
structors" in the same chapter shows how to construct set values.

Every set-type can hold the value [],called the empty set.

File-Types

A file-type consists of a linear sequence of components of one type, the compo­
nent-type, which may be of any type except a file-type or any structured-type
with a file-type component. The number of components is not set by the file­
type declaration.

file type file type

The standard file-type Text signifies a file containing characters organized into
lines. Textfiles use special input/output procedures, discussed in Chapter 24.

Pointer-Types

A pointer-type defines a set of values that point to dynamic variabl,es of a speci­
fied type called the base-type. A pointer-type variable contains the memory
address of a dynamic variable.

220 Turbo Pascal for the Macintosh

basetype ~

If the base-type is an undeclared identifier, it must be declared in the same
type declaration part as the pointer-type.

You can assign a value to a pointer variable with the New procedure, the @
operator, or the Pointer function. The New procedure allocates a new memory
area in the application heap for a dynamic variable and stores the address of that
area in the pointer variable. The @ operator directs the pointer variable to the
memory area containing any existing variable, including variables that already
have identifiers. The Pointer function points the pointer variable to a specific
memory address.

The reserved word nil denotes a pointer-valued constant that does not point to
anything.

See Chapter 19 for the syntax of referencing the dynamic variable pointed to
by a pointer variable.

Identical. and, Compatible Types

Two types may be the same, and this sameness (identity) is mandatory in some
contexts. At other times, the two types need only be compatible or merely
assignment compatible. They are identical when they are declared with, or their
definitions stem from, the same type identifier.

Type Identity

Type identity is required only between actual and formal variable parameters in
procedure and function calls.

Two types-say, T1 and T1-are identical if one of the following is true: T1 and
T2 are the same type identifier; T1 is declared to be equivalent to a type identical
toT2•

Types 221

The second condition connotes that T1 does not have to be declared directly to
be equivalent to T2• The type declarations

T1 Integer;
T2 T1;
T3 = Integer;
T~ T2 ;

result in T1, T2, T3, T4 , and Integer as identical types. The type declarations

T5 = set of Integer;
TL = set of Integer;

don't make T5 and T6 identical, since set of Integer is not a type identifier. Two
variables declared in the same declaration, for example,

v1 , v2 : set of Integer;

are of identical types-unless the declarations are separate. The declarations

Vi: set of Integer;
v2 : set of Integer;
V3 Integer;
V~ Integer;

mean v3 and v4 are of identical type, but not vi and v2.

Compatibility of Types

Compatibility between two types is sometimes required, such as in expressions
or in relational operations. Type compatibility is important, however, as a pre­
condition of assignment compatibility. Types compatibility exists when at least
one of the following conditions is true:

• Both types are the same.

• Both types are real-types.

• Both types are integer-types.

• One type is a subrange of the other.

• Both types are subranges of the same host-type.

• Both types are set-types with compatible base-types.

• Both types are packed-string-types with an identical number of components.

• One type is a string-type and the other is a string-type, packed-string-type, or
char-type.

222 Turbo Pascal for the Macintosh

Assignment Campatibility

Assignment compatibility is necessary when a value is assigned to something,
such as in an assignment statement or in passing value parameters.

A value of type T2 is assignment compatible with a type T1 (that is, T1 := T2 is
allowed) if any of the following are true:

• T1 and T2 are identical types and neither is a file-type or a structured-type that
contain a file-type component at any level of structuring.

• T1 and T2 are compatible ordinal-types, and the values of type T2 falls within
the range of possible values of T 1•

• T1 and T2 are real-types, and the value of type T2 falls within the range of
possible values of Tr

• T1 is a real-type, and T2 is an integer-type.

• T1 and T2 are string-types.

• T1 is a string-type, and T2 is a char-type.

• T1 is a string-type, and T2 is a packed-string-type.

• T1 and T2 are compatible packed-string-types.

• T1 and T2 are compatible set-types, and all the members of the value of type T2

fall within the range of possible values of T 1•

A compile or run-time error occurs when assignment compatibility is neces­
sary and none of the above is true.

Types 223

I

I

\
\
\~

The Type Declaration Part

Programs, procedures, and functions that declare types have a type declaration
part. An example of this part follows:

type
Range
Humber
Color
Testindex
Test Value
TestList
TestListptr
Date

= Integer;
a Integer;
= (red,green,blue);
= :L .• :LDD;
= -99 .• 99;
a arrayCTestindexl of TestValue;
= ATestList;
= record

year: Integer;
month: :L •• :L2;
day: :L .• 3:L;

end;
MeasureData a record

when: Date;
count: Testindex;
data: TestListPtr;

end;
MeasureList = arrayC:L .• SDJ of MeasureData;
Bame • stringC6Dl;
Sex a (male,female);
Person a APersonDetails;
PersonData a record

name,firstName: Bame;
age: Integer;
married: Boolean;
father,child,sibling: Person;
case s: sex of

end;

male: (bearded: Boolean);
female: (pregnant: Boolean);

People a file of PersonData;
IntFile = file of Integer

In the example Range, Number, and Integer are identical types. Testlndex is
compatible and assignment compatible with, but not identical to, the types
Number, Range, and Integer.

224 Turbo Pascal for the Macintosh

c H A p T E R 19
Variables

Variab"le Dec"larations

A variable declaration embodies a list of identifiers that designate new variables
and their type.

variable declaration Identifier list

The type given for the variable(s) can be a type identifier previously declared
in a type declaration part in the same block, in an enclosing block, or in a unit, or
it can be a new type definition.

When an identifier is specified within the identifier list of a variable declara­
tion, that identifier is a variable identifier for the block in which the declaration
occurs. The variable can then be referred to throughout the block, unless the
identifier is redeclared in an enclosed block. Redeclaration causes a new variable
using the same identifier, without affecting the value of the original variable.

225

An example of a variable declaration part follows:

var
X,Y,Z: Real;
I,J,K: Integer;
Digit: D .. 9;
C: Color;
Done,Error: Boolean;
Operator: (plus, minus, times);
Hue1,Hue2: set of Color;
Today: Date;
Results: MeasureList;
P1,P2: Person;
Matrix: arrayr1 .. 10,1 .. 1Dl of Real;

Variabk References

A variable reference signifies one of the following:

• a variable

• a component of a structured-type or string-type variable

• a dynamic variable pointed to by a pointer-type variable

The syntax for a variable reference is

variable reference

variable type cast qualifier

Qualifiers

A variable reference is a variable identifier with zero or more qualifiers, which
modify the meaning of the variable reference.

qualifier

226 Turbo Pascal for the Macintosh

An array identifier with no qualifier, for example, references the entire array:

Results

An array identifier followed by an index denotes a specific component of the
array-in this case a structured variable:

ResultsCCurrent+Ll

With a component that is a record, the index may be followed by a field desig­
nator; here the variable access signifies a specific field within a specific array
component.

ResultsCCurrent+LJ.data

The field designator in a pointer field may be followed by the pointer symbol,
A (a caret), to differentiate between the pointer field and the dynamic variable it
points to.

ResultsCCurrent+Ll.dataA

If the variable being pointed to is an array, indexes can be added to denote
components of this array.

ResultsCCurrent+Ll.dataA[JJ

Arrays, Strings, and Indexes

A specific component of an array variable is denoted by a variable reference that
refers to the array variable, followed by an index that specifies the component.

A specific character within a string variable is denoted by a variable reference
that refers to the string variable, followed by an index that specifies the character
position.

index

The index expressions select components in each corresponding dimension of
the array. The number of expressions can't exceed the number of index-types in
the array declaration. Furthermore, each expression's type must be assignment
compatible with the corresponding index-type.

When indexing a multi-dimensional array, multiple indexes or multiple
expressions within an index can be used interchangeably. For example,

Matrix CI JCJJ

Variables 227

is the same as

MatrixCI,Jl

You can index a string variable by a single index expression, whose value must
be in the range O .. n, where n is the declared size of the string. This accesses one
character of the string value, with the type Char given to that character value.

The first character of a string variable (at index 0) contains the dynamic length
of the string; that is, Length(S) is the same as Ordf.S[O]). If a value is assigned to
the length attribute, the compiler does not check that this value is less than the
declared size of the string. It is possible to index a string beyond its current
dynamic length. The characters thus read are random, and assignments beyond
the current length will not affect the actual value of the string variable.

Records and Field Designators

A specific field of a record variable is denoted by a variable reference that refers
to the record variable, followed by a field designator specifying the field.

field designator

Some examples of field designators:

Today.year
Results[Ll.count
Resultstll.when.month

field identifier

In a statement within a with statement, a field designator does not have to be
preceded by a variable reference to its containing record.

Pointers and Dynamic Variables

The value of a pointer variable is either nil, or a value that points to a dynamic
variable.

The dynamic variable pointed to by a pointer variable is referenced by writing
the pointer symbol " after the pointer variable.

You create dynamic variables and their pointer values with the standard proce­
dure New. The @ operator and standard procedure Pointer can be employed to
create pointer values that are treated as pointers to dynamic variables.

nil does not point to any variable. It is an error if you access a dynamic variable
when the pointer's value is nil or undefined.

228 Turbo Pascal for the Macintosh

Some examples of references to dynamic variables:

P:L"
P:L".sibling"
ResultsC:LJ.data"

Variabl.e-Type-Casts

A variable reference of one type can be changed into a variable reference of
another type through a variable-type-cast.

variable type cast type Identifier variable reference

When a variable-type-cast is applied to a variable reference, the variable
reference is treated as an instance of the type specified by the type identifier.
The size of the variable (the number of bytes occupied by the variable) must be
the same as the size of the type denoted by the type identifier. A variable-type­
cast may be followed by one or more qualifiers as allowed by the specified type.

Some examples of variable-type-casts:

type
Point = record

x,y: Integer;
end;

List = arrayC:L .. 21 of Integer;
var

P: Point;
L: Longint;
N: Integer;

begin
P : = Point(L);
N := Point(L).x;
Longint(P) := Longint(P) + $DDD6DDD6;
List(P)CNJ := 32;

end.

Turbo Pascal also allows you to type cast the value of an expression. This is
described in Chapter 20.

Variables 229

c H A p T E R 20
Expressions

Expressions are made up of aperators and aperands. Most Pascal operators are
binary, that is, they take two operands; the rest are unary and take only one
operand. Binary operators use the usual algebraic form, for example, a+b. A
unary operator always precedes its operand, for example, -b.

In more complex expressions, rules of precedence clarify the order in which
operations are performed. Table 20-1 shows the precedence of operators. How­
ever, there are three basic rules of precedence. First, an operand between two
operators of different precedence is bound to the operator with higher prece­
dence. Second, an operand between two equal operators is bound to the one on
its left. Third, expressions within parentheses are evaluated prior to being
treated as a single operand.

Tabk 20-1 Precedence of Operators

Operators

@,not
*,/,div, mod, and, shl, shr
+,-, or, xor
=, (), (,), (=,)=, in

Precedence

highest
second
third
lowest

Categories

unary operators
multiplying operators
adding operators
relational operators

Operations with equal precedence are normally performed from left to right.

231

Expression Syntax

The precedence rules follow from the syntax of expressions, which are built from
factors, terms, and simple-expressions.

The syntax of a factor is

factor

.........,. __ procedure identifier

funciion Identifier

unsigned constant

expression

factor

232 Turbo Pascal for the Macintosh

A function call activates a function, and denotes the value returned by the
function (see "Function Calls" later in this chapter). A set constructor denotes a
value of a set type (see "Set Constru<;tors") .. A value-type-cast changes the type of
a value (see "Value-'fype-Casts"). An unsigned constant has the following syntax:

unsigned con$tant

Some examples of factors:

x
IX
:LS
(X+Y+Z)
Sin(X/2)
C'O •• 'q','A' •• 'Z'l
not Done
Char(Digit+.t;6)

Expressions

<variable reference}
<pointer to a variable}
<unsigned constant}
<subexpression}
<function calH
<set constructor} ·
<negation of a boolean>
<value-type-cast>

233

Terms apply the multiplying operators to factors:

term factor i--~-..

Some examples of terms:

X•Y
Z/(l.-Z)
Done or Error
(X <= Y) and (Y < Z)

Simple expressions apply adding operators and signs to terms:

simple expression

sign

Some examples of simple expressions:

X+Y
-X
Buel. + Hue2
I•J + l.

234 Turbo Pascal for the Macintosh

An expression applies the relational operators to simple expressions:

expression simple expression

Some examples of expressions:

X = :L.S
Done <> Error
(I < J) = (J < K)
C in HueL

Operators

simple expression

The operators are classified as arithmetic operators, logical operators, string
operators, set operators, relational operators, and the @ operator.

Arithmetic Operators

The following tables show the types of operands and results for binary and unary
arithmetic operations.

Expressions 235

Table 20-2 Binary Arithmetic Operations

Operator Operation Operand Types Type of Result

+ addition integer-type integer-type
real-type Extended

subtraction integer-type integer-type
real-type Extended

* multiplication integer-type integer-type
real-type Extended

division integer-type Extended
real-type Extended

div integer division integer-type integer-type
mod remainder integer-type integer-type

NOTE: The + operator is also used as a string or set operator, and the - and
* operators are also used as set operators.

Table 20-3 Unary Arithmetic Operations

Operator Operation Operand Types Type of Result

+ sign identity integer-type integer-type
real-type Extended

sign negation integer-type integer-type
real-type Extended

Any operand whose type is a subrange of an ordinal-type is treated as if it
were of the ordinal-type.

If both operands of a +, - , *, div, or mod operator are of type Integer, the
result is of type Integer. If one or both operands are of type Longlnt, the result is
of type Longl nt.

If one or both operands of a +, - , or * operator are of a real-type, the type of
the result is Extended.

If the operand of the sign identity or sign negation operator is of an integer­
type, the result is of the same integer-type. If the operator is of a real-type, the
type of the result is Extended.

The value of x/y is always of type Extended, regardless of the operand types.
An error occurs if y is zero.

The value of i div j is the mathematical quotient of i/j, rounded in the direction
of zero to an integer-type value. An error occurs ifj is zero.

The mod operator returns the remainder obtained by dividing its two oper­
ands, that is,

i mod j = i - (i div j) * j

236 Turbo Pascal for the Macintosh

The sign of the result of mod is the same as the sign of i. An error occurs if j is
zero.

Logical Operators

The types of operands and results for logical operations are shown in Table 20-4.

Table20-4 Logical Operations

Operator Operation Operand Types Type of Result

not negation Boolean Boolean
bitwise negation integer-type integer-type

and logical and Boolean Boolean
bitwise and integer-type integer-type

or logical or Boolean Boolean
bitwise or integer-type integer-type

xor logical xor Boolean Boolean
bitwise xor integer-type integer-type

shl shift left integer-type integer-type
shr shift right integer-type integer-type

Note: The not operator is a unary operator.

For operands of type Boolean, normal boolean logic governs the results of
these operations. For instance, a and b is True only if both a and b are true.

If the operand of the not operator is of an integer-type, the result is of the
same integer-type.

If both operands of an and, or, or xor operator are of type Integer, the result is
of type Integer. If one or both operands are of type Longlnt, the result is of type
Longlnt.

The operations i shlj and i shr j shifts the value of i to the left or to the right by
j bits. The type of the result is the same as the type of i.

Expressions 237

String Operators

The types of operands and results for string operations are shown in Table 20-5.

Operator

+

Tabl.e 20-5 String Operations
Operation

concatenation

Operand 'fypes

string-type, char-type,
or packed-string-type

Type of Result

string-type

Turbo Pascal allows the + operator to be used to concatenate two string oper­
ands. The result of the operation s+t, wheres and tare of a string-type, a char­
type, or a packed-string-type, is the concatenation of s and t. The result is com­
patible with any string-type (but not with char-types and packed-string-types). If
the resulting string is longer than 255 characters, it is truncated after the 255th
character.

Set Operators

The types of operands for set operations are shown in Table 20-6.

Tabl.e 20-6 Set Operations
Operator Operation Operand Types

+ union compatible set-types
difference compatible set-types

* intersection compatible set-types

The results of set operations conform to the rules of set logic:

• An ordinal value c is in a+b only if c is in a orb.

• An ordinal value c is in a-b only if c is in a and not in b.

• An ordinal value c is in a*b only if c is in both a and b.

If the smallest ordinal value that is a member of the result of a set operation is
a and the largest is b, then the type of the result is set of a .. b.

238 Turbo Pascal for the Macintosh

Relational Operators

The types of operands and results for relational operations are shown in
Table 20-7.

Table 20-7 Relational Operations
Operator Operation Operand Types Type of Result

equal compatible simple, pointer, set, Boolean
string, or packed-string types

<> not equal compatible simple, pointer, set, Boolean
string, or packed-string types

less than compatible simple, string, or Boolean
packed-string types

). greater than compatible simple, string, or Boolean
packed-string types

(= less or equal compatible simple, string, or Boolean
packed-string types

)= greater or equal compatible simple, string, or Boolean
packed-string types

(= subset of compatible set-types Boolean
)= superset of compatible set-types Boolean
in member of left operand: any ordinal-type t Boolean

right operand: set of type t

Comparing Simpl.e-Types

When the operands of=, (), (,),)=, or(= are of simple-types, they must be
compatible types, except that if one operand is of a real-type the other may be of
an integer-type.

Because real-type values are approximations, the results of comparing real­
type values are not always as expected. For instance, if X is a variable of type
Real and Y is a variable of type Double, and if the assignments

x := 1/3;
y := 1/3;

have been made, then X=Y will return False. The reason is that Xis accurate
only to 7 to 8 digits, whereas Y is accurate to 15 to 16 digits, and when both are
converted to Extended, they will differ after 7 to 8 digits.

See Chapter 26, for extensions that affect the ordering of comparisons involv­
' ing NaNs.

Expressions 239

Comparing Strings

The relational operators =, (), (,),)=, and(= compare strings according to the
ordering of the Macintosh character set. Any two string values can be compared,
since all string values are compatible.

A char-type value is compatible with a string-type value, and when the two are
compared, the char-type value is treated as a string-type value with length 1.
When a packed-string-type value with n components is compared with a string­
type value, it is treated as a string-type value with length n.

Comparing Packed Strings

The relational operators =, (), (,),)=, and(= may also be used to compare two
packed-string-type values if both have the same number of components. If the
number of components is n, then the operation corresponds to comparing two
string each of length n.

Comparing Pointers

The operators = and () can be used on compatible pointer-type operands. Two
pointers are equal only if they point to the same object.

Comparing Sets

If a and bare set operands, their comparisons produce these results:

• a = b is true only if a and b contain exactly the same members; otherwise,
a() b.

• a(= bis true only if every member of a is also a member of b.
• a)= b is true only if every member of b is also a member of a.

Testing Set Membership

The in operator returns Troe when the value of the ordinal-type operand is a
member of the set-typed operand; otherwise, it returns False.

240 Turbo Pascal for the Macintosh

The @ Operator

A pointer to a variable can be created with the @ operator. Table 20-8 shows the
operand and result types.

Operator

@

Tabk 20-8 Pointer Operations

Operation

pointer formation

Operand Types

variable reference or
procedure or function
identifier

Type of Result

pointer {same as nil)

@ is a unary operator that takes a variable reference or a procedure or function
identifier as its operand returns a pointer to the operand. The type of the value is
the same as the type of nil, therefore it can be assigned to any pointer variable.

@ with a Variab"le

The use of @ with an ordinary variable (not a parameter) is uncomplicated.
Given the declarations:

type
TwoChar =packed arrayca .. 11 of Char;

var
Int: integer;
TwoCharPtr: ATwoChar;

then the statement:

TwoCharPtr := @Int;

causes TwoCharPtr to point to Int. TwoCharPtr11 becomes a reinterpretation of
the value of int, as though it were a packed array[O .. l] of Char.

@with a Value Parameter

Applying @ to a formal value parameter results in a pointer to the stack location
containing the actual value. Say Foo is a formal value parameter in a procedure
and FooPtr is a pointer variable. If the procedure executes the statement:

FooPtr := @Foo;

then FooPtr11 references Foo's value. However, FooPtr11 does not reference Foo
itsel(but rather it references the value that was taken from Foo and stored on
the stack.

Expressions 241

@ with a Variab"Le Parameter

Applying @ to a formal variable parameter results in a pointer to the actual
parameter (the pointer is taken from the stack). Say One is a formal variable
parameter of a procedure, Two is a variable passed to the procedure as One's
actual parameter, and OnePtr is a pointer variable. If the procedure executes the
statement

OnePtr := IOne;

then OnePtr is a pointer to Two and OnePtr" is a reference to Two itsel£

@ with a Procedure or Function

You can apply @ to a procedure or a function to produce a pointer to its entry
point. Turbo Pascal does not give you a mechanism for using such a pointer. The
only use for a procedure pointer is to pass it to an assembly-language routine.

Function CaU.s

A function call activates the function specified by the function identifier. Any
identifier declared to denote a function is a function identifier.

The function call must have a list of actual parameters if the corresponding
function declaration contains a list of formal parameters. Each parameter takes
the place of the corresponding formal parameter according to parameter rules set
forth in Chapter 22.

function call --J function identifier L:i actual parameter list ~
..

actual parameter list

actual parameter

variable reference

242 Turbo Pascal for the Macintosh

Some examples of function calls follow:

Sum(A,b3)
Kaximum(l.'<7,J)
Sin(X+Y)
Eof(F)
Volume(Radius,Height)

Set Constructors

A set constructor denotes a set-type value, and is formed by writing expressions
within brackets ([]). Each expression denotes a value of the set.

set constructor

member group

member group ----! .expression I ~

~ ... -.+1
The notation [] denotes the empty set, which is assignment compatible with

every set-type. Any member group x .. y denotes as set members all values in the
range x .. y. If x is greater than y, then x .. y does not denote any members and
[x .. y] denotes the empty set.

All expression values in member groups in a particular set constructor must be
of the same ordinal-type.

Some examples of set construetors follow:

Cred, c, greenl
CJ., s, J.D •• K mod J.2, 231
['A' •• 'Z', 'a' •• 'z', Chr(Digit+'<6)l

Expressions 243

Value-Type-Casts

The type of an expression can be changed to another type through a value-type­
cast.

value type cast type identifier expression

The expression argument must be of an ordinal-type or a pointer-type. The
result is of the specified type, and its ordinal value is obtained by converting the
expression. This conversion may involve truncation or extension of the original
value if the size of the specified type is different from that of the expression. In
cases where the value is extended, the sign of the value is always preserved, that
is, the value is sign-extended.

The syntax of a value-type-cast is almost identical to that of a variable-type­
cast see "Variable-Type-Casts" in Chapter 19. However, value-type-casts operate
on values, not on variables, and can therefore not participate in variable refer­
ences; that is, a value-type-cast may not be followed by qualifiers. In particular,
value-type-casts may not appear on the left-hand side of an assignment state­
ment.

Some examples of value-type-casts:

Integer('A') Char(~8) Boolean(O) Color(2)
Longint(@Buffer) IntPtr(-L) IntPtr(Longint(P)+2)

244 Turbo Pascal for the Macintosh

c H A p T E R 21
Statements

Statements describe algorithmic actions that can be executed. Labels can prefix
statements, and these labels can be referenced by goto statements.

statement

label simple statement

structured statement

As you saw in Chapter 16, a label is either a digit sequence in the range 0 to
9999 or an identifier.

There are two main types of statements: simple statements and structured
statements.

Simple Statements

A simple statement is a statement that does not contain any other statements.

simple statement ----.--.. assignment statement 1-----..--___,•

procedure statement

goto statement

245

Assignment Statements

Assignment statements either replace the current value of a variable with a new
value specified by an expression or specify an expression whose value is to be
returned by a function.

assignment statement variable reference expression

function identifier

The expression must be assignment compatible with the type of the variable
or the result type of the function (see Chapter 18, "Compatibility of Types").

Some examples of assignment statements:

X := Y+Z;
Done:= (I>=1) and (!<100);
Buel := Cblue,Succ(C)l;
I := Sqr(J) - I•K;

Procedure Statements

A procedure statement specifies the activation of the procedure denoted by the
procedure identifier. H the corresponding procedure declaration contains a list of
formal parameters, then the procedure statement must have a matching list of
actual parameters (parameters listed in definitions are formal parameters; in the
calling statement, they are actual parameters). The actual parameters are passed
to the formal parameters as part of the call.

procedure statement

Some examples of procedure statements:

PrintHeading;
Transpose(A,N,M);
Find(Name,Address);

246

actual parameter list

Turbo Pascal for the Macintosh

Goto State1Y1£nts

A goto statement transfers program execution to the statement prefixed by the
label that is referenced in the goto statement. Following is the syntax diagram of
a goto statement:

goto statement label

The following rules should be observed when using goto statements:

• The label referenced by a goto statement must be in the same block as the goto
statement. In other words, it is not possible to jump into or out of a procedure
or function.

• Jumping into a structured statement from outside that structured statement
(that is, jumping to a "deeper" level of nesting) can have undefined effects,
although the compiler will not indicate an error.

Structured Statements

Structured statements are constructs composed of other statements that are to
be executed in sequence (compound statements and with statements), condition­
ally (conditional statements), or repeatedly (repetitive statements).

structured statement ---r-.. compound statement

conditional statement

repetitive statement

with statement

Compound State1Y1£nts

The compound statement specifies that its component statements are to be exe­
cuted in the same sequence as they are written. The component statements are
treated as one statement, crucial in contexts where the Pascal syntax only allows
one statement. Begin and end bracket the statements, which are separated by
semicolons.

Statements 247

compound statement ----. begin

An example of a compound statement is

begin
Z :" X;
X :" Y;
y := Z;

end;

Conditional Statements

A conditional statement selects for execution a single one (or none) of its compo­
nent statements.

case statement

If Statements

The syntax for if statements is

expression statement

statement

The expression must yield a result of the standard type Boolean. If the expres­
sion produces the value True, then the statement following then is executed.

If the expression produces False and the else part is present, the statement
following else is executed; if the else part is not present, nothing is executed.

The syntactic ambiguity arising from the construct

if el then if e2 then sl else s2

248 Turbo Pascal for the Macintosh

is resolved by interpreting the construct as follows:

if e:L then
begin

if e2 then
s:L

else
s2

end

In general, an else is associated with the closest if not already associated with
an else.

Two examples of if statements follow:

if x < :L.5 then
Z := X+Y

else
z := :L.5;

if P:L <> nil then
P:L := Pl.father;

Case Statements

The case statement consists of an expression (the selector) and a list of state­
ments, each prefixed with one or more constants (called case constants) or with
the word otherwise. The selector must be of an ordinal-type, and all the case
constants must be unique and of an ordinal-type that is compatible with the type
of the selector.

case statement expression

otherwise clause

case i _ .. _l_co-n-sta_n_t ---41~ oor6am ~

otherwise clause otherwise statement

Statements 249

The case statement executes the statement prefixed by a case constant that
equals the value of the selector or a case range that contains the value of the
selector. If no such case constant of the case range exists and an otherwise part is
present, the statement following otherwise is executed. If there is no otherwise
part, nothing is executed.

Examples of case statements follow:

case Operator of
plus: X :• X+Y;
minus: X :• X-Y;
times: X := X•Y;

end;

case I of
0,2,.t;, b, II:
1,3,S,7,9:
10 .. 100:

WriteLn('Even digit');
WriteLn('Odd digit');
WriteLn('Between 10 and 100');

otherwise
WriteLn('Negative or

end;

Repetitive Statements

greater than 100');

Repetitive statements specify that certain statements are to be executed repeat­
edly.

repetitive statement ---.-- repeat statement

while statement

for statement

If the number of repetitions is known beforehand, the for statement is the
appropriate construct. Otherwise, the while or repeat statement should be used.

Repeat Statements

A repeat statement contains an expression that controls the repeated execution
of a statement sequence within the repeat statement.

repeat
statement

250

repeat

Turbo Pascal for the Macintosh

The expression must produce a result of type Boolean. The statements
between the symbols repeat and until are executed in sequence until, at the end
of a sequence, the expression yields True. The sequence is executed at least
once, because the expression is evaluated after the execution of each sequence.

Examples of repeat statements:

repeat
K := I mod J;
I : = J;
J := K;

until J = a;

repeat
irite('Enter value (D •. q): ');
ReadLn(I);

until (I>= D) and (I <= q);

While Statements

A while statement contains an expression that controls the repeated execution of
a statement (which may be a compound statement).

while statement whlle expression statement

The expression controlling the repetition must be of type Boolean. It is evalu­
ated before the contained statement is executed. The contained statement is
executed repeatedly as long as the expression is Troe. H the expression is False at
the beginning, the statement is not executed at all.

Examples of while statements:

while DataCil <> X do I := I + t;

while I > a do
begin

if Odd(I) then z := z • X;
I := I div 2;
X : = Sqr(X);

end;

while not Eof(InFile) do
begin

ReadLn(InFile,Line);
Process (Line);

end;

Statements 251

For Statements

The for statement causes a statement (which may be a compound statement) to
be repeatedly executed, while a progression of values is assigned to a variable
called the control variable.

for statement control variable initial value

final value statement

initialvalue ~

finalvalue ~

The control variable must be a variable identifier (without any qualifier) that
signifies a variable declared to be local to the block containing the for statement.
The control variable must be of an ordinal-type. The initial and final values must
be of a type that is assignment compatible with the ordinal-type.

When a for statement is entered, the initial and final values are determined
once for the remainder of the execution of the for statement.

The statement contained by the for statement is executed once for every value
in the range initial-value to final-value. The control variable always starts off at
initial-value. With a for statement using to, the value of the control variable is
incremented by one for each repetition. If initial-value is greater than final­
value, the contained statement is not executed. With a for statement using
downto, the value of the control variable is decremented by one for each repeti­
tion. If initial-value value is less than.final-value, the contained statement is not
executed.

It is an error if the contained statement alters the value of the control variable.
After a for statement is executed, the value of the control variable value is unde­
fined, unless execution of the for statement was interrupted by a goto out of the
for statement.

With these restrictions in mind, the for statement

for V := Exprl to Expr2 do Body;

252 Turbo Pascal for the Macintosh

is equivalent to

begin
Templ := Exprl;
Temp2 := Expr2;
if Templ <= Temp2 then
begin

V := Templ;
Body;
while V <> Temp2 do
begin

V : = Succ(V);
Body;

end;
end;

end;

and the for statement

for V := Exprl downto Expr2 do Body;

is equivalent to

begin
Templ := Exprl;
Temp2 := Expr2;
if Templ >= Temp2 then
begin

V := Templ;
Body;
while V <> Temp2 do
begin

V : = Pred (V) ;
Body;

end;
end;

end;

where Templ and Temp2 are auxiliary variables of the host-type of the variable V
that do not occur elsewhere in the program.

Examples of for statements follow:

for I := 2 to b3 do
if DataCil > Max then Max := DataCil

for I := l to 10 do
for J := l to 10 do
begin

X : = O;
for K := l to 10 do

x := x + Matl.CI,Kl * Mat2CK,Jl;
MatcI,Jl := X;

end;

for C :=red to blue do Check(C);

Statements 253

With Statements

The with statement is a shorthand method for referencing the fields of a record.
Within a with statement, the fields of one or more specific record variables can
be referenced using their field identifiers only. The syntax of a with statement is

with
statement record variable reference statement

record variable reference ~

Following is an example of a with statement:

with Date do
if month = L2 then
begin

month := L;
year := year + L

end else
month := month + L;

This is equivalent to

if Date.month = L2 then
begin

Date.month := L;
Date.year := Date.year + L

end else
Date.month := Date.month + L;

Within a with statement, each variable reference is first checked as to whether
it can be interpreted as a field of the record. If so, it is always interpreted as
such, even if a variable with the same name is also accessible. Suppose the
following declarations have been made:

type
Point record

var

x,y: Integer;
end;

x: Point;
y: Integer;

In this case, both x and y can refer to a variable or to a field of the record. In
the statement

with x do
begin

x := LD;
y :=. 25;

end;

254 Turbo Pascal for the Macintosh

the x between with and do refers to the variable of type Point, but in the com­
pound statement, x and y refer to x.x and x.y.

The statement

with vi,v2 , ••• v. do s;

is equivalent to:

with vi do
with v2 do

with v. do
s;

In both cases, ifV. is a field of both V1 and Va, it is interpreted as V2 • V., not V1•

v.
n

H the selection of a record variable involves indexing an array or dereferencing
a pointer, these actions are executed once before the component statement is
executed.

Statements 255

c H A p T E R 22
Procedures and Functions

Procedures and functions allow you to nest additional blocks in the main program
block. Each procedure or function declaration has a heading followed by a block.
A procedure is activated by a procedure statement; a function is activated by the
evaluation of an expression that contains its call and returns a value to that
expression.

This chapter discusses the different types of procedure and function declara­
tions and their parameters.

Procedure Declarations

A procedure declaration associates an identifier with a block as a procedure; that
procedure then can be activated by a procedure statement.

procedure
declaration

procedure heading procedure body

257

parameter type

string

procedure body block

forward 1---------1

external ----------l

inline body lnline

The procedure heading names the procedure's identifier and specifies the
formal parameters (if any).

procedure
heading procedure identifier

formal parameter list

The syntax for a formal parameter list is shown under "Parameters" later in
this chapter.

A procedure is activated by a procedure statement, which states the proce­
dure's identifier and any actual parameters required. The statements to be exe­
cuted upon activation are noted in the statement part of the procedure's block. If
the procedure's identifier is used in a procedure statement within the proce­
dure's block, the procedure is executed recursively (that is, it calls itself while
executing).

Here's an example of a procedure declaration:

procedure Numstring(N: Integer; var S: string);
var

V: Integer;
begin

V := Abs(N);
s : : II;
repeat

s := Chr(N mod 10 + Ord('O')) + s;
N := N div 10;

until N = O;
if N < o then s := '-' + s;

end;

258 Turbo Pascal for the Macintosh

Instead of the block in a procedure or function declaration, you can write a
forward, external, or inline declaration.

Forward Declarations

A procedure declaration that specifies the directive forward instead of a block is
aforward declaration. Somewhere after this declaration, the procedure must be
defined by a defining declaration-a procedure declaration that uses the same
procedure identifier, but omits the formal parameter list and includes a block.
The forward declaration and the defining declaration must appear in the same
procedure and function declaration part. Other procedures and functions can be
declared between them, and they can call the forwardly declared procedure.
Mutual recursion is thus possible.

The forward declaration and the defining declaration constitute a complete
declaration of the procedure. The procedure is considered declared at the for­
ward declaration.

An example of a forward declaration follows.

procedure Walter(m,n: Integer); forward;

procedure Clara(x,y: Real);
begin

Walter(L;,S);

end;

procedure Walter;
begin

Clara(6.3,2.t;);

end;

Forward declarations are not allowed in the interface part of a unit.

External Declarations

External declarations allow you to interface with separately compiled procedures
and functions written in assembly language. The external code must be linked
with the Pascal program or unit through {$L FileName} directives. For further
details on linking with assembly language, refer to Chapter 27.

Procedures and Functions 259

Examples of external procedure declarations follow:

<SL BlockStuff.Rel}

procedure MoveWord(var source,dest; count: Longint); external;
procedure MoveLong(var source,dest; count: Longint); external;

procedure FillWord(var dest; data: Integer; count: Longint); external;
procedure FillLong(var dest; data: Longint; count: Longint); external;

You should use external procedures when you need to incorporate substantial
amounts of assembly code. If you only require small amounts of code, use inline
procedures instead.

Inline Declarations

The inline directive permits you to write machine code instructions instead of
the block. The code consists of constants, typically written in hexadecimal nota­
tion.

When a normal procedure is called, the compiler generates code that pushes
the procedure's arguments on the stack, and then generates a JSR Gump to
SubRoutine) instruction to call the procedure. When you "calr an inline proce­
dure, the compiler generates code from the constants following inline instead of
the JSR. Each constant represents exactly one word in the code generated by the
compiler. The code is generated in the order of the constants.

Use inline procedures, rather than external procedures, for writing small rou­
tines.

Example of an inline procedure:

procedure Trap(Tos: Longint); inline $AqED;

Function Dedarations

A function declaration defines a part of the program that computes and returns a
value.

function declaration function heading function body

The function heading specifies the identifier for the function, the formal
parameters (if any), and the function result type.

260 Turbo Pascal for the Macintosh

function heading function identifier

formal parameter list

result type 1----.,•

result type ---...---- type identifier ---­

string

A function is activated by the evaluation of a function call. The function call
gives the function's identifier and any actual parameters required by the func­
tion. A function call appears as an operand in an expression. When the expres­
sion is evaluated, the function is executed, and the value of the operand becomes
the value returned by the function.

The statement part of the function's block specifies the statements to be exe­
cuted upon activation of the function. The block should contain at least one
assignment statement that assigns a value to the function identifier. The result of
the function is the last value assigned. If no such assignment statement exists, or
if it is not executed, the value returned by the function is unspecified.

If the function's identifier is used in a function call within the function's block,
the function is executed recursively.

Following are examples of function declarations:

function Max(a: Vector; n: Integer): Extended;
var

x: Extended;
i: Integer;

begin
x := aCLl;
for i := 2 ton do if x < aCil then x := aCil;
Max := x;

end;

function Power(x: Extended; y: Integer): Extended;
var

z: Extended;
i: Integer;

begin
z := L.D; i := y;
while i > D do
begin

if Odd(i) then z := z • x;
1 := 1 div 2;
x:=Sqr(x);

end;
Power := z;

end;

Procedures and Functions 261

Functions may be declared as forward, external, or inline in the same way as
procedures are.

function body block

forward t---------1
external 1-----------1

inline body 1---------'

Parameters

The declaration of a procedure or function specifies a formal parameter list. Each
parameter declared in a formal parameter list is local to the procedure or func­
tion being declared, and can be referred to by its identifier in the block associ­
ated with the procedure or function.

formal parameter list parameter declaration

parameter declaration •I Ide""•' '"' I l(}:j µ .
: parameter type

parameter type

string __ __,

262 Turbo Pascal for the Macintosh

There are three kinds of parameters: value parameters, variab/,e parameters,
and untyped variab/,e parameters. They are characterized as follows:

• A parameter group without a preceding var and followed by a type is a list of
value parameters.

• A parameter group preceded by var and followed by a type is a list of variable
parameters.

• A parameter group preceded by var and not followed by a type is a list of
untyped variable parameters.

Value Parameters

A formal value parameter acts like a variable local to the procedure or function,
except that it gets its initial value from the corresponding actual parameter upon
activation of the procedure or function. Changes made to a formal value parame­
ter do not affect the value of the actual parameter.

A value parameter's corresponding actual parameter in a procedure statement
or function call must be an expression, and its value must not be of file-type or of
any structured-type that contains a file-type.

The actual parameter must be assignment compatible with the type of the
formal value parameter. If the parameter type is string, then the formal parame­
ter is given a size attribute of 255.

Variab"le Parameters

A variable parameter is employed when a value must be passed from a procedure
or function to the caller. The corresponding actual parameter in a procedure
statement or function call must be a variable reference. The formal variable
parameter represents the actual variable during the activation of the procedure
or function, so any changes to the value of the formal variable parameter are
reflected in the actual parameter.

Procedures and Functions 263

Within the procedure or function, any reference to the formal variable param­
eter accesses the actual parameter itsel£ The type of the actual parameter must
be identical to the type of the formal variable parameter (you can bypass this
restriction through untyped variable parameters). If the formal parameter type is
string, it is given the length attribute 255, and the actual variable parameter
must be a string-type with a length attribute of 255.

File-types can only be passed as variable parameters.

If referencing an actual variable parameter involves indexing an array or find­
ing the object of a pointer, these actions are executed before the activation of the
procedure or function.

Components of variables of any packed structured type (including components
of string-type variables) cannot be used as actual variable parameters.

Untyped Variabl.e Parameters

When a formal parameter is an untyped variable parameter, the corresponding
actual parameter may be any variable reference, regardless of its type.

Within the procedure or function, the untyped variable parameter is typeless;
that is, it is incompatible with variables of all other types, unless it is given a
specific type through a variable-type-cast.

An example of untyped variable parameters:

function Equal(var source,dest; size: Integer): Boolean;
type

Bytes= arrayCO .. Maxintl of -t26 •. L27;
var

N: Integer;
begin

Equal : = true;
for N := 0 to size - L do
if Bytes(source)CNJ <> Bytes(dest)CNJ then Equal := false;

end;

The above function may be used to compare any two variables of any size. For
instance, given the declarations

type
Vector
Point

var

arrayCL .. LOl of Integer;
record

x,y: Integer;
end;

Vect,Vec2: Vector;
N: Integer;
P: Point;

264 Turbo Pascal for the Macintosh

then the function calls

Equal(Vecl,Vec2,Size0f(Vector))
Equal(Vecl,Vec2,Size0f(Integer)•N)
Equal(VecCll,VeclCbl,SizeOf(Integer)•S)
Equal(VeclClJ,P,~)

compare Vecl to Vec2, compare the first N components of Vecl to the first N
components of Vec2, compare the first five components of Vecl to the last five
components of Vecl, and compare Vecl[l] to P.x and Vec1[2] to P.y.

Procedures and Functions 265

Turbo Pascalcfdf.the Macihtosb

c H A p T E R 23
Programs and Units

Program Syntax

A Turbo Pascal program has the form of a procedure declaration except for its
heading and an optional uses-clause.

uses clause

The Program-Heading

The program heading specifies the program's name and its program parameters.

program
heading program identifier

program parameters

program parameters ~

267

The program name is used to determine the default name of the code file in
which to store the program's code when it is compiled to disk. You may override
the default code file name with a {$0 (filename)} compiler directive (see Appen­
dix C, "Compiler Directives").

The program-parameters, if present, are purely decorative and are ignored by
the compiler.

The Uses-Clause

The uses-clause identifies all units used by the program, including units that it
uses directly and units that are used by those units.

uses clause identifier

The PasSystem unit is always used automatically. PasSystem implements all
low-level run-time support routines, such as string handling, set handling,
dynamic memory allocation, and range checking.

The PaslnOut and PasConsole units are also used automatically (and in that
order), unless a {$U-} compiler directive appears before the uses-clause.
PaslnOut implements the Standard Input and Output procedures and functions,
and PasConsole implements Console device. These two units are required when
writing a textbook Pascal program, but, when writing a Macintosh Application,
none or only some of them may be required; in that case, a {$U-} compiler
directive should appear before the uses- clause.

The {$U (filename)} directive is used to specify the name of a unit library file
to search in addition to the resident units. Multiple unit library files may be
specified through multiple {$U (filename)} directives. All {$U (filename)}
directives must appear before the uses-clause. See Appendix C for further
details.

Segmentation

A Macintosh application consists of one or more code segments. Small programs
are usually contained in a single code segment, but larger programs are divided
into several segments for two reasons. First, the Macintosh restricts the size of a
single segment to 32K bytes, which means that a program cannot be larger than

268 Turbo Pascal for the Macintosh

32K bytes if it is not segmented. Second, parts of a program that are not exe­
cuted often (such as initialization and printing) don't have to he kept in memory
when they aren't being used; instead, they can he in a separate segment that is
swapped in when needed.

By default, segmentation is disabled in Turbo Pascal, which means that the
size of a program cannot exceed 32K bytes. To enable segmentation, place a
{$S+} compiler directive in the beginning of the program.

The code of a program's main statement-part is always placed in a segment
whose name is a string of blanks (the 'blank segment). When segmentation is en­
abled, the oode of any unit, procedure, or function may be placed in a different seg­
ment by using the {$S (SegName)} compiler directive. When a {$S (SegName)}
directive appears in the uses-clause, the code of the following units are placed in
the named segment. When a {$S (SegName)} directive appears in the declara­
tion-part, the code of the following procedures and functions are placed in the
named segment. If no {$S (SegName)} directives appear in a program, or if seg­
mentation is not enabled through a {$S+} directive, the code of all unit'>, proce­
dures, and functions are placed in the blank segment.

For further information about the {$S+ }, {$S-}, and {$S (SegName)} com­
piler directives, see Appendix C.

Unit Syntax

Units are the basis of modular programming with Turbo Pascal. They are used to
create libraries that you can include in various programs without making the
source code available, and to divide large programs into logically related mod­
ules.

unit unit heading interface part implementation part initialization part

The Unit-Heading

The unit heading specifies the unit's name and its unit number.

unit number

unit heading

Programs and Units

~ ..j unsigned integer~
sign

unit Identifier unit number

269

The unit name is used when referring to the unit in a uses-clause. Further­
more, it is used to determine the default name of the unit library file in which to
store the unit when it is compiled to disk. You may override the default library
file name with a {$0 (filename)} compiler directive (see Appendix C).

The unit number is a non-zero integer within the range -32768 to 32767. It is
used internally by the Turbo Pascal compiler to identify symbols from different
units, and for that reason it must be unique; that is, no two units may have the
same unit number if they are to be used in the same compilation.

Unit numbers -1 to -32 are reserved by Turbo Pascal for the Pascal run-time
support units and the Macintosh interface units. In general, you should not use
negative unit numbers, although the compiler will not issue an error message if
you do.

The Interface-Parl

The interface-part declares constants, types, variables, procedures, and func­
tions that are public, that is, available to the host (the program or unit that uses
the unit). The host can access these entities as if they were declared in a block
that encloses the host.

interface part
Interface ...,. ________ ""T" ______________ ...,.....""T""..,.

uses clause constant declaration part

procedure and function
heading part

type declaration part

variable declaration part

procedure and function heading part

procedure heading

function heading external

inline body

Unless a procedure or function is inline or external, the interface-part only
lists the procedure or function heading. The block of the procedure or function
follows in the implementation-part.

270 Turbo Pascal for the Macintosh

The Implementation-Part

The implementation-part defines the block of all public procedures and functions
(unless they are inline or external). In addition, it declares constants, types,
variables, procedures, and functions that are private, that is, not available to the
host.

implementation part

Implementation t--r--r---------------........ --..-...

procedure and function
declaration part

constant declaration part

type declaration part

variable declaration part

procedure and function declaration part

procedure declaration 1----i~

function declaration

In effect, the procedure and function declarations in the interface-part are like
forward declarations, although the forward directive is not specified. Therefore,
these procedures and functions can be defined and referenced in any sequence
in the implementation-part. While you repeat the procedure and function identi­
fiers, you don't specify the formal parameter list for procedures and functions in
the implementation-part.

The size of a unit's code cannot exceed 32K bytes. Segmentation directives are
ignored when compiling a unit, but when a unit is used by a program, its entire
code may be placed in any segment with a {$S (SegName)} compiler directive
(see "Segmentation" a few pages back and Appendix C).

The Initialization-Part

The initialization-part is the last part of a unit. It consists either of the reserved
word end (in which case the unit has no initialization code) or of a statement-part
to be executed in order to initialize the unit.

Programs and Units 271

initialization part ..

The initialization-parts of units used by a program are executed in the same
order as the units appear in the uses-clause.

Units that Use Other Units

The uses-clause in the host must name all units that are used by the host,
whether they are used directly or indirectly. Consider the following example:

unit Unitt(l); unit Unit2(2); program Host;
interface interface uses Unitt, Unit2;
canst c = t; uses Unitt; const a = b;
implementation const b = c; begin
const d = 2; implementation end.
end. end.

Unit2 uses Unitl, so for Host to use Unit2 it must first name Unitl in its uses­
clause. Even though Host does not directly reference any identifiers in Unitl, it
must still name Unitl.

When changes are made in the interface-part of a unit, other units that use the
unit must be recompiled. However, if changes are only made to the implementa­
tion-part or the initialization-part, other units that use the unit need not be
recompiled. Referring to the example above, if the interface-part of Unitl is
changed (for example, "c = 2") Unit2 must be recompiled; changing the imple­
mentation-part (for example, "d = l") doesn't require a recompilation of Unit2.

When a unit is compiled, Turbo Pascal computes a unit version number, which
is basically a checksum of the interface-part. Referring to the example above,
when Unit2 is compiled, the current version number of Unitl is saved in the
compiled version of Unit2. When Host is compiled, the version number of Unitl
is checked against the version number stored in Unit2. If the version numbers
do not match, indicating that a change was made in the interface-part of Unitl
since Unit2 was compiled, the compiler shows an error.

272 Turbo Pascal for the Macintosh

c H A p T E R 24
Input and Output

This chapter describes the standard (or built-in) input and output (110) proce­
dures and functions of Turbo Pascal.

The code for all 1/0 procedures and functions reside in the PaslnOut unit. If
you are compiling in the {$U-} state and want to use standard 1/0, your program
must name the PaslnOut unit in its uses-clause.

An Introduction to I/O

A Pascal file variable is any variable whose type is a file-type. There are two
classes of files: textfdes and typed-files. A file variable declared to be a type
identical to the standard type text is a textfile. A file variable declared to be a
type that was defined using the file of construct is a typed-file.

Before a file variable is used, it must be apened. When a file is opened, the file
variable is associated with an external file that stores the information written to
the file or supplies the information read from the file. An external file is typically
a named disk file, but it may also be a device, such as the keyboard or the
display.

An existing file may be opened via the Reset procedure, and a new file may be
created and opened via the Rewrite procedure. Textfiles opened with Reset are
read-only and textfiles opened with Rewrite are write-only. Typed-files always

273

allow both reading and writing regardless of whether they were opened with
Reset or Rewrite.

The standard file variables Input and Output are opened automatically when
program execution begins. Input is a read-only file associated with the keyboard
and Output is a write-only file associated with the display. Note that Input and
Output are defined by the PasConso"le unit. If you are compiling in the {$U-}
state and want to use the Input and Output files, your program must name the
PasConso"le unit in its uses-clause.

A file is a linear sequence of camponents, each of which has the component­
type of the file. Each component has a camponent number. The first component
of a file is considered to be component zero.

Files are normally accessed sequentially. That is, when a component is read
using the standard procedure Read or written using the standard procedure
Write, the current file position moves to the file component that is numerically
next. However, typed-files may also be accessed randomly via the standard pro­
cedure Seek, which moves the current file position to a specified component.
The standard functions Fi"lePos and Fi"leSize may be used to determine the cur­
rent file position and the current file size of a typed-file.

When a program completes processing a file, the file must be closed using the
standard procedure Close. Closing a file completely updates the external file it
was associated with and breaks the link between the file variable and the exter­
nal file. The file variable can then be associated with another external file.

By default, all calls to standard 1/0 procedures and functions are automatically
checked for errors: If an error occurs, the program terminates displaying the
System Error dialog box. This automatic checking may be turned on and off
using {$1 +}and {$1 - } compiler directives. When 1/0 checking is off, i.e., when
a procedure or function call is compiled in the {$1-} state, an 1/0 error does not
cause the program to halt. To check the result of an 1/0 operation, you must call
the standard function IOResult.

Standard Procedures and Functions for AU Ffles

The Reset Procedure

Syntax: Reset (f [, title [, bufsize]])

Opens an existing file or rewinds an open file. f is a file variable of any file­
type. tit"le is an optional string-type expression. bufsize is an optional expression
of type Integer.

274 Turbo Pascal for the Macintosh

If title is specified, Reset opens the existing external file with the name title
and associates f with this external file. It is an error if there is no existing external
file of the given name. If f is a textfile, the call to Reset may optionally specify the
size of the buffer to be used when reading from the external file. The default
buffer size is 512 bytes.

If title is not specified, f must already be open. Reset(f) causes f to be
"rewound", that is, the current file position is reset to the beginning of the file.

If f is a textfile, f becomes read-only. After a call to Reset, Eof(f) is true if the
file is empty. Otherwise, Eof(j) is false.

The Rewrite Procedure

Syntax: Rewrite (f [, title [, bufsize]])

Creates and opens a new file or rewinds and erases an open file. f is a file
variable of any file-type. title is an optional string-type expression. bufsize is an
optional expression of type I nt(3ger.

If title is specified, Rewrite creates a new external file with the name title and
associates f with this external file. If an external file with the same name already
exists, it is deleted and a new empty file is created in its place. If f is a textfile,
the call to Rewrite may optionally specify the size of the buffer to be used when
writing to the external file. The default buffer size is 512 bytes.

If title is not specified, f must already be open. Rewrite(!) causes f to be
"rewound", that is, the current file position is reset to the beginning of the file
and any prior contents off are deleted.

Iff is a textfile, fbecomes write-only. After a call to Rewrite, Eof(j) is always
true.

The Close Procedure

Syntax: Close (f)

Closes an open file. f is a file variable of any file-type. The association between
f and its external file is broken, and the external file is completely updated and
then closed.

The Rename Procedure

Syntax: Rename (oldtitle , newtitle)

Renames an external file. oldtitle and newtitle are string-type expressions. The
external file with the name oldtitle is renamed to newtitle.

Input and Output 275

The Erase Procedure

Syntax: Erase (title)

Erases an external file. title is a string-type expression. The external file with
the name title is erased.

The IOResult Function

Syntax: IOResult
Result type: Integer

IOResult returns an integer value that is the status of the last 1/0 operation
performed. The codes returned are summarized in Appendix B. A value of zero
reflects a successful 1/0 operation.

Standard Procedures and Functions for Typed-Files

The procedures and functions described in this section may only be applied to
typed-files. Furthermore, a file passed to one of these procedures or functions
must have been opened using Reset or Rewrite.

The Read Procedure

Syntax: Read (f, vl [, v2 , ... , vn])

Reads a file component into a variable. f is a file variable, and each v is a
variable of the same type as the component type off For each variable read, the
current file position is advanced to the next component. It is an error to attempt
to read from a file when the current file position is at the end of the file, that is,
when Eof(j) is true.

The Write Procedure

Syntax: Write (f, vl [, v2 , ... , vn])

Writes a variable into a file component. f is a file variable, and each v is a
variable of the same type as the component type off For each variable written,
the current file position is advanced to the next component. If the current file
position is at the end of the file, that is, if Eof(f) is true, the file is expanded.

276 Turbo Pascal for the Macintosh

The Seek Procedure

Syntax: Seek (f, n)

Changes the current file position to a specified component. f is a file variable,
and n is an expression of type Longlnt. The current file position off is moved to
component number n. The number of the first component of a file is zero. If n is
greater than the number of the last component inf, the current file position is
moved to the end of the file, and Eof(f) becomes true.

The Eof Function

Syntax: Eof (f)
Result type: Boolean

Returns the end-of-file status of a file. f is a file variable. Eof(f) returns true if
the current file position is beyond the last component of the file, or if the file
contains no components. Otherwise, Eof(f) returns false.

The FilePos Function

Syntax: FilePos (f)
Result type: Longl nt

Returns the current file position of a file. f is a file variable. If the current file
position is at the beginning of the file, FilePos(f) returns zero. If the current file
position is at the end of the file, that is, if Eof(f) is true, FilePos(f) is equal to
FileSize(f).

The FileSize Function

Syntax: File Size (f)
Result type: Longlnt

Returns the current size of a file. f is a file variable. FileSize(f) returns the
number of components inf. If the file is empty, FileSize(f) returns zero.

Standard Procedures and Functions for TextfiJes

This section describes input and output using file variables of the standard type
text. Note that in Turbo Pascal, the type text is distinct from the type file of
Char.

Input and Output 277

When a textfile is opened, the external file is interpreted in a special way: It is
considered to represent a sequence of characters formatted into lines, where
each line is terminated by an end-of-line character (CR character, ASCII value
13).

For textfiles, there are special forms of Read and Write that allow you to read
and write values that are not of type Char. Such values are automatically trans­
lated to and from their character representation. For example, Read(f,i) where i
is an integer-type variable will read a sequence of digits, interpret that sequence
as a decimal integer, and store it in i.

As noted previously there are two standard textfile variables, Input and Out­
put. The standard file variable Input is a read-only file associated with the key­
board, and the standard file variable Output is a write-only file associated with
the display. Input and Output are automatically opened when a program begins
execution.

All of the standard procedures and functions described in this section need not
have a file variable explicitly given as a parameter. If the file parameter is omit­
ted, Input or Output will be assumed by default, depending on whether the
procedure or function is input-oriented or output-oriented. For instance,
ReadJ.x) corresponds to ReadJ.Input,x) and Write(x) corresponds to Write(Out­
put,x).

If you do specify a file when calling one of the procedures or functions in this
section, the file must have been opened using Reset or Rewrite. It is an error to
pass a file that was opened with Reset to an output-oriented procedure or func­
tion. Likewise, it is an error to pass a file that was opened with Rewrite to an
input-oriented procedure or function.

The Read Procedure

Syntax: Read ([f,] v 1 [, v2 ,. .. , vn])

Reads one or more values from a textfile into one or more variables. f, if speci­
fied, is a textfile variable. If f is omitted, the standard file variable Input is
assumed. Each vis a variable of a char-type, an integer-type, a real-type, or a
string-type.

Read with a Char-Type Variable With a char-type variable, Read reads one
character from the file and assigns that character to the variable. If Eof(j) was
true before Read was executed, the value Chr(O) is assigned to the variable. If
Eoln(j) was true, the value Chr(13) is assigned to the variable. The next Read
will start with the next character in the file.

278 Turbo Pascal for the Macintosh

Read with an Integer-Type Variable With an integer-type variable, Read
expects a sequence of characters that form a signed whole number according to
the syntax shown (except that hexadecimal notation is allowed). Any blanks, tabs,
or end-of-line characters preceding the numeric string are skipped. Reading
ceases at the first blank, tab, or end-of-line character following the numeric
string or if Eof(f) becomes true. H the numeric string does not conform to the
expected format, an 1/0 error occurs. Otherwise, the value is assigned to the
variable. H Eof(f) was true before Read was executed, or if Eof(f) becomes true
while skipping blanks, tabs, and .end-of-line characters, the value zero is
assigned to the variab~. The next Read will start with the blank, tab, or end-of­
line character that terminated the numeric string.

Read with a Real-Type Variable With a real-type variable, Read expects a
sequence of characters that form a signed number according to the syntax shown
(except that hexadecimal notation is allowed). Any blanks, tabs, or end-of-line
characters preceding the numeric string are skipped. Reading ceases at the first
blank, tab, or end-of-line character following the numeric string or if Eof(f)
becomes true. H the numeric string does not conform to the expected format, an
1/0 error occurs. Otherwise, the value is assigned to the variable. H Eof(f) was

true before Read was executed, or if Eof(f) becomes true while skipping blanks,
tabs, and end-of-line characters, the value zero is assigned to the variable. The
next Read will start with the blank, tab, or end-of-line character that terminated
the numeric string.

Read with a String-Type Variable With a string-type variable, Read reads all
characters up to but not including the next end-of-line character, or until Eof(f)
becomes true. The resulting character string is assigned to the variable. H the
resulting string is longer than the maximum length of the string variable, it is
truncated. The next Read will start with the end-of-line character that termi­
nated the string.

NOTE: Read with a string-type variable does not skip to the next line after
reading. For this reason, you cannot use successive Read calls to read a sequence
of strings, as you will never get past the first line - after the first Read, each
subsequent Read will see the end-of-line character and return a zero-length
string. Instead, use multiple ReadLn calls to read successive string values.

The ReadLn Procedure

Syntax: ReadLn ([f,] vl [, v2 , ... , vn]) or ReadLn [(f)]

The ReadLn procedure is an extension to the Read procedure. After doing the
same as Read for the parameter list, it skips to the beginning of the next line of
the file. ReadLn(f) with no parameters causes the current file position to advance
to the beginning of the next line (if there is one, else to the end of the file).
ReadLn with no parameter list altogether corresponds to ReadLn(lnput).

Input and Output 279

The Write Procedure

Syntax: Write ([f,] pl [, p2 , ... , pn])

Writes one or more values to a textfile. f, if specified, is a textfile variable. Iff
is omitted, the standard file variable Output is assumed. Each p is a write­
parameter. Each write-parameter includes an output-expression, whose value is
to be written to the file. As explained below, a write-parameter may also contain
the specifications of a field-width and a number of decimal places. Each output­
expression must be of a char-type, an integer-type, a real-type, a string-type, a
packed-string-type, or a boolean-type.

Write Parameters A write-parameter has the form

OutExpr [: MinWidth [: DecPlaces l l

where OutExpr is an output-expression. MinWidth and DecPlaces are integer­
type expressions.

Min Width specifies the minimum field width. Min Width must be greater than
zero. Exactly Min Width characters are written (using leading blanks if neces­
sary), except when OutExpr has a value that must be represented in more than
MinWidth characters; in that case, enough characters are written to represent
the value of OutExpr. Likewise, if Min Width is omitted, then enough characters
as necessary are written to represent the value of OutExpr.

DecPlaces specifies the number of decimal places in a fixed-point representa­
tion of a real-type value. It can be specified only if OutExpr is of a real-type, and
if Min Width is also specified. If specified, it must be greater than or equal to
zero.

Write with a Char-Type Value If Min Width is omitted, the character value of
OutExpr is written to the file. Otherwise, Min Width-I blanks followed by the
character value of OutExpr is written.

Write with an Integer-Type Value If Min Width is omitted, the decimal repre­
sentation of OutExpr is written to the file with no preceding blanks. If Min Width
is specified, and its value is larger than the length of the decimal string, enough
blanks are written before the decimal string to make the field width Min Width.

Write with a Real-Type Value If OutExpr has a real-type value, its decimal
representation is written to the file. The format of the representation depends on
the presence or absence of DecPlaces.

If DecPlaces is omitted, a floating-point decimal string is written. If Min Width
is also omitted, a default Min Width of 10 is assumed; otherwise, if MinWidth is
outside the range 10 .. 80, it is truncated to be within that range. The format of
the decimal string is

[I - l <digit> . <deci~als> e C + I - l <exponent>

280 Turbo Pascal for the Macintosh

These are the components of the output string:

l I - l
(digit)
(decimals)
e

l+l-l
(exponent)

•• or " - • according to the sign of OutExpr.
Single digit, ·o· only if OutExpr is 0.
Digit string of MinWUlth-9 digits.
Lowercase .. en character.
.. + n or .. - n according to sign of exponent.

Exponent with trailing blanks to make its width 4.

If DecPlaces is present, a fixed-point decimal string is written. The format of
the string is

C <blanks> l C - l <digits> C . <decimals>

These are the components of the string:

[(blanks)]

[- l
(digits)
[. (decimals)]

Blanks to satisfy MinWUlth.
• -• if OutExpr is negative.
At least one digit, but no leading zeros.
Decimals if DecPlaces) 0.

If DecPlaces is present, and OutExpr is greater than or equal to 10 " (19 -
DecPlaces), the number is formatted in floating-point style with 19 significant
digits, and written with enough leading blanks to make the field width
Min Width.

Write with a String-Type Value If MinWidth is omitted, the string value of
OutExpr is written to the file with no leading blanks. If Min Width is specified,
and its value is larger than the length of OutExpr, enough blanks are written
before the decimal string to make the field width Min Width.

Write with a Packed-String-Type Value If OutExpr is of a packed-string-type,
the effect is the same as writing a string whose length is the number of elements
in the packed-string-type.

Write with a Boolean Value If OutExpr is of type Bool.ean, the effect is the
same as writing the strings 'TRUE' or 'FALSE' depending on the value of Out­
Expr.

The WriteLn Procedure

Syntax: WriteLn ([f,] pl [p2 , ... , pn]) or WriteLn [(f)]

The WriteLn procedure is an extension to the Write procedure. After doing
the same as Write for the parameter list, it writes an end-of-line character to the
file. WriteLn(f) with no parameters writes an end-of-line character to the file.
WriteLn with no parameter list altogether corresponds to WriteLn(Output).

Input and Output 281

The Eof Function

Syntax: Eof [(f)]
Result type: Boolean

Returns the end-of-file status of a file. f, if specified, is a textfile variable. Hf is
omitted, the standard file variable Input is assumed. Eof(f) returns '.lrue if the
current file position is beyond the last character of the file, or if the file contains
no components. Otherwise, Eof(j) returns False.

The Eoln Function

Syntax: Eoln [(f)]
Result type: Boolean

Returns the end-of-line status of a file. f, if specified, is a textfile variable. Hf is
omitted, the standard file variable Input is assumed. Eoln(f) returns True if the
character at the current file position is an end-of-line character or if Eof(f) is
true. Otherwise, Eoln(f) returns False.

The SeekEof Function

Syntax: SeekEof [(f)]

Returns the end-of-file status of a file. SeekEof corresponds to Eof, except that
it skips all blanks, tabs, and end-of-line characters before returning the end-of­
file status. This is useful when reading numeric values from a textfile.

The SeekEoln Function

Syntax: SeekEoln [(f)]

Returns the end-of-line status of a file. SeekEoln corresponds to Eoln, except
that it skips all blanks and tabs before returning the end-of-line status. This is
useful when reading numeric values from a textfile.

DiskFlles

A file variable is associated with a disk file by specifying the pathname of the disk
file in a call to Reset or Rewrite. A file variable must be associated with an ex­
ternal file before it can be used; otherwise Turbo Pascal wouldn't know where to
store the information written to the file or where to retrieve the information read
from the file.

282 Turbo Pascal for the Macintosh

Pathnames

The Macintosh File Manager uses a pathname to identify a specific file on a
specific volume. A pathname consists of a file name optionally preceded by a
volume name and a colon, for instance:

MyVolume:MyFile

On systems with the Hierarchical File Manager, a pathname may optionally
specify one or more directory names, for instance:

MyVolume:MyDirL: ... :MyDirn:MyFile

If a pathname passed to one of the standard 1/0 procedures does not include a
volume and directory specification, the file is assumed to reside in the default
directory on the default volume.

The Macintosh File Manager also allows a file to be specified through a vowme
reference number and a filename. Basically, a volume reference number identi­
fies a specific volume or a specific directory on a specific volume. To make a
standard 1/0 procedure operate on a file with a given volume reference number,
call the SetVol routine in the OSintf unit to set the default volume before calling
the standard 1/0 procedure.

More information on volumes, directories and files can be found in the "File
Manager" chapter of Inside Macintosh.

File Types and Creators

The Macintosh File System requires that you assign a file type and file creator to
each new file. The file type determines the type of the file, such as text or
application The file creator identifies the application that created the file; this is
used in determining which application to launch when the file's icon is double­
clicked.

Turbo Pascal determines the file type and file creator of each new file created
by the Rewrite procedure using four standard variables, which are declared as:

var
FileType, FileCreator,
TextType, TextCreator: packed arrayCL •. ~l of Char;

Input and Output 283

The FileType and FileCreator variables determine the type and creator of
typed-files. The TextType and TextCreator variables determine the type and cre­
ator of textfiles. The default values are:

FileType : = 'BINA';
FileCreator := 'TPAS';
Text Type : = 'TEXT';
TextCreator .- 'TPAS';

You may change these defaults by assigning new values to the standard vari­
ables before calling Rewrite.

More information on file types and creators can be found in the "Finder Inter­
face" chapter of Inside Macintosh.

Devices in Turbo Pascal

In Turbo Pascal, external hardware, such as the keyboard, the display, and the
printer, are regarded as a devices. A device is treated as a textfile, and it is
identified through a device name. To associate a device with a textfile variable,
the device name is passed as the title parameter in a call to Reset or Rewrite.

Turbo Pascal defines two standard devices: A Console device, which is used to
communicate with the keyboard and the display, and a Printer device, which is
used to communicate with the printer. Their device names are

Console device
Printer device

'Console:'
'Printer:'

Turbo Pascal also allows you to define your own devices.

The Console Device

The Console device is used to communicate with the keyboard and the display.
Its device name is 'Console:'.

The Console device is implemented by the PasConsole unit. The PasConsole
unit furthermore defines the standard file variables Input and Output and associ­
ates these files with the Console device. If you are compiling in the {$U-} state
and want to use the Console device, your program must name the PasConsole
unit in its uses-clause.

284 Turbo Pascal for the Macintosh

Using the PasConsole unit in a program may be compared to including the
declaration

var
Input, Output: Text;

and executing the following procedure calls at the beginning of the program:

Reset(Input, 'Console:');
Rewrite(Output, 'Console:');

PasConsole also takes care of initializing all Macintosh ROM Managers, and
brings up the Console Window, which emulates an 80-character x 25-line ter­
minal.

The Console device is line oriented. When reading from the standard file
Input or a textfile that is associated with the Console device, lines are read one at
a time and stored in a line buffer. The Read and ReadLn procedures obtain their
input from this line buffer. Whenever the line buffer becomes empty, typically
due to a ReadLn, a new line is input at the next Read or ReadLn.

The following editing keys are available when inputting lines:

Backspaces one character
Clears the entire input line
Terminates the input line
Generates end-of-file status

Typing~ has the effect of generating an end-of-file status for the file being
read. Eof(f) becomes true and stays true until Reset(!) is executed.

The Printer Device

The Printer device is used to communicate with the printer. Its device name is
'Printer:'.

The Printer device is implemented by the PasPrinter unit. The PasPrinter
unit furthermore defines a textfile variable called Printer and associates it with
the Printer device. If you want to use the Printer device, your program must
name the PasPrinter unit in its uses-clause.

Using the PasPrinter unit in a program may be compared to including the
declaration:

var
Printer: Text;

Input and Output 285

and executing the following procedure call at the beginning of the program:

Rewrite(Printer, 'Printer:');

The Printer device uses text streaming when sending data to the printer. Basi­
cally this means that the characters are sent directly to the printer with no inter­
pretation.

More information on printing can be found in the "Printer Driver'' chapter of
Inside Macintosh.

286 Turbo Pascal for the Macintosh

c H A p T E R 25
Standard Procedures and Functions

This chapter describes all the standard (built-in) procedures and functions in
Turbo Pascal, except for the 1/0 procedures and functions discussed in Chapter
23.

Standard procedures and functions are predeclared. Since all predeclared
entities act as if they were declared in a block surrounding the program, no
conflict arises from a declaration that redefines the same identifier within the
program.

Exit and Halt Procedures

The Exit Procedure

Syntax: Exit

Exits immediately from the current block. When Exit is executed in a subrou­
tine, it causes the subroutine to return. When it is executed in the statement­
part of a program, it causes the program to terminate. A call to Exit may be
compared to a goto-statement addressing a label just before the end of a block.

287

The Halt Procedure

Syntax: Halt

Immediately stops execution of the program. A call to Halt corresponds to a
call to the ExitToShell routine in the Macintosh operating system.

Dynamic Allocation Procedures and Functions

These procedures and functions are used to manage the heap, a memory area
that is unallocated when a program begins execution. The dynamic allocation
procedures and functions operate on the Application Heap, and the routines are
implemented using the Macintosh Memory Manager.

The New Procedure

Syntax: New (p)

Creates a new dynamic variable and sets a pointer variable to point to it. p is a
pointer variable of any pointer-type. The size of the allocated memory block
corresponds to the size of the type that p points to. The memory block is allo­
cated through a call to the NewPtr routine of the Macintosh Memory Manager.
The newly created variable can be referenced as pA. If there isn't enough free
space in the heap to allocate the new variable, p is set to nil.

The Dispose Procedure

Syntax: Dispose (p)

Disposes a dynamic variable. pis a pointer variable of any pointer-type that
was previously assigned by the New procedure or was assigned a meaningful
value by an assignment statement. Dispose destroys the variable referenced by p
and returns its memory region to the heap. It does so by calling the DisposPtr
routine of the Macintosh Memory Manager. The value of p then becomes unde­
fined, and it is an error to subsequently reference pA.

288 Turbo Pascal for the Macintosh

The MemAvail Function

Syntax: MemAvail
Result type: Longlnt

Returns the number of free bytes of heap storage available. This number is
calculated from the free size of the heap plus the size by which the heap may
grow. Note that a block of storage the size of the returned value is unlikely to be
available due to fragmentation of the heap. To find the largest free block, call
MaxAvail.

The Max.Avail Function

Syntax: MaxAvail
Result type: Longlnt

Returns the size of the largest contiguous free block in the heap. MaxAvail
expands the heap to its maximum limit and then compacts the heap. This corre­
sponds to a call to the Memory Manager's MaxApplZone routine, followed by a
call to the CompactMem routine.

Transfer Functions

The procedures Pack and Unpack, as defined in Standard Pascal, are not imple­
mented by Turbo Pascal.

The Chr Function

Syntax: Chr (x)
Result type: Char

Returns a character with a specified ordinal number. x is an integer-type
expression. The result is the character whose ASCII value is x.

The Ord Function

Syntax: Ord (x)
Result type: Integer or Longlnt

Returns the ordinal number of an ordinal-type or pointer-type value. If x is an
ordinal-type expression, the result is of type Integer and the value is the
ordinality of x. If xis a pointer-type expression, the result is of type Longlnt, and
the value is the address of the dynamic variable pointed to by x.

Standard Procedures and Functions 289

The Ord4 Function

Syntax: Ord4 (x)
Result type: Longlnt

Returns the ordinal number of an ordinal-type or pointer-type value. Ord4
corresponds to Ord, except that the type of the result is always Longlnt.

The Pointer Function

Syntax: Pointer (x)
Result type: Pointer

Converts an integer-type or pointer-type value to a pointer-type value. If x is
an integer-type expression, Pointer returns a pointer value that points to the
address given by x. If x is a pointer-type expression, Pointer returns a pointer to
the same location. The type of the result is the same nil, that is, it is assignment
compatible with any pointer-type.

The Trunc Function

Syntax: Trunc (x)
Result type: Longlnt

Truncates a real-type value to an integer-type value. xis a real-type expres­
sion. Trone returns a Longl nt value that is the value of x rounded towards zero.

The Round Function

Syntax: Round (x)
Result type: Longlnt

Rounds a real-type value to an integer-type value. x is a real-type expression.
Round returns a Longl nt value that is the value of x rounded to the nearest whole
number. If x is exactly halfway between two whole numbers, the result is the
number with the greatest absolute magnitude.

The Float Function

Syntax: Float (x)
Result type: Real

Converts an integer-type value to a real-type value. x is an integer-type
expression. Note that the compiler automatically converts integer-type values to
real-type values when they appear in real-type expressions. You need not use
Float unless you want to explicitly force this conversion.

290 Turbo Pascal for the Macintosh

Arithmetic Functions

The Abs Function

Syntax: Abs (x)
Result type: Same type as parameter

Returns the absolute value of the argument. x is an integer-type or real-type
expression. The result, of the same type as x, is the absolute value of x.

The Sqr Function

Syntax: Sqr (x)
Result type: Same type as parameter

Returns the square of the argument. x is an integer-type or real-type expres­
sion. The result, of the same type as x, is the square of x, i.e., x * x.

The Int Function

Syntax: Int (x)
Result type: Real

Returns the integer part of the argument. x is a real-type expression. The
result is the integer part of x, i.e., x rounded towards zero.

The Sqrt Fun.Jtion

Syntax: Sqrt (x)
Result type: Real

Returns the square root of the argument. x is a real-type expression. The
result is the square root of x.

The Sin Function

Syntax: Sin (x)
Result type: Real

Returns the sine of the argument. x is a real-type expression. The result is the
sine of x. x is assumed to represent an angle in radians.

Standard Procedures and Functions 291

The Cos Function

Syntax: Cos (x)
Result type: Real

Returns the cosine of the argument. x is a real-type expression. The result is
the cosine of x. x is assumed to represent an angle in radians.

The Exp Function

Syntax: Exp (x)
Result type: Real

Returns the exponential the argument. x is a real-type expression. The result
is the exponential of x, i.e., the value e raised to the power of x, where e is the
base of the natural logarithm.

The Ln Function

Syntax: Ln (x)
Result type: Real

Returns the natural logarithm of the argument. x is a real-type expression.
The result is the natural logarithm of x.

The ArcTan Function

Syntax: ArcTan (x)
Result type: Real

Returns the arctangent of the argument. x is a real-type expression. The result
is the principal value, in radians, of the arctangent of x.

Ordinal Functions

The Succ Function

Syntax: Succ (x)
Result type: Same type as parameter

Returns the successor of the argument. xis an ordinal-type expression. The
result, of the same type as x, is the successor of x.

292 Turbo Pascal for the Macintosh

The Pred Function

Syntax: Pred (x)
Result type: Same type as parameter

Returns the predecessor of the argument. x is an ordinal-type expression. The
result, of the same type as x, is the predecessor of x.

The Odd Function

Syntax: Odd (x)
Result type: Boolean

Tests if the argument is an odd number. x is an integer-type expression. The
result is troe if x is an odd number, and false if x is an even number.

String Procedures and Functions

The Length Function

Syntax: Length (s)
Result type: Integer

Returns the dynamic length of a string. s is a string-type expression. The
result is the length of s.

The Pos Function

Syntax: Pos (substr, s)
Result type: Integer

Searches for a substring in a string. substr and s are string-type expressions.
Pos searches for substr within s, and returns an Integer value that is the index of
the first character of substr within s. If substr is not found, Pos returns zero.

The Concat Function

Syntax: Concat (sl [, s2 , ... , sn])
Result type: String

Concatenates a sequence of strings. Each parameter is a string-type expres­
sion. The result is the concatenation of all the string parameters. If the resulting
string is longer than 255 characters, it is truncated after the 255th character.

Standard Procedures and Functions 293

The Copy Function

Syntax: Copy (s , index , count)
Result type: String

Returns a substring of a string. s is a string-type expression. index and count
are integer-type expressions. Copy returns a string containing count characters
starting with the indexth character ins. If index is larger than the length of s, an
empty string is returned. If count specifies more characters than remain starting
at the indexth position, only the remainder of the string is returned.

The Delete Procedure

Syntax: Delete (s , index , count)

Deletes a substring from a string. s is a string-type variable. index and count
are integer-type expressions. De"lete deletes count characters from s starting at
the indexth position. If index is larger than the length of s, no characters are
deleted. If count specifies more characters than remain starting at the indexth
position, the remainder of the string is deleted.

The Insert Procedure

Syntax: Insert (source , s , index)

Inserts a substring into a string. source is a string-type expression. s is a string­
type variable. index is an integer-type expression. Insert inserts source into sat
the indexth position. If the resulting string is longer than 255 characters, it is
truncated after the 255th character.

Console Handling Procedures and Functions

The routines described in this section reside in the PasConsole unit. Thus, if you
are compiling in the {$U-} state, your program must name the PasConsole unit
in its uses-clause.

The ClearScreen Procedure

Syntax: ClearScreen

Clears the screen and places the cursor in the upper left-hand corner.

294 Turbo Pascal for the Macintosh

The Cl.earEOL Procedure

Syntax: ClearEOL

Clears all characters from the cursor position to the end of the line without
moving the cursor.

The DeleteLine Procedure

Syntax: DeleteLine

Deletes the line containing the cursor and moves all lines below it one line up.

The I nsertLine Procedure

Syntax: InsertLine

Inserts an empty line at the cursor position. All lines below the are moved one
line down, and the bottom line scrolls off the screen.

The GotoXY Procedure

Syntax: GotoXY (x , y)

Moves the cursor to the position on the screen specified by the Integer expres­
sions x (horizontal position) and y (vertical position). The upper left corner is
(1,1). If xis outside the range 1..80 or if y is outside the range 1..25, the cursor
does not move.

The KeyPressed Function

Syntax: KeyPressed
Result type: Boolean

Returns Troe if a key has been pressed on the keyboard, and False if no key
has been pressed.

The ReadChar Function

Syntax: ReadChar
Result type: Char

Causes the cursor to blink while waiting for a key to be pressed. When that
happens, the character is returned. The character is not echoed on the screen.
The Command key (!!)) functions as the Control key on a standard keyboard: If

Standard Procedures and Functions 295

a key is pressed while the Command key is held down, ReadC har returns the
control-value of the key, that is, Chr(l) for I]) !!), Chr(2) for ~ ([), and so on.

Miscellaneous Procedures and Functions

The SizeOf Function

Syntax: SizeOf (x)
Result type: Integer

Returns the number of bytes occupied by the argument. x is either a variable­
identifier or a type-identifier. SizeOf returns the number of bytes of memory
occupied by x.

The MoveLeft Procedure

Syntax: MoveLeft (source , dest , count)

Copies a specified number of contiguous bytes from a source range to a desti­
nation range (starting at the lowest address). source and dest are variable refer­
ences of any type. count is an integer-type expression. MoveLeft copies a block of
count bytes from source to dest, starting with the first byte occupied by source.
When source and dest overlap, you should use this procedure if source is at the
higher address. No checking whatsoever is performed, so be careful with this
procedure.

The MoveRight Procedure

Syntax: MoveRight (source , dest , count)

Copies a specified number of contiguous bytes from a source range to a desti­
nation range (starting at the highest address). source and dest are variable refer­
ences of any type. count is an integer-type expression. MoveRight copies a block
of count bytes from source to dest, starting with the last byte occupied by source.
If source and dest overlap and dest is at the higher address, you should use this
procedure. No checking whatsoever is performed, so be careful.

296 Turbo Pascal for the Macintosh

The FillChar Procedure

Syntax: FillChar (x , count , ch)

Fills a specified number of contiguous bytes with a specified value. x is a
variable reference of any type. count is an integer-type expression. ch is an
ordinal-type expression. FillChar writes the value of ch into count contiguous
bytes of memory starting at the first byte occupied by x. No checking whatsoever
is performed, so be careful.

The ScanEQ Function

Syntax: ScanEQ (limit , ch , x)
Result type: Integer

Scans a range of bytes for the first occurrence of a given value. limit is an
integer-type expression. ch is an ordinal-type expression. x is a variable refer­
ence of any type. ScanEQ scans x, looking for the first occurrence of the byte
value given by ch. The scan begins with the first byte in x. H ch is not found
within limit characters from the beginning of x, the value returned is equal to
limit. Otherwise, the value returned is the number of bytes scanned before ch
was found.

The ScanNE Function

Syntax: ScanNE (limit , ch , x)
Result type: Integer

ScanNE does the same as ScanEQ, except that it searches for a byte value that
does not match the ch parameter.

The Hi Function

Syntax: Hi (x)
Result type: - 128 .. 127

Returns the high-order byte of the argument. x is an expression of type
Integer. Hi returns the high-order byte of x as a signed value.

Standard Procedures and Functions 297

The Lo Function

Syntax: Lo (x)
Result type: - 128 .. 127

Returns the low-order byte of the argument. x is an expression of type Integer.
Lo returns the low-order byte of x as a signed value.

The Swap Function

Syntax: Swap (x)
Result type: Integer

Swaps the high- and low-order bytes of the argument. x is an expression of
type Integer.

The HiWord Function

Syntax: HiWord (x)
Result type: Integer

Returns the high-order word of the argument. x is an expression of type
Longlnt. HiWord returns the high-order word of x as a signed value.

The LoWord Function

Syntax: LoWord (x)
Result type: Integer

Returns the low-order word of the argument. x is an expression of type
Longlnt. HiWord returns the low-order word of x as a signed value.

The SwapWord Function

Syntax: Swap Word (x)
Result type: Longlnt

Swaps the high- and low-order words of the argument. x is an expression of
type Longlnt.

298 Turbo Pascal for the Macintosh

c H A p T E R 26
The Standard Appl£ Numeric Environment

(SANE) Library

This chapter discusses the features and uses of the Standard Apple Numeric
Environment (SANE) and the routines contained in the SANE library. You'll
learn about the data types provided by SANE. You'll also delve into each of the
types, procedures, and functions contained in the SANE library.

SANE' s main features are based on a standard proposed by the Institute of
Electrical and Electronics Engineers (IEEE' s Standard 754 for Binary Floating­
Point Arithmetic). This standard specifies standardized data types, arithmetic,
and conversions.

All floating-point mathematical calculations performed by Turbo Pascal use
SANE' s standards. This means uniform floating-point operations, which return
the most accurate results.

To surpass real-type precision, SANE offers floating-point type extensions.
The SANE library provides numerical functions beyond those in Standard Pascal
and routines to control the environment for floating-point calculations.

299

The SANE Data Types

SANE provides three application data types (Single, Double, and Camp) and an
arithmetic type (Extended). The original specification for Pascal had one data
type for use with floating-point numbers, the Real type. Turbo Pascal offers-in
addition to the Real type-the Single, Double, Extended, and Comp types.
Extended alludes to the extended precision with which Turbo Pascal performs all
arithmetic operations. Values that can be represented as any of the first three
types can be represented also in Extended. Turbo Pascal's Real type is identical
to SANE' s Single type.

The Single type is the smallest format you can use with floating-point num­
bers. It uses 32 bits of memory.

The Double type uses 64 bits for storage.

The Extended type uses an 80-bit format. Any arithmetic involving real-type
values is performed with the Extended type.

The Camp type stores integral values in 64 bits. It is considered a real-type
because arithmetic done with operands of type Camp uses the Extended type.

Choosing a Data Type

Four factors to consider when selecting a data type are format (fixed or floating­
point), precision, range, and memory usage.

The precision, range, and memory usage for each SANE data type are shown
in Table 26-1.

300 Turbo Pascal for the Macintosh

Table!6-1 SANE Data Types

Type Identifier Single Double Comp Extended

Size (bytes:bits) 4:32 8:64 8:64. 10:80

Binary exponent
range
Minimum -126 -1022 -16383
Maximum 127 1023 16384

Signi&cand precision
Bits 24 53 63 64
Decimal digits 7-8 ~16 18-19 19-20

Decimal range
(approximate)
Min negative -3.4E+38 -1.7E+308 ""-9.2E18 -1.1E+4932
Max neg norm -1.2E-38 -2.3E-308 1.7E-4932
Max neg denorm -1.5E-45 -5.0~24 -1.9E-4951
Min pos norm 1.2~8 2.3E-308 1.7E-4932
Min pos denorm -1.5E-45 -5.0~24 -1.9E-4951
Max positive 3.4E+38 1.7E+308 ""9.2E18 1.1E+4932

Infinities Yes Yes No Yes
NaNs Yes Yes Yes Yes

Many programs require a counting type that counts things exactly. The SANE
type Comp can be used for this purpose, for instance by representing monetary
values as integral numbers of cents or mils (thousands). The sum, difference, or
product of any two Comp values can be calculated exactly if the magnitude of the
result does not exceed 283- 1 (9,223,372,036,854,775,807). Comp values can be
combined with extended values in floating-point computations (such as calculat­
ing compound interest).

Arithmetic with Comp type variables, like all SANE arithmetic, is performed
internally using the Extended type. Precision is not affected, as conversion from
Comp to Extended is always exact.

Values Represented

The floating-point types (Single, Double, and Extended) store binary representa­
tions of a sign (+ or -), an exponent, and a signjficand. A represented number
has the value
± significand * 2exponent

where the significand has a single bit to the left of the binary point (that is, 0 :E;

significand (2).

The Standard Apple Numeric Environment (SANE) Library 301

Range and Precision

Table 26-1 shows the range and precision of the real-types supported by SANE
and Turbo Pascal. Decimal ranges are shown as chopped two-digit decimal rep­
resentations of the exact binary values.

Using the Single type, the largest representable number is:

significand = 2 - 223

exponent

value

= 1. lll l lll)]] lll lll l lll lll 2

= 127
= (2 - 2-23) * 2127

= 3.403 * 1038

The smallest representable positive normalized number is:

significand = 1
= 1.000000000000000000000002

exponent = -126

value = 1 * 2-125

= 1.175 * 10-38

The smallest representable positive denormalized number is:

significand

exponent

value

Formats

= 2-23

= 0. 000000000000000000000012

= -126
= 2-23 * 2-126

= 1.401 * 10-45

Following are the formats of the four SANE real-types, showing the fields that
each type divides a number into.

The Single Type

A 32-bit Single number is divided into three fields:

1 8 23 widths
1-s-,------e-------,-------------f----------------1
1 ___ 1 ______________ 1 ______________________________ 1

msb lsb msb lsb order

302 Turbo Pascal for the Macintosh

NOTE: msb means most significant bit and lsb means least significant bit.

The value v of the number is determined by these fields:

If 0 < e < 255, then v = (-L) 8 • 2<•-:L27 > • (L.f).
If e " O and f :/ o, then v = (-L) 8 • 2<-:i. 2 1.> • (O.f).
If e 0 and f = o, then v = (-L) 8 • o.
If e 255 and f = o, then v = (-L) 8 • oo.
If e 255 and f :/ o, then v is a NaN.

The Double Type

A 64-bit Double number is divided into three fields:

LL 52 widths

1-5-,------e-------,-------------!----------------1
I I I I --- m8b ________ I8b m8b ______________________ I8b-- order

The value v of the number is determined by these fields:

If 0 < e < 201;7, then v (-L) 8 • 2<e-:i.a23 > • (L.f).
If e 0 and f :/ 01 then V = (-L) 8 * 2<-:i.a22 > * (0.f).
If e = 0 and f = O, then v = (-L) 8 • O.
If e 201;7 and f = o, then v = (-L) 8 • oo.
If e 201;7 and f :/ o, then v is a NaN.

The Comp Type

A 64-bit Comp number is divided into two fields:

L E.3 widths

l-5-:--------------------d------------------------
1 ___ 1 ___ 1

msb lsb msb lsb order

The value v of the number is determined by these fields:

If s = L and d = o,
Otherwise,

The Extended Type

then v is the unique Comp NaN.
v is the two's-complement value
of the bl;-bit representation.

An 80-bit Extend.ed format number is divided into four fields:

L LS L E.3 widths

1-5-,-----e------,-1-:------------!---------------1
I I I I I --- m8b ______ I8b --- m8b ______________________ I8b order

The Standard Apple Numeric Environment (SANE) Library 303

The value v of the number is determined by these fields:

If 0 <= e < 32767,
If e 32767 and f = o,
If e = 32767 and f ~ o,

then V = (-:L)s * 2<e-:Lb383) * (i.f).
then v = (-:L) 5 * ~, regardless of i.
then v is a NaN, regardless of i.

The SANE Engine

This section describes the features of SANE and the interface between the
SANE engine and Turbo Pascal.

Extended Arithmetic

The Extended type is the basis of all arithmetic computation. With Extended
results, computations are accurate to a precision of 19 decimal digits through a
range of 10-4900 to 10+4900•

Turbo Pascal uses the Extended format to store all non-integer numeric con­
stants and evaluates all non-integer numeric expressions to Extended. The entire
right side of the following assignment, for instance, will be computed in
Extended before being converted to the type of the left side:

var
X,A,B,C: Real;

begin
X := (B + Sqrt(B * B - A * C)) I A;

end

With no special effort by the programmer, Turbo Pascal does computations
using the precision and range of the Extended type. The added precision means
smaller roundoff errors, and the additional range means overflow and underflow
are less common, so that programs work more often.

You can go beyond Pascal's automatic Extended capabilities. For example, you
can declare variables used for intermediate results to be of type Extended. The
following example computes a sum of products:

var
Sum: Real;
X,Y: arrayC:L .. :LOOl of Real;
I: Integer;
T: Extended; < for intermediate results

begin
T := 0.0;
for I :=. :L to :LOO do T := T + XCil * YCIJ;
Sum := T;

end

304 Turbo Pascal for the Macintosh

Had T been declared Real, the assignment to Twould have caused a roundoff
error at the limit of single precision at each loop entry. But T being Extended, all
roundoff errors are at the limit of Extended precision, except for the one resulting
from the assignment of T to Sum. Fewer roundoff errors mean more accurate
results.

You can also declare formal value parameters and function results to be of type
Extended to avoid unnecessary ronversions between numeric types, which may
result in loss of accuracy. For example:

function Area(radius: Extended): Extended;
begin

Area := pi • radius • radius;
end;

Although the Extended type makes programs less sensitive to certain errors,
exceptional cases do arise. For example, if all variables in the example below are
of type Real:

Average := Sum I count; Area := Side • Side; +

what happens if Count is zero or if the product Side * Side is too large to be
represented in the Real format? Ordinarily, your program stops, displaying an
error message. However, this is not the only way Turbo Pascal can treat such
errors. Instead, Turbo Pascal can assign special values to Average and Area, so
your program can rontinue. In fact, the IEEE standard refers to "exceptions"
rather than "errors," and it specifies "no halts" as the default mode of operation
for its arithmetic. To install the IEEE defaults, use this statement:

SetEnvironment(D);

The SANE library also rontains functions and procedures for determining
when exceptional cases occur.

Number Classes

There are five classes of representations in the SANE data formats.

• Normalized numbers Binary floating-point numbers with a leading signi­
ficand bit of 1.

• Zero +0 and -0.

• Infinities Special bit patterns resulting when floating-point operations attempt
to produce numbers beyond the largest representable number of the intended
format.

• NaNs A bit pattern resulting when a meaningful result cannot be produced by
a floating-point operation.

The Standard Apple Numeric Environment (SANE) Library 305

• Denormalized numbers Non-zero binary floating-point numbers whose sig­
nificands have leading bits of zero and whose exponents are the minimum
exponents for the number's storage type.

Infinities

Infinities are special SANE representations that can arise in two ways from oper­
ations on finite values:

• When an operation should produce an exact mathematical infinity (such as
1/0), the result is an infinity.

• When an operation produces a number with magnitude too large for the
intended floating-point format, the result may (depending on the current
rounding direction) be an infinity.

Turbo Pascal predefines a constant, Inf, to have the value positive infinity. Inf
also represents infinity for input and output of floating-point values. Infinities act
like mathematical infinities, for example, 1-Inf = - Inf

Here's an example of the use of infinity values:

progran Useinf;
uses SANE;
var

X: Extended;
begin

SetEnvironment(O);
X := le.!;000;
WriteLn('X•X = ',X•X);
WriteLn('l/(X•X) = ',1/(X•X));
WriteLn('l+l/(X•X) = ',1+1/(X•X));

end.

NaNs

Another special SANE representation is NaN (Not-a-Number). A NaN is pro­
duced whenever an operation cannot return a meaningful result. For example,
010 and Sqrt(-1) produce NaNs.

Each time a NaN is generated, an associated NaN code is returned as part of
the NaN's representation. The code tells you what kind of operation caused the
NaN. Table 26-2 shows these NaN codes, which you can use in debugging.

306 Turbo Pascal for the Macintosh

Table 26-2 NaN Codes
Code Meaning

1 Invalid square root, such as Sqrt(-1)
2 Invalid addition, such as (+Inf) - (+Inf)
4 Invalid division, such as 0/0
8 Invalid multiplication, such as 0 x Inf
9 Invalid remainder, such as Remainder(X,O,Q)
17 Attempt to convert invalid ASCII string
20 Result of converting the Comp NaN to floating-point format
21 Attempt to create a NaN with a zero code
33 Invalid argument to trig routine
34 Invalid argument to inverse trig routine
36 Invalid argument to log routine
37 Invalid argument to xi or xY routine
38 Invalid argument to financial function
255 Uninitialized storage (signaling NaN)

The statement WriteLn(OIO) produces the result NAN(004) (assuming the
invalid operation halt is off). NAN(004), nan(4), and NaN are all acceptable ways
of reading a NaN into a SANE variable. '

Denormalized Numbers

When possible, SANE stores values in normalized form; that is, the most signifi­
cant bit of the significand is a one rather than a zero.

However, when a very small number is being stored, and the exponent is the
smallest possible value, you can store still smaller values by storing leading
zeroes. For example, 1.0 .. 02 X 2-126 is the smallest normalized Real, and 0.1..02

x 2-126 is a still smaller denormalized Real.

The Environment

The SANE environment consists of various settings that are global to all routines
in the SANE library:

• Rounding direction

• Rounding precision

• Exception flags

• Halt settings

The Standard Apple Numeric Environment (SANE) Library 307

The SANE library includes procedures and functions that let you determine
the current status of the environment, as well as change any of its settings.

When your program begins, the environment is set to these Turbo Pascal
defaults:

• Rounding direction: To nearest

• Rounding precision: Extended

• All exception flags cleared

• Halts on invalid operation, underflow, and divide-by-zero

The entire SANE environment can be encoded in a value of the SANE type
Environment. The GetEnvironment, SetEnvironment, ProcEntry, and ProcExit pro­
cedures access the current SANE environment as a whole.

Rounding Direction

The rounding direction can be set in four ways:

• To nearest

• Upward

• Downward

• Toward zero

The default rounding direction is to nearest. You can find the current rounding
direction using the GetRound function and change it using the SetRound func­
tion.

The following code shows how to save the current rounding direction, com­
pute a function using toward zero rounding, and then restore the saved rounding
direction.

var
R: RoundDir;
X,Y: Extended;

begin
R := GetRound;
SetRound(TowardZero);
Y := F(X);
SetRound(R);

end

308 Turbo Pascal for the Macintosh

Rounding Precision

The rounding precision can be set in three ways:

• Extended precision

• Double precision

• Real precision

The default rounding precision is extended. You can use SANE to perform
calculations and then simulate the results you would get using a system without
extended precision arithmetic. The rounding precision is accessed through the
SetPrecision procedure and the GetPrecision function.

Exception Flags

Exceptions can arise from Boating-point calculations in a number of ways. For
example, multiplying two very large values can result in a value too large to be
represented in one of the SANE data types.

SANE lets your program determine when a Boating-point calculation has
resulted in one of these exceptions. Exceptions fall into five categories:

• Invalid operation

• Underflow

• Overflow

• Divide-by-zero

• Inexact

Whenever one of these exceptions occurs, a corresponding Hag is set in the
environment. The Hag remains set until explicitly cleared. The exception Hags
are accessed through the SetException procedure and the TestException func­
tion. Below follows a description of each of the individual exceptions.

Invalid Operation: The invalid operation exception occurs when the operands of
an operation are invalid, so that a meaningful numeric result is impossible, for
example, 0/0 and Sqrt(-1).

Underflow: Underflow occurs when a result is both denormalized and has lost
significant digits through rounding. For example, to return the result of

(1.000000000000000000000012 * 2-t2b) I 2

to the real format, a leading zero would be introduced and last significant bit
would be lost in rounding. The result

0.10000000000000000000000002 * 2-t2b

would be returned, signaling an underflow.

The Standard Apple Numeric Environment (SANE) Library 309

Overflow: Calculating a value that is too large to fit in the format of its desig­
nated type is an overflow. The destination format must be a floating-point type; if
the destination format is an integral type, the invalid exception occurs.

Divide-by-zero: This exception occurs when a finite non-zero number is divided
by zero. It also occurs when an operation on finite operands produces an exact
infinite result. For example, 110 (which results in Inf) and Ln(O) (which results in
-Inf) both signal divide-by-zero.

Inexact: The inexact exception occurs if the rounded result of an operation is not
identical to its mathematical (exact) result. Whenever an overflow or underflow
occurs, inexact is also signaled. For instance, 2/3 signals inexact, regardless of the
floating-point format used.

Halt Settings

The SANE environment includes a halt setting for each exception that deter­
mines whether occurrence of the exception halts the program. By default, Turbo
Pascal sets a halt on invalid operation, overflow, and divide-by-zero. The IEEE
standard default calls for all halts off.

You can access the halt settings using the TestHalt function and the SetHalt
procedure.

The SANE Library

The SANE library is implemented as a unit in Turbo Pascal. To use the features
provided by SANE, you must specify SANE in the uses-clause of your program
or unit:

uses SANE;

The rest of this chapter explains each of the constants, types, functions, and
procedures contained in the SANE library. Some advanced and rarely used fea­
tures have been left out; refer to the Apple Numerics Manual for a discussion of
these.

Constants and Types

Each of the constants and types defined by SANE are briefly discussed in this
section. For more information, see the descriptions of the procedures and func­
tions that depend on these constants and types.

310 Turbo Pascal for the Macintosh

The DecStrLen Constant

The DecStrLen constant is defined by:

DecStrLen = 255;

DecStrLen is the maximum length of a decimal numeric string. It is the size
attribute of variables of type DecStr.

Exception Condition Constants

These declarations specify the exception condition constants:

Invalid
Underflow
Overflow
DivByZero
Inexact

1.
' 2·
' .:;·
' 8;

Lb;

These constants are used to form a value of the Exception type. For example, if
E is a variable of type Exception, then:

E := Invalid + Overflow + DivByZero;

gives E a value that represents these three exceptions collectively.

The SetException and SetHalt procedures take arguments of type Exception.
The TestException and TestHalt functions return a value of type Exception.

The DecStr Type

This declaration defines the DecStr (decimal string) type:

DecStr = stringCDecStrLenl;

It is a string with a size attribute of DecStrLen (255 characters). It is used to
hold the decimal representation, in ASCII characters, of a number.

The DecForm Type

The following declaration defines the decimal format record type:

DecForm = record
Style: (FloatDecimal, FixedDecimal);
Digits: Integer;

end;

A DecForm record holds the specifications for the format of a decimal number.
Its Style field specifies whether the decimal representation will be floating-point
or fixed-point. Its Digits field holds the number of significant digits for float style
or the number of digits to the right of the decimal point for fixed style.

The Num2Str procedure takes a DecForm argument.

The Standard Apple Numeric Environment (SANE) Library 311

The RelOp Type

The relational operator type is defined by

RelOp = (GreaterThan, LessThan, EqualTo, Unordered);

A result of this type is returned by the Relation function.

The NumClass Type

The number class type is defined by

RumClass a (SRaR, QRaR, Infinite, ZeroRum, RormalRum, DenormalRum);

whose members are described in Table 26-3.

Tabl.e 26-3 Number Class Descriptions

Number Class

SNaN
QNaN
Infinite
ZeroNum
NormalNum
DenormalNum

Meaning

Signaling NaN
Quiet NaN
Infinity or - Infinity
0 or -0 ·
Normalized number
Denormalized
number

A Quiet NaN moves through floating-point operations without signaling an
exception (or halting a program). Signaling NaNs are not used in SANE opera­
tions. They signal an Invalid exception when the NaN is an operand of an arith­
metic operation.

The inquiry functions return results of type NumClass.

The Exception Type

A variable of type Exception has an integer value corresponding to the value of an
Exception constant or to a sum of two or more of the Exception constants. The
Exception type is defined by

Exception • Integer;

The SetException, TestException, SetHalt, and TestHalt routines all take argu­
ments of this type.

312 Turbo Pascal for the Macintosh

The RoundDir Type

The rounding direction type is defined by

RoundDir = (ToNearest, Upward, Downward, TowardZero);

The RoundDir type determines how values are to be rounded when rounding
becomes necessary during arithmetic operations or conversions. The SetRound
procedure talces an argument of type RoundDir, while the GetRound function
returns a value of type RoundDir.

The RoundPre Type

The rounding precision type is defined by

RoundPre = (ExtPrecision, DblPrecision, RealPrecision);

Rounding precision can be used to simulate arithmetic using only single or
double precision. The SetPrecision procedure talces an argument of type
RoundPre, while the GetPrecision function returns a value of type RoundPre.

The Environment Type

A variable of type Environment represents the settings of the SANE environ­
ment. A value of 0, for example, represents the default IEEE settings. The
Environment type is defined by

Environment = Integer;

Use a variable of type Environment with the environmental access routines
SetEnvironment, GetEnvironment, ProcEntry, and ProcExit.

Con version Procedures and Functions

The SANE library contains procedures and functions that convert numeric
values from one binary format to another, from binacy to decimal, and from
decimal to binary. These conversion procedures and functions are described in
the following sections.

The Num21nteger and Num2Longint Functions

function Num2Integer(x: Extended): Integer;
function Num2Longint(x: Extended): Longint;

The Standard Apple Numeric Environment (SANE) Library 313

The Num2Integer function takes an Extended argument and returns a result of
type Integer. The Num2Longlnt function takes an Extended argument and
returns a result of type Longlnt.

The value returned by these functions depend on the rounding direction (set
with the RoundDir procedure). H you were to use the standard rounding direc­
tion ToNearest, for example,

Num2Integer(qq.b);
Num2Longint(qq.b);

return the value 100.

Num2Integer and Num2Longint are like Turbo Pascal's Round and Trone func­
tions. However, Num2Integer and Num2Longint are affected by the current
rounding direction, whereas the Round function always returns the nearest
Longint value, and the Trone function always rounds toward zero.

Using the ToNearest rounding direction, Num2Integer and Num2Longint
round values that are halfway between two integers to the nearest even integer
as indicated by the IEEE standard. For example, Num2lnteger(2.5) returns 2.
The Round function rounds these halfway values away from zero---Round(2.5)
returns 3.

The Num2Extended Function

function Num2Extended(x: Extended): Extended;

Any real-type or integer-type argument can be passed to the Num2Extended
function. It converts its argument to the Extended format, which forces floating­
point arithmetic when all variables involved are of integer-types.

The Num2Str Procedure

procedure Num2Str(f: DecForm; x: Extended; vars: DecStr);

Converts an extended value x to a decimal string, returned in s, using the
specifications in the DecForm recordf The Style field off determines the for­
matting style. Hf Style is FloatDecimal, the number is formatted in floating­
point style, and f Digits determines the number of significant digits:

I - l <digit> C • <decimals> l e [+ I - J <exponent>

314 Turbo Pascal for the Macintosh

These are the components of the output string:

I - 1

<digit>

C • <decimals> 1

" " or " - " according to the sign of x.

Single digit, "O" only if x is 0.

Digit string, present iffDigits) 1.

e Lowercase "e" character.

C + I - l "+" or " - " according to sign of exponent.

<exponent> One to four exponent digits.

If f Style is FixedDecimal, the number is formatted in fixed-point style, and
fDigits determines the number of digits to follow the decimal point:

C - 1 <digits> C • <decimals> 1

These are the components of the output string:

[- 1

<digits>

C . <decimals> 1

" - " if x is negative.

At least one digit, but no leading zeros.

Decimals iffDigits) 0.

Iff Style is FixedDecimal and xis greater than or equal to 10 A (19 - fDigits),
the formatter will select floating-point style with 19 significant digits. In general,
iffDigits is outside the range 0 .. 72, it is truncated to be within that range.

NaNs (Not a Number values) are formatted as NAN(ddd) where ddd is a
three-decimal-digit code telling the origin of the NaN. Infinities are formatted as
INF. A sign or space is prepended according to the selected style.

The Str2Num Function

function Str2Num(s: Decstr): Extended;

Converts a decimal string argument of type DecStr to a value of type
Extended. The string may contain leading blanks or TABs, but no trailing charac­
ters are allowed. Examples of acceptable input are

123 123.~E-12 -123. .~Sb 3e9 -a
-INF Inf NAN (12) -NaN () nan

The accepted syntax is presented below using Backus-Naur form:

<decimal number> ::= [{space I tab}] (left decimal)

<left decimal> ::= [+I-] (unsigned decimal)

<unsigned decimal> ::= (finite number) I (infinity) I (NAN)

<finite number> ::= (significand) [(exponent)]

<significand> ::= (integer) I (mixed)

<integer> ::= (digits) [.]

The Standard Apple Numeric Environment (SANE) Library 315

<digits>

<mixed>

<exponent>

<infinity>

<NAN>

::= {O 111 2 I 3 I 4 I 5 I 6 I 7 IBI 9}
::= [(digits)] . (digits)

::= E [+I-] (digits)

: : = [+I-] INF

::= NAN [([(digits)])]

Note: In the table, square brackets enclose optional items, braces (curly
brackets) enclose elements to be repeated at least once, and vertical bars sepa­
rate alternative elements. Letters that appear literally, like the E marking the
exponent field, may be either uppercase or lowercase.

If the string is syntactically incorrect, Str2Num returns NAN(Ol7), which is
the code for invalid Decimal to Binary conversion. If the resulting value is out­
side the floating-point range, Str2Num returns INF or - INF according to the
sign of the value.

Arithmetic and Auxiliary Functions

The SANE library includes a set of functions that supplement the standard func­
tions described in Chapter 25.

The Remainder Function

function Remainder(x,y: Extended; var quo: Integer);

Returns an exact remainder of the smallest possible magnitude resulting from
the division of its two Extended arguments x and y, as prescribed by the IEEE
standard. The result is computed as

x-n•y

where n is the nearest integral approximation to the quotient x/y. For example,
Remainder(9,5,q) returns -1, since -1 = 9-2X5. The integer variable argu­
ment quo receives the seven low-order bits of n as a value between - 127 and 127.
This is handy when programming a function that requires argument reduction.

The Pascal operator mod can be used only with integral values. The
Remainder function deals with real-type or integer-type values.

316 Turbo Pascal for the Macintosh

The Rint Function

function Rint(x: Extended): Extended;

Rounds x to an integral value. All sufficiently large floating-point values are
integral. Use the SetRound procedure to change the rounding direction for the
result you want. Rint is the same as the standard function Int, except that Int
always rounds toward zero.

The Scalb Function

function Scalb(n: Integer; x: Extended): Extended;

Scales x by the power to two specified by n. The value 2" X x is returned in
Extended format.

The Logb Function

function Logb(x: Extended): Extended;

Returns the largest power of two that does not exceed the magnitude of x.

The CopySign Function

function CopySign(x,y:extended):extended;

Returns the value of y with the sign of x.

The NextReal Function

function NextReal(x,y: Real): Extended;

Returns the next Real format value after x in the direction of y.

The NextDouble Function

function NextDouble(x,y: Double): Extended;

Returns the next Double format value after x in the direction of y.

The NextExtended Function

function NextExtended(x,y: Extended): Extended;

Returns the next Extended format value after x in the direction of y.

The Standard Apple Numeric Environment (SANE) Library 317

Elementary and Trigonometric Functions

Turbo Pascal provides the predefined Ln, Exp, Sin, Cos, and ArcTan functions.
The SANE library complements these with the Log2, Lnl, Exp2, Expl, Xpwrl,
XpwrY, and Tan functions.

The Log2 Function

function Log2(x: Extended): Extended;

Returns the base-2 logarithm of x.

The Lnl Function

function LnL(x: Extended): Extended;

Returns the base-e logarithm of 1 plus x, that is, Lnl(x) = Ln(l +x). For x near
0, Lnl(x) is more accurate than Ln(l+x).

The Exp2 Function

function Exp2(x: Extended): Extended;

Returns 2 raised to the power of x, that is, 2'.

The Expl Function

function ExpL(x: Extended): Extended;

Returns e raised to the power of x, minus one, that is, e'-1. For x near 0,
Expl(x) is more accurate than Exp(x)-1.

The Xpwrl Function

function XpwrI(x: Extended; i: Integer): Extended;

Returns x raised to the power of i, that is, x'.

The XpwrY Function

function XpwrY(x,y: Extended): Extended;

Returns x raised to the power of y, that is, xv.

318 Turbo Pascal for the Macintosh

The Tan Function

function Tan(x: Extended): Extended;

Returns the tangent of x. In a right triangle, Tan(x) is the ratio of the length of
the side opposite an angle of x radians to the length of the side adjacent to it. x
must be expressed in radians.

Financial Functions

SANE offers two functions for financial applications: Compound and Annuity.

The Compound Function

function Compound(r,n: Extended): Extended;

Returns the compound interest. r specifies the interest rate and n specifies the
number of periods. The value returned is (l+rt, which is the principal plus
accrued compound interest on an original one-unit investment.

The Annuity Function

function Annuity(r,n: Extended): Extended

r specifies the interest rate and n specifies the number of periods. Annuity
returns (1-(1 +rr)lr, the present value factor of an ordinary annuity. It returns
an Extended value. Following is an example of use of the Annuity function:

program PayBack;
var

Loan,Payment,Interest,Periods: Extended;
begin

Write('Loan amount: ');
ReadLn(Loan);
Write('Annual interest rate (enter as a decminal): ');
ReadLn(Interest);
Write('Number of years: ');
ReadLn(Periods);
Payment :=Loan I Annuity(Interest I 12, Periods* 12);
WriteLn('Your payment is: ',Payment:6:2);

end.

The Standard Apple Numeric Environment (SANE) Library 319

Inquiry Functions

SANE offers four functions that let you determine the class of a numeric value,
and one that returns the sign of a numeric value. The result of the four classifica­
tion functions is of type NumClass.

The ClassReal Function

function ClassReal(x: Real): NumClass;

Returns the number class of the Real type value x. For example, ClassReal(l)
returns NormalNum, which is the code for a normalized number. ClassReal
(le-310) returns ZeroNum, the code for zero, because le-310 rounds to +O in
the Real format.

The ClassDoubk Function

function ClassDouble(x~ Double): NumClass;

Returns the number class of the Double type value x. For example, Class­
Double(0.010.0) returns QNan, and ClassDouble(le-310) returns Denormal­
Num, because le--310 is denormalized in the Double format.

The ClassExtended Function

function ClassExtended(x: Extended): NumClass;

Returns the number class of the Extended type value x. For example, Class­
Extended(l!O) returns Infinite, and ClassExtended(le-310) returns NormalNum.

The ClassCornp Function

function ClassComp(x: Comp): NumClass;

Returns the number class of the Comp type value x. For example, Class­
Comp(l) returns NormalNum, while ClassComp(O.l) returns ZeroNum, as
Comp stores only integral values.

The SignNum Function

function SignNum(x: Extended): Integer;

Returns an integer value that reflects the sign of x: 1 is returned if xis nega­
tive, and 0 is returned if x is positive.

320 Turbo Pascal for the Macintosh

Miscellaneous Functions

This section describes the RandomX, NaN, and Relation functions.

The RandomX Function

function RandomX(var x: Extended): Extended;

RandomX talces a variable argument of type Extended that contains an integral
value in the range 1 (r (231 -2. It returns the next random number (in Extended
format) in sequence within the same range. The variable argument is updated to
the value returned. RandomX uses the algorithm:

Newx = (7 5 * OldX) mod (231-L)

The NaN Function

function NaN(x: Integer): Extended;

Returns a NaN with the code specified by x. See Table 26-2 for a list of defined
NaN codes.

The Relation Function

function Relation(x,y: Extended): RelOp;

Returns a value of type RelOp that specifies the relationship between x and y.
For example,

Relation(O.L,NaN(O))i

returns Unordered, since all comparisons involving NaNs are unordered.

Environmental Access Procedures and Functions

The SANE library provides a number of procedures and functions to access the
SANE environment. They are described in this section.

The GetRound Function

function GetRound: RoundDir;

Returns the current rounding direction.

The Standard Apple Numeric Environment (SANE) Library 321

The SetRound Procedure

procedure SetRound(r: RoundDir);

Sets the rounding direction to the value specified by r.

The GetPrecision Function

function GetPrecision: RoundPre;

Returns the current rounding precision.

The SetPrecision Procedure

procedure SetPrecision(p: RoundPre);

Sets the rounding precision to the value specified by p.

The TextException Function

function TestException(e: Exception): Boolean;

Returns true if any of the exceptions encoded in e are set. For example,

Error:; TestException(Overflow +Inexact);

would set Error to true if the overflow and/or inexact exception Hags were set.

The SetException Procedure

procedure SetException(e: Exception; b: Boolean);

The exceptions encoded in e are set or cleared according to the value of b: If b
is true, the Hags are set; if bis false, the Hags are cleared. For example,

SetException(Overflow +Inexact, true);

This statement signals the overflow and inexact exceptions. If halt on overflow
or inexact were set, this statement would halt the program.

The TestHalt Function

function TestHalt(e: Exception): Boolean;

Returns true if any of the halt Hags encoded in e are set, that is, if halts are
enabled for any of the specified exceptions.

322 Turbo Pascal for the Macintosh

The SetHalt Procedure

procedure SetBalt(e: Exception; b: Boolean);

The halt flags encoded in e are set or cleared according to the value of b: If b is
true the flags are set, and if b is false the flags are cleared. When a specific flag is
set and the corresponding exception occurs, the program comes to a halt.

The GetEnvironment Procedure

procedure GetEnvironment(var e: Environment);

Stores the current settings of the environment in e.

The SetEnvironment Procedure

procedure SetEnvironment(e: Environment);

Sets the environment to the value encoded in e. To install the IEEE standard
defaults, use the statement

SetEnvironment(D);

The following procedure runs with the IEEE default environment, while pre­
serving the caller's environment:

procedure P;
var

E: Environment;
begin

GetEnvironment(E);
SetEnvironment(D);

.
SetEnvironment(E);

end;

The ProcEntry Procedure

procedure ProcEntry(var e: Environment);

Stores the current settings of the environment in e, and then sets the environ­
ment to the IEEE defaults. The statement

ProcEntry(E);

is equivalent to

GetEnvironment(E);
SetEnvironment(D);

The Standard Apple Numeric Environment (SANE) Library 323

The ProcExit Procedure

procedure ProcExit(e: Environment);

ProcExit temporarily saves the current exception flags, then sets the environ­
ment to the value encoded in e, and finally signals the temporarily saved excep­
tions.

ProcEntry and ProcExit can be used in routines to hide specific spurious
exceptions from the caller, for example,

function ArcCos(x: Extended): Extended;
var

E: Environment;
begin

ProcEntry (E);
ArcCos := ArcTan(Sqrt(L.O-x)/(L.O+x)))i
SetException(DivByZero,false);
ProcExit(E);

end;

ProcEntry(E) saves the caller's environment in E and sets IEEE defaults, so
exceptions cannot halt the routine. If x = 1, the computation of ArcCos signals
divide-by-zero, even though ArcCos is assigned the correct value (Pi/2). The call
to SetException clears the divide-by-zero flag, so the caller never sees it. If x > 1
or x < -1, the computation of ArcCos signals invalid operation. The ProcExit
procedure will resignal invalid operation after it restores the caller's environ­
ment, and if the caller's environment calls for halts on invalid operation, the halt
occurs.

324 Turbo Pascal for the Macintosh

c H A p T E R 27
Inside Turbo Pascal

This chapter provides additional information for advanced Pascal programmers.
It covers Macintosh architecture, internal data formats, interfacing with assem­
bly language, and defining your own device drivers.

Macintosh Architecture

The environment in which a Macintosh application runs may be divided into five
basic components: the]ump Table, the Application Parameters, the Application
Globals, the Stack, and the Application Heap. The organization is shown on the
following page.

325

jump Table

Application Parameters
AS->

Application Globals

Stack

SP->
/ll/ll/ll/ll/lllllllll//ll/lll
l//ll/lllllll//l/ll//ll//l//ll
ll/llllll/llllllll//lll//l/lll

Application Heap

Top of Memory

Bottom of Stack

Top of Stack

Heap Limit
End of Heap

Heap Origin

When an application starts up, the processor's A5 register is set to point to the
boundary between the Application Parameters and the Application Globals. The
Application Parameters and the Jump Table thus reside at positive offsets from
A5 (above A5) and the Application Globals reside at negative offsets from A5
(below A5).

The Application Parameters area occupies the first 32 bytes above A5. It con­
tains the QuickDraw Globals Pointer at O(A5) and the FINDER Startup Handle
at 16(A5).

The remainder of the area above A5 is occupied by the Jump Table, which is
maintained by the Segment Loader. For each segment, it contains one eight-byte
entry for every procedure or function that is referenced from another segment.
When a segment is in the "unloaded· state, its Jump Table entries contain code
that cause the segment to be loaded. When a segment is in the "loaded" state, its
Jump Table entries contain instructions that jump to the routines.

The area below A5 contains the application's global variables and the Quick­
Draw global variables.

The Stack follows below the Application Globals. When an application starts
up, the processor's stack pointer register (referred to as A7 or SP) is set to point
just below the Application Globals.

Stack space is always allocated and released in LIFO (last-in/first-out) order:
The last item allocated is always the first to be released. The SP register always
points to the "top· of the stack- note that the stack grows downwards, and that
the "top" of the stack is actually the lower end of the stack in memory.

326 Turbo Pascal for the Macintosh

The LIFO nature of the stack makes it convenient for memory allocation con­
nected with the activation and deactivation of procedures and functions. Each
time a routine is called, space is allocated for a stack frame. The stack frame
holds the routine's parameters, local variables, and return address. Upon exit­
ing, the stack frame is released, restoring the stack to the same state it was in
when the routine was called. The processor's A6 register functions as a stack
frame pointer.

The Application Heap is an area in memory from which storage can be allo­
cated or deallocated in any order. The heap is maintained by the Memory
Manager. All dynamic storage required by a program is allocated on the heap.
This includes dynamic variables (New and Dispose), code segments, resources,
windows, menus, and dialogs.

Two types of blocks can be allocated on the heap: Non-rel.ocatable blocks and
rel.ocatab"le blocks.

Non-relocatable blocks reside at a fixed locations in the heap, and cannot be
moved once they have been allocated. A non-relocatable block is referenced
through a pointer.

Relocatable blocks may be moved by the Memory Manager to make room for
new allocation requests. As a relocatable block may move, it cannot be refer­
enced through a pointer. Instead, the Memory Manager maintains a single non­
relocatable master pointer to each relocatable block: When the block moves, the
master pointer is updated to reflect the new position of the block. You access
the block through a handle, which is a pointer to the master pointer. To get
at a block through a handle, the handle is de-referenced twice, for instance
MYHANDLE 1111 •

More information on memory management can be found in the Memory Man­
ager chapter of Inside Macintosh.

Internal Data Formats

The compiler always aligns variables to even addresses (word boundaries) unless
they occupy a single byte.

Integer-Types

An Integer is stored as a 16-bit two's-complement number with a range of
-32768 to 32767.

Inside Turbo Pascal 327

A Longlnt is stored as a 32-bit two's-complement number with a range of
-2147483648 to 2147483647.

A subrange of an integer-type is stored as a signed quantity. If the range is
within -128 to 127, a byte is used; if the range is within -32768 to 32767, a word
is used; otherwise, a longword is used.

Note: The integer-type subrange 0 .. 255 is stored as an unsigned byte if it is
part of a packed structure.

Char-Types

A Char is stored as a word with the ASCII code in the low-order byte, and 0 in
the high-order byte.

A subrange of a char-type is stored as a byte if the range is within #0 to #127;
otherwise, it is stored as a word.

Note: A Char is stored as an unsigned byte if it is part of a packed structure.

Boolean-Type

A Boolean is stored as a byte that may assume the values 0 (False) or 1 (True).

Enumerated-Types

An enumerated-type is stored as a byte if the enumeration has 128 or fewer
values; otherwise, it is stored as a word.

Real-Types

A Real or a Single is stored in 4 bytes using the IEEE Single-Precision format. A
Double is stored in 8 bytes using the IEEE Double-Precision format. An
Extended is stored 10 bytes using the IEEE Extended-Precision format. A Comp
is stored as a 64-bit two's-complement number.

For further details on floating-point formats, please refer to Chapter 26.

328 Turbo Pascal for the Macintosh

Pointer-Types

A pointer-type is stored as a 32-bit address value. The pointer value nil is stored
as zero.

String-Types

A string occupies as many bytes as its maximum length plus one. The first byte
contains the current dynamic length of the string, and the following bytes con­
tain the characters of the string. The length byte and the characters are consid­
ered unsigned values.

Set-Types

A set is a bit-array where each bit indicates whether an element is in the set or
not. The maximum number of elements in a set is 256, so a set never occupies
more than 32 bytes. The number of bytes occupied by a particular set is calcu­
lated as

(Max div 6) - (Min div 6) + l

where Min and Max are the lower and upper bounds of the base-type of that set.
The byte number of a specific element E is

ByteNumber ; (E div 6) - (Min div 6)

and the bit number within that byte is

BitNumber ; E mod 6

where E denotes the ordinal value of the element.

Array-Types

An array is stored as a contiguous sequence of variables of the component-type
of the array. If the size of the component-type is greater than one, it is rounded
up to an even value so that each component resides on an even boundary. The
components with the lowest indices are stored at the lowest memory addresses.
A multi-dimensional array is stored with the right-most dimension increasing
first.

Inside Turbo Pascal 329

A packed array is identical to the corresponding unpacked array, unless the
component-type is Char or the integer subrange 0 .. 255. In that case the compo­
nents are stored as single-byte unsigned quantities.

Record-Types

The fields of a record are stored as a contiguous sequence of variables. If the size
of a specific field is greater than one, it is aligned to an even boundary. The first
field is stored at the lowest memory address. If the record contains variant parts,
then each variant starts at the same address.

A packed record is identical to the corresponding unpacked record, unless any
of the fields are of type Char or the integer subrange 0 .. 255. In that case, these
fields are stored as single-byte unsigned quantities.

File-Types

File-types (typed-files and textfiles) are represented as records that contain 20
bytes of file status information:

type

Buffer
BufferPtr
ProcPtr

FileRec

packed arrayca •. naxintl of Char;
ABuffer;

= Ainteger;

= record
finpFlag: Boolean;
fOutFlag: Boolean;
fRefNum: Integer;
fVRefNum: Integer;
fBufSize: Integer;
fBufPos: Integer;
fBufEnd: Integer;
fBuffer: BufferPtr;
finOutProc: ProcPtr;

end;

flnpF"lag is true if the file was opened with Reset. fOutF"lag is true if the file
was opened with Rewrite. Both are false if the file is closed. fRefNum and jVRef­
Num contain the file reference number and the volume reference number.

For typed files, fBufSize contains the record length in bytes, and fBufPos,
fBufEnd, fBuffer, and fl nOutProc are unused.

When a textfile is opened, Turbo Pascal allocates an 1/0 buffer by calling the
Memory Manager's NewPtr routine and stores a pointer to it in fBuffer. The

330 Turbo Pascal for the Macintosh

buffer is deallocated by a call to the Memory Manager's DisposPtr routine when
the file is closed. fBufSize contains the size of the buffer (default 512), fBufPos
contains the index of the next character to read or write, and fBufEnd contains a
count of valid characters in the buffer.

If a textfi.le is associated with a device, fRefNum and jVRefNum are zero, and
flnOutProc contains a pointer to the 1/0 routine that handles 1/0 for that device.
The section "Defining Your Own Devices" in the following pages provides that
information.

Calling Conventions

Turbo Pascal uses the standard stack-based parameter passing conventions as
defined in Inside Macintosh.

Before calling a procedure or function, the parameters are pushed onto the
stack in their order of declaration. If a function is being called, storage for the
function result is allocated on the stack before any parameters are pushed.
Before returning, the procedure or function removes all parameters from the
stack, but leaves the function result (if any) on the stack.

The skeleton code for a procedure call is

MOVE pppp,-(SP) ;Push first parameter

MOVE pp pp, -(SP) ; Push last parameter
JSR Procedure ;Call procedure

The skeleton code for a function call is

SUBQ.L 1nn,-(SP) ;Make room for result
MOVE pppp,-(SP) ;Push first parameter

MOVE pppp,-(SP) ;Push last parameter
JSR Function ;Call function
MOVE (SP)+,rrrr ;Get result

Parameters are passed either by reference or by value. When a parameter is
passed by reference, a pointer that points to the actual storage location is pushed
onto the stack. When a parameter is passed by value, the actual value is pushed
onto the stack.

Variable Parameters

Variable parameters (var parameters) are always passed by reference, that is, as a
pointer that points to the actual storage location.

Inside Turbo Pascal 331

Value Parameters

Value parameters are passed by value or by reference depending on the type and
size of the parameter. In general, if the value parameter occupies 4 bytes or less,
the value is pushed directly onto the stack. Otherwise a pointer to the value is
pushed, and the procedure or function then copies the value into a local storage
location.

NOTE: To keep the stack properly aligned, the 68000 automatically adjusts
the stack pointer by 2 instead of 1 when moving a byte-size value to or from the
stack. Thus, a byte-size value occupies a word on the stack, where the high-order
byte contains the value and the low-order byte is unused.

An Integer is passed as a word. A Longlnt is passed as a long. An integer-type
subrange is passed: as a byte if the range is within -128 to 127; as a word if the
range is within -32768 to 32767; otherwise, as a long.

A Char is passed as a word with the ASCII code in the low-order byte and 0 in
the high-order byte. A char-type subrange is passed as a byte if the range is
within #0 to #127, otherwise as a word.

A Boolea.n is passed as a byte with the value 0 or 1.

An enumerated-type is passed as a byte if the enumeration has 128 or fewer
values; otherwise, it's passed as a word.

A real-type parameter (Real, Single, Double, Extended, and Comp) is passed
as a pointer to an Extended value.

A string-type parameter is passed as a pointer to the value.

A set-type parameter is passed as a pointer to an "unpacked" set, which
occupies 32 bytes.

Arrays and records whose sizes are less than or equal to 4 bytes are passed by
pushing their value onto the stack. Larger arrays and records are passed as a
pointer to the value.

Function Results

For function results of type Integer, Longlnt, Char, and Boolean, and for func­
tion results of any subrange or enumerated type, the caller allocates 2 or 4 bytes
on the stack before pushing any parameters. The function places the result in
these bytes using the same formats as value parameters; that is, the value is
returned as a byte, a word, or a long.

332 Turbo Pascal for the Macintosh

For a real-type function result, the caller pushes a pointer to a temporary
storage location before pushing any parameters, and the function returns an
Extended value in that temporary. The caller removes the pointer from the stack
when the function returns.

For a string-type function result, the caller pushes a pointer to a temporary
storage location before pushing any parameters, and the function returns a string
value in that temporary. The caller removes the pointer from the stack when the
function returns.

Entry and Exit Code

Each Pascal procedure and function begins and ends with standard entry and
exit code which creates and removes its activation.

The standard entry code is

LINK Ab,1-dd ;Set up stack frame
MOVEM.L D3-D7/A2-A~ 1 -(SP) ;Save registers

where dd is the number of bytes of local workspace to allocate. The MOVEM
instruction is only present if the procedure or function uses any non-scratch
registers, and it only saves the registers that are actually used.

The standard exit code is

MOVEM.L (SP)+,D3-D7/A2-A~
UNLK Ab
MOVE.L (SP)+,AD
LEA pp(SP),SP
JMP (AD)

;Restore registers
;Remove stack frame
;Get return address
;Remove parameters
;Return

where pp is the size of the parameters. (If pp is less than or equal to 8, an
ADDQ.L instruction is used instead of a LEA instruction.) The MOVEM
instruction (if present) lists the same registers as its counterpart in the entry
code.

If the procedure or function has no parameters the exit code is

MOVEM.L (SP)+,D3-D7/A2-A~ ;Restore registers
UNLK Ab ;Remove stack frame
RTS ;Return

Inside Turbo Pascal 333

Linking with Assembly Language

Procedures and functions written in assembly language may be linked with
Turbo Pascal programs or units through {$L FileName} compiler directives. The
assembly-language source file must be assembled into an object file using
Apple's MDS assembler or an equivalent.

Multiple object files may be linked with a program or unit through multiple
directives. Note that all $L directives must appear before the begin that heads
the main statement-part of the program or unit. If a $L directive appears in a
program, the object file is linked into the blank segment, that is, the segment in
which the main program resides.

Procedures and Functions

Procedures and functions written in assembly language must be declared as
external in the Pascal program or unit, for instance:

function UpCase(Ch: Char): Char; external;

In the corresponding assembly-language source file, externally defined proce­
dures and functions must appear in XDEF directives, for instance:

XDEF UpCase ;Define UpCase

UpCase MOVE.L
MOVE.Ii
CMP.W
BLT.S
CMP.W
BGT.S
SUB.Ii

@], MOVE.Ii
JMP

(SP)+,AO
(SP)+,DO
t'a',DO
@],

#'Z I ,DD
@],

#$20,DO
DO,(SP)
(AO)

;Get return address
;Get Ch
;Skip if not lower case

;Convert to upper case
;Store return value
;Return

It is up to you to ensure that an assembly-language procedure or function
matches its Pascal definition with respect to the number of parameters, the
types of the parameters, and the result type.

An assembly-language source file may reference Pascal procedures and func­
tions via XREF directives, for instance:

XREF Read File ;ReadFile is a Pascal routine

JSR ReadFile ;Call ReadFile

You must not specify the addressing base, such as (A5) or (PC), when calling an
XDEFed or XREFed procedure or function. Turbo Pascal itself figures out
which calling method to use when it links the object file with the program.

334 Turbo Pascal for the Macintosh

Variables

An assembly-language source file may declare variables via DS directives. Such
variables are private to the assembly-language source file and cannot be refer­
enced from the Pascal program or unit.

Global variables defined in the Pascal program or unit are referenced in
assembly language via XREF directives, for instance:

XREF ErrCnt ;ErrCnt is a Pascal variable

ADDQ.ll #L 1 Errcnt"(AS) ;Increment ErrCnt

The (A5) addressing base must be specified, just as it is for private variables
defined via DS directives.

Operations on Relocatable Symbols

An assembly-language symbol is relocatabl,e if it is created as a label or through
an XREF directive. When a relocatable symbol appears in an assembly-language
expression, the assembler cannot calculate the true value of the expression, since
the value of the symbol is not determined until the object file is linked. For
instance, if Symbol is defined via a DS directive, the address expression Sym­

bol (AS) is not resolved until the object file is linked.

When an object file appears in a $L compiler directive, Turbo Pascal converts
the object file from MDS Link format to its own internal link format. This con­
version is possible only if the following rules are observed in the Assembly Lan­
guage source file:

• XDEFed and XREFed procedure and function symbols may only be used as
operands in JSR, JMP, PEA, and LEA instructions. For instance, if Proc is a
procedure or function symbol, the instruction BRA Proc is not allowed. Fur­
thermore, procedure and function symbols may not participate in assembly­
language expressions. For instance, the instruction JSR Proc+4 is not allowed.

• When a relocatable symbol is part of an assembly-language expression, the
expression may only add an absolute value to the symbol or subtract an abso­
lute value from the symbol. For instance, if Syml and Sym2 are relocatable
symbols, the expressions SymL•4 and Sym2-8 are allowed, whereas SymL•8,

8-Sym2, and Sym2-SymL are not.

• Assembly-language expressions that involve relocatable symbols are evaluated
as 16-bit integers and can only be coded as such. For instance, if Symbol is a
relocatable symbol, the address expression Symbol (AS, DO. ll) is not allowed,
since it would produce an 8-bit displacement. Likewise, the directive DC. L

Symbol-• is not allowed, since it would produce a 32-bit value.

Inside Turbo Pascal 335

Register Saving Conventions

An assembly-language procedure or function may modify registers DO-D2, AO,
and Al (the scratch registers). All other registers must be saved and restored. In
particular, you should avoid modifying A5 and A 7, and only modify A6 in connec­
tion with LINK and UNLK instructions.

Defining Your Own Devices

In addition to the standard Console and Printer devices, Turbo Pascal allows you
to define your own devices.

The Device Procedure

To define a device, you call the Device standard procedure, which supplies a
device name and a pointer to a device 110 function. The device name identifies
the device, and the device 1/0 function handles all input and output requests for
the device. The Device procedure resides in the PaslnOut unit, so if you are
compiling in the {$U-} state, your program must name the PaslnOut in its uses­
clause.

The syntax of a call to Device is

Device (name , inoutptr)

where name is a string-type expression that names the device, and inoutptr is
an expression of any pointer-type that points to the device 1/0 function. An
example is

Device('MyDevice:', @MyinOut);

When a file is opened with Reset or Rewrite, Turbo Pascal scans the device
name list, and associates the file with a device if a matching device name is
found. Otherwise the file variable is associated with a disk file.

336 Turbo Pascal for the Macintosh

Device 110 Functions

The function header of a device 1/0 function is

function DevinOut(var F: FileRec): Integer;

where FileRec is the file reoord type defined in the previous section, "File­
Types."

NOTE: FileRec is not a predefined type; you must define it yoursel£ The
names of the device 1/0 function and the parameter are unimportant, but the
parameter must be a var parameter of a FileRec like type, and the function result
must be Integer.

The device 1/0 function is called by the Read, ReadLn, Write, WriteLn,
Close, Eof, Eoln, SeekEof, and SeekEoln standard procedures and functions
whenever input from the device or output to the device is required.

The device 1/0 function determines whether it should read or write by looking
at theflnpFlag andfOutFlag fields of the file reoord (both flags are never set at
the same time).

lfflnpFlag is set, the device 1/0 function should readfBufSize or less charac­
ters into the buffer pointed to by .fBuffer, and it should return the number of
characters actually read infBufEnd and zero ifjBufPos. If the device 1/0 func­
tion returns zero in fBufEnd as a result of an input request, Eof(f) beoomes True
for the file.

If fOutFlag is set, the device 1/0 function should write fBufPos characters
from the buffer pointed to by fBuffer, and return zero infBufPos. The device 1/0
function is called after each write-parameter in a Write or WriteLn statement.
This ensures that text written to the device appears on the device immediately.
If this is not required, the device 1/0 function may choose to ignore write
requests ifjBufPos does not equal.fBufEnd. In that case, the buffer is not emp­
tied until it is oompletely full.

The return value of the device 1/0 function beoomes the value returned by
IOResult. Zero indicates a successful operation.

Inside Turbo Pascal 337

Examples of Device 110 Functions

This section presents two simple device 1/0 functions that illustrate different
ways of implementing device 1/0 in Turbo Pascal.

The examples assume that three low-level procedures and functions exist: An
InputChar(Ch) procedure that inputs a character from the device and stores it in
Ch, an OutputChar(Ch) procedure that outputs the character in Ch to the
device, and a C harReady function that returns true as long as there are still
characters to be read from the device.

The device 1/0 functions implement two devices called 'BlockDev:' and
'LineDev:'. They are defined by executing

Device('BlockDev:', 8BlockinOut);
Device('LineDev:', @LineinOut);

The BwckDev function shown below uses the bwck-oriented method for doing
1/0. When requested for input, it fills the entire buffer; when requested for
output, it only starts sending data out when the buffer is completely full. This
method resembles the one used to input from and output to disk files.

function BlockinOut(var F: FileRec): Integer;
var

Ch: Char;
P: Integer;

begin
MyinOut :" D;
with F do
if finpFlag then
begin

fBufEnd : " a;
while CharReady and (fBufEnd < fBufSize) do
begin

InputChar(Ch);
fBufferACfBufEndl := Ch;
fBufEnd := fBufEnd + 1;

end;
fBufPos := D;

end else
if (fBufPos = fBufEnd) then
begin

for P := D to fBufPos - 1 do
OutputChar(fBufferACPJ);
fBufPos := D;

end·
end; '

338 Turbo Pascal for the Macintosh

The LinelnOut function shown below uses the line-oriented method for doing
1/0. When requested for input, it inputs one line (which is ended by a CR
character), and when requested for output, it outputs the contents of the buffer
immediately. This method resembles the one used by the Console device.

function TextinOut(var F: FileRec): Integer;
var

Ch: Char;
P: Integer;

begin
MyinOut :" D;
with F do
if finpFlag then
begin

fBufEnd := a;
if CharReady then
repeat

InputChar(Ch);
fBuffer•[fBufEndl :° Ch;
fBufEnd : .. fBufEnd + l;

until not CharReady or (fBufEnd • fBufSize) or (Ch= 113);
fBufPos := a;

end else
begin

for P := a to fBufPos - l do
OutputChar(fBuffer•cpJ);
fBufPos := a;

end;
end;

Inside Turbo Pascal 339

p A R T Ill

Appendices

A p p E N D x A
Comparing Turbo Pascal

with Other Pascals

This appendix compares Turbo Pascal with the American National Standard
(ANS) Pascal and Lisa Pascal (Apple Computer's Pascal compiler for the Lisa
computer).

Turbo Pascal Compared to ANS Pascal

This section compares Turbo Pascal to ANS Pascal as defined by ANSI/
IEEE770X3.97-1983 in the book American National Standard Pascal Computer
Programming Language (ISBN 0-471-88944-X, published by The Institute of
Electrical and Electronics Engineers in New York).

Exceptions to ANS Pascal Requirements

Turbo Pascal complies with the requirements of ANSI/IEEE770X3.97-1983 with
the following exceptions:

• In ANS Pascal, an identifier may be of any length and all characters are signifi­
cant. In Turbo Pascal, an identifier may be of any length, but only the first 63
characters are significant.

341

• In ANS Pascal, the @ symbol is an alternative for the 11 symbol. In Turbo
Pascal, the @ symbol is an operator, which is never treated identically with
the 11 symbol.

• In ANS Pascal, a comment may begin with { and end with *), or begin with (*
and end with}. In Turbo Pascal, comments must begin and end with the same
set of symbols.

• In ANS Pascal, each possible value of the tag-type in a variant-part must
appear once. In Turbo Pascal, this requirement is not enforced.

• In ANS Pascal, the component-type of a file-type may not be a structured-type
having a component of a file-type. In Turbo Pascal, this requirement is not
enforced.

• In ANS Pascal, a file-variable has an associated buffer-variable, which is refer­
enced by writing the 11 symbol after the file-variable. In Turbo Pascal, a file­
variable does not have an associated buffer-variable, and writing the 11 symbol
after a file-variable is an error.

• In ANS Pascal, the statement-part of a function must contain at least one
assignment to the function identifier. In Turbo Pascal, this requirement is not
enforced.

• In ANS Pascal, a field that is the selector of a variant-part may not be an actual
variable parameter. In Turbo Pascal, this requirement is not enforced.

• In ANS Pascal, procedures and functions allow procedural and functional
parameters; these parameters are not allowed in Turbo Pascal.

• In ANS Pascal, the standard procedures Reset and Rewrite take only one
parameter, a file variable. In Turbo Pascal, Reset and Rewrite require a second
parameter, a string-type expression, which names an external file.

• ANS Pascal defines the standard procedures Get and Put, which are used to
read from and write to files. These procedures are not defined in Turbo Pascal.

• In ANS Pascal, the standard procedures Read and Write are defined in terms
of Get and Put and references to buffer-variables. In Turbo Pascal, Read and
Write function as in ANS Pascal, but they are automatic operations.

• In ANS Pascal, the syntax Newf.p,cl, ... ,cn) creates a dynamic variable with a
specific active variant. In Turbo Pascal, this syntax is not allowed.

• In ANS Pascal, the syntax Dispose(q,kl,. .. ,km) removes a dynamic variable
with a specific active variant. In Turbo Pascal, this syntax is not allowed.

• ANS Pascal defines the standard procedures Pack and Unpack, which are used
to "pack" and "unpack" packed variables. These procedures are not defined in
Turbo Pascal.

• In ANS Pascal, the term i mod j always computes a positive value, and it is an
error ifj is zero or negabve. In Turbo Pascal, i modj is computed as i - (i div j)
* j, and it is not an error ifj is negative.

342 Turbo Pascal for the Macintosh

• In ANS Pascal, a goto statement within a block may refer to a label in an
enclosing block. In Turbo Pascal, this is an error.

• In ANS Pascal, it is an error if the value of the selector in a case statement is
not equal to any of the case-constants. In Turbo Pascal, this is not an error;
instead, the case statement is ignored unless it contains an otherwise clause.

• In ANS Pascal, statements that threaten the control-variable of a for statement
are not allowed. In Turbo Pascal, this requirement is not enforced.

• In ANS Pascal, a Read from a text file with a char-type variable assigns a blank
to the variable if Eoln was True before the Read. In Turbo Pascal, a carriage­
return character (ASCII 13) is assigned to the variable in this situation.

• In ANS Pascal, a Read from a text file with an integer-type or real-type vari­
able ceases as soon as the next character in the file is not part of a signed­
integer or a signed-number. In Turbo Pascal, reading ceases when the next
character in the file is a blank or a control character (including the end-of-line
character).

• In ANS Pascal, a Write to a text file with a packed-string-type value causes the
string to be truncated if the specified field width is less than the length of the
string. In Turbo Pascal, the string is always written in full, even if it is longer
than the specified field width.

Note: Turbo Pascal is unable to detect whether or not a program violates any of
the exceptions listed here.

Extensions to ANS Pascal

The following Turbo Pascal features are extensions to Pascal as specified by
ANSI/IEEE770X3. 97-1983.

• The following are reserved words in Turbo Pascal:

implementation
interface

otherwise
shl

shr
string

unit
uses

xor

• An identifier may contain underscore characters after the first character.

• Integer constants may be written in hexadecimal notation. Such constants are
prefixed by a$.

• Identifiers may serve as labels.

• String constants are compatible with the Turbo Pascal string-types, and may
contain control characters and other non-printable characters.

• Label, constant, type, variable, procedure, and function declarations may
occur any number of times in any order in a block.

Comparing Turbo Pascal with Other Pascals 343

• A signed constant identifier may denote a value of type Integer, Longlnt, or
Extended.

• Turbo Pascal implements the additional integer-type Longlnt, and the addi­
tional real-types Doubk, Camp, and Extended.

• Arithmetic operations on Integer operands produce Integer results. Arithme­
tic on Longlnt operands or mixed Integer and Longlnt operands produce Lon­
glnt results. Longlnt values are compatible with the Integer type provided
they are in the Integer range.

• Arithmetic operations on real-type operands or mixed integer-type and real­
type operands produce Extended results. Extended values are compatible with
the Real, Doubk, and Camp types, provided they are in the range of those
types.

• Turbo Pascal implements string-types, which differ from the packed-string­
types defined by ANS Pascal in that they include a dynamic-length attribute
that may vary during execution.

• The type compatibility rules are extended to make char-types and packed­
string-types compatible with string-types.

• String-type variables can be indexed as arrays to access individual characters
in a string.

• The type of a variable-reference can be changed to another type through a
variable-type-cast.

• Turbo Pascal implements three new logical operators: xor, shl, and shr.

• The not, and, or, and xor operators may be used with integer-type operands
to perform bitwise logical operations.

• The + operator can be used to concatenate strings.

• The relational operators can be used to compare strings.

• Turbo Pascal implements the @ operator, which is used for obtaining the
address of a variable or a procedure or function.

• The type of an expression can be changed to another type through a value­
type-cast.

• The case statement allows constant ranges in case label lists, and provides an
optional otherwise part.

• Procedures and functions can be declared as external (assembly-language sub­
routines) and inline (inline machine code).

• A variable parameter can be untyped (typeless), in which case any variable­
reference may serve as the actual parameter.

• Turbo Pascal implements units to facilitate modular programming and sepa­
rate compilation.

344 Turbo Pascal for the Macintosh

• Turbo Pascal implements the following file-handling procedures and functions,
which are not available in ANS Pascal:

Close
Erase

Rename
IOResult

Seek
PilePos

PileSize
seekEof

SeekEoln

• String-type values may be input and output with the Read, ReadLn, Write,
and WriteLn standard procedures.

• Turbo Pascal implements two standard devices, Console: and Printer:, and
furthermore supports user-defined devices.

• Turbo Pascal implements the following standard procedures and functions,
which are not found in ANS Pascal:

Exit Int ClearScreen SizeOf Lo
Halt Length ClearEOL MoveLef t Swap
llemAvail Pos DeleteLine MoveRight Hillard
llaxAvail co neat InsertLine Fill Char Lollord
Ord~ Coly GotoXY ScanEQ Swapllord
Pointer De ete Key Pressed Scan NE
Float Insert Read Char Hi

Note: Turbo Pascal is unable to detect whether or not a program uses any of
the extensions listed here.

Implementation-Dependent Features

The effect of using an implementation-dependent feature of Pascal, as defined by
ANSI/IEEE770X3.97-1983, is unspecified. Programs should not depend on any
specific path being taken in cases where an implementation-dependent feature is
being used. Implementation-dependent features include:

• The order of evaluation of index-expressions in a variable-reference.

• The order of evaluation of expressions in a set-constructor.

• The order of evaluation of operands of a binary operator.

• The order of evaluation of actual parameters in a function call.

• The order of evaluation of the left and right sides of an assignment.

• The order of evaluation of actual parameters in a procedure statement.

• The effect of reading a text file to which the procedure Page was applied during
its creation.

• The binding of variables denoted by the program parameters to entities exter­
nal to the program.

Comparing Turbo Pascal with Other Pascals 345

Treatment of Errors

This section lists those errors from Appendix D of the ANS Pascal Standard that
are not automatically detected by Turbo Pascal. The numbers referred to here
are the numbers used in the ANS Pascal Standard. Errors 6, 19-22, and 25--31
are not detected, because they are not applicable to Turbo Pascal.

2. If tis a tag-field in a variant-part andfis a field within the active variant
of that variant-part, it is an error to alter the value oft while a reference
to f exists. This error is not detected.

3. If p is a pointer variable, it is an error to reference p" if p is nil. This
error is not detected.

4. If p is a pointer variable, it is an error to reference p" if p is undefined.
This error is not detected.

5. If p is a pointer variable, it is an error to alter the value of p while a
reference to p11 exists. This error is not detected.

24. If p is a pointer variable, the procedure call Dispose(p) is an error if p is
undefined. This error is not detected.

42. The function call Eoln{j) is an error if EojUJ is Troe. In Turbo Pascal
this is not an error, and Eoln(j) is Troe when Eof(f) is Troe.

43. It is an error to reference a variable in an expression if the value of that
variable is undefined. This error is not detected.

46. A term of the form i modj is an error if j is zero or negative. In Turbo
Pascal, it is not an error ifj is negative.

48. It is an error if a function does not assign a result value to the function
identifier. This error is not detected.

51. It is an error if the value of the selector in a case statement is not equal
to any of the case-constants. In Turbo Pascal, this is not an error;
instead, the case statement is ignored unless it contains an otherwise
clause.

Turbo Pascal Compared to Lisa Pascal

This section compares Turbo Pascal to Lisa Pascal. Lisa Pascal was the first Pas­
cal compiler made available by Apple Computer for its line of 68000-based com­
puters.

346 Turbo Pascal for the Macintosh

• Identifier length. In Lisa Pascal, only the first 8 characters of an identifier are
significant. In Turbo Pascal, the first 63 characters are significant. Lisa Pascal
does not detect abbreviations and spelling errors after the 8th character; Turbo
Pascal does.

• Constant expressions. Lisa Pascal supports constant expressions; that is,
expressions are allowed where constants are expected, as long as they evaluate
to a constant value. Turbo Pascal does not support this.

• Bit packing. Lisa Pascal performs data packing to the bit level. For example,
in Lisa Pascal, an array variable of the type

packed arrayCD .• 1271 of Boolean

occupies only 8 bytes, and each of the 8 bits in a byte represent a single
Boolean component. In Turbo Pascal, data packing is performed only to the
byte level, so an array variable of the preceding type would occupy 128 bytes.

• Set limits. In Lisa Pascal, the base-type of a set must not have more than 4088
possible values, and the ordinal values of the lower and upper bounds must be
within the range 0 . .4087. In Turbo Pascal, the base-type of a set must not have
more than 256 possible values, and the ordinal values of the lower and upper
bounds must be within the range 0 .. 255.

• Type casting. Type casting in Lisa Pascal is more permissive than in Turbo
Pascal. Specifically, Lisa Pascal allows types other than ordinal-types and
pointer-types in value-type-casts. For example, assuming the declarations

type
Point • record

var

x,y: Integer;
end;

P: Point;

then the following statement is allowed in Lisa Pascal, but not in Turbo Pascal:

P := Point(l6D • b553b • 32)

However, the following statement is allowed in both Turbo Pascal and Lisa
Pascal, since a variable-type-cast may involve any two types as long as they are
of the same size:

Longint(P) :• 160 • b553b • 32;

• Exponentation operator. Lisa Pascal implements an exponentation operator.
This operator is not supported by Turbo Pascal. The construct x**y in Lisa
Pascal is equivalent to Exp(Ln(x) * y) in Turbo Pascal.

• Short circuit Boolean expressions. Lisa Pascal implements "short circuit"
Boolean expression evaluation through the operators & (ampersand) and I (ver­
tical bar). In Lisa Pascal, the following construct is allowed:

if (p <>nil) & (pA.count = D) then ...

Comparing Turbo Pascal with Other Pascals 347

In Turbo Pascal, this must be written as

if p ()nil then if pA.connt D a then•••

• goto statements. In Lisa Pascal, a goto statement may leave the current block,
that is, a goto statement may jump out of a procedure or a function. This is not
allowed in Turbo Pascal.

• cycle and leave statements. These Lisa Pascal statements are not found in
Turbo Pascal, but they are easily programmed with goto statements.

• Arbitrary typed functions. Lisa Pascal allows arbitrary typed functions, that
is, functions that return values of types other than simple-types, string-types,
and pointer-types. Such functions must be changed to procedures in Turbo
Pascal. Furthermore, Lisa Pascal allows function results to be treated as vari­
ables, such as

FileFlags := GetKenu(fileID)AA.enableFlags;

In Turbo Pascal, this would require a temporary variable:

FileMenu := GetMenu(fileID);
FileFlags := FileMenuA•.enableFlags;

• Procedural and functional parameters. In Lisa Pascal, procedures and func­
tions allow procedural and functional parameters; these parameters are not
allowed in Turbo Pascal.

• univ parameters. In Lisa Pascal, when a formal parameter is declared with
the word univ, any actual parameter type is acceptable as long as it has the
same size as the formal parameter type. Turbo Pascal does not support univ
parameters, but they are easily circumvented through type casting. Alterna­
tively, routines that use univ parameters can be reprogrammed to use Turbo
Pascal's untyped variable parameters, which offer greater flexibility.

• Unit numbers. A Turbo Pascal unit must be given a unit number, which is not
required in Lisa Pascal. Turbo Pascal stores the interface part of a compiled
unit using the compiler's internal binary format. This provides for very fast
processing when the unit is used, but requires a unique unit number for iden­
tification purposes. Lisa Pascal does not require unit numbers, since the inter­
face part of a unit is recompiled every time the unit is used (like an include
file).

• external routines in units. In Lisa Pascal, when external procedures and func­
tions are declared in a unit, the procedure and function headers must appear
in the interface part, and be repeated in the implementation part, followed by
external directives. In Turbo Pascal, external and inline directives are speci­
fied along with the procedure and function headers in the interface part, and
the headers must not be repeated in the implementation part.

• Segmentation. In Lisa Pascal, segmentation is always enabled. In Turbo Pas­
cal, a {$S+} directive must be placed in the beginning of a program to enable
segmentation.

348 Turbo Pascal for the Macintosh

• Units and segmentation. In Lisa Pascal, the segment in which a unit is to
reside is determined by the unit itself, that is, { $S segname} directives in the
unit determine its segment(s) in the final program. In Turbo Pascal, segment
directives are ignored in units, and the segment in which a unit ultimately
resides is determined by { $S segname} directives in the uses-clause of the final
program.

• File I/O. Turbo Pascal does not implement the standard procedures Get and
Put, nor does Turbo Pascal implement file buffer variables; that is, the syntax
f", where f is a file-type variable, is not allowed. Lisa Pascal programs that use
these features must be changed to use the standard procedures Read and
Write.

• The Close procedure. In Turbo Pascal, the Close procedure does not allow an
option parameter (such as lock, purge, or crunch).

• The Exit procedure. In Turbo Pascal, the Exit procedure takes no parameter,
and can be used only to exit the current block.

• Standard procedures and functions. The following Lisa Pascal standard proce­
dures and functions are not implemented in Turbo Pascal:

Get Release
Put
SetBit
BitSR
BitRotL
BitTest

BitNOT
HeapResult
BlockRead
Blockllrite
!lark

Clear Bit
BitSL
BitAND
BitOR
BitXOR

The bit-manipulation routines are easily coded with Turbo Pascal's not, and,
or, xor, shl, and shr operators.

• Compiler directives. The following Lisa Pascal compiler directives are directly
supported by Turbo Pascal: $D, $I, $R, and $S. The $U directive is also sup­
ported in Turbo Pascal, but it works differently. The remaining Lisa Pascal
compiler directives are not supported by Turbo Pascal. In general, it is recom­
mended that you carefully examine all compiler directives when porting a Lisa
Pascal program to Turbo Pascal.

Comparing Turbo Pascal with Other Pascals 349

A p p E N D x B
Error Messages and Codes

This appendix lists all the compiler and system error messages, and the IOResult
and NaN codes. Explanatory notes follow some messages and codes. In some
cases, solutions are suggested.

Compiler Error Messages

01 ';' expected.
02 ':' expected.
03 ','expected.
04 '(' expected.
as ')' expected.
Ob '=' expected.
07 ':=' expected.
08 '['expected.
09 'I' expected.
10 '.'expected.
11 ' .. 'expected.
12 begin expected.
13 do expected.
14 end expected.
15 of expected.
tb interface expected.
17 then expected.
t8 to or dovnto expected.
t9 11ple1entation expected.
20 Boolean expression expected.
2t File variable expectea.
22 Integer constant expected.
23 Integer expression expected.

351

24 Integer variable expected.
25 Integer or real constant expected.
2b Integer or real expression expected.
27 Integer or real variable expected.
28 Pointer variable expected.
29 Record variable expected.
30 Ordinal type expected.

All simple types except real types are ordinal types.

31 Ordinal expression expected.
32 String constant expected.
33 String expression expected.
34 String variable expected.
35 Identifier expected.
3b Type identifier expected.
37 Field identifier expected.

The identifier does not denote a field in a record structure.

38 Constant expected.
39 Variable expected.
40 Undefined label.
41 Unknown identifier.
42 Undefined type in pointer definition.

A preceding pointer type definition refers to an unknown type identifier.

43 Duplicate identifier.

The identifier has already been used within the current block.

44 Type mismatch.

This message means one of the following conditions exists:

1. incompatible types of the variable and the expression in an assignment
statement;

2. incompatible types of the actual and formal parameter in a call to a
subprogram;

3. expression type incompatible with index type in array indexing;

4. incompatible types of operands in an expression.

45 Constant out of range.
4b Constant and case types do not match.

The type of the case constant is incompatible with the case statement's selec­
tor expression.

47 Operand types do not match operator.

The operator cannot be applied to operands of this type; for example, 'A'
div '2'.

48 Invalid result type.

Valid types are all simple types, string types, and pointer types.

352 Turbo Pascal for the Macintosh

~9 Invalid string length.

The length of a string must be in the range 1. .255.

SL Invalid subrange base type.

All ordinal types are valid base types.

S2 Lower bound greater than upper bound.
S3 Invalid for control variable.

A for statement control variable must be a single variable defined in the decla­
ration part of the program or in the declaration part of the current subprogram.

S4 Illegal assignment.

1. Files may not be assigned values.

2. A function identifier can only be assigned values within the statement
part of the function.

SS String constant exceeds line.
Sb Error in integer constant.

The syntax of Integer constants is defined in Chapter 16. Note that whole real
numbers should be followed by a decimal point and a zero; for example,
123456789.0.

S7 Error in real constant.

The syntax of Real constants is defined in Chapter 16.

sa Division by zero.
S9 Structure too large.

The size of a structure may not exceed 32K bytes.

bD Constants are not allowed here.
b2 Invalid type cast argument.

1. If a type cast is used in a position where a variable is expected, the
argument can't be an expression, and the sizes of the argument and the
result must be identical.

2. If the type cast argument is an expression, the argument and result
types must be ordinal types or pointer types.

3. If the sizes of the argument and the result are not identical, the argu­
ment and result types must be scalar or pointer types.

b3 Invalid '8' argument.

Valid arguments are variables and procedure or function identifiers.

b4 Label already defined.
bS Invalid file type.

The file type is not supported by the file-handling procedure; for example,
ReadLn with a typed file or Seek with a text file.

Error Messages and Codes 353

bb Cannot read or write variables of this type.
b7 Files must be var parameters.
b6 File components may not be files.

file of file constructs are not allowed.

70 Set base type out of range.

The base type of a set must be an enumerated type with no more than 256
possible values or a subrange with bounds in the range 0 .. 255.

71 Invalid goto.

A goto statement in the preceding statement part references a label within a
for statement from outside that for statement.

72 Label not within current block.

A goto statement cannot reference a label outside the current block.

73 Undefined forward procedure(s).

A subprogram has been forward declared in the preceding declaration part,
but the body never occurred.

7~ progra1 or unit expected.
75 Error in type.

This symbol is not a type identifier, nor is it one of the reserved words that
start a type definition.

7b Error in statement.

This symbol is not a variable, procedure, or label identifier, nor is it one of the
reserved words that start a statement.

77 Error in expression.

This symbol cannot be used in an expression in the way specified.

76 Invalid external definition.

An object file defines a symbol that is not the identifier of an external declared
procedure or function.

79 Invalid external reference.

An object file references a symbol that is not the identifier of a variable, proce­
dure, or function.

80 Too many symbols.

Try increasing the symbol table size in the Compile Options Dialog. If the
symbol table size is already set at the 32K byte maximum, divide your program
or unit into two or more units.

81 Too many nested scopes.

The total sum of "used» units, nested subprograms, and active with statements
can't exceed 64 at any time.

354 Turbo Pascal for the Macintosh

62 Driver header not found.

The driver header resource named in the $0 compiler directive does not exist.

63 Too many variables.

The total size of variables declared within the program or within a subprogram
may not exceed 32K bytes.

6~ Expression too complicated.

The code generator ran out of registers. Simplify the expression by breaking it
into two or more expressions.

65 Segment too large.

The size of a segment may not exceed 32K bytes. Introduce a new segment or
move some units or subprograms to another segment. Also, make sure that seg­
mentation is enabled with a {$S+} directive in the beginning of the program.

6b Unit not found.

This unit is not a resident unit, it is not contained in any of the unit library files
specified by $U compiler directives, and it has not been compiled to memory in
a window.

67 Duplicate or invalid unit number.

I. This unit has the same reference number as one of the units named
before it in the uses-clause.

2. The unit number is not an integer within the range 0 to 32767.

66 Unit missing.

One or more of the units used by this unit have not been named in the uses
clause.

aq Incompatible unit versions.

One or more of the units used by this unit have been changed since the unit
was compiled.

qo syntax error.
q1 Unexpected end of text.

Your program cannot end in its current set-up. It probably has more begins
than ends.

q2 Line too long.

The maximum line length is 128 characters.

q3 Invalid compiler directive.

Error Messages and Codes 355

1. The compiler directive letter is unknown.

2. The compiler directive parameter is invalid.

3. You are using a global compiler directive when compilation of the body
of the program has begun.

q~ Target address found in unit.

This error is reported by the Compile menu's Find Error command when the
address at which the execution error occurred is within one of the units used by
the program. When reporting the error, the compiler also adjusts the target
address so that the correct statement will be located if you load the source text of
the unit and issue a new Find Error command.

q5 Undefined external procedure(s).

A subprogram has been external declared, but it was not defined by any of the
object file(s) linked with $L compiler directive(s).

qb Object file format error.

An object file uses an MDS Linker feature which is not supported by Turbo
Pascal. For further details, please refer to Section 26.4.3.

q1 Runtime support unit missing.

The unit that defines your predefined procedure or function was not named in
your uses clause; for example, WriteLn without the PaslnOut unit.

q5 Target address not found.

This error is reported by the Compile menu's Find Error command when the
address at which the execution error occurred is not within the program itself A
probable cause is passing invalid parameters to ROM-based system routines.

qq Not enough memory.

This error occurs when the program being compiled is too large to fit in mem­
ory. Close some windows to free some space, or compile the program to disk.

356 Turbo Pascal for the Macintosh

System Error Messages

This section lists all system errors that may be reported by the Macintosh System
Error handler. The Compile menu's Find Error command only shows messages
for system errors 02, 04, 05, 16, 25, 28, and 99. Other errors are not likely to
occur in a Turbo Pascal program, but they are included here for reference.

01 Bus error.
02 Address error.

Word or long-word reference was made to an odd address. This typically indi­
cates use of an uninitialized pointer variable.

03 Illegal instruction.
a~ Division by zero.

A division (div operator) or modulo (mod operator) with a divisor of 0 was
attempted.

05 Range check failed.

An assignment or array indexing operation compiled in the { $R +} state
involved a value that was not within the allowed range.

Ob TrapV exception.
07 Privilege violation.
08 Trace exception.
09 Line 1010 exception.
10 Line 1111 exception.
11 Miscellaneous exception.
12 Unimplemented core routine.
13 Spurious interrupt.
1~ I/O system error.
15 Segment loader error.
lb Floating point error.

The halt bit in the floating-point environment word was set. By default, Turbo
Pascal enables halts for invalid operation, division by zero, and overflow.

17 Can't load package 0.
2~ Can't load package 7.
25 Memory allocation error.
2b Segment loader error.
27 File map trashed.
28 Stack overflow error.

The stack has expanded into the heap.

32 Memory manager error.
53 Memory manager error.
99 Input/Output check failed.

A standard 1/0 procedure compiled in the {$1 +} state returned a nonzero
IO Result.

Error Messages and Codes 357

IOResult codes

This section lists all result codes that may be returned by the IOResult function.
The codes correspond to those returned by the routines in the Macintosh Oper­
ating System, except for the codes -128, - 129, and -130, which are generated
by Turbo Pascal itsel£ Although many of the codes are not likely to be returned
by the IOResult function, they are included here for reference.

-33 File directory full.
-3~ All allocation blocks on the volume are full.
-3S Specified volume doesn't exist.
-3b Disk I/O error.
-37 Bad file name or volume name (perhaps zero-length).
-36 File not open.
_3q Logical end-of-file reached during read operation.
-~a Attempt to position before start of file.
-~1 System heap is full.
-~2 Too many files open.
-~3 File not found.
-~~ Volume is locked by a hardware setting.
-~S File is locked.
-~b Volume is locked by a software flag.
-~7 One or more files are open.
-~6 A file with the specified name already exists.
-~q Only one access path to a file can allow writing.
-SD No default volume.
-S1 Bad file reference number.
-S3 Volume not on-line.
-S~ Read/write permission doesn't allow writing.
-SS Specified volume is already mounted and on-line.
-Sb No such drive number.
-S7 Volume lacks Macintosh-format directory.
-S6 External file system error.
-sq Problem during Rename.
-bD Master directory block is bad; must re-initialize volume.
-bl Read/write permission doesn't allow writing.
-106 Not enough room in heap zone.
-120 Directory not found.
-121 Too many working directories open.
-122 Attempted to move into offspring.
-123 Attempt to do HFS operation on non-HFS volume.
-127 Internal file system error.
-126 Textfile not open for input.
-12q Textfile not open for output.
-130 Error in numeric value during read from textfile.

358 Turbo Pascal for the Macintosh

NaN codes

When a floating-point operation cannot produce a meaningful result, the opera­
tion delivers a special bit pattern called a NaN (Not a Number). For example, 0
divided by 0 yields NaN(004). The following NaN codes may be reported.

am.
aa2
aa~
DD6
DD'I
Dl.7
a2a
02],
033
03~
D3b
037
036
255

Invalid square root, such as Sqrt(-1).
Invalid addition or subtraction, such as IRP - IRP.
Invalid division, such as a I a.
Invalid multiplication, such as a • IRP.
Invalid remainder or mod, such as x rem a.
Attempt to convert invalid ASCII string to binary.
Result of converting comp RaR to floating.
Attempt to create RaR with a zero code.
Invalid argument to trig routine.
Invalid argument to inverse trig routine.
Invalid argument to log routine.
Invalid argument to x•i or x•y routine.
Invalid argument to financial function.
Uninitialized storage.

Error Messages and Codes 359

A p p E N D x c
C ornpiler Directives

Some of the Turbo Pascal compiler's features are controlled through compiler
directives. A compiler directive is introduced as a comment with a special syntax;
Turbo Pascal allows compiler directives wherever comments are allowed.

A compiler directive starts with a $ character as the first character after the
opening comment delimiter. The $ is immediately followed by a letter that desig­
nates the particular directive.

There are two types of directives: switch directives and parameter directives.
A switch directive turns a particular compiler feature on or off by specifying + or
- immediately after the directive letter. A parameter directive is followed by a
string, such as a file name or a segment name. The string argument is terminated
by the closing comment delimiter.

C9mpiler directives are either gwbal or weal. Global directives affect the
entire compilation, whereas local directives affect only the part of the compila­
tion that extends from the directive until the next occurrence of the same direc­
tive. Global directives must appear before the declaration part of the program or
the unit being compiled; that is, before the first uses, label, const, type, proce­
dure, function, or begin keyword of a program or before the interface keyword
of a unit. Local directives, on the other hand, may appear anywhere in the
program or unit.

361

Examples of compiler directives follow:

{$8+}

<SR- Turn off range checking>
<SI TypeDefs.Pas>
<SU Turbo:Units:MacLibrary>
UT APPLMYED>

Set Bund"le Bit

Syntax: {$B+} or {$B-}
Default: {$B-}
Type: Global

This switch controls the bundle-bit setting in the compiled application file.
You should only set the bundle bit if your application's resource file contains a
BNDL resource (see the R parameter directive). The B switch only takes effect if
the compiler was invoked with the Compile To Disk command.

Generate Debug Symbols

Syntax: {$D+} or {$D-}
Default: {$D-}
Type: Local

This switch turns the generation of procedure names in the object code on or
off. Debug symbols allow you to see the names of your procedures when you
debug your program, using MACSBUG, for instance.

Compile Desk Accessory

Syntax: {$D PasDeskAcc}
Type: Global

The appearance of this parameter directive tells the compiler that you are
compiling a desk-accessory program. Instead of generating CODE resources in
the output file, the compiler generates a DRVR resource with a resource ID of
12. The D directive also has the effect of turning off segmentation (corresponding
to a {$S-} directive) and changing the output file type to DFIL and the output file
creator to DMOV (corresponding to a {$T DFILDMOV} directive). The latter
causes the FINDER to display the desk-accessory icon for the generated file and
to launch the FONT/DA MOVER when the file is double-clicked. For further
details on compiling desk accessories, refer to Chapter 10.

362 Turbo Pascal for the Macintosh

Check 110 Results

Syntax: {$1+} or {$I-}
Default: {$I+}
Type: Local

This switch turns on or off the automatic generation of code that checks the
I/O result of a call to an 1/0 procedure from the PaslnOut unit. Han 1/0 proce­
dure returns a non-zero I/O result when this switch is on, the program termi­
nates by displaying the system error bomb box with an ID of 99. When this
switch is off, it is up to you to check for I/O errors through the IOResult function.

Include File

Syntax: {$I FileName}
Type: Local

This parameter directive instructs the compiler to include the named file in
the compilation. In effect, the file is inserted in the compiled text after the line
containing the Include directive. H FileName does not specify a directory, the
program searches for the file in the directory specified by the $I entry of the
Compile Options Dialog, or in the current directory if the $I entry is empty.

Link Object File

Syntax: {$L FileName}
Type: Local

This parameter directive instructs the compiler to link the named file with the
program or unit being compiled. The L directive is typically used to link code
written in another language {for example, the MOS assembler) for subprograms
declared to be external. The named file must be an MOS object-format .REL
file. Files named in L directives are always linked into the blank segment, that is,
the segment that also contains the main statement part. A program or unit may
contain multiple L directives, but all of them must appear before the begin
keyword that heads the main statement part. H FileName does not specify a
directory, the program searches for a file in the directory specified by the $L
entry of the Compile Options Dialog, or in the current directory if the $L entry
is empty.

Compiler Directives 363

Define Output Fil£

Syntax: {$0 FileName}
Default: {$0 ProgName}
Type: Global

This parameter directive defines the name of the output file generated by the
Compile to Disk command. The default output file name PROGNAME is the
name of the program or unit; that is, the name specified after the program or
unit keyword. If the output file of a unit you are compiling already exists, and if it
contains a unit of the same name, the new unit replaces the older version stored
in the file. If FfleName specifies a directory, the file is created in that directory.
Otherwise, the output file is created in the directory specified by the $0 entry in
the Compile Options Dialog, or in the current directory if the $0 entry is empty.

Generate Range CMcks

Syntax: {$R+} or {$R-}
Default: {$R-}
Type: Local

This switch instructs the compiler to turn the generation of range checking
code on or off. When range checking is on, all array and string indexing expres­
sions are checked to be within the defined bounds, and all assignments to scalar
and subrange variables are checked to be within range. If a range check fails, the
program terminates by displaying the system error bomb box with an ID of 5.

Define Resource Fil£

Syntax: {$R FileName}
Type: Global

The appearance of this parameter directive indicates to the compiler that your
program uses the resources stored in the named file. The file is typically a . RSRC
file generated from a .R file by the resource compiler (RMAKER). If the com­
piler was invoked using the Compile to Disk command, all resources stored in
the named file are copied to the output file. If the compiler was invoked using
the Compile to Memory command, the named file will automatically be opened
when the program is executed by a Compile Run command. If Fil.eName does
not specify a directory, the file is searched for in the directory specified by the $R
entry of the Compile Options Dialog, or in the current directory if the $R entry
is empty.

364 Turbo Pascal for the Macintosh

Generate Segmented Code

Syntax: {$S+} or {$S-}
Default: { $S-}
Type: Global

This switch instructs the compiler to turn the generation of segmented code
on or off. When segmentation is off (the default state), the size of the generated
code cannot exceed 32K, which is the maximum size of a single segment. Seg­
mentation is always off when compiling a unit or a desk accessory, so the com­
piled code of a unit or a desk accessory cannot be larger than 32K. When
segmentation is turned on with a {$S +}directive, there is no limit to the size of a
program, as long as its code is divided into segments of less than 32K using the
$S parameter directive. When segmentation is off, all subprogram calls and sub­
program address references are coded using PC-relative instructions. When seg­
mentation is on, all calls and address references are routed through the segment
loader jump table.

Define Segment Name

Syntax: {$S SegName}
Default: {$S }
Type: Local

This parameter directive defines the name of the segment in which the code of
the following units or subprograms is to be stored. The $S parameter directive is
ignored when compiling units and desk accessories; for programs, it only takes
effect when segmentation has been enabled with a { $S +} directive. SegName is a
string of up to eight case-sensitive characters. If less than eight characters are
specified, the remaining characters are assumed to be blanks. If the specified
segment does not exist, a new segment is created. The default segment, also
called the blank segment, is a segment whose name consists of eight blanks.

Note: Segment names only exist within the compiler; in the finished code they
are turned into code resource numbers starting from 1.

Compiler Directives 365

Define Type and Creator

Syntax: {$T ttttcccc}
Default: {$T APPL????}
Type: Global

This parameter directive is used to define the type and creator of an applica­
tion file generated by the Compile to Disk command. The first four characters of
the string argument define the type; the next four characters define the creator
(note that no separators are placed between the two definitions). The T directive
is typically used in connection with the B switch and a resource file that contains
a bundle (BNDL) resource.

Use Standard Units

Syntax: {$U+} or {$U-}
Default: {$U +}
Type: Global

This switch determines whether or not the standard units PaslnOut and
PasConsole should be included in the compilation. In effect, the default {$U +}
directive corresponds to inserting uses PasinOut, Pasconsole before the declara­
tion part of the program or unit being compiled.

Note: The PasSystem unit is always included in a compilation regardless of the
U switch. The PasPrinter unit is never included automatically.

Search Unit Library

Syntax: {$U FileName}
Type: Global

This parameter directive is used to specify the name of a unit library file to
search for, in addition to the resident units installed in Turbo itsel£ If FileName
specifies a directory, the unit library file is opened in that directory. Otherwise,
the unit library file is opened in the directory specified by the $U entry in the
Compile Options Dialog, or in the current directory if the $U entry is empty.

When searching for a unit named in a uses-clause, Turbo Pascal first inspects
all open windows that contain a unit that has been compiled to memory. Next, it
searches all unit library files named in U directives in order of appearance.
Finally, it looks to itself to see if the unit is installed as a resident unit.

If a unit library file is named in both the 0 and U directives (which may be the
case when compiling a unit), the U directive naming the file must be the first U
directive.

366 Turbo Pascal for the Macintosh

A p p E N D x D
Macintosh Interface Units

The following pages contain the 15 Macintosh inte:rface units used by Turbo
Pascal. Below each head is a brief explanation of what the unit is and what it can
do, followed by the inte:rface listing. The units are discussed in this order:

• PaslnOut

• PasConsole

• PasPrinter

• SANE

• MemTypes

• QuickDraw

• OSintf

• Toollntf

• Packlntf

• MacPrint

• FixMath

• Graf3D

• AppleTalk

• Speechlntf

• SCSIIntf

367

PaslnOut

PaslnOut implements the standard Pascal input/output (1/0) routines (Read,
ReadLn, Write, WriteLn, Reset, Rewrite, and so on), as well as the Turbo Pascal­
specific ones (Close, Seek, Rename, Erase, and so forth). It also does all 1/0 and
range-error checking. If you look at the interface listing below, you11 find that
there is very little you can use directly; instead, the compiler makes calls to
specific hidden routines in the implementation.

unit PasinOut(-2); { PasinOut - standard I/O unit }

interface

var
TextType,TextCreator,
FileType,FileCreator: packed array[l . • L; l of Char;

368 Turbo Pascal for the Macintosh

PasC onsol.e

PasConsok is the unit that makes it easy to write textbook Pascal programs. It
creates a window that emulates a terminal screen 80 characters wide by 25 lines
deep. When this unit is used by a program or unit, any calls to Read or ReadLn
are made from the keyboard and automatically echoed to this window; likewise,
any calls to Write or WriteLn write to this window. A number of cursor- and
screen-control routines are available: CkarScreen, CkarEOL, InsertLine,
DekteLine, and GoToXY. The functions KeyPressed and ReadChar are included,
as are the file variables Input and Output. This unit also creates a new device
(Console:) that can be assigned to any file of type text. The user can then send
output to the screen (instead of to a disk file).

unit Pasconsole(-3);

interface

uses PasinOut;

var
Input,Output: Text;

{ Pasconsole - console unit >

function KeyPressed: Boolean; external;
function ReadChar: Char; external;

procedure ClearScreen; external;
procedure ClearEOL; external;
procedure InsertLine; external
procedure DeleteLine; external
procedure GotoXY(X,Y: Integer) external;

Macintosh Interface Units 369

PasPrinter

PasPrinter declares the text-file variable Printer and connects it to a device
driver that allows you to send standard Pascal output to the printer using Write
and W riteLn.

Like PasConsole, this unit creates a new device (Printer:) that can be assigned
to any file of type text; it will then send output to the printer (instead of to a disk
file).

unit PasPrinter(-4);

interface

uses PasinOut;

var
Printer: Text;

370

< PasPrinter - printer unit >

Turbo Pascal for the Macintosh

SANE

The SANE unit implements the Standard Apple Numeric Environment. SANE
is the basis for all floating-point mathematical calculations performed by Turbo
Pascal. Programmers who are interested in using SANE features not directly
supported by Turbo Pascal can access these features through the SANE unit. For
detailed instructions about SANE, see Chapter 26 and the Apple Numerics
Manual.

unit SllNE(-5);

{ SllNE - Standard llpple Numeric Environment interface unit

{ Implements floating-point operations not directly supported
< by Turbo Pascal >

interface

const

DecStrLen = 255;
SigDigLen = 20;

Invalid L;
Underflow = 2;
Overflow = ~;
DivByZero = 6;
Inexact = Lb;

type

DecStr = strinqCDecStrLenl;

CStrPtr

Decimal

DecForm

= "Char;

record
sgn
exp :
sig :

end;

0 •• L;
Integer;
strinqCSigDigLenl

record
Style
Digits

end;

: (FloatDecimal, FixedDecimal);
Integer;

RelOp

NumClass

GreaterThan, LessThan, EqualTo, Unordered);

SNaN, QNaN, Infinite, ZeroNum, NormalNum, DenormalNum);

= Integer; Exception

RoundDir

RoundPre

ToNearest, Upward, Downward, TovardZero);

= (ExtPrecision, DblPrecision, RealPrecision);

Environment = Integer;

function Num2Integer
function Num2Longint
function Num2Real

Macintosh Interface Units

(x Extended
(x Extended
(x Extended

Integer; external;
Longint; external;
Real; external;

371

function Rum2Donble
function Rum2Extended
function Rnm2Comp

(x Extended
(x Extended
(x Extended

Double; external;
Extended; external;
Comp; external;

procedure Rnm2Dec
function Dec2Rnm
procedure Rum2Str
function Str2Rnm

var f : DecForm; x : Extended; var d : Decimal); external;
d : Decimal) : Extended; external;
f: DecForm; x : Extended; vars : DecStr); external;
s : DecStr) : Extended; external;

function Remainder (x, y : Extended; var qno : Integer) : Extended; external;

function Riot (x : Extended) : Extended; external;

function Scalb (n : Integer; x : Extended) : Extended; external;

function Logb (x Extended) : Extended; external;

function CopySign (x, y : Extended) Extended; external;

function RextReal x, y
function RextDonble x, y
function RextExtended x, y

function Log2 (x : Extended)
function LnL (x : Extended)
function Exp2 (x : Extended)
function ExpL (x : Extended)

Real)
Double)
Extended

function XpvrI (x : Extended; i : Integer
function XpvrY (x, y : Extended)
function Compound (r, n : Extended)
function Annuity (r, n : Extended)
function Tan (x : Extended)
function Randomx (var x : Extended)

Real; external;
Double; external;
Extended; external;

Extended; external;
Extended; external;
Extended; external;
Extended; external;
Extended; external;
Extended; external;
Extended; external;
Extended; external;

: Extended; external;
Extended; external;

function ClassReal
function ClassDonble
function ClassComp
function ClassExtended

(x : Real)
(x : Double
(x : Comp)

RnmClass; external;

(x : Extended)

RnmClass; external;
: RnmClass; external;

: RumClass; external;

function SignRnm (x : Extended) : Integer; external;
function BAR (i : Integer) : Extended; external;

procedure SetException (e : Exception; b : Boolean); external;
function TestException (e : Exception) : Boolean; external;

procedure SetBalt (e : Exception; b : Boolean); external;
function TestBalt (e : Exception) : Boolean; external;

procedure SetRonnd (r : RonndDir); external;
function GetRound : RonndDir; external;

procedure SetPrecision (p : RonndPre); external;
function GetPrecision : RonndPre; external;

procedure SetEnvironment (e : Environment); external;
procedure GetEnvironment (var e : Environment); exterual;

procedure ProcEntry (var e : Environment); external;
procedure ProcExit (e : Environment); external;

function GetBaltVector : Longint ; external;
procedure SetBaltVector (v : Longint) ; external;

function Relation (x, y : Extended) : Relop; external;

372 Turbo Pascal for the Macintosh

MemTypes

MemTypes defines special Mac data types, such as SignedByte, Ptr, Handl,e, and
Str255. That's all it does; it doesn't define any constants, variables, or routines.
It is used by every unit in this list and must be in any Mac-style application.

unit MemTypes(-b);

interface

type

SignedByte
Byte
Ptr
Handle
ProcPtr
Fixed

= -126 .. 127;
= a .. 255;
= asignedByte;
= aPtr;
= Ptr·
= Longint;

{ any byte in memory }
{ unsigned byte for fontmgr }
{ blind pointer }
{ pointer to a master pointer }
< pointer to a procedure }
{ fixed point arithmetic type }

Str255 = Stringl255l; <maximum string size }
StringPtr = astr255; < pointer to maximum string f
StringHandle = astringPtr; { handle to maximum string }

Macintosh Interface Units 373

QuickDraw

QuickDraw is a Macintosh graphics package that lets you perform complex
graphic operations quickly and easily. This unit defines all the constants, types,
variables, procedures, and functions needed to use QuickDraw.

unit QuickDrav(-7);

interface

uses llemTypes;

const srcCopy
srcor
srcXor
srcBic
notSrcCopy
notSrcOr
notSrcXor
notSrcBic
patCopy

= a; < the lb transfer modes

pa tor
patXor
patBic
notPatcopy
notPator
notPatxor
notPatBic

• l;
2;
3•
' • t;;

s·
' b;

7•
' • 6;

q·
= la;
• U;
= 12;
= 13;
• lt;•

= is;
< QuickDrav color separation constants

• D; normalBit
inverseBit
redBit
greenBit
blueBit
cyanBit
magentaBit
yellovBit
blackBit

• l;
t;·
3!

normal screen mapping >
< inverse screen mapping >
< RGB additive mapping >

' 2;
• 6;

7•
< CllYBk subtractive mapping }

' • b;
= 5;

blackColor 33;
vhiteColor 30;

< colors expressed in these mappings }

redColor = 205;
greenColor = 3t;l;
blueColor = i;aq;
cyanColor • 273;
magentaColor = 137;
yellovColor = bq;

picLParen
picRParen

= a;
• l;

< standard picture comments >

= SignedByte; type QDByte
QDPtr
QDHandle
Pattern
Bits lb
VHSelect •
GrafVerb •
Styleitem =

374

Ptr; < blind pointer >
= Handle; < blind handle

packed arrayCD .. 71 of a •. 255;
arrayCD •• 151 of integer;
(v,h);
(frame,paint,erase,invert,fill);
(bold,italic,underline,outline,shadov,condense,extend);

Turbo Pascal for the Macintosh

Style set of Styleitem;

Fontinfo record
ascent: Integer
descent: Integer
widMax: Integer
leading: Integer

end;

Point record case Integer of
O: (v: Integer;

h: Integer);
li: (vh: arrayCVHSelectl of Integer);

end;

Rect • record case Integer of
D: (top: Integer;

left: Integer;
bottom: Integer;
right: Integer);

li: (topLeft: Point;
botRight: Point);

end;

Bitllap

Cursor =

PenState

record
baseAddr:
rowBytes:
bounds:

end;

record
data:
mask:
hotspot:

end;

record
pnLoc:
pnSize:
pnllode:
pnPat:

end;

Ptr;
Integer;
Rect;

Bitslib;
Bitslib;
Point;

Point;
Point;
Integer;
Pattern;

PolyHandle • APolyPtr;
PolyPtr • APolygon;
Polygon = record

RgnHandle =
RgnPtr
Region

polySize:
polyBBox:
polyPoints:

end;

ARgnPtr;
A Region;
record

Integer;
Rect;
arrayCO •. Ol of Point;

rgnSize: Integer; { rgnSize • l.D for rectangular
rgnBBox: Rect;

PicHandle
PicPtr
Picture

{ plus more data if not rectangular
end;

APicPtr;
• APicture;
• record

picSize:
picFrame:

Integer;
Rect;

Macintosh Interface Units 375

{ plus byte codes for picture content
end;

QDProcsPtr = AQDProcs;
QDProcs = record

textProc: Ptr;
lineProc: Ptr;
rectProc: Ptr;
rRectProc: Ptr;
ovalProc: Ptr;
arcProc: Ptr;
polyProc: Ptr;
rgnProc: Ptr;
bitsProc: Ptr;
commentProc: Ptr;
txMeasProc: Ptr;
getPicProc: Ptr;
putPicProc: Ptr;

end;

Graf Ptr
Graf Port

var thePort:
white:
black:
gray:
ltGray:
dkGray:
arrow:
screenBits:
randSeed:

AGrafPort;
record

device:
portBits:
portRect:
visRgn:
clipRgn:
bkPat:
f111Pat:
pnLoc:
pnSize:
pnllode:
pnPat:
pnVis:
txFont:
txFace:
txllode:
txSize:
spExtra:
fgColor:
bkColor:
colrBit:
patStretch:
picSave:
rgnSave:
polySave:
grafProcs:

end;

GrafPtr;
Pattern;
Pattern;
Pattern;
Pattern;
Pattern;
Cursor;
BWJap;
Longint;

GrafPort routines

Integer;
Bitllap;
Rect;
RgnHandle;
RgnHandle;
Pattern;
Pattern;
Point;
Point;
Integer;
Pattern;
Integer;
Integer;
Style;
Integer;
Integer;
Fixed;
Longint;
Longint;
Integer;
Integer;
Handle;
Handle;
Handle;
QDProcsPtr;

procedure InitGraf
procedure OpenPort
procedure InitPort
procedure ClosePort
procedure SetPort

(globalPtr: Ptr);
(port: GrafPtr);
(port: GrafPtr) ;
(port: GrafPtr);
(port: GrafPtr);

376

inline $A8E.E
inline $A8E.F
inline $A8E.D
inline $A87D
inline $A873

Turbo Pascal for the Macintosh

procedure ClosePort (port: GrafPtr);
procedure SetPort (port: GrafPtr);
procedure GetPort (var port: GrafPtr);
procedure GrafDevice (device: Integer);
procedure SetPortBits(bm: Bitllap);
procedure PortSize (vidth,height: Integer);
procedure MovePortTo (leftGlobal,topGlobal: Integer);
procedure SetOrigin (h,v: Integer);
procedure SetClip (rgn: RgnHandle);
procedure GetClip (rgn: RgnHandle);
procedure ClipRect (r: Rect);
procedure BackPat (pat: Pattern);

{ cursor routines >

procedure InitCursor;
procedure SetCursor(crsr: cursor);
procedure HideCursor;
procedure Shovcursor;
procedure Obscurecursor;

{ Line routines >

procedure HidePen;
procedure ShovPen;
procedure GetPen (var pt: Point);
procedure GetPenState(var pnState: PenState);
procedure SetPenState(puState: PenState);
procedure PenSize (vidth,height: Integer);
procedure Penllode (mode: Integer);
procedure PenPat (pat: Pattern);
procedure PenHormal;
procedure MoveTo
procedure !love
procedure LineTo
procedure Line

{ Text routines }

(h,v: Integer);
(dh,dv: Integer);
(h,v: Integer);
(dh,dv: Integer);

inline $A87D;
inline $A873;
inline $A87~;
inline $A872;
inline $A875;
inline $A87b;
inline $A877;
inline $A878;
inline $A879;
inline $A87A;
inline $A87B;
inline $A8 7C;

inline $A850;
inline $A8Sli;
inline $A852;
inline $A853;
inline $A8Sb;

inline $A89b;
inline $A897;
inline $A89A;
inline $A898;
inline $A899;
inline $A89B;
inline $A89C;
inline $A89D;
inline $A89E;
inline $A893;
inline $A89~;
inline $A89li;
inline $A892;

procedure TextFont (font: Integer); inline $A887;
procedure TextFace (face: Style); inline $20SF,$l.Ol.0,$3FOO,$A888;
procedure Textllode (mode: Integer); inline $A889;
procedure TextSize (size: Integer); inline $A88A;
procedure SpaceExtra (extra: Fixed); inline $A88E;
procedure DravChar (ch: Char); inline $A883;
procedure Drawstring (s: Str2SS); inline $A8M;
procedure DravText (textBuf: Ptr; firstByte,byteCount: Integer); inline $A885;
function CharWidth (ch: Char): Integer; inline $A88D;
function StringWidth (s: Str255): Integer; inline $A88C;
function TextWidth (textBof: Ptr; firstByte,byteCount: Integer): Integer; inline $A88b;

procedure GetFontinfo (var info: Fontinfo); inline $A88B;

procedure MeasureText (count: Integer; textAddr, charLocs: Ptr); inline $A837;

{ point calculations

procedure AddPt
procedure SubPt
procedure SetPt
function EqualPt
procedure ScalePt
procedure MapPt

(src: Point; var dst: Point); inline $A87E;
(src: Point; var dst: Point); inline $A87F;
(var pt: Point; h,v: Integer); inline $A880;
(ptli,pt2: Point): Boolean; inline $A88li;

(var pt: Point; fromRect,toRect: Rect); inline $A8F8;
(var pt: Point;fromRect,toRect: Rect); inline $A8F9;

Macintosh Interface Units 377

procedure LocalToGlobal (var pt: Point);
procedure GlobalToLocal (var pt: Point);

{ rectangle calculations >

inline $A67D;
inline $A6 n ;

procedure SetBect (var r: Bect;left,top,right,bottom: Integer); inline $A6A7;
function BqualBect (rectl,rect2: rect): Boolean; inline $A6Ab;
function BmptyRect (r: rect): Boolean; inline $A6AB;
procedure OffsetBect (var r: Beet; dh,dv: Integer); inline $A6A6;
procedure MapBect (var r: Beet; fromBect,toRect: Rect); inline $A6FA;
procedure InsetBect (var r: Beet; dh,dv: Integer); inline $A6Aq;
function SectBect (srcl,src2: Beet; var dstBect: Beet): Boolean; inline $A6AA;
procedure OnionBect (srcl,src2: Beet; var dstBect: Beet); inline $A6AB;
function PtinBect (pt: Point; r: Rect): Boolean; inline $A6AD;
procedure Pt2Bect (ptl,pt2: Point; var dstBect: Beet); inline $A6AC;

{ graphical operations on rectangles

procedure FrameBect (r: Beet);
procedure PaintBect (r: Beet);
procedure BraseBect (r: Beet);
procedure InvertBect (r: Beet);
procedure FillBect (r: Beet; pat: Pattern);

{ BoundRect routines >

inline $A6U;
inline $A6A2;
inline $A6A3;
inline $A6A4;
inline $A6AS;

procedure FrameBoundBect (r: Beet; ovWd,ovHt: Integer); inline $A6BD;
procedure PaintBoundBect (r: Beet; ovWd,ovHt: Integer); inline $A6Bl;
procedure BraseBoundBect (r: Rect; ovWd,ovHt: Integer); inline $A6B2;
procedure InvertBoundBect (r: Beet; ovWd,ovHt: Integer); inline $A6B3;
procedure FillBoundBect (r: Beet; ovWd,ovHt: Integer; pat: Pattern); inline $A6B~;

{ oval routines >

procedure Frameoval (r: Beet);
procedure PaintOval (r: Rect);
procedure BraseOval (r: Beet);
procedure InvertOval (r: Beet);
procedure FillOval (r: Rect; pat: Pattern);

{ arc routines >

inline $A6B7;
inline $A6B6;
inline $A6Bq;
inline $A8BA;
inline $A6BB;

procedure FrameArc (r: Rect; startAngle,arcAngle: Integer);
procedure PaintArc (r: Rect; startAngle,arcAngle: Integer);
procedure BraseArc (r: Beet; startAngle,arcAngle: Integer);
procedure InvertArc (r: Beet; startAngle,arcAngle: Integer);
procedure FillArc (r: Beet; startAngle,arcAngle: Integer; pat:

procedure PtToAngle (r: Beet; pt: Point; var angle: Integer);

{ polygon routines >

PolyHandle;

(poly PolyHandle);

inline $A8BB;
inline $A8BF;
inline $A6CD;
inline $A6Cl;

Pattern); inline $A6C2;

inline $A6C3;

function OpenPoly:
procedure ClosePoly;
procedure KillPoly
procedure OffsetPoly
procedure MapPoly
procedure FramePoly
procedure PaintPoly

(poly PolyHandle; dh,dv: Integer);
(poly PolyHandle; fromBect,toBect:
(poly PolyHandle);

Beet);

inline $A6CB;
inline $A6CC;
inline $A6CD;
inline $A8CB;
inline $A6FC;
inline $A6Cb;
inline $A6C7; (poly PolyHandle);

378 Turbo Pascal for the Macintosh

procedure BrasePoly (poly PolyBandle);
procedure InvertPoly (poly PolyBandle);
procedure FillPoly (poly PolyBandle; pat: Pattern);

< region calculations >

function RevRgn: RgnBandle;
procedure DisposeRgn(rgn: RgnBandle);
procedure CopyRgn (srcRgn,dstRgn: RgnBandle);
procedure SetBmptyRgn(rgn: RgnBandle);

inline $A6C6
inline uacq
inline $A6CA

inline $A6D6;
inline uanq;
inline $A6DC;
inline U6DD;

procedure SetRectRgn(rgn: RgnBandle; left,top,right,bottom:
procedure RectRgn (rgn: RgnBandle; r: Rect);
procedure OpenRgn;
procedure CloseRgn (dstRgn: RgnBandle);
procedure OffsetRgn (rgn: BgnBandle; db,dv: Integer);

Integer); inline $A6DB;
inline $A6DF;
inline $A6DA;
inline U6DB;

procedure KapRgn (rgn: RgnBandle; fromRect,toRect: Rect);
procedure InsetRgn (rgn: RgnBandle; dh,dv: Integer);
procedure SectRgn (srcRgnA,srcRgnB,dstRgn: RgnBandle);
procedure UnionRgn (srcRgnA,srcR9nB,dstR9n: RgnBandle);
procedure DiffRgn (srcRgnA,srcRgnB,dstRgn: RgnBandle);
procedure XorRgn (srcRgnA,srcRgnB,dstRgn: RgnBandle);
function BqualRgn (rgnA,rgnB: RgnBandle): Boolean;
function BmptyRgn (rgn: RgnBandle): Boolean;
function PtinRgn (pt: Point; rgn: RgnBandle): Boolean;
function RectinRgn (r: Rect; rgn: RgnBandle): Boolean;

< graphical operations on regions }

inline U6Ba;
inline $A6FB;
inline SABEL;
inline $A6Bl1;
inline SA6BS;
inline SA6Bb;
inline $A6B7 ;
inline U6B3;
inline $A6B2;
inline U6B6;
inline $A6Bq;

procedure FrameRgn
procedure PaintRgn
procedure BraseRgn
procedure InvertRgn
procedure FillRgn

(rgn:
(rgn:
(rgn:
(rgn:
(rgn:

RgnBandle);
RgnBandle) ;
RgnBandle) ;
RgnBandle) ;
RgnBandle; pat: Pattern);

inline $A6D2;
inline $A6D3;
inline $A6Dl1 ;
inline $A6DS;
inline $A6Db;

< graphical operations on BitKaps >

procedure ScrollRect(dstRect: Rect; db,dv: Integer; updateRgn: rgnBandle); inline
$A6BF;

procedure CopyBits (srcBits,dstBits: Bit!ap;
srcRect,dstRect: Rect;
mode: Integer;
maskRgn: RgnBandle); inline $A6BC;

procedure SeedFill(srcPtr,dstPtr:Ptr;
srcRov,dstRov,height,vords: Integer;
seedB,seedV: Integer); inline $A63q;

procedure CalcKask(srcPtr,dstPtr:Ptr;
srcRov,dstRov,height,vords: Integer); inline $A636;

procedure CopyMask(srcBits,maskBits, dstBits: BitMap; srcRect,maskRect,dstRect: rect);
inline $A6li 7;

function GetKaskTable: Ptr; inline $A63b,$2B66;

< picture routines }

function OpenPicture(picFrame: Rect): PicBandle; inline $A6F3;
procedure ClosePicture; inline $A6Fl1;
procedure DravPicture(myPicture: PicBandle; dstRect: Rect); inline $A6Fb;
procedure PicComment(kind,dataSize: Integer; dataBandle: Bandle); inline $A6F2;
procedure KillPicture(myPicture: PicBandle); inline $A6FS;

< the bottleneck interface }

procedure SetStdProcs(var procs: QDProcs); inline $A6EA;
procedure StdText (count: Integer; textAddr: Ptr; numer,denom: Point); inline $A662;

Macintosh Interface Units 379

procedure StdLine (nevPt: Point); inline SA8qa;
procedure StdRect (verb: GrafVerb; r: Rect); inline $A8AD;
procedure StdRRect (verb: GrafVerb; r: Rect; ovWd,ov&t: Integer); inline $A8AP;
procedure StdOval (verb: GrafVerb; r: Rect); inline $A6Bb;
procedure StdArc (verb: GrafVerb; r: Rect; startAngle,arcAngle: Integer); inline SA8BD;

procedure StdPoly (verb: GrafVerb; poly: Poly&andle); inline $A6CS;
procedure StdRgn (verb: GrafVerb; rgn: Rgn&andle); inline $A6Dl;
procedure StdBits (var srcBits: Bit!ap; var srcRect,datRect: Rect; mode: .

Integer; maskRgn: Rgn&andle); inline SA8EB;
procedure StdComment (kind,dataSize: Integer;

data&andle: Bandle); inline SA8PL;
function StdTx!eas (count: Integer; textAddr: Ptr;

var numer,denom: Point;
var info: Pontinfo): Integer;

procedure StdGetPic (dataPtr: Ptr; byteCount: Integer);
procedure StdPutPic (dataPtr: Ptr; byteCount: Integer);

inline SA8ED;
inline SA8EE;
inline SA8PD;

{ miscellaneous utility routines >

function GetPixel (h,v: Integer): Boolean;
function Random: Integer;
procedure Stuff&ex (thingptr: Ptr; s:Str255);
procedure Porecolor (color: Longint);
procedure BackColor (color: Longint);
procedure ColorBit (vhichBit: Integer);

380

inline SA8b5;
inline $A8bl ;
inline SA8bb;
inline SA8b2;
inline SA8b3;
inline SA8b~;

Turbo Pascal for the Macintosh

OSintf

The Macintosh operating system (Mac OS) is at the lowest level of Macintosh
operations. It performs basic tasks such as input/output memory management
and interrupt handling. Many of the Toolbox procedures and functions call Mac
OS routines to support their operations. The OSintf unit declares the Pascal
interface to the Mac OS, naming the many constants, data types, variables, and
routines.

unit OSintf(-6);

interface

uses MemTypes,QuickDrav;

const < for EventManager >

everyEvent = -L;
RullEvent • D;
mouseDovn • L;
mouseUp • 2;
keyDovn = 3;
keyUp • 4;
autoKey • s;
updateEvt • b;
diskEvt • 7;
activateEvt • 6;
netvorkEvt • LO;
driverEvt • LL;
appLEvt = L2;
app2Evt • L3;
app3Evt • L4;
app4Evt • LS;

< event mask equates >
mDovnMask = 2;
mUpllask 4;
keyDovnllask 6;
keyUpKask Lb;
autoKeyKask 32;
updateKask b4;
dlskMask L26;
activMask 25b;
netvorkKask LD24;
driverMask 20~6;
appLKask 4Dqb;
app2Kask 6Lq2;
app3Kask = Lb36~;
app4Mask • -327b6;

< to decipher event message for keyDovn events >
charCodeKask • SDDDDDDFF;
keyCodeKask • $DDDDFFDD;

< modifiers >
optionKey• 2046;
alphaLock• LD2~;
SbiftKey• SL2;
CmdKey= 25b;
BtnState• L26;

< Bit 3 of high byte >
{ Bit 2 }
{ Bit L }
{ Bit D }
< Bit 7 of lov byte is mouse button state >

Macintosh Interface Units 381

activeFlag • L; < bit D of modifiers for activate event >

EvtBotEnb • L; { error for PostEvent }

{ for Memory Manager }
MemFollErr • -LD8
BilRandleErr • -LDq
MemWZErr -LLL
MemPorErr -LL2
MemLockedErr • -LL7
NoErr D

{ not enough room in heap zone }
{ master pointer was NIL in RandleZone or other }
{ WhichZone failed (applied to free block) }
{ trying to purge a locked or non-porgeable block }
< block is locked >
{ all is well }

{ file system error codes }
DirFulErr • -33; { directory foll
DskFolErr • -3~; { disk foll }
RSVErr -3S; { no such volume }
IOErr -3b; < I/O error >
BdRamErr -37; { bad name }
FNOpnErr -38; { file not open >
EOFErr -3q; { end of file }
PosErr -~Di { tried to position to before start of file (riv) }
MFolErr -~L; { memory foll(open) or file won't fit (load) }
TMFOErr -~2; { too many files open }
FRFErr -~3; < file not found }

WPrErr -~~i
FLckdErr -~Si
VLckdErr -~b;
FBsyErr -~7;
DopFRErr -~8;
OpirErr -i;q;
ParamErr -SD;
RFRomErr -SL;
GFPErr -S2;
VolOffLinErr • -S3;
PermErr -S~;
VolOnLinErr • -SS;
RSDrvErr -Sb;
RoMacDskErr • -S7;
ExtFSErr -S8·
FSRnErr -sq;
BadMDBErr -bD;
WrPermErr -bL;

lastDskErr • -b~i
noDriveErr • -b~;
offLinErr -bS;
noNybErr -bb;
noAdrMkErr • -b7;
dataVerErr • -b8;
badCkSmErr • -bq;
badBtSlpErr • -7D;
noDtaMkErr = -7L;
badDCkSom -72;
badDBtSlp -73;
vrUnderBon • -7~;
cantStepErr • -7S;
tkDBadErr • -7b;
initIWMErr • -77;
tvoSideErr • -78;
spdAdjErr -7q;
seekErr -8D;
sectRFErr -8L;
firstDskErr • -8~;

DirRFErr -L2D;

382

{ diskette is write protected }
{ file is locked }
{ volume is locked >
{ File is busy (delete) }
{ duplicate filename (rename) }
{ file already open with with write permission }
{ error in user parameter list }
< refnom error }
< get file position error >
{ volume not on line error (was Ejected) }
{ permissions error (on file open) }
{ drive volume already on-line at MountVol }
{ no such drive (tried to mount a bad drive num)
{ not a Mac diskette (sig bytes are wrong) }
< volume in question belongs to an external fs
< file system rename error }
{ bad master directory block }
{ write permissions error }

< last in a range of disk errors
{ drive not installed }
< riv requested for an off-line drive }
{ couldn't find S nybbles in 2DD tries
{ couldn't find valid addr mark }
< read verify compare failed }
< addr mark checksum didn't check >
{ bad addr mark bit slip nybbles >
< couldn't find a data mark header }
< bad data mark checksum }

·{ bad data mark bit slip nybbles }
< write onderron occurred }
< step handshake failed }
{ track D detect doesn't change }
< unable to initialize IWM >
{ tried to read 2nd side on a L-sided drive }
< unable to correctly adjust disk speed }
{ track number wrong on address mark }
{ sector number never found on a track }
< first in a range of disk errors }

{ directory not found }

Turbo Pascal for the Macintosh

-121; { no free llDCB available }
-122; < move into offspring error }

TllllDOErr
BadllovErr
llrgVolTypErr =
FSDSintErr

-123;
-127;

< wrong volume type error - operation not supported for !IFS>
< internal file system error }

llaxSize $600000;

fHasBundle =
flnvisible =
fTrash
fDesktop
fDisk

6192;
1b36~;

-3;
-2;

< I/O constants
fsAtllark = O;
fsFromStart = 1;
fsFromLEOF = 2;
fsFromllark 3;
rdVerify • b~;

fsCurPerm O;
fsRdPerm = 1;
fsllrPerm 2;
fsRdllrPerm 3;
fsRdllrShPerm ~;

o;

max data block size is 6 megabytes

finder constants }

< ioPosllode values }

< ioPermission values }

< refNums from serial ports }
AinRefNum = -b; < serial port A input }
AoutRefRum = -7; < serial port A output }
BinRefRum = -6; < serial port B input }
BoutRefRum = -9; < serial port B output }

< baud rate constants
baud300
baudbOO
baud1200
baud1600
baud2~00
baud3bOO
baud~600
baud7200
baud9bOO
baud19200
baud57bOO

• 360•
• 169;
• 9~;
• b2;
• ~b;
• 30;
• 22; .],~;

• :i.o; . ~;
• a;

< sec channel configuration word
< driver reset information masks
stopl.O • 1b36~;
stop15 • -327b6;
stop20 • -1b36~;

noParity o;
oddParity • ~09b;
evenParity • 12266;

datas • o;
datab = 20~6;
data7 • 102~;
data6 • 3072;

< serial driver error masks
swOverrunErr • 1;
parityErr • lib;
hwOverrunErr • 32;
framingErr = b~;

Macintosh Interface Units 383

{ serial port configuration usage constants for Config field of SysParmType >
useFree = O
useATalk = 1
useAsync = 2

xOffWasSent • $&0; { serial driver message constant

< for application parameter >
{ constants for message returned by the finder on launch
appOpen = o;
appPrint = 1;

SWmode -1;
FTmode • 1;
FFmode • o;

< for sound driver >

{ Desk Accessories - message definitions (in CSCode of Control Call)
accEvent b~; < event message from SystemEvent >
accRun b5; { run message from SystemTask >
accCursor bb; < cursor message from SystemTask >
accMenu b7; { menu message from SystemMenu >
accUndo b&; { undo message from SystemEdit >
accCut 70; { cut message from SystemEdit >
accCopy 71; { copy message from SystemEdit >
accPaste 72; { paste message from SystemEdit >
accClear 73; < clear message from SystemEdit >

goodbye -1; goodbye message >

macXLllachine • O; for "machine" parameter of Environs
macMachine • 1;
{ if BitTst(ioDirFlg, myParamBlka.ioFlAttrib) then >
ioDirFlg • 3;
{ if BitAnd(ioDirMask, myParamBlk•.ioFlAttrib) = ioDirllask then >
ioDirBask • $10;
FSRtParID • 1; { DirID of parent's root
FSRtDirID • 2; { Root DirID }

{ result codes for RelString >
sortsBefore = -1;
sortsEqual O;
sortsAfter 1;

type
EventRecord • record

Zone

384

what
message
when
where
modifiers
end;

• record
BkLim
PurgePtr
HFstFree
ZCBFree
GZProc
MoreBast
Flags
CntRel
llaxRel
CntRRel
BaxRRel
CntEmpty

{ for Event Manager
Integer;
Longint;
Longint;
Point;
Integer;

Ptr;
Ptr;
Ptr;
Longint;
ProcPtr;
Integer;
Integer;
Integer;
Integer;
Integer;
Integer;
Integer;

< str1 < str2
{ str1 = str2
{ str1 > str2

Turbo Pascal for the Macintosh

THz
Size
OSErr

CntHandles
KinCBFree
PurgeProc
SparePtr
AllocPtr
HeapData

end;
AZone;
Longint;

• Integer;

QElemPtr = AQElem;

Integer
Longint
ProcPtr
Ptr;
Ptr;
Integer;

{ reserved for future >

pointer to the start of a heap zone >
size of a block in bytes >
error code >

ptr to generic queue element

{ vertical blanking control block queue element >

{ link to next element >
{ unique ID for validity check >
{ address of service routine >
{ count field for timeout >

VBLTask = record
qLink: QElemPtr;
qType: Integer;
vblAddr: ProcPtr;
vblCount: Integer;
vblPhase: Integer;

end;
{ phase to allow synchronization

{ VBLCntrlBlk }
{ VBLQElPtr = AVBLTask; >

evQEl = record
qLink: QElemPtr;
qType: Integer;
evtQwhat: Integer;
evtQmessage:Longint;
evtQwhen: Longint;
evtQwhere: Point;
evtQmodifiers: Integer;

end;

DrvQEl = record
qLink: QElemPtr;
qType: Integer;
dQDrive: Integer;
dQRefNum: Integer;
dQFSID: Integer;
dQDrvSize: Integer;

end;
DrvQElPtr • ADrvQEl;

this part is identical to the EventRecord as ...
defined in Toolintf >

drive queue elements >

{ ref num of the driver that handles this drive
{ id of file system that handles this drive >
{size of drive (512-byte blocks); >
{ not for drvs L&2 >

TrapType = (OSTrap, ToolTrap); { for NGet and NSet TrapAdress

{ file system >
ParamBlkType = (IOParam,FileParam,VolumeParam,CntrlParam);

OSType =packed arrayCL .. ~l of Char; { same as rsrc mgr's Restype

Finfo = record record of finder info >
{ the type of the file >
{ file's creator >

fdType: OSType;
fdCreator: OSType;
fdFlags: Integer;
fdLocation: Point;
fdFldr: Integer;

{ flags, e.g., hasbundle,invisible,locked, etc. >
{ file's location in folder >
{ folder containing file >

end; Finfo >

new HFS >

FXInfo = record
fdiconID: Integer;
fdUnused: arrayCL .. ~l
fdComment: Integer;
fdPutAway: Longint;

Macintosh Interface Units

{ Icon ID >
of Integer; { unused but reserved

{ comment ID >
{ home dir ID >

385

end;

Dinfo = record
frRect: Rect;
frFlags: Integer;
frLocation: Point;
frView: Integer;

end;

{ folder rect }
{ flags }
{ folder location
{ folder view }

DXInfo = record
frScroll: Point;
frOpenChain: Longint;
frOnused: Integer;
frComment: Integer;
frPutAway: Longint;

end;

{ scroll position }
{ dir ID chain of open folders
{ unused but reserved }
{ comment }
{ dir ID }

ParamBlockRec • record

386

< L2 byte header used by file and IO system }
qLink: QElemPtr; < queue link in header }
qType: Integer; < type byte for safety check }
ioTrap: Integer; < FS: the Trap }
ioCmdAddr: Ptr; < FS: address to dispatch to }

< common header to all variants }
ioCompletion: ProcPtr; < completion routine addr (0 for synch calls)
ioResult: OSErr; < result code }
ioNamePtr: StringPtr; < ptr to Vol:FileName string }
ioVRefNum: Integer; < volume refnum (DrvNum for Eject and nountVol)

< different components for the different type of parameter blocks
case ParamBlkType of
ioParam:

(ioRefNum: Integer;
ioVersNum: SignedByte;
ioPermssn: SignedByte;

ioKisc: Ptr;

ioBuffer: Ptr;
ioReqCount: Longint;
ioActCount: Longint;
ioPosMode: Integer;
ioPosOffset: Longint);

FileParam:
(ioFRefNum: Integer;
ioFVersNum: SignedByte;
fillerL: SignedByte;
ioFDirindex: Integer;
ioFlAttrib: SignedByte;
ioFlVersNum: SignedByte;
ioFlFndrinfo: Finfo;
ioFlNum: Longint;
ioFlStBlk: Integer;
ioFlLgLen: Longint;
ioFlPyLen: Longint;
ioFlRStBlk Integer;
ioFlRLgLen Longint;
ioFlRPyLen Longint;
ioFlCrDat: Longint;
ioFlMdDat: Longint);

< refNum for I/O operation
< version number }
{ Open: permissions (byte) }

{ Rename: new name }
{ GetEOF,SetEOF: logical end of file }
{ Open: optional ptr to buffer }
< SetFileType: nev type }
{ data buffer Ptr }
< requested byte count; also = ioNevDirID
< actual byte count completed }
{ initial file positioning }
< file position offset }

{ reference number }
{ version number }

{ GetFinfo directory index }
< GetFinfo: in-use bit•7, lock bit•O
< file version number >
{ user info }
{ GetFinfo: file number; TF- ioDirID
{ start file block (O if none) }
{ logical length (EOF) }
{ physical length }
< start block rsrc fork }
{ file logical length rsrc fork }
{ file physical length rsrc fork }
{ file creation date & time (32 bits in secs) }
{ last modified date and time }

Turbo Pascal for the Macintosh

VolumeParam:

< volume index number }
{ creation date and time >
< last backup date and time >
< volume attrib >
< number of files in directory >
< start block of file directory >
< GetVolinfo: length of dir in blocks >
< GetVolinfo: num blks (of alloc size) }
< GetVolinfo: alloc blk bite size >
< GetVolinfo: bytes to al ocate at a time }

(filler2: Longint;
ioVolindex: Integer;
ioVCrDate: Longint;
ioVLsBkUp: Longint;
ioVAtrb: Integer;
ioVRmPls: Integer;
ioVDirSt: Integer;
ioVBlLn: Integer;
ioVRmAlBlks: Integer;
ioVAlBlkSiz: Longint;
ioVClpSiz: Longint;
ioAlBlSt: Integer;
ioVRxtPRum: Longint;
ioVPrBlk: Integer);

< starting disk(SL2-byte) block in block map >
< GetVolinfo: next free file number >
< GetVolinfo: 1 free alloc blks for this vol >

CntrlParam:
(ioCRefRum: Integer;
CSCode: Integer;
CSParam: array!O •. LOI

end;

< refRum for I/O operation >
< word for control status code

of Integer); < operation-defined parameters >
< ParamBlockBec >

ParmBlkPtr • aparamBlockRec;

BParamBlockRec = record
< L2 byte header used by the file system >
qLink: QElemPtr;
qType: Integer;
ioTrap: Integer;
ioCmdAddr: Ptr;

< common header to all variants >
ioCompletion: ProcPtr; < completion routine, or NIL if none }
ioResult: OSErr; < result code >
ioRamePtr: StringPtr; < ptr to pathname >
ioVBefRum: Integer; < volume refnum >

< different components for the different type of parameter blocks
case ParamBlkType of
ioParam:

(ioRefRum: Integer;
ioVersRum: SignedByte;
ioPermssn: SignedByte;

iollisc: Ptr;

ioBuffer: Ptr;
ioReqCount: Longint;
ioActCount: Longint;
ioPosllode: Integer;
ioPosOffset: Longint);

fileParam:

< refRum for I/O operation >
< version number >
< Open: permissions (byte) >

{ &Rename: new name }
< &Open: optional ptr to buffer }
i data buffer Ptr >
i requested byte count }
i actual byte count completed }
i initial file positioning >
i file position offset >

(ioPRefRum: Integer;
ioPVersRum: SignedByte;
fillerL: SignedByte;
ioPDirindex: Integer;
ioPlAttrib: SignedByte;
ioPlVersRum: SignedByte;
ioPlPndrinfo: Pinfo;
ioDirID: Longint;
ioPlStBlk: Integer;
ioPlLgLen: Longint;
ioPlPyLen: Longint;
ioPlRStBlk: Integer;

< reference number } (•choose either this or ioBefRum •)
< version number, normally 0 }

Macintosh Interface Units

< BGetPinfo directory index }
< BGetPinfo: in-use bit•7, lock bit•O }
i file version number returned by GetPinfoz
< user info >
< directory ID }
i start file block (0 if none)
i logical length (BOP) }
{ physical length }
< start block rsrc fork }

387

ioFlRLgLen: Longint;
ioFlRPyLen: Longint;
ioFlCrDat: Longint;
ioFlMdDat: Longint);

volumeParam:
(filler2: Longint;

file logical length rsrc fork >
file physical length rsrc fork >
file creation date & time (32 bits in secs)
last modified date and time >

ioVolindex: Integer; volume index number >
ioVCrDate: Longint; creation date and time >
ioVLsMod: Longint; < last date and time volume was flushed >
ioVAtrb: Integer; < volume attrib >
ioVNmFls: Integer; < number of files in directory >
ioVBitMap: Integer; < start block of volume bitmap >
ioAllocPtr: Integer; < HGetVInfo: length of dir in blocks >
ioVNmAlBlks: Integer; < HGetVInfo: num blks (of alloc size) >
ioVAlBlkSiz: Longint; < HGetVInfo: alloc blk byte size >
ioVClpSiz: Longint; < HGetVInfo: bytes to allocate at a time >
ioAlBlSt: Integer; < starting disk(Sl2-byte) block in block map
ioVNxtCNID: Longint; < HGetVInfo: next free file number >
ioVFrBlk: Integer; < HGetVInfo: 1 free alloc blks for this vol
ioVSigWord: Integer; < volume signature }
ioVDrvinfo: Integer; < drive number >
ioVDRefNum: Integer; < driver refNum >
ioVFSID: Integer; < ID of file system handling this volume >
ioVBkUp: Longint; < last backup date (O if never backed up) >
ioVSeqNum: Integer; < sequence number of this volume in volume set
ioVWrCnt: Longint; < volume write count }
ioVFilCnt: Longint; < volume file count }
ioVDirCnt: Longint; < volume directory count }
ioVFndrinfo: array !l .. 81 of Longint); < finder info. for volume

end; < HParamBlockRec >

HParmBlkPtr = AffParamBlockRec;

FCBPBRec = record < for PBGetFCBinfo >
< 12 byte header used by the file and IO system }
qLink: QElemPtr; < queue link in header >
qType: Integer; < type byte for safety check >
ioTrap: Integer; < FS: the Trap >
ioCmdAddr: Ptr; < FS: address to dispatch to }
ioCompletion: ProcPtr; < completion routine addr (0 for synch calls)
ioResult: OSErr; < result code >
ioNamePtr: StringPtr; < ptr to Vol:FileName string >
ioVRefNum: Integer; < volume refnum (DrvNum for Eject and MountVol)
ioRefNum: Integer; < file to get the FCB about }
filler: Integer;
ioFCBindx: Longint;
ioFCBFlNm: Longint;
ioFCBFlags: Integer;
ioFCBStBlk: Integer;
ioFCBEOF: Longint;
ioFCBPLen: Longint;
ioFCBCrPs: Longint;
ioFCBVRefNum: Integer;
ioFCBClpSiz: Longint;
ioFCBParID: Longint;

< FCB index for GetFCBinfo
< file number > -
{ FCB flags l
< file start block l
< logical end-of-file l
< physical end-of-file l
< current file position l
< volume refNum }
< file clump size >
< parent directory ID >

end;

FCBPBPtr = AFCBPBRec;

CMovePBRec = record
qLink: QElemPtr;
qType: Integer;
ioTrap: Integer;
ioCmdAddr: Ptr;
ioCompletion: ProcPtr;

388

queue link in header l
type byte for safety check }
FS: the Trap }
FS: address to dispatch to >
completion routine addr (0 for synch calls)

Turbo Pascal for the Macintosh

ioResult: OSErr;
ioRamePtr: StringPtr;
ioVRefRum: Integer;
fillerl: Longint;
ioRevRame: StringPtr;
filler2: Longint;
ioRevDirID: Longint;
filler3: array Cl .• 2l
ioDirID: Longint;

end;
CMovePBPtr = •cnovePBRec;

< result code >
< ptr to Vol:FileRame string >
< volume refnum (DrvRum for Eject and MonntVol)

< name of nev directory >

{ directory ID of nev directory
of Longlnt;

< directory ID of current directory

WDPBRec = record < for PBGetWDinfo }
qLink: QElemPtr; { queue liuk iu header >
qType: Integer; < type byte for safety check }
ioTrap: Integer; { FS: the Trap >
ioCmdAddr: Ptr; < FS: address to dispatch to >
ioCompletion: ProcPtr; < completion routine addr (D for synch calls)
ioResult: OSErr; < result code >
ioRamePtr: StriugPtr; { ptr to Vol:FileRame string >
ioVRefRum: Integer; < volume refnum >
fillerl: Integer; < not used >
ioWDindex: Integer; { working directory index for _GetWDinfo
ioWDProcID: Longint; { ID's ProcID }
iolDVRefRum: Integer; < ID's Volume RefRum
filler2: arrayCl .. 7l of Integer;
ioWDDirID: Longlnt; { WD's DirID }

end;

IDPBPtr = ·wDPBRec;

CinfoType • (inputParam, hFilelnfo, dirinfo);

CinfoPBRec • record <
qLink: QElemPtr;
qType: Integl!r;

ioDirFlg clear; equates for catalog information return
< queue link in header >

ioTrap: Integer;
ioCmdAddr: Ptr;
ioCompletion: ProcPtr;
ioResult: OSErr;
ioRamePtr: StringPtr;
ioVRefRum: Integer;
ioFRefRum: Integer;
fillerl: Integer;
ioFDirindex: Integer;
ioFlAttrib: SignedByte;
filler2: SignedByte;
case Cinf oType of
inputParam:

< type byte for safety check >
< FS: the Trap >
< FS: address to dispatch to >
< completion routine addr (D for synch calls)
< result code }
< ptr to Vol:FileRame string >
< volume refnum (DrvRum for Eject and KountVol)
< file reference number >

< GetFinfo directory index >
< GetFinfo: in-use bit•7, lock bit•D

(filler3: arrayCl .. 6l of Integer;
ioDirID: Longint);

hFileinfo:
(ioFlFndrinfo: Finfo;
ioFlRum: Longint;
ioFlStBlk: Integer;
ioFlLgLen: Longint;
ioFlPyLen: Longint;
ioFlRStBlk: Integer;
ioFlRLgLen: Longint;
ioFlRPyLen: Longint;
ioFlCrDat: Longlnt;
ioFlMdDat: Longint;
ioFlBkDat: Longlnt;
ioFlXFndrinfo: FXInfo;
ioFlParID: Longint;
ioFlClpSiz: Longint);

Macintosh Interface Units

< user info >
< GetFinfo: file number >
< start file block (D if none)
< logical length (EOF) >
< physical length >
< start block rsrc fork >
< file logical length rsrc fork >
< file physical length rsrc fork >
< file creation date & time (32 bits in secs)
< last modified date and time >
< file last backup date >
< file additional finder info bytes >
< file parent directory ID (integer?)
< file clump size >

389

dirinfo: { equates for directory information return >
(ioDrUsrWds: Dinfo; { directory's user info bytes
ioDrDirID: Longint; { directory ID >
ioDrNmFls: Integer; { number of files in a directory
filler4: array C1 •• 9J of Integer;
ioDrCrDat: Longint; { directory creation date >
ioDrlldDat: Longint; { directory modification date >
ioDrBkDat: Longint; { directory backup date >
ioDrFndrinfo: DXInfo; { directory finder info bytes >
ioDrParID: Longint); {directory's parent directory ID

end;

CinfoPBPtr = ACinfoPBRec;

{ 20 bytes of system parameter area
SysParmType = packed record

Valid: Byte;
ATalkA: Byte;
ATalkB: Byte;
Config: Byte;
PortA: Integer;
PortB: Integer;
Alarm: Longint;
Font: Integer;
KbdPrint: Integer;

VolClik: Integer;

{ validation field ($A7) >
{ AppleTalk node number hint for port A
{ AppleTalk node number hint for port B >
{ ATalk port configuration A • bits 4-7, B = 0-3 >
{ sec port A configuration >
{ sec port B configuration >
{ alarm time >
{ default font ID >
{ high byte = kbd repeat >
{ high nibble • thresh in 4/bOths
{ low nibble = rates in 2/bOths >
{ low byte = print stuff >

Misc: Integer;

{ low 3 bits of high byte • volume control >
high nibble of low byte = double time in 4/bOths >
low nibble of lov byte • caret blink time in 4/bOths

{ EEEC EEEE PSKB FFHH }
{ E = extra }
{ P = paranoia level >
{ S • mouse scaling >
{ K • key click >
{ B = boot disk >
{ F • menu flash >
{ H • help level >

end; { SysParmType >
SysPPtr = ASysParmType;

{ volume control block data structure >
VCB • record

qLink:
qType:
vcbFlags:
vcbSigWord:
vcbCrDate:
vcbLsllod:
vcbAtrb:
vcbNmFls:
vcbVBllSt:
vcbAllocPtr
vcbNmAlBlks
vcbAlBlkSiz
vcbClpSiz:
vcbAlBlSt:
vcbNxtCNID:
vcbFreeBks:
vcbVN:
vcbDrvNum:
vcbDRefNum:
vcbFSID:
vcbVRefRum:

390

QElemPtr;
Integer;
Integer;
Integer;
Longint;
Longint;
Integer;
Integer;
Integer;
Integer;
Integer;
Longint;
Longint;
Integer;
Longint;
Integer;
STRINGC27l;
Integer;
Integer;
Integer;
Integer;

{ link to next element
{ not used >

Turbo Pascal for the Macintosh

end;

vcbl!Adr:
vcbBufAdr:
vcbllLen:
vcbDirindex:
vcbDirBlk:

vcbVolBkop:
vcbVSegNom:
vcblfrCnt:
vcbXTClpSiz:
vcbCTClpSiz:
vcbRmRtDirs:
vcbFilCnt:
vcbDirCnt:
vcbFndrinfo:
vcbVCSize:
vcbVBllCSiz:
vcbCtlCSiz:

vcbXTAlBlks:
vcbCTAlBlks:
vcbXTRef:
vcbCTRef:
vcbCtlBof:
vcbDirIDll:
vcbOffsll:

Ptr;
Ptr;
Integer
Integer
Integer

Longint;
Integer;
Longint;
Longint;
Longint;
Integer;
Longint;
Longint;
Finfo;
Integer;
Integer;
Integer;

Integer;
Integer;
Integer;
Integer;
Longint;
Longint;
Integer;

< new BFS extensions >

< additional VCB info >

< general queue data structure >
QBdr • record

QFlags: Integer;
QBead: QBlemPtr;
QTail: QBlemPtr;

end;
QBdrPtr • •oedr;

< misc flags >
< first elem >
< last elem >

< QBdr >

< there are currently four types of queues: >
< VType, queue of Vertical Blanking Control Blocks >
< IOQType, queue of I/D queue elements >
< DrvType, queue of drivers >
< BvType, queue of Event Records >
< FSQType, queue of VCB elements >
< TimerType no longer is used. >
< DrvType replaces it here in enum type >
QTypes • (dummyType,vType,ioQType,drvQType,evType,fsQType);

QBlem • record
case QTypes of
vType:

(vblQelem: VBLTask);

ioQType:

< vertical blanking >

(ioQBlem: ParamBlockRec); < I/O parameter block >

drvQType:
(drvQBlem: DrvQBl); < drive>

evType:
(evQBlem: BvQBl); <event>

fsQType:
(vcbQBlem: VCB); < volume control block >

end; < QBlem >

DCtlBntry • record < device control entry >
DCtlDriver: Ptr; < ptr to ROii or handle to RAii driver >

Macintosh Interface Units 391

DCtlPlags: Integer; < flags }
DCtlQHdr: QHdr; { driver's I/O queue }
DCtlPosition: Longint; { byte pos used by read and write calls
DCtlStorage: Handle; < hndl to BAM drivers private storage >
DCtlBefRum: Integer; { driver's reference number }
DCtlCurTicks: Longint;< long counter for timing system task calls }
DCtlWindow: Ptr; < ptr to driver's window if any }
DCtlDelay: Integer; { number of ticks btwn sysTask calls }
DCtlEMask: Integer; < desk acessory event mask >
DCtlMenu: Integer; { menu ID of menu associated with driver

end; < DCtlEntry >
DCtlPtr • •DctlEntry;
DCtlHandle • •DctlPtr;

< for Serial Driver >
SerShk = packed record handshake control fields >

fXOn: Byte;
fCTS: Byte;
xon: Char;
xoff: Char;
errs: Byte;
evts: Byte;
finX: Byte;
null: Byte;

< XOR flow control enabled flag }
< CTS flov control enabled flag >
{ xon character }
{ XOff character >
< errors mask bits >
< event enable mask bits }
{ input flow control enabled flag }
< unused >

end;

< parameter block structure for file and IO routines
SerStaBec = packed record

cumErrs: Byte;
XOPPSent: Byte;
rdPend: Byte;
wrPend: Byte;
ctsHold: Byte;
XOPPHold: Byte;

end;

for sound driver >
{ for ~-tone sound generation }
Wave = packed arrayca .• 2551 of Byte;
WavePtr = •wave;
PTSoundRec • record

duration: Integer;
soundLBate: Longint;
soundLPhase: Longint;
sound2Rate: Longint;
sound2Phase: Longint;
sound3Bate: Longint;
sound3Phase: Longint;
sound~Bate: Longint;
sound~Phase: Longint;
soundLiave: iavePtr;
sound2iave: iavePtr;
sound3iave: iavePtr;
sound~iave: iavePtr;

end;
FTSndBecPtr • •PTSoundBec;

PTSynthRec = record
mode: Integer;
sndBec: PTSndBecPtr;

end;
PTSynthPtr • ·PTSynthBec;

Tone • record

392

count: Integer;
amplitude: Integer;

< cumulative errors report
< XOff Sent flag >
{ read pending flag }
{ write pending flag }
< CTS flov control hold flag >
< XOff flow control hold flag }

Turbo Pascal for the Macintosh

duration: Integer;
end;

Tones• array!0 .. 50001 of Tone;

SWSynthRec = record
mode: Integer;
triplets: Tones;

end;

swsynthPtr • •swsynthRec;

freeWave =packed arrayl0 .. 300001 of Byte;

PPSynthBec • record
mode: Integer;
count: Pixed;
waveBytes: freeWave;

end

PPSynthPtr • •ppsynthBec;

DateTimeBec = record
Year,
!lonth,
Day,

for date and time >
{ 190~,1905, ... }

Bour,
Minute,
Second,
DayOfWeek:

end;

{ 1, •.• ,12 corresponding to Jan, ... ,Dec
{ 1, ... 31 }
< o, ... ,23 >
{0, ... ,59}
< o, ... ,59 >

Integer; { 1, •.. ,7 corresponding to Sun, .•. ,Sat >
< DateTimeRec >

appPile • record for application parameter
vRefNum: Integer;
ftype: OSType;
versNum: Integer; < versNum in high byte >
fName: str255;

end; {appPile>

SPortSel = (SPortA,SPortB); for BAK serial driver

DriveKind = (sony, hard20); for disk driver >

DrvSts = record
track:
writeProt:
diskinPlace:
installed:
sides:
DriveQLink:
DriveQVers:
dqDrive:
dqRefRum:
dqPSID:
case DriveKind of
sony:

Integer;
SignedByte;
SignedByte;
SignedByte;
SignedByte;
QElemPtr;
Integer;
Integer;
Integer;
Integer;

(twoSidePmt: SignedByte;

needsPlush:
diskErrs:

hard20:
(DriveSize:
DriveS1:
DriveType:
Drivellanf:

Macintosh Interface Units

SignedByte;
Integer);

Integer
Integer
Integer
Integer

{ current track >
< bit 7 • 1 if volume is locked >
< disk in drive >
< drive installed >
< -1 for 2-sided, D for 1-sided
< next queue entry >
< 1 for BD20 >
{ drive number >
{ driver reference number
{ file system ID >

-1 for 2-sided, D for 1-sided; >
valid after first read or write
-1 for Mac Plus drive >
soft error count >

drive block size low word >
drive block size high word
1 for BD20 >
1 for Apple Computer, Inc. >

393

DriveChar: Byte; { 230 ($Eb) for HD20 }
Drivellisc: SignedByte) < o - reserved }

end;

< for Event llanager }
function PostEvent(eventRum: Integer; eventllsg: Longint): OSErr; external;
function PPostEvent(eventCode: Integer; eventllsg: Longint;

var qEl: EvQEl): OSErr; external;
procedure FlushEvents(whichllask,stopMask: Integer); inline $20LF, SAD32;
procedure SetEventllask(thellask: Integer); inline $3LDF, SOL~~;
function OSEventAvail(mask: Integer; var theEvent: EventRecord): Boolean; external;
function GetOSEvent(mask: Integer; var theEvent: EventRecord): Boolean; extended;

< OS utilities }
function HandToHand(var theHndl: Handle): OSErr; external;
function PtrToXHand(srcPtr: Ptr; dstHndl: Handle; size: Longint): OSErr; external;
function PtrToHand(srcPtr: Ptr; var dstHndl: Handle; size: Longint): OSErr; external;
function HandAndHand(handL,hand2: Handle): OSErr; external;
function PtrAndHand(ptrL: Ptr; hand2: Handle; size: Longint): OSErr; external;
procedure SysBeep(duration: Integer); inline $Aqc6;
procedure Environs(var rom,machine: Integer); external;
procedure Restart; external;

{ routines to set AS to CurrentAS and then restore AS to previous value
< useful for ensuring good world for IOCompletion routines }
procedure SetUpAS; inline $2FOD 1 $2A76 1 soqo~;

{ MOVE.L AS,-(SP) ;save old AS on stack
MOVE.L CurrentAS,AS ;get the real AS }

procedure RestoreAS; inline $2ASF;
{ MOVE.L (A7)+,AS ;restore AS }

{ from HEAPZORE.TEXT }
procedure SetApplBase(startPtr: Ptr);
procedure InitApplZone; external;
procedure InitZone(pgrowZone:

cmorellasters:
limitPtr,startPtr

function GetZone: THz; external;
procedure Setzone(hz: THz); external;

external;

ProcPtr;
Integer;

: Ptr); external;

function ApplicZone: THz; inline S2EB6, $02AA;
function SystemZone: THz; inline $2EB6, SD2Ab;

function Compactllem(cbReeded: size): size; external;
procedure PurgeMem(cbReeded: size); external;
function FreeMem: Longint; external;
procedure ResrvMem(cbReeded: size); external;
function MaxMem(Var grow: size): size; external;
function TopMem: Ptr; inline $2EB6, $DLD6;

procedure SetGrowZone(growZone: ProcPtr); external;
procedure SetApplLimit(zoneLimit: Ptr); external;
function GetApplLimit:·Ptr; inline $2EB6, SDL30;
function StackSpace: Longint; external;

procedure PnrgeSpace (var total, contig: Longint); external;
function MaxBlock: Longint; external;

procedure MaxApplZone; external;
procedure MoveHHi (h: handle); external;

function RewPtr(byteConnt: size): Ptr; external;
procedure DisposPtr(p: Ptr); external;
function GetPtrSize(p: Ptr): size; external;
procedure SetPtrSize(p: Ptr; newSize: size); external;

394 Turbo Pascal for the Macintosh

function PtrZone(p: Ptr): TBz; external;

function RevBandle(byteCount: size): handle; external;

function RevBmptyBandle: handle; external;

procedure DisposBandle(h: handle); external;
function GetBandleSize(h: handle): size; external;
procedure SetBandleSize(h: handle; nevSize: size); external;
function BandleZone(h: handle): TBz; external;
function RecoverBandle(p: Ptr): handle; e1ternal;
procedure BmptyBandle(h: handle); e1ternal;
procedure ReAllocBandle(h: handle; bytecount: size); e1ternal;

procedure BLock(h: handle); e1ternal;
procedure BUnLock(h: handle); e1ternal;
procedure BPurge(h: handle); e1ternal;
procedure BRoPurge(h: handle); e1ternal;

procedure BSetRBit(h: handle); e1ternal;
procedure BClrRBit(h: handle); e1ternal;
procedure BSetState(h: handle; flags: SignedByte); e1ternal;
function BGetstate(h: handle): SignedByte; e1ternal;

procedure KoreKasters; e1ternal;

procedure BlockKove(srcPtr, destPtr: Ptr; byteCount: size); e1ternal;
function KemBrror: OSBrr; inline $3BB8, $0220;

function GZSaveBnd: handle; inline S2BB8, S0328;

{ interface for core routines pertaining to the vertical retrace mgr }
{ routines defined in VBLCORB.TBXT }
function VInstall(VBLTaskPtr: QBlemPtr): OSBrr; e1ternal;
function VRemove(VBLTaskPtr: QBlemPtr): OSErr; external;

< interface for operating system dispatcher }
{ routines defined in DISPATCH.TEXT }
function GetTrapAddress(traplum: Integer): Longint; e1ternal;
procedure SetTrapAddress(trapAddr: Longint; traplum: Integer); e1ternal;
function IGetTrapAddress(trapRum: Integer; tTyp: TrapType): Longint; e1ternal;
procedure RSetTrapAddress(trapAddr: Longint; trapRum: Integer; tTyp: TrapType); e1ternal;

< interface for utility core routines (defined in sysutil)
function GetSysPPtr: SysPPtr; e1ternal;
function WriteParam: OSBrr; e1ternal;
function SetDateTime(time: Longint):OSBrr; e1ternal;
function ReadDateTime(var time: Longint):OSBrr; e1ternal;
procedure GetDateTime(var secs: Longint); external;
procedure SetTime(d: DateTimeRec); external;
procedure GetTime(var d: DateTimeBec); e1ternal;
procedure Date2Secs(d: DateTimeRec; vars: Longint); e1ternal;
procedure Secs2Date(s: Longint; var d: DateTimeRec); e1ternal;

·procedure Delay(numTicks: Longint; var finalTicks: Longint); external;
function BqualString(strL,str2: Str255; caseSens,diacSens: Boolean):Boolean; e1ternal;

function RelString(aStr,bStr: Str255; caseSens, diacsens: Boolean): Integer; e1ternal;

procedure UprString(var theString: Str255; diacsens: Boolean); e1ternal;
function InitUtil: OSBrr; inline SA03F, S3B80;

procedure UnLoadSeg(routineAddr: Ptr); inline SAqFL;

Macintosh Interface Units 395

procedure ExitToShell; inline $AqF4;
procedure GetAppParms(var apName: str255; var apRefNum: Integer;

var apParam: Handle); inline $AqFS;
procedure CoontAppFiles(var message: Integer; var count: Integer); external;
procedure GetAppFiles(index: Integer; var theFile: AppFile); external;
procedure ClrAppFiles(index: Integer); external;

{ queue routines - part of Macintosh core utility routines }
procedure FinitQueue; inline $A01b;
procedure Enqueue(qElement: QElemPtr; qHeader: QHdrPtr); external;
function Dequeue(qElement: QElemPtr; qHeader: QHdrPtr): OSErr; external;
function GetFSQHdr: QHdrPtr; external;
function GetDrvQHdr: QHdrPtr; external;
function GetVCBQHdr: QHdrPtr; external;
function GetVBLQHdr: QHdrPtr; external;
function GetEvQHdr: QHdrPtr; external;
function GetDCtlEntry(refNum: Integer): DCtlHandle; external;

function
function
function
function
function
function
function

PBOpen(paramBlock: ParmBlkPtr; aSync: Boolean): OSErr;
PBClose(paramBlock: ParmBlkPtr; aSync: Boolean): OSErr;
PBRead(paramBlock: ParmBlkPtr; aSync: Boolean): OSErr;
PBWrite(paramBlock: ParmBlkPtr; aSync: Boolean): OSErr;
PBControl(paramBlock: ParmBlkPtr; aSync: Boolean): OSErr;
PBStatos(paramBlock: ParmBlkPtr; aSync: Boolean): OSErr;
PBKillIO(paramBlock: ParmBlkPtr; aSync: Boolean): OSErr;

external;
external;
external;
external;
external;
external;
external;

function PBGetVInfo(paramBlock: ParmBlkPtr; aSync: Boolean): OSErr; external;
function PBGetVol(paramBlock: ParmBlkPtr; aSync: Boolean): OSErr; external;
function PBSetVol(paramBlock: ParmBlkPtr; aSync: Boolean): OSErr; external;
function PBFlushVol(paramBlock: ParmBlkPtr; aSync: Boolean): OSErr; external;
function PBCreate(paramBlock: ParmBlkPtr; aSync: Boolean): OSErr; external;
function PBDelete(paramBlock: ParmBlkPtr; async: Boolean): OSErr; external;
function PBOpenRF(paramBlock: ParmBlkPtr; aSync: Boolean): OSErr; external;
function PBRename(paramBlock: ParmBlkPtr; aSync: Boolean): OSErr; external;
function PBGetFinfo(paramBlock: ParmBlkPtr; async: Boolean): OSErr; external;
function PBSetFinfo(paramBlock: ParmBlkPtr; aSync: Boolean): OSErr; external;
function PBSetFLock(paramBlock: ParmBlkPtr; async: Boolean): OSErr; external;
function PBRstFLock(paramBlock: ParmBlkPtr; aSync: Boolean): OSErr; external;
function PBSetFVers(paramBlock: ParmBlkPtr; aSync: Boolean): OSErr; external;
function PBAllocate(paramBlock: ParmBlkPtr; aSync: Boolean): OSErr; external;
function PBGetEOF(paramBlock: ParmBlkPtr; aSync: Boolean): OSErr; external;
function PBSetEOF(paramBlock: ParmBlkPtr; aSync: Boolean): OSErr; external;
function PBGetFPos(paramBlock: ParmBlkPtr; aSync: Boolean): OSErr; external;
function PBSetFPos(paramBlock: ParmBlkPtr; aSync: Boolean): OSErr; external;
function PBFlushFile(paramBlock: ParmBlkPtr; aSync: Boolean): OSErr; external;
function PBMountVol(paramBlock: ParmBlkPtr): OSErr; external;
function PBUnMountVol(paramBlock: ParmBlkPtr): OSErr; external;
function PBEject(paramBlock: ParmBlkPtr): OSErr; external;
function PBOffLine(paramBlock: ParmBlkPtr): OSErr; external;
procedure AddDrive(drvrRefNum: Integer; drvNom: Integer; QEl: drvQElPtr); external;

function PBOpenWD(paramBlock: WDPBPtr; aSync: Boolean): OSErr; external;
function PBCloseWD(paramBlock: WDPBPtr; aSync: Boolean): OSErr; external;
function PBHSetVol(paramBlock: WDPBPtr; async: Boolean): OSErr; external;
function PBHGetVol(paramBlock: WDPBPtr; aSync: Boolean): OSErr; external;.
function PBCatMove(paramBlock: CMovePBPtr; async: Boolean): OSErr; external;
function PBDirCreate(paramBlock: hParmBlkPtr; aSync: Boolean): OSErr; external;
function PBGetWDinfo(paramBlock: WDPBPtr; aSync: Boolean): OSErr; external;
function PBGetFCBinfo(paramBlock: FCBPBPtr; aSync: Boolean): OSErr; external;
function PBGetCatinfo(paramBlock: CinfoPBPtr; aSync: Boolean): OSErr; external;
function PBSetCatinfo(paramBlock: CinfoPBPtr; aSync: Boolean): OSErr; external;
function PBAllocContig(paramBlock: ParmBlkPtr; aSync: Boolean): OSErr; external;
function PBLockRange(paramBlock: ParmBlkPtr; aSync: Boolean): OSErr; external;
function PBUnLockRange(paramBlock: ParmBlkPtr; aSync: Boolean): OSErr; external;

function PBSetVInfo(paramBlock: hParmBlkPtr; aSync: Boolean): OSErr; external;

396 Turbo Pascal for the Macintosh

function
function
function
function
function
function
function
function
function
function
function

function

function
function

function

function

function

function

PBRGetVInfo(paramBlock: hParmBlkPtr; aSync: Boolean): OSErr; external;
PBROpen(paramBlock: hParmBlkPtr; aSync: Boolean): OSErr; external;
PBROpenRF(paramBlock: hParmBlkPtr; aSync: Boolean): OSErr; external;
PBRCreate(paramBlock: hParmBlkPtr; aSync: Boolean): OSErr; external;
PBRDelete(paramBlock: hParmBlkPtr; aSync: Boolean): OSErr; external;
PBRRename(paramBlock: hParmBlkPtr; aSync: Boolean): OSErr; external;
PBRRstFLock(paramBlock: hParmBlkPtr; aSync: Boolean): OSErr; external
PBRSetFLock(paramBlock: hParmBlkPtr; async: Boolean): OSErr; external
PBRGetFinfo(paramBlock: hParmBlkPtr; async: Boolean): OSErr; external
PBRSetFinfo(paramBlock: hParmBlkPtr; aSync: Boolean): OSErr; external
PBSetPEOF(paramBlock: hParmBlkPtr; async: Boolean): OSErr; external;

FSOpen(fileBame: Str255; vRefNum: Integer;
var refBum: Integer): OSErr; external;

FSClose(refBum: Integer): OSErr; external;
FSRead(refBum: Integer;

var count: Longint; buffPtr: Ptr): OSErr; external;
FSirite(refBum: Integer;

var count: Longint; buffPtr: Ptr): OSErr; external;
Control(refRum: Integer; csCode: Integer;

csParamPtr: Ptr): OSErr; external;
Status(refRum: Integer; csCode: Integer;

csParamPtr: Ptr): OSErr; external;
KillIO(refRum: Integer): OSErr; external;

< volume level calls }
function GetVInfo(drvRum: Integer; volRame: StringPtr; var vRefNum: Integer;

var FreeBytes: Longint): OSErr; external;
function GetFinfo(fileRame: Str255; vRefRum: Integer;

function
function
function
function
function

var Fndrinfo: Finfo):OSErr; external;
GetVol(volRame: StringPtr; var vRefNum: Integer):OSErr; external;
SetVol(volRame: StringPtr; vRefRum: Integer): OSErr; external;
UnKountVol(volRame: StringPtr; vRefRum: Integer):OSErr; external;
Eject(volRame: StringPtr; vRefRum: Integer): OSErr; external;
FlushVol(vollame: StringPtr; vRefRum: Integer):OSErr; external;

< file level calls for unopened files }
function Create(fileRame: Str255; vRefRum: Integer; creator: OSType;

fileType: OSType):OSErr; external;
function FSDelete(fileRame: Str255; vRefRum: Integer):OSErr; external;
function OpenRF(fileRame: Str255; vRefRum: Integer;

var refRum: Integer): OSErr; external;
function Rename(oldRame: Str255; vRefRum: Integer;

nevName: Str2SS):OSErr; external;
function SetFinfo(fileRame: Str255; vRefNum: Integer;

Fndrinfo: Finfo):OSErr; external;
function SetFLock(fileRame: Str255; vRefRum: Integer):OSErr; external;
function RstFLock(fileRame: Str255; vRefRum: Integer):OSErr; e1ternal;

< file level calls for opened files }
function Allocate(refRum: Integer; var count: Longint):OSErr; external;
function GetEOF(refRum: Integer; var LogEOF: Longint):OSErr; external;
function SetEOF(refRum: Integer; LogEOF: Longint):OSErr; external;
function GetFPos(refRum: Integer; var filePos: Longint):OSErr; external;
function SetFPos(refRum: Integer; posMode: Integer; posOff: Longint):OSErr;
external;
function GetVRefRum(fileRefRum: Integer; var vRefRum: Integer):OSErr; external;

< serial driver interface }
function OpenDriver(name: Str255; var drvrRefRum: Integer): OSErr; external
function CloseDriver(refRum: Integer):OSErr; e1ternal

function SerReset(refRum: Integer; serConfig: Integer): OSErr; external;
function SerSetBuf(refRum: Integer; serBPtr: Ptr; serBLen: Integer):

OSErr; external;
function SerRShake(refRum: Integer; flags: SerShk): OSErr; external;

Macintosh Interface Units 397

function SerSetBrk{refRum: Integer): OSErr; external;
function SerClrBrk{refHum: Integer): OSErr; external;
function SerGetBuf{refNum: Integer;

var count: Longint): OSErr; external;
function SerStatus{refNum: Integer;

var serSta: SerStaRec): OSErr; external;
function DiskEject{drvnum: Integer): OSErr; external;
function SetTagBuffer{buffPtr: Ptr): OSErr; external;
function DriveStatus{drvRum: Integer; var status: Drvsts): OSErr; external;
function RamSDOpen(whichPort: SPortSel): OSErr; external;
procedure RamSDClose{whichPort: SPortSel); external;

{ for sound driver }
procedure SetSonndVol{level: Integer); external;
procedure GetSoundVol(var level: Integer); external;
procedure StartSound{synthRec: Ptr; numBytes: Longint; CompletionRtn: ProcPtr); external;

procedure StopSonnd; external;
function SoundDone: Boolean; external;

{ for the system error handler }
procedure SysError{errorCode: Integer); inline $30LF, $Aqcq;

398 Turbo Pascal for the Macintosh

Toollntf

Toollntf implements the Macintosh's user interface features: windows, menus,
controls, dialog boxes, text editing commands, and so on. This unit is needed in
any Mac-style program. ·

unit Toolintf(-9);

interface

uses KemTypes,QuickDraw,Osintf;

const { for FontManager

commandMark = $11
checkMark $12
diamondMark = $13
appleMark $1~

systemFont O;
applFont = 1;
newYork 2;
geneva 3;
monaco ~;
venice 5;
london = b;
athens = 7;
sanFran 8;
toronto = 9;
cairo 11;
losAngeles = 12;
times 20;
hel vetica 21;
courier 22;
symbol 23;
mobile 2~;

prop Font $9000
prpFntH $9001
prpFntll $9002
prpFntHll $9003

fixedFont $8000;
fxdFntH $8001;
fxdFntll $8002;
fxdFntHll $8003;

font II id = $AC80;

{ for Window Manager
wDraw O;
wHit 1;
wCalcRgns 2;
wNew 3;
wDispose ~;
wGrow 5;
wDrawGicon = b;

dialogKind
user Kind

deskPatID

Macintosh Interface Units

{ window messages >

types of windows >

desk pattern resource ID >

399

documentProc • D; < vindov definition procedure IDs >
dBoxProc • L;
plainDBox 2;
altDBoxProc • 3;
noGrowDocProc • 4;
zoomDocProc 6;
zoomNoGrow • L2;
rDocProc = Lb;

inDesk • D;
inftenuBar • L;
inSysWindow • 2;
inContent • 3;
inDrag • 4;
inGrow • 5;
inGoAway • b;

inZoomin = 7;
inZoomOut • 6;

w&oBit • D;
winContent • L;
winDrag • 2;
winGrov • 3;
vinGoAvay • 4;

winZoomin • 5;
winZoomOnt • b;

< FindWindow result codes >

{ new L26K BOK }

< defProc hit test codes >

{ new l26K ROM }

noconstraint • D;
hAxisOnly • L;

< axis constraints for DragGrayRgn call >

vAxisOnly • 2;

teJustLeft • D
teJustBight • -L
teJnstCenter • L

< for Resource Manager >
< resource attribute byte>

< for TextBdit >

ressysBeap • b4; < system or application heap?
resPurgeable • 32; < purgeable resource? >
resLocked • Lb; < load it in locked? >
resProtected • 6; { protected? >
resPreload 4; < load in on OpenBesFile? >
resChanged 2; < resource changed? >

mapBeadOnly •
mapC011pact
mapChanged

resRotFound •
resFRotFound •
addBesFailed •
rmvBesFailed •

l.26;
b4;
32;

-L'l2;
-L'l3;
-L'l4;
-l'lb;

< resource file read-only
< compact resource file >
< write map out at update >

resource not found >
< resource file not found
< AddBesource failed >
< BmveResource failed >

< ID's for resources provided in sysResDef >

< standard cursor definitions >
iBeamCursor • L; < text selection cursor >
crosscursor • 2; < for drawing graphics >
pluscursor • 3; < for structured selection >
watchCursor • 4; < for indicating a long delay >

stop Icon
noteicon

400

• D;
• L;

icons >

Turbo Pascal for the Macintosh

cautionicon = 2;

< patterns }
sysPatListID = o; < ID of PATI which contains 38 patterns

< for Control ftanager
drawcntl • o; < control messages >
testCntl • L;
calcCBgns • 2;
initCntl • 3;
dispCntl = ~;
posCntl • 5;
thumbCntl • b;
dragCntl • 7;
autoTrack • 8;

inButton LO; < Findcontrol result codes }
inCheckbox • LL;
inUpButton • 20;
inDownButton = 2L·
inPageUp • 22!
inPageDown • 23!
inThumb L2q;

pushButProc • O; < control definition proc ID's >
checkBoxProc • L;
radioButProc = 2;
scrollBarProc • Lb;

usellFont 8•
'

useritem • o·
' ctrlltem • ~;

btnCtrl • o;
chkCtrl • L;
radCtrl • 2;
resCtrl • 3;

statText 8·
editText Lb;
iconitem 32;
picitem b~;
itemDisable = L28;

ok = L;
cancel • 2;

< for ftenu Manager >
noftark • o;
TextftenoProc = O;

< menu def Proc messages
mDrawftsg • O;
mChooseftsg = L;
mSizeftsg • 2;

< for scrap ftanager >
noScrapErr = -LOO;
noTypeErr • -L02;

< package manager >
dskinit a 2;
stdFile • 3;
flPoint • ~;
trFunc • 5;

Macintosh Interface Units

for Dialog ftanager }

low 2 bits specify what kind of control >

< static text >
< editable text }
< icon item }
< picture item }
< disable item if set >

< OK button is first by convention }
< cancel button is second by convention

< mark symbol for ftarkitem

< desk scrap isn't initialized }

< disk initializaton >
< standard file >
< floating-point arithmetic }
< transcendental functions }

401

intUtil
bdConv

type

b;
7;

international utilities >
binary/decimal conversion

Intb~Bit = { general utilities >
record

hiLong: Longint;
loLong: Longint;

end;

CursPtr = ACursor;
CursHandle = ACursPtr;

PatPtr = APattern;
PatHandle = APatPtr;

FMinput = packed record
family: Integer;
size: Integer;
face: Style;
needBits: Boolean;
device: Integer;
numer: Point;
denom: Point;

end;

{ for Font Manager >

FMOutPtr = AFMOutPut;

FMOutPut = packed record

FontRec

402

errNum: Integer;
fontHandle: Handle;
bold: Byte;
italic: Byte;
ulOffset: Byte;
ulShadow: Byte;
ulThick: Byte;
shadow: Byte;
extra: SignedByte;
ascent: Byte;
descent: Byte;
widMax: Byte;
leading: SignedByte;
unused: Byte;
numer: Point;
denom: Point;

end;

Integer; { font type >
record

fontType:
firstChar:
lastChar:
widMax:
kernMax:
nDescent:
fRectllidth:
fRectHeight:
ol!TLoc:
ascent:
descent:
leading:
rowllords:
bitlmage:
locTable:
owTable:
widthTable:

Integer; { ASCII code of first character >
Integer; { ASCII code of last character >
Integer; { maximum character width >
Integer; { negative of maximum character kern
Integer; { negative of descent >
Integer; { width of font rectangle >
Integer; { height of font rectangle >
Integer; { offset to offset/width table
Integer; { ascent >
Integer; { descent >
Integer; { leading >
Integer; { row width of bit image I 2 >
arrayC1 •. rowllords,1 .. fRectHeightl of Integer;
arrayCfirstChar .. lastChar•21 of Integer;
arrayCfirstChar .. lastChar•21 of Integer;
arrayCfirstChar .. lastChar•21 of Integer;

Turbo Pascal for the Macintosh

heightTable: arrayCfirstChar .. lastChar•2l of Integer;
end;

WidthTable = packed record
tabData:
tabPont:
sExtra:
style:
fID:
fSize:
face:
device:
vinScale:
hinScale:
aPID:
fHand:
usedPam:
aPace:
vOutput:
hOutput:
vPactor:
hPactor:
aSize:
tabSize:

end;

PMetricRec • record
ascent:
descent:
leading:
widMax:
wTabHandle:

end;

WidTable record

{ new l28K ROM }
arrayCl .• 25bl of fixed; {character widths
Handle; { font record used to build table
Longint; { extra space used for table >
Longint; { extra due to style >
Integer; { font family ID >
Integer; { font size request >
Integer; { style (face) request
Integer; { device requested >
Pixed;
Fixed;
Integer;
Handle;
Boolean;
Byte;
Integer;
Integer;
Integer;
Integer;
Integer;
Integer;

Pixed;
Pixed;
Fixed;
Pixed;
Pixed;

{ actual font family ID for table >
{ family record used to build up table
{ used fixed point family widths >
{ actual face produced >
{ vertical scale output value >
{ horizontal scale output value >
{ vertical scale output value >
{ horizontal scale output value >
{ actual size of actual font used
{ total size of table >

{ baseline to top >
{ baseline to bottom >
{ leading between lines >
{ maximum character width >
{ handle to font width table

numWidths: Integer; { number of entries - 1

WidEntry

AsscEntry

{ widList: arrayCl .. numWidthsl of WidEntry >
end;

record
widStyle: Integer; { style entry applies to
{ widRec: arrayCfirstChar .• lastCharl of Integer>

end;

record
fontSize:
fontStyle:
fontID:

end;

Integer;
Integer;
Integer; { font resource ID >

PontAssoc record
numAssoc: Integer; { number of entries - l
{ asscTable: arrayC1 •• numAssocl of AsscEntry >

end;

StyleTable record
fontClass:
offset:
reserved:
indexes:

end;

NameTable = record

Integer;
Longint;
Longint;
arrayC0 .• 471 of Byte;

stringCount: Integer;
baseFontName: STR255;
{strings: arrayC2 .. stringCountl of string>

Macintosh Interface Units 403

{ the lengths of the strings are arbitrary
end;

KernPair = record
kernFirst:
kernsecond:
kernllidth:

end;

Char;
Char;
Integer;

1st character of kerned pair
2nd character of kerned pair }
kerning in 1 pt fixed format >

KernEntry • record
kernLength:
kernStyle:
{ kernRec:

Integer; { length of this entry >
Integer; { style the entry applies to

arrayCl .. (kernLength/~)-11 of KernPair}
end;

KernTable • record
numKerns: Integer; { number of kerning entries
{ kernList: arrayCl .. numKernsl of KernEntry}

end;

FamRec • record
ffFlags:
ffFamID:
ffFirstChar:
ffLastChar:
ffAscent:
ffDescent:
ffLeading:
ffllidMax:
ffllTabOff:
ffKernOff:
ffStylOff:
ffProperty:
fflntl:
ffVersion:
{ffAssoc:
{ffllidthTab:
{ffStyTab:
{ffKernTab:

end;

< for Event Manager }

Integer; { flags for family }
Integer; < family ID number }
Integer; { ASCII code of 1st character }
Integer; { ASCII code of last character >
Integer; { maximum ascent for 1 pt font }
Integer; { maximum descent for 1 pt font >
Integer; { maximum leading for 1 pt font }
Integer; { maximum widMax for 1 pt font }
Longint; { offset to width table }
Longint; { offset to kerning table >
Longint; { offset to style mapping table >
arrayCl •. 91 of Integer; {style property info
arrayC1 .. 2J of Integer; {for international use
Integer; < version number >
FontAssoc;> { font association table
llidTable;> { width table }
StyleTable;> {style mapping table
KernTable;> { kerning table }

<the Event Record is defined in Osintf}

KeyKap •packed arrayCD .. 1271 of Boolean;

llindowPtr = GrafPtr;
llindowPeek = AllindowRecord;
ControlHandle • AControlPtr;

RindowRecord • record

404

port:
windowKind:
visible:
hilited:
goAwayFlag:
spareFlag:
strucRgn:
contRgn:
updateRgn:
windowDefProc:
dataHandle:
titleHandle:
titlellidth:
ControlList:
nextllindow:

for llindow Manager

for Control Manager

GrafPort;
Integer;
Boolean;
Boolean;
Boolean;
Boolean;
RgnHandle;
RgnHandle;
RgnHandle;
Handle;
Handle;
StringHandle;
Integer;
ControlHandle;
llindowPeek;

Turbo Pascal for the Macintosh

windowPic:
ref Con:

end;

PicBandle;
Longint;

TBRec • record for TextBdit >
destRect: Rect; { destination rectangle }
viewRect: Rect; { view rectangle }
selRect: Rect; < select rectangle >
lineBeight: Integer; { current font line height }
fontAscent: Integer; { current font ascent }
selPoint: Point; { selection point(mouseLoc)
selStart: Integer; < selection start }
selBnd: Integer; { selection end }
active: Integer; { <>D if active }
wordBreak: ProcPtr; { word break routine }
clikLoop: ProcPtr; { click loop routine >
clickTime: Longint; < time of first click >
clickLoc: Integer; < char. location of click >
caretTime: Longint; { time for next caret blink }
caretState: Integer; { on/active Booleans }
just: Integer; { fill style >
teLength: Integer; { length of text below }
hText: Bandle; < handle to actual text >
recalBack: Integer; { <>D if recal in background }
recalLines: Integer; { line being recal'ed }
clikStuff: Integer; { click stuff (internal) }
crOnly: Integer; < set to -L if CR line breaks only }
txPont: Integer; { text Pont }
txPace: Style; < text Pace >
txllode: Integer; { text !lode }
txSize: Integer; < text Size >
inPort: GrafPtr; { Grafport }
highBook: ProcPtr; < highlighting hook }
caretBook: ProcPtr; { highlighting hook }
nLines: Iuteger; { number of lines }
lineStarts: arrayCD •. LbDDDJ of Integer;

{ actual line starts itself }
end; < record >

TBPtr • ·TBRec;
TBBandle • ·TBPtr;

CharsBandle • •charsPtr;
CharsPtr • •chars;
Chars• packed arrayCD .• 32DDDI of Char;

< for Resource llanager >
ResType • packed arrayCL •• ~J of Char;

{ for Control llanager >
ControlPtr • •controlRecord;

ControlRecord • packed record
nextControl:
contrlOwner:
contrlRect:
contrlVis:
contrlBilite:
contrlValue:
contrlllin:
contrlllax:
contrlDefProc:
contrlData:
contrlAction:
contrlrfCon:
contrlTitle:

end;

Macintosh Interface Units

ControlBandle;
llindowPtr;
Beet;
Byte;
Byte;
Integer;
Integer;
Integer;
Bandle;
Bandle;
ProcPtr;
Longint;
Str255;

< ControlRecord }

405

< for Dialog Manager >
DialogPtr• WindovPtr;
DialogPeek• •nialogRecord;
DialogRecord= record

window:
Items:
textH:
editField:
editOpen:
aDefitem:

end;

DialogTHndl= •nialogTPtr;

WindowRecord;
Handle;
TEHandle;
Integer;
Integer;
Integer;

DialogTPtr= •nialogTemplate;
DialogTemplate= record

StageList=

boundsRect:
procID:
visible:
filler1:
goAwayFlag:
refCon:
ItemsID:
title:

end;

Rect;
Integer
Boolean
Boolean
Boolean
Longint
Integer
Str255;

packed record
bolditm~: 0 .. 1;
boxDrwn~: Boolean;
sound~: 0 .. 3;
bolditm3: 0 .. 1;
boxDrwn3: Boolean;
sound3: o .. 3;
bolditm2: 0 .. 1;
boxDrvn2: Boolean;
sound2: o •• 3;
bolditm1: 0 .. 1;
boxDrwn1: Boolean;
sound1: 0 .. 3;

end;

AlertTHndl= •AlertTPtr;
AlertTPtr= •AlertTemplate;
AlertTemplate= record

boundsRect:
items ID:
stages:

end;

< for Menu Manager >
MenuPtr = •nenuinfo;
MenuHandle • •MenuPtr;
Menuinfo = record

menuid:
menuliidth:
menuHeight:
menuProc:
enableFlags:
menuData:

end;

< for Scrap Manager >
ScrapStuff = record

scrapSize:
scrapHandle:
scrapcount:

406

Rect;
Integer;
StageList;

Integer;
Integer;
Integer;
Handle;
Longint;
Str255;

Longint;
Handle;
Integer;

Turbo Pascal for the Macintosh

scrapState: Integer;
scrapRame: StringPtr;

end;
pScrapStuff = AScrapStuff;

< general utilities >
function BitAnd(longL,long2: Longint): Longint; inline $2DLF,scaqF,$2B6D;
function Bit0r(longL,long2: Longint): Longint; inline $2DLF,$6DqF,$2B6D;
function BitXor(longL,long2: Longint): Longint; inline $2DLF,$2BqF,$BLq7;
function BitRot(long: Longint): Longint; inline $2BqF,$~bq7;
function BitShift(long: Longint; connt: Integer): Longint; inline $A65C;
function BitTst(bytePtr: Ptr; bitRum: Longint): Boolean; inline $A65D;
procedure BitSet(bytePtr: Ptr; bitRum: Longint); inline $A65B;
procedure BitClr(bytePtr: Ptr; bitRum: Longint); inline $A65F;
procedure Longftul(a,b: Longint; var dst: Intb~Bit); inline $A6b7;
function Fixftnl(a,b: Fixed): Fixed; inline $A6b6;
function FixRatio(numer,denom: Integer): Fixed; inline $A6bq;
function FixRound(x: Fixed): Integer; inline $A6bC;
procedure PackBits(var srcPtr,dstPtr: Ptr; srcBytes: Integer); inline $A6CF;
procedure UnPackBits(var srcPtr,dstPtr: Ptr; dstBytes: Integer); inline $A6DD;
function SlopeFromAngle(angle: Integer): Fixed; inline $A6BC;
function AngleFromSlope(slope: Fixed): Integer; inline $A6C~;
function DeltaPoint(ptA,ptB: Point): Longint; inline $Aq~F;

function RewString(theString:Str255): StringHandle; inline $Aqab;
procedure SetString(theString:StringHandle; strRew: Str255); inline $Aqa7;
function GetString(stringID: Integer): StringHandle; inline SAqBA;
procedure GetindString(var theString: str255; strListID: Integer;

index: Integer); external;

function ftunger(h: Handle; offset: Longint; ptrL: Ptr; lenL: Longint;
ptr2: Ptr; len2: Longint): Longint; inline $A9BD;

function Geticon(iconID: Integer): Handle; inline SAqBB;
procedure Ploticon(theRect: Beet; theicon: Handle); inline $A9~B;
function GetCursor(cursorID: Integer): CursHandle; inline $A9Bq;
function GetPattern(patID: Integer): PatHandle; inline SAqB6;
function GetPictore(picID: Integer): PicHandle; inline $AqBc;
procedure GetindPattern(var thePat: Pattern; patListID: Integer;

index: Integer); external;

procedure ShieldCursor(shieldRect: Rect; offsetPt: Point); inline $A655;
procedure ScreenRes(var scrnHRes, scrnVRes: Integer); external;

< for Font Manager }
procedure InitFonts; inline $A6FB;
procedure GetFontRame(familyID: Integer; var theRame: Str255); inline $A6FF;
procedure GetFRum(theRame: Str255; var familyID: Integer); inline saqaa;
procedure SetFontLock(lockFlag: Boolean); inline $A9D3;
function FMSwapFont(inRec: Fftinpot): FftOotPtr; inline SA9DL;
function RealFont(famID: Integer; size: Integer): Boolean; inline $Aqa2;

< new L26K ROB }
procedure SetFScaleDisable(scaleDisable:Boolean); inline $A63~;
procedure SetFractEnable(fractBnable:Boolean); external;
procedure Fontftetrics(var theftetric~:FMetricRec); inline SA635;

< for Event Manager }
function BventAvail(mask:Integer; var theBvent: EventRecord):

Boolean; inline $Aq7L;
function GetRextEvent(mask:Integer; var theBvent: EventRecord):

Boolean; inline $Aq7a;
function StillDown:Boolean; inline SA973;
function WaitMooseUp:Boolean; inline $Aq77;
procedure Getftonse(var pt: Point); inline $Aq72;
function TickCoont:Longint; inline $Aq7s;

Macintosh Interface Units 407

function Button: Boolean; inline $Aq7~;
procedure GetKeys(var k: keyBap); inline $Aq7b;

function GetDblTime: Longint; inline $2BB8, $D2PD;
function GetCaretTime: Longint; inline S2BB8, $D2P~;

{ for Window Banager >
procedure Cliplbove(vindov: iindovPeek); inline SAqaB;
procedure PaintOne(vindov: iindovPeek; clobbered: RgnBandle); inline SAqac;
procedure PaintBehind(startiindov: iindovPeek; clobbered: RgnBandle); inline SAqan;
procedure SaveOld(vindov: UndovPeek); inline SAqDB;
procedure DravRev(vindov: iindovPeek; fUpdate: Boolean); inline SAqap;
procedure CalcVis(vindov: iindovPeek); inline $Aqaq;
procedure CalcVisBebind(startiindov: iindovPeek; clobbered: RgnBandle); inline $AqDA;

procedure SbovBide(vindov: iindovPtr; sbovPlag: Boolean); inline SAqa8;

function CheckUpdate(var theBvent: BventRecord): Boolean; inline SAqLL;
procedure GetiBgrPort(var vPort: GrafPtr); inline SAqLa;

procedure Initiindovs; inline SAqL2;
function Reviindov(vStorage: Ptr; boundsRect: Rect; title: Str255;

visible: Boolean; tbeProc: Integer; behind: iindovPtr;
goAvayPlag: Boolean; refCon: Longint): VindovPtr; inline SAqL3;

procedure Disposeiindov(tbeiindov: iindovPtr); inline SAqL~;
procednre Closeiindov(tbeiindov: iindovPtr); inline SAq2n;
procedure Boveiindov(tbeiindov: iindovPtr; b,v: Integer; BringToPront:

Boolean); inline SAqLB;
procedure Sizeiindov(tbeiindov: iindovPtr; vidtb,height: Integer;

fUpdate: Boolean); inline SAqLD;
function Groviindov(tbeiindov: vindovPtr; startPt: Point; bBox: Rect):

Longint; inline s1q2B;
procedure Dragiindov(tbeiindov: iindovPtr; startPt: Point;

boundsRect: Rect); inline $Aq2s;
procedure Shoviindov(tbeiindov: iindovPtr); inline SAqLs;
procedure Bideiindov(theiindov: iindovPtr); inline SAqLb;
procedure SetiTitle(tbeiindov: iindovPtr; title: Str255); inline SAqLA;
procedure GetiTitle(tbeiindov: iindovPtr; var title: Str255); inline SAqLq;
procedure Biliteiindov(tbeiindov: iindovPtr; fBiLite: Boolean); inline SAqLc;
procedure BeginUpdate(tbeiindov: iindovPtr); inline $Aq22;
procedure BndUpdate(tbeiindov: iindovPtr); inline SAq23;
procedure SetiRefCon(tbeiindov: iindovPtr; data: Longint); inline SAqL8;
function GetiRefCon(tbeiindov: iindovPtr): Longint; inline $AqL7;
procedure SetiindovPic(tbeiindov: iindovPtr; tbePic: PicBandle); inline $Aq2B;
function GetiindovPic(theiindov: iindovPtr): PicBandle; inline $Aq2p;
procedure BringToPront(theiindov: iindovPtr); inline $Aq2D;
procedure SendBehind(theiindov,bebindiindov: iindovPtr); inline $Aq2L;
function Prontiindov: iindovPtr; inline SAq2~;
procedure Selectiindov(tbeiindov: iindovPtr); inline SAqLF;
function TrackGoAvay(tbeiindov: iindovPtr; tbePt: Point): Boolean; inline SAqLB;
procedure DravGrovicon(theiindov: iindovPtr); inline SAqa~;

procedure ValidRect(goodRect: Rect); inline SAq2A;
procedure ValidRgn(goodRgn: RgnBandle); inline $Aq2q;
procedure InvalRect(badRect: Rect); inline SAq28;
procedure InvalRgn(badRgn: RgnBandle); inline $Aq27;
function Findiindov(thePoint: Point;

var tbeiindov: iindovPtr): Integer; inline 51q2c;
function GetReviindov(vindovID: Integer; vStorage: Ptr;

behind: iindovPtr): iindovPtr; inline SAqBD;
function PinRect(tbeRect: Rect; thePt: Point): Longint; inline $Aq~B;
function DragGrayRgn(theRgn: RgnBandle; startPt: Point; boundsRect,

slopRect: Rect; axis: Integer; actionProc: ProcPtr):
Longint; inline SAqas;

408 Turbo Pascal for the Macintosh

{ new 126K ROM }
function TrackBox(theWindow:WindowPtr; thePt:Point;

partCode:Integer): Boolean; inline $A63B;

procedure ZoomWindow(theWindow:WindowPtr; partCode: Integer;
front: Boolean); inline $A63A;

< for TextEdit >
procedure TEActivate(h: TEHandle)i inline $A9D6;
procedure TECalText(h: TEHandle)i inline $A9DD;
procedure TEClick(pt: Point; extend: Boolean; h: TEHandle)i inline $A9D~;
procedure TECopy(h: TEHandle)i inline $A9DS;
procedure TECut(h: TEHandle)i inline $A9Db;
procedure TEDeActivate(h: TEHandle)i inline $A9D9;
procedure TEDelete(h: TEHandle); inline $A9D7;
procedure TEDispose(h: TEHandle); inline $A9CD;
procedure TEidle(h: TEHandle); inline $A9DA;
procedure TEinit; inline $A9CC;
procedure TEKey(key: Char; h: TEHandle)i inline $A9DC;
function TENew(dest, view: Rect): TEHandle; inline $A9D2;
procedure TEPaste(h: TEHandle)i inline SA9DB;
procedure TEScroll(dh, dv: Integer; h: TEHandle)i inline $A9DD;
procedure TESetSelect(selStart, selEnd: Longint; h: TEHandle)i inline $A9D1;
procedure TESetText(inText: Ptr; textLength: Longint; h: TEHandle)i inline $A9CF;
procedure TEinsert(inText: Ptr; textLength: Longint; h: TEHandle)i inline $A9DE;
procedure TEUpdate(rUpdate: Rect; h: TEHandle); inline $A9D3;
procedure TESetJust(just: Integer; h: TEHandle); inline $A9DF;
function TEGetText(h: TEHandle): CharsHandle; inline $A9CB;

function TEScrapHandle: Handle; inline $2EB6, $DAB~;
function TEGetScrapLen: Longint; external;
procedure TESetScrapLen(length: Longint); external;
function TEFromScrap: OsErr; external;
function TEToScrap: OsErr; external;

procedure SetWordBreak(wBrkProc: ProcPtr; hTE: TEHandle); external;
procedure SetClikLoop(clikProc: ProcPtr; hTE: TEHandle); external;

{ new 126K ROM }
procedure TESelView(hTE: TEHandle); inline SA611;
procedure TEPinScroll(dh,dv:Integer; hTE:TEHandle); inline $1612;
procedure TEAutoView(auto:Boolean; hTE:TEHandle); inline $A613;

< box drawing utility }
procedure TextBox(inText: Ptr; textLength: Longint;

r: Rect; style: Integer)i inline SA9CE;

< for Resource Manager }
function InitResources: Integer; inline $A995;
procedure RsrcZoneinit; inline $A99b;
procedure CreateResFile(fileName: Str255); inline $A9B1;
function OpenResFile(fileName: Str255): Integer; inline $A997;
procedure UseResFile(refNum: Integer); inline $A996;
function GetResFileAttrs(refRum: Integer): Integer; inline $A9Fb;
procedure SetResFileAttrs(refNum: Integer; attrs: Integer); inline $A9F7;
procedure UpdateResFile(refNum: Integer); inline $A999;
procedure CloseResFile(refRum: Integer); inline $A99A;
procedure SetResPurge(install: Boolean); inline $A993;
procedure SetResLoad(AutoLoad: Boolean); inline $A99B;
function countResources(theType: ResType): Integer; inline $A99C;
function GetindResource(theType: BesType; index:

Integer): Handle; inline $A99D;
function CountTypes: Integer; inline $A99E;
procedure GetindType(var theType: ResType; index: Integer); inline $A99F;
function UniqueID(theType: ResType): Integer; inline $A9C1;

Macintosh Interface Units 409

function GetResource(theType: ResType; ID: Integer):
Bandle; inline $AqAo;

function GetNamedResource(theType: ResType; name: Str255):
Bandle; inline $AqA1;

procedure LoadResource(theResource: Bandle); inline $AqA2;
procedure ReleaseResource(theResource: Bandle); inline $AqA3;
procedure DetachResource(theResource: Bandle); inline $Aqq2;
procedure ChangedResource(theResource: Bandle); inline $AqAA;
procedure WriteBesource(theResource: Bandle); inline $AqBo;
function BomeResFile(theBesource: Bandle): Integer; inline $AqA~;
function curResFile: Integer; inline SAqq~;
function GetResAttrs(theBesource: Bandle): Integer; inline SAqAb;
procedure SetResAttrs(theResource: Bandle; attrs: Integer); inline $AqA7;
procedure GetResinfo(theResource: Bandle; var theID: Integer;

var theType: ResType; var name: Str255); inline $AqA8;
procedure SetResinfo(theResource: Bandle; theID: Integer;

name: Str255); inline SAqAq;
procedure AddBesource(theResource: Bandle; theType: ResType;

theID: Integer; name: Str255); inline $AqAB;
procedure RmveResource(theResource: Bandle); inline SAqAD;
function SizeResource(theResource: Bandle): Longint; inline $AqAs;
function ResBrror: Integer; inline SAqAF;

< new 128K ROM }
function GetlindResource(theType: ResType; index: Integer): Handle; inline $A8DB;
function Count1Types: Integer; inline SA81C;
function Get1Resource(theType: BesType; theID: Integer): Handle; inline $A81F;
function GetlNamedBesource(theType: BesType; name: Str255): Handle; inline $A820;
procedure Get1IndType (var theType: BesType; index: Integer); inline $A8DF;
function Unique1ID(theType: BesType): Integer; inline $A610;
function Count1Besources(theType: BesType): Integer; inline $A6DD;

function MaxSizeBsrc(theBesource:Handle):Longint; inline $A621;
function BsrcftapBntry(theBesource:Bandle):Longint; inline $Aqcs;
function OpenRFPerm(fileName:Str255; VRefNum:Integer; permission: Byte):

Integer; inline SAqc~;

{ for Control Manager }
function NewControl(curWindow: windowPtr; boundsRect: Rect; title: Str255;

visible: Boolean; value: Integer; min: Integer;
max: Integer; contrlProc: Integer; refCon: Longint):
ControlHandle; inline $Aqs~;

procedure DisposeControl(theControl: ControlHandle); inline $Aqss;
procedure KillControls(theWindow: WindowPtr); inline $Aqsb;

procedure MoveControl(theControl: ControlHandle; h,v: Integer); inline $Aqsq;
procedure SizeControl(theControl: ControlHandle; w,h: Integer); inline $Aqsc;
procedure DragControl(theControl: ControlBandle; startPt: Point;

bounds: Beet; slopRect: Rect; axis:Integer); inline $Aqb7;
procedure ShowControl(theControl: ControlHandle); inline $Aqs7;
procedure HideControl(tbeControl: ControlHandle); inline $Aqso;
procedure SetCTitle(theControl: ControlHandle; title: Str255); inline $AqSF;
procedure GetCTitle(theControl: ControlHandle; var title: Str255); inline $AqsB;
procedure HiliteControl(theControl: ControlHandle; hiliteState:

Integer); inline SAqso;
procedure SetCBefCon(theControl: ControlHandle; data: Longint); inline $Aqse;
function GetCRefCon(theControl: ControlBandle): Longint; inline $AqsA;

procedure SetCtlValue(theControl: ControlHandle; theValue: Integer); inline $Aqb3;
function GetCtlValue(theControl: ControlHandle): Integer; inline $Aqbo;

function GetCtlMin(theControl ControlHandle): Integer inline $Aqb1;
function GetCtlMax(theControl ControlHandle): Integer inline $Aqb2;
procedure SetCtlMin(theControl ControlBandle; theValue Integer); inline $Aqb~;
procedure SetCtlMax(theControl ControlHandle; theValue Integer); inline $Aqbs;

410 Turbo Pascal for the Macintosh

function GetCtlAction(theControl: ControlHandle): ProcPtr; inline $AqbA;
procedure SetCtlAction(theControl: ControlHandle; newProc: ProcPtr); inline $AqbB;

function TestControl(theControl: ControlHandle; thePt: Point):
Integer; inline $Aqbb;

function TrackControl(theControl:ControlHandle; thePt: Point;
actionProc:ProcPtr):Integer; inline $Aqb8;

function FindControl(thePoint: Point; theWindow: WindowPtr; var theControl:
ControlHandle): Integer; inline $Aqbc;

procedure DrawControls(theWindow: WindowPtr); inline $Aqbq;
function GetNewControl(controlID: Integer; owner: WindowPtr):

ControlHandle; inline $AqBE;

{ new 128K ROM >
procedure UpdtControl(theWindow:WindowPtr; updateRgn:RgnHandle); inline $Aq53;

< for Dialog Manager >
procedure InitDialogs(resumeProc: ProcPtr); inline $Aq7B;
function GetNewDialog(dialogID: Integer; wStorage: Ptr;

behind: WindowPtr): DialogPtr; inline $Aq7c;
function NewDialog(wStorage: Ptr; boundsRect: Rect; title: Str255;

visible: Boolean; theProc: Integer; behind: WindowPtr;
goAwayFlag: Boolean; refCon: Longint; itmLstHndl: Handle):
DialogPtr; inline $Aq7D;

function IsDialogEvent(event: EventRecord): Boolean; inline $Aq7F;
function DialogSelect(event: EventRecord; var theDialog: DialogPtr;

var iternHit: Integer): Boolean; inline $Aqao;
procedure ModalDialog(filterProc: ProcPtr; var itemHit: Integer); inline $Aqq1;
procedure DrawDialog(theDialog: DialogPtr); inline $Aqa1;
procedure CloseDialog(theDialog: DialogPtr); inline $Aq82;
procedure DisposDialog(theDialog: DialogPtr); inline $Aq83;
function Alert(alertID: Integer; filterProc: ProcPtr): Integer; inline $Aqas;
function StopAlert(alertID: Integer; filterProc: ProcPtr): Integer; inline $Aq8b;
function NoteAlert(alertID: Integer; filterProc: ProcPtr): Integer; inline $Aq87;
function CautionAlert(alertID: Integer; filterProc: ProcPtr):

Integer; inline $Aq88;
procedure CouldAlert(alertID: Integer); inline $Aqaq;
procedure FreeAlert(alertID: Integer); inline $Aq8A;
procedure CouldDialog(DlgID: Integer); inline $Aq1q;
procedure FreeDialog(DlgID: Integer); inline $Aq7A;
procedure ParamText(citeo, citel, cite2, cite3: Str255); inline $Aq8B;
procedure ErrorSound(sound: ProcPtr); inline $Aq8c;
procedure GetDitem(theDialog: DialogPtr; itemNo: Integer;

var kind: Integer; var item: Handle;
var box: Rect); inline $Aqan;

procedure SetDitem(dialog: DialogPtr; itemNo: Integer; kind: Integer;
item: Handle; box: Rect); inline $Aq8E;

procedure SetIText(item: Handle; text: Str255); inline $Aq8F;
procedure GetIText(item: Handle; var text: Str255); inline $Aqqo;
procedure SelIText(theDialog: DialogPtr; itemNo: Integer;

startSel, endSel: Integer); inline $Aq7E;

{ routines designed only for use in Pascal >
function GetAlrtStage: Integer; inline $3EB8, soAqA;
procedure ResetAlrtStage; inline $~278, $0AqA;

procedure DlgCut(theDialog: DialogPtr); external;
procedure DlgPaste(theDialog: DialogPtr); external;
procedure DlgCopy(theDialog: DialogPtr); external;
procedure DlgDelete(theDialog: DialogPtr); external;

procedure SetDAFont(fontNum: Integer); inline $31DF, $DAFA;

{ new 12fiK ROM >
procedure HideDitem(theDialog:DialogPtr; itemNo:Integer); inline $A827;

Macintosh Interface Units 411

procedure ShowDitem(theDialog:DialogPtr; itemRo:Integer); inline $1626;
procedure UpdtDialog(theDialog:DialogPtr; updateRgn:RgnBandle); inline SAq76;
function FindDitem(theDialog:DialogPtr; thePt:Point):Integer; inline $Aq64;

< for Desk Manager >
function SystemEvent(myEvent: EventRecord): Boolean; inline SAqB2;
procedure SystemClick(theEvent: EventRecord; theWindow: windowPtr); inline $AqB3;
procedure SystemTask; inline SAqB4;
procedure SystemMenu(menoResolt: Longint); inline SAqBs;
function SystemEdit(editCode: Integer): Boolean; inline $Aqc2;
function OpenDeskAcc(theAcc: Str255): Integer; inline SAqBb;
procedure CloseDeskAcc(refRum: Integer); inline SAqB7;

< for Menu Manager >
procedure InitMenos; inline $Aq3a;
function RewMeno(menuID: Integer; menuTitle: Str255): menoBandle; inline SAq3L;
function GetMenu(rsrcID: Integer): MenuBandle; inline SAqBF;
procedure DisposeMenu(meno: menuBandle); inline $Aq32;
procedure AppendMenu(menu: menuBandle; data: str255); inline s1q33;

procedure InsertMenu (menu: MenuBandle; beforeid: Integer); inline s1q35;
procedure DeleteMenu (menuid: Integer); inline $Aq3b;
procedure DrawMenuBar; inline $Aq37;
procedure ClearMenuBar; inline $Aq34;

function GetMenuBar:Bandle; inline $Aq3B;
function GetNewMBar(menuBarID: Integer): Bandle; inline SAqca;
procedure SetMenuBar(menuBar: Bandle); inline $Aq3c;

function MenuSelect(startPt: Point): Longint; inline $Aq3D;
function MenuKey(ch: CHAR): Longint; inline SAq3E;
procedure BiLiteMenu(menuid: Integer); inline SAq36;

procedure Setitem(menu: menuBandle; item: Integer; itemString:
Str255); 1nl1ne $Aq47;

procedure Getitem(menu: menuBandle; item: Integer;
var itemString: Str255); inline $Aq4b;

procedure Enableitem(menu: menuBandle; item: Integer); inline $Aq3q;
procedure Disableitem(menu: menuBandle; item: Integer); inline $Aq3A;
procedure Checkitem(menu: menuBandle; item: Integer; checked:

Boolean); inline s1q45;

procedure Setitemicon(menu: menuBandle; item: Integer; iconNum: Byte); inline $Aq4a;
procedure Getitemicon(menu: menuBandle; item: Integer;

var iconNum: Byte); inline $Aq3F;
procedure Setitemstyle(menu: menuBandle; item: Integer; styleVal: Style); e1ternal;
procedure GetitemStyle(menu: menuBandle; item: Integer;

var styleVal: Style); e1ternal;
procedure SetitemMark(menu: menuBandle; item: Integer; markChar: CHAR); inline
s1q44; .
procedure GetitemMark(menu: menuBandle; item: Integer;

var markChar: CHAR); inline s1q43;
procedure SetMenuFlash(flashCount: Integer); inline $Aq4A;
procedure FlashMenuBar(menuID: Integer); inline $Aq4C;

function GetMBandle(menuID: Integer): menuBandle; inline s1q4q;
function CountMitems(meno: menuBandle): Integer; inline SAqsa;
procedure AddResMenu(menu: menuBandle; theType:ResType); inline $Aq4D;
procedure InsertResMenu(menu: menuRandle; theType:ResType;

afteritem: Integer); inline SAqSL;
procedure CalcMenuSize(menu:menuRandle); inline $Aq46;

{ new L26K ROM >
procedure InsMenuitem(theMenu:Menuhandle

itemstring: Str255 afteritem:Integer); inline SA62b;
procedure DelMenuitem(theMenu:MenuRandle item:Integer); inline $Aq52;

412 Turbo Pascal for the Macintosh

< for Scrap Manager >
function GetScrap(hDest: Bandle; what: ResType;

var offset: Longint): Longint; inline $A9FD;
function InfoScrap: pScrapStuff; inline $A9F9;
function LoadScrap: Longint; inline $A9FB;
function PutScrap(length: Longint; what: ResType;

source: Ptr): Longint; inline $A9FE;
function UnloadScrap: Longint; inline $A9FA;
function ZeroScrap: Longint; inline $A9FC;

< package manager >
procedure InitAllPacks; inline $A9Eb;
procedure InitPack(packID: Integer); inline $A9ES;

Macintosh Interface Units 413

Packl.ntf

Packages are sets of data structures and routines that are stored as resources in
the SYSTEM file and brought into memory only when needed. They serve as
extensions to the Toolbox and Mac OS; the most useful (and most commonly
used) is the Standard File Package, which brings up the standard Mac dialog box
to open files or select a file name for output. Other packages include Disk Initial­
ization, International Utilities, and Binary-Decimal Conversion.

unit Packintf (-:LD);

interface

uses MemTypes,QuickDraw,Osintf,Toolintf;

{ disk initialization package ---------------------------------------­

procedure DILoad; external;
procedure DIUnLoad; external;
function DIBadMount(where: Point; evtMessage: Longint): Integer; external;
function DIFormat(drvNum: Integer): OsErr; external;
function DIVerify(drvNum: Integer): OsErr; external;
function DIZero(drvNum: Integer; volName: Str255): OsErr; external;

{ standard file package ---­

const

putDlgID = -3999;

putSave = 1;
putcancel = 2;
putEject = 5;
putDrive = b;
putName = 7;

getDlgID = -4000;

getOpen 1;
getCancel = 3;
getEject = 5;
getDrive = b;
getNmList = 7;
getScroll = 6;

SFPutFile dialog template ID

save button >
cancel button >
eject button >
drive button >
editTExt item for file name

SFGetFile dialog template ID

{ open button >
{ cancel button >
{ eject button >
{ drive button >
{ useritem for file name list
{ useritem for scroll bar >

type

SFReply = record
good: Boolean; ignore command if False >
copy: Boolean; not used >
fType: OsType; file type or not used >
vRefNum: Integer; volume reference number >
version: Integer; file's version number >
fName: StringCb31; file name >

end; { SFReply >
SFTypeList = arrayC0 .. 31 of OSType;

procedure SFPutFile(where: Point; prompt: Str255; origName: Str255;
dlgHook: ProcPtr; var reply: SFReply); external;

414 Turbo Pascal for the Macintosh

procedure SFPPutFile(where: Point; prompt: Str255; origName: Str255;
dlgHook: ProcPtr; var reply: SFReply; dlgID: Integer;
filterProc: ProcPtr); external;

procedure SFGetFile(where: Point; prompt: Str255; fileFilter: ProcPtr;
numTypes: Integer; typeList: SFTypeList; dlgHook: ProcPtr;
var reply: SFReply); external;

procedure SFPGetFile(where: Point; prompt: Str255; fileFilter: ProcPtr;
numTypes: Integer; typeList: SFTypeList; dlgHook: ProcPtr;
var reply: SFReply; dlgID: Integer; filterProc: ProcPtr);

external;

{ international utilities package -----------------------------------­

const

{ constants for manipulation of international resources >
{ masks used for setting and testing currency format flags >
currSymLead • Lb; { set if currency symbol leads, reset if trails >
currNegSym • 32; set if minus sign for negative num, reset if parentheses
currTrailingZ = b4; { set if trailing zero >
currLeadingZ • 128; { set if leading zero >

{ constants specifying absolute value of short date form
MDY = O; { month,day,year >
DMY = 1; { day,month,year >
YMD = 2; { year,month,day }

{ masks used for date element format flags >
dayLdingZ • 32; { set if leading zero for day >
mntLdingZ • b4; { set if leading zero for month >
century • 128; { set if century, reset if no century

{ masks used for time element format flags >
secLeadingZ = 32; { set if leading zero for seconds
minLeadingZ = b4; { set if leading zero for minutes
hrLeadingZ = 128; { set if leading zero for hours >

{ country codes
verlJS
verFrance
verBritain
verGermany
veritaly
verNetherlands
verBelgiumLux
verSweden
verSpain
verDenmark
verPortugal
verFrCanada
verNorway
verisrael
verJapan
verAustralia
verArabia
verFinland
verFrSwiss
verGrSwiss
verGreece
vericeland
verllalta
verCyprus
verTurkey
verYugoslavia

for version numbers
a;

= 1;
2;
3;

= L;;
5;
b;
7;
8;
9•

• 10;
11·
12;

• 13;
= M;

15;
• 1b;

17;
16;
19;
20;

= 21;
22;

• 23 i
• 24;
• 25;

Macintosh Interface Units 415

type

intlCHndl • •intlCPtr;
intlCPtr • •intlCRec;

< ASCII character for decimal point }
< ASCII character for thousand separator }
< ASCII character for list separator >
< ASCII for currency symbol (3 bytes long) >

intlCRec • packed record
decimalPt: Char;
thousSep: Char;
listSep: Char;
currSymL: Char;
currSymi!: Char;
currSym3: Char;
currPmt: Byte; < currency format flags }
dateOrder: Byte; < short date form - DKY,YKD, or KDY }
shrtDatePmt: Byte; < date elements format flag }
dateSep: Char; < ASCII for date separator }
timeCycle: Byte; < indicates Li! or i!4 hr cycle }
timePmt: Byte; < time elements format flags }
mornStr: packed arraylL •• 41 of Char;

< ASCII for trailing string from a:oa to LL:sq >
eveStr: packed arraylL .. 41 of Char;

< ASCII for trailing string from Li!:Oa to i!3:sq
timeSep: Char; < ASCII for the time separator }
timeLSuff: Char; { suffix string used in i!4 hr mode }
timei!Snff: Char; < 6 characters long }
time3Suff: Char;
time4Snff: Char;
timeSSuff: Char;
timebSuff: Char;
time7Suff: Char;
time6Suff: Char;
metricSys: Byte;
intlDVers: Integer;

end; UntlCRec}

indicates metric or English system >
version: high byte • country, low byte • vers

intlLHndl • •intlLPtr;
intlLPtr • •intlLRBc;
intlLRec • packed record

days: arraylL •• 71 of StringlLSI; < length and word for Sun through Kon }
months: arraylL .• Li!l of StringlLSI; <length and word for Jan to Dec >
suppressDay: Byte; < D for day of week, i!SS for no day of week }
lngDatePmt: Byte; < expanded date format a or i!SS >
dayLeadingC: Byte; < i!SS for leading a, a for no leading a}
abbrLen: Byte; <length of abbreviated names in long form}
sta: packed array!L •• 41 of Char; <the strinq sto >
stL: packed arraylL •• 41 of Char; <the string stL >
sti!: packed arraylL •• 41 of Char; <the string sti! }
st3: packed arraylL .. 41 of Char; <the string st3 >
st4: packed arraylL •• 41 of Char; <the string st4 >
intlLVers: Integer; < version word }
localRtn: Integer; routine for localizing mag comp; }

< minimal case is $4B75 for RTS, but }
< routine may be longer than one integer }

end; < intlLRec >

DatePorm • (shortDate, longDate, abbrevDate);

function IUGetintl(theID: Integer): Handle; e1ternal;
procedure IUSetintl(refRum: Integer; theID: Integer; intlParam: Bandle); e1ternal;
procedure IUDateString(dateTime: Longint; longPlag: DatePorm;

var result: Stri!SS); e1ternal;
procedure IUDatePString(dateTime: Longint; longPlag: DatePorm;

var result: Stri!SS; intlParam: Handle); e1ternal;

416 Turbo Pascal for the Macintosh

procedure IUTimeString(dateTime: Longint; wantSeconds: Boolean;
var result: Str255); erternal

procedure IOTimePString(dateTime: Longint; wantSeconds Boolean;
var result: Str255; intlParam Handle); erternal;

function IOlletric: Boolean; erternal;
function IOCompString(aStr,bStr: Str255): Integer; erternal;
function IOEqualString(aStr,bStr: Str255): Integer; erternal;
function IOllagString(aPtr,bPtr: Ptr; aLen,bLen: Integer): Integer; erternal;
function IOMagIDString(aPtr,bPtr: Ptr; aLen,bLen: Integer):Integer; erternal;

< binary-decimal conversion package ---------------------------------- }

procedure StringToRum(theString: Str255; var theRum: Longint); erternal;
procedure NumToString(theRum: Longint; var theString: Str255); erternal;

< list manager }
con st

{ for list manager >
{ masks for selection flags
LOnlyOne
LExtendDrag
LNoDisjoint
LNoExtend
LNoRect
LOseSense
LRoNilHilite

= -128;
• b~;
• 32;

:Lb;
8• t
~.

t

• 2;

(selFlags) >
{ a • multiple selections, :L = one >
{ :L • drag select without shift key >
{ 1 • turn off selections on click >
< 1 = don't extend shift selections >
{ 1 • don't grow (shift,drag) selection as rect
{ :L • shift should use sense of start cell
{ :L • don't highlight empty cells >

{ masks for other flags (listFlags) >

LDoVAutoscroll • 2;
LDoHAutoscroll • 1;

{ :L • allow vertical autoscrolling >
{ :L • allow horizontal autoscrolling

{ messages to list definition procedure >

Linitllsg D;
LDrawMsg :L;
LHiliteMsg • 2;
LClosellsg • 3;

type

Cell = Point;

< tell drawing routines to init themselves >
{ drav (and de/select) the indicated data >
< invert highlight state of specified cell >
< shut down, the list is being disposed >

dataArray =packed array CD •. 32DDDI of Char;
dataPtr = AdataArray;
dataHandle = AdataPtr;

ListPtr = AListRec;
ListHandle = AListPtr;
ListRec = record

rView: Rect;
port: GrafPtr;

indent: Point;
cellSize: Point;

visible: Rect;

vScroll: ControlHandle;
hScroll: ControlHandle;

selFlags: SignedByte;
LActive: Boolean;
LReserved: SignedByte;
listFlags: SignedByte;

Macintosh Interface Units

{ Rect in which we are viewed
< Grafport that owns us >

{ Indent pixels in cell >
{ Cell size >

{ visible row/column bounds

{ vertical scroll bar (or NIL) >
< horizontal scroll bar (or NIL)

< defines selection characteristics
< active or not >
{ internally used flags
{ other flags >

417

clikTime: Longint;
clikLoc: Point;
mouseLoc: Point;
LClikLoop: Ptr;
lastClick: Cell;

refCon: Longint;

listDefProc: Handle;
userHandle: Handle;

dataBounds: Rect;
cells: dataHandle;

save time of last click >
save position of last click

< current mouse position }
< routine called repeatedly during ListClick
< the last cell clicked in >

reference value }

handle to the defProc }
general purpose handle for user

< total number of rows/columns }
< handle to data}

maxindex: Integer; { index past the last element }
cellArray: array Cl .• 11 of Integer; <offsets to elements>

end;

procedure LActivate(act: Boolean; !Handle: ListHandle); e1ternal;
function LAddColumn(count, colNum: Integer; !Handle: ListHandle):

Integer; e1ternal;
function LAddRov(count, rovNum: Integer; !Handle: ListHandle):

Integer; e1ternal;
procedure LAddToCell(dataPtr: Ptr; dataLen: Integer; theCell: Cell;

!Handle: ListHandle); e1ternal;
procedure LAutoScroll(!Handle: ListHandle); e1ternal;
procedure LCellSize(cSize: Point; lHandle: ListHandle); e1ternal;
function LClick(pt: Point; modifiers: Integer; !Handle: ListHandle):

Boolean; e1ternal;
procedure LClrCell(theCell: Cell; !Handle: ListHandle); e1ternal;
procedure LDelColumn(count, colNum: Integer; lHandle:ListHandle); e1ternal;
procedure LDelRov(count, rowNum: Integer; !Handle: ListHandle); e1ternal;
procedure LDispose(!Handle: ListHandle); e1ternal;
procedure LDoDraw(drawit: Boolean; lBandle:ListBandle); e1ternal;
procedure LDraw(theCell: Cell; !Bandle: ListBandle); e1ternal;
procedure LPind(var offset, len: Integer; theCell: Cell;

lBandle: ListBandle); e1ternal;
procedure LGetCell(dataPtr: Ptr; var dataLen: Integer; theCell: Cell;

!Handle: ListBandle); external;
function LGetSelect (next: Boolean; var theCell: Cell;

lBandle: ListBandle): Boolean; external;
function LLastClick (!Handle: ListHandle): Longint; external;
function LNew(rView, databounds: Rect; cSize: Point; theProc:

Integer; theWindow: WindovPtr;
dravit, hasGro·v·, scrollBoriz, scroll Vert:
Boolean): ListBandle; e1ternal;

function LNextCell(hNext,vNext: Boolean; var theCell: Cell;
!Handle: ListBandle): Boolean; external;

procedure LRect(var cellRect: Rect; theCell: Cell;
lHandle: ListBandle); e1ternal;

procedure LScroll(dRovs, dCols: Integer; !Bandle: ListBandle); e1ternal;
function LSearch(dataPtr: Ptr; dataLen: Integer; SearchProc: Ptr;

var theCell: Cell; !Bandle: ListBandle): Boolean; e1ternal;
procedure LSetCell(dataPtr: Ptr; dataLen: Integer; theCell: Cell;

!Bandle: ListBandle); e1ternal;
procedure LSetSelect(setit: Boolean; theCell: Cell;

!Bandle: ListBandle) external;
procedure LSize(listWidth,listHeight: Integer !Bandle: ListBandle); e1ternal;
procedure LUpdate(theRgn: RgnHandle; !Bandle ListBandle; external;

418 Turbo Pascal for the Macintosh

MacPrint

The MacPrint unit provides access to the Macintosh Printing Manager. The
Printing Manager is a set of RAM-based data types and routines that allow you to
use standard QuickDraw routines to print text or graphics on a printer. These
provide a device-independent interface to printer drivers, which enable you to
print on a specific device (ImageWriter, LaserWriter, and other printers). One
(or more) of these printer drivers - usually found in the SYSTEM folder- must
be available in order to use this package.

unit MacPrint(-11);

interface

uses MemTypes,QuickDraw,OSintf ,Toolintf;

canst
iPrPgPract = 120;

iPrPgPst = 1;
iPrPgMax = 9999;

iPrRelease • 3;

iPfMaxPgs = 128;

{ driver constants
iPrBitsCtl = ~;
lScreenBits= $OOoooooo;
lPaintBits = $00000001;
lHiScreenBits= $00000010;
lHiPaintBits = soooooo11;
iPrIOCtl = S;
iPrEvtCtl = b;
lPrEvtAll = $0002FFPD;
lPrEvtTop = $0001PPPD;
iPrDevCtl = 7;
lPrReset = sooo10000;
lPrPageEnd = $00020000;
lPrLinePeed= $00030000;
lPrLPSixth = $0003PPPP;
lPrLPEighth= $0003FPPE;
iPllgrCtl = 8;

< error constants: >
illemPullErr = -108;
iPrAbort = 128;
iIOAbort = -27;

{ PrVars lo mem area: }
pPrGlobals = sooooo9~~;
bDraftLoop = O;
bSpoolLoop = 1;
bUser1Loop = 2;
bUser2Loop = 3;

Page scale factor; }
ptPgSize (below) is in units of 1/iPrPgPract

page range constants }

< current version number of the code.
{ DC 7 /23/84 }
{ max number of pages in a print file.

Bitmap print proc's ctl number }
Bitmap print proc's screen bitmap param }
Bitmap print proc's paint Csq pixl param }
Bitmap print proc's screen Bitmap param }
Bitmap print proc's paint Csq pixl param }
raw byte IO proc's ctl number }
PrEvent proc's ctl number }
PrEvent proc's CParam for the entire screen

< PrEvent proc's CParam for the top folder >
< PrDevCtl proc's ctl number >
< PrDevCtl proc's CParam for reset >
{ PrDevCtl proc's CParam for end page }
< PrDevCtl proc's CParam for paper advance >
< PrDevCtl proc's CParam for 1/bth inch paper advance }

< PrDevCtl proc's CParam for 1/8th inch paper advance }
< PMgr's Tail-hook Proc's ctl number }
{ CThe Pre-Hook is the status calll }

< currently supported printers: }
bDevCitoh = 1; iDevCitoh = $0100; { Citoh }

Macintosh Interface Units 419

bDevDaisy = 2; iDevDaisy = $0200; { Daisy >
bDevLaser = 3; iDevLaser = $0300; { Laser >

type

TPRect = •aect;
TPBitMap = •BitMap;

{ A Rect Ptr >
{ A BitMap Ptr }

{ NOTE: Changes will also affect: PrEqu, TCiVars & TPfVars
TPrVars = record { i; longs for printing; >

iPrErr: Integer;

bDocLoop: SignedByte;

bUserL:
lUserL:
1User2:
1User3:

end;
TPPrVars =

SignedByte;
Longint;
Longint;
Longint;

•TPrVars;

TPrinfo = record

iDev:
iVRes:
iHRes:
rPage:

end;
TPPrinfo =

Integer;
Integer;
Integer;
Rect;

•TPrinfo;

{ types of paper feeders >

{ see SysEqu for location >
{ current print error; >
{ set to iPrAbort to abort printing >
{ Doc style: Draft, Spool, .. , and .. >
{ currently use low 2 bits; >
{ the upper b are for flags >
{ spares used by the print code >

print info record: >
{ the parameters needed for page composition
{ font mgr/QuickDraw device code >
{ resolution of device, in device coordinates >
{ .. note: v before H •>compatible with point>
{ page (printable) rectangle in device coordinates

TFeed = (feedCut, feedFanfold, feedMechCut, feedOther);

TPrStl = record printer style: the printer configuration
{ and usage information >

wDev:

iPageV:
iPageH:
bPort:
feed:

Integer;

Integer;
Integer;
SignedByte;
TFeed;

{ device (driver) number: >
{ Hi byte•RefHum, Lo byte=variant }
{ fO • fHiRes, fL = fPortrait, f2 • fSqPix,
{ f3 • f2xZoom, fi; = fScroll >
{ paper size in units of L/iPrPgFract >
{ ROTE: V before H => compatible with Point >
{ IO port number. Refnum? >
{ paper feeder type >

end;
TPPrStl = •TPrStl;

{ Banding data structures. Rot of general interest to Apps. }
TScan = { band scan direction: Top-Bottom, Left-Right, etc. >

(scanTB, scanBT, scanLR, scanRL);

TPrXInfo = record
iRovBytes: Integer;

420

iBandV: Integer;
iBandH: Integer;
iDevBytes: Integer;
iBands: Integer;

bPatScale:
bULThick:
bULOffset:
bULShadow:

scan:
bXInfoX:

SignedByte;
SignedByte;
SignedByte;
SignedByte;

TScan;
SignedByte;

print time extra information >
{ band's rowBytes >
{ size of band, in device coordinates }
{ ROTE: V before H => compatible with Point >
{ size for allocation; may be more than rBounds!
{ number of bands per page >

pattern scaling >
three underscoring parameters

band scan direction
an extra byte >

Turbo Pascal for the Macintosh

end;
TPPrXInfo = ATPrXInfo;

TPrJob = record

iFstPage:
iLstPage:
iCopies:
bJDocLoop:
fFromOsr:
pidleProc:
pFileRame:
iFileVol:
bFileVers:
bJobX:

end;

Integer;
Integer;
Integer;
SignedByte;
Boolean;

ProcPtr;
StringPtr;
Integer;
SignedByte;
SignedByte;

TPPrJob • ATPrJob;

{ print job: >
{ Print "form" for single print request
{ page range >

number copies >
doc style: Draft, Spool, .. , and .. }
printing from an user's app (not PrApp) flag >

{ Proc called while waiting on IO, etc. >
{ spool file name: BIL for default. >
{ spool file vol: set to O initially >
< spool file version: set to o initially >
{ an extra byte >

The universal 120 byte printing record >
{ 2 } { printing software version >

TPrint • record
iPrVersion: Integer;
Prinfo: TPrinfo; { 14 } { Prinfo data associated with the current

style >
rPaper:
PrStl:
PrinfoPT:

{ 8 > { paper rectangle [offset from rPagel >
{ 8 > { print request's style >
{ 14 } { print time imaging metrics }

PrXInfo:

Rect;
TPrStl;
TPrinfo;
TPrXInfo;
TPrJob;

{ 1b > { print time (expanded) print info record
PrJob:

needed to fill 120 >

{ 20 > { print job request >
{ 82 > { total of above: 120 - 82 = 38 bytes

PrintX: array[1,.1,l
end;

of Integer; < spare to fill to 120 bytes >

TPPrint • ATPrint;
THPrint • ATPPrint;

{ Printing Graf Port. All printer imaging, whether spooling, banding, etc.,
happens "thru" a GrafPort >
TPrPort = record this is the "PrPeek" record

GPort: GrafPort; { the Printer's graf port >
GProcs: QDProcs; { •. and its procs >

lGParam1:
lGParam2:
lGParam3:
lGParam4:

Longint;
Longint;
Longint;
Longint;

1b bytes for private parameter storage

fOurPtr: Boolean;
fOurBits: Boolean;

end;

whether the PrPort allocation was done by us
whether the BitMap allocation was done by us

TPPrPort • •rPrPort;

TPrStatus • record <
iTotPages: Integer;
iCurPage: Integer;
iTotCopies: Integer;
iCurCopy: Integer;
iTotBands: Integer;
iCurBand: Integer;
fPgDirty: Boolean;
fimaging: Boolean;
hPrint: THPrint;
pPrPort: TPPrPort;

print status: print information during printing
< total pages in print file >
{ current page number }
{ total copies requested
{ current copy number >
{ total bands per page >
{ current band number >
< True if current page has been written to
{ set while in band's DrawPic call }
{ handle to the active printer record
{ Ptr to the active PrPort >

hPic: PicHandle; { handle to the active picture }
end;
TPPrStatus = •rPrStatus;

{ PicFile •a TPfHeader followed by n QuickDraw Pies (whose PicSize is invalid!)}

Macintosh Interface Units 421

record
Integer;

TPf PgDir =
iPages:
lPgPos:

end;
TPPfPgDir
TBPfPgDir =

array!O .• iPfMaxPgsl of Longint;

ATPfPgDir;
ATPPfPgDir;

TPfBeader = record
Print: TPrint;
PfPgDir: TPfPgDir;

end;

TPPfBeader = ATPfHeader;
TBPfBeader = ATPPfBeader;

{ print file header }

{ NOTE: Type compatible with an hPrint }

{ This is the Printing Dialog Record. Only used by folks appending their own
dialogs. }
TPrDlg = record {

Dlg: DialogRecord;
pFltrProc: ProcPtr;
pitemProc: ProcPtr;
hPrintUsr: TBPrint;
fDoit: Boolean;
fDone: Boolean;
lUserl: Longint;
1User2: Longint;
1User3: Longint;
lUser~: Longint;

Print Dialog: The dialog stream object
{ the dialog window }
< the filter proc. }
< the item evaluating proc.
{ the user's print record }

~ longs for users to hang global data

{ ..• Plus more stuff needed by the particular printing dialog
end;
TPPrDlg = ATPrDlg; == a dialog ptr }

< --init-- }
procedure PrOpen; external;

< Open the .Print driver, get the current Printer's Rsrc file }
{ name from SysRes, open the resource file, and open the .Print
{ driver living in SysRes. PrOpen MUST be called during init time.

procedure PrClose; external;
{ Closes JUST the print rsrc file. Leaves the .Print driver in SysRes open.

< --Print Dialogs & Default-- }
procedure PrintDefault (hPrint: TBPrint); external;

< defaults a handle to a default print record. }
{ NOTE: You allocate (or fetch from file's resources .•) the handle, }
{ I fill it. Also, I may invoke this at odd times whenever I think }
{ you have an invalid Print record! }

function PrValidate (hPrint: TBPrint): Boolean; external;
< Checks the hPrint. Fixes it if there has been a change in
{ SW version or in the current printer. Returns fChanged. }
{ NOTE: Also updates the various parameters within the Print
{ record to match the current values of the PrStl & PrJob. }
{ It does NOT set the fChanged result if these parameters }
{ changed as a result of this update. }

function PrStlDialog (hPrint: TBPrint): Boolean; external;
function PrJobDialog (hPrint: THPrint): Boolean; external;

< The dialog returns the fDoit flag:
if PrJobDialog(..) then begin

PrintMyDoc (..);
SaveMyStl (..)

end
or

if PrStlDialog(..) then SaveMyStl (..)

422 Turbo Pascal for the Macintosh

< ROTE: These may change the hPrint•• if the version number
is old or the printer is not the current one. >

procedure PrJobMerge (hPrintsrc, hPrintDst: TBPrint); e1ternal1

< Merges hPrintSrc's PrJob into hPrintDst ISonrce/Destinationl.
Allows one job dialog being applied to several docs !Finder printing!

--The Document printing procs: These spool a print file.--

function PrOpenDoc (hPrint: TBPrint;
pPrPort: TPPrPort;
pIOBuf: Ptr): TPPrPort; external;

{ Set up a graf port for Pie streaming and make it the current >
< port. Init the print file page directory. Create and open the >
{ print file. hPrint: The print info. pPrPort: the storage to >
< use for the TPrPort. If nil we allocate. pIOBuf: an IO buf; >
< if nil, file sys uses volume buf. returns TPPrPort: The TPPrPort >
< (graf port) used to spool thru. }

procedure PrCloseDoc (pPrPort: TPPrPort)i e1ternal1
< Write the print file page directory. Close the print file.

procedure PrOpenPage (pPrPort: TPPrPort; pPageFrame: TPRect); e1ternal1

< If current page is in the range of printed pages: Open a picture }
< for the page. Otherwise set a null port for absorbing an image. >
< pPageFrame := Prinfo.rPage, unless rou're scaling. Set pPagePrame }
< to nil unless you want to perform P cScaling on the printer. >
< !The printing procs will call OpenPicture (pPageFrame•) and }
< DrawPicture (hPic, rPage); l ROTE: Use of QoickDrav may nov}
< cause File I/O errors doe to our Pie spooling! }

procedure PrClosePage(pPrPort: TPPrPort); e1ternal1
< Close & kill the page picture. Update the file page directory.
< If ve allocated the TPrPort then de-allocate it. >

{ --The "Printing Application" proc: Read and band the spooled PicFile.--

procedure PrPicFile(hPrint: TBPrint;
pPrPort: TPPrPort;
pIOBuf: Ptr;

pDevBuf: Ptr;
var PrStatus: TPrStatus); e1ternal1

{ Read and print the spooled print file. }
{ The idle proc is run during imaging and printing.

< --Get/Set the current Print Error--
function PrError: Integer; e1ternal1
procedure PrSetError (iErr: Integer); e1ternal1

{ --The .Print driver calls.-- >
procedure PrDrvrOpen; e1ternal1
procedure PrDrvrClose; e1ternal1

{ Open/Close the .Print driver in SysRes. Make it purgable or not. }
{ ORLY used by folks doing low-level stuff, not full document printing.

procedure PrCtlCall (ilhichCtl: Integer; lParamL, lParam~, 1Param3: Longint);

Macintosh Interface Units 423

ezternal;
{ A generalized control proc for the Printer driver.
{ The main nse is for bitmap printing:
PrCtlCall (iPrBitsCtl, pBitKap, pPortRect, !Control);

procedure PrBits (pBitKap: Ptr;
pPortRect: TPRect;

lControl: Longint);
This dumps a bitmap/portrect to the printer.

--QuickDraw bitmap
--a portrect.

• use bounds for whole bitmap •
--D•>Screen resolution/Portrait

lControl is a device dep param; use D for screen res/portrait/etc.
Bach different printer will use lControl parameter differently.
Thus PrCtlCall (iPrBitsCtl, IKyPort•.screenBits, IKyPort•.PortRect.Bounds,D)
performs a screen dump of just my port's data.

Two special control calls are included in the driver for screen
printing from the key board:

PrCtlCall (iPrBvtCtl, lPrBvtAll, a, D); Prints the screen
PrCtlCall (iPrBvtCtl, lPrBvtTop, D, D); Prints the top folder

These are handled by the system for keyboard access but can be
called by anyone at any time. They can be very cheap printing for
ornaments, for example!

Another useful call is used for sending raw data to the printer:
PrCtlCall (iPrIOCtl, pBuf, lBufCount, pidleProc); >

{ --semiprivate stuff-- >
function PrStlinit (hPrint: TBPrint): TPPrDlg; erternal;
function PrJobinit (hPrint: TBPrint): TPPrDlg; erternal;
function PrDlgKain (hPrint: TBPrint; pDlginit: ProcPtr): Boolean; erternal;

procedure PrCfgDialog; erternal;

424 Turbo Pascal for the Macintosh

FixMath

The FixMath unit is a collection of types and functions that implement fixed­
point real numbers. This unit is very useful for applications that require real
numbers but don't need the accuracy of floating-point math. Fixed-point opera­
tions run much faster than regular floating point, so you can choose precision
over increased speed.

unit Fixftath(-L2);

{ These calls support three types of fixed point numbers, each 32 bits long. >
{ The bits are interpreted as shown. The '-' represents the sign bit. >

Type <---------Integer Portion--------> <-------Fractional Portion------>
Longint -xxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx.
Fixed -xxxxxxx xxxxxxxx.xxxxxxxx xxxxxxxx
Fract -x.xxxxxxxx xxxxxxxx xxxxxxxx xxxxxx

{Type Longint can represent integers between +/-2Li;?i;63bi;7. Type Fixed can>
{ represent fractional quantities between +/-327b6, to about 5 digits of >
{ accuracy. Type Fract can represent fractional quantities between +/-2 to >
< about q digits of accuracy. These numeric representations are useful for >
{ applications that do not require the accuracy of the floating-point routines
{ and need to run as fast as possible. The Graf3D three-dimensional }
< graphics package resides on top of these routines. Although Fixftul is in the >
{ file ToolTraps, it is listed below to show how it handles different types. >
{ Additional fixed point routines are described in the Inside Macintosh chapter,
{ "Toolbox Utilities" >

interface

uses BemTypes;

type Fract = Longint;

{ These routines are only available on a system with a L26K ROM:

function Long2Fix(x:longint):Fixed;
function Fix2Long(x:fixed):Longint;
function Fix2Frac(x:fixed):Fract;
function Frac2Fix(x:fract):Fixed;

inline SA63F;
inline SA6i;o;
inline $A6i;L;
inline $A6i;2;

< Functions to convert between fixed-point types >

function Fix2X(x:fixed):Extended;
function X2Fix(x:extended):Fixed;
function Frac2X(x:fract):Extended;
function X2Frac(x:extended):Fract;

inline $A6i;3;
inline $AMi;;
inline $AMS;
inline $AMb;

< Functions to convert between fixed, fract, and the extended >
< floating-point type >

function FixAtan2(x,y:Longint):Fixed; inline $A6L6;
< FixATan2 returns the arctangent of y I x. Rote that FixATan2 effects

"arctan(type I type) --> Fixed":
arctan(Longint I Longint) --> Fixed
arctan(Pixed I Fixed) --> Fixed
arctan(Pract I Fract) --> Fixed >

Macintosh Interface Units 425

{ The following routines are supplied as glue code: }
function FracMul(x, y: Fract): Fract; external;
{ FracMul returns x • y.

Note that FracMul effects "type • Fract --> type":
Fract • Fract --> Fract
Longint • Fract --> Longint
Fract • Longint --> Longint
Fixed • Fract --> Fixed
Fract • Fixed --> Fixed }

function FixDiv(x, y: Fixed):
{ FixDiv returns x I y.

Fixed; external;

Note that FixDiv effects
Fixed I Fixed
Longint I Longint
Fract I Fract
Longint I Fixed
Fract I Fixed

"type I
-->
--)

-->
-->
-->

type -->
Fixed
Fixed
Fixed
Longint
Fract }

Fixed":

function FracDiv(x, y: Fract): Fract; external;
{ FracDiv returns x I y. Note that FracDiv effects "type I type--> Fract":

Fract I Fract --> Fract
Longint I Long!nt --> Fract
Fixed I Fixed --> Fract
Longint I Fract --> Longint
Fixed I Fract --> Fixed }

function FracSqrt(x: Fract): Fract; external;
{ FracSqrt returns the square root of x. Both argument and result }
{ are regarded as unsigned }

function Fraccos(x: Fixed): Fract; external;
function FracSin(x: Fixed): Fract; external;
{ FracCos and FracSin return the cosine and sine, respectively, }
{ given the argument x in radians }

426 Turbo Pascal for the Macintosh

GrafJD

Graf.JD is a RAM-based, three-dimensional graphics package that sits on top of
QuickDraw. It implements 3-D GrafPorts and provides a complete set of 3-D
operations, including rotation, translation, scaling, and clipping.

unit Graf3D(-~3);

interface

uses MemTypes,QuickDraw,FixMath;

const radConst = 375~936; <radConst 57.29576}

type Point3D=record
x: fixed;
y: fixed;
z: fixed;

end;

Point2D=record
x: fixed;
y: fixed;

end;

Xfllatrix = array CD .• 3, a .. 3 l of fixed;
Port3DPtr = APort3D;
Port3D record

GrPort: GrafPtr;
Rect;
fixed;
Point3D;
fixed;
fixed;
fixed;
Boolean;
Xfllatrix;

viewRect:
xLeft,yTop,xRight,yBottom:
pen,penPrime,eye:
hSize,vSize:
hCenter,vCenter:
xCotan,yCotan:
ident:
xForm:

end;

var thePort3D: Port3DPtr;

procedure InitGrf3D
procedure Open3DPort
procedure SetPort3D
procedure GetPort3D

procedure MoveTo2D
procedure MoveTo3D
procedure LineTo2D
procedure LineTo3D
procedure Move2D
procedure Move3D
procedure Line2D
procedure Line3D

procedure ViewPort
procedure LookAt
procedure ViewAngle
procedure Identity;
procedure Scale
procedure Translate

Macintosh Interface Units

(globalPtr: Ptr); external;
(port: Port3DPtr); external;
(port: Port3DPtr); external;
(var port: Port3DPtr); external;

(x,y: fixed); external;
(x,y,z: fixed); external;
(x,y: fixed); external;
(x,y,z: fixed); external;
(dx,dy: fixed); external;
(dx,dy,dz: fixed); external;
(dx,dy: fixed); external;
(dx,dy,dz: fixed); external;

(r: Rect); external;
(left,top,right,bottom: fixed); external;
(angle: fixed); external;
external;
(xFactor,yFactor,zFactor: fixed); external;
(dx,dy,dz: fixed); external;

427

procedure Pitch (xAngle: fixed); external;
procedure Yaw (yAngle: fixed); external;
procedure Roll (zAngle: fixed); external;
procedure Skew (zAngle: fixed); external;
procedure TransForm (src: Point3D; var dst: Point3D); external;
function Clip3D (srcl,src2: Point3D; var dstl,dst2: Point): Boolean;
external;

procedure Setpt3D
procedure SetPt2D

428

(var pt3D: Point3D; x,y,z: fixed); external;
(var pt2D: Point2D; x,y: fixed); external;

Turbo Pascal for the Macintosh

Apple Talk

Appl.eTalk is the Macintosh local-area network; that is, the means by which you
connect a group of Macs with printers, disks, other devices, and each other. The
Appl.eTalk Manager is used to communicate with devices connected to an
Appl.eTalk network. See Chapter 7 for more details on using this unit.

unit AppleTalk(-:L.I;);

interface

uses Bemtypes,QuickDrav,OSintf;

coast

lapSize • 2D;
ddpSize • 21.;
nbpSize • 21.;
atpSize • 51.;

< error codes >

ddpSktBrr • -qi.;
ddpLenBrr • -q2;
noBridgeBrr • -q3;
LAPProtBrr • _q.i;;
excessCollsns • -qs;

nbpBuf fOvr
nbpRoConfirm
nbpConfDiff
nbpDuplicate
nbpRotPound
nbpBISBrr

reqPailed
tooftanyBeqs
toollanySkts
badATPSkt
badBuffRum
noBelBrr
cbRotPound
noSendBesp
noDataArea
reqAborted

buf2Smal1Brr
noBPPBrr
ckSumBrr
extractBrr
readQBrr
atpLenBrr
atpBadBsp
recRotPnd
sktClosedBrr

type

• -i.02.i;;
• -:LD25;
• -:LD21.;
• -:LD27;
• -:LD26;
• -:LD2q;

• -i.aqi.;
• -:i.aq1;
• -:i.aq6;
• -i.aqq;
• -:UDD;
• -:UD:L;
• -UD2;
• -:L:LD3;
• -:ua.i;;
• -UDS;

• -3:LD:L;
• -3:LD2;
• -3:LD3;
• -3:LDJ;;
• -3:LD5;
• -3:LD!.;
• -3:LD7;
• -3:LD6;
• -3:LDq;

ABByte • :L •• :L27;

STR32 • STRIRGC321;

Macintosh Interface Units 429

ABCallType = (tLAPRead,tLAPffrite,tDDPRead,tDDPffrite,tNBPLookUp,
tNBPConfirm,tNBPRegister,tATPSndRequest,tATPGetRequest,
tATPSdRsp,tATPAddRsp,tATPRequest,tATPResponse);

ABProtoType = (lapProto,ddpProto,nbpProto,atpProto);

LAPAdrBlock = packed record
dstNodeID : Byte;
srcNodeID : Byte;
LAPProtType : ABByte;

end:

AddrBlock • packed record
aNet : Integer;
aNode : Byte;
aSocket : Byte;

end:

EntityName record
objStr : Str32;
typeStr : Str32;
zoneStr : Str32;

end:

EntityPtr = AEntityName;

RetransType = packed record
retransinterval : Byte;
retransCount : Byte;

end:

BitMapType =packed array C0 •• 71 of Boolean;

BDSElement record
BuffSize : Integer;
BuffPtr : Ptr;
DataSize : Integer;
UserBytes : Longint;

end:

BDSType • array C0 •. 71 of BDSElement;

BDSPtr = ABDSType;

ABusRecord = record

430

abOpCode : abCallType;
abResult : Integer;
abUserReference : Longint;

case abProtoType of
lapProto:

(lapAddress : LAPAdrBlock;
lapReqCount : Integer;
lapActCount : Integer;
lapDataPtr : Ptr;
);

ddpProto:
(ddpType : Byte;
ddpSocket : Byte;
ddpAddress : AddrBlock;
ddpReqCount : Integer;
ddpActCount : Integer;
ddpDataPtr : Ptr;
ddpNodeID : Byte;
);

Turbo Pascal for the Macintosh

nbpProto:
(nbpEntityPtr : EntityPtr;
nbpBufPtr : Ptr;
nbpBufSize : Integer;
nbpDataField : Integer;
nbpAddress : AddrBlock;
nbpRetransmitinfo : RetransType;
)i

atpProto:
(atpSocket : Byte;
atpAddress : AddrBlock;
atpReqcount : Integer;
atpDataPtr : Ptr;
atpRspBDSPtr : BDSPtr;
atpBitMap : BitMapType;
atpTransID : Integer;
atpActCount : Integer;
atpUserData : Longint;
atpXO : Boolean;
atpEOM : Boolean;
atpTimeOut : Byte;
atpRetries : Byte;
atpNumBufs : Byte;
atpNumRsp : Byte;
atpBDSSize : Byte;
atpRspUData : Longint;
atpRspBuf : Ptr;
atpRspSize : Integer;
)i

end; < record

ABRecPtr = AABusRecord;
ABRecHandle = AABRecPtr;

function LAPOpenProtocol(theLAPType : ABByte; protoPtr : Ptr) : OSErr; external;
function LAPCloseProtocol(theLAPType : ABByte) : OSErr; external;
function LAPRead(abRecord : ABRecHandle; async : Boolean) : OSErr; external;
function LAPffrite(abRecord : ABRecHandle; async : Boolean) : OSErr; external;

function LAPRdCancel(abRecord : ABRecHandle) : OSErr; external;

function DDPOpenSocket(var theSocket : Byte; sktListener : Ptr) OSErr; external;
function DDPCloseSocket(theSocket : Byte) : OSErr; external;
function DDPRead(abRecord : ABRecHandle; retCksumErrs : Boolean;
function async : Boolean) : OSErr; external;
function DDPffrite(abRecord : ABRecHandle; doCheckSum : Boolean;

async : Boolean) : OSErr; external;

function DDPRdCancel(abRecord : ABRecHandle) : OSErr; external;
function
function NBPLoad : OSErr; external;
function NBPUnLoad : OSErr; external;
function NBPLookUp(abRecord : ABRecBandle; async : Boolean) : OSErr; external;
function NBPConfirm(abRecord : ABRecHandle; async : Boolean) : OSErr; external;
function NBPRegister(abRecord : ABRecBandle; async : Boolean) : OSErr; external;
function NBPRemove(entityName : EntityPtr) : OSErr; external
function NBPExtract(theBuffer : Ptr; numinBuf : Integer; whichOne :Integer;

var abEntity : EntityName;
var address : AddrBlock) : OSErr; external;

function ATPLoad : OSErr; external;
function. ATPUnLoad : OSErr; external;

Macintosh Interface Units 431

function ATPOpenSocket(addrRcvd : AddrBlock; var atpSocket : Byte) : OSErr; external;

function ATPCloseSocket(atpSocket : Byte) : OSErr; external;
function ATPSndRequest(abRecord : ABRecBandle; async : Boolean) : OSErr; external;
function ATPGetRequest(abRecord : ABRecBandle; async : Boolean) : OSErr; external;
function ATPSndRsp(abRecord : ABRecBandle; async : Boolean) : OSErr; external;
function ATPAddRsp(abRecord : ABRecBandle) : OSErr; external

function ATPRequest(abRecord : ABRecBandle; async : Boolean) : OSErr; external;
function ATPResponse(abRecord : ABRecBandle; async : Boolean) : OSErr; external;
function ATPReqCancel(abRecord : ABRecBandle; async : Boolean) : OSErr; external;
functlQR ATPRspCancel(abRecord : ABRecBandle; async : Boolean) : OSErr; external;

procedure RemoveBdlBlocks; external;

< RemoveBdlBlks is a routine that is called automatically at the beginning }
< of every Pascal call. It checks for free (disposable) memory blocks that }
< the interface has allocated and disposes of them. The memory blocks have }
< been allocated by the RewBandle call. Bost of these memory blocks are }
< small (on the order of 20-50 bytes). The user has the option to }
< make the call whenever s/he wants to. The general rule is that one memory
< block will be allocated every time a network call is made; and it will }
< not be free until the call completes. }

~unction GetRodeAddress(var myRode,myNet : Integer) : OSErr; external;

function BPPOpen : OSErr; external;
function BPPClose : OSErr; external;

function IsBPPOpen : Boolean; exterual;
function IsATPOpen : Boolean; external;

432 Turbo Pascal for the Macintosh

Speechlntf

The Speechlntf unit provides an interface to MacinTalk, a speech synthesizer
that runs under Mac OS as a driver. In real time, MacinTalk converts an ASCII
string of phonetic codes into synthetic speech. MacinTalk uses a special
program, READER, to convert English text into the phonetic codes used by
MacinTalk. See Chapter 7 for more details.

unit Speechintf(-lS);

interface

uses llemTypes;

const
noExcpsFile • '';
noReaaer • 'noReader';
fullUnitT • -~ODD;

< signals reader to use only basic rules >
< signals SpeechOn to ROT bring in reader >
< error code for driver unit table full >

type
SpeechErr • Integer;
SpeechBecord •array ca .. qqJ of Byte;
SpeechPointer • ASpeechRecord;
SpeechHandle • ASpeechPointer;

< Driver parm block, used internally
< pointer to driver parm block
< handle to driver parm block

Sex • (Bale, Female);
FDllode • (Natural, Robotic, HoChange);
Language • (xEnglisb, French, Spanish, German, Italian);

VoiceRecord • record
theSex:
theLanguage:
theRate:
thePitch:
thellode:
thellame:
refCon:

Sex;
Language;
Integer;
Integer;
FDl!ode;
Str255;
Longint;

enih
VoicePtr • AfoiceRecord;

function SpeechOn

procedure SpeechOff

procedure SpeechBate

procedure SpeechPitch

procedure SpeechSex

function Header

function BacinTalk

Macintosh Interface Units

(ExcpsFile: Str255;
var theSpeech: SpeechHandle): SpeechErr; external;

(theSpeech: SpeechHandle); external;

(theSpeech: SpeechHandle; theRate: Integer); external;

(theSpeech: SpeechHandle; thePitch: Integer;
theBode: FDBode); external;

(theSpeech: SpeechHandle; theSex: Sex); external;
< reserved for future implementation >

(theSpeech: SpeechHandle; Englishinput: Ptr;
InputLength: Longint; PhoneticOutput: Handle):
SpeechErr; external;

(theSpeech: SpeechHandle; Phonemes: Handle):
SpeechErr; external;

433

SCSIIntf

The SCSIIntf unit provides access to the Small Computer Standard Interface
(SCSI) port found on several models of the Macintosh. It allows you to determine
what devices are connected to the SCSI port and to communicate with them.

unit SCSIIntf(-Lb)j

interface

uses MemTypes,Quickdraw,OSintf;

const

< transfer instruction operation codes }
scinc L; < SCIHC instruction }
scHoinc • 2; < SCHOIHC instruction }
scAdd 3; < SCADD instruction }
scMove • 4; < SCMOVB instruction >
scLoop • s; < SCLOOP instruction >
SCHOP bj { SCHOP instruction }
scStop • 7; < SCSTOP instruction }
scComp • d; < SCCOMP instruction >

< SCSI manager result codes
scBadParmsBrr 4; < unrecognized instruction
scCommBrr 2;
scCompareBrr b;
scPhaseBrr 5;

< breakdown in SCSI protocols }
< data comparison error in read }
< phase error }

type

SCSIInstr • record
scOpcode:
scParamL:
scParam2:

end;

Integer; < operation code
Longint; { first parameter }
Longint; { second parameter }

function SCSIReset:OSBrr; external;
function SCSIGet:OSBrr; external;
function SCSISelect(targetID: Integer):OSBrr; external;
function SCSICmd(buffer:Ptr; count:Integer):OSBrr; external;
function SCSIRead(tibPtr:Ptr):OSBrr; external;
function SCSIRBlind(tibPtr:Ptr):OSBrr; external;
function SCSiirite(tibPtr:Ptr):OSBrr; external;
function SCSIWBlind(tibPtr:Ptr):OSBrr; external;
function SCSIComplete(var stat, message:Integer;

wait:Longint):OSBrr; external;
function SCSIStat:Integer; external;

434 Turbo Pascal for the Macintosh

A p p E N D x E
Macintosh Character Set

Table E-1 shows the decimal and hexadecimal representations of the Macintosh
characters. Note, however, that other fonts may produce characters different
than those shown in the table.

Tabl.e E-1 The Macintosh Character Set

DEC HEX CHAR DEC HEX CHAR

0 00 NUL 13 OD CR
01 SOH 14 OE so

2 02 STX 15 OF SI
3 03 ETX 16 10 OLE
4 04 EOT 17 11 DC1
5 05 ENO 18 12 DC2
6 06 ACK 19 13 DC3
7 07 BEL 20 14 DC4
8 08 BS 21 15 NAK
9 09 HT 22 16 SYN
10 OA LF 23 17 ETB
11 OB VT 24 18 CAN
12 oc FF 25 19 EM

435

TableE-1 The Macintosh Character Set, continued
DEC HEX CHAR DEC HEX CHAR

26 1A SUB 58 3A
27 18 ESC 59 38
28 1C FS 60 3C <
29 10 GS 61 30 =
30 1E RS 62 3E >
31 1F us 63 3F ?
32 20 SP 64 40 @

33 21 65 41 A
34 22 • 66 42 B
35 23 # 67 43 c
36 24 $ 68 44 0
37 25 % 69 45 E

38 26 & 70 46 F

39 27 71 47 G
40 28 72 48 H

41 29 73 49 I
42 2A * 74 4A J
43 28 + 75 48 K
44 2C 76 4C L

45 20 77 40 M

46 2E 78 4E N

47 2F I 79 4F 0
48 30 0 80 50 p

49 31 1 81 51 Q

50 32 2 82 52 R

51 33 3 83 53 s
52 34 4 84 54 T

53 35 5 85 55 u
54 36 6 86 56 v
55 37 7 87 57 w
56 38 8 88 58 x
57 39 9 89 59 y

436 Turbo Pascal for the Macintosh

TableE-1 The Macintosh Character Set, continued
DEC HEX CHAR DEC HEX CHAR

90 SA z 122 7A z

91 SB [123 78 {

92 SC \ 124 7C I
93 SD] 12S 7D }

94 SE II 126 7E

9S SF 127 7F DEL

96 60 12S so A

97 61 a 129 S1 A
9S 62 b 130 S2 c
99 63 c 131 S3 E
100 64 d 132 S4 f;I

101 6S e 133 SS 0

102 66 f 134 S6 0

103 67 g 13S S7 a
104 6S h 136 SS a
10S 69 137 S9 A

106 6A 13S SA A

107 68 k 139 SB A

10S 6C 140 sc a
109 6D m 141 SD c;

110 6E n 142 SE e
111 6F 0 143 SF e
112 70 p 144 90 A

113 71 q 145 91 i

114 72 r 146 92

115 73 s 147 93

116 74 148 94 i

117 7S u 149 95 i

11S 76 v 150 96 fl

119 77 w 151 97 6

120 7S x 152 9S 0

121 79 y 153 99 6

Macintosh Character Set 437

Table E-1 The Macintosh Character Set, continued
DEC HEX CHAR DEC HEX CHAR

1S4 9A 0 18S BA I
1SS 9B 0 187 BB i

1SS 9C (J 188 BC !!

1S7 90 u 189 BO n
1S8 9E a 190 BE m
1S9 9F (j 191 BF " 1SO AO t 192 co l
1 S1 A1 0 193 C1
1S2 A2 ¢ 194 C2 ...,
1S3 A3 £ 19S C3 ..J

1S4 A4 § 19S C4 I
1SS AS 197 cs
1SS AS 11 198 cs ll

1S7 A7 B 199 C7 «

1S8 AB ® 200 ca »

1S9 A9 © 201 C9
170 AA TM 202 CA
171 AB 203 CB A
172 AC 204 cc 'A
173 AD

'*"
20S CD 0

174 AE IE 20S CE CE
17S AF 0 207 CF ce
17S BO 00 208 DO
177 B1 ± 209 01
178 B2 s 210 02
179 B3 <:!: 211 03
180 B4 ¥ 212 04
181 BS µ 213 OS
182 BS a 214 OS +

183 B7 l: 21S 07 0

184 BB II 21S 08 y
18S B9 7t 217 09 y

438 Turbo Pascal for the Macintosh

Tab"le E-1 The Macintosh Character Set, continued

DEC HEX CHAR DEC HEX CHAR

218 DA I 237 ED l
219 DB a 238 EE 6
220 DC 239 EF 0
221 DD 240 FO •
222 DE fi 241 F1 0
223 DF fl 242 F2 (J

224 EO :j: 243 F3 0
225 E1 244 F4 CJ

226 E2 245 FS

227 E3 246 F6

228 E4 %0 247 F7

229 ES A 248 F8

230 E6 E 249 F9

231 E7 A 250 FA

232 EB E 251 FB

233 E9 E 252 FC

234 EA 253 FD

235 EB 254 FE

236 EC 'j 255 FF

Macintosh Character Set 439

A p p E N D x F
Turtlegraphics: Mac Graphics Made Easier

If you want to produce graphics on your Macintosh but don't want to take the
time to learn the QuickDraw routines, Turtlegraphics is the answer. It's an easy
graphics program, called Turtle, that's included as part of Turbo Pascal.

Turbo Pascal Turtlegraphics is based on a concept devised by S. Papert and his
group at the Massachusetts Institute of Technology. To get around the concept of
cartesian coordinates, Papert and his colleagues invented the idea of a "turtle"'
that could "walk"' a given distance and tum at specified angles, drawing a line as
it walked along. The simple algorithms in this program can create images that are
more interesting than those created by algorithms of the same length in cartesian
coordinates.

Like the other graphics routines on the Macintosh, Turtle operates in the
active window. Turtlegraphics, ordinary graphics and even the Turbo Pascal stan­
dard text output can be used simultaneously, and can share a common window.

The Turbo Pascal Turtlegraphics routines operate on turtle coordinates. The
turtle's Home position (0,0) in this coordinate system is always in the middle of
the active window; positive values stretch to the right (X) and upwards (Y), and
negative values stretch to the left (X) and downwards (Y):

The range of coordinates is based on the size of the screen. For a Macintosh
and Macintosh+, these are the values: X =0 .. 511 Y = 0 .. 341. However, the
actual range is limited to the size of the active window. Coordinates outside the
active window are legal, but are ignored. This means that drawings are clipped
to the limits of the active window (unless wrap is on).

441

Following are the 16 Turtlegraphics procedures you can use to create figures.

Back

Syntax: Back(Dist);

Moves the turtle backward by the distance given by the integer expression
Dist. The turtle moves from its current position in the direction opposite to its
current heading and draws a line in the current pen color. If Dist is negative, the
turtle moves forward.

Crear

Syntax: Clear;

Clears the active window and moves the turtle to the Home position.

Forwd

Syntax: Forwd(,Dist);

Moves the turtle forward by the distance given by the integer expression Dist.
The turtle moves from its current position in the direction that it faces and draws
a line in the current pen color. If Dist is negative, the turtle moves backwards.

Heading

Syntax: Heading;

Returns an integer in the range 0 .. 359 that gives the direction in which the
turtle is currently pointing. 0 is upwards, and increasing angles represent head­
ings in a clockwise direction.

Home

Syntax: Home;

Puts the turtle at its Home position (coordinates 0,0, the middle of the active
window) and points it in heading 0 (upwards).

442 Turbo Pascal for the Macintosh

No Wrap

Syntax: Nowrap;

Disables the turtle from "wrapping"; that is, reappearing at the opposite side
of the active window if it is moved past the window boundary. No Wrap is the
system's initial value.

PenDown

Syntax: PenDown;

Sets the "pen" to the screen so that the turtle draws a line as it moves. This is
the initial status of the pen.

Pen Up

Syntax: PenUp;

Lifts the pen so the turtle moves without drawing a line.

SetHemling

Syntax: SetHeading(Angle);

Turns the turtle to the angle specified by the integer expression Ang"le. 0 is
upwards, and increasing angles represent clockwise rotation. If Angle is not in
the range 0 .. 359, it is converted into a number in that range.

Four integer constants are predefined to turn the turtle in the four main direc­
tions: North = 0 (up), East = 90 (right), South = 180 (down), and West = 270
(left).

SetPosition

Syntax: SetPosition(X, Y);

Moves the turtle, without drawing a line, to the location with the coordinates
given by the integer expressions X and Y.

TurnLeft

Syntax: TurnLeft(Angle);

Turns the turtle Angle degrees from its current direction. Positive angles turn
the turtle to the left; negative angles turn it to the right.

Turtlegraphics: Mac Graphics Made Easier 443

TurnRight

Syntax: TurnRight(Angle);

Turns the turtle Angle degrees from its current direction. Positive angles turn
the turtle to the right; negative angles turn it to the left.

When the window is set, the turtle is initialized to its Home position and
heading north (or 0 degrees).

Turt"leDelay

Syntax: TurtleDelay(Ms);

Sets a delay in milliseconds between each step of the turtle. Normally, there is
no delay.

Wrap

Syntax: Wrap;

Makes the turtle reappear at the opposite side of the active window when the
turtle exceeds the window boundary. Use NoWrap to return to normal.

Xcor

Syntax: Xcor;

Returns the integer value of the turtle's current X coordinate.

Ycor

Syntax: Y cor;

Returns the integer value of the turtle's current Y coordinate.

444 Turbo Pascal for the Macintosh

Mac versus IBM Turtlegraphics

There are some differences between Mac Turtlegraphics and IBM Tur­
tlegraphics. The Harne position (0,0) in Mac turtle graphics is the upper left­
hand corner of the window. In IBM turtle graphics, the home position (0, O)is the
center of the window. The ClearScreen procedure is called Clear. The following
procedures are not supported:

• HideTurtle

• ShowTurtle

• TurtleWindow

• TurtleThere

• SetPenCowr

The turtle itself is not supported, only its actions.

An Example

Type in the following program. It draws a circle using the TurnRight and Forwd
procedures.

program TurtleDraw;
uses MemTypes,Quickdraw,OSintf,Toolintf,Turtle;
var

Angle : Integer;
begin

PenDown; { start drawing >
for Angle := a to 69 do for loop to draw circle
begin

TurnRight(~); <turn right n degrees>
Forwd (5); { draw 5 pixel line segment >

end;
ReadLn; {wait for carriage return >

end. { end of TurtleDraw

Turtlegraphics: Mac Graphics Made Easier 445

Gwssary

active window: The front-most window on the desktop; the window where the
next action specified will take place. The title bar of the active window is high­
lighted.

Alarm Clock: A desk accessory that displays the current date and time.

Apple menu: The menu on the far left in the menu bar, indicated by an apple
symbol.

ASCII: American Standard Code for Information Interchange. ASCII is a stan­
dard code for representing characters (letters, numbers, and symbols) as binary
numbers.

benchmark: A point of reference used to measure the performance of hardware
and/or software.

bitmap: A grid of bits that makes up your Macintosh screen.

buttons: The squares in dialog boxes that you click on to assigp., confirm, or
cancel an action. See also nwuse button.

cancel button: A button that appears in dialog boxes. Clicking this button cancels
the command.

check box: The small box or circle associated with an option in a dialog box that,
when clicked on, adds or removes the option.

click: To position the pointer on something, then press and release the mouse
button.

447

Clipboard: The file that holds what you last cut or copied.

close: To put away a window and call up the icon that represents it.

Close box: The small blank box on the far left side of the title bar of an active
window. Clicking on the Close box puts away the window.

!!) (command key): A key that, when held down while another key is pressed or
a mouse action is performed, causes the corresponding command to take effect.

compiler: A program that takes high-level instructions (source code) and converts
them into machine code that the computer can read.

Control Panel: A desk accessory that lets you change the speaker volume, start
the AppleTalk connection, create a RAM cache, and set other preferences.

cut: To remove something by selecting it and choosing Cut from the Edit menu.
What you cut is placed into the Clipboard file.

data fork The part of a file with information that is retrieved via the File Man­
ager.

declare: State a variable's attributes.

desk accessories: Small applications that are available on the desktop from the
Apple menu regardless of which application you' re using. Turbo Pascal lets you
create your own desk accessories.

desktop: The Macintosh working environment: the menu bar and the gray area
on the screen.

dialog box: A box that contains a message and requests information from you.
Sometimes the message is a warning that you' re asking your Macintosh Plus to
do something it can't do or that you' re about to destroy some of your information.
In these cases the message is often accompanied by a beep.

double-click: To position the pointer where you want an action to take place, then
press and release the mouse button twice (without moving the mouse).

drag: To position the pointer on something, press and hold the mouse button,
move the mouse to a new position, and release the mouse button. This action is
used to select several items at once, or to move a file into another file or to a
different location on the screen.

folder: A file containing documents, applications, or other folders on the des­
ktop. Folders allow you to organize information under specific headings.

font: A complete set of characters in one typeface. Common fonts include Cou­
rier, Helvetica, and Times. Each font family can come in different weights and
styles, such as bold and italic.

448 Turbo Pascal for the Macintosh

heap: A portion of memory used by Turbo Pascal (and other compilers) to store
pointer variables during program execution. A heap's memory is organized like a
stack; that is, from the bottom up.

Hierarchical File System (HFS): A method of using folders to organize docu­
ments, applications, and other folders on a disk to keep together related informa­
tion. Folders (analogous to subdirectories in DOS systems) can be nested inside
other folders to create as many levels hierarchy as you need. Opening a folder
displays only the information you've put in that folder.

I-beam cursor: A type of pointer used to enter and edit text.

icon: A graphic representation of an object, a concept, or a message. Following
are the Turbo Pascal and Mac icons.

Turbo Pascal compiler icon

Icon for Turbo Pascal program compiled to disk

Turbo Pascal source file icon

Program compile-time error icon

Run-time error icon

FONT/DA MOVER icon

RMAKER (resource compiler) icon

l!!J UNITMOVER icon

~
~

Glossary

Compiled desk-accessory icon

Compiled unit icon

449

initialize: To prepare a disk to receive information.

1/0: Input/output. To enter information into a computer is to input; to move the
information out (usually to a printer or a plotter) is to output.

JSR: Jump to Subroutine.

machine code: Instructions to the computer in binary code (that is, Os and ls);
also known as assembly language. A compiler, like Turbo Pascal, takes your high­
level instructions and translates them into machine code.

MDS: Macintosh Development System.

menu: A list of commands that appears when you point to and press the menu
title in the menu bar. Dragging through the menu and releasing the mouse but­
ton while a specific command is highlighted causes that command to be imple­
mented.

menu bar: The horizontal strip at the top of the screen that contains the menu
titles.

menu title: A word, phrase, or symbol in the menu bar that designates a menu.
Clicking on the menu title causes the title to be highlighted and its menu to
appear below it.

mouse: A small device, attached to your computer, that you roll around on a flat
surface. The pointer or cursor on the screen echoes the movements of the
mouse.

mouse button: The button on the top of the mouse. Generally, pressing and
releasing the mouse button initiates some action on whatever the pointer is on,
and releasing the button confirms the action.

Option key: A key (like the Shift key) that gives an alternate meaning to the key
you press while keeping the Option key pressed down. You use it to type foreig_1
characters or special symbols.

package: A set of data structures and routines stored as resources in the SYS­
TEM file and brought into memory only as needed.

pointer cursor: A small shape on the screen, most often an arrow pointing up
and to the left, that echoes the movement of the mouse.

queue: Line.

resource: A piece of information, stored in a resource file, that can be accessed
by its type and ID.

resource fork The part of a file with information used by an application, as well
as the application code itself

run-time error: An error that occurs while a program is executing.

SANE: Standard Apple Numeric Environment library.

450 Turbo Pascal for the Macintosh

scroll: To move a document or directory in its window so that you can see a
different part of it. You can also scroll the directory in some dialog boxes.

scroll arrow: An arrow on either end of a scroll bar. Clicking a scroll arrow moves
the document or directory one line. Keeping the mouse button pressed on the
scroll arrow scrolls the document continuously.

SCSI: Small Computer System Interface, an industry-standard interface for con­
necting computers with peripheral devices (hard disks, printers, and so on). The
Macintosh Plus includes an SCSI port.

select: To designate where the next action will take place. To select, you click or
drag across information.

shift-click: A technique that allows you to extend or shorten a selection by hold­
ing down the Shift key while you select (or de-select) something related to the
current selection. syntax: The rules of a programming language that specify how
the language symbols can be put together to form meaningful statements. H a
program violates the language syntax rules, a syntax error occurs.

title bar: The horizontal bar at the top of a window that shows the name of the
window's contents and lets you move the window.

two's-complement arithmetic: A way of representing negative and positive inte­
gers, where an integer is negative if its high bit is set.

window: The area that displays information on the desktop. You can open or
close a window, move it around on the desktop, and sometimes change its size,
edit its contents, and scroll through it.

Glossary 451

Index

453

A

"About ... " box, 88-89
Activate events, 94
ALRTresource, 143
Apple menu, 179-180

About Turbo ... command, 179
desk accessories, 89-90, 180

Appletalk, 8, 64, 429-432
Application globals, 325-326
Application heap, 325-327
Application parameters, 325--326
Applications, writing

activate events, 94-95
basic structure, 81, 82
cleaning up, 101
clicking windows, 90
data structures, 96
demo programs, 79
event handling, 83-84
initialization, 99-101
keyboard events, 92-93
miscellaneous events, 95
mouse events, 85
menu commands, 86-90

organization, 82
programming style, 81
sample programs, 8, 79-80
segmentation, 101-102
update events, 93-94

Arithmetic functions
Abs, 291
ArcTan, 292
Cos, 292
Exp, 292
Expl, 318
Exp2, 318
Int, 291
Ln, 292
Lnl, 318
Log2, 318
Sin, 291
Sqr, 291
Sqrt, 291
Tan, 3i9
Xpwrl, 318
XpwrY, 318

Arithmetic functions (SANE)
CopySign, 317
LogB, 317
NextDouble, 317
NextExtended, 317
NextReal, 317

454

Remainder, 316
Rint, 317
Scalb, 317

Array qualifiers, 227-228
Array-types, 216-217, 329--330
Assembly language. See also Machine

code
Assembly language, linking

operations on relocatable symbols, 335
procedures and functions, 334
register saving devices, 336
variables, 335

Assembly-language routines
external, 65-66
inline, 66-67

@operator, 241-242
Auto-indenting, 20

B

Back up. See Distribution disks, to copy
Blocks, 205-208

predefined identifiers, 208
rules of scope, 207
syntax, 206-207

BNDL resource, 143
Boolean-types, 212, 328
Bundle bit, 98

c
Calling conventions, 331-333

entry and exit code, 333
function results, 332-333
value parameters, 332
variable parameters, 331

case statement, 249-250
Change command, 189
Char-types, 212, 328
Character size command, 191
Character strings, 202
Check marks, 88
Check Syntax command, 193
Cleaning up, 101
Clear command, 186
Clicking. See Mouse operations;

Applications, clicking windows
Close box, ~91
Comments, 203
Comparing Pascals, 341-349

ANS Pascal, 341-346
Lisa Pascal, 346-349

Compile To Disk command, 193
Compile To Memory command, 192

Turbo Pascal for the Macintosh

Compiler, 29-31. See also Compile menu
Compiler directives, 40-46, 361-366

include files, 45
input/output error checking, 41-43,

163
output (code) files, 46
range checking, 43-44, 164

Compile menu, 27-35, 192-194
Check Syntax command, 193
Find Error command, 193
Get Info command, 34, 193

Get Info box, 193
Options command, 34-35, 194
Run command, 12, 28-29, 192
To Disk command, 13, 192

code files produced, 30-31
to specify file names, 31

To Memory command, 31, 192
Compiling Options command, 194
Compiling to RAM, advantages and

disadvantages, 30-31
Errors during compilation, 28

Compiling units. See Units, compiling
Concat procedure, 293
Console handling procedures and

functions, 294-296
Cl.earEOL, 295
Cl.earscreen, 294
Del.eteLine, 295
GotoXY, 295
InsertLine, 295
KeyPressed, 295
ReadChar, 295-296

const statement
example of, 15
setting Step, 15

Constant declarations, 203
Constants, 311
Conversion procedures and functions,

313-316
Copy command, 185
Copy procedure, 294
CURS resource, 144
Cursors, 19

finding a lost bar cursor, 24
Home cursor command, 189

Customizing Turbo Pascal, 9
Cut commaurl, 185
Cut-and-i;:aste. See Files, to cut and
paste

Index

D

Data fork, 138
Data structures, 96, ll0-ll4
Debugging

compiler errors, 161-162
input/output error checking, 163
MACSBUG, 8, 166-175

commands, 169-175
"trap» calls, 172, 173-175

range checking, 164
run-time errors, 162-163
SysError, 164-165
trace statements, 165
See also Errors

Del.ete, 294
Denormalized numbers, 307
Desk accessories, compiling, 127

moving out of system files, 128
Desk accessories, writing

basic structure, 107-llO, 130
closing, 126-127
compiling, 127
data structures

device control entry, lll-ll3
driver header, llO-lll
global variables, ll4

event handling, 120-124
initialization, ll4-120
installing, 127-129
menu handling, 125
sample (MYDA), 127-129, 130
support routines, 125-126

Desktop
to bypass, 7

Device definitions, 336-339
device input/output functions, 337

examples of, 338-339
device procedure, 336

Distribution disks
files on, 7-9
to copy, 5-7

on one disk drive, 6
on a hard disk, 7

DITL resource, 144
DLOG resource, 145
Divide-by-zero exception, 310
Drag bar, 92
Dynamic allocation, 288-289

Dispose procedure, 288
Max:Avail function, 289
MemAvail function, 289
New procedure, 288

455

E

Edit menu, 18, 185-187
Clear command, 22, 186
Copy command, 22, 185
Cut command, 185
Options command, 186-187

Options dialog box, 186
Paste command, 22, 186
Shift Left command, 186
Shift Right command, 186
Undo command, 22, 23, 185

Edit Transfer command, 183
Editing, number of windows, 30
Editing Options command, 186
Enumerated-types, 212-213, 328
Environmental access procedures and

functions (SANE), 321-324
Erase. See Files, to delete text
Error messages, 351-357

compiler errors, 351-356
system errors, 357

Errors
compiler, 161-162
run-time (system), 28, 32-33
syntax, 12, 31-32
See also Debugging.

Event handling, 83-95
Exception conditions constants, 311
Execute a program, 13
Exit

Exit procedure, 287
See also File menu, Quit command;
Halt procedure

Expressions, 231-243
function calls, 242-243
operators, 235-238

arithmetic, 235-237
@, 241-242
logical, 237
relational, 239
comparing packed strings, 240
comparing pointers, 240
comparing sets, 240
comparing simple types, 239
comparing strings, 240
testing set membership, 240

set, 238
string, 238

rules of precedence, 231
set constructors, 243
syntax, 232-235

456

value-type-casts, 244
external procedure declaration, 25!}-260

F

File menu, 180-184
Close command, 25, 181
Edit Transfer command, 183

Edit Transfer dialog box, 183
New command, 19, 180
Open command, 181
Open selection command, 181
Page Setup command, 182

Page Setup dialog box, 182
Print command, 183
Quit command, 13, 184
Save command, 25, 181
Save As mmmand, 25, 182
Save Defaults command, 184
Transfer command, 184

File-save dialog box. See Save-file dialog
box

Files
to add text, 21
to copy text, 22
to cut and paste, 21-22
to delete text, 12, 21
to edit, 18--21
to enter, 12-15, l!}-20, 38
to replace text, 22
to save, 25
to undo changes, 22, 23
See also Edit menu; File menu;
Formatting text

File-types, 220, 330-331
FillChar procedure, 297
Financial functions (SANE)

Annuity, 319
Compound, 319

Find command, 188
Find Error command, 193
Find Next command, 188
FINDER, 8
FixMath, 63, 425-426
FONT/DA MOVER, 8

to install desk accessories, 157-159
to launch, 155-157

Font Menu, 191
for statement, 252-253
Format menu, 190-191

Character point sizes, 191
Stack Windows command, 190
Tile Windows command, 190

Turbo Pascal for the Macintosh

Zoom Window command, 191
Formatting disks. See Initializing disks
Formatting text, 23-24
forward procedure declaration, 259
FREF resource, 145
Function calls, 242
Function declarations, 260-262
Functions

SANE
CopySign, 317
GetPrecision, 322
GetRound, 321
LogB, 317
NextDoubk, 317
NextExtended, 317
NextReal, 317
Num2Extended, 314
Num2Integer, 313--314
Num2Longlnt, 313--314
Remainder, 316
Rint, 317
Scalb, 317
Str2Num, 315-316
TestHalt, 322
TextException, 322

Standard
Abs, 291
Annuity, 319
ArcTan, 292
Chr, 289
ClassComp, 320
ClassDoubk, 320
ClassExtended, 320
ClassReal, 320
Compound, 319
Concat, 293
Copy, 294
CopySign, 317
Cos, 292
Exp, 292 I

Expl, 318
Exp2, 318
Fwat, 290
GetPrecision, 322
GetRound, 321
Hi,297
HiWord, 298
Int, 291
KeyPressed, 295
Length, 293
Ln, 292

Index

Lnl, 318
Lo, 298
Logb, 317
Log2, 318
LoWord, 298
MaxAvail, 289
MemAvail, 289
NaN, 321
NextDoubk, 317
NextExtended, 317
NextReal, 317
Num2Extended, 314
Num2Integer, 313
Num2Longlnt, 313
Odd, 293
Ord, 289
Ord4, 289
Pointer, 290
Pred, 293
RandomX, 321
ReadChar, 295
Relation, 321
Remainder, 316
Rint, 317
Round,290
Scalb, 317
ScanEQ, 297
ScanNE, 297
SignNum, 320
Sin, 291
SizeOf, 296
Sqr, 291
Sqrt, 291
Str2Num, 315
Succ, 292
Swap, 298
SwapWord, 298
Tan, 319
TestHalt, 322
TextException, 322
Trone, 290
Xpwrl, 318
XpwrY, 318

Standard (text files)
EOF, 282
Eoln, 282
SeekEof, 282
SeekEoln, 282

Standard (typed-files)
FikPos, 277
FikSize, 277

457

G

Get Info command, 34, 193
goto statement, 247
Graf.JD, 63, 427-428
Grow box, 91-92

H

Halt procedure, 288
Halt settings, 310
Handles, 96
Hi function, 297
Hierarchical File System, 34
HiWord function, 298
Home Cursor command, 190

I

ICON resource, 146
Icons, 447
ICN resource, 146
Identifiers, 199, 208
if statement, 248
IMAGEWRITER, 8
Indexes, 227-228
Inexact exception, 310
Initialization, 99-100
Initializing disks, 6
inline codes and traps, 66
inline procedure declaration, 260
Inquiry functions (SANE)

ClassComp, 320
ClassDouble, 320
ClassExtended, 320
ClassReal, 320
SignNum, 320

Insert procedure, 294
Inside Macintosh, 16
Integer-types, 211, 327-328
Interface units. See Units, interface
Interrupt switch (Mac Plus), 28
Invalid operation exception, 309
IOResult codes, 358

J
Jump table, 325--326

K

Keyboard events, 92
Keys, special, 21

458

L

Labels, 200
Length procedure, 293
Line length, maximum, 203
Linking with assembly language,
334-336. See also Assembly
language, linking

Lo function, 298
Loading Turbo Pascal, 11
Longlnt, 328
Longlnt-types, 211-212
LoWord function, 298

M

Machine code, 28-30. See also
Assembly-language routines

MACINTALK, 8
Macintosh

architecture, 325--327
bit-mapped graphics, 49-50
event-driven software, 49, 51-52
graphics-only display, 48
internal data formats, 327-331
philosophy behind, 47-55
system software, 49

Memory Manager, 327
Toolbox and operating system

routines, 52-55
user interface, 48, 50-51

Macintosh character set, 435-440
Macintosh interface units. See Units,

interface
MacPrint, 63, 419-424
MACSBUG, 165--168
Managers. See Macintosh, system

software
MBAR resource, 147
MemAvail function, 289
Memory Manager, 327
MemTypes, 62, 373
Menu bar, Turbo Pascal, 178-179
Menu commands

selecting, 177-178
writing, 85

Menu resource, 147
Mouse events, 85--89
Mouse operations

clicking, 17
double-clicking, 17
shift-clicking, 17

Turbo Pascal for the Macintosh

MooeLeft procedure, 296
MooeRight procedure, 296
Multiple calls to open, 119
MYDA. See Desk accessories, writing

N

NaN codes, 307, 359
NaN function (SANE}, 321
New command, 180
Numbers, 200-202

0

Open command, 181
Open Selection command, 181
Opening Turbo Pascal, 18
Operating system routines, 52-55
Operators, 235-242

arithmetic, 235-237
@, 241-242
logical, 237
relational, 239

comparing packed strings, 240
comparing pointers, 240
comparing sets, 240
comparing simple types, 239
comparing strings, 240
testing set membership, 240

Options command, 34-35
Ordinal functions, 292-293

Odd, 293
Pred, 293
Succ, 293

Ordinal-types, 210-211
OSintf, 62, 381-398
Overflow exception, 310

p
Packages. See Macintosh, system

software
Packlntf, 63, 414-418
Page Setup command, 182
Parameters, 262-264

untyped variable, 264
value, 263-264
variable, 264

PasConsole, 60, 369
PaslnOut, 60, 368
PasPrinter, 61, 370
PasSystem, 60
Paste command, 186
PATresource, 186

Index

PAT# resource, 148
POS procedure, 293
Pointer-types, 220-221, 329
Pointers, 96
Print command, 183
PROC resource, 149
Procedures

FillChar, 295
MoveLeft, 296
MoveRight, 296
SANE

GetEnvironment, 323
Num2Str, 314-315
ProcEntry, 323
ProcExit, 324
SetEnvironment, 323
SetException, 309, 322
SetHalt, 323
SetPrecision, 322
SetRound, 322
TestException, 309, 322

Standard (all files)
ClearEOL, 294
ClearScreen, 294
Close, 275
Delete, 294
DeleteLine, 295
Dispose, 288
Erase, 276
Exit, 287
GotoXY, 295
Halt, 288
Insert, 294
InsertLine, 295
IOResult, 276
New, 288
Rename, 275
Reset, 274
Rewrite, 275

Standard (text files)
Read, 278
ReadLn, 279
Write, 280
WriteLn, 281

Standard (typed-files}
Eof, 277
Read, 276
Seek, 277
Write, 276

Turtle graphics
Back, 442
Clear, 442

459

Forwd, 442
Heading442
Home, 442
NoWrap, 443
PenDown, 443
PenUp, 443
SetHeading, 443
SetPosition, 443
TurnLeft, 443
TurnRight, 444
TurtleDelay, 444
Wrap, 444
Xcor, 444
Ycor, 444

Procedure declarations, 257-260
external, 259-260
forward, 259
inline, 260

Program lines, 203
Programming. See Applications, writing;

Files, to enter

Q
QuickDraw, 62, 374-380

sample routines, 14
Quit command, 184

R

RandomX function (SANE), 321
ReadLn statement, function of: 12
Real-types, 214, 328
Record-types, 217-219, 330
Records and field designators, 228
Relation function (SANE), 321
repeat statement, 250-251
Reserved words, 198
Resource files, 97-99, 103. See also

RMAKER
Resource fork, 128
Resource IDs, 117-118
Resource specifications, 142-150
Resource types, 142-150
Resources

defining, 150
editing, 103

RMAKER, 8, 80
creating resource files, 138--140
defining resources, 140-142, 150-152
using resource files, 138, 154
using RMAKER, 153

Rules of scope, 207-208
Run command, 12, 28--29, 192

460

Run-time environment, 40
Run-time errors, 28, 32-33, 357

s
Sample Pascal programs, 39
SANE, 61, 299, 371-372
SANE arithmetic functions. See

Arithmetic functions (SANE)
SANE data types, 300--304

choosing, 300--301
formats, 302--304

comp, 303
double, 303
extended, 303-304
single, 302--303

range and precision, 302
values represented, 301

SANE engine, 304-310
extended arithmetic, 304-305
infinities, 306
NaNs, 306-307
number classes, 305-306

SANE environment, 307-310
exception flags, 309

SetException procedure, 309
TestException procedure, 309

halt settings, 310
rounding direction, 308
rounding precision, 309

SANE library, 310-324
DecForm type, 311
DecStr type, 311
DecStrLen constant, 311
Environment type, 313
exception condition constants, 311
Exception type, 312
NumClass type, 312
Num2Extended function, 314
Num2Integer function, 313-314
Num2Longlnt function, 313-314
Num2Str procedure, 314-315
RelOp type, 312
RoundDir type, 313
RoundPre type, 313
Str2Num function, 315-316

Save, 25, 137
Save command, 181-182
Save As command, 182
Save Defaults command, 184
Save-file dialog box, 12, 25
ScanEQ function, 297
ScanNE function, 297

Turbo Pascal for the Macintosh

SCSllntf, 65, 434
Search and replace dialog box, 24
Search menu, 24-25, 187-190

Change command, 25, 189
Change dialog box, 189
Verification dialog box, 189

Find command, 24, 188
Find dialog box, 188

Find Next command, 25, 188
Home Cursor command, 189
Window command, 30, 190

Segmenting large programs, 101
Selecting text, 21-22
Set constructors, 243
Set-types, 220, 329
Shift Left command, 186
Shift Right command, 186
Simple-types, 21~214
SizeOffunction, 296
68000 microprocessor, 29
Speechlntf, 64, 433
Stack Windows command, 190
Standard Pascal

run-time environment, 40
sample programs, 39

Statements, 245-255
simple, 245-247

assignment, 246
goto, 247
procedure, 246

structured, 247-255
compound, 247-248
conditional, 248

case, 249-250
if, 248

repetitive, ~253
for, 252-253
repeat, 25~251
while, 251

with, 254-255
STR resource, 149
STR# resource, 149
String procedures and functions, 293-294

Concat, 293
Copy, 294
Dekte, 294
Insert, 294
Length, 293
Pos, 293

String qualifiers, 227-228
String-types, 215, 329
Structured-types, 215-220

Index

Subrange-types, 213
Swap function, 298
SwapWord function, 298
Syntax, 206
Syntax error. See Error, syntax
SYSTEM, 8
SYSTEM FOLDER, 8
System (run-time) errors, 28, 32-33, 357
System software, 49, 52-55, 327

T

Tile Windows command, 191
Tokens, 197-203

reserved words, 198
special symbols, 197-198

Toolbox routines, 52-55
Tooll ntf, 62, 399-413
Transfer command, 184
Transfer functions, 289-290

Chr, 289
Fwat, 290
Ord, 289
Ord4, 290
Pointer, 290
Round,290
Trunc, 290

Transfer menu, 194-196
meta-characters, 195

traps, 66
TURBO, 8
Turbo Pascal extensions, 343-345
Turbo Pascal menu bar, 178-179
Turtle graphics, 441-445
Types, 209-224, 311

identity and compatibility, 221-223
pointer types, 22~221
simple-types, 210

ordinal-types, 21~211
boolean-type, 212
char-type, 212
enumerated-type, 212-213
integer-type, 211
longint-type, 211-212
subrange-type, 213

real-type, 214
string-types, 215
structured-types, 215-220

array-types, 216-217
file-types, 220
record-types, 217-219
set-types, 220

type-declaration part, 224

461

u
Underflow exception, 309
Undo command, 23, 185
UNITMOVER, 8, 77, 133--136

deleting units, 136
Units

compiling, 73
definition of, 57-58, 69
for segmentation, 75-77
run-time environment units, 40
structure of, 69-72

implementation, 71-72
initialization, 72
interface, 71

use of, 59, 73--74
writing

Units, Mac interface, 367-434
App"leTalk, 429-432
FixMath, 425-426
Graf3D, 427-428
MacPrint, 419-424
MemTypes, 373
OSintf, 381-398
Packlntf, 414-418
PasConso"le, 60, 369
PaslnOut, 60, 368
PasPrinter, 61, 370
QuickDraw, 374-380
SANE, 371-372
SCSIIntf, 434
Speechlntf, 433
Toollntf, 399-413

Units, Turbo Pascal standard
Mac interface, 61-65
run-time support, 60-61

Untyped variable parameters, 264
Update events, 93

v
Variable parameters, 264
Variables, 14, 225-229

declarations, 225-226
qualifiers, 226-229

arrays, strings, and indexes,
227-228

pointers and dynamic variables,
228-229

records and field designators, 228
references, 226
type casts, 229

Value parameters, 263--264
Value-type-casts, 244

462

w
while statement, 251
WIND resource, 150
Window command, 190
Windows, Turbo Pascal, 30. See also

Search menu, Windows command
with statement, 254-255
Write statement, 14
Writing applications. See Applications,
writing

Writing programs. See Files, to enter

z
Zoom Window command, 191

Turbo Pascal for the Macintosh

Borland
Software

INTERNATIONAL 4585 Scotts Valley Drive, Scotts Valley, CA 95066

Avatlable at betrer dealers nationwide.
·To order by credit card, call (800) 256-8008; CA (800) 742-1133;
CANADA (800) 237-1136.

BEllEX® PlUB: ~ih,::•AllE
llliltlSO TM

All the Power & Flexibility of a Relational Database Made Easy!
Reflex Plus: The Database Manager is the first relational database that's

easy to learn, powerful, and aimed at your needs. Reflex Plus is
not a mere file organizer, nor is it a monstrously complicated behemoth

aimed solely at consultants. Reflex Plus is the only relational database
aimed at your needs and time constraints.

Reflex Plus accomplishes this by taking full advantage of the
Macintosh's superior graphic ability while still giving users what
they want: unlimited flexibility in creating databases, accessing
data, and producing reports.

What puts the plus into Reflex Plus?
Borland listens to its customers and has added the most­

asked-for features and improvements to Reflex Plus.

High-powered /eatures al Rel/ex Plus:
8 Multiple entry forms for the same database.
8 Entry for more than one database in a single entry form.
8 Your choice of having an entry form that shows one record

at a time, or one that shows all the records at once.
8 Calculated fields in entry forms.
~ Display-only fields.
8 Oefaull (but editable) fields.
8 New functions like GROUPBY, which lets you easily show

records grouped by values in common.
8 A selection of useful templates.
~ Larger record size. (You can now choose record sizes of

1000, 2000, or 4000 characters.)
Check out these Rel/ex Plus leatures:
~ Visual database design.
8 A "what you see is what you get" design capability both

for enlry forms and reports.
~ Compatible with all Macintoshes with at least 512K,

including the SE", and Macintosh n:·
The heart al Rel/ex Plus is in its special functions with

which you create formulas. With over 50 function words to
choose from, you are given all the power of programming with·
out struggling with complex syntax. Reflex Plus functions are
straightforward and can handle all types of data.

Armed with these functions, you create formulas that
sort, search, calculate, quantify, qualify-you name it. And if
you don't feel up to writing the formula yourself, Reflex Plus
will do it for you. Using the FormulaBuild dialog box, you can
master even the most complicated formula.

Display grouped data. Reflex Plus gives you unlimited
flexibility when you want to display your data grouped in mean­
ingful ways.

Flexible entry forms. Most databases have a data entry
form, and that's that. Reflex Plus lets you design your own (but
if· you don't want to bother, Reflex Plus will make one for you).
Here are just some of the options available in your entry forms:
8 View all records at once.
8 View one record at a time.
8 Enter data into many databases at once.
8 Use calculated fields.
~ Default values in fields, display-only values, and lots more.
Convenience and Ease
8 Preset entry forms. Let Reflex Plus create an entry

form for you.
8 Preset reports. Let Reflex Plus create a table-style

report for you.
8 Paste Formula command. Let Reflex Plus guide you

through the steps of creating formulas for power searching
and data manipulation.

8 On-line help facility. Reflex Plus has an extensive on­
screen, context-sensitive help feature.

~ Paste Choice command. This command lets you paste
in fields that duplicate all the attributes of another field. A
great time saver. The command also lets you build formu­
las by pointing and clicking.

8 Auto-save. You'll never lose data again with Reflex
Pius's auto-save feature.

Database specifications: Maximum single field length: 4072 bytes. Maximum fields per record 254. Maximum record length: 4080 bytes.
Maximum records per file: limited only by disk capacity. Maximum number of linked database files: 200. Maximum number of open windows:
15. Maximum number of files that can be used by a report: no limit.

Suggested Retail Price: $279.00 (not copy protected)

Minimum system requirements: Runs on any Macintosh with at least 512K memory. Minimum setup is one BOOK !double-sided) disk drive or two 400K !single-sided)
drives. Works with the Hierarchical file System, Switcher, and most hard disks. Supports printing on the lmageWriter and the LaserWriter.

Rellex is a registered trademark ol Borland/ Analyt1ca. Inc. Other brand and pro­
duct names are trademarks or registered trademarks of their respective
holders. Copyright 1987 Borland lnternallonal BOR 0149A

•11'rlllfll® THE IEBl101'
a~ '.IRlllJ : ORSANllEB Release 2.0

Macintosh'"

The most complete and comprehensive collection of
desk accessories available for your Macintosh!

Thousands of users already know that SideKick is the best collection of desk accessories available
for the Macintosh. With our new Release 2.0, the best just got better.

We've just added two powerful high-performance tools to SideKick-Outlook~: The Outliner
and MacPlan~: The Spreadsheet. They work in perfect harmony with each other and while you
run other programs!

Outlook: The Outliner
• It's the desk accessory with more power than a stand-alone outliner
• A great desktop publishing tool, Outlook lets you incorporate both text and graphics

into your outlines
• Works hand-in-hand with MacPlan
• Allows you to work on several outlines at the same time

MacPlan: The Spreadsheet
• Integrates spreadsheets and graphs
• Does both formulas and straight numbers
• Graph types include bar charts, stacked bar charts, pie charts and line graphs
• Includes 12 example templates free!
• Pastes graphics and data right into Outlook creating professional memos and reports, complete

with headers and footers.

SideKick: The Desktop Organizer,
Release 2.0 now includes

r!1 Outlook: The Outliner
r!1 MacPlan: The Spreadsheet
r!1 Mini word processor
r!1 Calendar
f!1 Phonelog
r!1 Analog clock
~ Alarm system
~ Calculator
f!1 Report generator
r!1 Telecommunications (new version now

supports XMu!f·m file transfer protocol)

• 1367'5 51\of~

0 1594'l!i S.lul

R 296110 TohlRf"ltn""

Ill ""
• Cl'll E><'"''"
0 0.31\11 Wot
0 06Jll Kol.tr~ll
!;I U\'.1110..,,,.MI

Q 11.1n Tcoi.ll>Cftft'"

El ""
• 19.45'11'. n.tf'nll'it

MacP/an does both spreadsheets and business
graphs . Paste them into your Outlook tiles and

generate professional reports.

Suggested Retail Price: $99.95 (not copy protected)
Minimum system configurations: Macintosh 512K or Macintosh Plus with one disk drive. One BOOK or two 400K drives are recommended.
With one 400K drive. a limited number of desk accessories will be installable per disk.

BORLAND
INTERNATIONAL

SideKick is a regislered trademark and Oullook and MacPlan are trademarks of Bor~nd
lnlernalional, Inc. Macintosh is a trademark of Mclnlosh Laboralory, Inc. licensed lo Apple
Compuler, Inc. Copyrighl 1987 Borland lnlernalional BOA 0069D

EUREIA: 11E BBlVEB"
If you're a scientist, engineer, financial analyst, student, teacher, or any

other professional working with equations, Eureka: The Solver can do
youJ Algebra, Trigonometry and Calculus problems in a snap.

Eureka also handles maximization and minimiza­
tion problems, plots functions, generates reporfs,
and saves an incredible amount of lime. Even if
you're not a computer specialist, Eureka can help
you solve your real-world mathematical problems
fast, without having to learn numerical approximation
techniques. Eureka is easy to learn and easy to
use-as simple as a hand-held calculator.

X + exp(X) = 10 solved instantly instead
of eventually!

Imagine you have to solve for X, where X +
exp(X) = 10, and you don't have Eureka: The Solver.
What you do have is a problem, because it's going
to take a lot of time guessing at X. With Eureka,
there's no guessing, no dancing in the dark-
you get the right answer, right now. (PS: X =
2.0705799, and Eureka solved that one in less than
5 seconds!)

Some of Eureka's key features
You can key in:
& A formula or formulas
& A series of equations-and solve for

all variables
& Constraints (like X must be < or = 2)
& Functions to plot
& Unit conversions
& Maximization and minimization problems
& Interest Rate/Present Value calculations
S. Variables we call "What happens?," like

"What happens if I change this variable to
21 and that variable to 27?"

How to use Eureka: The Solver
It's easy.
1. Enter your equation into a problem

text window
2. Select the "Solve" command
3. Look at the answer
4. You're done

You can then tell Eureka to:
• Verify the solutions
• Draw a graph
• Zoom in on interesting areas of the grapn
• Generate a report and send the output to

your printer or disk file
• Or all of the above

Eureka: The Solver includes:
& Calculator+ desk accessory
& Powerful financial functions
& Built-in and user -defined functions
& Reports: generate and save them as

MacWriteN files-complete with graphs
and lists-or as Text Only files

& Polynorr.iial root finder
& Inequality constraints
& Logging: keep an up-to-the-minute record

of your work
& MacintoshN text editor
& On-screen Help system

Suggested Retail Price: $195.00 (not copy protected)
Minimum system configuration: Macintosh 512K, Macintosh Plus, SE, or II with one 800K disk drive or two 400K disk drives.

Eureka: The Solver is a trademark of Borland International. Inc. Macintosh is
a trademark of Mcintosh Laboratory, Inc. licensed lo Apple Computer, Inc.
Copyright 1987 Borland International BOA 0415

11111 PAICAL®

11111
From the folks who created Turbo Pascal. Borland's new
Turbo Pascal Tutor is everything you need to start pro­
gramming in Turbo Pascal on the Macintosh!™ It takes

you from the bare basics to advanced programming in a
simple, easy-to-understand fashion.

No gimmicks. It's all here.
The manual, the Tuto/ application, and 30 sample
programs provide a step-by-step tutorial in three
phases: programming in Pascal, programming on
the Macintosh, and programming in Turbo Pascal
on the Macintosh. Here's how the manual is set
up:
Turbo Pascal far the Absolute Novice
delivers the basics-a concise history of Pascal,
key terminology, your first program.
A Programmer's Guide ta Turbo Pascal
covers Pascal specifics-program structure,
procedures and functions, arrays, strings, and so
on. We've also included Turbo Typist, a textbook
sample program.
Advanced Programming
takes you a step higher into stacks, queues,
binary trees, linked structures, writing large pro­
grams, and more.

Using the Power of the Macintosh
discusses the revolutionary hardware and soft-
ware features of this machine. It introduces the
600-plus utility routines in the Apple Toolbox.
Programming the Macintosh in Turbo Pascal
shows you how to create true Macintosh pro-
grams that use graphics, pull-down menus, dia-
log boxes, and so on. Finally, MacTypist, a com­
plete stand-alone application featuring animated
graphics, builds on Turbo Typist and demon-
strates what you can do with all the knowledge
you've just acquired.

The disk contains the source code for all the
sample programs, including Turbo Typist, MacTy­
pist, and Turbo Tutor. The Tutor's split screen lets
you run a procedure and view its source code
simultaneously. After running it, you can take a
test on the procedure. If you're stuck for an
answer, a Hint option steers you in the right
direction.

Macintosh topics included are
5l' memory management 5l' menus
5l' resources and resource files 5l' desk accessory support
5l' QuickDraw 5l' dialogs
5l' events 5l' File Manager
5l' windows 5l' debugging
5l' controls

Suggested Retail Price: $69.95

...._ aylllm ,..al1111111nll: Mi Macintosh wilh at least 512K ot RAM. Requires Turbo Pascal.

BORLAND
INTERNATIONAL

rurtxJ Pascal illlll bbo Ti.IOI Me regisleled oademarlcs ol Borlald lnlema!Onal, Inc. Other brand and fllolilcl names
are lrademalks or regislered lrademarks of !heir respective holders Copyrirjll 1987 BOl'land lnlernalional BOR 0381

11111 PAICAl lllllll.

l•EBICAl llETHBa
Turbo Pascal Numerical Methods Toolbox far the Macintosh

implements the latest high-level mathematical methods ta salve
common scientific and engineering problems. Fast.

So every time you need to calculate an integral, work with Fourier transl arms, or incorporate any of
the classical numerical analysis tools into your programs, you don't have to reinvent the wheel, because
the Numerical Methods Toolbox is a complete collection of Turbo Pascal routines and programs that
gives you applied state-of-the-art math tools. It also includes two graphics demo programs that use
least-square and Fast Fourier Transform routines to give you the picture along with the numbers.

The Turbo Pascal Numerical Methods Toolbox is a must if you're involved with any type of scientific or
engineering computing on the Macintosh. Because it comes with complete source code, you have total
control of your application at all times.

What Numerical Methods Toolbox will do tor you:
• Find solutions to equations • Differential equations
• Interpolations • least-squares approximations
• Calculus: numerical derivatives and integrals • Fourier transforms
• Matrix operations: inversions, determinants, and eigenvalues • Graphics

Five free ways to look at Le11t-Squar81 Flt!
As well as a free demo of Fast Fourier Transforms, you also get the Least-Squares Fit in

five different forms-which gives you five different methods of fitting curves to a collection
of data points. You instantly get the picture! The five different forms are

1. Power 4. 5-term Fourier
2. Exponential 5. 5-term
3. Logarithm Poynomial

They're all ready to compile and run as is.

Suggested Retail Price: $99.96 (not copy protected)
Minimum system requirements: Macinlosh 512K. Macinlosh Plus. SE. or II. wilh one SOOK disk drive (or lwO 400KJ.

All 8orland procU:ls me 1radenBrks er regislered lradenllks ol Borlnl lnlemalioml,
Inc. er llarland/Araljtica. Inc. MacinlDsh is a lralfemark litensed ID Apple Conlxl&'.
Inc. Copyrighl 1987 Sorland lnlemational. A 8orland lllJo IOOlboxpnmt

BOR04

-
Borland
Software
OllD.Ell !ODAY

·------
4585 Scotts Valley Drive Scotts Valley, California 95066 I

In I 10 Orde~ ,~~,California I
By Credit call .

1 Card, \._;I (800) I
J r~~'JJ 142-1133 I
j 255-8008 In Canada call I

(800) 237-1136

ElOR 0234

-

B orland's new Turbo Pascal for the Mac'" is so incredi
fast that it can compile 1,420 lines of sou;ce code in

the 7.1 seconds it took you to read this!

And reading the rest of this takes
about 5 minutes, which is plenty of
time for Turbo Pascal for the Mac to
compile at least 6P,OOO more lines
of source code!

Turbo Pascal far the Mac does
bath Windows and "Units"
The separate compilation of routines
offered by Turbo Pascal for the Mac
creates modules called "Units," which
can be linked to any Turbo Pascal"
program. This "modular pathway"
gives you "pieces" which can then be
integrated into larger programs. You
get a more efficient use of memory
and a reduction in the time it takes
to develop large programs.

Turbo Pascal far the Mac Is
so compatible with Lisa• that
they should be living taoether
Routines from Macintosh Program­
mer's Workshop Pascal and Inside
Macintosh can be compiled and run
with only the subtlest changes. Turbo
Pascal for the Mac is also compatible
with the Hierarchical File System of
the Macintosh.~

Minimum system configuration:
256K. One 400K drive.

The 27-second Guide to Turbo
Pascal for the Mac
• Compilation speed of more than 12,000

lines per minute
• "Unit" structure lets you create program

in modular form
• Mulliple editing windows-up to 8 al on
• Compilation options include compiling le

disk or memory, or compile and run
• No need to switch between programs to

compile or run a program
• Streamlined development and debugginQ
• Compatibility with Macintosh

Programmer's Workshop Pascal (with
minimal changes)

• Compatibility with Hierarchical File SyslE
of your Mac

• Ability to deline default volume and fold1
names used in compiler directives

• Search and change features in lhe edito•
speed up and simplify alteration of
routines

• Ability to use all available Macintosh
memory withoul limit

• "Units" included to call alt the routines
provided by Macintosh Toolbox

3 MacWinners from Borland!
First there was S1deK1ck for the Mac,
then Reflex for lhe Mac.~ and now
T ~rbo Pascal for the Ma(I

BORLAND 4585 SCOTTS VALLEY DR
SCOTTS VALLEY, CA 950f

INTERNATIONAL

Turbo Pascal is a registered trademark and Turbo Pascal lor lhe Mac, SideKick lor the Mac. and Reflex for the Mac
trademarks of Borland International, Inc. Macintosh is a trademaik of Mcintosh Laboratories, Inc. and licensed to App
Computer with its express permission. Lisa is a registered trademark of Apple Computer. Inc. Inside Macintosh is a
copyright of Apple Computer, Inc.

