
1 \ • r~~ • ~ , - -. .----- ~ '\

I ' I. / -. .. - ~ - - -- •
-_ . n I .. ' I I' I' . ,) [" - r v .-, ' I I ' • ' ' • ·:· .- - I• '

~ I \ I • 0 I I ,- J : \ I I I ' j I ' ' -· I \ I ' I
I , -: ! J --~ • , 1_' J,, _1_: ·..- , \-"" '1 -.. , __) J ~ - •' I

0
' . .

THE TAO OF
•

crz~

YIJ&..o.JI.!!;K.I'J.~'-"· CONTAINING
S, AND

THE TAO OF

AppleScript

\

Other BMUG Publications

The BMUG Newsletter
Semi-annual Membership benefit

Zen and the Art of Resource Editing
The BMUG Guide to ResEdlt, Third Edition
by Derrick Schneider, Hans Hansen, Noah Potkin

BMUG's Quicker QulckTime
by Judi Stern & Robert Lettieri

The 1993 BMUG Sluireware Disk Catalog

The BMUG Gufde to Bulletin Boards and Beyond
by Bernard Aboba

The Beginner's ResEdlt
Zen and the Art of Resource Editing, Japanese translation

BMUG'S GUIDE TO MACINTOSH SCRIPTING

THE TAO OF

AppleScript

by Derrick Schneider
edited by Tim Holmes

Copyright © BMUG
All rights reserved. Printed in the United States of America. No
part of this book may be used or reproduced in any form or by any
means, or stored in a database or retrieval system, without prior
written permission of the publisher except in the case of brief
quotations embodied in critical articles and reviews. Making
copies of any part of this book for any purpose other than your
own personal use is a violation of United States copyright laws.
For information, address Hayden Books, 201 W. 103rd Street,
Indianapolis, IN 46290.

Library of Congress Catalog No.: 93-79095
ISBN: 1-56830-075-1

This book is sold as is, without warranty of any kind, either
express or implied. While every precaution has been taken in the
preparation of this book, the publisher and authors assume nu
responsibility for errors or omissions. Neither is any liability
assumed for damages resulting from the use of the information or
instructions contained herein. It is further stated that the pub­
lisher and authors are not responsible for any damage or loss to
your data or your equipment that results directly or indirectly
from your use of this book.

95 94 93 4 3 2

Interpretation of the printing code: the rightmost double-digit
number is the year of the book's printing; the rightmost single­
digit number the number of the book's printing. For example, a
printing code of 93-1 shows that the first printing of the book
occurred in 1993.

Trademark Acknowledgments: All products mentioned in this
book are either trademarks of the companies referenced in this
book, registered trademarks of the companies referenced in
this book, or neither. We strongly advise that you investigate a
particular product's name thoroughly before you use the name
as your own. Apple, Mac, and Madntosh are all registered trade­
marks of Apple Computer, Inc.

Limits of liability and disclaimer of warranty
BMUG's licensor(s) makes no warranties, express or implied, including
without limitation the implied warranties of merchantability and fitness for a
particular purpose, regarding the software. BMUG's licensor(s) does not
warrant, guarantee or make any representations regarding the use or the
results of the use of the software in terms of its correctness, accuracy, reliabil­
ity, currentness or otherwise. The entire risk as the results and performance of
the software is assumed by you. The exclusion of implied warranties is not
permitted by some jurisdictions. The above exclusion may not apply to you.

In no event will BMUG's licensor(s), and their directors, officers, employees or

agents (collectively BMUG's licensor) be liable to you for any consequential,
incidental or indirect damages (including damages for loss of business profits,
business interruption, loss of business information, and the life) arising out of
the use or inability to use the software even if BMUG's licensor has been
advised of the possibility of such damages. Because some jurisdictions do not
allow the exclusion or limitation of liability for consequential or incidental

damages, the above limitations may not apply to you. BMUG's licensor's
liability to you for actual damages from any cause whatsoever, and regardless
of the form of the action (whether in contract, tort (including negligence),
product liability or otherwise), will be limited to $50.

Design and Editing
Hans Hansen

Project Coordinator
Kelly Pernell

Additional Editing
Gary Shaw

Chris Holmes

Additional Review
Raines Cohen
Mario Murphy

Software Contributions
Greg Dow
Chris Reed
JoeZobkiw

Hayden Production Staff
Diana Bigham, Katy Bodenmiller, Scott Cook,

Tim Cox, Meshell Dinn, Mark Enochs,
Tom Loveman, Roger Morgan, Beth Rago,

Carrie Roth, Greg Simsic, Kevin Spear

Composed in stone serif, stone sans serif and
stone informal.

Dedication
This book is dedicated to BMUG.

Individuals that helped me to grow and
gave me experiences I never would have had.

-Derrick Schneider

Acknowledgments
While our attitude and our goals are an important part of this
book, there's a great deal more to it. This book would not have
been possible without help from the following people.

Mark Thomas, Apple's AppleScript Evangelist, who helped us
become a seed site for AppleScript, and was willing to answer any
questions we tossed his way.

The AppleScript team, who not only made some way cool soft­
ware, but were willing to answer questions when Mark couldn't.

Carol Espinosa, the current AppleScript Evangelist, who went out
of her way to help us when we needed it and got us the very latest
software so this book could be as accurate as possible.

Lastly, BMUG and David Rogelberg for putting our dreams to
paper.

AboutBMUG
BMUG is a membership-based non-profit organization dedicated
to helping users of graphical interface computers. It represents the
interests of over 12,000 Macintosh users in more than fifty coun­
tries.

BMUG started as a small user group in 1984, shortly after the
introduction of the Macintosh. As a non-profit corporation BMUG
strives to give the plain, unbiased truths about product perfor­
mance and the industry in general. We don't sell advertising in
our newsletters and make it quite clear that we will not exchange
good reviews for product donations. BMUG is neither affiliated
with, nor receives monetary support from Apple Computer or any
other for-profit entity.

We Want to Hear from You
What our readers think of Hayden Books is crucial to our sense of
well-being. If you have any comments, no matter how great or
how small, we'd appreciate your taking the time to send us a note.

David Rogelberg
Hayden Books
11711 N. College Ave.
Carmel, IN 46032
(800) 428-5331 voice
(800) 448-3804 fax

Foreword

What's the best part of your Mac? The mouse? The icons? The
menus? Alas, but these very niceties sometimes get in your way.

Ever want to automatically move folders around? Or program
your Mac to search out all your big files? Maybe you need to filter
fifty chapters of a book through a spell checker, a formatter, and
then into PageMaker?

Sure, you could do all these with your mouse and menus. But
you'd go nuts moving all these around. Wouldn't it be nifty to
have a single command that moves those folders around for you?
How about writing your own program to slide those fifty chapters
into the word processor?

Aaah: That's why you need AppleScript. It's a language that lets
you mechanize these routine operations. Lets your mind work on
the creative, and saves wear on your mouse.

It's a simple language with commands like 11tell", 11make", 11Cre­
ate", and 11quit". AppleScript automates the mundane and gives
you control of your computer. Saving time for users.

Like BMUG: a group dedicated to saving time and troubles for
Macintosh users around the world. No surprise that the good
people of BMUG have written the first book about a language that
brings script programming to your Mac.

From the back alleys of Berkeley, where you'll find apple cores and
well groomed mice, comes this guide to AppleScript. It won't
replace the best part of your Mac; it'll make it better.

-Cliff Stoll

IX

Table of Contents at a Glance
Chapter 1 Getting Started

The Journey Begins••••..........•...•••...................... 1

Chapter 2 Scripting Basics
The Threshold of Adventure 9

Chapter 3 Building Scripts
Finding Your Way .••••••..•..........••.....•..........••.••.•.. 45

Chapter 4 Building Scripts
Uving off the Land••.••••••••••..•.•...•••••...•••.••..... 57

Chapter 5 Building Scripts
Collecting Tools••••.........•....•.•••.............• 77

Chapter 6 Complex Scripts
Building a Boat ... 89

Chapter 7 Complex Scripts
Going Downstream ..•...............•••.•........••..•...••. 1 07

Chapter 8 Complex Scripts
Climbing the Mountain ...•••.............••••••••••....... 11 7

Chapter 9 Advanced Scripting
Reaching the Summit 163

Chapter 10 The Dictionary
Spreading Your Wings •..........•.......•..............•••. 183

Chapter 11 Where to Go
The Road Goes Ever On 191

Appendix A The Technology
Behind the Scenes .. 203

Appendix B The AppleScript Language
Rules of the Road ..••.•...•••.•.....••.•••••••••........••••.•• 209

Glossary ..•...... 259
About BMUG ... 271
Index ..•..••............ 279
Disk Summary•.•••••....•.....•..•••... 298

The Tao of AppleScript
----()

Introduction .. xix

1 Getting Started ... 1
The Journey Begins•.........••............•.............•••........... 1

What did you Install? .. 2
First Look at Script Editor ... 3

The Littlest Script .. 4
Using Other Programs ... 6
Dictionaries ... 7
Formatting .. 8
Saving ... 8
On Your Own .. 8

2 Scripting Basics ... 9
The Threshold of Adventure .. 9

Objects ... 9
Properties ... 11

Commands ... 11
Set (built-in) .. 12
Make (from an application) ... 12
Beep (from an addition) .. 13
Other methods of pointing to objects 13

Variables ... 15
The Naming of Variables ... 15
One more rule .. 16

Different Types of Data ... 1 7
Text .. 17
Numbers ... 18
Booleans ... 20
Lists .. 20
Records ... 21

Coercing Variables .. 22
Special Variables .. 23

result .. 24
it ... 24
return, space, and tab ... 25
pi .. 25

Conditionals .. 26

XI

XII

Comparisons•..••.................•••.••••••••...•••••••••••.•............• 28
Text•.....•..•••••........••••••••••••••....•..•••••.....•. 29
Numbers•.•••........••••••••••••.••••..•..••••••••.••••...••....•••••••••. 29
Lists .. 30
Records•••.••••••..•...•.•••••••••••••.......... 30
Booleans ... 31

Modifiers•....••••..•.••..........•....•.•••..••.............••................... 31
and, or, not ••.•...•.•.••.....................•••...............•................ 31
considering and ignoring .. 33
else statements••.......••••.•.••••••...........•••••••.••.......... 35

Repeat Loops•.•••••..••••••••••......•.••••••••..............••••.•.. 3 7
Basic Repeat Loops .•....•••••••••••...............••••••.••...•..........•.• 3 7
Conditional Repeat Loops ... 38
Counting Repeat Loops•......•..•••••••••..••.....••••••••••........• 40
Traversing a list•.••••..•.•••••........•..••••••••........•..••.•••.••. 42

On Your Own•.•••••.•••.....••...........••...•...........•....••.••. 42

3 Building Scripts ... 45
Finding Your Way•••.•••..........••••••••••••......•.•••••••••••••••. 45
Moving a Window in Scriptable Text Editor ••••••••...........•.•••••••. 45

Get the Basics in Place ... 46
Using Tell ...•.•...•.....•..••....................•••..............••••••••........... 46
Using Variables ...•....••...........•...•...•.••••••••••••......•••••••.........••• 47
Fine Tuning•...•••••••••••.......•••••••••••••.....•.••••••••.••.. 49
Fix the Bugs ..•.•.••.............•..••...•••••............•..••....•.••............. 52
Add New Features •..•..•......•.••••..•..•.............•..•.......•............• 53
On Your Own•.••..............•••.••............. 55

4 Building Scripts ... 57
Living off the Land .•...........................•.••••••••.••.•••.••.•••••.•••••..•.. 57

Get the Basics Working •••••••••••••••••............••.•.•..............•...•. 58
Make It Better•.................•.................. 59

Comments ...•......•......................••••••••••..•.....••••...•..•.......• 60
Interface ..•..•••.•..••••..•...••••..•....... 62
Fix the Bugs••••...••.................••••..•..................... 63
Add New Features ..••.......•.•.••..•.•••........•...•.........••......••.•..... 64

Adding a progress bar by using
another application•••.•............••.•...•........... 65

Get the Basics Working •..................••••••••••••••.•..•..•••••••••••••.. 65
Make It Better•..........•••••....•.•.......••.•••••••••. 67

Improving the Progress Bar ... 67
Adding a progress bar to another script 71

On Your Own .•..••••..•.••...•...••••...••••...............••..•••••••••.......... 76

S Building Scripts•................ 77
Collecting Tools .. 77

The Bubble Sort •••••..........•.....•..••.••••••....................•••••.•...•.. 78
The Basics •.••...••.•...........•........•..•.•.••••..................•.....•........ 78
Sorting Procedure •••••••...............••..•........••••••.•...•.•............•. 80
Repeated Sorting .•............••..•.•••.••..............•.....•..•.............. 81
Cleaning Up ••••..................••..................•.•..•.••••••..............••• 85
Speeding It Up ..•...•...•••••..•.....•.............•.......................•..•••• 86
Making it Friendly •••••••••••....••...........•................••...•............ 88
On Your Own •.••••.•••••••••••••.•••••••••••••...........•......................•. 88

6 Complex Scripts•.•••••.•.••.•............................... 89
Building a Boat•.....•.••••••••••••••••••••••.••....•...•....................... 89

A Little Background •••••.•••••..••••••••••••••••.••.•.••••••••.••.......•.•••••. 89
System 7 Sounds •••••••.••••••••••••••••••••••....••••••••........•.•••.•........ 90
Getting Ready to Script ... 90
Get the Basics Working •••.•.•••••••••••••.....•••••••••.......•..••••.•...... 90
Shortening your Script•••••••••••••••••.•••••........••••.••........... 92
Make It Better .••••••••••••••••...•••••••••••••••••••••••••..••••••••••............ 99
Fix The Bugs•...•••..•......••••••••••••••••.....••••••••••••••..•......... 1 02
Complications ... 1 04
Continuing On•.•••••••••..••••••.••••••.•••.•..•.•.••••••••••• 1 06

7 Complex Scripts•.•.......••......•..•..•.•• 107
Going Downstream ... 1 07

Saving as a Script Application .. 1 08
Adding Drop-ability••••••••.••••.•.•........ 1 09
Adding to Sound Sucker•.•..........•••.•.•..•.••.•••••........•••.•. 11 0
Fixing Bugs•..••.•.•.••••............•.•.•.••...•••••.••. 112
One Last Thing••••••••••••••••.•....••..•• 11 5
On Your Own•••..•....•.••....•••••..•..•...........••.•••• 11 5

8 Complex Scripts .. 117
Climbing the Mountain ..•........ 11 7

Directory Traversal Using
AppleScript's Messages ... 117

Handling Messages•.. 118
Back to the Script .. 122
Get the Basics Working•......••.•••............•........•............ 122
Getting the Message Across ...••...•.•...................•............... 123
First Work with the Files .. 124
Changing the Name: An Introduction

to Workarounds .. 126

XIII

XIV

Peeking Inside Folders ••••....................................•••..•......... 1 30
Get Folders in currentFolder••............. 131

Make It Better•....................•.............•...•••••.•.••..••. 1 32
Safety Considerations: Always Look

Before You Leap ...•....................•••.•.•...•••..•.••..•••••.•.... 133
When in Doubt, Ask ...••••...••..•.......••........••.•.................. 135
Visual Feedback•......................•..•.....•....•.•..• 1 38
A Little Overkill Can't Hurt .•....••••.........•.••....•....•.........•• 139

Fix the Bugs •... 139
Duplicate Filenames•...•••••.••.•••..........•.•..................... 140
When in Doubt, Ask .. 142
Cleaning Up .. 143
Back to the Script .•...•...................................•.••••••......... 144
Error Checking ...•.............. 146

Make It Better•....................•...•..•.•...•.....••.••••.•..•.• 148
Adding Another Dialog ..••..•.•...........•...................•..••.... 155

On Your Own••••••.••.••......•••.•.••••••..•••.••.•••••••••••• 161

9 Advanced Scripting ... 163
Reaching the Summit•.•••.••.•.•...........................•....... 163

"Nearly English" Subroutines•••.••.••..................•. 163
Script Objects••... 1 70
Networking with AppleScript .••.•...•................................... 177

Network Setup •••..••... 178
Network Scripting ... 179
Some Caveats ... 180

Onward .. 181

1 0 The Dictionary ... 183
Spreading Your Wings ... 183

Opening the Dictionary ... 183
How to Read the Dictionary .. 184
Looking Up Commands in the Dictionary 185

Command Names and Descriptions .•..•..•.•.•...••..•...•..••.• 185
Objects of Commands .. 185
Command Data Descriptions .. 186
Command Results ... 186

Looking Up Objects in the Dictionary 186
Plurals ... 187
Objects within Objects .. 187
Object Properties .. 188
Object Value Data Types ... 188
Object Modification Ability ... 189

Relating Commands to Objects ... 189
On Your Own for Real ... 190

11 Where to Go .•••••••.•••••••.••••••••••••••....••.••.•••.•••••••••• 191
The Road Goes Ever On•.••.....•.......... 191

The Appendices•.•••.•.••••.•..........•.....................•..•..•••. 193
Groups•.............•.••...••..................................•...•............ 193
Applications•......•.••.........•..........•••••....•••..........•.......•. 194
Commercial Programs ... 194

FileMaker Pro 2.0 .••..•.•....•••••••••..••••••••..•••••...•....•......••••• 195
PageMaker 5.0 .. 195
Great Plains Accounting v6 ... 196
Excel 4.0•.•..................•.....•.••••••..• 196
Microphone II v4.0.2••...•.•••••..•... 196
SerePiot 2.0 ...•............•.•. 197
Scriptor•..•.....•.•. 197
Rosanne Utilities ...•.....•••••.•.... 198
Stufflt Deluxe 3.0 ..•..... 198
QuicKeys•....................•...•.......... 199
Mirror•... 200
Picture Press 2.5 •..•...•............ 200
Frontier••........•.........•...•................................•... 201

Publicly Distributable Software .. 201
Shaman .. 201
EasyPiay 1.0 .. 202
Folder Watcher 2.0.1 .. 202
Stufflt Lite ... 202

A The Technology .•...........•.••.••••.•.•.••••••.•.•••••••.•....• 203

B The AppleScript Language ••......•...•.•.••.•••••.•.•..... 209

Glossary•.•...•.•.•....•.•.....••••.•••.•.•.•.••••.••.•..•...••.• 259

About BM UG•.................••.•••.•.....•.•...••.•.••••..•• 271

Index ••..•..............................•.•...............•••.•...•.•.•. 279

Included on the Tao Disk ...••...•••..••••••.••••..•......... 298

XV

Preface
The Tao of Who?

During the making of this book, many titles were tossed around.
Among these, The Tao of AppleScript quickly became our favorite.
In some ways, this title suggested itself. It may seem like just a
cute, gimmicky title for a book about scripting, but we feel it
embodies the spirit and purpose of this book.

Zen and the Art of Resource Editing, a BMUG book created in part by
Derrick and Hans, incorporated the philosophy of Zen Buddhism
into its approach to teaching. Our approach to AppleScript incor­
porates the underlying principles of Taoism into the way this book
conveys its meaning and teaches its subject. Another play on a
popular book title that includes a reference to an Eastern religion,
The Tao of Pooh, seemed appropriate.

Taoism is markedly different from other Eastern religions. While
many of them are heavily laden with ritual, Taoism is marked by a
decided lack of specific rites to perform. Simplicity is the primary
focus, and this is also how AppleScript was designed-to be simple
and flexible. Its power is in its lack of structure. It cannot be
approached by learning to obey a rigid set of rules. For this reason
it made sense to abandon the traditional textbook approach.

When creating the Zen book, we set out to show people that
ResEdit, a tool normally reserved for power users, could be used by
beginners just as easily. What's more, we wanted to show people
how much fun it could be. People read the book and said, "Wow,
this really is cool," and proceeded to try things they never would
have dared to before.

That kind of response feels good. It means that people didn't
simply learn to use ResEdit; they learned how to do things we
never taught them, to explore on their own.

Because of the
historical differ­
ences between
Western and
Eastern written
languages, there
is no way to
phonetically spell
"Tao" the way it
is pronounced in
Chinese. The
closest, most
common
pronunciation is
"dow" as in
"Dow Jones."

XVII

XVIII

That's what we hope to accomplish with The Tao of AppleScript.
Not simply to teach you to use AppleScript, but to inspire you. We
want you to feel the same way about AppleScript that we do­
obsessed!

Taoism's followers are encouraged to explore and discover their
own paths to realization and awareness, and so too we encourage
you to find your own path to using AppleScript. As you read, we
encourage you to take time to play with AppleScript. Write scripts,
even simple ones. Take breaks and come back to the book after
you've explored a bit.

just as each must find his own Way in Taoism, so must one find
his own Way in AppleScript.

Introduction
The Way of AppleScript

Imagine being able to set up complex, time-consuming, and
tedious tasks and then sit back and watch your Macintosh perform
them flawlessly. Better yet, imagine automating tasks that may
have taken days or even weeks to do manually-running them
overnight while sitting at home enjoying a good book, and return­
ing in the morning to find the task complete.

Imagine being able to add your own features to an application
that doesn't do everything you want, or perhaps has features that
aren't quite right. Or maybe an application doesn't exist to do
what you need.

Imagine being able to create a program to fit your needs and suit
your tastes without going through the headache of learning a
traditional programming language. Or for that matter, imagine
being able to program and have fun doing it.

All these things are a reality with AppleScript. These are the things
that make AppleScript great. You can make your Mac do the things
that you want. It's so easy-you can even enjoy doing it.

What is it?
AppleScript is a scripting language. Scripting languages have all
the capabilities of other programming languages, but are easier to
use. Scripts can store data for later use, and evaluate their sur­
roundings to decide what to do next. They also can loop through
certain instructions, repeating them as many times as you like, or
until something you specify happens. These features, and others,
are what make a scripting language-particularly AppleScript­
ideal for anyone who wants to automate a task.

XIX

XX

Many applications have incorporated their own scripting language
for automating tasks. The best known example is HyperCard,
which includes a full scripting language for manipulating every
aspect of its interface. Other applications with scripting capabili­
ties include: FileMaker, PageMaker, Excel, MicroPhone, and
WordPerfect.

AppleScript differs because its control isn't limited to a single
application. AppleScript is a part of the Macintosh Operating
System, and this enables it to work with many different applica­
tions at once, even on several Macs across a network. It can
control and gather information from those applications and then
direct others to process that data. It not only automates tasks, but
can control the flow of information from one application to
another.

As an example of what scripting can do, look at the first edition of
BMUG's disk catalog. This 700-page book lists our entire
Shareware library with a description, author information, icon,
size and compatibility listing for each of its 3,600 files, drawn
from twenty-two FileMaker Pro databases. The process of manually
bringing that information into PageMaker for layout was a huge
and time-consuming task. Not only was it inherently difficult to
deal with the sheer volume of information, the format of the book
specified fifteen chapters with six different layouts.

All these factors took an enormous amount of time: ten months to
plan and produce the entire book, including four months of
manual layout work. For the subsequent edition, there simply
wasn't that kind of time. To facilitate the production process, a
scripting language (UserLand Frontier, a language functionally
similar to AppleScript) was used to automate the entire produc­
tion. The script passed through each database and then moved the
data of each record to the page layout program, formatting it and
positioning it as it was brought in. The entire development time
for the scripts was six weeks and the scripts ran for ten days laying
out the book.

While that's an extreme example of what can be done, it gives you
an idea of the power of a scripting language. You can use
AppleScript to do very basic things as well, such as emptying the
trash every hour or whenever.

This book will show you how to take advantage of the power of
AppleScript. It also will show you the mechanics of the language
itself and will teach you how to develop your own scripts from
scratch, helping you through each step of the scripting process.

By the time you've read through this book, you'll understand how
to fully exploit AppleScript. You may even realize that AppleScript
is not only useful-it can quickly become an obsession.

XXI

Chapter 1

Getting Started

The Journey
Begins

To use AppleScript, you must first install it on your Macintosh.
You need System 7.1 or, if you are using System 7.0 or 7.0.1, you
will also need QuickTime 1.5 or later.

On the disk included with this book you'll find the files you
need for AppleScript. They are compressed into a Stufflt docu­
ment. To uncompress this document, double-dick on the item
named Tao Installer. This brings up a save dialog box. Click Save
and the document uncompresses into a folder called Tao Disk
Stuff on the top or 11root" level of your hard drive. You will need
about two and a half megabytes of free space on your hard drive
for the software on the disk.

Within the folder Tao Disk Stuff, you will find two folders. The
first folder, Install These ... , includes files that need to be put in
specific places on your hard drive: AppleScript™, Apple® Event
Manager, QuickTime™ (within a folder called 11System 7.0(.1)
users only''), and a folder entitled Scripting Additions.

tim .

.

System 7.0 + (4u1ckTf me

• TI!IO lnstener

• I nstell These •••

THE TAO OF APPLESCRIPT

~
Scrtpll"'l Addtttono

@:]
T110 AppleScript

The term
"AppleScript

aware" describes
an application

that can be
controlled by

AppleScript. The
term "Apple Script

recordable"
describes an

application that
reports the user's

actions within
that application

to the System;
AppleScript can

then record those
actions and turn

them into a
script.

2

The first two items, Apple Event Manager and AppleScript, can
be dropped onto the System Folder of your hard drive and will
automatically be placed in the Extensions folder. If you are using
System 7.0 or 7.0.1, QuickTime must also be placed in your
Extensions folder.

The Scripting Additions folder must be manually placed in the
Extensions folder by opening your System Folder and dropping it
onto your Extensions folder.

The second folder, Tao AppleScript, includes: the applications
Script Editor, Scriptable Text Editor, Progress Bar, Finder Liaison,
and Stufflt Lite, all of which can be placed anywhere on your hard
drive; the scripting additions ResMover, and DialogRunner, which
need to be placed in the Scripting Additions folder; and Folder
Watcher, a combination control panel and extension, which can
be dropped onto your System Folder. The control panel and
extension will be automatically placed in their respective folders.

After placing these files in their appropriate folders, restart your
computer to enable the system to use the AppleScript extensions.

What did you Install?
The AppleScript extension is the core of AppleScript. It includes

the language that enables AppleScript to talk to applications and
control their actions.

The Apple Event Manager gives AppleScript the capability to
record your actions. Applications that are AppleScript-aware and
recordable allow AppleScript to watch what you do and automati­
cally turn your actions into a script. This is similar to a macro
utility; however, you can fully edit the resulting scripts. Apple
Event Manager, like the AppleScript extension itself, is required to
run AppleScript and write scripts.

QuickTime is only necessary if you are not running System 7 .1.
This is because System 7.1 has the "component manager" portion
of QuickTime integrated, while Systems 7.0 and 7.0.1 do not. This
component manager is necessary for AppleScript to operate.

GETIING STARTED: THE JOURNEY BEGINS

The Scripting Additions folder contains files called scripting
additions that extend the language of AppleScript. An example of
this is Beep, an addition that gives AppleScript the capability to
beep. Included with this book are the scripting additions that
Apple bundles with AppleScript: ~ep, Cl}o.ose Application,
C~ile, Curre t Date, Disp~ D@log, File Commands, LQ9d
Script, Nu~rics, RUJ}. .. Script, St~~ript, and Stri!lg_ Commands.
In addition, the Tao AppleScript folder contains a couple of
scripting additions written especially for this book: ResMover and
Dialo_gRunner.

Script Editor is the application you will use to write, edit,
compile, and run scripts.

Scriptable Text ~tor is completely AppleScript aware and ~-~
recordable. As a word processor, it's fairly simple, but since it is
"AppleScript-aware," it is used throughout this book in example
scripts.

Also in the Tao AppleScript folder you will find: Progress Bar,
which allows your scripts to show a status indicator revealing their
progress; Finder Liaison, an application that allows a bit of control
over the Finder's functions; and Stufflt Lite, a popular Shareware
compression program by Aladdin Systems that supports
AppleScript.

Finally, FolderWatcher, an AppleScript-aware control panel,
enables AppleScript to watch certain folders for a specified activity
and run a script when that activity occurs.

First look at Script Editor
Now that the software is installed, you should launch Script Editor
and take a look at it. When you first open Script Editor, you'll see
a window with three buttons that work like the buttons on a tape
recorder (see figure 1.1). The Stop button interrupts the script
currently running (typing Command-period achieves the same
effect). The Record button (Command-D) tells AppleScript to

Note: You should
install all of this
software before
reading on so
that you can
follow the text.

3

THE TAO OF APPLESCRIPT

Figure 1.1
Script Editor when

it is first opened.

4

record your actions in a recordable application and write them as a
script in the script editing area. The Run button (Command-R)
runs the script.

The field at the top of the window is for comments about that
script. This can be a useful place for a summary of the script's
function. The field at the bottom is where you will type in and
edit scripts, and view recorded scripts.

The Littlest Script
As you read on, you will become more familiar with the parts of

the window. You can begin now by writing a simple script. In the
script editing area, type the following:

3+3

As you enter this text, the rightmost button in the control area,
Check Syntax, will become active (see figure 1.2). Clicking this
button checks your script for syntax errors and formats the text to
make it easier to read. This process is called "compiling." You can

GETIING STARTED: THE JOURNEY BEGINS

click the Check Syntax button (or press the Enter key) to format
the simple script you just entered. It will look like this:

3+3

While you probably didn't notice much difference, AppleScript
did format the text. Notice that the font changed and spaces were
added between the 3s and the plus symbol.

Once you've compiled a script by clicking on the Check Syntax
button, you can then run it by clicking the Run button (or by
pressing Command-R). For a shortcut, you don't need to check the
syntax of a script if you are about to run it anyway. Running a
script automatically compiles the script first.

When you run this script, a window entitled "the result" will
appear. Script Editor places the last piece of information the script
obtained- the result-into this window. Since this script gets the
result of 3 + 3, the result window contains the number 6.

Figure 1.2
Typing in a script.

After clicking
Check Syntax and
compiling the
script.

5

THE TAO OF APPLESCRIPT

~ Using Other Programs
b:::::::::Ji1 One of the key features of AppleScript is its capability to control

and communicate with many applications. To see how this works,
The result of type this text in the script editing area:

this particular
script is 6.

Figure 1.3
The results of your

first AppleScript
script!

6

set the contents of window 1 of application "Scriptable Text
Editor" to "My first AppleScript script."

When you compile this, Script Editor may ask you to find the
application Scriptable Text Editor. Use the dialog box that appears
to locate the application. You won't need to point to Scriptable
Text Editor again, unless you move it to another location or
change its name, as AppleScript remembers its location. The
compiled script will look like this:

set the contents of window 1 of application "Scriptable Text
Editor" to "My first AppleScript script."

Run this script. If Scriptable Text Editor is not currently run­
ning, AppleScript will start it. The script will place the phrase
"My first AppleScript script" into the first window (that is, the
frontmost window) of that application (see figure 1.3).

GETIING STARTED: THE JOURNEY BEGINS

You have just seen how AppleScript can control other applica­
tions~ &.lit d(,,,~ t» "'~W{. ·

Dictionaries
Now that you have a basic understanding of the scripting area of
Script Editor, there are a few menu items you should know about.

As with most Macintosh applications, S~les you t::ll: '\c.~tri-W doa.~'
to create new documents and open or close a document fr~m the r. ~t~
File menu. In addition, Script Editor gives you the capability to ~"1'4. dub ~ 1~~,,~
open the "dictionary" of an application. ~tf'[

When AppleScript first addresses an application, it knows
nothing about what that program can or cannot do. It asks the
program for a list of commands it can accept and information that
itcan manipulate. This dictionary is stored within the application.
Using the Open Dictionary command in the File menu enables
you to take a look at one of these lists for yourself. Try Scriptable
Text Editor's dictionary (see figure 1.4).

Clicking on a specific word in the left side of the dictionary
window shows you information ab~ word. As you write the
scripts in this book, the commands you nee<!_ will be provided for
you. When you are writing scripts on your owb) or exploring the
vocabulary of new programs, you'll find the dictionaries an
invaluable resource.

Scriptable TE Suite:
Editor

cut: Cut an object to the cliP. board
cut refe renee - ~object to cut to ~ clipboard

copy: COP.Y- an object to the cliP. board
copy reference -- ~object to cow to~ clipboard Figure 1.4

Scriptable Text
Editor's dictio­
nary.

7

THE TAO OF APPlESCRIPT

8

Formatting
AppleScript, as you have seen, formats the text with stYles ·and

fonts so that a script is easier to read. To see the formatting rules it
follows, choose the AppleScript Formatting command in the Edit
menu. If you want to change the way AppleScript formats text in
the script editing area, select a category in the AppleScript Format­
ting dialog box and choose a font, size, or style from the menu
bar. The default settings will be used for the examples in this book,
so you may want to leave them in order to follow along more
easily until you become more familiar with scripting.

Saving
In addition to being able to save a script as a standard format
script file, Script Editor enables you to save a script as "run-only.'!
This is a script that runs and performs its function, but cannot be
edited.

You'll recognize most of the other commands in Script Editor,
since they're common to most Macintosh programs.

On Your Own
Becoming familiar with Script Editor's landscape is the first step of
your journey. Feel free to look around and play with the parts
you've seen so far. Try scripts based upon those we've given you.

When you are comfortable (or bored) with how Script Editor
works, move on to the next chapter, where you will learn about
the AppleScript language.

Chapter 2
Scripting Basics

The Threshold­
of Adventure

You've seen how AppleScript can perform simple tasks, such as
placing text into a window or adding numbers together. It can, of
course, do much more. The AppleScript language provides the
tools necessary for virtually any scripting task.

There are five main parts to AppleScript: objects, which point to
items and information within applications; commands, which act
on those items or information; variables, which enable you to store
data for later use; conditionals, which enable your script to make
decisions based on sets of conditions; and repeat loops, which give
the capability to execute commands repeatedly.

Objects
The most important aspect of AppleScript is that it can work with
data from many applications. Each item or piece of information
that AppleScript deals with is considered an object.

Each AppleScript-aware application contains a list of the objects
it uses and how AppleScript can manipulate them. Without this
list AppleScript would not know what the application is capable
of. To help create a standard structure, Apple created the Object

THE TAO OF APPLESCRIPT

Flgure2.1
The second word

in a window of
Scriptable Text

Editor

10

Model-a convention developers are encouraged to follow.
Scriptable Text Editor follows this standard.

Take a look at how to address objects. Assume you're interested
in the second word in the window shown in figure 2.1.

My

t
vor4Z

You must specify the type of object you're interested in. Objects
generally have names representative of what you may call them
everyday. Appropriately enough, the name of this particular type
of object is "word."

There are, however, several words present in the window. How
can AppleScript know which word you mean? In this case, you
want the second word, so the more specific description of this
object is "word 2."

Looking at the figure, you see that the second word is found
within a "document" or "window" object (these terms are synony­
mous in Scriptable Text Editor). But there may be more than one
window open in your application, so you must tell AppleScript in
which window "word 2" is located, just as you had to specify
"word 2" to distinguish it from the other words. As with words,
you can specify a window using numbers. Windows are numbered
from front to back, so the frontmost window will always be

SCRIPTING BASICS: THE THRESHOLD OF ADVENTURE

"window 1." You can also specify a window by its name, such as
"window 'untitled'."

Of course, there may be windows open in more than one
application as well. Just as you had to tell AppleScript "word 2 in
window 1," you need to tell it which application that particular
"window 1" is located in. For this, you specify the "application"
object-identifying this application from all others available. You
must specify application objects by their name. In this instance,
you would write 11 application 'Scriptable Text Editor'" to indicate
the particular application.

The full description (or "object path," in technical parlance) of
this object is "word 2 of window 1 of application 'Scriptable Text
Editor'." This description is the position of the object relative to
others of its kind and relative to its "container" objects. For each
step along the path, you must describe each object.

Properties
In addition to describing objects, you can describe the at­

tributes, or "properties," of that object. You may want to know the
font of a particular word. AppleScript allows you to point to these
properties, as in "the font of word 2 of window 1 of application
'Scriptable Text Editor'."

Commands
You need to know the commands to use for controlling the
objects you've just learned to describe. Commands act on objects.
For instance, when you set the contents of the first window of
Scriptable Text Editor, "set" is the command and the contents of
the first window is the object.

AppleScript has three types of commands. All three types follow
the same rules, but differ in their origins. The first type is built
into AppleScript itself, the second type is made up of commands
obtained from applications, and the third type is made up of
commands from scripting additions.

11

THE TAO OF APPLESCRIPT

12

Here are some examples of each type:

Set (built-in)
The 11 set" command assigns the value of an object. When you

want to set the value of an object, you must first specify the object
you are setting and then specify what the object's value will
become, using "to." For instance, in figure 2.1, "the contents of
the window of application Scriptable Text Editor" has been set to
"The Tao of AppleScript."

set the contents of window 1 of application "Scriptable Text
Editor" to "The Tao of AppleScript"

Make (from an application)
The "make" command is used to create a new object. For

""~af.A instance, telling Scriptable Te~E..£ti!Qr to 11make" a window is
equivalent to choosing "New" from the File menu.

. "·'

To make something, you must let AppleScript know what object
you want to be made, such as:

make window of application "Scriptable Text Editor"

AppleScript alone does not understand the "make" command. It
is one of the commands that comes from an application. Because
Scriptable Text Editor has the 11make" command in its dictionary,
AppleScript can use it when talking to that application. In fact, if
you were to type in and run this script, you would get an error.
This is because AppleScript cannot execute the "make" command
until it knows that it exists, and it doesn't know it exists until you
specify that you are addressing the Scriptable Text Editor applica­
tion-which isn't done until after the command ~s
from left to right). You will learn how to avoid this problem later. ---.....-.........

Many commands, such as set, have required parameters that
define the command. For instance, when using the make com­
mand, the parameter that defines what to make (and where to
make it) is required.

SCRIPTING BASICS: THE THRESHOLD OF ADVENTURE

Beep (from an addition)
The beep command tells your Macintosh to play the sound

chosen in the Sound control panel. Here it is:

beep

You can beep any number of times. To beep twice you would
write the following:

beep2

The number of beeps is an optional parameter. Commands can
work with or without these parameters-that's why they are called
optional. If you do supply one, however, it changes the behavior
of the command to which it was applied.

The beep command comes from a scripting addition, called
Beep, located in the Scripting Additions folder of your Extensions
folder. As long as these additions are present, the commands will
be available.

As you can see with Beep, scripting additions don't alwa}!s need
t~~ on objects to function.

Scripting additions are an easy way to add functions to the ,. · ~t~ ·
AppleScript language as you need them.

Other methods of pointing to objects
As you become more adept with these commands, you'll want

more powerful and flexible ways of describing objects. For in­
stance, you may want to work with all the objects in a certain
window, or a particular subset of those objects.

As an example, by using the 11delete" command from Scriptable
Text Editor, you could remove specific objects that you describe.
You could work with the first three words in a particular window,
such as:

delete words 1 through 3 of window 1 of application
"Scriptable Text Editor"

13

THE TAO OF APPLESCRIPT

The filters
''whose" and

"where" function
identically. Use

whichever word
reads more

naturally.

14

You can refer to objects by their positions relative to other
objects, as in:

delete the word before word 2 of window 1 of application
"Scriptable Text Editor"

delete the word after word 2 of window 1 of application
"Scriptable Text Editor"

delete the middle word of window 1 of application "Scriptable
Text Editor"

Sometimes, you may just want any object. 11Some" points to a -random object in a range of objects:

delete some word of window 1 of application "Scriptable Text
Editor"

You may also want to work with every object of a given type.
AppleScript provides 11 every" for this purpose:

delete every word of window 1 of application "Scriptable Text
Editor"

.... To describe only those objects that meet certain criteria,
AppleScript provides the filters "whose" and 11Where":

delete (every word of window 1 of application "Scriptable Text
Editor" where character 1 is "f")

delete (every word of window 1 of application "Scriptable Text
Editor" whose character 1 is "f')

The many different pointing methods provided by AppleScript
give you a lot of flexibility, which enables you to use commands
efficiently. You can do precisely what you need with the informa­
tion in the application.

SCRIPTING BASICS: THE THRESHOLD OF ADVENTURE

If commands were the sole aspect of AppleScript, it wouldn't be
much more powerful than a macro language. The commands are
only the beginning. The three concepts in the next section are
what make AppleScript truly powerful as a scripting language.

Variables
Variables in a scripting language are not like the variables you
learned about in high school math or the variable stars you
learned about in college astronomy. In AppleScript, variables hold
known values to be used in various places in a script. They are
place holders for information.

For instance, type in the following script:

When you run this script, you'll see that the result window
contains the number 6. As far as AppleScript is concerned, it is
adding three to three.

In this example, the ''copy" command is used to place a value
(in this case a number) into a variable named x.

The Naming of Variables
You access the information in a variable by referring to the

name of that variable. A variable can have any name you want to
give it, with the following restrictions:

• The name must start with a letter (AppleScript ignores case+-- J.J.a
when looking at variables).

• The name cannot contain characters other than numbers,
letters, or underscores u.

• The name cannot be a reserved word (those words with
special meaning to AppleScript). For example, using 11copy"
for a variable name would cause an error (see figure 2.2),
because 11Copy" means something specific to AppleScript.

15

THE TAO OFAPPLESCRIPT

Figure2.2
You can't use

reserved words as
variable names.

Figure2.3
A variable must be

assigned a value
before it can ~e.

used.'

16

s ntaH Error ·
Expected expression but found "copy''.

(Cancel ~

Other than reserved names you can call a variable anything you
like, however it's probably better to give it a name relevant to
what the variable represents. If a script gets a person's age from a
database, you could put that information into variable "x," but
that wouldn't indicate what that variable contains. A better name
for the variable would be "age."

One more rule
You can't use a variable until you've defined it-that is, put

information into it. For instance, run the following script:

AppleScript gives you an error because you attempted to use the
variable before it was assigned a value (see figure 2.3).

Eaecution Error ..
The variable xis not defined.

(Stop ll

Assigning a value to a variable is called ''declaring" it. You can
declare a variable with the copy command, as you saw above, or
l;Yith the set command, as in:

set x to 3

The set and copy commands have different effects on a vari­
able. "Copying" a variable ensures that the value will remain

SCRIPTING BASICS: THE THRESHOLD OF ADVENTURE

unchanged unless you act on it with another command. "Setting"
a variable, on the other hand, places a value from a specified
source into the variable and changes the variable whenever the
source changes. You should use the copUQID_mand unless you IJ .i}

IJ§ed the set command to link a variable to a changing source. (If
you are already familiar with programming you may recognize
that the set command is what a llows you to create pointers.)

Different Types of Data
A variable can contain five types of data. These types are text,
numbers, Booleans, lists, and records.

You have already seen several of these types of data in the script
in the previous section. Here's a look at each type more closely.

Text
When you set the contents of the first window in Scriptable

Text Editor to "My first AppleScript/' you were working with text.

A variable can hold any text you wish. You can put the text into
the variable yourself, as in this script, where "helloText" is the
name of the variable:

copy "The Tao of AppleScript" to hello Text

or you can get information from an application and put it into
a variable as in:

copy word 1 of window 1 of application "Scriptable Text Editor"
to firstWord

Sometimes when working with text, you will want to put two
pieces of text (also known as strings) together. This is called
"concatenating" two strings. To do this, use the"&" symbol.

copy "The Tao" & " of AppleScript" to bookTitle

This makes the variable "bookTitle" equal to the text "Th e Tao
of AppleScript."

To use quotes
within text in
Script Editor, you
need to put a
backslash before
each quote mark
since quote
marks are
understood as
the beginning
and end of text
strings; "Start
with the letter
\ "A\"".

17

THE TAO OFAPPLESCRIPT

Table2.1
These are all the

mathematical
operations you can

apply to a
number.

18

Numbers
You have already seen numbers used in AppleScript. Your first

script, 3 + 3, used numbers.

As you can see from that example, AppleScript provides the
ability to do math expressions with numbers. AppleScript provides
eight ways for you to manipulate numbers or variables with
numbers in them. Table 2.1 shows you how each of the different
mathematical operations work.

Operator Description Example

* multiplication 3*3=9

+ addition 3+3=6

subtraction 3-3=0

+or I division 3+3=1

div division without 10 div 3 = 3
remainder

mod division returning 10 mod 3 = 1
remainder

negation -3

One operation may not be enough, however. You may need to
perform several mathematical operations on a set of numbers. You
can combine mathematical operations with AppleScript, but you
need to be aware of how AppleScript handles these operations.
When AppleScript sees mathematical symbols, it follows what are
called the 11 orders of precedence.'' It processes operations in this
order:

1. Items within parentheses are dealt with first.

2. The negation symbol (-) is applied to all appropriate numbers.

3. Multiplication and division (including the 11mod" and "div"
commands seen in table 2.1) is performed from left to right.

4. Addition and subtraction is performed from left to right.

SCRIPTING BASICS: THE THRESHOLD OF ADVENTURE

To show how these orders of precedence work, you can write a
simple script that converts Fahrenheit temperatures to Celsius. For
this conversion, you must first subtract 32 from the Fahrenheit
temperature, then multiply the result by 5 and divide it by 9.
When you type that into Script Editor and run the script, you get a
much different result than you might expect:

cop~~to F
F-~ry /9

The result should be 20 degrees, but it isn't. What is AppleScript
doing? First, it looks for any information or operation within
parentheses. None are present in this example. Next, it looks for
any negation signs. Again, there are none. Then it looks for any
multiplication and division operations and performs them, from
left to right. This means the script first multiplies 32 and 5, divides
the result by 9, then subtracts the result of that operation from the
Fahrenheit value. The end result, 50.2, isn't the correct answer to
the problem we originally stated.

To correct this, you must have AppleScript subtract 32 from the
Fahrenheit value and t!!!!.!:! multiply the result by 5 divided by 9. To
do that, use parentheses as follows:

copy 68 to F

(F- 32) * 5 I 9

Now AppleScript returns the correct answer. It does the opera­
tion found in the parentheses first, subtracting 32 from the
Fahrenheit temperature, then multiplies that result by S, and
divides by 9.

You can see how important parentheses are when doing math
operations. If you are running scripts and not getting the numbers
you expect, take a careful look at your mathematical operations
and make sure you are following the orders of precedence.

19

THE TAO OF APPLESCRIPT

20

Boo leans
A Boolean is a special kind of variable that can only have one of

two values: true and false. You won't put Booleans into variables
often, but when you do, it will primarily be as "flags." A flag is a
normal variable that acts like a checkbox. You put the true or false
value into the variable early on in the script, and use that value to
decide which commands to perform, or how to perform them.

Booleans come more into play with conditionals which are
discussed in the next section.

Lists
When you work with many related pieces of data, it becomes

inconvenient to make separate variables to hold each piece of
information. By providing lists, AppleScript allows you to put
multiple pieces of information into a single variable.

To define a list, you must enclose it entirely in braces, 1 ... }. Each
item in the list is separated from the others with a~
~e as in the following:

{1,2,3}

An item in a list can be any type of data, even another list. For
instance, the following list, with the list 11, 2, 3} within it, is valid
in the AppleScript language:

{3, "The Tao of AppleScript", true, {1, 2, 3}}

Since you have multiple pieces of information in a list, it is
important to be able to work with the particular items found in
that Jist. AppleScript allows you to do this:

copy {3, 4, 5} to thelist

set item 1 of thelist to 6

the list

If you run this script, you'll see that you have created a list,
called theList, equal to 16, 4, 5}.

SCRIPTING BASICS: THE THRESHOLD OF ADVENTURE

When you copy information from a list, the rules (such as math
operations, concatenations, and so forth) for a piece of data apply
to that information as well. For instance, you could make a new
variable, newVar, equal to the first item in theList plus 80. To do
this, a third line is added to your script:

copy {3, 4, 5} to thelist

set item 1 of thelist to 6

copy (item 1 of thelist) + 80 to newVar

Notice the parentheses around "item 1 of theList." If you leave
out the parentheses AppleScript will interpret this internally as
item 1 of (theList + 80). The parentheses force AppleScript to first
find item 1 of theList and then add that to 80.

You can concatenate two lists the same way you concatenate
two strings of text. For instance, {3, 4, Sl & {6, 71 will produce {3,

4, 5, 6, 71. l c.G•'C~I.:.:"~I:-/"''1 !>~'t'"'l,t>l.

Records
When working with large lists- especially those with different

types of data, it is difficult to keep track of the type of each piece.
Fortunately, AppleScript has a special type of data called a
"record" which facilitates retrieving data from a list.

A record is like a list, with on e significant difference. With
records, each item has a label to make getting information easier.
Instead of using a list such as {22, "Derrick", "Schneider" I and
trying to remember which item is which piece of information, you
could use a record:

copy {age:22, firstName:"Derrick", lastName:"Schneider"} to
personal Info

If you want to get the person's first name from this record, you
would then add the following command:

21

THE TAO OF APPLESCRIPT

22

copy {age:22, firstName:"Derrick", lastName:"Schneider"} to
personallnfo

get firstName of personallnfo

It does not matter where the item is in the list. When you use a
label to ask for the information, AppleScript finds it with that
label regardless of its location within the record.

You need to be careful when concatenating records. If the same
label is used in more than one record, AppleScript will keep only
one of the items when you concatenate them. More specifically, it
keeps only the data in the record to the left of the leftmost"&"
symbol for the repeated label in the new record. For instance:

{age:22, firstName:"Derrick", lastName:"Schneider"} & {age:28,
fuiiName:"Jane Smith"}

will produce the following record in the result window:

{age:22, firstName:"Derrick", lastName:"Schneider'',
fuiiName:"Jane Smith"}

Both records included an age label, but AppleScript kept only
the data to the left of the"&" symbol.

You will be using these five types of data in example scripts to
come. Your own scripts will eventually incorporate them as well. If
you don't feel comfortable with them, do not be too worried. You
will become more familiar with the data types as you use them in
example scripts.

Coercing Variables
There are times when you need to tell AppleScript to interpret one
type of data in a variable as different type. For instance, what
would you expect from the following statement?

3&3

SCRIPTING BASICS: THE THRESHOLD OF ADVENTURE

Based on what you know of the & symbol, you might expect to
get 1133." Remember, however, that this symbol only applies to
text, lists, and records. This is what you actually get:

{3, 3}

AppleScript took the numbers and placed them in a list. But
what if you wanted 1133?" You must tell AppleScript to treat the
two values as if they were 11 strings." When you concatenate two
values this way, it is done as expected.

Telling AppleScript to interpret one type of data as another is
called 11 coercing" data. The following script works the way you
want:

3 as string &: 3 as string

AppleScript will format this as 11 (3 as string) & 3 as string," even
though you didn't use the parentheses. The script tells AppleScript
to concatenate 3 and 3-treating each one as if it were a string.
The result, 1133," is another string. Table 2.2 shows how the
different coercions can be used.

Data Type Coercion Result

string 3 as string "3"

number "3.5" as number 3.5

integer 3.5 as integer 3

real number 3 as real 3.0

list 3.5 as list {3.5}

Usually, you won't need to worry about coercing variables, as
AppleScript handles them whenever it can.

Special Variables
AppleScript provides many special variables which it fills and
allows you to use. These will be very useful to you as you write
scripts. The following are the special variables AppleScript offers.

Table2.2
The ways in
which you can
coerce one type of
data to another.

23

THE TAO OF APPLESCRIPT

24

result
You have already seen the ''result" variable used. AppleScript

puts this variable in the result window. Every time you use a
command, the returned information is put into the variable
"result." If no information is returned, the result variable is set to
empty.

For instance, when you write:

get the name of window 1 of application "Scriptable Text
Editor"

If there is an open window in Scriptable Text Editor,
AppleScript places the name of window 1 into "result." If you then
write:

copy 3 to x

AppleScript sets "result" to 3. To use this variable, you write
"result," as in the following script:

get the name of window 1 of application "Scriptable Text
Editor"

set paragraph 1 of window 1 of application "Scriptable Text
Editor11 to result

This script takes the name of the first window in Scriptable Text
Editor, places this information into result, then sets the first
paragraph to the value in "result." Because "set" returns no infor­
mation, the window "the result" is empty.

it
The variable "it" is most useful when you want to filter infor­

mation. How could you set up a command to find every word in a
document which contains "ip"? The "whose" and "where" clauses
as you have learned them provide no way to do so. The "it"
variable makes this possible. For instance:

SCRIPTING BASICS: THE THRESHOLD OF ADVENTURE

get every word of window 1 of application "Scriptable Text
Editor" where it contains "ip"

The 11it" variable stands for the object you are looking at-in
this case, the words in the first window in Scriptable Text Editor.

return, space, and tab
When you enter text into an application, you may want to type

in a return, space, or tab. AppleScript provides special variables for
these. The written-out form of these words represents the charac­
ters you need to use. If you were to write the following:

set the contents of window·1 of application "Scriptable Text
Editor" to "text" & return & "more text"

then the contents of window 1 becomes:

text
more text

pi
AppleScript also provides you with the value of pi in a

variable. It doesn't use the full number, of course, but uses
3.1415926535898 as an approximation. You can use this if you
are calculating such things as the area of a circle, as in:

copy 3 tor

pi* (r * r)

where r is a variable that represents the radius of the circle-in
this instance, 3.

Variables give you a lot of power in a script. The capability of
storing information and/or changing it frequently is one of the
things that separates a scripting language from a macro.

25

THE TAO OF APPLESCRIPT

Ffgure2.4
The basic 11 if then"

command.

26

At this point, you have looked only at making scripts go along a
straight path. AppleScript also provides you with the capabilities
of making decisions within a script and repeatedly looping over
parts.

Conditionals
Conditionals give your script the capability of evaluating informa­
tion and deciding which commands it will execute based on that
evaluation. This allows the script to deal with a wide variety of
situations.

A conditional is composed of two parts: the question and the
command. Different questions apply depending on the type of
data, but for a true condition, the end result will be the same.
If the answer to the question is true, then the commands are
executed.

Conditionals, also called "if ... then" statements, conceptually
look like this: if (a certain condition is true) then (do these com­
mands) (see figure 2.4).

copy 3 to x
if x is 3 then beep

Vesx=3

if x is equal to 3

Nox~3

SCRIPTING BASICS: THE THRESHOLD OF ADVENTURE

This script first puts 3 into x, then checks to see if x is equal to
3. Since the condition is true, the script beeps.

Including one command with the conditional is only so power­
ful. A more complex form allows you to include multiple
commands in the conditional:

copy 3 to x

if xis 3 then

beep

set the contents of window 1 of application "Scriptable
Text Editor" to "The Tao of AppleScript"

end if

In this form, the conditional (including "then") goes on one
line. The next lines include all the commands you want to include
within that conditional. The "end if" tells AppleScript to include
all the commands between it and the conditional. Any commands
after the "end if" are not dependent on the conditional.
AppleScript provides a visual cue by formatting these as indented
text between the conditional and the "end if."

The commands inside a conditional can be anything-even
another conditional, as in:

copy 3 to x
copy 5 to q

if xis 3 then

if q is 5 then beep

set the contents of window 1 of application "Scriptable
Text Editor" to "The Tao of AppleScript"

beep

end if

Putting a
conditional inside
a conditional or a
repeat loop
within a repeat
loop is called
"nesting."

27

THE TAO OF APPLESCRIPT

Within a condi­
tional, you can

write the contrac­
tion "isn't" in

place of "is not."
When AppleScript

compiles the
script, it will
expand your

contraction to "is
not."

28

These are the two basic forms of the conditional. Before moving
on to more complex forms, take a minute to look at the different
methods of comparing two pieces of data in the conditional.

Comparisons
Conditionals are one of the most useful ways of comparing two
pieces of data. Perhaps the most basic question you can ask about
the relationship between two pieces of data is, "Is this data equal
to that data?" AppleScript has the capability of making that
comparison with the"=" symbol or the word "is," as in the follow­
ing examples:

copy 3 to x

if x = 3 then beep

if x is 3 then beep

Both these lines do the same thing: If x is equal to 3, then beep.

Another comparison is, "Is this piece of data different from that
piece of data?" To perform this, AppleScript, uses the 11

-:¢" symbol
(made by typing Option-=) or the words 11is not."

copy4 to x

if x ::1:- 3 then beep

if x is not 3 then beep

These commands say 11if x isn't equal to 3, then beep."

You can always compare two pieces of data to determine
whether or not they are equal. However, some types of data can be
compared in ways unique to their type. Using these specialized
comparisons gives you the capability to evaluate a wide range of
information.

SCRIPTING BASICS: THE THRESHOLD OF ADVENTURE

Text
With strings of text, you may not want to look at whether or

not one piece of text is equal to another. You may want to evalu­
ate part of the text to see if it meets certain criteria. AppleScript
provides five ways of doing this, illustrated below.

if "The Tao of AppleScript" starts with "Th" then beep

if "The Tao of AppleScript" ends with "ipt" then beep

if "The Tao of AppleScript" contains "Apple" then beep

if "The Tao of AppleScript" comes before "Zz" then beep

if "The Tao of AppleScript" comes after "Aa" then beep

The "comes before" and "comes after" comparisons use alpha­
betical order to determine whether the comparison is true or false.

Numbers
Numbers use the methods of comparisons you would expect. In

AppleScript, you can determine if one number is greater than
another(>), less than another(<), greater than or equal to another
(~,Option-period), or less than or equal to another (S, Option­
comma).

The following conditionals are all true and will therefore result
in beeps:

copy 4 to x

if x > 3 then beep

if x < 5 then beep

if x ~ 4 then beep

if x s 6 then beep

29

THE TAO OF APPLESCRIPT

30

Lists
With a list, you can use "starts with," "ends with," and "con­

tains" just as you can when comparing text strings. However, they
work a little differently.

Look at the following conditionals:

if (1, 2, 3} starts with (1} then beep

For this comparison to be true, the item must be an entire
element of that list or record. For instance:

,~,.,

if ("My", 2, 3} starts with ("M"} then beep

This will not beep because while item 1 of the second list starts
with "M," the list starts with "My".

Elements must also be referenced in order of their sequence
within the set. When you ask about multiple elements in a list, the
elements you're asking for must be in tbe....same oLder as they

fi}7 appear in the list. For instance, look at the following example:

if (1, 2, 3, 4} contains (2, 4} then beep

This conditional will not be true because {2, 4} isn't in {1, 2, 3,
4}, even though both elements of {2, 4} are found in the list.

Records
When comparing records, both the label and the data with that

label must be equal. If in the following script, you were to inquire
about the label"age," the data assigned to that label, "22," would
need to be equal as well:

if (age:22, firstName:"Derrick", lastName:"Schneider"} contains
{age:22, lastName:"Schneider"} then beep

This script will result in a beep even though "age" and
"lastName" are not sequential. Records are not limited to sequen-

SCRIPTING BASICS: THE THRESHOLD OF ADVENTURE

tial order as lists are. The script above returns a true because those
items are included in the record; tl.!_e!r or!le!Jl!akes no difference.

Booleans
Booleans are limited to the comparisons ''equal to" and ''not

equal to." Here are some examples of conditionals using
Booleans-each script will beep, as all cases return a true from the
comparisons:

copy true to theflag

if theflag = true then beep

if theflag * false then beep

Modifiers
There are times when you'll want to modify ~ow a comparison
will be carried out. For instance, you may want to look for the
opposite condition, do multiple comparisons, or even override
some of the ways AppleScript looks at data to make a more specific
comparison. AppleScript provides ways to do all these things.

and, or, not
Sometimes a single comparison will not provide what you need.

You may need more flexibility or power.

For instance, what if you want to know if an item isn't a certain
value? The modifier 11not" enables you to reverse the results of the
comparison.

You might have the following:

copy 4 to x

if not (x is 3) then beep

When AppleScript executes this script, it first evaluates the
comparison inside the parentheses. If x isn't three, then this part

The terms "equal
to" and "not
equal to" can be
written in many
forms, such as =,
:~:; is equal to, is
not equal to;
equals, does not
equal; and is, is
not. AppleScript
will understand
any of them.

31

THE TAO OFAPPLESCRIPT

32

of the comparison is false. When AppleScript sees the word 11not,"
however, it reverses the result of the comparison. In AppleScript's
eyes, this conditional is now true, and it will beep.

AppleScript enables you to do multiple comparisons using the
1'and" and 110r" modifiers. With '1and," AppleScript requires all
comparisons to be true before it executes the commands. The 110r"
modifier checks to see if any one of the comparisons is true. If any
one is true, the commands are executed.

Imagine that you only want to execute a command if a list
starts with a bullet (•) and is more than three items long.

You could do this by nesting two conditionals, as follows:

copy {"•", 4, 5, 6} to x

if x starts with {"•"} then

if the number of items in x > 3 then

beep

end if

end if

This script looks at the list in x and determines whether or not
it starts with a bullet. If a true is returned, it then looks at the
second conditional and determines if there are more than three
items in x. If true again, the commands are executed.

This can be cumbersome, however. A simpler way is to use the
''and" modifier, as follows:

copy {"•", 4, 5, 6} to x

if (x starts with "•11
) and (the number of items in x > 3) then

beep

end if

This script does the same thing as the previous one. AppleScript
looks at the first comparison, then the second. If both are true, the
commands are executed. If either is false, they are not.

SCRIPTING BASICS: THE THRESHOLD OF ADVENTURE

The "or" modifier works similarly, but differs in the results. In
the above example, an "or" modifier would mean that the com­
mands will be executed as long as one of the comparisons is true.
If the list has more than three items, but doesn't start with a "•,"
the commands will be executed.

These three modifiers may be used in any combination. You
could create the following script:

copy 4 to x

copy 4 to y

copy 7 to z

if ((x > 3) and (y < 5)) or (not (z > 6)) then beep

This conditional will only be true if z is not greater than 6 or if x
is greater than 3 and y is less than 5.

When using multiple modifiers, remember that each compari­
son that is modified must be within its own set of parentheses.
Looking at the above conditional, the "or" modifier requires that
both comparisons be in parentheses. This is why additional
parentheses were placed around the entire "and" comparison and
the entire "not" comparison in addition to the individual"and"
and "or" comparisons.

considering and ignoring
Though AppleScript provides a wide array of comparisons,

sometimes they don't do exactly what you need them to. For
instance, AppleScript doesn't pay attention to uppercase and
lowercase characters. "Apple" and "apple" are exactly the same to
AppleScript.

This could be a problem for some scripts. Fortunately,
AppleScript is capable of overriding some of these factors with the
"considering" and "ignoring" modifiers. Compare the following
two scripts:

if "Apple" is "apple" then beep

33

THE TAO OF APPLESCRIPT

34

considering case

if "Apple" is "apple" then beep

end considering

Both of these scripts seem to pose the same question, but the
second instructs AppleScript to 11 consider" the case of the text
when executing the comparison. The second script will not beep.

The "end considering" command tells AppleScript where this
rule applies.

The opposite of 11Considering" is ''ignoring." This tells
AppleScript to stop paying attention to a certain condition. Again,
look at the following scripts, where the first instance of the word
"AppleScript" is written with a space between the words:

if "Apple Script" is "AppleScript" then beep

ignoring white space

if "Apple Script" is "AppleScript" then beep

end ignoring

Under normal circumstances, AppleScript considers a space to
be a character; therefore, the first script does not beep. With the
"ignoring" command however, AppleScript will "see" only the
actual letters-not the space.

Table 2.3 illustrates all the options with the "considering" and
"ignoring" modifiers and indicates what AppleScript would do if
left unmodified.

SCRIPTING BASICS: THE THRESHOLD OF ADVENTURE

Term What it stands for Example AppleScript's default

case the difference between "Apple" vs. "apple" Ignored
upper and lower case

white space returns, spaces, and tabs "Apple Script" vs. Considered
"AppleScript"

diacriticals J\ II ' ' I "resume" vs. Considered , , , ,
"resume"

hyphens "half-hour" vs. Considered
"halfhour"

punctuation any punctuation mark "Wow!" vs. "Wow" Considered

If you want to combine several different options, you can use
11 and" and "but." Look at the following script:

Table 2.3
The various
options for

considering case but ignoring white space and diacriticals

if "the resume" is "theresume" then beep

11 considering" and
11 ignoring."

end considering

This script will beep. With these comparisons and modifiers,
commands are executed only when certain conditions are met.
This allows for very complex decisions within a script.

else statements
You have seen that a conditional instructs a script to continue

when the comparison returns a true. However, you may want to
execute some commands if a conditional returns a true (if x is
equal to 3) and other commands if it doesn't (if x is not equal to
3). In AppleScript, the else statement makes this possible.

copy 4 to x

if xis 3 then

beep

else

beep2

end if

C1<!

35

THE TAO OF APPLESCRIPT

36

With this script, AppleScript first checks to see if x is equal to 3.
If so, the script executes the commands normally, continuing on
to commands that come after the 11 end if" statement.

If xis not equal to 3, however, AppleScript sees the 11else"
statement and runs the commands under that portion of the
script. When those commands are finished, AppleScript proceeds
to commands after the "end if."

You can put conditionals on 11else" statements. Suppose you
want to get a number from a database (1, 2, 3, or 4), and you want
to run different commands for the different numbers. The script
would look like this:

copy4 to x
if xis 1 then

beep

else if x is 2 then

beep2

else if x Is 3 then

beep 3

else

beep4

end if

As before, the script first looks at the original conditional-if x
is equal to 1, it executes those commands and continues with the
script after the "end if" statement. If x does not equal1, it will
start looking through the "else" commands. If xis 2, it will ex­
ecute the commands under that "else" command and continue
with the script. If not, it will go on to check if x is equal to 3 and
go through the same steps. Finally, if x isn't 1, 2, or 3, then it must
be 4; the commands under the final"else" statement are run, as
none of the previous conditions were met.

You will use conditionals frequently in your own scripting,
particularly in scripts that must be aware of potential problems or

SCRIPTING BASICS: THE THRESHOLD OF ADVENTURE

changing values. With these capabilities, your scripts can deal
with any conditions you anticipate.

Repeat Loops
While the capability of branching in different directions is cer­
tainly useful, it doesn't provide all the power a scripting language
needs.

Repeat loops are the real workhorses of the AppleScript lan­
guage. They allow you to automate big, repetitive tasks. As the
name implies, a repeat loop performs a set of commands over and
over again.

just as AppleScript gives you many options for comparing data,
it also gives you many ways to repeat sets of commands.

Basic Repeat Loops
A basic repeat loop is one which simply goes on forever, until

stopped by an outside influence, such as a person running the
script. The following example shows one such loop:

copy "The Tao of AppleScript" to hello Text

repeat

set the contents of window 1 of application "Scriptable
Text Editor11 to the contents of window 1 of application
"Scriptable Text Editor11 & hello Text & return

end repeat

In this case, you're telling AppleScript to add 11The Tao of
AppleScript" and a return character to the end of the current
contents of the window. Note that, just as with 11end if," "end
repeat" tells AppleScript which commands to be repeated.

Run this script, and use the application menu to bring
Scriptable Text Editor to the front. You will see that the script is
dutifully repeating the line "The Tao of AppleScript." This would
continue indefinitely were it not for the fact that Scriptable Text

37

THE TAO OF APPLESCRIPT

38

Editor will give you an error when the document size reaches 32
Kilobytes.

The only way to stop this script otherwise is to go back to Script
Editor, using the application menu, and click on the 11Stop"
button (or type Command-period while in Script Editor). Rarely
will you want a script to continue forever. AppleScript provides
you with the 11exit" command for exiting a repeat loop in a script.

The next script is the same as the previous one, but now exits
the repeat loop when there are ten paragraphs in Scriptable Text
Editor:

copy "The Tao of AppleScript" to hello Text

repeat

Uti:t;~~-=(:;;r-~~90~.-
set the contents of window 1 of application "Scriptable
Text Editor" to the contents of window 1 of application
"Scriptable Text Editor" & hello Text & return

end repeat

In this case, the first command in the repeat loop is a condi­
tional that asks if there are ten or more paragraphs in the first
window. If there are, then it executes the exit command which
tells the script to go to the command immediately following the
"end repeat."

While you could do anything you need to with this repeat loop
and the various conditionals, it would require a great deal of
cumbersome work. AppleScript provides mechanisms for con­
structing more complex repeat loops.

Conditional Repeat Loops
A key feature of repeat loops is the capability to exit them when

they've done their job. In the previous section, you saw how you
can use a conditional and the 11 exit" command to do this.

SCRIPTING BASICS: THE THRESHOLD OF ADVENTURE

However, AppleScript uses two specialized repeat loops, "repeat
while" and "repeat until," to make the task easier.

The following script uses the "repeat until" loop to achieve the
same effect as the script in the previous section:

copy "The Tao of AppleScript" to hello Text

repeat until the number of paragraphs In window 1 of
application "Scriptable Text Editor"~ 10

set the contents of window 1 of application "Scriptable
Text Editor" to the contents of window 1 of application
"Scriptable Text Editor" & helloText & return

end repeat

For each loop, the script checks to see if there are 10 or more
paragraphs in the first window within Scriptable Text Editor. If so,
it does not execute the commands within the repeat loop, but
goes to commands found after the "end repeat."

AppleScript also has a "repeat while" command, as in the
following script:

copy "The Tao of AppleScript" to helloText

repeat while the number of paragraphs In window 1 of
application "Scriptable Text Editor"< 10

set the contents of window 1 of application "Scriptable
Text Editor" to the contents of window 1 of application
"Scriptable Text Editor" & hello Text & return

end repeat

This script does the same thing as the previous scripts, but
differs in semantics. Now it says "as long as there are less than ten
paragraphs in the first window, do these commands." The two
repeat loops are functionally equivalent. The one you use depends
on which makes more sense to you.

39

THE TAO OF APPLESCRIPT

40

Counting Repeat Loops
You may want to make a repeat loop run a certain number of

times and then exit. You can do that by using an incrementing
variable and checking the value of that variable each time through
the loop, as in the following script:

copy "The Tao of AppleScript11 to hello Text

~"=:;~ij,"X ~
set the contents of window 1 of application "Scriptable
Text Editor" to the contents of window 1 of application
"Scriptable Text Editor" & hello Text & return

r.~i!!i:·:.::J:l,_,J:~q~~·-~~:~~'·j:· ·-:tA:~:.~~~1~-~~~l~;i:i~;:;~._-·•··; . · .
end repeat

The loop will continue to run as long as xis less than 10.

A simpler way to do this would be to use the command "repeat
_times" (where the underscore is a placeholder for a variable) as
follows:

copy "The Tao of AppleScript" to hello Text

N:::~t~~~,:~-~t~~~~~~:;_.:·~~ft_~:~~t:#[Z:T_:·~\Yh ... ~··_ .:·: .- ·. · : ·
set the contents of window 1 of application "Scriptable
Text Editor" to the contents of window 1 of application
"Scriptable Text Editor" & hello Text & return

end repeat

The "repeat_ times" command tells AppleScript to do whatever
commands are found inside the repeat loop a specified number of
times and then continue with the commands after the "end
repeat."

However, you may need to know how far the script is through
the loop. To do this, AppleScript provides a different repeat loop,

SCRIPTING BASICS: THE THRESHOLD OF ADVENTURE

the "repeat with_ from" loop. The following script shows how it's
used:

copy "The Tao of AppleScript" to hello Text
re,ji~tf~~j)}jjQnJ.(t~:{Q,./?·'">·~- . _
·-· ' "'-~-- _;.c.:.~·'-~ -- ~ '· ... -.- - - ''- -'· '·"·-·-· ·.' .. <--c..·-~·"'---·-~;. ,.__.:._, '-- """' ;.;:..,C;.'"'-'-'-'

set the contents of window 1 of application "Scriptable
Text Editor" to the contents of window 1 of application
"Scriptable Text Editor" & hello Text & return

end repeat

The repeat loop declares a "counting variable" (i) and adds 1 to
the value of that variable each time it goes through the loop, until
that variable equals 10.

The counting variable follows the same rules as normal vari­
ables, except that it does not need to be declared beforehand.

With just these conditions, this counting variable would pose a
problem if you wanted to increase it by more than 1 at a time.
What if you want the counting variable to be increased by 10, or
some other number, each pass?

just as you can modify conditionals, AppleScript provides a
modifier for this type of repeat loop as well. The 11by" modifier
tells AppleScript by what amount the counting variable will be
increased each time.

copy ''The Tao of AppleScript" to hello Text
. c~ · ·r~pf!~fJvmJ\:r:trQm t ·to_ ... ,~;~Jl~-- --- · ·-·- --

---~- -~·,;,.._ ~_..,; ... " -0 ... _ T- < - ~- 0. T -~ ~- 0 __ < _,., ____ • .:.,..;.,. •• - _._, .. .,, ------~ ' •• ~ - _ .. ;. ___ --~

set the contents of window 1 of application "Scriptable
Text Editor11 to the contents of window 1 of application
"Scriptable Text Editor" & hello Text & return

end repeat

You can use the "by" modifier to count down as well as up.
Suppose you want the variable to start out at 100 and end at 1. To
do this, you could use the following command:

41

THE TAO OFAPPLESCRIPT

42

repeat with x from 1 00 to 1 by -1

end repeat

This tells AppleScript to count down by 1 each time through
the loop. You could use -10 if you wanted the script to count
down by 10 instead of 1.

Traversing a list
The last kind of repeat loop allows you to 11traverse a list."

Running a set of commands once for every item in a list is called
11traversing." You might want to execute a set of commands for
every paragraph in a document, in which case you would be
traversing the paragraphs in the document. A traverse loop runs
once for every value in a list, setting the counting variable to that
item in the list. For instance, if you wanted a script that filled in
people's names in a form letter, this repeat loop traverses a list:

repeat with i in {"Derrick", "John", "Mary"}

beep

end repeat

With this repeat loop the commands will run and therefore
beep three times. On the first pass, the variable i will equal "Der­
rick"; the second pass "John"; etc.

Traversing is a powerful tool. For complex scripts you will find
that this is a technique you will frequently use. Later, we'll look at
how to traverse directories in the Finder, giving you the ability to
do some very powerful file manipulation.

On Your Own
This chapter has covered the tools and equipment you'll need for
your journey-the mechanics of the AppleScript language. Just as
important, however, is knowing where you are going and what
route you will take to get there. You'll need a strategy for building
a script from scratch.

SCRIPTING BASICS: THE THRESHOLD OF ADVENTURE

In the next section are several approaches to building a simple
script. From there you can move on to more complex, real-world
types of scripts.

Before moving on, make sure to take a break and play with
some of these concepts. Become familiar with the different aspects
of AppleScript. Have some fun!

43

Chapter 3

Building Scripts

Finding Your
Way

Now that you've had a look at the mechanics of AppleScript and
its language, you need to learn how to go about writing an actual
script to achieve a specific goal. In this section you'll write a script
step by step that creates a window and moves it around the screen.
Once written, it will be refined and added to, making it simpler
and more powerful. These steps are the same development proce­
dure used by programmers to write code-they will become part of
your own scripting style with a little practice.

Moving a Window in Scriptable Text Editor
The window-moving script that you are about to write is a good
example of how even the simplest script is the end result of a
series of improvements. The ultimate goal is to move the first
window in Scriptable Text Editor across and down your Mac's
screen in a specific pattern. To achieve that goal, you must think
of each part of the script, one at a time, and build on those as­
pects.

THE TAO OF APPLESCRIPT

-.. ,.,...,. ~ .. . -. ' ,.,. -
'. _ . ..,_ ..

The path the
moving window

will take.

Get the Basics in Place
Before you start any script, you should take a moment to decide
what that script's key components are. In this case, the script's
most basic object is a window in Scriptable Text Editor, and the
most basic function of the script is setting the position of that
window. So, you must begin by addressing this main object and
setting its position.

Since Scriptable Text Editor automatically opens a window
whenever it is launched, you won't need to tell it to do so.

You may want to see the script's actions so you can understand
how it operates. To do this use the "activate" command. Activate
brings an application to the front or launches an application if it
isn't already running.

tjdl!;~~ .:,1t
~ ~- activate application "Scriptable Text Editor"

5~--

46

This script's single line brings the application to the forefront.

Using Tell
Since you will be working in Scriptable Text Editor throughout
this script, the "tell" command will provide a useful shortcut. You
can use the "tell" command to let AppleScript know that until
further notice, you want all commands directed to that applica­
tion-instead of referring to Scriptable Text Editor in every line to
address the specific window. Using the tell command gives a
certain amount of visual structure to your script as well. At this
stage, it may seem like overkill to add extra commands and make
it even longer, but as you fill out your script it will make sense.
Your script will now look like this:

ll~ tell application "Scriptable Text Editor'

activate

end tell

A tell command must always include an "end tell" to let
AppleScript know you have finished directing commands to that
application.

BUILDING SCRIPTS: FINDING YOUR WAY

Your first step will be to set the position of the window to some
arbitrary coordinates on the screen, say 1100,100}. The 1100,1001
represents the values of the x- and y-coordinates, relative to the
upper left corner of the Mac's screen 10,0}.

tell application "Scriptable Text Editor"

activate

set the position of window 1 to {1 00, 1 00}

end tell

Using Variables
The end result of the next script will be a window that moves
across the screen. To accomplish this, the position of the window
will need to be changed repeatedly. When dealing with values that
you want to change frequently it is best to replace those numbers
with variables. Remember, however, that you cannot use a vari­
able without defining it first. Therefore, you'll need to modify
your script in two ways: replace the numbers defining the coordi­
nates of the window with variables, and add the necessary lines to
define those variables.

Start by simply defining the variables and replacing the coordi­
nates with them, and deal with getting the variables to change
later.

The script will now look like this:

copy 100 toy

copy 100 to x

tell application "Scriptable Text Editor"

activate

set the position of window 1 to {x, y}

end tell

The copy commands place the number 100 into the variables
x and y. Since these commands are not being applied specifically

1:.-,z-r.;:~~

~~~ 

The origin (0,0) 
point of the Mac 
screen. 

47 



THE TAO OF APPLESCRIPT 

48 

A repeat loop 
within a repeat 

loop. 

to the application Scriptable Text Editor, they don't need to be 
within the tell command. Run the script. Nothing will appear to 
work differently, but it is now using variables to execute the 
commands. 

In order for the window to move, the values of the variables 
will need to change. To do this you'll need to replace the copy 
commands (that define the variables as a single number with 
repeat loops) (that will increase the values of the variables for each 
pass through the repeat loop). 

The script will start by moving the window across the top of the 
screen, left to right, then back to the left side of the screen, down 
a notch, and across again. To do this, you will need to put one 
loop inside the other. The first loop increments the value of y; the 
second loop increments the value of x. Every time the window 
moves down a notch, the script will move the window across the 
screen. Here's how the resulting script looks: . 

repeat with y from 0 to 480 

repeat with x from 0 to 640 

tell application "Scriptable Text Editor" 

activate 

set the position of window 1 to {x, y} 

end tell 

end repeat 

end repeat 

The first line of the script tells AppleScript to step, or repeat, 
from 0 to 480 and put each number it steps through into the 
variable y. Then, for each step of y, it steps from 0 to 640 and 
places each number it steps through into the variable x. Thus, 
when x has incremented 640 times, y will increment once. Each 
time y increments, the variable x increments 640 times again. 



BUILDING SCRIPTS: FINDING YOUR WAY 

The "movement" of the window is produced by the set command, 
which treats the values of the incrementing x and y variables as 
screen coordinates, telling the application to place the window at 

these coordi~tes. 

While step ing through each number, the script instructs 
Scriptable Te t Editor to change the position of the window to x 
pixels from t e left of the screen and y pixels from the top of the 
screen. As the script progresses, the window is placed at the 
position {0,0}, then {1,0}, then {2,0}, and so forth. When the 
window reaches the position {640,0}, the inner repeat loop fin­
ishes and passes through its end repeat statement; the script loops 
back to the initial repeat andy increments by 1, then starts the 
inner repeat loop all over again. 

Run the script again. 

You may notice that the script has some flaws in the way it 
works. While it does exactly what you told it to, it's not really 
what was intended. The window doesn't stay within the screen's 
edges, it starts out covered by the menu bar, and it goes so slowly! 
You may have also noticed that the window keeps insisting it 
should come to the front when you try to interrupt the script and 
go back to Script Editor. This is because the activate command is 
placed within the repeat loop. Though this is not exactly a spec­
tacular initial script, these problems are easy to fix with a little 
work. 

Fine Tuning 
To prevent the script from constantly pushing itself to the front, 
you should get the activate command where it belongs. Since the 
activate command is directed to Scriptable Text Editor, you can't 
simply put activate at the beginning of the script, as it would fall 
outside the tell command. You will have to move the tell com­
mand itself. 

This script 
assumes that you 
have a standard 
Apple 13" or 14" 
monitor. You may 
want to adjust 
your values if you 
have a different 
screen size. 

Mac Plus, SE, SE/ 
30, Classic, or 
Color 12": 
512 X 384 

PowerBook: 
640 X 400 

To stop the script 
before it finishes 
(as it will take a 
long time to 
finish) click on 
Script Ed~tor and 
press Stop (or 
press Command­
period). 

49 



THE TAO OF APPLESCRIPT 

I 
())<... 

The coordinates 
used for the 
position of a 
window are 

located below the 
title bar in the 

upper left corner 
of the window. 

50 

tell application ''Scriptable Text Editor" 

activate 

repeat with y from 0 to 480 

repeat with x from 0 to 640 

set the position of window 1 to {x, y} 

end repeat 

The easiest way to speed it up is to put a "by" modifier in the 
repeat loops. Instead of increasing x and y by a single pixel each 
time it repeats, you can increase it by 25. The by modifier goes 
right where you would expect it to in a regular sentence: 

tell application "Scriptable Text Editor" 

activate 

repeat with y from 0 to 480 by 25 

r~eat with x from 0 to 640 by 25 

set the position of window 1 to {x, y} 

end repeat 

end repeat 

end tell 

Next, let's have the window start within the visible area of the 
Mac's screen. The window will need to be placed below the menu 
bar, which extends 20 pixels from the top of the screen. You also 
have to take into account the title bar of the window, which is 
another 20 pixels. 

You don't need to change the initial x-coordinate, because it 
already falls within the visible area. However, you will need to 
change the initial y-coordinate so that it positions the window 40 
pixels down from the top edge of the screen. To do that, you must 
change the range of numbers in the first repeat loop. 



BUILDING SCRIPTS: FINDING YOUR WAY 

tell application "Scriptable Text Editor" 

activate 
r---

repeat with y from 40 to 480 by 25 
----~-------~ repeat with x from 0 to 640 by 25 

set the position of window 1 to {x, y} 

end repeat 

end repeat 

end tell 

Take a moment to run the script now. You'll see that your small 
changes have made it work much better. 

The third flaw in the initial script is that the window goes all 
the way off the screen. To fix this problem, you'll need to change 
the upper limit of the repeat loops so that the window doesn't 
move as far. 

How far should the window move? Well, you don't know 
because you don't know how big the window is; you only know 
the coordinates of the upper left corner. To solve this, you'll need 
to set the size of the window. This is called setting its "bounds" 
property. The bounds property is a list of numbers that look like 
this: {100,100,300,400}. The first number is the distance from the 
left edge of the screen to the left edge of the window; the second is 
the distance from the top of the screen to the top text entry area 
of the window (these first two numbers are also the numbers used 
by AppleScript to define the position of the window); the third 
item is the distance from the left edge of the screen to the right 
edge of the window, and the fourth item is the distance from the 
top of the screen to the bottom of the window. To make the 
window 100 pixels high and 200 pixels wide using the coordinates 
from the last example, you would use the command: 

set the bounds of window 1 to {0, 40, 200, 140} 

51 



THE TAO OF APPLESCRIPT 

52 

This command sets the position of the window to {0,40} and sets 
the bounds of that window to 100 pixels by 200 pixels from those 
coordinates. Since you now know the window is exactly 100 pixels 
wide and 200 pixels high, you can set the repeat loops' values so 
that the window stops 100 pixels from the right edge and 200 
pixels short of the bottom edge of the screen. This will limit the 
window's movement to 380 on the y axis and 440 on the x axis. 
As you run the script you'll see that all of the basic flaws have 
been corrected. 

tell application "Scriptable Text Editor" 

activate 

f~-~~-; .. -.~~·.;~t··~h···~~E~~~!~ti~~~:fJ~~Lt~~~~~~lis~;~~~2t&~ 
repeat with y from 40 to 380 by 25 

repeat with x from 0 to 440 by 25 

set the position of window 1 to {x, y} 

end repeat 

end repeat 

end tell 

Fix the Bugs 
No matter how much you think about a script, there will almost 
always be a problem you didn't foresee. Worse yet, the script that 
runs flawlessly on your machine may break the first time you run 
it on someone else's computer. Such are the realities of scripting. 

While you cannot avoid every problem, you should take some 
time to prevent as many as possible. Bugs are usually the result of 
assumptions that shouldn't have been made. You should strive to 
expand your thinking to include what might happen when 
someone else uses the script. 

Since Scriptable Text Editor makes a window when it starts, you 
didn't have to-but what if there wasn't one? What would have 
happened to your script? To find out, launch Scripta~l~_Text 
Editor if it isn't running already, and close all of its windows. Now 
run your script again. 



BUILDING SCRIPTS: FINDING YOUR WAY 

It's obvious what went wrong. The script can't "get" a window 
if there is no window to get (see figure 3.1). To make sure that the 
user doesn't get this error, the first thing you need to do is to 
check that there is at least one open window. To do this, you must 
set up a conditional. Use the conditional to see if there are any 
open windows, and make one if there aren't. In this case the 
conditional will need to check if there isn't a window. To do this, 
you'll need to use the "not" modifier. You need to say, "If it is not 
the case that there is a window 1, then make one." 

EHecution Error 

Scriptable Text Editor got an error: Can't get 
wi ndow 1 . 

AppleScdpt Er19lish 
n Stop 

The script version of this looks like this: 

tell application "Scriptable Text Editor" 

activate 

if not (window 1 exists) then make window 

set the bounds of window 1 to {0, 40, 200, 140} 

repeat with y from 40 to 380 by 25 

repeat with x from 0 to 440 by 25 

set the position of window 1 to {x, y} 

end repeat 

end repeat 

end tell 
'/tAft. "JpplrtJi//::1Cyl '/.5(.fllt--=~ i"al::: E.ct("tPf " 

If there is an open window, then there is a window 1, since the 
definition of window 1 in AppleScript is the frontmost window. 

Add New Features 
Halfway through the development of a script you may think of 
new features to add. This can lead to "featuritis," where you never 

Figure 3.1 
The inevitable 
bug: If a win­

dow isn't open, 
Script Editor will 

show you this 
dialog box. 

53 



THE TAO OF APPLESCRIPT 

54 

quite finish the script, but keep adding new features. It can, 
however, also be an important phase in the development of your 
script and your scripting abilities. 

New features can make your script more impressive and more 
practical to other people if you ever plan on sharing your script 
creations with other AppleScript users. Features can range from 
aesthetic ("mag wheels," as my father would call them) to func­
tional. 

Even this simple script could have features added to it. For 
example, if you want to know exactly where the window is at any 
moment, you could tell the script to put the position of the 
window into the window itself. 

You can get the window's x andy coordinates fairly easily since 
you've already put them into variables. To put those numbers in 
the window together, you need to concatenate them. However, 
since they are numbers, you need to tell AppleScript to treat them 
as text. Putting all this together: you need to set the contents of 
the window to the values of x and y as text, separated by a 
comma. 

The script now looks like this: 

tell application "Scriptable Text Editor" 

activate 

if not (window 1 exists) then make window at beginning 

set the bounds of window 1 to {0, 40, 200, 140} 

repeat with y from 40 to 380 by 25 

repeat with x from 0 to 440 by 25 

set the position of window 1 to {x, y} .------- ---- :""::""~., set the contents of window 1 to (x as string) & "," & 
...._ __ --~(y as stein ) 

end repeat 

end repeat 

end tell 



BUILDING SCRIPTS: FINDING YOUR WAY 

When you run the script, you will see that it behaves exactly 
the way you intended. Congratulations! You've written your first 
complex script! Though moving a window around your Mac's 
screen may not be the he-all end-all of scripting with AppleScript, 
it does show you the principles involved in creating a script from 
scratch. 

On Your Own 
If you want to practice some scripts on your own, feel free to take 
a break. Perhaps you thought of some other feature that you 
would like to add to this script, or maybe you'd like to try making 
the window move in a different pattern. The point is that you 
should explore AppleScript on your own and be creative about 
what you want to do with it. 

55 



Chapter 4 
Building Scripts 

Living off the 
Land 

This next script is actually somewhat functional. Unlike the 
window moving script, this script manipulates data-probably one 
of the aspects of AppleScript you'll use most. 

The script numbers lines of text in a window. Though some 
word processors have this feature, Scriptable Text Editor isn't one ,r ';~:" ~ la.IJ 

of them. But because it's AppleScript aware, you can make a script ~ .,_,.._ 
that will do it for you. 

You'll need to do a little bit of setup beforehand. Launch 
Scriptable Text Editor; it will automatically make a new window 
for you. In that window, put four lines of text as in figure 4.1a­
you can write whatever you like. The second window (see figure 
4.1b) shows how that same window will look after you have run 
the script on it. 



THE TAO OF APPLESCRIPT 

Figures 4.1a 
and4.1b 

Numbering lines 
of text isn't a 

feature of 
Scriptable Text 

Editor, but it can 
be added with a 

script. 

58 

Go grocery shopping 
Do laundry 
Learn AppleScript 
Pay bill~ 

I 

1. Go grocery shopping 
2. Do 1 aundry 
3. Learn AppleScript 
4. Pay bills 

Get the Basics Working 
Next, think about what some of the key commands will be. 
Obviously, the most important line of this script will be the one 
that puts the appropriate number in front of the line of text. 
You've seen how the "make" command in Scriptable Text Editor 
can create an object with certain properties. The make command 
may also be used to make an object with a certain value, that you 
define. Since you will be addressing the application Scriptable Text 



BUILDING SCRIPTS: LIVING OFF THE LAND 

Editor, this command enables you to make a word with the value 
"1. "(note the space after the period). This is how you will create 
the numbers that will be added to the lines of text. (Since a return 
follows each line in the window, the lines are actually separate 
paragraphs.) 

tell window 1 of application "Scriptable Text Editor" 

activate 

make word at beginning of paragraph 1 with data "1. " -end tell -

The number you'll place in front of the paragraph will change 
depending on which paragraph the script is working with. You 
will need to make this number a variable, and that means you'll 
need to define the variable. 

The script uses a repeat loop to increment the variable, one 
integer at a time. In order for the script to know how high to 
count, tell it to count the number of paragraphs in the window 
and make that number the maximum value of the repeat loop. 
Finally, concatenate that number with a period followed by a 
space (for aesthetic reasons). The resulting script looks like this: 

tell window 1 of application "Scriptable Text Editor" 

repeat with i from 1 to the number of paragraphs 
activate 

make word at beginning of paragraph i with data (i as 
string) &: ". " 

end repeat 
end tell 

Make It Better 
Though this script works correctly, there are ways to improve it. 
Further enhancements can include annotating the script and 
making sure it will work under unexpected circumstances. 

59 



THE TAO OF APPLESCRIPT 

60 

Comments 
After you've been scripting for a while, you'll find yourself 

looking back over your old scripts. Unfortunately, it becomes 
difficult to remember why you used certain commands in a 
complex script. To help yourself, remember AppleScript provides a 
mechanism for leaving yourself notes, called "comments," in a 
script. These comments will also be useful to others who may use 
your script. 

There are two ways to make comments. The first is to precede 
the information with two hyphens(--). AppleScript ignores all the 
information in a line after two hyphens. A comment can be either 
an entire line or at the end of a line, as long as you precede it with 
two hyphens. For example: 

tell window 1 of application "Scriptable Text Editor" 

repeat with i from 1 to the number of paragraphs 

--This repeat loop numbers the paragraphs 

activate 

make word at beginning of paragraph i with data (i as 
string) & 11

• 
11 --i is a number so needs to be coerced to a 

string 

end repeat 

end tell 

You may also want a comment that spans several lines. While you 
could do this by "commenting out" line after line, AppleScript 
provides an easier mechanism for making multi-line comments. 
Putting the characters"(*" and"*)" at the beginning and end of 
text makes AppleScript ignore everything between them. The 
following example shows how this looks: 

(* This script numbers all the paragraphs in the first window in 
Scriptable Text Editor 

It also uses the make command from Scriptable Text Editor to insert 
the new word * 



BUILDING SCRIPTS: LIVING OFF THE LAND 

tell window 1 of application "Scriptable Text Editor" 

repeat with i from 1 to the number of paragraphs --This is a 

comment after a line 

--This repeat loop numbers the paragraphs 

activate 

make word at beginning of paragraph i with data (i as 
string) &: ". " --remember to make i into a string because i 

is a number 

end repeat 

end tell 

There are no rules for how many comments may be put into a 
script. Some people comment on every line, defining each com­
mand, while others use them infrequently, only to define sections 
of script. Remember, these comments are for you or perhaps 
someone looking at your script, so only you can decide how many 
to include. 

There are a few guidelines about where different types of com­
ments should be placed. A comment at the end of a line is best for 
making a special note about that line. In the example above, the 
comment on the line containing the "make" command is there to 
note that the variable i must be coerced to a string. 

A comment on its own line explains the commands following 
it. These types of comments are placed before a chain of events to 
explain its purpose. In the example, the comment on a line by 
itself explains the purpose of the following repeat loop. 

Finally, multi-paragraph comments go at the beginning to 
explain the entire script, perhaps as a technical overview. 

Each script also has a comment area at the top of Script Editor's 
window, that area is used to describe the overall function of a 
script to a prospective user. 

Proper commenting enables you to come back to scripts much 
later and easily understand what you did and why. In addition to 

61 



THE TAO OF APPLESCRIPT 

62 

helping you to understand the script, commenting makes it easier 
to look into a script and pull out parts to use in other scripts. 

Interface 
If you plan to distribute your script to other AppleScript users, it's 
important to consider how they will see your script. How an 
uninitiated user interacts with your script, or for that matter how 
your script interacts with the user, can make a big difference in 
how elegant your script seems. 

Look back at the window-moving script. While the "activate" 
command could have gone anywhere in the script, it was put at 
the beginning to let you see what the script was doing, so that all 
the script's actions would be clear to you. However, to someone 
using the script, seeing a window being made and sized can appear 
jerky and unrefined. If you place the activate command later in 
the script, the application is brought forward with the window 
already set up, and the window begins moving right away. 

Someone using the paragraph numbering script is likely to want 
to go back to the document that was just numbered, so you may 
want to include the activate command to bring that window to 
the front automatically. If you put the activate command just 
before the end of the tell command, so it is the last action ex­
ecuted, the script will run in the background and the user will see 
the window only when the script is finishe~. The script looks like 
this: 

(* This script numbers all the paragraphs in the first window in 
Scriptable Text Editor 

It uses the make command from Scriptable Text Editor to insert the 
new word*) 

tell window 1 of application "Scriptable Text Editor11 

repeat with i from 1 to the number of paragraphs 

--This repeat loop numbers the paragrqphs 

make word at beginning of paragraph i with data (i as 
string) & ". "--i is a number so needs to be coerced to a 
string 



BUILDING SCRIPTS: LIVING OFF THE LAND 

end repeat 

activate 

end tell 

Fix the Bugs 
You may have already seen a potential bug in this script: What if 
there are no open windows? 

You might assume that if someone is running this script, there 
will be an open window with paragraphs in it which they want 
numbered. This isn't a bad assumption, but if that person does 
run this script with no open windows, an error will occur. You 
don't want that-it makes your scripts look bad. 

While that can be fixed easily enough by using the make 
command to create a new window, remember that the script's 
purpose is to number paragraphs, and a new window is empty. A 
further complication is that as far as AppleScript is concerned, 
there is a paragraph in the empty window-it just doesn't contain 
letters. Thus, the script will put the word "1. "at the beginning of 
the first line. The answer here is not to check if there is a para­
graph or not, but to check if any text is present in the window. If 
there's no text, then there aren't any paragraphs you would want 
to number. 

So you'll want to check a) if a window is open and b) if it has 
text in it. You can kill both birds with one stone by placing a 
conditional at the beginning of the script and using an "and" 
modifier to check both conditions at the same time. The resulting 
script looks like this: 

(* This script numbers all the paragraphs in the first window in 
Scriptable Text Editor 

It uses the make command from Scriptable Text Editor to insert the 

new word*) 

tell application "Scriptable Text Editor" 

63 



THE TAO OF APPLESCRIPT 

64 

if (window 1 exists) and (the contents of window 1 is not "11
) 

then 

tell window 1 

repeat with i from 1 to the number of paragraphs 

--This repeat loop numbers the paragraphs 

make word at beginning of paragraph i with data 
(i as string) & ". " --i is a number so needs to be 

coerced to a string 

end repeat 

activate 

end tell 

end if 

end tell 

Because of the way the "and" modifier works, if window 1 
doesn't exist, AppleScript stops evaluating the conditional before 
looking at the second condition. Since "and" requires that all of 
the conditions be true, when AppleScript sees the first condition is 
false, it doesn't look further. As a result, the second condition 
won't cause an error. 

You may have also noticed that a "tell" statement has been 
added. The script addresses the window specifically after the 
conditional. If a window doesn't exist, "tell window" will cause an 
error. To prevent that error, you must use the "tell" statement to 
address the window only after you have made sure that a window 
exists. 

Add New Features 
One way to make this script more meaningful to another user 
would be to provide an indicator of how far the script has pro­
gressed. With a progress bar, such as the one the Finder uses while 
copying, you would know exactly how many paragraphs have 
been numbered and how many are left to go. This would be 
especially useful for a long document. 



BUILDING SCRIPTS: LIVING OFF THE LAND 

Unfortunately, AppleScript doesn't provide a progress bar. The 
next section shows you how to use the application Progress Bar to 
give you a status indicator in a script. This also shows how 
AppleScript can work with multiple applications to create more 
powerful and useful scripts. 

Adding a progress bar by using 
another application 

One of AppleScript's main features enables you to tie different 
applications together within a single script. Progress Bar's only 
purpose is to show a progress bar that you update through script­
ing. This enables you to show how far through a script you are. 
Before adding it to the window numbering script, you need to 
learn how it is used. 

Get the Basics Working 
To see how Progress Bar works, you will write a simple script that 
counts from 1 to 100 using Progress Bar to show how far along the 
counting is. This will serve as a building block for incorporating 
progress bars into your own scripts. 

Scriptable Text Editor is able to have many items in a window. 
It can contain words, paragraphs, characters, and the like. In 
Progress Bar, only one item is in its window: the progress bar. 
This progress bar has five properties: the minimum value of 
the progress bar, the maximum value of the progress bar, the 
curren t value of the progress bar, the caption, and the sub-caption 
above the progress bar (see figure 4.2). 

caption 

sub-caption 

terns remaining to count: 33 

rrent count: 6 7 

current 

Figure4.Z 
The five 
properties of 
the Progress 
Bar. 

65 



THE TAO OF APPLESCRIPT 

66 

The first step when using Progress Bar is to set up the progress 
bar. When Progress Bar starts, it doesn't automatically create a new 
window; you must tell it to do so. 

tell application "Progress Bar 1 .0" 

activate 

make window 

end tell 

Once a new window is set up, you'll want to set the properties 
of the progress bar in that window. Since the script counts from 1 
to 100, these are the minimum and maximum values. Adding that 
to the script results in: 

tell application "Progress Bar 1 .0" 

activate 

make window 

tell progress bar 1 of window 1 

set maximum value to 1 00 

set minimum value to 1 

end tell 
end tell 

' 

To figure out what the current value is, the script can use a 
simple repeat loop which counts from 1 to 100. Because we need 
to know how far along the script is, we'll use a "repeat with" loop 
that includes a variable. With each pass of the repeat loop, the 
script will change the "current value" of the progress bar based on 
the value of the variable. The resulting script looks like this: 

tell application "Progress Bar 1 .0" 

activate 

make window 

tell progress bar 1 of window 1 



BUILDING SCRIPTS: LIVING OFF THE LAND 

set maximum value to 1 00 

set minimum value to 1 -------
repeat with i from 1 to 1 00 

set current value to i 

end repeat 

end tell 

end tell 

If you run this script, you'll see it dutifully display the progress 
of the count from 1 to 100. Those are the basics of using Progress 
Bar. 

Make It Better 
Before putting a progress bar into the line numbering script, there 
is more that can be done to improve the look of this simple 
counting script. 

Improving the Progress Bar 
The progress bar itself can be made more meaningful and 

aesthetically pleasing. 

If you've been running this script through each step of its 
development, you may realize that you now have several windows 
open in Progress Bar. Progress Bar doesn't automatically close its 
window when it's done counting; it's up to you to do it within 
your script. 

There are two ways to do this. You can close the window, or 
you can quit the application. Most of the time, you'll want to quit 
the application. If you're going to use a new progress bar in 
another part of your script, however, you may want to just close 
the window. 

To quit the application, the script would look like this: 

67 



THE TAO OFAPPLESCRIPT 

68 

tell application "Progress Bar 1 .0" 

activate 

make window' 

tell progress bar 1 of window 1 

set maximum value to 1 00 

set minimum value to 1 

repeat with i from 1 to 1 00 

set current value to i 

end repeat 

end tell 

·····- . __ 9.~~:_:~'-:~:::-.... - ---- --· --­
end tell 

Notice that the "quit" command is outside the inner "tell" 
statement. This is because the command is sent to the application, 
not to the progress bar window. If you want to close the window 
instead, use the following: 

tell application 11Progress Bar 1.0" 

activate 

make window 

tell progress bar 1 of window 1 

set maximum value to 1 00 

set minimum value to 1 

repeat with i from 1 to 1 00 

set current value to i 

end repeat 

end tell 

·dose:Winclow t _ 
-~--:~ :~~ .. ).."~, .. ~--:~'.:·:~:-~-~\:,--- .. \ 

end tell 



BUILDING SCRIPTS: LIVING OFF THE LAND 

In this case, you're telling window 1 to close. The close com­
mand comes from the Progress Bar application itself. You need to 
place the close command outside the second tell command 
because anything within the second tell command is currently 
being directed at the progress bar within the window, and the 
progress bar itself cannot be closed. In our simple counting script, 
there's no real purpose to closing the window-we probably won't 
be using the application again. It's probably easiest to just quit. 

There are two more changes that will make the progress bar 
more informative: naming the window and giving it a caption. 

By setting the name of the window, you can tell the user what 
process is being measured. It is useless to show the progress bar 
counting if you're not sure what it's counting. For this simple 
counting script, you may want to change the name to "Counting." 

tell application "Progress Bar 1.0" 

activate 

make window 

tell progress bar 1 of window 1 

set maximum value to 1 00 

set minimum value to 1 

repeat with i from 1 to 1 00 

set current value to i 

end repeat 

end tell 

quit 

end tell 

A caption in a progress bar also gives useful information. It can 
tell the user exactly what is happening as it happens. Progress Bar 
provides you with such a caption. If you set it to "Preparing ... " 
you tell the user that the script is doing something, but isn't 

69 



THE TAO OF APPLESCRIPT 

70 

counting yet. This lets the user know that something is about to 
happen in the progress bar. 

tell application "Progress Bar 1.0" 

activate 

make window 

set Name of window 1 to "Counting" 

tell progress bar 1 of window 1 ' 

set the caption to "Preparing .. . " 

set maximum value to 1 00 

set minimum value to 1 

repeat with i from 1 to 1 00 

set current value to i 

end repeat 

end tell 

quit 

end tell 

The caption can also be updated with new information at any 
point in the script. You can use the caption in this script to show 
what number Progress Bar is up to as it's counting (see figure 4.3). 
Here's how you'd do that: 

tell application "Progress Bar 1.0" 

activate 

make window 

set Name of window 1 to "Counting" 

tell progress bar 1 of window 1 

set the caption to "Preparing ... " 

set maximum value to 1 00 

set minimum value to 1 

repeat with i from 1 to 1 00 

set c::a tion to i as strin 



BUILDING SCRIPTS: LIVING OFF THE LAND 

set current value to i 

end repeat 

end tell 

quit 

end tell 

Countin 

44 

Adding a progress bar to another script 
Since you already have a script that uses Progress Bar, it's easy 

to add a progress bar to another script. All that's required is to 
copy the commands from one script to the other and modify 
them to fit. 

Look at the line-numbering script again. The first thing you 
want to add is the process of making the progress bar window. 
You have all the commands for doing this, of course, but you need 
to think about where they belong in the line-numbering script. 

You don't want the progress bar to appear unless the script is 
going to run, so all those commands should be put inside the 
conditional. Since the repeat loop begins right after the condi­
tional, the commands that set up the progress bar should be 
placed just before telling window 1 what to do. While doing this, 
you should change the name to something more appropriate for 
this script-such as "Numbering Lines." Before running the next 
script, you need to do a little setup. Make sure you have a window 
open in Scriptable Text Editor with a few paragraphs of text in it. 

Figure 4.3 
The new and 
improved progress 
bar. 

71 



THE TAO OF APPLESCRIPT 

• t 

72 

(* This script numbers all the paragraphs in the first window in 

Scriptable Text Editor 

It uses the make command from Scriptable Text Editor to insert the 
new word*) 

tell application "Scriptable Text Editor" 

if (window 1 exists) and (the contents of window 1 is not '"') 
then 

tell application "Progress Bar 1 .0" 

make window 

set the Name of window 1 to "Numbering Lines" 

tell progress bar 1 of window 1 

activate 

set caption to "Preparing .. . " 

set maximum value to 1 00 

set minimum value to 1 

end tell 

end tell 

tell window 1 

repeat with i from 1 to the number of paragraphs 

--This repeat loop numbers the paragraphs 

make word at beginning of paragraph i with data 
(i as string) & ". " --i is a number so needs to be 

coerced to a string 

end repeat 

activate 

end tell 

end if 

end tell 

Simply inserting the lines from another script will not do. The 
maximum value of the progress bar needs to reflect the number of 
paragraphs. You only want it set to 100 if you have 100 para­
graphs to number. You should set the maximum value of the 



BUILDING SCRIPTS: LIVING OFF THE LAND 

progress bar to the number of paragraphs. To do this, change the 
"maximum value" command to do this, as in the following script: 

(* This script numbers all the paragraphs in the first window in 

Scriptable Text Editor 

It uses the make command from Scriptable Text Editor to insert the 
new word*) 

tell application "Scriptable Text Editor" 

if (window 1 exists) and (the contents of window 1 is not "") 
then 

tell application "Progress Bar 1.0" 

make window 

set the Name of window 1 to "Numbering Lines" 

tell progress bar 1 of window 1 

set caption to "Preparing ... " 

set maximum value to the number of paragraphs 
in window 1 of application "Scriptable Text Editor" 

set minimum value to 1 

activate 

end tell 

end tell 

tell window 1 

repeat with i from 1 to the number of paragraphs 

--This repeat loop numbers the paragraphs 

make word at beginning of paragraph i with data 
(i as string) & ". " --i is a number so needs to be 

coerced to a string 

end repeat 

activate 

end tell 

end if 

end tell 

73 



THE TAO OFAPPLESCRIPT 

74 

Now that you've set up the progress bar with the maximum 
value equal to the number of lines in the window, all that remains 
is to update the progress bar as the script progresses and to close it 
when the script is finished. You can accomplish the update in the 
same repeat loop that numbers the lines. You may also want to 
put in a caption indicating the paragraph the script is on. The 
final script looks like this: 

(* This script numbers all the paragraphs in the first window in 
Scriptable Text Editor 

It uses the make command from Scriptable Text Editor to insert the 
new word*) 

tell application "Scriptable Text Editor" 

If (window 1 exists) and (the contents of window 1 is not "") 
then 

tell application "Progress Bar 1.0" 

make window 

set the Name of window 1 to "Numbering Lines" 

tell progress bar 1 of window 1 

set caption to "Preparing ... " 

set maximum value to the number of paragraphs 
in window 1 of application "Scriptable Text Editor" 

set minimum value to 1 

activate 

end tell 

end tell 

tell window 1 

repeat with i from 1 to the number of paragraphs 

--This repeat loop numbers the paragraphs 

make word at beginning of paragraph i with data 
(i as string) & ". " --i is a number so needs to be 

coerced to a string 



BUILDING SCRIPTS: LIVING OFF THE LAND 

tell application "Progress Bar 1.0" 

tell progress bar 1 of window 1 

set current value to i 

set caption to "Paragraph: " &: (i as string) 

end tell 

end tell 

end repeat 

activate 

end tell 

tell application "Progress Bar 1 .0" 

quit 

end tell 

end if 

end tell 

This script shows how easy it is to incorporate two applications 
into a script. Though the applications themselves are unrelated, 
the information from one (the number of paragraphs in the 
window, and the current paragraph) can be used in the other (the 
position of the progress bar). Using three or more programs isn't 
any different. 

When writing scripts that use multiple applications, it helps to 
get parts working with individual applications and then merge 
them together. Just as you made a simple counting script using 
Progress Bar and a simple script using Scriptable Text Editor, you 
could create a script that takes information from a database and 
another script that fills in addresses in a word processor. You could 
then combine these two simpler scripts to make a more complex 
script to do a mail merge. 

Combining scripts becomes easier as you build up a stock of 
previous scripts to draw on. 

75 



THE TAO OF APPlESCRIPT 

76 

On Your Own 
At this stage you've reached the point of no return. Your journey 
is underway, and you're far enough down the road that you can't 
tum back. 

Take some time to experiment before moving on to the next 
chapter. Try making a script with some of these elements, but 
based on a goal of your own. 



Collecting 
Tools 

Chapter 5 

Building Scripts 

While writing a script, you may find yourself faced with a task 
you've dealt with before. At times like these, a library of scripts (or 
pieces of script) that you've already written comes in handy. You 
can simply insert these previously written scripts into the script 
you are working on. 

It's best to write the library scripts with little or no dependence 
on the script into which they'll be placed. This makes it easier to 
insert them into an existing script. By copying and pasting them 
with little or no modification, you can save time and energy. 

When writing any script, you should think about which parts 
could be added to your script library. You should also keep in 
mind earlier scripts you've written, from which ·you can copy 
pieces. 

The text-sorting script in this section is a good example of such 
a script. Its function is useful in many situations, but it takes time 
and effort to create. By writing it once and storing it in your 
library, you can reuse it whenever you need it. 



THE TAO OF APPLESCRIPT 

Whenever you do 
a bubble sort, the 
number of passes 
required to sort a 

list of items is 
always at most 

equal to the 
number of items 
in the list minus 

one, assuming 
the list is com­

pletely unsorted. 

78 

In addition, this script teaches a logical approach to compari­
sons and will further the script-writing skills you've learned so far. 

The Bubble Sort 
This text-sorting script uses the "bubble sort" method-the most 
basic method of sorting items. It's a binary process: comparing 
two items, returning a true or false, then acting on that result. This 
sort selects a pair of items from a list, compares them and, depend­
ing on the result, changes the order of those items. This process is 
applied to each pair of items in succession until the entire list is 
sorted. 

This is called a 11bubble sort" because each value floats up or 
down through the list until it reaches its proper position. 

Given the list of numbers {5, 3, 6, 4, 1} to sort from lowest to 
highest, the sort first finds the 5 to be higher than the 3 and 
exchanges their positions. The list becomes {3, 5, 6, 4, 1}. The sort 
continues with the second pair, 5 and 6; since they are already in 
their proper order, no exchange is made. This continues until the 
sort has compared each pair in succession. At the end of the first 
pass, the list looks like this: 

{3, 5, 4, 1, 6} 

They still are not sorted, but they are a step closer. Assuming 
that the numbers are completely out of order, finishing the sort 
would require a pass through the list once for each item except the 
last, since the last item is not followed by anything, and thus it 
has nothing to be compared to. Consequently, the list {6, 5, 4, 3, 
1} would take, at most, four passes-one pass for each item minus 
the last. 

The Basics 
As before, you'll write a script to control Scriptable Text Editor. For 
this script, you'll need some setup beforehand. Be sure Scriptable 
Text Editor has an open window, and type the numbers 5, 3, 6, 4, 
and 1 into the window with a return between each number (see 
figure 5.1). 



BUILDING SCRIPTS: COLLECTING TOOLS 

5 
3 
6 
4 

11 I 

To copy that information from Scriptable Text Editor into a 
variable, "theList," you must address the application and tell it to 
copy that information. So that you can see what happens while 
the script runs, put the activate command into the script. Next, 
put "theList" at the end of the script, so this variable will appear in 
the result window at the end of each step. The script will look like 
this: 

tell window 1 of application "Scriptable Text Editor" 

activate 

copy every paragraph to thelist 

end tell 

the list 

The information contained in "theList" is, in fact, a list of items 
where each item is a paragraph from Scriptable Text Editor. 

Now that you have a list of items from Scriptable Text Editor, 
you'll need a mechanism that will compare this data in pairs. 
You'll use a conditional with an operator. In this case, the opera­
tor is "comes after." (For other situations, you can simply replace 
this operator with another, such as: comes before, is equal to, etc.) 
Don't worry about actually changing the order of the items at this 

FigureS.l 
Creating a 
window in 
Scriptable Text 
Editor. 

79 



THE TAO OF APPLESCRIPT 

80 

point; just tell the script to beep if they're not in the correct order. 
The script now looks like this: 

tell window 1 of application "Scriptable Text Editor" 

activate 

copy every paragraph to thelist 

if item 1 of thelist comes after item 2 of thelist then bee~ 

end tell 

thelist 

The above script should beep because item 1 of theList does 
"come after" item 2 of theList. 

Sorting Procedure 
Instead of simply beeping, you want the script to exchange the 
positions of the numbers in the list so that they are in sorted 
order. To do this, copy the first item out to a temporary variable, 
replace the first item in the list with the second item, then place 
the first item back into the list in place of the second item. It's sort 
of a shell game-swapping the items around and exchanging their 
places in the list. 

To achieve this you'll need a command to copy item 1 to a 
temporary variable: 

tell window 1 of application "Scriptable Text Editor" 

activate 

copy every paragraph to thelist 

if item 1 of thelist comes after item 2 of thelist then 

copy item 1 of thelist te temp 

end If 

end tell 

thelist 



BUILDING SCRIPTS: COLLECTING TOOLS 

This copies the number you want to move. Now that item 1 is 
safely stored, you can replace it with item 2, as follows: 

tell window 1 of application "Scriptable Text Editor" 

activate 

copy every paragraph to thelist 

if item 1 of thelist comes after item 2 of thelist then 

copy item 1 of thelist to temp 
.-----

set item 1 of thelist to item 2 of thelist 

end if 

end tell 

the list 

----~-~-----

At this point, the variable theList consists of the list 1"3", "3", 
"6", "4", "1"}. You can see that item 1 and item 2 are the same. 
The next step is to set item 2 to the number you've stored in the 
variable "temp." This is done by setting item 2 to the number held 
in the variable. This will put the two items in their sorted order. 

tell window 1 of application "Scriptable Text Editor" 

activate 

copy every paragraph to thelist 

if item 1 of thelist comes after item 2 of thelist then 

copy item 1 of thelist to temp 

set item 1 of thelist to item 2 of thelist ----.__ ___ set item 2 of thelist;...;t;.;;o;...t;.;;e;..,;m.;.!l:>;..,_. ____ .::._ _____ __,.j 

end if 

end tell 

thelist 

Repeated Sorting 
You just created a script that does a simple bubble sort between 
two numbers. Because this is a bubble sort the script will need to 

Remember that 
numbers from 
Scriptable Text 
Editor are treated 
as text, so the list 
will appear in the 
Result window 
with quotes 
around each 
digit. 

81 



THE TAO OF APPLESCRIPT 

Every variable has 
to be declared. In 

this case, 
counterVar is 

declared in the 
repeat command 

(as a range of 
values between 1 

and the number of 
items minus one). 
You don't need to 

use a "set" or 
"copy" command. 

82 

pass through the list once for each item minus one in order for the 
entire list to be sorted, like so: 

tell window 1 of application 11Scriptable Text Editor11 

activate 

copy every paragraph to thelist 

repeat ((the number of items in thelist) - 1) times 

if item 1 of thelist comes after item 2 of thelist then 

copy item 1 of thelist to temp 

set item 1 of thelist to item 2 of thelist 

set item 2 of thelist to temp 

end if 

end repeat 

end tell 

the list 

Repeating the script now, however, will repeatedly sort the first 
two numbers only; the rest will remain unsorted. The script must 
be told to move down the list, moving to the next pair of numbers 
after it has checked the first two. To do that, you'll need a variable 
that increments once for each pass through the list. 

You can base this variable on the number of times the repeat 
loop has passed through the list. The repeat loop you already have 
in the script can use a variable, "counterVar," to count the num­
ber of times it has repeated. Item 1 of the pair becomes "item 
counterVar" instead of "item 1," and since item 2 of each pair is 
always found immediately after item 1, you can simply define it as 
"item (counterVar + 1)." (You need to include the parentheses to 
let AppleScript know that the"+ 1" applies to the variable.) 

tell window 1 of application 11Scriptable Text Editor11 

activate 

copy every paragraph to thelist 



BUILDING SCRIPTS: COLLECTING TOOLS 

repeat with counterVar from 1 to (the number of items In 
thelist)- 1 

If item counterVar of theUst comes after item 
(counterVar + 1) of thelist then 

copy item counterVar of thelist to temp 

set item counterVar of the list to item ( counterVar + 1) 
of thelist 

set item (counterVar + 1) of thelist to temp 

end if 

end repeat 

end tell 

thelist 

This script passes through the list once, comparing each pair of 
items as it goes. In doing so, it moves the highest number (6) to its 
proper position. The resulting list is {"3", "5", "4", "1", "6"}. The 
script is another step closer to being sorted. To sort it completely 
the script needs to repeat this process once for each item, except 
the last. Another repeat loop is required that will repeat the entire 
sorting process that many times. 

tell window 1 of application "Scriptable Text Editor" 

activate 

copy every paragraph to thelist 

repeat ((the number of items In theUst) - 1) times 

repeat with counterVar from 1 to (the number of items 
in thelist) - 1 

if item counterVar of thelist comes after item 
(counterVar + 1) of thelist then 

copy item counterVar of thelist to temp 

set item counterVar of thelist to item 
(counterVar + 1) of thelist 

83 



THE TAO OF APPLESCRIPT 

84 

set item ( counterVar + 1) of the list to temp 

end if 

end repeat ---
end re eat 

end tell 

the list 

Finally, as you can see in the result window, you have a fully 
sorted list. Of course, you want it in Scriptable Text Editor's 
window, not the result window. To move it, you'll need to add a 
line to the script. 

tell window 1 of application "Scriptable Text Editor" 

activate 

copy every paragraph to thelist 

repeat ((the number of items in thelist) - 1) times 

repeat with counterVar from 1 to (the number of items 
in thelist) - 1 

if item counterVar of thelist comes after item 
(counterVar + 1) of thelist then 

copy item counterVar of thelist to temp 

set item counterVar of thelist to item (counterVar 
+ 1) of thelist 

set item (counterVar + 1) of thelist to temp 

end if 

end repeat 

end repeat 

set the contents to (thelist as string) 
--~~----------~ 

end tell 

the list 



BUILDING SCRIPTS: COLLECTING TOOLS 

Cleaning Up 
You can see by looking in Scriptable Text Editor's window that 
something is not quite right. The list was put back in as a string of 
numbers without returns: "13456." A sorted list in this form 
probably isn't much good. The script will have to insert a return 
between each item. You need to "traverse" the list, telling the 
script to insert a return for each item it comes across. In addition, 
the script will need to empty Scriptable Text Editor's window 
before placing the sorted list back into it-otherwise you would 
simply add this result to the original list. 

To empty the window, you must set the contents to nothing. 

A repeat loop is used to insert the returns in the list. With each 
pass through the loop, you need to concatenate the contents of 
the window and each item of theList in turn (using the variable 
currentltem), each followed by a return. While you're at it, you 
should remove "theList" from the end-since you are now placing 
the result in the window, you no longer need this command to see 
the results. 

Before running this script, type your original unsorted list back 
into Scriptable Text Editor's window so it can start fresh. 

tell window 1 of application 11Scriptable Text Editor" 

activate 

copy every paragraph to thelist 

repeat ((the number of items in thelist) - 1) times 

repeat with counterVar from 1 to (the number of items 
in thelist) - 1 

if item counterVar of thelist comes after item 
( counterVar + 1) of thelist then 

copy item counterVar of thelist to temp 

set item counterVar of thelist to item (counterVar 
+ 1 ) of thelist 

set item ( counterVar + 1) of the list to temp 

85 



THE TAO OF APPLESCRIPT 

86 

end if 

end repeat 

end repeat 

set the contents to (thelist as string) 
------------------~ set contents to '"' 

repeat with currentltem in thelist 

set the contents to the contents & currentltem & return 

end repeat 

end tell 

This script finally does what it was intended to do. It sorts the 
items in the Scriptable Text Editor window and returns them to 
the window in the form they were taken: a list separated by 
returns. 

Now that it functions properly, you can look for ways to make 
it more efficient and adaptable. 

Speeding It Up 
You m ay have noticed that if not all the items are out of order, the 
script ends up doing unnecessary work. This script goes through 
the list as many times as there are items in that list, minus one, 
squared. If there are five items in the list, it goes through it four 
times four, or 16, times. This number is based on the fact that no 
matter how many items are out of order, running through the list 
that many times will sort the items completely. 

It may be that only one number in the entire list is out of order, 
or it may be that no items are out of order. As it is, the script still 
goes through the entire sorting process. To avoid this, you can 
insert a mechanism at the end of each cycle of the repeat loop to 
check if the list is completely sorted. Then, as soon as the list is 
sorted, it can stop. 

How will it know the list is sorted? Each time the script looks at 
a pair of items, it checks to see if they are in order. This check 
returns a true or false. If all the items return a true, then all the 



BUILDING SCRIPTS: COLLECTING TOOLS 

items are in their proper order and the list is entirely sorted. You 
need to compare how many items are in the list, minus one to the 
number of items in their proper positions-that is, how many 
trues are returned from the sort process. If these two numbers 
match, the sort is finished and the script can stop. Here is how the 
check mechanism looks, using "trueCounter" as the variable to 
track the number of times the script returns a "true": 

tell window 1 of application "Scriptable Text Editor" 

activate 

copy every paragraph to thelist 

copy 0 to trueCounter 

repeat ((the number of items in thelist) - 1) times 

repeat with counterVar from 1 to (the number of items 
in thelist) - 1 

if item counterVar of thelist comes after item 
(counterVar + 1) of thelist then 

copy item counterVar of thelist to temp 

set item counterVar of thelist to item (counterVar 
+ 1 ) of the list 

set item (counterVar + 1) of thelist to temp 

else 

copy trueCounter + 1 to trueCounter 

end if 

end repeat 

if trueCounter Is equal to ((the number of items In 
the list) - 1) then exit re eat 

end repeat 

set the contents to (thelist as string) 

set contents to "" 

repeat with currentltem in thelist 

set the contents to the contents & currentltem & return 

end repeat 

end tell 

87 



THE TAO OF APPLESCRIPT 

88 

Finally, you've got it running effectively and efficiently. 

Making it Friendly 
If you like, you can give your script a bit of user-friendliness. This 
doesn't always mean a nice interface, as this script doesn't really 
need an interface at all. In fact, the best solution would be to hide 
it entirely. To do that, move the activate command to the end of 
the script, just before the ''end tell," so that anyone using the 
script only has to see it when it has entirely finished its task. 

Save this script so you can simply pull it out of your Script 
Library folder whenever you need a script to sort text or a list. 

On Your Own 
By now you have an understanding of how you can create a larger, 
more advanced script. The next section deals spedfically with 
these kinds of scripts, building fairly complex scripts piece by 
piece, and adding features to a script after it is up and running. 

It is important to review this chapter's concepts until you feel 
comfortable with them before moving on. 



Chapter 6 
Complex Scripts 

Building a 
Boat 

The first complex script you'll write will show you how to ap­
proach the problems inherent in writing longer and more intricate 
scripts. You will create a utility that copies all the sounds out of a 
file, turning each sound into a System 7 sound file that you can 
play in the Finder. 

A Little Background 
Sounds, as well as icons, menus, and fonts are stored in small 
chunks called "resources," contained within files. Since resources 
perform different functions, your Mac differentiates them by 
"type." Sounds resources are of the type 1Snd' (the space at the 
end is part of the name), although some programs use their own 
custom formats. 

A file can contain any number of resources, and more than one 
resource in a file can be of the same type. Resources of the same 
type are distinguished from each other in two ways. The most 
common way is by ID number, which is unique within that type 
of resource. A resource's name also can be used to identify a 
resource. A resource's name, however, isn't necessarily unique, 
although most are to avoid confusion. 

System 7 allows 
you to store 
sounds in files, 
called System 7 
sound files, which 
you can access 
from the Finder. 
When you 
double-click a 
System 7 sound 
file the sound 
contained within 
that file is played. 
You can place 
these files into 
the System file 
itself and use 
them as System 
beeps. 



THE TAO OF APPLESCRIPT 

You'll need to 
copy ResMover to 

the Scripting 
Additions folder 

found in your 
Extensions folder 
and restart your 

Macintosh, as 
AppleScript only 

gathers com­
mands from 

scripting addi­
tions at startup. 

90 

System 7 Sounds 
For System 7 to play a sound, the 'snd ' resource contained within 
the file must have the same name as the file itself. If a sound file is 
named "Beep," then an 'snd 'resource contained within that file 
must also have the name "Beep." 

The System uses two four-letter codes to distinguish different 
kinds of files. The first of these codes is the file's "creator," or the 
application that created the file. A sound file's creator is 'movr'. 
The second code tells the System what type of file it is. For sound 
files, the type is 'sfil', which stands for "sound file." 

Getting Ready to Script 
For each sound in a given file, this script will create an empty 
System 7 sound file, extract the sound, and place it into that new 
file. Once you've selected a file from which to extract sounds, your 
first step will be to find out how many 'snd' resources are in the 
file. Then, for each 'snd' resource, create a System 7 sound file 
with a type of 'sfil', a creator of 'movr', and the same name as the 
'snd ' resource you are placing into it. 

The programs you've worked with until now don't have the 
capability to do this. You'll need to use two new items from the 
disk: ResMover and Finder Liaison. 

ResMover is a scripting addition written specifically to manipu­
late resources. The four ResMover commands you will use for this 
script are ''count resources," "copy resources," "get name of 
resource," and ''set name of resource." 

Finder Liaison is a utility that enables AppleScript to manipulate 
the Finder directly. While Finder Liaison is quite powerful, for this 
script you'll only use four of its commands: ''create," "set type," 
"set creator," and "get path." 

Get the Basics Working 
Choosing a sound file is simple. There is a file in the Tao 
AppleScript folder called '1Tao Sounds" provided just for this 



COMPLEX SCRIPTS: BUILDING A BOAT 

script. Using this file will ensure that you get results consistent 
with those presented in the text. To choose this file from your 
script, you need to use the scripting addition Choose File. To see 
how it works, type the following into Script Editor and press Run: 

choose file 

A standard directory dialog box appears (see figure 6.1). Select 
"Tao Sounds" from the Tao AppleScript folder and click "Open." 

D Current Dote 
D Oisploy Diolog 
D File Commands 
D Icon 
D Lood script 

( Concel ) 

[ Open J 

The result of this script, which you can see in the result win­
dow, is a "reference" to the Tao Sounds file. This reference 
describes the location of Tao Sounds. Your hard drive's name is on 
the left side and all the folders in which your file resides are listed 
hierarchically after the hard drive name, separated by colons. The 
name of the file is the last item in this string. 

The word "alias" at the beginning oi the string tells AppleScript 
that this string isn't just a string, but is actually a reference to a 
particular file. 

Now that you've identified your source file, you'll want to put 
that information into a variable so you can use it later. To do so, 
add a line to your script which puts the value of the result into a 
variable named sourceFile. 

Figure 6.1 
A standard 
directory dialog 
box created by the 
Choose File 
command. 

91 



THE TAO OF APPLESCRIPT 

To find what 
commands are 
available when 

using a scripting 
addition, you can 

open its dictio­
nary with Script 
Editor's "Open 
Dictionary ... " 

command. 

92 

choose file 

copy the result to sourceFile 

Shortening your Script 
Before moving on, here is a shortcut: you can condense two lines 
of script into one, by putting one command in parentheses within 
another command. AppleScript takes the result of the command 
in parentheses and uses that in the outer command. 

To shorten this script, put "choose file" in parentheses within 
the "copy" command, as follows: 

copy (choose file) to sourceFile D~ 

You're telling AppleScript to run the command "choose file" 
and then to use the result of that command with the "copy" 
command. You'll find this to be a useful tactic for reducing the 
amount of typing you do. 

Once you've chosen a file, you will need to know how many 
sound resources are in the file. To do this you'll use ResMover's 
"count resources" command. This command requires that you 
specify what kind of resource you're interested in and what file to 
look in. Your new script should look like this: 

copy (choose file) to sourceFile / ~ 
count resources of type y nd " in sourceFile 

:I~U.~I{~­

Run this script and choose "Tao Sounds." The result window 
will contain 3, the number of 'snd ' resources in that file. 

Because you'll be using this number frequently, you may want 
to put it into a variable, as in the following script: 

copy (choose file) to sourceFile 

copy (count resources of type "snd " in sourceFile) to resCount 



COMPLEX SCRIPTS: BUILDING A BOAT 

The script now puts the number of resources within that file 
into the variable "resCount" so you can use it later. 

You now have the name of the file to pull the sounds from and 
the number of sounds in that file. Now you need a file to place the 
sound into. 

When you create a file, you must first give it a name. Since the 
name of a System 7 sound file must match the sound resource 
within it, you'll first need to get the name of the resource you'll be 
placing in the file. This will become the name of the file itself. 

ResMover can get the name of a resource if you tell it the 
resource's ID or the relative position of the resource within the 
file. The position of a resource is determined by its ID number 
relative to those of other resources found within that file. That is, 
if a series of resources have IDs of 549, 6, and 2684, they would be 
referred to as resource 2, resource 1, and resource 3 respectively; 
the lowest ID number is first, and the highest ID number is last. 

You can use the shortcut you learned earlier to put the result of 
the "get name of resource" command into the variable named 
"resName." Doing so gives you the following: 

copy (choose file) to sourceFile 

copy (count resources of type "snd " in sourceFile) to resCount 

copy (get name of resource number 1 of type "snd " in 
sourceFile) to resName 

The result window now shows the name of the first 'snd' 
resource in "Tao Sounds." 

With this information, you can create a file to hold the re­
source. To create the actual file, you must use Finder Liaison's 
"create" command, which creates a blank file at the location you 
specify. 

Specifying a file's location with Finder Liaison is different from 

93 



THE TAO OF APPLESCRIPT 

In these example 
scripts the hard 

disk "Thendara" is 
used. This is the 

name of Derrick's 
hard disk. You 
should use the 

name of your 
own hard disk. 

You'll also need to 
create a folder 

named "Sounds" 
at the root level 

of your hard disk. 

94 

the reference that "choose file" returned-which ResMover uses. 
Instead of "Thendara:Sounds:Beep" to refer to the file "beep", 
whose location is on a hard drive named "Thendara," in a folder 
named "sounds", Finder Liaison uses a phrase such as "file 'Beep' 
in folder 'Sounds' in disk 'Thendara'." 

To "create," you need to name the file and tell Finder Liaison 
where to put it. To ensure the file and the resource within it have 
the same name, you can use the information stored in resName 
and the name of the resource, to name the new file. 

There's still one more complication to consider: Finder Liaison 
will generate an error if you attempt to create a file that already 
exists. Because you'll be running this script several times, you'll 
will need to either override this "alert" or delete the file you just 
made each time you run the script. You can override the alert in 
Finder Liaison from within your script. To do so you must use the 
"replace" parameter and follow it with the word "yes" or "no" to 
indicate whether Finder Liaison should replace the file if it already 
exists. Since you will only be losing a sound file, you should allow 
Finder Liaison to overwrite an existing file. 

Once you've created the file, you need to turn it into a System 7 
sound file by assigning it the appropriate type and creator. Finder 
Liaison's "set type of" and "set creator of," commands can set 
these type and creator codes. Remembering to use Finder Liaison's 
method of pointing to files, you can add these commands to your 
script, like so: 

copy (choose file) to sourceFile 

copy (count resources of type "snd " in sourceFile) to resCount 

copy (get name of resource number 1 of type "snd " in sourceFile) 
to resName 

Create File resName in Folder "Sounds" In Disk "Thendara" 
replacing yes 



COMPLEX SCRIPTS: BUILDING A BOAT 

Set Type of File resName in Fol er Sounds" In Disk 
"Thendara" to "sfil" 

Set Creator of File resName in Folder "Sounds" In Disk 
"Thendara" to "movr" 

end tell 

After you run this script, go to the Finder and you'll see that 
your folder has a new System 7 sound (see figure 6.2). 

~'=1M Sounds Iii§ 
1 item 83.8MB in disk 35.6MB available 

~ 
~ 

Derrick Laugh 

{} 
¢1 1¢ \1 

There's one last step before copying the 'snd' resource to this 
new file. When you work with ResMover, you must specify files 
using the references you learned earlier. Though you know the 
name of the file, you must still give ResMover the full path of the 
file. 

To facilitate working with other programs, Finder Liaison has 
the command "Get Path of" which, given a path to a file that it 
recognizes, returns a string that points to the file in the format 
ResMover recognizes. To get the path of your destination file, use 
this command and store the result in a variable named destFile: 

Figure 6.2 
A System 7 sound 
file in the sounds 
folder, created by 
your script. 

95 



THE TAO OF APPLESCRIPT 

96 

copy (choose file) to sourceFile 

copy (count resources of type 11Snd 11 in sourceFile) to resCount 

copy (get name of resource number 1 of type "snd 11 in sourceFile) 
to resName 

tell application 11Finder Liaison 1.0" 

Create File resName in Folder "Sounds11 in Disk 11Thendara" 
replacing yes 

Set Type of File resName in Folder "Sounds11 in Disk 
"Thendara" to 11sfil" 

Set Creator of File resNatne in Folder 11Sounds11 in Disk 
11Thendara" to 11movr" 

copy· (Get Path of Eile resName in Folder "So.u.nd_s:" In Oi$k 
"Th~~dara") to destFi.l~ 

end tell 

When running this script, you'll see that the result window will 
contain a reference string that points to the file. However, you'll 
notice that it is not the same as the earlier reference when you 
used the 11 choose file" command-it doesn't have the word 11 alias" 
in front of it. This is because Finder Liaison only returns the string; 
you must tell AppleScript to interpret this string as a file reference. 
When you do this, you use the word 11file" instead of 11alias." 
You'll need to know this in the next step, when you'll be using the 
string to reference a file. Here's an example: 

file destFile 

Now that you've created a file to draw sounds from and estab­
lished a way to make a new file for each of those sounds, you need 
only copy each sound from the original file to its new file. 

ResMover has a 11 copy resource" command that enables you to 
copy a resource from one file to another. You can tell it which 
resource, of a given type, to use by specifying it by name, ID 



COMPLEX SCRIPTS: BUILDING A BOAT 

number, or index-just as you could with "get name of resource." 
Here's what the resulting script looks like: 

copy (choose file) to sourceFile 

copy (count resources of type "snd " in sourceFile) to resCount 

copy (get name of resource number 1 of type "snd " in sourceFile) 
to resName 

tell application "Finder Liaison 1.0" 

Create File resName in Folder "Sounds" in Disk "Thendara" 
replacing yes 

Set Type of File resName in Folder "Sounds" in Disk 
"Thendara" to "sfil" 

Set Creator of File resName in Folder "Sounds" in Disk 
"Thendara" to "movr" 

copy (Get Path of File resName in Folder "Sounds" in Disk 
''Thendara") to destFile 

end tell 

copy resource number 1 of type "snd " from sourceFile to file 
destFile 

Notice that you must precede destFile with the word "file." This 
isn't necessary with sourceFile, as it is already included in the 
value of the variable. 

When you run this script, it will extract the first sound from the 
file "Tao Sounds" and place it into a newly created System 7 sound 
file. 

Having learned how to extract a single sound, it's time to give 
the script the capability to extract multiple sounds. You' ll need a 
repeat loop to count from 1 to the number of "snd "resources 
found in the file. You already have a variable equal to the number 
of resources in a given file: the "resCount" variable. 

97 



THE TAO OFAPPLESCRIPT 

98 

The repeat loop will contain a counter variable named 
"counter," and instead of having the script extract 'snd' resource 
number 1, you'll tell it to extract the 'snd' resource with the 
number equal to the variable "counter." 

copy {choose file) to sourceFile 

copy {count resources of type "snd 11 in sourceFile) to resCount 

( .. ~--~~~~~~~9~~~£~j~~ifj~(~1-~~~;-,{~L: -~----· _,-___ ~ ---· .. '. _____ _ 
copy {get name of resource number counter of type "snd" in 
sourceFile) to resName 

tell application "Finder Liaison 1.0" 

Create File resName in Folder "Sounds" in Disk "Thendara" 
replacing yes 

Set Type of File resName in Folder "Sounds" in Disk 
"Thendara" to "sfiP' 

Set Creator of File resName in Folder "Sounds11 in Disk 
"Thendara" to "movr" 

copy {Get Path of File resName in Folder "Sounds" in Disk 
"Thendara") to destFile 

end tell 

copy resource number counter of type "snd " from sourceFile 
to file destFile 

end·~"~·t 

What happens when there are no 'snd 'resources in the file you 
selected? ResMover, when asked how many 'snd 'resources are 
found within a file with no 'snd' resources, will return a zero; the 
repeat loop won't run, and the script will exit. If the final number 
of a repeat loop is lower than the initial number (unless you use 
"by" to count backwards), the repeat loop will not run. 

Run this script, and choose "Tao Sounds." When the script is 
finished, you'll have three System 7 sound files in your folder. You 
now have a "first draft" of Sound Sucker! 



COMPLEX SCRIPTS: BUILDING A BOAT 

Make It Better 
Now that you have a Sound Sucker script, you should take some 
time to find ways of improving it. One way would be to add the 
capabilities of Progress Bar. 

With a progress bar, you will know how far along the script is 
for a given file. You already have a script that provides a progress 
bar, so you can simply transfer the necessary lines of that script 
into this new script. 

You already have the maximum value for the progress bar: the 
total number of 'snd' resources in the file, stored in the variable 
resCount. You can place the first part of your progress bar script at 
the beginning, after placing values into resCount and resName. 

You can, of course, put the part that increments the progress 
bar anywhere within the repeat loop. Remember, however, that 
you'd like to make the progress bar an accurate portrayal of what's 
going on. To make the progress bar as informative as possible, you 
also may want to set the caption to the name of the sound cur­
rently being manipulated. 

So far in this book, you've updated the progress bar's caption 
and current value at the same time. This approach doesn't work 
well for this particular script. If those commands are put at the 
beginning of the repeat loop, then the progress bar will be 
incremented before the sound has been moved. If they are put at 
the end of the repeat loop, the progress bar will be incremented, 
but the name of the sound that has already been moved will still 
be in the caption. 

To make the information in the progress bar accurate, you must 
update the caption at the beginning of the repeat loop and the 
progress bar at the end. 

Here's another shortcut. To update just the caption of the 
progress bar, you may expect to type something like this: 

99 



THE TAO OF APPLESCRIPT 

100 

tell window 1 of application "Progress Bar 1.0" 

set the caption of progress bar 1 to "Extracting" 

end tell 

This may seem like a great deal of text to execute only one 
command. However, AppleScript enables you to use the "tell" 
command to send a single command to an application on one 
line. Using this capability, setting the caption would look like this: 

tell window 1 of application "Progress Bar 1.0" to set the 
caption of progress bar 1 to "Extracting" & resName 

This will put something like "Extracting Derrick Laugh" in the 
progress bar window. You also can use this technique to set the 
current value of the progress bar, at the end of the repeat loop: 

tell window 1 of application "Progress Bar 1.0" to set the 
current value of progress bar 1 to counter 

This last command uses the variable "counter" as the current 
value of the progress bar. This makes sense, since counter repre­
sents the number of times you've passed through the repeat loop. 

The last step is to quit the two applications the script has been 
working with. This must be done after the "end repeat" so that the 
programs will quit only when the script has completed extracting 
the sounds from the chosen file. Adding these steps, your final 
script looks like this: 

copy (choose file) to sourceFile 

copy (count resources of type "snd " in sourceFile) to resCount 

tell application "Progress Bar 1.0" 

make window 

tell window 1 

set the Name to "Sound Sucker'' 



COMPLEX SCRIPTS: BUILDING A BOAT 

set the minimum value of progress bar 1 to 1 

set the maximum value of progress bar 1 to resCount 

set the caption of progress bar 1 to "Preparing ... " 

activate 

end tell 

end tell 

repeat with counter from 1 to resCount 

copy (get name of resource number counter of type "snd " in 
sourceFile) to resName 

tell window 1 of application "Progress Bar 1.0" to set the 
caption of progress bar 1 to "Extracting:" & resName 

tell application "Finder Liaison 1.0" 

Create File resName in Folder "Sounds" in Disk "Thendara" 
replacing yes 

Set Type of File resName in Folder "So.unds" in Disk 
"Thendara" to "sfil" 

Set Creator of File resName in Folder "Sounds" in Disk 
"Thendara" to "movr" 

copy (Get Path of File resName in Folder "Sounds" in Disk 
"Thendara") to destFile 

end tell 

copy resource number counter of type "snd " from sourceFile 
to file destFile 

tell window 1 of application "Progress Bar 1.0" to set the 
current value of progress bar 1 to counter 

end repeat 

tell application "Finder Liaison 1 .0" to quit 

tell application "Progress Bar 1.0" to quit 

You can now run this script, choose a file, and get a progress bar 
indicating how far along it is. When the script has finished, the 

101 



THE TAO OF APPLESCRIPT 

102 

two applications used will quit, and you'll have the sounds you 
wanted, all ready to be double-clicked and played from within the 
Finder. 

Fix the Bugs 
There are always bugs to be fixed before the script will run as 
expected. 

The first bug arises if an 'snd' resource doesn't have a name. 
Remember that naming resources is optional. If one of the sounds 
in a file does not have a name, ResMover will return an empty 
string. When Finder Liaison tries to create a file with no name, it 
generates an error because the System does not allow a file with­
out a name. 

To avoid this, you must determine if an 'snd' resource without a 
name is present. Each resource's name is stored in the variable 
resName, so a conditional can be created to check the value of 
resName before that value is used to create and work with a sound 
file. 

if resName = "" then beep 

On the third line of the script, resName is defined. This condi­
tional should be placed directly after the variable is declared, so 
that if there is a problem it can be addressed immediately. 

If the conditional does beep, what should you do? You could 
change the name of the resource right in the source file, but you 
should never change an original file. 

It's only important that the resource and file have the same 
name when the sound is played, so you can simply make a file 
with a generic name, move the resource into the file, and then 
assign the resource that generic name. 

A good way to name generic files is to number them-as the 
Finder does with untitled items. The first unnamed resource would 
be placed in the file "No Name 1," the second in "No Name 2," 



COMPLEX SCRIPTS: BUILDING A BOAT 

etc. This way, each unnamed resource will be placed into a 
uniquely named file. 

To do this, you must create a variable that will be incremented 
each time an unnamed resource is encountered. When the original 
resource has no name, this variable will be used to put a value into 
resName along with the generic name. You should remember that 
if the resource has a name this conditional will not run and the 
name of the original resource name will be transferred as usual. 

Before using this new counting variable, you need to declare it. 
In general, it's a good idea to declare any variables at the begin­
ning of a script so that the variable will be available for use. 

Declare a variable named "unnamedCounter" at the beginning 
of the script and give it an initial value of 1, as follows: 

copy 1 to unnamedCounter 

Within the conditional, you'll need to place a new value into 
res Name and increment the value of unnamed Counter. You've 
already seen how to do these things, so remove "beep," insert 
these commands, and place an "end if" after them. The new 
conditional looks like this: 

if resName is '"' then 

copy 11No Name 11 & unnamedCounter to resName 

copy unnamedCounter + 1 to unnamedCounter 

end if 

You haven't actually changed the name of the resource, only 
the value of resName. The script will move the resource into the 
sound file it creates, but the sound will not play because the 
names of the resource and the file do not yet match. 

Once the resource has been copied to its new location, you can 
set its name. ResMover provides the command 11 set name of 
resource" for this purpose. You must first provide it with some 
information. 

103 



THE TAO OF APPLESCRIPT 

104 

You must tell it which resource to change. As there is only one 
resource in the sound file just created, it can simply be referred to 
as resource number 1. You must tell it the type of the resource: 
1Snd '.You also need to specify the file what file contains this 
particular resource. This information is in the variable destFile. 
Finally, you need to tell resMover what to name the resource. 
This name is stored in the variable resName. Here's what the final 
command looks like: 

set name of resource number 1 of type "snd " in file destFile to 
res Name 

You should place this directly after the command that copies 
the resource into the new file. If it is placed earlier, the resource 
won't have been copied into the file yet. 

Complications 
What happens when there are no sound resources to move? You 
may remember that this wasn't going to be a problem, because the 
repeat loop would do nothing if it was counting from a higher 
number to a lower number. But, that was before a progress bar was 
added. 

As the script now stands, it will first set up a progress bar and 
then quit the application. While this isn't exactly a bug, the result 
is certainly unattractive. 

Fortunately, the solution is simple. Place the segment of the 
script that sets up the progress bar into a conditional. This condi­
tional will execute the commands within it only if there are more 
than zero sound resources in the selected file. 

This solves the progress bar problem, but what happens at the 
end of the script? When AppleScript attempts to quit the applica­
tions, it launches each one, only to quit each one as soon as it is 
launched. Again, you must enclose these commands in a condi­
tional so that they will be executed only when there are more 
than zero sound resources. The programs will be launched only if 



c·OMPLEX SCRIPTS: BUILDING A BOAT 

there are resources that need to be dealt with. Enclosing the 
commands results in this final script: 

copy (choose file) to sourceFile 

copy 1 to unnamedCounter 

copy (count resources of type "snd" in sourceFile) to resCount 

if (count resources of type "snd " in sourceFile) > 0 then 

tell application "Progress Bar 1.0" 

make window 

tell window 1 

set the Name to "Sound Sucker" 

set the minimum value of progress 
bar 1 to 1 

set the maximum value of progress bar 1 
to resCount 

set the caption of progress bar 1 to "Pre­
paring .. . " 

activate 

end tell 

end tell 

end If 

repeat with counter from 1 to resCount 

copy (get name of resource number counter of type "snd " 
in sourceFile) to resName 

If resName Is "" then 

copy "No Name " & unnamedCounter to resName 

copy unnamedCounter + 1 to unnamedCounter 

end If 

105 



THE TAO OFAPPLESCRIPT 

Remember that 
sounds contained 
in commercial or 

shareware 
applications are 
the property of 

the authors. 

106 

tell window 1 of application "Progress Bar 1.0" to set the 
caption of progress bar 1 to "Extracting: 11 & resName 

tell application "Finder Liaison 1.0" 

Create File resName in Folder "Sounds11 in Disk 
"Thendara" replacing yes 

Set Type of File resName in Folder "Sounds" In 
Disk "Thendara" to "sfil" 

Set Creator of File resName in Folder "Sounds11 in 
Disk "Thendara" to "movr" 

copy (Get Path of File resName in Folder "Sounds" 
in Disk "Thendara") to destFile 

end tell 

copy resource number counter of type "snd "from 
sourceFile to file destFile 

.. -.J-~1A1Sj~~~-;~~·sn,~·~~~~·-·--
tell window 1 of application "Progress Bar 1.0" to set the 
current value of progress bar 1 to counter 

end repeat 

~'~c-~~~f119r-~it~~~ffi~t~~~~~~~~~'1~:~9~~~~~l~~-~,~~~{l,:_ ~'--~~- _ "" 
tell application "Finder Liaison 1.0" to quit 

tell application "Progress Bar 1 .0" to quit 
~~~-··(·_-- ~~ ---~ -~ - ~ _- :- -- - ·- .. ---- -~ - ·-- - --

Continuing On
Now that you have a script that works well, play with it! Suck
sounds! Get sounds from games, stacks, anything. And, when you
get tired of it, move on to the next chapter to find out how to
make your script into an easy to use stand-alone application for
your sound sucking needs.

Chapter 7

Complex Scripts

Going
DownstreaJn

This chapter shows you how to tum Sound Sucker into a stand­
alone script that performs just like a 11real" application. This script
also results in a fun little utility, that you wrote.

You can run a stand-alone script (or ''script application") just
like any application, by double-clicking on the icon in the Finder
to launch the script. You won't need to use Script Editor to run the
script, but you must have AppleScript installed. This is a very
useful way of distributing scripts. By making a script into an
application, you avoid forcing others to use Script Editor; it only
matters whether AppleScript is installed and that the additions
and applications used in the script are available.

AppleScript can create two kinds of script applications. The first
is a simple stand-alone application, that, when its icon is double­
clicked, opens a dialog box with the options of running the script
or quitting.

The second kind of application allows drag-and-drop capabili­
ties. Drag-and-drop applications are a feature of System 7. When
files are dragged onto the icon of an application, that application
performs certain commands on those files. For example, when you

THE TAO OF APPLESCRIPT

Figure 7.1
Saving your script

as a script
application.

108

drag and drop script applications onto the icon of Script Editor, it
opens them as scripts-as opposed to running them as applica­
tions when you double-click on them. You also can drag the icon
of an application onto Script Editor and it will open the appli­
cation's dictionary, if it has one.

Although you'll create these two types of script applications,
with Sound Sucker you'll use the drag-and-drop type, since it's
more useful for a utility that affects other files, as this one does. By
the end of this section, you'll be able to drag a whole range of files
onto a Sound Sucker icon and have it extract all the sounds from
the files.

Saving as a Script Application
It's a snap creating a script application from a script. You simply
save it as an application. To see an example of this, use the "Save
As ... " command from the File menu in Script Editor. You'll get a
typical Save dialog box except that, under the area where you type
in the name of the file, you'll see a pop-up menu (see figure 7.1).
This menu contains all your saving options-one of which is to
save the script as an application.

Ia Rpple·s Scripting system~ I ~Tao RppleSc ...

[) RppleScript"'1

[) Rpple® Euent Manager
~ Script Editor
~ Scriptable TeHt Editor
Cl Scripting Rdditions

Saue script as:

Q Eject)

Desktop)

(New LJ)

(Cancel)

(Saue D

COMPLEX SCRIPTS: GOING DOWNSTREAM

Once you select the 11 Application" op~ion, you'll see two check
boxes. The first one enables you to keep the script application
running after it has finished. (Normally, a script application quits
once the script within finishes, but because it is possible to have a
script that performs commands after a particular event occurs, this
is an important option.)

The second option enables you to skip the splash screen that
appears when you launch the script. With the splash screen, the
user has to specifically tell the script to run after double-clicking
on its icon. This prevents running a script accidentally. Turning
this option on makes the script application simply run when it is
opened, without asking for confirmation.

For the moment, don't worry about these check boxes. Leave
them unchecked, and save your script.

To run the script application, you must close the window of the
script in Script Editor. If you leave the script open in Script Editor
when you try to run the application you'll receive an error.

Once you've closed the window, go back to the Finder and
launch the script application you've just made. You'll get a splash
screen and, when you press Run, the script will run.

Adding Drop-ability
Now you can make a stand-alone application, but if you drag
some files onto the icon of the script application it won't do
anything. Making a script application with this drag-and-drop
capability (commonly known as a 11droplet") requires that you
make some changes to the script contained in it.

When you drag a set of icons onto a script application, with
drag-and-drop capability, a message is sent to the application that
contains a list of all the files that were dropped onto the applica­
tion. AppleScript can intercept this message and, upon receiving
it, run a script.

The message that is sent is "open." To intercept it, you write
"on open," as in the following:

109

THE TAO OFAPPLESCRIPT

110

on open

beep

end open

This script will beep when you drag a set of files onto it. You
must limit which commands operate on the opened files by
writing "end open."

However, there's more to the message than the message itself.
As you learned earlier, the script application gets a list of all files
dragged onto it. This list should be placed into an 11 argument," a
value that the script needs before it can run. To place this list into
an argument, you use a variable.

You define the variable in which to place the argument as part
of the 11 on open" statement by enclosing the name of the variable
in parentheses immediately after the statement, as in:

beep

end open

When files are dragged onto this script application, AppleScript
sets the value of docList to a list in which each item is a reference
to a file.

You can add these two commands to the Sound Sucker script,
enclosing the entire script in those two statements. You still must
deal with the information in the docList variable, however, and
incorporate it into your script.

Adding to Sound Sucker
You no longer need to pick a file to suck sounds from at the
beginning of the script. You can select the files by dragging them
onto the icon. Because of this, you can remove the first line of the
script.

COMPLEX SCRIPTS: GOING DOWNSTREAM

Since you want to run this script once for every value in
docList, you can use a repeat loop to traverse the list, as you did in
the 11 sorting" script. The variable sourceFile that you use in the
script can be used as the counting variable for the repeat loop, so
you don't need to change that aspect of the script. It now looks
like this:

~--~on~o~emt(tfaEUi~{:·::.:;-~~:~~~:~~~::.-~~~~~~-;t~~~~-.~~/~·:;~:~-~--~~·~. ··-~·- _ -·~ .. -:·_. i-.f _':.
copy 1 to unnamedCounter

t·~---:~-~i,~"'~~~,,~~~!~M~~~~l~l!P~~,~i~~fi~~f~:D-~2?~~·>-i•· .. :[:•:.:::·:··-~~··.~.;::·:,::::ii·D.-~./,:::t.~~:c&··!j
copy (count resources of type 11snd 11 in sourceFile) to
resCount

if (count resources of type "snd" in sourcefile) > 0 then

tell application "Progress Bar 1.0"

make window

tell window 1

set the Name to "Sound Sucker"

set the minimum value of progress bar 1 to 1

set the maximum value of progress bar 1 to
resCount

set the caption of progress bar 1 to
"Preparing ... "

activate

end tell

end tell

end if

repeat with counter from 1 to resCount

copy (get name of resource number counter of type
"snd " in sourcefile) to resName

if resName is 11
" then

copy "No Name 11 & unnamedCounter to
res Name

copy unnamedCounter + 1 to unnamedCounter

end if

111

THE TAO OF APPLESCRIPT

112

tell window 1 of application "Progress Bar 1.0" to set
the caption of progress bar 1 to "Extracting:" &
resName

tell application "Finder Liaison 1.0"

Create File resName in Folder 11Sounds" in Disk
"Thendara" replacing yes

Set Type of File resName in Folder "Sounds11 in
Disk "Thendara" to "sfil11

Set Creator of File resName in Folder "Sounds11 in
Disk "Thendara" to "movr11

copy (Get Path of File resName in Folder 11Sounds"
in Disk "Thendara") to destFile

end tell

copy resource number counter of type "snd " from
sourceFile to file destFile

set name of resource number 1 of type "snd 11 in file
destFile to resName

tell window 1 of application "Progress Bar" to set the
current value of progress bar 1 to counter

end repeat

en.~ ~~~~·~:_ · .. ·.·- :{ .. < __ :,~:·~_ .. ;·"~.:; '-:;~:i:>'-,,:.:\;~j·~':"i.)~2 ·!"-}_it,{G~;S'I~~it:~~2tl&}~
if (count resources of type "snd " in sourceFile) > 0 then

tell application 11Finder Liaison 1.0" to quit

tell application "Progress Bar 1 .0" to quit

end if

.en.~ ~p¢tf;.~ "- -

You'll notice that the repeat loop ended before the applications
quit. This is because you want the applications to quit only after
you're finished with them. This raises an interesting problem.

Fixing Bugs
If you run this script with more than just a few files, Progress Bar
will soon return an "Out of Memory" error. This is because you've
made a new window every time you went through the new repeat

COMPLEX SCRIPTS: GOING DOWNSTREAM

loop. To fix this, you can add a command to close Progress Bar's
window at the end of the repeat loop.

on open (doc list)

copy 1 to unnamedCounter

repeat with sourceFile in doclist

copy (count resources of type "snd" in sourceFile) to
resCount

if (count resources of type "snd "in sourceFile) > 0 then

tell application "Progress Bar 1 .011

make window

tell window 1

set the Name to "Sound Sucker"

set the minimum value of progress bar 1 to 1

set the maximum value of progress bar 1 to
resCount

set the caption of progress bar 1 to "Prepar­
ing ... "

activate

end tell

end tell

end if

repeat with counter from 1 to resCount

copy (get name of resource number counter of type
"snd 11 in sourceFile) to resName

if resName is "" then

copy "No Name " & unnamedCounter to resName

copy unnamedCounter + 1 to unnamedCounter

end if

tell window 1 of application "Progress Bar 1.0" to set
the caption of progress bar 1 to "Extracting:" &
res Name

tell application "Finder Liaison 1 .0"

113

THE TAO OFAPPLESCRIPT

114

Create File resName In Folder "Sounds" in Disk
"Thendara" replacing yes

Set Type of File resName in Folder "Sounds" in
Disk "Thendara" to "sfil"

Set Creator of File resName in Folder "Sounds" in
Disk "Thendara" to "movr11

copy (Get Path of File resName in Folder 11Sounds"
in Disk "Thendara") to destFile

end tell

copy resource number counter of type "snd " from
sourceFile to file destFile

set name of resource number 1 of type "snd " in file
destFile to resName

tell window 1 of application "Progress Bar 1 .0" to set
the current value of progress bar 1 to counter

end repeat

m~,,g~~~]l~,,~~-:-~~~~~t,'~~-t~t~~~~,·rt;~~.9:~DT:-~-:~-~~J
end repeat

if (count resources of type "snd" in sourceFile) > 0 then

tell application "Finder Liaison 1.0" to quit

tell application "Progress Bar 1 .0" to quit

end If

end open

This is the final Sound Sucker script. You can now save it as a
script application. You'll notice that the icon for the application in
the AppleScript pop-up menu has a small arrow. AppleScript
rec<?gnizes that you are making this script into a droplet because of
the script command that intercepts the 110pen" message. The
option for keeping the application open should be left unchecked
as you probably will want to quit it when it is finished. You need
not be concerned about the splash screen as it won't appear unless
you specifically double-click on the application. Click Save!

You now have a stand-alone utility that you can use as long as
you have AppleScript, ResMover, and Progress Bar installed on

COMPLEX SCRIPTS: GOING DOWNSTREAM

your machine. Simply drag files onto it and AppleScript will
extract all the 11 snd 11 resources from them. This is a great way for
getting new beep sounds. You can then drag these sound files
onto the System Folder and they will be automatically installed
into your System.

One Last Thing
If you're going to drag applications with a lot of sounds in them
onto this script's icon, you may want to increase the amount of
memory allotted to the script application. To do this, select its
icon, choose "Get Info" from the File menu1 and increase the
number in the preferred size field (you might start by doubling it).

On Your Own
Take some time to make your own droplets and script applica­
tions. They can be fun and useful. Try changing the sorting script
so that you can simply drag a Scriptable Text Editor document
onto it and sort all the lines. The possibilities are endless. You
have the power to make your own custom utilities and tools that
are as easy to use as any Macintosh application.

115

Chapter 8
Complex Scripts

Climbing the
Mountain

In this section, you'll create an application that can find and
replace text in filenames in the Finder. This script is fairly long
and goes through many steps on the way to its final stage, but the
result is a truly amazing and useful script.

You will create a script that can search a hard drive, and also
the interface for getting the criteria by which you will search and
replace.

Directory Traversal Using
AppleScript's Messages
In the previous section, you learned that a script can intercept
messages from the System and that script commands can be
attached to those messages, so that certain actions can be carried
out when that message is interpreted. AppleScript also enables you
to have a script send messages, and to have another part of the
script intercept these messages.

For this script, you will learn to use 11 directory traversals." A
directory traversal searches through each item in a hard drive or

THE TAO OFAPPlESCRIPT

118

folder and performs a specific action on each item. If there is a
folder within that drive or folder, the script will look at all the
items within it as well. This process continues until all the folders
have been run through. This is similar to traversing a list with a
repeat loop, which runs commands once for each item in a list.

This capability is very powerful, as you don't need to specify by
name which files you will affect. You can choose any set of files,
including all the files on your hard drive or only those which meet
certain criteria.

Your first use of directory traversals will be to remove the text
11 alias" from alias filenames anywhere on your hard drive. You
don't need to be told a file is an alias; its name is always italicized.
(The space before 11alias" is also part of the text to be deleted.)
You'll then move on to true find-and-replace capability, incorpo­
rating dialog boxes into the script's interface.

Handling Messages
The first step is learning to work with messages and subroutines.

You learned to intercept a message when you intercepted the
System's 11open" command in the Sound Sucker script. Sending
and intercepting a message from within a script works the same
way. You simply write:

.·!

When you run this script, the script receives a message that tells
it to run the set of commands (the 11Subroutine") called 11mes­
sagel." AppleScript then searches the script for a ''subroutine"
with that name.

A subroutine in AppleScript is a set of commands located from
within a script, but isolated from it. A subroutine can be executed
only when called by name in the main part of the script. By
sending a message to run a subroutine you can use a specified set
of commands repeatedly in your script by simply referencing them
with a single command.

COMPLEX SCRIPTS: CLIMBING THE MOUNTAIN

When your script receives this message it "calls" the named
subroutine. The script then executes the commands within that
subroutine. Afterward, execution picks up from the next line after
the message.

If you run the above Line of script, you will get an error because
AppleScript won't find a subroutine with this name. You need to
create one. Type the following subroutine at the end of the script
(it can go anywhere, but it's customary to place a subroutine at the
end of a script):

on message1()

beep

end message 1

This subroutine specifies that each time the script sends itself
the message "messagel," the commands within the subroutine (in
this case, the command "beep") will be sent to the System.

In the Sound Sucker script, the "open" message sent informa­
tion along with the message itself. This can be done with messages
within the script as well. You can enclose the name of a variable
within the parentheses after the message name, and the value of
that variable will be sent along with the message. You may want
to send or intercept several variables at once. Simply write mul­
tiple variable names within the parentheses, separated by commas,
such as:

on message1 (x, y)

beep

end message 1

The variables x and y are set to the value of the corresponding
variables sent with the message.

They can contain any information AppleScript understands. To
send a "message!" command, setting x to 3 andy to 4, you would
use this command:

119

THE TAO OF APPLESCRIPT

An argument is
the information

sent to a
subroutine for

the subroutine to
act upon.

120

messagel (3, 4)

You may want to have some information returned from the
subroutine as well as send it. You can do this with the "return"
command. Type "return" followed by the information you wish
sent back to the script. This command tells the script to leave the
subroutine, so when this command is executed, no further com­
mands in the subroutine are performed.

To see this in an example, you will write a subroutine that takes
a list of numbers and returns the average. The first step is to write
a subroutine called "average."

on average()

beep

end average

To run this subroutine, send the message "average" from the main
script:

average()

on average()

beep

end average

You must provide the subroutine with a list of numbers to be
averaged. You also need to designate a variable in the subroutine
that can hold the list of numbers once it gets there. This variable is
a parameter of the incoming message. Use the variable
"listofNums" to hold the argument:

on average(listofNums)

beep

end average

COMPLEX SCRIPTS: CLIMBING THE MOUNTAIN

The command in the main script must be modified to send the
actual list:

average ({1, 2, 3, 4})

To average the list of numbers, you must divide their sum by the
number of items in the list. The script will look like this:

average({l, 2, 3, 4})

on average(listofNums)

copy 0 to total

repeat with currentNumber in listofNums

copy currentNumber + total to total

end repeat

total + (the number of items in listofNums)

end average

For this subroutine to be useful, you'll need to get information
back from the subroutine. You must use the "return" command, as
follows:

average({l, 2, 3, 4})

on average(listofNums)

copy 0 to total

repeat with currentNumber in listofNums

copy currentNumber + total to total

end repeat

return total + (the number of items in listofNums)

end average

While this subroutine is short, it demonstrates each of the major
concepts.

Next, you will learn how to apply these concepts to a fairly
complex task, using directory traversal.

121

THE TAO OF APPLESCRIPT

122

Back to the Script
Before writing this script, you will need to explore the basic
concepts behind it. This script uses Finder Liaison, introduced in
the last chapter, for the file and folder searching. Finder Liaison
has a command that gets the names of all the files in a given
folder, and another command that gets the names of all the
folders in a given folder. Finder Liaison also has a command that
renames a particular file or folder.

Given the path to a folder, in a format Finder Liaison under­
stands, the subroutine will look at all the files in that folder and
rename them if any of the file names are aliases and end with
11 alias." When finished, the script will look in all the folders within
that folder. For each folder, the script will send a message that will
call the same subroutine, running those commands on the files in
each folder. When complete, the script will have removed the text
11 alias" from the filenames of all aliases on your hard drive.

Get the Basics Working
First, you will write the subroutine to rename aliases. The name of
a subroutine follows the same rules as the name of a variable; you
can use virtually anything. Here's how to start:

on fileWalker(currentFolder)

end fileWalker

A subroutine is useless unless it is called, so you'll need to add
lines to the main script to call it.

The path of the file or folder to be searched must be sent to the
subroutine.

AppleScript provides a mechanism that generates this path.
Putting the phrase 11 a reference to" in front of a path to an object
tells a subroutine to use the object path rather than the value of
the object itself.

COMPLEX SCRIPTS: CLIMBING THE MOUNTAIN

Set a reference to your own hard drive (rather than Thendara)
in the main script and place that reference into the variable
"folderName." You'll need to do tWs with Finder Liaison.

tell application "Finder Liaison 1.0"

copy (a reference to Disk "Thendara") to folderName

end tell

on fileWalker(currentFolder)

end fileWalker

When you run this script, the result window contains the path to
the object you specified. This path is stored in the variable
folder Name.

By the way, it's convenient to separate subroutines from the
main script by an extra line space, as above.

Getting the Message Across
Now that you've put the reference into a variable, you want to
give that information to the fileWalker subroutine. You can do
this by calling it as you would any subroutine:

tell application "Finder liaison 1.0"

copy (a reference to Disk "Thendara") to folderName

end tell

fileWalker(folderName)

on fileWalker(currentFolder)

end fileWalker

You may wonder why you place all of these commands on
separate lines. Why can't you write "fileWalker (a reference to Disk ·
'Thendara' of application 'Finder Liaison')?" This an instance
where the "tell" command isn't a shortcut-it's necessary. When

123

THE TAO OF APPLESCRIPT

124

you use the 11tell" command, AppleScript looks at the application
you specify and reads in all the information about the commands
and objects which that application understands. Using 11Window
1/' is no problem, as AppleScript knows what a window object is,
but it doesn't know what a 11Disk" object is.

In order for the script to compile, you must refer to Finder
Liaison with a 11tell" command. AppleScript will then read in the
information and be able to understand a 11Disk" object.

So why can't you write 11fileWalker (a reference to Disk
1Thendara')" inside a tell statement? When you send a message
from within a tell statement, AppleScript attempts to send that
message to the application rather than back to the script itself.
This generates an error.

Now that you've successfully sent a path to the subroutine
file Walker, what do you do with it?

First Work with the Files
You can get a list of all the files in a particular folder by using
Finder Liaison's 11Get Files in" command, as follows:

tell application "Finder Liaison 1.011

copy (a reference to Disk "Thendara11
) to folderName

end tell

fileWalker(folderName)

on fileWalker(~urrentfolde~)

tell~ i.lppli~ation "Finder Liaison l •. o"·
Cet;·Files in~ curten~lder ·

end~ tell

end fileWalker

When you run this script, you'll get a list of all the files on the
top level of your hard drive. Even if you only have folders on the

COMPLEX SCRIPTS: CLIMBING THE MOUNTAIN

top level, you still will get some items in the list, as there are two
invisible Desktop files and perhaps other invisible files located
here.

The next step will determine if any of these files end with
" alias" so that they can be removed. While it would be better to
do this only if the file is an alias, there's no way for AppleScript to
determine whether a file is an alias or not. (This is addressed
below.) For now, make an alias of some application and put it on
the top level of your hard drive. Make sure that the file doesn't
end up with the same name as another item on the top level of
your hard drive once '' alias" is removed, as the Macintosh won't
allow two items in the same level to have the same name. This
will be addessed soon as well.

Since the names of all the files are in a list, each one can be
looked at individually by traversing the list with a repeat loop
(using ·"beep" as a temporary "dummy" command):

tell application "Finder Liaison 1.0"

copy (a reference to Disk "Thendara") to folderName

end tell

fileWalker(folderName)

on fileWalker(currentFolder)

tell application 11 Finder Liaison 1.0"

repeiJt with cutrentFile fn'~G~~-:~if~f!f):i~tt~fti~~jd~f}_
beep -- ,~:, -- -~)><\-:~~h-- _:_ , - i _,- - .. ,._

en() r~p~at '
- -- -~ ~·-

end tell

end fileWalker

. _;· - .• : • : !.;·_ _ ' . . ~ . -

This script uses the shortcut you learned in the last section:
placing a command in parentheses within another, and using the
first command's result in the enclosing command. In this case, it

125

THE TAO OFAPPLESCRIPT

126

simply beeps once for every file on the top level of your hard
drive.

Since the repeat loop uses the list information to place a value
in "currentFile," you can use a conditional within the repeat loop
to see if the text in currentFile ends with " alias."

tell application "Finder Liaison 1.0"

copy (a reference to Disk 11Thendara 11
) to folderName

end tell

fileWalker(folderName)

on fileWalker(currentfolder)

tell application nfinder Liaison 1.0n

i,~;t~',t~~r;~:IJ&•!~i~~~~~t~~:~a.:~~~?". ,·
end repeat

end tell

end fileWalker

Run this script. If you've only one file on the top level of your
hard drive that ends with " alias," the computer should have
beeped once.

However, you don't want the computer to simply beep when it
finds a file that ends with 11 alias." You want to remove the text
from the end of the filename.

Changing the Name: An Introduction
to Workarounds
AppleScript enables you to add two pieces of text together, but
there's no easy way to remove one piece of text from another. This
poses a problem, since your script should remove the text 11 alias"
from a larger chunk of text (the name of the file). A workaround is
necessary.

COMPLEX SCRIPTS: CLIMBING THE MOUNTAIN

Workarounds are like detours: a way to get where you're going
when you can't get there directly. Frequently, a command or
application won't do exactly what you want it to do. If you're
willing to think of ways around the limitation, there is usually a
solution.

In order to work around this limitation, you can use one of the
scripting additions supplied with part of the AppleScript package.
The 11String Commands" scripting addition has a command called
11 offset" that enables you to determine how many characters into a
string another string starts. You use it by writing something like:

offset of "Tao" in "The Tao of AppleScript"

This command puts the number 5 into the result window. The
string 11Tao" starts on the fifth character of the string 11The Tao of
AppleScript" (space characters count). If the first string is not
contained by the other string, the command returns a zero.

With this command, rather than removing 11 alias" from the
end of the filename, you rename the file with the characters up to
11 alias." If you have a file named 11 AppleScript alias," you rename
the file using characters 1 through 11, avoiding the string 11 alias"
that starts on the twelfth character.

Before setting the name of the file, take a look at the result of
this 11formula" using an alias titled 11Zebra alias." (In this script,
you must use a file with a character that comes late in the alpha­
bet, as the result window shows only the last item checked).

tell application "Finder Liaison 1 .0"

copy (a reference to Disk "Thendara") to folderName

end tell

fileWalker(folderName)

on fileWalker(currentFolder)

tell application "Finder Liaison 1 .0"

127

THE TAO OF APPLESCRIPT

128

repeat with currentFile in (Get Files in currentFolder)

if currentFile ends with " al ias" then

characters 1 thru ((the offset of " alias" in
currentFile) - 1) of currentFile

end if

end repeat

end tell

end fileWalker

When you run this script, the result window contains a list
where each item is a character in the variable "currentFile." This
isn't exactly what you were looking for. To correct this, you must
coerce the list to a string. This concatenates the items in the list
into one long string. Coercing I" A", "p", "p", "l", "e"} to a string
would result in "Apple." Here's what the new script looks like:

tell application "Finder Liaison 1.0"

copy (a reference to Disk "Thendara") to folderName

end tell

fileWalker(folderName)

on fileWalker(currentFolder)

tell application "Finder Liaison 1.0"

repeat with currentFile in (Get Files in currentFolder)

if currentFile ends with " alias" then

(characters 1 thru ((the offset of" alias" in
currentFile) - 1) of currentFile) as string

end if

end repeat

end tell

end fileWalker

COMPLEX SCRIPTS: CLIMBING THE MOUNTAIN ,

The entire phrase must be placed within parentheses so that
AppleScript knows to convert the entire result to a string. Finally,
you must use Finder Liaison's "Set Name of" command to change
the name of the file:

tell application "Finder Liaison 1.0"

copy (a reference to Disk "Thendara") to folderName

end tell

fileWalker(folderName)

on fileWalker(currentFolder)

tell application "Finder Liaison 1.0"

repeat with currentFile in (Get Files in currentFolder)

if currentFile ends with " alias" then

Set Name of File currentFile in currentFolder to
(characters 1 thru ((the offset of" alias" in
currentFile) - 1) of currentFile) as string

end if

end repeat

end tell

end fileWalker

When you run this script, the Finder Liaison returns an error.
Why? This is because of an oddity in AppleScript. When you
perform a repeat loop that traverses a list, AppleScript doesn't
exactly set the counting variable to the value in the list, but rather
sets it to something like "item 1 of {1,2,3,4}." AppleScript has no
problem with this, since it understands what "items in a list" are.
Unfortunately, it passes this "modified value" to applications
when you use the counting variable.

So what Finder Liaison actually gets from AppleScript with
this command is "Set Name of File (item 1 of {" AppleShare
PDS","Desktop DB","Desktop DF","zebra alias"}) etc." Finder
Liaison doesn' t know what "items in a list" are, so it returns an
error.

129

THE TAO OF APPLESCRIPT

130

Again, you'll need to use a workaround. You need to coerce
"currentFile" to a string when you refer to it. This forces
AppleScript to make the counting variable into text. (Mter run­
ning this script, you will need to close and then open your hard
drive's window to see the name change.)

tell application "Finder Liaison 1.0"

copy (a reference to Disk "Thendara") to folderName

end tell

fileWalker(folderName)

on fileWalker(currentFolder)

tell application "Finder Liaison 1.0"

repeat with currentFile in (Get Files in currentFolder)

if currentFile ends with " alias" then

Set Name of File (ct:JrrentFile as string) in
currentFolder to (charact"ers 1 thru ((the· offset of
"alias" in currentfile) ~ l) of currentFile) as string

end if

end repeat

end tell

end fileWalker

This script removed the " alias" from any files on the top level of
the hard drive. Next, you'll adapt it to go through your hard drive
and remove " alias" from all the files. For this, you need to tell the
script to look into folders as well as at the top level of your hard
drive.

Peeking Inside Folders
Remember, a directory traversal moves its way through folders,
executing the same commands on each folder. You need to come
up with a vehicle that moves from one folder to another.

COMPLEX SCRIPTS: CLIMBING THE MOUNTAIN

First you'll need to get a list of all the folders. Finder Liaison
does this with the 11Get Folders in" command, which works like
the 11Get Files in" command you just used:

Get Folders in currentFolder
You'll need to set up a repeat loop that runs once for each item

in a list of folders. The repeat loop's counting variable (subfolder)
will be equal to the name of each folder in tum, so that the script
beeps once for each folder in the current folder:

repeat with subFolder in (Get Folders in currentFolder)

beep

end repeat

Once you have the folder's name, of course, you'll want to
execute the commands in this subroutine on the files and folders
within that folder, instead of just beeping.

This can be done by calling the subroutine from within the
repeat loop (which is within the subroutine itself). Each time a
subroutine gets called, even if it's already running, AppleScript
behaves as if it is an entirely new set of commands. When it
finishes that subroutine, it returns to the subroutine that called it
and picks up where it left off.

You can see that doing this for every folder and every folder
within those folders, etc., results in looking at every file on your
entire hard drive. When the script reaches a point where there are
only files in a folder, it moves on to the next folder in that folder's
parent folder and keeps moving through the repeat loop for that
folder. When it finishes with every item in the parent folder, it
backs out again and looks inside the next folder in the list at that
level, continuing until it finishes with all the files and folders on
your hard drive.

Remember that the reference placed in the argument (a refer­
ence to Disk Thendara of Application Finder Liaison) of the

131

THE TAO OFAPPLESCRIPT

132

subroutine (file Walker) can point to a folder just as easily as to
your hard drive. You can exploit this within the repeat loop by
calling file Walker with the argument being the path to the current
folder within the hard drive. Your initial thought may be to type
something like this.

fileWalker(a reference to Folder (subfolder as string) in
currentfolder)

However, remember that you can't put the command
11fileWalker" within the 11tell" statement, because AppleScript will
attempt to send this command to the application. Earlier, you
could move the command out of the tell statement. However, that
won't work here because you enclose the entire subroutine in a
11tell" statement. AppleScript provides a solution, however. You
may remember learning about the special variable 11me" in Chap­
ter 2, "Scripting Basics." In AppleScript, "me" refers to the script
itself. You can send a message to 11me" using the 11tell" command
in the same way you can send a message to an application.

Send the 11fileWalker" message to 11me" so that AppleScript
won't try to send the message to Finder Liaison:

tell me to fileWalker(a reference to Folder (subfolder as string)
in currentfolder)

Make It Better
Since the purpose of scripting is to have your Mac do things
without your supervision, you should concentrate on building
safety features into a script.

This script will search through your entire hard drive. The
capability to look at every file and folder and act upon it is a
valuable scripting tool, but it also can be a dangerous tool. A script
left unattended while working on files in the Finder can have
disastrous results.

Always consider safety when working with directory traversals.
Remember that you are working with the files on the hard drive

COMPLEX SCRIPTS: CLIMBING THE MOUNTAIN

and that you need to make sure nothing will go wrong. It is not
very important with this script as you are only changing the
names of files. But you may end up using this script as a model for
other, more powerful directory traversals.

Safety Considerations: Always Look
Before You Leap

What happens if a person has an item that ends with 11 alias"
but isn't an alias? One safeguard is already built in; the script
won't affect a folder that ends with 11 alias," as it only affect files.

But what if a file ends with 11 Alias," with a capital A? Since the
Finder does not assign a capital A when attaching the name alias
to files, this is probably not simply another alias. AppleScript
doesn't consider case when comparing strings, so a file with such
an ending would be renamed. You can prevent this by placing a
11Considering" statement around the conditional to make
AppleScript look at the case of the two strings as a criterion:

tell application 11Finder Liaison 1.0"

copy (a reference to Disk 11Thendara") to folderName

end tell

fileWalker(folderName)

on fileWalker(currentFolder)

tell application 11Finder Liaison 1 .0"

~ ~- _______ _r~~~~~ .wJ~h -~-~r~~fltFit~..!I!_ .. <9~JJ1!~-1n~SYH~rr~f<>.l.g~rt ..

ld~:: __ ... ·.:-,_-~L-~.:~--·-~·.:;~~~sl~e-~~~:~~~e-· ... ~--~~----··~::~_._· __ -fi_:;:-::1~}~6§~~~~-~J~~~.--::--~-,,;,,:/.···
if currentFile ends with" alias" then

Set Name of File (currentFile as string) in
currentFolder to (characters 1 thru ((the offset
of " alias" in currentFile) - 1) of currentFile) as
string

end if

133

THE TAO OFAPPLESCRIPT

134

repeat with subFolder in (Get Folders in currentFolder)

tell me to fileWalker(a reference to Folder (subFolder
as string) in currentFolder)

end repeat

end tell

end fileWalker

Also, each alias contains one 'alis' resource, that has the same
name as the file itself. If you set up a conditional that tests this
criterion as well as the other two, you can be reasonably sure a file
is an alias before the script changes its name. You'll be using the
ResMover scripting addition, that you've already used, to verify
whether the file you're working with is in fact an alias.

To find out if the file contains an 'alis' resource, use ResMover's
"Get resource types" command to generate list of all the types of
resources within a given file. You can then act on this file only if
there is an 'alis' resource in the list returned. Combine this with
your existing conditional by using an ''and" modifier.

Remember that ResMover uses file references to point to files on
your hard drive. Finder Liaison has the capability to convert its
method of looking at files to the standard file references that
ResMover uses. You can use the path of the file from aFinder
Liaison to generate a file reference that can be passed to ResMover.

considering case

:,~'' :,tl£111ti;;;~,r:;l~l~-~,
Set Name of File (currentFile as string) in currentFolder to
(characters 1 thru ((the offset of" alias" in currentFile)- 1)
of currentFile) as string

end if

end considering

COMPLEX SCRIPTS: CLIMBING THE MOUNTAIN

You'll notice that when you compiled the script, the word
"File" was capitalized. This is because the word "File" has special
meaning to Finder Liaison (the current target of the tell state­
ment). ln order to make this into a file reference, you must use the
word "alias" in place of "file", as in:

If (currentFile ends with " alias") and ((get resource types in alias
(Get Path of File (currentFile as string) In currentFolder)) con­
tains {"alis"}) then

Checking for 'alis' resources is only the first step. You also must
check if the first 'a lis' resource in the file has the same name as the
file itself by getting the name of a resource with ResMover:

considering case

If (currentFile ends with "alias") and ((get resource types in
alias (Get Path of File (currentFile as string) In currentFolder))
contains {"alis"}) and ((get name of resource number 1 of type
"alis" in alias (Get Path of File (currentFile as string) In
currentFolder)) Is currentFile) then

Set Name of File (currentFile as string) in currentFolder to
(characters 1 thru ((the offset of " alias" in currentFile) - 1)
of currentFile) as string

end if

end considering

Now, the conditional will be true only if the filename ends with
" alias," the file contains an 'alis' resource, and the name of the
first 'alis' resource is the same as the file itself.

The chances of this script renaming a non-alias file are quite
remote. Nevertheless, you still may want to confirm the action of
renaming when you run the script.

When in Doubt, Ask
If you're writing a script that can do some real damage to a set

of files, you should make sure that anyone using the script can

135

THE TAO OF APPLESCRIPT

FfgureB.l
Using the display
dialog command.

136

oversee the actions and stop the script, if necessary. One way of
doing this is to use a dialog to confirm each renaming.

AppleScript provides a mechanism for showing simple dialogs
with the scripting addition 11display dialog." This is part of the
standard AppleScript package, so it's already in your 11Scripting
Additions" folder.

The command 11display dialog" presents a dialog box with a
prompt that you specify, providing 110K" and 11Cancel" buttons.
Place this single command into an empty script window:

When you run this script, you'll see that you get a dialog box
with the question you specified (see figure 8.1).

Do you really wish to rename this file?

(C11ncel) ~ OK ,

While this is nice, but you may want to provide a bit more
information. You could ask the question and display the name of
the file that is about to be acted upon. This information is already
available in the variable 11CUrrentFile." Simply place the variable
into the prompt of the dialog and place this line into the script
we've been building up.

You'll notice that when you run this script, pressing Cancel results
in the file being renamed anyway. You must instruct the script to
look at which button was pressed.

When you dismiss the dialog box, AppleScript returns a record
that contains information about what happened in the dialog box.

COMPLEX SCRIPTS: CLIMBING THE MOUNTAIN

One of the items it returns is labeled "button returned"
and it contains the name of the button that was pressed.
You can see this by returning the script that displays the
dialog, and then displaying the result window.

~Iii~ the result
{button r eturned:"OK"}

¢1

To see if the "OK" button was pressed, you'll need to put
another conditional inside the first conditional that determines
whether to change the file or not depending on whether or not
the button pressed was "OK."

considering case

if (currentFile ends with " alias") and ((get resource types in
alias (Get Path of File (currentFile as string) in currentFolder))
contains {"alis"}) and ((get name of resource number 1 of type
"alis" in alias (Get Path of File (currentFile as string) in
currentFolder)) is currentFile) then

If the button returned of (display dialog "Are you sure you
wish to rename " & currentFile & "?") is "OK" then

Set Name of File (currentFile as string) in currentFolder
to (characters 1 thru ((the offset of" alias" in
currentFile) - 1) of currentFile) as string

end if

end if

end considering

Looking at the dialog box you displayed in this script, you may
notice its buttons are a bit misleading. The "Cancel" button
doesn't cancel the script, as its name implies. The "display dialog"
command enables you to change the names of the buttons in the
window. To do this, you must include a parameter named "but­
tons" and a list where each item is the name of a button in your
dialog. To make your script clearer, you could name the button
"Skip," as in:

if the button returned of (display dialog "Are you sure you wish to
rename" & currentFile & "?"buttons {"OK", "Skip"}) is "OK" then

Q

0
1¢11

137

THE TAO OF APPLESCRIPT

138

Set Name of File (currentFile as string) in currentFolder to
(characters 1 thru ((the offset of " alias" in currentFile) - 1) of
currentFile) as string

end if

Visual Feedback
The dialog you just set up will tell you only the name of the file

you're about to rename. If you don't recognize the file by its
name, you may not have any idea which file the dialog is referring
to.

One way to fix this problem may be to actually show the file in
the Finder as the script shows the dialog. You can do this by using
Finder Liaison's "Reveal" command. This command opens a
window and selects a particular icon.

To use this command, simply type "Reveal" and the path to the
file, as in this conditional:

if (currentFile ends with 11 alias") and ((get resource types in alias
(Get Path of File (currentFile as string) in currentFolder)) contains
{"alis"}) and ((get name of resource number 1 of type "alis" in alias
(Get Path of File (currentFile as string) in currentFolder)) is
currentFi

if the button returned of (display dialog "Are you sure you
wish to rename " & currentFile & "?11 buttons {"OK11

, "Skip"})
is "OKt' then

end if

Set Name of File (currentFile as string) in currentFolder to
(characters 1 thru ((the offset of" alias" in currentFile) - 1)
of currentFile) as string

When the dialog box is displayed, the Finder will open the win­
dow the file is in and highlight the icon. (If necessary, the user can
move the dialog box out of the way to look at the file.) This

COMPLEX SCRIPTS: CLIMBING THE MOUNTAIN

provides visual feedback to the user about which file will be
changed.

If you do this for every file, you may end up with many open
windows. Once you're finished with a window, you should close it
using Finder Liaison's 11Close Window of" command. You know
which folder the current file is in, since it is the reference stored in
currentFolder. Simply use the 11Close Window of" command:

if (currentFile ends with " alias") and ((get resource types in alias
(Get Path of File (currentFile as string) in currentFolder)) contains
{"alis"}) and ((get name of resource number 1 of type "alis" in alias
(Get Path of File (currentFile as string) in currentFolder)) is
currentFile) then

Reveal File (currentFile as string) in currentFolder

if the button returned of (display dialog "Are you sure you
wish to rename" & currentFile & "?"buttons {"OK", "Skip"})
is "OK" then

Set Name of File (currentFile as string) in currentFolder to
(characters 1 thru ((the offset of" alias" in currentFile)- 1)
of currentFile) as string

end if

~-.· h~::.~,~~~~J~~~i~~f~~t~l~~~~i~i;~~~!~~~~:;~i-~··:f:,,~~si·_:r~L:~~--<~:~~i:
end if

A Little Overkill Can't Hurt
You may find that all these safety features become cumbersome.

You may want to leave out some safety features to make the script
more automated or less specific. You should, however, consider
what others may want your script to do.

Fix the Bugs
Now that you've addressed some of the safety issues involved with
directory traversal, you should look at some of its possible bugs.

139

THE TAO OF APPLESCRIPT

140

You can now search through every file on your hard drive and
perform a specific task on each. You also can be sure that every file
and folder, even the invisible ones, will be found.

Duplicate Filenames
This script still has at least one bug that could cause a problem.

What happens if the script attempts to set a file to the same name
as another file in the same folder? Well, you'll get an error.

You can prevent this by having the script check the names of
the items in the folder. You already know how to get a list of all
the files and folders within a folder. To find out if the name you're
about to use is in either of those lists, you'll put the names of all
the files and folders into one big list and see if the new string is
contained in that list.

To create this list, you must concatenate the two lists obtained
from Finder Liaison's 11Get Files in" and 11Get Folders in" com­
mands. You should do this as soon as the script enters the
subroutine for a given folder, as in the following script:

on fileWalker(currentFolder)

tell application "Finder liaison 1 .0"

copy (Get·Files hi currentfolder) & (Get Folders in.
curr~ntFold~r) tf) · folderContents

This script, upon entering the subroutine, concatenates the
result from the 11Get Files" command and the result from the 11Get
Folders" command. This combined list is placed into a variable
named 11folderContents."

The next step is to see if the new string is already contained
within the list in 11folderContents." AppleScript provides the
mechanism you will use to determine if one list is contained
within another. Since you need to know if a filename is already
used, you must enclose that name in braces and compare it to the
list inside "folderContents."

COMPLEX SCRIPTS: CLIMBING THE MOUNTAIN

The formula that determines what the filename will become
after stripping'' alias" has already been determined; you can use
that same formula with a "not" modifier to pass over a file if any
item in the folder has that name:

if (currentFile ends with 11 alias11
) and ((get resource types in alias

(Get Path of File (currentFile as string) in currentFolder)) contains
{"alis"}) and ((get name of resource number 1 of type "alis11 in alias
(Get Path of File (currentFile as string) in currentFolder)) is
<currentFile) then <

< if l'lQt (folderConten.ts c(ln~alns {(di~¢ter~'.1 <Jhr,u:~((fhe< offset ··
of" alias" ·in. currentF-ile),~.t)' ·of ~rrentilt~~:as:.S,ttin~U~ ihen

~ - - • - 4 - ~. • -

Reveal File (currentFile as string) in currentFolder

if the button returned of (display dialog "Are you sure you
wish to rename" & currentFile & "?"buttons {"OK",
"Skip11

}) is 110K" then

Set Name of File (currentFile as string) in currentFolder
to (characters 1 thru ((the offset of " alias" in
currentFile) - 1) of currentFile) as string

end if

Close Window of currentFolder

end if
. : .. :.. ~ - .

end if

As it is, this script will do nothing if the new name of the file is
already in use. This may be a viable option for some scripts; how­
ever, in this case the script should perform some other function if
the name is already being used.

You will need to use an "else" statement to accomplish this.
The following conditional will beep if the new name of the file is
already taken. To try it, select an icon on your main hard drive
and make an alias of it, then run the script. Because the original
file has the same name as the new name of the alias file, the script
will beep rather than rename it:

141

THE TAO OF APPLESCRIPT

142

if not (folderContents contains {(characters 1 thru ((the offset of
" alias" in currentFile) - 1) of currentFile) as string}) then

Reveal File (currentFile as string) in currentFolder

if the button returned of (display dialog "Are you sure you
wish to rename " & currentFile & "?" buttons {"OK11

, "Skip"})
is "OK" then

Set Name of File (currentFile as string) in currentFolder to
(characters 1 thru ((the offset of" alias11 in currentFile)- 1)
of currentFile) as string

end if

Close Window of currentFolder
- -~-~-., ~--;-·: ~-<-;.•-:""-~:.·~···---.--:: .. - __ .. ~ .. ·~ ~·-~ ··~- n••·-·~

els~, _-- ::~:: ..
"-'--~~~1?:'•­

end if

When in Doubt, Ask
In order to make this script truly effective, you should bring up

a dialog box that asks the user for an alternate name for the file.
AppleScript's dialog command enables you to have a dialog box
that contains a field in which the user can enter a value. This is
the 11default answer" parameter. It's set up so that you can display
a dialog that already has a default value in the field. However, if
you put the string 1111 into the default answer, it will show an
empty field into which the user can type information.

This dialog box should be informative to the user, it should let
the user know which file caused the dialog box to appear, what
the problem is, and what the user is expected to do about it. For
instance, you may want to present 11I cannot rename the file
11Zebra alias" because the name 11Zebra" is already in use by an item
in this folder. Please enter a new name."

As before, you should give the user the option of skipping the
file altogether. Therefore, you must once again use the 11buttons"
parameter within the command.

COMPLEX SCRIPTS: CLIMBING THE MOUNTAIN

Cleaning Up
Before typing in these commands, take a look at the script. You

may notice that the formula that generates the new name is used
repeatedly. You may want to put the result of this formula into a
variable. This is a particularly good idea if the information is the
result of a lengthy formula such as this one. Putting the text into a
variable can tidy up the script and reduce the amount of typing.

Put the result of this formula into a variable, 11newName," and
then use that variable any time you need that information. The
new script looks like this:

tell application "Finder Liaison 1.0"

copy (a reference to Disk 11Thendara 11
) to folderName

end tell

fileWalker(folderName)

on fileWalker(currentFolder)

tell application "Finder Liaison 1.0"

copy (Get Files in currentFolder) & (Get Folders in
currentFolder) to folderContents

repeat with currentFile in (Get Files in currentFolder)

considering case

if (currentFile ends with 11 alias") and ((get re­
source types in alias (Get Path of File (currentFile as
string) in currentFolder)) contains {"alis"}) and
((get name of resource number 1 of type "alis" in
alias (Get Path of File (currentFile as string) in
currefltFolder)) is current~ile) then

~-~:t:a~~t~~~~~~~:ias•
-t~ newName · · "·· ·" ··

Jfj'lc)t (folde~Qnt~li~~ontalns {n~wNallle}) then
:_~ ~--- _.- . . -·- __ , ~ ... -..,-:-.::: ·: .. :::...._-;:; · ... : -. - -.-. '-- - :_·~ .. - ..

Reveal File (currentFile as string) in
currentFolder

143

THE TAO OFAPPLESCRIPT

144

if the button returned of (display dialog
"Are you sure you wish to rename " &
currentFile & "?11 buttons {"OK", "Skip"})
is "OK" then

·····~}~~tl;)tl~~~~-~t~L~:~;i
end if

Close Window of currentFolder

else

beep

end if

end if

end considering

repeat with subFolder in (Get Folders in currentFolder)

tell me to fileWalker(a reference to Folder
(subFolder as string) in currentFolder)

end repeat

end repeat

end tell

end fileWalker

Back to the Script
You can put the command that displays the dialog box inside

the else statement, as follows:

if not (folderContents contains {newName}) then

Reveal File (currentFile as string) in currentFolder

if the button returned of (display dialog "Are you sure you
wish to rename" & currentFile & "?11 buttons {"OK", "Skip"}}
is "OK" then

Set Name of File (currentFile as string) in currentFolder to
newName

end if

Close Window of currentFolder

COMPLEX SCRIPTS: CLIMBING THE MOUNTAIN

else

' ' . di~R~ay .qialog "I cannotrep~Q1.~ t~~ ~.le n & currentfile, & II

... · ·-_ ~-~~~S,~Jhe~r~une.".~_ne~f'l,arrae.'~:-.",.:is.~lr~a~y,·~~~n:'Pieas~
' .. evf¢r a.··new··natrie.~" 'btJtton$~{"(JK'1j ,."S~ip''l ~efa_ljlt answer "''

end if .. .: . . . · · . ·.

The script will now display a dialog box that asks the user to enter
a name for a file if the attempted name is already in use.

As yet, the script doesn't do anything with the information it
gets from the dialog box. You must tell the script to do that. As
before, the dialog box will return a record. This time, there will be
an additional item in the record labeled "text returned." This item
contains the information entered by the user. You should put the
result of this dialog into a variable, "dialogResults:"

else

··.·• ~QP~::.(~i!p,~y·diaiQ.g .. _··-11
1· .. ~~~~!1~~-.f~n@m~·t.~e·til_~··?;--:~.·~qrre~t~ile &

. -'l:.fJ~~i¢·the. nar'ne·";&:~ne~m~rn~:,.S1···n'.is ··alreaCiy~~aken •. Please
·(:!n~t'c"a new·narne." :buttOQS' .{~OK~1 ... 11Skip'•}' defaljlt ~nswer "")
to dj~logResults · ·

end'if

The next step is to use this information to rename the file. Again,
you'll use the "Set Name of" command from Finder Liaison:

else

copy (display dialog 111 cannot rename the file" & currentFile &
11 because the name" & newName & "is already taken. Please
enter a new name." buttons {"OK", 11Skip"} default answer '"')
to dialogResults

S.~tN~rn~ of_ File. (current17il~ .. ~ -~riOfJ)Jn ~urrentFol_d~r to (text
'r~tPrfl~,;qf.dialogR~sul~l · · · _ . ·

end if

145

THE TAO OF APPLESCRIPT

146

Error Checking
An important part of writing any script is a process called "error

checking." This process involves trying to anticipate every possible
user action, and reacting appropriately to those actions.

An important aspect of error checking is accounting for any
button a user may use to dismiss the dialog. When you anticipated
that a user may press the "Skip" button, you implemented a
simple form of error checking.

You must to do this for the dialog you just set up. You can do
this by using a conditional, as you did before:

else

copy (display dialog "I cannot rename the file" & currentFile &
" because the name " & newName & " is already taken. Please
enter a new name." buttons {"OK", "Skip"} default answer '"')
to dialogResults

If the button returned of dialogResults Is "OK" then

Set Name of File (currentFile as string) in currentFolder to
(text returned of dialogResults)

end if

end If

A more difficult aspect of error checking is anticipating user
error. For example, what happens if the user enters another name
that already exists into the dialog box? Finder Liaison, once again,
generates an error.

Anticipating that a user may type in an existing name enables
you to prevent the script from returning another error. You can
give the user a second chance, by setting up a conditional to check
this newly entered value and displaying the dialog box once again
if that new value is also already in use. Use the variable
"folderContents" and the same dialog again:

COMPLEX SCRIPTS: CLIMBING THE MOUNTAIN

else

copy (display dialog "I cannot rename the file" & currentFile &
"because the name" & newName & "is already taken. Please
enter a new name." buttons {"OK", "Skip"} default answer"")
to dialogResults

if the button returned of dialogResults is "OK" then --.....--.....

if folderC0ntents contains {the text returned of
dialogResults} then

beep

copy (display dialog "I can not rename the file" &
currentFile & " because the name " & newName & " is

already taken. Please enter a new name." buttor.ts
{''OK", "Skip"} default answer "") to dialogResults

end If

Set Name of File (currentFile as string) In currentFolder to
(text returned of dialogResults)

end If

end if

If the user presses "OK" and the name entered is already in use,
the script will bring up the dialog box again.

But the user could still generate a Finder Liaison error by enter­
ing a name that already exists. To completely prevent this error,
you must set up a repeat loop that will run whenever the text
entered into the dialog box is a name that is already in use in that
folder.

You must use AppleScript's "repeat until" command for this:

if folderContents contains {the text returned of dialogResults}
then

repeat until not (folderContents contains {the text returned
of dialogResults})

~--- --------------------~----------~ beep

147

THE TAO OF APPLESCRIPT

148

copy (display dialog "I cannot rename the file 11 &
currentFile & "because the name" & newName & 11 is
already taken. Please enter a new name." buttons {"OK",
"Skip"} default answer "11

) to dialog Results
. ,. ~ , ' ,"

eridrepeat ,' '
end if

Now that you've handled this bug, you've added the flexibilty
for the script to implement a series of steps to solve a problem,
using input from the user to guide it.

Make It Better
While this script is now complete, it serves only a very specific
function: removing the word 11 alias" from alias files. That's useful,
but you ·could use this script as a base to build a more powerful
and more useful script-one that can find and replace text in the
names of files and folders within the Finder based on two values:
what to search for, and what to replace the result with.

The first step is to declare the two values. Put " alias" into the
variable "findText" and 1111 into the variable "replaceText.":

copy" alias" to findTeXt::":' , · _::: ,:··

copy"" to·~replaceteXi:{~·;-:·~~,_., '-
·--· .: .• ~- ·--_..:. ·-~·-;:;·---·-:-- .. _.

tell application "Finder Liaison 1 .0"

copy (a reference to Disk "Thendara") to folderName

end tell

fileWalker(folderName)

Unfortunately, variables used in the main script are not available
from within subroutines. The values of findText and replaceText
will not be passed to the subroutine.

You could make them into arguments of the subroutine, as in:

fileWalker(folderName, findText, replaceText)

COMPLEX SCRIPTS: CLIMBING THE MOUNTAIN

However, AppleScript provides 11global variables" for variables that
must be accessible from any part of a script.

Making global variables is simple. Every variable has the poten­
tial to become a global variable. Use the word "global" and follow
it with a list of all the variables you wish to become global. In this
case, you want to use both "findText" and "replaceText" as global
variables. Global variables take more memory than standard
variables, so you should use them sparingly.

It's conventional to declare all global variables at the beginning
of the subroutine, so that you don't need to search through the
script to find which ones are global. Here's how the initial lines of
the subroutine look using the two global variables:

,:, '. :~~fi_l!~~-~~~~~:~g~ntFq'9~r),>_.,., .. . , , . , .
:~·<·.~r~{ :$Jid~'';:~~~t·r~pla~(!IF~":'" .

The subroutine now has access to those variables. If you change
the values inside those variables, any part of the script that uses
that variable will use the new value, although you need not do
that for this script. This differs from variables local to a subroutine,
that retain their values only in the subroutine. This is necessary
for the directory traversal to function properly; when you deal
with all the folders in a given folder, the original subroutine that
called that subroutine still has its same value in "currentFolder."
This is what enables the directory traversal to work its way back
up.

Now that those variables are accessible, you must determine
how to use that information in your script.

While this example script was designed to change specific text,
a general-purpose script should be more flexible than to limit itself
to simply the specific text. The first conditional should check if
1'currentFile" contains the text in "findText." You also should
remove the comparisons that check whether a file is an alias­
since you'll want to look at files and folders, regardless of whether
they're aliases or not.

149

THE TAO OF APPLESCRIPT

150

:·•-_.:·/~~;~;4;:~~-- -·;·~~.~~~;~~~~~~1~~,~- ··'·:?· -,-~~~P.t~~~r£.,l:·~r0;~:~r~~;,%-:_~,;_f~t,~~~~~r~':
copy (characters 1 thru ((the offset of" alias" in currentFile)-
1) of currentFile) as string to newName

if not (folderContents contains {newName}) then

Reveal File (currentFile as string) in currentFolder

else

if the button returned of (display dialog "Are you sure you
wish to rename" & currentFile & "?11 buttons {"OK",
11Skip"}) is "OK" then

Set Name of File (currentFile as string) in currentFolder
to newName

end if
Close Window of currentFolder

copy (display dialog "I cannot rename the file" &
currentFile & " because the name " & newName & " is
already taken. Please enter a new name." buttons {110K",
"Skip"} default answer"") to dialogResults

if the button returned of dialogResults is "OK" then

if folderContents contains {the text returned of
dialogResults} then

repeat until not (folderContents contains {the
text returned of dialogResults})

beep

copy (display dialog "I cannot rename the file
n & currentFile & " because the name " &

newName & " is already taken. Please enter a
new name." buttons {"OK", "Skip"} default
answer 1111

) to dialogResults

end repeat

end if

Set Name of File (currentFile as string) In currentFolder
to (text returned of dialogResults)

end if

end if

end if

COMPLEX SCRIPTS: CLIMBING THE MOUNTAIN

You also need to change the information placed into
"newName". The workaround you used was only good for remov­
ing the characters at the end of the string. Remember that the
value you are searching for in this script with "findText" can be
anywhere within the word. You need to take into account the fact
that the text could be in the middle of the string.

To make a value for 11newName," you need to use another
workaround. To do a find and replace, you can think of it as
dividing the original text into three parts. There are the characters
that come before the text you're finding, the characters of text
that you wish to replace, and the characters that come after the
text you wish to replace.

To make a new name, concatenate the first part of the string
with the text you want to use as a replacement. Then concatenate
that to the third part of the result. You've essentially replaced the
text you found with the new text.

The first two pieces of this puzzle are already available: you've
written the part of the script that gives you all the characters
preceding the found text and value of the replacement text is held
in "replaceText."

The third piece is a little bit trickier. You still will want a range
of characters, but no longer starting with the first character. You
want the range of characters which starts with the character just
after the text you want to replace and ends with the last character
of the original filename.

The same scripting addition that provides you with the capabil­
ity to get the offset of one string in another enables you to
determine the length of a string in characters. This will be very
useful for the third block of text you need to get.

The first thing you want to know about the third block is the
position of its first character, which is also the character immedi­
ately after the block of text you want to replace. Consider for a
moment how you would find the position of this character. If that
block of text was at the beginning of the string, you would get the

151

THE TAO OF APPLESCRIPT

152

length of that block of text and add 1. For instance, for a file
named " alias file," the character following '' alias" is the length of
11 alias" plus 1.

In a file named ''Another alias file," however, the block of text
could fall anywhere within the name of the file. You must account
for the offset of the text you want to replace. The character follow­
ing 11 alias" is at position 14. The offset (the position of the first
letter) of the string produces the number 8. If you then add the
length of that string (6), and then 1, you'll be one character
further than you should be. You must subtract one from the offset,
then add the length, and then add 1. Obviously, subtracting one
and adding one are mutually cancelling, so to get the position of
the first character of the third block, you would simply add the
offset of the block you're replacing, to the length of that block.

You can see how this works by typing the following script into
a new script window:

charage.r~((tlj~.o.1t$~t-of "Ta_o~ in"1J1et~oof AppleS¢ript"l+ -
{length-~-·ryaQ~"))tbi'U (leng~h of;t!TiieTao ofAppleScnptq).ot- ·
nn,~-:!iiP or~~ttP·~~~:rjptlf _ · - -- , - ·

All the parentheses had to be used because AppleScript gets
confused when it sees strings next to mathematical symbols. You
have to enclose the commands which get the offset and the length
in parentheses so AppleScript will evaluate those first and use the
resulting number.

Combining this information with the text blocks (which you
already know how to get), you get the following formula for
placing information into 11newName":

<:opy: (~hata:ct~~ 1 thru',((tih~: ofm~f()ffindText in cutrentFile) - ··
t~: ofc::uf'fentFile) &- replace'i~ &.'cbar_acters ((th~ Qffset qf

• flndText irfA~~ntFiJ~ ~ Cleogtt;. QfffndText)) thru. {J$;tg~-~f.
curren~file)of,~rrefl~File -a~- s({i~S to7newName

This works fine for files, but folders may also contain the
text you're looking for. You'll need to perform all these same

COMPLEX SCRIPTS: CLIMBING THE MOUNTAIN

commands, replacing "currentFile" with "subFolder/' within the
repeat loop that traverses the list of folders. Copy the appropriate
lines and place them under the "folder" repeat loop. You'll need to
change some of the dialogs and such since you're now working
with a folder rather than a file.

repeat with subFolder in (Get Folders in currentFolder)

considering case

if subFolder contains findText then

copy (characters 1 thru ((the offset of findText in
subFolder)- 1) of subFolder) & replace Text &
characters ((the offset of findText in subFolder) +
(length of findText)) thru (length of subFolder) of
subFolder as string to newName

if not (folderContents contains {newName}) then

Reveal Folder (subFolder as string) in currentFolder

if the button returned of (display dialog "Are you
sure you wish to rename " & subFolder & "?"
buttons {"OK", "Skip"}) is "OK" then

else

Set Name of Folder (subFolder as string) in
currentFolder to newName

end if

Close Window of currentFolder

copy (display dialog "I cannot rename the file " &
subFolder & " because the name " & newName &
"is already taken. Please enter a new name."
buttons {"OK", "Skip"} default answer "") to

dialog Results

If the button returned of dialogResults is "OK"
then

if folderContents contains {the text returned
of dialogResults} then

repeat until not (folderContents contains
{the text returned of dialogResults})

beep

153

THE TAO OF APPLESCRIPT

154

copy (display dialog "I cannot rename
the file " &: subFolder &: " because the
name " &: newName &: " is already
taken. Please enter a new name."
buttons {"OK", "Skip"} default answer
"") to dialogResults

end repeat

end If

Set Name of Folder (subFolder as string) In
currentFolder to (text returned of
dialogResults)

end If

end If

end If

end considering

tell me to frleWalker(a reference to Folder (subFolder as
string) in currentFolder)

end repeat

If you change the name of a folder, however, you will not be
able to set up a reference to the folder name represented by
"subFolder" as the folder named in the variable will seem to no
longer exist. You must change the value in subFolder every time
you set the name of a folder so that the value in subFolder reflects
the new name.

if not (folderContents contains {newName}) then

Reveal Folder (subFolder as string) in currentFolder

if the button returned of (display dialog "Are you sure you
wish to rename " &: subFolder &: "?" buttons {"OK", "Skip"}) is
"OK" then

Set Name of Folder (subFolder as string) in currentFolder
to newName

copy newName to subFolder

end if

Close Window of currentFolder

COMPLEX SCRIPTS: CLIMBING THE MOUNTAIN

else

copy (display dialog "I cannot rename the file " & subFolder &
n because the name n & newName & II is already taken. Please
enter a new name." buttons {"OK", "Skip"} default answer '111

)

to dialogResults

if the button returned of dialogResults is "OK" then

if folderContents contains {the text returned of
dialogResults} then

repeat until not (folderContents contains {the text
returned of dialogResults})

beep

copy (display dialog "I cannot rename the file 11 &
subFolder & 11 because the name " & newName &
11 is already taken. Please enter a new name."
buttons {110K", "Skip"} default answer "") to

dialog Results

end repeat

end if

Set Name of Folder (subFolder as string) in currentFolder
to (text returned of dialogResults)

ui~,(:;n~-d;f~~y~j~,.~~~~~jii~~~~~i~1~~·:){
end If

end If

Your script has become quite complicated. You can see how
taking into account all these real-life variables can lead to a com­
plex script. Nevertheless, considering every possible factor when
designing a script will make your scripts extremely robust. It will
also make your scripts more enjoyable to use, as they will be less
prone to crashing even when users do unexpected things.

Adding Another Dialog
Before you finish this script, there's one more thing to add. At

the moment, you must go into the actual script to change the
values in the findText and replaceText variables.

155

THE TAO OFAPPLESCRIPT

156

Ideally, this script would show a dialog box that the user can
enter the text to be found and the text to replace it with. This
would enable you to save the script as an application so that the
script itself need never be seen.

You've seen how to use the 11 display dialog" scripting addition
to show simple dialogs, but they aren't powerful enough for this
final touch. You need a dialog with two fields and a caption
describing each field.

There is a scripting addition named 11DialogRunner" provided
on the disk with this book that enables you to display dialog
resources stored in files. Also provided is a file named "Find and
Replace Dialog" that contains a dialog for this script. It's in the
same folder as the 11Tao Sounds" file used previously.

To use DialogRunner, install it into the Scripting Additions
folder and restart your Macintosh. This will enable AppleScript to
see the addition.

The command to use, 11run dialog," must contain the name of
the dialog resource, a reference to the file in which that resource is
stored, and a list that tells the addition which items will dismiss
the dialog.

The dialog you'll be using is named 11Find and Replace" and is
stored in the "Find and Replace Dialog" file. You'll want the dialog
to be dismissed when the user presses either the 110K" or "Cancel"
button. The resulting command would look something like this
(any variation would be in the name of your hard drive and the
path to the particular file):

run;dia.log "Fihd ;and Repl~~ta" ":ftory1 file -
"Thenda_@-:~~ripthlgtScriptihg;Tools:Finc;f· and Repl~ce DJ~Iog"
-until {"OK", _ il<:1ncel"} · ·

When you run a dialog, DialogRunner returns a record with
several items. The first is labeled "item hit," and contains the
name of the button pressed. The second is labeled "edit texts" and
is a list of all values entered into the field in the order in which

COMPLEX SCRIPTS: CLIMBING THE MOUNTAIN

they're numbered in the dialog. In the case of the find and replace
dialog, the first field in the list is the text to find and the second
field in the list is the text to replace it with. DialogRunner also
returns a list of the values of all checkboxes in the dialog and a list
that describes which radio button was pressed in each group of
radio buttons. You won't be using that information in this in­
stance, since the dialog doesn't have checkboxes or radio buttons.

To add this dialog to the script, you need to do several things.
First, call the dialog as you saw above. Second, run all the other
commands only if the button pressed was "OK," as you've been
doing with the dialogs AppleScript provides. The final step is to
place the information from the fields into the appropriate vari­
ables.

Copy the information from the dialog into the variable
"dialogResults." That variable can be used at other points in the
script, but it's only used within subroutines, and you since you
won't be calling it as a global variable, it won't be a problem. As
far as AppleScript is concerned, they're not the same variables.

After making all those changes to the script, you end up with:

copy (run dialog "Find and Replace" from file
"Thendara:Scripting:Scripting Tools:Find and Replace Dialog" until
{"OK", "Cancel"}) to dialogResults

if the item hit of dialogResults Is "OK" then

copy (item 1 of the edit texts of dialogResults) to findText

copy (item 2 of the edit texts of dialogResults) to replace Text

end if

tell application "Finder Liaison 1 .0"

copy (a reference to Disk "Thendara") to folderName

end tell

fileWalker(folderName)

on fileWalker(currentFolder)

global findText, replaceText

157

THE TAO OF APPLESCRIPT

tell application "Finder Liaison 1 .0"

158

copy (Get Files in currentFolder) & (Get Folders in
currentFolder) to folderContents

repeat with currentFile in (Get Files in currentFolder)

considering case

if currentFile contains findText then

copy (characters 1 thru ((the offset of findText
in currentFile)- 1) of currentFile) & replace Text
& characters ((the offset of findText in
currentFile) +(length of findText)) thru
(length of currentFile) of currentFile as string
to newName

if not (folderContents contains {newName})
then

Reveal File (currentFile as string) in
currentFolder

if the button returned of (display dialog
"Are you sure you wish to rename 11 &
currentFile & "?"buttons {"OK", "Skip"})
is "OK" then

Set Name of File (currentFile as string)
in currentfolder to newName

end if

Close Window of currentFolder

else

copy (display dialog "I cannot rename the
file " & currentfile & " because the name "
& newName & " is already taken. Please
enter a new name." buttons {"OK",
"Skip"} default answer "") to dialogResults

if the button returned of dialog Results is
"OK" then

if folderContents contains {the text
returned of dialog Results} then

repeat until not (folderContents
contains {the text returned of
dialog Results})

beep

COMPLEX SCRIPTS: CLIMBING THE MOUNTAIN

copy (display
dialog "I cannot
rename the file "
& currentFile & "
because the name
" & newName & "
is already taken.
Please enter a new
name." buttons
{"OK", "Skip"}
default answer "")
to dialogResults

end repeat

end if

Set Name of File (currentFile as string)
in currentFolder to (text returned of
dialogResults)

end if

end if

end if

end considering

end repeat

repeat with subFolder in (Get Folders in currentFolder)

considering case

if subFolder contains findText then
copy (characters 1 thru ((the offset of findText
in subFolder)- 1) of subFolder) & replaceText
& characters ((the offset of findText in
subFolder) +(length of findText)) thru (length
of subFolder) of subFolder as string to
newName

if not (folderContents contains {newName})
then

Reveal Folder (subFolder as string) in
currentFolder

if the button returned of (display dialog
"Are you sure you wish to rename" &
subFolder & "?"buttons {"OK", 11Skip"}) is
"OK" then 159

THE TAO OFAPPLESCRIPT

160

Set Name of Folder (subFolder as
string) in currentFolder to newName

copy newName to subFolder

end if

Close Window of currentFolder

else

copy (display dialog "I cannot rename the
file " & subFolder & " because the name "
& newName & " is already taken. Please
enter a new name." buttons {"OK",
"Skip"} default answer "") to dialog Results

if the button returned of dialog Results is
"OK" then

if folderContents contains {the text
returned of dialog Results} then

repeat until not (folderContents
contains {the text returned of
dialog Results})

beep

copy (display
dialog "I cannot
rename the file 11

& subFolder & 11

because the name
" & newName & 11

is already taken.
Please enter a new
name. 11 buttons
{"OK", "Skip 11

}

default answer 11
")

to dialogResults

end repeat

end if

Set Name of Folder (subFolder as
string) in currentFolder to (text
returned of dialog Results)

copy newName to subFolder

COMPLEX SCRIPTS: CLIMBING THE MOUNTAIN

end if

end if

end if

end considering

tell me to fileWalker(a reference to Folder (subFolder
as string) in currentFolder)

end repeat

end tell

end fileWalker

This script first displays the dialog for entering information. If
you press OK, the script copies the necessary information into the
two variables and calls the subroutine. That's it.

On Your Own
Congratulations! You've successfully completed the largest script
in this book. Go ahead and save it as a script application, and
you'll never need to look at this script again. (Unless, of course,
you think of more features to add!)

Having made it through the final leg of your journey, take time
to play. Try different kinds of directory traversals. You could make
a version of Sound Sucker that enables folders to be dragged onto
it, so that it goes through every file in that folder to extract
sounds. Be creative! Explore!

The next chapter is a description of advanced AppleScript
features. You'll learn to use programs available over a network in
your scripts, to fully exploit the power of subroutines, and to
design your own objects which contain script commands.

161

Chapter 9
Advanced Scripting

Reaching the
SUJnlnit

The scripting skills you have learned have enabled you to auto­
mate large tasks, design new utilities-virtually anything you want
to do! But AppleScript has even more capabilities that can increase
your scripting power dramatically.

These capabilities, which are similar to "true" programming
language functions, include: the capability to write commands
that sound like everyday English phrases; script objects, which are
like subroutines except that you can access them from many
different scripts; and the capability to reach out across a network
to use applications running on other Macs.

"Nearly English" Subroutines
In the previous section, you saw subroutines used for fairly com­
plex actions or functions. You may have noticed that the
commands used to call subroutines don't resemble English
sentences:

on average(listofNums)

THE TAO OFAPPLESCRIPT

164

The AppleScript commands you've learned sound almost like
normal English, such as:

set the contents of window 1 of application "Scriptable Text
Editor" to nThe Tao of AppleScript"

Fortunately, AppleScript enables you to create subroutines that
you call in a more English-like syntax. Look again at the subrou­
tine that averages a list of numbers, from the previous section:

copy (average({2, 3, 4, 5})) to avgResult

display dialog avgResult

on average(listofNums)

copy 0 to total

repeat with currentNumber in listofNums

copy currentNumber + total to total

end repeat

return total + (the number of items in listofNums)

end average

Unless you know what to look for, it's not immediately appar­
ent that 110n average(listofNums)" is even a command. Using lion"
makes it look like a conditional. One way to make it more under­
standable is to use the word "to" instead of lion" in the line that
introduces the subroutine:

copy (average({2, 3, 4, 5})) to avgResult

display dialog avgResult

t() ~~e~~'~t~~ii'tb_~~~ --·
copy 0 to total

repeat with currentNumber in listOfNums

copy currentNumber +total to total

ADVANCED SCRIPTING: REACHING THE SUMMIT

end repeat

return total + (the number of items in listOfNums)

end average

This script makes a bit more sense. You are closer to stating, "to
average this list of numbers, do this," but it's a fairly minor
change. The parentheses still make this command stand out as
odd among the other commands in the subroutine.

copy (average({2, 3, 4, 5})) to avgResult

You don't need these parentheses around listofNums. Instead,
you can use a wide range of labels to make the command feel
more English-like. You can, for instance, use the word "of" in the
first line of this subroutine:

copy (average({2, 3, 4, 5})) to avgResult

display dialog avgResult

. t(;",a\te~~- e.;Ot;:JiStOfNums -, _ .:::: .. :::...c' .:· _g,.,_;.,~~:..'L::.o·-:~:._ ... ·-- _·-- .

copy 0 to total

repeat with currentNumber in listOfNums

copy currentNumber + total to total

end repeat

return total + (the number of items in listOfNums)

end average

When you call the subroutine, it will look more natural, as in
the following script:

: .. ·---~~~~~:~Y~~fD~~~j~!·_~),:~!,:·~}~Lt.o.~~~~~~~!~~~;~~1l~~:~;~ji.>~-.~~{~_,·: ___ ·:~-- ;:_ -·'----~-~-,~;l_~--~:~-~
display dialog avgResult

You can see that this looks more like the AppleScript commands
you're used to seeing. You're telling the script to "put the average

165

THE TAO OF APPLESCRIPT

166

of {2,3,4,5} into the variable named avgResult," as it implies.
Further, you can name your subroutine more descriptively, such as
11 getA verage." This almost makes the first line of the script into a
real English sentence:

to getAverage of listOfNums

AppleScript gives you a wide variety of words to use as labels
that help you make English-like sentences to call your subroutines.
The following words are recognized as labels: at, from, to, for,
thru, through, by, on, into, onto, between, against, out of, instead
of, aside from, around, beside, beneath, under, over, above, below,
apart from.

For instance, you could write a subroutine to make Progress Bar
count from one number to another:

to moveProgressBar(low, high, interval)

tell application "Progress Bar 1 .011

make new window

tell window 1

set the minimum value of progress bar 1 to low

set the maximum value of progress bar 1 to high

repeat with i from low to high by interval

set the current value of progress bar 1 to i

end repeat

end tell

quit

end tell

end moveProgressBar

However, this script is awkward and counterintuitive. It is also
difficult to remember which argument goes where. Using labels,
you can make this subroutine more natural-sounding:

ADVANCED SCRIPTING: REACHING THE SUMMIT

,;~·>t~~~~~~¥:~~~r~s~~t:f~o~;l~w,·~~,··~!~:~\~~~\Jp~~~:~~C:}i}"1·~·;::~.;~{ •. ·.•:~·'_,:· ·_·; ,

tell application "Progress Bar 1.0"

make new window

tell window 1

set the minimum value of progress bar 1 to low

set the maximum value of progress bar 1 to high

repeat with i from low to high by interval

set the current value of progress bar 1 to i

end repeat

end tell

quit

end tell

end moveProgressBar

Not only is a call to this subroutine more intuitive, but you'll
also have no problem remembering the order of the arguments,
since it is a natural English phrase:

moveProgressBar from 1 to 100 by 10

You're stuck with making the name of the subroutine one word.
You can, however, apply the same rules as those for variable
names and use underscore characters to represent spaces, as in:

_ move~progress Bar from 1 to 1 oo by ·1o

t~ _r:nove_Progress_Bar fro.111 low to high-by.jnterval

tell application "Progress Bar 1.0"

make new window

tell window 1

set the minimum value of progress bar 1 to low

set the maximum value of progress bar 1 to high

repeat with i from low to high by interval

set the current value of progress bar 1 to i

167

THE TAO OF APPLESCRIPT

168

end repeat

end tell

quit

end tell

. -.end,niJQ~¢..:::BtogressJ.~~r .· •..
' - ~:~J_,-_i;,•;::.'->-'·'·;_,., .. ,~;;:.~·· ~----~-j.-;.,,:·.J.•'-:''.• · . .:: ~--~- "<'--~

AppleScript provides yet another powerful method for making
subroutines easier to read and call. You can use the term "given,"
followed by labels, to establish arguments. When you define the
subroutine, you attach a variable to the label. Then, when you call
the subroutine, the value with the same label will be placed in the
variable. For instance, you may rewrite your progress bar subrou­
tine in the following way:

t9 mav~ Pi'ogre~_t~at::g;ven t~wNum~er:low, highNumtlif:nigh,. .
lnteiVaiNumtrer:ioter:va(. · · · · · ·
... '•.. - ~,"'<;!;·_,:~ ~h_:_:.;.~·~·-,:'(' ._, .·<t:::;--_-";·'·?-

tell application "Progress Bar 1 .0"

make new window

tell window 1

set the minimum value of progress bar 1 to low

set the maximum value of progress bar 1 to high

repeat with i from low to high by interval

set the current value of progress bar 1 to i

end repeat

end tell

quit

end tell

end move_Progress_Bar

To call this subroutine from the main script, you would write:

move_Progress_Bar given lowNumber:l, highNumber:1 00,
intervaiNumber:l 0

ADVANCED SCRIPTING: REACHING THE SUMMIT

When the script runs, it takes the value attached to the label
11lowNumber" and places that in the variable named "low" in the
subroutine.

You may think this is not very intuitive, especially when
compared to other methods. However, this capability is useful
when one or more of the labels has a Boolean value attached to it.
You then no longer must say "given," but rather you can use the
words "with" and "without." If you use "with" when calling the
subroutine, AppleScript sets the value of those labels to true. If you
use "without," it sets the labels you list to false.

For instance, you might have an option to have your subroutine
beep when it's finished:

to move_Progress_Bar {r"om low t9 high_,by intervargiven
beeping:beepingVall.ie - - - '· - -

tell application "Progress Bar 1.0"

make new window

tell window 1

set the minimum value of progress bar 1 to low

set the maximum value of progress bar 1 to high

repeat with i from low to high by interval

set the current value of progress bar 1 to i

end repeat

end tell

quit

end tell

if b~ef?ingValue _i~ trt.Je then be~p -_ -

end move_Progress_Bar

If you want to call this subroutine and have it beep when
finished, you would write:

move_Progress_Bar from 1 to 1 00 by 1 0 given beeping:true

169

THE TAO OF APPLESCRIPT

170

When you compile this script, you'll see that AppleScript
rewrites your script command:

move_Progress_Bar from 1 to 1 00 by 1 0 with beeping

By using the word "with," you tell AppleScript to call this
subroutine and set the value attached to the "beeping" label (the
variable "beepingV alue") to true.

If you don't want the subroutine to beep when it finishes, you
would use "without:"

move_Progress_Bar from 1 to 1 00 by 1 0 without beeping

When you call the subroutine, the value of the variable at­
tached to the label "beeping" is set to false.

You can combine a long string of labels by using "with" and
"without" and "and." If you have four labels-for example, "beep­
ing," 11ticking," 11quitting," and 11Stopping"-and want the first
two set to true and the second two set to false, you can call that
subroutine with the following command:

subroutineName with beeping and ticking without quitting
and stopping

To declare a subroutine with multiple labels, simply separate
the labels by commas.

AppleScript affords you a great deal of flexibility when you
define subroutines. You can set them up so that they read just like
normal AppleScript commands and natural English phrases. This
way, you can make your subroutine commands as easy to use as
AppleScript itself.

Script Objects
You may have subroutines that you use repeatedly in your scripts.
You may want to group these commonly used subroutines so you
can access access them from several scripts.

ADVANCED SCRIPTING: REACHING THE SUMMIT

AppleScript gives you this capability with script objects. You
can tell script applications to execute certain actions, and even set
properties within them. They enable you to group multiple sub­
routines into a single object that can be addressed from within a
script, without having to copy the subroutines into many script
files.

You've seen how a simple subroutine can average a list of
numbers. What if there are several subroutines that do other
statistical manipulations? You may have a script such as the
following, that finds the maximum number in a list of numbers:

to find Max of listofNums

copy 0 to greatest

repeat with i in listofNums

if i > greatest then copy i to greatest

end repeat

return greatest

end findMax

You might use this subroutine frequently in your scripts, and
would probably find it awkward to copy it from one script to
another over and over. Instead, you can set up a script object that
contains both of these subroutines, so that you can access them
from any script.

To define a script object, you go through a process similar to
defining a subroutine. First, you must name the object, say
''statistics."

To make sure AppleScript understands that this is a script
object, you must use the word "script" in the same way you used
the word "on" and "to." For instance, to make a script object
named "statistics," you would write the following in a separate
script file:

script statistics

end script

171

THE TAO OF APPLESCRIPT

172

With script object definitions, you don't end with the name, as
you did with subroutines, but with the word "script."

To put both subroutines into this script object, copy the text
and insert it within the script object after the "script statistics"
statement, but before the "end script" command.

script statistics

to average of listofNums

copy 0 to total

repeat with currentNumber in listofNums

copy currentNumber + total to total

end repeat

return total + (the number of items in listofNums)

end average

to findMax of listofNums

copy 0 to greatest

repeat with i in listofNums

if i > greatest then copy i to greatest

end repeat

end findMax

end script

Both these subroutines are now part of the script object.

To access these subroutines, you must use the "tell" command
with the name of the script object. Type this into the same script
window as the statistics script object:

tell statistics

average of {2, 3, 4, 5}

end tell

script statistics

to average of listofNums

ADVANCED SCRIPTING: REACHING THE SUMMIT

copy 0 to total

repeat with currentNumber in listofNums

copy currentNumber + total to total

end repeat

return total +(the number of items in listofNums)

end average

to findMax of listofNums

copy 0 to greatest

repeat with i in listofNums

if i > greatest then copy i to greatest

end repeat

end findMax

end script

Running this script will result in the script using the statistics
script object to get the average of the list of numbers you sent it.

You'll see that both of these subroutines use the same type of
argument: a list of numbers. Though it's easy to include this when
calling the subroutine, you may want to set up a list of numbers
and then run a set of commands on it.

AppleScript enables you to assign "properties" to the script
objects. These act as global variables for all the subroutines in that
script object. They are much like properties of objects, such as the
font property of a word.

To set a property, type the word "property" followed by that
particular property's name (again, using all the same rules that
apply to variable names), a colon, and an initial value of the
property. For instance, to make a property for a list of numbers,
you would do the following:

script statistics

property listofNums : {}

to average of listofNums

173

THE TAO OF APPLESCRIPT

174

copy 0 to total

repeat with currentNumber in listofNums

copy currentNumber + total to total

end repeat

return total + (the number of items in listofNums)

end average

to findMax of listofNums

copy 0 to greatest

repeat with i in listofNums

if i > greatest then copy i to greatest

end repeat

end findMax

end script

Because the list of numbers is now in a global variable, you can
remove it from the definitions of the subroutines. You do, how­
ever, need to tell AppleScript that you'll be using that variable
globally:

script statistics

property listofNums : {}

to average() ----------~------------------~

globallistofNums

copy 0 to total

repeat with currentNumber in listofNums

copy currentNumber + total to total

end repeat

return total + (the number of items in listofNums)

end average

to findMax()

globallistofNums
----~------------~--------~ copy 0 to greatest

ADVANCED SCRIPTING: REACHING THE SUMMIT

repeat with i In listofNums

if i > greatest then copy i to greatest

end repeat

end findMax

end script

You'll notice that, because you no longer have special labels for
the arguments, AppleScript will put empty parentheses after the
names of the subroutines.

To change the value of a property, you can use the set com­
mand, as you've learned to do with other objects:

tell statistics

set listofNums to {2, 3, 4, 5}

average()

end tell

script statistics

property listofNums : {}

to average()

globallistofNums

copy 0 to total

repeat with currentNumber In listofNums

copy currentNumber + total to total

end repeat

return total+ (the number of items in listofNums)

end average

tofindMax()

globallistofNums

copy 0 to greatest

repeat with i in listofNums

if i > greatest then copy i to greatest

175

THE TAO OF APPLESCRIPT

176

end repeat

end find Max

end script

Now that you know how to construct script objects, you'll want
to access them from any script. To do this, you must save the
script file without the 11Script" and 11end script" commands. To
make a 11Statistics" file, for instance, you would save the following
script:

property listofNums : {}

to average()

globallistofNums

copy 0 to total

repeat with currentNumber in listofNums

copy currentNumber +total to total

end repeat

return total + (the number of items in listofNums)

end average

to find Max()

global listofNums

copy 0 to greatest

repeat with i in listofNums

if i >greatest then copy ito greatest

end repeat

end findMax

When you want to use a script object, you must use the 11load
script" command to load the information from a file. To do so,
you must give AppleScript a reference to a file. If you had a script
file named "statistics" in a folder named 11Scripting libraries" in
your "Scripting" folder, you would use the following command:

load script file "Thendara:Scripting:Scripting libraries:statistics"

ADVANCED SCRIPTING: REACHING THE SUMMIT

After loading the script, however, you must put the result into a
variable that represents the name of the script object. For instance,
you could refer to the script object as 11Statistics," in which case
you'd write the following:

. ~opx:d9~.d\'~~~~\fit~~''-rhenda~a:~scir(tftl~~:;
'lit!»_Fari~;~~~~~!l)r(q:'$ta,tlstJcs' - · : .. ". f: ; ·· ' ·.-

Once you copy the file reference into 11Stastistics," you must
11tell" AppleScript to use it. To take the average of a list of num­
bers, your script would look like this:

_ ';v;;i:JJ:.~;;:;a~s~p}~~fRfltlnf
tell statistics

set listofNums to {2, 3, 4, 5}

average()

end tell

Script objects give you a great deal of potential power. You can
store subroutines in one script object and access them as neces­
sary. You can set up these objects to do specific tasks and then
access them whenever you need them.

Networking with AppleScript
One of the most powerful aspects of AppleScript is its capability to
send commands to programs running on other Macintoshes on a
network. Although not very useful on a single machine, you may
have a network at your office with several, or even hundreds of,
Macintoshes. In that case, you could set up large projects that can
take advantage of many different applications and data on many
machines. You might use information in your accounting
department's spreadsheets to look up information for your sales
department, then write a letter about this specific information in a
word processor on your assistant's machine, all from a script.

The possibilities for networked scripts are endless. You can
upgrade software on other machines or back up key files from

177

THE TAO OF APPLESCRIPT

Figure 9.1
The Sharing Setup

control panel.
Press the bottom

button to tum
Program Linking

on and off.

178

each person's machine every evening after closing. Entire projects
can be distributed over a network to take advantage of every
available machine.

Before you can start writing networked scripts, however, you
have to do a small amount of set up.

Network Setup
The capability to send Apple events over a network is closely

tied to System 7's file sharing. It's not required, however, for you
to share your hard drive, or even have file sharing on, to enable
the feature necessary for scripts to take advantage of networked
applications.

To enable a Macintosh to accept Apple events over a network,
you must start its Program Linking, just as you must start File
Sharing in order for people to access your hard drive across the
network. To do this, open the Sharing Setup control panel. You'll
see a section at the bottom that controls Program Linking. Unless
you already have turned on this feature, the button will say
"Start." Press it to make Program Linking available (see figure 9.1).

Networlc Identity

Owner Name: I~Udiii Jl
Owner Password : I•••

~==~------------~
Macintosh Name : I Zen

(':> J File Shoring
.~.

;-···Status
1

(Stop) 1 File sharing is on. ~lick Stop to prevent other 1
! users from accessmg shared folders. 1 ... :

~ Program linlcing
, status .. -............................

1 ! Program linking is off. Click Start to allow other !
! users to link to your shared programs. !
,, ... :

ADVANCED SCRIPTING: REACHING THE SUMMIT

just as you must specifically allow certain users to access your
hard drive with file sharing, you must assign each user the privi­
lege to send Apple events to your Mac over the network. To do
this, go to the Users and Groups control panel, open on a user,
and click the checkbox that allows that user to link to programs
on your Macintosh (see figure 9.2). You must also assign yourself
this privilege if you plan to use it.

Users & Groups
6 items 187.1 MB in disk 9 .2 MB available

[] D
Buddha <Guest> Tim Holmes

Tim Holmes

User Password : 1·~~1

LJ File Sharing
.~;

1:8] Allow user to connect

1:8] Allow user to change password

Groups :

I , ... "
~

~ Program Linking

~Allow user to link to programs
on this Macintosh

Now that everything is set up, you can send some network
scripts. Obviously, this works best if you have program linking
privileges on another Mac on your network.

Network Scripting
Sending a command to a networked application is not much

different than sending a command to an application running on

Figure 9.2
You must
spedfically enable
program linking
for each user.

179

THE TAO OFAPPLESCRIPT

180

your machine. You simply need to tell AppleScript where to find
that application on the network.

To do this, you refer to an application of a particular machine of
a particular zone (if you've got different zones on your network).
For instance, to refer to the program "Scriptable Text Editor" on
the machine named 11Zen," you would write the following script:

tell application 11Scriptable Text Editoru of machine 11Zen"

set the contents of window 1 to 11 Hello, there11

end tell

When you compile this script, AppleScript presents a dialog box
that asks you to type in your name and password. This is the same
name and password you use to log on for file sharing.

The name of the Macintosh is the same name you see in the
Chooser when you log on to it. This name is stored in the Macin­
tosh name field of the Sharing Setup control panel.

Some Caveats
Although you may be tempted to set up every Mac on your

network for Program Linking and give everyone privileges, you
should keep some things in mind.

An application can choose whether or not to allow certain
Apple events to come over the network. Many programs, such as
Scriptable Text Editor, will give a remote user full control. As a
result, the application can be completely controlled, just as if the
user were on that machine.

Consider carefully whom you give these privileges. If you have
private data, you may want to avoid giving Program Linking
privileges to everyone who can connect to your Macintosh.

On the other hand, you can specify whether certain applica­
tions are accessible by Program Linking. Select the application
in the Finder and choose 11Sharing ... " from the File menu (see

ADVANCED SCRIPTING: REACHING THE SUMMIT

figure 9.3). This will give you the option to disable Program
Linking for that specific application.

~ HyporCard

Kind: application program
Yhere : Zen : Applications :

HyperCard:

Program Linking

Allow remote program linking

Keep in mind that the Macintosh on the other end of the
network doesn't need to have AppleScript installed. AppleScript
already has translated the information into Apple events before it
sends it to the remote application. As a result, you can control
someone's copy of Scriptable Text Editor even if they don't have
the AppleScript software running on their machine. This can be
very useful for coordinating large projects. You need not worry
about who's running AppleScript and who isn't. As long as the
remote Macintosh is running the application that you want to
control, everything will be fine.

Again, don't forget that you are giving someone else the capa­
bility to actually control an application on your Mac when you
give them Program Linking privileges, so use common sense.

Onward
You may be wondering where you should go from here, since
you're now on your own in the scripting world. The next chapter
will give you some direction for that question, so read on.

Figure 9.3
Choosing
Sharing ... for a
program allows
you to disable
Program Linking
for that particular .
application.

181

Spreading
Your Wings

Chapter 10
The Dictionary

One of the most important resources available when writing
scripts is the dictionary of the application or scripting addition.

The dictionary stores information about every command and
object that an application understands. Script Editor can easily
access this information. Knowing how to interpret and efficiently
use all the information in a dictionary may take some practice, but
once you are accustomed to it you'll find dictionaries indispens­
able.

Opening the Dictionary
To look at an application's dictionary use the Open Dictionary ...
command in Script Editor's File menu. Script Editor will present a
directory dialog and ask you to choose a file to open. Only those
files that have a dictionary within them will appear in this dialog.

Use the Open Dictionary ... command and choose Scriptable
Text Editor (see figure 10.1).

THE TAO OF APPLESCRIPT

Figure 10.1
The dictionary of

Scriptable Text
Editor opened in

Script Editor.

Figure 10.2
The Dictionary
shows informa­

tion about
the "make"
command.

184

Scriptable TeHt Editor Dictionary PIC
R~odS.Itol. ~

quil
......

Sta.4w41 S.ft•
! c,,

ct.tt si::.
dl'ltt•
cklp&.t•
tx!sl< ... -· movo

[c
~·,,,

4f'Pik•NM - Iii rn.
IMwtfcnpcht

..
!·"·"'T.7<t;_.;,.;,. '~'-'.4'"!1" II

How to Read the Dictionary
The dictionary window is divided into two parts. On the left is a
list of all the commands and objects an application understands.
This list is organized into suites-identified by large bold text.
Commands are written in smaller text, while objects are italicized.

Clicking on a name in the list will display information about
that command or object in the right side of the window. For
instance, clicking on "make" in the list of commands under the
heading "Standard Suite" will display information about the make
command (see figure 10.2).

clon,,
cbt~ slu

dtltt•
tllpUo .. t•

I

movt
qui1
sav•

•••
.yppltc•tton -nt til#
lnsf't"NMpclnt

Scriptable TeHt Editor Dlcllona
!mate· Milke a mv element

.. t.
nev type cia» - ttwc~ss#th#t»v~~nt. K*"/vord"M
(• t locetion reference) - th# bc.tti:)f)•t ..mk:h n, inurl fl»
!vllb •t• onylhiOQ! - hlni&J"'t• fer,.,_
{vttb pre,.rttes record) - ih# ;,;&l Y•l.ltts fer 11»""'

Result: reference- tothf-t»v ob}.ct(s)

THE DICTIONARY: SPREADING YOUR WINGS

Looking Up Commands in the Dictionary
Script Editor gets the information about a command from the
application. This information includes the name of the command,
a short description of it, how to enter it into Script Editor, any
parameters the command accepts, and the information it returns.

Command Names and Descriptions
The information at the top is the command's name and a

description of its function. When you click on 11make" Script
Editor shows you the name, 11Make," and the description, 11Make a
new element."

Below the description is what must be typed into Script Editor
to use the command. Any text presented in small bold type is the
exact text which you must type as it appears in Script Editor to use
the command (just as 11make" is written on the second line).

Objects of Commands
The second line may also contain information about the 11direct

object" of a command. This is the expression that would be placed
immediately after the command. For example, clicking on the
11Set" command would show you that you must write "set" fol­
lowed by a required reference (a path to an object).

Any lines that are indented and follow a command, describe
parameters of that command. As you've learned, some commands
have parameters that may be used to give more information about
the command or to modify its behavior. Script Editor encloses
optional parameters in brackets to differentiate them from re­
quired parameters. Parameters may occur in any order within a
script.

Parameters are presented just as commands were-type the text
into Script Editor first, followed by any necessary information, and
finally what that information is and the function of the param­
eter.

185

THE TAO OFAPPLESCRIPT

186

Command Data Descriptions
There are several standard descriptions of parameters and data

that a command uses. You'll encounter these standard descrip­
tions in an application's dictionaries. Here is a quick reference:

• reference-the path to an object, as in 11WOrd 1 of window 2
of application 'Scriptable Text Editor'"

• alias-a reference to a file, as in "file 'Thendara:Scripts:Sound
Sucker'"

• anything-any valid data

• type class-the name of a particular object, as in "window"
or "word"

• integer, text, real, record, list, boolean-indicates the use of a
type of data

Other descriptions of the data abound, but most are fairly self­
explanatory. The text following each description should be helpful
as well.

Words divided by slashes are "constants" entered singly. For
instance, the "close" command has the optional parameter "sav­
ing yes/no/ask." "yes/no/ask" is a choice you enter in the script
after the "saving" command to tell Scriptable Text Editor what you
want it to do. To close a window without saving the document,
you would write:

close window 1 saving no

Command Results
Dictionaries also describe information returned from a com­

mand. This information is put into the "result" variable.

Looking Up Objects in the Dictionary
In addition to commands, the dictionary also contains informa­
tion about objects that an application supports. These objects are
italicized in the list on the left. To see an example of the available

THE DICTIONARY: SPREADING YOUR WINGS

information about an object, click on the "word" object in the
Scriptable Text Editor Suite (see figure 10.3).

Scriptable TeNt ldltor Olctlone_ry
rnon C!m yord· A yord :!! - Pllllllronn:
prtt ver4s
quit !lements:
51vt cMrecttr bynwnerlc lDdex, beforrJa!terenothor element, u an ...
""""'- tanrtien pet at betoreo.t"r another element - ,.r .. npe. by nwnell: Index~ beforellfier arotber element, a.s e. 11

m. text u t. ta:DCt of e~mDn'CS
IMff"tionpoW~t text t te• by numeric index, beforela.fter &RJtber elewnt, as a raJ

S#lf.ctfotr-cb~ .. . ve r• by numedc tndex, betortlatw arother e~ment, as a IVCt o Properties:
Sot-lpt TE - leotO lnteqor (Ito) •·IM?If>olloKicbjrct (ln"""octw-s)

out effMI tnt090r (Ito) - olfs.tol•toxtcbjrct ,._IM"'¢N>In<}OI - I) feat text - thtt~l>f tl»fonl size lnteqor- IM-Inpohtsolth#fht"""..wr .. ,... ttl1• text stv1e tnfo - ttw t.xt :di»ottiw trstciwr« iw-
- .. tw- ••tf•r• attl•• text st~Jle Info - lfw ttxtstylf.s tbltr•untfor':
P''V''Ph
t.Kt
t.Kt-. l'i
t.Kt~#,t"lnf•

Iii

Script Editor provides information about the object, including
what elements are contained within the object, and the properties
of the object.

Just as it does for commands, the dictionary provides a descrip­
tion of the object in English terms. As you can see, the object
"word" is described as "A word." This information is redundant in
the case of an object so appropriately named, however you may
encounter names that greatly benefit from these descriptions.

Plurals
Immediately below the object description, the dictionary shows

how to refer to that object as a plural, if applicable. For instance, if
you wanted the first fourteen words, you would ask for 11Words 1

thru 14."

Objects within Objects
Knowing what objects are contained in another object will help

tremendously when you are trying to figure out how to refer to it.
AppleScript lists these under the Elements heading.

Each of the objects listed under a parent object apply only to
the parent object.

Figure 10.3
The dictionary
shows informa­
tion about the
word object.

187

THE TAO OF APPLESCRIPT

188

Following the name of each elemental object, the dictionary
displays the different methods of referring to that object. For
instance, you can refer to a character by the following methods:

• "by numeric index" -indicating that you can refer to charac­
ters by number, as in "character 1"

• ''before/after another element"-indicating that you can
describe this object relative to another object, as in "character
before character 2"

• "as a range of elements" -indicating that you can refer to a
range of these objects, as in "characters 1 thru 14"

• "satisfying a test"-indicating that you can use "whose" and
"where" to filter out objects based on some criteria, as in
"every character where it is 'f"'

Some objects also allow you to specify them "by name," as in
"window 'untitled 1'." Though this is not the case for characters,
you will see it for other objects.

Object Properties
The dictionary lists information about the object properties

you're interested in as well as the objects it contains under the
Properties heading in the dictionary window.

Looking at these descriptions gives you a complete idea of how
the properties are arranged. First is the name of the property. For
example, words have a "length" property. Again, anything shown
in small bold text is what you need to enter in your script to name
that property. At the end of each property's line, you'll see a
description of that property. For instance, the "length" property is
ulength of text object (in characters)."

Object Value Data Types
Immediately after each property's name, the dictionary presents

what kind of data represents the value of this property. In the case
above, the length of word 1 is represented by an integer.

THE DICTIONARY: SPREADING YOUR WINGS

Object Modification Ability
An object may have some modifiable properties. If the property

can't be modified, the dictionary indicates this with the symbol
"[r/o]" (for 'read only'). This means that you can't change the
value of that property using a command, such as "set." However,
you can still use a command like ''get" to use the value of the
property.

Relating Commands to Objects
Knowing how to interpret information about commands and
objects is only the first step in effectively using the dictionary. You
must also understand how to combine commands and objects
effectively when writing your scripts.

Remember, just because a command says that it works with a
particular object, doesn't mean it will work with all objects.
Unfortunately, there's no information in the dictionary to tell you
which commands will work with an object. So how do you know?

The best way is to think about what the command does, and see
if there's an intuitive action that the command would have on the
particular object. For instance, consider the "close" command. It
makes sense to use this with a "window" object. Intuitively, you
can imagine what "closing" a "window" does. However, it doesn't
make sense to "close" a "word." As a rule of thumb, if you can't
easily imagine what using a command on a specific object will do,
then that command probably won't work that way.

Sometimes, however, you can think of a way in which a com­
mand should work with an object, but won't. For instance, you
might imagine that "getting" a window would result in the con­
tents of that window being returned, just as "getting" a "word"
returns the text of that word. Using "get" on a window results in
an error-the only way to learn this is by trial and error.

As you create more and more scripts on your own, you'll find
that you develop a "feel" for which commands will work with a
particular object (or vice versa). All it takes is practice.

189

THE TAO OF APPLESCRIPT

190

When you work with an application or scripting addition, you
will find that the dictionary is an extremely valuable resource. It is
compiled from the same information that AppleScript uses to get
commands from a program, so you can be sure (barring the
occasional programming error) that the commands you see in the
dictionary are precisely what you need to enter into the script.

On Your Own for Real
Congratulations! You've taken the last step toward independent
scripting. You are now capable of creating almost any script. The
next chapter and the following reference material have been
created to help hone your skills with better organization and a
more complete understanding of the specific commands built into
AppleScript.

Chapter 11

Where to Go

The Road Goes
Ever On

You've reached the end of your journey with us. As you crest this
final hill you'll realize that your journey with AppleScript has
really only begun.

We've shown you the basics of using AppleScript and writing
scripts. However, these scripts have been based on ideas given to
you. From now on you must come up with your own ideas and
develop your own scripts.

I've come to love AppleScript in the year I've been using it. I
come up with script ideas while walking down the street. Talking
to users, I come up with ideas. Upon seeing new products, I
immediately ask about AppleScript support. In short, AppleScript
has become an obsession for me.

While I don't necessarily want you to become as obsessed as I
have, I do hope that you can imagine a wealth of possibilities with
AppleScript. We've gotten you started in this book by providing a
few intriguing ways that AppleScript can be used, but hopefully
you've come up with many more as you read and worked through
these pages.

THE TAO OF APPLESCRIPT

192

How you use AppleScript is up to you. Perhaps you have specific
projects at work you'd like to automate, or utilities you'd like to
write for your personal use, or perhaps you just want to play with
it. No matter what you do with AppleScript, you are one of the
people who will define what AppleScript becomes.

When this book was written, AppleScript was still a very new
product. As this book was finished, AppleScript was recently
released and Apple wasn't sure what to expect from this software.
They have ideas about what people will be doing with it, but I
think those views are too limited. Giving this kind of power to
everyday users will result in an explosion of ideas and uses.

AppleScript is designed to be a means for generating custom
solutions for your needs. If you have unique needs, it simply
means that your solutions will be unique as well.

I'm excited about the future of AppleScript. I think users are
extremely creative when using our Macs. I honestly believe that
AppleScript is the single most useful utility you can have on your
Mac.

And the best part is, AppleScript will continue to grow. Many
developers are looking to implement AppleScript support into
their own applications.

AppleScript places you at the center of a conglomerate of
programs-able to pick and choose capabilities from each to
achieve your goal. You no longer have to work within a single
program's framework and be out of luck if the program doesn't
meet your needs. With AppleScript support, a program can be tied
into a script with several other programs to get the desired result.

It's an exciting time to use AppleScript, and I hope that you will
use it to solve your particular needs. However, you shouldn't feel
as though you are on your own. You can use many resources to
expand your knowledge of AppleScript and your ideas for it. As
the field expands, groups will form to exchange AppleScript ideas
and information. New books will be written-focusing on specific

WHERE TO GO: THE ROAD GOES EVER ON

aspects of using AppleScript in daily life. The AppleScript user will
be able to draw from an unlimited number of sources.

The Appendices
Though the main part of this book finishes with this chapter,
there are several appendices for further aid. Appendix B is a
complete guide to the native AppleScript language, including all
the commands that come with the standard scripting additions.
Many of these were discussed in the book itself, but you'll find
commands that weren't covered-along with the exact phrasing in
detail-as you flip through these pages.

Appendix A explains some of the technology behind the scenes.
It describes the technical aspects of Apple events, how AppleScript
gets information from an application's dictionary, and the Open
Scripting Architecture.

/You'll also find a glossary of potentially confusing terms, and a
summary of the programs on the disk that came with the book.

Groups
As of this pressing, I know of only one AppleScript Users Group.
This is ADUA, the AppleScript Developers and Users Association. It
is a meeting ground for users and developers, and provides a
forum for exchanging ideas and opinions. Users can communicate
their needs to developers, while developers can get new ideas for
the kinds of support needed. Its goals are to promote AppleScript
1all across the Macintosh community and to set standards that will
make using AppleScript easier for everyone.

You can get more information about ADUA by writing ADUA,
1814 Belmont Road N.W., Washington, D.C. 20009.

Many user groups have forums to discuss scripting issues. For
example, BMUG's bulletin board, Planet BMUG, has a conference
specifically devoted to scripting. You can use this conference to
discuss scripting issues or questions, and even get technical
support for this book.

193

THE TAO OFAPPLESCRIPT

194

Your local user group may have a conference on its BBS as well,
or special interest groups that deal with scripting. Call your local
user group to see what's available. This helps you find local people
who are interested in discussing scripting and the things you want
to do with it.

The national online services are another valuable source of
information. People from all over the country discuss scripting
issues in a common area. If you're a member of an online service,
you may want to see what conferences meet your interests.

Applications
Without applications, AppleScript is virtually useless. Though
many programs are not yet scriptable via AppleScript, there are
several available that will help you increase the amount of power
and flexibility you can get from a script.

To help you get started, we've compiled a list of the products we
feel are interesting and useful. This is by no means a complete list
of programs that support AppleScript, but it's a start.

Commercial Programs
Apple is pushing developers to include AppleScript support in
their applications. As a result, more commercial programs that you
buy will support AppleScript. Utilities, word processors, databases,
graphics programs, and every other type of program might be
scriptable in the near future.

If want to determine if a program is scriptable, call the company
that manufactures it. If they say their program is not scriptable,
tell them that you think it would be an extremely useful feature to
have in the next version. Companies try to address the needs of
their users. Remember to give good examples of how AppleScript
support could really increase the productivity of the program.

To get you started, however, here are some of the programs
we've used or enjoyed for their scriptability features.

WHERE TO GO: THE ROAD GOES EVER ON

FileMaker Pro 2.0
We mentioned at the beginning of this book that BMUG has

used this technology to automate the production of our 700-page
disk catalog. One of the products that made this possible was
FileMaker Pro 2.0. Not only is it a good database program, but it's
fully scriptable. You can access any information stored in a data­
base. The possibilities for this type of program are numerous, and
FileMaker makes most of them plausible as well.

For instance, you can create a simple script that looks up a
person's address when you select their name in your word proces­
sor, and then fills in that information, either in the letter you're
writing or on a mailing label. Or you can create a script that uses
information in your database to update your accounting software.

Contact Claris Corporation at 5201 Patrick Henry Drive, Santa
Clara, CA, 95052-8618 (408) 727-8227.

PageMaker 5.0
FileMaker Pro was only one part of the process that made our

disk catalog automated. Equally important was the Apple event
support in PageMaker 4.2. The new version has many improve­
ments in the way the program works, and is definitely worth the
upgrade.

Though it's only marginally scriptable, the presence of a thor­
ough scripting language within PageMaker allows you to automate
most aspects of the application. You can run commands in the
native scripting language from AppleScript, and request every
imaginable piece of information from the application.

Production people will find AppleScript to be very useful in
augmenting their PageMaker use. Not only can you pull informa­
tion from other applications and place into a layout, you can
supplement PageMaker's own scripting language. Currently,
PageMaker's built-in macro language can only perform a chain of

195

THE TAO OF APPLESCRIPT

196

commands. By using AppleScript and the ability to request infor­
mation from the program, you can make truly intelligent scripts
that manage your production work.

Contact Aldus, 411 First Ave. S, Suite 200, Seattle, WA, 98104,
(206) 622-5500.

Great Plains Accounting v6
This thorough accounting package is scriptable. You can access

all the information in the software, allowing you to set up scripts
that take advantage of the information.

You may want to couple this software with a database such as
FileMaker Pro 2.0 to make a script that will get addresses for all the
people that have outstanding balances with your company. You
could look up their names in Great Plains, and then ask FileMaker
for their addresses.

Contact Great Plains Software, 1701 SW 38th St., Fargo, ND,
58103, (800) 456-0025.

Excel 4.0
Excel has been a long-standing giant in the Macintosh world.

For years it was the only spreadsheet people used. Now, it's more
powerful and includes AppleScript support. You can use
AppleScript to get information from any cell in your spreadsheet
and run Excel macros.

You could set up a script that retrieved information from a
database program, use Excel to graph it, and place that graph into
a document you were producing with PageMaker, all with the
click of a button.

Contact Microsoft, One Microsoft Way, Redmond, WA, 98052-
6399, (206) 882-8080.

Microphone II v4.0.2
This has always been one of the leading telecommunications

packages. It supports many different transfer protocols and

WHERE TO GO: THE ROAD GOES EVER ON

terminal emulation. The latest version is somewhat scriptable.
What it lacks in being scriptable by AppleScript, however, it makes
up for in its own scripting language. You can use AppleScript to
run a script stored in the Microphone document, and to get to set
variables in those scripts.

You can do all sorts of things with this kind of ability, such as
set up a database to store the electronic mail that you get from
Microphone. Or you could set up a script that decompresses and
virus-checks files downloaded by Microphone. Be sure you have
version 4.0.2 or later, since previous versions had problems with
their 'aete' resources.

Contact Software Ventures, 2907 Claremont Ave., Berkeley, CA,
94705, (510) 644-3232.

SerePiot 2.0
SerePlot is a tool for scientific analysis, and it's one of the ideal

programs for AppleScript support. If you are in a lab situation, you
could use a data acquisition tool such as Lab View, run a script that
would take the data you acquired and run it through a set of steps
with SerePlot. You could even set it up so that you never had to
see the data, merely the analysis and graphs.

You could also set up an 11intelligent" data processing script,
that would look at the data you acquired, perhaps using Excel, and
then do varying types of analysis based on how that data looks.

Contact Scientific Visions, PO Box 1971, Silver Spring, MD,
20915, (301) 593-0317.

Scriptor
Do you find Script Editor limiting? As soon as you start doing

intensive scripting, you'll quickly discover that Script Editor
doesn't do some things that would make scripting much easier.

Scriptor may be the answer to your problems. It's a complete
graphical environment for developing AppleScript scripts, and has
all the features one would expect from an application designed to

197

THE TAO OFAPPLESCRIPT

198

help you program. It allows you to step through a script one line
at a time, watch variables change as the script runs, and quickly
find errors you might not have antidpated.

It also gives you a graphical representation of a program's
dictionary and enables you to build lines of script quickly and
effidently using that graphic dictionary. You don't have to type it
in from scratch; Scriptor just asks for the information you need to
enter and constructs the commands for you.

Contact Main Event Software, 1814 Belmont Road, N.W.,
Washington, D.C., 20009.

Rosanne Utilities
This package of utilities is designed to give Madntosh users the

capability to perform complex data processing quickly and easily.
It provides an easy interface for setting up a process that analyzes
large data files.

These applications are all scriptable and recordable. You could
set up a process on a small data set and record your actions. When
you were sure that the report came out the way you wanted, you
could then run the script with a much larger data file.

You could use these applications as steps to create a large script
that deals with complex data. You may use these utilities to get a
file that represents a sampling of the data, and then feed that
information to SerePlot for analysis.

If you work with large data files, or lots of small ones, these are
the utilities you need.

Contact Main Event Software, 1814 Belmont Road, N.W.,
Washington, D.C., 20009.

Stufflt Deluxe 3.0
We've included Stufflt Lite on the disk that comes with this

book, but Stufflt Deluxe has many more capabilities. It's a full­
featured utility for the compressing and archiving of data. It

WHERE TO GO: THE ROAD GOES EVER ON

handles a wide variety of compression formats, is easy to use, and
is our overall favorite compression utility.

Just like Stufflt Lite, it is fully scriptable and recordable. The
latest version is even somewhat 11 attachable," allowing you to keep
a list of scripts in the menu which can be run from within Stufflt
Deluxe. Everything you can do from the user interface of Stufflt
Deluxe 3.0 (and then some) you can do from a script.

You can use this capability to process files downloaded from
online services: write a script that decompresses all the files in a
particular folder and then sorts all the files into the appropriate
places on your hard drive, putting After Dark modules into your
After Dark Files folder, documentation into another folder, control
panels into your Control Panels folder, etc.

Alternatively, you could use Stufflt Deluxe in a script that backs
up files on your hard drive, compressing the files before moving
them to your backup volume.

Contact Aladdin Systems, 165 Westridge Dr., Watsonville, CA,
95076, (408) 761-6200.

QuicKeys
QuicKeys is easily the most popular macro utility on the Macin­

tosh. It has the capability to record actions in any application and
play them back for you.

QuicKeys can now be controlled by AppleScript, and QuicKeys
can run AppleScript scripts. This makes the two able to communi­
cate with one another quickly and easily. The two programs are
perfect complements. AppleScript can't control dialogs or menus,
but QuicKeys can. So, if you do something from a script which
generates a dialog, you can run a QuicKey to deal with that dialog,
allowing your script to continue uninterrupted.

Another reason for using QuicKeys is that AppleScript can only
control applications that are AppleScript-aware. QuicKeys, on the
other hand, doesn't require this.

199

THE TAO OFAPPLESCRIPT

200

QuicKeys, however, doesn't currently provide any sort of
language capability. AppleScript can provide this, allowing you to
execute different QuicKey sequences based on information you get
from a program.

Contact CE Software, P.O. Box 65580, West Des Moines, lA,
50265, (515) 224-1995.

Mirror
One of AppleScript's biggest problems is a lack of interface.

Though you can put up simple dialogs, and more complex ones
with DialogRunner, you can't create a fully-featured interface such
as the one you're used to in Mac applications.

Mirror is the code name for a product that is being developed to
solve this problem. It provides a complete set of tools for design­
ing an interface in which to run your scripts. They can have a
complete front end and each item in that interface can have a
script attached to it. Users of HyperCard may recognize this
program's ancestors, WindowScript and Dialoger.

In addition to enabling you to add any interface element you
can think of, Mirror has the capability to make stand-alone appli­
cations to carry the interface elements with them. You can give
your script to a friend and he does not need Mirror to see the
interface.

This program is very cool, easy to use, and quite powerful. The
company intends to finish the product in September, but they're
not making any guarantees.

Contact Heizer Software, P.O. Box 232019, Pleasant Hill,
CA, 94523, (800) 888-7667.

Picture Press 2.5
This is a picture compression utility that works with a wide

variety of formats. It's thoroughly scriptable, enabling you to
manipulate pictures and obtain information about them all from a
script. One suggestion the authors have is to set up a folder to be

WHERE TO GO: THE ROAD GOES EVER ON

watched by a utility like Folder Watcher, and to compress any
picture files placed into it.

Contact Storm Technology, 1861 Landings Dr., Mountain View,
CA, 94043, (415) 691-6600.

Frontier
On some levels, Frontier is a competing product to AppleScript.

It too provides a scripting language that can control Apple events.
The similarity is only superficial though, as Frontier has the
capability to do more than control Apple events. It contains a
word processor, an outliner, and a database. In addition, it's a
powerful file processing utility. All of its functionality is com­
pletely scriptable with a very powerful scripting language.

If you're interested in going further with scripting, you should
take a look at UserLand's Frontier. Future versions of Frontier will
be accessible through the Open Scripting Architecture, allowing
you to access the powerful Frontier scripting language as easily as
you can AppleScript. In addition, future versions may allow you to
edit AppleScript scripts in the Frontier environment .

. Contact Userland Software, 400 Seaport Ct., Redwood City, CA,
94063, (415) 369-6600.

Publicly Distributable Software
While there are many commercial applications that support
AppleScript, this is also accomplished by several publicly­
distributed programs. As the market for AppleScript grows, th
is support will spread. If you have access to an online service or
local BBS, check for the programs listed below.

If you don't have access to one of these services, try calling your
local user group (or BMUG) and see if they have these files in their
library.

Shaman
Shaman, short for sharing manager, is an application for man­

aging file sharing. It displays the status of file sharing via an icon

201

THE TAO OF APPLESCRIPT

202

in the menu bar, and enables you to quickly and easily start and
stop file sharing. It is scriptable and recordable, so you can set up
scripts that utilize these features.

Contact Robert Hess, at robert_hess@macweek.ziff.com.

EasyPiay 1 . 0
EasyPlay is a very powerful QuickTime utility. It features an

extensive dictionary and is fully scriptable. You can set up scripts
that play movies, catalog them, or anything else you can do from
within the application.

Contact Leptonic Systems Inc., at 76004.1447@compuserve.com.

Folder Watcher 2.0.1
This is a Shareware application that enables you to "watch"

folders on your hard drive or across the network. Any time the
contents of a watched folder changes, Folder Watcher can log the
change, play a sound, show a dialog, and/or run a script. For
example, you can use this to watch an "In Box" folder and run a
script that decompresses any compressed files in that folder and
organizes them on your hard drive. Or you could write a script to
synchronize folders across a network, ensuring that the contents
of the two folders are the same on both machines. This is included
on the disk.

Contact Joe Zobkiw, at aflzobkiw@aol.com.

Stuff It lite
One of the most popular compression/decompression utilities

in the Shareware industry, Stufflt Lite is extremely powerful. For
the small $25 Shareware fee, you can become a registered user. It's
a great deal.

Check it out! It's included on the disk.

Contact Aladdin Systems, at aladdin@aol.com.

Behind the
Scenes

Appendix A
The Technology

By now you should be familiar with what goes on with a script
once it's written. You may be curious, however, about what's
going on 11Under the hood" to make that script work. This section
gives you a brief description of each of the key aspects.

Apple Events
The core technology behind AppleScript is 11 Apple events." Intro­
duced as part of System 7, Apple events enables two programs to
communicate directly with one another.

An Apple event is a message sent from the 11client" application,
such as AppleScript, that tells the 11Server" application, such as
Scriptable Text Editor, to perform a specific action. An Apple event
can do more than simply command an application. It also can
send data to that application and ask for data from it.

An Apple event is composed of three parts: a destination appli­
cation, the command or event, and the data to be sent.

THE TAO OF APPLESCRIPT

Quill was the
name of

Scriptable Text
Editor in the pre­
release version of

AppleScript.

204

Specifing the Server
There are several ways to point to an application with Apple

events. The most common is to use the creator signature of the
destination application. The System software uses this unique
four-letter code to track which application a document belongs to.
To send an Apple event to Scriptable Text Editor, you would
address it to the program with the signature "quil."

Specifing the Event
An event is made up of two parts: the class and the ID. Four­

letter codes represent these parts. The class of an AppleEvent
represents the group (or 11SUite") of Apple events that the event is
found in. The ID of an Apple event is a unique identifier of that
specific command in that group. For instance, the 11 get data" event
(which the 11get" command sends) is in the Apple event class
11 core" and its ID is 11 getd."

Apple has defined four categories of Apple event suites that a
program can potentially support: Required, Core, Functional-area,
and Custom.

Required events are those which an application must support in
order to work efficiently with the System software. These events
are Open Application, which is sent to a program to start it; Open
Documents, which tells an application to open a set of docu­
ments; Print Documents, which tells an application to print a set
of documents; and Quit, which quits an application. A program
doesn't need to support these events, but Apple strongly recom­
mends that they do.

Core events are commands that every program should support
for easy, intuitive communication. Some examples of core events
are Get Data, Set Data, Count Elements, and Create Elements.

Functional-area events are suites of events with similar func­
tionality. For instance, all events that deal with manipulating text
are contained within the Text suite; while those that deal with
database manipulation are in the Database suite.

THE TECHNOLOGY: BEHIND THE SCENES

Custom events are those defined to deal with information
specific to an application. For instance, Stufflt 3.0 has a suite of
events that deals with archive manipulation, and the System 7
Finder takes a series of events that are relevant to Finder actions. A
developer can choose to keep their events suites private or publish
their events, so that others can use them.

Specifing the Data
The data portion of an Apple event is organized into param­

eters, with each described by a keyword. A parameter of the Get
Data event is the specific object you wish to get. This parameter is
identified by a keyword; another four-letter code, that says "get
the following data." This is followed by codes that describe the
actual data. For example, "word 3 of window 1 of application
Scriptable Text Editor." The actual data would look something
like: {----,cwrd,indx,3,cwnd,indx, 1 ,capl, pnam, "Scriptable Text
Editor"}. This sample of the data structure of an Apple event is a
good example of why AppleScript is a more effective way to use
Apple events then executing them directly.

AppleScript Sleight of Hand
Now that you have an idea of how Apple events work, you may be
wondering how AppleScript translates a typical Apple event into
an easy-to-use command that can be used from Script Editor.

Actually, AppleScript doesn't. The program receiving the Apple
event provides the English equivalent of the command to
AppleScript. Scriptable applications have an 'aete' resource (for
Apple Event Terminology Extension). This resource is a list of all
the events that program can understand, along with their English
equivalents.

When AppleScript first compiles commands for an application,
it reads in this information. AppleScript then knows the corre­
sponding events to send that application when you use those
commands to run a script.

205

THE TAO OFAPPLESCRIPT

206

Using the ''Open Dictionary ... " command in Script Editor
enables you to look at the 'aete' resource. Script Editor formats the
information so it's more easily understood.

This resource also contains information about the objects the
application understands, the English equivalent of that object,
other objects contained within it, and its properties.

The Open Scripting Architecture
While Apple has built an easy-to-use scripting language and an
event mechanism, they've also created a framework for allowing
others to create their own system-level scripting languages. This is
called the Open Scripting Architecture (OSA). AppleScript is
merely the first language to take advantage of it.

Any OSA-aware scripting language can be used from within
Script Editor as long as the component for that language is in your
Extensions folder. The AppleScript file now in your Extensions
folder is such a component.

Once installed, a scripting language can take advantage of the
'aete' resources in your applications and the scripting additions in
your Scripting Additions folder. In the lower left comer of the
Script Editor window, there is a box with the word AppleScript in
it. Clicking in that box reveals that it is actually a pop-up menu
that enables you to select among multiple scripting languages
(although only AppleScript is currently present).

Why would you want to switch from AppleScript to another
language? Other languages may give you more powerful logic or
formatting capabilities than AppleScript. As the OSA becomes
more widely installed there will be more and more ways to use the
technology underlying AppleScript.

lnterapplications Communications
Those are the basics behind Apple events, AppleScript, and OSA.
There are more advanced aspects to how they function, however
that is beyond the scope of this book. If interested, you should

THE TECHNOLOGY: BEHIND THE SCENES

look at the Interapplication Communications volume of the Inside
Macintosh series. It is designed for programmers, so it's not what
one might consider pleasure reading. Nevertheless, it contains all
the information you can ever want on Apple events.

Onward
This technology is extremely flexible. From new languages with
strange and unique capabilities to applications that rely com­
pletely on other applications to function.

Who knows, you may be the one of the people who creates
them!

207

Appendix B
The AppleScript language

Rules of
the Road

Man y of the AppleScript commands have been covered in the
preceding chapters. However, many more have not. This appendix
covers commands briefly to help you utilize them. It is divided
into two sections: the actions of the AppleScript language, and its
built-in variables.

This section uses certain typographical conventions to explain
the commands. Here's a summary of those notations:

• Plain text indicates text that you enter directly into the script
area

• Italicized text indicates a value that you must enter each time
you use that value

• Text within brackets indicates an optional parameter

• Text separated by vertical bars indicates several options in a
list, any of which could be used

..

THE TAO OF APPLESCRIPT

210

Commands, Symbols, and Similar
Mechanisms

& (ampersand)

WHAT IT DOES Concatenates two strings, two lists, or a list and some
other piece of data.

SYNTAX stringl & string2

listl & list2

listl & anyData

RESULT . Returns the new string, or list, that arises from the concat-

NOTES

EXAMPLE

enation.

If you use the & symbol with two strings, AppleScript
combines the two strings into one long string. If you use
this symbol with two lists, AppleScript makes one long list
where all the items from the left list are put first and all the
items from the second list are put at the end.

If you use the & symbol with a list and any other piece of
data, AppleScript puts the piece of data into the list as a
new item in the list.

This following script puts {3, 4, S, 6} into the result win­
dow:

{3, 4, 5} & 6

* (multiplication)

WHAT IT DOES Multiplies two numbers together.

THE APPLESCRIPT LANGUAGE: RULES OF THE ROAD

SYNTAX numberl *number2

RESULT Returns the product of numberl and number2.

NOTES In a mathematical expression with several operators,
multiplication and division are performed first, from left
to right, after AppleScript evaluates any parenthetical
statements and after it applies all negations.

EXAMPLE This script puts 42 into the result window:

6*7

SEE ALSO +, +, -, ", mod, div

+ (addition)

WHAT IT DOES Adds two numbers together.

SYNTAX numberl +number2

RESULT Returns the sum of numberl and number2.

NOTES When running a mathematical expression that uses several
mathematical operators, addition is performed left to right
after multiplication, division, negation, and parenthetical
statements.

EXAMPLE This script puts 6 into the result window:

3+3

SEE ALSO -, *, +, ",mod, div

211

THE TAO OFAPPLESCRIPT

212

' - (subtraction)

WHAT IT DOES Subtracts one number from another, or changes the sign of
a number.

SYNTAX numberl-number2

-number

RESULT If subtracting two numbers, this operator returns the
difference between the two numbers, subtracting the right
number from the left number. If changing the sign of a
number, this operator returns the number with its sign
changed.

NOTES When working with a mathematical expression that
contains many operators, this operator is handled differ­
ently depending on its instant use. If being used for
subtraction, it's performed at the same time as addition­
after multiplication and division, negation, and
parenthetical statements. If used to change t~e sign of a
number, it is performed before operators, except state­
ments in parentheses.

EXAMPLE This script puts 2 into the result window:

5-3

This script puts -2 into the result window:

-2

SEE ALSO +, *,+,mod, div

< (less than) ,

WHAT IT DOES Determines if one expression is less than another.

THE APPLESCRIPT LANGUAGE: RULES OF THE ROAD

SYNTAX expressionl < expression2

RESULT Returns true if expressionl is less than expression2; returns
false if it is not.

NOTES The expressions can be any one of the following:

Dates: If you have two dates, AppleScript considers one less
than another if it comes before the other chronologically.

Integers and Real numbers: Real numbers are those with a
decimal component; integers don't have decimals attached
to them. AppleScript can compare two integers or two real
numbers to determine which one is less than the other.

Strings: AppleScript considers a string that comes first
alphabetically to be less than another.

You can only compare two expressions that are of the
same type, such as strings to strings and dates to dates. If
you compare an integer to a real number, AppleScript will
coerce the integer value to a real number and then decide
which value is smaller.

This symbol can be replaced by several equivalent phrases:

expressionl is less than expression2

expressionl comes before expression2

expressionl is not greater than or equal to expression2

EXAMPLE This script puts true into the result window:

3<4

SEE ALSO >, s;, ~' =, -::~:

> (greater than)

WHAT IT DOES Determines if one expression is greater than another.

SYNTAX expressionl > expression2

RESULT Returns true if expressionl is greater than expression2;
returns false if it is not.

213

THE TAO OF APPLESCRIPT

214

NOTES

EXAMPLE

SEE ALSO

= (equal to)

WHAT IT DOES

SYNTAX

RESULT

The expressions can be any one of the following:

Dates: If you have two strings in AppleScript date format,
AppleScript thinks one is greater than the other if it comes
after the other chronologically.

Integers and Real numbers: Real numbers are those with a
decimal component; integers don't have decimals attached
to them. AppleScript can compare two integers or two real
numbers to determine which is greater than the other.

Strings: AppleScript considers a string that comes later
alphabetically to be greater than another.

You can only compare two expressions that are of the
same type, such as strings to strings and dates to dates. If
you compare an integer to a real number, AppleScript will
coerce the integer value to a real number and then decide
which value is larger.

This symbol can be replaced by several equivalent phrases:

expressionl is greater than expression2

expressionl comes after expression2

expressionl is not less than or equal to expression2

This script puts true into the result window:

4>3

<,;:::,:5:,=,:1-

Determines if two expressions are equal to one another.

expressionl = expression2

Returns true if expressionl is equal to expression2; returns
false if it is not. -

THE APPLESCRIPT LANGUAGE: RULES OF THE ROAD

NOTES expressionl and expression2 can be any valid AppleScript
expression , including variables or data from other applica­
tions.

This symbol also can be replaced by several equivalent
phrases:

expressionl is expression2

expressionl is equal to expression2

expressionl equals expression2

expressionl equal expression2

expressionl equal to expression2

EXAMPLE This script puts true into the result
window:

"The Tao of AppleScript" = "The Tao of AppleScript"

SEE ALSO '#, >, <, $, ;;::

, 1\ (caret)

WHAT IT DOES Raises one number to the power of another.

SYNTAX numberl "number2

RESULT Returns the result of raisin g numberl to the power of

number2.

NOTES When using a mathematical expression that contain s
many operators, "to the power of" is performed after
negation, division, and before addition and subtraction.

EXAMPLE This script puts 81 (9 squared) into the result window:

SEE ALSO *, +, +, -, mod, div

215

THE TAO OF APPLESCRIPT

216

* (not equal to)

WHAT IT DOES Determines if one expression is not equal to another.

SYNTAX expressionl :~: expression2

RESULT Returns true if expressionl does not equal expression2;
returns false if it does.

NOTES This symbol can be replaced with a number of equivalent
phrases:

expressionl is not expression2

expressionl isn't expression2 (AppleScript expands this to "is
not" when it compiles)

expressionl is not equal to expression2 (or the contraction
"isn't")

expressionl does not equal expression2 (Again, you can use
the contraction "doesn't" which will be expanded upon
compiling.)

This symbol is made by typing Option-=.

EXAMPLE This script puts true into the result window, because 5 is
not equal to 3:

SEE ALSO =, ~, ~, <, >

:::;; (less than or equal to)

WHAT IT DOES Determines if one expression is less than or equal to
another.

SYNTAX expressionl ~ expression2

RESULT Returns true if expressionl is less than or equal to expres­
sion2; returns false if it is not.

NOTES The expressions can be any one of the following:

THE APPLESCRIPT LANGUAGE: RULES OF THE ROAD

Dates: If you have two dates, AppleScript considers one less
than the other if it comes first chronologically.

Integers and Real numbers: Real numbers are those with a
decimal component; integers don't have decimals attached
to them. AppleScript can compare two integers or two real
numbers to determine which is less than the other.

Strings: AppleScript considers one string less than another
if it comes first alphabetically.

You can compare only two expressions that are of the
same type, such as strings to strings and dates to dates. If
you compare an integer to a real number, AppleScript will
coerce the integer value to a real number and then decide
which is less.

This symbol can be replaced by several equivalent phrases:

expressionl <= expression2

expressionl is less than or equal to expression2

expressionl does not come after expression2

expressionl less than or equal to expression2

This symbol is made by typing Option-comma.

EXAMPLE This script puts true into the result window:

3~4

SEE ALSO ~, <, ~, =, *-

;::: (greater than or equal to)

WHAT IT DOES Determines if one expression is greater than or equal to
another.

SYNTAX expressionl ~ expression2

RESULT Returns true if expressionl is greater than or equal to
expression2; returns false if it is not.

217

THE TAO OF APPLESCRIPT

218

NOTES

EXAMPLE

SEE ALSO

+ (division)

WHAT IT DOES

SYNTAX

RESULT

The expressions can be any one of the following:

Dates: If you have two dates, AppleScript considers one
greater than the other if it comes first chronologically.

Integers and Real numbers: Real numbers are those with a
decimal component; integers don't have decimals attached
to them. AppleScript can compare two integers or two real
numbers to determine which is less than the other.

Strings: AppleScript considers one string greater than
another if it comes after the other string alphabetically.

You can compare only two expressions that are of the
same type, such as strings to strings and dates to dates. If
you compare an integer to a real number, AppleScript will
~oerce the integer value to a real number and then decide
which is greater.

This symbol can be replaced by several equivalent phrases:

expression] >= expression2

expressionl is greater than or equal to expression2

expressionl does not come before expression2

expressionl greater than or equal to expression2

This symbol is made by typing Option-Period.

This script puts true into the result window:

4 :2:3

::;,<,>,=,7=

Divides one number by another.

numberl + number2

Returns the quotient of the two numbers, dividing num­
berl by number2.

THE APPLESCRIPT LANGUAGE: RULES OF THE ROAD

NOTES When using a mathematical expression that contains
many operators, division is performed at the same time as
multiplication, immediately after negation and parentheti­
cal statements.

This operator always returns a real number with a decimal
component, as in 3.0.

This symbol is made by typing Option-/.

You also can use the"/" character when writing a script, ~
and AppleScript will replace it with the symbol"+". ~

EXAMPLE This script puts .5 into the result window:

3+6

SEE ALSO *,mod, div, 1\, +

a reference to

WHAT IT DOES Forces AppleScript to set a variable to the path of an
object, rather than the value of that object itself.

SYNTAX a reference to an objectPath

RESULT Returns the path to the object that you specify in
objectPath.

EXAMPLE The following script puts "The" into the result window:

activate

set x to a reference to word 1 of window 1 of application
"Scriptable Text Editor"

~~ set the contents of window 1 of application "Scriptable Text
~ Editor" to "The Tao of AppleScript"

get x

WHAT IT DOES The activate command brings an application to the front.
This is equivalent to choosing the application in the
application menu.

219

THE TAO OF APPLESCRIPT

220

SYNTAX activate application appName

tell application appName to activate

tell application appName

[commands]

activate

[commands]

.. ~· end tell

RESULT Brings the specified application to the front.

NOTES The activate scripting addition is stored directly within the
~) ~ppleScript exten. sion. You should be aware that if you

l-J ~activate" the Firtcler-it-wm cause your Mac to hang.

EXAMPLE This script brings the application Scriptable Text Editor to
the front:

activate application "Scriptable Text Editor"

WHAT IT DOES Determines if two Boolean values are true.

SYNTAX booleanl and boolean2

RESULT Returns true if both booleanl and boolean2 are true; returns
false if either is false.

NOTES booleanl and boolean2 can be any AppleScript expression
that produces a Boolean value, such as ''x = 4" or "true."

Each Boolean must be placed in parentheses.

If AppleScript sees that the first Boolean is false, it won't
check the second.

EXAMPLE This script puts true into the result window because both
expressions return a Boolean value of true.

THE APPLESCRIPT LANGUAGE: RULES OF THE ROAD

copy 3 to x

(x = 3) and (true)

SEE ALSO or, not

WHAT IT DOES Coerces a value to another type of data.

SYNTAX expression as data Type

RESULT Forces AppleScript to look at the information in expression
as if were another type of data that is specified in dataType,
such as treating numbers as strings. Returns the new value
after it was coerced.

NOTES For most occasions, you need not worry about coercing the
data; AppleScript will take care of it for you.

EXAMPLE This script puts the string "1" into the result window:

ASCII character

WHAT IT DOES

1 as string

Given a number from 0 to 255, AppleScript converts that
number to a character based on the ASCII standard for
representing characters by numbers.

SYNTAX ASCII character [of] integer

RESULT Returns the ASCII character represented by an integer.

NOTES This command is stored in a scripting addition named
"String Commands."

ASCII is a standard method of referring to characters by
assigning them numbers. ASCII only applies to standard
text, so the characters you get by using the Option key on
a Macintosh are not available.

221

THE TAO OF APPLESCRIPT

222

Some commonly used ASCII codes are

13 (Return or Control-M)

14 (line feed or Control-N)

32 (Space)

9 (Tab or Control-I)

EXAMPLE This script puts a space character in the result window:

ASCII character of 32

SEE ALSO ASCII number

ASCII number

WHAT IT DOES Given a character in the ASCII character set, this com­
mand returns the number for that character.

beep

SYNTAX

RESULT

NOTES

EXAMPLE

SEE ALSO

WHAT IT DOES

ASCII number [of] character

Returns the number associated with the character you
typed, using the ASCII standards.

This command is stored in a scripting addition named
11String Commands."

ASCII is a standard method of referring to characters by
assigning them numbers. ASCII only applies to standard
text, so the characters you get from using the Option key
on a Macintosh are not available.

This script puts the number 65 into the result window:

ASCII number of "A"

ASCII character

Beeps one time, or a specified number of times, using the
current System beep and volume.

THE APPLESCRIPT LANGUAGE: RULES OF THE ROAD

SYNTAX beep [number]

RESULT The Macintosh beeps once with no parameter, or the
number of times you specify.

NOTES This command is stored in a scripting addition named
11Beep."

EXAMPLE This script beeps three times:

beep 3

choose application

WHAT IT DOES Displays a dialog box for choosing a running application
to which it sends commands. This dialog lists applications
on the same machine as the script and on networked
machines (see below).

Choose a uersion of Scriptable Telct Editor to communicate with.
Macintoshes Applications

Holm on the Range ~ File Sharing Extension Q
Holm Sweet Holm Finder
Migratory paths Microsoft Word
Rosie Microsoft Word

ResEdit
Script Editor
1Scu:tltfim1i!'<ffiext~E..d1itor::;;:.t<>~~r~::.!Si

lit

r=
0 ~

(Cancel) ((OK l)

SYNTAX choose application [with prompt string] [application label
string]

RESULT The Macintosh displays the dialog. If you use the 11with
prompt string" parameter, the dialog will use the string at
the top of the window. If you use the "label string'' param­
eter, the dialog will have a text string over the list of

223

THE TAO OFAPPLESCRIPT

224

applications. The command returns the network address of
the chosen application to the script.

If the user presses the "Cancel" button in the dialog, it
stops the script, unless the command is part of a "try"
statement.

NOTES You write the network address of an application as follows:

application appName of machine macName of zone
zoneName ·

where appName is the name of the application, macName is
the name of the Macintosh on the network where that
application is running; zoneName is the name of the zone
where that Macintosh is located.

If you and the Macintosh are in the same zone, "of zone
zoneName" can be excluded from the network address.

EXAMPLE This script shows the appropriate dialog and places "appli­
cation 'Scriptable Text Editor' of machine 'Zen"' into the
result window:

choose application with prompt "Choose a version of
Scriptable Text Editor to communicate with." application
label "Applications"

SEE ALSO choose file, tell, try

choose file

WHAT IT DOES Enables the user of the script to choose a particular file by
showing the standard file dialog.

SYNTAX choose file [with prompt string] [of type IistO(Types]

RESULT Shows a standard file dialog with the prompt you specified
in the "with prompt string" parameter. Using the "of type
IistO(Types" parameter enables you to show only files of
certain types that are specified in a list.

THE APPLESCRIPT LANGUAGE: RULES OF THE ROAD

NOTES The command returns the path of the file that was se­
lected, in the following format:

alias "Disk:Folder:Folder:File"

This result does not have to be described as a file path
(using 11file"), since AppleScript already recognizes this as a
file path.

If the user presses the 11Cancel" button in the dialog, it
stops the script, unless the command is part of a 11try"
statement.

EXAMPLE This script displays a dialog that enables the user to select
only 11TEXT" and 11PICT" files, and then places the file
path of the selected file into the result window:

choose file with prompt "Choose a file to open with
TeachText." of type {"TEXT", "PICT11

}

SEE ALSO choose application, info for

considering

WHAT. IT DOES Enables you to consider certain attributes for comparing
two strings.

SYNTAX considering attributelL attribute2 , ... ,and attributeS] [but
ignoring attributel [,attribute2'" .. , and attributeS]]

commands

end considering

RESULT When considering an attribute, AppleScript takes that
attribute into account when comparing the two strings.

NOTES Possible attributes are shown in the following table.

EXAMPLE The following script puts false into the result window,
because when considering the case of the two strings,
"ABC" is not in 11 abcdef":

225

THE TAO OF APPLESCRIPT

226

considering case

"ABC" is contained by "abcdef"

end considering

SEE ALSO ignoring

contains

WHAT IT DOES Determines if one string, list, or record contains another.

copy

SYNTAX stringlllistllrecordl contains string21list21record2

RESULT Returns true if the value on the right is contained within
the value on the left.

NOTES When comparing lists, a list only contains another list if
all the items in the second list are contained in the first in
the same order.

When comparing records, one record contains another if
all the labels are the same and the values for each label are
the same.

EXAMPLE This script puts true into the result window:

"The Tao of AppleScript" contains "eTa"

SEE ALSO =, ¢, is contained by, is not contained by, starts with, ends

with, does not contain

WHAT IT DOES Copies data to a variable, or to the value of an object, in an
application.

SYNTAX copy data to variableName

copy data to objectPath

RESULT Puts the data into the variable variableName or into the
object you specified with objectPath. This data is also put
into the result.

THE APPLESCRIPT LANGUAGE: RULES OF THE ROAD

count

NOTES This command actually makes a copy of the data. This
may cause memory problems when working with large
lists or records. The 11 set" command can alleviate some of
this burden.

If you copy a piece of information out of an application,
this is equivalent to using the get command and then
using the result of that command.

EXAMPLE This script puts the number 3 into the variable named x
and the result window:

copy 3 to x

This script copies "the" to the first word of the first win­
dow in Scriptable Text Editor:

copy 11The" to word 1 of window 1 of application
11Scriptable Text Editor"

SEE ALSO set, get

WHAT IT DOES Counts the number of items in a group of items.

SYNTAX count [of] pluralltem [each typeOfltem]

RESULT Counts the number of items in a set.

NOTES Although you can use this command to count the objects
contained in some other object, you can do this only if the
application supports that Apple Event. To find out if it
does, use "Open Dictionary ... " from Script Editor to look
for a 11Count" command.

You also can use the phrase "number of" in place of count.
For example, "number of words in "The Tao of
AppleScript."

EXAMPLE This script puts 3 into the result window:

227

THE TAO OF APPLESCRIPT

228

current date

count items of {"The","Tao of',"AppleScript"}

This script puts 4 into the result window:

count words in "The Tao of AppleScript"

This script puts 5 into the result window ("four" is a string,
not an integer):

count {1, 2, 3, "four", 5, 6} each integer

WHAT IT DOES Returns the current date and time.

SYNTAX current date

RESULT Returns the current date and time in AppleScript's date
format. The result will look something like 11 date 'April
26,1993 10:26:05 PM'."

NOTES This command comes from a scripting addition named
11Current Date."

The 11date" tells AppleScript that it should consider this as
a date, much as 11file" tells AppleScript to interpret a string
as a file path. This means that the string can be handled as
a date, and therefore used in comparisons.

EXAMPLE This script puts the current date and time into the result
window:

current date

SEE ALSO <, >, ~' ~ ·

display dialog

WHAT IT DOES Builds a dialog with the elements you specify, then returns
information about what happened in the dialog.

THE APPLESCRIPT LANGUAGE: RULES OF THE ROAD

SYNTAX display dialogpromptstring [default answer answerString]
[buttons listOfButtons] [defaultbuttonbuttonNumber
lbuttonName] [with iconiconNumberlcautionlstoplnotify]

RESULT Shows a dialog with the parameters you specify, where
promptString is the text that appears in the dialog as the
prompt. When using the 11 default answer answerString"

parameter, AppleScript puts one editable text field in the
window, with the contents of that field set to the value in
answerString. When using the 11buttons listOfButtons"

parameter, AppleScript enables you to name and place up
to three buttons in the dialog box, where listOfButtons is a
list containing the names of the buttons. Using the 11 de­
fault button" parameter enables you to specify which
button you press when you press the Return key. The
default button can be specified by either its number in the
dialog, or by the text within the button. Using the 11with
icon" parameter, AppleScript puts an icon in the dialog.
You can specify the icon by its resource ID number, and
you can use any icon that is in the script file, the current
application in a 11tell" statement, or in the System file. You
also can use the built-in icons "stop," 11notify," or 11Cau­
tion," that are found in the System file.

The information about what happened in the dialog is
returned in a record. The 11text returned" label contains the
text that was typed into the dialog's editable text field. The
11button returned" label contains the name of the button
that was pressed to dismiss the dialog.

NOTES The 11number" of a button is its placement in the dialog. If
you used a list of your own buttons, item 1 of the list is the
first item, item 2 the second, and so on. Otherwise, the
110K" button is number 1 and the 11Cancel" button is
number 2.

AppleScript's dialogs enable you to press Return or Enter to
dismiss the dialog, as if you had pressed the OK button,
and Escape or Command-period to dismiss the dialog with
the Cancel button.

229

THE TAO OF APPLESCRIPT

230

div

If you want the editable text field to be blank when the
dialog first appears, write "" for the answerString.

Pressing the Cancel button also returns an error that you
can use with the "try" statement.

This command is stored in a scripting addition named
"Display Dialog."

EXAMPLE This script shows a dialog that uses all the available op­
tions, and then puts the returned record into the result
window:

display dialog "Your hard drive will be erased if you do not
enter the correct password!" default answer'"' buttons
{"No", "Maybe later", "Cancel 11

} default button "Maybe
later" with icon stop

Your hard driue will be erased if you
do not enter the correct password!

II
[..__ __ N_o _ ___.) (Maybe later) [..___c_a_nc_e_l ___.

WHAT IT DOES Divides one number by the other, but only returns the
integer portion of the answer.

SYNTAX numberl div number2

RESULT Returns the integer portion of the quotient of numberl and
number2.

NOTES When used in a mathematical expression with several
operators, div is performed at the same time as other
division.

THE APPLESCRIPT LANGUAGE: RULES OF THE ROAD

EXAMPLE This script puts 1 into the result window:

5 div 3

SEE ALSO mod,+,*,-,+,", round

does not contain

WHAT IT'DOES Determines if one value does not contain another value.

SYNTAX stringlllistllrecordl does not contain string21list21record2

RESULT Returns true if the first item does not contain the second
item.

NOTES When comparing lists, a list contains another list if all the
items in the second list are contained in the first in the
same order.

When comparing records, one record contains another if
all the labels are the same and the values for each label are
the same.

You also can write "doesn't contain," as AppleScript will
expand the contraction when it compiles the script.

EXAMPLE This script puts true into the result window:

nThe Tao of AppleScript" does not contain "Zen"

SEE ALSO contains, is contained by, is not contained by, starts with, ends
with

ends with

WHAT IT DOES Determines if a string or a list ends with a certain value

SYNTAX Iistllstringl ends with list21string2

RESULT Returns true if a list, or string, ends with the certain value.

NOTES To determine if a list, but not a string, ends with another
value, you must specify the entire item. For instance, the

231

THE TAO OF APPLESCRIPT

232

list {11The","Tao","of"," AppleScript"} does not end with
11ipt" since 11ipt" isn't an entire item in the list. However,
the above list does end with {"AppleScript"}.

EXAMPLE This script puts true into the result window:

11The Tao of AppleScript" ends with nscript11

SEE ALSO starts with, contains, does not contain, is contained by, is not
contained by

error · ·

WHAT IT DOES Exits a subroutine, returning an error to the main script.

SYNTAX error errorText [number errorCode] [from objectReference]

RESULT The main script receives an error where the error message
is defined by the text in errorText. You can assign a code
number to the error with an integer value for errorCode.
You also can tell the main script which object generated
this error by using the 11from objectReference" optional
parameter.

NOTES If this subroutine is called from within a try statement, the
error from the subroutine will cause AppleScript to execute
the commands under the 11 on error" portion of the state­
ment.

EXAMPLE This script executes a subroutine that returns an error
saying that an error has occurred and that its error code
number
is 1.

makeError()

on makeError()

error "An error has occurred" number 1

end makeError

THE APPLESCRIPT LANGUAGE: RULES OF THE ROAD

exit repeat

WHAT IT DOES Exits a repeat loop from within the repeat loop.

SYNTAX exit repeat

RESULT Goes to the command immediately following the 11end
repeat" portion of a repeat loop.

EXAMPLE This script beeps when xis equal to 3:

copy 0 to x

repeat

copy x + 1 to x

if x is 3 then exit repeat

end repeat

beep

WHAT IT DOES Gets information, either from another application or from
AppleScri pt.

SYNTAX get expressionlobjectOrProperty

RESULT Returns the requested information.

NOTES To use this command with other applications, those
applications must support the 11get data" Apple Event and
the Object Model.

EXAMPLE This script puts the first word in the first window in
Scriptable Text Editor into the result window:

get word 1 of window 1 of application "Scriptable Text
Editor"

SEE ALSO copy, set

233

THE TAO OF APPLESCRIPT

234

WHAT IT DOES Enables you to execute commands only if certain condi­
tions are true.

SYNTAX if boolean then command

if boolean then

commands

[else if boolean [then]

commands]

[else

commands]

end if

RESULT With the 11if" statement, you can cause certain commands
to run only under certain conditions. The commands
within the conditional are only run if the Boolean in the
conditional is true.

If you've included an 11 else" statement, those commands
are run if the initial boolean is false. Optionally, you can
place a conditional on an 1'else" statement, so that the
commands under it will only run if the initial boolean is
false, and the conditional attached to the 11else" returns
true.

NOTES Any expression that represents a Boolean can be placed in
boolean. For instance, you can write 11if true then beep"
and it will beep, because the boolean evaluates to true.

Once AppleScript has executed the commands under a
conditional statement, it immediately moves to the
commands following 11end if." Thus, if the initial boolean
is true, AppleScript never looks at 11else" statements in that
script.

EXAMPLE This script first sets the variable x to 3, and then beeps
because the expression 11X=3" evaluates to true:

THE APPLESCRIPT LANGUAGE: RULES OF THE ROAD

copy 3 to x

if x = 3 then beep

ignoring

WHAT IT DOES Allows ignoring of certain attributes when comparing two
strings.

SYNTAX ignoring attributel [, attribute2 , ... ,and attributeS] [but
considering attributel [,attribute2, ... , and attributeS]]

commands

end ignoring

RESULT When ignoring an attribute, AppleScript does not take that
attribute into account when comparing the two strings.

NOTES Possible attributes are shown in the table in the 11Consider­
ing and Ignoring" section of Chapter 2, "Scripting Basics."

EXAMPLE The following script puts true into the result window,
because, when ignoring the white space in the two strings,
11TheTao" is in 11The Tao of AppleScript":

ignoring white space

''TheTao11 is contained by 11The Tao of AppleScript11

end ignoring

SEE ALSO • considering

info for

WHAT IT DOES Returns assorted pieces of data about a particular file or
folder.

SYNTAX info for filePath

RESULT Returns an information record about the file or folder
specified by filepath. The 11Creation date" item is the date,

235

THE TAO OF APPLESCRIPT

236

in AppleScript date format, on the file or folder that was
created. The "modification date" item is the last date, in
AppleScript date format, on the file or folder that was last
modified. The "locked" item is a Boolean that is true if the
file/folder is locked, and false if it is not. The "folder" item
is a Boolean specifying whether the filepath points to a
folder or a file. If it's false, the file path specifies a file and
AppleScript returns additional information about the file.
The "file creator" item is the four-letter code for the
application that created the file. The "file type" item is the
four-letter string that indicates the type of the file. The
11 size" item is the size of the file in bytes. The 11 short
version" item is a string that contains the short version
string of the file. The 111ong version" item is a string that
contains the long version string of the file.

NOTES filePath must be a string that points to a file. This is in the
format "Disk:Folder: ... :Folder:File" and must be referred to
as a file so AppleScript knows to interpret the string. This
is done by placing the word 11file" before the actual path to
the file.

This command comes from a scripting addition named
"File Commands."

EXAMPLE This script gets info for the Finder on a hard drive named
"Thendara" and places the record of information into the
result window:

info for file "Thendara:System Folder: Finder"

SEE ALSO choose file, path to, list folder

is contained by

WHAT IT DOES Determines if one value is contained within another.

SYNTAX stringlllistllrecordl is contained by string21list21record2

THE APPLESCRIPT LANGUAGE: RULES OF THE ROAD

RESULT Returns true if the first item is contained within the
second string; returns false if it is not.

NOTES When comparing lists, a list is contained within another
list only if all the items in the first list are contained in the
second in the same order.

When comparing records, one record is contained within
another if all the labels are the .same and the values for
each label are the same.

EXAMPLE This script puts true into the result window:

"Tao11 is contained by "The Tao of AppleScript"

SEE ALSO is not contained by, does not contain, contains

is not contained by

WHAT IT DOES Determines if one value is not contained within another.

SYNTAX stringlllistllrecordl is not contained by string21list21record2

RESULT Returns true if the first item is not contained within the
second string; returns false if it is not.

NOTES When comparing lists, a list is contained within another
list only if all the items in the first list are contained in the
second, in the same order.

When comparing records, one record is contained within
another if all the labels are the same and the values for
each label are the same.

You also can write "isn't contained by", as AppleScript will
expand the contraction when compiling the script.

EXAMPLE This script puts true into the result window:

"Zen" is not contained by "The Tao of AppleScript"

SEE ALSO is contained by, does not contain, contains

237

THE TAO OF APPLESCRIPT

238

list disks

WHAT IT DOES Gets a list of all the mounted volumes.

SYNTAX list disks

RESULT Returns a list where each item is a string that is the name
of a volume mounted on your Desktop.

NOTES This command comes from a scripting addition named
"File Commands."

EXAMPLE This script puts a list of all the mounted volumes into the
result window:

list disks

SEE ALSO info for, path to

list folder

WHAT IT DOES Gets a list of all the items in a folder.

SYNTAX list folder filePath

RESULT Returns a list of all the items in filePath, where each item
in the list is a string representing the name of that item.

Generates an error if filePath is not a folder or disk.

NOTES filePath must be a string that points to a folder. This is in
the format "Disk:Folder: ... :Folder:" (note the final colon).
AppleScript must be told to interpret this string as a path
to an item on the desktop by using the word "file" before
the string.

This command comes from a scripting addition named
"File Commands."

EXAMPLE The following script puts a list of all the items in the
System Folder on a hard drive named "Thendara" into the
result window:

THE APPLESCRIPT LANGUAGE: RULES OF THE ROAD

list folder file "Thendara:System Folder:11

SEE ALSO info for, path to

load script .

WHAT IT DOES Loads all the script objects in a file into memory so that
they can be used from a script.

SYNTAX load script filePath

RESULT The files specified by filePath are loaded into memory so
they can be accessed as script objects.

NOTES filePath must be a string that points to a file. This is in the
format "Disk:Folder: ... :Folder:File" and must be referred to
as a file so that AppleScript knows to interpret the string.
This is done by placing the word "file" before the path to
the file.

This command comes from a scripting addition called
"Load Script."

This script loads all the scripts in a file named "stringLib"
in a "Scripting Libraries" folder on a hard drive named
11Thendara" and places 11«Script»" in the result window to
indicate that the scripts have been loaded into memory:

load script file 11Thendara:Scripting Libraries:stringlib"

SEE ALSO run script, store script

WHAT IT DOES Divides two numbers and returns the remainder.

SYNTAX numberl mod number2

RESULT Returns the remainder of the quotient of numberl divided
by number2

239

THE TAO OFAPPLESCRIPT

240

NOTES When used in a mathematical expression with other
operators, mod is executed at the same time as other
division.

This operation always returns an integer number.

This operator is particularly useful when determining if
one number is divisible by another. For instance, if you
want to know if a particular number is even, you can find
out if that number mod 2 is zero. If it is, then the number
is even because there is no remainder when dividing an
even number by two.

EXAMPLE This script puts 1 into the result window:

5 mod 3

SEE ALSO div, +, *, -, +, "

offset .

WHAT IT DOES Finds out where one string begins within another string.

SYNTAX offset of subString in containerString

RESULT Returns an integer that tells you how many characters into
containerString subString begins. If the command returns 0,
subString was not found in containerString.

NOTES subString must be written exactly as it appears in
containerString.

This command comes from a scripting addition named
"String Commands."

EXAMPLE This script puts the number 5 into the result window,
because "Tao" starts on the fifth letter of "The Tao of
AppleScript":

offset of "Tao11 in "The Tao of AppleScript"

THE APPLESCRIPT LANGUAGE: RULES OF THE ROAD

SEE ALSO contains, is contained by

WHAT IT DOES Determines if either of two Boolean values is true.

SYNTAX booleanl or boolean2

RESULT Returns true if either booleanl or boolean2 is true; returns
false if both are false.

NOTES booleanl and boolean2 can be any AppleScript expression
that produces a Boolean value, such as 11X = 4" or 11true."

Each Boolean must be placed in parentheses.

If AppleScript sees that the first Boolean is true, it won't
check the second Boolean.

EXAMPLE This script puts true into the result window because the
second expression returns a Boolean value of true:

copy 4 to x

(x = 3) or (true)

SEE ALSO and, not

WHAT IT DOES Determines the opposite of a Boolean value

SYNTAX not boolean

RESULT Returns true if boolean is false; returns false if boolean is
true.

NOTES boolean can be any AppleScript expression that produces a
Boolean value, such as "x = 4" or 11true."

You must place the Boolean in parentheses.

EXAMPLE This script puts true into the result window because the
expression (x=3) is false:

241

THE TAO OF APPLESCRIPT

242 I

copy4 to x

not (x = 3)

SEE ALSO and, or

path to

WHAT IT DOES Gets the pathname of any one of several special folders,
the startup disk, or the frontmost application.

SYNTAX path to [specialFolderlstartup disklfrontmost application] [as
classType]

RESULT Returns the full path to the special folder you specify.
specialFolder can be 11 Apple Menu Items" (or 11 Apple
Menu"), "Control Panels," "Desktop," "Extensions/'
"Preferences," "PrintMonitor Documents," ''Trash,"
"Startup Items," "System Folder," or "Temporary Items."
You also may write "startup disk" or "frontmost applica­
tion" to get the paths to those items.

The result can be coerced to a different type (such as a
string) by using the optional "as classType" parameter,
where classType represents the name of the class you wish
to coerce the path to.

NOTES This command comes from a scripting addition named
"File Commands."

EXAMPLE This script puts the path of the Apple Menu Items folder
into the result window:

path to "Apple Menu Items"

SEE ALSO info for, load script, run script, store script

random number

WHAT IT DOES Generates a random number.

THE APPLESCRIPT LANGUAGE: RULES OF THE ROAD

SYNTAX random number [number] [from lowestNumberto
highestNumber] [with seed number]

RESULT With no parameters, this command generates a random
decimal number between 0 and 1. If you place a single
number after the command, it will generate a random
integer between 1 and the number you typed. By using the
''from lowestNumber to highestNumber'' parameter, this
command will return a random integer between the two
numbers you specify. You also can give this command an
initial seed value for the random number.

NOTES Computers cannot generate truly random numbers, so
they must use "pseudorandom numbers." This means that
while you cannot predict the value of the number, it's not
truly random. To generate pseudorandom numbers,
computers use "seed" values and run them through a
complex mathematical equation. The result differs de­
pending on the particular seed value. Usually, computers
use sources such as the number of ticks (sixtieths of a
second) since the computer was turned on, or the number
of seconds passed in the current day. These sources pro­
vide numbers that change constantly, and thus produce a
"random" number when put through the mathematical
equation.

You can specify a seed for this operation. The numbers
generated from a given seed will always follow the same
sequence of values, although each will seem random the
first time that seed is used.

This command comes from a scripting addition named
"Numerics."

EXAMPLE This script generates a random integer between 1 and 100
and places that number into the result window:

random number 1 00

243

THE TAO OFAPPLESCRIPT

244

repeat

WHAT IT DOES Performs a set of commands repetitively.

SYNTAX repeat

commands

end repeat

repeat integer [times]

commands

end repeat

repeat while boolean

commands

end repeat

repeat until boolean

commands

end repeat

repeat with variableName from integer to integer [by integer]

commands

end repeat

repeat with variableName in list

commands

end repeat

RESULT With the first form of this statement shown above, the
commands are run indefinitely. You must use the "Stop"
button in Script Editor to terminate the script.

With the second form, commands run the number of
times specified in integer.

The next two forms use Boolean values to determine when
to stop.

THE APPLESCRIPT LANGUAGE: RULES OF THE ROAD

round

The fifth form repeats the commands over an interval of
numbers, with each number being placed into a variable.
The number of times that the loop increments the variable
each time is 1, but that can be altered with the 11by"
option.

The last form runs the commands in the repeat loop once
for every item in the list, setting the variable to the current
value in the list.

NOTES By using the repeat with variableName from number to
number and the 11by" modifier, you can count from number
to number. Using a negative number with the 11by" modifier
tells AppleScript to count backward. If you wanted the loop
to count from 100 to 1, you may type the following:

repeat with i from 1 00 to 1 by -1

EXAMPLE This script beeps and increments the variable x until x is
equal to 3:

copy 0 to x

repeat until x = 3

beep

copy x + 1 to x

end repeat

WHAT IT DOES ~ounds a decimal number to an integer.

SYNTAX round number [rounding upldownltoward zerolto nearest]

RESULT Without the optional parameter indicating how to round,
this command rounds number to the closest integer. The
11rounding direction" parameter enables you to tell
AppleScript to round the number up (3.1 and 3.6 become
4), down (3.1 and 3.6 become 3), towards zero or to the
nearest integer.

245

THE TAO OFAPPLESCRIPT

246

NOTES When rounding a number where the decimal portion is .5,
the command defaults to rounding up, if the number to
the left of the decimal is odd, down if it is even.

Rounding a number to the nearest integer is no different
than rounding with no parameters. However, this enables
you to illustrate what is happening more clearly.

This command comes from a scripting addition named
"Numerics."

EXAMPLE This script rounds 6.47 up and places the number 7 into
the result window:

round 6.47 rounding up

SEE ALSO +, div

WHAT IT DOES Starts an application or runs a script object.

SYNTAX run appNamelscriptObjectName

tell application appName to run

tell scriptObjectName to run

RESULT This command produces two different results. If it is sent
to an application, it will start that application as if you had
double-clicked on it in the Finder. If it is sent to a script
object, it will run any commands contained directly in the
script object (ignoring any subroutines within the object
unless they are called directly within the object).

NOTES Using run on an application works only if that application
supports the four required AppleEvents. If the application
you name doesn't, AppleScript will give you an error
telling you that the application doesn't support
AppleEvents. However, most applications support these
events.

THE APPLESCRIPT LANGUAGE: RULES OF THE ROAD

For techno-weenies, this command sends an "oapp" event
to the application. This means that, upon receiving this
command, an application will act as if it just started up,
making new windows or any other actions, such as run­
ning scripts, that would happen at startup.

EXAMPLE This script will run Scriptable Text Editor, or will result in
it acting as if had just been started, if it's already running:

run application 11Scriptable Text Editor11

SEE ALSO tell, activate

run script ·

WHAT IT DOES This command runs a script from a file, or from a set of
commands contained in a string, or in the language of
another scripting component.

SYNTAX run script scriptFilelstring [with parameters parameterList]
[in scriptingLanguage]

RESULT When you specify a file with this command, it runs a
script in a 11run" subroutine. You can set up a string that
contains several commands, separated by returns, and run
that as if it were a script. By using the "with parameters
parameterList" parameter, you can pass a set of parameters
to the script, with each item in the list being a parameter
to the script. If you are using another scripting language
that is part of the Open Scripting Architecture, you can use
the "in scriptingLanguage" parameter to specify which
scripting component you wish to use for the script.

Any results of that script are returned back to the main
script.

NOTES When you point to a file with this command, you must
point to it with a string in the format
"Disk:Folder:Folder:File", using as many folders as are
necessary to describe the location of the file. Furthermore,

247

THE TAO OFAPPLESCRIPT

248

you must tell AppleScript to interpret this as a file descrip­
tion.

This command is stored in a scripting addition named
11Run Script."

EXAMPLE This script runs a script that is stored in a file named
"Tester" in a folder named "Scripts" folder on a hard drive
named "Thendara" and puts the result of that script into
the result window:

SEE ALSO

WHAT IT DOES

SYNTAX

RESULT

NOTES

run script "Thendara:Scripts:Tester"

load script, store script

Sets the value of an object or variable.

set objectPathlvariableName to expression

When this command is used, it sets the object or variable
you specified with objectPath/variableName to the value you
specified in expression.

"Set" can be used to do 11 data sharing."

set y to {3, 4, 5}

set x toy

set item 1 of y to 6

X

The result of this script is {6,4,5}. A link is established
between the two variables. When y changed, x changed.

When working with large lists or records, you can set up
this kind of link between the two variables. This can help
avoid problems due to memory limitations.

THE APPLESCRIPT LANGUAGE: RULES OF THE ROAD

In order to use this command to control an application,
that application must support the Object Model and the
''set data'' Apple event.

EXAMPLE The following script sets the contents of the first window
of Scriptable Text Editor to "The Tao of AppleScript11

:

set the contents of window 1 of application "Scriptable
Text Editor11 to 11The Tao of AppleScript11

SEE ALSO copy, get

starts with

WHAT IT DOES Determines if a string or a list begins with a certain value.

SYNTAX listllstringl starts with list21string2

RESULT Returns true if the first item begins with the second value.

NOTES To determine if a list ends with another value, you must
specify the entire
item. For instance, the list {"The11,"Tao11,''of","AppleScript"}
does not start with "Th" since "Th" isn't an entire item in
the list. However, the above list does start with {"The"}.

You can also write "begins with11 as a synonym for "starts
with.''

EXAMPLE This script puts true into the result window:

"The Tao of AppleScript" starts with 11The Tao"

SEE ALSO ends with, contains, does not contain, is contained by, is not
contained by

store script

WHAT IT DOES Saves a script object into a script file.

SYNTAX store script scriptObjectName in fileName [saving yeslnolask]

249

THE TAO OF APPLESCRIPT

250

tell

RESULT This command stores the script object you specify with
scriptObjectName into the file you name in fileName.

By using the optional"saving" parameter, you can tell
AppleScript to save that script file, to not save it, or to ask
(as it normally would) the user with a directory dialog box.

NOTES To refer to a file with AppleScript, use a string that gives
the path to that file. This string is in the format
"Disk:Folder:Folder:File." To tell AppleScript that this is a
file, you must precede it with the word "file."

This command is stored in a scripting addition named
"Store Script."

EXAMPLE This script stores the script object scriptObject into a file
named "Generic Libraries" in a folder named "Libraries"
on a hard drive named "Thendara":

store script scriptObject in file "Thendara:Libraries:Generic
Libraries"

SEE ALSO load script, run script, choose file

WHAT IT DOES Enables you to address a particular application or other
object.

SYNTAX tell objectPath to command

tell objectPath

commands

end tell

RESULT By using the first form of the command, you can direct
one command to an application or script object. With the
second form, you can send several commands to one
object. In addition, this second form sets up a default
object path. If you don't specify the complete path to an

THE APPLESCRIPT LANGUAGE: RULES OF THE ROAD

object, AppleScript will finish it with
whatever is in objectPath.

NOTES The first form of this command is useful if
you wish to send a command to an applica­
tion while talking to another application.

The second form of this command is useful
when you have several commands to send
to one application, or you wish to set up a
shortcut for typing long object paths.

Using the "tell" command forces
AppleScript to get all the information from
an application about the commands it
knows, and the information it can handle.
If you have problems getting a command
to run, try enclosing it in a tell statement
that points to the application.

EXAMPLE This script uses the 11tell" statement to set
up a default object path to the first window
of Scriptable Text Editor:

tell window 1 of application 11Scriptable Text
Editor"

get word 1

end tell

WHAT IT DOES Tries a set of commands. If an error is
generated, the script will run an alternate
set of commands, giving information about
the error if desired.

SYNTAX try

commands

251

THE TAO OF APPLESCRIPT

252

RESULT

on error [efforMessageVariable] [number
efforNumberVariable]

commands

end try

AppleScript first runs the commands within the "try"
portion of this statement. If an error occurs, AppleScript
runs the commands under "on error" by using the
efforMessageVariable parameter. You can place the text of
the error message into a variable to use it in your script.
You can also use the "number efforNumberVariable"

parameter to place the number of the error into a variable
you define.

NOTES Using this command enables you to respond to errors
from within your script, rather than having the script
simply stop. This will make sure a script can continue
when a problem occurs. It also gives more meaningful
information to the user.

EXAMPLE This script tries to coerce a string into a number. It dis­
plays a dialog that tells you what went wrong if it fails,
using a variable named "errorText" to contain the text of
the error message.

with timeout

WHAT IT DOES

try

copy "The Tao of AppleScript" as number to
wrongCommand

on error errorText

display dialog "An error has occurred:" & errorText

end try

Tells AppleScript to time out from receiving a reply from
an Apple Event sent to another application.

THE APPLESCRIPT LANGUAGE: RULES OF THE ROAD

SYNTAX with timeout [of] integer second[s]

commands

end [timeout]

RESULT If AppleScript does not receive a reply from the target
application in the specified number of seconds, it will
continue with the next command. The 11end" portion of
this statement tells AppleScript which commands to apply
the 11With timeout" statement to.

EXAMPLE This script will time out from the command sent to
Scriptable Text Editor after one second:

Variables

with timeout of 1 second

set the contents of window 1 of application "Scriptable
Text Editor" to "The Tao of AppleScript"

end timeout

AppleScript has a number of built-in variables that you can use in your scripts.
This section describes them in detail.

it '

WHAT IT STANDS FOR This variable can stand for two different things. When the
script is in a tell statement, 11it" contains the object path
you put after the 11tell" command. When used in a filter to
extract data, 11 it" represents the object you're testing.

EXAMPLES Using 11it" in a 11tell" statement:

tell window 1 of application "Scriptable Text Editor"

set the contents of it to "The Tao of AppleScript"

get word 1 of it

253

THE TAO OF APPLESCRIPT

254

end tell

Here, 11it" represents the first window of Scriptable Text
Editor. Although this may seem pointless, since the scripts
could function without the 11it," using this variable makes
more sense syntactically in one-line 11tell" statements, as in
the following:

tell window 1 of application "Scriptable Text Editor" to get
the name of it

If you wish to find every occurance of the word 11The" in a
window in Scriptable Text Editor, however, you must use
the 11it" variable:

get every word of window 1 of application "Scriptable
Text Editor" where it is "The"

Here, 11it" refers to the word objects themselves.

WHAT IT STANDS FOR Refers to the current script object.

EXAMPLES If you are within a script or script object, you can refer to it
within the script itself by using me.

script sampleScript

on add(x, y)

return x + y

end add

on subtract(x, y)

tell me to add(x, -y)

end subtract

end script

In the above script object, one command is 11 add" and the
other 11 subtract." Subtract uses the add command that is
within the script object. To do so, it uses the phrase 11tell

THE APPLESCRIPT LANGUAGE: RULES OF THE ROAD

me to add (x,-y)." This is a shortcut to enable you to work
with other commands you've defined within the script
object.

If you have established properties for your script object,
you can use ''me" to work with those properties. The
following example illustrates this:

script sampleScript

propert~ name : "Derrick"

on add(x, y)

return x + y

end add

on subtract(x, y)

tell me to add(x, -y)

end subtract

get the name of me

get my name

end script

In this script object, there is a property called ''name." If
you want to use that property from within the script, you
can ask for 11the name of me" or 11my name."

WHAT IT STANDS FOR This variable stands for the number pi. Since pi is an
infinitely long number, AppleScript uses 3.1415926535898
as an approximation.

EXAMPLES You can make a script that will calculate the area of a
circle, given a radius:

on areaCircle(radius)

return pi * (radius * radius)

end areaCircle

255

THE TAO OF APPLESCRIPT

256

result ·

WHAT IT STANDS FOR This variable stands for the result returned from a com­
mand. This variable is reset after each command. If a
command does not return any information , "result" is
empty.

EXAMPLES This script displays the result from three commands in
dialogs. This is a useful technique for debugging scripts,
since it enables you to see the result at each point of the
script:

return ·

3+3

display dialog (result as string)

get every word of window 1 of application "Scriptable Text
Editor"

display dialog (result as string)

set x to 3

display dialog (result as string)

WHAT IT STANDS FOR This variable is used to represent the "return" character.

EXAMPLE This script puts three paragraphs into Scriptable Text
Editor:

tell window 1 of application "Scriptable Text Editor"

repeat with i from 1 to 3

set the contents to (the contents & "Paragraph " & i
as string) & return

end repeat

end tell

THE APPLESCRIPT LANGUAGE: RULES OF THE ROAD

space

The 11retum" variable ensures each paragraph is really a
paragraph by placing a return character after each one.

WHAT IT STANDS FOR This variable represents the space character.

EXAMPLES This variable can be used to separate several words that
may not otherwise have spaces in them, as in the follow­
ing example:

copy "Derrick" to firstName

copy 11Schneider" to lastName

display dialog firstName & space & lastName

WHAT IT STANDS FOR This variable represents a tab character.

EXAMPLE This script will make two columns of numbers in
Scriptable Text Editor, with the column separated by a tab:

repeat with i from 1 to 5 by 2

tell window 1 of application 11Scriptable Text Editor"

set the contents to the contents & i & tab & i + 1 &
return

end tell

end repeat

257

Glossary
The Tao of AppleScript

1 aete' resource A resource
contained within a program
describing the dictionary for
that program.

alias A keyword found in
AppleScript indicating that the
string to follow is a reference to
a file.

AppleScript Apple's system­
level scripting language. It's
designed to enable you to
automate and connect different
applications quickly and easily.
For complete instructions, read
the book.

AppleScript Formatting
A menu command in Script
Editor that enables you to
change the way AppleScript
formats compiled text. For
more information, see
Chapter 1.

AppleScript-aware Refers to
an application that can be
controlled by AppleScript.

applet The common term for
a script application that does
not support drag-and-drop.

Apple event A system-level
message sent from one applica­
tion to another. The message
instructs the receiving applica­
tion to perform an action or
return requested information
to the sending application.
These messages form much of
the foundation on which
AppleScript works. For more
information, see Appendix 1.

application A self-contained
program that performs a set of
related tasks and may allow
you to create documents.

application menu The menu
in the upper right corner of the
System 7 Macintosh screen.
Pulling down this menu
displays a list of all open
applications. The menu appears

THE TAO OFAPPLESCRIPT

260

as an icon in the menu bar­
this icon represents the
foreground application.

attachable Refers to an
application that enables scripts
to be attached to elements of
the user interface. For instance,
choosing a menu command or
pressing a button can run an
AppleScript script.

BMUG Berkeley Macintosh
User Group. The coolest user
group in existence. With more
than 12,000 members in over
50 countries, this is also the
largest Macintosh user group in
the world. For more i~orma­
tion, see 11About BMUG" in this
book.

Boolean A type of data that
can be either true or false.
Usually the result of comparing
two pieces of information by
some criteria. For more infor­
mation, see Chapter 2.

bounds A set of numbers
describing the size of a win­
dow. This set is a list of integers
where the first item is the
distance in pixels from the left
edge of the screen to the left
edge of the window; the second
item is the distance, including
the height of the title bar, from
the top of the screen to the top

of the window; the third item
is the distance from the left
edge of the screen to the right
edge of the window; the last
item is the distance from the
top of the screen to the bottom
of the window.

bubble sort A method of
sorting which compares pairs
of items in a list-placing each
pair in a specified order. Re­
peating the action over the
entire list causes one value to
move through the list and be
placed at its proper position. A
sorted list is produced by
repeating the entire process
within a script.

bug A problem with a script
that causes it to work incor­
rectly or stop with an error.

class The category describing
an object, such as 1'word" or
"window." Also the category of
an Apple event, such as 1'core"
for core events or 11 aevt" for
required events. For more
information, see the first
appendix.

client application A program
sending an Apple event.

coercion Forcing AppleScript
to interpret one type of data as
another type of data. This is
necessary for some commands

and operations which only
understand one type of data.
For more information, see
Chapter 2.

command An instruction
that performs a particular
action. Some commands are
built into AppleScript while
others must be sent to applica­
tions or scripting additions for
execution. For more informa­
tion, see Chapter 2.

comment A "note" in a
script. A comment is not
executed, but provides infor­
mation about the script to a
person reading it. For more
information, see Chapter 4.

commenting out The act of
turning portions of script into
comments, thereby preventing
them from executing. This
technique is commonly used
when tracking down problems
in a script. Lines can be com­
mented out and then put back
in until the line or lines caus­
ing the problem is found.

compile The act of format­
ting the text and checking the
syntax of a script. Uncompiled
scripts are compiled automati­
cally when they are run. For
more information, see the
description of what happens

when you click the 11Check
Syntax" button in Chapter 1.

component Anything that
uses the Component Manager
to become a part of the Sys­
tem-enabling applications to
take advantage of it.

Component Manager A
portion of the Macintosh
System software that allows
components to become active
within the System-allowing
applications to utilize them.
Components differ from
extensions in that extensions
intercept calls to the System
whereas components allow
new calls to be made. This
enables new functionality to be
added to the System without
releasing a new version of the
software. The Component
Manager is built in to System
7.1, but is also incorporated
into the QuickTime extension.

compress The act of remov­
ing redundant data from a file.
Compressed files must be
uncompressed before the data
within the file can be used.
Programs such as Stufflt Lite,
included on the disk, compress
files to reduce the space needed
on the hard drive.

GLOSSARY

261

THE TAO OFAPPLESCRIPT

262

concatenating The act of
making two or more pieces of
data into one by appending
one onto the end of the other.
For more information, see Text,
Lists, and Records in Chapter 2.

conditional A script state­
ment that executes commands
only if certain conditions are
met. For more information, see
Chapter 2.

container object An object
which contains the object of
interest. For more information,
see ''Objects" in Chapter 2.

coordinates A set of two
numbers representing a posi­
tion on the screen. Coordinates
are written as a pair of integers
where the first number is the
distance from the left edge of
the screen and the second
number is the distance from
the top edge of the screen to
the position. For more informa­
tion, see Chapter 3.

core events Those Apple
events which developers are
strongly encouraged to support
in their applications and which
represent the most likely ways
to work with the data in that
application. Some of the events
in this group are Get Data, Set
Data, Create, Delete, and
Count.

counting variable A variable
used in a repeat loop to track
the number of iterations a loop
has repeated or the current
value in a list when traversing
that list. For more information,
see "Counting Repeat Loops"
and "Traversing a List" in
Chapter 2.

creator A four-letter code
which represents the applica­
tion with which a file is
associated.

custom events The Apple
events which a developer
includes to deal with aspects
unique to their application.

date format A string of
characters representing a date
and time in AppleScript format.
Such a string must be preceded
by the word "date" and en­
closed in quotes, as in: date
"Thursday, june 10, 1993
3:04:36 PM".

declaring a variable The act
of assigning a value to a vari­
able for the first time.
Declarations tell AppleScript to
prepare the variable for later
use in the script. For more
information, see "Variables" in
Chapter 2.

dictionary Information about
the commands and objects an

application understands. This
information is stored in the
application or scripting addi­
tion in an "aete" resource.
For more information, see
Chapter 10 and Appendix 1.

directory traversal The act of
going through all the files and
folders on a hard drive. A
directory traversal typically
starts at the top level of the
drive, performing a given
action on all the files and/or
folders in that level. It then
looks into each folder on that
level, repeating the same. A
directory traversal can perform
the traversal on a specified
folder.

drag-and-drop A term
describing the process of
dragging an icon or icons onto
the application icon until it
highlights. During drag-and­
drop, the files are not moved,
but the application is run and
acts on those files in a specified
manner.

droplet The common term
for a script application that
supports drag-and-drop.

element An object or piece of
information contained in an
object; a subset of a larger
group.

error A message that is
returned to the script when a
command or application
cannot be executed for some
reason. The message contains a
description of that reason.

error checking The process of
anticipating every possible user
action, including potential
mistakes and all possible
responses to a dialog. Error
checking prevents unpredict­
able results in response to
unpredictable user actions.

every A term used by
AppleScript to specify all items
of a given type of an object.
The items are returned as a list.
For more information, see the
"Commands" section in
Chapter 2.

execute The act of running or
performing a script or com­
mand.

expression One or more
constants and/or variables,
possibly joined by an operator,
representing a single value.
Anything from the number 3
to "word 1 of window 3 of
application 1Scriptable Text
Editor'" is an expression.

Extensions folder A folder
within the System 7 System
Folder where extensions are

GLOSSARY

263

THE TAO OF APPLESCRIPT

264

kept. Scripting additions
cannot be used by AppleScript
unless they are in a folder
named Scripting Additions in
the Extensions folder when the
Macintosh is started.

file reference A reference
which points specifically to a
file or folder. It is preceded by
the word 11file" and the string
that follows it contains the
name of the hard drive, fol­
lowed by the names of the
folders and finally the file, each
separated from the others by a
colon character. For example:
file 11lnternal:Sounds:derrick
laugh".

file sharing A feature of
System 7 which allows
Macintoshes on a network to
exchange files.

flag A variable which repre­
sents a given condition, usually
of type Boolean. The variable is
set to a particular value early in
the script. That value is later
checked to determine if certain
commands should be run. For
more information, see 11Vari­
ables" in Chapter 2.

flow of information The
path of information as it moves
among different programs and/
or people.

formatting The act of modi­
fying text-usually the style
and/or size-to improve legibil­
ity. It typically includes
indentation within condition­
als, loops, subroutines, tell
statements, and script objects.
For example, Script Editor will
change the text of all key words
in a script to bold-face text.

functional-area events Those
Apple events intended to
perform a specific type of
function. For instance, an
Apple event that manipulates
text.

global variable A variable
whose value can be accessed
and changed by subroutines, as
well as the main script. For
more information, see 11Making
it Better" in Chapter 4.

icon A pictorial representa­
tion of a file, button, or piece
of information.

ID number A number unique
to a specific resource of a given
type in a given file.

if ... then statement Synonym
for 11Conditional" statement.

increment The specified
discrete amount that a value
increases when it is contained
within a loop.

integer A number which does
not have a decimal component.

invisible file A file which is
not visible from the Finder.
Some programs may allow you
to see them if you select files
with the directory dialog box.

keyword In Apple events, a
four-letter code that tells the
server application how to
interpret the attached data.

label A user-defined keyword
that names an item of an
AppleScript record; parameter
of a subroutine's "given"
statement.

library A collection of scripts
kept as a source for frequently­
used routines.

list A type of data that con­
tains several pieces of
unlabeled data. For more
information, see the 11Variable"
heading in Chapter 2.

local variable A variable
whose value is accessible only
by the subroutine in which it is
declared. Other subroutines
that use a variable of the same
name will not alter the variable
declared in first subroutine.

macro utility A program
which records user actions for
play-back at a later time.

message In AppleScript, a
command which the script
receives, either from the System
or from the script itself. When
the command is received,
AppleScript runs a subroutine
of the same name as the
message. For more info, see
Chapter 7.

modifier A keyword that
alters the result of a command.
For instance, the "not" modi­
fier reverses the result of a
comparison. For more informa­
tion, see the ~~conditional"
header in Chapter 2.

network Two or more com­
puters linked electronically for
the purpose of sharing re­
sources.

Object Model A hierarchichal
structure defined by Apple for
selecting information within
an application. Each object
may contain and be contained
within other objects. Objects
are distinguishable by unique
properties. For more informa­
tion, see Chapter 2.

object path A description of
an object's position that
includes all of its contents, and
how the object is differentiated
from similar objects. For more
information, see Chapter 2.

GLOSSARY

265

THE TAO OF APPLESCRIPT

266

objects The items in an
application that hold informa­
tion; elements of an
application addressable by
AppleScript. For more informa­
tion, see Chapter 2.

Open Dictionary... A menu
command in Script Editor that
enables an application or
scripting addition to access the
dictionary.

operation Symbols or key­
words which manipulate data
in some way, such as the use of
mathematic symbols to ma­
nipulate numbers.

optional parameter A por­
tion of a command not
necessary for the command's
execution. When supplied, it
provides more specific informa­
tion to the command or alters
the its behavior. For more
information, see Chapter 2.

orders of precedence A series
of rules describing the order in
which mathematical operations
are performed. For more
information, see 11Variables"
in Chapter 2.

parameter A supplemental
phrase or word providing
information to a command. For
more information, see 11 Com­
mands" in Chapter 2.

pixel A single point on the
screen. Short for 11picture
element."

pop-up menu A menu that is
contained within a dialog or
window, rather than in the
menu bar. Usually represented
by a rectangle with a drop
shadow and a downward­
pointing triangle. When the
user presses on this rectangle,
the menu is displayed at that
position.

position The location of an
object, either on the screen or
relative to other objects. For
more information, see Chap­
ter 3.

program A set of commands
that interacts with the System
software. This includes stand­
alone programs (applications
and extensions) and programs
which need to be loaded and
run by another program, such
as scripting additions.

program (v.) To write a set of
commands that perform some
task.

Program Linking The por­
tion of file sharing software
that enables programs to send
Apple events to applications on
the network.

property An attribute of an
object. For more information,
see "Objects" in Chapter 2.

QuickTime A system exten­
sion from Apple that allows
video and picture compression
for viewing on the Macintosh.
Also provides the Component
Manager to System 7 and
System 7.0.1 so that
AppleScript may be used.

real number A number
which has a decimal compo­
nent.

record (n.) A type of data
which contains several pieces
of labeled information. For
more information, see "Vari­
ables" in Chapter 2.

record (v.) The act of com­
posing scripts, reflecting the
actions of the user, for later
play-back. AppleScript can
record a user's actions within
recordable applications.

recordable Describes an
application which allows
AppleScript to record user
actions within that application
and compose a script reflecting
those actions.

reference A description that
points to an object or file. The
reference is the path to that
object or file.

repeat loop A structure which
repeatedly executes a set of
commands until a given
condition is met. For more
information, see Chapter 2.

required events Those Apple
events which Apple requires for
full System 7 compatability;
specifically Open Application,
Open Documents, Print Docu­
ments, and Quit.

required parameter A por­
tion of a command necessary
for the command's execution,
providing information to the
command or altering the
command's behavior. For more
information, see "Commands"
in Chapter 2.

reserved word A word which
has special meaning to
AppleScript. This includes all
the built-in commands and
commands from the scripting
additions, as well as words that
are available to AppleScript
while it is communicating with
a specific program.

resources Collections of data
which contain the elements of
the Macintosh interface specific
to an application or to the
System itself. These collections
may be modified by program­
mers and users to easily alter

GLOSSARY

267

THE TAO OF APPLESCRIPT

268

icons, menus, and other
elements.

run-only script A script that
can only be executed and not
edited. This is useful for hiding
scripts so that others cannot
view or modify them.

save dialog box A dialog box
that permits a file to be saved
with a name you assign and in
a folder you specify.

script A set of commands that
AppleScript understands and
can execute; a file containing
such commands.

script application A script
that can be executed just like
an application; that is, by
opening on its icon in the
Finder.

script editing area The
portion of the Script Editor
window in which scripts can be
written and edited.

Script Editor A simple
application provided by Apple
with the AppleScript package
for writing and editing scripts.

scriptable Describes an
application that can be con­
trolled via AppleScript. Implies
that the application contains a
dictionary.

Scriptable Text Editor A
simple text editor provided by
Apple with the AppleScript
package. It is designed as a
model for AppleScript support
in future applications.
Scriptable Text Editor is fully
scriptable and recordable.

scripting The act of writing
scripts.

scripting addition A program
that adds functionality to the
AppleScript language, but is
not a complete application.
Scripting additions cannot be
used by AppleScript unless they
are in a folder named Scripting
Additions in the Extensions
folder when the Macintosh is
started.

Scripting Additions folder
A folder within the Extensions
folder. Scripting additions
cannot be used by AppleScript
unless they are in the Scripting
Additions folder when the
Macintosh is started.

scripting language A com­
puter language that uses scripts
to automate tasks.

server application A program
receiving an Apple event.

Shareware Software which
may be legally used at no

charge for a spectfied period of
time; thereafter a fee must be
paid to the author. Time
periods and fees vary-refer to
the software documentation.

some A term used by
AppleScript to spectfy any
ranqom item of a given type
within an object. For more
information, see the "Com­
mands" section in Chapter 2.

splash screen A window or
picture that is displayed when a
script or program is started.
Usually displays credits or
information about the pro­
gram.

stack The name for a docu­
ment created with the
HyperCard application.

string A collection of charac­
ters.

subroutine A set of com­
mands set aside from the main
portion of the script. Subrou­
tines are run only when
spedfically addressed in the
main script by a single com­
mand. In AppleScript, the
name of that command is the
name of the subroutine.

syntax error A problem that
is caused by an improperly­
written script. When

AppleScript attempts to com­
pile a script, it will fail if any
syntax errors are detected.

System A generic term for the
Madntosh system software.

System 7 sound file A file
containing a digitally-sampled
sound that System 7 will play
when the file is opened in the
Finder.

System Folder A folder where
all the files needed for the
Madntosh System to run
properly are kept.

Taoism A Chinese philoso­
phy and religion based on the
teachings and writings of Lao­
tzu. Emphasizes simplidty and
appredation of Nature and the
world. For more information,
read The Tao of Pooh and The
Te of Piglet by Benjamin Hoff.

temporary variable A vari­
able which is used to hold a
value for a short period of
time-typically used to hold
the value of another variable
while it is being modified.

text A type of data in
AppleScript represented by
characters enclosed in quota­
tion marks. Also an object in
Scriptable Text Editor. For more
information, see "Variables" in
Chapter 2.

GLOSSARY

269

THE TAO OFAPPLESCRIPT

270

the result window A window
in Script Editor that displays
the information returned by a
command. For more informa­
tion, see Chapters 1 and 2.

thru A phrase that specifies a
range of objects, as in "words 1
thru 14." For more informa­
tion, see Chapter 2.

traversing In AppleScript,
executing a set of commands
once for each item in a group
of objects.

type (file) A four-letter code
that represents the category of
a file. For example, text files are
of type "TEXT".

uncompress To expand a
compressed object so that it is
restored to its original size. See
compress.

user error An error which
occurs because the user of a
script has done something
wrong, usually entering a value
that cannot be used.

variable A container for
information. When written in a
script, AppleScript uses the
value contained in the variable.
For more information, see the
"Variables" section in Chap-
ter 2.

variable star A star whose
brightness varies because of
internal changes or periodic
eclipsing of mutually revolving
stars.

where A term in AppleScript
that enables reference to any
objects meeting certain criteria.
Equivalent to "whose." For
more information, see Chap­
ter 2.

whose A term in AppleScript
that enables reference to any
objects meeting certain criteria.
Equivalent to "where." For
more information, see Chap­
ter 2.

window 1 A term in
AppleScript for the frontmost
window of an application.

workaround A set of com­
mands that achieve a particular
result when there is no
straightforward method for
achieving that result . For more
information, see Chapter 7.

Zen A branch of Buddhism
that focuses on meditation,
self-contemplation, and intu­
ition as the road to
enlightenment. For more
information, read Zen and the
Art of Motorcycle Maintenance,

by Robert Pirsig.

A Computer
Users Group

About BMUG

BMUG is a membership-based non-profit organization dedicated to
helping users of graphical interface computers. It represents the interests
of over 12,000 Macintosh users in more than fifty countries.

BMUG offers something for everyone. Here are a few of the rea­
sons that more than 12,000 people belong to BMUG:

The BMUG Newsletter - Published twice a year, each Newsletter
contains 400 pages of reviews, reference material, and commen­
tary (but no advertising!).

Planet BMUG, the BMUG BBS- A FirstClass graphical interface
electronic Bulletin Board Service. Use your modem to exchange
messages with BMUG members around the world, send mail via
the Internet, and download software from BMUG's vast software
library.

The Helpline- Access to our technical Helpline is available to
members during business hours by phone, fax, or in person.

THE TAO OF APPLESCRIPT

272

The Software Library- One of the largest and most up-to-date
collections of Publicly Distributable software anywhere. It is sold
on disks and CD-ROM or can be downloaded from the BBS.

Publications and CO-ROMs - BMUG publishes CD-ROMs of
Shareware, and books on electronic bulletin boards, scripting, and
software programs.

The Meetings - BMUG holds weekly and monthly general meet­
ings and Special Interest Group meetings virtually every night of
the week. See interesting product demos, meet other computer
users, and hear the latest industry rumors.

Contacting BMUG

By Phone
Announcement Line
Business Office
Fax

Planet BMUG, the BMUG BBS
BMUG Boston BBS
BMUG-product orders only

By Mail
BMUGinc.
1442A Walnut Street, #62
Berkeley, CA 94 709-1496

Our office location
BMUG Inc.

(5 10) 849-9114
(510) 549-2684
(5 10) 849-9026
(51 0) 849-2684
(617) 721-5840
(800) 776-BMUG

2055 Center Street, cross street Shattuck Ave.
in downtown Berkeley

The BMUG Philosophy
BMUG started as a small user group in 1984, shortly after the
introduction of the Macintosh. As a non-profit corporation
BMUG strives to give the plain, unbiased truths about product

performance and the industry in general. We don't sell advertising
in our newsletters and make it quite clear that we will not ex­
change good reviews for product donations. BMUG is neither
affiliated with, nor receives monetary support from, Apple Com­
puter or any other for-profit entity.

Our goal is clearly stated in our motto:
"We're in the business of giving away information."

BMUG Memberships
BMUG is member-supported. Membership privileges include semi­
annual issues of the famous BMUG Newsletter, technical
assistance, and access to Planet BMUG, the BMUG BBS.

join BMUG today and find out why MicroTimes lists BMUG
among the 100 most important influences on the computer
industry and said, "BMUG is what every user group dreams of
becoming."

California Business magazine rates BMUG in the top 100 of
California's Hottest Digital Information providers.

Select one of the following membership packages for individuals:

Six Month Membership - $28
• One issue of The BMUG Newsletter

• Access to The BMUG Helpline for one person for six months

• A Six month account on The BMUG BBS (60 min/day)

Contributing Membership - $45
• Two issues of The BMUG Newsletter

• Access to The BMUG Helpline for one person

• An account on The BMUG BBS (60 min/day)

Sustaining Membership- $70
• Two issues of The BMUG Newsletter

• Access to The BMUG Helpline for one person

ABOUTBMUG

273

THE TAO OFAPPLESCRIPT

274

• An account on The BMUG BBS (90 min/day)

• Access to online magazines (such as BoardWatch, NewsBytes,
USA Today)

Hero Membership- $100
• First Class mailing of two issues of The BMUG Newsletter

• Access to The BMUG Helpline for one person

• An account on The BMUG BBS (90 min/day)

• Access to online magazines (such as BoardWatch, NewsBytes,
USA Today)

• Acknowledgement in The BMUG Newsletter

Satellite Club Membership - $250
• First Class mailing of two issues of The BMUG Newsletter

• Access to The BMUG Helpline for one person

• An account on The BMUG BBS (120 min/day)

• Access to online magazines (such as BoardWatch, NewsBytes,
USA Today)

• Two of each BMUG product released during the year of your
membership (except PD library floppy disks)

• Acknowledgement in The BMUG Newsletter

The BMUG Newsletter
BMUG Newsletters are published twice a year. Each is approxi­
mately 400 pages long, contains no advertising, and is written and
edited by BMUG members, volunteers, and staff. We encourage
you to contribute your efforts as well. Remember, the only way to
receive the current Newsletter is to be a BMUG member!

The Newsletter includes software and hardware reviews, "how-to"
guides, commentaries on the computer industry, and Choice
Products- BMUG's respected product recommendations.

Each Newsletter comes with a disk of the latest and greatest
Shareware and Freeware, as well as a program to help you access
our electronic Bulletin Board Service.

BMUG Online

Planet BMUG, the BMUG BBS
Got a modem? That's about all you'll need to get online with

BMUG on our electronic Bulletin Board System (BBS). Members
can request a free account on our FirstClass, graphical user inter­
face BBS. We support baud rates from 300 to 14,440, on all17
lines. Thousands of members log on and discuss every subject
under the sun. We exchange mail with Internet via UUCP mail.
Much of the most current Shareware and Freeware is available.

BMUG is also on many of the commercial forums across the
nation. You can reach BMUG at the following electronic addresses:

America Online:

Apple Link:

Internet:

CompuServe:

Prodigy:

The WELL:

Technical Assistance

The Helpline

BMUG or BMUGl

UGOOOl

bmug@aol.com

73237,501

HCHT96B

bmug

BMUG's Helpline for members is the only place where you
can get technical help on virtually any subject pertaining to the
Macintosh. BMUG volunteers and staff answer our phones week­
days from 9:30AM to 5:30 PM Pacific Time. We attempt to return
your call within two business days. BMUG accepts technical
questions via fax as well.

Emergency Data Recovery
Broken hard drive? Crashed floppy? If you're a member we'll do

our best to recover your data, for free. There are no guarantees, but
we have many tools at our disposal and years of experience using
them. An appointment is required so call our Helpline first. If you

ABOUTBMUG

275

THE TAO OFAPPLESCRIPT

276

can't make it to us, we'll arrange for you to mail it in to us. You
can save hundreds of dollars, and we'll even let you join after your
hard drive crashes. BMUG does RAM upgrades for members as
well.

BMUG Software Library
BMUG has one of the largest collections of Freeware and

Shareware software in the world. The library contains over four
hundred BOOK disks organized into categories such as Utilities,
Fonts, Games, Education, etc. Disks are available to both members
and non-members at $4 each, to cover our costs. Specially priced
disk packs are available. BMUG carefully and painstakingly checks
everything we sell for viruses.

BMUG strongly encourages users to support Shareware authors and their
efforts by sending in Shareware fees.

BMUG Publications

The 1993 BMUG Shareware Disk Catalog
A 700+ page compendium of the disks which make up the

BMUG Shareware Library, the largest and most complete
Macintosh Shareware library in the world. You can get it cheapest
from us, but look for it in stores, published by Addison-Wesley.

BMUG's Quicker Quicklime
Learning about video from scratch can be harder than learning

about your first computer. The authors of this book don't assume
you are an expert in either, but by the time you read the last page,
you will understand how computers and video can combine to
make something very exciting happen. The book includes a disk
including Apple's QuickTime, MoviePlayer, and QuickTime
movies.

Zen and The Art of Resource Editing-Third Edition
A series of articles to help you navigate through the cryptic

world of ResEdit. The newest edition is 240 pages long and

includes System 7 tips. The book comes with a disk containing the
current version of ResEdit and templates.

ToonWare-A Humor Interface
This collection of the humorous and the absurd is a sure bet for

any computer enthusiast. Ninety-six pages of comic art-the
perfect gift for anyone with a sense of humor and a Mac.

BMUG CO-ROMs

BMUG's TV-ROM™
An eclectic CD-ROM collection of QuickTime movies. Contains

over 100 PICT files and nearly 400 MooV files of people, places,
animals, and things.

The BMUG PD-ROM™ version B
In addition to our entire library of Shareware and Freeware, the

PD-ROM contains stuff available only from BMUG (such as News­
letters back issues). With over 600M of fonts, games, and other
programs, it's the best source of Publicly Distributable software
and all System 7.1 compatible and 32-bit clean.

The BMUG ResEdit Collection, CD-ROM
From the authors of Zen and the Art of Resource Editing, comes

a collection of cool and exciting things! Includes the latest version
of ResEdit, new editors, thousands of icons, patterns, resources,
utilities, QuickTime, and Frontier Runtime.

Other BMUG Products

The BMUG Tie-Dyed T-Shirt
This t-shirt has become legendary. The fashion statement of

BMUG.

Tote Bag
Our lOOo/o cotton all purpose tote-bag. Tested across the globe

by BMUG staff and volunteers with great results.

ABOUTBMUG

277

THE TAO OF APPLESCRIPT

278

Meetings
All of BMUG meetings are open to the public. You do not have to
be a member to attend. We welcome new and old Macintosh users
alike. Call the BMUG Announcement line at (510) 849-9114 for
times, dates, and locations.

Main Meetings
BMUG holds weekly Macintosh meetings on the UC Berkeley

campus. Approximately 100 to 150 members and non-members
gather to discuss the latest industry gossip, ask technical ques­
tions, and watch vendors demonstrate new and soon to be
released software and hardware. The meetings are free of charge,
open to the public, and there is a raffle at the end of every one.

BMUG•West
Each month BMUG holds a Macintosh meeting at the

Exploratorium's McBean Theater in San Francisco from 6:00 PM to
9:00 PM on the last Monday of the month. Though they have the
same format as our main meetings, including the raffle, they are
smaller and more intimate.

BMUG•South
A monthly meeting in San Jose. Every third Monday at the

Santa Clara County United Way office at 1922 The Alameda,
unless otherwise noted on the BMUG announcement line. The
meeting starts at 6:30 PM.

Special Interest Groups (SIGs)
BMUG has meetings almost every week night, and some on

weekends as well, on specific fields of interest. All SIGs meet in our
offices in Berkeley unless otherwise noted and are free of charge
and open to the public.

Index
Symbols

& (ampersand) concatenating
operator, 17, 210

()(parentheses)
in math operations, 19
plactng commands within

other commands, 92
(* *) for multiple-line comments,

60-61
* (multiplication) mathematical

operator, 18, 210-211
+ (addition) mathematical

operator, 18, 211
- (negation) mathematical

operator, 18
- (subtraction) mathematical

operator, 18, 211-212
--(two hyphens) for single-line

comments, 60
I (division) mathematical

operator, 18
< (less than) comparison operator,

29, 212-213
=(equal to) comparison operator,

28, 31, 214-215

> (greater than) comparison
operator, 29, 213-214

"(caret) command, 215
{} (braces), 20
+ (division) mathematical

operator, 18, 218-219
:~:-(not equal to) comparison

operator, 28, 31, 216
~(less than or equal to) compari­

son operator, 29, 216-217
;?: (greater than or equal to)

comparison operator, 29,
217-218

A

'a reference to' command, 219
accounting applications support­

ing AppleScript, Great Plains
Accounting v6, 196

'activate' command, 46, 219-220
addition (+) mathematical

operator, 18, 211
addressing objects, 9-15

THE TAO OFAPPLESCRIPT

280

ADUA (AppleScript Developers
and Users Association), 193

'aete' resource, 205-206, 259
aliases, 91, 259

deleting 11_alias" from
filenames, script for,
121-161

verifying filenames as, 133-135
'alis' resource, 134-139
ampersand (&) concatenating

operator, 17, 210
'and' modifier, 31-33, 220-221
annotating scripts, 60-62
Apple Event Manager, 2
Apple events, 203-207, 259

required, 267
AppleScript, 259

controlling and communicat­
ing with applications, 6-7

future, 191-193
software included with this

book, 1-3
AppleScript Developers and Users

Association (ADUA), 193
AppleScript extension, 2
'AppleScript Formatting' (Script

Editor Edit menu) command,
8,259

AppleScript-aware
applications, 259

applets, 259
application menu, 259-260
applications, 259

AppleScript-aware, 259
attachable, 260
client, 260
directing commands to, 46-47
EasyPlay 1.0, 202
Excel 4.0, 196

FileMaker Pro 2.0, 195
Finder Liaison, 3, 90
Folder Watcher 2.0.1, 202
Frontier, 201
Great Plains Accounting

v6, 196
Microphone II v4.0.2, 196-197
Mirror, 200
PageMaker 5.0, 195-196
Picture Press 2.5, 200-201
Progress Bar, 3, 64-76, 99-102
QuicKeys, 199-200
quitting, 67-68
recordable, 267
Rosanne Utilities, 198
script, 268

creating, 107-115
Script Editor, 3, 268
scriptable, 268
Scriptable Text Editor, 3, 268
Scriptor, 197-198
SerePlot 2.0, 197
server, 203-204, 268
Shaman, 201-202
shareware, 268-269
Stufflt Deluxe 3.0, 198-199
Stufflt Lite, 3, 202

archival/compression applications
supporting AppleScript, Stufflt
Deluxe 3.0, 198-199

'as' command, 221
'ASCII character' command,

221-222
'ASCII number' command, 222
attachable applications, 260
averaging numbers, subroutine

for, 120-121

B

basic repeat loops, 37-38
BBSs (bulletin board systems),

193-194
BMUG, 275

'beep' command, 13, 222-223
Beep scripting addition, 13
beeping, subroutines when

finished, 169-170
BMUG (Berkeley Macintosh User

Group), 260, 271-272
CD-ROMs, 277
contacting, 272
meetings, 278
membership, 273-274
Newsletters, 274
online, 275
philosophy, 272-273
products, 277
publications, 276-277
technical support, 275-276

books, BMUG, 276-277
Booleans, 20, 260

comparing, 31
bounds, 260
bounds property, 51-52
braces ({}), 20
bubble sorts, 78, 260

between two items, 80-81
for lists, 81-84
removing unnecessary passes,

86-88
bugs, 260

in directory-traversal filename
text-deletion script, 140-148

in line-numbering script, 63-64
in Sound Sucker script,

102-104, 112-115

in window-moving script,
52-53

bulletin board systems (BBSs),
193-194

BMUG, 275
'by' modifier, 41-42, 50

c
calling subroutines in English-like

syntax, 163-170
capitalization, considering in

comparisons, 33-34
captions, progress bars

adding, 69-71
updating for accuracy, 99-100

caret(") command, 215
CD-ROMs, BMUG, 277
'choose application' command,

223-224
'choose file' command, 224-225
Choose File scripting addition,

91-92
classes, 260
client applications, 260
'close' command, 68-69
'close window of' command

(Finder Liaison), 139
closing windows, 139
coercing

list items into strings, 128
variables, 22-23, 260-261

'comes after' command, 29
'comes before' command, 29
commands, 9, 261

& (ampersand), 17, 210
* (multiplication), 18, 210-211
+ (addition), 18, 211

INDEX

281

THE TAO OF APPLESCRIPT

282

-(subtraction), 18, 211-212
<(less than), 29, 212-213
=(equal to), 28, 31, 214-215
>(greater than), 29, 213-214
" (caret), 215
+(division), 18, 218-219
*(not equal to), 28, 31, 216
s; (less than or equal to), 29,

216-217
~(greater than or equal to), 29,

217-218
'a reference to', 219
'activate', 46, 219-220
'and', 31-33, 220-221
'as', 221
'ASCII character', 221-222
'ASCII number', 222
'beep', 13, 222-223
'by', 41-42, so
'choose application', 223-224
'choose file', 224-225
'close', 68-69
'comes after', 29
'comes before', 29
'considering', 33-35, 133-134,

225-226
'contains', 29-31, 226
'copy', 47-48, 226-227
'count', 227-228
'current date', 228
'delete', 13-14
directing to applications, 46-4 7
'display dialog', 228-230
'div', 18, 230-231
'does not contain', 231
'else', 35-37
'end if', 27
'end open', 110
'end repeat', 37
'end script', 172

'end tell', 46
'ends with', 29-30, 231-232
equivalents to Apple events,

205-206
'error', 232
'every', 14, 263
'exit repeat', 233
Finder Liaison

'close window of', 139
'create', 93-94
'get files in', 124-125
'get folders in', 131-132
'get path of', 95-96
'reveal', 138-139
'set creator of', 94-95
'set name of', 129
'set type of', 94-95

'get', 233
'if', 234-235
'if ... then', 26-28, 264
'ignoring', 34-35, 235
in parentheses within other

commands, 92
'info for', 235-236
'is', 28
'is contained by', 236-237
'is not', 28
'is not contained by', 237
'list disks', 238
'list folder', 238-239
'load script', 176, 239
looking up in dictionaries,

185-186
'make', 12, 58-59
'mod', 18, 239-240
'not', 31-33, 53, 241-242
'offset', 240-241

String Commands
scripting addition,
127-128

'on open', 109-110
'or', 31-33, 241
'path to', 242
Program Manager

'Get Info' (File
menu), 115

'Save As ... ' (File menu),
108-109

'quit', 67-68
'random number', 242-243
relating to objects, 189-190
'repeat', 244-245
'repeat_ times', 40
'repeat until', 39, 147-148
'repeat while', 39
'repeat with _ from', 40-42
ResMover

'copy resources', 96-97
'count resources', 92
'get name of resource', 93
'get resource types',

134-139
'set name of resource',

103-104
'return', 120-121
'round', 245-246
'run', 246-247
'run dialog', 156-161
'run script', 247-248
Script Editor

'AppleScript Formatting'
(Edit menu), 8, 259

'Open Dictionary ... ' (File
menu), 7, 183, 266

'set', 12, 49, 248-249
'some', 14,269
'starts with', 29-30, 249
'store script', 249-250
'tell', 46-47, 64, 123-124,

250-251

'thru', 270
'try', 251-252
types, 11-12
'where', 14, 270
'whose', 14, 270
'with timeout', 253

commenting out, 261
comments, 60-62, 261
commercial programs supporting

AppleScript, 194-201
comparing, 28

booleans, 31
lists, 30
numbers, 29
records, 30-31
text, 29
with modifiers, 31-37

comparison operators, 29
<(less than), 29, 212-213
=(equal to), 28, 31, 214-215
>(greater than), 29, 213-214
*(not equal to), 28, 31, 216
~(less than or equal to), 29,

216-217
~(greater than or equal to), 29,

217-218
sorting with, 79-80

compiling, 4, 261
Component Manager, 261
components, 261
compressing files, 261
compression applications sup-

porting AppleScript
Picture Press 2.5, 200-201
Stufflt Deluxe 3.0, 198-199
Stufflt Lite, 202

concatenating, 262
lists, 140
records, 22
text strings, 17

INDEX

283

THE TAO OF APPLESCRIPT

284

concatenating(&) operator,
17,210

conditional repeat loops, 38-39
conditionals, 9, 26-28, 262

comparing data, 28-31
with modifiers, 31-37

confirmation dialog boxes,
adding to scripts, 135-138

'considering' modifier, 33-35,
133-134, 225-226

container objects, 262
'contains' command, 29-31,226
coordinates, 4 7, 262

displaying, 53-55
variables for changes in

window-moving script,
47-49

'copy' command, 47-48, 226-227
'copy resources' command

(ResMover), 96-97
copying sounds from files to

create System 7 sound files,
script for, 90-106

core events, 204, 262
'count' command, 227-228
'count resources' command

(ResMover), 92
counting repeat loops, 40-42
counting variables, 40-42, 262

for sorting lists, 82-83
'create' command (Finder

Liaison), 93-94
creators, 90, 262
'current date' command, 228
custom events, 205, 262

D

data
comparing, 28-31
for commands, dictionary

information about, 186
in Apple events, 205
recovery, BMUG, 275-276
types, 17-22, 270

of object properties,
dictionary informa­
tion about, 188

data processing applications
supporting AppleScript, Rosanne
Utilities, 198

database applications supporting
AppleScript

FileMaker Pro 2.0, 195
Frontier, 201

date
current, 228
formats, 262

declaring variables, 16-17, 262
'delete' command, 13-14
deleting text from filenames,

script for, 121-161
dialog boxes

confirmation,addingto
scripts, 135-138

fields for entering values,
142-148

Find and Replace, 156-161
Save, 108-109,268

DialogRunner scripting addition,
156-161

dictionaries, 7, 183, 262-263
looking up

commands, 185-186
objects, 186-189

opening, 183
using information for relating

commands to objects,
189-190

window components, 184
directories, traversing,

117-118, 263
directory-traversal filename

text-deletion script
adding confirmation dialog

boxes, 135-138
deleting text with

workarounds, 126-130
displaying file icons during

confirmation, 138-139
duplicate filenames, 140-148
finding

and replacing any text in
filenames, 148-161

text in filenames, 125-126
listing

files in folders, 124-125
folders, 131-132

referencing hard drives,
121-123

sending paths to subroutines,
123-124

verifying filenames as aliases,
133-135

'display dialog' command,
228-230

Display Dialog scripting addition,
136-138

'div' (division without remainder)
mathematical operator, 18,
230-231

division mathematical operators
/, 18
+, 18, 218-219

'div' (without remainder), 18,
230-231

'mod' (returning remainder),
18,239-240

'does not contain' command, 231
drag-and-drop, 263

capabilities, creating script
applications with, 109-110

droplets, 109, 263
duplicate filenames while

renaming files, 140-148

E

EasyPlay 1.0 application, 202
elements, 263
'else' modifier, 35-37
'end if' command, 27
'end open' command, 110
'end repeat' command, 37
'end script' command, 172
'end tell' command, 46
'ends with' command, 29-30,

231-232
English-like syntax, calling

subroutines in, 163-170
equal to(=) comparison operator,

28, 31, 214-215
error checking, 263

directory-traversal filename
text-deletion script, 146-148

'error' command, 232
errors, 263

Out of Memory, 112
syntax, 269
user, 270

events, Apple, 203-207
required, 26 7

INDEX

285

THE TAO OFAPPLESCRIPT

286

'every' command, 14, 263
Excel 4.0 application, 196
executing, 263
'exit repeat' command, 233
expressions, 263
extensions

AppleScript, 2
QuickTime, 2, 267

applications supporting
AppleScript, EasyPlay
1.0, 202

Extensions folder, 263-264

F

file processing applications
supporting AppleScript,
Frontier, 201

FileMaker Pro 2.0 application, 195
filenames

duplicate, 140-148
finding and replacing text in,

script for, 121-161
verifying as aliases, 133-135

files
choosing, 90-92

by drag-and-drop,
109-110

compressing, 261
Find and Replace Dialog,

156-161
icons, displaying during script

confirmations, 138-139
in folders, listing, 124-125
included with this book, 1-2
invisible, 265
references, 264

sharing, 264
applications supporting

AppleScript, Shaman,
201-202

System 7 sound, 269
Tao Sounds, 90-91
types, 270

'movr', 90
'sfil', 90

filters, 14
Find and Replace Dialog file,

156-161
Finder Liaison application, 3, 90

commands

finding

'close window of', 139
'create', 93-94
'get files in', 124-125
'get folders in', 131-132
'get path of', 95-96
'reveal', 138-139
'set creator of', 94-95
'set name of', 129
'set type of', 94-95

and replacing text in
filenames, script for,
121-161

nameless resources, 102
flags, 20, 264
flow of information, 264
Folder Watcher 2.0.1

application, 202
folders

Extensions, 263-264
included with this book, 1-2
listing, 131-132
listing files in, 124-125
Scripting Additions, 268
System, 269

FolderWatcher control panel, 3
formats, date, 262
formatting, 8, 264
freeware, BMG collection, 276
Frontier application, 201
functional-area events, 204, 264

G

'get' command, 233
'get files in' command (Finder

Liaison), 124-125
'get folders in' command (Finder

Liaison), 131-132
'Get Info' (Program Manager File

menu) command, 115
'get name of resource' command

(ResMover), 93
'get path of' command (Finder

Uaison), 95-96
'get resource types' command

(ResMover), 134-139
global variables, 149, 264
Great Plains Accounting v6

application, 196
greater than(>) comparison

operator, 29, 213-214
greater than or equal to (~)

comparison operator, 29,
217-218

H

hard drives, referencing, 121-123
help, technical support, 275-276
hyphens(--) for single-line

comments, 60

1-J
icons, 264

file, displaying during script
confirmations, 138-139

ID numbers, 89, 264
'if' command, 234-235
'if ... then' statements, 26-28, 264
'ignoring' modifier, 34-35, 235
increments, 264

in repeat loops, 40
'info for' command, 235-236
Install These ... folder, 1
integers, 265
interapplication communications,

206-207
intercepting messages, 118-123

System, 109-110
interface applications supporting

AppleScript, Mirror, 200
interfacing with users

displaying only results of
text-sorting script, 88

displaying windows after script
completion, 62-63

providing progress bars, 64-7 6
invisible files, 265
'is contained by' command,

236-237
'is' command, 28
'is not contained by'

command, 237
'is not' command, 28
'it' variable, 24-25, 253-254

K

keyboard shortcuts
-:#(Option-=), 28

INDEX

287

THE TAO OF APPLESCRIPT

288

~ (Option-comma), 29
~ (Option-period), 29
Record (Command-D), 3
Run (Command-R), 4
Stop (Command-period), 3

keywords, 205, 265

L

labels, 166-170, 265
less than(<) comparison operator,

29, 212-213
less than or equal to (~) compari­

son operator, 29, 216-217
libraries, 265
line-numbering script, 57

adding comments, 60-62
adding progress bar, 64-76
displaying window after script

completion, 62-63
numbering lines, 58-59
potential bugs, 63-64

'list disks' command, 238
'list folder' command, 238-239
lists, 20-21, 265

comparing, 30
concatenating, 140
sorting, 81-84
traversing, 42

'load script' command, 176, 239
local variables, 265
loops, see repeat loops

M

macro utilities, 265
QuicKeys, 199-200

'make' command, 12, 58-59

mathematical operators, 18
* (multiplication), 210-211
+ (addition), 211
-(subtraction), 211-212
+(division), 218-219
'div' (division without

remainder), 230-231
'mod' (division returning

remainder), 239-240
'me' variable, 132, 254-255
membership, BMUG, 273-274
memory, increasing for

applications, 115
menus

application, 259-260
pop-up, 266

messages, 265
Apple events, 203-207
error, see error messages
sending and intercepting,

118-123
System, intercepting, 109-110

Microphone II v4.0.2 application,
196-197

Mirror application, 200
'mod' (division returning remain­

der) mathematical operator, 18,
239-240

modifiers, 265
'and', 31-33, 220-221
'by' I 41-42, so
'considering', 33-35, 133-134,

225-226
'else', 35-3 7
'ignoring', 34-35, 235
'not', 31-33, 53, 241-242
'or', 31-33, 241

moving windows, script for, 45-55
'movr' file type, 90

multiplication (*) mathematical
operator, 18, 210-211

N

naming
resources, 102-104
variables, 15-16
windows on-screen, 69

negation (-) mathematical
operator, 18

networked scripts
guidelines, 180-181
scripting, 179-180
setting up networks, 178-179
uses, 177-178

networks, 265
Newsletters, BMUG, 274
not equal to (:;e) comparison

operator, 28, 31, 216
'not' modifier, 31-33, 53, 241-242
notes, 60-62
numbering lines of text in

windows, script for, 57-76
numbers, 18-19

averaging, subroutine for,
120-121

comparing, 29
integers, 265
real, 267

0

Object Model, 9, 265
object paths, 11, 265
objects, 9, 266

addressing, 9-15
assigning values of, 12

container, 262
creating, 12
of commands, dictionary

information about, 185
properties, 11
relating commands to, 189-190
script, 170-177
supported by applications,

dictionary information
about, 186-189

'offset' command, 240-241
String Commands scripting

addition, 127-128
'on open' command, 109-110
online services, 194

BMUG,275
'Open Dictionary ... ' (Script

Editor File menu) command,
7,183,266

Open Scripting Architecture
(OSA}, 206

opening dictionaries, 183
operations, 266
operators

& (ampersand) concatenating,
17,210

comparison, 29
<(less than}, 29, 212-213
=(equal to}, 28, 31,

214-215
>(greater than), 29,

213-214
:;e (not equal to}, 28,

31,216
s (less than or equal to),

29,216-217
~ (greater than or equal

to}, 29, 217-218
sorting with, 79-80

INDEX

289

THE TAO OF APPLESCRIPT

290

mathematical, 18
* (multiplication),

210-211
+ (addition), 211
-(subtraction), 211-212
+ (division), 218-219
'div' (division without

remainder), 230-231
'mod' (division returning

remainder), 239-240
optional parameters, 13, 266
'or' modifier, 31-33, 241
orders of precedence, 18-19, 266
OSA (Open Scripting

Architecture), 206
Out of Memory error message, 112
outlining applications supporting

AppleScript, Frontier, 201

p

PageMaker 5.0 application,
195-196

parameters, 12, 266
of Apple events, 205
of commands, dictionary

information about, 186
optional, 13, 266
required, 267

parentheses ()
in math operations, 19
placing commands within

other commands, 92
'path to' command, 242
paths

object, 11, 265
sending to subroutines,

123-124

'pi' variable, 25-26, 255-256
Picture Press 2.5 application,

200-201
pixels, 266
pop-up menus, 266
position, 47, 52, 266
Program Linking, 178-179, 266
Program Manager commands

'Get Info' (File menu), 115
'Save As ... ' (File menu),

108-109
programming, 266
programs, 266

applications, see applications
scripting additions, see

scripting additions
Progress Bar application, 3, 64-76,

99-102
progress bars

adding
captions, 69-71
to scripts, 71-75
to Sound Sucker script,

99-102
naming windows, 69
reasons for, 64-65
setting up, 65-67

properties, 267
bounds, 51-52
of objects, 11

dictionary information
about, 188-189

script objects, 173-17 6
publications, BMUG, 276-277

Q
QuicKeys macro utility, 199-200

QuickTime extension, 2, 267
applications supporting

AppleScript, EasyPlay
1.0, 202

'quit' command, 67,68

R

'random number' command,
242-243

real numbers, 267
recordable applications, 267
recording scripts, 267
records, 21-22, 267

comparing, 30-31
recovering data, BMUG, 275-276
references, 267

file, 264
referencing hard drives, 121-123
renaming files, duplicate

filenames, 140-148
'repeat _times' command, 40
'repeat' command, 244-245
repeat loops, 9, 37, 267

basic, 3 7-38
conditional, 38-39
counting, 40-42
traversing lists, 42

'repeat until' command, 39,
147-148

'repeat while' command, 39
'repeat with _ from' command,

40-42
replacing text in filenames, script

for, 121-161
required

events, 204, 267
parameters, 267

reserved words, 15, 267
ResMover scripting addition, 90

commands
'copy resources', 96-97
'count resources', 92
'get name of resource', 93
'get resource types',

134-139
'set name of resource',

103-104
resources, 89-90, 267-268

'aete', 205-206, 259
'alis', 134-139
nameless, finding, 102
naming, 102-104
'snd ', 89-90

'result' variable, 24, 256
'return' command, 120-121
'return' variable, 25, 256-25 7
returns, inserting into sort results,

85-86
'reveal' command (Finder

Liaison), 138-139
Rosanne Utilities, 198
'round' command, 245-246
'run' command, 246-247
'run dialog' command, 156-161
'run script' command, 24 7-248
run-only scripts, 8, 268

s
'Save As ... ' (Program Manager File

menu) command, 108-109
Save dialog box, 108-109, 268
saving

script files, 176
scripts, 8

as applications, 108-109

INDEX

291

THE TAO OFAPPLESCRIPT

292

scientific analysis applications
supporting AppleScript, SerePlot
2.0, 197

script applications, 268
creating with drag-and-drop

capabilities, 109-110
saving scripts as, 108-109

script editing area, 268
Script Editor application, 3, 268

commands
'AppleScript Formatting'

(Edit menu), 8, 259
'Open Dictionary ... ' (File

menu), 7, 183, 266
dictionaries, 183-190

within applications, 7
formatting text, 8
saving scripts, 8
scripting area, 3-5

script objects, 170-177
scriptable applications, 268
Scriptable Text Editor application,

3,268
window-moving script, 45-55

scripting, 268
scripting additions, 13, 268

Beep, 13
Choose File, 91-92
DialogRunner, 156-161
Display Dialog, 136-138
ResMover, 90
String Commands, 127-128

Scripting Additions folder,
2-3,268

scripting languages, 268
Scriptor application, 197-198
scripts, 268

combining, 64-7 6
commenting out lines, 60-62

determining key
components, 46

for creating System 7 sound
files from copied sounds,
90-106

for directory-traversal filename
text-deletion, 121-161

for moving windows, 45-55
for numbering lines of text in

windows, 57-76
networked, 177-181
run-only, 8, 268
saving, 8

searching, see finding
sending

messages, 118-123
paths to subroutines, 123-124

SerePlot 2.0 application, 197
server applications, 203-204, 268
'set' command, 12, 49, 248-249
'set creator of' command (Finder

Liaison), 94-95
'set name of' command (Finder

Liaison), 129
'set name of resource' command

(ResMover), 103-104
'set type of' command (Finder

Liaison), 94-95
'sfil' file type, 90
Shaman application, 201-202
shareware, 268-69

BMG collection, 276
supporting AppleScript,

201-202
Sharing Setup control panel,

Program Linking, 178-179
'snd 'resource, 89-90
'some' command, 14,269

sorting text
bubble sorts, 260
scripts for, 77-88

Sound control panel, playing
sounds from, 13

sound files, System 7, 269
creating from copied sounds,

script for, 90-106
Sound Sucker script

adding progress bar, 99-102
checking for sound files before

launching, 104-106
creating, 90-98

as script application with
drag-and-drop capa­
bilities, 110-112

increasing memory
allotment, 115

potential bugs, 102-104,
112-115

'space' variable, 25, 257
splash screens, 269
spreadsheet applications support­

ing AppleScript, Excel 4.0, 196
stacks, 269
stand-alone scripts

creating with drag-and-drop
capabilities, 109-110

saving scripts as, 108-109
stars, variable, 270
'starts with' command, 29-30, 249
statistics

averaging numbers, subroutine
for, 120-121

script object, 171-177
'store script' command, 249-250
String Commands scripting

addition, 127-128

strings, 269
coercing list items into, 128
comparing, 29
concatenating, 17
determining offsets, 127-130

Stufflt Deluxe 3.0 application,
198-199

Stufflt Lite application, 3, 202
subroutines, 118-123, 269

accessing from multiple scripts,
170-177

beeping when finished,
169-170

calling in English-like syntax,
163-170

sending paths to, 123-124
subtraction (-) mathematical

operator, 18, 211-212
suites of Apple events, 204
syntax

English-like, calling
subroutines in, 163-170

errors, 269
System, 269

messages, intercepting,
109-110

System 7 sound files, 269
creating from copied sounds,

script for, 90-106
System Folder, 269

T

'tab' variable, 25, 257
Tao AppleScript folder, 2
Tao Disk Stuff folder, 1
Tao Sounds file, 90-91
Taoism, 269

INDEX

293

THE TAO OF APPLESCRIPT

294

technical support, 275-276
telecommunications applications

supporting AppleScript, Micro­
phone II v4.0.2, 196-197

'tell' command, 46-47, 64,
123-124, 250-251

temporary variables, 269
sorting with, 80-81

text, 17, 269
captions, adding to progress

bars, 69-71
finding and replacing in

filenames, script for,
121-161

numbering lines of in
windows, script for, 57-76

sorting
bubble sorts, 260
scripts for, 77-88

text strings, 269
coercing list items into, 128
comparing, 29
concatenating, 17
determining offsets, 127-130

text-sorting script
bubble sorts, 78

between two items, 80-81
for lists, 81-84
removing unnecessary

passes, 86-88
results

displaying only, 88
emptying window before

displaying, 85-86
inserting returns into,

85-86
setting up, 78-80

the result window, 270
'thru' command, 270

traversing, 270
directories, 117-118, 263
lists, 42

'try' command, 251-252
types, 270

commands, 11-12
data, 17-22, 270

of object properties,
dictionary informa­
tion about, 188

files, 270
'movr', 90
'sfil', 90

u
uncompressing, 270
user

errors, 270
groups, 193-194
interfaces

displaying only results of
text-sorting script, 88

displaying windows after
script completion,
62-63

providing progress bars
for, 64-76

privileges, 179-181
Users and Groups control

panel, 179

v
variable stars, 270
variables, 9, 15, 270

attaching to labels, 168-170
Booleans, 20, 260

comparing, 31

-:--_,_

coercing, 22-23, 260-261
counting, 40-42, 262

for sorting lists, 82-83
declaring, 16-17, 262
flags, 20, 264
for coordinate changes in

window-moving script,
47-49

global, 149, 264
incrementing in repeat

loops, 40
'it', 24-25, 253-254
lists, see lists
local, 265
'me', 132, 254-255
naming, 15-16
numbers, see numbers
'pi' 1 25-26, 255-256
records, 21-22
'result', 24, 256
'return', 25, 256-257
'space', 25, 257
'tab', 25, 257
temporary, 269

sorting with, 80-81
text, 17

verifying filenames as aliases,
133-135

w
'where' filter, 14, 270
'whose' filter, 14, 270
window 1, 270
window-moving script, 45

determining key
components, 46

directing commands to
Scriptable Text Editor, 46-47

displaying coordinates, 53-55
improving performance, 49-52
preventing potential bugs,

52-53
variables for coordinate

changes, 47-49
windows

bounds, 260
bounds properties, 51-52
closing, 68-69, 139
coordinates, 4 7
dictionary, 184
displaying coordinates, 53-55
naming on-screen, 69
position, 47, 52
the result, 270

'with timeout' command, 253
word processing applications

supporting AppleScript,
Frontier, 201

workarounds, 270
deleting text from filenames,

126-130

X-Z

Zen,270

INDEX

295

Included on the Tao Disk

AppleScript: The AppleScript package, straight from Apple! All
you need to script your Macintosh-includes AppleScript, Script
Editor, and Scriptable Text Editor.

QuickTime: View digital video on your desktop! Apple's
QuickTime, for digital video viewing and picture compression.
You'll need this if you are running System 7.0 or 7 .0.1.

Finder Liaison: Control the Finder without lifting your mouse
finger. This is an AppleScript-aware application which enables you
to create, delete, move, or otherwise manipulate files, directly in
the Finder.

DialogRunner: Make your own dialog boxes in your scripts! With
this addition you can add a real interface to your own scripts.

Progress Bar: Add a progress bar to any script. With this
AppleScript-aware application you'll never again be in the dark
about progress on your Macintosh.

ResMover: Move sounds, rename fonts, install Fkeys-all with this
scripting addition. You can play with the resources in any file.

Stufflt Lite: A fully scriptable, recordable, and powerful compres­
sion program. It's always been a great program, but it'_s incredible
with AppleScript.

Folder Watcher: A control panel that can actually watch your
desktop for you! Automate decompression of anything you put in
a folder, or set off an alarm when someone drops something in
your inbox folder!

,

~ :

F rom novice to SQ'jptmaster, this guide to ApplcScrlpt from SMUG-the

world's largest Macintosh user group-takes you on a journey of discov­

ering Apple's re ud,nary, new scripting language. With The Tao of

AppleScript and the lnduded software you can control your Mac like never

before. Make yo~r Madntosh work for you- not the other way around.

Join us on a journey
through AppleScript

Step-by-step instructions to
scripting on your own

A complete glossary to the
AppleScript language

THE TAO DISK INCLUDES
• AppleScrlpt and Scriptable Applications
• Scripting Additions
• QuickTime 1.6
• Stufflt Lite
• 2. 4 Megabytes of

Valuable Software

Everything you need t
begin AppleScripting! 1$8300751 TOO OF APPLESCR1Pf

~~$ 24.95
SOI~IDER DER

lnfr, dlion Center
Macintosh

Disk Requirements:
Any Macintosh running

System 7.0 or later;
4 MB of RAM or greater

recommended ;
2.5 MB of free hard

disk space

5 YC0 lt1YDEN C24 1VJ n ~"' n•o,..

1.95 CAll

'1\IIT!itlllll\ 111111 ll'll'li'!IIB
X0001SQLCN

The •al ol ~ :s.::.:t :.:.,r,:;,; ... t= 'ao ros• s..~~~
used. Good us·_.s_

Hayden Books

