

A FRAGMENT OF
YOUR IMAGINATION

Code Fragments and
Code Resources for Power Macintosh®
and Macintosh Programmers

JoeZobkiw

Foreword by Scott Knaster

• ~
Addison-Wesley Publishing Company

Reading, Massachusetts • Menlo Park, California • New York
Don Mills, Ontario • Wokingham, England • Amsterdam
Bonn • Sydney • Singapore • Tokyo • Madrid • San Juan
Paris • Seoul • Milan • Mexico City • Taipei

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this book, and
Addison-Wesley was aware of a trademark claim, the designations have been printed in
initial capital letters or all capital letters.

The author and publisher have taken care in preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in
connection with or arising out of the use of the information or programs contained
herein.

Libran1 of Congress Cataloging-in-Publication Data

Zobkiw, Joe.
A fragment of your imagination : code fragments and code resources

for Power Macintosh and Macintosh programmers I Joe Zobkiw.
p. cm.

Includes bibliographical references and index.
ISBN 0-201-48358-0
1. Macintosh (Computer)-Programming. 2. PowerPC microprocessors-

Programming. I. Title.
QA76.8.M3Z63 1995
005.26-dc20 95-17045

Copyright © 1995 by Joseph M. Zobkiw

The Tiger Slider used in Chapter Seven, "Control Definition" is © 1995 Tiger
Technologies. It was written by Robert L. Mathews.

CIP

The Infinity Windoid WDEF used in Chapter Eight, "Window Definitions," is© 1991-95
by Infinity Systems and Troy Gaul.

The TV Tube Photoshop filter used in Chapter Ten, "Photoshop Filters," was written by
Troy Gaul and was based on the Dissolve sample from Adobe.

The RefConLDEF is loosely based on an initial concept by Manoj Patwardhan called
LDEFl, which is© 1995 Crystal Software Inc. All rights reserved. It was renamed and
changed for use in this book.

All other code, unless otherwise noted, is© 1995 by Joe Zobkiw. All rights reserved.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic, mechanical,
photocopying, recording, or otherwise, without the prior written permission of the
publisher. Printed in the United States of America. Published simultaneously in Canada.

Sponsoring Editor: Martha Steffen
Project Manager: John Fuller
Production Coordinator: Ellen Savett
Cover Design: Chris St. Cyr
Set in 10 point Palatino by Clarinda

1 2 3 4 5 6 7 8 9-MA-9998979695
First printing, July 1995

Addison-Wesley books are available for bulk purchases by corporations, institutions,
and other organizations. For more information please contact the Corporate,
Government, and Special Sales Department at (800) 238-9682.

This book is dedicated to the memory of my father,
Richard Zobkiw

Contents

Special Thanks
Foreword
Introduction

xv
xvii
xix

Chapter One Introduction to Code Resources 1

Introduction 1
Anatomy of a Code Resource 2
Calling a Code Resource 2
Real-world Example of Using Code Resources 4
Code Resource Limitations 6

Globals in Code Resources 6
32K Limit and Multisegment Code Resources 12

Code Resource Tips 13

v

vi CONTENTS

Chapter Two Power Macintosh Code Fragments 15

Introduction
The Mixed Mode Manager

Universal Procedure Pointers
Using Universal Procedure Pointers

The Code Fragment Manager
Always Be Prepared
Code Fragment Structure
Fragment-specific Routines
The Code Fragment Resource
Resources

Fat and Safe Fat Resources
Code Fragment and Mixed Mode Tips

Chapter Three Application Extensions

15
16
17
23
26
27
28
30
31
32
33
34

37

Introduction 37
Private Resources 38
Beyond Private Resources 39
Calling the Code 40

680x0 Code 41
PowerPC Code 42
Code That Won't Require a Mode Switch 42

Calling 680x0 Code 43
Calling PowerPC Code 46
Calling Code That Won't Require a Mode Switch 47
The Resource Code 48
Other Types of Private Resources 49
Working with Shared Libraries 52
Calling Our Shared Library 53
Our Shared Library Code 56
Compiling Our Code 58
Private Resource Tips 59

Chapter Four System Extensions

Introduction
Anatomy of a System Extension
Introduction to MenuScript and Patching Traps
More MenuScript Features
MenuScript Code
Patching Traps for PowerPC
Inside the Patches
Compiling Our Code
System Extension Tips

Chapter Five Control Panels

Introduction
Anatomy of a Control Panel
System Extension Changes
Control Panel Code
Compiling Our Code
Control Panel Tips

Chapter Six List Definitions

Introduction
List Definition Code
Compiling Our Code
Modifying the List Definition
List Definition Tips

Chapter Seven Control Definitions

Introduction
Icon Family Control

Control Definition Code
Compiling Our Code

CONTENTS vii

61

61
62
64
66
67
75
79
82
84

87

87
89
90
93
98

100

103

103
106
115
117
118

121

121
123
123
127

viii CONTENTS

Modifying the Icon Family Control 128
Slider Control 129

Control Definition Code 133
Compiling Our Code 143
Modifying the Slider Control 145

Control Definition Tips 145

Chapter Eight Window Definitions 147

Introduction 147
Window Definition Code 150

Main 150
New 152
Draw 152
Hit 156
CalcRegions 157
Grow and Grow Icon 158
Dispose 161

Compiling Our Code 161
Window Definition Tips 162

Chapter Nine HyperCard Externals 165

Introduction 165
PowerPC Support 167
XCMD Development 168
RecordToDisk XCMD Code 169
PlayFromDisk XCMD Code 173
Compiling Our Code 180
HyperCard External Tips 182

Chapter Ten Photoshop Filters 185

Introduction 185
ColorFill Filter 195

Filter Code 195

Compiling Our Filter
TV Tube Filter

Compiling Our Filter
Ideas for Other Filters
Filter Tips

Chapter Eleven Components

Introduction
Component Code

Open Message
Close Message
Can Do Message
Version Message
Other Predefined, Unrequired Messages
Do Beep Message
Do Flash Message

The thng Resource
Component Tester Code
Component Tester PowerPC Changes
Compiling Our Code
Component Tips

CONTENTS

205
206
208
208
209

211

211
212
217
218
219
220
220
221
221
222
225
230
233
234

Chapter Twelve Advanced and Undocumented 237
Techniques

Introduction 237
Building Fat Resources 238
Building Safe Fat Resources 239
Using FatMan to Create Fat and Safe Fat Resources 240
Multiple Cell Formats in a List 243
Code Optimization 245

Optimize Inner Loops 245
Unroll Loops 246
Optimize the Code that Executes the Most 246
Use Macros Instead of Function Calls 246

ix

x CONTENTS

Don't Multiply or Divide 246
Optimize Last 247

Debugging Techniques 247
If You Have to Support System 6 248
Sending AppleEvents from a Code Resource 249
Writing a Daemon Application 249
Creating Stand-alones 250
Patching Traps 251
Patching a Register-based Trap 252
System Extension Conflicts 253
Disabling Command-Option-Escape 253
Getting the Directory ID of the Frontmost 254

Finder Window
Creating Your Own AS World 255
Adding a Rightmost System Menu 260

GetMenu 261
MenuSelect 261
SystemMenu 261

Conclusion 261

Projects to Try on Your Own 263

Suggested Reading 265

Magazines 265
Mac Tech 265
develop 265

Books 266
Inside Macintosh 266
Macintosh Programming Secrets (Second 266

Edition)
How To Write Macintosh Software (Third 266

Edition)
XCMDs for HyperCard 266
PowerPC 601 RISC Microprocessor 266

User's Manual

CONTENTS xi

Other 267
Technical Notes 267
Online Services 267
Internet 267
Your CodeWarrior CD-ROM 267

Appendix 269

Chapter Three Source Code 269
main.c 269
main.h 276
modules.c 276
modules.h 282
globs.c 284
globs.h 284
ae.c 285
ae.h 289
dlogutils.c 289
dlogutils.h 291
init.c 292
init.h 293
prefs.c 294
prefs.h 295
utils.c 295
utils.h 296
Shared Library.c 297
Shared Library.h 299
xShell.c 299
xShell.h 300

Chapter Four Source Code 300
INIT.c 300
INIT.h 311
PPCPatches.c 311
PPCPatches.h 314
common.c 314
common.h 321

xii CONTENTS

Chapter Five Source Code 322
cdev.c 322
cdev.h 327
INIT.c 327
INIT.h 339
PPCPatches.c 339
PPCPatches.h 342
common.c 342
common.h 349
dlogutils.c 350
dlogutils.h 356
allcommon.h 356

Chapter Six Source Code 357
ViewByNameLDEF.c 357
ViewByNameLDEF.h 370

Chapter Seven Source Code 371
Icon Family CDEF.c 371
Tiger Slider.cp 374
Tiger Slider.h 383

Chapter Eight Source Code 384
InfinityWindoid.c 384
WindoidDraw.c 388
WindoidDraw.h 404
WindoidUtil.c 407
WindoidUtil.h 418
WindoidDefines.h 419

Chapter Nine Source Code 428
PlayFromDisk XCMD.c 428
RecordToDisk XCMD.c 436

Chapter Ten Source Code 442
ColorFill.c 442
TVTube.c 450

Chapter Eleven Source Code 461
ComponentTester.c 461
ComponentTester.h 470
FatComponent.c 471

CONTENTS xiii

FatComponent.h 473
FatComponentCommon.c 475
FatComponentCommon.h 477
PPCGlue.c 477
FatComponentPrivate.h 479

Chapter Twelve Source Code 480
RefConLDEF.c 480
RefConLDEF.h 482
aSWorld.c 483
aSWorld.h 486

Glossary 487

Index 491

About the Author 501

Special Thanks

This being my first book, it is tempting to thank everyone with whom
I've ever come into contact. However, because I only have a page to do
it all, here I go . . .

Special thanks first and foremost to my wife, Renee, for letting me
spend the time away from her to write this book. I couldn't have done
it without her support. Thanks to Sasha Doodles for not barking too
loud. Thanks to my parents for supporting me. Thanks to David Mash
for my first big break and his friendship. Thanks to Troy Gaul and Rob
Mathews for the awesome code and the time they invested in prepar
ing it for this book. Thanks to Marty Wachter, Ron Davis, Jim Luther,
and Nitin Ganatra for reviewing the manuscript and keeping me in
check. To Greg Galanos and Metrowerks, thanks for everything.
Thanks to Scott Knaster for taking time out of his busy schedule of
creating cool stuff to write the Foreword. Thanks to Mike Groh and
Scott Crenshaw for being cool about stuff. Thanks to Kaethin Prizer,
John Fuller, Ellen Savett, and everyone at Addison-Wesley for their
assistance. And of course, thanks to Martha Steffen for believing
in me enough to allow this to happen in the first place. Little did she
know ...

And how could I not mention all those who have helped shape
my life in one way or another over the years: John "The Jingle Man"
Hunter, "Funky'' Chris Haynes, Jeff "Wheat Bread" Dopko, Steve
"Rye Bread" Rossi, Chris Rose, Jim Lent, Rick Rainone, Dick "The

xv

xvi SPECIAL THANKS

Howe" Howard, Ira "Adam Bomb" Horvitz, David Zobkiw, the Emmi
family (all of them), the Lockett family, Chris Wysocki, Greg LaSalle,
Dave Mark, everyone at TPS, everyone at Berklee, my SmartFriendsTM,
and anyone else I may have missed (you know who you are), espe
cially those who owe me money.

Foreword

I don't want to alarm you here, but your Macintosh is not so much a
personal computer as it is a digital petri dish, an environment where
tiny things live. You see, there are all sorts of wacky little programs
running around inside there, helping make your Macintosh work bet
ter. (Of course, viruses work that way, too, but that's the way petri
dishes are: you'll find lots of different things growing inside.) Joe
Zobkiw is your expert tour guide through this densely populated
world.

When you're using your favorite application, you may think that
it's in control of what's going on, and you're right, sort of. Although
the application is running the show, it has a lot of help. Every time it
draws a window, it calls upon a crafty little specialist of a program
that only draws windows. Apple supplies this small piece of code, but
you can have lots of fun learning how to replace it with your own to
make windows look and act just how you want them to. Controls,
menus, and lists work the same way, and Joe tells you about all of
them in this secret-spilling book.

While your application develops a close personal friendship with
these code resources, there are various other programs (not applica
tions) hanging out and doing their own thing. Among the most
important of these are system extensions that are loaded when your
Macintosh starts up. You'll find out how to make those, too.

xvii

xviii FOREWORD

Some applications are just so studly that they provide their own
personal environment for code resources. The best-known example of
these applications, HyperCard and its famous XCMD extensions, is
covered in Chapter 9.

The Macintosh has always had zillions of little programs sharing
the road, getting work done, but the platforms for code resources
keep getting richer. When Apple's technology advanced to include
QuickTime, Apple introduced the Component Manager, a fancy new
playland for code resources. And when the Power Macintosh made
its successful debut in 1994, Apple made sure that it could handle all
the code resources hosted by its predecessor, while introducing new
tricks of its own. With a taste for the latest technology, Joe tells you
all about these goodies.

Both the original Macintosh (68000 family) and the extra-crispy
(Power Mac), have gotten a lot of mileage out of using code resources
to handle a wide variety of tasks. With code resources, clever pro
grammers (hello, clever programmer!) can make their Macs behave
more like they want them to. Joe Zobkiw has figured out this essential
secret and has written a thorough and insightful guide to crafting code
resources. Joe writes from his own experience and enthusiasm because
he knows that these critters are everywhere. Hey-there's one crawl
ing up your leg!

-Scott Knaster
Macintosh Semi-Geek

Introduction

So, you want to learn about code resources and fragments, huh?
By writing this book, I attempt to introduce code resources and

fragments to the intermediate Macintosh programmer. I assume that
you have experience writing applications or some other type of
code on the Macintosh. I also assume that you are familiar, to some
extent, with things like the Resource Manager, the File Manager, the
Dialog Manager, QuickDraw, the Menu Manager, the Control Man
ager, and other Toolbox and operating system managers. If you have
successfully completed just about any small Macintosh program,
you can probably pick up the information in this book with little
effort. Simply read it and absorb.

I do assume that you understand a bit about how the concepts
work on the Macintosh. For example, before delving into the chapter
on how to write a PowerPC native control panel, you should probably
have read the Inside Macintosh chapter on control panels and maybe
even have implemented a simple control panel for 680x0 Macintosh.
Also, although the important bits of source code are displayed and
discussed in each chapter, by reading through the actual source code
for each individual project, available on the accompanying CD-ROM,
you will obtain a greater understanding of the project as a whole.
Read the book, look at the source code, compile the project, and exper-

xix

xx INTRODUCTION

iment. This book is meant to augment the Inside Macintosh volumes by
offering useful, extended examples of the concepts presented there.

I sincerely hope you enjoy this book and gain something from it.
The information in it represents years of experience and experimenta
tion. If something in this book saves you a day off your programming
schedule, then I've done my job. Enjoy this book and use it well.

CHAPTER

Introduction to Code
Resources

ONE

"Regularly scheduled programming" is an oxymoron.

-Doug McKenna

Introduction

When the Macintosh was released in 1984, those who purchased the
new machine knew it was a winner. The moment they put their hand
to the mouse, users felt the ease of use that Macintosh promised. Pro
grammers, on the other hand, saw a uniquely designed operating sys
tem that allowed total customization of the look and feel of the
computer. The ability to customize was due to an ingenious approach
of factoring the functionality of specific user interface elements into
separate code pieces. An engineer working on the Macintosh decided
that if most user interface elements were completely handled by drop
in pieces of code, it would make development simpler and would also
be less stressful on the then-limited 128K of memory. The Macintosh
code resource was born.

You probably already know that all radio buttons, check boxes,
scroll bars, menus, lists of items, windows, and dialog boxes are
drawn by code stored in resources of different types. For example, the
Control Manager handles drawing buttons and scroll bars by execut
ing code in resources of type CDEF. The Menu Manager executes code

1

2 A FRAGMENT OF YOUR IMAGINATION

in resources of type MDEF to draw its menus. Programmers can even
create custom lists of items by means of the List Manager resources of
type LDEF. Resources of type INIT are loaded at startup and allow
programmers to customize features of the system on a global scale.

Eventually, Apple was forced to release strict guidelines about
how a Macintosh application should look and feel to the user.
These user interface guidelines are constantly being updated as
new interface elements are being created. If you ever 10ok at
some of the programs that were released early on, you will see
why Apple's decision to set up guidelines was a good one.

Anatomy of a Code Resource

As the name implies, code resources are standard Macintosh resources
that just happen to contain executable code. Code stored in a resource
can be accessed by any other code-whether it be in the operating sys
tem or in your application. If you are familiar with HyperCard, you
know that it can access external commands and functions in your
stacks if they are stored in resources of type XCMD and XFCN, re
spectively. These resources contain executable code originally written
in C, Pascal, or some other language that is then compiled into code
resource form . You can consider the resource as simply a container
that houses the code. By storing the code in a resource-based con
tainer, HyperCard is able to use the Resource Manager functions to
load it and eventually execute it. Later on in this book, we explore Hy
perCard externals in detail.

When your development environment compiles your source as a
code resource it expects it to have a single, main entry point-also
known simply as main. This entry point is used to assemble the code
resource in such a way that, when it is called, the main function will
be executed first (Figure 1-1). The main function can then call other
functions in the code resource, as you are used to seeing when writing
any other type of code.

Calling a Code Resource

In order for an application, or any other software, to execute code
stored in a resource, it must know certain information about the code
it is about to execute. First, it must know the type of resource in which

Main entry point

A function in the
code resource

,ii.notherfunction in the
code resource

Figure 1-1. Main entry point calling
other functions in a code resource

INTRODUCTION TO CODE RESOURCES

Application code

JSR

,,
ATS

Code resource

Figure 1-2. Calling a code resource
the details

the code is stored. Second, it must know the resource name or
identification number (also known as the resource ID.) At this point,
the application loads the code resource by using any of the standard
Resource Manager functions. Once loaded, it locks the resource in
memory and then calls the main entry point function of the resource,
using its specific calling conventions, to perform its duty. You should
note that a code resource can take any number of parameters and re
turn any type. However, you must decide on this before you create
your code resource. The calling code needs to know this information
in order to properly execute the code resource (as in the following
code).

typedef void (*VoidProc) (void);
OSErr CallCodeResource(void)
{

Handle
OS Err

if (hCode) {

hCode; GetlResource(kResType, kResID);
err ; noErr;

HLockHi (hCode):

((VoidProc) (*hCode)) ():

HUnlock(hCode);

3

4 A FRAGMENT OF YOUR IMAGINATION

ReleaseResource(hCode);
else err= ResError();

return err;

On a 680x0 Macintosh, you call the main entry point of a code re
source by simply jumping to it via a JMP or JSR 680x0 assembly lan
guage instruction. This immediately begins execution of the code
stored in the code resource. When the code resource is finished, it per
forms an RTS 680x0 assembly language instruction, which returns con
trol to the caller (Figure 1-2). Normally, in C, you will never see these
instructions, but it is good to understand what is happening behind
the scenes.

Real-world Example of Using Code Resources

As mentioned, code resources are used by system software-level ser
vices in order to implement many user interface elements. By taking
advantage of this fact, you can customize the look and feel of your ap
plication. You can add custom buttons, popup menus, colorful win
dows and controls, and more.

Another way you can take advantage of code resources is to write
them into your application design. Let's say you want to write a pro
gram that edits sound. You may want to display the sound waveform
in a window and then allow users to select portions of it to which they
could apply effects such as echo, flange, chorus, etc. Your program
might have a menu named Effect that would contain a list of all pos
sible effects that are available to the program (Figure 1-3).

By storing the code to generate these effects in a specific resource
type, you can create your Effect menu simply by using the AddRes
Menu function. This is a similar technique that programs use to add
desk accessories to the Apple menu. When the user selects an item
from your Effect menu, you can then load the resource by name, since
the name of the menu item is the same as the name of the resource.
After it is loaded, you simply call the code resource (discussed in de
tail in subsequent chapters) by passing it the raw sample data on
which the user has selected to act, and then wait for it to return. After
the code resource has completed its job, you simply call Release
Resource to free the memory it is taking up. This is a very simple way
to implement modularity in your program.

In addition to this technique of loading, calling, and unloading
your code resources as they are needed, you can also load all of them

Delay .. .
Echo .. .
Flange .. .
Reuerb .. .

Figure 1-3. Menu
containing options
available via code
resources

INTRODUCTION TO CODE RESOURCES

at application startup and keep them loaded until you quit the appli
cation. This may work better, depending on the type of application
you are writing. In our example, the effect never takes place until the
user explicitly selects the item from the menu, so a few ticks to load a
resource might not be a big deal. However, if you have lots of memory
available to your application and you need to muster all the speed you
can out of your calling mechanism, you may elect to load all of the
code resources first, then call them as needed, which saves any extra
disk access time each time the resources are used.

Yet another technique for dealing with code resources is to store
each one in a separate file, as opposed to storing the resource in your
application. The files themselves would contain the code resource and
any extra resources (such as dialog boxes or alerts) that they might use
to do their job. When your application launches, you might peruse a
folder called Effect folder, which would exist in the same folder as
your application. Any files that contain your effect resources could
then be listed in your menu. Now when a user selects an effect, you
need to make sure to open the particular file in which the effect is
stored, make it the current resource file, load the code resource, call it,
and then, after it is finished, close the file and restore your application
as the current resource file. This is a very popular way of implement
ing modular code in applications since it allows users to easily add
and remove only those effects that they may want to use.

As you can imagine, there are numerous optimizations you can
apply to this last technique. For example, you may load all effect code
resources from each file and call DetachResource on each one of them.
Although you would still have to open the resource file of each effect
(if it used any resources within the file), this technique accelerates
the process of calling each effect by avoiding the resource loading

5

6 A FRAGMENT OF YOUR lMAGlNATION

overhead. You may also include a configuration resource in each file
that contains certain information about the particular effect. One of the
flags in this resource might tell the calling application if the effect
needs any resources in its file, so you know whether or not you even
need to open it at all when you call the effect.

Each application you write may have different needs when it
comes to code resources. As you explore the possibilities of each, you
will find what works best for you and your particular situation. It's
safe to say, however, that implementing portions of your application
in this way will undoubtedly make your programming life easier.

Code Resource Limitations

Like all good things, there are some things to be aware of when deal
ing with code resources on a 680x0 Macintosh. Although they are very
straightforward- after you've created a few-there are some limita
tions involved that may or may not impact your project. Let's take a
look at some of them.

Globals in Code Resources

As you may know, the Macintosh keeps track of application global
data based off of the 680x0 register named AS. Whenever an applica
tion attempts to access global data, it is always assumed that register
AS contains the proper value and then an offset is added to it to access
the global data . Code resources have no such "AS world" and, there
fore, do not have access to any global data by default. Luckily, there is
a simple way to allow access to global data from within your code re
source.

The Power Macintosh allows global data in code fragments,
which are the equivalent of code resources on that platform. This
is discussed fully in subsequent chapters, so please stay tuned.

Different development environments have different mechanisms
for making global data usable in stand-alone code resources. Apple's
Macintosh Programmers Workshop (MPW) has a scheme that creates
a fake AS world. Both Metrowerks' CodeWarrior and Symantec's
THINK C make use of A4-relative global data. That is, all references to

INTRODUCTION TO CODE RESOURCES

global data are referenced at an offset off of the value stored in regis
ter A4. It is up to programmers to include some simple calls in their
code in order to ensure that register A4 contains the proper value
when access to this global data is needed .

Because this book makes use of CodeWarrior, we will be show
ing an example of global data using that development environ
ment. The THINK C environment is similar and MPW is totally
different. You should consult the documentation that came with
your particular environment in order to learn the specifics of
using globals in code resources.

Before we learn how to access global data, let's take a look at what
exactly global data consists of. Most of the time, you assume global
data is simply a variable that is defined outside of any function . This
is true. But in Code Warrior, for example, other things in your code are
considered global data and are, therefore, referenced off of the value in
register A4. The following code snippet shows many types of global
data in CodeWarrior.

long gVersionNumber ;

void Set Version(void);

void mai n (void)

Point
Str255

p = (50, 100) ;
s ;

Ge t indString(s, 128 , 1);
if (EqualString(s , " \ pUtopia• , true, true))

return;

SetVersion();

void SetVersion(void)

gVersionNumber = OL ;

7

8 A FRAGMENT OF YOUR IMAGINATION

It is probably obvious to you that the gVersionNumber variable
is a global variable. However, did you know that although the Point
variable, p, is local, the way it is initialized makes use of global data?
Sure enough, the values 50 and 100 are both referenced off of the
value in register A4. The hard-coded string "\pUtopia" is also
treated as global data. Take a look at the 680x0 assembly language
version of this code, which follows. It shows us exactly what is hap
pening.

Hunk:Kind=HUNK_LOCAL_IDATA Name="@"(2) Size=4
00000000: 00 32 00 64 \ . 2. d,

Hunk:Kind=HUNK_LOCAL_IDATA Name="@6"(6) Size=?
00000000: 06 55 74 6F 70 69 61 '.Utopia'

Hunk:Kind=HUNK_GLOBAL_CODE Name="rnain"(7) Size=72
00000000: 4E56 FEFC LINK A6,#$FEFC
00000004: 2D6C 0000 FEFC MOVE.L @ (A4) , $FEFC (AG)
OOOOOOOA: 486E FFOO PEA $FFOO(A6)
OOOOOOOE: 2F3C 0001 0080 MOVE.L #$00010080,-(A?)
00000014: 4EB9 0000 0000 JSR GETINDSTRING
OOOOOOlA: 554F SUBQ.W #$2,A7
OOOOOOlC: 486E FFOO PEA $FF00(A6)
00000020: 486C 0000 PEA @6(A4)
00000024: 1F3C 0001 MOVE.B #$01,-(A7)
00000028: 1F3C 0001 MOVE.B #$01,-(A7)
0000002C: 4EB9 0000 0000 JSR EQUALSTRING
00000032: lOlF MOVE.B (A7)+,DO
00000034: 6606 BNE.S *+$0008 0000003C
00000036: 4EB9 0000 0000 JSR SetVersion
0000003C: 4E5E UNLK A6
0000003E: 4E75 RTS

Hunk:Kind=HUNK_GLOBAL_CODE Name="SetVersion"(8) Size=26
00000000: 4E56 0000 LINK A6,#$0000
00000004: 42AC 0000
00000008: 4E5E
OOOOOOOA: 4E75

CLR.L gVersionNurnber(A4)
UNLK A6
RTS

XRef:Kind=HUNK_XREF_DATA16BIT Name="gVersionNurnber"(3) #Pairs=l
Of fset=$00000010 Value=$00000000

You will also notice that the SetVersion function makes use of the
global gVersionNumber. In an application, this would not be a prob
lem and all would be well. However, in a code resource, the SetVer
sion function cannot be guaranteed access to the gVersionNumber

INTRODUCTION TO CODE RESOURCES

The code presented here, which is CodeWarrior's representation
of the assembly language that it generates, has lots of informa
tion in it. The column to the left is the offset at which that line of
code exists. The offset always begins at 0 and increments by the
size of the previous instruction. Since the first instruction is 4
bytes in length, the second offset is 4. The second column is the
hexadecimal representation of the instruction. The remaining in
formation is the assembly language English representation of the
instruction. Don't worry if you don' t understand assembly lan
guage, we will still let you finish reading the book.

global, unless it sets up the value of the A4 register before attempting
to access it. The following code snippet shows the extra code needed
to make global data work in this example.

#include "A4Stuff.h"
Hnclude "SetupA4 .h"

long gVersionNumber;

void SetVersion(void);

void main (void)

long oldA4;
Point p;
Str255 s;

oldA4 = SetCurren tA4() ;
RememberA4();

p . h = 50; p.v = 100;

GetindString(s, 128, 1);
if (EqualString (s, " \pUtopia", true, true))

return;

SetVersion();

SetM (oldA4);

void SetVersion(void)

9

10 A FRAGMENT OF YOUR IMAGINATION

long oldA4 = SetUpA4();
gVersionNumber = OL;
RestoreA4(oldA4);

As you can see, by making use of the specialized A4 functions,
you can ensure that your code has access to your global data. Assum
ing you've included the proper A4-related header files, as we have
done here, the first thing that your main function does is to set the cur
rent A4 as the A4 that you use when you need access to globals. This
is accomplished via the SetCurrentA4 and RememberA4 functions.
After this is done, your other functions in this source file can access
the proper A4 by calling SetUpA4 and RestoreA4, as the SetVersion
function does. These simple utility functions (see the following code)
make the difference between accessing the data you expect and ac
cessing random data that will most likely make you crash deep into
your debugger. So, if you notice a crash in your code resource, and it
looks like you may be trying to access some data at an offset off of reg
ister A4, you may not have set things up properly.

Hunk: Kind=HUNK_LOCAL_CODE Name="SetUpA4"(1) Size=32
00000000: 200C MOVE.L A4,DO
00000002: 49FA 0006 LEA *+$0008,A4 ; OOOOOOOA
00000006: 2854 MOVEA.L (A4) ,A4
00000008: 4E75 RTS
OOOOOOOA: 0000 0000 ORI.B #$00,DO
OOOOOOOE: 41FA FFFA LEA *-$0004,AO OOOOOOOA
00000012: 208C MOVE.L A4, (AO)
00000014: 4E75 RTS

Hunk: Kind=HUNK_LOCAL_IDATA Name="@5"(4) Size=?
00000000: 06 55 74 6F 70 69 61 '.Utopia'

Hunk: Kind=HUNK_GLOBAL_CODE Narne="main"(S) Size=lOO
00000000: 4E56 FEFB LINK A6,#$FEF8
00000004: 4EB9 0000 0000 JSR SetCurrentA4
OOOOOOOA: 2D40 FEFB MOVE.L D0,$FEF8(A6)
OOOOOOOE: 4EB9 0000 0000 JSR RememberA4
00000014: 3D7C 0032 FFFE MOVE.W #$0032,$FFFE(A6)
OOOOOOlA: 3D7C 0064 FFFC MOVE.W #$0064,$FFFC(A6)
00000020: 486E FEFC PEA $FEFC (A6)
00000024: 2F3C 0001 0080 MOVE.L #$00010080,-(A7)
0000002A: 4EB9 0000 0000 JSR GETINDSTRING
00000030: 554F SUBQ.W #$2,A7
00000032: 486E FEFC PEA $FEFC(A6)
00000036: 486C 0000 PEA @5(A4)
0000003A: 1F3C 0001 MOVE.B #$01,-(A7)
0000003E: 1F3C 0001 MOVE.B #$01,-(A7)

00000042 : 4EB9
00000048 : 101F
0000004A : 660C
0000004C : 4EB9
00000052 : 202E
00000056 : Cl8C
00000058 : 4E5E
0000005A : 4E75

Hunk :
00000000 : 4E56
00000004 : 4EB9
OOOOOOOA : 2040
OOOOOOOE : 42AC
00000012 : 202E
00000016 : Cl8C
00000018 : 4E5E
OOOOOOlA : 4E75

XRef :

INTRODUCTION TO CODE RESOURCES

0000 0000 JSR EQUALSTRING
MOVE.B (A7)+,DO
BNE .S *+$000E 00000058

0000
I

0000 JSR Setversion
FEF8 MOVE.L $FEF8(A6),00

EXG DO ,A4
UNLK A6
RTS

Kind=HUNK_GLOBAL_CODE Name='SetVersion"(6) Size=42
FFFC LINK A6, #$FFFC
0000
FFFC
0000
FFFC

0000 JSR
MOVE . L
CLR . L
MOVE . L
EXG
UNLK
RTS

SetUpA4
D0,$FFFC(A6)
gVersionNumber(A4)
$FFFC(A6),DO
DO,A4
A6

Kind=HUNK_XREF_DATA16BIT Name="gVersionNumber"(3)
l!Pairs=l
Offset=$00000010 Value=$00000000

In reality, the SetVersion function would have been able to access
the global data without a problem in this particular case (even if
it didn' t set up A4 itself), since the main function had already set
up A4. When Sefersion was called, A4 was set properly. How
ever, in some cases your SetVersion call may have been called
from a function that did not set up A4 for global access. This
might happen if you called it from a trap patch. We simply want
to show you howl the A4 functions work in rela tion to each other.
You are expected to experiment with these functions and to learn
when you may or may not need them.

What we've learned about global data is all well and good, as
suming the source code of your code resource is contained in only one
text file. However, if the source code is spread across multiple text files
and you have functions in each that need access to the same globa l
data, you need to perform a few more tricks before continuing. You
see, the A4 functions that we just mentioned only work for a single
source file. When you #include the A4-related header files, you are ac
tually including code that is self-modifying (as in the following code).
That is, when you execute the RememberA4 function, it actually

11

12 A FRAGMENT OF YOUR IMAGINATION

stashes the value of A4 within itself. Since it only #includes itself in the
particular file that #includes it, other files will not have access to this
much-needed information. Therefore, you must ensure they have ac
cess to the A4 value in some other way.

static void RememberA4(void);

static asm long SetUpA4(void)

move.l
lea
move.l
rts

a4,d0
storage,a4
(a4) ,a4

II this storage is only referenced thru data cache
storage: dc.l 0

entry static RememberA4
lea storage, aO
move.l a4, (aO)
rts

Luckily, there is an easy way around this problem. From your
main function, after you have set up A4 completely, you should call a
function in each file that may use globals. This function will set up A4
for each file individually. It simply needs to call RememberA4 in order
to copy the current, proper value of A4 into its own, local A4 storage
location (as in the following code). Then, whenever any function in the
file needs access to any globals, it can do exactly what SetVersion does
in the previous example. That's it!

#include "A4Stuff.h"
#include "SetupA4.h"

void SetUpGlobalsinFile(void)
{

RememberA4();

32K Limit and Multisegment Code Resources

Because of the way things are, there is an inherent 32K limit to the size
of code resources. You see, the 680x0 BRAnch instruction that allows
you to jump from one part of your code to another takes only a 2-byte
value as an offset. As you know, the largest signed number that can fit

INTRODUCTION TO CODE RESOURCES

into 2 bytes is 32767. Therefore, you can not BRAnch more than about
32,000 bytes at a time. This limit has survived the evolution of the
Macintosh and is just now being taken away with the advent of the
Power Macintosh.

Because of this limit, developers have been forced to write code
resources that are smaller than 32K in size. As with global data, differ
ent development environments have implemented different ap
proaches to getting around this limit for those that need to get around
it. MPW has implemented features such as branch islands that split a
large branch into several smaller branches. If you needed to branch
40,000 bytes, you might first branch to an "island" that was 20,000
bytes away and then immediately branch the remaining 20,000 bytes.
The island contains nothing but another BRAnch instruction. All 68020
or later CPUs contain the bsr.1 instruction that allows for 32-bit rela
tive branches, doing away with the need for branch islands on those
processors.

CodeWarrior and THINK have implemented multisegment code
resources that allow the developer to have as many segments as are
needed-all less than 32K each. In this mechanism, a stub of code is
added to the beginning of the first code resource that automatically
loads the other segments and updates any jump table information. So,
the fact that multiple segments exist is totally transparent to the caller.
In many cases, the caller can simply execute the code resource as if it
were a single segment and all will work fine.

One case where this may not work is if the code resource is de
tached and the resource file in which it is stored is closed. In this
case, since the stub code that the development environment adds
does not detach the other segments (via a call to DetachResource),
you will probably find yourself in your friendly, local debugger with
an address error or similar unwanted crash. The workaround is to ei
ther have the calling code detach the segments (which would require
it to know how many segments existed) or have the main code re
source segment itself do the detaching. Either way, it can be tricky if
you add a segment to your project but forget to change the code to
detach it. It's problems like these that help build character and de
bugging skills.

Code Resource Tips

This chapter discusses techniques and problems that are explored fur
ther in chapters later in the book. Even if you don't fully understand
some of the finer points now, you will soon be delving deep into code
resources and how they interact with other parts of the operating

13

14 A FRAGMENT OF YOUR IMAGINATION

system and your applications. In the meantime, here are some things
to watch out for when dealing with code resources.

• Unless you explicitly detach a code resource using the Resource
Manager DetachResource function when the file in which the re
source is stored is closed, the code resource will be released
from memory. Therefore, if you load your resource from a sepa
rate file, and that file is closed, your code will no longer be
valid. Attempting to execute code that is in this state will most
likely cause a crash.

• In many cases, even though code resources are limited to 32K in
size, development environments like CodeWarrior allow you to
create resources that are not affected by this limit. You can use the
Multi-Segment and Link Single Segment options in CodeWarrior
to create a code resource that is practically any size at all.

• Global data comes in many forms. Luckily, CodeWarrior displays
(in the main project window) how much global data is used by a
particular file. If you are writing a code resource and are not using
the A4 functions for globals, yet CodeWarrior shows you have
global data in a file, something is wrong. Make sure you find out
exactly where you are using the globals and either remove them or
use the A4 functions.

• Removing global data in a file can be easy in many cases. Instead
of hard coding a string in place in your code, load it from a re
source using the GetlndString function. Instead of initializing
structure-based variables such as a Point in place as it is declared,
set its fields individually in the code below it.

• If you have a multisegment code resource that you need to load
and detach from the resource file in which it is contained, make
sure you also detach any extra resources it may use. Obviously,
multisegment resources have multiple code segments that will
need detaching. You should also keep an eye out for extra re
sources that your development environment might create that are
used by the multisegment code--these may also have to be de
tached.

• Make sure your code resources are locked down before you at
tempt to execute them. By calling HLock on the handle to your
code, you will ensure that the code doesn't move out from under
you if you happen to do something within the code resource that
causes memory to move. Remember, your code resource is simply
a handle to memory and is prone to moving just like other un
locked handles. If it moves in the middle of execution, you are
toast.

CHAPTER TWO

Power Macintosh Code
Fragments

Introduction

What the@#$@#$#@ is wrong with this!?

-Andrew Welch

The Power Macintosh is one heck of a computer. Apple took the time
to design it right from the start in order to make it incredibly fast and
very compatible with all the cool 680x0 Macintosh software that al
ready exists. Anyone who knows any bit of history of the Macintosh
operating system knows that, over its lifetime, hundreds of program
mers have added to the code that is responsible for the daily goings on
inside your Macintosh. Getting it all to work in the first place is a job
of which many programmers would cringe at the thought. The amaz
ing thing is that not only did the Power Macintosh engineers make a
Macintosh that was faster than any other, using an entirely new type
of computer chip, but they also made it entirely backward compatible
with most 680x0-based software.

The first Power Macintosh was based on the Motorola PowerPC
601 reduced instruction set computer (RISC) chip. This chip is a 32-bit
implementation of the 64-bit PowerPC architecture originally de-

15

16 A FRAGMENT OF YOUR IMAGINATION

signed by IBM. The chip itself can execute up to three instructions in a
single clock cycle and can even execute them out of order for increased
performance. The chip houses enough power to handle many of the
jobs that otherwise would have taken a computer that filled a small
room. Power PC-based Macintosh computers can be two or more times
faster than the 680x0 variety-and they will only get faster.

As mentioned, just about any 680x0 software that runs under System
7, is 32-bit clean, is compatible with virtual memory, and understands
how to be kind to the Process Manager (also known as MultiFinder in the
days of old) should run fine on a Power Macintosh. The reason the Pow
er PC chip can run 680x0 software is because A pp le provided a 680x0 em
ulator in the Power Macintosh system software. This emulator, in
conjunction with the Mixed Mode Manager, ensures that 680x0 code and
PowerPC code coexist peacefully on the same machine.

The 680x0 emulator actually emulates the 68LC040 chip from
Motorola. It does not support Paged Memory Management Unit
(PMMU) instructions, however, and no Floating Point Unit
(FPU) is present. In fact, the only difference between a 68LC040
and a 68040 is the missing FPU on the "LC" version. The emula
tor is basically a Centris (also known as a Quadra) 610 computer.
Many developers use this machine as a guide when testing their
software.

This chapter will introduce you to the new managers that make
the Power Macintosh what it is today. We will discuss the Mixed Mode
Manager, which helps to keep 680x0 and PowerPC code straight from
one another. We will then delve into the Code Fragment Manager to
explain how code is handled on the PowerPC as opposed to what
we've learned about 680x0 Macintosh computers. What you learn in
this chapter will pave the way for the projects in the rest of the book.
So pay attention and let's begin.

The Mixed Mode Manager

The Mixed Mode Manager is responsible for managing mode switches
between differing instruction set architectures. An instruction set ar
chitecture is the set of instructions that is recognized by a particular
family of processors. The PowerPC chip is a processor, as is the 680x0
family of chips. A mode switch occurs when code from one instruction

POWER MACINTOSH CODE FRAGMENTS

set architecture is currently running and is about to execute code writ
ten in another instruction set architecture. For example, your 680x0
program may attempt to execute a Toolbox function that is now writ
ten in the PowerPC native instruction set. The Mixed Mode Manager
will intervene in order to switch execution contexts between the 680x0
emulator and the PowerPC native mode. After the function has com
pleted execution, the Mixed Mode Manager will switch modes back to
the original 680x0 emulator in order to return to your code. These
switches are all carried on without your knowledge when running
current 680x0 software on a Power Macintosh.

If you are writing code that will run on a Power Macintosh in na
tive mode, you need to make some changes to the way you currently
do things. The new universal header files force you to make some of
them; others you need to be aware of or suffer the fate of a crash. You
may not have to make any changes to your application to make it run
in native mode on a Power Macintosh, but that chance is pretty slim.
In most cases, you will need to sweep through your code and "fix"
things here and there to make it compile and run properly. If you use
your compilers "full warnings" option, it will find most of your po
tentially problematic code for you. This will make your job much eas
ier when trying to figure out what needs to be changed. Let's take a
look at some of the changes that you will most likely need to make.

Universal Procedure Pointers

As mentioned, the Mixed Mode Manager handles mode switches be
tween instruction set architectures for you. But how does it know how
to do it? All procedure pointers are now called universal procedure
pointers. The definition of a universal procedure pointer varies de
pending on the instruction set architecture with which you are deal
ing. For the 680x0, a universal procedure pointer is simply defined as
a procedure pointer, a pointer to a procedure-something with which
you are probably already familiar. However, for the PowerPC a uni
versal procedure pointer is defined as a pointer to a RoutineDescrip
tor-a special structure that helps the Mixed Mode Manager perform
its magic. Whenever your application is going to call code that may re
quire a mode switch, you actually execute a universal procedure
pointer instead of an old-fashioned procedure pointer. A universal
procedure pointer is defined as follows:

#if GENERATINGCFM
typedef struct RoutineDescriptor UniversalProcPtr,

**UniversalProcHandle;

17

18 A FRAGMENT OF YOUR IMAGINATION

#else
typedef ProcPtr UniversalProcPtr, *UniversalProcHandle;

#endif

struct RoutineDescriptor {

} i

unsigned short goMixedModeTrap;
Sint8 version;
RDFlagsType routineDescriptorFlags;
unsigned long reservedl;
Uint8 reserved2;
UintB selectorinfo;
short
RoutineRecord

routineCount;
routineRecords[l);

typedef struct RoutineDescriptor RoutineDescriptor;

typedef RoutineDescriptor *RoutineDescriptorPtr,
**RoutineDescriptorHandle;

struct RoutineRecord
ProcinfoType procinfo;
Sint8 reservedl;
ISAType ISA;
RoutineFlagsType routineFlags;
ProcPtr procDescriptor;
unsigned long reserved2;
unsigned long selector;

} ;

typedef struct RoutineRecord RoutineRecord;

typedef RoutineRecord *RoutineRecordPtr, **RoutineRecordHandle;

You may have just reread the last sentence of the previous para
graph, where I mention executing a universal procedure pointer in
stead of an old-fashioned procedure pointer. Furthermore, you may be
asking yourself, since a universal procedure pointer actually points to
a RoutineDescriptor structure, how is it possible to execute a struc
ture? This is a very good question, with an ingenious answer provided
by the good folks on the PowerPC development team.

Let's take a look at the fields of the Routine Descriptor. The first
field is a short that is the value of the _MixedModeMagic trap. Be
cause the first thing in a RoutineDescriptor is a trap word, if you were
to execute a pointer to a RoutineDescriptor you would be actually ex
ecuting the trap represented by the trap word stored in that location.
In this case, this value should always be _MixedModeMagic, which is
defined as OxAAFE (see page 19). After the RoutineDescriptor, also
known as the universal procedure pointer, is executed, the _Mixed
ModeMagic trap is called and it analyzes the rest of the information in
the structure to decide if a mode switch is needed. This is just a por
tion of the magic that is performed by the Mixed Mode Manager.

POWER MACINTOSH CODE FRAGMENTS

I * MixedModeMagic Magic Cookie/Trap number * /
e nurn {

_MixedModeMagic = OxAAFE
} ;

The version field contains the version of the RoutineDescriptor
structure. This allows the structure to be changed later on, while main
taining compatibility with older versions. The routineDescriptorFlags
field contains flags that describe the routine that the RoutineDescrip
tor represents. The reservedl and reserved2 fields are reserved and
should always be set to 0. The selectorlnfo field contains information
concerning the use of selector-based routines such as _HFSDispatch,
which in most cases should be set to 0. The routineCount field con
tains the index of the last RoutineRecord, which follows as an array.
Every RoutineDescriptor must have at least one RoutineRecord.
Therefore, a value of 0 in the routineCount field actually means that
one RoutineRecord is present.

Each RoutineRecord describes the routine that this Rou
tineDescriptor represents. The reason there is an array of Rou
tineRecords available is because you may choose to have a PowerPC
native routine and a 680x0 routine available for use, while letting
the Mixed Mode Manager decide which one should execute based
on the current instruction set architecture. Using this technique, you
can ensure that the best, fastest-executing code for the current situ
ation will be run.

When you allow the Mixed Mode Manager to choose which code
to execute, you can ask it to always execute the PowerPC code on
a Power Macintosh. You can also ask it to execute the code that
will not require a mode switch. Dependb,:tg on what the code that
wiJI be executed actually does, it may be faster to run the 680x0
version and skip a mode switch than to put up With the over
head of the mode switch and execute the PowerPC version. This
is an unlikely scenario, since PowerPC code can be blazingly fast,
but the fact remains that this is an option.

Looking at the RoutineRecord, the proclnfo field is a value that
describes the calling conventions of the routine in question. You create
this procedure information by using macros provided in the universal
header files. The macros allow you to specify totally the size, order,

19

20 A FRAGMENT OF YOUR IMAGINATION

and number of parameters; the size of the result; any specific usage of
registers; and more. The Mixed Mode Manager uses this information
to properly execute your routine. Some of the macros, and the con
stant values that they use, follow for your reading enjoyment and in
tellectual stimulation.

enum {
/* Calling Convention Offsets */

kCallingConventionWidth
kCallingConventionPhase
kCallingConventionMask

/* Result Offsets */
kResultSizeWidth
kResultSizePhase
kResultSizeMask

/* Parameter offsets & widths */

kStackParameterWidth
kStackParameterPhase

kStackParameterMask

4,
0,
OxF,

2,

kCallingConventionWidth,
Ox30,

= 2,
= (kCallingConventionWidth +
kResultSizeWidth),
= OxFFFFFFCO,

/* Register Result Location offsets & widths */

kRegisterResultLocationWidth = 5,
kRegisterResultLocationPhase = (kCallingConventionWidth +

kResultSizeWidth),

/* Register Parameter offsets & widths */

kRegisterParameterWidth = 5,
kRegisterParameterPhase = (kCallingConventionWidth +

kResultSizeWidth +

kRegisterResultLocationWidth),
kRegisterParameterSizePhase
kRegisterParameterSizeWidth
kRegisterParameterWhichPhase
kRegisterParamete~WhichWidth

0,
2,
kRegisterParameterSizeWidth,
3,

/* Dispatched Stack Routine Selector offsets & widths *I
kDispatchedSelectorSizeWidth = 2,
kDispatchedSelectorSizePhase = (kCallingConventionWidth +

kResultSizeWidth),

/* Dispatched Stack Routine Parameter offsets */

kDispatchedParameterPhase = (kCallingConventionWidth +
kResultSizeWidth +

kDispatchedSelectorSizeWidth),

POWER MACINTOSH CODE FRAGMENTS

/* Special Case offsets & widths */
kSpecialCaseSelectorWidth
kSpecialCaseSelectorPhase
kSpecialCaseSelectorMask

6,

kCallingConventionWidth,
Ox3FO,

/* Component Manager Special Case offsets & widths */

} ;

kComponentMgrResultSizeWidth = 2,
kComponentMgrResultSizePhase = kCallingConventionWidth +

kSpecialCaseSelectorWidth,
/* 4 + 6 = 10 */

kComponentMgrParameterWidth
kComponentMgrParameterPhase

= 2,
= kComponentMgrResultSizePhase +

kComponentMgrResultSizeWidth
/* 10 + 2 = 12 */

#define SIZE_CODE(size) \
(((size) 4) ? kFourByteCode (((size) 2) ? kTwoByteCode

(((size) == 1) ? kOneByteCode : 0)))

#define RESULT_SIZE(sizeCode)
((ProcinfoType) (sizeCode) << kResultSizePhase)

#define STACK_ROUTINE_PARAMETER(whichParam, sizeCode) \
((ProcinfoType) (sizeCode) << (kStackParameterPhase +

(((whichParam) - 1) * kStackParameterWidth)))

#define DISPATCHED_STACK_ROUTINE_PARAMETER(whichParam, sizeCode)
((ProclnfoType) (sizeCode) << (kDispatchedParameterPhase +

(((whichParam) - 1) * kStackParameterWidth)))

#define DISPATCHED_STACK_ROUTINE_SELECTOR_SIZE(sizeCode) \
((ProcinfoType) (sizeCode) << kDispatchedSelectorSizePhase)

#define REGISTER_RESULT_LOCATION(whichReg) \
((ProcinfoType) (whichReg) << kRegisterResultLocationPhase)

#define REGISTER_ROUTINE_PARAMETER(whichParam, whichReg, sizeCode) \
((((ProcinfoType) (sizeCode) << kRegisterParameterSizePhase) I

((ProcinfoType) (whichReg) << kRegisterParameterWhichPhase)) << \

(kRegisterParameterPhase + (((whichParam) - 1) *
kRegisterParameterWidth)))

#define COMPONENT_MGR_RESULT_SIZE(sizeCode) \
((ProcinfoType) (sizeCode) << kComponentMgrResultSizePhase)

#define COMPONENT_MGR_PARAMETER(whichParam, sizeCode) \
((ProcinfoType) (sizeCode) < (kComponentMgrParameterPhase +

(((whichParam) - 1) * kComponentMgrParameterWidth)))

21

22 A FRAGMENT OF YOUR IMAGINATION

#define SPECIAL_CASE_PROCINFO(specialCaseCode) \
(kSpecialCase I ((ProcinfoType) (specialCaseCode) << 4))

enum {
kSpecialCase

(CallingConventionType)OxOOOOOOOF
} ;

en um
/* all of the special cases enumerated.

The selector field is 6 bits wide */

kSpecialCaseHighHook 0,
kSpecialCaseCaretHook = 0,

/* same as kSpecialCaseHighHook */
kSpecialCaseEOLHook l,
kSpecialCaseWidthHook 2,
kSpecialCaseTextWidthHook 2,

/* same as kSpecialCaseWidthHook */
kSpecialCaseNWidthHook 3,
kSpecialCaseDrawHook 4,
kSpecialCaseHitTestHook 5,
kSpecialCaseTEFindWord 6,
kSpecialCaseProtocolHandler 7,
kSpecialCaseSocketListener 8,
kSpecialCaseTERecalc 9,
kSpecialCaseTEDoText 10,
kSpecialCaseGNEFilterProc 11,
kSpecialCaseMBarHook 12,
kSpecialCaseComponentMgr 13

} i

Continuing with the RoutineRecord structure, the reservedl field
(and the reserved2 field, while we are here) are both reserved for use
by Apple and should be set to 0. The ISA field describes the instruction
set architecture of the routine in question-currently either 680x0 or
PowerPC, but open for growth. The routineFlags field describes rou
tine-specific information such as how the location of the routine is re
lated to the structure in memory, whether or not the code fragment
needs to be prepared (which we will discuss shortly), whether we al
ways want to use the fastest code or the one that won't require a mode
switch, and other information. The procDescriptor field is a pointer to
the routine code we are actually calling. This may be a pointer to a
function inside our program or to a resource that contains code.
Lastly, the selector field is used for dispatched calls, which don't con
cern us here.

POWER MACINTOSH CODE FRAGMENTS

As you can see, the RoutineDescriptor is a pretty advanced struc
ture. It allows for future expansion by containing an array of possible
routines to be called depending on the current instruction set architec
ture and other factors. In reality, this could even support a Pentium
processor being put inside a Macintosh. You could easily execute code
for a Pentium, PowerPC, or 680x0 all on the same machine and from
any other instruction set architecture!

Using Universal Procedure Pointers

Now that you know a bit about the definition of a universal procedure
pointer, let's take a look at how you make use of them in your pro
grams. In order to call functions in your program that you know are
PowerPC code, you can simply treat them as you always have. How
ever, there are some exceptions. Whenever you would normally pass a
procedure pointer to an operating system function, you now need to
pass a universal procedure pointer. Functions such as grow-zone func
tions, control action procedures, Dialog Manager event filters, vertical
blanking "VBL" tasks, trap patches, and any other functions you may
encounter now require you to use universal procedure pointers. The
reason for this is because you cannot be sure if the code in the Toolbox
or operating system is 680x0 or PowerPC. Therefore, you need to pass
the universal procedure pointers so the Mixed Mode Manager can al
ways do the right thing-no matter what the calling code instruction
set architecture.

For most of these standard types of procedures, their specific
header files contain macros that you can use in your code to make
everything work fine under 680x0 and PowerPC compilers. For exam
ple, if you had a user item in a dialog box and you wanted the user
item to automatically draw whenever it received an update event, you
would use the GetDitem and SetDitem functions to associate a user
item drawing procedure with the user item itself, assuming you had a
drawing function similar to the following code.

pascal void MyUseritemDrawProc(DialogPtr d, short theitern)
{

short
Handle
Rect
Graf Ptr

iKind;
iHandle;
iRect;
savePort;

GetPort(&savePort);
SetPort (d);

23

24 A FRAGMENT OF YOUR IMAGINATION

GetDitem(d, theitem, &iKind, &iHandle, &iRect);
FrameRect(&iRect);

SetPort(savePort);

In the old days, you would have used code like the following.

short
Handle
Rect

iKind;
iHandle;
iRect;

GetDitem(d, kMyUseritem, &iKind, &iHandle, &iRect);
SetDitem(d, kMyUseritem, iKind,

(Handle)MyUseritemDrawProc, &iRect);

II Do dialog box stuff here

The previous code snippet shows that all you really needed to do
was call GetDitem and SetDitem in order to set the drawing proce
dure to be activated when the user item in question needed to be
drawn. The function would be called automatically by the Dialog
Manager. In the days of universal procedure pointers, you need to do
things a bit differently, as in the following code.

short
Handle
Rect
UseritemUPP

iKind;
iHandle;
iRect;
MyUseritemDrawProcUPP

MyUseritemDrawProcUPP =
NewUseritemProc(MyUseritemDrawProc);

nil;

GetDitem(d, kMyUseritem, &iKind, &iHandle, &iRect);
SetDitem(d, kMyUseritem, iKind,

(Handle)MyUseritemDrawProcUPP, &iRect);

II Do dialog box stuff here

DisposeRoutineDescriptor(MyUseritemDrawProcUPP)

Because the Dialog Manager may or may not be native code, it
needs to handle the calling of your drawing function in a special way.
By passing a universal procedure pointer to the Dialog Manager, it can
easily call the drawing procedure as it likes and the Mixed Mode Man
ager will take care of any needed mode switches, if required. The
NewUserltemProc macro is defined in the standard Dialogs.h univer-

POWER MACINTOSH CODE FRAGMENTS

sal header file and automatically creates the proper RoutineDescriptor
when being compiled for PowerPC. (See the following code.) In this
way, the same source code can be used for both 680x0 and PowerPC
versions of your program, since the header file handles dealing with
any differences for you.

#if GENERATINGCFM
#define NewUseriternProc(userRoutine) \

(Useri t ernUPP) NewRoutineDes criptor((ProcPtr) (user Routine),
uppUseriternProcinfo, Ge tCur rentArchitecture())

#else
#de.fine NewUseri ternProc (userRoutine) \

((UseriternUPP) (userRoutine))
#endif

The NewRoutineDescriptor function actually allocates a pointer
by calling the Memory Manager NewPtr function. In reality, you
should check to make sure that the pointer is allocated before
continuing. It is worth noting that you can allocate a Rou
tineDescriptor as a local variable if you so desire, in order to
avoid heap storage of the RoutineDescriptor. This has the added
advantage that it automatically gets deallocated when execution
leaves its scope, so it is good for RoutineDescriptors that will be
used only temporarily. Another advantage of using this macro is
that it does not call the Memory Manager so it is both faster and
doesn't move memory. You can take advantage of this by using
the BUILD_ROUTINE_DESCRIPTOR macro in the file Mixed
Mode.h.

Many of the universal header files contain definitions such as this
that automatically equate to the proper code, depending on if you are
compiling for the 680x0 or the PowerPC. This can make your source
files much easier to read, as you can avoid a bunch of #ifdef state
ments in your code. It's normally easy to convert your existing code to
include the required changes. It's also quite easy to know what to
change. If your program crashes on a PowerPC as soon as a dialog ap
pears, you probably forgot to convert a drawing or event filter func
tion to use universal procedure pointers.

25

26 A FRAGMENT OF YOUR IMAGINATION

Header files are a great place to learn some interesting informa
tion. By perusing them you can sometimes find references to un
documented function calls. You may also find definitions of
low-memory globals that you didn't know existed. I would like
to be the first to recommend taking a good hard look at what is
in the header files used by your development environment.

The Code Fragment Manager

On the Power Macintosh all code and its data are stored as fragments.
These fragments are all manipulated and tracked by the Code Frag
ment Manager. Whether the code be an application, code resource, or
extension, it is organized in this way. Because all code types are
treated the same, they all share the same benefits, such as

• a simplified and uniform set of calling conventions
• the ability to store code that is used by numerous entities in an im

port library
• the use of global data (also known as global variables)
• the ability to execute special initialization and termination rou

tines when a fragment is loaded and unloaded from memory

Although fragments share the same structure and are treated the
same by the Code Fragment Manager, they can take many different
forms-all of which you may be familiar with including

• an application that can be launched from the Finder by double
clicking the files icon. The application has a user interface and is
based on an event-driven architecture.

• an import library, which is a fragment that contains code and data
that are used by other entities, such as an application. The Code
Fragment Manager can automatically resolve references to sym
bols in any import libraries that may be used. Because an import
library can share its routines among many different clients, you
may hear it being called a shared library.

• an extension, which is a fragment that extends the capabilities of
another entity. Application extensions are used by a single appli
cation and include HyperCard externals such as XCMDs. System
extensions are used by multiple applications and possibly the sys
tem software, and include !NIT and cdev resources. Because a sys
tem extension can be shared among many different clients, you
may hear it also being called a shared library.

POWER MACINTOSH CODE FRAGMENTS

Code fragments can be stored in any of a variety of ways, but
the most common container in which to find them depends on the
type of code you are writing. For example, the code and data of a
PowerPC native application are usually stored in the data fork of
the application, as opposed to storing them in resources of type
CODE, as is done in 680x0-based Macintosh operating systems.
There are numerous reasons for this, but the most important is the
use of virtual memory. By placing the entire code and data fragment
in the data fork, the virtual memory mechanism in the Power Mac
intosh can use that data fork as a paging file. In other words, when
ever memory is needed, it can dump the code from RAM. Rest
assured that it can be loaded again quickly from the data fork of
the file. Mind you, this also means that you cannot use any self
modifying code, but that really isn't much of a limitation any more
and is frowned on in most cases.

Another place you will find code fragments stored is in re
sources. As you are aware, many different types of code are stored
in resources. Looking through any large application you will find
control definitions (CDEF resources), list definitions (LDEF re
sources), window definitions (WDEF resources), and menu defini
tions (MDEF resources). Many system extensions also contain
initialization resources (INIT resources), control panel resources
(cdev resources), and possibly even drivers (DRVR resources). All of
these resource types contain code under the 680x0 environment. In
tum, they can also contain code fragments under the PowerPC en
vironment.

Always Be Prepared

Before a code fragment can be used it must be prepared. Preparing a
code fragment basically consists of resolving any references to rou
tines in any import libraries that it may use. For example, assume you
write a code fragment that calls some standard operating system func
tions. When your code fragment is prepared, the Code Fragment Man
ager will automatically search for any other import libraries that it
uses and attempt to resolve the names of the routines or data that your
code fragment references. If a required import library cannot be found,
an error will occur, your fragment will not be prepared, and, further
more, cannot be used.

One interesting thing to note is that a code fragment may make
use of multiple import libraries and an import library that it uses
may use another import library. In this case the Code Fragment Man
ager must prepare the fragments in reverse order, since a fragment
that uses another fragment cannot be prepared until the other fragment

27

28 A FRAGMENT OF YOUR IMAGINATION

is prepared first. You also have to be aware that circular references
may occur, which can really confuse things. That is, your code frag
ment uses another fragment, which uses your code fragment. In most
cases this will not be a problem, but it can happen and you should be
aware of it, as it may point to a poor design decision on your part.

After a fragment is prepared, the preparer can make use of its
unique connection ID in order to access information about the frag
ment. This number is returned after the fragment is prepared. You can
use this number whenever you need to refer to that specific fragment.
Using this number and Code Fragment Manager routines, you can lo
cate symbols for code or data within the fragment and modify them if
you so desire. The connection ID is your ticket to information about
the fragment for as long as the fragment is loaded. You also use it to
close your connection to the fragment when you are done using the
fragment.

Don' t try to prepare a code fragment that contains a Rou
tineDescriptor attached to it by using the Code Fragment Man
ager function GetMemFragment. GetMemFragment expects the
PowerPC Preferred Executable Format (PEF) information to
begin immediately at the start of the resource. If a Rou
tineDescriptor is in this location instead, the Code Fragment
Manager will crash. The Mixed Mode Manager and Code Frag
ment Manager, however, are able to prepare code that contains a
RoutineDescriptor when it is called, without first trying to pre
pare it explicitly. You' ll remember that one of the flags in the
RoutineDescriptor is whether or not the fragment needs prepa
ration. This flag tells the Mixed Mode Manager and Code Frag
ment Manager to implicitly prepare the fragment properly.

Code Fragment Structure

As mentioned before, a fragment contains both code and data sections.
Although when loaded into memory these sections may not be con
tiguous, your code need not be concerned with their locations. Be
cause there is no practical limit to the size of the code or data, a
fragment can be just about any size and store just about any amount
of information, assuming there is enough RAM to do so.

POWER MACINTOSH CODE FRAGMENTS

You may recall that in the 680x0 environment, code resources are
limited to 32K-unless you make use of special functions in your
compilers. This limitation was created by the Segment Manager
and the segmentation of an application into multiple CODE re
sources. Also, an application could only have up to 32K of global
variables. These two major limitations are history with the ad
vent of the Power Macintosh. Although now you don' t have to
worry about how much code and data you use, this should not
be an excuse to write sloppy programs. You should still take the
time to optimize and reoptimize to get the best performance out
of the machine on which you are running.

Because code in a code fragment must execute no matter where
it is located in memory, it cannot contain any absolute branches to
other code. It must branch based on offsets from its current position.
By containing no absolute addresses, it is considered position inde
pendent and is referred to as pure code. Fragments make use of a
special table of contents in order to locate code and data within it
self and other fragments. Each fragment contains its own table of
contents.

The data in a fragment is also unique by nature. It can be loaded
into the system heap or the application heap depending on the use of
the fragment. It also can be loaded into memory more than once in
order to create multiple copies of itself. This can be useful if more than
one entity is going to be using your fragment. Since the code itself
never changes, all clients can share one copy of it, but still have their
own copies of the data section of the fragment.

Although code and data sections of fragments can be loaded any
where in memory, they cannot be moved in memory while they are
loaded. When a fragment is prepared, part of what happens is that in
ternal pointers, in the table of contents, are updated to point to other
code and data in other fragments. If those fragments were to move in
memory, these pointers would be no longer valid. In order to not have
to constantly update these pointers in any of a number of fragments
that may be loaded at any time, all fragments must be locked in mem
ory while they are being used.

29

30 A FRAGMENT OF YOUR IMAGLNATTON

Each fragment contains a table of contents (TOC) that contains
pointers to all code and data that are used by the fragment. This
TOC is initialized when the fragment is prepared by the Code
Fragment Manager. This mechanism allows a fragment to ad
dress data easily that it has imported from another fragment,
without worrying about where that fragment may be in memory
at runtime. The fragment can simply reference the TOC entry for
a particular code or data item and be sure it will be led to the cor
rect thing.

Fragment-specific Routines

Fragments can define three special routines that are separate from any
of their other exported symbols. These routines are

• the initialization routine, which is called when a fragment is
loaded and prepared. This routine can be used to perform any ac
tions that should be done before the fragment is otherwise ac
cessed. This function is passed a pointer to a fragment
initialization block that contains information on where the frag
ment is stored. This routine is automatically called by the Code
Fragment Manager after preparation, but before any other execu
tion of the fragment takes place.

• the main routine, which is called if the fragment is an application.
Other types of fragments such as control definitions, list defini
tions, etc., can also define the main routine. The main routine is
also known as the main entry point. This routine can be called by
anyone using the fragment.

• the termination routine, which is called when the fragment is un
loaded. It can be used to clean up any memory or resource alloca
tions performed by the initialization routine. This routine is
automatically called by the Code Fragment Manager.

The main symbol of a code fragment (and just about any other
symbol as well) need not contain code. It may contain a pointer
to a block of data. This can make important information about
the fragment easily accessible to any potential caller of the frag
ment. Any symbol can be exported-whether it be code or data.

POWER MACINTOSH CODE FRAGMENTS

The Code Fragment Resource

As mentioned, code fragments can be stored in a variety of ways
as data in the data fork of a file or as a resource in the resource
fork. Although it is not required by all fragments, some applications
contain a resource of type cfrg and ID 0 that is used to define
whether or not a PowerPC native fragment exists and to determine
where it is located in the file. This is actually how the Process Man
ager decides if an application is PowerPC native or not-by seeing
if this resource exists. The code fragment resource contains the in
struction set architecture of the fragment, its version number, size of
its default stack, and information about where it is located. Using
this information, the Process Manager can ask the Code Fragment
Manager to prepare the fragment and begin its execution as an ap
plication.

Application fragments must contain a main entry point so the
Process Manager can execute them. Also, even though most ap
plication fragments are stored in the data fork in order to facili
tate the use of virtual memory as mentioned earlier, they can also
be stored in resources if need be. It should also be noted that
more than one code fragment may be stored in a single data fork.
In fact, you can have any number of fragments stored in a single
container such as a data fork or resource.

You have probably heard the term fat used to refer to an applica
tion. A fat application is one that contains both 680x0 CODE resources
as well as a code fragment resource and application fragment, usually
in the data fork. In this way, the application can be run on 680x0 Mac
intosh computers as usual, since these computers ignore the existence
of the code fragment resource. In turn, the Power Macintosh can first
check for the existence of the code fragment resource and, if it does
exist, can execute the PowerPC native code. If no code fragment re
source exists, the Power Macintosh will simply alert the 680x0 emula
tor that a 680x0 application needs to be executed and it will be done.
Fat applications can be launched successfully no matter what Macin
tosh they are running on.

31

32 A FRAGMENT OF YOUR IMAGINATION

Resources

One of the main focuses of this book is accelerated and private re
sources. Private resources are those that are used by your application.
Accelerated resources are those that are defined by the system soft
ware. Both contain PowerPC code and can dramatically improve the
performance of your programs.

Accelerated resources are those such as control definitions (CDEF
resources), list definitions (LDEF resources), window definitions
(WDEF resources), and menu definitions (MDEF resources). Others in
clude initialization resources (INIT resources), control panel resources
(cdev resources), and drivers (DRVR resources). By compiling a frag
ment as a resource and using the same calling conventions as any of
these predefined code resource types, you can make use of PowerPC
code even in a 680x0 application running on a Power Macintosh. All
accelerated resources should begin with a RoutineDescriptor, since
they are called by the operating system, that may still contain 680x0
code. Using this mechanism, you need not do anything special (other
than build your accelerated resource correctly) for it to work properly
and run with enhanced speed.

Accelerated resources have some restrictions, however, that stem
from the fact that they are backward compatible. Because the operat
ing system doesn't know that they are accelerated (and doesn't really
care), the following rules apply

• No termination routine is allowed. Since the operating system
doesn't know when the resource will no longer be needed, it can
not call it.

• The accelerated resource must contain a main symbol, since the re
sources it replaces all use a single main entry point.

• You cannot call any Code Fragment Manager routine that requires
a connection ID, since that information is stored internally by the
operating system and is not available to your accelerated resource
or application.

• The fragments data section is instantiated in place (i.e., within the
block of memory used to store the resource itself). This requires
that the data section not be compressed-an option you can set in
your compiler. In Metrowerks' CodeWarrior, this is called Expand
Uninitialized Data.

Because an accelerated resource may move in memory between it
being called, but while it is still prepared, there is the chance that some
pointers to its data may be no longer valid. Because of this, the Code
Fragment Manager and Mixed Mode Manager work together to en-

POWER MACINTOSH CODE FRAGMENTS

sure that the fragment is always prepared before use-especially if it
has moved since the last call. Because of this, your accelerated re
source cannot use global pointers (declared as static or extern) that are
initialized at runtime or contained in a dynamically allocated data
structure to point to code or data contained in the resource itself. You
can use uninitialized global data to point to heap objects, such as a
pointer or handle, and you can initialize global pointers at compile
time, but they cannot be changed at run time.

Private resources, on the other hand, are those that are completely
defined by your application. You define the parameters and calling
conventions, the use of the resources, and what they do. HyperCard
XCMDs are a perfect example of a private resource. They are called
private because they are only used by one particular program. Private
resources need not contain a RoutineDescriptor, depending on how
they will be called from your program. There are numerous different
ways to handle their use. The one you use will depend on your needs.

Fat and Safe Fat Resources

So far we've discussed how to create 680x0 code resources and Pow
erPC native fragments. We've mentioned how you can place a Pow
erPC fragment in a resource to create a private or accelerated resource.
But did you know that you can also create a hybrid of these 680x0 and
PowerPC code fragments?

There may be times when you want to create one resource that
contains both 680x0 code and PowerPC code. It would be nice if this
resource would execute the best code when running on a Power Mac
intosh, depending on the instruction set architecture from which it is
called. A fat resource is one that contains both types of code in the
same container. The resource also contains a RoutineDescriptor that
defines all the information needed to let the Mixed Mode Manager
choose which code should be executed when the resource is called. Fat
resources allow you to include more than one instruction set architec
ture in the same resource and have the proper one executed at run
time.

Fat resources are fine and dandy, but they only work on Macin
tosh computers that have the Mixed Mode Manager implemented.
With this limitation, they will only work on the Power Macintosh as of
this writing. The safe fat resource, on the other hand, will work with
out incident on both Power Macintosh and 680x0 Macintosh comput
ers. The safe fat resource is essentially the same format as a fat
resource, except it is preceded by a snippet of 680x0 code that checks
for the existence of the Mixed Mode Manager. If it exists, it ensures

33

34 A FRAGMENT OF YOUR IMAGINATION

that the RoutineDescriptor is moved to the top of the resource itself,
using the Memory Manager BlockMove routine. Each subsequent time
the resource is called, the RoutineDescriptor is executed first, which
will function just as it would in a fat resource. On Macintosh comput
ers without the Mixed Mode Manager, the 680x0 snippet ensures that
only the 680x0 code is called and the RoutineDescriptor and PowerPC
code are ignored. It does this by using BlockMove to move the 680x0
code to the top of the resource.

For complete information on how to create fat and safe fat re
sources see Chapter Twelve, /1 Advanced and Undocumented Tech
niques." They are also used and explained in detail in Chapter Three,
"Application Extensions."

Code Fragment and Mixed Mode Tips

It might take some trial and error to learn some of the finer points of
the Mixed Mode Manager and Code Fragment Manager. You should
note that you don't need to understand them too deeply in order to
make your 680x0 code work on the PowerPC, but it helps. Also, if you
really want to take advantage of some of the new features that the
Power Macintosh offers, you will need to spend some time learning
about them. Here are some tips to keep in mind when dealing with
these two new managers.

• Fragments can be any size and enforce no practical limit on the
size of the data and code they contain.

• Fragments can be stored anywhere-in a resource or in the data
fork of a file.

• If you find your code is crashing and you can't seem to figure out
why, check and double-check your Proclnfo values and also your
macros that you use to call your functions. If one tiny thing is
wrong with your RoutineDescriptor, it could cause your program
to not work at all.

• Watch for the use of int in code that you are converting to Power
PC native. Using short or long is safer, since int can be of dif
ferent sizes (depending on environment options) and may prove
confusing.

• When sharing data structures between 680x0 and PowerPC code,
make sure the PowerPC compiler treats the structures with the
alignment rules of the 680x0 chip. If you don't, you may find your
self accessing parts of the structure that you weren't expecting to
access due to misalignment. Your compiler provides #pragma
statements to accomplish this.

POWER MACINTOSH CODE FRAGMENTS

• In general, ii you have to choose between creating a plug-in archi
tecture that uses accelerated resources or data-fork based Code
Fragment Manager plug-ins, use the latter. Data-fork-based plug
ins get all the advantages of the Code Fragment Manager includ
ing file mapping, read-only code, no worries about floating
handles, and more. They are also much faster in many cases.

• Something to keep a look-out for is the Code Fragment Manager
for the 680x0-based Macintosh. Soon-maybe even by the time
you read this-the functionality of the Code Fragment Manager
will not be limited to Power Macintosh. This will change some of
the rules for the better. Watch for it!

We covered a lot of material in this chapter. If you found it to be
a bit overwhelming, take a break for a day and read it again.
Read it slowly. Understand each point before moving on. This is
an entirely new way of looking at code and only a few people
pick it all up the first time through. As you move through the
rest of the book and see the examples, your understanding will
begin to solidify. You're doing great-keep it up!

35

CHAPTER THREE

Application Extensions

If I don't have an icon and a really cool about box, I sometimes have
trouble finding the enthusiasm to write the program in the first place.

-Anonymous

Introduction

If you've ever used a program like HyperCard or Adobe Photoshop,
then you may be familiar with the concept (and maybe even the de
velopment) of plug-in components and external tools (known today as
application extensions). HyperCard, for example, allows you to write
external code resources, known as XCMDs and XFCNs, that allow you
to extend the functionality of the program itself. Since version 2, you
can call special functions within HyperCard (known as callback func
tions) that give even more power to your externals. HyperCard also
allows you to access its own internal data via these callback functions.
This model allows programmers to easily extend the functionality and
usefulness of the program, without requiring its source code.

Since the release of the Power Macintosh, it is now possible to cre
ate even more powerful application extensions. In HyperCard, for ex
ample, you can create an accelerated XCMD. By doing this, you are
able to run your XCMD code in native mode on a Power Macintosh,
even though HyperCard may still be running under the 680x0

37

38 A FRAGMENT OF YOUR IMAGINATION

emulator. This flexibility allows you to accelerate applications that
otherwise may not be optimized for the PowerPC processor.

This chapter discusses how you can make use of application ex
tensions with your own application. Whether you are writing for a
680x0 or the PowerPC, this chapter shows you how to write your ex
tensions to take best advantage of the platform on which your code
will be running.

Private Resources

One type of application extension is the private resource. There are
many reasons to package certain functionalities of your software
as private resources. First and foremost, your design may warrant an
object-oriented approach, whereby you wish to access many types of
tools from within your application. Assuming that all the tools are
called in a similar fashion, but each performs specific manipulation of
data, it makes sense to keep the architecture extensible. By packaging
each tool as a separate code resource, either within your application or
in a separate file, you allow your program to have additional func
tionality simply by writing another tool and making that tool available
to the application.

For instance, your application may look for special files in a folder
called Tools folder that would be found in the same folder as the ap
plication itself. When your application launches, it enumerates the
files in the Tools folder and gathers information about each one. Each
of these files may contain a specific code resource or fragment that
your application loads and executes when requested by the user. The
files may also contain any resources needed by the tool, such as dialog
boxes and pictures. In Figures 3-1 and 3-2, if programmers want to

§lm5§§ My Application folde,r ~§IE§l
2 items 24 7 .5 MB in disk 79.1 MB a

My Application Too ls folder -0
¢1
Figure 3-1. Application folder contents

APPLICATION EXTENSIONS

!=[iii Tools folder Im~
3 items 24 7 .6 MB in disk 79MBa

~ ~ ~ '° 1--

.

Rectangle Tool Circle Tool Triangle Tool '-0:
¢1 1¢ lilD

Figure 3-2. Tools folder contents

add the ability to draw a rhombus, they merely need to create a rhom
bus tool and place it in the Tools folder. The application would not
need to be recompiled, because it would automatically load the tool
and its newly created functionality.

When your application is about to execute the code from one of
the tools, it might open the tools resource fork (using the Resource
Manager function FSpOpenResFile) and make it the current resource
file (using the Resource Manager function UseResFile). Then, when
the code for the tool is executed, it can count on being able to load any
of its resources by simply calling the Resource Manager function
Get1Resource or other similar resource-loading routine. After the tool
completes its job, it returns control to the application, which closes the
tools resource fork and continues about its business.

Beyond Private Resources

Storing application extensions as private resources is one mechanism
that has been very popular since the introduction of the Macintosh.
Whenever a programmer needed to separate functionality from the
main application, the private resource was the only logical choice
available. However, with the advent of the Power Macintosh, there are
now many other ways to factor your code into separate entities with
out having to rely on a resource-based storage mechanism.

As previously mentioned, PowerPC fragments can be stored not
only in resources, but also in the data fork of any file. In fact, you can
store multiple fragments in a single data fork, much like you can store
multiple resources in a single resource fork. The code fragment re
source, stored as a resource of type cfrg, provides the Code Fragment
Manager with a map of the code fragments available in the data fork
of that particular file or wherever else they may be. Storing a code

39

40 A FRAGMENT OF YOUR lMAGJNATION

fragment in the data fork is sometimes known as a shared library or,
simply, a library, depending on how it is used and how you feel that
day.

The code fragment resource can represent the location of any
number of fragments in any number of locations. It can very eas
ily describe a single fragment in a data fork or multiple frag
ments stored in various resources or any combination of these.

There is actually a good reason to store your application extension
code in the data fork of a file, and it's not sin1ply to be different. By
storing your fragment in the data fork, you are able to take advantage
of file-mapped virtual memory on the Power Macintosh. This allows
your application to use far less memory than it otherwise might re
quire, since your fragment can be dismissed from RAM and read in
from disk (mapped into memory) whenever it is needed. The data fork
of your application extension becomes the virtual memory paging file.
This option also offers you the side benefit of making your fragment
read-only in nature-a simple form of memory protection. That is, you
cannot write to your code or data without causing an error-no more
self-modifying code. If you were to stick with resource-based storage,
you would have to write your own file-mapped virtual memory
scheme. You don' t want to have to do that, so Power Macintosh gives
you the option.

Calling the Code

The example program in this chapter shows you how to call many dif
ferent types of application extensions, including a shared library, a
680x0 private resour~e,' a PowerPC accelerated private resource, and a
fat private resource. Many of these types of code can be called from
680x0 or PowerPC code. For example, you might call a PowerPC ap
plication extension from your 680x0 application code when running
on a Power Macintosh. This options allows you to write native tools
for your currently nonnative (and not-easy-to-update-because-some
one-else-owns-the-source code) application. The example program in
this chapter doesn't necessarily do anything practical, but it should
give you the building blocks you need to create your own application
extensions.

APPLICATION EXTENSIONS

Test your PowerPC native applications with and without virtual
memory turned on to catch bugs early! Because your PowerPC
code is treated differently, in very subtle ways, when virtual
memory is turned on, you should test your PowerPC code with
both virtual memory on and off. If you make any use of self
modifying code, which Apple has warned us against in the past,
you may have problems when your application is run with vir
tual memory turned on. Remember, your code is considered
read-only in nature when it is loaded from the data fork and may
be dumped from memory at any time. You may make a self
modification, then your code is dumped, then loaded from the
disk again when it is needed. Guess what? Your modification is
now no longer with you. Who knows what might happen next?
Most likely your code will cause an error to occur and you'll end
up in a place called MacsBug.

The first portion of the program we will discuss is how we execute
private resources. All of our private resources are stored in separate
files of type xMOD and contain either a resource of type 68k or one of
type PPC. One of these resources contains code written especially for
the 680x0 processor and the other for the PowerPC processor. We also
have a resource of type Fat that contains a fat private resource-a mar
riage of the previously mentioned types. Using the Preferences ...
item in the Edit menu of our application, we choose which type of
code we want to execute (Figure 3-3). When running on a Power Mac
intosh, we can execute any type of code, no matter what version
(680x0 emulated or PowerPC native) of the application is running.

Figure 3-3 describes the different options available to us when ex
ecuting our private resources. The options are 680x0 code, PowerPC
code, and code that won't require a mode switch.

680x0 Code

No matter what the current ISA, we will always execute the 680x0
code. When running on a Power Macintosh, this code will be executed
via the 680x0 emulator. This executes our 68k resource.

41

42 A FRAGMENT OF YOUR lMAGINATION

~ Preferences

When eHecuting a priuate resource, use:

0 680HO code
On any Macintosh, 680x0 code will always be executed, no
matter what the current IS A.

@ PowerPC code
On a PowerMac, PowerPC code will always be executed, no
matter what the current IS A.

O Code that won't require a mode switch
On a PowerMac , the code which does not require a mode switch
(based on the IS A) will be executed . When running under
emulation, 680x0 code will be called. When running native,
native code will be called. This is also known as being Fat.

(c a n c e I J fi~(iiiiiiiio iiiiiiK iiiiiiiiiiiiii:D

Figure 3-3. Private resource preferences

PowerPC Code

No matter what the current ISA, if we are ruruting on a Power Macin
tosh, we will always execute the PowerPC code. Even if the emulated
version of the application is running, we will switch modes to execute
the native private resource. This executes our PPC resource.

Code That Won't Require a Mode Switch

Also known as a fat private resource, whichever cod e will avoid a
mode switch will be executed. Therefore, if the emulated version of
the application is running, the 680x0 code in the fat private resource
will be executed. If the native version of the application is running, the

APPLICATION EXTENSIONS

EHecute Priuate Resource... S€ 1
EHecute Shared Library... :3€2

Figure 3-4. Code menu

PowerPC code in the fat private resource will be executed. This exe
cutes our Fat resource.

To actually execute the code, we select Execute Private Resource ...
from the Code menu (Figure 3-4). After we choose one of our xMOD
files, we attempt to open the file using FSpOpenResFile, look for a re
source of the required type based on the selected preferences, and ex
ecute it. Depending on the type, we handle the execution in a variety
of ways. This is the first climax of this chapter, so stay awake through
this section.

Calling 680x0 Code

If we are executing 680x0 code, we generate the following code.

OSErr Call68k(void)
{

long
ModuleEntryProcUPP
Handle

OS Err

if (hCode)
HLockHi (hCode);

moduleResult;
mepUPP;
hCode = Get1Resource(kModule68kResType,

kModuleResID);
err = noErr;

mepUPP = NewModuleEntryProc68k(*hCode);
moduleResult = CallModuleEntryProc(mepUPP, OL);
DisposeRoutineDescriptor(mepUPP);

HUnlock(hCode);
ReleaseResource(hCode);

else err= ResError();

return err;

43

44 A FRAGMENT OF YOUR IMAGINATION

This function first loads the 680x0 code-containing resource. After
it's loaded, we move the resource high in memory and lock it into po
sition. We must then create a UniversalProcPtr for the code. To do this,
we use a handy macro that is defined two different ways, depending
on if we are using the 680x0 or the PowerPC compiler. The macros are
defined in the following code.

typedef long (*ModuleProc) (long inData);

enum {
uppModuleEntryProcinfo = kCStackBased

} ;

I RESULT_SIZE(SIZE_CODE(sizeof(long)))
I STACK_ROUTINE_PARAMETER(l,

SIZE_CODE(sizeof(long)))

#if USESROUTINEDESCRIPTORS

typedef UniversalProcPtr ModuleEntryProcUPP;

#define CallModuleEntryProc(userRoutine, pararns) \
CallUniversalProc((UniversalProcPtr) (userRoutine), \

ppModuleEntryProcinfo, pararns)

#define NewModuleEntryProc(userRoutine) \
(ModuleEntryProcUPP) NewRoutineDescriptor(\

(ProcPtr) (userRoutine), \
uppModuleEntryProcinfo, GetCurrentISA())

#define NewModuleEntryProc68k(userRoutine)
(ModuleEntryProcUPP) NewRoutineDescriptor(

(ProcPtr) (userRoutine),

\
\
\

uppModuleEntryProcinfo, (ISAType) kM68kISA)

#else

typedef ModuleProc ModuleEntryProcUPP;

#define CallModuleEntryProc(userRoutine, pararns)
(*(userRoutine)) (pararns)

#define NewModuleEntryProc(userRoutine)
(ModuleEntryProcUPP) (userRoutine)

#define NewModuleEntryProc68k(userRoutine)
(ModuleEntryProcUPP) (userRoutine)

#endif

\

\

\

APPLICATION EXTENSIONS

A macro is a simple way that your development environment al
lows you to tum a potentially long statement of code into a
much more manageable "minifunction." The difference between
a macro and a real function is that the macro is compiled inline.
That is, when your macro is called, the compiler will not gener
ate a JSR instruction to execute it. It will, instead, directly insert
the contents of the macro into your code. Macros are an impor
tant step in coding for PowerPC compatibility. Look through the
universal header files for many examples of conditional compila
tion using macros.

As you can see, when we call the NewModuleEntryProc68k macro
when compiled under the 680x0 compiler, we are returned a Univer
salProcPtr, (which is really a ProcPtr), to the address of our private
code resource. However, when compiled under the PowerPC com
piler, USESROUTINEDESCRIPTORS is #defined. Therefore, the macro
equates to a function call to NewRoutineDescriptor. Under the Pow
erPC, we are actually allocating memory for a RoutineDescriptor and
initializing it to describe and point to the 680x0 code resource. The
macro then returns a UniversalProcPtr that points to our newly cre
ated RoutineDescriptor.

Now that we have the code in the proper form to be executed, we
call the CallModuleEntryProc macro, which when compiled under the
680x0 compiler simply de-references the UniversalProcPtr and JSRs to
the code. However, when compiled under the PowerPC compiler, the
macro equates to a function call to CallUniversalProc. Under the Pow
erPC, the call invokes the Mixed Mode Manager to examine the Rou
tineDescriptor and decide whether or not a mode switch is necessary.
The Mixed Mode Manager sees that the code is of a different instruc
tion set and changes modes. When the code resource finishes execu
tion, the Mixed Mode Manager restores the previous instruction set
and returns control to our application.

Lastly, we must dispose of any RoutineDescriptors that we may
have allocated. When compiled under the 680x0 compiler, the Dis
poseRoutineDescriptor call does nothing. However, when compiled
under the PowerPC compiler, the function call releases the memory al
located earlier by NewRoutineDescriptor call. We can then release the
code resource and be on our way.

Our 680x0 code resource follows.

45

46 A FRAGMENT OF YOUR IMAGINATION

Calling PowerPC Code

680x0 code

Figure 3-5. 680x0 private resource
format

If we are executing PowerPC code, we generate the following code.

OSErr CallPPC(void)
{

long moduleResul t;
Handle hCode = GetlResource(kModulePPCResType, kModuleResID);
OSErr err = noErr;

if (hCode) {
HLockHi (hCode) ;

moduleResult = CallModuleEntryProc((ModuleEntryProcUPP)
*hCode, OL);

HUnlock(hCode);
ReleaseResource(hCode);

else err= ResError();

return err;

Because our PowerPC private code resource (Figure 3-6) is com
piled with a RoutineDescriptor automatically preceding it, we have a
very easy time of calling this code from either 680x0 or PowerPC in-

RoutineDescriptor

PowerPC RoutineRecord D ...
PowerPC code

Figure 3-6. PowerPC private resource
format

APPLICATION EXTENSIONS

struction set architectures. Simply enough, after loading the resource,
we call the CallModuleEntryProc macro as described earlier in calling
680x0 code. Since the code already has a RoutineDescriptor attached
to it, there is no need for us to create one. All mode switches occur au
tomatically for us by CallUniversalProc and the Mixed Mode Man
ager.

Calling Code That Won't Require a Mode Switch

Now that we've looked at private resources that contain code specific
for one platform, let's talk about the fat private resource. A fat private
resource contains code for both the 680x0 and the PowerPC, all in one
convenient package. If you plan on having your code called from
PowerPC code or 680x0 code while running on a Power Macintosh,
this may be the best choice for you. The fat resource begins with a
RoutineDescriptor that contains two RoutineRecords that describe the
680x0 and the PowerPC code. The code itself follows the two Rou
tineRecords.

When this code is called from your application, the Mixed Mode
Manager is invoked (via the first field of the RoutineDescriptor, which,
you may remember, happens to be filled in with the trap word
_MixedModeMagic). The Mixed Mode Manager looks at the Rou
tineRecords that follow, sees that there is one for PowerPC code and
one for 680x0 code, then looks at the current instruction set architec
ture. The Mixed Mode Manager then makes a decision (based on a flag
in each RoutineRecord) to execute the code in the private resource that
will not require a mode switch. Therefore, if you are calling a fat pri
vate resource from 680x0 code, the 680x0 code in the resource will be
executed. If you are calling it from PowerPC code, the PowerPC code
in the resource will be executed. The main reason for having fat pri
vate resources (Figure 3-7) is to help optimize your calls to them. Since
a mode switch can take the same amount of time as 50-100 680x0 in
structions, if you can get rid of a few, you can effectively speed up
your application.

It should be noted that the routineFlags field of each RoutineRe
cord actually indicates how the code should be called. By "ORing" in
kUseCurrentISA or kUseNativeISA, the Mixed Mode Manager will
choose the proper code to execute based on the current ISA and the
native ISA of the hardware. In this case, we assume that we are using

· kUseCurrentISA. This will execute the code that has the same ISA as
the current ISA-avoiding a mode switch.

47

48 A FRAGMENT OF YOUR IMAGINATION

RoutineDescriptor

680x0 RoutineRecord

PowerPC RoutineRecord

680x0 code

PowerPC code

Figure 3-7. Fat private resource format

Remember, there is twice the code to test when you are using a
fat resource, since your 68k code may be executing on 680x0 ma
chines and PowerPC machines. Unless you know for sure that
your fat resource will only execute its PowerPC code when on a
Power Macintosh, you must remember to test both your 680x0
and your PowerPC code when running on the Power Macintosh.
This is twice as much testing as otherwise required, so be sure to
include enough time for it in your schedule.

The Resource Code

Before we go much further, we should at least take a quick look at the
code that we are actually calling in this case. The code resource we are
dealing with here has a single entry point and is very simple in nature.
Let's take a look at the following code.

#ifndef _ _powe r c
#i nclude <SetUpA4 . h>
#i nclude <A4Stu ff . h>
#else
Pr oci nfoType _ _proc i nfo
#endif

uppModuleEntryProc lnf o;

long main(long inData)
{

#ifndef _ _powerc
long oldA4;
oldA4 = SetCurrentA4();
RememberA4();

#endif

#ifdef _ _powerc

APPLICATION EXTENSIONS

ParamText ("\pPowerPcn, "\p", "\p", "\pn);
#else

ParamText("\p68k", "\p", "\p", "\p");
#endif

NoteAlert(128, nil);
ParamText("\p", "\p", "\p", "\p");

#ifndef _ _powerc
SetA4(oldA4);

#endif

return OL;

The code you see is what you get. That's it. This code resource first
sets up A4 for global access, if we are compiling for 680x0. We then use
the ParamText function to display the text 68k or PowerPC in our
alert, so we can quickly tell, for which platform the currently running
code was compiled. When complete, restore A4 if needed and exit.
Quick and easy.

Other Types of Private Resources

Thus far we've discussed 680x0-code-only application extensions,
PowerPC-code-only application extensions, and the fat resource that,
when run on a PowerPC, will yield the best performance by not forc
ing a mode switch. These three mechanisms cover a lot of ground, but
it is possible that you have different needs.

If your application is going to be run on 680x0-based Macintosh
computers, and you want to keep your application extension in one
fat resource, you will have some problems. As soon as your applica
tion loads the extension and attempts to execute it, it will encounter
the _MixedModeMagic trap word that begins all RoutineDescriptors.
One hundred percent of the time, you will crash with an unimple
mented instruction error, since the _MixedModeMagic trap is only im
plemented on the Power Macintosh, as of this writing. What is a poor
programmer to do?

49

50 A FRAGMENT OF YOUR fMAGINATION

Apple foresaw this problem and created something called the safe
fat resource. The safe fat resource is exactly the same as a fat resource
except for one important difference-it is preceded by a stub of 680x0
code.

The 680x0 code stub is executed the first time the safe fat resource
is called. The code determines if the Mixed Mode Manager is present
by checking for the existence of system software version 7.0 or later
and also the _MixedModeMagic trap in the trap tables. If _Mixed
ModeMagic is unimplemented (doesn' t exist), then a 680x0 BRAnch
instruction is placed at the beginning of the resource. Then, each time
the code is called, it immediately branches to the 680x0-only code. If
_MixedModeMagic is implemented, a RoutineDescriptor is moved to
the beginning of the resource. This RoutineDescriptor exists just below
the 680x0 code stub and is essentially BlockMoved to the beginning of
the resource.

This template cannot currently be used for resources containing
code with register-based calling conventions, because the 68k
code at the beginning of the resource uses DO, AO, and Al. But
you can change the code stub that precedes the safe fat resource.
You can also optimize memory usage by effectively deleting ital
icized areas of the following figures with some well-placed
BlockMoves, since these areas are considered "dead" code and
are not used after the first time the resource is executed.

Figures 3-8, 3-9, and 3-10 show what the private resource looks
like, in memory, before and after the initial execution on each plat
form. Note that the italicized items represent portions of the resource
that are never accessed in that particular scenario. You should note
that this is self-modifying code-something you shouldn't normally
do. But in this case, we must. Look at the actual code (in Mixed
Mode.r) to see the precautions that are taken to ensure that it is as safe
as possible.

As you will see in later chapters, we will make great use of fa t and
safe fat resources. This is how we will create a cdev (control panel) re
source that executes in native mode on the PowerPC. We will also
make CDEF (control definition), LDEF (list definition), Photoshop
filters, and other resources that take advantage of this same function
ality. You could even create HyperCard XCMDs in this manner. Any

680x0 code stub

Rout;neDescr;ptor

680x0 Rout;neRecord

PowerPC Rout;neRecord

680x0 code

PowerPC code

Figure 3-8. Safe fat private resource format before
initial execution

,....-- BR An ch to 680x0 code

Rootme0e-scr1pror

680x0 RouOneRecord

Po'M'ff°PC RootmeR~d
.... ...

680x0 code

Po'M'et"PC cede-

Figure 3-9. Safe fat private resource
format after initial execution on a 680x0-
based Macintosh

APPLICATION EXTENSIONS 51

52 A FRAGMENT OF YOUR IMAGINATION

RoutineDescriptor

680x0 RoutineRecord

PowerPC RoutineRecord 1-----i

JI...-
680x0 code

I~
PowerPC code

leftoYier Goop

Figure 3-10. Safe fat private resource format after
initial execution on a Power Macintosh (note that
680x0 code stub is overwritten)

code resource can become a safe fat code resource with little hassle on
the part of the programmer. Think of the possibilities.

Working with Shared Libraries

My mother always told me to share, so now that we have discussed
how to deal with resource-based application extensions, what about
shared libraries? Shared libraries are files of type shlb that contain a
code fragment resource and a data fork filled with PowerPC code. Al
though the file type and code location aren't set in stone, this is how
shared libraries are normally created. Shared libraries export functions
and global variables to other fragments, including your application. A
shared library can also be considered an import library, which is
loaded automatically at runtime by the Code Fragment Manager, for
use in your application. Many of the native PowerPC system software
routines are in this type of library.

There are many advantages to using a shared library over a pri
vate resource if your application will be running on a Power Macin
tosh. For one, you can share your code with other applications-either
written by you or someone else. This way, if you have multiple appli-

APPLICATION EXTENSIONS

cations that use many of the same functions, you can separate those
functions into a shared library and access them from all of your appli
cations. This will save disk space and possibly memory as well, de
pending on how you choose to load the shared library.

Another advantage is the fact that if your users have virtual mem
ory enabled on their Power Macintosh, the data fork of the shared li
brary acts as the virtual memory paging file. This effectively makes
your code read-only and doesn't allow you to perform any self
modification. The reason your code becomes read-only is because the
Virtual Memory Manager works off of disk-based files, as you know.
Normally, virtual memory would write out the data from memory
into a disk file when it needed to be purged, then read it back in when
it needed to be executed. This disk thrashing would take valuable
time. However, with a shared library (or any data fork container for
PowerPC code) the Virtual Memory Manager can read the code from
disk and, if it must be purged from RAM, can simply "nuke" it. When
it needs to execute the code again, it reads it from the file again. You
can see that any changes you make to your code may be destroyed at
any time, due to the Virtual Memory Manager disposing of your
memory-resident copy.

Calling Our Shared Library

To execute the code in a shared library, we select Execute Shared Li
brary ... from the Code menu (Figure 3-11). When we do this, we exe
cute a function in our application called ExecuteSharedLib. This
function performs the following tasks:

1. Locates our shared library by name by calling the Code Fragment
Manager function GetSharedLibrary. This function locates and
loads the shared library and prepares it for execution by resolving
any references to other shared libraries that it uses. The most im
portant parameter that this function returns to us is a connection
ID to our shared library. We use this connection ID to communi-

EHecute Priuate Resource... 8€ 1
EHecute Shared Library... 8€2

Figure 3-11. Code menu

53

54 A FRAGMENT OF YOUR IMAGINATION

cate with the Code Fragment Manager when we want to refer to
our shared library. NOTE: If our shared library has an initializa
tion routine, it is called now.

2. We then call the Code Fragment Manager function FindSymbol to
locate the address of our exported function BeepThreeTimes.

3. After we have the address of our BeepThreeTimes function, we
call the Mixed Mode Manager function NewRoutineDescriptor to
create a UniversalProcPtr to the function.

4. We then call the Mixed Mode Manager function CallUniversalProc
to execute the function in the shared library.

5. After CallUniversalProc returns, the function has completed exe
cution and we call the Mixed Mode Manager function Dis
poseRoutineDescriptor to deallocate the UniversalProcPtr.

6. Repeat steps 2 through 5 to execute other functions.
7. Call the Code Fragment Manager function CloseConnection to

deallocate memory associated with our shared library connection
and sever the connection itself. NOTE: If our shared library has a
termination routine, it is called now.

Using FindSymbol doesn't actually return the address of the
function. It really returns a pointer to a TOC entry in the code
fragment. You may remember a discussion of this in Chapter 2.

OSErr ExecuteSharedLib(Str255 e r rName)
{

OSErr
ConnectionID
Pt r

e r r = noErr , err2 = noErr ;
c onnID = kNoConnectionID;
mainAdd r = nil;

I I
II attempt to loca t e a nd prepare the s hare d library
II

err GetSharedLibrary(" \ pCus tom Shared Li b ", k PowerPCArch,
kLoadNewCopy , &c onn ID, &mainAd dr ,

i f (err == noErr)
Ptr
SymClass

II

e rrName) ;

symAddr = nil;
symClass ;

APPLICATION EXTENSIONS

II look up the symbol (in this case, a function)
II that we are interested in
II

II

err = FindSymbol (connID, "\pBeepThreeTimes",
&symAddr, &symClass);

if (err == noErr) {

II
II create a routine descriptor for the function, call it,
II then dispose the routine descriptor.
II

UniversalProcPtr upp NewRoutineDescriptor(
(ProcPtr)symAddr,
kCStackBased,
GetCurrentISA());

if (upp)
SetCursor(*GetCursor(watchCursor));
CallUniversalProc(upp, kCStackBased);
InitCursor();
DisposeRoutineDescriptor(upp);

else err = memFullErr;

II look up another symbol, just for fun.
II

if (err == noErr)
err = FindSymbol (connID, "\pShowLibAlert" ,

&symAddr, &symClass);
if (err == noErr) {

II
II create a routine descriptor for the function, call
II it, then dispose the routine descriptor.
II

UniversalProcPtr upp

if (upp)

NewRoutineDescriptor(
(ProcPtr)symAddr,
kCStackBased,
GetCurrentISA());

CallUniversalProc(upp, kCStackBased);
DisposeRoutineDescriptor(upp);

else err = memFullErr;

55

56 A FRAGMENT OF YOUR IMAGINATION

II
II close t he connection
II

err2 = CloseConnection(&connID);
if (err == no Err) err = err2;

return err;

In our example, we use the FindSymbol function to locate func
tions to execute. You will see in our system extension example (in
Chapter Four) that we use the FindSymbol function to locate
global variables. After you have the address of a global variable,
you can edit it as if it were your very own.

Our Shared Library Code

Now that you know how to call a shared library from within an ap
plication, let's take a look at the shared library code itself. It is very
simple in our case, since we only supply two functions that were ex
ported for use by our application. Before we take a look at those func
tions, let's look at the initialization and termination routines of which
we mentioned fragments could take advantage.

OSErr ~initialize(InitBlockPtr ibp)
{

OS Err err = noErr;

gFileRefNurn = -1 ;

if (ibp->fragLocator.where == kDataForkCFragLocator) (
gFi leRefNum =

FSpOpenResFile(ibp->fragLocator . u.onDisk.fileSpec,
fsRdPerm);

i f (gFileRefNurn == -1)
err = ResError () ;

return err ;

APPLICATION EXTENSIONS

The initialization routine that is used by our shared library is
called automatically by the Code Fragment Manager before our
shared library is accessed by the caller. This gives us a chance to ini
tialize any internal variables we may need to initialize. The initializa
tion routine is passed a pointer to a block of memory containing
information about the location of our fragment. In our case we simply
open the resource file of the shared library in order to access our re
sources. We then save the reference number of our file in a global vari
able. You should note that even though the shared library code is in
the data fork of the file, the resource fork is available for our use.

void __ terminate(void)
{

if (gFileRefNum !; -1)
CloseResFile(gFileRefNwn);

The termination routine couldn't be much simpler without break
ing a law or two. This routine is called when the caller attempts to
close the connection to the shared library. The termination routine
gives us a chance to clean up any messes we may have made in the
initialization routine. In our case, we simply close our resource file.

The two exported functions that our shared library has made
available to calling programs are very simple. One beeps three times
while displaying a dialog box; the other displays an alert. The follow
ing code shows how to access the private resources of the shared li
brary by simply making the resource file current, using the resources,
and restoring the previously current resource file. In your experimen
tation, you should add more functions and other globals to the shared
library, then attempt to access them from your programs.

void BeepThreeTimes(void)
{

short saveResFile CurResFile();
DialogPtr d;

UseResFile(gFileRefNurn);

d ; GetNewDialog (256, nil, (WindowPtr) -1);
if (d) {

ShowWindow(d);
DrawDialog (d);

57

58 A FRAGMENT OF YOUR IMAGINATION

SysBeep (O l ;
SysBeep(O);
SysBeep(O);

if (d)

DisposeDialog(d);

UseResFile(saveResFile);

void ShowLibAlert(void)
{

short saveResFile = CurResFile (l ;
UseResFile(gFileRefNum);
NoteAlert(128, nil);
UseResFile(saveResFile);

Compiling Our Code

This project makes use of many project files (Figures 3-12, 3-13, and
3-14) that take many different forms. We compile an application, a
shared library, and custom code-bearing resources. This book makes
no attempt to teach you how to use CodeWarrior or your development
environment. You should read the documentation that came with your
compiler to learn how to build these different types of projects. You
should also note that each code example on the CD contains a file of
build instructions to help you build the programs. Experiment with
the source we have provided-that's why it's here.

~ HS hell 68k.Jl
File Code Data 9--v Main Oj Ol a i)

xShell.c o! oj ID 1--

xShe 11 Resources n I a ! n I a ! Iii
t···············~~~9..~ .. :~!~ ! QJ Q.t ID..

-0
3 file(s) 0 0 ' ml

Figure 3-12. 680x0 private resource project file

APPLICATION EXTENSIONS

~Iii HS.bell PPC.JJ.
File Code Data Iii-v Group 1 Oj Oj 1:1 j£

xShell.c o~ o~ tEI
xShe 11 Resources i n /a i n /a i ID

............. .J.~.!!r.!!.!.!.~.~-~ l Q.L Q.l 11.1 ..
..

I--!

-0.-
- 3 file(s) 0 0 'ii ~

Figure 3-13. PowerPC private resource project file

Iii
F11e Code ·o.ata 151 ,.

v Group 1 Di 0! Jil {}
Shared Library .c 0 ~ 0 ~ JD
Shared L ibr ariy Resources n I a~ n I a~ Iii

.............. J.~.~!r.!~.'!?.!.~.t~ ... t Q.t Q.t W..

3 file(s). 0 0

Figure 3-14. PowerPC shared library project file

Private Resource Tips
You can easily extend the capabilities of your application by designing
it in a modular fashion. The Power Macintosh and the Code Fragment
Manager have made this even more important to consider when writ
ing your technical specification. The following tidbits are some things
to keep in mind.

• If your application makes use of many "tools" that perform dif
ferent functions on the same data, you should think about making
those tools external to the application. This allows your users (and
other developers) to extend or limit the functionality easily of
your application based on their custom requirements and/ or lim
itations.

59

60 A FRAGMENT OF YOUR IMAGINATION

• Writing your application in a modular fashion that supports ap
plication extensions can dramatically reduce the memory foot
print of your application. You only need to load the tools that the
user is currently using, which frees up valuable RAM for other ap
plications or your own application extensions.

• When writing external tools, you need not consider them islands
of code that only your application can access. You can easily allow
your tools to call back into the application for services (such as
AppleEvent) communication with other applications.

• Remember that your external tools will not have access to globals
in your application. However, you can pass these globals to the
tools in a variety of ways. Consider storing all application globals
in a structure and passing a pointer to that structure to each exter
nal tool when it is called. In this manner, your tools can access just
about any information your application can.

• Don't forget to register the file types of your application and ex
ternal tool files with Apple. Doing this will prevent you from
crashing. How? If you register your file types, this will ensure that
no other company can use those types. This, in turn, will shield
you from ever opening a file that looks like one of your tools but
is really something completely different. Mind you, you shouldn't
crash anyway, but you just never know.

CHAPTER FOUR

System Extensions

All is fair in love and war and patching traps.

-Anonymous

Introduction

System extensions have been around since the beginning of Macintosh
time. Originally known as INITs, short for initialization programs, sys
tem extensions were renamed when System 7 was released in order to
make the Macintosh even less intimidating to new computer users.
The name INIT sounded a bit too technical for most users, whereas
system extension was much more palatable.

System extensions perform all sorts of functions, but mostly you
find them in the form of useful utility programs that handle such
things as disk compression, RAM doubling, network functions, and
other system-level tasks. Exam~es of system extensions from Apple
Computer include QuickTime , PowerTalk Manager, Apple Photo
Access, and ColorSync™.

System extensions come in many forms, but are mostly seen as
files of type INIT or appe. Files of type INIT contain one or more
resources also of type INIT. These resources are executed by the sys
tem software at boot time. Boot time is from the time you see the
"Welcome To Macintosh" message until the Finder launches and the

61

62 A FRAGMENT OF YOUR IMAGINATION

desktop appears. Files of type !NIT almost always perform tasks
that alter the way the computer and system software operate. This
is accomplished, in most cases, by patching traps (discussed later)
or by installing a device driver during boot time.

Before System 7, system extensions were called INITs-short for
initialization programs. These INITs were loaded by what is
known as the INIT31 mechanism. It was called INIT31 because
the code that loaded the INITs was stored in a resource in the
system file of type !NIT with an ID of 31. Today the system
startup code is responsible for this feat.

On the other hand, files of type appe are actually applications
with a few special considerations. These files are also known as faceless
background or daemon applications. They are written just as a normal
application is written. However, they cannot make use of any Quick
Draw functionality-including the Random() function. These faceless
background applications are just that. They have no user interface at
all and always execute in the background. Because they were de
signed to not have a user interface, they have no AS QuickDraw
world. The File Sharing Extension is an example of a faceless-back
ground application. Files such as this can also contain resources of
type INIT. These !NIT resources are executed at startup as previously
described.

Depending on the functionality you have in mind for your pro
gram, either an APPE or an !NIT may be the proper choice. If you only
need periodic time and the ability to send and receive AppleEvents, a
faceless-background application might be the best way to go. How
ever, if you need to interact with the machine based on user actions
and other criteria, or need to intercept traps on a global scale, an INIT
might be for you.

Anatomy of a System Extension

Now that you've had a brief overview of the system extension and
how it works, let's take a look at one in particular. In this chapter we
develop a system extension called MenuScript. This system extension
is a file of type INIT and contains one INIT resource. It also contains
other code in order to support the Power Macintosh. This chapter will
show you how to write an !NIT resource, patch traps to alter the func-

SYSTEM EXTENSIONS

tionality of the computer, execute PowerPC native code when running
on a Power Macintosh, and more.

As mentioned in previous chapters, most pre-Power Macintosh
code resources have a single entry point. An entry point is the place to
which the caller jumps in order to execute the code. For example, an
application might load a resource that contains code, lock the resource
using the Memory Manager function HLock, dereference the handle to
the resource to obtain a ProcPtr, and perform a 680x0 JSR instruction
to begin execution of the code. Parameters may be passed to the code
on the stack or in registers, if any are needed. When the code is
finished doing its job, it will execute a 680x0 RTS instruction, return
ing any values that are required, and the application will be back in
control (Figure 4-1). On the Power Macintosh, on the other hand, a
code fragment can have as many entry points as it needs and each can
accept different parameters and return a unique value as well.

At startup, the system software loads system extensions in a simi
lar manner. The system extension's INIT resources will be loaded one
by one and then executed in the fashion described earlier. During the
time your INIT resources execute, you can do just about anything you
may have a need to do. You should note that, during this time, the
computer is not in the most pristine of states. There is a limit to what
you can perform during boot time. However, this boundary is a bit
blurry at times. For example, you cannot always draw to the screen
without first setting up QuickDraw globals. (See "Creating Your Own
AS Word" in Chapter Twelve for more information on setting up
QuickDraw globals within a code resource.) In any case, what INIT re
sources usually need to do is patch traps, initialize variables, read
and/ or write preference files, allocate memory, etc. All of this can be
done safely during boot time.

The simplest INIT resource looks like the following code:

void main (void)
{

App lfo.atfon

SysBeep(O);

JSR ltrJr

o'1IJ1 RTS

~HOU l,1U
.JSiR CAO>
CHP Dl,2
HE~
RU

Code Resource

Figure 4-1. A 680x0 application calling a
680x0 code resource

63

64 A FRAGMENT OF YOUR IMAGINATION

This particular INIT does absolutely nothing except beep. It sim
ply executes, beeps once, and immediately exits. Unlike some other
code resources, INIT resources are passed no parameters and return
no values.

Introduction to MenuScript and Patching Traps

The system extension we will be developing in this chapter is called
MenuScript. The concept for it is very simple, with the advent of
AppleScript (Apple's systemwide scripting language). I thought it
would be interesting if users could replace any menu item in any ap
plication with an AppleScript. Because I do not have access to the
source code for all known Macintosh applications, this problem
needed to be solved at the system level in a much more generic way. I
decided that a system extension of file type INIT would be the perfect
choice to solve this problem.

When thinking through the idea, the first step was to figure out
how to make any application execute an AppleScript instead of doing
the task it was supposed to do when the user selected one of its menu
items. The Menu Manager documentation (see Inside Macintosh) states
that in order for an application to receive a user's menu choices, it
must call the MenuSelect and/ or MenuKey toolbox functions. Menu
Select is called by the application when the user clicks the mouse in
the menu bar. When the mouse button is released, MenuSelect returns
the menu ID and the menu item that the user chose, if any. Similarly
MenuKey is called when the user types a command key combination.
MenuKey compares that command key combination to those in the
current menu bar and returns the corresponding menu ID and menu
item, if any. By patching these two toolbox functions (also known as
traps), I can intercept the return values before the calling application
gets to examine them.

In our system extension, we also patch the function System
Menu. This function is called internally by the Menu Manager
when a ''DA" (Desk Accessory) is selected. We patch th.is trap
also in order to ensure that we receive all menu selections, in
cluding those in the Apple menu and other system-managed
menus.

SYSTEM EXTENSIONS

Patching traps can be a difficult task at times, depending on which
traps you are patching. The MenuSelect and MenuKey traps are rela
tively straightforward to patch, however. In order to patch a trap, the
first thing you must do is understand the calling convention of the
trap you want to patch. You will need to structure your patch to mimic
this convention in order to have it work properly. For instance,
MenuSelect is defined in the universal header file Menus.has the fol
lowing code.

pascal long MenuSelect(Point startPt);

Therefore, our patch's function prototype (for the 680x0, anyway) will
look like the following code.

pascal long MenuSelect68k(Point startPt);

Now that we know what our patch needs to look like for the com
piler, we need to actually apply the patch. Applying a patch to a trap
is very easy, but first you need to know with which type of trap you
are dealing-a ToolTrap or an OSTrap. A ToolTrap is a trap that is im
plemented via the Toolbox. An OSTrap is an operating system-level
trap. There are subtle differences in the way these two types of traps
are handled by the system. By checking bit 11 of the trap word, you
can tell the difference. If bit 11 is set, then the trap is a ToolTrap. Oth
erwise, it is an OSTrap. Since the trap word for MenuSelect is OxA938
(which in binary is displayed as 1010 1001 0011 1000), it is a ToolTrap.
Note that bit 11 (the underlined bit) is turned on, or set, in the trap
word. Tool Traps are Pascal-based and accept their parameters on the
stack. OS Traps are register-based and accept their parameters in reg
isters. CodeWarrior makes it very easy to write 680x0 operating sys
tem patches. You can use register parameters to specify which
parameters in your function prototype come from which registers, and
in which register any results should be placed. This net feature is doc
umented, for those of you who want to take advantage of it, in the
Metrowerks C/C++ & Assembly Language Manual that is available with
Code Warrior.

Because MenuSelect is a ToolTrap, we will use the functions Get
ToolTrapAddress and SetToolTrapAddress to patch the trap. If it were
an OSTrap we would have used GetOSTrapAddress and SetOSTrap
Address, respectively. Patching MenuSelect might look something like
the following code.

oldMenuSelectAddr = GetToolTrapAddress(_MenuSelect);
SetToolTrapAddress(newMenuSelectCode, _MenuSelect);

65

66 A FRAGMENT OF YOUR IMAGINATION

The basic premise behind patching traps is that you save the pre
vious address of the trap and put your new address in its place. Then,
when your code is called, you can choose whether or not to call the
previous address before or after you execute your own code. If you
perform an operation before you call the previous address it is called
a head patch. If you perform an operation after you call the previous
address it is called a tail patch. Sometimes you will perform opera
tions before and after you call the previous address-this can be called
anything you like.

More MenuScript Features

Executing an AppleScript is an interesting thing to do, but we need
some type of control over which AppleScripts we execute when users
select specific menu items in their applications. In order to do this, I
have adopted a simple approach. The idea is this: In the System Folder
we create a folder called MenuScripts folder. Within it, we create a
folder called Any Application. Users may also create folders within
the MenuScripts folder named after their favorite applications. For ex
ample, we might create a folder named Finder. Whenever the user se
lects a menu item, we look for a folder in the MenuScripts folder that
has the same name as the currently running application. If one exists,
we look in that folder for an item with the same name as the selected
menu item. If one exists, we tell the Finder to open it, instead of hav
ing the application execute the real menu item. If no folder or item ex
ists, we then look in the Any Application folder for an item of the
same name as the selected menu item. This allows users to have de
fault actions occur across all applications, yet have specific control
over some applications.

For example, in Figure 4-2, if the user selected Show Clipboard
from within the Finder, the item named Show Clipboard in the Finder
folder would be opened. In this case, it happens to be a stand-alone
AppleScript application, but it could be an alias to anything-a docu
ment, another folder, a network server, etc. By the same token, if the
user selected Quit from within any application, the item in the Any
Application folder named Quit would be opened.

Whenever an item exists and is opened, it overrides the menu se
lection. We are able to override the menu selection by altering the re
turn value from MenuSelect and MenuKey before the application gets
a chance to look at it. If MenuSelect returns that the user selected item
10 from menu ID 129, we can use that information to locate the item to
open and then change it so the application thinks the user didn't select
any menu item at all. Are you beginning to see the power of patching
a trap?

V D MenuScripts folder

V D Any Application

~Quit
~ Show Balloons

D Ander

~ Show Clipboard

Figure 4-2. MenuScripts folder
hierarchy in the System folder

MenuScript Code

SYSTEM EXTENSIONS

Now that we've discussed a bit about what our system extension
needs to do and how we plan on doing it, let's dive in and look at the
code. The first thing we need to consider is our INIT resource. This
code gets executed by the system and applies all of our patches, which
basically puts us in business to handle menu selections later on. The
INIT resource's attributes should be marked sysHeap and may be op
tionally marked as locked. This ensures that our code is loaded into
the system heap and not any other heap at startup. The locked bit
would see to it that our code is locked in memory, without us needing
to do it ourselves from within code, as in the following code.

void main(void)
{

FSSpec
FSSpec
Str32
Str32
Handle
THz
long
long
long
short
OSErr

menuScriptsFolderFSSpec;
anyApplicationFolderFSSpec;
menuScriptsFolderName;
anyApplicationFolderName;
hINIT = nil;
savedZone;
oldA4;
response;
foundDirID;
foundVRefNum;
err = noErr;

The first thing we do is define our main entry point and allocate
our local variables for this function. We also initialize some of these
variables here. Remember, INIT resources take no parameters and re
turn no values.

67

68 A FRAGMENT OF YOUR IMAGINATION

savedZone = GetZone();
SetZone(SystemZone());

We then want to ensure that the current heap is set to the system
heap. Because we must allocate memory and load resources, we want
to make sure they are in a heap that stays valid throughout the entire
time the computer is turned on. If we didn't perform this step, it is
possible that some other system extension that loaded before ours
may have inadvertently left us in a very small heap that it created,
which could cause us to not load due to low memory. The previous
code is simply a precaution, but it is a good one to take.

oldA4 = SetCurrentA4();
RememberA4();

Because we are using Metrowerks' CodeWarrior, we can make use
of global data within our 680x0 code resources. In order to do this, we
must make a few simple calls to set this up and maintain it, as in the
previous code. CodeWarrior references global data off of 680x0 reg
ister A4. (You should refer to your CodeWarrior manual for more
information on how to use these functions.) Other development envi
ronments support register A4 and AS referencing of global data. The
documentation for your environment will explain how to make use of
it.

err = Gestalt(gestaltSystemVersion, &response);
if ((err ! = noErr) 11 (response < kMinimumSystemVersion)
goto fail;

We can only run under System 7 or later, so we check that in the pre
vious code.

gGlobalsPtr = (GlobalsPtr)NewPtrSysClear(sizeof(Globals));
if (gGlobalsPtr == nil) {

err = MemError() ? MemError() : memFullErr;
goto fail;

Because we are able to allocate global data in our code resource,
we do that here. Note that we allocate the memory in the system heap
using the Memory Manager NewPtrSysClear function. We have
defined a structure called Globals that contains all of the information
our patches need to perform their functions. It looks like the following
code.

SYSTEM EXTENSIONS

typedef struct
long menuScriptsFolderDirID;
long anyApplicationFolderDirID;
UniversalProcPtr oldMenuSelectAddr;
UniversalProcPtr oldMenuKeyAddr;
UniversalProcPtr oldSystemMenuAddr;
FSSpec ourFSSpec;

Globals, *GlobalsPtr, **GlobalsHdl;

The menuScriptsFolderDirID and anyApplicationFolderDirID
fields contain the directory IDs of our custom folders that we are
about to create. This makes it easier and faster for us to locate specific
files during our patches. The three UniversalProcPtr fields are the
original addresses (returned from GetToolTrapAddress) of the Toolbox
traps that we patch. This allows us to call through to the original traps
easily. The ourFSSpec field is a standard File Manager specification
record that points to our system extension file. This is handy to keep
around if we ever need to open our system extension file from one of
our patches, which we do in the case of an error. See the ShowError
Alert function in the source code for an example of this.

err= RememberMe(&gGlobalsPtr->ourFSSpec);
if (err != noErr) goto fail;

We then fill in the FSSpec mentioned previously. This is done by
calling a simple utility function called RememberMe. It is defined in
the following code.

OSErr RememberMe(FSSpecPtr fsp)
{

FCBPBRec
OS Err

pb;
err = noErr;

pb.ioCompletion = nil;
pb.ioNamePtr = fsp->name;
pb.ioVRefNum = O;
pb.ioRefNum = CurResFile();
pb.ioFCBindx = 0;

err= PBGetFCBinfoSync(&pb);

fsp->vRefNum = pb.ioFCBVRefNum;
fsp->parID = pb.ioFCBParID;

return err;

69

70 A FRAGMENT OF YOUR IMAGINATION

RememberMe fills in a File Manager FCBPB record and calls the
low-level function PBGetFCBinfoSync. This returns the volume refer
ence number, directory ID, and name of our file (which also happens
to be, thanks to the system, the current resource file). As mentioned,
having this information around allows us to access resources in our
file at a later time.

GetindString(menuScriptsFolderName, rStringListID,
iMenuScriptsFolderName);
if (menuScriptsFolderName[O] == 0)

err = resNotFound;
goto fail;

err = FindFolder(kOnSystemDisk, kSystemFolderType,
kDontCreateFolder, &foundVRefNwn, &foundDirID);
if (err != noErr) goto fail;

err = FSMakeFSSpec(foundVRefNum, foundDirID,
menuScriptsFolderName, &menuScriptsFolderFSSpec);

if (err == fnfErr) {

err = FSpDirCreate(&menuScriptsFolderFSSpec, smSystemScript,
&gGlobalsPtr->menuScriptsFolderDirID);

else if (err == noErr) {

err = GetDirectoryID(&rnenuScriptsFolderFSSpec,
&gGlobalsPtr->menuScriptsFolderDirID);

if (err != noErr) goto fail;

The next step is to find (or create if it does not exist) our
MenuScripts folder in the System folder. The first thing we do is load
a string resource that defines the name of the folder. We then use Find
Folder to get the volume reference number and directory ID of the
System folder. After we have this information, we can attempt to cre
ate an FSSpec for the MenuScripts folder. If the File Manager's FS
MakeFSSpec function returns a file not found error (fnfErr), then we
must create the directory ourselves, as it does not exist. We call the
FSpDirCreate function to create the directory and get its directory ID,
which we then save in the menuScriptsFolderDirID field of our global
data. If the folder already exists, we simply call our own GetDirecto
ryID function to ascertain the menuScriptsFolderDirID field. The Get
DirectoryID function looks like the following code.

SYSTEM EXTENSIONS

OSErr GetDirectoryI D(FSSpec *spec, long *dirID)
{

OS Err
Cinf oPBRec

err = noErr;
pb;

pb.hFileinfo.ioNamePtr
pb.hFilelnfo . ioVRefNurn

spec->name;
spec->vRefNurn;

pb.hFileinfo . ioFDirindex = O;
pb .hFileinfo . ioDirID = spec->parID;

err= PBGetCatinfoSync(&pb);

*dirID = pb.hFilelnfo . ioDirID;

return err ;

GetDirectoryID is another useful utility function from our arsenal
of useful utility functions. By passing in the FSSpec of a directory,
GETDirectoryID will return the directory ID of that directory. We can
then use the directory ID to look for files within the directory.

Many programmers become confused when dealing with
FSSpecs and trying to access the contents of a directory. When
you have an FSSpec that describes a directory, you cannot use it
to access the contents of that directory. That is, you need to ob
tain the directory ID of the directory itself, first. You can use the
function PBGetCatlnfo to obtain this information. The function
GetDirectoryID in this chapter's project shows you exactly what
you need to know to access the contents of the directory.

GetlndString(anyApplicationFolderName, rStringListID ,
iAnyApplicationFolderName);

if (anyApplicationFolderName[OJ == 0)
err = resNotFound;
goto fail;

err = FSMakeFSSpec(foundVRefNurn,
gGlobalsPtr->menuScriptsFolderDirI D,
anyApplicationFolderName, &anyApplicationFolderFSSpec);

if (err == fnfErr) {

71

72 A FRAGMENT OF YOUR IMAGINATION

err = FSpDirCreate{&anyApplicationFolderFSSpec,
srnSysternScript,
&gGlobalsPtr->anyApplicationFolderDirID);

else if (err == noErr) {

err = GetDirectoryID(&anyApplicationFolderFSSpec,
&gGlobalsPtr->anyApplicationFolderDirID);

if (err != noErr) goto fail;

The next step is to find (or create if it does not exist) our Any Ap
plication folder in the MenuScripts folder. We take similar steps to that
of creating the MenuScripts folder described previously. Ultimately,
the goal of the previous code snippet is to fill in the any Application
FolderDirID field of our global data with the directory ID of the Any
Application folder.

hINIT = GetlResource(kINITResourceType, kINITResourceID);
if (hINIT == nil) {

err = ResError() ? ResError() : resNotFound;
goto fail;

Eventually, we will need to detach our INIT resource. The system
loads our INIT resource for us. However, the problem arises that after
the system closes our system extension file, the INIT resource will be
released automatically. We do not want this to happen, since it con
tains code that we need to use during our patches. Therefore, we need
to detach the INIT resource using the Resource Manager's DetachRe
source function. To do this, we call GetlResource to obtain a handle to
our already loaded INIT resource. At the end of the INIT resource
code (after our patches are applied successfully), we will detach the re
source handle, which will allow it to survive in the system heap for
the entire time the machine is turned on. When you detach a resource
handle, it turns into a standard Memory Manager-type handle with no
attachment to any resource file. Therefore, when the system closes our
resource file, the memory will not be deallocated.

err= Gestalt(gestaltSysArchitecture, &response);
if (err != noErr) goto fail;

SYSTEM EXTENSIONS

if (response == gestalt68k)
ApplyPatches(MenuSelect68k, MenuKey68k, SystemMenu68k) ;

else if (response == gestaltPowerPC)
err = PatchPPC ();

else err = gestaltUnknownErr;
if (err ! = noErr) goto fail;

II who knows what might be next?

It's finally time to patch our traps. The previous code will be ex
plained later in more detail. Basically, we see if we are running on a
Power Macintosh or not. If not, we simply call our ApplyPatches rou
tine, shown below, passing in pointers to the patches we wish to apply
(say that three times fast). If we are running on a Power Macintosh, we
call our PatchPPC routine (which is explained in the next section,
"Patching Traps for PowerPC") to apply our native PowerPC patches.

The gestaltSysArchitecture, which is used to see which platform
we are executing on, is only available with PowerPC System
7.1.2 and 680x0 7.5 or later. If the selector is not available you
may opt to assume 680x0 as opposed to returning an error as we
have done here. To each his own.

void ApplyPatches(void • rnenuSelectCode , void * rnenuKeyCode,
void * systemMenuCode)

gGlobals Ptr->oldMenuSelectAddr = GetToolTrapAddress(_MenuSelect);
SetToolTrapAddress((UniversalProcPtr)rnenuSelectCode, _MenuSelect);

gGlobalsPtr->oldMenuKeyAddr = GetToolTrapAddress(_MenuKey);
SetToolTrapAddress((UniversalProcPtr)rnenuKeyCode, _MenuKey);

gGlobal s Ptr- >oldSystemMenuAddr = GetTool Tr apAddress(_SystemMenu) ;
SetToolTrapAddress((UniversalProcPtr)systemMenuCode, _SystemMenu) ;

The ApplyPatches function simply fills in our global data with the
previous trap addresses and applies the new patches to allow us to in
tercept the toolbox calls in which we are interested, as in the previous
code. These functions alone (GetToolTrapAddress and SetToolTrapAd
dress) are responsible for some of the coolest programs available for
the Macintosh.

DetachRes ource(hINIT);

73

74 A FRAGMENT OF YOUR IMAGINATION

As previously mentioned, before our INIT resource exits, we must
detach it, as in the previous code. This ensures it will stay resident in
memory throughout the time the machine is turned on.

goto exit;

fail:
if (gGlobalsPtr} {

DisposePtr((Ptr}gGlobalsPtr);
gGlobalsPtr = nil;

if (hINIT) {
ReleaseResource(hINIT);
hINIT = nil;

if (err != noErr)
SysBeep(O);

exit:

SetA4(oldA4);

SetZone(savedZone);

This last bit of code is just to make sure we clean things up in case
of an error. At the very end, we need to restore our A4 world (remem
ber, we use A4 to access globals) and restore the heap zone that was
active when our INIT resource was called. Note the use of the goto
statement in C-it comes in very handy for the end of functions like
this one. We enter the fail label of code if we ever failed earlier. Other
wise, we goto the exit label directly. Although others don't like using
the goto statement in C, I think it is very useful for handling failure
cases such as this one.

In this project, we have made our INIT resource 680XO code only.
You will learn, in subsequent chapters, that you can make any re
source (even an INIT resource) contain both 680x0 and PowerPC
code simply by making it fat. We could have taken this approach
in this chapter, but then we wouldn't have anything to keep your
interest later on.

SYSTEM EXTENSIONS

Patching Traps for PowerPC

As previously mentioned, MenuScript is a system extension that in
stalls 680x0 trap patches when running on a non-Power Macintosh.
However, in order to take advantage of the speed of a Power Macin
tosh, we install native PowerPC code when running on that processor.
The function PatchPPC, called from main, performs this task. You
should read Inside Macintosh-PowerPC System Software for complete
information about the capabilities of these new Toolbox functions. But
in the meantime, let's take a look at the code:

OSErr PatchPPC(void)
{

OS Err
Handle
SymClass
Ptr
ConnectionID
Str255
Ptr
UniversalProcPtr

err = noErr;
ppcCodeH = nil ;
symClass;
symAddr;
connID = kNoConnectionID;
errStr;
mainAddr;
menuSelectUPP = nil, menuKeyUPP nil,
systemMenuUPP = nil;

The first thing we do is allocate and initialize our local variables,
as always.

ppcCodeH = GetlResource(kPPCResourceType, kPPCResourceID);
if (ppcCodeH == nil) return ResError() ? ResError() :resNotFound;
DetachResource(ppcCodeH);
HLock(ppcCodeH);

We then want to load our resource that contains our PowerPC
code fragment. We compiled our PowerPC code as a shared library
and then copied that data (using Resorcerer, a resource editor) into a
resource. There are other ways to accomplish this, but we found this
mechanism quite easy to deal with. We also make sure we detach the
code and lock it down in memory, as in the previous code. The re
source's attributes should be marked sysHeap and may be optionally
marked as being locked, in which case we wouldn't have had to call
HLock. In fact, marking a resource as locked is a better thing to do if
you are going to end up locking it anyway, since doing so alerts the
Resource Manager to call the ReservMem function to ultimately load
the resource as low in the heap as possible. This helps to prevent un
necessary heap fragmentation.

75

76 A FRAGMENT OF YOUR IMAGINATION

Both ToolServer and the Rez Tool, which can also be used to
copy code from the data fork to a resource, are very advanced
programs and allow you to perform a wide variety of tasks. You
should read the documentation that came on your CodeWarrior
CD for full instructions on how to make use of them.

e rrStr(OJ = O;
e rr = Ge tMemFragment (•ppcCodeH, GetHandleSize(ppcCodeH),

kPPCFragmentName , kLoadNewCopy, &conn I O, &mainAdd r, errStr) ;
if (er r != noErr) goto fai l;

We must then open a connection to the code fragment, as in the
previous code. This allows the Code Fragment Manager to initialize
the fragment and resolve any external references within it. We tell the
Code Fragment Manager to load an entirely new copy of the code and
its data by passing the constant kLoadNewCopy. The connection ID is
returned in the connID parameter. The address of the code is returned
in the mainAddr parameter. Any error is returned as a human-text
message in the errStr parameter, which we can use during debugging
or to display to the user.

err = FindSymbol (connIO, kGlobal sSymbo lName , &symAddr , &syrnClass);
if (er r != noErr) goto fail ;

After the fragment is prepared, we can request the address of
symbols that we told our compiler to export. In our case, we exported
a global variable symbol and also the symbols for our native patches.
In the previous code, we request the address of our global data.

*(Global s**)symAddr gGlobalsPtr;

After we obtain the address of the native globals, we update it (see
the previous code) to point to the global data that we have already al
located in our main function of our 680x0 INIT. This allows all of our
code to share the same global data.

er r = FindSymbol(connIO, kMenuSelectFunctionName,
&symAddr, &syrnClass);

if (err != noErr) goto fail;

SYSTEM EXTENSIONS

#if 1
rnenuSelectUPP = (UniversalProcPtr) NewRoutineDescriptor(

(ProcPtr)syrnAddr, kMenuSelectProcinfo, kPowerPCISA);
#else

menuSelectUPP = (UniversalProcPtr) NewFatRoutineDescriptor(
MenuSelect68k, syrnAddr, kMenuKeyProcinfo);

#endif
if (menuSelectUPP == nil) goto fail;

We now request the address of the native patch to MenuSelect.
After we get the address of our native code, we can build a routine de
scriptor to represent it. You can build either a standard routine de
scriptor, which contains only PowerPC code, or a fat routine
descriptor, which contains both 680x0 and PowerPC code. A fat rou
tine descriptor allows the Mixed Mode Manager to automatically exe
cute the code that will yield the best overall throughput, depending on
the mode from which the code is being called. In our case, since we
want to test the PowerPC code only, we choose to create a PowerPC
code routine descriptor. The k.MenuKeyProclnfo parameter is a Mixed
Mode procedure information definition of the calling conventions of
this function. It is defined in the following code.

kMenuSelectProcinfo = kPascalStackBased
RESULT_SIZE(SIZE_CODE(sizeof(long)))
REGISTER_RESULT_LOCATION(kRegisterDO)
STACK_ROUTINE_PARAMETER(l,SIZE_CODE(sizeof(Point))),

CallUniversalProc(gGlobalsPtr->oldMenuSelectAddr,
kMenuSelectProcinfo, pt)

Apple has devised this mechanism in order to call PowerPC code
easily from our programs. On the PowerPC, you must use the Call
UniversalProc function (or CallOSTrapUniversalProc) to execute a
function such as ours. One of the parameters to CallUniversalProc is a
ProclnfoType. This information tells the Mixed Mode Manager the
calling conventions of the code, as in the previous code. The Call
OSTrapUniversalProc function differs from CallUniversalProc in that
it saves and restores certain registers before and after the call to the
function. It is mostly used when calling OSTrap patches, for example.

err = FindSymbol(connID, kMenuKeyFunctionName,
&symAddr, &syrnclass);

if (err != noErr) goto fail:
#if 1

rnenuKeyUPP = (UniversalProcPtr) NewRoutineDescriptor(

77

78 A FRAGMENT OF YOUR IMAGINATION

{ProcPtr)symAddr, kMenuKeyProcinfo, kPowerPCISA);
#else

menuKeyUPP = (UniversalProcPtr) NewFatRoutineDescriptor(
MenuKey68k, symAddr, kMenuKeyProcinfo);

#endif
if (menuKeyUPP == nil) goto fail;

err ; FindSymbol(connID, kSystemMenuFunctionName,
&symAddr, &symClass);

if {err != noErr) goto fail;
#if 1

systemMenuUPP ; (UniversalProcPtr) NewRoutineDescriptor(
(ProcPtr)symAddr, kSystemMenuProcinfo, kPowerPCISA);

#else
systemMenuUPP ; (UniversalProcPtr) NewFatRoutineDescriptor{
SystemMenu68k, symAddr, kSystemMenuProcinfo);

#endif
if (systemMenuUPP ;; nil) goto fail;

We then perform the same thing (as in the previous code) for the
MenuKey and SystemMenu native patches.

ApplyPatches(menuSelectUPP, menuKeyUPP, systemMenuUPP);

After we have all of the native code in the form of routine de
scriptors, we pass them to our ApplyPatches routine described earlier,
as in the previous code. The patches are applied and we are ready to
intercept the Menu Manager!

goto exit;
fail:

if (menuSelectUPP)
DisposeRoutineDescriptor(menuSelectUPP);
menuSelectUPP ; nil;

if (menuKeyUPP)
DisposeRoutineDescriptor(menuKeyUPP);
menuKeyUPP = nil;

if (connID != kNoConnectionID)
CloseConnection(&connID);
connID = kNoConnectionID;

if (ppcCodeH) {
DisposeHandle(ppcCodeH);
ppcCodeH = ni 1 ;

if (errStr [OJ ! = 0)

DebugStr(errStr);
exit:

return err;

SYSTEM EXTENSIONS

Lastly, we have our cleanup code. If errors occur, we dispose any
allocated routine descriptors, close our Code Fragment Manager con
nection, and dispose of our native code resource (that has since been
detached).

Inside the Patches
Now that you know how to set up and apply the 680x0 and PowerPC
trap patches, let's take a look at the patches themselves. The 680x0 and
PowerPC versions are very similar when you look at the C code. How
ever, when compiled, they are quite different.

pascal long MenuSelect68k(Point startPt)
{

long
long
OS Err

oldA4

result;
oldA4;
err = noErr;

SetUpA4 ();

result= ((MenuSelectProc)
gGlobalsPtr->oldMenuSelectAddr) (startPt);

if (result != OL) {
err= DoMenuPatchStuff(result, gGlobalsPtr);
if (err == noErr)

result = OL;

RestoreA4(oldA4);
return result;

pascal long MenuSelectPPC(Point startPt)
{

long
OS Err

result

result;
err = noErr;

CallMenuSelect(startPt);

79

80 A FRAGMENT OF YOUR IMAGINATION

if (result ! = OL) {
err= DoMenuPatchStuff(result, gGlobalsPtr);
if (err == noErr)

result = OL;

return result;

As you can see in the previous code, the only differences in the
680x0 and PowerPC versions of the MenuSelect patch are the way in
which we call the previous MenuSelect trap address and the fact that
the PowerPC version need not set up A4 to access global data. Pow
erPC code fragments are able to use global data automatically, without
any additional code. The patches to MenuKey and SystemMenu share
the same similarities.

In the 680x0 code, we take the previous trap address and treat it as
if it were a function pointer. We can simply call it as if it were a regu
lar function. In the PowerPC code, however, we must use the CallUni
versalProc routine, as described earlier.

Both patches call the previous trap addresses first and then handle
themselves according to the returned result. This allows us to let the
Menu Manager obtain the user's selection before we do anything. Our
routine DoMenuPatchStuff is then called to handle the main function
ality of the system extension. Let's look at that function in the follow
ing code.

OSErr DoMenuPatchStuff(long menuResult, GlobalsPtr gp)
{

FSSpec
OS Err
short
short
MenuHandle
FSSpec
Str255

appFolderSpec;
err = noErr;
menuID = HiWord(menuResult);
menuitem = LoWord(menuResult);
hMenu = GetMHandle(menuID);
menuitemSpec;
itemString;

The first thing DoMenuPatchStuff must do is obtain the menu ID
and menu item from the result returned by the Menu Manager. After
we have this information, we can get the menu handle associated with
that menu ID, as in the previous code.

SYSTEM EXTENSIONS

if (hMenu) {
Getltem(hMenu, menultem, itemString);

else {
return -1;

Assuming we were able to get the menu handle, we can then at
tempt to get the name of the item that was selected from that menu, as
in the previous code.

err = FSMakeFSSpec(-1, gp->menuScriptsFolderDirID,
(unsigned char *)LMGetCurApName(), &appFolderSpec);

We then see if a folder exists for the currently running application.
If a folder does exist, then we must look within it (as in the following
code) to find an item to launch based on the name of the menu item
selected.

if (err == noErr) {
long appFolderDirID;

err= GetDirectoryID(&appFolderSpec, &appFolderDirID);
if (err == noErr) {

err = FSMakeFSSpec(-1, appFolderDirID,
itemString, &rnenuitemSpec);

if (err == noErr) {
err= OpenSelection(&rnenuiternSpec, kOpenitem);
if (err ! = noErr) {

ShowErrorAlert(&gp->ourFSpec,
aOpenSelection, err);

return err;
else goto exit;

} // fnfErr
} else { ShowErrorAlert(&gp->ourFSpec,

aGetAppDirID, err); return err; }
} // fnfErr

If we are able to get the directory ID of the folder for the current
application, we can search it for an item with the same name as the
currently selected menu item. We do this by calling FSMakeFSSpec. If
this function returns noErr, we know the item exists and we call our
OpenSelection function, passing it as the item to open. This function
simply sends an AppleEvent to the Finder, asking it to open the newly
found item. At this point, the item is opened and our patch sets the re
sult to OL which tells the calling application that the user selected

81

82 A FRAGMENT OF YOUR IMAGINATION

nothing from the menu. In effect, we have just overridden the menu
selection.

You may notice that we are sending the Finder an AppleEvent
from within our INIT code. You may ask yourself, how is this
possible? Well, the AppleEvent Manager is nice enough to allow
anyone to send AppleEvents. However, since our INIT does not
have a main event loop, we cannot receive any replies to them.
In our case, this is not a major problem, since all we want to do
is attempt to launch a document. The AppleEvents we are using
return no useful information anyway.

err = FSMakeFSSpec(-1, gp->anyApplicationFolderDirID,
itemString, &menuitemSpec);

if (err == noErr) (

exit:

err = OpenSelection(&menuitemSpec, kOpenitem);
if (err != noErr)

ShowErrorAlert(&gp->ourFSpec, aOpenSelection, err) ;
else goto exit;

II fnfErr

return err;

If we get to this point, we either did not have a folder named after
the current application or no item existed in the current application's
folder with the same name as the selected menu item. Therefore, it is
now time to search in the Any Application folder. We use the same
technique to find an item to open. We use FSMakeFSSpec, if the item
exists, and call OpenSelection to send an AppleEvent to the Finder.
Once again, our patch sets the result to OL and we have successfully
overridden the menu selection.

Compiling Our Code

Although we discuss the source code in this chapter in quite a bit of de
tail, there are still some things to consider. There are actually two Code
Warrior projects that we use to compile the 680x0 code and the
PowerPC code. Each project and source files have special compiler di
rectives that tell the compiler to do certain things in certain ways. In

SYSTEM EXTENSIONS

order to make all of this come together, it's important to understand
your compiler as much as you understand the Inside Macintosh chapters
that explain the different managers we have used in this example. I rec
ommend opening the projects and exploring the preferences dialog
boxes yourself in order to see how the different options are used in this
chapter. Also, look at the relationship of the source files and note which
functions are in which files. Some files are compiled in both projects, as
PowerPC and 680x0 code (Figures 4-3 and 4-4). Once again, experiment
with the code we have provided. That is why it is here.

~· 68k INIT.JJ.
File Code Data ~·~

v Segment 1 01 01 la ~
INIT.c 01 01 III
common.c o~ o~ Iii
HacOS.lib 01 01 III

.............. J~Xf. .. ~.~.~.~.~r.~.~.~ !)/.~.~ !). !..~.L !D.. -0
4 file(s)

= • 0 0

Figure 4-3. 680x0 project file

~Iii PPC IN IT FraJlment.JJ.
File Code Data ~--v Group 1 o~ Oj Iii -0

PPCP ate hes .c o~ o~ Iii t---1

common.c . 0 l 0 ~ It.I
lnterfacel ib l O l 0 i ID, .. : : :

~
3 file(s)

." ~· ·- -'-

0 0 \Ii

Figure 4-4. PowerPC project file

83

84 A FRAGMENT OF YOUR IMAGINATION

System Extension Tips
There are many things to keep in mind when writing a system exten
sion. This section reviews and outlines some of the key issues.

• In most cases, you will want to make sure your INIT resource's at
tributes are marked sysHeap. This ensures that the resource will
be loaded into the system heap when it is executed by the system.

• Any resources that your system extension uses should also be
marked sysHeap. If, during a patch, you open your system exten
sion file and access resources (via the RememberMe function), you
should be sure they are all loaded into the system heap. Other
wise, there may not be enough memory to load them, depending
on which applications are currently running, for example.

• You will also want to set your INIT resource to be locked if you
plan to detach it. By setting the locked attribute of the resource,
the Resource Manager will load it as low in the system heap as
possible, which will ease memory fragmentation as you (and
other system extensions) allocate memory, load other resources,
etc.

• System extensions have gotten a bad rap for being incompatible
with each other in a good number of cases. System extensions are
like parasites. They all live off of the system software and other
applications-not always with their permission. If two system ex
tensions are in need of a particular resource (whether it be mem
ory, an actual resource, or something else) a conflict may occur.
There is no way to tell if you will be 100 percent compatible with
other system extensions unless you test yours with all the others.
One good rule of thumb is to code defensively, don't make as
sumptions, and don't try to do too much in your system exten
sion. Remember, you must share the playground.

• System extensions of type INIT can send AppleEvents, but cannot
receive them and, therefore, cannot receive a reply.

• System extensions of type APPE can send and receive Apple
Events because they have a main event loop. However, they can
not use QuickDraw and they have a smaller stack than most
applications, only 2K by default.

• You can increase the stack size of your faceless-background appli
cation by using the SetAppILimit function as documented in In
side Macintosh: Memory. You should note, however, that the
minimum you can increase the stack to is 16K so make sure your
application heap is large enough to contain it. Also, your faceless
background application should call lnitGraf, but shouldn't use

SYSTEM EXTENSIONS

QuickDraw (with the exception of the Random function) since
some other pieces of the system software depend on a valid AS
world for some operations.

• If you are writing an INIT that uses a large amount of system heap
space, you should make use of the sysz resource. That is, by
adding a resource of type sysz with an ID of 0 to your INIT file,
you are telling the System that you want it to do what it needs to
do to ensure that you have that much memory available to run.
This can be a helpful thing, not only for yourself but for your
users.

85

CHAPTER FIVE

Control Panels

When are you coming to bed?

-Significant other of a certain Macintosh programmer

Introduction

Control panels are files of type cdev that provide a user interface for
your system extensions and other systemwide software. Control
panels live within the constraints of the Finder. The Finder launches
the control panel when the user double-clicks its icon and then
feeds it a steady stream of events to keep it busy. The control panel
handles these events much like any application would-by drawing
the contents of its windows, managing clicks on its controls, and re
turning information about itself and the environment in which it
can operate.

Programmers mostly use control panels (Figure 5-1) to allow easy
editing of preferences associated with a system extension. The control
panel file contains a code-bearing resource of type cdev that is exe
cuted by the Finder when the control panel is launched. The file also
contains other resources that assist the Finder in knowing how large to
make the control panel window, where to place the window on the
screen, on which computers it can operate, and the list goes on and on.

Of these extra resources, the nrct resource contains a list of rectan
gles that tell the Finder to draw bold rectangular outlines within the

87

88 A FRAGMENT OF YOUR IMAGINATION

Insertion Point Bl inking

~ Show Desktop when in background 0 @ 0
Slow Fast

0 Show Launcher at system startup Menu Bl inking

.

Shut Down Yarni ng ------------.

0 Warn me if computer was shut down improperly II 0 0
Off

0 @
2 3

Foldt>r Protection ---------. Documents ----------~

0 Protect System Folder

0 Protect Applications folder

When opening or saving a document, take me to

0 Folder which contains the application .

@ Last folder used in the application.

0 Documents folder.

Figure 5-1. The System 7.5 General Controls control panel

control panel window. The Finder also sizes the window based on the
union of these rectangles. (See Figures 5-2 and 5-3.)

The fwst resource is created by the Finder and is added to the con
trol panel file the first time it is launched. This resource contains in
formation so the Finder knows the last location at which the window

Mouse

Figure 5-2. Graphical representation of an nrct
resource containing two rectangles

Mouse
Mouse Tracking

[1J ~ ~
0 00000®

Very Slow Slow Fast

Doub le-Click Speed

Figure 5-3. Control panel with nrct rectangles
automatically outlined by the Finder

CONTROL PANELS

was positioned on the screen. Each time the control panel is opened, if
this resource exists, its_window is placed in the saved position. When
the control panel is closed, the Finder updates this resource to repre
sent the new position.

Don't forget to remove the fwst before you ship! When you first
launch your control panel by double-clicking it in the Finder, the
Finder places the window in a default location. However, when
the window is closed, the Finder stores its current position in a
resource of type fwst inside your control panel. This allows the
Finder to open the window in the same position as when it was
last closed. So, if users like to position the control panel in the
lower right corner of their screen, each time they open it, it will
appear there. Your control panel need not know anything about
the location and will work fine no matter where it is. One thing
to remember, however, is that you should remove this fwst re
source before you ship your control panel. If you don't, it may
appear in a location that is undesirable (or inaccessible) to the
first users who launch it. Remember, not everyone has two 27-
inch monitors; some are constrained to nine inches of desk top.

The mach resource contains flags telling the Finder on which comput
ers your control panel can operate. There is also a setting in these flags
that tells the Finder to ask your control panel (via the macDev mes
sage) if it can run on the current machine. When your control panel is
first loaded, it is called with this message. You can then determine if
you can run in the current configuration and return true or false to the
Finder.

Anatomy of a Control Panel

Now that you've had a brief overview of how a control panel works
(see Inside Macintosh, "More Macintosh Toolbox" for a complete intro
duction), let's take a look at one in particular. In this chapter, we add
a control panel user interface to our system extension created in the
previous chapter. Our control panel simply allows the user to turn the
MenuScript INIT on and off. Changes to the control panel take effect
immediately, with no need to restart the computer. Because we are

89

90 A FRAGMENT OF YOUR IMAGINATION

The roach resource, also known as the machine resource, tells the
Finder what hardware and software your control panel requires
to run or tells the Finder to ask your control panel to decide for
itself. The roach resource contains two word-sized masks-a soft
mask followed by a hard mask. The settings in Table 1-1 are
valid.

Table 1-1. Valid roach settings

Soft mask Hard mask

$0000 $FFFF

$3FFF $0000

$7FFF $0400

$FFFF $0000

Action

Finder asks the control panel, via
the macDev message, to decide for
itself
Control panel runs on Macintosh II
systems only
Control panel runs on all systems
with an Apple Desktop Bus (ADB)
Control panel runs on all systems

In the majority of cases, you wUI want the Finder to send your
control panel a macDev message, sinGe the other mask values are
quite limited and outdated.

creating a safe fat version of our cdev resource, a t the bottom of the
control panel window we display some text to indicate which version
we are running. This makes it easier to debug our code, since we al
ways know which version is running (Figure 5-4).

System Extension Changes

In order to implement the control panel version of MenuScript, we
made a few minor changes to our system extension source code.
Mainly, we added a new field containing our preferences information
in our global data structure. We also implemented a function named
GestaltGetGlobals that we install as a custom Gestalt selector, using
the NewGestalt function, in order to allow access to this data (as in the
following code). These changes allow our control panel to access the
global data in the system extension and alter it in real time.

CONTROL PANELS

!§1!1 MenuScript

~-, ®on !lfi>:,; MenuScript
,, 'i by Joe Zobkiw QOff ~~

This cdev is 680x0 code.

Figure 5-4. MenuScript control panel

pascal OSErr GestaltGetGlobals(OSType selector, long *response)
{

long oldA4 = SetUpA4(); II set up access to our globals
II return pointer to our globals

*response= (long)&(gGlobalsPtr->preferences);
RestoreA4(oldA4); II restore access to our globals
return noErr; II return no error

Our control panel calls the UpdateINIT function to set the prefer
ences in the system extension to the current values in the control panel
itself. For example, when the user clicks the on or off radio button, the
control panel fills in its PreferencesHdl structure and then passes it to
the UpdateINIT function. UpdateINIT calls the Gestalt Manager func
tion Gestalt to access the system extension's global data.

The system extension function GestaltGetGlobals is then called by
the Gestalt Manager and fills in the response parameter with a pointer
to its globals. Our control panel can then edit any value in the prefer
ences and those changes will take effect immediately in the system ex
tension (as in the following code).

91

92 A FRAGMENT OF YOUR IMAGINATION

#define kGestaltSel ector

typedef struct
short

'Menu •

£Enabled;
} Pr efe rences , *PreferencesPtr, **PreferencesHdl;

void UpdateINIT(Pr eferencesHdl p h)
(

OS Err
PreferencesPtr

err = noErr;
pp ;

II get poin t er to c urrent s y s t em ext ension globals
err = Gestal t (kGestaltSe l ector, (long*)&pp) ;
i f (err == noErr) (

/I either enable or disable it
pp- >fEnabled (*p h) -> fEnabled;

el se SysBeep(O) ; II INIT is not loaded, most likely

This method of communication is used by many different types of pro
grams and is a valid way for your control panel to "talk" to your sys
tem extension and vice versa. You can also have applications and
other types of code resources communicate with your system exten
sion in this manner. Many commercial products allow programmers to
change the way they function or obtain useful information about them
via calls to Gestalt.

Using Gestalt, as previously described, is a great way to request
information from an entity and have something returned. Most
of the time you will use Gestalt to return a value or a pointer or
handle to data. However, you can also use Gestalt for two-way
communication. You can use Gestalt to pass information to the
Gestalt selector you are calling. Simply fill in the response vari
able with the information you like and call Gestalt. When the se
lector is invoked, it can extract any data from the response
parameter and use it as it sees fit. You could easily pass a Uni
versalProcPtr in this way and allow your system extension, for
example, to be the initiator of communication with your control
panel-instead of the other way around. When your control
panel closes, don't forget to tell the system extension that the
UniversalProcPtr is no longer valid by passing a value of nil.
And remember, your control panel might move in memory, so
make sure you look it in place if you use this trick.

CONTROL PANELS

Control Panel Code

Now that we understand what has changed in order to allow our con
trol panel to access the globals in our system extension, let's look at
the structure of the control panel itself. All of our code is stored in the
cdev resource. Ultimately, we will create a safe fat version of this re
source so it will run on a 680x0 Macintosh as well as a Power Macin
tosh in the most optimized form.

Remember, you can safely create a fat or safe fat resource of just
about any code-bearing resource. It might make them bigger, but
it is better for your users.

Like most code resources that are supported by the system software,
each has a strict calling convention. Control panels are no different in
this requirement. The main entry point of the control panel code re
source is defined in the following code.

pascal long main(short
short
s hort
shor t
EventRecord
Handle
DialogPtr

message,
item,
numitems,
CPanelID,
*theEvent,
cdevStorage ,
CPDialog)

The control panel returns a long that varies depending on the message
received. This value may be a Boolean value (true or false), an error
code, or a handle to the private storage of the control panel.

The parameters to the control panel function include the message
we are sending, the item that was clicked in the item list, the number
of items before your first item in the item list, the ID number of the
control panel item list, the current event, a handle to private storage
that you allocate and deallocate, and the pointer to your control pan
els window. The following code represents the main control panel
function.

long result OL ;

#ifndef __powerc
long oldA4;

93

94 A FRAGMENT OF YOUR IMAGINATION

oldA4 = SetCurrentA4();
RememberA4();

ltendif

if (message == macDev)
result = CanRun();

/* check our configuration */

goto exit;
else if (cdevstorage != nil) {

switch(message) {

/* init ourselves */

case ini tDev:
cdevStorage = InitcontrolPanel(CPDial~g,

numitems);
if (cdevStorage == nil) {

result = (long)cdevMemErr;
goto exit;

break;

/* close ourselves down */

case closeDev:
if (cdevstorage != nil)

CloseControlPanel{cdevStorage);
cdevStorage = nil;

break;

I* handle hit on item & update cdevstorage each time since
we can not trust the item list during a closenev msg *I

case hi tDev:
HitControlPanellCPDialog, item,

numitems, cdevStorage);
break;

case nulDev:
break;

case cursorDev:
break;

I* null event */

I* adjust our cursor *I

case updateDev: /* handle any update drawing */

UpdatePanel(CPDialog, cdevStorage, numitems);
break;

exit:

CONTROL PANELS

case activDev: /* activate any needed items */

case deactivDev: /* deactivate any needed items */

case keyEvtDev: /* respond to keydown */

break;
case undoDev: /* undo event */

case cutDev: I* cut event *I
case copyDev: I* copy event */

case pasteDev: I* paste event *I
case clearDev: /* clear event *I

break;

result = (long)cdevStorage;
goto exit;

else {

/*

**

*I

if cdevStorage = NIL then ControlPanel
will put up memory error

result = nil; /* cdevStorage
goto exit;

nil */

#ifndef __powerc
SetA4(oldA4);

#endif

return result;

The control panel function simply handles each message as it is re
ceived in the appropriate manner. For example, if we receive a hitDev
message, we examine the item and numltems parameters to conclude
which item in our window was clicked. If we receive an updateDev
message, we know to draw any items in our window that are not
drawn automatically.

95

96 A FRAGMENT OF YOUR IMAGINATION

long CanRun(void)
{

long response;
OSErr err = noErr;

err= Gestalt(gestaltSysternVersion, &response);
if ((err ! = noErr) 11 (response < Ox00000700))

return (long)false;
else {

return (long)true;

When the control panel is called with the macDev message, it is
the Finder's way of asking us if we can operate in the given environ
ment. At this point, we could easily check for a specific hardware
configuration or ensure that other software is loaded. In the previous
code, we simply check the system software version.

Handle InitControlPanel(DialogPtr d, short nurn!terns)
{

Handle
short
Rect
Handle

cdevStorage = nil;
iType;
iRect;
iHandle;

cdevStorage = GetlResource(kPreferencesResType,
kPreferencesResID);

if (cdevStorage != nil) {
DoRadioGroup(d, itemOnRadio + nurnitems,

iternOffRadio + nurn!terns,
(*(PreferencesHdl)cdevStorage)->fEnabled ?
iternOnRadio : iternOffRadio + nurn!terns);

GetDitem(d, nurniterns + itemStaticText,
&iType, &iHandle, &iRect);

#ifdef __powerc

#else

#endif
}

SetIText(iHandle, "\pThis cdev is native PowerPC code.");

SetIText(iHandle, "\pThis cdev is 680x0 code.");

return cdevStorage;

Assuming we can run in the given environment, we will then be
asked to initialize and return a handle to our private storage. The
Finder then maintains this handle for us and passes it to us as a para
meter each time it is called. In our case, we simply load our prefer
ences resource and set the radio buttons properly. We also fill in the

CONTROL PANELS

static text item at the bottom of the control panel window with text de
scribing the type of code that is currently running.

void HitControlPanel(DialogPtr d, short item,
short numitems, Handle cdevStorage)

short myitem = item - numiterns;
switch (rnyitem) {

case itemicon:
Alert(129, nil);
break;

case itemOnRadio:
case itemOffRadio:

DoRadioGroup(d, iternOnRadio + numiterns,
iternOffRadio + nurniterns, item);

(*(PreferencesHdl)cdevStorage)->fEnabled
(GetRadioFrornGroup(d, iternOnRadio + numitems,
iternOffRadio + numiterns) ==
(i temOnRadio + nurnitems)) ; . . .

UpdateINIT((PreferencesHdl)cdevStorage);
break;

When the user clicks on an item in our control panel window, we are
sent the hitDev message. When we receive this message, we check to
see which item was hit and act appropriately. In our case, we simply
toggle the radio buttons if one was hit and call the UpdateINIT routine
to either enable or disable the INIT as in the previous code.

void CloseControlPanel(Handle cdevStorage)
{

ChangedResource(cdevStorage);
WriteResource(cdevStorage);
ReleaseResource(cdevStorage);

When the user clicks the close box of our control panel window, the
Finder sends us a closeDev message. This is where we clean up any
messes we may have made and write our preferences. Since we loaded
the preferences resource earlier and never detached it from the re
source file, we can simply call ChangedResource and WriteResource in
order to update the resource itself. We then call ReleaseResource to re
lease the memory that it occupies, as in the previous code.

97

98 A FRAGMENT OF YOUR LMAGINATION

One thing to note is that during the closeDev message, you can
not depend on the existence of any editable text items that may
be in your control panel window. These editable text items may
be destroyed before your control panel is called with the
closeDev message. Therefore, you need to keep track of any
changes while they occur. The best way to do this is to always
watch the values of any editable text item during the hitDev
message. Assuming the editable text items are enabled, you will
receive hitDev messages whenever the user types a character in
them, so you can call GetIText to keep current with the text. I
would suggest that you simply avoid editable text items in the
main control panel window and use a dialog box triggered from
a button in the control panel window instead.

By handling the messages that the Finder sends us, we are, in ef
fect, a mini-application-only our event loop is really in the Finder it
self.

Compiling Our Code

Although we discuss the source code in this chapter in quite a bit of
detail, there are still some things to consider. As mentioned, we have
created both a 680x0 and a PowerPC version of our control panel
cdev resource. We have two projects that we can simply build and
merge into our control panel that will work fine. One of these projects
compiles the 680x0 code, the other compiles the PowerPC code
(Figures 5-5 and 5-6). However, if we want to build a fat or safe fat
control panel, we have to perform an extra step.

As you remember from Chapter Three and our discussion of pri
vate resources, a fat and safe fat resource contains both 680x0 and
Power PC code in the same convenient package. With the addition of a
RoutineDescriptor and possibly a 680x0 code stub, we ensure that our
code will run in the most optimized form on either platform. Al
though this makes our cdev resource a bit larger than it would be if it
contained 680x0 code only, it will improve the performance of the con
trol panel, to a degree, depending on what your control panel does.

Say, for instance, that your control panel is as simple as ours-just
a group of two radio buttons that allow the user to turn your system
extension on and off. You may elect to write it only as 680x0 code,
today. You see, since your control panel code is so minimal, and hardly
does anything, it might not be worth the time to make it PowerPC

CONTROL PANELS

native. However, if your control panel does any time-consuming work
or has a fancy user interface, you may elect to optimize the control
panel on the Power Macintosh by specifically compiling the code for
it. You will have to make this decision based on the functionality and
the performance requirements of your control panel.

!§(ii =-
68k cdeu.JJ.

File Code Data Iii~
v Segment 1 D1 Di 1%1 St

odev .o 01 o~ III
dlogutils .c: oj o~ Iii
HacDS.lib : 0 j 0 ~ (ii

............... ~~!! ... ~!~!~r.~!~.L. ~L~.l ~l~.lJD ..

-0
4 file(s) D D ii

Figure 5-5. 680x0 project file

--
-[ii PPC cdeu.JJ.

File Code Data ra•
'V Group 1 D~ Di a {}

c:dev .c: Ol o! ID 1--

dlogutils .c: ol O! [ll
lnterf ace lib = 0 l 0 ! ID

............... ~~!! ... ~!~!~r.~!~ .. l D.l~.l ~l~.l ID ..
-0

4 file(s) D 0 ~

Figure 5-6. PowerPC project file

99

100 A FRAGMENT OF YOUR lMACINATION

Control Panel Tips

There are many things to keep in mind when writing a control panel.
This section reviews and outlines some of the key issues.

• Those of you familiar with the Dialog Manager will know that you
make use of user item procedures to automatically draw items in
your dialogs whenever an update event occurs. Although, techni
cally, you can do this in your control panel window as well, there
are some things of which to be aware. For example, your control
panel code may move in memory between calls to itself. There
fore, if you set the user item procedure during the initDev mes
sage, your pointer to the user item procedure that you pass to the
Dialog Manager routine SetDitem may become invalid if your
code resource moves. If you must use this technique, either set the
user item procedure each time you receive a message (not recom
mended) or make sure your code is locked at all times by setting
the lock resource bit of your cdev resource. Mind you, you could
just use the updateDev message to do your drawing like you
should.

• In order to figure out which of your items was clicked on in a hit
Dev message, you must subtract the numltems parameter from
the item parameter. The numltems parameter is left over from Sys
tem 6, when your control panel window was a mere portion of the
main control panel desk accessory window-a window that hap
pened to contain other items. Under System 7, the majority of the
time the value of numltems will be 0, since your control panel
window is stand-alone, so to speak. However, some utilities that
"run" control panels still use the parameter. Therefore, to be com
patible, do the subtraction.

• Control panels can be a great way to add a window to the Finder.
Even if your control panel doesn't contain any INIT code, it can be
a nice way to integrate functionality into the Finder. Control pan
els can even take advantage of features such as the Drag Manager
to allow dragging of Finder items into and out of your control
panel window. Think of the possibilities.

• If you find your control panel getting very large, maybe you
should rethink your approach. Should your control panel really be
an application? Depending on exactly what tasks it performs, it
might be better suited as one.

• Even though a control panel is like a mini-application, in that it re
ceives lots of different types of events, it does not receive Ap
pleEvents. Mind you, your control panel can still send
AppleEvents, but don't expect a reply.

CONTROL PANELS

• You can use the Drag Manager with a control panel. For those of
you who aren't familiar with it, the Drag Manager allows you to
drag items, such as files or folders, into and out of different win
dows between applications. If you choose to use the Drag Man
ager (for which documentation exists elsewhere) in a control
panel, you should make sure your control panel is locked down at
all times so your drag handler functions can be called properly. To
do this, use the locked resource attribute for your cdev resource.
You see, the Finder calls HGetState and then HLocks your cdev
down when it calls it. It then restores the cdev handles state with
HSetState when the cdev returns control. This seems to indicate
that you cannot lock yourself down from within your own cdev
code without being set back to whatever you were before. There
fore, use the locked resource attribute in this case.

• Sometimes a control panel isn't the best choice for implementing
your program. When a control panel is opened, the Finder calls
WaitNextEvent with a very small sleep value-even if the Finder
is not the front most application-so that it can give the control
panel events on a regular basis. This can really affect system per
formance. If you intend to have your control panel left open for a
long period of time, consider writing an application instead.

101

CHAPTER S I X

List Definitions

Computer Science is the name of a course, not a fact.

-C.J.S.

Introduction

What's a program without a list? Not all programs need to have lists
of items, but sometimes it makes sense to organize your data in that
form. A list allows users to see all possible choices and make their se
lection or selections by clicking on items in the list. The List Manager
gives the programmer control over the look of the items in the list,
how many rows and columns are in the list, and whether or not mul
tiple items or only a single item can be selected from the list.

To customize the look of a list, the List Manager uses a list defini
tion procedure. This code is stored as a resource of type LDEF and is
usually in the same file as the application or control panel that creates
the list. By default, the List Manager includes a list definition proce
dure known as LDEF 0 (zero) that draws only text using the default
font of the window-normally Chicago 12 point. By creating your
own list definition procedure, you can customize the data and the way
it is drawn in the cells of your list. You can draw in different fonts,
draw icons, pictures, just about anything you desire.

103

104 A FRAGMENT OF YOUR IMAGINATION

The point of a list is to display numerous items and allow the user
to select one or more of those items. After a selection is made in the
list, the programmer can query the List Manager to find out which
item or items are selected and what data they contain. For example, in
Figure 6-1 we see the default list definition procedure in action. If we
were to query the List Manager to return the data in the selected cell
by calling the LGetCell function, it would tell us that an 11-byte
stream of data is within that cell. Since we know the data stream is re
ally text, we can convert it simply to a Pascal string for use in our pro
gram. The List Manager also allows us to set the contents of a cell, add
cells, and remove cells. We have total control over the size and con
tents of our lists.

What happens if you need to display more than just simple
strings? As mentioned, the list definition procedure is available for
your use when that need arises. The LGetCell and LSetCell routines
that allow you to get and set the cell data don't really care what that
data is. In the default case, it may be a stream of characters. In your
case, it may be a pointer to a custom data structure. As long as the List
Manager knows the proper size of the data, all is well. When your list

rm l
Alert Sounds

~

Sound

Droplet
Indigo
Quack

Sosumi
Wild Eep

Alert Uolume (Add...)

Figure 6-1. An example of a list of text strings

(Remoue)

LIST DEFINmONS

definition procedure is called to draw a particular cell, it extracts the
data from the cell and uses the data to draw the cell contents. For ex
ample, you may store a pointer to a custom data structure in each cell
that contains a handle to an icon family and a string of text that
defines a name. Figure 6-2 displays a list of icons with names.

a The List Manager has a 321< limit to the data that can be in any
list. Therefore, no matter what your cell data is, it must not ex
ceed 32K for the entire list. If each cell contains a pointer to a
structure, then each cell takes up 4 bytes. Remember, a pointer is
basically a long integer that is 4 bytes in size. U you divide 32,000
bytes per list by 4 bytes per cell, you can see that the list can store
approximately 8,000 cells.

Network
App le Talk Connection : 3 .0.2

EtherTalk Remote Only
Built In

Curren~ Zone : < No zones: available >

App le Talk Version : 58 .1 .3
Loe a lT a lk Version : 58 .2 .2

Figure 6-2. An example of a multicolumn custom list of
icons

105

106 A FRAGMENT OF YOUR IMAGINATION

List Definition Code

In this chapter, we create a custom list definition procedure and tester
application that displays a hierarchical list of the contents of your
startup disk. You've all seen this type of list structure in the Finder, if
you've ever used the View By Name option. Therefore, we call this the
ViewByName LDEF.

As you can see in Figure 6-3, folders are represented by a folder
icon and have an icon flag to their left that can be used to open and
close the contents of the folder. Double-clicking a folder icon or name
also opens and closes it. Single-clicking on an item simply selects it.
Only one item can be selected at a time in our list- for no real reason,
we just decided to do it that way. We also attempt to use the real icon
of the item we are listing if it is available from the Desktop Database.
Otherwise, we will draw a generic icon.

In order to implement the ViewByName LDEF, we need to create
an LDEF resource that contains all the code to parse the data struc-

The file and folder hierarchy of your startup disk is ...

@;;) App le Menu Items

~ Clipboard

f&a Control Panels

l..!!!I App le Menu Options

~Color
l.!!I Co lorSy nc ™ Sy stem Profile

l~I Date & Time

To open or close a folder item :
• Single-click the flag icon ... or ...
• Double-click the folder icon or name

Figure 6-3. Hierarchical custom list definition procedure

OK

LIST DEFINITIONS

tures of and draw each individual cell. We've decided to take another
approach instead and use something called the RefConLDEF. The Ref
ConLDEF is a list definition procedure that doesn't really know how
to draw anything. What it does know how to do, however, is call a
drawing function and pass a reference constant to it. The RefConLDEF
gets this information from the cell that is about to be drawn. You see,
the data for each cell contains a reference constant that can be any
thing we desire and a universal procedure pointer that points to a
drawing function. When a cell needs to be drawn, the RefConLDEF
calls the drawing function and passes to it the rectangle of the cell, the
cell coordinates, the handle to the list in which the cell is located, and
the reference constant (as in the following code). Our drawing func- .
tion then does the right thing and draws the contents of the cell based
on whatever data is stored in the reference constant (e.g., a handle to
another data structure that is customized to our list and program).

typedef struct RefconLDEFCell (
long ref Con;

RefconLDEFDrawProcUPP drawProc;
J RefconLOEFCell, *RefconLDEFCellPtr, **RefconLDEFCellHdl;

Using the RefConLDEF has several advantages.

• We can use the same LDEF resource for any list in our program.
• We can have a different drawing procedure for every single cell in

our list, if needed.
• Our drawing procedure can be inside our application, which al

lows for access to application global variables and also makes
source-level debugging easier.

• There is no need for numerous LDEF projects floating around,
which ultimately simplifies the build process for our application.

The RefConLDEF is also discussed in a bit more detail in Chap
ter Twelve's "Multiple Cell Formats in a List" section.

Now that you understand how we will be dealing with the use of
our custom list definition procedure, let's look at the data structure (in
the following code) that will be hanging off the reference constant
field of each RefConLDEF cell. The value of the reference constant

107

108 A FRAGMENT OF YOUR IMAGINATION

(which is a handle to a structure of type Listltem) is passed to our
drawing function, which we will discuss in a moment.

typedef struct Listitem {
FSSpec spec;
short
unsigned char

iconID;
indentLevel;

unsigned char isOpen;
Listitem, *ListitemPtr, **ListiternHdl;

Each Listltem structure contains the information needed to draw
and track the status of each cell in our list. The spec field contains an
FSSpec structure of the item in question, a folder, or a file. The iconID
field is the resource ID of the icon to draw for the item if it does not
have an icon available via the Desktop Database. For example, folders
do not have icons stored in the Desktop Database, so we use the value
in this field to know what to draw in its absence-namely, the little
folder icon. The indentLevel field starts at 0 to designate an item on
the root of the startup disk and is incremented by one for each level
we open. The isOpen field is only valid for folders and is used to des
ignate in the display whether or not a folder is currently open.

Now that we've looked at the data that we store for each cell, let's
ponder the function that is called whenever one of our cells needs to
be drawn. The ListElementProc function is called to do just that (as in
the following code). The function doesn't do anything all that special,
but it is one of the main parts of our program. Normally this function
would be inside your LDEF, but because of our RefConLDEF, we are
able to write it as part of our application code, making it much simpler
to write and debug.

void ListElementProc(Rect *cellRect, Cell !Cell,
ListHandle theList, long refCon)

ListitemHdl
Graf Ptr
Rect
short
Finf o

lib;

savePort;
iconRect;
width;
fndrinfo;

lih = (ListitemHdl)refCon;

GetPort(&savePortl;
SetPort((**theList).port);
PenNormal();

MoveTo(cellRect->left + (44 + (20 * (*lih)->indentLevel)),
cellRect->bottom - 4);

if (FSpGetFinfo(&((*lih)->spec), &fndrinfo)
if (fndrinfo.fdFlags & Ox8000)

TextFace(italic);
DrawString((*lih)->spec.name);
TextFace(O);

else
DrawString((*lih)->spec.name);

width= StringWidth((*lih)->spec.name);

if ((*lihl->iconID == rFoldericon)
iconRect = *cellRect;
iconRect.left += 4;
iconRect.right = iconRect.left + 16;
iconRect.top += l;
iconRect.bottom = iconRect.top + 16;
PloticonID(&iconRect, atNone, ttNone,

LIST DEFINITIONS

noErr) {

(*lihl->isOpen ? rArrowOpenedicon rArroWClosediconl;

iconRect = *cellRect;
iconRect.left += (24 + (20 * (*lih)->indentLevel));
iconRect.right = iconRect.left + 16;
iconRect.top += l;
iconRect.bottom = iconRect.top + 16;

if ((*lih)->iconID == rFoldericon) {
PloticonID(&iconRect, atNone, ttNone, (*lih)->iconID);

else {
if (DrawFileicon(& ((*lih)->spec), &iconRect) ! = noErr)

PloticonID(&iconRect, atNone, ttNone, (*lih)->iconID);

SetPort(savePort);

The first thing our drawing function does is typecast the refCon
parameter to the proper type, to make it easier to access the data
stored within. After we set up the port properly, we can then parse the
data and draw. The first portion of the cell that is drawn is the file
name. You will note that we first see if the item is an alias or not and
draw the text in italics, if this is so. Then we draw the proper open or
close flag icon, if the item is a folder. Lastly we draw the icon of the
item-a generic folder icon if the item is a folder. Otherwise, we call
the DrawFilelcon routine to draw the Finder icon of the item. The
DrawFilelcon routine simply accesses the Desktop Database in order
to find the icon that belongs to the file. If it can be found, it will be
drawn. Otherwise, a generic icon will be drawn.

109

110 A FRAGMENT OF YOUR IMAGINATION

Even though our drawing function may be relatively speedy, the
List Manager can slow down when it contains lots of cells. Re
member, the List Manager is not a spreadsheet. It is very useful
for short lists of items, but if you find yourself listing more than
a few thousand items, you may elect to write your own List
Manager replacement. It isn't as hard as it sounds and it may
prove to increase the responsiveness of your program.

When the list is first created, we must fill it with items to draw.
This is done via the FillList function, as demonstrated in the following
code. This function is passed a volume reference number and a direc
tory ID, and then it fills in the list with the items in that directory. We
also pass other parameters to it to allow us to use the same function to
insert items when the user opens a folder item in the list.

void FillList(sho r t vRefNum, long dirID, ListHandle theList,
s h or t before ThisRow, s hor t i ndentLevel)

short
OS Err

index;
err noErr ;

Cin foPBRec pb;
ListitemHdl lih n il ;
Re f conLDEFCell cellData;
Cell cell = { O. O) ;
short rnaxitems = 32000 I sizeof(RefconLDEFCell) ;

LDoDraw(false, theList);

i n dex = O;
do {

lih = (ListiternHdl)NewHandleCle ar(sizeof(Listitern));
if (l ih == nil) goto exit;
HLock ((Handle)lih);

++index;
pb . hFileinfo . ioNarnePtr
pb . hFileinfo.ioVRefNum

(*lih) - >spec . narne;
vRefNum;

pb . hFile info.ioFDirindex = index;
pb . hFi leinfo . ioDirID = dirID;
err= PBGetCatinfoSync(&pb) ;

exit:

LIST DEFINITIONS

if (err == noErr) {
if (pb.hFileinfo.ioFlAttrib & ioDirMask)

(*lih) ->iconID rFoldericon;
else

(*lih) ->iconID GeticonID
(pb.hFileinfo.ioFlFndrinfo.fdType);

cell.v = LAdd.Row(l, beforeThisRow++, theList);

(*lih)->spec.parID = dirID;
(*lih)->spec.vRefNum = vRefNum;
(*lih)->indentLevel = indentLevel;
(*lih)->isOpen = false;

cellData.refCon = (long)lih;
cellData.drawProc gListElementProcUPP;

LSetCell(&cellData, sizeof(RefconLDEFCell),
cell, theLis t) ;

HUnlock((Handle)lih);
if (err != noErr) DisposeHandle((Handle)lih);

while ((err== noErr) && ((**theList).dataBounds.bottom
<= maxltems));

LDoDraw(true, theList);

The first time the FillList function is called, it is told to fill the en
tire list by passing kAddToEnd as the beforeThisRow parameter and 0
as the indentLevel. At subsequent times, these values depend on the
position and indent level of the folder item that is about to be opened.
FillList first calculates the maximum number of cells that can be in the
list by dividing the approximate maximum list data size of 32000 bytes
by the size of the data stored in one cell. This ensures that we do not
try to add more data than the list can handle. We then tell the List
Manager to not draw the cells while we are adding them to the list by
calling the LDoDraw function and passing false. This makes our list
manipulation occur faster, because we aren't drawing the changes as
they occur. We draw them all at once at the end.

After we've prepared the list itself, we are ready to begin adding
items. By using the File Manager function PBGetCatlnfoSync, we can
easily peruse the items in the chosen directory by index. We first allo
cate a handle for the cell data and then fill it with information about
the first item in the directory. We then decide which icon the item

111

112 A FRAGMENT OF YOUR IMAGINATION

should use (in case the real icon cannot be found), add the cell row, fill
in our other variable fields, and, ultimately, set the cell data. When the
cell is being drawn, this is the data that will be accessed by the draw
ing function. This process is repeated for each item in the directory
until each item has been processed. At the end, list drawing is turned
back on and the list is updated on the screen.

Lastly, the list must react when the user clicks on it. The function
HandleClickOnList does just that by being called whenever the user
clicks on the user item that is used to represent the list (as in the fol
lowing code). This function is responsible for adding and deleting
rows from the list when the user opens or closes a folder item, respec
tively. It also tracks the clicking on one of the flag icons and can be
used to track the selection of other items as well.

void HandleClickOnList(DialogPtr d, ListHandle theList)
{

Point
Boolean

localPt = {0,0};
doubleClick = false;
cellRect = {0,0,0,0};
lih = nil;

Rect
ListitemHdl
Ref conLDEFCell
short

cellData;
dataLen = sizeof(RefconLDEFCell);
theCell = {0, 0}; Cell

Rect iconRect, trackRect;
Boolean found = false;

GetMouse(&localPt);

if (localPt.h < (**theList).rView.left + 20) {

theCell.h = theCell.v = O;
do {

LRect(&cellRect, theCell, theList);
if (PtinRect(localPt, &cellRect))

found = true;
while (!found && LNextCell(false, true,

&theCell, theList));

if (found) {
LGetCell(&cellData, &dataLen, theCell, theList);
lih = (ListitemHdl)cellData.refCon;
if ((*lih)->iconID == rFoldericon)

iconRect = cellRect;
iconRect.left += 4;
iconRect.right = iconRect.left + 16;
iconRect.top += l;

LIST DEFINITIONS

iconRect.bottom = iconRect.top + 16;
trackRect = cellRect;
trackRect.right = trackRect.left + 20;

doubleClick = TrackiconByRect(&iconRect,
&trackRect, (*lih)->isOpen ?
rArrowOpenedicon : rArroWClosedicon);

if (doubleClick) {
Cell theTCell;

if (AnyCellsSelected(theList, &theTCell))
LSetSelect(false, theTCell,

theList);
LSetSelect(true, theCell, theList);

else
doubleClick LClick(localPt, 0, theList);

else {
doubleClick

if (doubleClick) {

LClick(localPt, 0, theList);

if (AnyCellsSelected(theList, &theCell)) {
LGetCell(&cellData, &dataLen, theCell, theList);
lih = (ListitemHdl)cellData.refCon;

if ((*lih)->iconID == rFoldericon)
if ((*lih)->isOpen == false)

} else

long dirID =
GetDirectoryID(&((*lih)->spec));

if (dirID != OL) {
Boolean listFilled =

FillList((*lih)->spec.vRefNum,
dirID, theList, theCell.v + 1,
(*lih)->indentLevel + 1);

if (listFilled) {
(*lih)->isOpen = true;
LSetCell(&cellData,

sizeof(RefconLDEFCell),
theCell, theList);

LUpdate(gd->visRgn, glh);

short indentLevelToDelete =
(*lih)->indentLevel + l;

short numRowsToDelete 0;
short firstRowToDelete = theCell.v + 1;

113

114 A FRAGMENT OF YOUR IMAGINATION

(*lih)->isOpen = false;
LSetCell(&cellData,

sizeof(RefconLDEFCell), theCell,
theList);

checkNextCell:
theCell.v++;
if (theCell. v <

{**theList) .dataBounds.bottom)
dataLen = sizeof(RefconLDEFCell);
LGetCell(&cellData, &dataLen,

theCell, theList);
lih = (ListitemHdl)cellData.refCon;
if ((*lih)->indentLevel >=

indentLevelToDelete) {
numRowsToDelete++;
DisposeHandle((Handle)lih);
lih = nil;
goto checkNextCell;

if (numRowsToDelete > OL)
LDelRow(numRowsToDelete,

firstRowToDelete, theList);

The HandleClickOnList function is a bit large, but is relatively
straightforward. First it uses the GetMouse function to get the local co
ordinates of the location that was clicked. Assuming we clicked in the
column that contains the folder flag icons, we then attempt to find out
exactly which cell we clicked on by looping and calling LNextCell. If
we actually did click on a cell, then we get the data for that cell and
see if it is a folder item. Assuming it is a folder item, we call our util
ity function TracklconByRect to track the user's mouse movement
over the flag icon. If the user releases the mouse while still within the
flag icon, we treat it as if the user double-clicked on that item. Before
continuing, we select the cell that we just "double-clicked." If it ends
up that the item was not a folder item, or we clicked somewhere other
than in the column that displays the flag icons, we simply call LClick
to handle the click and select the cell for us. LClick will also return a
double-click on other portions of the cell.

Now that we know what, if anything, was double-clicked, we can
attempt to open any folder items. First we get the cell data for the cell

LIST DEFINITIONS

that was double-clicked and examine its type. If it is a folder item and
is currently closed, we call FillList in order to insert the contents of the
directory to which it pertains below the selected cell. The FillList func
tion is passed the incremented indentation level to set all the newly
added cells properly. This is how we tell how far to indent when we
draw the cells and how deep in the hierarchy any particular cell is lo
cated. We then set the isOpen flag and update the data for the cell be
fore redrawing the list items.

If the folder item was already opened, we need to close it. Closing
a folder item is accomplished by deleting all rows below the current
row that have an indentation level higher than the folder we are clos
ing. After looping to count how many rows to actually delete and dis
posing of the handle stored in each cell, we delete them all at once by
using the LDelRow function. We finish the function off with a lovely
feature known as a quintuple brace.

You may notice while looking at the code that we do not dispose
of the handles in each cell when the program quits. We could do
this very easily, but in our simple test program the list is de
stroyed seconds before the program quits. Therefore, because of
the way memory works on the Macintosh, all handles allocated
in the applications heap are disposed of automatically. You could
easily write a function called DisposeAllHandles that would
loop through all items in the list and dispose of any memory in
the cells that remain. This is left as an exercise for the reader.

Compiling Our Code
The code in this chapter consists of our small RefConLDEF project
(Figure 6-4), which is compiled as a resource of type LDEF. After it is
compiled, we add it to our application, which contains the rest of the
code. Using this technique dramatically increases the debug ability of
our list definition drawing function and makes it easier to maintain in
the future.

115

116 A FRAGMENT OF YOUR IMAGINATION

-·

-Iii RefConLDEF 68k . .u
Fi1e Code Data ~~

v Segment 1 : Oj 0! 13 0
............... ~.!ff:~E!~.P..~F..:~ i 9.J 9..i li.1.1

t--

~
1 file(s) 0 0 ~

Figure 6-4. 680x0 RefConLDEF project file

UiewB_y_NameLDEF 68k.Jl
File Code Data ~ ~

v Sources . Di Di LU {}
View By NameLDEF .c i 0 l 0 l ID ~

.. '°''''''"'''"""'''°''"'"'"""'''"'°'"'''"""""''"'"""

v Resources i D i D i 13
RefConLDEF 68k ~ n I a ~ n I a j III
YievBiy NameLDEF .rsrc l n I a i n I a l ID ·v-· ... L..iii·r:·.a·r:·i·;·5· ... ! o.! i0.r· s ..

............... ~.~.~.9.~.,I~.!! l.... 9..l....Q.l.... liL,{}

4 fi1e(s) 0 D ~

Figure 6-5. 680x0 ViewByName LDEF application project file

F(!i RefConLDEF PPC . .u
_.

File Code Data ml--
v Group 1 D1 Di • 1:1 {}

RefConLDEF .c . 0 l 0 i • J1J
..,._

.............. J~!.!.r.f.!~!~!~ l9.1 9..1 JtJ ..

-0
2 fi1e(s) D D ~

Figure 6-6. PowerPC RefConLDEF project file

LIST DEFINITIONS

NameLDEF PPC.µ
File Code Data ml

V Sources 0 1 o; • !:) -\}
View By NameLDEF .c l 0 l 0 l • [El

••••••••••••• ••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••O•••••••• ••• • •• •• .. O•••••••• • •••••••••<Oo•••••••• •• ••••••••••••••••

V Resources ; 0 l 0 l !:)
RefConLDEF PPC 1 n I a 1 n I a 1 [El
YiewBiy NameLDEF .rsrc 1 n I a 1 n I a ! [El

·~···'iji»r:·a·r:·i·e·s .. ···r············ .. c;· ~···············o-r··· · ··············~··

lnterfacelib ! 0 ! 0 ! [El
MYCRuntime. lib ! 0 ! 0 1

5 file(s) 0 0

Figure 6-7. PowerPC ViewByName LDEF application project file

Modifying the List Definition

As you can see, the List Manager can be very useful for displaying
lists of data to your users. It can also really spice up your programs if
you use it wisely and make your lists look nice by using custom list
definition procedures. Be careful not to overdo it, though. Too many
useless icons in a list can be confusing to look at but if you have data
to display that is in list form, consider the List Manager. Figures 6-8

About This Macintosh

Built-in Memoriy :
Total Memoriy : ... Microsoft Word

Ill MW CIC++ PPC ...

~ Simple Text

~ Stickies

[:) Sy s tem Software

16,384K
32,768K

3,000K

2,560K

51 2K

120K

6,152K

Siy stem Software 7 .5

© App le Computer , Inc. 1 983-1 994

Largest Unused Block : 18, 925K

D
I

----Cl~
Figure 6-8. A list of currently running applications and their memory usage

117

118 A FRAGMENT OF YOUR IMAGINATION

and 6-9 are some more examples of types of lists that you may con
sider implementing in your programs.

List Definition Tips
Writing a list definition can be a great deal of fun and can really add
some pizzazz to your application. Here are some tips to keep in mind
when creating your LDEFs.

• The List Manager is limited to 32K of data per list. Therefore, you
may want to store as little data as possible in each cell. If the data
in each cell is going to be more than 8 bytes or so, you may elect
to allocate a handle or pointer for each cell's data instead. On the
other hand, if you only plan on displaying a few items in your list,
using a large data structure per cell may not be that much of a
drawback.

• In our example, we allocate a handle that is stored in the data for
each cell. You may have noticed that we never actually dispose of
that memory. Fortunately, since our application quits when the list
itself is destroyed, the memory (which is allocated in the applica
tions heap) is disposed of automatically. However, if your list is
created and destroyed while your application is still running, you
will need to deallocate the memory for each cell when you delete
each cell, which you will have to do individually. Don't use LDel
Row without first deleting all the data in those cells. Otherwise,
you will have a major memory leak.

• Lists can add a real flair to your program. Look at commercial pro
grams to get ideas about how the pros use lists. In fact, do that for
all of your user interface elements. Watching how another pro
grammer uses a specific element can give you ideas on how to im
prove your own programs.

• The List Manager can slow down when thousands of cells exist in
a list. If you find yourself displaying large amounts of data, you
may want to write your own simple list management scheme. Re
member, the List Manager is not a spreadsheet.

• The List Manager can be a tricky thing to learn the first time
through, but stick with it. Over time, you will learn its quirks and
how to make it work for you.

LIST DEFINITIONS

Hpply to Metrowerks defaults.

I
~
&I

Font

• languag•

. -
Warnings

• Processor

Color Info:-------------------,
~ Color SyntaH Main TeHt:

Comments:
Keywords:

Custom Keywords: [Edit ... J

~Balance While Typing ~ Dynamic Scroll

Flashing Delay: I I
Remember:----------------
~Font Preferences
~Window Position Hnd Size
~Selection Position

~ Saue Hll Before "Update" ~ Projector Hware

(Factory Settings) [Reuert Panel) (Cancel) ((OK l)

Figure 6-9. An icon list in a preferences dialog box for Metrowerks'
Code Warrior

119

CHAPTER SEVEN

Control Definitions

There are some things that C is good for . . .
but programming is not one of them!

-Joey Gray

Introduction

Like list definitions, control definitions (Figure 7-1) are one of the
building blocks of the Macintosh graphical user interface. Whenever
you click on a button, a popup menu, a scroll bar, a check box, or a
radio button, you are calling the Control Manager and a control defini
tion to handle the interaction. The code of a control definition is stored
in a resource of type CDEF.

The Control Manager handles tracking your clicks and mouse
movements, and relays this information to a control definition in the
form of a message and parameters. For instance, when a control needs
to be drawn, it receives a drawCntl message. When it needs to test if
the user has clicked in an important area of itself, it receives a testCntl
message. By handling these messages, as well as others, the control
definition works in harmony with the Control Manager to give users
the visual, and maybe auditory, feedback they expect.

121

122 A FRAGMENT OF YOUR IMAGINATION

[8] Check boH

Baud Rate:

@ Radio button 1
O Radio button 2

9600 ... I

(Cancel) n~(iiiiiiiiiiiiiOKiiiiiiiiiiiii_,J

Figure 7.1. Various types of controls

Auditory feedback? Well, sure, why not? Your custom controls
can make use of other resources that might exist in the same file
as the control itself, or another file for that matter. These re
sources might be pictures, icons, or even sounds. It is not incon
ceivable that you may write a control that plays sounds or a
short riff of music when it is clicked. New user interface ideas
will be explored in the future, especially with the extra process
ing power that the Power Macintosh provides. Enhanced con
trols will, most definitely, be one of them.

If you are at all familiar with the Macintosh, you will recognize
the standard types of controls displayed in Figure 7-1. What might be
surprising to you is that the check box, radio button, and button con
trols are all handled by the same control definition. Because these
three controls generally function in the same way, we decided to pack
age them all as one control definition. When the control definition is
called, it examines the variation code parameter to decide as which
control it should function. You can use this variation code in your own
CDEF for any purpose you like-it might specify the color in which to
draw, the style of text to draw, or any other options you may decide.

CONTROL DEFINITIONS

Writing a control definition might take you only a few minutes if
you are creating a simple button control (like our Icon Family control,
discussed in the following section), or several days, if you are writing
a specialized popup color palette or slider control. Either way, if you
code it properly, it will be quite easy for you to create a PowerPC na
tive version with minimal effort.

Icon Family Control

One of the controls we develop in this chapter is one that functions
similar to the standard button control in the system software. The user
clicks on it, it tracks mouse movements, and, when the mouse button
is released, springs back to its normal position. It draws an icon fam
ily within its rectangle using the PlotlconID function. This function
takes the resource ID of an icon family and other parameters that au
tomatically draw the icons in question in the proper colors and modes
(Figures 7-2 and 7-3). By using this function, our control definition
need not worry about monitor bit depth, graphics devices, and other
code-consuming features-PlotlconID does it all for us. This drasti
cally reduces the size of our control definition and also makes it less
prone to bugs and incompatibilities in the future by using system
level services to perform the majority of its work. It also makes our
code much easier to read and understand.

Control Definition Code

The code for our icon family control definition is quite straightforward
and should give you a very usable base from which to work. After you
understand the code that I describe here, duplicate the project and
source files, and extend it to suit your needs. I will give you some

D[J
D D

Figure 7-2. An
example of our icon
family buttons,
slightly depressed, in
black and white

IEJ
Figure 7-3. An
example of our icon
family buttons,
slightly depressed, in
color

123

124 A FRAGMENT OF YOUR IMAGINATION

ideas to modify this control later in the chapter. For now, let's take a
walk through the code.

Main

pascal long main (short varCode, ControlHandle control,
short message, long pararn)

The main entry point of a control definition accepts four parame
ters and returns a long-integer result. The result varies depending on
the message. In short, the parameters are the variation code that we
discussed earlier, the handle to the control itself (normally within a
window or dialog box), the message that we are currently receiving,
and a long parameter that varies from message to message.

long result = OL;

switch(message) {

case drawCntl:
Draw(varCode, control, param);
break;

case testCntl:
result
break;

Test{control, param);

case calcCntlRgn:

case
case
case
case
case
case

CalcRegions(control, param);
break;

initCntl:
dispCntl:
calcThumbRgn:
posCntl:
thumbCntl:
dragCntl:

case autoTrack:
default:

break;

return result;

CONTROL DEFINITIONS

Next, we simply implement a switch statement to handle each
message in the proper way. You will note that this particular control
doesn' t handle a large number of the messages that are implemented
by the Control Manager. Some of these messages we will never receive
in our type of control, such as the thumbCntl message, and others we
simply do not care about, such as the initCntl message, in our case.

If we were interested in making use of global variables in our
control definition, we might use the initCntl and dispCntl mes
sages to allocate and dispose of any global data, respectively. To
see how to use global data in CodeWarrior, see Chapter Four
"System Extensions," which makes use of this technique. If you
are not using CodeWarrior, consult the documentation for your
compiler.

Draw

void Draw(short varCode, ControlHandle control, long param)

Rect
short
OS Err

r = (*contr ol) - >contrlRect ;
i d , transform = ttNone;
whoCares = noErr;

if ((*control)->contrlVis == OxFF)
id = (*control }->contrlMin;
if ((*control)->contr l Hi lite

transform = ttDisabled ;
255) {

else {
if ((*control) - >contrlHilite == 0)

id = (*control)->contrlMin;
else {

if (varCode == 0) {
id (*control) - >contrlMax;

l else
id (*contr ol) - >contrlMin;
transform = ttSelected ;

wh oCares PloticonID(&r, atAbsoluteCenter , transform, i d};

125

126 A FRAGMENT OF YOUR IMAGINATION

When our control receives the drawCntl message, we call our
Draw function. This function handles checking the state of the control
and then drawing it appropriately. If the control is invisible, it is not
drawn at all. If the control is disabled, it is drawn in ttDisabled mode,
which shades the icon. If the control is not depressed, the icon ID
stored in the contrlMin field of the control record is drawn. If the con
trol is depressed, we examine the variation code parameter to see how
we should draw the depressed state. Our control handles two varia
tion codes. A varCode of 0 means we draw the icon family represented
by the ID stored in the contrlMax field of the control record. If the var
Code is 1, or anything other than 0 in our code, we draw the contrlMin
icon ID in ttSelected mode. This allows us to use our buttons as if they
were actual buttons that physically moved when depressed or, like
icons in the Finder, that "dim" when selected (Figure 7-4).

Test

Icon Dimmin
2 items 299 .4 MB in disk 27.2 MB a

Norma 1 folder

¢

Figure 7-4. Finder-like ttSelected icon dimming

long Test(ControlHandl e contr ol, long param)
{

Rect r = (*contr o l)->c ontrlRect;
Point hitPt;
long r esul t;

hit Pt . h = LoWord (param) ;
h i tPt . v = HiWord(param) ;
if ({*control)->contrlHi lite

r esult = OL;
255) {

CONTROL DEFINITTONS

} else
if (PtinRect(hitPt, &r))

result inButton;
else

result OL;

return result;

When our control receives the testCntl message, we call our Test
function. This function returns a value indicating if the user is cur
rently clicking inside the rectangle of our control. In our case, if the hit
point is inside our rectangle, we return the constant inButton, which
lets the Control Manager know the status of the click. When the mouse
moves out of our rectangle, the Control Manager knows to call us with
a drawCntl message so we can draw our new state properly. It is con
ceivable that your control definition will receive repeated testCntl and
drawCntl messages as the user moves his mouse around your control.

CalcRegions

void CalcRegions(ControlHandle control, long param)
{

Rect r = (*control)->contrlRect;
param = param & Ox7FFFFFFF;
RectRgn((RgnHandle)param, &r);

When our control receives the calcCntlRgn message, we call our
CalcRegions function. This function calculates the region that our con
trol occupies based on its rectangle. Although we could get fancy and
return the region of the actual pixels of the icon we are drawing for
each button, we simply return the rectangle of the control in the form
of a region. The Control Manager uses this information when calculat
ing, for example, which controls need to be updated when the con
tents of a dialog box are drawn.

Compiling Our Code
Control definitions, depending on what they do, can definitely
benefit from being PowerPC native. For instance, if your control
draws a 24-bit color image of itself or performs some type of real
time calculation, it might make sense to compile it for the PowerPC
processor. As mentioned in previous chapters, it is relatively easy to

127

128

rm
v

A FRAGMENT OF YOUR IMAGINATION

do this and then create a fat or safe fat version for use on all plat
forms. You should examine the PowerPC project file to see how we
created a native version of our icon family control definition (Figures
7-5 and 7-6). Then create a fat or safe fat version of your control for
use in your programs.

Modifying the Icon Family Control

There are many ways for you to modify the icon family control defini
tion to make it more exciting and usable in your programs. This sec
tion outlines a few things to try. You are encouraged to duplicate the
project and source files for each project in the book and experiment
with your own ideas.

::II

Icon Family CDEF 68k.n
File Code Data Iii-Segment 1 0! 0! 1:1 -0

loon Family CDEF .o . 0 ! 0 ! III 1--1

................ ~~!~ . .f.~m.~IY ... ~.~.!~.!.~ ... ~!~!~~~!~ .. l E!l~.l r:i.l~.l lll ..

~
2 file(s) 0 0 ei

Figure 7-5. 680x0 icon family CDEF project window

Iii Icon Famil_y_ CDEF
::II

PPC.n
File Code Data 151~

v Group 1 O! Di • l:J {}
loon F .amily CDEF .c 01 o! ID 1--: •
Icon Family Button Resources i n I a j n I a ! [ii

.............. J~.!!~f.~.'!?.!.~.t~ .. J 9..1 9..! JD ..

~
3 file(s) 0 0 ~

Figure 7-6. PowerPC icon family CDEF project window

CONTROL DEFlNITIONS

Figure 7-7. Double icon drawing

Figure 7-7 shows how you can use double icon drawing to draw
your buttons. That is, you have one template icon that you use for the
background of all of your buttons. The actual symbol displayed within
each icon is drawn on top of the template. In your code, you will call
PlotlconID twice when you want to draw an icon-once for the tem
plate icon, then again for the symbol. This can make it easier for you
to change the look of your buttons by making it so you only have to
edit your template icon and not every single icon in your application.
Other benefits may also apply, except where prohibited by law.

Slider Control

The second control that we will be looking at in this chapter is a slider
type control given to us by Robert L. Mathews of Tiger Technologies.
The Tiger Slider, as Rob calls it, uses a PICT resource as a background,
another PICT resource as the indicator, and a custom resource of type
Sinf to specify picture ID numbers, indicator position, indicator val
ues, and other information (Figure 7-8). Before we get into the Tiger
Slider, let's talk about how a slider is used today and why the Tiger
Slider is a useful addition to your source code arsenal.

Speed: ~
Slowest

Speed: ~
Slowest

I
Slow

I
Slow

I
Medium

I
Medium

I
Fast

I
Fast

I
Maximum

I
Maximum

Speed: ~llCJ .. r.1-= --====-======-=---------~' liliilf llllllllllll
I I I I I

Slowest Slow Medium Fast Maximum

Figure 7-8. Tiger Slider control examples

129

130 A FRAGMENT OF YOUR IMAGINATION

Sliders are used in many places throughout the Macintosh user in
terface. The Sound control panel uses sliders to set the current volume
of the Macintosh speaker (Figure 7-9). The color picker dialog box uses
a slider to help choose your favorite hue (Figure 7-10), Sliders can be
found throughout the Macintosh user interface serving many different
uses. The one thing that intrigues me the most, though, is how some
people use the scroll bar control instead of a more sliderlike control.
Scroll bars are great for showing you how much you've scrolled
through an unknown amount of data. As the thumb moves up and
down the scroll bar, you are constantly given a visual clue as to where
you are within the document. However, in cases where there is a finite
choice of values, a slider control-not a scroll bar-can be much more
effective.

The Tiger Slider gives us the power we need to display a horizon
tal slider control with a custom background and custom indicator. It is
designed for use under System 7 and assumes that your pictures will
look adequate in black and white, and in color, since the same pictures
are used for both. The indicator moves smoothly over the background

Alert Sounds

~

Sound

Droplet
Indigo
Quack

Sosumi
lUild Eep

Alert Uolume (Add...) (Remoue)

Figure 7-9. The Sound control panel making use of a slider control

Choose a highlight color:
90°

270°

CONTROL DEFINITIONS

Original:

New:

Hue Angle: ~0 III
Saturation:~% III

Lightness: I 71.001% III

Figure 7-10. The color picker dialog box and horizontal slider

to give the sliding effect. An added feature is that you can click any
where in the groove that the indicator follows and it will jump to that
location or the location as close to it as possible. You should also note
that the code uses Color QuickDraw GWorlds to maintain the smooth
animation of the scrolling indicator.

Even though GWorlds are a Color QuickDraw feature, they exist
on any Macintosh that is running System 7. So black-and-white
Macintosh computers can make use of GWorlds while running
System 7, since Color QuickDraw is built into the system soft
ware itself. Although this book does not go into how to use
GWorlds, you can read Inside Macintosh to learn all about how
they work and the benefits they can bring to your drawing code.

131

132 A FRAGMENT OF YOUR IMAGINATION

The Tiger Slider uses double-buffered animation. This technique
prevents any flicker that you would otherwise see if you were to erase
the indicator in its old position, redraw the background picture, and
redraw the indicator in its new position each time it moved. If you
were to try this, you would see that no matter how quickly you erased
and redrew, the screen would display a momentary, distracting white
flash. We avoid this by performing the erasing and redrawing in an
off-screen buffer, known as a GWorld. After the new image has been
drawn into the GWorld, we copy the GWorld to the screen using
CopyBits, which plasters the new image onto the screen all at once.
This erases the old image and draws the new image over it-all in one
lightning-fast step. There is never a moment when the old indicator is
invisible and the new one has yet to be drawn.

To do this, the Tiger Slider actually uses three different GWorlds
the background world (which stores a copy of the background of the
slider with no indicator on it), the indicator world (which stores the in
dicator), and the composite world (which is the size of the controls
rectangle and is used for temporarily merging the two other worlds).
So, whenever we need to draw a piece of the slider to the screen, here
is what we do:

1. Figure out the part that needs to be drawn, such as the rectangle
enclosing both the old and new locations of the indicator.

2. Copy that rectangle from the background world to the composite
world. This section of the composite world now looks just the
same as the portion of the background world that we copied.

3. Draw the indicator in the appropriate, new position in the com
posite world. This section of the composite world now looks just
the same as it should on the screen when the indicator is in its new
position.

4. Copy the entire rectangle, old and new, from the composite world
to the screen all at once. The screen has now been updated, with
the old location of the indicator being erased at exactly the same
time the new location is drawn.

This technique gives flicker-free drawing, as we had hoped. Now
let's take a look at the code that makes it all happen.

CONTROL DEFINITIONS

This technique is flicker free to a point, but there is a case that
still may cause a slight amount of flicker. Known to some as
"tearing," this occurs when the electron beam of the screen
passes through the copied rectangle while it is being drawn to
the screen. Believe it or not, there is a way to prevent this by
waiting for the electron beam to disappear as it moves from the
bottom of the screen back to the top and then drawing, very
quickly, during this time. By syncing to the vertical blanking in
terrupt, you can make your drawing as flicker free as possible.

Control Definition Code

By nature, slider controls are a bit more advanced than simple button
controls. In our case, the Tiger Slider is even more complicated due to
its use of GWorlds for off-screen drawing. However, don' t let this
scare you away. You should be able to understand the flow of the code
quite easily, even if you are unsure as to how some of the advanced
drawing functions work. We will explain them to a point here, but if
you would like more information on using GWorlds and off-screen
drawing, you should consult your local copy of Inside Macintosh.

Main

pascal long main (short varCode, ControlHandle t heControl,
short theMessage, long theParam)

l ong result = O;

switch (theMessageJ

case initCntl:
InitTheControl (theControl);
broak ;

case dispCntl:
DisposeTheControl (theControl);
break;

case drawcntl:
DrawTheControl (theControl) ;
break;

133

134 A FRAGMENT OF YOUR IMAGINATION

case testCntl:
if (PtinRect ((*(Point*) &theParam),

&(*theControl) -> contrlRect))

result = 130;

break;

case dragCntl:

if (theParam)

break;

DragTheControl (theControl);

result = l;

case calcCntlRgn:
case calcThumbRgn:

RectRgn ((RgnHandle) (theParam),
&(*thecontrol) -> contrlRect);

break;

case calcCRgns:

break;

RgnHandle tempRgn = (RgnHandle)
StripAddress ((Ptr) theParam);

RectRgn (tempRgn, &(*theControl) -> contrlRect);

return (result) ;

As with our previous control definition, the main entry point is a
standard switch statement that allows us to easily handle each of the
possible messages we will receive. Because we will use a slider, we
need to handle a few of the other messages, such as dragCntl and
calcThumbRgn, that our simple button control did not.

Init

void InitTheControl (ControlHandle theControl)

OS Err
SliderinfoH

err;
resHandle;

(*thecontrol) -> contrlData = nil;
resHandle = (SliderinfoH)

GetResource (kSliderinfoType, (*theControl) -> contrlRfCon);
if (!resHandle)

else

CONTROL DEFINITIONS

(*theControl) -> contrlData nil;

(*theControl) -> contrlData = (Handle) resHandle;
HNoPurge ((*theControl) -> contrlData);
DetachResource ((*theControl) -> contrlData);
HLock {(*theControl) -> contrlData);
Rect compositeRect = (*theControl) -> contrlRect;
OffsetRect (&compositeRect, -compositeRect.left,

-compositeRect.top);

err NewGWorld (&{*resHandle) -> indicatorworld,
(*resHandle) -> bitDepth,
&(*resHandle) -> indicatorRect, nil, nil, 0);

if (err)

err NewGWorld (&{*resHandle) -> indicatorworld,
(*resHandle) -> bitDepth,
&(*resHandle) -> indicatorRect,
nil, nil, useTempMem);

if (!err)

GWorldPtr
GDHandle

currPort;
currDev;

GetGWorld (&currPort, &currDev);
SetGWorld ({*resHandle) -> indicatorWorld, nil);
PixMapHandle pixMap = GetGWorldPixMap

(*resHandle) -> indicatorWorld);
LockPixels {pixMap);

PicHandle picture =
GetPicture ((*resHandle) -> indicatorPictResID);

if (picture)

DrawPicture {picture, &(*resHandle) ->
indicatorWorld->portRect);

UnlockPixels (pixMap);
SetGWorld (currPort, currDev);

err = NewGWorld (&(*resHandle) -> backgroundWorld,
(*resHandle) -> bitDepth, &compositeRect,
nil, nil, 0);

if (err)

135

136 A FRAGME.l\1T OF YOUR IMAGINATION

err = NewGWorld (&(*resHandle) -> backgroundWorld,
(*resHandle) -> bitDepth, &compositeRect,
nil, nil, useTempMem);

if (!err)

GWorldPtr
GDHandle

currPort;
currDev;

GetGWorld (&currPort, &currDev);
SetGWorld ((*resHandle) -> backgroundWorld, nil);
PixMapHandle pixMap = GetGWorldPixMap (

(*resHandle) -> backgroundWorld);
LockPixels (pixMap);

PicHandle picture = GetPicture
(*resF.andle) -> backgroundPictResID);

if (picture)

DrawPicture (picture, &compositeRect);

UnlockPixels (pixMap);
SetGWorld (currPort, currDev);

err = NewGWorld (&(*resHandle) -> compositeWorld,
(*resHandle) -> bitDepth, &compositeRect,
nil, nil, 0);

if (err)

NewGWorld (&(*resHandle) -> compositeWorld,
(*resHandle) -> bitDepth, &compositeRect,
nil, nil, useTempMem);

HUnlock ((*theControl) -> contrlData);

The InitControl routine is called to allocate the GWorlds and pre
pare them by filling them with the pictures we will use for the back
ground and the indicator. It should be noted that the information
about this control, including some of its options, is stored in a resource
of type Sinf, which has the same ID as the value of the refCon for the
control. Therefore, we call GetResource to obtain this information dur
ing initialization and store it for the lifetime of the control in the contrl
Data field.

CONTROL DEFINITIONS

After we have loaded the Sinf resource, we allocate the GWorlds
based on the bit depth stored in the Sinf. First we call GetPicture to
load the indicator and then draw it into the GWorld itself using the
DrawPicture function. Then we allocate the GWorld for the back
ground and draw it using the same method. These two GWorlds will
never change from this point on, they are read-only in nature. You
should note that, in reality, you could do without these two GWorlds
and then, instead of using CopyBits later in the draw routine, simply
use DrawPicture. It would be a bit slower to do it this way, but it
would still work adequately. If your slider is tight on memory, you
may opt for this method. We then, lastly, allocate the GWorld used for
the composite image. This GWorld is constantly being drawn to and
CopyBits'd to the screen as the indicator is moved along the back
ground.

Dispose

void DisposeTheControl (ControlHandle theControl)

SliderinfoH

if (sHandle)
{

sHandle = (SliderinfoH) (*theControl) -> contrlData;

if ((*sHandle) -> indicatorWorld)
{

DisposeGWorld ((*sHandle) -> indicatorWorld);

if ((*sHandle) -> backgroundWorld)
{

DisposeGWorld ((*sHandle) -> backgroundWorld);

if ((*sHandle) -> compositeWorld)
{

DisposeGWorld ((*sHandle) -> compositeWorld);

DisposeHandle ((Handle) sHandle);

The Dispose routine is pretty straightforward. It simply disposes
of our three GWorlds and then disposes of the handle to the detached
Sinf resource. You always have to clean up your messes-for which
this routine is responsible.

137

138 A FRAGMENT OF YOUR IMAGINATION

Draw

void DrawTheControl (ControlHandle theControl)

if ((*theControl) -> contrlData)
{

HLock ((*theControl) -> contrlData);
Slider Inf oP infoPtr = (* (SliderinfoH)

(*theControl) -> contrlData);

if ((*theControl) -> contrlVis && infoPtr -> indicatorWorld
&& infoPtr -> backgroundWorld
&& infoPtr -> compositeWorld)

GWorldPtr
GDHandle

currPort;
currDev;

GetGWorld (&currPort, &currDev);
SetGWorld (infoPtr -> compositeWorld, nil);

PixMapHandle compositePixMap =
GetGWorldPixMap (infoPtr -> compositeWorld);

LockPixels (compositePixMap);

PixMapHandle backgroundPixMap
GetGWorldPixMap (infoPtr -> backgroundWorld);

LockPixels {backgroundPixMap);

CopyBits ((BitMap*) *backgroundPixMap,
(BitMap*) *compositePixMap,
&infoPtr -> backgroundWorld -> portRect,
&infoPtr -> compositeWorld -> portRect,
srcCopy, ni 1) ;

UnlockPixels (backgroundPixMap);

PixMapHandle indicatorPixMap =
GetGWorldPixMap (infoPtr -> indicatorWorld);

LockPixels (indicatorPixMap);

Rect
short

destinationRect = infoPtr -> indicatorRect;
offsetUnits = (*theControl) -> contrlValue -

(*theControl) -> contrlMin;
OffsetRect (&destinationRect,

(infoPtr -> pixelsPerValue * offsetUnits), 0);

CONTROL DEFINITIONS

CopyBits ((BitMap*) *indicatorPixMap,
(BitMap*) *compositePixMap,
&infoPtr -> indicatorworld - > portRect,
&destinationRe ct, srcCopy, nil);

UnlockPixels (indicatorPixMap);

SetGWorld (currPort, currDev);

ForeColor (blackColor) ;
BackColor (whiteColor);

CopyBits ((BitMap*) *compositePixMap,
&((GrafPtr) (*theControl) - > contrlOwner) -> portBits,

&infoPtr -> compositeworld - > portRect,
&(*theControl) -> contrlRect , srcCopy, nil);

UnlockPixels (compositePixMap);

HUnlock ((*theControl) -> contrlData);

The Draw routine is probably the most important routine of all.
When you have an idea for a control, this is the routine that actually
produces what your control looks like on the screen. Because we use a
double-buffering mechanism to draw, we decided to simply draw the
entire control each time. Using CopyBits, this is extremely fast. Tech
nically, it is possible to figure out which part of the control needs to be
drawn and draw only that portion, but to keep this example clear,
we've decided not to implement it that way.

Assuming the control itself is visible, we first copy the back
ground GWorld to the composite GWorld. We then draw the indicator
in the proper position in the composite GWorld as well. Then, in one
fell swoop, we can Copy Bits the composite GWorld to the screen using
the CopyBits routine. That's it!

You may note that this function sets the ForeColor to black.Color
and the BackColor to whiteColor before calling CopyBits. This is
done to avoid unwanted coloring of the blitted pixels by Copy
Bits. If you don't do this, and if the colors were set to some other
value than to what we are setting them, strange things can hap
pen. Experiment with the code and see for yourself.

139

140 A FRAGMENT OF YOUR IMAGINATION

Test

case testCntl:
if (PtinRect ((*(Point*) &theParam),

&(*theControl) -> contrlRect))

result = 130;

break;

Our testCntl message is handled directly in our main entry point
function. It simply tests the current mouse location to see if it is within
the rectangle of the control. If it is, it returns a value, of no particular
importance, that simply tells the Control Manager that a custom part
of our control was clicked. At this point, the Control Manager will call
us with a dragCntl message.

Drag

void DragTheControl (ControlHandle theControl)

if ((*theControl) -> contrlData)
{

HLock ((*theControl) -> contrlData);
SliderinfoP infoPtr =

{*(SliderinfoH) (*theControl) -> contrlData);

Point

short

GWorldPtr
GDHandle
Rect

mousePt,
topLeftPt;
leftEdgeOffset,
leftLoc,
rightLoc,
oldMouseHoriz,
oldValue,
newvalue;
currPort;
currDev;
oldThumb,
newThumb,
unionOfRects,
tempRect;

GetGWorld (&currPort, &currDev);

Pi.x:MapHandle compositePi.x:Map =
GetGWorldPi.x:Map (infoPtr -> compositeWorld);

LockPixels (compositePi.x:Map);

CONTROL DEFINITIONS

PixMapHandle backgroundPixMap =
GetGWorldPixMap (infoPtr -> backgroundWorld);

LockPixels (backgroundPixMap);

PixMapHandle indicatorPixMap =
GetGWorldPixMap (infoPtr -> indicatorWorld);

LockPixels (indicatorPixMap);

ForeColor (blackColor);
BackColor (whiteColor);

oldThumb = infoPtr -> indicatorRect;
short offsetUnits = (*theControl) -> contrlValue -

(*theControl) -> contrlMin;
OffsetRect (&oldThumb, (infoPtr -> pixelsPerValue *

offsetUnits), 0);

SetPt (&topLeftPt, (*theControl) -> contrlRect.left,
(*theControl) -> contrlRect.top);

oldMouseHoriz = -1; // make sure we draw at least once

leftEdgeOffset = (infoPtr -> indicatorRect.right -
infoPtr -> indicatorRect.left) I 2;

leftLoc = infoPtr -> indicatorRect.left + leftEdgeOffset;
rightLoc = leftLoc + (infoPtr -> pixelsPerValue *

((*theControl) -> contrlMax -
(*theControl) -> contrlMin));

oldValue
newValue

(*theControl) -> contrlValue,
oldValue;

do {
GetMouse (&mousePt);
mousePt.h topLeftPt.h;
mousePt.v -= topLeftPt.v;

mousePt.h
mousePt.h

min (mousePt.h, rightLoc);
max (mousePt.h, leftLoc);

if (mousePt.h != oldMouseHoriz)
{

newThumb = oldThumb;
newThumb.left = mousePt.h - leftEdgeOffset;
newThumb.right = newThumb.left +

(infoPtr -> indicatorRect.right -
infoPtr -> indicatorRect.left);

unionRect (&oldThumb, &newThumb, &unionOfRects);
SetGWorld (infoPtr -> compositeworld, nil);

141

142 A FRAGMENT OF YOUR IMAGINATION

CopyBits ((BitMap*) *backgroundPixMap,
(BitMap*) *compositePixMap,
&unionOfRects, &unionOfRects,
srcCopy, nil) ;

CopyBits ((BitMap*) *indicatorPixMap,
(BitMap*) *compositePixMap,
&infoPtr -> indicatorWorld -> portRect,
&newThumb, srcCopy, nil);

SetGWorld (currPort, currDev);
tempRect = unionOfRects;
OffsetRect (&tempRect, topLeftPt.h,

topLeftPt.v);
CopyBits ((BitMap*) *compositePixMap,

& ((GrafPtr)
(*theControl) -> contrlO~mer) -> portBits,
&unionOfRects, &tempRect, srcCopy, nil);

oldThumb = newThumb;
oldMouseHoriz = mousePt.h;

short rawValue = newThumb.left -
infoPtr -> indicatorRect.left;

newValue = rawValue I infoPtr -> pixelsPerValue;
if ((rawValue % infoPtr -> pixelsPerValue) >

(infoPtr -> pixelsPerValue I 2))

11 it's more than halfway to the next "stop"
newValue ++;

while (StillDown ());

UnlockPixels (indicatorPixMap);
UnlockPixels (backgroundPixMap);
UnlockPixels (compositePixMap);
SetGWorld (currPort, currDev);

HUnlock ((*theControl) -> contrlData);

(*theControl) -> contrlValue = newValue;
DrawTheControl (theControl);

Dragging a control can be a real job and this function shows that
fact. It may look intimidating at first, but it really isn't that bad once
you sit down and think about what it is doing. The object of the rou
tine is to change the value of the control while the user drags the in
dicator across it. After allocating what seems like an endless list of

CONTROL DEFINITIONS

local variables, we prepare the GWorlds for drawing by locking down
all the pixels in them. We then calculate where the indicator is to start.
We then enter a loop that is called during the entire time the mouse is
down. Note that we will always enter the loop at least once, so even
the fastest mouse clicker in the East will not be able to sneak past us.

Our do loop is constantly redrawing our control, much like our
draw function does. In fact, we could have used the same code by sep
arating it into its own function. You should feel free to make that opti
mization. As the user moves the mouse along the control, we
recalculate the new position of the indicator and redraw it using our
double-buffering mechanism mentioned earlier. This gives us a nice,
smooth drag of which a certain camel would be proud.

Calculating Regions

case calcCntlRgn:
case calcThumbRgn:

RectRgn ((RgnHandle) (theParam),
&(*theControl) -> contrlRect);

break;

case calcCRgns:
RgnHandle tempRgn = (RgnHandle)

StripAddress ((Ptr) theParam);
RectRgn (tempRgn, &(*theControl) -> contrlRect);

Because the Control Manager has no idea what your control looks
like on the screen or how much of its rectangle it actually uses to draw,
the control definition itself is asked to calculate specific regions that
represent itself. These regions include the entire control region and the
region that represents the thumb (if one exists). For these two mes
sages in particular, we simply return the region that represents the en
tire control, since we draw in the entire rectangle of the control. This
aids us in supporting our "jump to" effect when the user clicks on an
area of our control and the slider jumps to that point. The calcCRgns
message is an old mechanism for returning region information and is
only received in 24-bit mode. We simply return the region of our en
tire rectangle, once again. You can read Inside Macintosh to learn more
about QuickDraw regions.

Compiling Our Code

As with most of the projects in this book, this one also contains multi
ple project files. With these, you can build the control for the 680x0 or
the Power Macintosh (Figures 7-11 and 7-12). You will also note that

143

144 A FRAGMENT OF YOUR IMAGINATION

the slider is compiled using the C ++ compiler, as opposed to the stan
dard C compiler used elsewhere. The reason for this is simply because
Rob wanted to take advantage of some of the features of C++, such as
inline variable declarations. If you convert the code to be straight C,
which you probably don't need to do, you will need to move all of the
variable declarations to the top of each function. Other than that, play
with the projects and experiment with the background and indicator
pictures to create your own custom slider.

l!I
=-

Tiger Slider 68k.JJ.
File Code Data 151-,

v Segment 1 Di Di a i}
Tiger Slider .op . 0 ! 0 ! lB t--

............... ~.~.!?.9.~.:J.~.~19.l. 9.l JII ..

~
2 file(s) D D ~

Figure 7-11. 680x0 Tiger Slider project

rm Tiger Slider PPC.JJ.
:JI

File Code Data 19-~

v Group 1 Di 01 13 .Q
Tiger Slider .op . 0 ! 0 ! ~

............. .J~~.!r.f.!~!.~!~ L 9.l 9.1 W ..

-0
2 file(s) 0 0 ~

Figure 7-12. PowerPC Tiger Slider project

CONTROL DEFINITIONS

Modifying the Slider Control

There are many ways to improve and customize the Tiger Slider con
trol. One thing I would consider is allowing for a black-and-white, and
a color, set of pictures to be used for the same control. You may choose
to use the DeviceLoop QuickDraw function in order to draw the pic
tures properly, if they were to span multiple monitors. This will give
you much more flexibility in choosing your art. You will not have to
limit yourself to colors that work well in color or black and white,
since the control will draw properly both ways.

You may also elect to update the slider to support vertical posi
tions. Currently, the Tiger Slider is a horizontal-only slider. Rob made
a conscious decision to write it that way, since that was what he
needed at the time. He may have already converted it by the time you
read this, but that doesn't mean that you shouldn't try to do it your
self. Don't compromise your user interface for a horizontal slider. If
you need a vertical slider, make it vertical.

Control Definition Tips

Control definitions are a great way to spruce up your application's
user interface. You can create all sorts of different types of custom con
trols using these short stubs of code. Here are some tips and ideas to
keep in mind while writing your control.

• Make your CDEFs safe fat. Depending on the size of your controls
and what they do on the inside, you may wish to make them na
tive for the PowerPC. The best way to ensure that one control
works on just about any Macintosh you throw at it is to make it
safe fat in nature.

• The Tiger Slider uses other resources, such as PICT and Sinf, in
order to do its job. You can also take advantage of sound resources
in the file that contains the CDEF or any other file on the Macintosh
for that matter. Write a cool control and make it available for others
to use.

• Make sure you deallocate any memory your control uses before it
is disposed. The Tiger Slider shows you how this can be done by
handling the dispCntl message.

• Write a next-generation control. Add sound and 30-rendered
graphics to your controls. It will make them the coolest around
and will take advantage of some of the power in the Power Mac
intosh.

• Invent a new control style. Radio buttons, check boxes, and popup
menus are great, but they have been around forever. Brainstorm
and invent a new control. Who knows, it might end up in the next
version of the system software if it is really useful.

145

CHAPTER EIGHT

Window Definitions

If it's too easy, you're doing something wrong.

-Philip Cummins

Introduction

Every window you see on the Macintosh is drawn by a window
definition procedure. These snippets of code, which are usually stored
in resources of type WDEF, are called by the Window Manager in
order to give a window its familiar look and feel. Window definitions
handle many different tasks, but the most evident is to draw the win
dow using the proper colors, style, and other criteria.

The standard window definition is stored in the system file as a re
source of type WDEF with an ID of 0. This WDEF is used to draw many
of the windows you see on the Macintosh, including dialog boxes, alert
boxes, and document windows. Other types of windows, such as float
ing palettes, movable modal dialogs, and help balloons, are drawn by
other window definition resources (Figures 8-1, 8-2, and 8-3).

When a window is created, the Window Manager calls the proper
window definition resource based on the type of window the program
mer specifies. The window type can be specified in the WIND or DLOG
resource, or in a call to the toolbox routines NewDialog or NewWin
dow. The window definition resource then handles drawing the win
dow, returning information such as where the user clicked within it,

147

148 A FRAGMENT OF YOUR IMAGINATION

Figure 8-1. Dialog box as drawn by the standard
system window definition

Untitled

Figure 8-2. Document window as drawn by the
standard system window definition

Untitled

Figure 8-3. Movable, modal dialog box

WINDOW DEFINITIONS

and performs other tasks requested by the Window Manager. Your pro
gram never actually calls the window definition resource directly; this
is all handled transparently by the Window Manager.

In System 7.0, the standard WDEF added color tinges that are ca
pable of being via the Color control panel. These tinges make the
windows look puffy and three dimensional. You might notice
that the choices for window color in the Color control panel are
limited to just a few selections. The reason for this is that the
Macintosh, by default, has a standard, 256-color palette. Since
most Macintosh computers operate in 8-bit mode, using 256 col
ors, the engineers at Apple had to choose color schemes that
would work well with the available colors. Therefore, there are
only a few from which to choose. In the future, when all Macin
tosh computers run in 24-bit color, you may be able to set the
window colors to anything you like!

In this chapter, we discuss how you can customize the look of your
application's windows by creating your own window definition re
source. Window definition expert Troy Gaul has been kind enough to
offer the source code of his very popular Infinity Windoid window
definition. This window definition is used by numerous developers to
add an attractive looking "floating" window to their programs. You can
see this style used for floating tool and pattern palettes in many paint
programs as well as some word processors. Odds are good that you
own a program that uses the Infinity Windoid (Figures 8-4 and 8-5).

Figure 8-4 .. One variation
of the Infinity Windoid
by Troy Gaul

149

150 A FRAGMENT OF YOUR IMAGINATION

Figure 8-5. Infinity Windoid as used in CodeWarrior

Window Definition Code
The Infinity Windoid is one of the most advanced window definitions
you will find. Mind you, source code in general for these types of code
resources is very difficult to locate, in many cases, and this is a top
notch example.

Main

pascal long main(short varCode, WindowPeek window,
short message, long param)

The main entry point of the window definition is very similar to
that of a control panel, list definition, or control definition. The func
tion is declared as Pascal, returns a long integer, and takes four para
meters. The first parameter is the variation code, which has the same
meaning as it does when used in a control definition. This is how the
window definition knows which variation of itself to draw and main
tain. The second parameter is a pointer to the window record with
which the definition is about to be dealing. The third parameter is the
message that the definition is being called to handle. Lastly, the fourth
parameter varies depending on the message.

Now that you know the calling convention and parameters of the
window definition itself, let's take a look at the code that makes it all
happen.

pascal long main(short varCode, WindowPeek window,
short message, long pararn)

long
Graf Ptr
Boolean

result = O;
savePort;
needSyncPorts;

needSyncPorts = (message == wDraw
I I message == wHi t
I I message == wGrow
I I message== wDrawGicon) && HasCQDraw();

if (needSyncPorts) {
GetPort(&savePort);
SyncPorts();

switch (message)
case wNew:

case wDispose:

case wDraw:

case wHit:

case wCalcRgns:

WINDOW DEFINmONS

DoWinit(window, param, varCode);
break;

DoWDispose(window, param);
break;

DoWDraw(window, param & OxFFFF);
break;

result DoWHi t (window, param) ;
break;

DoWCalcRgns(window, param);
break;

case wGrow: DoWGrow(window, param);
break;

case wDrawGicon: DoWDrawGicon (window, par am) ;
break;

if (needSyncPorts)
SetPort(savePort);

return result;

As usual, when dealing with single-entry point code resources,
our main function consists of a switch statement that dispatches
each message to the appropriate function that handles that message.
We will discuss each of these functions in tum. One thing to note in
our main function is the needSyncPorts flag. For any message that
requires us to draw, we set the needSyncPorts flag accordingly.
Once set, we then call the function SyncPorts (straight from Macin
tosh Programming Secrets, 2nd Edition, by Knaster and Rollin) to en
sure that the color drawing environment is set up properly on a
color machine.

151

152 A FRAGMENT OF YOUR IMAGINATION

New

typedef struct {
WStateData
unsigned char
unsigned char
unsigned char

wstate;
closeToggle;
zoomToggle;
isHoriz;

unsigned char ignoreHilite;
unsigned char hasGrow;

windoidData, *WindoidDataPtr, **WindoidDataHandle;

void DoWinit(WindowPeek window, long param, short varCode)

Handle zoomDataHndl = NewHandleClear(sizeof(WindoidData));

if (zoomDataHndl != nil) {
WindoidDataPtr wdata = (WindoidDataPtr) *zoomDataHndl;

wdata->closeToggle O;
wdata->zoomToggle O;

wdata->ignoreHilite (varCode & kSystem75_toggleTBar) == O;
wdata->hasGrow = (varCode & kSystem75_hasGrow) != O;
window->spareFlag = (varCode & kSystem75_hasZoom) != O;
wdata->isHoriz = (varCode & kSystem75_vertTBar) == O;

window->dataHandle = zoomDataHndl;
SetZoomRects(window);

When our window definition receives a wNew message, we call
the function DoWinit to allocate and initialize our private data struc
tures. After this is done, we stash the handle in the dataHandle field of
the window itself. This allows us to access the information each time
we are called and gives us a handy storage mechanism for just about
any information we may need to track. This technique is used in many
ways throughout the Macintosh Toolbox.

Draw

void DoWDraw(WindowPeek window, long param)
{

WDLDataRec userData;

WINDOW DEFINITIONS

if (window->visible) {
userData.wdlWindow = window;
userData.wdlParam = param;

if (SystemSevenOrLater I I HasSystem7())
#if USESROUTINEDESCRIPTORS

#else

#endif

else

RoutineDescriptor drawProc
= BUILD_ROUTINE_DESCRIPTOR(
uppDeviceLoopDrawingProcinfo, WindoidDrawLoop);

DeviceLoopDrawingUPP uppDrawProc &drawProcRD;

DeviceLoopDrawingUPP uppDrawProc
= (DeviceLoopDrawingUPP) &WindoidDrawLoop;

DeviceLoop(window->strucRgn, uppDrawProc,
(long) &userData, (DeviceLoopFlags) 0);

WindoidDrawLoop(l, 0, nil, &userData);

switch (param) {
case winGoAway:

WindData.closeToggle
break;

case winZoomin:
case winZoomOu t :

WindData.zoornToggle
break;

!WindData.closeToggle;

!WindData.zoomToggle;

What good is a window definition if it doesn't draw a window?
When we receive the wDraw message we need to do what we do best
draw. Assuming the window is visible, we check our system software
version to see how to draw. If we are running under System 6, we sirrl
ply draw in black and white; under System 7, we use the DeviceLoop
function to draw in color or black and white, depending on the moni
tors our window spans at the time.

153

154 A FRAGMENT OF YOUR IMAGINATION

DeviceLoop is one of those functions that not too many people
know about. Yet after you discover it, you will wonder how you
ever programmed without it. Here's how it works. DeviceLoop
accepts a few straightforward parameters including the region
into which you will be drawing, a universal procedure pointer to
your drawing function, a userData field that can be used to hold
private data, and some flags. DeviceLoop then calls your draw
ing function, passing it the bit depth of the monitor on which to
draw, device flags, a handle to the device, and your custom data.
Your function simply looks at the bit depth parameter and draws
accordingly. The neat part is that if the object you are drawing
happens to span more than one monitor, DeviceLoop will call
your drawing function once for each possible bit depth or graph
ics device. For example, if your window spanned two monitors,
your drawing function would be called twice. You simply draw
it the right way for each bit depth, while DeviceLoop handles
setting up your clipping regions to make sure that what shows
up on the screen is what should show up in that particular bit
depth (Figure 8-6). Once complete, your object will show up in
beautiful color on the color monitor and in black and white on
the 1-bit monitor.

§IU Deuicel~op Window =0=
0 items 303 .3 MB in disk 23 .3 MB

0
i--

-0
¢1 1¢ 12:1

Figure 8-6. A window being drawn across two
monitors with different bit depths

WINDOW DEFINITIONS

typedef struct
WindowPeek wdlWindow;
long wdlParam;

WDLDataRec;

static pascal void
WindoidDrawLoop(short depth, short deviceFlags,

GDHandle targetDevice, WDLDataRec *userData)

WindowPeek window = userData->wdlWindow;
Boolean isColor =

CheckDisplay(depth, deviceFlags, targetDevice, window);

switch (userData->wdlParam) {
case wNoHit:

DrawTitleBar(window, isColor);
DrawWindowFrame(window, isColor);
break;

case winGoAway:
ToggleCloseBox(window, isColor);
break;

case winZoomin:
case winZoomOut:

if (window->spareFlag)
TogglezoomBox(window, isColor);

break;

ColorsNormal();

DeviceLoop causes our WindoidDrawLoop function to be called
to do the actual drawing of our window. When this function is called,
it, in tum, calls special functions to draw specific portions of the win
dow. Since the functions use straightforward QuickDraw techniques
to draw, we will not go into them too deeply here. This chapter's
source code contains full comments if you wish to explore these func
tions further. Suffice it to say that this function is responsible for draw
ing the entire windoid and does a good job at that.

155

156 A FRAGMENT OF YOUR IMAGINATION

Hit

long DoWHit(WindowPeek window, long param)
{

Rect theRect;
Point hitPt;
long result = wNoHit;

hitPt.v
hitPt.h

Hi Word (param) ;
LoWord(param);

if (PtinRgn(hitPt, window->strucRgn))
result = winContent;

if (PtinRgn(hitPt, window->contRgn))
II Look for a hit in the grow box.
if (WindData.hasGrow) {

GetGrowBox(window, &theRect);
InsetRect(&theRect, -1, -1);
if (PtinRect(hitPt, &theRect))

result = winGrow;

else {
II Look for a hit in the titlebar.
Rect titleRect;
GetTitleBarRect(window, &titleRect);

if (PtinRect(hitPt, &titleRect))
{

Boolean isActive = window->hilited I I
WindData.ignoreHilite;

result = winDrag;

if (isActive) {
if (window->goAwayFlag)

GetCloseBox(window, &theRect);
InsetRect(&theRect,

-kGadgetHitFudge,
-kGadgetHitFudge);

if (PtinRect(hitPt, &theRect))
result = winGoAway;

if (window->spareFlag) {
GetZoornBox(window, &theRect);
InsetRect(&theRect,

-kGadgetHitFudge,
-kGadgetHitFudge);

return result;

WINDOW DEFINIDONS

if (PtinRect(hitPt, &theRect))
result =

GetZoomHitType(window);

When the user clicks in our window (when your program calls
FindWindow), the Window Manager sends us a wHit message. This
message tells us to find out where the user clicked, if anywhere, in our
window. After extracting the hit point from the long param field, we
use a series of PtlnRgn and PtlnRect calls to narrow down the click
and return the location where the user clicked. The value that we re
turn at this point is passed on to FindWindow, which returns the same
value to the calling program. The program then handles the click ac
cordingly by calling DragWindow, GrowWindow, HideWindow, or
any other Window Manager call it deems appropriate.

CalcRegions

void DoWCalcRgns(WindowPeek window, long param)
{

Rect theRect;

II Calculate the content Rect in global coordinates.
GetGlobalContentRect(window, &theRect);
RectRgn(window->contRgn, &theRect);

II Start off with the structure equal to the content
II and make it include the window frame and titlebar.
InsetRect(&theRect, -1, -1);
if (WindData.isHoriz)

theRect.top -= kTitleHeight - l;
else

theRect.left -= kTitleHeight - l;

RectRgn(window->strucRgn, &theRect);

II Add the shadow to the structure.

157

158 A FRAGMENT OF YOUR IMAGINATION

RgnHandle tempRgn = NewRgn();

OffsetRect(&theRect, 1, 1);
RectRgn(tempRgn, &theRect);
UnionRgn(tempRgn, window->strucRgn, window->strucRgn);

DisposeRgn(tempRgn);

The Window Manager needs to know certain things about our
window that only we can calculate, such as the region that describes
the entire window. The wCalcRgns message asks for the region that
describes our window entirely, similar to the messages with which our
CDEFs have dealt in previous chapters. This function calculates that
region by first converting the rectangle of the window to a region, then
adding the drop shadow and title bar. Regions are a really neat con
cept that you may wish to explore further by reading about Quick
Draw in Inside Macintosh.

Grow and Grow Icon

void DoWGrow(WindowPeek window, long param)
{

Rect growingRect = *(Rect*) param;

if (WindData.isHoriz)

else

growingRect.top -= kTitleHeight - l;
II Add room for the titlebar.

growingRect.left -= kTitleHeight - 1;
II Add room for the titlebar.

InsetRect(&growingRect, -1, -1);

II Draw the window frame.
FrameRect(&growingRect);

if (WindData.isHoriz)
growingRect.top += kTitleHeight - l;

else
growingRect.left += kTitleHeight - 1;

II Now mark the titlebar area.
MoveTo(growingRect.left, growingRect.top);
if (WindData.isHoriz)

WINDOW DEFINITIONS

LineTo(growingRect.right - 2, growingRect.top);
else

LineTo(growingRect.left, growingRect.bottom - 2);

II Mark the scroll bars too.
MoveTo(growingRect.right - kScrollBarPixels,

growingRect.top + 1);
LineTo(growingRect.right - kScrollBarPixels,

growingRect.bottom - 2);

MoveTo(growingRect.left,
growingRect.bottom - kScrollBarPixels);

LineTo(growingRect.right - 2,
growingRect.bottom - kScrollBarPixels);

The wGrow message tells us to draw the growing outline of the
window-that is, the outline that is drawn when our window is being
resized. We are called repeatedly during a window resizing to draw
this in order to give users feedback as to how large or how small the
window will be when they release the mouse (Figure 8-7).

:t• u.it•U&HH .. u..u.u..U..l'U&Ut..U..&&U...tUUl'.U.U.IU.UJl'.&AAUUt.u.t...t.U.l.•.co.•• -----

~[jj~ Resizin a Window ~Im
0 ;terns 303 .3 MB ;n d;s~ 23.3 MB

¢

Figure 8-7. Drawing the growing outline while
resizing a window

159

160 A FRAGMENT OF YOUR IMAGINATION

void DoWDrawGicon(WindowPeek window, long param)

if (window->visible && Wind.Data.hasGrow)
WDLDataRec userData;
RgnHandle saveClip = NewRgn();
RgnHandle tempRgn = NewRgn();
Point mappingPoint;

SectRgn(window->port.visRgn, window->port.clipRgn, tempRgn);

GetClip(saveClip);

GetGlobalMappingPoint(window, &mappingPoint);
OffsetRgn(tempRgn, mappingPoint.h, mappingPoint.v);

SetClip(tempRgn);

userData.wdlWindow = window;

if (SystemSevenOrLater I I HasSystem7())
#if USESROUTINEDESCRIPTORS

#else

#endif

RoutineDescriptor drawProcRD
= BUILD_ROUTINE_DESCRIPTOR(
uppDeviceLoopDrawingProcinfo,
GrowBoxDrawLoop);

DeviceLoopDrawingUPP uppDrawProc = &drawProcRD;

DeviceLoopDrawingUPP uppDrawProc
= (DeviceLoopDrawingUPP) &GrowBoxDrawLoop;

DeviceLoop(window->strucRgn, uppDrawProc,
(long) &userData, (DeviceLoopFlags) 0);

else {
GrowBoxDrawLoop(l, 0, nil, &userData);

SetClip(saveClip);

DisposeRgn(saveClip);
DisposeRgn(ternpRgn);

static pascal void
GrowBoxDrawLoop(short depth, short deviceFlags,

GDHandle targetDevice, WDLDataRec *userData)

WindowPeek window = userData->wdlWindow;
Boolean isColor = CheckDisplay(depth, deviceFlags,

targetDevice, window);

Dr awGrowBox(window, i sColor);
Col orsNormal() ;

WINDOW DEFIN ITIONS

The wDrawGlcon message tells us to draw the grow icon in the
lower right corner of the window. As in our wDraw message, we
make use of DeviceLoop to ensure our drawing is done at its best in
any possible bit depth.

In reality, we need not draw the grow icon in the lower right cor
ner of our window. Although there are standards for the loca
tions of items like the grow icon, our window definition totally
defines the look and feel of our window. Therefore, we can place
items anywhere within it that we choose. Mind you, you would
n't want to draw your grow icon in the middle of the window,
but you should understand that you do have some flexibility
when it comes to custom window definitions.

Dispose

void DoWDispose(WindowPeek window , long pa ram)

if (window->dataHandle)
DisposeHandle (wi ndow->dataHandle);

Finally, when our window is being destroyed, we are called with
a wDispose message that gives us a chance to dispose of our private
data and clean up any other messes we may have created. In our case,
we simply dispose of our dataHandle field, which we allocated earlier.

Compiling Our Code
The window definition projects that we have included allow you to
compile both a 680x0 and a PowerPC version (Figures 8-8 and 8-9). As
mentioned in previous chapters, it is relatively easy to do this and
then create a fat or safe fat version for use on all platforms. You should
experiment with the provided code and make your own custom win
dow definitions by editing the drawing functions . You can make your
custom window look like anything you like, with just a few simple
changes to the Infinity Windoid.

161

162 A FRAGMENT OF YOUR IMAGINATION

rm I nfinitM_Windoid68K.11
'..JI

File Code Data Iii~
v lnfinitg Vindoid O! O! Iii {r

Infinity 'vlindoid .c oi oi [i) 1--

'vlindoidDr aw .c . 0 ! 0 ! ID
............... ~.i~.~~.i~.~.~.H:~ l. 9.l. 9.1 JD ..

t--

{}

3 file(s) 0 0 ~

Figure 8-8. 680x0 Infinity Windoid project

r§lii
-··· ~ ,

I nfinit_yWindoidPPC.11
File Code Data ml~

v lnfinitg Vindoid 01 0! 1%1 .Q
Infinity 'vlindoid .o oj oj ID
'vlindoidDr aw .c oj oj [ii
'vlindoidUtil .c 0 ! 0 ! Iii

................ ~~~.!.r..!~~!~!~...... 9.l.. 9.1.. JD .. {j:
4 file(s) 0 0 Ii

Figure 8-9. PowerPC Infinity Windoid project

Window Definition Tips

Window definitions are a great way to spruce up your application's
user interface. By writing your own window definition, you can add a
look to your program that is unique and eye-catching. You should be
careful not to stray too far from the Macintosh user interface guide
lines, however. Change is good, but too much change can be ugly.
Here are some tips and tricks for which to watch when writing your
own window definitions.

WINDOW DEFINITIONS

• The standard system window definition handles many different
styles of windows. Although this is neat, it may be better to pack
age your code in separate window definitions if you plan on
supporting many variations. Not only can separate window
definitions make your code easier to debug, it can also make your
memory footprint smaller, depending on how the definitions are
used in your program.

• Just because you have a floating palette-looking window defini
tion doesn't mean you will be automatically able to create win
dows that "float." There are plenty of good articles in Macintosh
technical journals that explain how to make windows float. Al
though it is not easy, it can be done without too much hassle. Just
remember, the WDEF just makes it look like a floating palette, it
doesn't make it float.

• WDEF resources should not have their purgeable resource bit set.
The problem lies in the fact that if the WDEF resource is needed
while another application is the current one, the current resource
chain doesn't have the WDEF when the Toolbox tries to call Load
Resource. It punts and throws up a System Error 87 (couldn't load
WDEF). By making sure your WDEF is not able to be purged, you
will not need to worry about this problem.

• An even more interesting problem to track down is when the cur
rent application does have a WDEF of the ID that the Toolbox
wants. In this case, as you might imagine, really strange things can
occur. This can cause a window in your program to draw in a way
that you did not expect, since the wrong WDEF is being used to
do the drawing.

• Window definitions do not have to be so square. That is, make a
round window definition or one with a really funky shape. You
can define any region to be your window. One thing to keep in
mind, however, is that it may slow down some Macintosh com
puters if they have to calculate a really difficult region whenever
the window moves. Depending on the circumstances, it might
look really cool.

163

CHAPTER NINE

H yperCard Externals

I didn 't get where 1 am today by being wise!

-Lawrence D'Oliveiro

Introduction

Any HyperCard users out there? If so, this chapter is for you. As you
probably already know, HyperCard allows you to write external com
mands and functions, known as XCMDs and XFCNs, to extend the
built-in capabilities of the program. These externals are called from
HyperTalk, HyperCard's built-in scripting language. Externals can re
turn information to HyperTalk, accept parameters from HyperTalk,
and allow access to every last Macintosh function.

XCMDs and XFCNs are similar, yet different. Both allow you to
access HyperCard's internal data and do things you otherwise
wouldn't be able to do in HyperCard . The difference is in the
way they are called by HyperCard. An XCMD normally doesn ' t
return a value, yet acts on parameters passed to it. An XFCN, on
the other hand, usually returns a value that you store in a Hy
perTalk variable. In reality, you can probably write your code as
either an XCMD or XFCN. It is just up to you to decide how you
want it to be used in HyperTalk.

165

166 A FRAGMENT OF YOUR IMAGINATION

Externals can be written in just about any high-level language, as
suming you follow the proper calling conventions for them. Most
development environments come with a header file, called HyperX
Cmd.h in CodeWarrior, for use with HyperCard. This header file con
tains all the constants, structures, and function prototypes to interface
with HyperCard. By using this header file and its associated library,
called HyperXLib, you can access the magic of HyperCard from your
C code.

One advanced feature of HyperCard and HyperTalk is that your
code can call back into functions that exist in HyperCard itself. By
making use of these functions, you can alert HyperCard to the fact
that you are about to play some sound, that you want to create a new
window, that you want to hide all of HyperCards palettes, and more.
These callbacks give you control over some of HyperCard's internal
data structures and give you more overall flexibility when writing
your external. You can even execute HyperTalk code from within your
XCMD.

Many externals can also be called from other environments, in
cluding AppleScript and other programs. Developers found the
HyperCard XCMD and XFCN API (Application Programming
Interface) to be so useful and popular that they decided to im
plement support for it in their own programs. By using Apple
Script, you can call XCMDs from the Finder to perform all types
of actions. Mind you, any XCMD that takes advantage of custom
callbacks that are available only in HyperCard will probably not
work properly in other environments.

Externals are stored in resources inside the stack that uses them or
in any other stack in the hierarchy. External commands are stored in
resources of type XCMD and external functions are stored in resources
of type XFCN. Externals are referenced by name and not by ID num
ber, so you must be sure that the names you use are unique. For ex
ample, if you have an XCMD named BeepLoud and you wanted to
call it from HyperTalk code in a button, you might use the following
script:

on mouseup
BeepLoud 3

end mouseup

HYPERCARD EXTERNALS

This HyperTalk code would pass the parameter 3 to the XCMD re
source named BeepLoud. The BeepLoud XCMD would then do what
ever it did best. In our case, this might be to set the volume to the
maximum, beep three times, and then reset the volume. Mind you,
this example is relatively simple and doesn't really do much that Hy
perTalk can't already do by itself. Let's look at another example.

Pretend you have a formula that you want to execute very fast.
Your front end is HyperCard, but you don't want to type your formula
in HyperTalk; you would rather use C. You may create an XFCN in
order to return the result of your processing in a HyperTalk variable.
Your HyperTalk code might look like the following code.

on mouseup
put ProprietaryFormula(field ~fluid value • ,

field "fluid level•)
end mous eup

In this case, you would have a resource of type XFCN named Pro
prietaryFormula. HyperTalk would automatically load the resource by
name and call it, passing the contents of the two fields as parameters.
The XFCN can then do the math and return the result. Not only will a
compiled external make your formula execute faster in most cases, but
it will also keep the formula in a more protected form than if it were
in HyperTalk code. It is harder to disassemble assembly language code
than it is to look at HyperTalk code.

Metrowerks' CodeWarrior also allows you to create your exter
nals using C++, as opposed to straight C. This can be an advan
tage to those of you who want to code in that style using the
features that C++ offers. You should note that there are some
difficulties in doing this, but the good folks at Metrowerks have
worked them out for you. See the examples that come on your
CodeWarrior CD for more information on this.

PowerPC Support

If you've made it this far through the book, you probably have a pretty
good handle on how code resources work. You may also have deter
mined that it really isn't that hard to write a HyperCard external, as
suming you follow all the rules set up by HyperCard's APL One thing

167

168 A FRAGMENT OF YOUR IMAGINATION

that is lacking, however, is native externals for HyperCard. As of this
writing, Apple has yet to produce an interface to the callbacks in Hy
perCard that can be used from PowerPC code. Luckily, Metrowerks
provides a library, and source, called PowerHyperXLib by Robert Coie
from Intrigue Corporation. These can be used until Apple provides
their own solution.

By the time you read this, HyperCard 2.3 (or later) should have
been released . It is scheduled for release in mid-to-late 1995 and
is supposed to include support for PowerPC native XCMDs and
XFCNs. You should be able to replace the PowerHyperXLib eas
ily with whatever is provided with this brand new version.

XCMD Development

In this chapter, we will be writing two externals for HyperCard
both of them XCMDs (Figure 9-1). The first will record audio to disk
in the form of an AIFF file. The second will play back that AIFF

RIFF Stack

These digita 1 audio XCMDs can be used to record an A IFF file to disk
and to play an A IFF file from disk . Specia 1 thanks to David Mash for
his help during the development process .

Figure 9-1. The stack that houses the two XCMDs we will develop in this
chapter

HYPERCARD EXTERNALS

audio from disk, asynchronously. That is, while the audio is playing
back, you can continue to work in HyperCard, or launch another ap
plication, or go back to the Finder. Any amount of audio will be
played in the background while you do other things. Let's look at the
code for each.

RecordToDisk XCMD Code

The RecordToDisk XCMD uses the Sound Manager function
SndRecordToFile to record sound data directly to your hard d isk. The
data that is recorded is stored as an AIFF file-a standard audio file
format. You can read more about this format and the functions we are
using in Inside Macintosh, "Sound." When the XCMD is invoked , it
first asks the user where to save the file using the StandardPutFile
function. After the user selects a d irectory and presses the Save button,
the standard recording d ialog box (Figure 9-2) is displayed to allow
record ing of audio. After the user records the audio and presses the
Save button, the AlFF data is written to the file.

The RecordToDisk XCMD takes two parameters that are not re
quired . If you would like to pass them in, you can, but if you do
not, default values will be used . Those parameters ar~ the top and
left coordinates of the standard recording dialog box. If you pass in
values, the dialog box will be positioned at that location. If you
choose not to pass these values then the XCMD will automatically
place the dialog box in a location relative to the frontmost window
in HyperCard.

[!]~@][I] <J
(Cancel) Record Stop Pause Play

t 00:00 ~~HH~
0 minutes 49:08

Figure 9-2. The standard recording dialog box as displayed by the
RecordToDisk XCMD

)

169

170 A FRAGMENT OF YOUR IMAGINATION

struct XCmdBlock {

} ;

short
Handle
Handle
Boolean
Ptr
short
short
long
long

paramCount;
params[16);
returnValue;
passFlag;
entryPoint;
request;
result;
inArgs[8);
outArgs[4);

#define kMinParamCount
#define kMaxParamCount
#define kErrorFlag

0
2
(short)-1

pascal void main(XCmdPtr xp)
{

StandardFileReply
Point
OS Err
short
Boolean
Boolean
Str32

#ifndef powerc

reply;
corner;
err = noErr;
refNum = -1;
cancelled = false;
fileCreated = false;
tempStr;

long oldA4 SetCurrentA4 () ;
RememberA4();

#endif

The first thing we want to do is declare our XCMD function the
proper way. HyperCard defines that the format is a Pascal function
that returns no value and takes a pointer to a data structure. This data
structure contains all the information we need to do our job. You will
note that if we are not running on a PowerPC, we make use of A4-
based globals.

if ((xp->paramCount != kMinParamCount) &&
(xp->paramcount != kMaxParamCountll
SetError{xp, MError: Form= RecordToDisk [h, v). ft 0);
goto fail;

if (xp->paramCount == 2) {
corner.h (short)HandleToNum(xp, xp->params[O]);
corner.v = (short)HandleToNum(xp, xp->params[l));

else {

HYPERCARD EXTERNALS

err= GetLocOfCardWindow(xp, &corner);

if (err == kErrorFlag) {

SetError(xp,

"Error: Couldn't get location of card window. "

0);

goto fail;

We then verify the number of parameters that were passed in to
our XCMD. If the parameter count is wrong, it should either be 0 or 2,
we send a message back to HyperCard to alert the user of the proper
form. If the parameter count is 2, we use the values to represent the lo
cation of the standard recording dialog box. Otherwise, we get the lo
cation of the card window and use that as the location for the standard
recording dialog box.

StandardPutFile ("\pSave AIFF file as: ", "\pAIFF Audio", &reply) ;
if (!reply.sfGood) {

SetError (xp, "cancel n I 0);
goto exit;

ZeroToPas (xp, "Go to this card", tempStr);
SendHCMessage(xp, tempStr);

We must then ask the user where to save the file using the Stan
dardPutFile function. After this function has been called, we attempt
to update the screen by executing the HyperTalk script "Go to this
card." This will get rid of any "white erased space" the standard file
dialog box put on the screen after it disappeared.

if (reply.sfReplacing) {
err= FSpDelete(&reply.sfFile);
if (err != noErr) {

SetError (xp, II Error: Couldn I t replace file. n err) ;
goto fail;

err = FSpCreate (&reply. sfFile, '????', 'AIFF', srnRoman);
if (err != noErr) {

SetError (xp, "Error: Couldn't create sound file. " err);
goto fail;

fileCreated = true;

171

172 A FRAGMENT OF YOUR IMAGINATION

err= FSpOpenDF(&reply.sfFile, fsRdWrPerm, &refNurn);
if ((err != noErr) 11 (refNurn == -1)) {

SetError (xp, "Error: Couldn' t open sound file. " err) ;
goto fail;

Now that we know the user wants to record a sound, we first
must delete any previous file that might exist, create the new file with
the proper type and creator, and then open the data fork of the file for
recording.

BeginXSound(xp, nil);
err= SndRecordToFile(nil, corner, siBestQuality, refNurn);
EndXSound(xp);
cancelled= (err== userCanceledErr);
if (cancelled) {

SetError (xp, "cancel" , 0) ;
goto fail;

if (err != noErr)
SetError(xp, "Error: Couldn't record to sound file. • err);
goto fail;

Just before we call the Sound Manager to do the actual dirty work,
we need to tell HyperCard that we are about to do something with
sound. The BeginXSound callback function alerts HyperCard that our
XCMD is about to allocate sound channels and use them. After we are
through recording, we call EndXSound to tell HyperCard that it can
reallocate any sound channels of which it may have temporarily dis
posed for us.

goto exit;
fail:

exit:

if (refNum != -1)
FSClose (refNum);

refNum = -1;
if (fi.leCreated)

FSpDelete(&reply.sfFile);

if (refNum ! = -1) {
FSClose (refNum);
FlushVol(nil, reply.sfFile.vRefNum);
if (cancelled)

FSpDelete(&reply.sfFile);

#ifndef powerc
SetA4 (old.A4);

#endif

return;

HYPERCARD EXTERNALS

Lastly, we clean up any messes in case of an error. Otherwise, close
the file, flush the volume, and restore the value of A4. The XCMD is now
completely through executing and has recorded an AIFF file to disk.

Some of the functions that are called from our main routine are in
our code, but others are callback functions to HyperCard. Functions
that send HyperCard a message, such as BeginXSound and EndX
Sound, are examples of callbacks.

In order to make this XCMD compile as native PowerPC code, we
can simply add the PowerXLib to a PowerPC project that creates the
XCMD resource. The resource needs to have a native header on it by
default. This can be easily selected as an option in CodeWarrior. After
this is done, you have a native XCMD using the exact same source
code as the previous code.

PlayFromDisk XCMD Code

The PlayFromDisk XCMD plays back an AIFF file that was recorded
using the RecordToDisk XCMD. In reality, it can play back any AIFF or
AIFC file no matter how it was recorded. AIFC files are compressed
versions of AIFF files that, ultimately, take less space on disk and are
decompressed on the fly by the Sound Manager. The neat thing about
this XCMD is that it makes use of the asynchronous Sound Manager
and plays back the file, direct from disk, while still allowing the user
to continue to use HyperCard or switch to another application and do
other work. Using this XCMD, you could make HyperCard play back
ground music for the entire time you use your Macintosh.

In order to make use of this asynchronous sound playback, we
must take advantage of several features that are new to HyperCard
2.0. These include the ability for an external to contain interrupt code
(i.e., code that is called at interrupt time). We also make use of the abil
ity to create windows within HyperCard from our XCMD. Let's take a
look at the following code and see just how all this works.

#define kMinParamCount
#define kMaxParamCount
#define kErrorFlag

0
1
(short)-1

173

174 A FRAGMENT OF YOUR IMAGINATION

#define kDefaultBufferSize
#define kBufferDecrement
#define kSmallestBuffer

(1024*100L)
(1024*5L)
(1024*20L)

#define kGlobalisPlayingFlag
#define kWindowName

"\pZobkiwisPlaying"
"\pZobkiw"

#define kidleTime 1

Boolean
short
long
FilePlayCornpletionUPP

gCloseFile;
gFileRefNum;
gSoundChannel;
gFPCupp;

pascal void main(XCmdPtr xp)
{

#ifndef powerc
long oldA4
RememberA4();

#endif

SetCurrentA4();

if (xp->paramCount == -1) {
HandleWindowMessage(xp);

else {
HandleXCMDMessage(xp);

#ifndef powerc
SetA4(oldA4);

#endif
}

Our main entry point is very straightforward. First it sets up our
A4 world for global access. It then checks the paramCount field of the
XCmdBlock to see if this is a message for the XCMD or for the win
dow that is later created by the XCMD. Depending on who the mes
sage is for, one of two routines is called. In the order the messages are
received, while the XCMD is executing, we will look at the HandleX
CMDMessage function first.

void. HandleXCMDMessage(XCmdPtr xp)
{

Str255
Str32
StandardFileReply
FSSpec
SFTypeList
long
OS Err

fileName;
tempStr;
reply;
fileSpec;
typeList;
bufferSize
err = noErr;

kDefaultBufferSize;

short
WindowPtr
Rect
SndChannelPtr

HYPERCARD EXTERNALS

refNum = -1;
w = nil;
boundsRect = {0,0,33,33};
chan = nil;

The HandleXCMDMessage function exists mainly to begin the
playing of an AIFF file. We start out by declaring a host of local vari
ables that will assist with our main goal.

XWHasinterruptCode(xp, w, true);

if ((xp->pararnCount != kMinPararnCount) &&
(xp->paramCount != kMaxPararnCount))
SetError (xp, "Error: Form = PlayFromDisk [fullPathName]. "

0) i

goto fail;

We need to make sure that HyperCard does not allow our XCMD
to be moved in memory, so we call the XWHaslnterruptCode function
so HyperCard is made aware of that fact. With that in mind, we can
then check our parameters to make sure that we have the proper num
ber of them. This particular XCMD accepts either the full path name of
the AIFF file to play or nothing at all (in which case it will ask the user
to choose which file to play).

Handle hGlob;
Str32 tempStr;
hGlob = GetGlobal(xp, kGlobalisPlayingFlag);
HandleToPStr(tempStr, hGlob);
if (StrToBool(xp, tempStr)) {

MyCompletionRoutine((SndChannelPtr)gSoundChannel);
return;

Next we must see if we are already playing a sound. When we
begin playing a sound, as you will see in the following code, we cre
ate and set a global variable in HyperCard to true. If this variable ex
ists and is set to true at this point, we know that a sound is currently
being played. In this case, we call our completion routine directly to
begin the steps needed to stop the sound from playing. This way, call
ing the XCMD while a sound is playing will automatically stop that
sound from playing.

175

176 A FRAGMENT OF YOUR IMAGINATION

gCloseFile = false;
gFileRefNum = -1;
gSoundChannel = OL;
gFPCupp = NewFilePlayCompletionProc(MyCompletionRoutine);

if (xp->paramCount == 0) {
typeList[OJ = 'AIFF';
typeList[l] = 'AIFC';
StandardGetFile(nil, 2, typeList, &reply);
if (!reply.sfGood) {

SetError (xp, "cancel" , O) ;
goto fail;

fileSpec = reply.sfFile;

ZeroToPas (xp, "Go to this card", tempStr);
SendHCMessage(xp, tempStr);

else {
HandleToPStr(fileName, xp->params[OJ);
err= FSMakeFSSpec(O, 0, fileName, &fileSpec);
if (err != noErr) {

SetError (xp, "Error: Couldn't locate file. " err) ;
goto fail;

At this point we know that no sound is currently being played, so
we begin the work to make it play. After initializing our global vari
ables, we check the parameter count. If the count is 0, then we know
we need to ask the user to choose which AIFF or AIFC file to play.
Otherwise, the parameter count will be 1 and we can use that to create
an FSSpec to point to the audio file. You will note that we use our "Go
to this card" trick after we display the standard file dialog box in order
to update the contents of the screen properly.

w = NewXWindow(xp, &boundsRect, kWindowName,
false, documentProc, false, false);

if (w == nil) {
SetError (xp, "Error: Couldn' t create window. " 0) ;
goto fail;

When we know we have a file to play, we need to create a Hy
perCard window. The creation of this window is the key to our asyn
chronous operation. You see, we need to check periodically to see if
the sound has completed playing. Normally, XCMDs cannot obtain
periodic time from HyperCard. But, luckily, HyperCard's external

HYPERCARD EXTERNALS

window mechanism allows windows created by XCMDs to receive
idle time. By creating a bogus window that we always leave invisi
ble, we ensure that we will receive idle time to allow us to check if
the sound is done playing.

err= FSpOpenDF(&fileSpec, fsRdPerm, &refNum);
if ((err != noErr) 11 (refNum == -1)) {

Set Error (xp, "Error: Couldn't open sound file. " err) ;
goto fail;

SetCursor(*GetCursor(watchCursor));

SetXWidleTime(xp, w, kidleTime);

BeginXSound(xp, nil);

err= SndNewChannel(&chan, sampledSynth, 0, nil);
if (err ! = noErr) {

SetError(xp, "Error: Couldn't allocate sound channel. "
err);

goto fail;

gFileRefNum refNum;
gSoundChannel = (long)chan;

We now open the audio file, tell HyperCard that our window
wants idle time every 1 tick, and alert HyperCard that we will be deal
ing with sound. We now allocate our own sound channel to be used
when playing the sound. When it is allocated, we remember the refer
ence number of the open file and the handle to the sound channel in
global variables. These will be important to keep around, because
when the sound is finished playing we need to close the file and dis
pose of the sound channel.

tryAgain:
err = SndStartFilePlay(chan, refNum, 0, bufferSize,

nil, nil, gFPCupp, true);
if ((err == notEnoughBufferSpace) &&

(bufferSize > kSmallestBuffer)) {
bufferSize -= kBufferDecrement;
goto tryAgain;

if (err != noErr) {
SetError(xp, "Error: Couldn't play the sound file. " err);
goto fail;

177

178 A FRAGMENT OF YOUR IMAGINATION

We now attempt to play the file using a specific buffer size. If the
buffer cannot be allocated, we loop, decrementing the buffer size by
SK each time, until it can be accommodated or until we reach a mini
mum buffer size. In most cases, the sound will begin playing at this
point, unless HyperCard is really tight on memory.

SetGlobal(xp, kGlobalisPlayingFlag, CopyStrToHand("true"));

Assuming the sound begins playing, we set our custom global
variable to true. Remember, this is the variable we tested earlier in this
function to see if a sound was playing at all.

goto exit;
fail:

gCloseFile = false;
gFileRefNum = -1;
gSoundChannel = OL;
if (gFPCupp) {

DisposeRoutineDescriptor(gFPCupp);
gFPCupp = ni 1 ;

Set.XWidleTime{xp, w, 0);
XWHasinterruptCode(xp, w, false);
EndXSound (xp);
if (W)

CloseXWindow(xp, w);
exit:

InitCursor();
return;

At this point, if we failed anywhere in the routine we would have
entered the fail label and cleaned up after ourselves. Otherwise, we
simply return and exit our XCMD.

pascal void MyCompletionRoutine(SndChannelPtr chan)
{

#ifndef powerc
long oldA4

#endif

gCloseFile

SetUpA4();

true;

#ifndef powerc
RestoreA4(oldA4);

#endif
}

HYPERCARD EXTERNALS

Remember, we have requested that the SndStartFilePlay function
play asynchronously and have passed a universal procedure pointer
to it that describes our MyCompletionRoutine function. Therefore, this
function will be called as soon as the file has completed being played
by the Sound Manager. When it is called, it will set the gCloseFile vari
able to true, which means it is now okay to close the audio file, as the
sound is no longer playing.

The reason we set a flag at this point rather than actually closing
the file is because this function is executing at interrupt time. Interrupt
time is when the Macintosh is in a state of disrepair-the Memory
Manager may be in the middle of moving blocks of memory or the
File Manager may be in the middle of performing a read or write.
When you have a completion routine, such as ours, that is called at in
terrupt time; you cannot move memory or do much of anything ex
cept set a flag. Therefore we follow the rules and do just that.

Now, because we created a window and requested that it receive
idle time, our XCMD will be called with the paramCount field of the
XCmdBlock set to -1 every tick or so. When this happens, our main
entry point calls our HandleWindowMessage function. This function
is responsible for checking to see if the sound has completed playing
or not by looking at the value of the gCloseFile variable, among other
things.

void HandleWindowMessage(XCmdPtr xp)
{

XWEventinfoPtr xw = (XWEventinfoPtr) (xp->params [O]);

WindowPtr w = xw->eventWindow;
OSErr err = noErr;

if (xw->event.what == xOpenEvt)
II ignore this message

else if (xw->event.what == xCloseEvt)

if (gFileRefNum != -1) {
FSClose(gFileRefNum);
gFileRefNwn = -1;

if (gSoundChannel != nil) {
err= SndDisposeChannel((SndChannelPtr)gSoundChannel,

true);
if (err != noErr)

SetError (xp, "Error: Disposing sound channel. "
err);

gSoundChannel = OL;

179

180 A FRAGMENT OF YOUR IMAGINATION

SetXWidleTime(xp, w, 0);
XWHasinterruptCode(xp, w, false);
EndXSound(xp);
SetGlobal(xp, kGlobalisPlayingFlag, CopyStrToHand("false"));
xp->passFlag true;

if (gFPCupp)
DisposeRoutineDescriptor(gFPCupp);
gFPCupp = nil;

}else if ((gCloseFile == true) && (gSoundChannel != nil)) {
gCloseFile = false;
CloseXWindow(xp, w);

When this function is called, if the gCloseFile flag is set to true, we
immediately set it to false and then call the HyperCard callback func
tion CloseXWindow to close our invisible window. The XCMD is then
called with the XCloseEvt message, which forces us to enter this func
tion again. This time we will take the xCloseEvt path. The first thing
we will do is close the audio file. Next, we dispose of the sound chan
nel that we were using to play the audio, and alert HyperCard that we
no longer need idle time, that we no longer have interrupt code being
used, and that we are done using the Sound Manager. We also set our
own HyperTalk global flag to false so we can begin playing another
sound if needed. After this function exits, the XCMD has completed its
job and will, most probably, be totally unloaded from memory. The
next time it is called, it will start from scratch.

This XCMD performs some pretty advanced stuff. If you didn't
quite understand it the first time through, take a break and then read
through this section again. Believe it or not, everything it does is legal;
it's just a bit tricky.

Compiling Our Code
The XCMDs in this chapter each have two projects. One project builds
a 680x0 version of the XCMD and the other builds a PowerPC version
(Figures 9-3, 9-4, 9-5, and 9-6). Our version builds them into two sep
arate HyperCard stacks, but there is no reason why you couldn't build
a fat or safe fat XCMD resource, as we have done in the past with
other code resources. You can build it in any form you so desire and,
as always, this will vary with your specific needs.

HYPERCARD EXTERNALS 181

[El!i Pla_yfromDisk 68k.Jl
File Code Data l9 •

V Single Segment 0 ! 0 i • 1:1 -0-
Play Fromo;sk XCMD .c O ! 0 l • fD ~
ANSI (2i) C.68K.Lib 0 ~ 0 ~ [ii
MacOS.lib : 0 l 0 ~ [ii

............... ~.Y.P.~~~-~-~.~.:.!.:Jt~ J Q.L Q.L 111.. ~

4 file(s) 0 0 va
Figure 9-3. 680x0 project file for the PlayFromDisk XCMD

~[ii PlayfromDisk PPC.Jl
File Code Data .151 ~-

v Group 1 0 Oi • l:l 1}
PlayFromD;sk XCMD.c O 0 ! • LEI r-
lnterfacelib 0 0 l III
PoverHg per XL ib 0 0 ! III

............... ~.!~!;;.!:.~.!!i. Q Q.L. Lf.l. -0
4 file(s) 0 0 WJi

Figure 9-4. PowerPC project file for the PlayFromDisk XCMD

- --

~Iii RecordToDisk 68k.Jl
File Code Data ml-v Single Segment O! 0 a -0-

RecordToo;sk XCMD .c o! 0 [fJ 1----1

ANS I (2i) C .68K .Lib ol 0 III
HacOS.lib Oi 0 ra

............... ~.Y.P.!~~.~J~.:.!.:I~.~J QJ Q ID..

-0
4 file(s) 0 0 ~

Figure 9-5. 680x0 project file for the RecordToDisk XCMD

182 A FRAGMENT OF YOUR IMAGINATION

File Code Data 151 ~ ·

v Gr~:::~~::~~~bXCMD.o ':I ~i ~i ! St
PowerHy perXL ib . 0 ! 0 ! Iii

............... ~.!~!;.~.t~ 1 9.l 9.l ta .. 1--:---

-0-
4 file(s) 0 0 II)

Figure 9-6. PowerPC project file for the RecordToDisk XCMD

HyperCard External Tips

HyperCard externals offer many advantages. They allow you to con
centrate on your algorithms and leave all of the user interface issues to
HyperCard. This, alone, is a reason so many programmers like to pro
gram for HyperCard. Keep in mind the following tips and ideas when
building your HyperCard externals.

• HyperCard can be a nice front end for your programming pro
jects. You can easily hide your proprietary algorithms in the form
of XCMDs and XFCNs. You will also gain speed increases in this
manner as well.

• As with most code resources, the choice to make them PowerPC
native or not will depend on what they actually do inside. If the
XCMDs perform a very simple task, depending on the task, Power
PC code may not make a substantial speed difference. Given this,
it may not be worth the extra memory that the PowerPC code will
take up or the time invested in developing and testing the XCMD.
The decision is yours.

• If you create a window in HyperCard---one that is visible-you
can make it use any window definition you like. So, write a really
cool window definition like we've discussed in Chapter Eight, in
clude the WDEF in the HyperCard stack on which you are work
ing, and then create your HyperCard window from within your
external. You can have PowerPC code in any code resource to re
ally make your stack fly.

• There are hundreds of externals for HyperCard available on on
line services for you to download. Many of them include source
code as well. Even if you don't have an idea for an external,

HYPERCARD EXTERNALS

download one and convert it to be PowerPC native. Think of the
speed increase the XCMD will exhibit. Others may thank you and
it will be good practice.

• Push it. Who would have thought that you could make Hyper
Card play an asynchronous AIFF file? Until I actually figured it
out, I never really thought about how useful it would be. No idea
is too crazy. I built off a concept that HyperCard had already im
plemented-play sounds. I took it to the next level and it worked!
Experiment and explore the possibilities!

183

CHAPTER

Photoshop Filters

Introduction

Please don't crash!

(Who hasn't said this?)

TEN

Adobe Photoshop is an amazing application. As of this writing, it is
the world's leading photo design and production tool. It allows you to
create your own images, edit scanned images, and even import images
in a variety of formats. Photoshop also allows artists, photographers,
and graphic design professionals to perform color-correction and
other high-end tasks easily and directly on their Macintosh. Anyone
who has used Photoshop agrees that it is one of the most powerful ap
plications of its kind.

Photoshop contains many standard tools that allow users to grasp
the power of the program quickly and easily. The tool palette in Figure
10-1 will most likely look familiar to you if you've ever used a paint
program on the Macintosh. You have your standard selection and edit
ing tools available, as well as other tools that allow you to manipulate
your images in new and exciting ways. For example, Photoshop sup
ports a magic wand tool, airbrush tool, smudge tool, blur tool, and a
sponge tool, to name a few.

185

186 A FRAGMENT OF YOUR IMAGINATION

Figure 10-1. Photoshop' s
main tool palette

Along with the obvious tools that are available in the palette, there
are numerous menu items that can be used to adjust your images.
These options include the ability to adjust brightness, contrast, hue,
saturation, color levels, and curves. Curves, for example, shown in
Figure 10-2, allows you to adjust the tonal range of an image to your
exact specifications. Photoshop gives you complete control over every
aspect of your images.

Not that all of this power isn't enough, but one of the things that
makes Photoshop so popular and useful is the fact that it supports
Plug-in filters. These filters allow third-party developers, and Adobe,
to create new functionality that can be added to the program simply

.... Channel: RGB

Cu rues

:3€0 ... 1-
_,,.--"I

./
;/ ,,.
"

;r:;1 fl
'f' ii !

. : ... : , :
····: ············· · ··:-······· · ~····· ···· :-.:""···· ······ ··· ···· : · ···· ····· ··· ········ . : .. :: :

: \ -~ :

PHOTOSHOP FILTERS

!ill

t OK Il
(Cancel)

(Load ...)
(Saue ...)

(Smooth)

(() Ru to) I ~ I I
lti/IJ' ll

Figure 10-2. Editing curves

Input: 103
Output : 156 [Z] Preuiew

by d ragging a file into the Plug-ins folder. Whenever Photoshop is
launched, it scans this folder and all of its subdirectories and makes
these filters available to the user (Figure 10-3). You may remember that
this mechanism is similar to what we discussed in Chapter Three,
"Application Extensions."

Photoshop actually supports a number of Plug-in filter types.
These include

• acquisition modules, which open an image in a new window. Ac
quisition modules can be used to interface to scanners, read im
ages in proprietary formats, or produce synthetic images. These
modules are accessed via the Acquire hierarchical menu in the File
menu.

187

188 A FRAGMENT OF YOUR IMAGINATION

§[]§§§ Rdobe Photoshop 3.0 §§f2J
5 items 11 4 .4 MB in disk 1 41 .6 MB av

Adobe Photoshop ™ 3 .0

;;.<pn•p;

!':X9~A!

§W§
Plug-ins Read Me

~
0

Goodies

G3
Tutorial 0

¢ 'it:i

Figure 10-3. Photoshop folder hierarchy showing Plug
ins folder

• export modules, which output an existing image. Export modules
can be used to send an image to a printer that is not accessible via
the Chooser, or to save files in proprietary formats. These modules
are accessed via the Export hierarchical menu in the File menu.

• file format modules, which provide support for additional image
formats. These modules are accessed via popup menus in the
Open-, Save As-, and Save a Copy- dialog boxes.

• filter modules, which modify a selected area of an image. These
modules are accessed via the Filter menu and all of its submenus.

All of these filter types are discussed in detail in the Adobe
Photoshop 3.0 Software Development Kit (SOK). This SOK is
available directly from the Adobe Developers Association
(ADA). You can contact them by sending email to devsup
person@adobe.com or by calling 415-961--4111. You can also
download the SOK via "FfP" (File Transfer Protocol) by access
ing ftp.adobe.com or ftp.mv.us.adobe.com. You should note that
Adobe cannot offer technical support unless you join the ADA.

In this chapter, we will be discussing Photoshop Filter Plug-ins.
These are undoubtedly the most popular type of Plug-in to write for
Photoshop. Filters allow you to manipulate totally an entire image or

PHOTOSHOP FILTERS

the current selection. If you've ever used Kai's Power Tools from HSC
Software, then you know what filters are capable of doing. Kai, and
the entire team at HSC, are the masters of Photoshop filters and have
created some exciting ones with incredible user interfaces. I think it is
safe to say that they single-handedly pushed the envelope of filter de
sign in Photoshop.

Filters can do just about anything you like to an image. When a
filter is called, it is passed the image data, along with other informa
tion that describes specifics about the image and its environment. The
filter can optionally display a dialog box to users to allow them to
configure it and ultimately apply the changes to the image itself. Pho
toshop provides a long list of routines that are available to the filter in
order to allow it to display dialog boxes, about boxes, and progress
meters easily.

The Gaussian Blur filter displays the dialog box shown in
Figure 10-4. The image preview area allows the user to view a portion
of the image to see what it will look like after the blur takes effect. The
+and - buttons allow the user to zoom in and out of the preview. The
Preview check box makes the current settings apply to the entire
image in real time, so you can move the dialog box off to the side and

Gaussian Blur

n OK Il
(Cancel)

D Preuiew

G 1 :2 G

Radius: 111!111111 piHels

Figure 10-4. Gaussian Blur movable, modal options
dialog box

189

190 A FRAGMENT OF YOUR IMAGINATION

see what your actual image will look like with the filter applied. The
editable text area and the triangle slider a llow you to change the level
of the blur you want to apply. The dialog box in your filter can be as
simple or complex as you like.

Technically speaking, filters are stored in files of type 8BFM with a
creator of 8BIM. When writing your filter, you normally store your
680x0 code in a resource of type 8BFM in this file. Your PowerPC code
is stored in the data fork of the filter. Most developers will also add an
about box to their filter in the form of a DLOG resource. The only
other required information in the filter file itself is a resource of type
PiPL, affectionately called a Pipple resource. This Plug-in property list
resource contains all of the information needed by Photoshop to allow
it to use your filter.

The PiPL resource is the new replacement for the old PiMI, pro
nounced "Pimmy," resource. The PiMl resource was very limited
and contained only limited information. The PiPL resource is ex
tensible and flexible, and allows for Plug-ins with code for mul
tiple platforms as well as many other options. You can still
include a PiMI resource in your Plug-in files if you want to sup
port versions of Photoshop previous to 3.0. However, you will
need to make sure you don't take advantage of any 3.0-specific
features when running under an older version, unless of course
you want to crash.

The PiPL resource is a very advanced data structure and contains
lots of information. The basic structure begins as displayed in the fol
lowing code.

typedef struct PI PropertyList
int32 version ;
int32 count;
PIProperty properties [l];

PIPropertyList ;

The version field contains the version of the PiPL resource forma t.
The current version, as of this writing, is 0. The count field contains
the number of properties in the PiPL. This field can be 0, meaning the
PiPL contains no properties. The properties field is a variable-length
array of PIProperty structures. The PIProperty structure is defined as
presented in the following code.

PHOTOSHOP FILTERS

typedef struct PIProperty {
OSType vendorID ;
OSType propertyKey;
int32 propertyID ;
int32 propertyLength;
char propertyData[l];

PI Property;

The vendorID field identifies the vendor defining this particular
property type. This allows vendors to define types that do not inter
fere with Adobe or other vendors. The default vendorID for Adobe is
8BIM. The propertyKey field specifies the type of property. Each type
of property contains specifically formatted data that follows in the
propertyData field. The propertyID field allows developers to store
more than one property of the same type, much like the Resource
Manager allows more than one resource of the same type. Using this
mechanism, each property has a unique type and ID for each ven
dorID. The propertyLength field contains the length of the property
Data field. This allows manufacturers who support the Plug-in
architecture, but not a particular property, to skip over it without any
ill effects. Lastly, the propertyData field contains the data specific to
this property. Figure 10-5 displays an example portion of a PiPL.

You should note that we will see types such as int32 and others
throughout the Plug-in SDK. The reason for this is because the
entire Plug-in architecture is cross-platform. That is, it can be
used to run under Windows, Macintosh, and Power Macintosh.
By using types such as int32, they can be specified and defined
for each platform to ensure that programmers know the exact
type they are using. It takes some getting used to, but it should
n' t be much trouble. However, since we are writing code that we
never intend to run on anything but a Macintosh, I have taken
some liberties and have continued to use short, long, and other
types with which I am familiar.

There are numerous different property keys available. Table 10-1
presents a partial list of some of the property keys you will see most
often.

191

192 A FRAGMENT OF YOUR IMAGINATION

-
PiPL 1 6000 from PiPL PPC

PiPl Version Current Version=O i}.
Property Count 7 =
,............... Property Count # 1 ··· .:.,
l Vendor Key Adobe Photoshop™='8BIM' llllli ~

1...-1 Property Key Kind= 'kind'

Property Count #2
Vendor Key Adobe Photoshop™='8BIM'

1...-1 Property Key Name=' name'

4 Byte A Hgnment

(New] [Edit] (Cancel)

Figure 10-5. Sample PiPL portion

PHOTOSHOP FILTERS

Table 10-1. Property Keys

Property Key What it Is Used For (propertyData Contents)

Kind The type of Plug-in (filter, acquire, etc.)
Name The name of the Plug-in
Category Category of the type (For filters, this specifies

the name of the hierarchical menu in the Filter
menu within which the filter will appear.)

Version The version of the Plug-in interface that the
Plug-in supports

Code68k Resource type and ID used to store the 680x0
code for the Plug-in

Code68kFPUOnly Resource type and ID used to store the 680x0
code for the Plug-in that requires a floating
point unit

CodePowerPC Information on where in the data fork to find
the PowerPC code for the Plug-in

SupportedModes

FilterCaseinfo

Required Host

Flags describing which image modes the Plug
in supports
Flags controlling the filtering process and pre
sentation of data to the Plug-in
The creator of a specific host application (such
as 8BIM for Photoshop) if the Plug-in requires a
feature of that host to work properly

The vendorID exists because companies other than Adobe have
adopted the Photoshop Plug-in architecture and use it in their
own applications. When a program uses the architecture, it may
decide to add a feature to the way it is implemented. By using a
unique vendorID, these programs can know when they are deal
ing with one of their specific features or one that was created by
Adobe. This addition shows forethought by the writers of the
SDK and is good development practice: Think of the future.

193

194 A FRAGMENT OF YOUR IMAGINATION

You must fill in your PiPL resource properly in order for your
Plug-in to work. There are numerous options and they can be over
whelming if you are new to advanced graphics terminology. However,
this shouldn't stop you from experimenting. The filters developed in
this chapter are relatively simple and should give you a starting point
from which to jump if you decide to plug yourself in to Photoshop.
Let's take a look at our filters!

As we developed our filters, we found some problems with ver
sion 3.0 of the SDK that we used when trying to compile with
CodeWarrior. Here is a short list of the changes we made to the
SDK. You may choose to implement these changes in another
way, but we decided to take the brute force method.

1. Photoshop.h needs to check for _ MWERKS_ as well as all
the other symbols it checks for before #including all of the
standard Photoshop header files.

2. In MacStd.h, the #define System.SixOrLater 1 definition is a
duplicate. We commented it out.

3. In MacStd.h, the #include <F'Cntl.h> does not exist and should
be commented out.

4. In the sample code, the #pragma unused is not supported and
was removed.

5. In MacStd.h, the #include <SANE.h> does not need to be in
cluded if _ powerc is defined.

6. I added the following code to the sample:

#ifdef __powerc
enum {

);

uppPhotoshopFil ter Procinfo = kPascalStackBased
I STACK_ROUTINE_PARAMETER(l , SI ZE_CODE(sizeof(short)))
I STACK_ROUTINE_PARAMETER(2, SIZE_CODE(sizeof(Ptr)))
I STACK_ROUTINE_PARJ\METER(3, SI ZB_CODE(sizeof(Ptrl))
I STACK_ROOTINE_PARAMETER(4, SI ZE_CODE(sizeof(Ptr)))

Procinf oType __procinfo = uppPhot oshopFilterProcinfo;
#endif

After these changes were made, all compiled smoothly.

PHOTOSHOP FILTERS

ColorFill Filter

The first filter we develop in this chapter is called the ColorFill filter. It
is really nothing more than a shell that can be used to start you off on
your own filter excursions. The ColorFill filter allows you to select an
area of the image, using any of the selection tools, and fills it with the
foreground or background color (Figure 10-6). For our testing pur
poses, we also added the option for the filter to display timer results
so we can compare the speed of our 680x0 and PowerPC code.

Filter Code

The code for our ColorFill filter is about the minimum of what a filter
will need to do its job. This code is based off the Dissolve sample that
comes with the Photoshop SDK. I changed portions of it to make it
clearer and easier to understand. Let's take a look at the following
code.

#define itemForegroundColor 3
#define itemBackgroundColor 4
#define itemShowTimer 6

typedef struct TParameters
short whichColor;
Boolean
unsigned long
unsigned long

fShowTimer;
startTicks;
endTicks;

TParameters, *PParameters, **HParameters;

Colorfill

Fill the selection using the current:

®Foreground color

O Background color

~Show Timer (can c e I) U'&[iiiiiiiiiiio Kiiiiiii'iiii1J

Figure 10-6. ColorFill movable, modal options dialog box

195

196 A FRAGMENT OF YOUR IMAGINATION

typedef struct Globals {
short result;
FilterRecord *stuff;

Globals, *GPtr, **GHdl;

#define gResult ((*globals) .result)
#define gStuff ((*globals) . stuff)

Before we can begin, we make a few simple #defines and type
definitions. We #define the items in our options dialog box to make
them easier to access in the code. We also define structures for the pa
rameters that our dialog box uses as well as our global data. Photo
shop filters are similar to control panels in the way they deal with
globals. Most of the time, you will allocate your globals first and pass
them back to Photoshop. Each subsequent time Photoshop calls your
filter, it will pass you the global data that you previously allocated.
When you are all through, you can deallocate the memory.

pascal void main (short selector, FilterRecord *stuff,
long *data, short *result)

Our main entry point is defined as being Pascal, much like al
most all of the other code resources in this book. It returns no result.
The first parameter is the selector that our filter uses to see what Pho
toshop wants us to do. Selectors tell a filter to display its about box,
query the user for options, prepare for a filter process, begin a filter
process, continue a filter process, and finish a filter process. The stuff
parameter, which is a pointer to a FilterRecord structure, contains
more information than you care to know about right now. Suffice it
to say that everything you ever wanted to know about an image is
stored there. You should read the SOK for the specifics of the struc
ture. The data parameter is used to return your global data back to
Photoshop. Photoshop maintains the value of this parameter across
calls to the filter. It is set to 0 the first time the filter is called. The last
parameter, result, is used to return a result code to Photoshop. If the
filter returns 0, it means no error has occurred. If the filter returns a
positive value, it means an error has occurred, but the filter has al
ready alerted the user. If the filter returns a negative number, it
means an error has occurred and the host application, in our case
Photoshop, should alert the user.

Globals
GP tr

global Values;
globals = &globalValues;

if (!*data) {
InitGlobals(globals);

PHOTOSHOP FILTERS

*data= (long)NewHandle(sizeof{Globals));
if (!*data) {

*result = mernFullErr;
return;

**{GHdl)*data = globalValues;

globalValues = **(GHdl)*data;

gStuff = stuff;
gResult = noErr;

switch{selector)

case filterSelectorAbout:
DoAbout{globals);
break;

case filterSelectorParameters:
DoParameters{globals);
break;

case filterSelectorPrepare:
DoPrepare(globals);
break;

case filterSelectorStart:
DoStart{globals);
break;

case filterSelectorContinue:
DoContinue(globals);
break;

case filterSelectorFinish:
DoFinish(globals);
break;

default:
gResult filterBadParameters;

*result = gResult;
**(GHdl)*data = globalValues;

197

198 A FRAGMENT OF YOUR IMAGINATION

Our main function is not too difficult to understand. We first allo
cate and initialize our global data if the data parameter currently does
not contain them. After we take care of making sure we can access the
global data, we go into a switch statement that is used to call the
proper routine, depending on the selector being passed in. After the
routine returns, we fill in the result parameter, update the pointer to
our global data, and exit back to the host application.

void InitGlobals(GPtr globals)

The InitGlobals function is simply a stub in this project. This func
tion is called to initialize any global data we may need to initialize. In
our case, we do not need to do this here, so we don't. The function is
included here to be complete and to maintain similarity to the Dis
solve sample.

void DoAbout(GPtr globals)
{

ShowAbout(16000);

The DoAbout function is called when the selector is filterSelec
torAbout. We pass our global data to this function, but do not use it in
our simple case. We simply call the SOK-supplied function
Show About to display our about dialog box. This function takes the
ID of a DLOG resource and displays it (Figure 10-7). Our dialog box
must follow the rules set up by Adobe in that a Return or Enter key, or
a click in the dialog box, disposes of it. We do this by hiding an OK

Colorfill 1 .0

A Photoshop 3 .0 filter

by Joe 2obkiw
Copy right 1 995, A 11 Rights Reserved

Figure 10-7. ColorFill about box as displayed to
the user

ColorFill 1 .0

A Photos hop 3 .0 filter

by J oe Zobkiw
Copy right 1 995 , A 11 Rights Reser ved

PHOTOSHOP FILTERS

;,. .. :

(Hidden OK)

Figure 10-8. ColorFill about box as it really exists with a large user item

button in the dialog box, out of its content rectangle, and also have an
enabled user item covering the entire dialog contents, as shown in Fig
ure 10-8. The OK button is item number 1 and the user item is item
number 2.

#define kOptionsDialogID 16001

void DoParameters(GPtr globals)
{

short item, whichColor;
Dial ogPtr dp;
Dial ogTHndl dt;
Boole an done = false, fShowTimer ;

i f (!gStuff->parameters) {
gStuff->parameters = NewHandle((long)sizeof(TParameters)) ;
if (!gStuff->parameters) {

gResult = memFullErr;
return;

((PParameters)*gStuff->parameters)->whichColor
= itemForeg roundColor;

((PParameters)*gStuff->parameters) - >f ShowTimer false;

dt (DialogTHndl)GetResource('DLOG', kOptionsDialogID);

199

200 A FRAGMENT OF YOUR IMAGINATION

HNoPurge((Handle)dt);
CenterDialog(dt);
SetUpMoveableModal(dt, gStuff->hostSig);

dp = GetNewDialog(kOptionsDialogID, nil, (WindowPtr) -1);

SetDialogDefaultitem(dp, ok);
SetDialogCancelitern(dp, cancel);
SetDialogTracksCursor(dp, true);
SetRadioGroupState(dp, itemForegroundColor, itemBackgroundColor,

((PPararneters)*gStuff->pararneters)->whichColor);
SetCheckBoxState(dp, iternShowTimer,

((PPararneters)*gStuff->pararneters)->fShowTimer);
SetArrowCursor();

while (!done) {
MoveableModalDialog(dp, gStuff->processEvent, nil, &item);
switch (item) {

case ok:
whichColor = GetRadioGroupState(dp,

iternForegroundColor, itemBackgroundColor);
((PPararneters)*gStuff->pararneters)->whichColor

= whichColor;
fShowTimer = GetCheckBoxState(dp,

iternShowTimer);
((PPararneters)*gStuff->pararneters)->fShowTimer

= fShowTimer;
done = true;
break;

case cancel:
done = true;
gResult = 1;
break;

case itemForegroundColor:
case iternBackgroundColor:
case iternShowTimer:

PerformStandardDialogiternHandling(dp, item);
break;

default:
break;

DisposDialog(dp);
HPurge((Handle) dt);

PHOTOSHOP FILTERS

When our filter receives the filterSelectorParameters selector we
must display our options dialog box and allow the user to configure
our filter. You should note that not all filters need to have options dia
log boxes, but ours do. You will note that this is pretty standard-look
ing code. The only major difference is that we call some SOK-supplied
functions to handle such things as toggling our radio buttons and
check boxes, and handling a movable, modal dialog box. After making
sure we have our parameters available, or allocating them, we use that
information to prepare the dialog box, initialize it, and alert Photoshop
to the fact that we are about to use a movable modal. Then we simply
loop, much like you would when calling ModalDialog, only we call
the SOK-supplied function MovableModalDialog. When the user
clicks OK, we grab the newly chosen values and return.

void DoPrepare(GPtr globals)
{

gStuff->bufferSpace = O;

We are called with the filterSelectorPrepare selector just before our
filter is going to be called to filter the image. This is where your filter
can allocate memory needed for filtering or performing other tasks. In
our case, we simply set the bufferSpace field in the FilterRecord to 0,
which tells Photoshop that we do not plan on using any great amount
of memory during our filtering. If we were to use lots of memory, we
would fill this in with a number to allow Photoshop to preflight that
memory for us.

void DoStart(GPtr globals)
{

int16 row;
int32 totalLines = gStuff->filterRect.bottom -

gStuff->filterRect.top;

if (!WarnAdvanceStateAvailable())
gResult :;: 1;
goto done;

if (gResult != noErr)
goto done;

gStuff->inLoPlane gStuff->outLoPlane O;
gStuff->inHiPlane gStuff->outHiPlane gStuff->planes - 1;

201

202 A FRAGMENT OF YOUR IMAGINATION

gStuff->inRect.left = gStuff->outRect.left =
gStuff->filterRect.left;

gStuff->inRect.right = gStuff->outRect.right
gStuff->filterRect.right;

if (((PParameters)*gStuff->parameters)->fShowTimer)
((PParameters)*gStuff->parameters)->startTicks
TickCount();

for (row = gStuff->filterRect.top;

done:

row < gStuff->filterRect.bottom; ++row) {

UpdateProgress(row - gStuff->filterRect.top, totalLines);

if (TestAbort()) {
gResult = userCanceledErr;
goto done;

gStuff->inRect.top = gStuff->outRect.top = row;
gStuff->inRect.bottom = gStuff->outRect.bottom row + l;

gResult = AdvanceState();
if (gResult != noErr)

goto done;

DoFilterRect(globals);

if (((PParameters)*gStuff->parameters)->fShowTimer)
((PParameters)*gStuff->parameters)->endTicks TickCount();

SetRect(&gStuff->inRect, 0, 0, 0, 0);
SetRect(&gStuff->outRect, 0, 0, 0, 0);

Our DoStart function is actually the function in our filter that does
all the work. This function begins by calculating the total number of
rows in the selected portion of the image. We loop for each row that
we must filter. We then check to see if the Advance State feature is
available in the host application that we will use later. We then fill in
fields in the FilterRecord to specify which planes of the image we
want to filter. In our case, we will handle all available planes. Since we
handle one row of the image at a time, we set the right and left bound
aries next-these will never change. If the user wants this filter timed,
we start the timer here. Now we are ready to loop.

For each row of the image, we loop and perform the following.
The UpdateProgress SOK-supplied function is called to increment the
watch cursor and possibly display a movable, modal progress meter

PHOTOSHOP FILTERS

dialog box. The TestAbort SOK-supplied function is called to check if
the user has typed command-period or escape. This function also han
dles tracking the Cancel button if the progress meter is being dis
played. Assuming the user hasn' t canceled, we set the rectangle to
encompass the first row of the selection. We then call the AdvanceState
SOK-supplied function, which updates the buffers used for communi
cation between Photoshop and the filter. Lastly, we call our DoFilter
Rect function, which actually does the filtering. After we loop for each
row and filter, we set the inRect and outRect fields of the FilterRecord
to be empty in order to alert Photoshop that we have completed our
filtering process.

You should note that the filter only need deal with the rectangle
that describes the selection. If, for example, the user selected a re
gion using a lasso tool, the filter would filter each pixel within
the larger rectangle's bounds of the region. Photoshop automati
cally clips the filtered data before it blits it back to the document
window. Therefore, your filter need not know about the strange
shape of the selection-it does its work based on the encompass
ing rectangle.

void DoFilterRect (GPtr globals)

register short

register short

register unsigned8
register unsigned8
register short

width = gStuff->filterRect.right -
gStuff->filterRect.left;

whichColor =
((PParameters)•gstuff->parameters)->whichColor ;

• srcPtr (unsigned8 *)gStuff->inData ;
*dstPtr = (unsigned8 *)gStuff->outData;
plane;

while (-width >= 0) {

for (plane = gStuff->planes - l ; plane >= 4; -plane)

for (; plane >= O; -plane)
dstPtr[planeJ = (whichColor

gStuff->foreColor[planeJ :
gStuff - >backColor[planeJ ;

itemForegroundCol or)

srcPtr += gStuf f -> inHiPlane - gStuff->inLoPlane + l;
dstPtr += gStuff->planes;

203

204 A FRAGMENT OF YOUR IMAGINATION

Our DoFilterRect function is called to filter one row of the selec
tion. This function simply loops for each pixel in the row and for each
plane, and sets the value of that pixel to the foreground or background
color of the same plane. When it is completed with the row, it returns
to the outer loop and is called again, for the next row.

A plane can be considered an element of a particular image
mode. That is, if an image is in RGB mode, the red, green, and
blue information for that mode would each be in their own
plane. Each pixel of Red would be a byte containing a value from
0-255. Our DoFilterRect function edits the pixel values in this
way. One composite pixel, therefore, is spread across n number
of planes. That is why we must edit the pixel value on all planes
in order to end up with the proper result.

void DoContinue(GPtr globals)
{

SetRect(&gStuff->inRect, 0, 0, 0 , 0) ;
SetRect(&gStuff->outRect, 0, 0 , 0, 0);

The DoContinue function is normally called repeatedly by Photo
shop while your filter is processing. The way it works is, you might do
the first step of work in the DoStart function and then subsequent
steps each time DoContinue is called until all the work is done. In our
case, we do all of our work in DoStart, since it makes it easier to un
derstand. After DoStart is done, it sets the inRect and outRect fields of
the FilterRecord to be empty, and DoContinue is never actually called
in our filter. However, to be complete, we left it here so you could see
the relationship and maybe even alter the filter to use it.

void DoFini sh(GPtr globals)
{

if (((PParameters) *gStuff->paramet ers) ->fShowTimer)
unsigned long totalTicks;
Str32 totalTicksStr;

totalTicks ((PParameters)*gStuff- >parameters)->endTicks -
((PParameters)*gStuff->parameters)->startTicks;

NumToString(totalTicks, totalTicksStr);
ParamText(tota lTicksStr, " \ p•, " \ p•, "\p") ;
InitCursor();

PHOTOSHOP FILTERS

NoteAlert(16500, nil);
ParamText("\p", "\p", "\p", "\p");

Our DoFinish routine is called when the filter is completely done
processing. Photoshop knows the filter is complete by examining the
inRect and outRect fields of the FilterRecord mentioned earlier. When
these are empty rectangles, Photoshop knows to call us with the
filterSelectorFinish selector. Our DoFinish routine simply displays the
alert that shows the timing information if the user requested it.

So you see, your first Photoshop filter isn't all that bad after all.

Compiling Our Filter

The ColorFill filter can be compiled as a 680x0 filter (Figure 10-9), a
PowerPC filter (Figure 10-10), or a fat filter. This allows us to time
and test the different versions of the code easily, and build our final
fat version last. The PIUtilities.c and the DialogUtilities.c files come
with the Photoshop SDK. These files contain routines that are used to
perform standard functions that many filters require. The projects
have been laid out in such a way to make them easy to understand
and change.

~iii
-- --- :".'.'

Im~ Colorfill/68K.11
File Code bat a Ii~

v Segment 1 0 0 ~ {}
ColorFm.c 0 0 IB

...--,

P 1ut;1mes .c 0 0 (il
o;a logUtmt;es .c 0 0 lD
Filter resources n/a n/a III
HacOS.lib 0 0 III zc PiPL 68k n/a n/a Ill

6 file(s) 0 0 ~

Figure 10-9. ColorFill 680x0 project file

205

206 A FRAGMENT OF YOUR IMAGLNATION

Colorfill/PPC.11
File Code Data 51 ~

"V' Sources 0 1 0 1 El 0
Co lorFill .c 0 l 0 1 ID t-
Dia logUtilities .c 0 ! 0 l ID
P !Utilities .c . 0 ! 0 ! ID .v ... L:ibiaiies 1 '£,.1 t(................... Ef
lnterfacel ib ! 0 l 0 ! ID
Mathlib l 0 l 0 l ID
MYCRuntime .lib l 0 1 0 ~ ID .v ... ii'r:·~·li·j; ... 3' T oT oT' Ef
PiPL PPC l n/a l n/a ! ID : : : r-=-
Filter resources l n I a l n I a! .ID 0

8 file(s) 0 0 '2l

Figure 10-10. ColorFiJl PowerPC project file

If you would like to be able to support the Photoshop plug
in architecture in your programs, the first thing you need to do is
to get hold of the Photoshop SOK Then you need to learn it in
side and out. This may take some time, but it will be well worth
it. Depending on how many of the different types of plug-ins
you want to support, this may be a large or even larger job. Ba
sically, learn the specification and then work on implementing it,
backward. If you are even thinking about this in any serious
way, you don't need me to tell you what you're getting into. It
will be no small task, but it can be done.

TV Tube Filter

The second filter we develop in this chapter is called TV Tube
(Figure 10-11) and was written by Troy Gaul. Troy based this filter on
the Dissolve sample, as we did with the ColorFill filter. Because TV
Tube is structurally similar to ColorFill, we will only discuss the dif
ferences in this section.

The most obvious difference is the fact that the filter does a differ
ent type of filtering. TV Tube gives images a look as if you were look
ing at them with a magnifying glass on a television screen or

TU Tube Effect

Odd Fields: ~
Euen Fields: @:!]

PHOTOSHOP FILTERS

OK

(Cancel)

Figure 10-11. TV Tube movable, modal options dialog box

computer monitor. The value of each pixel in each plane of each odd
row is increased or decreased by a specific amount. The same is done
for each even row. If you use values such as -50 and +50 for the two
rows, you get the TV Tube effect.

Troy made TV Tube compatible with Photoshop 2.5 and previous
versions by making sure he did not use any 3.0-specific features in his
filter, unless they were implemented. This would prevent any crashes
from trying to use a 3.0 feature while running Photoshop 2.5. He also
added a PiMI resource into his filter to accompany his PiPL. The PiMI
resource is the precursor to the PiPL and allows Photoshop 2.5 and
previous versions to use the filter.

Lastly, Troy added warning alerts to his filter's resource file
(Figure 10-12). This is to ensure that 2.5 compatibility is kept. Older
versions of the SOK contain these alerts, but version 3.0 does not. By
adding them to his resource file, if Photoshop 2.5 attempts to access
the alerts, they will be where it thinks they should be. Photoshop 3.0
will essentially ignore these extra resources.

The format of a number was bad. Rn
integer ualue between "O and "1 is
required.

OK

Figure 10-12. Example of a warning alert

207

D

208 A FRAGMENT OF YOUR IMAGINATION

Compiling Our Filter

Except for the few changes mentioned earlier, the TV Tube filter is
compiled in, more or less, the same way as the ColorFill filter. You can
choose to go 680x0 only (Figure 10-13), PowerPC only (Figure 10-14),
or fat by simply building different versions of the projects.

Ideas For Other Filters

I have no shortage of ideas for Photoshop filters. I only wish I had the
time to write them all. Here is a partial list that you may consider im
plementing yourself. Some of these can be done in Photoshop today
by using numerous steps. The nice thing about filters is that you can
take all those steps and roll them into a filter that performs them all at
once. If you end up creating any of these, please don't forget to send
me a copy to play with.

Oil Spill. This filter will invert the pixels around the edge of the se
lection to make it look as if an oil spill has just occurred. Watch out
for the wildlife.

MultiFilter. This filter would simply call other filters from within it
self. When it is called, it would allow you to preconfigure other
filters and then run them sequentially all in one step. For example,

Iii TUTube/68K.11 Iii~
File Code Data ~--v TY Tube Oj Oj 1:1 0

TVTube.c: oj oj CEI
1--

P IUtmties .c: o~ o~ [ii
Dia logUtilities .c: oj oj III
HacOS.lib l 0 l 0 l ID ·-v····R:e:solir:ce:s······ '°' o.r··············c;·r·············· .. ··r:1··
PiHI n/a ! n/a l ID
PiPL 68k n/a i n/a ! ID
Yarning Alerts n/a l n/a l JB

............... f..~J~~r. .. ~.!.~.!.~.r..!?.!.~ ,, ~l~.l ~l~.l. 111 .. -0
8 file(s) 0 0 \!il

Figure 10-13. TV Tube 680x0 project file

PHOTOSHOP FILTERS

TUTube/PPC.11
File Code Data Iii •

V Sources 0 ! 0 ! J%1 {t
TVTube.c 01 01 ID 1-

Dia logUtilities .c 0 I 0 ~ ID
P !Utilities .c 0 ! 0 ! ID ·v:· .. t:iiiraries ~ or······ o-~··· .. ··············t:i··
lnterfacel ib i 0 i 0 ~ ID
Mathlib ~ o! o! JD
MVCRuntime .Lib l 0 ! 0 ! [i] ·v: .. ·R";·5·0i·u·r:·e:·e.·5·· r .. ···········o-r·· o.~····· .. ············i:r
PiPL PPC l n/a l n/a l Iii
Yarning Alerts ~ n/a ~ n/a ~ ID

.............. fl.~.!!r. .. ~.!.~.!.~.r..~.!.!l r.i.l~.l... r.i.l~.l JU .. .-
~

9 file(s) 0 0 'ill
Figure 10-14. TV Tube PowerPC project file

one MultiFilter setup might preconfigure a Blur and then a Crys
tallize with a cell size of 10. You could save this configuration with
a specific name and then automatically perform the work all in
one simple step. This might also be called FilterMacros. Kai, are
you listening?

Fade. This filter would fade an image out to any color and in any di
rection. Using this filter you could take an image and fade it to
black, or white, or red, or blue

Filter Tips

Photoshop filters are exciting things on which to work. The Photoshop
SOK is very intense and can be confusing at times. But if you stick
with it, and watch the code in action, you will be developing cool
filters in no time. Here is a list of things to keep in mind while devel
oping your Photoshop filters.

• When you create a fat Photoshop filter, you don't do it the same
way we have learned in the rest of the book. Photoshop makes
special provisions for the location of the 680x0 and the PowerPC
code. Simply, you store the 680x0 code in a code resource and

209

210 A FRAGMENT OF YOUR IMAGINATION

the PowerPC code in the data fork of the Plug-in. This allows your
plug-in to be compatible with previous versions of Photoshop
while being able to take advantage of native power in Photoshop
3.0 or later. Using techniques you've learned throughout the book,
however, you should be able to write a PowerPC native filter eas
ily that worked under versions of Photoshop previous to version
3.0.

• For the sake of time and energy, our filters in this chapter support
only RGB and CMYK image modes. Your filter may support other
image modes including Grayscale, Bitmap, Indexed Color, and
more. Make sure you test your filter in all of these modes to en
sure that it works properly and as expected. Flags for the modes
your filter supports are stored in the PiPL resource.

• Watch for issues relating to compatibility if you want to make
your filter work with version 3.0 and earlier versions such as 2.0
or 2.5 of Photoshop. The SDK has changed drastically with 3.0.
Make sure you obtain older versions of the SOK in order to know
the differences.

• Make sure you compile your code as native on the PowerPC and
do your best to optimize inner loops. Photoshop filters can take a
lot of horse power, but can really scream when they are optimized.
Most users will prefer a filter optimized for speed, as opposed to
size, when it comes to working on their large images.

• The Photoshop 3.0 SOK gives you lots of features for free. Make
sure you look at all the available functions in the header files sup
plied with the SDK. These simple utilities will save you hours of
programming time.

CHAPTER ELEVEN

Components

In the beginning there was the bit, and it was Clear.

-Doug McKenna

Introduction

With the advent of QuickTrme, Apple developed the Component Man
ager to help handle many of the different pieces or components of the
QuickTime architecture. Things like movie controllers, compression al
gorithms, and other features were implemented as components. A
component is simply a code resource that has a fixed yet expandable
programming interface. In a way, Apple took the concept of the
generic code resource and put a few restraints on it-not to limit its
usefulness, but to increase its ability to be used by many different pro
grams and in many different environments.

Components are pieces of code that provide a specific service to
one or more clients. These clients can consist of system extensions,
applications, or even other components. Components are designed in
such a way that a particular component usually offers a specific type
of service. That is, a component may provide image compression or
decompression services. An application could call the component to
compress or decompress an image. The application need not know

211

212 A FRAGMENT OF YOUR IMAGINATION

anything about the algorithm used, but only how to interface with
the specific type of component itself. The Component Manager
makes this interfacing simple and standard for all components of the
same type.

The Component Manager keeps track of what components are cur
rently available and handles routing requests from clients to the proper
one. Components are identified by three main criteria-the type of ser
vice provided, the level of service provided, and the manufacturer of
the component. This allows many different manufacturers to create
components of the same type (like an image compressor), while also al
lowing different levels of service (30 percent compression or 50 percent
compression). The Component Manager keeps it all straight and allows
the client to simply request a 50 percent compression component with
out caring who the manufacturer is or how many other components
may exist of that type. The client can be as specific or as general as need
be when requesting the services of a particular type of component.

Components themselves respond to a variety of messages that the
client or Component Manager send to them. Many of these are stan
dard, such as the open, close, can do, and version messages. Along
with these standard messages, your component can also define its
own custom messages. Along with your custom messages, you also
define your own custom parameters for each. This allows you to pro
vide to your clients just about any service in any way you see fit. They
need only know the proper calling conventions, which you provide in
a header file. When you ship your component, you ship the compo
nent file itself, which is normally placed in the Extensions folder, and
a header file that contains any information needed by the client to use
the services of your component.

Component Code

In this chapter, we will be creating a very simple component in order
to show you how it all fits together. Our component provides two sim
ple services-a beeping service and a menu bar flashing service. We
can tell our component to beep a specific number of times and I or
flash the menu bar a specific number of times. Not too exciting, you
say? The nice thing about our component is that it is simple and gives
us the building blocks to edit our code to create a component to do
whatever we like. Another good thing about our component is that it
takes advantage of the Component Manager version 3.0. That is, we
create a PowerPC native component to squeeze every last possible bit
of power out of the Power Macintosh.

COMPONENTS

One thing to note is that even though we are creating a PowerPC
native component, which is basically a code fragment, it still must be
compatible with the 680x0 Macintosh and, therefore, has a single entry
point-much like other code resources we have looked at previously.
However, because we also want to support the PowerPC in native
mode, we need to perform some pretty strange magic throughout this
code. Strap yourself in; here we go.

pascal CornponentResult main (ComponentParameters *params,
Handle storage);

#ifdef _powerc
INSTANTIATE_ROUTINE_DESCRIPTOR(FatCanDo);
INSTANTIATE_ROUTINE_DESCRIPTOR(FatOpen);
INSTANTIATE_ROUTINE_DESCRIPTOR(FatClose);
INSTANTIATE_ROUTINE_DESCRIPTOR(FatVersion);

INSTANTIATE_ROUTINE_DESCRIPTOR(FatDoBeep);
INSTANTIATE_ROUTINE_DESCRIPTOR(FatDoFlash);

RoutineDescriptor MainRD = BUILD_ROUTINE_DESCRIPTOR
(uppComponentRoutineProcinfo, main);

ProcinfoType _procinfo = uppComponentRoutineProcinfo;
#endif

pascal ComponentResult main(ComponentParameters *params,
Handle storage)

The first thing we need to do is to define our function prototype
for the main entry point. A component takes two parameters and re
turns a ComponentResult, which is a long. The first parameter is a
pointer to a structure that contains information that the component
uses to determine the message with which it is being called and to de
termine the parameters to that message. There are also flags and other
information in this structure that we will look at later. The second pa
rameter is a handle to our private data storage. Our component can al
locate this memory and have the Component Manager automatically
pass it to us each time, as a parameter, whenever it is called-much
like a control panel cdev code resource. Because there may be multiple
instances of your component running at any time, you should use this
mechanism to store any state data for your component, as opposed to
using global variables in your code.

You'll notice that if we are running on a PowerPC, we need to do
some special things right away in order to make things work properly.
The INSTANTIATE_ROUTINE_DESCRIPTOR macro is a really neat
trick that allows us to create routine descriptors easily for all of our
functions for use on the PowerPC.

213

214 A FRAGMENT OF YOUR IMAGINATION

#define INSTANTIATE_ROUTINE_DESCRIPTOR(funcName) \
RoutineDescriptor funcName##RD = \

BUILD_ROUTINE_DESCRIPTOR (upp##funcName##Procinfo, funcName)

Since components normally use the CallComponentFunction or Call
ComponentFunction WithStorage functions to dispatch to their rou
tines, and since the Component Manager is currently 680x0 code, we
must be sure to pass a universal procedure pointer to these functions
when we call them. The INSTANTIATE_ROUTINE_DESCRIPTOR
macro allows us to create a global routine descriptor easily that can be
used to access all of our component routines. For example,

INSTANTIATE_ROUTINE_DESCRIPTOR(FatCanDo);

equates to

RoutineDescriptor FatCanDoRD = BUILD_ROUTINE_DESCRIPTOR
(uppFatCanDoProcinfo, FatCanDo);

So, assuming we've defined uppFatCanDoProclnfo elsewhere, which
we have, we end up with a global variable in our PowerPC code called
FatCanDoRD that can be used with the following macros to make our
source code as similar as possible for both the 680x0 and the Power PC.
If you study each macro, you will see that the PowerPC versions make
use of the## operator to recreate the proper global variable name in
order to call the component routine that we care about. When we call
the CallComponentFunctionUniv macro under the 680x0, it calls the
function name we pass in the funcName parameter. When we call the
CallComponentFunctionUniv macro under the PowerPC, it tacks on
the RD characters to the funcName parameter and executes our in
stantiated global variable of the same name. All in all, it is a really
slick trick.

#ifdef _powerc

#define CallComponentFunctionWithStorageUniv \
(storage, params, funcName) \
CallComponentFunctionWithStorage(storage, params, &funcName##RD)

#define CallComponentFunctionUniv(params, funcName) \
CallComponentFunction(params, &funcName##RD)

#else

COMPONENTS

#define CallComponentFunctionWithStorageUniv \
(storage, params, funcName) \
CallComponentFunctionWithStorage(storage, params,
(ComponentFunctionUPP)funcName)

#define CallComponentFunctionUniv(params , funcName) \
Cal lComponentFunc tion (pa rams, (ComponentFunctionUPP) funcName)

#endif

The ## preprocessor operator provides a way to concatenate ac
tual arguments during the expansion of a macro. If a parameter
name is adjacent to the ##, the parameter itself is inserted at that
position. The ## and any surrounding white space are removed.
Therefore, the macro

#define concat(first, second) first ## second

when called as

concat(Mac, intosh)

would yield

Macintosh

The word Macintosh would then attempt to be compiled by the
compiler, which probably wouldn't get too far. But you can see
how this can be a useful feature of which to take advantage, as
we have done here.

ComponentResult

#ifndef ___powerc
long oldA4 ;

r esult

oldA4 = SetCurrentA4 ();
#endif

if (params->what < 0) {
switch (params->what)

noErr;

case kComponentOpenSelect:
result = CallComponentFunctionuniv

(params, FatOpen);

215

216 A FRAGMENT OF YOUR IMAGINATION

else

break;

case kComponentCloseSelect:
result = CallComponentFunctionWithStorageUniv

{storage, params, FatClose);
break;

case kCornponentCanDoSelect:
result = CallComponentFunctionUniv

{params, FatCanDo);
break;

case kComponentVersionSelect:
result = CallComponentFunctionUniv

{params, Fatversion);
break;

case kComponentTargetSelect:
result = CallComponentFunctionWithStorageUniv

(storage, params, FatTarget);
break;

case kComponentRegisterSelect:
default:

result = paramErr;
break;

switch (params->what)
case kDoBeepSelect:

result = CallComponentFunctionUniv
(params, FatDoBeep);

break;

case kDoFlashSelect:
result = CallComponentFunctionUniv

{params, FatDoFlash);
break;

default:
result
break;

paramErr;

#ifndef __powerc
SetA4(oldA4);

#endif

return result;

COMPONENTS

Our main function is nothing more than a big, old dispatcher. It
simply looks at the message that is being passed and calls the proper
function using our macros described earlier. The only thing to note is
that under 680x0 we use the A4 routines mentioned previously to give
us access to global variables and data. This is more for ease of our pro
gramming than anything else. It saves us having to worry about if we
are using any globals or not, since sometimes you are using globals
when you don't even think you are, such as when hard coding a string
in your code under CodeWarrior. The other interesting thing is that
this code actually contains two switch statements. The first is included
to check for Apple-defined component messages-those that are less
than 0. The other is included to handle our own messages-those that
are greater than or equal to 0. This really doesn't need to be imple
mented this way, but it can make it easier to see how the messages are
broken down.

Open Message
The open message is a required message that the component receives
when a client requests it to be opened via the OpenComponent or
OpenDefaultComponent call. This is your chance to initialize the com
ponent, allocate any needed global memory, and load any needed re
sources. Your component must support this request, although it need
not do anything during it.

You will note that in our component's open function, we allocate
and initialize a structure called PrivateGlobals, as in the following code.
We use this structure to keep track of instance-specific information in
our component. Remember, there may be any number of instances of
our component running at one time, so this is the recommended way to
maintain global variables within the component.

typedef
{

struct

Component

PrivateGlobals

self;

PrivateGlobals, *PrivateGlobalsPtr, **PrivateGlobalsHdl;

pascal CornponentResult FatOpen(Cornponentinstance self)
{

CornponentResult
PrivateGlobals**

result = noErr;
globals;

217

218 A FRAGMENT OF YOUR IMAGINATJON

globals = {PrivateGlobals**)NewHandleClear
(sizeof{PrivateGlobals));

if {globals != nil) {
(*globals)->self = {Component)sel f;
SetComponentinstanceStorage(se:f , {Handle) globals);

else result = MemError {) ? MemError {) : memFul l Err;

return result;

Our open function is very straightforward. We first allocate our
private global data using the NewHandleClear function to allocate our
memory in the current heap. Note that we do not use NewHandle
SysClear, which is a common mistake when writing components. If we
were to use NewHandleSysClear, the memory would be allocated in
the system heap, which is not what we want in this case. Assuming
the memory allocation is successful, we can fill in the values of our
globals and ultimately alert the Component Manager that we are
using some global data by calling the SetComponentlnstanceStorage.
This will ensure that each time this is called, each individual instance
will receive the proper global storage handle as a parameter to the call.

If we thought our component was going to be registered globally
(as opposed to our test bed, which only registers the component
as available locally to our test application), we would need to set
the AS world of the instance during our open call. We would
have simply called the SetComponentlnstanceAS function to en
sure that when the component is called, the proper AS world is
current. In our case, the component is only used in one AS world,
which belongs to our test application. In reality, it doesn't hurt to
call the AS functions even if you don' t think the component will
be used globally at all.

Close Message

When a client calls CloseComponent, your component receives a close
message. This is your chance to deallocate any global memory you
may have allocated during your open call. Your component must sup
port this request although it need not do anything during it.

pascal ComponentResult FatClose(Handle storage,

Componentinstance self)

ComponentResul t result = noErr;

COMPONENTS

PrivateGlobals** globals = (PrivateGlobals**) storage;

if (globals ! = nil) {

DisposeHandle((Handle)globals);

globals = nil:

return result;

When our component is called with the close message, it simply
disposes of the global data if it exists. You may wonder why we have
to check to see if it exists. Well, it seems that the Component Manager
will send your component a close message even if the open message
fails. Therefore, we do the check to avoid any crashing effect, which
may or may not be enjoyed by the user, if our open failed before the
memory was allocated.

Can Do Message

Clients sometimes want to find out if a component supports a partic
ular message or function and will call the ComponentFunctionlmple
mented call to do so. When this is called, the component receives a can
do message. This gives clients an easy way to evaluate the capabilities
of a particular component. The component must support this request.

pascal ComponentResult FatCanDo(short selector)
{

switch(selector) {

case kComponentOpenSelect:
case kComponentCloseSelect:
case kComponentCanDoSelect:
case kComponentVersionSelect:
case kDoBeepSelect:
case kDoFlashSelect:

return true;
break;

default:
return false;
break;

219

220 A FRAGMENT OF YOUR IMAGINATION

Our component's can do function simply consists of a switch
statement that compares the requested message to the messages we
support. If they match, we return true; otherwise, we return false. As
we add new messages to our component's arsenal, we need to add
them to this function in order to return the proper information for a
can do request.

Version Message

What version are you using? That might be a question you hear quite
a bit when you deal with many different software programs. The ver
sion message is a required message that the component must support
in order to return the version number to a client. Clients call the Get
ComponentVersion function in order to obtain the version of a com
ponent.

en urn

interfaceRevision Ox00010001
} ;

pascal ComponentResult FatVersion{void)
{

return interfaceRevision;

Our component's version function simply returns the version of
the component itself. Simple and to the point.

Other Predefined, Unrequired Messages

There are other predefined messages that our component does not
handle and that are not required. These messages include the register
and unregister messages, which the component can receive when it is
registered and unregistered, respectively. Another message is the tar
get message, which allows a component to override another compo
nent. These are all advanced messages that you may or may not need,
depending on the purpose of your component. Our particular compo
nent does not need to handle these messages, so they are not dis
cussed here. The Component Manager chapter in Inside Macintosh
fully describes these and other messages that can be optionally sup
ported by a component.

COMPONENTS

Do Beep Message

The first of our component's custom messages is the do beep message.
This message accepts the number of times to beep as a parameter and
returns the same number as another parameter. Our function, being a
component function, is declared as Pascal, as are all other component
functions. Otherwise, it is about as standard as any other function you
may see. If you like, you can even pass the global instance storage to
the function. In our case, we chose not to do this, since it does not re
quire access to any data stored there.

pascal ComponentResult FatDoBeep(short inBeepTimes,
short *outBeepTimes)

ComponentResult result = noErr;

*outBeepTimes = inBeepTimes;
if (inBeepTimes > 0) {

short i;
for (i=l;i<=inBeepTimes;++i)

SysBeep (0) ;
else result = kGenericError;

return result;

As you can see, the do beep function is quite simple. It sets the
outBeepTrmes parameter to be the same value as the inBeepTimes pa
rameter. It then loops inBeepTimes times, beeping via SysBeep each it
eration. Talk about simple! Mind you, you could do just about
anything in this function that you can do in an application-open re
source files, load resources, allocate memory, just about anything.

Do Flash Message

The second custom message that our component handles is the do
flash message. This function works similarly to the do beep function,
but accepts an extra parameter. Not only do we allow the clients to
specify how many times to flash the menu bar, but we also allow them
to set the delay time (in ticks) between each flash.

221

222 A FRAGMENT OF YOUR IMAGINATION

pascal ComponentResult FatDoFlash(short inFlashTimes,
long inDelayTime, short *outFlashTimes)

ComponentResult result = noErr;

*outFlashTimes = inFlashTimes;
if (inFlashTimes > 0) {

short i;
long outTicks;
for (i=l;i<=inFlashTimes;++i)

FlashMenuBar(O);
Delay(inDelayTime, &outTicks);
FlashMenuBar(O);
Delay(inDelayTime, &outTicks);

else result = kGenericError;

return result;

As you can see, the do flash function is just as simple. It sets the
outFlashTimes parameter to be the same value as the inFlashTrmes pa
rameter. It then loops inFlashTimes times, flashing via FlashMenuBar
and delaying via Delay for each iteration.

You've just had an in-depth look at our component. As you can
see, there really are no secrets. It's rather simple to create a compo
nent. It looks similar to many other code resources in its structure. As
you will see in the rest of this chapter, there are still some interesting
tricks you need to pull out of your hat in order to make it all work
on the Power Macintosh, but we have outlined it all for you, so it
shouldn't be too difficult. Also, look at the code that accompanies this
chapter to gain a deeper understanding of the macros introduced at
the beginning of this chapter. They may look strange at first, but after
they click and you understand them, you will find them extremely
useful in your component development. This would be a good place
to take a break if you need one.

The thng Resource

Before you can really use a component, you need to have a way to tell
the Component Manager a bit about it. Our component file contains a
resource of type thng that does just that. This resource contains infor
mation that allows the client and the Component Manager to access
the component itself easily. The thng resource is normally stored as ID
128 in the component's resource file.

The thng resource has been extended for Component Manager 3.0,
which we use in this book. The main changes in version 3.0 include

COMPONENTS

the support of PowerPC native components and components that con
tain code for multiple platforms-the equivalent of a fat component.
Version 3.0 also includes an automatic version control system that en
sures that the most recent version of a particular component is always
registered. Let's take a look at the structure of the thng resource in the
following code.

OS Type
OS Type

component type
component sub type
component manufacturer OS Type

unsigned long
31.

30.
24-29.
16-23.
8-15.
0-7.

component flags (bits are as follows)
component wants to be registered at startup
use fast dispatch when calling component
reserved

unsigned long
OS Type
short
OSType
short
OSType
short
OS Type
short
long
long

4-31.
3.

2.

1.

type flags
sub type flags
manufacturer flags

component flags mask
component code resource
component code resource
component name resource
component name resource
component info resource
component info resource
component icon resource
component icon resource
component version
component register flags

reserved

type
ID
type
ID
type
ID
type
ID

(bits

component has multiple platforms
component auto version include flags
component wants unregister

0. component do auto version

are

short component icon family resource ID
long elements in platform array
ComponentPlatforminfo platform array []

as

long component flags (bits are as defined above)
OSType component code resource type
short
short

component code resource ID
platform type

follows)

Now that you know what it looks like, let's explain it a bit more in
detail. As you know, each component is designated by its type, sub
type, and manufacturer. These are the first three items in the thng re
source. Following this basic information are the component flags. The
component wants to be registered at startup bit tells the Component
Manager to register the component at computer startup, assuming it is
in a file of type thng and can be found in the Extensions folder. The

223

224 A FRAGMENT OF YOUR IMAGINATION

use fast dispatch, when calling component bit, allows for faster dis
patching to a component and is mainly used by QuickTime. The com
ponent flag's mask field should be set to 0, but allows you to specify
which flags are relevant during a component search operation during
a call to the Component Manager routines FindNextComponent or
CountComponents. The next group of resource types and ID numbers
allow you to specify where the 680x0 component code, the component
name string, information string, and icon resource are stored.

According to one of the guys who wrote the tech note on how to
create PowerPC components, the Fast Dispatch bit exists as a
mechanism to replace your entry point (a C switch statement for
example) with a jump table that you write in assembly language.
This avoids extra copying of stack variables, since you can per
form the dispatching with a JMP instruction instead of a JSR. If
using fast dispatching, the Component Manager dispatches from
the caller with the caller's parameters on the stack by jumping to
your component, whiCh then jumps to the method call. Then the
component will return directly to the original caller. Otherwise,
the caller's parameters on the stack are copied once more by the
Component Manager for the JSR to the component. This will
dispatch to the method call with a JSR, which finally returns back
to the Component Manager, The overall savings is a very small
amount of time, but it is important for QuickTime.

Information after this point in the resource is new with version 3.0.
Continuing along, we find the component version field, which is used
for the new automatic version control option. The component register
flags allow us to specify other criteria for our component. If the compo
nent supports multiple platforms, the component's Has Multiple Plat
forms bit should be set. If this bit is not set, then the following
component platform information is ignored and it is assumed that the
component contains only 680x0 code. The component's Auto Version
Include Flags bit tells the Component Manager to use the component
flags when searching for other components during an automatic ver
sion control search. Normally, the Component Manager only searches
by type, subtype, and manufacturer. The component's Wants Unregis
ter bit tells the Component Manager that your component wants to be
called when it is unregistered, which is normally not done by default.

COMPONENTS

The component's Do Auto Version bit specifies if you want automatic
version control to be used for your component. If an older version is
found during a register, it will be unregistered and the new version will
be registered in its place. This ensures that the most recent version is al
ways registered. Next we have the component icon family resource ID.
In version 3.0, a component can have an entire icon family for its icon
information, as opposed to just a black-and-white ICON resource.

Now the fun stuff. The component platform array begins with a
count of how many platform information structures are listed. Each
platform information structure contains component flags (as described
earlier), the resource type of the platform-specific code, the resource
ID of the platform-specific code, and the platform type. By including
two platform information structures at the end of your thng-one for
680x0 and one for PowerPC-you essentially end up with a fat com
ponent. The nice thing about it is that you can store each piece of code
in a separate resource type and can create a 680x0-only or PowerPC
only version simply by changing the thng resource. No recompilation
is required.

Component Tester Code

Now that we've created a component and explored the thng resource
that is used to identify it, we need some way to call it. We've created
a program called Component Tester that allows us to do just that. This
little utility application allows us to register, call, and unregister our
component (Figure 11-1). We can compile our tester as a 680x0 appli
cation or a PowerPC application, and can call either the 680x0 compo
nent or the fat component from either one. It will all work fine,
assuming you are running Component Manager 3.0 or later. Let's ex
amine the code.

Because the main portion of the application is standard user inter
face and Dialog Manager-type code, there is no sense in looking at it.
(We wouldn't want to waste pages, would we?) So in the following
code we will take a look at the main functions that are called when we
register, unregister, and call the component to perform its custom
work. The first function is called when the user clicks the Register
Component Resource ... button.

225

226 A FRAGMENT OF YOUR TMAGINATION

(

(

Component Tester-
Component manipulation for- testing pur-poses ...

(Register Component Resource...)

(Unregister Component)

Beep) 1- 1 Times

Flash) 13 Times 'w'ith A

I 10 Tick Delay Between Each

n Quit l
Figure 11-1. Component Tester main window

t ypedef

Fa t Component

Compon e n t i nstance Fat Component;

gFatComponent = nil;

OSErr DoRegister(void)

OS Er r

SFTypeList

err = noErr;
typeList = { 'thng', '????', '????', '????'}:

S tandardFileReply reply;

S t andar dGetFile(nil , l, LypeLi~t. &reply);

if (reply.sfGood) (

short fRefNum = FSpQpenResFile(&r e ply . s fFile , fsRdPerm);

if (fRefNum ! = -1) (

Compone n tResourceHa nd l e thngResH =
(Component Resour ceHa ndle)

GetlResource(k Compon e n tResourceType , 128);

COMPONENTS

if (thngResH) {
gFatComponent

(FatComponent)RegisterCornponentResource
(thngResH, registerComponentNoDuplicates);

ReleaseResource((Handle)thngResH);
if (gFatComponent == nil)

err = -1;
else err = ResError() ? ResError() resNotFound;

CloseResFile(fRefNum);

else err = ResError() ? ResError() fnfErr;

else err = -128;
return err;

The DoRegister function allows the user to select a file of type
thng that contains our component resource, also of type thng. Once
chosen, the thng resource of ID 128 is loaded into memory and is
passed to the Component Manager RegisterComponentResource func
tion. After this function has completed successfully, the component is
available for clients to open and access it. The component will receive
a register message when it is registered, so it can allocate any memory
that it may need or prepare itself in any particular way. Some compo
nents also check the computing environment when they are registered
to make sure they can operate under the current conditions.

Once registered, the Beep and Flash buttons are enabled, since we
now have access to the routines within the component. When the user
clicks the Beep button, for example, the value from the Beep Times ed
itable text box is read in and passed to the Beep function. The Beep
function then opens the component to create a component instance by
calling the Component Manager OpenComponent function. The com
ponent will receive an open message when OpenComponent is called.
Once created, the component is ready to be called. We can then easily
call the DoBeep function, which is defined in the header file of our
component, in order to make the component beep the chosen number
of times. Once complete, we close the component instance by calling
the Component Manager CloseComponent function. The component
will receive a close message when CloseComponent is called. See the
following code.

227

228 A FRAGMENT OF YOUR IMAGINATION

OSErr Beep(short beepTimes)
{

OS Err err noErr;
Componentinstance ci;

ci = OpenComponent((Component)gFatComponent);
if (ci) {

short outBeepTimes;

err= DoBeep(ci, beepTimes, &outBeepTimes);
if (err ! = no Err) ShowError (err, "\pat tempting to Do Beep") ;

if (outBeepTimes != beepTimes)
ShowError(kGenericError,

n\pcomparing beepTimes to outBeepTimes");

err= CloseComponent(ci);
if (err != noErr)

ShowError(err,
"\pattempting to CloseComponent");

} else err kGenericError;

return err;

Before we continue, we should look a bit deeper into the DoBeep
function. As mentioned, this function is defined in the header file that
is made available to clients of our component. The header file contains
information needed in order for the clients to be able to call our com
ponents routines, one of which is DoBeep. The header file contains the
following definition.

en um

);

kDoBeepSelect 1,
kDoFlashSelect

pascal ComponentResult DoBeep(FatComponent fatinstance,
short inBeepTimes, short *outBeepTimes)
ComponentCallNow(kDoBeepSelect, sizeof(short) + sizeof(short*));

The ComponentCallNow macro is defined in the Components.h
universal header file as the following code.

#define ComponentCallNow(callNumber, paramSize)
FIVEWORDINLINE(Ox2F3C, paramSize, callNurnber, Ox7000, 0xA82A)

COMPONENTS

This function call is what allows the Component Manager to pass
the proper parameters to each of the component's unique routines.
The macro basically consists of 680x0 assembly code that pushes the
proper data on the stack and ultimately calls the function within the
component. The callNumber parameter is the identification number of
the component routine to call, as defined in the header file of the com
ponent itself. The paramSize is the sum of the size of all of the para
meters being passed to the component. Note also that the DoBeep
function is defined as Pascal in nature.

Calling our component to flash the menu bar, when the user
presses the Flash button, is very similar to asking the component to
beep. The only differences are the number of parameters passed to the
DoFlash function. Examine the similarities in this code.

OSErr Flash(short flashTimes, long flashDelay)

OS Err
Component Instance

err ::: noErr;
ci;

ci = OpenComponent((Component)gFatComponent);
if (cil {

short outFlashTimes;

err::: DoFlash(ci, flashTimes, flashDelay, &outFlashTimes);
if (err ?::: noErr) ShowError(err, n\patternpting to DoFlash"l;

if (outFlashTimes !::: flashTimes)
ShowError(kGenericError,
•\pcomparing flashTimes to outFlashTimes•);

err::: Closecomponent(ci);
if (err != noErr) ShowError(err,

•\pattempting to CloseComponent");
else err ::: kGenericError;

return err;

For the record, here is the definition of the DoFlash function in the
component's header file.

pascal ComponentResult DoFlash(FatComponent fatrnstance,
short inFlashTimes, long inDelayTime, short *outFlashTimes)
ComponentCallNow(kDoFlashSelect, sizeof(short) +

sizeof(long) + sizeof(short*));

229

230 A FRAGMENT OF YOUR IMAGINATION

Lastly, we must unregister the component when all is done, as in
the following code.

OSErr DoUnregister(void)

OSErr err = noErr;

if (gFatComponent) (
err= UnregisterComponent((Cornponent)gFatComponent);
if (err == noErr)

gFatComponent = nil;

return err;

Unregistering the component allows it to deallocate its instance of
itself and clean up any messes it may have made before the client puts
it away for another day. The Component Manager UnregisterCompo
nent function takes care of sending the component an unregister mes
sage if the component's Wants Unregister bit is set in the component's
thng resource.

Component Tester PowerPC Changes

A few additions are needed in order to write a native version of our
tester application. Basically, the changes consist of adding PowerPC
glue code that mimics the 680x0 code that is used to call the compo
nent's custom routines DoBeep and DoFlash. You may remember that
the way the DoBeep and DoFlash routines are defined, they consist of
680x0 inline code. Obviously, you cannot call this 680x0 code when
running in native PowerPC mode on a Power Macintosh. Therefore,
we need to do something.

Because of the magic of header files and #ifdef statements, the
ComponentCallNow function expands to nothing when compiled for
the PowerPC. Therefore, the declaration in the header file that looks
like the following code

pascal ComponentResult DoBeep(FatComponent fatinstance,
short inBeepTimes, short *outBeepTimes)
ComponentCallNow(kDoBeepSelect, sizeof(short) + sizeof(short*));

ends up looking like the following code on a PowerPC.

pascal ComponentResult DoBeep(FatCornponent fatinstance,
short inBeepTimes, short *outBeepTimes);

COMPONENTS

If you attempted to compile this code for the PowerPC, you would
get an error stating that the DoBeep function had a prototype, but it
did not exist. Therefore, all we have to do is write a DoBeep function
that is only compiled for the PowerPC and that calls the Component
Manager in such a way to make it call our component properly. Does
that make any sense whatsoever? Let's take a look at the following
code, then we will try to explain it. Remember, this code is only used
when compiling the PowerPC version of our Component Tester utility.

extern UniversalProcPtr CallComponentUPP;

en um

} ;

uppCallComponentProcinfo = kPascalStackBased
RESULT_SIZE(kFourByteCode)

I STACK_ROUTINE_PARAMETER(l, kFourByteCode)

pascal ComponentResult DoBeep
(Fatcomponent fatinstance, short inBeepTirnes, short *outBeepTimes)

#define kDoBeepPararnSize (sizeof(DoBeepParams))

#ifdef powerc
#pragma options align=mac68k
#endif

struct DoBeepParams
short
short

} :

*outBeepTimes;
inBeepTimes;

typedef struct DoBeepParams DoBeepParams;

} ;

struct DoBeepGluePB {
unsigned char
unsigned char
short
DoBeepParams
Component Instance

componentFlags;
componentParamSize;
componentWhat;
params;
instance;

typedef struct DoBeepGluePB DoBeepGluePB;

#ifdef powerc
#pragma options align=reset
#endif

231

232 A FRAGMENT OF YOUR lMAGINATION

DoBeepGluePB myDoBeepGl uePB;
myDoBeepGluePB.componentFlags = O;
myDoBeepGluePB.componentParamSize = kDoBeepParamSize;
myDoBeepGluePB.componentWhat = kDoBeepSelect;
myDoBeepGluePB .params . outBeepTimes = outBeepTimes;
myDoBeepGluePB.params.inBeepTimes = inBeepTimes;
myDoBeepGluePB.instance = (Component lnstance)fatlnstance;

rel.urn Ca llUniversalProc(

CallComponentUPP. uppCallComponent Procinfo, &myDoBeepGl uePB);

The reason this function exists is because you cannot execute 680x0
inline code while running in PowerPC native mode. Therefore, to copy
what the CallComponentNow macro does, we create structures in
memory in order to mimic the look of the 680x0 stack for the call. Be
cause the call is defined as being Pascal in nature, our parameters are
defined in reverse order in our DoBeepParams structure. Our DoBeep
GluePB structure contains other information that needs to exist on the
stack when the call is made, including the component flags, the size of
the parameters, and the message. The CallUniversalProc function is
then passed the address of the myDoBeepGluePB structure as a para
meter to the CallComponentUPP function, which is defined externally
in the InterfaceLib PowerPC library. The CallComponentUPP function
is called and handles the calling of our component routine.

Note that the DoBeepParams is a mirror image of the actual pa
rameters. Also note that since the structure mirrors a 680xO stack
alignment, any byte parameters get passed as two bytes, not one.
You will need to follow any byte-sized parameters with a pad
byte.

The DoFlash component routine uses a similar glue function. The
only differences for this routine are in the parameters and the message
passed. You can use this function as a template for all of your compo
nent routines, but keep an eye out for any copy-and-paste errors,
which can happen quite easily in a situation like this.

COMPONENTS

Compiling Our Code

The code for this chapter contains three code resource projects-one
for the PowerPC, which ultimately creates a 680x0-only and a fat com
ponent, and two application projects that build a 680x0-only
(Figure 11-2) and a PowerPC-only application (Figure 11-3) for testing
the calling conventions and the components themselves. By experi
menting with the source code, you should have no problem writing
your own custom component to perform just about any task you like.

- -

ComponentTester 68k.p.
File Code Data 151 --

V Sources O~ O~ • 13 ..0.
ComponentT ester .c . 0 i 0 i • ID t--

'v"'ii:'eS:'O'u'r.'C'e'S:"""""""'"""'""""""""'T"""""""fiT fiT i:i ..
Component Tester .. rsrc ! n I a ! n I a ! (ii ·v ... iii>r::ar:ies .. ! o.! cf! i:i .. ~
HacOS.lib i 0 i 0 i JD {>-

3 'file(s) 0 ·· ·o Wii

Figure 11-2. 680x0 Component Tester application project

Component Tester PPC.JJ.
File Co_de _ Data 151 ----

v Sources 01 0 i • 13 -0-
ComponentT ester .c . 0 l 0 ~ • III i--o-

PPCGlue .c i 0 i 0 i • Iii t .. : : : ,

"V' Resources i Oi Di 1%1
ComponentTester .rsrc 1 n/a 1 n/a 1 ID ·-w L'i·b·r-·a·r-·ie.·5······ .. ! o.! o·r a··
lnterfacel ib i 0 i 0 i ID
HYCRuntime. lib ! 0 ! 0 ! JD

............... !!.!J.~.~.t~.:.! .. l 9.l 9.lJD .. 1--

0
6 file(s) 0 0 'ID

Figure 11-3. PowerPC Component Tester application project

233

234 A FRAGMENT OF YOUR IMAGINATION

68k_f atcomponent.11
File Code Data il

v Main Segment 0 ! 0 !
F atComponent .c 0 ! 0 !
F atComponentCommon .c ! 0 ! 0 ! ID

... <Qo '°' '°'
V Group2 i Oi Oi (ii

MacOS.lib ! 0 ! 0 ! rit
............... f..~.!~.!.!!!P.!!!!!!!!.,.r..~.!:.!! l.. s:!l!!.l. s:!l!!.L. Jil .. -0-

4 file(s) 0 0 ii
Figure 11-4. 680x0 portion of our fat component project

-

PPC FatComponent.11
File Code Data 19 ··'41

V Main Group Oi Oi (:i Q
F atComponent .c 0 ~ 0 ~ Ill
F atComponentCommon .o i 0 i 0 i III ·-v .. ··or:oliil2 ... r cf~ crr i:i ..
lnterf a eel ib ! 0 ! 0 ! ID
Mathlib j 0 j 0 ! [ii

............... !.!.!.I~.!:.~.!!.,.! L.9.L. Q.L... !il..,{}

5 file(s) 0 0 'l!i

Figure 11-5. PowerPC portion of our fat component project

Component Tips

Writing a component can be a real thrill, especially when you have
completed it and others are using it from their own programs. By cre
ating a simple system extension file of type thng and a header file de
scribing the component's routines, you have a completely stand-alone
functional entity that can be easy to maintain and use. Here are some
tips and ideas to watch for when writing a component.

• Like HyperCard externals, components can be a great way to pro
vide needed functionality while hiding your proprietary algo
rithms. The nice thing about components is that they work with

COMPONENTS

any application that supports them, not just HyperCard. In fact,
you could probably write a HyperCard external that interfaced to
other components. Now that might be cool.

• Depending on what your component does for a living, you may
not have to make it PowerPC native. If it simply opens a file and
reads some data from it then displays a quick dialog box, making
it native might not be a top priority. Eventually, when all Macin
tosh computers are Power Macintosh computers, you will want to
rethink this. For now ... it's up to you.

• When your component is called, it is functioning in someone
else's environment. That is, an application is calling you and it
may have a limited amount of heap space and stack space avail
able for your use. Prepare for the worst and code defensively. In
fact, you should code defensively for all of your code resources.
You never can tell how adverse the environment in which you will
be running may be.

• The next time you are writing an application, think how you
might factor some of the features of your program into a compo
nent. This may make your application smaller and allow your
users to pick and choose the features they like. You can also re-use
the component with your next application, making it smaller as
well. Not to mention you may be able to license your component
to another company for use in their product. You see, writing a
component can make you rich!

• Don't get carried away. If you have a little tiny function that sim
ply displays an error alert and beeps a few times, you might not
want to write that in the form of a component. Think about it. If
the code you are writing into a component is smaller than the rest
of the information in the component file, such as the icon and
other resources, it may not be a wise decision. As your mother
used to say, "I'm sure you'll make the right decision."

235

CHAPTER TWELVE

Advanced and
Undocumented Techniques

That code is teetering on the edge of compatibility.

-Anonymous

Introduction

Throughout this book you have undoubtedly picked up some useful
techniques for working with code resources, source code, and devel
opment projects in general. Although these techniques have been scat
tered throughout the chapters, this chapter in particular caters to
discussing some very useful techniques that may not be immediately
apparent. The concepts in this chapter vary in subject matter, but all
have proven to be time-saving tidbits of information. You should note
that some of the items in this chapter are documented no place else
but they deserve to be, so we have done so here.

Warning! Portions of the information in this chapter have been
known to make certain Apple DTS engineers itch. Some of the tech
niques described may not be pretty (but they are fun). Mind you, they
are also liable to break as future versions of the operating system come
into being. The information in this chapter is not guaranteed to work

237

238 A FRAGMENT OF YOUR IMAGINATION

in the future in any way, shape, or form whatsoever. Take this chapter
for what it's worth and walk lightly around the innards of the OS!
(How's that for a warning, Jim?)

Building Fat Resources
Throughout this book we have shown you how to take advantage of
native speed as well as other features of the PowerPC processor and
its implementation on the Power Macintosh. Although it's been men
tioned in passing, we've never totally discussed how to create a fat re
source out of your code resources.

For those of you that may not know yet, if you are skipping
around the book a bit, a fat resource is one that contains both 680x0
and PowerPC code in the same package. It will only run on a Power
Macintosh, but gives you the best possible performance by choosing,
at runtime, whether to execute the 680x0 code or the PowerPC code.
This decision is made by the Mixed Mode Manager and is dependent
on the ISA of the calling code. That is, if you create a fat resource and
it is placed in an application that contains only 680x0 code, you can
have the PowerPC code in the fat resource run no matter what, or you
can have the Mixed Mode Manager decide which code should run.
When the Mixed Mode Manager makes the decision for you, it basi
cally looks at the ISA of the calling code and then calls the code in the
fat resource that will not require a mode switch, as described earlier.
This saves time by letting the computer stay in the same ISA as it was
before the fat resource was called. There are many options that you
can set in the RoutineDescriptor of your fat resource to control deci
sions such as this one.

In order to create a fat resource, you need to use the Rez tool with
either ToolServer or MPW. The Rez tool allows you to execute scripts
written in the Rez language. Using the Rez language, you can perform
a variety of actions on resources in any type of file. It is also very
handy for merging resources together along with other data, such as a
RoutineDescriptor.

By executing a simple Rez script, we are able to create a fat re
source that contains a RoutineDescriptor with two RoutineRecord
structures. We specify the output resource type and ID, as well as the
Proclnfo values of the functions in the source resources. We then spec
ify the file name, resource type, and ID of the source resources. Rez
finds the template for the type fdes in the file MixedMode.r and
knows how to put all the pieces together (see the following code).

ADVANCED AND UNDOCUMENTED TECHNIQUES

#include "MixedMode .r"

type 'LDEF' as 'fdes';

resource 'LDEF' (128) {

} ;

$5, II 68K Proclnfo
$5, I I PowerPC Procinfo
$$Resource("68k LDEF", ' LDEF', 128),
$$Resource("PPC LDEF No RD", 'LDEF', 128)

Assuming the script is stored in a file named CreateFatResource.r,
we can execute it by having ToolServer or MPW execute a simple com
mand line, as in the following code. Once executed, the target file,
(also known as the output file) contains the fat resource. We can then
use this fat resource as we see fit.

Rez - a CreateFatResource . r -o "Fat LDEF Output File"

Because versions may vary and you may or may not be using
ToolServer with CodeWarrioT, OT THINK C, OT may even be
using MPW, you should read the documentation that came with
your development environment to learn how to execute com
mands properly. In most cases, you simply type the command
line and press the Enter key. After you figure it out once, it
should be easy to make changes to suit your specific needs from
project to project. You should also read the ToolServer and Rez
documentation on the enclosed CD for complete information on
using these tools.

Building Safe Fat Resources

Safe fat resources are similar to fat resources except they can be run
on both 680x0 machines and the Power Macintosh. In fact, a safe fat
resource is exactly the same as a fat resource, except for a short stub
of 680x0 code that precedes the RoutineDescriptor. This stub of code
is executed the firs t time the safe fat resource is called and, depend
ing on the type of computer on which it is running (680x0 or Power
Macintosh), it modifies itself in a manner that allows it to execute
properly on either machine. If you are familiar with assembly lan
guage and want to delve deeper into what this code stub actually
does, you should look at it in the MixedMode.r file that comes with

239

240 A FRAGMENT OF YOUR IMAGINATION

your development environment. For those of you that really want
more control over the safe fat resource, you can easily edit this code
stub to suit your specific needs.

In order to create a safe fat resource, you perform the exact same
steps as creating a fat resource, except your Rez file is slightly differ
ent. Instead of using the template for fdes found in MixedMode.r, you
use the template for sdes. The safe fat resource template contains the
680x0 code stub that we discussed earlier and automatically tacks it on
to the beginning of the target resource in the output file. (See the fol
lowing code).

#include "MixedMode.r"

type 'LDEF' as 'sdes';

resource 'LDEF' (128) {

} i

$5, 11 68K Procinfo
$5, 11 PowerPC Procinfo
$$Resource("68k LDEF", 'LDEF', 128),
$$Resource("PPC LDEF No RD", 'LDEF', 128)

You will probably want to change the name of your Rez script to Cre
ateSafeFatResource.r in order to keep the versions straight, as in the
following code. Otherwise, they are, technically, exactly the same.

Rez -a CreateSafeFatResource.r -o ~safe Fat LDEF OUtput File•

Using FatMan to Create Fat and Safe Fat Resources

On the CD that came with this book, you will find a program called
FatMan. This program, written by yours truly, allows you to create fat
and safe fat resources easily by simply choosing the proper settings
and typing in some information (Figure 12-1). FatMan does not re
quire you to learn and use the Rez language or any other tools.

Using FatMan, you can easily select the destination resource type
and ID, as well as the type and creator of the file to which the resource
will be saved. You can also choose if you want the Use Current ISA bit
set in the RoutineDescriptor, which can help to optimize the use of
your code in specific circumstances. You can choose to copy the re
sources from one file to another, as well. When selecting the source re
sources, you tell FatMan how the 680x0 source is stored and how the
PowerPC source is stored. You can then tell FatMan to create either a
fat or safe fat resource. FatMan will request the files it needs to create

ADVANCED AND UNDOCUMENTED TECHNIQUES

Preferences

Resource Type: File Type : IRSRC

Resource ID : File Creator : !Doug

~ Use Current IS A Copy Resources From : D 680x0 D PowerPC

680x0 Source--------.

Resource Type : I 68k
======:::::

Resource ID : '~1_2_8 ____ __,

D Multi-Segment

(Use Defaults)

Figure 12-1. FatMan preferences dialog box

PowerPC Source------

Resource Type : I PPC
::=====:::::

Resource ID : ~I 1_2_s ____ _.

D Use Shared Library (data fork)

~ Strip Native RoutineDescriptor

(can c e I) E~(iiiiiiiio Kiiiiiiii#Il

the destination resource and ask you to enter the Proclnfo value for
the routines. You can use FatMan's Proclnfo Calculator to figure out
this value if you do not know it already (Figure 12-2).

After FatMan has done its work, which takes mere seconds, you
will have a fat or safe fat resource ready to be used in your program.
One thing to note, however, is that FatMan is a development tool that
is under development and it may not be perfect. However, in many
cases, it can save you valuable time in your programming effort. Use
the contact information in the About the Author section of this book to
keep up to date with the latest version of FatMan and other source
code discussed in this book. Enjoy!

241

Proc Info Calculator

Calling convention I P asca 1 Stack based .,... '

Result s ize I void .,...)

[81 Par am 1 I Stack .,... I Size I four bytes .,... I
[81 Par am 2 I Stack .,... ' Size I h'fo bytes .,... '

D Param 3

I'·, ,_,_,,,,-., 1 -'·. · .;, >' :, :.- .-:·,,,,_-,,. Dec1mal

I 000002CO I Hexadecima 1
Current Value =

Figure 12-2. FatMan's Proclnfo Calculator dialog box

[OK J

N
,j:::>.
N

>

~
~ z
-l
0
'T1

d
c
;a

~
C'l
z
~
5 z

ADVANCED AND UNDOCUMENTED TECHNIQUES

Multiple Cell Formats in a List

The List Manager is a great thing to have around on the Macintosh. It
allows you to create lists of items for users to manipulate. You can
even use it to create a spreadsheet-style interface, although you would
never want to use it for a real spreadsheet, since it has some pretty se
rious limitations. Most of the time, you see the List Manager used to
display short lists of items, such as possible keyboard layouts as seen
in the Keyboard control panel (Figure 12-3).

As we've discussed earlier, the List Manager allows you to cus
tomize the look of the data that is displayed in the list by means of a
list definition procedure. This function is stored as a resource of type
LDEF and is called mainly to draw list cells. The majority of the time,
your cells will all look the same. They will all display the same type of
data and will draw each cell in a similar manner. However, there may
be times when you want certain cells to have the ability to draw items
in a way that differs from the others. You could have your list defini
tion know how to draw each type of cell or you could take another,
more generic approach.

We've created a list definition that doesn't actually do any draw
ing whatsoever, yet gives you full customization over the way each in
dividual cell draws itself. (See the following code.) As you know, each
cell contains data that is set by using the LSetCell function. Our LDEF
assumes that the cell data for a cell consists of a simple structure

-

~ Ke_y_board

Key Repeat Rate De lay Until Repeat

0000® 0 00®0
Slow Fast Off Long Short

Key board Lay out

~U.S. Q
~U.S. - System 6

{}

Figure 12-3. A simple list in the Keyboard control panel

243

244 A FRAGMENT OF YOUR IMAGINATION

containing a universal procedure pointer that ultimately points to a
drawing function and a reference constant.

typedef void (*RefconLDEFDrawProcType) \
(Rect *r, Cell cell, ListHandle lh, long refCon);

enum {

} ;

uppRefconLDEFDrawProcinfo = kCStackBased
I STACK_ROUTINE_PARAMETER(l, SIZE_CODE(sizeof(Rect *)))
I STACK_ROUTINE_PARAMETER(2, SIZE_CODE(sizeof(Cell)))
I STACK_ROUTINE_PARAMETER(3, SIZE_CODE(sizeof(ListHandle)})
I STACK_ROUTINE_PARAMETER(4, SIZE_CODE(sizeof(long)))

#if USESROUTINEDESCRIPTORS
typedef UniversalProcPtr RefconLDEFDrawProcUPP;
#else
typedef RefconLDEFDrawProcType RefconLDEFDrawProcUPP;
#endif

typedef struct RefconLDEFCell {
long ref Con;
RefconLDEFDrawProcUPP drawProc;

RefconLDEFCell, *RefconLDEFCellPtr, **RefconLDEFCellHdl;

Whenever a cell is asked to draw itself, the LDEF simply calls the
drawing function to do the actual drawing, passing the reference con
stant as one of its parameters (as in the following code). Other para
meters passed to the drawing function include the rectangle, the cell
coordinates, and the list handle.

void DrawMsg(Boolean fSelect, Rect *r, Cell cell, ListHandle lh)

RefconLDEFCell
short

11 get cell

cellData;
dataLen;

dataLen = (short)sizeof(cellData);
LGetCell((Ptr) (&cellData), &dataLen, cell, lh);

II call draw proc
if (cellData.drawProc)

EraseRect(r);
CallRefconLDEFDrawProc(cellData.drawProc, r,

cell, lh, cellData.refCon);

ADVANCED AND UNDOCUMENTED TECHNIQUES

II hilite if selected
if {fSelect)

HiliteMsg(fSelect, r);

Using this mechanism, you can set a different drawing function
for every single cell in your list if you so needed. It also lets you use
one LDEF for all the lists in your application, since your drawing func
tions (which are usually the only differing parts of a list definition
anyway) are all functions in your program. This makes it much easier
to use your source-level debugger to debug your drawing functions
and also allows easy access to your application's global variables from
within your list. All around, this mechanism works very well and lets
you take advantage of the List Manager in a unique and useful way.

To learn more about this technique and see it in action, read Chap
ter Six, "List Definitions." It uses this technique.

Code Optimization

You may be asking yourself, what is a book on code resources doing
talking about code optimization? Well, the answer is, code resources
contain code and in order to keep your system running smoothly you
want to make sure your code resources are as optimized as possible.
The point of the Power Macintosh is speed. But even the fastest
processor in the world can't make up for nonoptimized code. This sec
tion outlines a few points that you should keep in mind whether you
are programming code resources, applications, or any other type of
code.

Optimize Inner Loops
Assuming you are writing code that has the equivalent of an inner
loop, you should spend most of your time optimizing it, as opposed to
code that only executes once in a while. The nature of an inner loop is
that the code in that section is executed many times in a row. You
should make use of compiler options and processor features, such as
the use of registers, to make sure your code is as fast as it can be. Al
lowing the processor to access certain data from registers, as opposed
to memory, saves time that can really speed your loops.

245

246 A FRAGMENT OF YOUR IMAGINATION

Unroll Loops

Assuming you have a loop that performs some task a specific number
of times, you can easily unroll the loop to avoid branching back to the
top of the loop. That is, instead of executing one iteration of the loop
and then branching back to the beginning of it, you can execute two or
four iterations before branching back and starting over. By doing this,
you avoid numerous TeST and BRAnch instructions (under 680x0,
anyway), and will ultimately save time. This can be especially useful
in a time-sensitive loop.

Optimize the Code that Executes the Most

Much like the optimization of inner loops, you should spend time op
timizing the code that is executed most often in your program. You
can use a tool known as a profiler, which comes with your develop
ment environment, to see exactly what code is taking the most time to
execute and which functions are executing most frequently. By study
ing this information, you can choose the code that needs to be opti
mized first in order to speed up your program the most.

Use Macros Instead of Function Calls

Function calls take time because parameters need to be prepared for
the function, the function must then save registers, examine the para
meters, do the work, restore the registers, and finally return to the
caller. In many cases you may have small utility functions that can be
replaced with inline macros instead. When a macro is used, the code
that the macro defines is placed inline (i.e., directly in the code itself).
No function call is used. If a macro defines ten lines of code, those ten
lines will be substituted wherever the macro is used. Although this
makes your code larger, it can be a useful technique to provide a burst
of speed in time-critical code.

Don't Multiply or Divide

One of the slowest things you can ask your computer to do is to mul
tiply or divide. If you plan on multiplying or dividing by a power of
two, you should instead choose to use the shift operator. Instead of
multiplying by two, shift the bits one place to the left. Instead of di
viding by four, shift the bits two places to the right. The speed increase
can be incredible.

ADVANCED AND UNDOCUMENTED TECHNIQUES

Optimize Last

The most important rule regarding optimization is to optimize last
(and make sure you leave time for performance tuning if you have a
tight schedule). Many people spend too much time optimizing their
code early on. This usually makes it less maintainable and often ends
up being wasted time since the real bottlenecks of the project aren't ex
posed early on. You should first make sure your code operates prop
erly with all the functionality you want. Once that is complete, run a
profiler over it to figure out where the real bottlenecks are. Finally, op
timize those bottlenecks. Very often you will find that you end up op
timizing far less code (meaning more of your code stays neat,
maintainable, and portable).

Debugging Techniques
There are so many possible causes for errors or crashes in your pro
grams that it would take most of the ink in the world just to list them,
much less explain them all. Suffice it to say that this would be close to
impossible. After years of programming the Macintosh, you adopt cer
tain techniques that help you through some of the rougher spots. Here
are a few of them that I like to use when debugging code resources
and other programs.

• Many code resources are called just after they are loaded using
GetResource or a similar Resource Manager routine. Use this to
your advantage by setting a break point on this routine. When you
see your code resource being loaded, you can step right into its
code a few steps away, as it is being called.

• Depending on whether a code resource is detached or not, it may
appear in memory as a Memory Manager handle or a handle to a
resource. Keep this in mind when you are dumping the contents
of a heap and looking for your code. It may not appear in the form
you assume.

• Code resources may move in memory if they are not locked. You
will always want to ensure that while a code resource is being ex
ecuted, it is locked in memory. If you are experiencing strange
crashes at random locations, make sure that your code is locked
down during execution. If it is not, you might find it moving out
from under itself while it is in the middle of execution. Very bad.

• Many code resources are compiled with a specific header attached
to them. This header almost always contains the resource type of
the code within it. You can look for this in memory when debug-

247

248 A FRAGMENT OF YOUR IMAGINATION

ging to make sure you have the right resource. You can also cus
tomize your own resource header. See the documentation for your
development environment on how to implement this.

If You Have to Support System 6

First of all, try to get out of it in any way you can. Others will agree
that System 6 is simply not worth supporting from this point onward.
This can be proven by looking at the system requirements of almost all
new software coming from Apple. System 6 is no longer a priority.

Because of the fact that some offices still have System 6 machines
floating around and many companies like to purchase "complete solu
tions," some developers are still making their software System 6 com
patible. In many cases, this means slipped schedules, especially if you
are writing a system extension or similar low-level code. If you keep
in mind that System 7 was a major rewrite of the system software, it
makes sense why there may be differences between it and previous
systems.

If you patch a trap, for example, there may be subtle differences in
the original trap under System 6 and System 7. These subtle changes
can cause spectacular crashes in strange situations. Most of the time,
these crashes will occur on low-end System 6 machines like your
trusty Mac Plus. Not that the Mac Plus is a bad machine, but since
most developers use Quadras or Power Macintosh computers running
System 7, and rarely test on the low-end machines, they tend to have
some problems, even in shipping software.

If you are forced to support System 6, you should commit to noth
ing less than System 6.0.5, which was one of the most stable software
versions. System 6.0.7 or 6.0.8 are adequate if you need enhanced
sound capabilities. Remember not to depend on Color QuickDraw.
Even though it is built in to System 7, it may not exist on a System 6
machine. And don't forget the 68000 chip-it can sometimes exhibit
crashes that you will not otherwise catch on your 68030, 68040, or
PowerPC. Also, expect to pad your schedule by a few days here and
there, because it is almost certain that you will have a crash on a lMB
Mac Plus running System 6.0.5 that will take forever to debug due to
the processor speed. Take heed when supporting System 6. It is not an
easy task.

ADVANCED AND UNDOCUMENTED TECHNIQUES

Sending AppleEvents from a Code Resource

Believe it or not, you can send AppleEvents from any type of code, in
cluding INIT resources. In fact, our MenuScripts project discussed ear
lier in this book did just that. You should note, however, that even
though you can send AppleEvents, don't expect a reply. As you know,
AppleEvent replies can be filtered through WaitNextEvent and are
handled in the main event loop of an application. Since your INIT re
sources (or other code resources) do not have a main event loop, they
will not be able to receive any replies to an AppleEvent. This is not the
end of the world, but it is something of which to be aware when send
ing AppleEvents from your code resources.

Writing a Daemon Application
A daemon application, also known as a faceless-background applica
tion, is a very useful type of program. The daemon application is
stored in a file of type appe in most cases. It has absolutely no user in
terface, including menus, except for it being able to use the
Notification Manager to alert the user if needed. It cannot be opened
from the Finder, but must be launched programatically via the
LaunchApplication function instead. When it is launched, it does not
appear in the application menu. The brilliance of the daemon applica
tion, however, is that it can send and receive AppleEvents. It is also
launched automatically at startup if it is located in the Extensions
folder.

The daemon application is written much as a normal application
is written. However, there is no need to initialize the WindowMan
ager, MenuManager, and others at application startup. Also, the dae
mon need only handle null events and AppleEvents in its main event
loop. All other user interface-related events are never sent to it.

The fact that the daemon is called with null events indicates that it
is given periodic time, just like all applications. If you were planning
on writing an INIT that patched SystemTask, for example, simply to
obtain periodic time, you can avoid the INIT and the patch by using a
daemon application instead. The added benefit is that you can send
and receive AppleEvents to and from any other process on the local
Macintosh or any Macintosh on the network.

The File Sharing Extension is a daemon application. When you use
the Sharing Setup control panel to tum file sharing on and off, it is sim
ply launching and quitting the File Sharing Extension via the Process
Manager call LaunchApplication and by sending a Quit Apple
Event. Your daemon application can be used in a similar manner to
allow the user to tum it on and off instantly, without having to restart.

249

250 A FRAGMENT OF YOUR IMAGINATION

Something of which to be aware is that from within a daemon,
you cannot make any calls (even ones in the operating system) that
cause QuickDraw to be used. You can't even call the Random function.
If you attempt to call any standard file routines, for example, your pro
gram will crash almost immediately due to the fact that QuickDraw is
not initialized in a daemon application. Because of this, all daemon ap
plications also have very little stack space. This can sometimes cause
problems and is something for which you should watch.

To summarize, daemon applications

• can call lnitGraf
• get only 2K of stack space by default, but can increase this by

using SetApplLimit
• should have large variables located in the heap and not locally on

the stack
• cannot call other Init_ calls such as InitMenus and InitWindows
• cannot use any QuickDraw routines that draw
• cannot make any other call that may display an alert, including

any AppleEvents that may do so
• cannot call ResolveAlias, as it may attempt to display a dialog box

if a server needs to be mounted, however, MatchAlias can be used
with the KARMNo VI rule

All in all, daemon applications are very useful and offer several
advantages to developers and users. They are easier to debug than an
INIT and, ultimately, can be more compatible, as they need not patch
traps for certain innate functionality. Write a daemon today!

Creating Stand-alones

I'm sure you've seen programs that allow you to create a stand-alone
document. HyperCard 2.2 allows you to export a stack as a stand
alone application. That is, once exported in this format, you can double
click the stack and it will run without HyperCard. This is relatively
simple to do and is becoming a very popular thing.

Let's assume that you want to create a stand-alone text document
reader. First you need to write the program that can display text doc
uments. You should write it in such a way that it gets the data to dis
play from a resource of type TEXT, for example. This is the program
that gets created when the user wants a stand-alone reader.

Now you need to write a stand-alone text document maker. This
program contains a resource that contains the entire resource fork of
the reader. That is, using the FSpOpenRF and FSRead functions, you

ADVANCED AND UNDOCUMENTED TECHNIQUES

read the resource fork of the reader as a stream and store it in a re
source in the maker. When the maker wants to create a stand-alone
document reader it simply writes the contents of the resource out to a
resource fork (using the FSpOpenRF and FSWrite functions), places
the text data to be displayed in a resource of the proper type (e.g.,
TEXT) inside the reader, and then sets the file type to APPL.

You've just created an application that is your original reader pro
gram. It can be opened from the Finder and will display the data
stored within it. Remember, if you want to create a PowerPC native
version of your reader, you may also need to deal with the data fork
of the file. We'll leave that as an exercise for the reader. Pun intended.

Patching Traps

You've probably heard of the concept of patching a trap, but what
does it mean? A trap is a function that is built in to the operating sys
tem. The term trap refers to the fact that the number that represents
one of these functions is called a trap word and is stored in a trap
table. It is called a word, since it is normally 2 bytes in length. When
you patch a trap, you are intercepting the original operating system
function and replacing it with a pointer to your own function. When a
program attempts to call the original function, it actually, unknow
ingly, executes your function. Your function can then choose to execute
the original function if it so desires.

You use the NGetTrapAddress and NSetTrapAddress (or their de
rivatives) to get the original address of a trap and set it to point to
your function. You use the original address in order to call through to
it if you so choose. Most of the time, you will find that an INIT is what
patches traps on a systemwide level. Your code is loaded into the sys
tem heap and the patches are applied. Patches of this nature affect all
programs on the computer. You can also patch traps from within an
application, which cause only that particular application to be affected
by the patches. This is due to the fact that many different copies of the
trap tables exist-one systemwide and others for each application.

You should make sure that your patches do as little as possible
and execute as fast as possible, because when you patch a trap you be
come a part of the operating system. If your code is slow, you slow the
entire computer; every single program running will be effected by
your tortoise-like code and your users will become annoyed. Heed
this warning.

By patching traps you can alter the functionality of any trap on the
Macintosh. For example, you may want to patch the HOpenResFile
function in order to look for all files being opened that have the word

251

252 A FRAGMENT OF YOUR IMAGINATION

"Resume" in their titles. Whenever a program attempted to open a file
containing that name, your patch could choose not to allow the file to
be opened. You might even choose to display an alert that tells your
employees to work on their resume at home and not at work. This
might be sneaky, but hey, you're paying them, right?

Patching a Register-based Trap

In Chapter Four, "System Extensions," we discussed patching traps
that were Pascal in calling convention. However, sometimes you need
to patch a trap that is not as simple. Some traps are register-based.
That is, these traps take their parameters in registers, as opposed to on
the stack, such as the Pascal-style traps. Patching these traps can be a
bit difficult on 680x0 Macintosh computers. On Power Macintosh com
puters, however, it can be quite simple.

For example, let's say you want to patch the File Manager trap
Delete (see Traps.h for a list of trap words, including that for Delete).
Delete expects that register AO will contain a pointer to an HFileParam
structure. This structure defines the file in question-one that is about
to be deleted, in this case. Upon exiting, the Delete trap is supposed to
fill register DO with a word result, (i.e., any error that occurred while
trying to delete the file). In order to patch this trap on a 680x0 Macin
tosh, you will need to write your routine, or at least part of it, in as
sembly language. This allows you to extract the HFileParam pointer
from register AO and put it in a local variable that you can easily ac
cess from your C code.

When you patch a register-based trap, the trap word is in register
Dl when your patch gets control. Many operating system traps use
bits 9 and 10 (the flag bits) of the trap word to indicate variations of a
trap. For example, if you wanted to tell the difference between Delete
and HDelete, you need to check bit 9; to tell if a File Manager request
was asynchronous or synchronous, you need to check bit 10.

However, patching this trap for the PowerPC is a bit easier, since
the use of RoutineDescriptors allows you to write a routine that is
passed the parameters "on the stack" from the registers in which they
are initially placed. No need for assembly language here. By using the
macros provided to create the proper procedure information for your
C routine, you can easily access the HFileParam data. If you've made
it this far, you probably have what it takes to get this working on your
own, so give it a try.

All is not fair in love and war and patching file system traps. You
should keep in mind that if you start patching traps like Delete, you
should be prepared for the problems that will inevitably arise. There

ADVANCED AND UNDOCUMENTED TECHNIQUES

are many idiosyncrasies, beyond the scope of this book, that can hap
pen depending on other software being run on the Macintosh, such as
Macintosh File Sharing. For example, Macintosh File Sharing some
times executes the same file system call twice. That is, it reexecutes a
synchronous call as an asynchronous one in order to prevent dead
lock conditions. In general, you should do what you can to save and
restore all registers before and after execution of your patch to help
compatibility. You have been warned, now back to the fun.

System Extension Conflicts

As previously mentioned, most of the time INITs are the programs
that patch traps. This can sometimes cause what are known as INIT or
system extension conflicts. Because many INITs may be loaded that
patch the same traps to do their magic, discrepancies sometimes occur
between them. For example, one INIT may assume that a particular
trap works in a particular way and only returns one of two possible
error codes. If another INIT comes along and also patches that trap, it
may decide that it needs to force the original to return yet a third error
code. Depending on the order in which the INITs load, which decides
the order in which the patches themselves are called, one may not ex
pect the new error code and your code may unexpectedly crash or be
have strangely. Issues like this, including many that are much more
subtle, are the cause for many problems between system extensions.

Disabling Command-Option-Escape

Under System 7, the system allows you to type Command-Option
Escape simultaneously in order to quit the current application. For
most users, this is not a problem and can help get out of sticky situa
tions if your Macintosh freezes up for some reason. However, there
may be a case when you do not want a user to be able to quit out of
applications in this manner. Network administrators sometimes have
this need to ensure security on their machines.

The Command-Option-Escape mechanism makes use of the Sys
Error function. This is the same function that is called to display the
"It is now safe to turn off your Macintosh" message after you select
Shutdown in the Finder. In order to intercept the Command-Option
Escape sequence, you can simply patch the SysError function and, be
cause SysError is a selector-based trap, watch for selector $4E22 in
register DO. If you see this selector, then simply return to the caller, as
opposed to jumping to the original SysError. Interception guaranteed.

253

254 A FRAGMENT OF YOUR IMAGINATION

Getting the Directory ID of the Frontmost Finder
Window

It may be useful, at times, for you to be able to get the directory ID of
the frontmost window in the Finder. For example, I once wrote a sys
tem extension that would create a file in the frontmost Finder window
when a specific hot key combination was pressed. In order to do it, I
wrote an INIT that first patched PopUpMenuSelect in order to inter
cept its calls and then had a jGNEFilter to intercept keyboard events
for the hot key. When the hot key was pressed, I would use PostEvent
to fake a mouse click (with the command key down) over the center of
the front window's title bar. You may know that if you normally
command-click on the title of a Finder window you see a popup menu
that displays the full path to the window (Figure 12-4).

0 items

Na Documents
l======I

~ 3dozeneggs 0

Figure 12-4. Command-clicking on a Finder
window's title

My PopUpMenuSelect patch was then called and, instead of actu
ally allowing the menu to be shown, it would simply look at the menu
items in reverse order to get the full path and then punt the rest of the
call so the popup menu never actually displayed itself. At this point, I
had the full path to the window in question. With the full path to the
window, I could easily use the PBGetCatinfo function to calculate the
vRefNum and directory ID. Armed with this information, creating a
file was child's play.

The only shortcoming to this method is that it cannot reliably
figure out on which disk a folder on the desktop is located (Figure 12-5).
Command-click on the window title of a folder on the desktop and

ADVANCED AND UNDOCUMENTED TECHNIQUES

Figure 12-5. Command-clicking on a Finder
window's title that is on the desktop

you will see exactly what I mean. Otherwise, this is an easy, compati
ble way to get some otherwise hard-to-find information.

Creating Your Own AS World

You may find it necessary, at some point in your programming en
deavors, to draw using QuickDraw at some inopportune time. For
instance, let's say you write a system extension that patches HOpen
ResFile in order to intercept resource files being opened. It is possible
that this patch may be called at a time when there is no valid AS
world. Let's say, one step further, that you wanted to draw something
on the screen each time your patch was called. If no AS world existed,
you would crash pretty quickly the moment you attempted to draw.

The answer to this dilemma is to create your own AS world, tem
porarily, in order to facilitate your need to draw. This is no easy task
and the following code may not be the panacea, but it works as of this
writing. How's that for a disclaimer? Let's take a look at the code.

typedef struct {

QDGlobals qd; I I QuickDraw globals

GrafPtr thePort; II a5

char stuff [28); 11 Misc stuff

GrafPort port; II The color port we open to draw in

} QDWorld;

255

256 A FRAGMENT OF YOUR IMAGINATION

typedef struct {
THz
UniversalProcPtr
UniversalProcPtr
unsigned char
long

oldZone;
saveDeskHook;
saveDragHook;
savedResLoad;
oldAS;

II
II
II
II
II

saved heap zone
saved DeskHook
saved DragHook
saved ResLoad
saved AS

Ptr pFMExist; II Font Manager initialized
Ptr pQDExist; II QuickDraw initialized flag
unsigned char savedFMExist;

II saved value of Font Manager initialized flag
unsigned char savedQDExist;

II saved value of QuickDraw initialized flag
QDWorld qdWorld; II our QuickDraw world

A5Params, *A5ParamsPtr;

flag

These two structures are used to keep track of the information that
we use while we create and use our own AS world. You will note that
we need to save and restore a good number of low-memory globals.
This all comes with the territory of hacking QuickDraw, a dangerous
task I might add.

The first function we call in the following code is Prepare
ASWorld. This is the function that takes care of creating and initializ
ing our new AS world, as well as saving lots of information that we
need to restore when we are done. I left the comments in the code,
since they really seem to sum up what is being done throughout this
function. You should note that this code, in a sense, is balancing on the
edge of compatibility and should be used with caution. If you so much
as delete one line, you will be asking for problems.

void PrepareA5World(A5ParamsPtr pp, Rect *screenBitsBounds)
{

II
II save the zone and set to the System zone
II this may not be needed but we used this code
II in a system extension that used the system heap
II

pp->oldZone; GetZone();
SetZone(SystemZone());

II
II save DeskHook and DragHook, which are low memory proc ptrs
II then set them to 0 so they are ignored
II

ADVANCED AND UNDOCUMENTED TECHNIQUES

pp->saveDeskHook = LMGetDeskHook();
pp->saveDragHook = LMGetDragHook();
LMSetDeskHook((UniversalProcPtr)OL);
LMSetDragHook((UniversalProcPtr)OL);

II
II set ResLoad to true so our resources are loaded
II may not be needed in your code
II

pp->savedResLoad LMGetResLoad();
SetResLoad(true);

II
II save the values of the Font Manager and QuickDraw init flags
II

pp->pFMExist = (Ptr)Ox0D42;
pp->pQDExist = (Ptr)Ox08F3;
pp->savedFMExist *(pp->pFMExist);
pp->savedQDExist = *(pp->pQDExist);

II
II set our aS world, initialize it, and init the Font Manager

II

pp->oldAS = SetAS((long)&(pp->qdWorld.thePort));
InitGraf(&(pp->qdWorld.qd.thePort));
if ((pp->savedFMExist == OxOO) && (LMGetWidthTabHandle()

*(pp->pFMExist) = OxFF;

nil))

InitFonts();

II
II open a color port, requires Color QuickDraw

II

OpenCPort((CGrafPtr) (&pp->qdWorld.port));

II
II return the bounds of the as world we have created
II

*screenBitsBounds pp->qdWorld.qd.screenBits.bounds;

The RestoreASWorld function is called when drawing is complete,
as in the following code. This ensures that the previous AS world, if
any, is properly restored.

257

258 A FRAGMENT OF YOUR IMAGINATION

void RestoreASWorld(ASParamsPtr pp)
{

II
II close the color port
II

CloseCPort((CGrafPtr) (&pp->qdWorld.port));

II
II restore the old as world
II

SetAS(pp->oldAS);

II
II restore other saved settings
II

*(pp->pQDExist) = pp->savedQDExist;
*(pp->pFMExist) = pp->savedFMExist;
LMSetDeskHook(pp->saveDeskHook);
LMSetDragHook(pp->saveDragHook);
LMSetResLoad(pp->savedResLoad);
SetZone(pp->oldZone);

Let's take a look at how you might use these two routines to actually
do some drawing. (See the following code.) Although you would
never have a need to use these from within an application, this is the
easiest way to test that our routines are working. So, this is what we
did.

void main (void)
{

unsigned long
ASParams
Rect

randSeed;
aSp;
screenBitsBounds;

InitGraf(&qd.thePort);
InitFonts();
FlushEvents(everyEvent, 0);
InitWindows();
InitMenus();
TEinit();
InitDialogs(nil);
InitCursor();
GetDateTime((unsigned long *)&randSeed);
LMSetRndSeed(randSeed);
DrawMenuBar();

ADVANCED AND UNDOCUMENTED TECHNIQUES

PrepareA5World(&a5p, &screenBitsBounds);

ForeColor(redColor);
PaintRect(&screenBitsBounds);

RestoreASWorld(&aSp};

while (!Button()) {}

UpdateRectangle(&screenBitsBounds);

FlushEvents(everyEvent, 0);

This tiny application simply initializes the Macintosh Toolbox,
prepares our custom AS world, draws to it using QuickDraw, then re
stores the previous AS world. You will note that after we restore the
previous AS world, we simply wait for the user to click the mouse. At
this point, the entire screen is red. After the user clicks, we call a util
ity function UpdateRectangle that simply updates the entire screen for
us to redraw what was there before we messed it all up. The program
then flushes any events that may have piled up and returns. To be
complete, the following code is our UpdateRectangle routine.

void UpdateRectangle(Rect *updateRect)
{

RgnHandle
Graf Ptr
Graf Ptr

thisScreenBoundary = NewRgn();
oldPort;
theBigPicture;

if (thisScreenBoundary) {
RectRgn(thisScreenBoundary, updateRect);
GetPort(&oldPort);
GetWMgrPort(&theBigPicture);
SetPort(theBigPicture);
DrawMenuBar();
PaintOne(nil, thisScreenBoundary);
PaintBehind(LMGetWindowList(), thisScreenBoundary);
SetPort(oldPort);
DisposeRgn(thisScreenBoundary);

Some things to note about using your own AS world follow. Keep
them in mind to make sure you use this technology properly.

259

260 A FRAGMENT OF YOUR IMAGINATION

• AS is very volatile. QuickDraw is very precise. If you don't set
something up just right, it will crash and bum like you've never
seen before. Be careful when using these functions. Ever hear of
_Jackson?

• AS causes you to lose globals. If you were to attempt to access a
global variable in the previous code while your temporary AS
world was being used, you would be accessing garbage data. Re
member, in an application, global variables are referenced as an
offset from register AS. If you change the value in register AS, then
you will not know how to get to your globals.

Adding a Rightmost System Menu

At the time I needed to write a program that added a rightmost sys
tem menu, I probably wouldn't have succeeded had it not been for
Rob Mathews of Tiger Slider fame. A rightmost system menu
(Figure 12-6), as I call it, is a menu that is available in all programs and
lives on the right side of the menu bar next to the Help and Applica
tion menus. Rightmost system menus are installed by system exten
sions and usually allow quick access to some otherwise boring or
lengthy task. For example, the rightmost menu I added allowed the
user to choose any available network printer without opening the
Chooser. This saved time when switching printers was something you
did more than a few times a day.

Adding this menu was easy, after Rob gave me the code. He spent
a day or two figuring out the intricacies of the way the system handled
these menus and came up with a way to add them reliably. Rob's
mechanism required three patches to traps in order to add the custom
menu, manipulate it, and receive selections from it. The patches are
GetMenu, MenuSelect, and SystemMenu.

Figure 12-6. Two
rightmost system
menus as added
by the system
software

ADVANCED AND UNDOCUMENTED TECHNIQUES

GetMenu

When our GetMenu patch is called to insert the Help menu, which has
a specific ID number of-16490, we would walk the current menu list
to calculate a unique ID number for the menu we wanted to add.
When we found one, we would create our menu by calling NewMenu
and then InsertMenu to add it to the menu list. Any menus with IO
numbers within a specific range (close to -16490) are automatically
added to the right side of the menu bar. In order to add the icon as the
title of the menu, you simply set the title of the menu to a specific
"code," which happens to be a Pascal string with a length bytes of 5,
the first character being Ox01, and the remaining four characters (a
long) being a handle to an icon family. The menu bar definition then
knows to draw this title in a special way.

MenuSelect

MenuSelect is patched so we can watch for menus from which items
are being selected. Whenever the user clicks on the menu bar, Menu
Select is called. By patching this trap, we are able to update our menu
on the fly, before it is displayed to the user. We can check specific
items, disable or enable other items, or do nothing at all.

SystemMenu

Our tail patch to SystemMenu allows us to intercept selections of our
items. After the original SystemMenu is called, the long parameter
contains the menu ID and menu item number of that selected by the
user. Using this information, we can see if the user selected our menu
and then act on the specific item appropriately.

Believe it or not, that's all there is to it. Mind you, you need to be
careful that you patch these traps properly and handle yourself prop
erly. Remember, you are in a system extension and do not have run of
the house in this situation. Luckily, the SystemMenu patch is marked
as being one that moves memory already, so you can safely allocate
memory, display dialog boxes, and perform other feats from within
your patch. Good luck adding your menu!

Conclusion
If you've made it this far, you probably have a good understanding of
the Power Macintosh and what it takes to program it effectively. Much
of what you've learned throughout this book can also be applied to

261

262 A FRAGMENT OF YOUR IMAGINATION

other types of software components that you may find yourself writ
ing. The sky isn't the limit anymore.

I sincerely hope you enjoyed the information presented here and,
most of all, learned something from it. If I help one person become a
better programmer, then the months of writing were worth it. Until
next time, farewell and happy coding.

Projects to Try on Your Own

Here is a list of projects, not necessarily covered in the book, that you
might want to research and try on your own. You can find documen
tation on some of these topics in various places, but the best place to
go is to log on to your favorite online service and download sample
source code from other programmers like yourself. You can also post
public messages in these areas to ask questions about where to look
for information on specific topics.

• Write an AppleScript extension, also known as an osax, to extend
the capabilities of AppleScript. By writing an osax, which is basi
cally just an AppleEvent handler in disguise, you can add new
functionality to AppleScript that can be used by anyone who in
stalls your osax onto their Macintosh. Think of the possibilities.

• Write a Control Strip module. Control Strip is a utility from Apple
that they ship on many new PowerBooks. It puts a small floating
palette on your screen that executes modules in order to allow
quick access to the time and date, printer switching, speaker vol
ume switching, monitor bit depth switching, and more.

• After Dark modules are a fun thing to take the time to write. After
Dark is a screensaver that can be purchased at your local com
puter store. You can obtain a developer's kit from Berkeley Sys
tems, the makers of After Dark. With their kit you can write your
very own screen-saver modules with color animation and sound.
Use the GWorld techniques you learned in Chapter Seven and
have at it!

263

264 PROJECTS TO TRY ON YOUR OWN

• XTND technology allows you to write code that converts one type
of document to another. Any program that supports XTND can
take advantage of your module to convert from a MacWrite file,
for example, to your own file format. Because XTND uses an in
termediary file format, you need only know how to convert from
your format to this intermediary. You need not know about any
other files formats, yet you can convert to and from all of them.

• Photoshop supports a wide variety of plug-ins including those
that filter images, import and export data, and more. You can ob
tain the Photoshop software developer's kit direct from Adobe so
you can write all sorts of neat extensions to this tool that is popu
lar with graphic artists. We discussed filters in this book, but you
should explore developing others as well.

Suggested Reading

Believe it or not, this book is not the end all of documentation on the
subject of code resources. Even though I've gathered a lot of informa
tion and put it all in one place, there are many other places to find
good articles on this subject. Here is a short list of some of my fa
vorites.

Magazines
MacTech. MacTech magazine is a monthly publication that discusses
everything having to do with Macintosh programming. Not only does
MacTech include articles about programming languages, new tech
nologies, new development products, and more, but they also surprise
you every so often with a free CD (or two!) filled with cool stuff at no
extra cost. MacTech is required reading for any serious developer.

develop. develop is a monthly publication that contains some
pretty serious articles at times. Many Apple (and ex-Apple) employees
write articles ford eve lop. The articles ind eve lop can get very
deep at times, but can be real lifesavers when you're trying to figure
out the latest technology from Apple. Each month, the magazine also
includes a CD that contains the text and source code from the current
issue and all back issues. Many Apple technical notes and other de
velopment information and tools are also on the CD.

265

266 SUGGESTED READING

Books
Inside Macintosh. Inside Macintosh is a collection of books pub
lished by Addison-Wesley. Consisting of a number of volumes, Inside
Macintosh is the definitive place to turn when you have a question
about just about anything in the Macintosh environment. Volumes are
dedicated to QuickDraw GX, The Macintosh Toolbox, Interapplication
Communication, Files, and much more. Inside Macintosh is also avail
able on CD, which should be owned by any developer who owns a
CD-ROM drive; it's that important.

Macintosh Programming Secrets (Second Edition). Macin
tosh Programming Secrets, written by Scott Knaster and Keith Rollin, is
one of the bibles that all programmers should own. It discusses the lit
tle things that make programs great-like how to teach your ants to
march, how to manipulate dialog boxes in advanced ways, how to
safely copy files, and more.

How to Write Macintosh Software (Third Edition). How To
Write Macintosh Software is the other bible that all programmers should
own. Also written by Scott Knaster, this book delves into the depths of
the operating system and explores how it works. Although it only dis
cusses the 680x0 and does not touch on the PowerPC, it is still filled
with information that will help all of your programming efforts. And
remember, even Power Macintosh programmers need to know a little
680x0 here and there.

XCMDS for HyperCard. Gary Bond wrote this book, which is the
only one available that discusses writing external commands and
functions for HyperCard. Mind you, it doesn't cover version 2.0 of
HyperCard and all the new features that were added with it. Even so,
this book is a very good reference and contains lots of code for the Hy
perCard guru.

PowerPC 601 RISC Microprocessor User's Manual. This
book, available directly from Motorola, totally discusses the PowerPC
601 chip in depth. If you plan on programming the Power Macintosh
in assembly language, you will need this book. Mind you, one of
Apple's hopes was that you would not need to use assembly language
much when programming the Power Macintosh, but some of you may

SUGGESTED READING

be hard core and want that thrill. This book is a good reference to have
around in any case, but it is not for the faint of heart.

Other
Technical Notes. From time to time, Apple releases technical
notes that explain information that may be confusing to developers or
to introduce a new technology. These notes can be found on most de
veloper CDs from Apple.

Online Services. America Online, eWorld, and CompuServe all
contain Macintosh developer forums. Join your favorite and visit these
areas. You will be blown away at the wealth of information available
online.

Internet. Most major online services also allow access to Internet
newsgroups. There are many newsgroups that cover Macintosh pro
gramming. You can communicate with other developers from all over
the world on the Internet.

Your Code Warrior CD-ROM. The CD that came with this book
contains lots of example source code. Not only is all the code from the
book on the CD, but there are also many other examples provided by
Metrowerks. Check it out!

267

Appendix
Chapter Three Source Code

main.c
I*

File Name: main.c
*/

#include <EPPC.h>
#include <AppleEvents.h>

#include "globs.h"
#include "init.h"
#include "utils.h"
#include "prefs.h"
#include •modules.h"
#include •main.h"

/**************************•***

main

**/

void main(void)

/* initialize ourselves */

InitMacintosh();
InitGlobals();
UnloadSeg(&InitMacintosh);

269

270 APPENDIX

/*handle events */
HandleEvent();

/*get out */
CleanUp();

/**

Cleanup

**/

void CleanUp(void)
{

ExitToShell () ;

/**

HandleEvent

**/

void HandleEvent(void)
{

while (! gDone) {

Boolean gotEvent = WaitNextEvent(everyEvent, &gTheEvent,
gSleepTime, nil);

if (gotEvent) {

switch(gTheEvent.what)

case nullEvent:
IdleTime();
break;

case mouseDown:
DoMouseDo\'m () ;
break;

case updateEvt:
/*

CHAPTER THREE SOURCE CODE

*I
break;

case autoKey:
case keyDown:

Graf Ptr save Port;
GetPort(&savePort);
SetPort((WindowPtr)gTheEvent.rnessage);
BeginUpdate((WindowPtr)gTheEvent.message);

EndUpdate((WindowPtr)gTheEvent.message);
SetPort(savePort);

if (gTheEvent.modifiers & cmdKey) (

break;

case app4Evt:

AdjustMenus ();
DoMenuCommand(MenuKey(gTheEvent.message &

charCodeMask));

ginBackground = (!(gTheEvent.message & OxOOOl));
InitCursor();
break;

case kHighLevelEvent:
{

break;

default:
break;

OSErr err
AEProcessAppleEvent(&gTheEvent);

if (err != noErr) {
NumToString((long)err, gStr);
ParamText(gStr, "\p", "\p", "\p");
StopAlert(alertAEProcessAEError,

nil);

ParamText (• \p", "\p", "\p", • \p") ;

/**

DoMouseDown

**/

271

272 APPENDIX

void DoMouseDown(void)

WindowPtr
short

window;
thePart FindWindow(gTheEvent.where, &window);

switch(thePart) {

case inMenuBar:
AdjustMenus();
DoMenuConunand(MenuSelect(gTheEvent.where));
break;

case inSysWindow:
SystemClick(&gTheEvent, window);
break;

case inGrow:

long newSize ; GrowWindow(window, gTheEvent.where,
&qd.screenBits.bounds);

if (newSize)

break;

case inContent:

SizeWindow(window, LoWord(newSize),
HiWord(newSize), true);

if (window ! ; FrontWindow ())
SelectWindow(window);

break;

case inDrag:
DragWindow(window, gTheEvent.where,

&qd.screenBits.bounds);
break;

case inGoAway:
if (TrackGoAway(window, gTheEvent.where))

CloseWindow(window);
break;

case inZoomin:
case inZoomOut:

if (TrackBox(window, gTheEvent.where, thePart)) {
SetPort(window);
EraseRect(&window->portRect);
ZoomWindow(window, thePart, true);
InvalRect(&window->portRect);

break;

CHAPTER THREE SOURCE CODE

/**

DoMenuCommand

**/

void DoMenuCommand(long menuResult)

short
short
short
WindowPtr
OSErr

menuID;
menuitem;
daRefNwn;
window;
err ::: noErr;

window= FrontWindow();
menuID = HiWord(menuResult):
menuitem::: LoWord(menuResult);

switch(menuID) (

case menuApple:
switch(menuitem)

break;

case itemAbout:
Alert(alertAbout, nil);
break;

default:
Getitem(GetMHandle(menuApple), menuitem, gStr);
daRefNum::: OpenDeskAcc(gStr);
break;

case menuFile:
switch(menuitern)

case itemQuit:

break;

gDone = true;
break;

default:
SysBeep (O) ;
break;

case menuEdi t :
switch(menuitem)

case itemSelectAll:
break;

273

274 APPENDIX

break;

case iternPreferences:
DoPreferences{);
break;

default:
SystemEdit(menuitern-1);

case menuCode:
switch{menuitem)

case itemExecuteResource:
err= ExecuteResource();
if (err != noErr) {

NumToString((long)err, gStr);
ParamText(gStr, "\p", "\p", "\p");
StopAlert(alertExecuteResourceError, nil);
ParamText ("\p". • \p•, "\p". "\p");

break;
#ifdef _powerc

#endif

break;

default:
break;

HiliteMenu(O);

case itemExecuteSharedLib:
Str255 errName;
err = ExecuteSharedLib(errName);
if (err != noErr) {

break;

NumToString((long)err, gStr);
ParamText(gStr, errName, "\p•, "\p");
StopAlert(alertExecuteSharedLibError, nil);
ParamText("\p", "\p", "\p•, "\p");

/**

AdjustMenus

**/

void AdjustMenus(void)
{

/*

*/

WindowPtr
MenuHandle

frontmost;
menu;

frontmost = FrontWindow();

menu= GetMHandle(menuApple);
Enableitem(menu, 0);
menu= GetMHandle(menuFile);
Enableitem{menu, 0);

CHAPTER THREE SOURCE CODE

menu= GetMHandle{menuEdit);
Enableitem{menu, 0);

Disableitem(rnenu, itemUndo);
Disableitem(menu, itemCut);
Disableitem{menu, itemCopy);
Disableitem{menu, itemPaste);
Disableitem{menu, itemClear);
Disableitem(menu, itemSelectAll);

menu= GetMHandle(menuCodel;
Enableitem(menu, 0);

#ifndef __powerc
Disableitem(rnenu, itemExecuteSharedLibl;
#endif

if (IsDAWindow(frontmost)) {
menu= GetMHandle(menuEditl;
Enableitem(menu, 0);

else {menu= GetMHandle(menuEdit);
Disableitem(menu, 0);

DrawMenuBar();

/**

IdleTime

**/

void IdleTime(void)

if {ginidle == true)
return;

ginidle = true;

/*do stuff here */

275

276 APPENDIX

ginidle false;

main.h
/*

File Name: main.h
*/

#pragma once

void main(void);
void CleanUp(void);
void HandleEvent(void);
void DoMouseDown(void);
void DoMenuConunand(long menuResult);
void AdjustMenus(void);
void IdleTime(void);

modules.c
I*

File Name: modules.c
*/

#include <StandardFile.h>
#include <FragLoad.h>
#include <MixedMode.h>
#include <ConditionalMacros.h>
#include "globs.h"
#include "prefs.h"
#include "modules.h"

/**

ExecuteSharedLib

This code is only executed from the native application. It loads
a shared library, looks up an exported symbol (function) name,
creates a RoutineDescriptor to represent that function, and then
executes the function. When complete, it closes the connection to
the shared library.

**/

CHAPTER THREE SOURCE CODE

#ifdef _powerc
OSErr ExecuteSharedLib(Str255 errName)
{

OSErr err = noErr, err2 = noErr;
ConnectionID connID = kNoConnectionID;
Ptr mainAddr =nil;

II
II attempt to locate and prepare the shared library
II

err= GetSharedLibrary("\pShared Library•, kPowerPCArch, kLoadNeWCopy,
&connID, &mainAddr, errName);

if (err == noErr)
Ptr
SymClass

symAddr = nil;
symClass;

II
II look up the symbol (in this case, a function) that we're interested in

II

II

err= FindSymbol(connID, "\pBeepThreeTimes•, &symAddr, &symClass);

if (err == noErr) {

II
II create a routine descriptor for the function, call it,
II then dispose the routine descriptor.

II

UniversalProcPtr upp = NewRoutineDescriptor((ProcPtr)symAddr,
kCStackBased, GetCUrrentISA());

if (upp) {
SetCursor(*GetCursor(watchCursor));
CallUniversalProc(upp, kCStackBased);
InitCursor();
DisposeRoutineDescriptor(upp);

else err = memFullErr;

II look up another symbol, just for fun.

II

if (err == noErr) {
err= FindSymbol(connID, "\pShowLibAlert•, &symAddr, &symClass);
if (err == noErr) {

II
II create a routine descriptor for the function, call it,
II then dispose the routine descriptor.

II

277

278 APPENDIX

If

UniversalProcPtr upp =

NewRoutineDescriptor((ProcPtr)symAddr,
kCStackBased, GetCurrentISA());

if (upp) {

CallUniversalProc(upp, kCStackBased);
DisposeRoutineDescriptor(upp);

} else err = memFullErr;

II close the connection
II

err2 = CloseConnection(&connID):
if (err== noErr) err= err2;

return err;

#endif

/**

ExecuteResource

This function is called on both platforms in order to execute a
private resource.

**/

OSErr ExecuteResource(void)

FSSpec
Boolean
OS Err
short
short

codeSpec;
good;
err = noErr;
saveResFile curResFile();
fRefNwn;

II choose a valid file based on our preferences
good= ChooseCodeContainingFile(&codeSpec);
if (!good) return noErr;

fRefNwn = FSpOpenResFile(&codeSpec, fsRdPerm):
if (fRefNwn != -1) (

UseResFile(fRefNum);

switch(gCodeCallPreference)
case item68kRadio:

err= Call68k();
break;

CHAPTER THREE SOURCE CODE

case itemPowerPCRadio:
err= CallPPC();
break;

case itemNoModeSwitchRadio:
err= CallFat();
break;

default:
DebugStr ("\pgCodeCallPreference is invalid!");
II should NEVER happen
break;

CloseResFile(fRefNwn);
UseResFile(saveResFile);

return err;

/************************•***

Cal168k

This function can be called from 68k code or PowerPC code.
We use our handy macros in order to create the proper RoutineDescriptor
when needed on the PowerMac. We have a special macro that returns
a RoutineDescriptor to 68k code. We can then call the code with
our CallModuleEntryProc function.

**/

OSErr Call68k(void)
{

long moduleResult;
ModuleEntryProcUPP mepUPP;
Handle hCode = Get1Resource(kModule68kResType, kModuleResID);
OSErr err = noErr;

if (hCode)
HLockHi (hCode l :

mepUPP = NewModuleEntryProc68k(*hCodel;
moduleResult = CallModuleEntryProc(mepUPP, OL);
DisposeRoutineDescriptor(mepUPP);

HUnlock(hCode);
ReleaseResource(hCode);

} else err= ResError(J;

return err;

279

280 APPENDIX

/******************•***

CallPPC

This function can be called from 68k code or PowerPC code.
Since our PowerPC code resource already has a RoutineDescriptor
tacked onto itself (by the linker) we can simply dereference the
resource handle and call it.

**/

OSErr CallPPC(void)

long
Handle
OS Err

moduleResult;
hCode = GetlResource(kModulePPCResType, kModuleResID);
err = noErr;

if (hCode)
HLockHi(hCode);

moduleResult = CallModuleEntryProc((ModuleEntryProcUPP)*hCode, OL);

HUnlock(hCode);
ReleaseResource(hCode);

} else err= ResError();

return err;

/**

Call Fat

This function can be called from 68k code or PowerPC code.
Since our fat code resource already has a RoutineDescriptor
tacked onto itself (by the linker) we can simply dereference the
resource handle and call it.

**/

OSErr CallFat(void)
{

long
Handle
OS Err

if (hCode)

moduleResult;
hCode = GetlResource(kModuleFatResType, kModuleResIDJ;
err = noErr;

HLockHi (hCode);

moduleResult = CallModuleEntryProc((ModuleEntryProcUPP)*hCode, OL);

HUnlock(hCode);
ReleaseResource(hCode);

} else err= ResError();

return err;

CHAPTER THREE SOURCE CODE

/**

ChooseCodeContainingFile

This function merely allows the user to choose which private
resource they would like to execute.

**/

Boolean ChooseCodeContainingFile(FSSpecPtr fsp)
{

SFTypeList
short
StandardFileReply
FileFilterUPP
Boolean

typeList {kModuleFileType};
numTypes l;
reply;
fileFilter;
result = false;

fileFilter = NewFileFilterProc(MyFileFilter);
if (fileFilter) (

StandardGetFile(fileFilter, nwnTypes, typeList, &reply);
result = reply.sfGood;
DisposeRoutineDescriptor(fileFilter);

*fsp = reply.sfFile;
return result;

/**

MyFileFil ter

This function filters files in our StandardGetFile dialog box.
This way, we make sure the user selects a file that contains the
proper type of code that we are looking for.

**/

pascal Boolean MyFileFilter(CinfoPBPtr cpbp)
{

FSSpec
Boolean
OS Err
short
short
Res Type

fileSpec;
dontDisplayFile
err;
fRefNum;

true;

saveResFile = CurResFile();
rType = '????';

281

282 APPENDIX

err= FSMakeFSSpec(cpbp->hFileinfo.ioVRefNum,
cpbp->hFileinfo.ioFlParID,

cpbp->hFileinfo.ioNamePtr, &fileSpec);
if (err!= noErr) { SysBeep(O); return dontDisplayFile;

fRefNum = FSpOpenResFile(&fileSpec, fsRdPerm);
if (fRefNum != -1) {
UseResFile(fRefNum);

switch(gCodeCallPreference)
case item68kRadio:

rType = kModule68kResType;
break;

case itemPowerPCRadio:
rType = kModulePPCResType;
break;

case itemNoModeSwitchRadio:
rType = kModuleFatResType;
break;

default:
DebugStr("\pgCodeCallPreference is invalid!");
II should NEVER happen
break;

dontDisplayFile = (CountlResources(rType) 0);

CloseResFile(fRefNum);
UseResFile(saveResFile);

return dontDisplayFile;

modules.h
/*

File Name: modules.h
*I

#pragma once

#ifdef _.powerc
OSErr ExecuteSharedLib(Str255 errName);
#endif
OSErr
OSErr
OSErr
OSErr
Boolean

ExecuteResource(void);
Call68k (void} ;
CallPPC (void);
CallFat (void);
ChooseCodeContainingFile(FSSpecPtr fsp);

CHAPTER THREE SOURCE CODE

pascal Boolean MyFileFilter(CinfoPBPtr cpbp);

II modules are stored in files of a specific type

#define kModuleFileType 'xMOD'

II code is stored in various forms. the data fork of the file also contains the PPC
II only code so it can take advantage of Virtual Memory paging when needed. in your
II application you would not store it in this many forms, but in these examples we
II do in order to show you many of the possibilities.

#define kModule68kResType '68k '
II resource that contains 68k code only, with no RD
#define kModulePPCResType 'PPC '
II resource that contains PPC code only, with no RD
#define kModuleFatResType 'FAT •
II resource that contains both 68k & PPC code, and has RD

#define kModuleResID 128 II always id 128

typedef long (*ModuleProc) (long inData);

en um
uppModuleEntryProcinfo = kCStackBased

RESULT_SIZE(SIZE_CODE(sizeof(long}))
I STACK_ROUTINE_PARAMETER(l, SIZE_CODE(sizeof(long)))

} ;

#if USESROUTINEDESCRIPTORS
typedef UniversalProcPtr ModuleEntryProcUPP;
#define CallModuleEntryProc(userRoutine, params)

CallUniversalProc((UniversalProcPtr) (userRoutine),
uppModuleEntryProcinfo, params)
#define NewModuleEntryProc(userRoutine)

(ModuleEntryProcUPP) NewRoutineDescriptor((ProcPtr) (userRoutine),
uppModuleEntryProcinfo, GetCurrentISA())
#define NewModuleEntryProc68k(userRoutine)

(ModuleEntryProcUPP) NewRoutineDescriptor((ProcPtr) (userRoutine),
uppModuleEntryProcinfo, (ISAType) kM68kISA)
#define WTF() DebugStr("\p USESROUTINEDESCRIPTORS");
#else
typedef ModuleProc ModuleEntryProcUPP;
#define CallModuleEntryProc(userRoutine, params)

(*(userRoutine)) (params)
#define NewModuleEntryProc(userRoutine)

(ModuleEntryProcUPP) (userRoutine)
#define NewModuleEntryProc68k(userRoutine) \

(ModuleEntryProcUPP) (userRoutine)
#define WTF() DebugStr("\p! USESROUTINEDESCRIPTORS");
#endif

283

284 APPENDIX

globs.c
/*

File Name: globs. c
*/

#include "globs.h"

EventRecord

Boolean

Boolean

Boolean
long

Str255

short

globs.h
/*

gTheEvent;
gDone;

ginBackground;

ginidle;

gSleepTime;
gStr;

gCodeCallPreference;

File Name: globs .h
*/

#pragma once

/* constants */

#define kSleepTime 15

#define kMinimumSystem Ox0700

/* alerts */

#define alertNeedSystem70rLater 128

#define alertMenuBarResourceNotFound 129
#define alertAEProcessAEError 130

#define alertinitAEError 131
#define alertExecuteResourceError 132
#define alertExecuteSharedLibError 133

#define alertAbout 1000

/* menus *I

#define menubarResID 128

#define menuApple 1

ae.c

#define itemAbout

#define menuFile
#define i temQui t

#define menuEdit
#define i temUndo
#define i temcu t
#define i temCopy
#define
#define
#define

itemPaste
itemClear
itemSelectAll

#define itemPreferences

2

3

1

1

1

4

5

6

8

10

CHAPTER THREE SOURCE CODE

#define menuCode 4
#define itemExecuteResource 1
#define itemExecuteSharedLib 2

/* global variables */

extern EventRecord
extern Boolean
extern Boolean
extern Boolean
extern long
extern Str255
extern short

I*
File Name: ae. c

*/

#include <EPPC.h>
#include <AppleEvents.h>

#include "globs.h"
#include "ae.h"

struct triplets
AEEventClass
AEEventID
AEEventHandlerUPP

} ;

gTheEvent;
gDone;
ginBackground;
ginidle;
gSleepTime;
gStr;
gCodeCallPreference;

theEventClass;
theEventID;
theHandler;

typedef struct triplets triplets;

static triplets keywordsToinstall[J = {

kCoreEventClass. kAEOpenApplication,
(AEEventHandlerUPP)DoAEOpenApplication },

285

286 APPENDIX

kCoreEventClass. kAEOpenDocurnents,
(AEEventHandlerUPP)DoAEOpenDocurnents },

kCoreEventClass, kAEPrintDocuments,
(AEEventHandlerUPP)DoAEPrintDocuments },

kCoreEventClass, kAEQuitApplication,
(AEEventHandlerUPP)DoAEQuitApplication }
I* The above are the four required AppleEvents. */

} ;

/**

InitAE

**/

OSErr InitAE(void)
{

OSErr err = noErr;
short i;

for (i = O; i < (sizeof(keywordsToinstall) I sizeof(triplets)); ++i) {
err= AEinstallEventHandler(keywordsToinstall[iJ.theEventClass,

keywordsToinstall(i].theEventID,

NewAEEventHandlerProc(keywordsToinstall[i].theHandler),
OL, /* unused refcon */
false); /*not system handler */
if (err != noErr) return err;

return err;

/**

DoAEOpenApplication

Do things here if we are opened with no documents, open new document
for example.

**/

pascal OSErr DoAEOpenApplication(AppleEvent *message, AppleEvent *reply,
long refcon)

OSErr err = noErr;

return err;

CHAPTER THREE SOURCE CODE

/***•******

DoAEOpenDocurnents

**/

pascal OSErr DoAEOpenDocurnents(AppleEvent *message, AppleEvent *reply, long refcon)

OSErr err = noErr;
AEDesc fileListDesc:
long nurnFiles;
DescType actual Type:
long actualSize;
AEKeyword actualKeyword:
FSSpec oneFile;
long index;

/* extract the list of aliases into fileListDesc */
err= AEGetKeyDesc(message, keyDirectObject, typeAEList, &fileListDesc);
if (err != noErr) return err;

/* count the list elements */
err= AECountitems(&fileListDesc, &nurnFiles);
if (err!= noErr) { AEDisposeDesc(&fileListDesc): return err: }

/* get each from list and process it */
for (index = l; index<= nurnFiles; index ++) {

err= AEGetNthPtr(&fileListDesc, index, typeFSS, &actualKeyword,
&actualType, (Ptr)&oneFile, sizeof(oneFile), &actualSize);

if (err != noErr) {
AEDisposeDesc(&fileListDescJ:
return err:

I* oneFile<\f>contains<\f>FSSpec<\f>of<\f>file<\f>in<\f>question<\f>*/
SysBeep(O);

AEDisposeDesc(&fileListDesc);
return err;

/**

DoAEPrintDocuments

**/

pascal OSErr DoAEPrintDocuments(AppleEvent *message, AppleEvent *reply, long refcon)
{

287

288 APPENDIX

OS Err err = noErr;
AEDesc fileListDesc;
long numFiles;
DescType actual Type;
long actualSize;
AEKeyword actualKeyword;
FSSpec oneFile;
long index;

I* extract the list of aliases into fileListDesc *I
err= AEGetKeyDesc(message, keyDirectObject, typeAEList, &fileListDesc);
if (err != noErr) return err;

I* count the list elements *I
err= AECountitems(&fileListDesc, &numFiles);
if (err!= noErr) { AEDisposeDesc(&fileListDesc); return err; }

I* get each from list and process it *I
for (index = 1; index <= numFiles; index ++) {

err= AEGetNthPtr(&fileListDesc, index, typeFSS, &actualKeyword,
&actualType, (Ptr)&oneFile, sizeof(oneFile), &actualSize);

if (err != noErr) {
AEDisposeDesc(&fileListDesc);
return err;

I* oneFile contains FSSpec of file in question *I
SysBeep (0) ;

AEDisposeDesc(&fileListDesc);
return err;

/**

DoAEQuitApplication

**I

pascal OSErr DoAEQuitApplication(AppleEvent •message, AppleEvent *reply,
long refcon)

OS Err err = noErr;

II do our stuff here

gDone = true;
return err;

ae.h

CHAPTER THREE SOURCE CODE

I*
File Name: ae.h

*/

#pragma once

#include <AppleEvents.h>

OSErr InitAE(void);
pascal OSErr DoAEOpenApplication(AppleEvent *message, AppleEvent *reply,

long refcon);
pascal OSErr DoAEOpenDocuments(AppleEvent *message, AppleEvent *reply,

long refcon) ;
pascal OSErr DoAEPrintDocwnents(AppleEvent *message, AppleEvent *reply,

long refcon);
pascal OSErr DoAEQuitApplication(AppleEvent *message, AppleEvent *reply,

long refcon) ;

dlogutils.c
/*

File Name: dlogutils.c
*/

#include "dlogutils.h"

/***

SetDialogitemState

***/

void SetDialogitemState(DialogPtr dlg, short controlNumber, short value)

short
Handle
Re ct

iKind;
iHandle;
iRect;

GetDitem(dlg, controlNumber, &iKind, &iHandle, &iRect);
SetCtlValue((ControlHandle) iHandle, value);

/***

GetDialogitemState

***/

short GetDialogitemState(DialogPtr dlg, short controlNumber)
{

289

290 APPENDIX

short
Handle
Re ct

iKind;
iHandle;
iRect;

GetDitem(dlg, controlNumber, &iKind, &iHandle, &iRect);
return GetCtlValue((ControlHandle) iHandle);

/***

DoRadioGroup

***/

void DoRadioGroup(DialogPtr dlg, short lo, short hi, short on)
{

short i;

for (i=lo;i<=hi;++i)
SetDialogitemState(dlg, i, 0);

SetDialogitemState(dlg, on, l);

/***

DoRadioGroup

***/

short GetRadioFromGroup(DialogPtr dlg, short lo, short hi)
{

short i;

for (i;lo;i<;hi;++i)

if (GetDialogitemState(dlg, i))
return i;

return O;

/***

ToggleCheckBox

***/

void ToggleCheckBox(DialogPtr dlg, short buttonNumber)
{

short newState;

CHAPTER THREE SOURCE CODE

if (GetDialogitemState(dlg, buttonNumber) 0)
newstate l;

else
newState = 0;

SetDialogitemState(dlg, buttonNumber, newstate);

/***

EnableControl

***/

void EnableControl(DialogPtr dlg, short controlNumberl
{

short
Handle
Rect

iKind;
iHandle;
iRect;

GetDitem(dlg, controlNumber, &iKind, &iHandle, &iRect);
HiliteControl((ControlHandle)iHandle, 0);

/***

DisableControl

***/

void DisableControl(DialogPtr dlg, short controlNumber)

short
Handle
Rect

iKind;
iHandle;
iRect;

GetDitem(dlg, controlNumber, &iKind, &iHandle, &iRect);
HiliteControl((ControlHandle)iHandle, 255);

dlogutils.h
/*

File Name: dlogutils.h

*I

#pragma once

void
short
void

SetDialogitemState(DialogPtr dlg, short controlNumber, short value);
GetDialogitemState(DialogPtr dlg, short controlNumber);
DoRadioGroup(DialogPtr dlg, short lo, short hi, short on);

291

292 APPENDIX

init.c

short
void
void
void

GetRadioFromGroup(DialogPtr dlg, short lo, short hi);
ToggleCheckBox(DialogPtr dlg, short buttonNwnber);
EnableControl(DialogPtr dlg, short controlNwnber);
DisableControl(DialogPtr dlg, short controlNwnber);

I*

File Name: init.c
*/

#include <GestaltEqu.h>

#include "globs.h"
#include "ae.h"
#include "prefs.h"
#include "utils.h"
#include "init.h"

/**

Ini.tMacintosh

**/

void InitMacintosh(void)

unsigned long randSeed;

InitGraf(&qd.thePort);
InitFonts():
FlushEvents(everyEvent, 0);
InitWindows():
InitMenus():
TEinit ();
InitDialogs(nill:
InitCursor():
GetDateTime ((unsigned long *) &randSeed);
LMSetRndSeed(randSeed);
DrawMenuBar():

/**

InitGlobals

**/

void InitGlobals(void)

init.h
/*

*/

CHAPTER THREE SOURCE CODE

OSErr err = noErr;
long response;

ginidle = false;
gDone = false;
ginBackground = false;
gSleepTime = kSleepTime;
if (PowerPCPresent())

gCodeCallPreference itemPowerPCRadio;
else

gCodeCallPreference = item68kRadio;
II only one choice when running on 68k

I* check for proper system version*/
err= Gestalt(gestaltSystemVersion, &response);
if ((err!= noErr) I I (response< kMinimumSystem))

StopAlert(alertNeedSystem70rLater, nil);
ExitToShell ();

/* add menus and configure apple menu */

Handle menuBar = GetNewMBar(menubarResID);
if (! menuBar) {

StopAlert(alertMenuBarResourceNotFound, nil);
ExitToShell();

SetMenuBar(menuBar);
DisposHandle(menuBar);
AddResMenu(GetMHandle(menuApple), 'DRVR');
DrawMenuBar();

I* initialize apple events */
err = InitAE () ;
if (err != noErr) {

NumToString((long)err, gStr);
ParamText(gStr, "\p•, "\p", "\p");
StopAlert(alertinitAEError, nil);
ParamText (• \p", • \p", • \p", • \p");
ExitToShell ();

File Name: init.h

293

294

prefs.c

APPENDIX

#pragma once

void InitMacintosh(void);
void InitGlobals(void);

I*

File Name: prefs.c
*I

#include "globs.h"
#include "dlogutils.h"
#include "utils.h"
#include "prefs.h"

/**

DoPref erences

**/

void DoPreferences(void)

DialogPtr
Boolean
short

d;

done = false;
itemHit;

d = GetNewDialog(dlogPreferencesID, nil, (WindowPtr)-1);
if (d == nil) return;

SetDialogDefaultitem(d, ok);
SetDialogCancelitem(d, cancel);

DoRadioGroup(d, item68kRadio, itemNoModeSwitchRadio, gCodeCallPreference);

II if we are running on a 68k, we don't have much choice
if (!PowerPCPresent()) {

DisableControl(d, itemPowerPCRadio);
DisableControl(d, itemNoModeSwitchRadio);

ShowWindow (d) ;

while (! done) {
ModalDialog(nil, &itemHit);
switch(itemHit) {

case ok:

prefs.h

CHAPTER THREE SOURCE CODE

gCodeCallPreference = GetRadioFromGroup(d, item68kRadio,
itemNoModeSWitchRadio);

11 no break
case cancel:

done = true;
break;

case item68kRadio:
case itemPowerPCRadio:
case itemNoModeSwitchRadio:

DoRadioGroup(d, item68kRadio, itemNoModeSwitchRadio,
itemHit);

break;

DisposeDialog(d);

/*
File Name: prefs.h

*I

#pragma once

#define
#define
#define
#define

dlogPreferencesID
item68kRadio
itemPowerPCRadio
itemNoModeSwitchRadio

2000

6

7

8

void DoPreferences (void) ;

utils.c
I*

File Name: utils.c
*/

#include <GestaltEqu.h>
#include •utils.h"

/**

PowerPCPresent

**/

Boolean PowerPCPresent(void)

295

296 APPENDIX

utils.h

long response;
return ((Gestalt(gestaltSysArchitecture, &response)

(response== gestaltPowerPC));
noErrl &&

/**

CFMPresent

**/

Boolean CFMPresent(void)

long response;
return (Gestalt(gestaltCFMAttr, &response) == noErr &&

(response & (1 << gestaltCFMPresent)) != 0);

/**

IsAppWindow

**/

Boolean IsAppWindow(WindowPtr window)

if (window == nil)
return false;

else
return (((WindowPeek) window) ->windowKind >= 0) ;

/**

IsDAWindow

**/

Boolean IsDAWindow(WindowPtr window)

/*

*/

if (window == nil)
return false;

else
return (((WindowPeek) window)->windowKind < 0);

File Name: utils .h

CHAPTER THREE SOURCE CODE

#pragma once

Boolean PowerPCPresent(void);
Boolean CFMPresent(void);
Boolean IsAppWindow(WindowPtr window);
Boolean IsDAWindow(WindowPtr window);

Shared Library.c
I*

File Name: Shared Library.c
*I

#include <CodeFragrnents.h>
#include "Shared Library.h"

short gFileRefNum;

/***

_initialize

***/

OSErr _initialize(InitBlockPtr ibp)
{

OSErr err = noErr;

gFileRefNum = -1;

II
II we should always be kDataForkCFragLocator when a shared library. Assuming
II this is is the case, we want to open our resource file so we can access
II our resources if needed. our termination routine will close the file.
II

if (ibp->fragLocator.where == kDataForkCFragLocator) {
gFileRefNum = FSpOpenResFile(ibp->fragLocator.u.onoisk.fileSpec,

fsRdPerm);
if (gFileRefNum == -1)

err = ResError();

return err;

/***

_terminate

***I

297

298 APPENDIX

void ~terminate(void)

if (gFileRefNum != -1)
CloseResFile(gFileRefNwn);

/***

BeepThreeTimes

•********************/

void BeepThreeTimes(void)
{

short
DialogPtr

saveResFile CurResFile();
d;

UseResFile(gFileRefNum);

d = GetNewDialog(256, nil, (WindowPtr)-1);
if (d) {

ShoWWindow(d);
DrawDialog(d);

SysBeep (0) ;
SysBeep(O);
Sys Beep (0) ;

if (d)

DisposeDialog(d);

UseResFile(saveResFile);

/***

ShowLibAlert

***/

#define kAlertID 128
void ShowLibAlert(void)
{

short saveResFile = CurResFile () ;
UseResFile(gFileRefNum);
NoteAlert(kAlertID, nil);
UseResFile(saveResFile);

CHAPTER THREE SOURCE CODE

Shared Library.h
I*

File Name: Shared Library. h

*I

#pragma once

OS Err
void
void
void

~initialize(InitBlockPtr ibp);
~terminate(void);

BeepThreeTimes(void);
ShowLibAlert(void);

xShell.c
I*

File Name: xShell. c

*I

#include •modules.h•
#include •xshell.h"

#ifndef _powerc
#include <SetUpA4.h>
#include <A4Stuff.h>
#else
ProcinfoType _procinfo = uppModuleEntryProcinfo;
#endif

long main(long inData)
{

#ifndef _powerc
long oldA4;
oldA4 = SetCurrentA4();
RememberA4();

#endif

ti i fdef _powerc
ParamText (• \pPowerPC", "\p", • \p", "\p");

#else
ParamText("\p68k", "\p", "\p•, "\p");

#endif

NoteAlert(l28, nil);
ParamText("\p", "\p•, "\p", "\p");

#ifndef _powerc
SetA4 (oldA4) ;

#endif

299

300 APPENDIX

return OL;

xShell.h
/*

File Name: xShell.h
*/

#pragma once

Chapter Four Source Code
INIT.c

/*

File Name: INIT.c
*/

#ifdef USESROUTINEDESCRIPTORS
#undef USESROUTINEDESCRIPTORS
#define USESROUTINEDESCRIPTORS 1
#else
#define USESROUTINEDESCRIPTORS 1
#endif

//extern pascal UniversalProcPtr NewFatRoucineDescriptor(ProcPtr theM68kProc,
II ProcPtr thePowerPCProc, ProcinfoType theProcinfo)
II THREEWORDINLINE(Ox303C, Ox0002, OxAA59);

/*** includes ***/

#include <LowMem.h>
#include <ToolUtils.h>
#include <OSUtils.h>
#include <Dialogs.h>
#include <Files.h>
#include <Menus.h>
#include <Script.h>
#include <Resources.h>
#include <Types.h>
#include <Memory.h>
#include <GestaltEqu.h>
#include <Errors.h>
#include <Folders.h>
#include <FragLoad.h>
#include <MixedMode.h>
//#include <ConditionalMacros.h>

#include "INIT.h"
#include •common.h"

CHAPTER FOUR SOURCE CODE

#include "A4Stuff.h"#include "SetupA4.h"

/*** definitions **I

#define kMinimwnSystemVersion

#define kINITResourceType
#define kINITResourceID

Ox00000700 I I minimwn system version

'INIT'
0

II
II

our !NIT code resource
and ID

type

#define kPPCResourceType
#define kPPCResourceID

'PPC '
0

II our PowerPC code resource type

#define rStringListID
#define iMenuScriptsFolderName
#define iAnyApplicationFolderName

128
1

2

II

II
II

and ID

INIT string list resource
Menuscripts folder name

I*** typedefs ***I

typedef pascal long (*MenuselectProc) (Point pt);
typedef pascal long (*MenuKeyProc) (short ch);
typedef pascal void (*SystemMenuProc) (long menuResultl;

I*** global variables ***I

GlobalsPtr gGlobalsPtr;

/*** function prototypes **I

OSErr
pascal
pascal
pascal
void

OS Err

RememberMe(FSSpecPtr fsp);
long MenuKey68k(short ch);
long MenuSelect68k(Point startPt);
void SystemMenu68k(long menuResultl;
ApplyPatches(void * menuSelectCode, void* menuKeyCode,

void * systemMenuCode) ;
PatchPPC (void);

/***

main

***/

void main (void)

FSSpec
FSSpec
Str32
Str32

menuScriptsFolderFSSpec;
anyApplicationFolderFSSpec;
menuScriptsFolderName;
anyApplicationFolderName;

301

302 APPENDIX

Handle hINIT = nil;
THZ savedZone;
long oldA4;
long response;
long foundDirID;
short foundVRefNum;
OS Err err = noErr;

II
II make sure we are in the system heap
II

savedZone = Getzone();
SetZone(SysternZone());

II
II set up our A4 context for this file
II

oldA4 = SetCurrentA4();
RernernberA4();

II
II verify minimum system version

II

err= Gestalt(gestaltSysternVersion, &response);
if ((err != noErr) 11 (response < kMinirnurnSysternVersion)) goto fail;

II
II allocate our global data
II

gGlobalsPtr = (GlobalsPtr)NewPtrSysClear(sizeof(Globals));
if (gGlobalsPtr == nil) {

II

err = MemError (l ? MernError () : memFullErr;
goto fail;

II find ourselves (it's a Zen thing)
II

err= RemernberMe(&gGlobalsPtr->ourFSSpec);
if (err != noErr) goto fail;

II
II find out where our MenuScripts folder is located (in the System folder)
II and figure out it's directory id
II

CHAPTER FOUR SOURCE CODE

II load folder name string from resource string list
GetindString(menuscriptsFolderName, rStringListID, iMenuScriptsFolderName);
if (menuScriptsFolderName[O) == 0) {

err = resNotFound;
goto fail;

II locate dirID of system folder
err = FindFolder(kOnSystemDisk, kSystemFolderType, kDontCreateFolder,

&foundVRefNum, &foundDirID);
if (err != noErr) goto fail;

II make a spec for the MenuScripts folder
err= FSMakeFSSpec(foundVRefNum, foundDirID, menuScriptsFolderName,

&menuScriptsFolderFSSpec);
if (err == fnfErr) (

II create it if it doesn't exist and get it's directory id
err= FSpDirCreate(&menuScriptsFolderFSSpec, smSystemScript,

&gGlobalsPtr->menuScriptsFolderDirID);
} else if (err == noErr) (

II otherwise just get it's directory id
err = GetDirectoryID(&menuScriptsFolderFSSpec,

&gGlobalsPtr->menuScriptsFolderDirID);

if (err != noErr) goto fail;

II load folder name string from resource string list
GetindString(anyApplicationFolderName, rStringListID,

iAnyApplicationFolderName);
if (anyApplicationFolderName(O) == 0) (

err = resNotFound;
goto fail;

II make a spec for the Any Application folder
err= FSMakeFSSpec(foundVRefNum, gGlobalsPtr->menuScriptsFolderDirID,

anyApplicationFolderName, &anyApplicationFolderFSSpec);
if (err == fnfErr) (

II create it if it doesn't exist and get it's directory id
err = FSpDirCreate(&anyApplicationFolderFSSpec, smSystemscript,

&gGlobalsPtr->anyApplicationFolderDirID);
else if (err == noErr) {

II otherwise just get it's directory id
err = GetDirectoryID(&anyApplicationFolderFSSpec,

&gGlobalsPtr->anyApplicationFolderDirID);

if (err != noErr) goto fail;

303

304

fail:

APPENDIX

II
II get a handle to our INIT resource
II

hINIT = GetlResource(kINITResourceType, kINITResourceID);
if (hINIT == nil) {

err= ResError() ? ResError() : resNotFound;
goto fail;

II
II patch traps
II

err= Gestalt(gestaltSysArchitecture, &response);
if (err != noErr) goto fail;

if (response == gestalt68k)
ApplyPatches(MenuSelect68k, MenuKey68k, SystemMenu68k);

else if (response == gestaltPowerPC)
err= PatchPPC();

else err = gestaltUnknownErr; II who knows what might be next?

if (err != noErr) goto fail;

II
II make sure the !NIT stays in memory
II

DetachResource(hINIT);

goto exit;

11 we get here if we fail

II
II deallocate our global memory if it exists
II

if (gGlobalsPtr) {
DisposePtr((Ptr)gGlobalsPtr);
gGlobalsPtr = nil;

II
II at this point our INIT is not detached, therefore, when our !NIT file is closed
II the resource will automatically be released.
II

exit:

I*
if (hINIT) {

ReleaseResource(hINIT);
hINIT = nil;

*I

II

CHAPTER FOUR SOURCE CODE

II alert the user to the problem
II

if (err != noErr) {
SysBeep(O);

II we get here upon success or failure

II
II restore a4
II

SetA4(oldA4);

II
11 restore zone
II

SetZone(savedZone);

I**

RernemberMe

**I

OSErr RememberMe(FSSpecPtr fsp)
{

FCBPBRec
OSErr

pb;
err = noErr;

pb.ioCompletion =nil;
pb.ioNamePtr = fsp->name;
pb.ioVRefNum = O;
pb.ioRefNurn = CurResFile();
pb.ioFCBindx = 0;

305

306 APPENDIX

err= PBGetFCBinfoSync(&pb);

fsp->vRefNum = pb.ioFCBVRefNum;
fsp->parlD = pb.ioFCBParID;

return err;

/************•**

MenuKey68k

***I

pascal long MenuKey68k(short ch)
{

long
long
OSErr

II

result;
oldA4;
err = noErr:

II to access our globals
II

oldA4 SetUpA4 ();

II
II call the original MenuSelect first to see what was selected
II

result ((MenuKeyProc)gGlobalsPtr->oldMenuKeyAddr) (ch);

II
II examine the menu selection
II

if (result != OL) {

II

err= DoMenuPatchStuff(result, gGlobalsPtr);
if (err == noErr)

result = OL;

II restore a4 and return
II

RestoreA4(oldA4);
return result;

CHAPTER FOUR SOURCE CODE

/***

MenuSelect68k

***/

pascal long MenuSelect68k(Point startPt)
{

long
long
OSErr

II

result;
oldA4;
err = noErr;

II to access our globals
II

oldA4 SetUpM ();

II
II call the original MenuSelect first to see what was selected
II

result ((MenuSelectProc)gGlobalsPtr->oldMenuSelectAddr) (startPt);

II
II examine the menu selection

II

if (result != OL) {

II

err= DoMenuPatchStuff(result, gGlobalsPtr);
if (err == noErr)

result = OL:

II restore a4 and return
II

RestoreA4(oldA4);
return result;}

/***

SystemMenu68k

***/

pascal void SystemMenu68k (long menuResul t l
{

307

308 APPENDIX

long
OS Err

II

oldA4;
err = noErr;

II to access our globals
II

oldA4 SetUpA4 ();

II
II examine the menu selection
II

if (rnenuResult != OL) {

II

err= DoMenuPatchStuff(rnenuResult, gGlobalsPtr);
if (err == noErr)

menuResul t = OL;

II call the original SysternMenu if we didn't handle it
II

if (((err== fnfErr) I I (err== noErr)) && (rnenuResult != OL))
((SysternMenuProc)gGlobalsPtr->oldSystemMenuAddr) (rnenuResult);

II
II restore a4 and return
II

RestoreA4(oldA4);

/***

ApplyPatches

***/

void ApplyPatches(void * menuSelectCode, void* menuKeyCode, void* systemMenuCode)

gGlobalsPtr->oldMenuSelectAddr = GetToolTrapAddress(_MenuSelect);
SetToolTrapAddress((UniversalProcPtr)menuSelectCode, _MenuSelect);

gGlobalsPtr->oldMenuKeyAddr = GetToolTrapAddress(_MenuKey);
SetToolTrapAddress((UniversalProcPtr)rnenuKeyCode, _MenuKey);

gGlobalsPtr->oldSystemMenuAddr = GetToolTrapAddress(_SystemMenu);
SetToolTrapAddress((UniversalProcPtr)systemMenuCode, _SystemMenu);

CHAPTER FOUR SOURCE CODE

/***

PatchPPC

***/

OSErr PatchPPC(void)

OSErr
Handle
SymClass
Ptr
ConnectionID
Str255
Ptr
UniversalProcPtr

II

err = noErr;
ppcCodeH =nil;
symClass;
symAddr;
connID = kNoConnectionID;
errStr;
mainAddr;
menuSelectUPP =nil, menuKeyUPP =nil,
systemMenuUPP = nil;

II load the PPC resource-based code
II

ppcCodeH = GetlResource(kPPCResourceType, kPPCResourceID);
if (ppcCodeH ==nil) return ResError() ? ResError() : resNotFound;
DetachResource(ppcCodeH);
HLock (ppcCodeH);

II
II open a connection to the code fragment
II

errStr[O] = O;
err= GetMemFragment(*ppcCodeH, GetHandleSize(ppcCodeH), kPPCFragmentName,

kLoadNeWCopy, &connID, &mainAddr, errStr);
if (err != noErr) goto fail;

II
II find global data variable
II

err= FindSymbol(connID, kGlobalsSymbolName, &symAddr, &symClass);
if (err != noErr) goto fail;

II
II point the PPC globals to our globals that we have already initialized
II

*(Globals**)symAddr = gGlobalsPtr;

II
II get MenuSelect address
II

309

310 APPENDIX

#if 1

#else

err= FindSyrnbol(connID, kMenuSelectFunctionName, &symAddr, &symClass);
if (err != noErr) goto fail;

menuSelectUPP = (UniversalProcPtr)NewRoutineDescriptor((ProcPtr)symAddr,
kMenuSelectProcinfo, kPowerPCISA);

menuSelectUPP = (UniversalProcPtr)NewFatRoutineDescriptor(MenuSelect68k,
symAddr, kMenuKeyProcinfo);

#endif

#if 1

#else

if (menuSelectUPP == (UniversalProcPtr)symAddr)
DebugStr("\p No RoutineDescriptor");

if (menuSelectUPP == nil) goto fail;

II
II get MenuKey address
II

err= FindSyrnbol(connID, kMenuKeyFunctionName, &symAddr, &symClass);
if (err != noErr) goto fail;

menuKeyUPP = (UniversalProcPtr)NewRoutineDescriptor((ProcPtr)symAddr,
kMenuKeyProcinfo, kPowerPCISA);

menuKeyUPP = (UniversalProcPtr)NewFatRoutineDescriptor(MenuKey68k,
symAddr,

kMenuKeyProcinfo);
#endif

#if 1

#else

if (menuKeyUPP == (UniversalProcPtr)symAddr)
DebugStr("\p No RoutineDescriptor");

if (menuKeyUPP == nil) goto fail;

II
II get SystemMenu address

II

err= FindSymbol(connID, kSystemMenuFunctionName, &symAddr, &symClass);
if (err != noErr) goto fail;

systemMenuUPP = (UniversalProcPtr)NewRoutineDescriptor((ProcPtr}symAddr,
kSystemMenuProcinfo, kPowerPCISA);

systemMenuUPP = (UniversalProcPtr)NewFatRoutineDescriptor(SystemMenu68k,
symAddr, kSystemMenuProcinfo);

#endif
if (systemMenuUPP == (UniversalProcPtr)symAddr)

DebugStr("\p No RoutineDescriptor");
if (systemMenuUPP == nil) goto fail;

II
II apply the patches
II

INIT.h

CHAPTER FOUR SOURCE CODE

ApplyPatches(menuSelectUPP, menuKeyUPP, systemMenuUPP);

goto exit;
fail:

exit:

/*

if (menuSelectUPP)
DisposeRoutineDescriptor(menuSelectUPP);
menuSelectUPP = nil;

if (menuKeyUPP) {
DisposeRoutineDescriptor(menuKeyUPP);
menuKeyUPP =nil;

if (connID != kNoConnectionID)
CloseConnection(&connID);
connID = kNoConnectionID;

if (ppcCodeH) {
DisposeHandle(ppcCodeH);
ppcCodeH = nil ;

if (errStr[O] != 0)
DebugStr(errStr);

return err;

File Name: INIT.h
*/

#pragma once

PPCPatches.c
I*

File Name: PPCPatches.c
*I

/*** includes ***/

#include <GestaltEqu.h>
#include <Errors.h>
#include <Folders.h>
#include <FragLoad.h>
#include <MixedMode.h>
#include <ConditionalMacros.h>

311

312 APPENDIX

#include "PPCPatches.h"
#include •common.h"

I*** global variables ***I

GlobalsPtr gGlobalsPtr =nil;

/***

MenuSelectPPC

***/

#define CallMenuSelect(pt) CallUniversalProc(gGlobalsPtr->oldMenuSelectAddr,
kMenuSelectProcinfo, pt)

pascal long MenuSelectPPC(Point startPtl
{

result; long
OSErr err :::: noErr;

II
II call the original MenuSelect first to see what was selected
II

result= CallMenuSelect(startPt);

II
II examine the menu selection
II

if (result != OL) {

err= DoMenuPatchStuff(result, gGlobalsPtr);
if (err == noErr)

result = OL;

return result;

/***

MenuKeyPPC

•********/

tdefine CallMenuKey(ch) CallUniversalProc(gGlobalsPtr->oldMenuKeyAddr,
kMenuKeyProcinfo, ch)

pascal long MenuKeyPPC(short chi
{

long
OS Err

II

result;
err = noErr;

CHAPTER FOUR SOURCE CODE

II call the original MenuSelect first to see what was selected
II

result CallMenuKey(ch);

II
II examine the menu selection
II

if (result != OL) {
err= DoMenuPatchStuff(result, gGlobalsPtr);
if (err == noErr)

result = OL;

return result;

/***

SystemMenuPPC

***/

#define CallSystemMenu(menuResult) CallUniversalProc(gGlobalsPtr->oldSystemMenuAddr,
kSystemMenuProcinfo, menuResult)

pascal void SystemMenuPPC(long menuResult)

OSErr err = noErr;

II
II examine the menu selection
II

if (menuResult != OL) {

II

err= DoMenuPatchStuff(menuResult, gGlobalsPtr);
if (err == noErr)

menuResult = OL;

II call the original SystemMenu if we didn't handle it
II

313

314 APPENDIX

if (((err== fnfErr) I I (err== noErr)) && (rnenuResult != OL)) {
long ignore= CallSystemMenu(rnenuResult);

PPCPatches.h
/*

File Name: PPCPatches.h
*/

#pragma once

pascal
pascal
pascal

common.c
I*

File Name:

*I

long MenuKeyPPC(short ch);
long MenuSelectPPC(Point startPt);
void SystemMenuPPC(long menuResult);

common.c

/*** includes ***/

#include <LowMem.h>
#include <ToolUtils.h>
#include <OSUtils.h>
#include <Dialogs.h>
#include <Files.h>
#include <Menus.h>
#include <Script.h>
#include <Resources.h>
#include <Types.h>
#include <Memory.h>
#include <GestaltEqu.h>
#include <Errors.h>
#include <Folders.h>
#include <Processes.h>
#include <EPPC.h>
#include <AppleEvents.h>
#include <Aliases.h>
#include <AppleEvents.h>
#include <AEObjects.h>
#include <AEPackObject.h>
#include <AERegistry.h>

#include "common.h"

CHAPTER FOUR SOURCE CODE

/***

DoMenuPatchStuff

***/

OSErr DoMenuPatchStuff(long rnenuResult, GlobalsPtr gp)
{

FSSpec appFolderSpec;
OSErr err = noErr;
short rnenuID = HiWord(rnenuResult);
short rnenu!tem = LoWord(menuResult);
MenuHandle hMenu = GetMHandle(rnenuID);
FSSpec menuitemSpec;
Str255 itemString;

if (hMenu)
Getitem(hMenu, menu!tem, itemString);

} else
II ShowErrorAlert(&gp->ourFSpec, aGetMenuHandle, -1);

return -l;

II
II see if a folder exists for the current application
II

err= FSMakeFSSpec(-1, gp->rnenuScriptsFolderDirID,
(unsigned char *)LMGetCurApName(), &appFolderSpec);

if (err == noErr) {

II

long appFolderDirID;

II
II get directory id of current app's folder
II

err= GetDirectoryID(&appFolderSpec, &appFolderDirID);
if (err == noErr) {

II make spec for potential item to launch within the current app's folder
II

err= FSMakeFSSpec(-1, appFolderDirID,
iternString, &rnenuitemSpec);

if (err == noErr) {
err= OpenSelection(&rnenuitemSpec, kOpenitem);
if (err != noErr) {

ShowErrorAlert(&gp->ourFSSpec, aOpenSelection,

315

316 APPENDIX

exit:

err):
return err;

} else goto exit;
} II fnfErr

} else {
ShowErrorAlert(&gp->ourFSSpec, aGetAppDirID, err);
return err;

} II fnfErr

II
II if we are still here, check the Any Application folder

II

err= FSMakeFSSpec(-1, gp->anyApplicationFolderDirID, itemString,
&menuitemSpec);

if (err == noErr) {
err= OpenSelection{&menuitemSpec, kOpenitem);
if {err != noErr)

ShowErrorAlert(&gp->ourFSSpec, aOpenSelection, err);
else goto exit;

II fnfErr

return err;

/***

GetDirectoryID

***/

OSErr GetDirectoryID{FSSpec *spec, long *dirID)

OS Err
CinfoPBRec

err = noErr;
pb;

pb.hFileinfo.ioNamePtr = spec->name;
pb.hFileinfo.ioVRefNum = spec->vRefNum;
pb.hFileinfo.ioFDirindex = O;
pb.hFileinfo.ioDirID = spec->parID;

err= PBGetCatinfoSync(&pb);

*dirID = pb.hFileinfo.ioDirID;

return err;

CHAPTER FOUR SOURCE CODE

/***

ShowErrorAlert

***/

#define alrtErrorID 128

void ShowErrorAlert{FSSpecPtr fsp, short action, OSErr err)

Str255 errorString;
Str32 errorNwnStr;
StrlS emptyString;
short fRefNwn ::: -1;

fRefNwn = FSpOpenResFile(fsp, fsRdPerm);
if {fRefNwn != -1) {

emptyString[OJ = O;
NumToString((long)err, errorNwnStr);
GetindString(errorString. rErrorStringListID, action);
ParamText(errorString, errorNumStr, emptyString, emptyString);
StopAlert{alrtErrorID, nil);
ParamText(emptyString, emptyString, emptyString, emptyString);
CloseResFile(fRefNwn);

} else SysBeep(O);

/***

OpenSelection

OpenSelection prepares and sends the Finder OpenSelection event
This is a hacked down version of OpenSelection() from the DTS Sampler "FinderOpenSel
1.0.1" The original version has several options, I've stripped out the ones I don't
need and left just the code to tell the finder to open the directory window
containing the incoming file.

***/

#define aeSelectionKeyword
#define aeOpenSelection
#define kFinderSig
#define kSystemType

'fsel'
•sope'
'FNDR'
'MACS'

OSErr OpenSelection(FSSpecPtr fsp, Boolean openOption)
{

AppleEvent
AEDesc
FSSpec
AEDesc
OSErr

aeEvent, aeReply;
aeDirDesc, listElem, myAddressDesc;
dirSpec;
fileList;
err = noErr;

317

318 APPENDIX

ProcessSerialNurnber
AliasHandle

process;
dirAlias, fileAlias;

II

II get the process serial number of the Finder
II

err= GetPSN(kSystemType, kFinderSig, &process);

if (err == noErr)

II
II create an address descriptor
II

err AECreateDesc(typeProcessSerialNwnber, (Ptr)&process,
sizeof(process), &myAddressDesc);

if (err == noErr) {

II
II create the apple event
II

II

err= AECreateAppleEvent(kFinderSig, aeOpenSelection,
&myAddressDesc, kAutoGenerateReturnID, kAnyTransactionID,
&aeEvent):

II no need to keep this address desc around anymore
II

AEDisposeDesc(&myAddressDesc);

if (err == noErr) {

II

II make a spec to the parent folder
II

err= FSMakeFSSpec(fsp->vRefNum, fsp->parID,
nil, &dirSpec) ;

err= NewAlias(nil, &dirSpec, &dirAlias);

II
II we are either opening the item or "showing• it
II

if (openOption == kOpenitem)
err= NewAlias(nil, fsp, &fileAlias);

else if (openOption == kShowltem)
II since we are opening a window,

CHAPTER FOUR SOURCE CODE

II we just make the file alias the same as the dir alias
err= NewAlias(nil, &dirSpec, &fileAlias);

II
II create list of items to open
II

if (err == noErr) {
err= AECreateList(nil, 0, false, &fileList);

II
II create parent folder descriptor

II

HLock((Handle)dirAlias);
AECreateDesc(typeAlias, (Ptr)*dirAlias,

GetHandleSize((Handle)dirAlias), &aeDirDesc);
HUnlock((Handle)dirAlias);
if ((err= AEPutParamDesc(&aeEvent, keyDirectObject,

&aeDirDesc)) == noErr) {

AEDisposeDesc(&aeDirDesc);

II
II create the file descriptor and add to aliasList
II

HLock((Handle)fileAlias);
AECreateDesc(typeAlias, (Ptr)*fileAlias,

GetHandleSize((Handle)fileAlias), &listElem);
HLock((Handle)fileAlias);
err= AEPutDesc(&fileList, 0, &listElem);

if (err == noErr) {

AEDisposeDesc(&listElem);

II
II add the aliasList to the event

II

err= AEPutParamDesc(&aeEvent, aeSelectionKeyword,
&fileList);

AEDisposeDesc(&fileList);

if (err == noErr)
err = AESend(&aeEvent, &aeReply, kAENoReply +

kAEAlwaysinteract + kAECanSwitchLayer,
kAENormalPriority, kAEDefaultTimeout, nil, nil);

319

320 APPENDIX

AEDisposeDesc(&aeEvent);

if ((Handle)dirAlias)
DisposHandle((Handle)dirAlias);

if ((Handle)fileAlias)
DisposHandle((Handle)fileAlias);

return err;

/**

GetPSN

returns the process serial number of the file that is currently
running with given creator and type. if the returns PSN is all
zeros then it was not found.

**/

OSErr GetPSN(OSType creator, OSType type, ProcessSerialNumber *process)
{

ProcessSerialNumber processSerNum;
ProcessSerialNumber returnProcessSerNurn;
ProcessinfoRec process Info;
Str32
FSSpec

processName;
fsSpec;

returnProcessSerNum.highLongOfPSN = OL;
returnProcessSerNum.lowLongOfPSN = OL;

/* start from the beginning*/
processSerNum.highLongOf PSN = OL;
processSerNwn.lowLongOfPSN = kNoProcess;

processinfo.processinfoLength = sizeof(ProcessinfoRec);
processinfo.processName = (StringPtr)&processName;
processinfo.processAppSpec = &fsSpec;

while (GetNextProcess(&processSerNum) == noErr) {
if (GetProcessinformation(&processSerNum, &processinfo)

if ((processinfo.processType == (long)type) &&
(processinfo.processSignature == creator))
BlockMove(&processSerNum, process,

sizeof(ProcessSerialNumber));
return noErr;

noErr) {

CHAPTER FOUR SOURCE CODE

return -1;

common.h
/*

File Name: common.h
*/

#pragma once

/*** includes ***/

#include <Processes.h>

/***definitions **/

#define kPPCFragmentName
#define kMenuSelectFunctionName
#define kMenuKeyFunctionName
#define kSystemMenuFunctionName
~define kGlobalsSymbolName

#define rErrorStringListID
#define aGetAppDirID
#define aGetMenuHandle
#define aOpenSelection

"\pMenuScript Fragment"
"\pMenuSelectPPC"
"\pMenuKeyPPC"
"\pSystemMenuPPC"
"\pgGlobalsPtr"

129

1

2

/*** typedefs***/

#ifdef powerc

#pragma options align=mac68k
#endif

typedef struct
long
long
UniversalProcPtr
UniversalProcPtr
UniversalProcPtr

menuScriptsFolderDirID;
anyApplicationFolderDirID;
oldMenuSelectAddr;
oldMenuKeyAddr;
oldSystemMenuAddr;

FSSpec ourFSSpec;
Globals, *GlobalsPtr, **GlobalsHdl;

#ifdef powerc
#pragma options align=reset

#endif

en um

321

322 APPENDIX

};

kMenuSelectProcinfo = kPascalStackBased
RESULT_SIZE(SIZE_CODE(sizeof(long)))

I REGISTER_RESULT_LOCATION(kRegisterDOl
I STACK_ROUTINE_PARAMETER(l,SIZE_CODE(sizeof(Point))),

kMenuKeyProcinfo kPascalStackBased
RESULT_SIZE(SIZE_CODE(sizeof(long)))
REGISTER_RESULT_LOCATION(kRegisterDO)
STACK_ROUTINE_PARAMETER(l,SIZE_CODE(sizeof(short))),

kSystemMenuProcinfo = kPascalStackBased
I STACK_ROUTINE_PARAMETER(l,SIZE_CODE(sizeof(long)))

/*** function prototypes **/

OS Err
#define
#define
OS Err
OS Err
OS Err
void

DoMenuPatchStuff(long menuResult, GlobalsPtr gp);
kOpenitem true
kShowitem false
OpenSelection(FSSpecPtr fsp, Boolean openOption);
GetPSN(OSType creator, OSType type, ProcessSerialNumber *process);
GetDirectoryID(FSSpecPtr fsp, long *dirID);
ShowErrorAlert(FSSpecPtr fsp, short action, OSErr err);

Chapter Five Source Code
cdev.c

/*

File Name: cdev.c
*/

#include "cdev.h"
#include "dlogutils.h"
#include "allcommon.h"
#include <GestaltEqu.h>
#include <Processes.h>
#include <Icons.h>

#ifndef __powerc
#include "A4Stuff .h"
#include "SetupA4.h"
#end if

/**

main

proclnfo = 1043120 decimal

**************************************•*****************************/

CHAPTER FIVE SOURCE CODE

pascal long main(short message,
short item,
short numitems,
short CPanelID,
EventRecord *theEvent,
Handle cdevStorage, II private storage
DialogPtr CPDialog)

long result OL;

#ifndef __powerc
long oldA4;
oldA4 = SetCurrentA4();
RememberA4 () ;

#endif

if (message == macDev) {
result= CanRun();
goto exit;

I* check our configuration *I

} else if (cdevStorage !=nil)

switch(message) {

I* init ourselves *I
case initDev:

cdevStorage = InitControlPanel(CPDialog, numitems);
if (cdevstorage == nil) {

break;

result = (long)cdevMemErr;
goto exit;

I* close ourselves down - can't depend on the item list here! *I
case closeDev:

if (cdevStorage !=nil) {
ClosecontrolPanel(cdevStorage);
cdevStorage =nil;

break;

I* handle hit on item & update cdevStorage each time since
we can not trust the item list during a closeDev msg *I

case hitDev:
HitControlPanel(CPDialog, item, numitems, cdevStorage);
break;

case macDev:
I* check our configuration, ignore it in here though *I
break;

case nulDev:
break;

I* null event *I

323

324

} else

exit:

APPENDIX

case cursorDev:
break;

/* adjust our cursor */

case updateDev: I* handle any update drawing *I

UpdatePanel(CPDialog, cdevStorage, numitems);
break;

case activDev:
case deactivDev:
case keyEvtDev:

break;

case undoDev:
case cutDev:
case copyDev:
case pasteDev:
case clearDev:

break;

/* activate any needed items */

/* deactivate any needed items */
I* respond to keydown */

/* undo event */

/*cut event */
/* copy event */
I* paste event */
/* clear event */

result = (long)cdevStorage;
goto exit;

/*

if cdevStorage = NIL then ControlPanel
will put up memory error

*I

result = nil; /* cdevstorage
goto exit;

nil */

#ifndef __powerc
SetA4(oldA4);

#endif

return result;

/**

HitControlPanel

**/

void HitControlPanel(DialogPtr d, short item, short numitems, Handle cdevStorage)

short myitem = item - numitems;
switch (myitem) {

case itemicon:
Alert (129, nil) ;
break;

case itemOnRadio:
case itemOffRadio:

CHAPTER FIVE SOURCE CODE

DoRadioGroup(d, itemOnRadio + numitems, itemOffRadio + numitems,
item);

(*(PreferencesHdl)cdevStorage)->fEnabled = (GetRadioFromGroup(d,
itemOnRadio + numitems, itemOffRadio + numitems) ==
(itemOnRadio + numitems));

UpdateINIT((PreferencesHdl)cdevStorage);
break;

/**•*******

CloseControlPanel

•***/

void ClosecontrolPanel(Handle cdevstorage)
{

ChangedResource(cdevStorage);
WriteResource(cdevstorage);
ReleaseResource(cdevStorage);

/**

InitControlPanel

**/

Handle InitcontrolPanel(DialogPtr d, short numitems)
{

Handle
short
Rect
Handle

cdevStorage =nil;
iType;
iRect;
iHandle;

cdevStorage = GetlResource(kPreferencesResType, kPreferencesResID);
if (cdevStorage != nil) {

DoRadioGroup(d, itemOnRadio + numitems, itemOffRadio + numitems,
(*(PreferencesHdl)cdevStorage)->fEnabled?
itemOnRadio : itemOffRadio + numitems);

GetDitem(d, numitems + itemStaticText, &iType, &iHandle, &iRect);
#ifdef __powerc

325

326 APPENDIX

SetIText(iHandle, "\pThis cdev is native PowerPC code.");
#else

SetIText(iHandle, "\pThis cdev is 680x0 code.");
#endif

return cdevStorage;

/***•************

CanRun

**/

long CanRun(void)
{

long response;
OSErr err = noErr;

err = Gestalt(gestaltSystemVersion, &response);
if ((err!= noErr) I I (response <\f>Ox00000700))

return (long)false;
else

return (long)true;

/**

UpdatePanel

**/

void UpdatePanel(DialogPtr d, Handle prefs, short numitems)
{

Graf Ptr savePort;

/* set up port to draw *I
GetPort(&savePort);
SetPort (d);

/* draw here *I

/* restore port */

SetPort(savePort);

cdev.h

INIT.c

CHAPTER FIVE SOURCE CODE

/**

UpdateINIT

**/

void UpdateINIT(PreferencesHdl ph)
{

I*

*I

OS Err
PreferencesPtr

err ::: noErr;
pp;

err= Gestalt(kGestaltSelector, (long*)&pp};
if (err == noErr) {

pp->fEnabled = (*ph)->fEnabled;
} else SysBeep(O); II INIT is not loaded, most likely

File Name: cdev.h

#pragma once

#include "allcommon.h"

#define
#define
#define
#define

void

void
Handle
long
void
void

I*

itemicon
itemStaticText
itemOnRadio
itemOffRadio

1

4

6

7

HitControlPanel(DialogPtr d, short item, short nwnitems,
Handle cdevStorage);

CloseControlPanel(Handle cdevStorage};
InitControlPanel(DialogPtr d, short numitems);
CanRun(void);
UpdatePanel(DialogPtr d, Handle prefs, short numitems);
UpdateINIT(PreferencesHdl ph};

File Name: INIT.c
*I

#ifdef USESROUTINEDESCRIPTORS

327

328 APPENDIX

#undef USESROUTINEDESCRIPTORS
#define USESROUTINEDESCRIPTORS 1
#else
#define USESROUTINEDESCRIPTORS 1
#endif

//extern pascal UniversalProcPtr NewFatRoutineDescriptor(ProcPtr theM68kProc,
// ProcPtr thePowerPCProc, ProcinfoType theProcinfo)
II THREEWORDINLINE(Ox303C, Ox0002, 0xAA59);

/*** includes ********•**/

#include <LowMem.h>
#include <ToolUtils.h>
#include <OSUtils.h>
#include <Dialogs.h>
#include <Files.h>
#include <Menus.h>
#include <Script.h>
#include <Resources.h>
#include <Types.h>
#include <Memory.h>
#include <GestaltEqu.h>
#include <Errors.h>
#include <Folders.h>
#include <FragLoad.h>
#include <MixedMode.h>
//#include <ConditionalMacros.h>

#include ''INIT.h"
#include •common.h"
#include "allcommon.h"
#include "A4Stuff.h"
#include •setupA4.h"

/*** definitions **/

#define kMinimumSystemVersion Ox00000700 II minimum system version

#define kINITResourceType 'INIT' II our INIT code resource type
#define kINITResourceID 0 II and ID

#define kPPCResourceType 'PPC II our Power PC code resource type
#define kPPCResourceID 0 II and ID

#define rStringListID 128 II INIT string list resource

CHAPTER FIVE SOURCE CODE

#define iMenuScriptsFolderName
#define iAnyApplicationFolderNarne

1

2

II MenuScripts folder name

I*** typedefs ***I

typedef pascal long (*MenuSelectProc) (Point pt);
typedef pascal long (*MenuKeyProc) (short ch);
typedef pascal void (*SystemMenuProc) (long menuResult);

I*** global variables ***I

GlobalsPtr gGlobalsPtr;

I*** function prototypes **I

OS Err
pascal
pascal
pascal
void

OS Err
pascal

RemernberMe(FSSpecPtr fsp);
long MenuKey68k(short ch);
long Menuselect68k(Point startPt);
void SystemMenu68k(long menuResult);
ApplyPatches(void * menuSelectCode, void * menuKeyCode,

void * systemMenuCode);
PatchPPC (void);
OSErr GestaltGetGlobals(OSType selector, long *response);

/**•

main

•********/

void main (void)

FSSpec
FSSpec
Str32

menuScriptsFolderFSSpec;
anyApplicationFolderFSSpec;
menuScriptsFolderName;

Str32 anyApplicationFolderName;
Handle hINIT ::: nil;
PreferencesHdl ph = nil;
THz savedzone;
long oldA4;
long response;
long foundDirID;
short foundVRefNum;
OSErr err ::: noErr;

II
II make sure we are in the system heap
II

savedZone = Getzone();
SetZone(SystemZone()l;

329

330 APPENDIX

II
II set up our A4 context for this file
II

oldA4 = SetCurrentA4();
RememberA4();

II
II verify minimum system version

II

err= Gestalt(gestaltSystemVersion, &response);
if ((err != noErr) I I (response <kMinimumSystemVersion)) goto fail;

II
II allocate our global data
II

gGlobalsPtr = (GlobalsPtr)NewPtrSysClear(sizeof(Globals));
if (gGlobalsPtr == nil) {

II

err = MemError() ? MemError() : memFullErr;
goto fail;

II find ourselves (it's a Zen thing)

II

err= RememberMe(&gGlobalsPtr->ourFSSpec);
if (err != noErr) goto fail;

II
II find out where our MenuScripts folder is located (in the System folder)
II and figure out its directory id
II

II load folder name string from resource string list
GetindString(menuScriptsFolderName, rStringListID, iMenuScriptsFolderName);
if (menuScriptsFolderName[O) == 0)

err = resNotFound;
goto fail;

II locate dirID of system folder
err = FindFolder(kOnSystemDisk, kSystemFolderType, kDontCreateFolder,

&foundVRefNum, &foundDirID);
if (err != noErr) goto fail;

I I make a spec for the MenuScripts folder
err = FSMakeFSSpec(foundVRefNum, foundDirID, menuScriptsFolderName,

CHAPTER FIVE SOURCE CODE

&menuScriptsFolderFSSpec);
if (err == fnfErr) {

II create it if it doesn't exist and get its directory id
err = FSpDirCreate(&menuScriptsFolderFSSpec, smSystemScript,

&gGlobalsPtr->menuScriptsFolderDirID);
} else if (err == noErr)

II otherwise just get its directory id
err = GetDirectoryID(&menuScriptsFolderFSSpec,

&gGlobalsPtr->menuScriptsFolderDirID);

if (err != noErr) goto fail;

II load folder name string from resource string list
GetindString(anyApplicationFolderName, rStringListID,

iAnyApplicationFolderName);
if (anyApplicationFolderName[OJ == 0)

err = resNotFound;
goto fail;

II make a spec for the Any Application folder
err = FSMakeFSSpec(foundVRefNum, gGlobalsPtr->menuScriptsFolderDirID,

anyApplicationFolderName, &anyApplicationFolderFSSpec);
if (err == fnfErr)

II create it if it doesn't exist and get its directory id
err = FSpDirCreate(&anyApplicationFolderFSSpec, smSystemScript,

&gGlobalsPtr->anyApplicationFolderDirID);
} else if (err == noErr) {

II otherwise just get its directory id
err = GetDirectoryID(&anyApplicationFolderFSSpec,

&gGlobalsPtr->anyApplicationFolderoirID);

if (err != noErr) goto fail;

II
II get a handle to our INIT resource
II

hINIT = GetlResource(kINITResourceType, kINITResourceID);
if (hINIT == nil)

II

err = ResError() ? ResError()
goto fail;

resNotFound;

II load preferences and copy into our global data, then release resource
II

ph = (PreferencesHdl)GetlResource(kPreferencesResType, kPreferencesResID);
if (ph == nil)

err = ResError() ? ResError() : resNotFound;
goto fail;

331

332 APPENDIX

BlockMove(*ph, &(gGlobalsPtr->preferences), sizeof(Preferences));
ReleaseResource((Handle)ph);

II
I I patch traps
II

err= Gestalt(gestaltSysArchitecture, &response);
if (err != noErr) goto fail;

if (response == gestalt68k)
ApplyPatches(MenuSelect68k, MenuKey68k, SystemMenu68k);

else if (response == gestaltPowerPC)
err= PatchPPC();

else err = gestaltUnknownErr;

if (err != noErr) goto fail;

II
II install our gestalt selector
II

II who knows what might be next?

err= NewGestalt(kGestaltSelector, (SelectorFunctionUPP)&GestaltGetGlobals);
if (err != noErr) goto fail;

II
II make sure the INIT stays in memory
II

DetachResource(hINIT);

goto exit;

fail:
II we get here if we fail

II
II deallocate our global memory if it exists
II

if (gGlobalsPtr) {
DisposePtr((Ptr)gGlobalsPtr);
gGlobalsPtr = nil;

II
11 our INIT will be released automatically when the file is closed
II

I*

*I

if (hINIT) {
ReleaseResource(hINIT);
hINIT = nil;

II
II alert the user to the problem
II

if (err != noErr)
SysBeep (0) ;

exit:

CHAPTER FIVE SOURCE CODE

II we get here upon success or failure

II
I I restore a4
II

setA4 (oldA4);

II

11 restore zone
II

SetZone(savedZone);

I**

Remember Me

•***/

OSErr RememberMe(FSSpecPtr fsp)
{

FCBPBRec
OS Err

pb;
err = noErr;

pb.ioCompletion = nil;
pb.ioNamePtr = fsp->name;
pb. ioVRefNwn = 0;
pb.ioRefNwn = CurResFile();
pb. ioFCBindx = 0;

err= PBGetFCBinfosync(&pb);

fsp->vRefNum = pb.ioFCBVRefNum;
fsp->parID = pb.ioFCBParID;

333

334 APPENDIX

return err;

/***

MenuKey68k

***I

pascal long MenuKey68k(short ch)
{

long
long
OS Err

II

result;
oldA4;
err = noErr;

II to access our globals
II

oldA4 SetUpA4();

II
II call the original MenuSelect first to see what was selected

II

result ((MenuKeyProc)gGlobalsPtr->oldMenuKeyAddr) (ch);

II
II examine the menu selection
II

if ((result != OL) && (gGlobalsPtr->preferences.fEnabled))
err= DoMenuPatchStuff(result, gGlobalsPtr);
if (err == noErr)

result = OL;

II
II restore a4 and return
II

RestoreA4(oldA4);
return result;

/***

MenuSelect68k

***/

CHAPTER FIVE SOURCE CODE

pascal long MenuSelect68k(Point startPt)
{

long
long
OSErr

II

result;
oldA4;
err = noErr;

II to access our globals
II

oldA4 SetUpM ();

II
II call the original Menuselect first to see what was selected
II

result ((MenuSelectProc)gGlobalsPtr->oldMenuSelectAddrJ (startPt);

II
II examine the menu selection
II

if ((result != OL) && (gGlobalsPtr->preferences.fEnabled))
err= DoMenuPatchStuff(result, gGlobalsPtr);
if (err == noErr)

result = OL;

II
II restore a4 and return
II

RestoreA4(oldA4);
return result;

/***

SystemMenu68k

***/

pascal void SystemMenu68k(long menuResult)

long oldA4;
OSErr err = noErr;

II
II to access our globals
II

oldA4 SetUpA4();

335

336 APPENDIX

II
II examine the menu selection
II

if ((menuResult != OL) && (gGlobalsPtr->preferences.fEnabled))
err= DoMenuPatchStuff(menuResult, gGlobalsPtr);
if (err == noErr)

menuResult = OL;

II
II call the original SystemMenu if we didn't handle it
II

if (((err == fnfErr) 11 (err == noErr)) && (menuResult != OL))

((SystemMenuProc)gGlobalsPtr->oldSystemMenuAddr) (menuResult);

II
II restore a4 and return
II

RestoreA4(oldA4);

I***

ApplyPatches

***/

void ApplyPatches(void * menuSelectCode, void * menuKeyCode, void * systemMenuCode)
{

gGlobalsPtr->oldMenuSelectAddr = GetToolTrapAddress(_MenuSelect);
SetToolTrapAddress((UniversalProcPtr)menuSelectCode, _MenuSelect);

gGlobalsPtr->oldMenuKeyAddr = GetToolTrapAddress(_MenuKey);
SetToolTrapAddress((UniversalProcPtr)menuKeyCode, _MenuKey);

gGlobalsPtr->oldSystemMenuAddr = GetToolTrapAddress(_SystemMenu);
SetToolTrapAddress((UniversalProcPtr)systemMenuCode, _systemMenu);

/**********•************************************t*************************

PatchPPC

***/

OSErr PatchPPC(void)

CHAPTER FIVE SOURCE CODE

OS Err
Handle
SymClass
Ptr
Connection!D
Str255
Ptr
UniversalProcPtr

II

err = noErr;
ppcCodeH = nil;
symClass;
symAddr;
conn!D = kNoConnectionID;
errStr;
mainAddr;
menuSelectUPP nil, menuKeyUPP
systemMenuUPP nil;

II load the PPC resource-based code
II

nil,

ppcCodeH = GetlResource(kPPCResourceType, kPPCResourceID);
if (ppcCodeH == nil) return ResError() ? ResError() : resNotFound;
DetachResource(ppcCodeH);
HLock(ppcCodeH):

II
II open a connection to the code fragment
II

errStr[OJ = O;
err= GetMemFragment(*ppcCodeH, GetHandleSize(ppcCodeH), kPPCFragmentName,

kLoadNewCopy, &connID, &mainAddr, errStr);
if (err != noErr) goto fail;

II

II find global data variable
II

err= FindSymbol(connID, kGlobalsSymbolName, &symAddr, &symClass);
if (err != noErr) goto fail;

II
II point the PPC globals to our globals that we have already initialized
II

*(Globals**)symAddr gGlobalsPtr;

II
II get MenuSelect address
II

err= FindSymbol(connID, kMenuSelectFunctionName, &symAddr, &symClass);
if (err != noErr) goto fail;

#if 1

menuSelectUPP = (UniversalProcPtr)NewRoutineDescriptor((ProcPtr)symAddr,
kMenuSelectProcinfo, kPowerPCISA);

#else

337

338 APPENDIX

menuSelectUPP = (UniversalProcPtr}NewFatRoutineDescriptor(MenuSelect68k,
symAddr, kMenuKeyProcinfo);

#endif
if (menuSelectUPP == (UniversalProcPtr)symAddr)

DebugStr (" \p No RoutineDescriptor") ;
if (menuSelectUPP == nil) goto fail;

II
II get MenuKey address
II

err= FindSymbol(connID, kMenuKeyFunctionName, &symAddr, &symClass);
if (err != noErr) goto fail;

#if 1
menuKeyUPP = (UniversalProcPtr)NewRoutineDescriptor((ProcPtr)symAddr,

kMenuKeyProcinfo, kPowerPCISA);
#else

menuKeyUPP = (UniversalProcPtr)NewFatRoutineDescriptor(MenuKey68k, symAddr,
kMenuKeyProcinfo);

#endif
if (rnenuKeyUPP == (UniversalProcPtr)symAddr)

DebugStr("\p No RoutineDescriptor");
if (rnenuKeyUPP == nil) goto fail;

II
II get SystemMenu address
II

err= FindSymbol(connID, kSystemMenuFunctionName, &symAddr, &symClass);
if (err != noErr) goto fail;

#if 1

systemMenuUPP = (UniversalProcPtr)NewRoutineDescriptor((ProcPtr)symAddr,
kSystemMenuProcinfo, kPowerPCISA);

#else
systemMenuUPP = (UniversalProcPtr)NewFatRoutineDescriptor(SystemMenu68k,

symAddr, kSystemMenuProcinfo);
#endif

if (systemMenuUPP == (UniversalProcPtr)syrnAddr)
DebugStr("\p No RoutineDescriptor");

if (systemMenuUPP == nil) goto fail;

II
II apply the patches
II

ApplyPatches(menuSelectUPP, menuKeyUPP, systemMenuUPP);

goto exit;
fail:

if (menuSelectUPP)
DisposeRoutineDescriptor(rnenuSelectUPP);
menuSelectUPP = nil;

INIT.h

CHAPTER FIVE SOURCE CODE

if CmenuKeyUPP)
DisposeRoutineDescriptor(menuKeyUPP);
rnenuKeyUPP = nil;

if (connID != kNoConnectionID)
CloseConnection(&connID);
connID = kNoConnectionID;

if (ppcCodeH)
DisposeHandle(ppcCodeH);
ppcCodeH = ni 1;

if (errStr[O) != 0)
DebugStr(errStr);

exit:
return err:

/***

GestaltGetGlobals

This Gestalt function returns a ptr to the INITs preferences so they
can be changed on the fly.

***/

pascal OSErr GestaltGetGlobals(OSType selector, long *response)
{

/*

*I

long oldA4 = SetUpA4();
*response= Clong)&(gGlobalsPtr->preferences);
RestoreA4(oldA4);
return noErr;

File Name: INIT.h

#pragma once

PPCPatches. c
/*

File Name: PPCPatches.c
*I

/*** includes ***/

339

340 APPENDIX

#include <GestaltEqu.h>
#include <Errors.h>
#include <Folders.h>
#include <FragLoad.h>
#include <MixedMode.h>
#include <ConditionalMacros.h>

#include "PPCPatches.h"
#include •common.h"

I*** global variables ***I

GlobalsPtr gGlobalsPtr = nil;

/***

MenuSelectPPC

***/

#define CallMenuSelect(pt) CallUniversalProc(gGlobalsPtr->oldMenuSelectAddr,
kMenuSelectProcinfo, pt)

pascal long MenuSelectPPC(Point startPt)
{

long
OS Err

II

result;
err = noErr;

II call the original MenuSelect first to see what was selected
II

result= CallMenuSelect(startPt);
II
II examine the menu selection
II

if ((result!= OL) && (gGlobalsPtr->preferences.fEnabled))
err= DoMenuPatchStuff(result, gGlobalsPtr);
if (err == noErr)

result = OL;

return result;

/***

MenuKeyPPC

***/

CHAPTER FIVE SOURCE CODE

#define CallMenuKey(ch) CallUniversalProc(gGlobalsPtr->oldMenuKeyAddr,
kMenuKeyProcinfo, ch)

pascal long MenuKeyPPC(short ch)
{

long
OSErr

II

result;
err = noErr;

II call the original MenuSelect first to see what was selected
II

result= CallMenuKey(ch);

II
II examine the menu selection
II

if ((result!= OL) && (gGlobalsPtr->preferences.fEnabled))
err= DoMenuPatchStuff(result, gGlobalsPtr);
if (err == noErr)

result = OL;

return result;

I***

SystemMenuPPC

***/

#define CallSystemMenu(menuResult) CallUniversalProc(gGlobalsPtr->oldSystemMenuAddr,
kSystemMenuProcinfo, menuResult)

pascal void Sys temMenuPPC (long menuResul t)

OSErr err = noErr;

II
II examine the menu selection
II

if ((menuResult != OL) && (gGlobalsPtr->preferences.fEnabled))
err= DoMenuPatchStuff(menuResult, gGlobalsPtr);
if (err == noErr)

menuResult = OL;

341

342 APPENDIX

II

II call the original SystemMenu if we didn't handle it
II

if {((err== fnfErr) I I (err== noErr)) && (menuResult != OL))
CallSystemMenu(menuResult);

PPCPatches.h
I*

File Name: PPCPatches.h

*I

#pragma once

pascal long MenuKeyPPC (short ch) ;
pascal lcng MenuSelectPPC (Point start Pt) ;
pascal void SystemMenuPPC(long menuResult);

common.c
I*

File Name: common.c

*I

/*** includes ***/

#include <LowMem.h>
#include <ToolUtils.h>
#include <OSUtils.h>
#include <Dialogs.h>
#include <Files.h>
#include <Menus.h>
#include <Script.h>
#include <Resources.h>
#include <Types.h>
#include <Memory.h>
#include <GestaltEqu.h>
#include <Errors.h>
#include <Folders.h>
#include <Processes.h>
#include <EPPC.h>
#include <AppleEvents.h>
#include <Aliases.h>
#include <AppleEvents.h>
#include <AEObjects.h>
#include <AEPackObject.h>
#include <AERegistry.h>

#include •common.h"

CHAPTER FIVE SOURCE CODE

/***

DoMenuPatchStuf f

***/

OSErr DoMenuPatchStuff(long menuResult, GlobalsPtr gp)

FSSpec
OS Err
short
short
MenuHandle
FSSpec
Str255

appFolderSpec;
err :: noErr;
menuID = HiWord(menuResult);
menuitem:: LoWord(menuResult);
hMenu = GetMHandle(menuID);
menuitemSpec;
itemString;

if (hMenu)
Getitem(hMenu, menuitem, itemString);

} else
II ShowErrorAlert(&gp->ourFSpec, aGetMenuHandle, -1);

return -1;

II
II see if a folder exists for the current application
II

err = FSMakeFSSpec(-1, gp->menuscriptsFolderDirID,
(unsigned char *)LMGetCurApName(), &appFolderSpec);

if (err ::= noErr) {
long appFolderDirID;

II
II get directory id of current app's folder
II

err= GetDirectoryID(&appFolderSpec, &appFolderDirID);
if (err :::: noErr) {

II
II make spec for potential item to launch within the current app's folder
II

err= FSMakeFSSpec(-1, appFolderDirID, itemString,
&menuiternSpec);

if (err == noErr) {
err= OpenSelection(&rnenuiternSpec, kOpenitern);
if (err != noErr) {

ShowErrorAlert(&gp->ourFSSpec,
aOpenSelection, err);

return err;

343

344 APPENDIX

} else goto exit;
} II fnfErr

} else {
ShowErrorAlert(&gp->ourFSSpec, aGetAppDirID, err);
return err;

} II fnfErr

II
II if we are still here, check the Any Application folder

II

err= FSMakeFSSpec(-1, gp->anyApplicationFolderDirID, itemString,
&menu I temSpec) ;

if (err == noErr) {
err= DpenSelection(&menuitemSpec, kDpenitem);
if (err != noErr)

ShowErrorAlert(&gp->ourFSSpec, aopenSelection, err};
else goto exit;

} II fnfErr

exit:
return err;

I**

GetDirectoryID

~****

I

DSErr GetDirectoryID(FSSpec •spec, long *dirID}
{

OS Err
CinfoPBRec

err = noErr;
pb;

pb.hFileinfo.ioNamePtr = spec->name;
pb.hFileinfo.ioVRefNum = spec->vRefNum;
pb.hFileinfo.ioFDirindex = O;
pb.hFileinfo.ioDirID = spec->parID;

err= PBGetCatinfoSync(&pb);

*dirID = pb.hFileinfo.ioDirID;

return err;

CHAPTER FIVE SOURCE CODE

/***~*************************

ShowErrorAlert

***/

#define alrtErrorID 128

void ShowErrorAlert(FSSpecPtr fsp, short action, OSErr err)

Str255 errorString;
Str32 errorNumStr;
Str15 emptyString;
short fRefNum = -1;

fRefNwn = FSpOpenResFile(fsp, fsRdPerml;
if (fRefNum != -1) {

emptyString[OJ = O;
NwnToString((long)err, errorNumStr);
GetindString(errorString, rErrorStringListID, action);
ParamText(errorString, errorNumStr, emptyString, emptyString);
StopAlert(alrtErrorID, nil);
ParamText(emptyString, emptyString, emptyString, emptyString);
CloseResFile(fRefNum);

else SysBeep(O);

!***

OpenSelection

OpenSelection prepares and sends the Finder OpenSelection event.
This is a hacked down version of OpenSelection() from the DTS Sampler
"FinderOpenSel 1.0.1" The original version has several options, I've
stripped out the ones I don't need and left just the code to tell the
finder to open the directory window containing the incoming file.

*************************•***/

#define aeSelectionKeyword
#define aeOpenSelection
#define kFinderSig
#define kSystemType

'fsel'
'sope•
'FNDR'
'MACS'

OSErr OpenSelection(FSSpecPtr fsp, Boolean openOption)
{

AppleEvent
AEDesc
FSSpec
AEDesc
OSErr

aeEvent, aeReply;
aeDirDesc, listElem, myAddressDesc;
dirSpec;
fileList;
err = noErr;

345

346 APPENDIX

ProcessSerialNwnber
AliasHandle

process;
dirAlias, fileAlias;

II
II get the process serial nwnber of the Finder
II

err= GetPSN(kSystemType, kFinderSig, &process);

if (err == noErr) {

II

II create an address descriptor
II

err= AECreateDesc(typeProcessSerialNwnber, (Ptr)&process,
sizeof(process), &myAddressDesc);

if (err == noErr) {

II
II create the apple event
II

II

err= AECreateAppleEvent(kFinderSig, aeOpenSelection,
&myAddressDesc, kAutoGenerateReturnID, kAnyTransactionID,
&aeEvent);

II no need to keep this address desc around anymore
II

if (err

AEDisposeDesc(&myAddressDesc);

noErr)

II
II make a spec to the parent folder
II

err= FSMakeFSSpec(fsp->vRefNum, fsp->parID,
nil, &dirSpec) ;

err= NewAlias(nil, &dirSpec, &dirAlias);

II
II we are either opening the item or "showing" it
II

if (openOption == kOpenitem)
err= NewAlias(nil, fsp, &ftleAliasl;

else if (openOption == kShowitem)
II since we are opening a window,

CHAPTER FIVE SOURCE CODE

II we just make the file alias the same as the dir alias
err= NewAlias(nil, &dirSpec, &fileAlias);

II
II create list of items to open

II

if (err == noErr) {
err= AECreateList(nil, 0, false, &fileList);

II
II create parent folder descriptor
II

HLock((Handle)dirAlias);
AECreateDesc(typeAlias, (Ptr)*dirAlias,

GetHandleSize((Handle)dirAlias), &aeDirDesc);
HUnlock((Handle)dirAlias);
if ((err= AEPutPararnDesc(&aeEvent, keyDirectObject,

&aeDirDesc)) == noErr) {

AEDisposeDesc(&aeDirDesc);

II
II create the file descriptor and add to aliasList

II

HLock((Handle)fileAlias);
AECreateDesc(typeAlias, (Ptr)*fileAlias,

GetHandleSize((Handle)fileAlias), &listElern);
HLock((Handle)fileAlias);
err= AEPutDesc(&fileList, 0, &listElern);

if (err == noErr) {

AEDisposeDesc(&listElem);

II
II add the aliasList to the event

II

err= AEPutPararnDesc(&aeEvent, aeSelectionKeyword,
&fileList);

AEDisposeDesc(&fileList);

if (err == noErrl
err = AESend(&aeEvent, &aeReply, kAENoReply +

kAEAlwaysinteract + kAECanSwitchLayer,
kAENorrnalPriority, kAEDefaultTimeout, nil, nil);

347

348 APPENDIX

AEDisposeDesc(&aeEvent);

if ((Handle)dirAlias)
DisposHandle((Handle}dirAlias);

if ((Handle)fileAlias)
DisposHandle((Handle}fileAliasl;

return err;

/***•****

GetPSN

returns the process serial number of the file that is currently
running with given creator and type. if the returns PSN is all
zeros then it was not found.

**/

OSErr GetPSN(OSType creator, OSType type, ProcessSerialNumber *process}
{

ProcessSerialNumber processSerNwn;
ProcessSerialNumber returnProcessSerNum;
ProcessinfoRec processinfo;
Str32 processName;
FSSpec fsSpec;

returnProcessSerNwn.highLongOfPSN = OL;
returnProcessSerNum.lowLongOfPSN = OL;

/* start from the beginning */
processSerNum.highLongOfPSN = OL;
processSerNum.lowLongOfPSN = kNoProcess;

processinfo.processinfoLength = sizeof(ProcessinfoRec);
processinfo.processName = (StringPtr)&processName;
processinfo.processAppSpec = &fsSpec;

while (GetNextProcess(&processSerNum) == noErr) {
if (GetProcessinformation(&processSerNum, &processinfo) == noErr)

if ((processinfo.processType == (long) type) &&
(processinfo.processSignature ==creator))
BlockMove(&processSerNwn, process,

sizeof(ProcessSerialNumber));
return noErr;

CHAPTER FIVE SOURCE CODE

return -1;

common.h
/*

File Name: common.h
*/

#pragma once

/*** includes ***/

#include <Processes.h>
#include "allcommon.h"

/***definitions **/

#define kPPCFragmentName
idefine kMenuSelectFunctionName
tdefine kMenuKeyFunctionName
~define kSystemMenuFunctionName
#define kGlobalsSymbolName

#define rErrorStringListID 129

#define aGetAppDirID 1

#define aGetMenuHandle 2
#define aOpenSelection 3

"\pMenuScript Fragment"
"\pMenuSelectPPC"
"\pMenuKeyPPC"
"\pSystemMenuPPC"

"\pgGlobalsPtr•

/*** typedefs ***/

#ifdef powerc
#pragma options align;mac68k

#endif

typedef struct
long menuScriptsFolderDirID;
long anyApplicationFolderDirID;

UniversalProcPtr oldMenuSelectAddr;
UniversalProcPtr oldMenuKeyAddr;
UniversalProcPtr oldSystemMenuAddr;
FSSpec ourFSSpec;
Preferences preferences;

Globals, *GlobalsPtr, **GlobalsHdl;

#ifdef powerc
#pragma options align=reset

#endif

en um

349

350 APPENDIX

);

kMenuSelectProcinfo kPascalStackBased
RESULT_SIZE(SIZE_CODE(sizeof(long)))
REGISTER_RESULT_LOCATION(kRegisterDO)
STACK_ROUTINE_PARAMETER(l,SIZE_CODE(sizeof(Point))),

kMenuKeyProcinfo kPascalStackBased
RESULT_SIZE(SIZE_CODE(sizeof(long)))
REGISTER_RESULT_LOCATION(kRegisterDO)
STACK_ROUTINE_PARAMETER(l,SIZE_CODE(sizeof(short))),

kSystemMenuProcinfo kPascalStackBased
I STACK_ROUTINE_PARAMETER(l,SIZE_CODE(sizeof(long)))

!*** function prototypes **~***/

OS Err
#define
#define
OS Err
OSErr
OSErr
void

DoMenuPatchStuff(long menuResult, GlobalsPtr gp);
kOpenitem true
kShowitem false
OpenSelection(FSSpecPtr fsp, Boolean openOption);
GetPSN(OSType creator, OSType type, ProcessSerialNurnber *process);
GetDirectoryID(FSSpecPtr fsp, long *dirID);
ShowErrorAlert(FSSpecPtr fsp, short action, OSErr err);

dlogutils.c
I*

File Name: dlogutils. c
*/

#include "dlogutils. h"

/***

SetDialogitemState

***/

void SetDialogitemState(DialogPtr dlg, short controlNumber, short value)
{

short iKind;
Handle iHandle;
Rect iRect;

GetDitem(dlg, controlNumber, &iKind, &iHandle, &iRect);
SetCtlValue((ControlHandle) iHandle, value);

/***

GetDialogitemState

***/

CHAPTER FIVE SOURCE CODE

short GetDialogitemState(DialogPtr dlg, short controlNwnber)
{

short iKind;
Handle iHandle;
Rect iRect;

GetDitem(dlg, controlNumber, &iKind, &iHandle, &iRect);
return GetCtlValue((ControlHandle) iHandle):

/***

DoRadioGroup

***/

void DoRadioGroup(DialogPtr dlg, short lo, short hi, short on)

short i:

for (i=lo;i<=hi;++i)
SetDialogitemState(dlg, i, 0);

SetDialogitemState(dlg, on, 1);

/***

GetRadioFromGroup

***/

short GetRadioFromGroup(DialogPtr dlg, short lo, short hi)
{

short i;

for (i=lo;i<=hi;++i)
if (GetDialogitemState(dlg, i))

return i;

return O;

/***

ToggleCheckBox

w************/

void ToggleCheckBox(DialogPtr dlg, short buttonNumber) {short newState;
{

short newState;

351

352 APPENDIX

if (GetDialogitemState(dlg, buttonNumber} 0)
newState 1;

else
newState = O;

SetDialogitemState(dlg, buttonNumber, newState};

/***•***************

SetDitemType

***/

void SetDitemType(DialogPtr dlg, short iternNumber, short new'I'ype}

short
Handle
Rect

iKind;
iHandle;
iRect;

GetDitem(dlg, itemNumber, &iKind, &iHandle, &iRect};
SetDitem(dlg, itemNumber, newType, iHandle, &iRect);

/***

EnableControl

***/

void EnableControl(DialogPtr dlg, short controlNumber)
{

short iKind;
Handle iHandle;
Rect iRect;

GetDitem(dlg, controlNumber, &iKind, &iHandle, &iRect};
HiliteControl((ControlHandle)iHandle, 0);

/***

DisableControl

***/

void DisableControl(DialogPtr dlg, short controlNumber)

short iKind;
Handle iHandle;
Rect iRect;

CHAPTER FIVE SOURCE CODE

GetDitern(dlg, controlNurnber, &iKind, &iHandle, &iRect);
HiliteControl((ControlHandle)iHandle, 255);

/***

Nurnbercharacters

•************************/

short NurnberCharacters(DialogPtr dlg, short iternNumber)

Str255 textStr;
short result;

GetiternText(dlg, itemNurnber, textStr);
result = textStr[OJ;
return result;

/***•*****************

GetiternText

***/

void GetiternText(DialogPtr dlg, short iternNurnber, unsigned char* textStr)
{

short
Handle
Rect

iKind;
iHandle;
iRect;

GetDitern(dlg, iternNumber, &iKind, &iHandle, &iRectl;
GetIText(iHandle, textStr);

/***

SetiternText

***/

void SetiternText(DialogPtr dlg, short iternNurnber, unsigned char* textStr)

short iKind;
Handle iHandle;
Rect iRect;

GetDitern(dlg, iternNumber, &iKind, &iHandle, &iRect);
SetIText(iHandle, textStr);

353

354 APPENDIX

/********************•**

GetitemOSType

***/

OSType GetitemOSType(DialogPtr dlg, short itemNumber)
{

short iKind;
Handle iHandle;
Rect iRect;
Str255 textStr:
OS Type osType;

GetDitem(dlg, itemNumber, &iKind, &iHandle, &iRect);
GetIText(iHandle, textStr);

BlockMove(&textStr[l], &osType, sizeof{OSType));
return osType;

/***

SetitemOSType

***/

void SetitemOSType(DialogPtr dlg, short itemNwnber, OSType osType)

short iKind;
Handle iHandle;
Rect iRect;
Str255 textStr;

BlockMove(&osType, &textStr[l], sizeof(OSType));
textstr[O] = sizeof(OSType);
GetDitem(dlg, itemNumber, &iKind, &iHandle, &iRect);
SetIText(iHandle, textStr);

/***

GetitemNwnber

***/

unsigned long GetitemNumber(DialogPtr dlg, short itemNurnber)
{

short iKind;
Handle iHandle;
Re ct iRect;
Str255 textStr;
long result;

CHAPTER FIVE SOURCE CODE

GetDitem(dlg, itemNumber, &iKind, &iHandle, &iRect);
GetIText(iHandle, textStr);
StringToNum(textStr, &result);
return result;

/***

SetitemNumber

***/

void SetitemNumber(DialogPtr dlg, short itemNumber, unsigned long number)

short iKind;
Handle iHandle;
Rect iRect;
Str255 textStr;

NumToString(number, textStr);
GetDitem(dlg, itemNumber, &iKind, &iHandle, &iRect};
SetIText(iHandle, textStr);

/***T***********

SetWindowFont

**/

void SetWindowFont(DialogPtr d, short fontNum, short fontSize, Style fontStyle, short fontMode)

Fontinfo
Graf Ptr

finfo;
savePort;

GetPort(&savePort);
SetPort (d);

TextFont(fontNum);
TextSize(fontSize};
TextFace(fontStyle);
TextMode(fontMode);

GetFontinfo(&finfo);

(*((DialogPeek)d)->textH)->fontAscent
(*((DialogPeek)d)->textH)->lineHeight

finfo.ascent;
£Info.ascent +

finfo.descent +£Info.leading;
(*((DialogPeek)d)->textH)->txFont fontNum;
(*((DialogPeek)d)->textH)->txFace
(*((DialogPeek)d}->textH}->txMode

fontStyle;
fontMode;

355

356 APPENDIX

(*((DialogPeek)d)->textH)->txSize fontSize;

SetPort(savePort);

dlogutils.h
I*

File Name: dlogutils. h
*I

#pragma once

void
short
void
short
void
void
void
void
short
void
void
OS Type
void
unsigned
void
void

allcommon.h
I*

SetDialogitemState(DialogPtr dlg, short controlNumber, short value);
GetDialogitemState(DialogPtr dlg, short controlNumber);
DoRadioGroup(DialogPtr dlg, short lo, short hi, short on);
GetRadioFromGroup(DialogPtr dlg, short lo, short hi);
ToggleCheckBox(DialogPtr dlg, short buttonNwnber);
SetDitemType(DialogPtr dlg, short itemNumber, short newType);
EnableControl(DialogPtr dlg, short controlNumber);
DisableControl(DialogPtr dlg, short controlNumber):
NumberCharacters(DialogPtr dlg, short itemNwnber);
GetitemText(DialogPtr dlg, short itemNumber, unsigned char* textStr);
SetitemText(DialogPtr dlg, short itemNwnber, unsigned char* textStr):
GetitemOSType(DialogPtr dlg, short itemNwnber);
SetitemOSType(DialogPtr dlg, short itemNwnber, OSType osType);
long GetitemNumber(DialogPtr dlg, short itemNwnber);
SetitemNumber(DialogPtr dlg, short itemNwnber, unsigned long number);
SetWindowFont(DialogPtr d, short fontNum, short fontSize,

Style fontStyle, short fontMode);

File Name: allcommon.h
*I

ilpragma once

#define kGestaltSelector 'Menu•
II you should make sure you register yours with Apple before
II using a Gestalt Selector. Because this is just an example,
II I chose not to.

#define kPreferencesResType
#define kPreferencesResID

typedef struct {
short fEnabled;

'PREF'
128

} Preferences, *PreferencesPtr, **PreferencesHdl;

CHAPTER SIX SOURCE CODE

Chapter Six Source Code

ViewByNameLDEF.c
I*

File Name: ViewByNameLDEF. c
*I

#include <Icons.h>

#include "ViewByNameLDEF.h"
#include "RefConLDEF.h"

Ref conLDEFDrawProcUPP
DialogPtr

gListElementProcUPP = nil;
gd = nil;

ListHandle

void main(void)

unsigned long
Boolean
Graf Ptr
Rect
Point
UseritemUPP

glh = nil;

randSeed;
fDone :: false;
savePort;
rView, rDataBnds = {0, 0, kNumRows, kNumColumns};
cellSize = {kCellHeight, 0};
drawFrameUPP = nil;

II initialize the Mac
InitGraf(&qd.thePort);
InitFonts();
FlushEvents(everyEvent, 0);
InitWindows();
InitMenus();
TEinit ();
InitDialogs(nil);
InitCursor();
GetDateTime(&randSeed);
LMSetRndSeed(randSeed);
DrawMenuBar();

II allocate global UPP for our draw proc
gListElementProcUPP = NewRefconLDEFDrawProc(ListElernentProc);
if (gListElementProcUPP == nil) goto exit;

II allocate local UPP to fra me our list user item
drawFrameUPP = NewUseritemProc(DrawFrame);
if (drawFrameUPP == nil) goto exit;

II get our main dialog box
gd = GetNewDialog(dlogMainID, nil, (WindowPtr)-1);
if (gd ==nil) goto exit;

357

358 APPENDIX

exit:

II set the port, font, and user item proc
GetPort(&savePort);
SetPort (gd);
SetWindowFont(gd, geneva, 9, 0, srcCopy);
SetUseritemProc(gd, itemList, (ProcPtr)drawFrameUPP);

II create the list with one column
GetDialogitemRect(gd, itemList, &rView);
rView.right -= kScrollBarWidth;
glh = LNew(&rView, &rDataBnds, cellSize, kRefConLDEFID, gd, true,

false, false, true) :
if (glh == nil) goto exit;

11 show the window
ShowWindow (gd l ;

II fill the list with the contents of the root directory
FillList(-1, fsRtDirID, glh, kAddToEnd, 0);
LUpdate(gd->visRgn, glh);

II loop until done
while (!fDone) {

short itemHit;
ModalDialog(nil, &itemHit);
switchlitemHit) {

II clean up

case itemQuit:
fDone = true;
break;

case itemList:
HandleClickOnList(gd, glh);
break;

default:
break;

if (glhl LDispose(glh);
if (gd) DisposeDialog(gd);
if (gListElementProcUPP) DisposeRoutineDescriptor(gListElementProcUPP);
if (drawFrameUPP) DisposeRoutineDescriptor(drawFrameUPP);
SetPort(savePort);

CHAPTER SIX SOURCE CODE 359

/***

FillList

***/

void FillList(short vRefNum, long dirID, ListHandle theList, short beforeThisRow, short indentLevel)

short index;
OS Err
CinfoPBRec
ListitemHdl
RefconLDEFCell
Cell

err = noErr:
pb;
lih ::: nil;
cellData;
cell::: {0,0}:

short maxitems = 32000 I sizeof(RefconLDEFCell);
II roughly approximate the max items in the list

II turn off list drawing
LDoDraw(false, theList);

I I loop through the items in the directory we want to add
index O;

do {

II allocate a list element
lih = (ListitemHdl)NewHandleClear(sizeof(Listitem));
if (lih :::::: nil) goto exit;
HLock((Handle)lih);

II get the file information for the next item in the directory
++index;
pb.hFileinfo.ioNamePtr::: (*lih)->spec.name;
pb.hFileinfo.ioVRefNum::: vRefNum;
pb.hFileinfo.ioFDirindex = index;
pb.hFileinfo.ioDirID::: dirID;
err = PBGetCatinfoSync(&pb);

if (err == noErr) {
if (pb.hFileinfo.ioFlAttrib & ioDirMask)

(*lih)->iconID = rFoldericon;
else

II we have a folder
II use folder icon
II get custom icon id

(*lih) ->iconID
GeticonID(pb.hFileinfo.ioFlFndrinfo.fdType);

II add a row
cell.v = LAddRow(l, beforeThisRow++, theList);

II set up the cell data
(*lih)->spec.parID::: dirID;
{*lih)->spec.vRefNwn = vRefNum;
(*lih)->indentLevel = indentLevel;
(*lih)->isOpen =false;

360

exit:

APPENDIX

cellData.refCon = (long)lih;
cellData.drawProc = gListElementProcUPP;

II set the cell data
LSetCell(&cellData, sizeof(RefconLDEFCell), cell, theList);

HUnlock((Handle)lih);
if (err != noErr) DisposeHandle((Handle)lih);

while ((err== noErr) && ((**theList) .dataBounds.bottom <= maxitems));

LDoDraw(true, theList);

/***

HandleClickOnList

***/

void HandleClickOnList(DialogPtr d, ListHandle theList)

Point
Boolean

localPt = {0,0};
doubleClick = false;
cellRect = {0,0,0,0};
lih = nil;

Re ct
ListitemHdl
RefconLDEFCell
short

cellData;
dataLen = sizeof(RefconLDEFCell);
theCell = {0,0}; Cell

Rect iconRect, trackRect;
Boolean found = false;

II get the location of the mouse click in local coordinates
GetMouse(&localPt);

II if we are clicking in area of the folder flag icons ...
if (localPt.h < (**theList) .rView.left + 20) {

II see if we clicked in any cell in particular
theCell.h = theCell.v = O;
do {

LRect(&cellRect, theCell, theList);
if (PtinRect(localPt, &cellRect))

found = true;
while (!found && LNextCell(false, true, &theCell, theList));

II if we did, then see if the cell is a folder by checking the iconID
if (found) {

else

CHAPTER SIX SOURCE CODE

LGetCell(&cellData, &dataLen, theCell, theList);
lih = (ListiternHdl)cellData.refCon;
if ((*lih)->iconID == rFoldericon)

} else

iconRect = cellRect;
iconRect.left += 4;
iconRect.right = iconRect.left + 16;
iconRect.top += 1;
iconRect.bottom = iconRect.top + 16;

trackRect = cellRect;
trackRect.right = trackRect.left + 20;

II track the flag icon
doubleClick = TrackiconByRect(&iconRect, &trackRect,
(*lih)->isOpen? rArrowOpenedicon : rArrowClosedicon);

II if the user released within the flag then
II we do the same as a double click
if (doubleClick) {

Cell theTCell;

II we also select the cell that we are about to "open"
if (AnyCellsSelected(theList, &theTCell))

LSetSelect(false, theTCell, theList);
LSetSelect(true, theCell, theList);

II otherwise let LClick tell us if the user double-clicked
II on a non-folder item and do whatever you like.

doubleClick = LClick(localPt, 0, theList);

II otherwise let LClick tell us if the user double-clicked on an item.
doubleClick = LClick(localPt, 0, theList);

II if the user double-clicked on something ...
if (doubleClick) {

11 find out what
if (AnyCellsSelected(theList, &theCell)) {

LGetCell(&cellData, &dataLen, theCell, theList);
lih = (ListitemHdl)cellData.refCon;

II if it's a folder ...
if ((*lih)->iconID == rFoldericon)

I I and it's not opened ...
if ((*lihl->isOpen ==false) {

II get the directory id of it
long dirID = GetDirectoryID(&((*lih)->spec));
if (dirID != OL) {

II and fill the list with its contents then redraw the list

361

362 APPENDIX

} else

FillList((*lih)->spec.vRefNum, dirID,
theList, theCell.v + 1,
(*lih)->indentLevel + l);

(*lih)->isOpen =true;
LSetCell(&cellData, sizeof(RefconLDEFCell),

theCell, theList);
LUpdate(gd->visRgn, glh);

II close the folder by deleting list rows below it until we reach the
II same indentation level as the folder we are closing.

short indentLevelToDelete =
(*lih)->indentLevel + l;

short numRowsToDelete O;
short firstRowToDelete = theCell. v + 1;

(*lih)->isOpen =false;
LSetCell(&cellData, sizeof(RefconLDEFCell),

theCell, theList);

II loop checking each cells indentation level
checkNextCell:

theCell . v++;
if (theCell.v < (**theList) .dataBounds.bottom)

dataLen = sizeof(RefconLDEFCell);
LGetCell(&cellData, &dataLen, theCell,

theList);
lih = (ListitemHdl)cellData.refCon;
if ((*lih)->indentLevel >=
indentLevelToDelete) {

nwnRowsToDelete++;
DisposeHandle((Handle)lih);
lih = nil;

goto checkNextCell;

II once we count how many rows to delete, nuke them all at once
if (numRowsToDelete > OL)

LDelRow(nwnRowsToDelete, fi.rstRowToDelete,
theList);

CHAPTER SIX SOURCE CODE

/**

ListElementProc

This function is called for each cell to draw its contents. By using
the RefConLDEF we allow the ability to have a different drawing
procedure for each cell if we need it. In this case however, we
decide to simply use one simple function to draw each cell.

•*********************/

void ListElementProc(Rect *cellRect, Cell lCell, ListHandle theList, long refCon)

ListitemHdl
Graf Ptr
Rect
short
Finf o

lih;

savePort;
iconRect;
width;
fndrinfo;

II typecast our refCon
lih = (ListitemHdl)refCon;

II set up the port
GetPort(&savePort);
SetPort((**theList) .port);
PenNormal();

II draw the file/folder name, in italics if it is an alias
MoveTo(cellRect->left + (44 + (20 * (*lih)->indentLevel)).

cellRect->bottom - 4);

if (FSpGetFinfo(&((*lih)->spec). &fndrinfo) == noErr) {
if (fndrinfo.fdFlags & Ox8000)

} else

TextFace(italic);
DrawString((*lih)->spec.name);
TextFace(O);

DrawString((*lih)->spec.name);
width= StringWidth((*lih)->spec.name);

II draw the folder flag icon if need be
if ((*lih)->iconID == rFoldericon) {

iconRect = *cellRect;
iconRect.left += 4;
iconRect.right = iconRect.left + 16;
iconRect.top += l;
iconRect.bottom = iconRect.top + 16;
PloticonID(&iconRect, atNone, ttNone,

(*lih)->isOpen? rArroWOpenedicon rArrowClosedicon);

II draw the folder icon or file icon. if the real icon for the file can not be
II grabbed from the desktop database then we draw the generic version as

363

364 APPENDIX

II stored in the iconID field of the cells data
iconRect = *cellRect;
iconRect.left += (24 + 120 * (*lih)->indentLevel));
iconRect.right = iconRect.left + 16;
iconRect.top += l;
iconRect.bottom = iconRect.top + 16;

if ((*lih)->iconID == rFoldericon) {

} else
PloticonID(&iconRect, atNone, ttNone, (*lih)->iconID);

if (DrawFileicon(&((*lih)->spec), &iconRect) != noErr)
PloticonID(&iconRect, atNone, ttNone, (*lih)->iconID);

SetPort(savePort);

#pragma mark -

/***

DrawFrame

***I

pascal void OrawFrame(DialogPtr d, short theitem)
{

Rect r;
GrafPtr savePort;

GetPort(&savePort);
SetPort (d);
GetDialogitemRect(d, theitem, &r);
InsetRect(&r, -1, -1);
FrameRect(&r);
SetPort(savePort);

/***

GetDialogitemRect

***/

void GetDialogitemRect(DialogPtr dlg, short itemNwnber, Rect *rl

short iKind;
Handle iHandle;
GetDitem(dlg, itemNumber, &iKind, &iHandle, r);

CHAPTER SIX SOURCE CODE

/*************************T**************************************•********

SetWindowFont

**/

void SetWindowFont(DialogPtr d, short fontNum, short fontSize, Style fontStyle, short fontMode)
{

Font Info
Graf Ptr

finfo;
savePort;

GetPort(&savePort);
SetPort (d);

TextFont(fontNum);
TextSize(fontSize);
TextFace(fontStyle);
TextMode(fontMode);

GetFontinfo(&finfo);

(*((DialogPeek)dl->textH)->fontAscent
(*((DialogPeekldl->textH)->lineHeight

£Info.ascent;
£Info.ascent+

finfo.descent + finfo.leading;
(*((DialogPeek)d)->textH)->txFont fontNum;
(*((DialogPeek)d)->textH)->txFace fontStyle;
(* ((DialogPeekl d) ->textH) ->txMode fontMode;
(*((DialogPeek)d)->textH)->txSize fontSize;

SetPort(savePort);

/***

SetUseritemProc

***/

void SetUseritemProc(DialogPtr dlg, short useritem, ProcPtr userProc)

short
Handle
Rect

iKind;
iHandle:
iRect;

GetDitem(dlg, useritem, &iKind, &iHandle, &iRect);
SetDitem(dlg, useritem, iKind, (Handle)userProc, &iRect);

365

366 APPENDIX

/***~***********

ShowError

'**********************************/

void ShowError(OSErr errorCode, unsigned char * errorStr)

Str32 errorCodeStr;
NumToString((long)errorCode, errorCodeStr);
ParamText(errorCodeStr, errorStr, "\p", "\p");
StopAlert(256, nil);
ParamText("\p", "\p", "\p•, "\p");

/***

GetDirectoryID

***/

long GetDirectoryID(FSSpec *spec)
{

OSErr err;
CinfoPBRec pb;

pb.hFileinfo.ioNamePtr = spec->name;
pb.hFileinfo.ioVRefNum = spec->vRefNum;
pb.hFileinfo.ioFDirindex = O;
pb.hFileinfo.ioDirID = spec->parID;
err = PBGetCatinfoSync(&pb);
if (err == noErr)

return pb.hFileinfo.ioDirID;
else

return OL;

/****************•***

TrackiconByRect

**/

Boolean TrackiconByRect(Rect *drawRect, Rect *trackRect, short iconID)

Boolean mouseReleasedWi thin = false;
Point oldPt, newPt;

oldPt.h oldPt.v = -1;

CHAPTER SIX SOURCE CODE

if (StillDown()) {
while (WaitMouseUp())

GetMouse(&newPt);
if (DeltaPoint(oldPt, newPt)) {

if (PtinRect(newPt, trackRect))

else

if (!mouseReleasedWithin)
PloticonID(drawRect, atNone,

ttSelected, iconID); /*in*/
mouseReleasedWithin = true;

if (mouseReleasedWithin)
PloticonID(drawRect, atNone,

ttNone, iconID); /*out*/
mouseReleasedWithin = false;

oldPt = newPt;

if (mouseReleasedWithin)
PloticonID(drawRect, atNone, ttNone, iconID);
/*draw "out• as last thing*/

return mouseReleasedWithin;

/***

GeticonID

•********/

#define rINITicon 133

#define rApplicationicon 134

#define rDocumenticon 135

#define rTEXTicon 136

#define rcdevicon 137

#define rttroicon 138

#define rdfilicon 139

#define rsfilicon 140

short GeticonID(OSType fileType)
(

switch(fileType) (
case 'APPL ' :

return rApplicationicon;
break;

case 'TEXT' :
return rTEXTicon;
break;

case 'cdev' :
return rcdevicon;
break;

367

368 APPENDIX

case ' INIT' :
return rINITicon;
break;

case 'ttro•:
return rttrorcon;
break;

case 'dfil ' :
return rdfilicon;
break;

case • sfil • :
return rsfilicon;
break;

default:
return rDocumenticon;

/***

AnyCellsSelected

***/

Boolean AnyCellsSelected(ListHandle lh, Cell *theCell)
{

theCell->v = theCell->h = O;
return LGetSelect(true, theCell, lh);

/**•*************t********

DrawFileicon

***/

OSErr DrawFileicon(FSSpec *spec, Rect *drawRect)
{

OS Err err = noErr;
Handle thesuite = NULL;
DTPBRecpb;
short
Finfo

ioDTRefNum;
fndrinfo;

Handle theiconData = NULL;

/* get desktop database reference number */
pb.ioNamePtr =NULL;
pb.ioVRefNum = -1; // spec->vRefNum;
err= PBDTGetPath(&pb);
if (err != noErr) goto exit;
ioDTRefNum = pb. ioDTRefNum;

CHAPTER SIX SOURCE CODE

I* create an icon suite to store icons in*/
err= Newiconsuite(&theSuite);
if (err != noErr) goto exit;

I* get file type/creator */

err= FSpGetFinfo(spec, &fndrinfo);
if (err != noErr) goto exit;

I* get small bw icon */

theiconData = NewHandle(kSmalliconSize);
if (theiconData) {

HLock(theiconData);
pb.ioCompletion =NULL;
pb. ioDTRefNum = ioDTRefNum;
pb.ioDTBuffer = *theiconData;
pb.ioDTReqCount = kSmalliconSize;
pb.ioiconType = kSmallicon;
pb.ioFileCreator = fndrinfo.fdCreator;
pb.ioFileType = fndrinfo.fdType;
err= PBDTGeticonSync(&pb);
if (err == noErr) {

} else

HUnlock(theiconDatal;
err= AddiconToSuite(theiconData. theSuite, smalllBitMaskJ;

DisposeHandle(theiconData);
theiconData = NULL;

if (err != noErr) goto exit;

/* get small 4 bit icon */

theiconData = NewHandle(kSmall4BiticonSize);
if (theiconData) {

HLock(theiconData);
pb.ioCompletion =NULL;
pb. ioDTRefNum = ioDTRefNum;
pb.ioDTBuffer = *theiconData;
pb.ioDTReqCount = kSmall4BiticonSize;
pb.ioiconType = kSmall4Biticon;
pb.ioFileCreator = fndrinfo.fdCreator;
pb.ioFileType = fndrinfo.fdType;
err= PBDTGeticonSync(&pb);
if (err == noErr) {

else

HUnlock(theiconData);
err= AddiconToSuite(theiconData, theSuite, small4BitData);

DisposeHandle(theiconData);
theiconData = NULL;

if (err != noErr) goto exit;

369

370

exit:

APPENDIX

/* get small 8 bit icon */
theiconData = NewHandle(kSmall8BiticonSize);
if (theiconData) {

HLock(theiconData);
pb.ioCompletion =NULL;
pb.ioDTRefNum = ioDTRefNum;
pb.ioDTBuffer = *theiconData;
pb.ioDTReqCount = kS:nall8BiticonSize;
pb.ioiconType = kSrnall8Biticon;
pb.ioFileCreator = fndrinfo.fdCreator;
pb.ioFileType = fndrinfo.fdType;
err= PBDTGeticonSync(&pb);
if (err == noErr) {

HUnlock(theiconData);
err = AddiconToSuite(theiconData, theSuite, srnall8BitData);

} else {
DisposeHandle(theiconData);
theiconData = NULL;

if (err != noErr) goto exit;

/* plot the icons */

err= PloticonSuite(drawRect, atNone, ttNone, theSuite);
if (err != noErr) goto exit;

/* dispose the suite if need be */

if (theSuite !=NULL)
DisposeiconSuite(theSuite, true);

return err;

ViewByNameLDEF.h
I*

File Name: ViewByNameLDEF.h
*I

#pragma once

#define dlogMainID 128
#define itemQuit 1
#define itemList 3

#define rFoldericon 128
#define rArrowOpenedicon 129
#define rArrowClosedicon 130

#define kCellHeight 18

CHAPTER SEVEN SOURCE CODE

#define kNurnColumns
#define kNumRows

1

0

#define kScrollBarWidth 15

typedef struct Listitem
FSSpec spec; II file/folder specification
short iconID; II id of icon to draw for it
unsigned char indentLevel; //level of indentation
unsigned char isOpen; //if a folder, whether it is open or closed

Listitem, *ListitemPtr, **ListitemHdl;

#define kAddToEnd 32767

void

void
void

pascal void
void
void

void
void
long
Boolean
short
Boolean
OS Err

FillList(short vRefNum, long dirID, ListHandle theL~st,
short beforeThisRow, short indentLevel);

HandleClickOnList{DialogPtr d, ListHandle theList);
ListElementProc(Rect *cellRect, Cell lCell, ListHandle theList,

long refCon) ;
DrawFrame(DialogPtr d, short theitem);
GetDialogitemRect(DialogPtr dlg, short itemNumber, Rect *r);
SetWindowFont(DialogPtr d, short fontNurn, short fontSize,

Style fontStyle, short fontMode);
SetUseritemProc(DialogPtr dlg, short useritem, ProcPtr userProc);
ShowError(OSErr errorCode, unsigned char* errorStr);
GetDirectoryID(FSSpec *spec);
TrackiconByRect(Rect *drawRect, Rect *trackRect, short iconID);
GeticonID(OSType fileType);
AnyCellsSelected(ListHandle lh, Cell *theCell);
DrawFileicon(FSSpec *spec, Rect *drawRect);

Chapter Seven Source Code

Icon Family CDEF.c
I*

File Name: Icon Family CDEF.c
*/

/*

Icon Family CDEF

Variation codes:

0 : MIN = id of icon
MAX = id of pressed icon

1: MIN = id of icon, uses ttSelected when pressed
*/

371

372 APPENDIX

#include <Icons.h>
#include <Controls.h>

#ifdef __powerc
ProcinfoType __procinfo uppControlDefProcinfo;

#endif

void Draw(short varCode, ControlHandle control, long param);
long Test (ControlHandle control, long param);
void CalcRegions(ControlHandle control, long param);

/***

main

***/

pascal long main(short varcode, ControlHandle control, short message, long param)
{

long result = OL;

switch(message) {

case draWCntl:
Draw(varCode, control, param);
break;

case testCntl:
result Test(control, param);
break;

case calcCntlRgn:
CalcRegions(control, param);
break;

case initCntl:
case dispCntl:
case calcThumbRgn:
case posCntl:
case thumbCntl:
case dragCntl:
case autoTrack:
default:

break;

return result;

CHAPTER SEVEN SOURCE CODE

/***

Draw

***/

void Draw(short varCode, ControlHandle control, long param)

Rect r = (*control)->contrlRect;
short id, transform = ttNone;
OSErr whoCares = noErr;

if ((*control)->contrlVis == OxFF) {
id= (*control)->contrlMin;
if ((*control)->contrlHilite == 255) {

transform = ttDisabled;
} else

if ((*control)->contrlHilite == 0)
id= (*control)->contrlMin;

} else
if (varCode == 0) {

} else
id= (*control)->contrlMax;

id= (*control)->contrlMin;
transform = ttSelected;

whoCares PloticonID(&r, atAbsoluteCenter, transform, id);

/***

Test

***/

long Test(ControlHandle control, long param)

Rect r = (*control)->contrlRect;
Point hitPt;
long result;

hitPt.h = LoWord(param):
hitPt.v = HiWord(param);
if ((*control)->contrlHilite

result = OL;
} else

if (PtinRect(hitPt, &r))
result = inButton;

255) {

373

374 APPENDIX

else
result OL;

return result;

/***

CalcRegions

***/

void CalcRegions(ControlHandle control, long param)

Rect r = (*control)->contrlRect;
param = param & Ox7FFFFFFF;
RectRgn((RgnHandle)param, &r);

TigerSlider.cp
I*

File Name: Tiger Slider. cp
*I

#include
#include
#include

"Tiger Slider. h"
<QDOffscreen.h>
<Controls.h>

#ifdef powerc
Procinf oType __procinfo
#endif

uppControlDefProcinfo;

/**w**********************

main - this is the entry point called by the system whenever our routine should take some action.

•******************/

pascal long main (short /*varCode*/, ControlHandle theControl, short theMessage, long theParam)
(

long result = O;

switch (theMessage)

case initCntl:
InitTheControl (theControl);
break;

CHAPTER SEVEN SOURCE CODE

case dispCntl:
DisposeTheControl (theControl);
break;

case drawCntl:

case

DrawTheControl (theControl);
break;

testCntl:
if (PtinRect ((*(Point*) &theParam),
&(*theControl) -> contrlRect))

II tell the Control Manager that a click occurred in some
II part of the control, and that dragCntl should be called -
II the number 130 is not particularly special, except that it
II indicates that the click area is a custom part of ours

result = 130;

break;

case dragCntl:
if (the Par am)

DragTheControl (theControl);
result :: 1;

II signals that we handled the dragging all by ourselves
}

break;

case calcCntlRgn:
case calcThumbRgn:

II these messages are received if we are in 32-bit mode
RectRgn ((RgnHandlel (thePararn), &(*theControl) -> contrlRect);
break;

case calcCRgns:

break;

return (result);

II this message is only received in 24 bit mode; we have to be sure
II that we clear the high byte (we do so using StripAddress)
RgnHandle tempRgn = (RgnHandle) StripAddress ((Ptr) theParam);
RectRgn (tempRgn, &(*theControl) -> contrlRect);

375

376 APPENDIX

/***********************•***************w***

InitTheControl - used to allocate the GWorlds and prepare the backgrounds by filling them in with
pictures.

***/

void InitTheControl (ControlHandle theControl)

OSErr err;
SliderinfoH resHandle;

II The info about this slider is stored in a resource of type 'Sinf' that has the same
II ID as the refcon of this control. Note that the refcon is only used during the
II creation of the control; the application may use it in any way after that (i.e., after
II GetNewControl or NewControl has returned). The CDEF, however, does use the contrlData
II field all the time to keep track of the 'Sinf' handle, so don't mess with contrlData
II in your application!

(*theControl) -> contrlData =nil;
resHandle = (SliderinfoH) GetResource (kSliderinfoType, (*theControl) -> contrlRfCon);
if (! resHandle)

II the resource was not found - set contrlData to nil so that other functions know that
II initialization failed! If this happens, no crash will occur, but the CDEF won't do anything.

(*theControl) -> contrlData =nil;

else

(*theControl) -> contrlData = (Handle) resHandle;

II make a non-purgeable, non-resource copy of the 'Sinf' handle - from now on,
II •contrlData• always refers to a copy of the 'Sinf'.
HNoPurge ((*theControl) -> contrlData);
DetachResource ((*theControl) -> contrlData);

HLock ((*theControl) -> contrlData); II temporary for this function

Rect compositeRect = (*theControl) -> contrlRect:
OffsetRect (&compositeRect, -compositeRect.left, -compositeRect.:op);

II allocate the GWorlds - note that we use the bit depth specified in the 'Sinf' resource, rather than
II matching the depth of the screen. An improvement that can be made here would be to match the depth
II of the screen that the majority of the control appears on, and use that screen's color table-howeve:·
II if this change is made, it introduces the necessity of checking to make sure that the user hasn't
II moved the control to another screen each time it's drawn, and dealing with it (by reallocating the
II GWorlds and reloading the picture) if so. This task is left as an exercise to the reader - have fun!
II also note that we don't do anything useful here if the GWorld cannot be allocated, but we check that
II allocation was successful everywhere else before we use it, so that no crash will occur. You might see
II some funny things on screen, though! Fortunately, you know how much memory your slider needs {based
II on the bit depth, as described above) so your program can check for it before creating the control.

CHAPTER SEVEN SOURCE CODE 377

err = NewGWorld (&(*resHandle) -> indicatorWorld, (*resHandlel -> bitDepth,
&(*resHandle) -> indicatorRect, nil, nil, 0);

if (err)

if (!err)

II not enough memory in the application heap! Try it in temporary memory.
err = NewGWorld (&(*resHandle) -> indicatorWorld, (*resHandlel -> bitDepth,

&(*resHandle) -> indicatorRect, nil, nil, useTempMem);

GWorldPtr
GDHandle currDev;

currPort;

GetGWorld (&currPort, &currDev); II save the current GWorld
SetGWorld {(*resHandle) -> indicatorWorld, nil);
II set to the new one, so that any drawing takes place there
PixMapHandle pixMap = GetGWorldPixMap ((*resHandle) -> indicatorworld);
LockPixels (pixMap);

PicHandle picture= GetPicture ((*resHandle) -> indicatorPictResID);
if (picture)

DrawPicture (picture, &(*resHandle) -> indicatorWorld->portRect);

UnlockPixels (pixMap);
SetGWorld (currPort, currDev); II restore the original GWorld

err= NewGWorld (&(*resHandle) -> backgroundWorld, (*resHandle) -> bitDepth,
&compositeRect, nil, nil, 0);

if (err)

if (!err)

II not enough memory in the application heap! Try it in temporary memory.
err= NewGWorld (&(*resHandlel -> backgroundWorld, (*resHandle) -> bitDepth,

&compositeRect, nil, nil, useTempMem);

GWorldPtr
GDHandle currDev;

currPort;

GetGWorld (&currPort, &currDev) ; 11 save the current GWorld
SetGWorld ((*resHandle) -> backgroundWorld, nil);
II set to the new one, so that any drawing takes place there
PixMapHandle pixMap = GetGWorldPixMap ((*resHandle) -> backgroundWorld);
LockPixels (pixMap);

PicHandle picture= GetPicture ((*resHandle) -> backgroundPictResID);
if (picture)

378 APPENDIX

DrawPicture (picture, &compositeRect);

UnlockPixels (pix.Map);
SetGWorld (currPort, currDev); II restore the original GWorld

err= NewGWorld (&(*resHandle) -> compositeWorld, (*resHandlel -> bitDepth,
&compositeRect, nil, nil, 0);

if (err)

II not enough memory in the application heap! Try it in temporary memory.
NewGWorld (&(*resHandle) -> compositeWorld, (*resHandle) -> bitDepth,

&compositeRect, nil, nil, useTempMem);

HUnlock ((*theControl) -> contrlData);

/**

DisposeTheControl - used to deallocate the GWorlds.

**/

void DisposeTheControl (ControlHandle theControll
{

SliderinfoH sHandle = (SliderinfoH) (*theControll -> contrlData;

if (sHandle)

if ((*sHandle) -> indicatorWorldl
(

DisposeGWorld ((*sHandle) -> indicatorWorld);

if ({*sHandle) -> backgroundWorld)

DisposeGWorld ((*sHandlel -> backgroundWorldl;

if ((*sHandlel -> compositeWorld)

DisposeGWorld ((*sHandle) -> compositeWorldl;

DisposeHandle ((Handle) sHandle);

CHAPTER SEVEN SOURCE CODE

/**

DrawTheControl - technically it's possible to determine whether we need to draw the
entire control or just the indicator, but it's simpler just to draw the entire
thing - "just drawing the indicator" doesn't really make much sense under our
offscreen buffering mechanism.

**/

void DrawTheControl (ControlHandle theControll

if ((*theControll -> contrlDatal

HLock ((*theControl) -> contrlData);
SliderinfoP infoPtr = (*(SliderinfoH) (*theControll -> contrlData);

379

if ((*theControl) -> contrlVis && infoPtr -> indicatorworld && infoPtr -> backgroundWorld
&& infoPtr -> compositeWorld)

GWorldPtr
GDHandle currDev;

currPort;

GetGWorld (&currPort, &currDev); 11 save the current GWorld
SetGWorld (infoPtr -> compositeWorld, nil);
II set to the new one, so that any drawing takes place there
PixMapHandle compositePixMap = GetGWorldPixMap (infoPtr -> compositeWorld);
LockPixels (compositePixMap);

II first, copy the background to the composite
PixMapHandle backgroundPixMap = GetGWorldPixMap (infoPtr -> backgroundWorld):
LockPixels (backgroundPixMap);

CopyBits ((BitMap*) *backgroundPixMap, (BitMap*l *compositePixMap,
&infoPtr -> backgroundWorld -> portRect,
&infoPtr -> compositeWorld -> portRect, srcCopy, nil);

UnlockPixels (backgroundPixMap);

II now draw the indicator on top of the background image that's in the composite
PixMapHandle indicatorPixMap = GetGWorldPixMap (infoPtr -> indicatorWorld);
LockPixels (indicatorPixMap);

II calulate where the indicator should appear
Rect destinationRect = infoPtr -> indicatorRect;
short offsetUnits = (*theControl) -> contrlValue - (*theControl) -> contrlMin;
OffsetRect (&destinationRect, (infoPtr -> pixelsPerValue • offsetUnits), 0);

CopyBits ((BitMap•) *indicatorPixMap, (BitMap*) *compositePixMap,
&infoPtr -> indicatorworld -> portRect, &destinationRect,
srcCopy, nil) :

UnlockPixels (indicatorPixMap);

380 APPENDIX

II now copy the composite to the screen
SetGWorld (currPort, currDev);
II restore the original GWorld

ForeColor (blackColor);
II avoid unwanted coloring by CopyBits - you have to do this to
BackColor (whiteColor);
II prevent CopyBits from changing the color of the pixels being copied!

CopyBits ((BitMap*) *compositePixMap,
&((GrafPtr) (*theControl) -> contrlOWner) -> portBits,
&infoPtr -> cornpositeWorld -> portRect, &(*theControl) -> contrlRect,
srcCopy, nil);

UnlockPixels (compositePixMap);

HUnlock ((*theControl) -> contrlData);

/**

DragTheControl

•*********/

void DragTheControl (ControlHandle theControl)

if ((*theControl) -> contrlData)

HLock ((*theControl) -> contrlData);
SliderinfoP
Point

short

GWorldPtr
GOH and le
Rect

infoPtr = (*(SliderinfoH) (*theControl) -> contrlData);
mousePt,
topLeftPt;

leftEdgeOffset,

leftLoc,
rightLoc,
olclMouseHoriz,

oldValue.
newValue;
currPort;
currDev;
oldThumb,

newThumb,
unionOfRects,
tempRect;

II where the mouse is right now
II where the top left of the control
II is in local coords
II the distance between the mousePt and where
II the left edge of the indicator should be
II ignore mouse coords to the left of this position
II ignore mouse coords to the right of this position
II where the mouse was horizontally last time through
II the loop
II original value of the control
II new value of the control

II only the union of the old and new positions needs
II to be drawn each time the slider moves,
II and this rectangle stores the old one
II the new rectangle for the indicator

CHAPTER SEVEN SOURCE CODE

GetGWorld (&currPort, &currDev); II save the current GWorld
PixMapHandle compositePixMap = GetGWorldPixMap (infoPtr -> compositeWorld};
LockPixels (compositePixMap);

PixMapHandle backgroundPixMap GetGWorldPixMap (infoPtr -> backgroundWorld};
LockPixels (backgroundPixMap);

PixMapHandle indicatorPixMap = GetGWorldPixMap (infoPtr -> indicatorWorld);
LockPixels (indicatorPixMap);

ForeColor (blackColor};
BackColor (whiteColor);

II avoid unwanted coloring by CopyBits

II calulate where the indicator is to start with
oldThumb = infoPtr -> indicatorRect;
short offsetunits = (*theControl) -> contrlValue - (*theControl) -> contrlMin;
OffsetRect (&oldThumb, (infoPtr -> pixelsPerValue * offsetUnits), 0};

381

SetPt (&topLeftPt, (*theControl) -> contrlRect.left, (*theControl) -> contrlRect.top);
oldMouseHoriz = -1; II ensure we always draw at least once

leftEdgeOffset = (infoPtr -> indicatorRect.right - infoPtr -> indicatorRect.left) I 2;

leftLoc = infoPtr -> indicatorRect.left + leftEdgeOffset;
rightLoc = leftLoc + (infoPtr -> pixelsPerValue * ((*theControl} -> contrlMax -

(*theControl) -> contrlMin));

oldValue
newValue

(*theControl) -> contrlValue,
oldValue;

II always at least once - otherwise the user might click and
II release the mouse before we started tracking;
I I we want to be sure we jump to the new value if this happens

do

GetMouse (&mousePt};
mousePt.h topLeftPt.h;
mousePt.v -= topLeftPt.v;

mousePt.h =min (mousePt.h, rightLoc);
mousePt.h =max (mousePt.h, leftLoc};

if (mousePt.h != oldMouseHoriz)

newThumb = oldThumb;
newThumb.left = mousePt.h - leftEdgeOffset;
newThumb.right = newThumb.left + (infoPtr -> indicatorRect.right

infoPtr -> indicatorRect.left);

UnionRect (&oldThumb, &newThumb, &unionOfRects};
SetGWorld (infoPtr -> compositeWorld, nil);

382 APPENDIX

CopyBits ((BitMap*) *backgroundPixMap, (BitMap*) *cornpositePixMap,
&unionOfRects, &unionOfRects, srcCopy, nil);

CopyBits ((BitMap*) *indicatorPixMap, (BitMap*) *cornpositePixMap,
infoPtr -> indicatorWorld -> portRect, &newThumb,
srcCopy, nil);

SetGWorld (currPort, currDev); 11 restore the original GWorld
tempRect = unionOfRects;
OffsetRect (&ternpRect, topLeftPt.h, topLeftPt.v);
CopyBits ((BitMap*) *compositePixMap,

&((GrafPtr) (*theControl) -> contrlOwner) -> portBits,
unionOfRects, &tempRect, srcCopy, nil);

oldThurnb = newThurnb;
oldMouseHoriz = mousePt.h;

short rawValue = newThumb.left - infoPtr -> indicatorRect.left;
newValue = rawValue I infoPtr -> pixelsPerValue;
if ((rawValue % infoPtr -> pixelsPerValue) >

(infoPtr -> pixelsPerValue I 2))

II it's more than halfway to the next "stop•
newValue ++;

while (StillDown (});

UnlockPixels (indicatorPixMap);
UnlockPixels (backgroundPixMap);
UnlockPixels (compositePixMap);
SetGWorld (currPort, currDev); II restore the original GWorld

HUnlock ((*theControl) -> contrlData);

II note that we redraw it even if the actual control value has not changed as a result of
II the drag - this ensures that the indicator snaps into a position representing an exact
II value.
(*theControl) -> contrlValue = newValue;
DrawTheControl (theControl};

CHAPTER SEVEN SOURCE CODE

Tiger Slider.h
I*

File Name: Tiger Slider .h

*I

#pragma once

#include <QDOffscreen.h>

#define min (a, bl ((a) > (bl
#define max(a,b) ((a) > (b)

(b)

(a)

(a))

(b))

#if defined(powerc) I I defined (__powerc)
#pragma options align=mac68k
#endif

typedef struct Sliderinfo
{

short backgroundPictResID,
indicatorPictResID,
bitDepth,
pixelsPerValue;

II how many pixels to the right does each control value represent?

Rect indicatorRect;
II where does the indicator appear when the control value is minimum?

GWorldPtr indicatorWorld,
backgroundWorld,
compositeWorld;

} Sliderinfo, *SliderinfoP, **SliderinfoH;

#if defined(powerc) I I defined(__powerc)
#pragma options align=reset
#endif

#define kSliderinfoType 'Sinf'

pascal long main (short varCode, ControlHandle theControl,
short theMessage, long theParam);

void
void
void
void

InitTheControl (ControlHandle theControl);
DisposeTheControl (ControlHandle theControl);
DrawTheControl (ControlHandle theControl);
DragTheControl (ControlHandle theControl);

383

384 APPENDIX

Chapter Eight Source Code

InfinityWindoid.c
II ***

II

11 Infini tyWindoid. c
II

II ---
11 Copyright C 1991-94 Infinity Systems. All rights reserved.

II ---
11 DESCRIPTION:
II This file contains the main source for a WDEF (Window Definition)
II resource. It provides a 'windoid' appearance for use on floating
II windows.
II
II See the file 'About Infinity Windoid' for more information and a list
II of features this WDEF supports.

II ---
11 WRITTEN BY :
I I Troy Gaul, Infinity Sys terns
II
I I HOW TO CONTACT THE AUTHOR:
II Send e-mail to: tgaul@halcyon.com
II or: tgaul@aol.com
II or: tgaul@eworld.com
II •**

#include •windoidDefines.h"
II Must be included before Apple interfaces.

#include <Memory.h>
#include <ToolUtils.h>
#include <Types.h>

#include "WindoidDraw.h"
#include "WindoidTypes.h"
#include "WindoidUtil.h"

II---
11

I I Function Prototypes for main
II

II ---
void DoWinit (WindowPeek window, long param, short varCode);
void DoWDispose(WindowPeek window, long param);
long DoWHit(WindowPeek window, long param);

CHAPTER EIGHT SOURCE CODE

void DoWDraw(WindowPeek window, long param);
void DoWCalcRgns(WindowPeek window, long param);
void DoWGrow(WindowPeek window, long param);
void DoWDrawGicon (WindowPeek window, long param) ;

II ---
11
I I Windoid Main Function

II

II ---
11 This is the main entry point for all calls to this code resource. It
II dispatches to routines that correspond to the message it is given.

II ---
pascal long
main(short varCode, WindowPeek window, short message, long param)

long result = 0;
Graf Ptr savePort;
Boolean needSyncPorts;

II This sets up the appropriate drawing environment, but only for those
II messages for which we actually need to draw.
needSyncPorts = (message == wDraw

11 message == wHit
I I message == wGrow
11 message == wDrawGicon) && HasCQDraw();

if (needSyncPorts) {
GetPort(&savePort);
SyncPorts();

switch (message) {
case wNew:

case wDispose:

case wDraw:

DoWinit(window, param, varCode);
break;

DoWDispose(window, param);
break;

DoWDraw(window, param & OxFFFF);
break;

II There's a tech note that says that for the draw message, only
II the low-order word of param is set correctly, so we should do
II this (& OxFFFF) to be sure we're looking at the correct value.

case wHit:

case wealcRgns:

result= DoWHit(window, param);
break;

DoWCalcRgns(window, param);
break;

385

386 APPENDIX

case wGrow:

case wDrawGicon:

if (needSyncPorts)
SetPort(savePort);

return result;

DoWGrow(window, param);
break;

DoWDrawGicon(window, param);
break;

II---
11

I I SetZoomRects
II

II---
II
II
II
II

II
II
II
II
II
II
II

Fills out the zoom rectangles that are stored in our data record that
hangs off of the dataHandle of the Window. These define the normal
user state (the current position and size that the user has made the
window) and standard state (the state the application determines is
the position and size for the window when it is zoomed out to "full
size").

The standard state is initialized to be equal to the initial position
and size of the window. The WDEF doesn't modify this state after that;
the application should set it to an appropriate rectangle (either after
making the window or whenever the zoom box is hit, whichever is

II appropriate for the application's use of the zoom box.

II ---
static void
SetzoomRects(WindowPeek window)

if (window->spareFlag) {
Rect contRect;
GetGlobalContentRect{window, &contRect);

WindData.wstate.stdState = contRect;
WindData.wState.userState = contRect;

II---
//

11 GetZoomHi tType
II

II---·

CHAPTER EIGHT SOURCE CODE

static long
GetZoomHitType(WindowPeek window)
{

Rect contentRect = (**window->contRgn) .rgnBBox;
Rect standardStateRect = WindData.wState.stdState;

long result= EqualRect(&contentRect, &standardStateRectl
: winZoomOut;

winZoomin

II Calculate offset for zoom rects (make sure they are up to date).
if (result == winzoomOut)

WindData.wState.userState contentRect;

return result;

II ***

II
I I DoWinit -- Windoid initialization.
II
II ***

II ---
11

II DoWinit
II

II ---
11

II
II
II
II
II
II
II

II
II
II

II

II
II
II
II
II
II
II
II
II
II

This routine initializes the WDEF's information in the window record
by allocating a handle that will hang from the WindowRecord's dataHandle
field. This handle contains the zoom rects at the beginning (just like
Apple's System WDEFs). This is followed by a set of flags that the
Infinity Windoid uses to determine features in use by a window.

The set of variation codes that the Infinity Windoid uses is the same
set that is used by the new Apple System 7. 5 floating window WDEF. They
are as follows:
1 - Set to allow the window's appearance reflect the hilite flag.
2 - Set to allow drawing of a grow box.
4 - Set to put a zoom box in the titlebar.
8 - Set to put the titlebar down the side of the window.

To use a variation code, add the number corresponding to the flag(s) you
want to the procID that you use when creating the window. For example,
to use all of the options, pass NewWindow or give a WIND resource a
procID of (128 * 16) + 1 + 2 + 4 + 8.

I suggest you always set the first flag (without it, the WDEF will
always draw with the pattern in the titlebar and it will never
dim -- dimming is necessary for the proper appearance when a modal

11 window is displayed above a floater, however) .

II ---

387

388 APPENDIX

void
DoWinit(WindowPeek window, long pararn, short varCode)

Handle zoornDataHndl = NewHandleClear(sizeof(WindoidData));

if (zoomDataHndl !=nil) {
WindoidDataPtr wdata = (WindoidDataPtr) *zoornDataHndl;

II Make it easier to access.

wdata->closeToggle
wdata->zoomToggle

O;
O;

wdata->ignoreHilite
wdata->hasGrow
window->spareFlag
wdata->isHoriz

(varCode & kSystem75_toggleTBar) == O;
(varCode & kSystem75_hasGrow)
(varcode & kSystem75_hasZoom)
(varCode & kSystem75_vertTBar)

window->dataHandle zoomDataHndl;
SetZoornRects(window);

!= O;
!= O;

=== O;

II ***

II
II DoWDispose -- Windoid disposal.
II

II ********************•**

void
DoWDispose(WindowPeek window, long param)

if (window->dataHandle)
DisposeHandle(window->dataHandle);

WindoidDraw.c
II ***

II

I I WindoidDraw. c
II

II---
11 Copyright 0 1991-94 Infinity Systems. All rights reserved.

II ---
1 I DESCRIPTION:

II This file contains the code that the WDEF uses to get the locations
11 and sizes of parts, and to draw them.

II ---
1 I WRITTEN BY:
II
II

Troy Gaul
Infinity Systems

II ***

CHAPTER EIGHT SOURCE CODE

#include "WindoidDraw.h"

#include <Memory.h>

#include "WindoidTypes.h"
#include "WindoidUtil.h"

II ***

II
I I Routines to get Rects for title bar parts
II
II ***

II ---
//

II GetTitleBarRect
II

II---
void
GetTitleBarRect(WindowPeek window, Rect *titleBar)

*titleBar = (**window->strucRgn) .rgnBBox;

if (WindData.isHoriz) {
II Titlebar on top.
titleBar->bottom = titleBar->top + kTitleHeight;
titleBar->right -= l; II Shadow compensation.

else {
II Titlebar on left.
titleBar->right = titleBar->left + kTitleHeight;
titleBar->bottom -= l; II Shadow compensation.

II ---
11

I I GetCloseBox
II
II---
void
GetCloseBox(WindowPeek window, Rect *theRect)

GetTitleBarRect(window, theRect);

if (WindData.isHoriz)
InsetRect(theRect, kGadgetMargin, kGadgetinset); II Titlebar on top.

else
InsetRect(theRect, kGadgetinset, kGadgetMargin); II Titlebar on left.

389

390 APPENDIX

theRect->bottom = theRect->top + kGadgetSize;
theRect->right = theRect->left + kGadgetSize;

II ---~-----------
11
11 GetZoomBox
II

II---
void
GetZoomBox(WindowPeek window, Rect *theRect)

GetTitleBarRect(window, theRect);

if (WindData.isHoriz) {

} else

II Align zoom box with titlebar pattern.
if (IsEven(theRect->right - theRect->left))

OffsetRect(theRect, -1, 01;

InsetRect(theRect, kGadgetMargin, kGadgetinset);

II Align zoom box with titlebar pattern.
if (IsEven(theRect->bottom - theRect->top))

OffsetRectltheRect, 0, -1);

InsetRect(theRect, kGadgetinset, kGadgetMargin);

theRect->top = theRect->bottom - kGadgetSize;
theRect->left = theRect->right - kGadgetSize;

II Titlebar on top.

II Tit~ebar on left.

II ---
11
I I GetGrowBox
II

II ---
void
GetGrowBox(WindowPeek window, Rect *theRect)

GetGlobalContentRect(window, theRect);

theRect->left = ++theRect->right - kScrollBarPixels;
theRect->top = ++theRect->bottom - kScrollBarPixels;

CHAPTER EIGHT SOURCE CODE

II ***

II
I I Color Setup routines
II
II ***

II ---
11

II SetWFrameColor
II
II ---
void
SetWFrameColor(WindowPeek window, Boolean isColor)

Boolean isActive = window->hilited I I WindData.ignoreHilite;

if (isColor) {

else

if (isActive)

else
WctbForeColor(window, wFrameColor);

AvgWctbForeColor(window, wHiliteColorLight, wHiliteColorDark,
winactiveFramePct);

ForeColor(blackColor);

II ---
11

I I SetWTitleColor
II
II ---
void
SetWTitleColor(WindowPeek window, Boolean isColor)

Boolean isActive = window->hilited I I WindData.ignoreHilite;

if (isColorl {

else

if (isActive)

else
WctbForeColor(window, wTextColor);

II Set the color for inactive titlebar text.
AvgWctbForeColor(window, wHiliteColorLight, wHiliteColorDark,

winactiveTextPct);

ForeColor(blackColor);

391

392 APPENDIX

II---
11
I I SetWTitleBarColors
II
II---
11 Set the foreground and background for the drawing of the
II titlebar pattern.

II ---
void
SetWTitleBarColors(WindowPeek window, Boolean isColor)

Boolean isActive = window->hilited I I WindData.ignoreHilite;

if (isColor) {

else

if (isActive)

} else

AvgWctbForeColor(window, wHiliteColorLight, wHiliteColorDark,
wTitleBarDarkPct);

AvgWctbBackColor(window, wHiliteColorLight, wHiliteColorDark,
wTitleBarLightPct);

WctbForeColor(window, wContentColor);
WctbBackColor(window, wContentColor);

ColorsNormal();

II---
11

II SetGadgetFrameEraseColors
II

II---
II
II
II

Set the foreground and background for the drawing of the
titlebar pattern, in inverse so we can erase some of the
background by using normal drawing routines.

II---
void
SetGadgetFrameEraseColors(WindowPeek window, Boolean isColor)
{

if (isColor) {

} else

AvgWctbBackColor(window, wHiliteColorLight, wHiliteColorDark,
wTitleBarDarkPct);

AvgWctbForeColor(window, wHiliteColorLight, wHiliteColorDark,
wTitleBarLightPct);

ForeColor(whiteColor);

CHAPTER EIGHT SOURCE CODE

BackColor(blackColor);

II***

II
11 Drawing routines
II
II***

II---
11
II DrawTitlebarTinges

II

II---
static void
DrawTitlebarTinges(WindowPeek window, Boolean isColor, const Rect *bounds)

Rect tempRect = *bounds;
InsetRect(&tempRect, l, l);

if (isColor) {

} else

AvgWctbForeColor(window, wTingeLight, wTingeDark,
wTitleBarTingeDarkPct);

FrarneBottomRightShading(tempRect);

WctbForeColor(window, wTingeLight);
tempRect.right--;
tempRect.bottom--;
FrameTopLeftShading(tempRect);

ForeColor(whiteColor);
BackColor(blackColor);
FrameRect(&ternpRect);

II---
11
11 DrawCloseBox

II

II---
void
DrawCloseBox(WindowPeek window, Boolean isColor, const Rect *theRect)

Rect tempRect;

II Paint the area on the edges out with the background color.
SetGadgetFrameEraseColors(window, isColor);

393

394 APPENDIX

tempRect = *theRect;
InsetRect(&tempRect, -kTingeinset, -kTingeinset);
FrameRect(&tempRect};

if (isColorl {

} else

WctbForeColor(window, wTingeDark);
BackColor(whiteColor);
FrameTopLeftShading(*theRect);

tempRect = *theRect;
tempRect.top++;
tempRect.left++;
WctbForeColor(window, wTingeLight);
FrameRect(&tempRect);

InsetRect(&tempRect, l, 1);
WctbForeColor(window, wTingeDark);
FrameBottomRightShading(tempRect);

tempRect.right--;
tempRect.bottom--;
AvgWctbForeColor(window, wTitleBarLight, wTitleBarDark,

wCloseBoxColor);
PaintRect(&tempRect);

ColorsNormal();
FrameBox(theRectl;

II ---
//

I I DrawZoomBox
II

II---
void

DrawZoomBox(WindowPeek window, Boolean isColor, const Rect *theRect)

Rect tempRect;

DraWCloseBox(window, isColor, theRect);
tempRect = *theRect;

tempRect.bottom -= kGadgetSize I 2;
tempRect.right -= kGadgetSize I 2;

II This should handle gadgets of various sizes elegantly.

if (isColor) {

WctbForeColor(window, wTingeDark);
tempRect.left += 2; II Inset past the tinge.

else

CHAPTER EIGHT SOURCE CODE

tempRect.top += 2;
FrarneBottomRightShading(tempRect);

FrarneRect(&tempRect);

II---
11
I I DrawXedBox
II

II---
11 Draw close or zoom box with an X in it (or inverted in B&W).

II ---
void
DrawXedBox(WindowPeek window, Boolean isColor, const Rect *theRect)

if (isColor) {

else

AvgWctbForeColor(window, wTingeLight, wTingeDark, wXedBoxPct);
PaintRect(theRect);

WctbForeColor(window, wTitleBarDarkl;
FrameRect(theRectl;

I I Draw the ' X ' .
MoveTo(theRect->left, theRect->top);
LineTo(theRect->right - l, theRect->bottom - ll;
MoveTo(theRect->right - 1, theRect->top);
LineTo(theRect->left, theRect->bottom - 1);

PaintRect(theRect);

II ---
11
I I DrawGrow3DBox
II

II---
static void
DrawGrow3DBox(WindowPeek window, Rect *theRect, Boolean isLightl

Rect tempRect = *theRect;

WctbForeColor(window, wTingeDark);
FrameRect(theRect);

395

396 APPENDIX

II Add the top light outer border on the top-left edge.
tempRect.left++;
tempRect.top++;
WctbForeColor(window, wTingeLight);
FrameTopLeftShading(tempRect);

II Finally, fill in the center.
AvgWctbForeColor(window, wTitleBarLight, wTitleBarDark,

InsetRect(&tempRect, 1, l);
PaintRect(&tempRect);

isLight? wGrowBoxColorLt: wGrowBoxColorDk);

II ---
//
11 DrawGrowBox
II

II---
void
DrawGrowBox(WindowPeek window, Boolean isColor)

Boolean isActive = window->hilited I I WindData.ignoreHilite;
Rect theRect;
GetGrowBox(window, &theRect);

if (!isActive) {
if (isColor)

else

WctbForeColor(window, wFrameColor);
WctbBackColor(window, wContentColor);

FrarneBox(&theRect);

Rect smallRect;
Rect largeRect;

II Add the size box chevrons.
SetRect(&smallRect, theRect.left + 3, theRect.top + 3,

theRect.left + 10, theRect.top + 10);
SetRect(&largeRect, smallRect.left + 2, smallRect.top + 2,

theRect.right - 2, theRect.bottom - 2);

if (isColor) {
wctbForeColor(window, wFrameColor);
AvgWctbBackColor(window, wHiliteColorLight, wHiliteColorDark,

wGrowBoxBackground);
FrameBox(&theRectl;

II Draw the dark border parts for the bottom rectangle.

} else

CHAPTER EIGHT SOURCE CODE

OffsetRect(&largeRect, -1, -ll;
DrawGrow3DBox(window, &largeRect, false);

II Draw the dark border parts for the top rectangle.
smallRect.right--;
smallRect.bottom--;
DrawGrow3DBox(window, &smallRect, true);

ColorsNormal();
FrameBox(&theRect);

FrameRect(&largeRectl;
FrameBox(&smallRectl;

II---
//
II ToggleCloseBox
II

II---
void
ToggleCloseBox(WindowPeek window, Boolean isColor)

Rect tempRect;
GetCloseBox(window, &tempRect);

if (WindData.closeToggle)
DrawcloseBox(window, isColor, &tempRectl;

else
DrawXedBox(window, isColor, &tempRect);

II---
//
11 ToggleZoomBox
II

II---
void
ToggleZoomBox(WindowPeek window, Boolean isColor)
{

Rect tempRect;
GetZoomBox(window, &tempRectl;

if (WindData.zoomToggle)
DrawzoomBox(window, isColor, &tempRect);

else
DrawXedBox(window, isColor, &tempRectl;

397

398

II

II

II

II

II

II

II

II

II

II

APPENDIX

GetTitlebarPat

Choose correct pattern, depending on position of window in global
coordinates. (Concept of new (2.3) version taken from _Macintosh
Progranuning Secrets_, Second Edition, by Scott Knaster and Keith
Rollin, page 423.)

static void
GetTitlebarPat(Boolean isActive, Point *corner, Pattern *titlePat)

long seed = isActive ? Ox00550055 : OxOOOOOOOO;

if (IsOdd(corner->h))
seed<= 1;

if (IsOdd(corner->v))
seed<= 8;

((long) titlePat + 1) *((long*) titlePat) seed;

II---
11

II SubtractGadgetRect
II

II---
static void
SubtractGadgetRect(RgnHandle theRgn, const Rect *theRect)
{

Rect subRect = *theRect;
RgnHandle subRgn = NewRgn();

InsetRect(&subRect, -kTingeinset, -kTingeinset);
II To give the correct visual appearance.

RectRgn(subRgn, &subRect);
DiffRgn(theRgn, subRgn, theRgn);

DisposeRgn(subRgn);

II---
11

I I DrawTitleString
II

II---
11

II
When this routine is called, the background color will already be set
to the color of the background of the titlebar.

II---

CHAPTER EIGHT SOURCE CODE

static void
DrawTitleString(WindowPeek window, Boolean isColor, canst Rect *titleRect,

Rect *stringRect)

Boolean isActive = window->hilited I I WindData.ignoreHilite;
short maxWidth;
short titleWidth:
short inset:
short strAreaLeft:
Rect titleStrBounds;
RGBColor saveFore:

if (window->titleHandle !=nil && (*window->titleHandle) [0] != 0
&& WindData.isHoriz)

maxWidth = titleRect->right - titleRect->left - 2 * kGadgetMargin;
strAreaLeft = titleRect->left + kGadgetMargin;
if (window->goAwayFlag I I window->spareFlag) {

maxWidth -= 2 * (kGadgetSize + kGadgetMargin);
strAreaLeft += kGadgetSize + kGadgetMargin;

if (maxWidth > 0) {
char saveTitleHandleState;

II Set up fonts, colors for text drawing.
TextFont(kTitleFont):
TextSize(kTitleSize);
TextFace(kTitleStyle);
TextMode(srcOr);

saveTitleHandleState = HGetState((Handle) window->titleHandle);
HLock((Handle) window->titleHandle);

II StringWidth and Drawstring may move memory.

if (isColor)
GetForeColor(&saveFore);

SetWTitleColor(window, isColor);

II Calculate the width of the title string.
titleWidth = StringWidth(*window->titleHandlel + 2 *

kTitleMargin;

II Limit its size to maxWidth.
titleWidth = (titleWidth > maxWidth) ? maxWidth titleWidth;

II Determine where to position it.
inset= (short) (maxWidth * titleWidthl I 2;

II Make the title appear centered.
if (IsEven(titleWidthl) 11 We need an odd width or

titleWidth--; II the overlap is wrong.

399

400 APPENDIX

inset-= IsEven(inset);
II This is done so that the title doesn't
II shift as the windowUs width changes.

II Set up the Rect to enclose the title within the titlebar.
SetRect(&titleStrBounds, strAreaLeft +inset,

titleRect->top + 1,
strAreaLeft + inset + titleWidth,
titleRect->bottom - l);

II Inset the bounds so as not to erase part of the tinges.
if (isActive)

InsetRect(&titleStrBounds, 0, kTingeinset);

II Return the title string areaus boundry.
*stringRect = titleStrBounds;

II Make sure this area is cleared to the titlebar background color.
EraseRect(&titleStrBounds);

II Inset past the empty sides.
InsetRect(&titleStrBounds, kTitleMargin, 0);

II Outset it so decenders may overwrite the bottom tinge.
if (isActiveJ

InsetRect(&titleStrBounds, 0, -kTingeinset);
II Clip the drawing to the string's area.
(

RgnHandle saveClip = NewRgn(l;
RgnHandle clipRgn = NewRgn();

GetClip(saveClip);

II Get the region the title string should go into.
RectRgn(clipRgn, &titleStrBounds);

II Make sure we don't clobber other windows.
SectRgn(saveClip, clipRgn, clipRgn);
if (!EmptyRgn(clipRgn)) {

SetClip(clipRgn);

II Draw the title.
MoveTo(titleStrBounds.left,

titleStrBounds.bottom - kTitleVDelta);
DrawString(*wi~dow->titleHandle);

II Clean up.
SetClip(saveClip);

CHAPTER EIGHT SOURCE CODE

DisposeRgn(saveClip);
DisposeRgn(clipRgn);

if CisColor)
RGBForeColor(&saveFore);

HSetState((Handle) window->titleHandle, saveTitleHandleState);

TextFont(systemFont);
Textsize(O);
TextFace(O);

II---
11
11 DrawAndSubtractTitle

II

II---
II

II

II

Draws the title in the titlebar (by calling DrawTitleString) and
subtracts it from the titlebar region (by making the rect returned
into a region and using DiffRgn) .

II---
static void
DrawAndSubtractTitle(WindowPeek window, const Rect *titleRect, Boolean isColor,

RgnHandle titleRgn)

Rect strRect;
strRect.top = strRect.left = strRect.bottom = strRect.right 0;

II Draw the titlebar string (if any).
DrawTitleStringlwindow, isColor, titleRect, &strRect);

II Since the area affected by the title string is returned in
11 strRect, we can use its left and right to draw the pattern.

if (!EmptyRect(&strRect)) {
RgnHandle tempRgn = NewRgn();

RectRgn(tempRgn, &strRect);
DiffRgn(titleRgn, tempRgn, titleRgn);

DisposeRgn(tempRgn);

401

402

II
II
II
II
II
II
II
II
II
II
void

APPENDIX

DrawTitleBar

This routine actually draws the pattern into the titlebar. Note: it
takes a Rect as a parameter (not by address) because it goes ahead and
modifies it. I figured this was no worse than needing to copy it into
a local variable, so I went ahead and did it this way.

DrawTitleBar(WindowPeek window, Boolean isColor)
{

Boolean isHoriz = WindData.isHoriz;
Boolean isActive = window->hilited I I WindData.ignoreHilite;
RgnHandle titleRgn = NewRgn();

Rect titleRect;
GetTitleBarRect(window, &titleRect);

II Draw the frame.
SetWFrameColor(window, isColor);
FrameRect(&titleRect);

II Set up the titleRgn region to be the whole titlebar,
11 parts will then be •punched out• of it.
{

Rect insetTitleRect = titleRect;
InsetRect(&insetTitleRect, 1 + (isActive? kTingeinset: 0),

1 + (isActive? kTingeinset: 0));
11 Make room for the tinge, if any (which was already drawn).

RectRgn(titleRgn, &insetTitleRect);

II Draw the tinges and gadgets.
if (isActive) {

Rect tempRect;

II Draw the tinges.
DrawTitlebarTinges(window, isColor, &titleRect);

II Draw and subtract the close box.
if (window->goAwayFlag) {

GetCloseBox(window, &tempRect);
DrawCloseBox(window, isColor, &tempRect);
SubtractGadgetRect(titleRgn, &tempRectl;

II Draw and subtract the zoom box.
if (window->spareFlag) {

GetZoomBox(window, &tempRect);

CHAPTER EIGHT SOURCE CODE

DrawZoomBox(window, isColor, &tempRect);
SubtractGadgetRect(titleRgn, &tempRect);

II Get the colors to draw the rest.
SetWTitleBarColors (window, isColorl;

II Draw the title.
DrawAndSubtractTitle(window, &titleRect, isColor, titleRgn);

II Draw the pattern.
{

Pattern pat;
GetTitlebarPat(isActive, (Point*) &titleRect.top, &pat);
FillRgn(titleRgn, &pat);

DisposeRgn(titleRgn);

II ---
//
11 DrawWindowFrame
II
II ---
void
DrawWindowFrame(WindowPeek window, Boolean isColorl

Rect tempRect = (**window->strucRgnl .rgnBBox;

11 Draw content frame and shadow.
tempRect.bottom--;
tempRect.right--;

SetWFrameColor(window, iscolor);
FrameRect(&tempRect);

11 Draw Shadow.
if (isColor)

WctbForeColor(window, wFrameColor); II This got messed up in 2.6.
OffsetRect(&tempRect, 1, l);
FrameBottomRightShading(tempRect);

II ---

403

404 APPENDIX

WindoidDraw.h
II ***

II
I I WindoidDraw. h
II
II---
// Copyright c 1991-94 Infinity Systems. All rights reserved.
II---
#ifndef Infinity_WINDOIDDRAW
#define Infinity _WINDOIDDRAW

#include "WindoidDefines.h"

#include <Fonts.h>
#include <Types.h>
#include <Windows.h>

II***
II
I I Constants
II
II ***

II---
11
I I Titlebar and gadget sizes and offsets
II

II---
en um

kTingeinset l,

kTitleHeight 13,
kTitleVDelta 2,

kGadgetMargin 8,

kGadgetHitFudge 1
} ;

#define kGadgetinset (2 + kTingeinset) //Inset from top/bottom of titlebar.
#define kGadgetSize (kTitleHeight - (2 * kGadgetinset))

II ---
11
I I Scroll Bar width
II

II---
en um

kScrollBarPixels 16
} ;

CHAPTER EIGHT SOURCE CODE

II ---
11

11 Font information for titlebar title
II
II---
en urn

} ;

kTitleFont
kTitleSize
kTitleStyle
kTitleMargin

:: applFont,
:: 9,

:: bold,
:: 5 II Space between pattern and edges of text.

II---
//

I I Color table tinge percentage constants
II
II---
en urn

wTitleBarLightPct :: Oxl,

wTitleBarTingeDarkPct Ox4,

wCloseBoxColor :: Ox5,
wTitleBarDarkPct :: Ox8,
wXedBoxPct :: Ox8,

wGrowBoxBackground :: Oxl,
wGrowBoxColorLt Ox4,
wGrowBoxColorDk = Ox5,

winactiveFramePct = OxA,
winactiveTextPct = Ox7

};

II---
//
I I Color table constants
II
II---
II

II
II

II

These are the constants defined in the Apple technical note regarding
Color, Windows, and System 7. Last I checked, they weren't in an Apple
header file. (But the ones < 5 are, from the previous, pre-System 7

coloring scheme.)

II---
enum {

wHiliteColorLight 5,
wHiliteColorDark,
wTitleBarLight,

405

406

} ;

APPENDIX

wTitleBarDark,
wDialogLight,
wDialogDark,
wTingeLight,
wTingeDark

II ***~*********************~*****•****~

II
11 Prototypes

II
II **************•**

II---
11
11 Part rectangles
II
II---
void GetTitleBarRect(WindowPeek window, Rect *titleBar);

void GetCloseBox(l\lindowPeek window, Rect *theRect);

void GetZoomBox(WindowPeek window, Rect *theRect);

void GetGrowBox(WindowPeek window, Rect *theRect);

II---
11
11 Coloring
II
II---
void SetWFrameColor(WindowPeek window, Boolean isColor);

void SetWTitleColor(WindowPeek window, Boolean isColor);

void SetWTitleBarColors(WindowPeek window, Boolean isColor);

void SetGadgetFrameEraseColors (WindowPeek window, Boolean isColor);

II ---
11
11 Part drawing
II
II---~-----------
void DrawCloseBox(WindowPeek window, Boolean isColor, canst Rect *theRect);

void DrawzoomBox(WindowPeek window, Boolean isColor, canst Rect *theRect);

CHAPTER EIGHT SOURCE CODE

void DrawXedBox(WindowPeek window, Boolean isColor, const Rect *theRect);

void DrawGrowBox(WindowPeek window, Boolean isColor);

void ToggleCloseBox(WindowPeek window, Boolean isColor);

void ToggleZoomBox(WindowPeek window, Boolean isColor);

void DrawTitleBar(WindowPeek window, Boolean isColor);

void DrawWindowFrame(WindowPeek window, Boolean isColor);

II---
#endif

WindoidUtil.c
II ***

II
I I WindoidUtil. c
II
II---
11 Copyright 01991-94 Infinity Systems. All rights reserved.

II---
1 I DESCRIPTION:
II
II

This file contains various utility routines that the Infinity Windoid
WDEF uses in order to get its job done.

II---
1 I WRITTEN BY:
II Troy Gaul (tgaul@halcyon.com)
II Infinity Systems
II ***

#include •windoidUtil.h"

#include <GestaltEqu.h>
#include <Memory.h>

#include "WindoidDraw.h"
#include "WindoidTypes.h"

II ***

II
II Environment-determining Routines
II
II---
1 I These use Sys Environs by default so we don't have to rely on Gestalt

II
II

being available and so MPW won't include that code in our resource.
This can be changed by defining qUseGestalt to be 1.

II***

407

408 APPENDIX

II---
11
I I HasSystem7
II

II---
Boolean
HasSystem7()
(

#if SystemSevenOrLater
long vers = O;

return (Gestalt(gestaltSystemVersion, &vers) == noErr
&& ((vers & OxFFFF) >= Ox0700));

#else
SysEnvRec theWorld;

return (SysEnvirons(l, &theWorld) == noErr
&& theWorld.systemversion >= Ox0700);

#endif

II ---
11
I I HasCQDraw
II

II ---
Boolean
HasCQDraw ()
(

#if SystemSevenOrLater
long vers = O;

return (Gestalt(gestaltQuickdrawVersion, &vers) == noErr
&& (vers & OxFFOO));

#else
SysEnvRec theWorld;

return ((SysEnvirons(l, &theworld) == noErr) &&
theWorld.hasColorQD);

#endif

II ---
11
I I SyncPorts
II

II ---

II
II
II
II
II
II
II

CHAPTER EIGHT SOURCE CODE

Straight from the pages of _Macintosh Programming Secrets_, Second
Edition by Scott Knaster and Keith Rollin (page 425). (except that this
version doesn't check Gestalt, it will only be called if CQD is running)
This routines was added to 2.3. It makes sure the drawing environment
is set correctly if the system has color. This is not needed for the
code in this WDEF as it is, but if a DoWDrawGicon handler is implemented,
this is needed to make sure the drawing environment is set as Apple

II tells us it will be for drawing the gray, xor'ed border.

II---
void
SyncPorts ()
{

Graf Ptr bwPort;
CGrafPtr colorPort;

GetWMgrPort (&bwPort) ;
GetCWMgrPort(&colorPort);
SetPort((GrafPtr) colorPort);

BlockMoveData(&bwPort->pnLoc, &colorPort->pnLoc, 10);
BlockMoveData(&bwPort->pnVis, &colorPort->pnVis, 14);
PenPat((ConstPatternParam) &bwPort->pnPat);
BackPat((ConstPatternParam) &bwPort->bkPat);

II ***

II
11 Color Mixing Routines

II
II •**

II ---
11
II UseDefaultColor

II

II ---
II
II
II
II
II
II
II

This routine will return some defaults in case neither the window's
color table nor the System's is long enough to contain the color
requested. It was provided by Jim Petrick as part of a fix for a bug
in version 2. 3 of the Infinity Windoid. This problem would be seen if
a custom WCTB was being used that was not as long as the default
System one (or if the System one had been changed to a shorter size) .
The rest of Jim's fix can be found in GetWctbColor.

II ---
static void
UseDefaultColor(short index, RGBColor *theColor)

switch (index) {
case wContentColor:
case wTitleBarColor:

409

410 APPENDIX

case wHiliteColorLight:
case wTitleBarLight:

theColor->red = theColor->green
break;

case woialogLight:
case wTingeLight:

theColor->red = theColor->green
theColor->blue = OxFFFF;
break;

case wTingeDark:
theColor->red = theColor->green
theColor->blue = Ox6666;
break:

default:
theColor->red
break;

theColor->green

theColor->blue OxFFFF;

OxCCCC;

Ox3333;

theColor->blue O;

II ---
11
I I GetWctbColor
II

II---
11 Given a partCode, return the RGBColor associated with it. (Using the
I I default window color table.)

II---
static void
GetWctbColor(WindowPeek window, short partCode, RGBColor *theColor)

AuxWinHandle awHndl;
short count;

II Get the Color table for the window if it has one.
(void) GetAuxWin((WindowPtr) window, &awHndl);
count= (**(WCTabHandle) (**awHndl).aWCTable).ctSize;

II If the table didn't contain the entry of interest, look to the
II default table.
if (count < partCode) {

(void) GetAux\~in(nil, &awHndl);
count= {**(WCTabHandle) (**awHndl) .aWCTable) .ctSize;

II If the entry is there, use it, if not make a best guess at a default value.
if (count < partCode)

UseDefaultColor(partCode, theColor);

CHAPTER EIGHT SOURCE CODE

else
*theColor (**(WCTabHandle) (**awHndl) .awCTable) .ctTable[partCodeJ .rgb;

II---
11
11 WctbForeColor

II

II---
void
WctbForeColor(WindowPeek window, short partCode)

RGBColor theColor;

GetWctbColor(window, partCode, &theColor);
RGBForeColor(&theColor);

II ---
11
II WctbBackColor

II

II ---
void
WctbBackColor(WindowPeek window, short partCode)
{

RGBColor theColor;

GetWctbColor(window, partCode, &theColor);
RGBBackColor(&theColor);

II ---
11
11 MixColor
II

II ---
II

II
II

II

II
II

Note: MixColor uses pragma processor 68020 to reduce code size with
MPW. This is okay because MixColor will only be called if we are
doing System 7 color, which requires Color Quickdraw, which is only
available on systems with 68020's or better. If it isn't compiled this
way, several glue routines will be added to the code WDEF resource to
handle the long integer arithmetic.

II ---
#pragma processor 68020

static void
MixColor(const RGBColor *light, const RGBColor *dark, short shade,

411

412 APPENDIX

RGBColor *result)

shade OxOF - shade;
II This is necessary because we give shades between light and
11 dark (0% is light), but for colors, $0000 is black and $FFFF
II is dark.

result->red = (long) (light->red - dark->redl - shade I 15 + dark->red;
result->green = (long) llight->green - dark->green) - shade I 15 + dark->green;
result->blue = (long) (light->blue - dark->blue) - shade I 15 + dark->blue;

#pragma processor 68000

II ---
11
11 AvgWctbColor
II

II ---
II

II

Mix two parts by the given shade, which is actually a value
between 0 (0%) and 15 (100%), return the RGBColor.

II ---
static void
AvgWctbColor (WindowPeek window, short light, short dark, short shade,

RGBColor *theColor)

RGBColor lightColor;
RGBColor darkColor;

GetWctbColor (window, light, &lightColor) ;
GetWctbColor(window, dark, &darkColor);
MixColor(&lightColor, &darkColor, shade, theColor);

II ---
//

/I AvgWctbForeColor
II

II ---
void
AvgWctbForeColor(WindowPeek window, short light, short dark, short shade)

RGBColor theColor;

AvgWctbColor(window, light, dark, shade, &theColor);
RGBForeColor(&theColor);

CHAPTER EIGHT SOURCE CODE

II---
11
I I AvgWctbBackColor
II

II---
void
AvgWctbBackColor(WindowPeek window, short light, short dark, short shade)

RGBColor theColor;

AvgWctbColor(window, light, dark, shade, &theColor);
RGBBackColor(&theColor);

II ***

II
I I CheckDisplay -- Check to see if we are using color title bars
II
II***

II---
//
II CheckAvailable
II
II---
11 Given a light and dark index value, a count, and an array of
II 'percentage' values (OxO to OxF, or 0 to 15), see if each of the
II values in the ramp maps to a different color on the screen. If not,
II we need to use black-and-white.

II---
static Boolean
CheckAvailable(WindowPeek window, short light, short dark, short count,

short *ramp)

RGBColor theColor;
short i;
short colorindex = O;
short lastindex;

for (i = 0 ; i < count ; i++) {
AvgWctbColor(window, light, dark, ramp[i), &theColorJ;

lastindex = colorindex;
colorindex = Color2Index(&theColor};

if (i > 0 && colorindex == lastindex)
return false;

II return false if two entries
II have the same index value

413

414 APPENDIX

return true;

II ---
11

I I CheckDisplay
II

II ---
II
II

II

II

II

II

II
II

This routine checks to see if the device in question is color, if
System 7 is running, and if there are 'enough' colors to draw the
title bar in color under System 7. This might not be the case if
the application is using a custom window palette.

It does so in the same way that Apple's system WDEF does. I essentially
took the assembly code that Apple released and made this use the same
algorithm.

II ---
Boolean
CheckDisplay(short theDepth, short deviceFlags, GDHandle targetDevice,

WindowPeek window)

Boolean inColor;
Boolean use7Color = false; II Assume Black and White.

if (theDepth >= 4 && (**targetDevice) .gdType != fixedType && HasSystem7())
II A passive matrix screen on a PowerBook is a fixed device type.
II This seems to be how the Apple WDEF determines when to use black
II and white on those displays.

RGBColor testColor;
GetWctbColor(window, wTingeLight, &testColor);

II Check for B&W control panel setting.
if (testColor.red != 0 I I testColor.green != 0 I I testColor.blue != 0)

use7Color = true; II System 7.0 Color.

II Note: Since I didn't find another way to see if the user had changed
II the settings in the Color control panel to the Black-and-white setting,
II I actually check to see if the rgb components of the light tinge color
II are non-zero (which seemed to be the case with that setting).

II Check to see if there are 'enough' colors to draw in color.
inColor = HasCQDraw(l && (deviceFlags & (OxOOOl < gdDevType));

if (use7Color && inColor && theDepth <= 8) {
GDHandle saveoevice = GetGDevice(l;
short ramp [5] ;

II Make this array big enough for the largest ramp.

use7Color = false;

CHAPTER EIGHT SOURCE CODE

SetGDevice(targetDevice);

ramp[O] OxOO;
ramp[l] Ox07;
ramp(2] Ox08;
ramp[3J OxOA;
ramp[4J OxOD;
if (CheckAvailable(window, wHiliteColorLight, wHiliteColorDark, 5, ramp)) {

ramp(O] OxOO;
ramp(l] = OxOl;
ramp(2] = Ox04;
if (CheckAvailable(window, wTitleBarLight, wTitleBarDark, 3, ramp)) {

ramp[O) OxOO;
ramp[l] = Ox04;
ramp[2] = OxOF;
if (CheckAvailable(window, wTingeLight, wTingeDark, 3,

ramp))
use7Color = true;

SetGDevice(saveDevice);

return use7Color;

II ***

II
I I General Helper Functions
II
II ***

II ---
//

11 ColorsNormal
II
II ---
void
ColorsNormal ()

ForeColor(blackColor);
BackColor(whiteColor);

II---
//

11 MoveRectTo
II

II ---
void
MoveRectTo{Rect *theRect, short left, short top)

415

416 APPENDIX

theRect->right += left - theRect->left;
theRect->bottom += top - theRect->top;
theRect->left = left;
theRect->top = top;

II---
11
11 FrameBox
II
II---
void
FrameBox(const Rect *theRect)

Rect tempRect = *theRect;

FrameRect(theRect);
InsetRect(&tempRect, 1, 1);
EraseRect(&tempRect);

II ---
11
11 FrameTopLeftShading

II

II ---
void
FrameTopLeftShading(Rect theRect)
{

theRect.right--;
theRect.bottom--;

II Compensate for the way the rectangle hangs.

MoveTo(theRect.left, theRect.bottom);
LineTo(theRect.left, theRect.top) ;
LineTo (theRect. right, theRect. top) ;

II
II
II

•••••

•

II---
11
II FrameBottomRightShading

II
II ---
void
FrameBottomRightShading(Rect theRect)
{

theRect.right--;
theRect.bottom--;

II Compensate for the way the rectangle hangs.

CHAPTER EIGHT SOURCE CODE

MoveTo(theRect.left, theRect.bottom);
LineTo(theRect.right, theRect.bottom);
LineTo (theRect. right, theRect. top) ;

II

II
II

II---
11
II GetGlobalMappingPoint
II
II---
II This routine returns a point that gives the horizontal and vertical
11 offsets needed to map something into global coordinates.

II---
void
GetGlobalMappingPoint(WindowPeek window, Point *thePoint)
{

GrafPtr savePort;

GetPort(&savePort);
SetPort((GrafPtr) window);

SetPt(thePoint, 0, 0);
LocalToGlobal(thePoint);

SetPort(savePort);

II---
11
II GetGlobalContentRect
II
II---
void
GetGlobalContentRect(WindowPeek window, Rect *contentRect)
{

Point mappingPoint;

contentRect = window>port.portRect;
GetGlobalMappingPoint(window, &mappingPoint);
OffsetRect(contentRect, mappingPoint.h, mappingPoint.v);

II---

417

418 APPENDIX

WindowidUtil.h
II *•***
II
II WindoidUtil.h
II
II ---
11 Copyright© 1991-94 Infinity Systems. All rights reserved.

II---
#ifndef Infinity_WINDOIDUTIL
#define Infinity_WINDOIDUTIL

#include "WindoidDefines.h"

#include <QuickDraw.h>
#include <Types.h>
#include <Windows.h>

II ---
11
I I Macros to make code cleaner
II
II ---
#define IsOdd(value) ((value) & 1)
#define IsEven(value) (!IsOdd(value))

II ---
11
I I Generally useful routines
II

II ---
Boolean HasSystem7();

Boolean HasCQDraw();

void SyncPorts();

II ---
11
I I Window Color Table color access
II
II ---
void WctbForeColor(WindowPeek window, short partCode);

void WctbBackColor(WindowPeek window, short partCode);

void AvgWctbForeColor(WindowPeek window, short light, short dark, short shade);

CHAPTER EIGHT SOURCE CODE

void AvgWctbBackColor(WindowPeek window, short light, short dark, short shade);

void ColorsNormal();

II---
11
II CheckDisplay
II
II ---
11 Determine if the device is adequate for drawing in color with System 7.
II ---
Boolean CheckDisplay(short theDepth, short deviceFlags, GDHandle targetDevice,

WindowPeek window);

II ---
11
I I General utility drawing routines
II
II ---
void MoveRectTo(Rect *theRect, short left, short top);

void FrameBox(const Rect *theRect);

void FrameTopLeftShading(Rect theRect);

void FrameBottomRightShading(Rect theRect);

II---
11
I I Window position/size access
II

II---
void GetGlobalMappingPoint(WindowPeek window, Point *thePoint);

void GetGlobalContentRect(WindowPeek window, Rect *contentRect);

II ---
#endif

WindoidDefines.h
II ***
II
II WindoidDefines.h
//

II---
// Copyright© 1991-94 Infinity Systems. All rights reserved.

419

420 APPENDIX

II---
11
II
II

This file contains only the #defines used to determine how to compile
the Infinity Windoid WDEF. By modifying only this file, you can choose
what capabilities will be included when the WDEF is compiled.

II ***
#ifndef Infinity_WINDOIDDEFINES
#define Infinity_WINDOIDDEFINES

II ---
11
I I System version define
II
II ---
#if __powerc II Since PowerPCs donut run System 6 ...

#undef SystemSevenOrLater
#define SystemSevenOrLater 1

#endif

#if !SystemSevenOrLater
#define SysternSixOrLater 1

II This is used so that we can cut down on the code size in MPW. If
II support for earlier systems is important, get rid of this.
II Note: for this define to work, precompiled headers cannot be used.

#endif

II---
endif
II ***

II
II DoWHit - Windoid hit routine.
II
II ***
long
DoWHit(WindowPeek window, long param)
{

Rect theRect;
Point hitPt;
long result = wNoHit;

hitPt.v
hitPt.h

HiWord(param);
LoWord(param);

if (PtlnRgn(hitPt, window->strucRgn))
result = winContent;

if (PtlnRgn(hitPt, window->contRgn))
II Look for a hit in the grow box.
if (WindData.hasGrow) {

GetGrowBox(window, &theRect);

CHAPTER EIGHT SOURCE CODE

InsetRect(&theRect, -1, -1);
if (PtinRect(hitPt, &theRect))

result = winGrow;

} else {

return result;

II Look for a hit in the titlebar.
Rect titleRect;
GetTitleBarRect(window, &titleRect);

if (PtinRect(hitPt, &titleRect))
{

Boolean isActive = window->hilited I I
WindData.ignoreHilite;

result = winDrag;

if (isActive) {
if (window->goAwayFlag)

GetCloseBox(window, &theRect);
InsetRect(&theRect, -kGadgetHitFudge, -

kGadgetHitFudge);
if (PtinRect(hitPt, &theRect))

result = winGoAway;

if (window->spareFlag) {
GetZoomBox(window, &theRect);
InsetRect(&theRect, -kGadgetHitFudge, -

kGadgetHitFudge);
if (PtinRect(hitPt, &theRect))

result= GetZoomHitType(window);

II***
II
II DoWDraw - Windoid drawing routines.
II
II***
typedef struct {

WindowPeek
long

WDLDataRec;

wdlWindow;
wdlParam;

II This information is used to communicate with DeviceLoop callback routine.

421

422 APPENDIX

II ---
11
II WindoidDrawLoop
II
II ---
II
II

This routine actually does the real work of the drawing of stuff into
the window.

II ---
static pascal void
WindoidDrawLoop(short depth, short deviceFlags, GDHandle targetDevice,

WDLDataRec *userData)

WindowPeek window= userData->wdlWindow; II Make sure our macros work.
Boolean isColor = CheckDisplay(depth, deviceFlags, targetDevice, window);

switch (userData->wdlParam) {
case wNoHi t:

DrawTitleBar(window, isColor);
DrawWindowFrame(window, isColor);
break;

case wlnGoAway:
ToggleCloseBox(window, isColor);
break;

case winZoomln:
case wlnZoomOut:

if (window->spareFlag)
ToggleZoomBox(window, isColor);

break;

ColorsNormal();

II---
11
11 DoWDraw
II
II ---
void
DoWDraw(WindowPeek window, long param)
{

WDLDataRec userData;

if (window->visible)
userData.wdlWindow =window;
userData.wdlParam = param;

if (SystemSevenOrLater I I HasSystem7())
#if USESROUTINEDESCRIPTORS

RoutineDescriptor drawProcRD =

#else

CHAPTER EIGHT SOURCE CODE

BUILD_ROUTINE_DESCRIPTOR(uppDeviceLoopDrawingProcinfo,
WindoidDrawLoop);

DeviceLoopDrawingUPP uppDrawProc = &drawProcRD;
II This is done to avoid allocating the RoutineDescriptor in
II the heap (with NewDeviceLoopDrawingProc) and then needing
II to dispose of it right away.

DeviceLoopDrawingUPP uppDrawProc
= (DeviceLoopDrawingUPP) &WindoidDrawLoop;

#endif

DeviceLoop(window->strucRgn, uppDrawProc,
(long) &userData, (DeviceLoopFlags) 0);

else {
WindoidDrawLoop(l, 0, nil, &userData);
II Since System 6 always draws in black-and-white, we don't need
II a device loop (otherwise we'd have to make one of our own.)

switch (param) {
case winGoAway: 11 Toggle go-away flag.

WindData.closeToggle = !WindData.closeToggle;
break;

case winZoomin:
case winZoomOut:

WindData.zoomToggle
break;

!WindData.zoomToggle;

II ***
II
II DoWCalcRgns - Windoid region calculating routine
II
II ***

II---
11
II DoWCalcRgns
II
II---
void
DoWCalcRgns(WindowPeek window, long param)
{

Rect theRect;

II Calculate the content Rect in global coordinates.
GetGlobalContentRect(window, &theRect);

423

424 APPENDIX

RectRgn(window->contRgn, &theRect);

II Start off with the structure equal to the content
II and make it include the window frame and titlebar.
InsetRect(&theRect, -1, -1);
if (WindData.isHoriz)

theRect.top -= kTitleHeight - l;
else

theRect.left -= kTitleHeight - 1;

RectRgn(window->strucRgn, &theRect);

II Add the shadow to the structure.
{

RgnHandle tempRgn = NewRgn();

OffsetRect(&theRect, 1, 1);
RectRgn(tempRgn, &theRect);
UnionRgn(tempRgn, window->strucRgn, window->strucRgn);

DisposeRgn(tempRgn);

II ***
II
II DoWGrow - Draw the growing outline.
II
II ***

II---
11
11 DoWGrow
II
II---
void
DoWGrow(WindowPeek window, long param)
{

Rect growingRect = *(Rect*) param;

if (WindData.isHoriz)
growingRect.top -= kTitleHeight - 1; II Add room for the titlebar.

else
growingRect.left kTitleHeight - l; II Add room for the titlebar.

InsetRect(&growingRect, -1, -1);

II Draw the window frame.
FrameRect(&growingRect);

if (WindData.isHoriz)

CHAPTER EIGHT SOURCE CODE

growingRect.top += kTitleHeight - l;
else

growingRect.left += kTitleHeight - 1;

II Now mark the titlebar area.
MoveTo(growingRect.left, growingRect.top);
if (WindData.isHoriz)

LineTo(growingRect.right - 2, growingRect.top);
else

LineTo(growingRect.left, growingRect.bottorn - 2);

II Mark the scroll bars too.
MoveTo(growingRect.right - kScrollBarPixels, growingRect.top + 1);
LineTo(growingRect.right - kScrollBarPixels, growingRect.bottom - 2);

MoveTo(growingRect.left, growingRect.bottom - kScrollBarPixels);
LineTo(growingRect.right - 2, growingRect.bottom - kScrollBarPixels);

II ** 7 ************************
II
II DoWDrawGicon - Draw the grow icon and scroll frame in the lower right.
II
II ** 7 ************************

II ---
11
II GrowBoxDrawLoop
II
II ---
static pascal void
GrowBoxDrawLoop(short depth, short deviceFlags, GDHandle targetDevice,

WDLDataRec *userData)

WindowPeek window = userData->wdlWindow;
Boolean isColor = CheckDisplay(depth, deviceFlags, targetDevice, window);

DrawGrowBox(window, isColor);
ColorsNormal();

II ---
11
II DoWDrawGicon
II

II ---
void
DoWDrawGicon(WindowPeek window, long param)
{

425

426 APPENDIX

if (window->visible && WindData.hasGrow)
WDLDataRec userData;
RgnHandle saveClip = NewRgn();
RgnHandle tempRgn = NewRgn();
Point mappingPoint;

SectRgn(window->port.visRgn, window->port.clipRgn, tempRgn);

GetClip(saveClip);

GetGlobalMappingPoint(window, &mappingPoint);
OffsetRgn(tempRgn, mappingPoint.h, mappingPoint.v);

SetClip(tempRgn);

userData.wdlWindow = window;

if (SystemSevenOrLater I I HasSystem7())
#if USESROUTINEDESCRIPTORS

#else

#endif

RoutineDescriptor drawProcRD =
BUILD_ROUTINE_DESCRIPTOR(uppDeviceLoopDrawingProcinfo,
GrowBoxDrawLoop);

DeviceLoopDrawingUPP uppDrawProc = &drawProcRD;
II This is done to avoid allocating the RoutineDescriptor
II in the heap, allocate it on the stack instead.

DeviceLoopDrawingUPP uppDrawProc
= (DeviceLoopDrawingUPP) &GrowBoxDrawLoop;

DeviceLoop(window->strucRgn, uppDrawProc,
(long) &userData, (DeviceLoopFlags) 0);

else {
GrowBoxDrawLoop(l, 0, nil, &userData);
II Since System 6 always draws in black-and-white, we don't need
11 a device loop (otherwise we'd have to make one of our own.)

SetClip(saveClip);

DisposeRgn(saveClip);
DisposeRgn(tempRgn);

II---

CHAPTER EIGHT SOURCE CODE

II ***
II
II WindoidTypes.h
II
II ---
11 Copyright© 1991-94 Infinity Systems. All rights reserved.

II---
#ifndef Infinity_WINDOIDTYPES
#define Infinity_WINDOIDTYPES

#include "WindoidDefines.h"

#include <Types.h>
#include <Windows.h>

II ***
II
II Constants
II
II ***

II ---
11
II Apple System 7.5 style variations
II
II ---
en um

kSystem75_toggleTBar = 1, II Bit 0 tells us whether to hilitelunhilite
II the title bar.

kSystem75_hasGrow 2, II Bit 1 is the grow bit.
kSystem75_haszoom 4, II Bit 2 is the zoom bit.
kSystem75_vertTBar 8 II Bit 3 set if titlebar is vertical.

} i

II ***
II
II Structures
II
II ***
typedef struct {

WStateData wState;
unsigned char closeToggle;
unsigned char zoomToggle;
unsigned char isHoriz;
unsigned char ignoreHilite;
unsigned char hasGrow;

WindoidData, *WindoidDataPtr, **WindoidDataHandle;

427

428 APPENDIX

II---
11
II Accessor Mac~o
II
II ---
#define WindData (**(WindoidDataHandle) window->dataHandle)

II This macro is used so I can access the 'globals' easily. Note: the
11 variable containing the window must be named 'window', and it must be in
II scope at the time of the usage of this macro. Also, they aren't REALLY
II globals, because they're kept for EACH window.

II---
#endif

Chapter Nine Source Code

PlayFromDisk XCMD.c
I*
File Name:
*I

PlayFromDisk XCMD.c

I***

PlayFromDisk XCMD

by Joe Zobkiw

Plays asynchronous sound from a disk-based AIFF file in HyperCard.

Form: PlayFromDisk [fullPathName]

***I

#include <Sound.h>
#include <Soundinput.h>
#include <Script.h>
#include <HyperXCmd.h>
#include <string.h>
#include "A4Stuff.h"
#include "SetupA4.h"

I***

#defines

***I

#define kMinParamCount
#define kMaxParamCount
#define kErrorFlag

0

1
(short)-1

CHAPTER NINE SOURCE CODE

#define kDefaultBufferSize
#define kBufferDecrement
#define kSmallestBuffer

(1024*100L)
(1024*5L)
(1024*20L)

II try to allocate lOOK buffer
II decrement buffer size by SK
II but not below 20K

#define kGlobalisPlayingFlag
#define kWindowName

"\pZobkiwisPlaying"
"\pZobkiw"

#define kidleTirne 15 I* every x ticks *I

/***

function prototypes

***I

pascal
pascal
void
void
Handle
void
Handle
long
void
char*
char*

void rnain(XCmdPtr xp);
void MyCornpletionRoutine(SndChannelPtr chan);
HandleWindowMessage(XCrndPtr xp);
HandleXCMDMessage(XCrndPtr xp);
ConcatErrorStr(XCrndPtr xp, char *ch, OSErr err);
SetError(XCrndPtr xp, char *ch, OSErr err);
CopyStrToHand(char *ch);
HandleToNum(XCrndPtr xp, Handle h);
HandleToPStr(Str255 str, Handle h);
ToCStr(char *ch);
ToPStr(char *ch);

I***~*****************************

globals

***/

Boolean
short
long
FilePlayCompletionUPP

gCloseFile;
gFileRefNum;
gSoundChannel;
gFPCupp;

/***

main

***/

pascal void main(XCmdPtr xp)
{

#ifndef powerc
long oldA4
RemernberA4();

#endif

SetCurrentA4();

if (xp->paramCount -1)

429

430 APPENDIX

HandleWindowMessage(xp);
else {

HandleXCMDMessage(xp);

#ifndef powerc
SetA4 (oldA4) ;

#endif
}

/***

MyCompletionRoutine

This tells us that the sound is done playing so we can close the
audio file the next chance we get.

***/

pascal void MyCompletionRoutine(SndChannelPtr chan)
{

#ifndef powerc
long oldA4

#endif
SetUpA4();

gCloseFile true;

#ifndef powerc
RestoreA4(oldA4);

#endif
}

/***

HandleWindowMessage

This function is called when our window gets a message. It will be called
repeatedly with idle events while our sound is playing, since we created
an invisible window during that time. During these calls we simply check
to see if the gCloseFile flag is set to true, which means our completion
routine has been called which means the sound is done playing. When this
occurs, we tell HyperCard to close the window.

This in turn calls this function again with an xCloseEvt message. This
is where we take care of disposing the sound channel, and reseting
some of the flags that we used to tell HyperCard that we had interrupt
code, we wanted idle time, and we were playing a sound.

~**************/

void HandleWindowMessage(XCmdPtr xp)

CHAPTER NINE SOURCE CODE

XWEventinfoPtr
WindowPtr

xw = (XWEventinfoPtr) (xp->params[O]);
w = xw->eventWindow;

OS Err err = noErr;

if (xw->event.what == xOpenEvt)
II ignore this message

} else if (xw->event.what == xCloseEvt)
II close the sound file
if (gFileRefNum != -1)

FSClose(gFileRefNum);
gFileRefNum = -1;

II dispose the sound channel
if (gSoundChannel != nil) {

err= SndDisposeChannel((SndChannelPtr)gSoundChannel, true);
if (err != noErr)

SetError(xp, nError: Disposing sound channel. ", err);
gSoundChannel = OL;

II reset some flags and clean up globals
SetXWidleTirne(xp, w, 0);
XWHasinterruptCode(xp, w, false);
EndXSound (xp) ;
SetGlobal(xp, kGlobalisPlayingFlag, CopyStrToHand(nfalse"));
xp->passFlag true;

if (gFPCupp)
DisposeRoutineDescriptor(gFPCupp);
gFPCupp = nil;

} else if ((gCloseFile == true) && (gSoundChannel ! = nil))
II the sound is done playing, tell the window to close
gCloseFile = false;
CloseXWindow(xp, w);

I***

HandleXCMDMessage

This function basically exists to begin the playing of a sound.

***I

void HandleXCMDMessage(XCrndPtr xp)

Str255 fileNarne;

431

432

Str32
StandardFileReply
FSSpec
SFTypeList
long
OSErr
short
WindowPtr

APPENDIX

ternpStr;
reply;
fileSpec;
typeList;
bufferSize
err :::: noErr;
refNwn :::: -1;
w :::: nil;

kDefaultBufferSize;

Rect
SndChannelPtr

boundsRect = {0,0,33,33};
chan = nil;

II tell HyperCard that we have interrupt code in this XCMD
XWHasinterruptCode(xp, w, true);

II check parameter count
if ((xp->paramCount != kMinParamCount) && (xp->paramCount != kMaxParamCount))

SetError(xp, "Error: Form = PlayFromDisk [fullPathName]. ", 0);
goto fail;

II check global variable to see if we are already playing,
II if so, stop the current sound, then do nothing.
{

Handle hGlob;
Str32 tempStr;
hGlob = GetGlobal(xp, kGlobalisPlayingFlag);
HandleToPStr(tempStr, hGlob);
if (StrToBool(xp, tempStr)) {

MyCompletionRoutine((SndChannelPtr)gSoundChannel);
return;

II initialize globals
gCloseFile :::: false;
gFileRefNum = -1;
gSoundChannel = OL;
gFPCupp = NewFilePlayCompletionProc(MyCompletionRoutine);

if (xp->pararncount == 0) {
II first ask the user to select the file if no parameter
typeList(O] = 'AIFF';
typeList(l] = 'AIFC';
StandardGetFile(nil, 2, typeList, &reply);
if (!reply.sfGood) {

SetError(xp, •cancel", 0);
goto fail;

fileSpec reply. sfFile;

CHAPTER NINE SOURCE CODE

II attempt to update the screen
zeroToPas {xp, "Go to this card", tempStr);
SendHCMessage(xp, tempStr);

} else {
II if the scripter passed in a file name, use it as a full path
HandleToPStr(fileName, xp->params[O]);
err= FSMakeFSSpec(O, 0, fileName, &fileSpec);
if (err != noErr) {

SetError(xp, "Error: Couldn't locate file. " err);
goto fail;

II attempt to create a window with a unique name
w = NewXWindow(xp, &boundsRect, kWindowName, false, documentProc,

false, false);
if (w == nil) {

SetError(xp, "Error: Couldn't create window. " 0);

goto fail;

II open the file to play
err= FSpOpenDF(&fileSpec, fsRdPerm, &refNum);
if ((err ! = noErr) 11 (refNum == -1))

SetError(xp, "Error: Couldn't open sound file. • err);
goto fail;

SetCursor(*GetCursor(watchCursor));

II tell HyperCard that our window wants idle time every 1 tick
SetXWidleTirne(xp, w, kidleTime);

II tell HyperCard that we are about to being playing a sound
II (ie: using a sound channel
BeginXSound(xp, nil);

II allocate our sound channel
err= SndNewChannel(&chan, sampledSynth, 0, nil);
if (err ! = noErr) {

Set Error (xp, "Error: Couldn • t allocate sound channel. • err) ;
goto fail;

II remember refnum & snd chan
gFileRefNum = refNum;
gSoundChannel = (long)chan;

tryAgain:
II play the sound file
err= SndStartFilePlay(chan, refNum, 0, bufferSize, nil, nil, gFPCupp, true);

433

434 APPENDIX

if ((err== notEnoughBufferSpace) && (bufferSize > kSmallestBuffer))
bufferSize -= kBufferDecrement;
goto tryAgain;

if (err != noErr)
SetError(xp, "Error: Couldn't play the sound file.
goto fail;

err);

II set a unique global variable to tell that we are now playing
SetGlobal(xp, kGlobalisPlayingFlag, CopyStrToHand("true"));

goto exit;
fail:

exit:

II clean up if fail
gCloseFile = false;
gFileRefNum = -1;
gSoundChannel = OL;
if (gFPCupp) {

DisposeRoutineDescriptor(gFPCupp);
gFPCupp = nil;

SetXWidleTime(xp, w, 0);
XWHasinterruptCode(xp, w, false);
EndXSound (xp) ;
if (w)

CloseXWindow(xp, w);

InitCursor();
return;

I***

***/

Handle ConcatErrorStr(XCmdPtr xp, char *ch, OSErr err)
{

Str255 strl;
Str32 str2;

if (err == noErr)
return((Handle)CopyStrToHand(ch));

} else {
strcpy((char*)strl, ch);
NumToString((long) err, (StringPtr)&str2);
ToCStr((char*)str2);
strcat((char*)strl, (char*)str2);

CHAPTER NINE SOURCE CODE

return((Handle)CopyStrToHand((char*)strl});

/***

***/

void SetError(XCrndPtr xp, char *ch, OSErr err)

xp->returnValue = (Handle}ConcatErrorStr(xp, ch, err);

/***

***/

Handle CopyStrToHand(char *ch)
{

Handle h;

h = NewHandleClear((long)strlen(ch) + l);
if (h)

strcpy ((char*) *h, ch);
return h;

/***

***/

long HandleToNurn(XCmdPtr xp, Handle h)
{

char
long

str(32];
nurn;

strcpy(str, *h);
nurn = StrToLong(xp, (StringPtr)ToPStr(str));
return nurn;

/***

435

436 APPENDIX

***/

void HandleToPStr(Str255 str, Handle h)

strcpy({char*)str, *h);
ToPStr((char*)str);

/***

***/

char*ToCStr(char *ch)
{

unsigned char len, i;

len = ch[O];
for (i=O;i<len;++i)

ch(i] = ch[i+l];
ch[len] = O;
return ch;

/**•********

***/

char*ToPStr(char *ch)
{

unsigned char len, i;

for (i=O,len=O;ch[i] !=O;++i)
++len;

while (i--)

ch[i+l]
ch[OJ = len;
return ch;

ch(iJ;

RecordToDisk XCMD.c
/*

File Name: RecordToDisk XCMD.c
*I

CHAPTER NINE SOURCE CODE 437

/***

RecordToDisk

by Joe Zobkiw

Records to a disk-based AIFF file in HyperCard.

Form: RecordToDisk [horizontal_loc_of_record_dlog, vertical_loc_of_record_dlog]

***/

#include <Sound.h>
#include <Sound!nput.h>
#include <Script.h>
#include <HyperXCmd.h>
#include <string.h>
#include "A4Stuff .h"
#include •setupA4.h"

/***

#defines

***/

#define kMinParamCount
#define kMaxParamCount
#define kErrorFlag

0
2
(short)-1

/***

function prototypes

***/

pascal
Handle
void
OSErr
Handle
long
char*
char*

void main(XCmdPtr xp);
ConcatErrorStr(XCmdPtr xp,
SetError(XCmdPtr xp, char
GetLocOfCardWindow(XCmdPtr

char *ch, OSErr err);
*ch, OSErr err);
xp, Point *pt);

CopyStrToHand(char *ch);
HandleToNum(XCmdPtr xp, Handle h);
ToCStr(char *ch);
ToPStr(char *ch);

/***

main

***/

438 APPENDIX

pascal void main(XCmdPtr xp)
{

StandardFileReply
Point

reply;
corner;

OSErr
short
Boolean
Boolean
Str32

err = noErr;
refNum = -1;
cancelled = false;
fileCreated = false;
tempStr;

#ifndef powerc
long oldA4
RememberA4();

#endif

SetCurrentA4();

II check parameter count
if ((xp->paramCount != kMinParamCount) && (xp->paramCount != kMaxParamCount))

SetError(xp, "Error: Form = RecordToDisk [h, v]. ", 0);
goto fail;

if (xp->paramcount == 2)
II use location as passed by scripter
corner.h (short)HandleToNum(xp, xp->params[O]);
corner.v = (short)HandleToNum(xp, xp->params(l]);

} else {
II try to get the card window location to align dialog in relation to it
err= GetLocOfCardWindow(xp, &corner);
if (err == kErrorFlag) {

SetError (xp, "Error: Couldn't get location of card window.
I 0);

goto fail;

II first ask the user to save the file
StandardPutFile ("\pSave AIFF file as:", "\pAIFF Audio", &reply);
if (!reply.sfGood) {

SetError(xp, "cancel", 0);
goto exit;

II attempt to update the screen
ZeroToPas (xp, "Go to this card", tempStr);
SendHCMessage(xp, ternpStr);

II if we are replacing a file, do so
if (reply.sfReplacing) {

err= FSpDelete(&reply.sfFile);

CHAPTER NINE SOURCE CODE

if (err != noErr)
SetError(xp, "Error: Couldn't replace file. " err);
goto fail;

II create the new file
err = FSpCreate (&reply. sfFile, '????', 'AIFF', srnRoman);
if (err != noErr) {

SetError(xp,' "Error: Couldn't create sound file. " err);
goto fail;

fileCreated = true;

11 open the file
err= FSpOpenDF(&reply.sfFile, fsRdWrPerm, &refNum);
if ((err != noErr) 11 (refNum == -1)) {

SetError(xp, "Error: Couldn't open sound file. • err);
goto fail;

II record to the file, first tell HyperCard we are about to do
II something with sound.
BeginXSound(xp, nil);
err= SndRecordToFile(nil, corner, siBestQuality, refNum);
EndXSound (xp) ;
cancelled= (err== userCanceledErr);
if (cancelled) {

SetError (xp, "cancel" , 0) ;

goto fail;

if (err != noErr)
SetError(xp, "Error: Couldn't record to sound file.
goto fail;

err);

goto exit;
fail:

exit:

11 clean up
if (refNum != -1)

FSClose (refNum);
refNum = -1;
if (fileCreated)

FSpDelete(&reply.sfFile);

if (refNum != -1)
11 close the file
FSClose (refNum) ;
II flush the volume
FlushVol(nil, reply.sfFile.vRefNum);

439

440 APPENDIX

if (cancelled)
FSpDelete(&reply.sfFile);

#ifndef powerc
SetA4(oldA4);

#endif

return;

/**•********

***/

Handle
{

ConcatErrorStr(XCrndPtr xp, char *ch, OSErr err)

Str255 strl;
Str32 str2;

if (err == noErr)
return((Handle)CopyStrToHand(ch));

} else {
strcpy((char*)strl, ch);
NurnToString((long)err, str2);
ToCStr((char*)str2);
strcat ((char*) strl, (char*) str2);
return((Handle)CopyStrToHand((char*)strl));

/**•********

***/

void SetError(XCmdPtr xp, char *ch, OSErr err)

xp->returnValue = (Handle)ConcatErrorStr(xp, ch, err);

/***

•****/

OSErrGetLocOfCardWindow(XCrndPtr xp, Point *pt)

CHAPTER NINE SOURCE CODE

Handle h;
char str[256];

strcpy (str, "i tern 1 of rect of card window") ;
h = EvalExpr (xp, (StringPtr) ToPStr (str));
if (xp->result == noErr) {

pt->h = HandleToNum(xp, h);
DisposeHandle(h);

strcpy(str, "item 2 of rect of card window");
h = EvalExpr(xp, (StringPtr)ToPStr(str));
if (xp->result == noErr) {

pt->v = HandleToNum(xp, h);
DisposeHandle(h);
return noErr;

return(kErrorFlag);

/***

***/

Handle CopyStrToHand(char *ch)
{

Handle h;

h = NewHandleClear((long)strlen(ch) + 1);
if (h)

strcpy ((char*) *h, ch);
return h;

/**•******

***/

long HandleToNum(XCmdPtr xp, Handle h)
{

char
long

str[32];
num;

strcpy(str, *h);
num = StrToLong(xp, (StringPtr)ToPStr(str));
return num;

441

442 APPENDIX

!***

***/

char*ToCStr{char *ch)
{

unsigned char len, i;

len = ch[O];
for (i=O;i<len;++i)

ch[i] = ch[i+l];
ch[len] = O;
return ch;

/***

***/

char*ToPStr(char *ch)
{

unsigned char len, i;

for (i=O,len=O;ch[i] !=O;++i)
++len;

while (i--)

ch[i+l]
ch[O) = len;
return ch;

ch(i];

Chapter Ten Source Code

ColorFill.c
I*

File Name: ColorFill.c
*/

/***

Fade

*********************•***/

#include "Photoshop.h"

#ifdef _powerc
enum {

CHAPTER TEN SOURCE CODE

uppPhotoshopFilterProcinfo = kPascalStackBased
STACK_ROUTINE_PARAMETER(l, SIZE_CODE(sizeof(short)))
STACK_ROUTINE_PARAMETER(2, SIZE_CODE{sizeof(Ptr)))
STACK_ROUTINE_PARAMETER(3, SIZE_CODE(sizeof(Ptr)))
STACK_ROUTINE_PARAMETER(4, SIZE_CODE(sizeof(Ptr)))

} ;

ProcinfoType _procinfo = uppPhotoshopFilterProcinfo;
#endif

I* typedefs */

#define itemForegroundColor
#define itemBackgroundColor
#define itemShowTimer

3
4

6

typedef struct TParameters
short
Boolean
unsigned long
unsigned long

whichColor;
fShowTimer;
startTicks;
endTicks;

TParameters, *PParameters, **HParameters;

typedef struct Globals {
short result;
FilterRecord *stuff;

Globals, *GPtr, **GHdl;

#define gResult ((*globals) .result)
#define gStuff ((*globals) .stuff)

/* function prototypes */

void InitGlobals(GPtr globals);
void DoAbout(GPtr globals);
void DoParameters(GPtr globals);
void DoPrepare(GPtr globals);
void DoStart(GPtr globals);
void DoContinue(GPtr globals);
void DoFinish(GPtr globals);

void DoFilterRect(GPtr globals);

/***

main

***/

443

444 APPENDIX

pascal void main (short selector, FilterRecord *stuff, long *data, short *result)
{

Globals
GP tr

global Values;
globals = &globalValues;

if (!*data)
InitGlobals(globals);
*data= (long)NewHandle(sizeof(Globals));
if (!*data) {

*result = rnernFullErr;
return;

**(GHdl)*data global Values;

globalValues = **(GHdl)*data;

gStuff = stuff;
gResult = noErr;

switch(selector)

case filterSelectorAbout:
DoAbout(globals);
break;

case filterSelectorPararneters:
DoParameters(globals);
break;

case filterSelectorPrepare:
DoPrepare(globals);
break;

case filterSelectorStart:
DoStart(globals);
break;

case filterSelectorContinue:
DoContinue(globals);
break;

case filterSelectorFinish:
DoFinish(globals);
break;

default:
gResult filterBadPararneters;

CHAPTER TEN SOURCE CODE

*result = gResult;
**(GHdl)*data = globalValues;

I***

InitGlobals

Initialize any globals that may need it.

***I

void InitGlobals(GPtr globals)

I***

DoAbout

***I

void DoAbout(GPtr globals)

ShowAbout(16000);

I***

DoParameters

Asks the user for the plug-in filter module's parameters. Note that
the image size information is not yet defined at this point. Also, do
not assume that the calling program will call this routine every time the
filter is run (it may save the data held by the parameters handle) and pass
them in through this call.

***I

#define kOptionsDialogID 16001

void DoParameters(GPtr globals)

short
DialogPtr
DialogTHndl
Boolean

item, whichColor;·
dp;
dt;
done false, fShowTimer;

II if our parameters have not been saved and passed in by the host program
II we can allocate new ones and initialize them.

445

446 APPENDIX

if (!gStuff->pararneters) {
gStuff->parameters = NewHandle((long)sizeof(TParameters));
if (!gStuff->pararneters) {

gResult = memFullErr;
return;

((PParameters)*gStuff->parameters)->whichColor
((PParameters)*gStuff->parameters)->fShowTimer

II load our DLOG resource in order to allow Photoshop to
II prepare for movable modalness
dt = (DialogTHndl)GetResource('DLOG', kOptionsDialogID);
HNoPurge((Handle)dt);
CenterDialog(dt);
SetUpMoveableModal(dt, gStuff->hostSig);

II load our dialog
dp = GetNewDialog(kOptionsDialogID, nil, (WindowPtr) -1);

II prepare the dialog
SetDialogDefaultitem(dp, ok);
SetDialogCancelitem(dp, cancel);
SetDialogTracksCursor(dp, true);

itemForegroundColor;
false;

SetRadioGroupState(dp, itemForegroundColor, itemBackgroundColor,
((PPararneters)*gStuff->parameters)->whichColor);

SetCheckBoxState(dp, itemShowTimer,
((PParameters)*gStuff->parameters)->fShowTimer);

SetArrowCursor();

II be movable and modal and perform the standard dialog item handling
II since we don't have any special items that need special handling
while (! done) {

MoveableModalDialog(dp, gStuff->processEvent, nil, &item);
switch (item) {

case ok:
whichColor = GetRadioGroupState(dp, itemForegroundColor,

itemBackgroundColor);
((PParameters)*gStuff->parameters)->whichColor =

whichColor;
fShowTimer = GetCheckBoxState(dp, itemShowTimer);
((PPararneters)*gStuff->parameters)->fShowTimer

fShowTimer;
done = true;
break;

case cancel:
done = true;
gResult = 1;
break;

CHAPTER TEN SOURCE CODE

case itemForegroundColor:
case itemBackgroundColor:
case itemShowTimer:

default:

II nuke the dialog
DisposDialog(dp);
HPurge ((Handle) dt);

PerformStandardDialogitemHandling(dp, item);
break;

break;

I***

Do Prepare

Prepare to filter an image. If the plug-in filter needs a large amount
of buffer memory, this routine should set the bufferSpace field to the
number of bytes required. You can also set the bufferSpace field to 0 and
use the buffer and handle suites to allocate memory later.

***I

void DoPrepare(GPtr globals)
{

gStuff->bufferSpace = O;

I***

DoStart

***I

void DoStart(GPtr globals)
{

int16
int32

row;
totalLines = gStuff->filterRect.bottom - gStuff->filterRect.top;

II insure that the advance state is available
if (!WarnAdvanceStateAvailable()) {

gResult = 1;
goto done;

II make sure things are still a go
if (gResult != noErr)448

goto done;

447

448

done:

APPENDIX

II request first & last planes to process next
gStuff->inLoPlane gStuff->outLoPlane O;
gStuff->inHiPlane = gStuff->outHiPlane = gStuff->planes - l;

II request area of image to work on, first fill in left/right bounds
gStuff->inRect.left = gStuff->outRect.left = gStuff->filterRect.left;
gStuff->inRect.right = gStuff->outRect.right = gStuff->filterRect.right;

II start the timer
if (((PParameters)*gStuff->parameters)->fShowTimer)

((PParameters)*gStuff->parameters)->startTicks

II for each row of the image, filter it

TickCount();

for (row= gStuff->filterRect.top; row< gStuff->filterRect.bottom; ++row) {

II update the progress if needed
UpdateProgress(row - gStuff->filterRect.top, totalLines);

II check for a cancellation by the user
if (TestAbort()) {

gResult = userCanceledErr;
goto done;

II set the rectangle to point to the row we are about to work on
gStuff->inRect.top = gStuff->outRect.top = row;
gStuff->inRect.bottom = gStuff->outRect.bottom = row+ l;

II call the advance state procedure
gResult = AdvanceState();

II check for errors
if (gResult != noErr)

goto done;

II filter the row
DoFilterRect(globals);

II finish timing
if (((PParameters)*gStuff->parameters)->fShowTimer)

((PParameters)*gStuff->parameters)->endTicks

II set these rects to be 0 in size since we are done
SetRect(&gStuff->inRect, 0, 0, 0, 0);
SetRect(&gStuff->outRect, 0, 0, 0, 0);

TickCount();

CHAPTER TEN SOURCE CODE

I***~***********************

DoContinue

This function is called repeatedly while inRect or outRect are non-empty.
Since we do all of our work in the DoStart function, we never get here.

***I

void DoContinue(GPtr globals)

SetRect(&gStuff->inRect, 0,
SetRect(&gStuff->outRect, 0,

0, 0,
0, 0,

0);

0);

I***

DoFinish

Called only if DoStart returns noErr. This allows the filter to clean up.
This routine is also called if the user cancels.

***I

void DoFinish(GPtr globals)

II display timer results if requested
if (((PParameters)*gStuff->parameters)->fShowTimer)

unsigned long totalTicks;
Str32 totalTicksStr;

totalTicks ((PParameters)*gStuff->parameters)->endTicks -
((PParameters)*gStuff->parameters)->startTicks;

NumToString(totalTicks, totalTicksStr);
ParamText (total TicksStr, "\p" , • \p" , • \p" l ;
InitCursor();
NoteAlert(16500, nil);
ParamText ("\p" I II \p" I n \p" I "\p");

I***

DoFilterRect

This function is called for each section of an image that we need to edit.
In our case, we pass this function a row of the image at a time.

***I

void DoFilterRect(GPtr globals)

449

450

register

register

register
register
register

APPENDIX

short

short

width = gStuff->filterRect.right -
gStuff->filterRect.left;

whichColor =
((PParameters)*gStuff->parameters)->whichColor;

unsigned8
unsignedB

*srcPtr (unsigned8 *)gStuff->inData;
*dstPtr = (unsignedB *)gStuff->outData;

short plane;

in the row, do something to it
{

II for each pixel
while (--width >= 0)

II for each plane above 4, do nothing to each pixel
for (plane = gStuff->planes - l; plane >= 4; -plane)

II for the rest of the planes, edit the pixel value
for (; plane >= O; --plane)

dstPtr[plane] = (whichColor == itemForegroundColor) ?
gStuff->foreColor[plane] : gStuff->backColor[plane];

II increment to the next pixel
srcPtr += gStuff->inHiPlane - gStuff->inLoPlane + l;
dstPtr += gStuff->planes; II one unsigned8 per plane

TVTube.c
I*

File Name: TVTube.c
*I

II ***
II
II TVTube.c
II
II---
11 C source file for TV Tube Effect filter plug-in for Photoshop.
II---
11
II
II
II
II

Original code from Dissolve.c:
Copyright 1990 by Thomas Knoll.
Copyright 1991-95 by Adobe Systems, Inc. All rights reserved.
Converted to work with Metrowerks CodeWarrior by Joe Zobkiw. (312195)

Copyright 1995 by Troy Gaul.
II---
I I CHANGE HISTORY: (most recent first)
II 315195 - TG - Moved parameters dialog into GetParameters function.
II Now calls GetParameters from DoContinue instead of
II DoParameters (to facilitate a possible preview area).
II 314195 - TG - Started from Dissolve sample.

CHAPTER TEN SOURCE CODE

II ***

#include "Photoshop.h"

II ---
11
II Constants
II
II---
en um

} i

en um

} i

kAboutBoxDialogID
kSettingsDialogID

16000,
16001,

kConunentStringListID = 16000

kOddFieldsitem = 4,
kEvenFieldsitem

II---
11
II __procinfo
II
II---
#ifdef __powerc

en um

} i

uppPhotoshopFilterProcinfo = kPascalStackBased
STACK_ROUTINE_PARAMETER(l, SIZE_CODE(sizeof(short)))
STACK_ROUTINE_PARAMETER(2, SIZE_CODE(sizeof(Ptr)))
STACK_ROUTINE_PARAMETER(3, SIZE_CODE(sizeof(Ptr)))
STACK_ROUTINE_PARAMETER(4, SIZE_CODE(sizeof(Ptr)))

ProcinfoType __procinfo uppPhotoshopFilterProcinfo;

#endif
II---
11
II TParameters
II
II---
typedef struct TParameters

short oddDelta;
short evenDelta;

TParameters, *PParameters, **HParameters;

451

452 APPENDIX

II---
11
II Globals
II
II---
typedef struct Globals {

short result;
FilterRecord *stuff;

short wantsParameters;
short inParameterStage;

short row;
Globals, *GPtr, **GHdl;

II Accessor macros.
#define gResult
#define gStuff

#define gWantsParameters
#define ginParameterStage

#define gRow

(globals->result)
(globals->stuff)

(globals->wantsParameters)
(globals->inParameterStage)

(globals->row)

II ---
11
II Prototypes
II
II---
void DoAbout(GPtr globals);
void DoParameters(GPtr globals);
void DoPrepare(GPtr globals);
void DoStart(GPtr globals);
void DoContinue(GPtr globals);
void DoFinish(GPtr globals);
void InitGlobals(GPtr globals);

II---
11
II Utility macros
II
II---
#define ClipinRange(x, min, max) \

(((x) < (min)) ? (min) : (((x) > (max)) ? (max) : (x)))

CHAPTER TEN SOURCE CODE

II---
11
II main
II
II---
II
II
II

All calls to the plug-in module come through this routine. It must be
placed first in the resource. To achieve this, most development systems
require that this be the first routine in the source.

II---
pascal void
main(short selector, FilterRecord *stuff, long *data, short *result)
{

Globals globalValues;
GPtr globals = &globalValues;

if (!*data) {
InitGlobals(globals);

*data= (long) NewHandle(sizeof(Globals));

if (!*data) {
*result = rnemFullErr;
return;

** ((GHdl) *data) global Values;

globalValues = **((GHdl) *data);

gStuff = stuff;
gResult = noErr;

switch (selector)

case filterSelectorAbout:
DoAbout(globals);
break;

case filterSelectorParameters:
DoParameters(globals);
break;

case filterSelectorPrepare:
DoPrepare(globals);
break;

case filterSelectorStart:
DoStart(globals);
break;

453

454

*result

APPENDIX

case filterSelectorContinue:
DoContinue(globals);
break;

case filterSelectorFinish:
DoFinish(globals);
break;

default:
gResult filterBadParameters;
break;

gResult;

**((GHdl) *data) = globalValues;

II---
11
II InitGlobals
II
II---
void
InitGlobals(GPtr globals)
{

gWantsParameters = false;
ginParameterStage = false;

gRow = 0;

II---
11
II SetupNextFilterStrip
II
II---
II Set the inRect and outRect for the image strip indicated by gRow.

II ---
static void
SetupNextFilterStrip(GPtr globals)
{

gStuff->inRect.top = gStuff->outRect.top = gRow;
gStuff->inRect.bottom = gStuff->outRect.bottom = gRow + l;

CHAPTER TEN SOURCE CODE

II---
11
II SetupFirstFilterStrip
II
II---
static void
SetupFirstFilterStrip(GPtr globals)
{

II Get all the planes.
gStuff->inLoPlane = gStuff->outLoPlane = O;
gStuff->inHiPlane = gStuff->outHiPlane = gStuff->planes - 1;

II Get the entire width of the filter rect each time.
gStuff->inRect.left = gStuff->outRect.left = gStuff->filterRect.left;
gStuff->inRect.right = gStuff->outRect.right = gStuff->filterRect.right;

II Start with the first scanline.
gRow = gStuff->filterRect.top;
SetupNextFilterStrip(globals);

II---
11
II GetParameters
II
II---
II
II

Display the parameters dialog for the user to enter values.
true when it is done.

Returns

II---
static Boolean
GetParameters(GPtr globals)
{

long odd, even;
short item;
DialogPtr dp;
DialogTHndl dt;
PParameters params = (PParameters) *gStuff->parameters;

II Prepare the DLOG resource for use.
dt = (DialogTHndl) GetResource('DLOG', kSettingsDialogID);
if (!dt) {

gResult = ResError() ? ResError() : resNotFound;
return true;

HNoPurge((Handle) dt);

CenterDialog(dt);
SetUpMoveableModal(dt, gStuff->hostSig);

455

456 APPENDIX

II Create the dialog.
dp = GetNewDialog(kSettingsDialogID, nil, (WindowPtr) -1);
if (!dp) {

gResult = memFullErr;
return true;

II Set the dialog up.
(void) SetDialogDefaultitem{dp, ok);
(void) SetDialogCancelitem(dp, cancel);
(void) SetDialogTracksCursor(dp, true);

StuffNumber(dp, kOddFieldsitem, params->oddDelta);
StuffNumber(dp, kEvenFieldsitem, params->evenDelta);

SetArroWCursor();

SelectTextitem(dp, kOddFieldsitem);

II Loop to handle the dialog items.
do {

MoveableModalDialog(dp, gStuff->processEvent, nil, &item);

if (item== ok) {
II Validate the input.
if (!FetchNumber(dp, kOddFieldsitem, -255, 255, &odd))

item = O;
else if (!FetchNumber(dp, kEvenFieldsitem, -255, 255, &even))

item= O;

} while (item!= ok && item!= cancel);

DisposeDialog(dp);
HPurge((Handle) dt);

II Handle the dismissal of the dialog.
if (item== ok) {

params->oddDelta = odd;
params->evenDelta = even;

else {
gResult = userCanceledErr;

return true;
II Return true because we don't want to be called again.

CHAPTER TEN SOURCE CODE

II ---
11
11 FilterRect
II

II ---
11 Filter part of the area.
II---
static void
FilterRect(GPtr globals)
{

#if 1

Byte *srcPtr
Byte *dstPtr

(unsignedB*) gStuff->inData;
(unsignedB*) gStuff->outData;

Boolean isOdd = (gStuff->inRect.top & OxOOOl);
short delta= isOdd? ((PParameters) *gStuff->parameters)->oddDelta

: ((PParameters} *gStuff->parameters)->evenDelta;

short srcColBytes = gStuff->inHiPlane - gStuff->inLoPlane + 1;
short dstColBytes = gStuff->planes;
short count= gStuff->filterRect.right - gStuff->filterRect.left;

while (count--) {
short plane;

I I All planes.
for (plane = gStuff->planes - 1; plane >= 0; --plane)

short value = srcPtr[plane) +delta;
dstPtr[plane] = ClipinRange{value, 0, 255);

#elif 0

#endif

II Only some planes
for (plane = gStuff->planes - 1; plane >= 4; --plane)

II dstPtr[plane) = 255;

for (; plane>= O; --plane) {
short value = srcPtr[plane) + delta;
dstPtr[plane] = ClipinRange(value, 0, 255);

srcPtr += srcColBytes;
dstPtr += dstColBytes;

457

458 APPENDIX

II ---
11
II DoAbout
II
II ---
11 Displays the about dialog box for the plug-in module.

II ---
void DoAbout(GPtr globals)
{

ShowAbout(kAboutBoxDialogID);

II ---
11
II DoParameters
II
II ---
II
II
II
II
II

Asks the user for the plug-in filter module's parameters. Note that
the image size information is not yet defined at this point. Also, do
not assume that the calling program will call this routine every time
the filter is run (it may save the data held by the parameters handle
in a macro file) .

II ---
void
DoParameters(GPtr globals)
{

II Create a parameter block and fill it out with defaults.
if (!gStuff->parameters) {

gStuff->parameters = NewHandle(sizeof(TParameters));

if (!gStuff->parameters) {
gResult = memFullErr;
return;

PParameters params = (PParameters) *gStuff->parameters;

params->oddDelta = 50;
params->evenDelta = -50;

II Make sure the incoming parameters are valid.
} else

PParameters params = (PParameters) *gStuff->parameters;

CHAPTER TEN SOURCE CODE

params->oddDelta = ClipinRange(params->oddDelta, -255, 255);
params->evenDelta = ClipinRange(params->evenDelta, -255, 255);

II Just in case the param block got messed up (it may have been
II stored somewhere by the host application).

gWantsParameters = true;
II Set the flag to indicate that a call to DoParameters has been
II received.

II ---
11
II DoPrepare
II
II ---
II
II
II

Prepare to filter an image. If the plug-in filter needs a large amount
of buffer memory, this routine should set the bufferSpace field to the
number of bytes required.

II---
void
DoPrepare(GPtr globals)
{

gStuff->bufferSpace 0;

II---
11
II DoStart
II
II---
11
II

Sets up filtering and grabs the first scan line of the filterRect for
the first call to DoContinue.

II---
void
DoStart(GPtr globals)
{

SetupFirstFilterStrip(globals);

II Inform DoContinue that we are in the GetParameter stage if we need to.
if (gWantsParameters) {

ginParameterStage = true;
gWantsParameters = false;

459

460

II
II
II
II
II
II
II
II
II
II
II
void

APPENDIX

DoContinue

In order for a plug-in to be able to work with versions of Photoshop
earlier than 3.0 (and other host applications as well), we need to
actually implement the filtering in DoContinue. Otherwise we could
just use the nifty new AdvanceState callback routine and do all the
filtering in DoStart.

DoContinue(GPtr globals)
{

if (ginParameterStage)

} else

Boolean done= GetParameters(globals);
II By bring up the parameters dialog here, we can add code to it
II that would allow it to support a preview area by having it
II request parts of the image and get called back. This mechanism
II is even simpler with Photoshop 3.0 and later by using the
II AdvanceState callback function.

if (done) {
ginParameterStage = false;
SetupFirstFilterStrip(globals);

II Show the current progress state.
int32 total = gStuff->filterRect.bottom - gStuff->filterRect.top;
UpdateProgress{gRow - gStuff->filterRect.top, total);

II Check for conunand-period or cancel.
if {TestAbort()) {

gResult = userCanceledErr;

else {
II Filter the current strip.
FilterRect{globals);

II Setup for next call to DoContinue.
gRow++;
if (gRow < gStuff->filterRect.bottom) {

SetupNextFilterStrip(globals);

CHAPfER ELEVEN SOURCE CODE

II We're done, so signal this fact to the host.
} else {

SetRect(&gStuff->inRect, 0, 0, 0, 0);
SetRect(&gStuff->outRect, 0, 0, 0, 0);

II ---
11
II DoFinish
II
II---
11 Do any necessary clean-up.
II ---
void
DoFinish(GPtr globals)
{

}

II---

Chapter Eleven Source Code

ComponentTester.c
I*

File Name: ComponentTester.c
*I

I*
Assumes Component Manager 3.0 or later.

*I

#include <GestaltEqu.h>
#include <Components.h>
#include <Icons.h>

#include "FatComponent.h"
#include "FatComponentPrivate.h"
#include "ComponentTester.h"

FatComponent
Handle

void main (void)

gFatComponent = nil;
giconSuite = nil;

461

462 APPENDIX

unsigned long
DialogPtr
Boolean
OS Err
Graf Ptr
UseritemUPP

randSeed;
d = nil;
fDone = false;
err = noErr;
savePort;
drawComponenticonUPP;

II initialize the Mac
InitGraf(&qd.thePort);
InitFonts();
FlushEvents(everyEvent, 0);
InitWindows();
InitMenus();
TEinit ();
InitDialogs(nil);
InitCursor();
GetDateTime((unsigned long *)&randSeed);
LMSetRndSeed(randSeed);
DrawMenuBar();

II get our main dialog box
d = GetNewDialog(dlogMainID, nil, (WindowPtr)-1);
if (d == nil) ExitToShell();

II set it up properly
GetPort(&savePort);
Set Port (d) ;
SetWindowFont(d, geneva, 9, 0, srcCopy);
draWComponenticonUPP = NewUseritemProc(DraWComponenticon);
SetUseritemProc(d, itemComponenticon, (ProcPtr)draWComponenticonUPP);
DisableControl(d, itemUnregister);
DisableControl(d, itemBeep);
DisableControl(d, itemFlash);
SelIText(d, itemBeepTimes, 0, 32767);
ShowWindow(d);

II loop until done
while (! fDone)

short i temHi t;
ModalDialog(nil, &itemHit);
switch(itemHit) {

II Component Manager will automatically unregister
II a component here, if one is registered.
case itemQuit:

fDone = true;
break;

II allow the user to choose a component file to register

CHAPTER ELEVEN SOURCE CODE

case itemRegister:
err= DoRegister();
if (err == noErr) {

DisableControl(d, itemRegister);
EnableControl(d, itemUnregister);
EnableControl(d, itemBeep);
EnableControl(d, iternFlash);

II get the icon suite of the component in order to draw it
I I in our dialog

err = GetComponenticonSuite(
(Cornponent)gFatComponent, &giconSuite);

if (err != noErr) {
ShowError(err,
"\pgetting the component's icon suite");
err :::: noErr;

else {

break;

ShowError(err, "\pregistering the component");
err = noErr;

II unregister any registered component
case itemUnregister:

err= DoUnregister();
if (err == noErr) {

EnableControl(d, iternRegister);
DisableControl(d, iternUnregister);
DisableControl(d, itemBeep);
DisableControl(d, iternFlash);

II dispose of the icon suite if any
if (giconSuite) {

err= DisposeiconSuite(giconSuite, true);
if (err != noErr) {

ShowError(err,
"\pdisposing the component's icon suite");

err = noErr;
} else giconSuite = nil;

CallUseritemProc(drawComponenticonUPP, d,
itemComponenticon); II update icon

else {

break;

ShowError (err, "\punregistering the component");
err = noErr;

II call the current component to beep x number of times
case itemBeep:

463

464 APPENDIX

break;

Str255 strBeepTimes;
long beepTimes;

GetitemText(d, itemBeepTimes, strBeepTimes);
StringToNum(strBeepTimes, &beepTimes);

err= Beep((short)beepTimes);
if (err != noErr) {

ShowError (err, " \pat tempting to beep") ;
err = noErr;

II call the current component to flash the menubar x number of times
case itemFlash:

{

break;

default:
break;

11 clean up

Str255 tempStr;
long flashTimes, flashDelay;

GetitemText(d, itemFlashTimes, tempStr);
StringToNum(tempStr, &flashTimes);
GetitemText(d, itemFlashDelay, tempStr);
StringToNum(tempStr, &flashDelay);

err= Flash((short)flashTimes, flashDelay);
if (err != noErr) {

ShowError(err, "\pattempting to flash");
err = noErr;

DisposeDialog(d);
DisposeRoutineDescriptor(draWComponenticonUPP);
SetPort(savePort);

CHAPTER ELEVEN SOURCE CODE 465

/**~************************

DoRegister

Allow the user to pick a file of type 'thng', open it, get the 'thng' resource
of ID 128 and then call RegisterCornponentResource on it. Once the component
is registered we close the resource file and continue.

***/

OSErr DoRegister(void)
{

OS Err
SFTypeList
StandardFileReply

err = noErr;
typeList = {I thng I, I???? I

reply;

StandardGetFile(nil, 1, typeList, &reply);
if (reply.sfGood) {

'????'

short fRefNum = FSpOpenResFile(&reply.sfFile, fsRdPerm);

if (fRefNum != -1)

'????'};

CornponentResourceHandle thngResH = (ComponentResourceHandle)
GetlResource(kCornponentResourceType, 128);

if (thngResH)
gFatComponent (FatComponent)

RegisterComponentResource(thngResH,
registerComponentNoDuplicates);

ReleaseResource((Handle)thngResH);
if (gFatComponent == nil)

err = -1;
} else err = ResError() ? ResError() resNotFound;

CloseResFile(fRefNum);

else err = ResError() ? ResError() fnfErr;

} else err
return err;

-128;

/***

DoUnregister

Simply call UnregisterComponent on the current registered component.

***/

OSErr DoUnregister(void)

466 APPENDIX

OSErr err = noErr;

if (gFatComponent)
err= UnregisterComponent((Component)gFatComponent);
if (err == noErr)

gFatComponent = nil;

return err;

/***

Beep

Call the current registered component to beep beepTimes.

***!

OSErr Beep(short beepTimes)
{

OS Err
Componentlnstance

err
ci;

noErr;

ci = OpenComponent((Component)gFatComponent);
if (ci) {

short outBeepTimes;

err= DoBeep(ci, beepTimes, &outBeepTimes);
if (err ! = no Err) ShowError (err, " \pat tempting to Do Beep") ;

if (outBeepTimes != beepTirnes) ShowError(kGenericError,
"\pcornparing beepTimes to outBeepTirnes");

err= CloseCornponent(ci);
if (err != noErr) ShowError(err, "\pattempting to CloseComponent");

} else err = kGenericError;

return err;

/***

Flash

Call the current registered component to flash flashTimes.

***!

OSErr Flash(short flashTimes, long flashDelay)

CHAPTER ELEVEN SOURCE CODE

OS Err
Component Instance

err
ci;

noErr;

ci OpenComponent((Component)gFatComponent);
if (ci) {

short outFlashTimes;

err= DoFlash(ci, flashTimes, flashDelay, &outFlashTimes);
if (err ! = noErr) ShowError (err, "\pat tempting to DoFlash");

if (outFlashTimes != flashTimes)
ShowError(kGenericError,
"\pcomparing flashTimes to outFlashTimes");

err= CloseComponent(ci);
if (err != noErr) ShowError(err, "\pattempting to CloseComponent");

} else err = kGenericError;

return err;

/***

DraWComponenticon

User item proc to draw the components icon.

***/

pascal void DraWComponenticon(DialogPtr d, short theitern)
{

Rect r;
GrafPtr savePort;

GetPort(&savePort);
SetPort (d);

GetDialogitemRect(d, theitern, &r);
if (giconSuite) {

OSErr err= PloticonSuite(&r, atNone, ttNone, giconSuite);
} else {

FillRect(&r, &qd.ltGray);
FrarneRect(&r);

SetPort(savePort);

467

468 APPENDIX

/***

GetitemText

***/

void GetitemText(DialogPtr dlg, short itemNwnber, unsigned char* textStr)

short iKind;
Handle iHandle;
Rect iRect;

GetDitem(dlg, itemNwnber, &iKind, &iHandle, &iRect);
GetIText(iHandle, textStr);

/***

GetDialogitemRect

***/

void GetDialogitemRect(DialogPtr dlg, short itemNwnber, Rect *r)

short iKind;
Handle iHandle;

GetDitem(dlg, itemNwnber, &iKind, &iHandle, r);

/***

SetUseritemProc

***/

void SetUseritemProc(DialogPtr dlg, short userltem, ProcPtr userProc)

short
Handle
Rect

iKind;
iHandle;
iRect;

GetDitem(dlg, userltem,
SetDitem(dlg, useritem,

&iKind, &iHandle, &iRect);
iKind, (Handle)userProc, &iRect);

/***

EnableControl

***/

CHAPTER ELEVEN SOURCE CODE

void EnableControl(DialogPtr dlg, short controlNumber)

short iKind;
Handle iHandle;
Rect iRect;

GetDitern(dlg, controlNumber, &iKind,
HiliteControl((ControlHandle)iHandle,

&iHandle,
0);

&iRect);

/***

DisableControl

***/

void DisableControl(DialogPtr dlg, short controlNumber)

short iKind;
Handle iHandle;
Rect iRect;

GetDitem(dlg, controlNumber, &iKind, &iHandle, &iRect);
HiliteControl((ControlHandle)iHandle, 255);

/***

SetWindowFont

**/

469

void SetWindowFont(DialogPtr d, short fontNum, short fontSize, Style fontStyle, short

fontMode)
{

Fontinfo
Graf Ptr

£Info;
savePort;

GetPort(&savePort);
SetPort (d);

TextFont(fontNum);
TextSize(fontSize);
TextFace(fontStyle);
TextMode(fontMode);

GetFontinfo(&finfo);

(*((DialogPeek)d)->textH)->fontAscent
(*((DialogPeek)d)->textH)->lineHeight

£Info.descent + £Info.leading;

£Info.ascent;
finfo. ascent +

470 APPENDIX

(*((DialogPeek)d)->textH)->txFont
(*((DialogPeek)d)->textH)->txFace
(*((DialogPeek)d)->textH)->txMode
(*((DialogPeek)d)->textH)->txSize

SetPort(savePort);

fontNum;
fontStyle;
fontMode;
fontSize;

/***

ShowError

********************************w**/

void ShowError(OSErr errorCode, unsigned char * errorStr)

Str32 errorCodeStr;
NumToString((long)errorCode, errorCodeStr);
PararnText(errorCodeStr, errorStr, "\p 11

, "\p");
StopAlert(256, nil);
PararnText (11 \p 11

,
11 \p", "\p 11

, "\p");

ComponentTester.h
/*

File Name: ComponentTester.h
*I

#pragma once

#define dlogMainID
#define itemQuit
#define itemRegister
#define itemUnregister
#define itemBeep
#define itemFlash
#define itemBeepTimes
#define itemFlashTimes
#define itemFlashDelay
#define itemComponenticon

OSErr DoRegister(void);
OSErr DoUnregister(void);
OSErr Beep(short beepTimes);

128
1
5
6
7
8
9
10
11
17

OSErr Flash(short flashTimes, long flashDelay);
pascal void DraWComponenticon(DialogPtr d, short theitem);

void GetitemText(DialogPtr dlg, short itemNumber, unsigned char* textStr);

CHAPTER ELEVEN SOURCE CODE

void GetDialogitemRect(DialogPtr dlg, short itemNumber, Rect *r);
void SetUseritemProc(DialogPtr dlg, short useritem, ProcPtr userProc);
void EnableControl(DialogPtr dlg, short controlNumber);
void DisableControl(DialogPtr dlg, short controlNumber);
void SetWindowFont(DialogPtr d, short fontNum, short fontSize,

Style fontStyle, short fontMode);
void ShowError(OSErr errorCode, unsigned char* errorStr);

FatComponent.c
/*

File Name: FatCornponent.c
*/

/*

Assumes QuickTime 2.0 or later and Component Manager 3.0 or later.
*/

#include "FatComponent.h"
#include "FatComponentPrivate.h"
#include "FatComponentCommon.h"
#include <Errors.h>
#ifndef __powerc

#include <A4Stuff.h>
#endif

pascal ComponentResult main (ComponentParameters *params, Handle storage);

#ifdef __powerc
INSTANTIATE_ROUTINE_DESCRIPTOR(FatCanDo);
INSTANTIATE_ROUTINE_DESCRIPTOR(FatOpen);
INSTANTIATE_ROUTINE_DESCRIPTOR(FatClose);
INSTANTIATE_ROUTINE_DESCRIPTOR(FatVersion);

INSTANTIATE_ROUTINE_DESCRIPTOR(FatDoBeep);
INSTANTIATE_ROUTINE_DESCRIPTOR(FatDoFlash);

RoutineDescriptor MainRD =
BUILD_ROUTINE_DESCRIPTOR(uppComponentRoutineProcinfo, main);

ProcinfoType __procinfo = uppComponentRoutineProcinfo;
#endif

pascal ComponentResult main (ComponentParameters *params, Handle storage)
{

ComponentResult

#ifndef __powerc
long oldA4;

result = noErr;

471

472 APPENDIX

oldA4 = SetCurrentA4();
#endif

I I Did we get a Component Manager request code (< 0)?
if (params->what < 0) {

switch (params->what) {

} else {

case kComponentOpenSelect:
result= CallComponentFunctionUniv(params, FatOpen);
break;

case kComponentCloseSelect:
result CallComponentFunctionWithStorageUniv(storage,

params, FatClose);
break;

case kComponentcanDoSelect:
result= CallComponentFunctionUniv(params, FatcanDo);
break;

case kComponentVersionSelect:
result= CallComponentFunctionUniv(params, Fatversion);
break;

case kComponentRegisterSelect:
default:

result = paramErr;
break;

II not supported
I I unknown

i

I I one of ours
switch (params->what)

#ifndef __powerc
SetA4(oldA4);

#endif

return result;

case kDoBeepSelect:
result= CallComponentFunctionUniv(params, FatDoBeep);
break;

case kDoFlashSelect:
result= CallComponentFunctionUniv(params, FatDoFlash);
break;

default:
result
break;

paramErr;
II unknown

J__

CHAPTER ELEVEN SOURCE CODE

FatComponent.h
I*

File Name: FatComponent.h

*I

#pragma once

#include <QuickTimeComponents.h>

#define fatComponentType 'PHAT'

II Math component request codes
en um

};

kDoBeepSelect = 1,

kDoFlashSelect

typedef Componentinstance FatComponent;

#ifdef ~cplusplus
extern •c• {
#endif ~cplusplus

pascal ComponentResult DoBeep(FatComponent fatinstance, short inBeepTimes,
short *outBeepTimes)

ComponentCallNow(kDoBeepSelect, sizeof(short) + sizeof(short*));

pascal ComponentResult DoFlash(FatComponent fatinstance, short inFlashTimes,
long inDelayTime, short *outFlashTimes)

ComponentCallNow(kDoFlashSelect, sizeof(short) + sizeof(long) +

sizeof(short*)l;

#ifdef __powerc
#define CallComponentFunctionWithStorageUniv(storage, pararns, funcName)

CallComponentFunctionWithStorage(storage, params, &funcName##RD)
#define CallComponentFunctionUniv(params, funcName) \

CallComponentFunction(params, &funcName##RD)
#define INSTANTIATE_ROUTINE_DESCRIPTOR(funcName) RoutineDescriptor funcName##RD = \

BUILD_ROUTINE_DESCRIPTOR (upp##funcName##Procinfo, funcName)
#else
#define CallComponentFunctionWithStorageUniv(storage, params, funcName)

CallComponentFunctionWithStorage(storage, params, (ComponentFunctionUPP)funcName)
#define CallComponentFunctionUniv(params, funcName) \

CallComponentFunction(pararns, (ComponentFunctionUPP)funcName)
#endif

en um
uppFatOpenProcinfo = kPascalStackBased

I RESULT_SIZE(SIZE_CODE(sizeof(ComponentResult)))

473

474

};

en um

};

en um

};

en um

} ;

en um

};

en um

};

en um

} ;

APPENDIX

I STACK_ROUTINE_PARAMETER(l, SIZE_CODE(sizeof(Componentinstance)))

uppFatCloseProcinfo ; kPascalStackBased
RESULT_SIZE(SIZE_CODE(sizeof(ComponentResult)))
STACK_ROUTINE_PARAMETER(l, SIZE_CODE(sizeof(Handle)))
STACK_ROUTINE_PARAMETER(2, SIZE_CODE(sizeof(Componentinstance)))

uppFatCanDoProcinfo ; kPascalStackBased
RESULT_SIZE(SIZE_CODE(sizeof(ComponentResult)))

I STACK_ROUTINE_PARAMETER(l, SIZE_CODE(sizeof(short)))

uppFatVersionProcinf o ; kPascalStackBased
I RESULT_SIZE(SIZE_CODE(sizeof(ComponentResult)))

uppFatTargetProcinfo ; kPascalStackBased
RESULT_SIZE(SIZE_CODE(sizeof(ComponentResult)))
STACK_ROUTINE_PARAMETER(l, SIZE_CODE(sizeof(Handle)))
STACK_ROUTINE_PARAMETER(2, SIZE_CODE(sizeof(Componentinstance)))

uppFatDoBeepProcinfo ; kPascalStackBased
RESULT_SIZE(SIZE_CODE(sizeof(ComponentResult)))
STACK_ROUTINE_PARAMETER(l, SIZE_CODE(sizeof(short)))
STACK_ROUTINE_PARAMETER(2, SIZE_CODE(sizeof(short*)})

uppFatDoFlashProcinfo ; kPascalStackBased
RESULT_SIZE(SIZE_CODE(sizeof(ComponentResult))}
STACK_ROUTINE_PARAMETER(l, SIZE_CODE(sizeof(short)))
STACK_ROUTINE_PARAMETER(2, SIZE_CODE(sizeof(long)))
STACK_ROUTINE_PARAMETER(3, SIZE_CODE(sizeof(short*}))

#ifdef ~cplusplus
}

#endif ~cplusplus

CHAPTER ELEVEN SOURCE CODE

FatComponentCommon.c
I*

File Name: FatComponentCommon.c
*I

#include "FatComponent.h"
#include "FatComponentCommon.h"
#include "FatComponentPrivate.h"
#include <OSUtils.h>

pascal CornponentResult FatOpen(Componen~Instance self)

ComponentResult
PrivateGlobals**

result = noErr;
globals;

globals= (PrivateGlobals**)NewHandleClear(sizeof(PrivateGlobals));
if {globals != nil) {

II remember ourselves
(*globals)->self = (Component)self;

II tell the component manager that we have global storage
SetComponentinstanceStorage(self, (Handle)globals);

} else result= MemError() ? MemError() : memFullErr;ll NewHandleClear failed

return result;

pascal CornponentResult FatClose{Handle storage, Componentinstance self)

ComponentResult
PrivateGlobals**

result = noErr;
globals = (PrivateGlobals**) storage;

if {globals !=nil)
DisposeHandle((Handle)globals);
globals = nil;

return result;

pascal ComponentResult FatCanDo(short selector)
{

switch(selector)

II component Manager request codes
case kComponentOpenSelect:
case kComponentCloseSelect:
case kComponentCanDoSelect:
case kComponentVersionSelect:

475

476 APPENDIX

II our component request codes
case kDoBeepSelect:
case kDoFlashSelect:

return true;
break;

case kComponentRegisterSelect: II not supported
default: II unknown request

return false;
break;

pascal ComponentResult FatVersion(void)

return interfaceRevision;

pascal ComponentResult FatDoBeep(short inBeepTimes, short *outBeepTimes)
{

ComponentResult result = noErr;

*outBeepTimes = inBeepTimes;
if (inBeepTirnes > 0) {

short i;
for (i=l;i<=inBeepTimes;++i)

SysBeep(O);
} else result = kGenericError;

return result;

pascal ComponentResult FatDoFlash(short inFlashTimes, long inDelayTime, short *outFlashTimes)
{

ComponentResult result = noErr;

*outFlashTimes = inFlashTimes;
if (inFlashTimes > 0) {

short i;
long outTicks;
for (i=l;i<=inFlashTimes;++il

FlashMenuBar(Ol;
Delay(inDelayTime, &outTicks);
FlashMenuBar(O);
Delay(inDelayTime, &outTicks);

} else result kGenericError;

return result;

CHAPTER ELEVEN SOURCE CODE

FatComponentCommon.h
I*

File Name: FatComponentCommon.h
*/

#pragma once

#include <QuickTimeComponents.h>

pascal ComponentResult
pascal ComponentResult
pascal ComponentResult
pascal ComponentResult
pascal ComponentResult
pascal ComponentResult

PPCGlue.c
/*

File Name:

*I

I*

FatOpen(Componentinstance self);
FatClose(Handle storage, Componentinstance self);
FatcanDo(short selector);
FatVersion(void);
FatDoBeep(short inBeepTimes, short *outBeepTimes);
FatDoFlash(short inFlashTimes, long inDelayTime,

short *outFlashTimes);

PPCGlue.c

The information in this file is straight from
Technical Note QT 05 - Component Manager version 3.0

*I

#include "FatComponent.h"
#include "FatComponentPrivate.h"
#include <Menus.h>
#include <Windows.h>
#include <QuickDraw.h>
#include <OSEvents.h>
#include <Resources.h>
#include <Desk.h>
#include <Fonts.h>
#include <ToolUtils.h>
#include <Components.h>
#include <QuickTimeComponents.h>

II in InterfaceLib but was left out of headers
extern UniversalProcPtr CallComponentUPP;

II this lets us call our component from PowerPC code
enum {

uppCallComponentProcinfo = kPascalStackBased
I RESULT_SIZE(kFourByteCode)

477

478 APPENDIX

I STACK_ROUTINE_PARAMETER(l, kFourByteCode)
} ;

II we must have this glue in order to call our component from PowerPC code since
II the Component Manager allows you to create your own routines. we must mimic the
II 6Bk inline code that our 6BOxO tester uses so we create one of these glue
II routines for each of our custom functions.
pascal CornponentResult DoBeep(FatComponent fatinstance,

short inBeepTimes, short *outBeepTimes)

#define kDoBeepParamSize (sizeof(DoBeepParams))

#ifdef powerc
#pragma options align=mac68k
#endif

struct DoEeepParams
short
short

};

*outBeepTimes;
inBeepTimes;

typedef struct DoBeepParams DoBeepParams;

struct DoBeepGluePB {
unsigned char
unsigned char
short
DoBeepParams

componentFlags;
componentParamSize;
componentWhat;
params;

Componentinstanceinstance;
} ;

typedef struct DoBeepGluePB DoBeepGluePB;

#ifdef powerc
#pragma options align=reset
#endif

DoBeepGluePB myDoBeepGluePB;

I* Flags - set to zero *I
I* Size of the params struct *I
I* The component request selector *I
I* The parameters, see above •/
/*This component instance */

myDoBeepGluePB.componentFlags = O;
myDoBeepGluePB.componentParamSize = kDoBeepParamSize;
myDoBeepGluePB.componentWhat = kDoBeepSelect;
myDoBeepGluePB.params.outBeepTimes = outBeepTimes;
myDoBeepGluePB.params.inBeepTimes = inBeepTimes;
myDoBeepGluePB.instance = (Componentinstance)fatinstance;

return CallUniversalProc(CallComponentUPP, uppCallComponent?rocinfo, &myDoBeepGluePB);

pascal ComponentResult DoFlash(FatComponent fatinstance, short inFlashTimes, long inDelayTime, short
*outFlashTimes)

#define kDoFlashParamSize (sizeof(DoFlashParams))

#ifdef powerc

CHAPTER ELEVEN SOURCE CODE

#pragma options align=mac68k
#endif

struct DoFlashParams
short
long
short

} ;

*outFlashTimes;
inDelayTime;
inFlashTimes;

typedef struct DoFlashParams DoFlashParams;

struct DoFlashGluePB {
unsigned char
unsigned char
short
DoFlashParams

componentFlags;
componentParamSize;
componentWhat;
params;

Componentinstance instance;
};

typedef struct DoFlashGluePB DoFlashGluePB;

#ifdef powerc
#pragma options align=reset
#endif

DoFlashGluePB myDoFlashGluePB;

I* Flags - set to zero *I
I* Size of the params struct *I
I* The component request selector *I
I* The parameters, see above *I
I* This component instance *I

myDoFlashGluePB.componentFlags = O;
myDoFlashGluePB.componentParamSize = kDoFlashParamSize;
myDoFlashGluePB.componentWhat = kDoFlashSelect;
myDoFlashGluePB.params.outFlashTimes = outFlashTimes;
myDoFlashGluePB.params.inDelayTime = inDelayTime;
myDoFlashGluePB.params.inFlashTimes = inFlashTimes;
myDoFlashGluePB.instance = (Componentinstance)fatinstance;

return CallUniversalProc(CallComponentUPP, uppCallComponentProcinfo,
&myDoFlashGluePB);

FatComponentPrivate.h
I*

File Name: FatComponentPrivate.h
*I

#pragma once

#include <QuickTimeComponents.h>

II Component and interface revision levels
en um

interfaceRevision Ox00010001

479

480 APPENDIX

} ;

en um

kGenericError -lL
) ;

typedef
{

struct PrivateGlobals

Component self; II Our component ID

PrivateGlobals, *PrivateGlobalsPtr, **PrivateGlobalsHdl;

Chapter Twelve Source Code

RefConLDEF.c
I*

File Name: RefConLDEF.c
*I

itinclude "RefConLDEF.h"

I***~***********

function prototypes

***I

void DrawMsg(Boolean fSelect, Rect *r, Cell cell, ListHandle lh);
void HiliteMsg(Boolean fSelect, Rect *r);

/***

main

***/

pascal void main(short message, Boolean fSelect, Rect *r, Cell cell,

switch(message) {
case linitMsg:

break;

case lDrawMsg:

short dataOf fset, short dataLen, ListHandle lh)

orawMsg(fSelect, r, cell, lh);
break;

CHAPTER TWELVE SOURCE CODE

case lHiliteMsg:
HiliteMsg(fSelect, r);
break;

case lCloseMsg:
break;

default:
break;

/***~*********

DrawMsg

***I

void DrawMsg(Boolean fSelect, Rect *r, Cell cell, ListHandle lh)

RefconLDEFCell cell Data;
short dataLen;

11 get cell
dataLen = (short)sizeof(cellData);
LGetCell((Ptr) (&cellData), &dataLen, cell, lh);

II call draw proc
if (cellData.drawProc)

EraseRect (r) ;
CallRefconLDEFDrawProc(cellData.drawProc, r, cell, lh, cellData.refCon);

II hilite if selected
if (fSelect)

HiliteMsg(fSelect, r);

/***

HiliteMsg

***/

void HiliteMsg(Boolean fSelect, Rect *r)
{

unsigned char hMode;

hMode = LMGetHiliteMode();
BitClr((Ptr) (&hMode), (long)pHiliteBit);

481

482 APPENDIX

LMSetHiliteMode(hMode);
InvertRect (r);

RefConLDEF.h
/*
File Name:
*/

#pragma once

RefConLDEF.h

#define kRefConLDEFID 128 //resource id of our LDEF resource

typedef void (*RefconLDEFDrawProcType) (Rect *r, Cell cell, ListHandle lh, long refCon);

en um

} ;

uppRef conLDEFDrawProcinfo = kCStackBased
STACK_ROUTINE_PARAMETER(l, SIZE_CODE(sizeof(Rect *)))
STACK_ROUTINE_PARAMETER(2, SIZE_CODE(sizeof(Cell)))
STACK_ROUTINE_PARAMETER(3, SIZE_CODE(sizeof(ListHandle)))
STACK_ROUTINE_PARAMETER(4, SIZE_CODE(sizeof(long)))

#if USESROUTINEDESCRIPTORS
typedef UniversalProcPtr RefconLDEFDrawProcUPP;

#define CallRefconLDEFDrawProc(userRoutine, r, cell, lh, refCon)
CallUniversalProc((UniversalProcPtr) (userRoutine),

uppRefconLDEFDrawProcinfo, r, cell, lh, refCon)
#define NewRefconLDEFDrawProc(userRoutine)

(RefconLDEFDrawProcUPP) NewRoutineDescriptor((ProcPtr) (userRoutine),
uppRefconLDEFDrawProcinfo, GetCurrentISA())
#else
typedef RefconLDEFDrawProcType RefconLDEFDrawProcUPP;

#define CallRefconLDEFDrawProc(userRoutine, r, cell, lh, refCon)
(*(userRoutine)) (r, cell, lh, refCon)

#define NewRefconLDEFDrawProc(userRoutine)
(RefconLDEFDrawProcUPP) (userRoutine)

#endif

typedef struct RefconLDEFCell {
long
RefconLDEFDrawProcUPP drawProc;

refCon;

RefconLDEFCell, *RefconLDEFCellPtr, **RefconLDEFCellHdl;

\

CHAPTER TWELVE SOURCE CODE

aSWorld.c
I*

File Name: a5World.c
*I

#include "a5 World.h"

void main(void)
{

II

unsigned long randSeed;
A5Params aSp;
Rect screenBitsBounds;

II initialize the Mac
InitGraf(&qd.thePort);
InitFonts();
FlushEvents(everyEvent, 0);
InitWindows();
InitMenus();
TEinit();
InitDialogs(nil);
InitCursor();
GetDateTime((unsigned long *)&randSeed);
LMSetRndSeed(randSeed);
DrawMenuBar();

II create our own a5 world
PrepareA5World(&a5p, &screenBitsBounds);

II draw within it
ForeColor(redColor);
PaintRect(&screenBitsBounds);

II restore the old a5 world
RestoreA5World(&a5p);

II wait for a mouse click
while (!Button()) {}

II update the screen
UpdateRectangle(&screenBitsBounds);

II flush any stray events
FlushEvents(everyEvent, 0);

II Call this function before you want to draw when a5 may be invalid
II

483

484 APPENDIX

void PrepareA5World(A5ParamsPtr pp, Rect *screenBitsBounds)

II
II save the zone and set to the System zone
II this may not be needed but we used tr.is code
II in a system extension that used the system heap
II

pp->oldZone = GetZone();
SetZone(SystemZone());

II
II save DeskHook and DragHook, which are low memory proc ptrs
II then set them to 0 so they are ignored
II

pp->saveDeskHook = LMGetDeskHook();
pp->saveDragHook = LMGetDragHook();
LMSetDeskHook((UniversalProcPtr)OL);
LMSetDragHook((UniversalProcPtr)OL);

II
II set ResLoad to true so our resources are loaded
I I may not be needed in your code
II

pp->savedResLoad LMGetResLoad();
SetResLoad(true);

II
II save the values of the Font Manager and QuickDraw init flags
II

pp->pFMExist = (Ptr)Ox0D42;
pp->pQDExist = (Ptr)Ox08F3;
pp->savedFMExist * (pp->pFMExist);
pp->savedQDExist = *(pp->pQDExist);

II
II set our a5 world, initialize it, and init the Font Manager
II

pp->oldAS = SetA5((long)&(pp->qdWorld.thePort));
InitGraf(&(pp->qdWorld.qd.thePort));
if ((pp->savedFMExist == OxOO) && (LMGetWidthTabHandle()

*(pp->pFMExist) = OxFF;
InitFonts();

II
II open a color port, requires Color QuickDraw
II

nil))

II

CHAPTER TWELVE SOURCE CODE

OpenCPort((CGrafPtr) (&pp->qdWorld.port));

II
II return the bounds of the aS world we have created
II

*screenBitsBounds pp->qdWorld.qd.screenBits.bounds;

II Call this function when you are through drawing into your as world
II

void RestoreASWorld(A5ParamsPtr pp)
{

II

II
II close the color port
II

CloseCPort((CGrafPtr) (&pp->qdWorld.port));

II
II restore the old a5 world
II

SetAS(pp->oldA5);

II
II restore other saved settings
II

*(pp->pQDExist) = pp->savedQDExist;
*(pp->pFMExist) = pp->savedFMExist;
LMSetDeskHook(pp->saveDeskHook);
LMSetDragHook(pp->saveDragHook);
LMSetResLoad(pp->savedResLoad);
SetZone(pp->oldZone);

II Call this function to update the entire screen
II

void UpdateRectangle(Rect *updateRect)
{

RgnHandle
Graf Ptr
Graf Ptr

thisScreenBoundary NewRgn();
oldPort;
theBigPicture;

if (thisScreenBoundary) {
RectRgn(thisScreenBoundary, updateRect);

485

486 APPENDIX

GetPort(&oldPort);
GetWMgrPort(&theBigPicture);
SetPort(theBigPicture);
DrawMenuBar();
PaintOne(nil, thisScreenBoundary);
PaintBehind(LMGetWindowList(), thisScreenBoundary);
SetPort(oldPort);
DisposeRgn(thisScreenBoundary);

aSWorld.h
I*

File Name:
*I

#pragma once

typedef struct
QDGlobals
Graf Ptr
char

a5World.h

qd;
thePort;
stuff[28);

II QuickDraw globals
II as
I I Misc stuff

Graf Port port;
QDWorld;

II The color port we open to draw in

typedef struct
THz
UniversalProcPtr
UniversalProcPtr
unsigned char
long
Ptr
Ptr

oldZone; II
saveneskHook; II
saveDragHook; II
savedResLoad; II
oldAS; II
pFMExist; II
pQDExist; II
savedFMExist; II

saved heap zone
saved DeskHook
saved DragHook
saved ResLoad
saved AS
Font Manager initialized flag
QuickDraw initialized flag
saved value of Font Manager init unsigned char

unsigned char
QDWorld

savedQDExist; II saved value of QuickDraw init flag
qdWorld; II our QuickDraw world

ASParams, *ASParamsPtr;

void PrepareASWorld(ASParamsPtr pp, Rect *screenBitsBounds);
void RestoreA5World(A5ParamsPtr pp);
void UpdateRectangle(Rect *updateRect);

flag

.l .. --

Glossary

680x0 Any of the family of 68000 microprocessors made by Mo
torola. See PowerPC.

680x0 code Code that executes on any of the family of 68000 micro
processors made by Motorola. See PowerPC code.

accelerated resource A resource that contains a RoutineDescriptor
and PowerPC code that otherwise functions just as a 680x0 code re
source. Examples include native list definitions, native control defini
tions, native control panels, etc. See private resource.

application extension A fragment containing code and data used to
extend the functionality of an application. See system extension.

calling conventions Conventions used to describe the specific way in
which a routine is executed. Calling conventions specify how parame
ters are passed to the routine and how values are returned to the caller.

Code Fragment Manager The system software manager that handles
the loading and preparation of code fragments.

code resource A resource containing executable code. Most of the
time this refers to a resource containing 680x0 code.

connection A link between any two fragments.

487

488 GLOSSARY

connection ID The reference number used to identify a connection.
See connection.

container The storage used for a fragment. A container may store
more than one fragment. A container may be the data fork of a file or
a resource.

emulation The process by which system software running on a
PowerPC mimics a 680x0 in order to execute 680x0 code.

executable code The instructions necessary to make a microproces
sor do something.

executable resource Any resource that contains executable code.

exported symbol A symbol in a fragment that is accessible by name
to other fragments. See symbol.

fat application An application that contains 680x0 and PowerPC
code. The PowerPC code is stored in the data fork. The resource fork
contains a cfrg resource in order to tell the Code Fragment Manager
how to access the PowerPC code.

fat Contains executable code from more than one instruction set,
usually in reference to 680x0 code and PowerPC code.

fat resource A resource that contains 680x0 and PowerPC code. Fat
resources are preceded by a routine descriptor that tells where each
type of code is located and describes the calling conventions needed to
access each type.

fragment Executable PowerPC code and its associated data. Some
times called a code fragment.

head patch A patch to a trap that executes code before executing the
original trap. See tail patch.

import library A shared library that is automatically loaded at run
time by the Code Fragment Manager. See shared library.

initialization routine A function in a code fragment that is executed
immediately after the fragment has been loaded and prepared. See ter
mination routine.

GLOSSARY

instruction set architecture (ISA) The set of instructions used in a
particular processor or family of processors.

main entry point The function in a fragment or code resource that is
executed whenever the code is called.

main symbol The main routine of a fragment. Depending on the
type of fragment, this may be considered the main entry point. See
main entry point.

Mixed Mode Manager The system software manager that handles
the mixed mode architecture of 680x0 code running on the PowerPC
microprocessor.

mode switch The process of switching from the PowerPC proces
sor's native environment to that of the 680x0 emulator or vice versa.

native application An application that is compiled explicitly for the
processor on the machine on which it is executing. In many cases, this
is used incorrectly to mean a PowerPC application.

Power Macintosh The name of Apple's PowerPC computers.

PowerPC Any of the family of PowerPC microprocessors made by
Motorola. See 680x0.

PowerPC code Code that executes in native mode on any of the fam
ily of PowerPC microprocessors made by Motorola. See 680x0 code.

prepare To resolve imports in a fragment to exports from another
fragment. A fragment must be prepared before it can be used.

private resource Any resource containing executable code whose be
havior is defined by your application. Examples include HyperCard
XCMDs, Photoshop Plug-ins, etc. See accelerated resource.

procedure pointer The address of a routine.

RoutineDescriptor A data structure used by the Mixed Mode Man
ager that describes the the routines to which it refers. Routine descrip
tors contain one or more routine records. See RoutineRecord.

489

490 GLOSSARY

RoutineRecord A data structure that describes a particular routine.
This structure contains calling convention information, the location of
the routine in memory, and more. See RoutineDescriptor.

safe fat resource A fat resource that contains and is preceded by a
short stub of 680x0 code that helps to identify certain characteristics of
the hardware before execution of the main resource code. The safe fat
resource allows you to run a fat resource on a machine that does not
have the Mixed Mode Manager available. See fat resource.

shared library A fragment that exports symbols to other fragments
and can be accessed during linking and loading of other fragments.
See import library.

symbol The specific name of a code or data element within a frag
ment. See exported symbol.

system extension A fragment containing code and data used to ex
tend the functionality of the system software. See application exten
sion.

table of contents (TOC) An area of static data within a fragment that
contains pointers to code and data within the fragment, as well as to
imported symbols from other fragments.

tail patch A patch to a trap that executes code after executing the
original trap. See head patch.

termination routine A function in a code fragment that is executed
just before the fragment is unloaded. See initialization routine.

universal header files A set of header files that can be used to com
pile code for both 680x0 and PowerPC platforms.

universal procedure pointer A procedure pointer in the 680x0 envi
ronment. In the PowerPC environment, a universal procedure pointer
is a pointer to a RoutineDescriptor. See RoutineDescriptor, procedure
pointer.

virtual memory Memory available beyond the standard limits of
RAM. In most cases, virtual memory extends this available memory to
disk-based storage devices.

Index

A4
functions, 10
relative global data, 6-7
worlds, 74

AS worlds, creating, 255--60
Accelerated resources, 32-33
ADDResMenu functions, 4
Adobe Developers Association

(ADA), 188
Adobe Photoshop

3.0 Software Development Kit
(SDK), 188

using, 37
Any Application folder

finding in MenuScript folder, 72
searching, 82

any ApplicationFolderDirID fields,
69

APPE files, 62
Apple Computer, strict application

guidelines, 2
AppleEvents, 82, 249
AppleScript, making applications

execute, 64

Application extensions, 37-60
beyond private resources,

39-40
calling 680x0 code, 43-46
calling code not requiring a

mode switch, 47-48
calling the code, 40-41
calling PowerPC code, 46-47
calling shared libraries, 53-56
compiling code, 58
creating powerful, 37
private resource tips, 59-60
private resource types, 49-52
private resources, 38-39
resource code, 48-49
shared library code, 56-58
working with shared libraries,

52-53
Application Programming Interface

(API), 166
Applications

and code resource needs, 6
fat, 31
fragments, 31

491

492 INDEX

ApplyPatches function, filling in
global data, 73

Assembly language and
CodeWarrior, 9

Auditory feedback, 122

Beep buttons, 227
BeepLoud XCMD, 167
BeginXSound callback function, 172
BRAnch instruction, 12
Bugs, catching, 41

CalcCntlRgn message, 127
calcCRgns, 143
CalcRegions, 127, 157-58
Calling code, 40-41
Calling code resources, 2-4
Calling conventions, 93
CallModuleEntryProc macro, 45
CDEFs, 158
cdev files, 87
Chips

Motorola 68LC040, 16
Motorola PowerPC 601RISC,15
reduced instruction set computer

(RISC), 15
Cleanup code, 79
closeDev message, 97, 98
Code

calling, 40-41
cleanup, 79

Code and data
and code fragments, 28
moving into memory, 29

Code Fragment Manager, 16, 26-33.
See also Code fragments

code fragment resource, 31
and code fragment structure,

28-30
defined, 26
fragment-specific routines, 30
and multiple import libraries,

27-28
preparing code fragments, 27-28
taking different forms, 26
and unique connection ID, 28

Code fragments, 15-35
global data in, 6
main symbol, 30
open a connection to, 76
PowerPC, 75
resource, 31, 40
resources, 32-33
storage, 31
storage varieties, 27
stored in resources, 27
tips, 34-35

Code optimization, 245-47
and executing code, 246
not multiplying or dividing,

246
optimizing inner loops, 245
performing last, 247
unrolling loops, 246
using macros, 246

Code resources, 1-14
and 32K limits, 13
allocating global data, 68
anatomy, 2
calling, 2-4
and Code Warrior, 13
detached, 13
global limitations, 6-12
globals in, 6-12
limitations, 6-13
loading at application startup,

4-5
multisegment, 12-13
real-world example, 4-6
sending AppleEvents from, 249
storing in separate files, 5
and THINK, 13
tips, 13-14
writing into application designs,

4
Compiling. See Compiling code
control definition, 133-43
control panel, 93-95
not requiring mode switch, 42-43
PowerPC,42
shared library, 56-58
680x0,41

CodeWarrior, 6, 7, 125, 167, 194, 239
assembly language

representation, 9
CD,76
and multisegment code

resources, 13
using, 58, 68

Coie, Robert, 168
Color QuickDraw GWorlds, 131
ColorFill Filter, 195--206

code, 195-206
compiling filters, 205--6, 208
dealing with rectangles, 203
DoContinue function, 204
DoFilterRect function, 204
DoFinish function, 205
DoStart function, 202
filterSelectorParameters selector,

201
filterSelectorPrepare selector, 201
initialize global data, 198
miscellaneous filter ideas, 208-9
TV Tube filter, 206-7

Command-Option-Escape,
disabling, 253

Compiling code
application extensions, 58
components, 233-34
control definitions, 127-28,

143-44
control panels, 98-99
HyperCard externals, 180-82
list definitions, 115-17
system extensions, 82-83
window definitions, 161-62

Compiling filters, ColorFill filter,
205--6, 208

Component code, 212-22
beep buttons, 227
beeping service, 212
can do message, 219-20
close message, 218-19
define function prototype, 213
dispatcher, 217
do beep message, 221
do flash message, 221-22

INDEX

DoBeep function, 228
DoRegister function, 227
FatCanDoRD global variable, 214
flash buttons, 227
menu bar flashing service, 212
open message, 217-18
requiring main entry point, 213
tester, 225-30
unrequired messages, 220
version message, 220

Component Manager, 211, 212, 229
Component tester

code, 225-30
DoBeep function, 231
DoBeepParams, 232
DoFlash component routine, 232
PowerPC changes, 230-32

component version field, 224
ComponentCallNow macro, 228

·Components, 211-35
compiling code, 233-34
defined, 211-12
tips, 234-35
unregister, 230

Connection ID, unique, 28
Control definitions, 121-45

code, 123-27, 133-43
compiling code, 127-28, 143-44
tips, 145
writing, 123

Control Manager, operation, 121
Control, modifying icon family,

128-29
Control panels, 87-101

anatomy, 89-90
codes,93-95,93-98
compiling code, 98-99
defined,87
structures, 93
system extension changes, 90-92
tips, 100-101
use of, 87

Controls
displaying, 122
drag, 140-43
icon family, 123-29

493

494 INDEX

Controls (cont.)
slider, 129-45

CopyBits, 139
Current heap, 68

Daemon applications, writing,
249-50

Data
in a fragment, 29
global, 68

Data and code, and code
fragments, 28

Data forks, 39-40
Debugging techniques, 247-48
Definitions

list, 103-19
window, 147-63

Desk Accessory (DA), 64
DeviceLoop, 154, 155
Dialog Manager, 24
Dispose, 161
Dispose routine, 137
DisposeAllHandles, 115
DoAbou t function, 198-99
DoBeep function, 228, 231
DoContinue function, 204
DoFilterRect function, 204
DoFinish function, 205
DoMenuPatchStuff, 80
DoRegister function, 227
DoStart function, 202
Double icon drawing, 129
Drag control message, 140-43
dragCtrl message, 140
Draw, 152-55
Draw function, 126
Draw routine, 138-39
drawCntl message, 126

Entry point defined, 63, 67
ExecuteSharedLib function, 53
Extensions

application, 37-60
system, 61-85

Externals, HyperCard, 165-83

Fast Dispatch bit, 224
Fat application, 31
Fat private resource, 47
Fat resources, 33-34

building, 238-39
code to test when using, 48
containing 680x0 and PowerPC

code, 98
creating, 93
defined,33,238
using, 50-52

FatMan
creating fat resources, 240-42
creating safe fat resources,

240-42
Feedback, auditory, 122
Fields

any ApplicationFolderDirID, 69
component version, 224
FSSpec,69
menuScriptsFolderDirlD, 69
paramCount, 179
RoutineDescripter, 18
version, 19, 190

File Manager, using, 111
File Sharing Extension, and

daemon applications, 249
Files

cdev, 87
type 8BFM, 190

FillList function, 110, 111, 115
FilterMacros, 209
Filters

ColorFill, 195-206
Gaussian Blur, 189
TV Tube, 206-7

filterSelectorParameters selector,
201

filterSelectorPrepare selector,
201

Finder
folder, 66
sending an AppleEvent, 82

FindSymbol
locating functions with, 56
using, 54

Flash button, 227
Folder icon, 106
Folder item

closing, 115
opening, 114-15

Folders, obtaining the directory ID
of, 81

ForeColor, 139
Forks, data, 39-40
Fragment-specific routines

initialization, 30
main, 30
termination, 30

Fragments. See also Code
fragments

application, 31
code, 15-35
storage, 39-40

FSSpecs
explained, 71
fields, 69
structures, 108

Functions
A4, 10
ADDResMenu, 4
ApplyPatches, 73
BeginXSound callback, 172
CalcRegions, 127
DoAbout, 198-99
DoBeep, 228, 231
DoContinue, 204
DoFilterRect, 204
DoRegister, 227
DoStart, 202
draw, 126
ExecuteSharedLib, 53
FillList, 110, 111, 115
GestaltGetGlobals, 91
HandleClickOnList, 112, 114
HandleXCMDMessage, 175
InitGlobals, 198
ListElementProc, 108
NewRoutineDescriptor, 25
Pascal, 170
PlotkonlD, 123-29
real, 45

SetVersion, 8, 11
SndStartFilePlay, 179
StandardPutFile, 171
test, 127
UpdateINIT, 91

fwst resource, 88-89

Gaul, Troy, 149, 206-7
Gaussian Blur filters, 189
gCloseFile flag, 180

INDEX

Gestalt, using, 92
GestaltGetGlobals function, 91
gestaltSysArchitecture, 73
GetDirectoryID, 71
GetDitem, 23, 24
GetMenu, 261
Global data

A4-relative, 6-7
allocating, 68
in code fragments, 6
filling in, 73
and SetVersion functions, 11

Global variables, 125
Globals in code resources, 6-12
Grow and Growkon, 158-61
gVersionNumber, 8
GWorlds, 131, 132, 133, 136

HandleClickOnList function, 112,
114

Handles, disposing of, 115
HandleXCMDMessage function,

175
Header files

and learning information, 26
universal, 25

Heap
current, 68
system, 68

Hit, 156-57
hitDev message, 97
HSC Software, 189
HyperCard, 37

and API, 167-68
2.0, 173

495

496 INDEX

HyperCard externals, 165-83
calling, 166
compiling code, 180-82
PlayFromDisk XCMD code,

173-80
PowerPC support, 167-68
stored in resources, 166
tips, 182-83
written in high-level languages,

166
XCMD development, 168-69

HyperTalk, 165

Icon drawing, double, 129
Icon family controls, 123-29

control definition code, 123-27
modifications, 128-29

Icons
flags, 106
folder, 106

ICs. See Chips
INIT31, 62
InitControl, 136
InitGlobals function, 198
Initialization programs, 61-85
INITs

codes without an event loop, 82
initialization programs, 61-85
resources, 67, 72, 73
and system extension conflicts,

253
Inside Macintosh, 64, 83, 89, 131,

133, 143, 158, 169,220
Inside Macintosh-PowerPC System

Software, 75
INSTANTIATE_ROUTINE_DESCRIP-

TOR macro, 213, 214
int32 types, 191
Integrated circuits (ICs). See Chips
Intrigue Corporation, 168
ISA, 41

Kai's Power Tools, 189

Languages, high-level, 166
LDEF, 103, 108

LGetCell routines, 104-5
Libraries, 27-28, 40
List definitions, 103-19

code, 106-15
compiling code, 115-17
custom, 106
modifying, 117-18
tips, 118

List Manager, 103, 104, 105, 110
ListElementProc function, 108
Listltem structure, 108
Lists

multiple cell formats in, 243-45
of purpose, 104

LSetCell routines, 104-5

Mac Plus, 248
macDev message, 96
Mach resources, 89, 90
Machine resources, 90
Macintosh Programmers Workshop

(MPW), 6, 7
Macintosh Programming Secrets,

151
Macro, ComponentCallNow, 228
Macro defined, 45
Macros

CallModuleEntryProc, 45
INSTANTIATE_ ROUTINE

_DESCRIPTOR, 213, 214
NewModuleEntryProc68k, 45

Main defined, 2
Main entry point, 2
Mathews, Robert L., 129, 260
Memory, moving code and date

into, 29
Menu handle, obtaining, 81
Menu, rightmost system, 260-61

GetMenu, 261
MenuSelect, 261
SystemMenu, 261

Menu selection, overriding, 66
MenuScript

code, 67-74
extension called, 62
features, 66-67

MenuScript folders
finding Any Application folder

in, 72
finding in System folder, 70

MenuScript, introduction, 64-66
menuScriptsFolderDirID fields, 69
MenuSelect, 261

patches, 80
trap addresses, 80

Messages
CalcCntlRgn, 127
closeDev, 97, 98
drag control, 140-43
dragCtrl, 140
drawCntl, 126
handling, 134
hitDev, 97
macDev, 96
new, 152
testCntl, 127, 140
version, 220
wDispose, 161
wGrow, 159
wGrowkon, 161
wNew, 152

Metrowerks C/C++ & Assembly
Language Manual, 65

Metrowerks CodeWarrior. See
Code Warrior

Mixed Mode Manager, 16-17
choosing code, 19
executing routine, 20
invoking, 47
managing mode switches,

16-17
universal procedures pointers,

17-23
using universal procedures

pointers, 23-26
Mixed mode tips, 34-35
MixedModeMagic trap, 18
Mode switches, code not requiring,

42-43
Motorola 68LC040 chip, 16
Motorola PowerPC 601 RISC chip,

15

INDEX

MultiFinder, 16

Native code, 78
Native mode, 17
Native patch, 77
New message, 152
NewModuleEntryProc68k macro,

45
New Routine Descriptor function,

25
nrct resource, 87-88
##preprocessor operator, 215

Object-oriented approaches, 38
OSTrap, 65

Paged Memory Management Unit
(PMMU), 16

paramCount field, 179
Pascal function, 170
Patches

inside, 79-82
MenuSelect, 80
native, 77

Patching traps, 11, 64-66, 75-79,
251-52

PBGetCatlnfoSync, 111
Photoshop 2.5, 207
Photoshop 3.0, 207
Photoshop filter ideas, 208-9

Fade, 209
MultiFilter, 208-9
Oil Spills, 208

Photoshop filter tips, 209-10
Photoshop filters, plug-in, 185-210

acquisition modules, 187-88
export modules, 188
file format modules, 188
filter modules, 188

Photoshop plug-in architecture,
193,206

PICT resources, 129
PiPL resources, 190, 194
Pipple resource, 190
Plane defined, 204
PlayFromDisk XCMD code, 173-80

497

498 INDEX

PlotlconID function, 123-29
Plug-in Photoshop filters, 186-88
Plug-in SOK, 191
Pointers, universal procedure,

17-23
Power Macintosh, 37

code fragments (see Code
fragments)

first, 15
and virtual memory, 53

Power PC
native applications, 41
patching traps for, 75-79

PowerPC code, 42
calling, 46-47, 77
executing, 43

Private globals, allocating, 218
Private resources, 32-33, 38-39

beyond,39-40
executing, 41, 43
types of, 49-52

Private storage, 96
PrivateGlobals structure, 217
Procedure pointers, 17
Process Manager, 16
ProprietaryFormula, 167

QuickTime, 211

Real function defined, 45
RecordToDisk XCMD code, 169-73
Reduced instruction set computer

(RISC) chip, 15
refCon parameter, typecast, 109
RefConLDEF defined, 107
Regions calculations, 143
RelllemberMe,69, 70
Resources

accelerated, 32-33
accelerated and private, 32-33
calling code, 2-4
code, 1-14,40,48-49
defined, 2-3
fat, 33-34, 238-39
fat private, 47
fwst, 88-89

HyperCard externals stored in,
166

INIT, 67
Illa ch, 89, 90
machine, 90
nrct, 87-88
PICT, 129
PiPL, 190
Pipple, 190
private, 32-33, 38-39
safe fat, 33-34
Sinf, 136-37
thng, 222-25

Rezlanguage,238
Rez script, 238
Rez tool, 76, 238
RoutineDescriptors, 19, 23

and code fraglllents, 28
disposing of, 45
fields, 18

RoutineRecords, 19-20, 22
Routines

dispose, 137
DoFinish, 205
draw, 138-39
LGetCell, 104-5
LSetCell, 104-5

Safe fat resources, 33-34
building, 239-40
containing 680x0 and PowerPC

code, 98
creating, 93
using, 50-52

Seglllent Manager, 29
SetDitelll, 23, 24
SetTooITrapAddress, 65
SetVersion functions, 8, 11
Shared libraries, 40

calling, 53-56
working with, 52-53

Shared library code, 56-58
initialization routine, 56-57
termination routine, 56-57

Shift operator, 246
Sinf resource, 136-37

l:

680x0 BRAnch instruction, 12
680x0 code, 41

calling, 43-46
executing, 43
loading, 44
stub, 50

680x0 Macintosh
calling the main point, 4
code resources limitations,

6-13
software, 15

Slider controls, 129-45, 260
directions, 132
gives double-buffered animation,

132
horizontal, 130-31
modifying, 145

SndStartFilePlay function, 179
Sound Manager, 169, 172, 173
Stand-alones, creating, 250-51
StandardPutFile function, 171
Symantec' s THINK C. See THINK

c
Symbols, address of, 76
System extensions, 61-85

anatomy, 62-64
changes, 90-92
forms of, 61-62
functions performed, 61
INIT resources, 63-64
loading, 63
MenuScript, 62
tips, 84-85

System Folders
creating MenuScript folder in, 66
finding MenuScript in, 70

System heap, 68
System 7

initialization programs renamed,
61

running,68
and 680x0 software, 16
and system extensions, 61
WDEF and color tinges, 149

SystemMenu, 261
Systems extensions

INDEX

compiling code, 82-83
inside the patches, 79-82
introduction to MenuScript,

64-66
MenuScriptcode,67-74
MenuScript features, 66-67
patching traps, 64-66
patching traps for PowerPC,

75-79

Table of contents (TOC), 30
Tearing defined, 133
Techniques

adding a rightmost system
menu, 260-61

advanced and undocumented,
237-62

building fat resources, 238-39
building safe fat resources,

239-40
code optimization, 245-47
creating an AS world, 255-60
creating fat resources with

FatMan, 240-42
creating safe fat resources with

FatMan, 240-42
creating stand-alones, 250-51
debugging, 247-48
disabling Command-Option

Escape, 253
frontmost Finder window

directory, 254-55
multiple cell formats in a list,

243-45
patching register-based traps,

252-53
patching traps, 251-52
sending AppleEvents from a

code resource, 249
supporting System 6, 248
system extension conflicts, 253
writing daemon applications,

249-50
Template, use of, 50
Test functions, 127
testCntl message, 127, 140

499

500 INDEX

Text strings, displaying, 104
THINK C, 6, 7, 239
THINK, and multisegment code

resources, 13
32K limit, and multisegment code

resources, 12-13
32K limit, writing smaller code

resources, 13
thng resources, 222-25

and Component Manager 3.0,
222

and component version field, 224
defined,222,223-24
and do Auto Version bit, 225
and Fast Dispatch bit, 224

Tiger Slider controls, 129-45, 260
directions, 132
double-buffered animation, 132
horizontal, 130-31
modifying, 145

Tiger Technologies, 129
Tips

code fragments, 34-35
code resources, 13-14
component, 234-35
control definition, 145
control panel, 100-101
HyperCard externals, 182-83
list definitions, 118
mixed mode, 34-35
Photoshop filter, 209-10
private resource, 59-60
system extension, 84-85
window definition, 162-63

Tools folders, 38-39
ToolServer, 76, 239
ToolTrap, 65
Traps

MenuSelect addresses, 80
MixedModeMagic, 18
patching, 11, 64-66, 73, 251-52
patching register-based, 252-53
premise behind patching, 66

TV Tube filter, 206-7

Universal header files, 25
Universal procedures pointers,

17-23
UpdateINIT function, 91
Utility function, GetDirectorylD, 71

Variables, global, 125
vendorlD, 193
Version fields, 19, 190
Version message, 220
Vertical Blanking (VBL) Tasks, 23
Virtual memory on Power

Macintosh, 53

wCalcRgns, 158
WDEF, 147
wDispose message, 161
wGrow message, 159
wGrowkon message, 161
Window definitions, 147-63

code, 150-57
compiling code, 161-62
creating, 149
drawing a window, 153
stored as type WDEF, 147
tips, 162-63

Window Manager, 157, 158
Windows, drawing, 153
wNew message, 152

XCMDcode
main entry point, 174
making it play sound, 176
opening audio file, 177
paramCount field, 179
PlayFromDisk, 173-80

XCMDBlock, 179
XCMDs, 165, 166

BeepLoud, 167
development, 168-69
HyperCard, 37
RecordToDisk, 169-73

XFCNs, 165, 166, 167

About the Author

Joe Zobkiw (pronounced Zob-Q) has been a Macintosh software engi
neer since the mid-'80s. Since that time, he has worked on antivirus
software, communications software, and just about everything in be
tween. He really got hooked on programming during his stint as a
music synthesis major at Berklee College of Music in Boston. Working
on MIDI software while at Berklee got him the jump start he needed
to make a career out of commercial Macintosh programming. Today,
Joe writes more C than English and keeps busy via his Macintosh soft
ware development firm, TripleSoft. When he isn't surfing the net or
programming, Joe enjoys listening to tunes, playing with his synthe
sizers, and counting down the payments of his mortgage.

You can reach Joe at any of the following electronic mail addresses.

America Online:
eWorld:
CompuServe:
Internet:

TripleSoft
TripleSoft
74631, 1700
TripleSoft@aol.com
TripleSoft@eWorld.com
7 4631.1700@compuserve.com

Source code updates for this book will be posted on many major on
line services including the following services.

America Online: Use Keyword TripleSoft
eWorld: Use Shortcut TripleSoft

Metrowerks CodeWarrior Order Form
metrowerks
Please Print Clearly

Qty Cost Each Total

CodeWarrior Gold $399.00

Name
CodeWarrior Bronze $99.00

CodeWarrior Magic $299.00

CodeWarrior Academic $99.00
Company or Educational Institution

Academic lab Pack 10 $650.00

Academic lab Pack 25 $1450.00
Address

Inside CodeWarrior Doc. $34.95

Total
Address

Sales Tax (As Mar Applr l

City State/Province Zip/Postal Code
Shipping & Handling

Total Payment

Telephone Number
D Visa D Master Card D American Express

Fax Number I I I I I I I
Credit Card Number

E-mail Address

Cardholder's Signature

To Order:
Voice: (800) 377-5416
International: (419) 281-1802
Fax: (419) 281-6883

For site license and general sales information:

I I I I I I I I I

Please call Metrowerks at (512) 305-0400 or send email to sales@metrowerks.com

11 I I I
Expiry Date
(MM/VY)

I

Addison-Wesley warrants the enclosed disc to be free of defects in materials and faulty workmanship under
normal use for a period of ninety days after purchase. If a defect is discovered in the disc during the warranty
period, a replacement disc can be obtained at no charge by sending the defective disc, postage prepaid, with proof
of purchase to:

Addison-Wesley Publishing Company
Editorial Department
Trade Computer Books Division
One Jacob Way
Reading, MA 01867

After the ninety-day period, a replacement will be sent upon receipt of the defective disc and a check or money
order for $10.00, payable to Addison-Wesley Publishing Company.

Addison-Wesley makes no warranty or representation, either express or implied, with respect to this software,
its quality, performance, merchantability, or fitness for a particular purpose. In no event will Addison-Wesley, its
distributors, or dealers be liable for direct, indirect, special, incidental, or consequential damages arising out of
the use or inability to use the software. The exclusion of implied warranties is not permitted in some states.
Therefore, the above exclusion may not apply to you. This warranty provides you with specific legal rights.
There may be other rights that you may have that vary from state to state.

Software License

PLEASE READ THIS LICENSE CAREFULLY BEFORE USING THE SOFTWARE. BY USING THE
SOFTWARE, YOU ARE AGREEING TO BE BOUND BY THE TERMS OF THIS LICENSE. IF YOU DO NOT
AGREE TO THE TERMS OF THIS LICENSE RETURN THE SOFTWARE TO THE PLACE WHERE YOU
OBTAINED IT AND YOUR MONEY WILL BE REFUNDED.

1. License: The application, demonstration, system, and other software accompanying this License, whether on
disk, in read-only memory, or on any other media (the "Software") the related documentation, and fonts are
licensed to you by Metrowerks. You own the disk on which the Software and fonts are recorded but
Metrowerks and/or Metrowerks' Licensor retain title to the Software, related documentation, and fonts. This
License allows you to use the Software and fonts on a single Apple computer. You may use a copy of the
software on a home or portable computer, as long as the extra copy is never loaded at the same time the
software is loaded on the primary computer on which you use the Software.

You may make one copy of the Software and fonts in machine-readable form for backup purposes. You must
reproduce on such copy the Metrowerks copyright notice and any other proprietary legends that were on the
original copy of the Software and fonts. You may also transfer all your license rights in the Software and
fonts, the backup copy of the Software and fonts, the related documentation, and a copy of this License to
another party, provided the other party reads and agrees to accept the terms and conditions of this License.

2. Restrictions: The Software contains copyrighted material, trade secrets, and other proprietary material. In
order to protect them, and except as permitted by applicable legislation, you may not decompile, reverse
engineer, disassemble, or otherwise reduce the Software to a human-perceivable form. You may not modify,
network, rent, lease, loan, distribute, or create derivative works based upon the Software in whole or in part.
You may not electronically transmit the Software from one computer to another or over a network. If the
Software was licensed to you for academic use, you may not use the Software for commercial product
development ·

3. Software Redistribution: The following list describes the Software and Materials that licensees of
Code Warrior may incorporate into their own programs and distribute (in object code form only), solely with
their own programs, pursuant to the terms of the CodeWarrior Software License as part of a linked binary:

All libraries in ":Metrowerks C/C++ f:Libraries f'
All libraries in ":Metrowerks Pascal f:Libraries f'
All libraries in ":Metrowerks MPW Tools f:MWPPCLibraries" folder
All libraries in ":Metrowerks MPW Tools f:MW68KLibraries" folder

The following list describes the Software and Materials that licensees of CodeWarrior may incorporate into
their own programs and distribute (in object code form only), solely with their own programs, pursuant to the
terms of the CodeWarrior Software License:

ColorSync system extension, ColorSync System Profile control panel, an related profiles
Macintosh Drag and Drop, Dragging Enabler, and Clipping Extension system extensions
PowerTalk Extension and PowerTalk Manager extensions
QuickTime, QuickTime Power Plug, and QuickTime Musical Instruments system extensions
Speech Manager system extension
StdCLiblnit system extension
Thread Manager system extension
AppleScriptLib and ObjectSupportLib shared libraries
DragLib shared library
MathLib shared library
XTND Interface and XTND Power Enabler shared libraries

In order to protect Metrowerks and Metrowerks' Licensors intellectual property rights in the Software and
Materials herein, you must reproduce on each copy a copyright notice that clearly states "Copyright© by
Metrowerks and its Licensors,"and distribute such Software and Materials pursuant to a valid agreement
that is at least as protective of Metrowerks and Metrowerks' Licensors rights in the Software and Materials
as this License.

4. Termination: This License is effective until terminated. You may terminate this License at any time by
destroying the Software, related documentation, and fonts and all copies thereof. This License will terminate
immediately without notice from Metrowerks if you fail to comply with any provision of this License. Upon
termination you must destroy the Software, related documentation, and fonts, and all copies thereof.

5. Export Law Assurances: You agree and certify that neither the Software nor any other technical data
received from Metrowerks, nor the direct product thereof, will be exported outside the United States except as
authorized and as permitted by the laws and regulations of the United States. If the Software has been
rightfully obtained by you outside of the United States, you agree that you will not re-export the Software nor
any other technical data received from Metrowerks, nor the direct product thereof, except as permitted by the
laws and regulations of the United States and the laws and regulations of the jurisdiction in which you
obtained the Software.

6. Government End Users: If you are acquiring the Software and fonts on behalf of any unit or agency of the
United States Government, the following provisions apply. The Government agrees: (i) if the Software and
fonts are supplied to the Department of Defense (DoD), the Software and fonts are classified as "Commercial
Computer Software" and the Government is acquiring only "restricted rights" in the Software, its
documentation, and fonts as that term is defined in Clause 252.227-7013(c)(1) of the DFARS; and (ii) if the
Software and fonts are supplied to any unit or agency of the United States Government other than DoD, the
Government's rights in the Software, its documentation and fonts will be as defined in Clause 52.227-19(c)(2)
of the FAR or, in the case of NASA, in Clause 18-52.227-86(d) of the NASA Supplement to the FAR!

I'

7. Limited Warranty on Media: Metrowerks warrants the diskettes and/or compact disc on which the
Software and fonts are recorded to be free from defects in materials and workmanship under normal use for a
period of ninety (90) days from the date of purchase as evidenced by a copy of the receipt. Metrowerks' entire
liability and your exclusive remedy will be replacement of the diskettes and/ or compact disc not meeting
Metrowerks' limited warranty and which is returned to Metrowerks or a Metrowerks authorized
representative with a copy of the receipt. Metrowerks will have no responsibility to replace a disk/ disc
damaged by accident, abuse, or misapplication. ANY IMPLIED WARRANTIES ON THE DISKETTES
AND /OR COMPACT DISC, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE, ARE LIMITED IN DURATION TO NINETY (90) DAYS FROM
THE DATE OF DELIVERY. THIS WARRANTY GIVES YOU SPECIFIC LEGAL RIGHTS, AND YOU MAY
ALSO HA VE OTHER RIGHTS WHICH VARY BY JURISDICTION.

8. Disclaimer of Warranty on Metrowerks Software: You expressly acknowledge and agree that use of the
Software and fonts is at your sole risk. Except as is stated above, the Software, related documentation, and
fonts are provided "AS IS" and without warranty of any kind and Metrowerks and Metrowerks' Licensor(s)
(for the purposes of provisions 8 and 9, Metrowerks and Metrowerks' Licensor(s) shall be collectively
referred to as "Metrowerks") EXPRESSLY DISCLAIM ALL OTHER WARRANTIES, EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. METROWERKS DOES NOT WARRANT THAT THE
FUNCTIONS CONTAINED IN THE SOFTWARE WILL MEET YOUR REQUIREMENTS, OR THAT THE
OPERATION OF THE SOFTWARE WILL BE UNINTERRUPTED OR ERROR-FREE, OR THAT DEFECTS
IN THE SOFTWARE AND THE FONTS WILL BE CORRECTED. FURTHERMORE, METROWERKS DOES
NOT WARRANT OR MAKE ANY REPRESENTATIONS REGARDING THE USE OR THE RESULTS OF
THE USE OF THE SOFTWARE AND FONTS OR RELATED DOCUMENTATION IN TERMS OF THEIR
CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE. NO ORAL OR WRITTEN INFORMATION
OR ADVICE GIVEN BY METROWERKS OR A METROWERKS AUTHORIZED REPRESENTATIVE
SHALL CREATE A WARRANTY OR IN ANYWAY INCREASE THE SCOPE OF THIS WARRANTY.
SHOULD THE SOFTWARE PROVE DEFECTIVE, YOU (AND NOT METROWERKS OR A METROWERKS
AUTHORIZED REPRESENTATIVE) ASSUME THE ENTIRE COST OF ALL NECESSARY SERVICING,
REPAIR, OR CORRECTION. SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF IMPLIED
WARRANTIES, SO THE ABOVE EXCLUSION MAY NOT APPLY TO YOU.

9. Limitation of Liability: UNDER NO CIRCUMSTANCES, INCLUDING NEGLIGENCE, SHALL
METROWERKS BE LIABLE FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES
THAT RESULT FROM THE USE OR INABILITY TO USE THE SOFTWARE OR RELATE
DOCUMENTATION, EVEN IF METROWERKS OR A METROWERKS AUTHORIZED
REPRESENTATIVE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. SOME
JURISDICTIONS DO NOT ALLOW THE LIMITATION OR EXCLUSION OF LIABILITY FOR INCIDENTAL
OR CONSEQUENTIAL DAMAGES SO THE ABOVE LIMITATION OR EXCLUSION MAY NOT APPLY TO
YOU.

In no event shall Metrowerks' total liability to you for all damages, losses, and causes of action (whether in
contract, tort [including negligence] or otherwise) exceed that portion of the amount paid by you which is
fairly attributable to the Software and fonts.

10. Controlling Law and Severability: This License shall be governed by and construed in accordance with the
laws of the United States and the State of California, as applied to agreements entered into and to be performed
entirely within California between California residents. If for any reason a court of competent jurisdiction
finds any provision of this License, or portion thereof, to be unenforceable, that provision of the License shall
be enforced to the maximum extent permissible so as to effect the intent of the parties, and the remainder of this
License shall continue in full force and effect.

11. Complete Agreement: This License constitutes the entire agreement between the parties with respect to the
use of the Software, the related documentation, and fonts, and supersedes all prior or contemporaneous
understandings or agreements, written or oral, regarding such subject matter. No amendment to or modification
of this License will be binding unless in writing and signed by a duly authorized representative of
Metrowerks.

Should you have any questions or comments concerning this license, please do not hesitate to call
Metrowerks, (514) 747-5999, or to write to 1500 du College, suite 300, St-Laurent QC H4L SG6 Canada.
Attention: Warranty Information.

- -... -- ~-- - - ---- - -=-- -~ ::....;-

I
I

" I

..
••
"

All of the source code and a free version of Metrowerks CodeWarrior™ Lite are on the
enclosed CD-ROM.

A Fragment of Your Imagination is an indispensable reference fo r all Macintosh and Power
Macintosh programmers!

9 780201 483581

53995

I I
ISBN 0-20 1-48358-0

$39.95 u
$55.00 CANADA

