— S

i i "

~ INSIDE MACINTOSH |

Do Mpsmace /

INSIDE MACINTOSH

Networking

A
vy
Addison-Wesley Publishing Company

Reading, Massachusetts Menlo Park, California New York
Don Mills, Ontario Wokingham, England Amsterdam Bonn
Sydney Singapore Tokyo Madrid San Juan

Paris Seoul Milan Mexico City Taipei

Apple Computer, Inc.

© 1994 Apple Computer, Inc.
All rights reserved.

No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form or
by any means, mechanical, electronic,
photocopying, recording, or otherwise,
without prior written permission of
Apple Computer, Inc. Printed in the
United States of America.

No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual property
rights associated with the technology
described in this book. This book is
intended to assist application
developers to develop applications only
for Apple Macintosh computers.
Every effort has been made to ensure
that the information in this manual is
accurate. Apple is not responsible for
printing or clerical errors.

Apple Computer, Inc.
20525 Mariani Avenue
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, APDA,
AppleLink, AppleShare, AppleTalk,
EtherTalk, ImageWriter, LaserWriter,
LocalTalk, Macintosh, MPW, ProDOS,
and TokenTalk are trademarks of Apple
Computer, Inc,, registered in the United
States and other countries.

System 7 is a trademark of

Apple Computer, Inc.

Adobe Illustrator, Photoshop, and
PostScript are trademarks of Adobe
Systems Incorporated, which may be
registered in certain jurisdictions.
America Online is a service mark of
Quantum Computer Services, Inc.
CompuServe is a registered service
mark of CompuServe, Inc.
FrameMaker is a registered trademark
of Frame Technology Corporation.

Helvetica and Palatino are registered
trademarks of Linotype Company.
Internet is a trademark of Digital
Equipment Corporation.

ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.

NuBus is a registered trademark of
Texas Instruments, Inc.

Optrotech is a trademark of Orbotech
Corporation.

Simultaneously published in the United
States and Canada.

LIMITED WARRANTY ON MEDIA AND
REPLACEMENT

ALL IMPLIED WARRANTIES ON THIS
MANUAL, INCLUDING IMPLIED
WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR
PURPOSE, ARE LIMITED IN DURATION
TO NINETY (90) DAYS FROM THE DATE
OF THE ORIGINAL RETAIL PURCHASE
OF THIS PRODUCT.

Even though Apple has reviewed this
manual, APPLE MAKES NO WARRANTY
OR REPRESENTATION, EITHER EXPRESS
OR IMPLIED, WITH RESPECT TO THIS
MANUAL, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. AS A RESULT,
THIS MANUAL IS SOLD “AS IS,” AND
YOU, THE PURCHASER, ARE ASSUMING
THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the possibility
of such damages.

THE WARRANTY AND REMEDIES SET
FORTH ABOVE ARE EXCLUSIVE AND IN
LIEU OF ALL OTHERS, ORAL OR
WRITTEN, EXPRESS OR IMPLIED. No
Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or liability
for incidental or consequential damages, so
the above limitation or exclusion may not
apply to you. This warranty gives you
specific legal rights, and you may also have
other rights which vary from state to state.

ISBN 0-201-62269-6

23456 7-CRW-97969594
Second printing, May 1994

&

The paper used in this book meets the
EPA standards for recycled fiber.

Library of Congress Cataloging-in-Publication Data

Inside Macintosh. Networking / by Apple Computer, Inc.

. cm.
Includes index.
ISBN 0-201-62269-6

1. Macintosh (Computer) 2. AppleTalk. 3. Computer networks.

I. Apple Computer, Inc.
QA76.8.M3152 1994
004.6'8—dc20

93-46639
CIP

Preface

Contents

Figures, Tables, and Listings XV

About This Book «xix

Chapter 1

WhattoRead — xxi

Chapter Organization xxii

Conventions Used in This Book xxii
Special Fonts ~ xxiii
Types of Notes ~ xxiii
Assembly-Language Information xxiii
Numerical Formats xxiv

Development Environment xxiv

Developer Products and Support ~ xxiv

Introduction to AppleTalk 11

About Networking on the Macintosh ~ 1-3

AppleTalk Networking 1-4
Basic AppleTalk Networking Concepts ~ 1-4
Addressing and Data Delivery on AppleTalk Networks
AppleTalk Connectivity 1-9

AppleTalk Phase2 1-10

The AppleTalk Protocol Stack 1-11
AppleTalk Filing Protocol (AFP) 1-12
Zone Information Protocol (ZIP) 1-12
AppleTalk Session Protocol (ASP) 1-13
AppleTalk Data Stream Protocol (ADSP) 1-13
AppleTalk Transaction Protocol (ATP) 1-13
AppleTalk Echo Protocol (AEP) 1-14
Name-Binding Protocol (NBP) 1-14
Routing Table Maintenance Protocol (RTMP) 1-15
Datagram Delivery Protocol (DDP) 1-15
Link-Access Protocols ~ 1-15
Multivendor Architecture 1-16
Multinode Architecture 1-16

How the AppleTalk Protocols Are Implemented 1-16

The AppleTalk Manager 1-18
AppleTalk and the OSI Model ~ 1-19
Application Layer 1-19
Presentation Layer ~ 1-20
Session Layer 1-20

1-6

iii

Transport Layer 1-21
Network Layer 1-21
Data-Link and Physical Layers ~ 1-21
Deciding Which AppleTalk Protocol to Use ~ 1-22
Making Your Application Available Throughout the Internet ~ 1-22
Identifying Zones 1-23
Using a Session Protocol to Send and Receive Data ~ 1-24
AppleTalk Data Stream Protocol ~ 1-24
AppleTalk Session Protocol ~ 1-25
Performing a Transaction =~ 1-25
Sending and Receiving Data as Discrete Packets ~ 1-26
Measuring Packet-Delivery Performance 1-26
Accessing AppleShare and Other File Servers ~ 1-27
Receiving Packets Using a Virtual Node and Processing Them
in a Custom Manner ~ 1-27
The LAP Manager 1-27
Directly Accessing a Driver for a Network Type ~ 1-28
The AppleTalk Pascal Interface ~ 1-29
Executing Routines Synchronously or Asynchronously ~ 1-30
Polling the Result Field ~ 1-31
Using a Completion Routine ~ 1-31

Chapter 2 AppleTalk Utilities 21

About the AppleTalk Utilities ~ 2-3
Using the AppleTalk Utilities 2-4
Determining Whether AppleTalk Phase 2 Drivers Are Supported ~ 2-4
Getting Information About the .MPP Driver and the
Network Environment 2-4
Getting the Address of Your Node or Your Local Router ~ 2-6
Sending Packets to Applications and Processes on Your Own Node 2-6
Selecting a Node in the Server Range ~ 2-7
AppleTalk Utilities Reference ~ 2-8
Data Structures ~ 2-9
MPP Parameter Block 2-9
Routines 2-11
Obtaining Information About the MPP Driver and the
Current Network Environment ~ 2-11
Enabling Intranode Delivery of DDP Packets ~ 2-15
Getting the Addresses of Your Node and Local Internet Router ~ 2-17
Opening and Closing Drivers ~ 2-18
Summary of AppleTalk Utilities ~ 2-23
Pascal Summary 2-23
Constants ~ 2-23
Data Types 2-23
Routines 2-24

iv

CSummary 2-25
Constants 2-25
Data Types 2-25
Routines 2-26
Assembly-Language Summary 2-27
Constants 2-27
Data Structures 2-28
Result Codes 2-28

Chapter 3 Name-Binding Protocol (NBP) 31

AboutNBP 3-3
UsingNBP 3-6
Registering Your Entity With NBP ~ 3-7
Setting Up a Names Table Entry 3-8
Registering a Names Table Entry ~ 3-9
Handling Names Table Entry Requests ~ 3-12
Preparing an Entity Name = 3-12
Looking Up aName 3-13
Extracting a Name From a List of Returned Names 3-16
Confirming a Name 3-17
Removing an Entry From the Names Table ~ 3-18
Canceling a Request ~ 3-19
NBP Reference ~ 3-20
Data Structures ~ 3-20
Address Block Record 3-20
Names Table Entry Record ~ 3-21
Entity Name Record ~ 3-21
The MPP Parameter Block for NBP 3-22
Routines 3-23
Registering an Entity =~ 3-24
Handling Name and Address Requests ~ 3-28
Summary of NBP 3-40
Pascal Summary 3-40
Constants ~ 3-40
Data Types 3-40
Routines 3-42
CSummary 342
Constants =~ 3-42
Data Types 3-43
Routines 3-45
Assembly-Language Summary 3-46
Constants 3-46
Data Structures ~ 3-47
Result Codes 3-48

Chapter 4 Zone Information Protocol (ZIP) 41

AboutZIP 4-3
Using ZIP 44
Getting the Name of Your Application’s Zone 4-6
Getting a List of Zone Names for Your Local Network or
Its Internet 4-7
ZIP Reference 4-10
Data Structures ~ 4-10
The XPP Parameter Block for ZIP 4-10
Routines 4-11
Obtaining Zone Information ~ 4-12
Summary of ZIP 4-19
Pascal Summary 4-19
Constants 4-19
Data Types 4-19
Routines 4-20
CSummary 4-20
Constants 4-20
Data Types 4-21
Routines 4-21
Assembly-Language Summary 4-22
Constants ~ 4-22
Data Structures ~ 4-22
ResultCodes 4-23

Chapter 5 AppleTalk Data Stream Protocol (ADSP) 51

About ADSP 5-3
Connections, Connection Ends, and Connection States 5-6
Connection Listeners ~ 5-7
Reliable Delivery of Data 5-8
Unsolicited ADSP Events ~ 5-8
About ASDSP 59
The Authentication Process 5-10
The Data Encryption Feature 5-11
Using ADSP 5-11
Allocating Memory for ADSP 5-12
Creating and Using a Connection Control Block ~ 5-12
Opening and Maintaining an ADSP Connection =~ 5-13
Creating and Using a Connection Listener ~ 5-22
Writing a User Routine for Connection Events ~ 5-26
Using ASDSP 5-29
Opening a Secure Connection ~ 5-30
From the Initiator’sEnd ~ 5-30

From the Recipient End ~ 5-32
Sending Encrypted Data Across a Secure Connection ~ 5-34
ADSP Reference ~ 5-35
Data Structures ~ 5-35
The ADSP Connection Control Block Record ~ 5-35
The Address Block Record ~ 5-38
The DSP Parameter Block 5-38
The ASDSP Parameter Block 5-41
The TRSecureParams Record ~ 5-42
Routines 5-43
Establishing and Terminating an ADSP Connection =~ 5-44
Establishing and Terminating an ADSP Connection Listener ~ 5-63
Maintaining an ADSP Connection and Using It to Exchange Data ~ 5-69
Summary of ADSP 5-77
Pascal Summary 5-77
Constants 5-77
Data Types 5-78
CSummary 5-82
Constants ~ 5-82
Data Types 5-84
Assembly-Language Summary 5-90
Constants 5-90
Data Structures ~ 5-92
Result Codes 5-94

Chapter 6 AppleTalk Transaction Protocol (ATP) 61

About ATP 6-3
The ATP Packet Format 6-5
At-Least-Once and Exactly-Once Transactions 6-7
The Buffer Data Structure 6-8
ATPFlags 6-8
Using ATP 6-9
Writing a Requester ATP Application ~ 6-9
Creating a Buffer Data Structure ~ 6-12
Specifying the Parameters for the Send Request Function =~ 6-12
Writing a Responder ATP Application ~ 6-14
Opening and Setting Up a Socket to Receive Requests ~ 6-14
Responding to Requests ~ 6-16
Canceling an ATP Function ~ 6-19
ATP Reference 6-20
Data Structures ~ 6-20
The Buffer Data Structure ~ 6-20
The ATP Parameter Block 6-21
The Address Block Record 6-23

vii

Routines 6-23
Sending an ATP Request ~ 6-24
Opening and Closing an ATP Socket 6-30
Setting Up a Socket to Listen for Requests ~ 6-32
Responding to Requests ~ 6-34
Canceling Pending ATP Functions ~ 6-38
Building a Buffer Data Structure =~ 6-44
Summary of ATP 6-46
Pascal Summary 6-46
Constants 6-46
Data Types 6-46
Routines 6-48
CSummary 6-49
Constants 649
Data Types 6-50
Routines 6-53
Assembly-Language Summary 6-54
Constants ~ 6-54
Data Structures ~ 6-55
Result Codes 6-58

Chapter 7 Datagram Delivery Protocol (DDP) 71

AboutDDP 7-3

About Sockets and Socket Listeners ~ 7-4

Assigning Socket Numbers 7-6

DDP Client Protocol Types ~ 7-7

Obtaining Data From the Network ~ 7-8

UsingDDP 7-8

Sending and Receiving Data: An Overview 7-9
Opening a Socket ~ 7-9
Sending Data 7-10
Receiving Data 7-10

Creating a DDP Write-Data Structure ~ 7-12

Using Registers and Packet Headers ~ 7-13
How the .MPP Driver Calls Your Socket Listener ~ 7-13
The DDP Packet and Frame Headers =~ 7-14
The MPW Equates 7-16
Reading an Incoming Packet ~ 7-17
Using Checksums 7-19

A Sample Socket Listener ~ 7-20
Socket Listener Queues and Buffers = 7-20
Setting Up the Socket Listener ~ 7-22
Initializing the Socket Listener =~ 7-24
Processing a Packet ~ 7-25
Testing for Available Packets ~ 7-31

Measuring Packet-Delivery Performance 7-32

viii

Chapter 8

DDP Reference 7-34
Data Structures 7-34
The Write-Data Structure 7-35
The Address Block Record 7-35
MPP Parameter Block 7-36
Routines 7-37
Opening and Closing DDP Sockets ~ 7-37
Sending DDP Datagrams 7-40
Summary of DDP 7-44
Pascal Summary 7-44
Constants 7-44
Data Types 7-44
Routines 7-45
CSummary 7-46
Constants 7-46
Data Types 7-46
Routines 7-47
Assembly-Language Summary 7-48
Constants 7-48
Data Structures 7-49
Result Codes 7-50

AppleTalk Session Protocol (ASP) 81

About ASP 83
ASP Reference 8-6
Data Structures 8-6
XPP Parameter Block for ASP 8-6
Routines 8-8
Opening and Closing ASP Sessions ~ 8-9
Sending Commands and Writing Data From the Workstation
to the Server ~ 8-15
Obtaining Information About ASP’s Maximum Capacities and
the Status of the Server ~ 8-21
Canceling an ASP Request to Open a Session ~ 8-25
Summary of ASP 8-27
Pascal Summary 8-27
Constants ~ 8-27
Data Types 8-27
Routines 8-29
CSummary 8-29
Constants ~ 8-29
Data Types 8-30
Routines 8-31
Assembly-Language Summary 8-32
Constants ~ 8-32
Data Structures ~ 8-33
Result Codes 8-35

ix

Chapter 9 AppleTalk Filing Protocol (AFP) 91

About AFP 9-3
AFP Reference 9-5
Data Structures 9-5
AFP Command Block Record 9-5
XPP Parameter Block 9-6
Routines 9-8
Summary of AFP 9-26
Pascal Summary 9-26
Constants 9-26
Data Types 9-27
Routines 9-29
CSummary 9-29
Constants 9-29
Data Types 9-31
Routines 9-32
Assembly-Language Summary 9-33
Constants 9-33
Data Structures 9-34
Result Codes 9-36

Chapter 10 Link-Access Protocol (LAP) Manager 101

About the LAP Manager 10-3
Using the LAP Manager 10-5

Determining if the LAP Manager Is Installed ~ 10-5

Adding an Entry to the AppleTalk Transition Queue 10-7

How the LAP Manager Calls Your Transition Event

Handler Routine ~ 10-9

Writing a Transition Event Handler Routine Using Pascal =~ 10-11
Open Transition =~ 10-13
Prepare-to-Close Transition =~ 10-14
Permission-to-Close Transition ~ 10-15
Cancel-Close Transition ~ 10-17
Network-Connection-Change Transition =~ 10-17
Flagship-Name-Change Transition =~ 10-21
Permission-to-Change-Flagship-Name Transition ~ 10-22
Cancel-Flagship-Name-Change Transition =~ 10-23
Cable-Range-Change Transition =~ 10-24
CPU-Speed-Change Transition =~ 10-25
Developer-Defined Transitions ~ 10-26

Defining Your Own AppleTalk Transition ~ 10-27

The LAP Manager and 802.2 Protocol Packets ~ 10-27
Attaching and Detaching 802.2 Protocol Handlers ~ 10-30

LAP Manager Reference ~ 10-32
Data Structures 10-33
The AppleTalk Transition Queue Entry ~ 10-33
Routines 10-33
Adding and Removing AppleTalk Transition Queue Entries ~ 10-34
Notifying Routines When Your Application-Defined
Transition Occurs ~ 10-37
Attaching and Detaching 802.2 Protocol Handlers ~ 10-39
Summary of the LAP Manager 10-43
Pascal Summary 10-43
Constants 10-43
Data Types 10-43
Routines 10-44
CSummary 10-44
Constants 10-44
Data Types 10-45
Routines 10-45
Assembly-Language Summary 10-45
Constants ~ 10-45
Data Structures ~ 10-46
Result Codes 10-46

Ethernet, Token Ring, and Fiber Distributed
Chapter 11 Data Interface 111

About Ethernet, Token Ring, and FDDI Support ~ 11-3
About Multivendor Network Interface Controller (NIC) Support ~ 11-5
About Multicast Addressing 11-7
Using Ethernet, Token Ring, and FDDI Drivers 11-7
Using the Ethernet Driver ~ 11-7
Opening the Ethernet Driver ~ 11-8
Using a Write-Data Structure to Transmit Ethernet Data ~ 11-10
Using the Default Ethernet Protocol Handler to Read Data ~ 11-13
Using Your Own Ethernet Protocol Handler to Read Data 11-17
Changing the Ethernet Hardware Address 11-19
Using the Token Ring Driver ~ 11-20
Applying Ethernet Functions ~ 11-20
Sending and Receiving Data ~ 11-21
Using the FDDI Driver ~ 11-23
Applying Ethernet Functions 11-23
Sending and Receiving Data ~ 11-24
Ethernet, Token Ring, and FDDI Reference 11-25
Data Structures ~ 11-26
The Write-Data Structure ~ 11-26
The Parameter Block for Ethernet, Token Ring, and FDDI Driver
Functions 11-26

Routines 11-28
Attaching and Detaching an Ethernet Protocol Handler ~ 11-28
Writing and Reading Ethernet Packets ~ 11-32
Obtaining Information About the Ethernet Driver and
Switching Its Mode 11-36
Adding and Removing Ethernet Multicast Addresses ~ 11-40
Summary of Ethernet, Token Ring, and FDDI 11-43
Pascal Summary 11-43
Constants ~ 11-43
Data Structures ~ 11-43
Routines 11-44
CSummary 11-45
Constants ~ 11-45
Data Types 11-45
Routines 11-46
Assembly-Language Summary 11-47
Constants ~ 11-47
Data Structures ~ 11-47
Result Codes 11-48

Chapter 12 Multinode Architecture 12-1

About Multinode Architecture ~ 12-4
Using Multinode Architecture ~ 12-8
Acquiring and Removing Multinodes ~ 12-8
Handling an AppleTalk Cable-Range-Change Transition Event ~ 12-10
Receiving Packets Addressed to Your Multinode 12-10
Calling ReadPacket to Read in the Packet Contents ~ 12-12
Calling ReadRest to Complete Reading in the Packet Contents ~ 12-13
Sending Packets Using a Multinode ~ 12-14
Preparing a Write-Data Structure ~ 12-14
Using a Checksum 12-16
Multinode Architecture Reference ~ 12-17
Data Structures ~ 12-18
The Write-Data Structure ~ 12-18
The Address Block Record ~ 12-18
The Multinode Parameter Block ~ 12-19
Routines 12-20
Adding and Removing Multinode Addresses ~ 12-21
Sending Datagrams Through Multinodes ~ 12-25
Summary of Multinode Architecture =~ 12-28
Pascal Summary 12-28
Constants ~ 12-28
Data Types 12-28

C Summary
Data Types

Assembly-Language Summary
Result Codes

Glossary

xiii

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Figures, Tables, and Listings

Introduction to AppleTalk 1-1

Figure 1-1 Data delivery on AppleTalk networks 1-9

Figure 1-2 AppleTalk protocol stack 1-12

Figure 1-3 Device drivers and connections files that implement AppleTalk
protocols 1-17

Figure 1-4 AppleTalk protocols with programming interfaces 1-18

Figure 1-5 AppleTalk protocol stack and the OSI model 1-20

Table 1-1 AppleTalk addressing numbers and names 1-6

Table 1-2 AppleTalk drivers and the protocols they implement 1-17

AppleTalk Utilities 2-1

Listing 2-1 Opening the .MPP driver and obtaining a node ID
inthe serverrange 2-8

Name-Binding Protocol (NBP) 3-1

Figure 3-1 The Name-Binding Protocol and the underlying
AppleTalk protocols 34

Figure 3-2 The NBP names table on each node, collectively forming an NBP
names directory 3-6

Figure 3-3 The internet socket address and entity name of
an application 3-8

Figure 3-4 Names table entry record format 3-9

Figure 3-5 Entity name record format 3-12

Figure 3-6 Tuple retumed by the PLookupName function 3-13

Table 3-1 NBP wildcards 3-14

Listing 3-1 Registering an application with NBP 3-11

Listing 3-2 Calling PLookupName to find matches for an entity name 3-15

Listing 3-3 Creating a buffer to hold name matches found, then using
NBPExtract to read the matches 3-17

Listing 3-4 Confirming an existing NBP name and address 3-18

Listing 3-5 Removing-an NBP names table entry 3-19

Listing 3-6 Canceling a request to look up a name 3-20

Zone Information Protocol (ZIP) 4-1

Figure 4-1 The Zone Information Protocol (ZIP) and the underlying
AppleTalk protocols 4-4

Chapter 5

Chapter 6

Chapter 7

Listing 4-1
Listing 4-2

Listing 4-3

Using the GetMyZone function 4-6

Using GetZoneList to retrieve names of zones throughout the
AppleTalk internet 4-8

Extracting a zone name from the list of zone names retumed
in the buffer 4-9

AppleTalk Data Stream Protocol (ADSP) 5-1

Figure 5-1
Figure 5-2
Figure 5-3
Figure 5-4

Listing 5-1
Listing 5-2
Listing 5-3

ADSP and its underlying protocols 5-4

Steps for creating an ADSP connection end 5-5
ADSP connection ends and their components 5-7
Standard tasks for an ADSP connection listener 5-8

Using ADSP to establish and use a connection 5-17
Using ADSP to establish and use a connection listener ~ 5-24
An ADSP user routine 5-28

AppleTalk Transaction Protocol (ATP) 6-1

Figure 6-1
Figure 6-2
Figure 6-3

Table 6-1

Listing 6-1
Listing 6-2

An ATP transaction 6-4
ATP and its underlying protocols 6-5
The ATP packet header control information byte 6-6

Constants for ATP flag bits 6-9

Opening a socket and sending an ATP request 6-10

Opening a socket to receive a request and sending
response data 6-17

Datagram Delivery Protocol (DDP) 7-1

Figure 7-1

Figure 7-2
Figure 7-3
Figure 7-4
Figure 7-5
Figure 7-6

Listing 7-1
Listing 7-2
Listing 7-3
Listing 7-4
Listing 7-5

Listing 7-6
Listing 7-7

Two applications running on the same node, each with
its own socket 7-5

Sending and receiving data using DDP ~ 7-6
Assigning sockets 7-7

DDP write-data structure ~ 7-13

The RHA for both long and short DDP headers ~ 7-15
Data-link frame header and DDP packet header 7-15

Declarations for pointers to the sample socket listener’s queues
and packet buffer 7-21

Declaration for the sample socket listener’s packet
buffer record 7-22

Declaration for the sample socket listener’s queue
header record 7-22

Setting up the socket listener from the client abplication 7-23
Initializing the socket listener 7-24

Receiving and processing a DDP packet 7-26

Determining if the socket listener has processed a packet 7-31

Chapter 8

Chapter 9

Chapter 10

Chapter 11

AppleTalk Session Protocol (ASP) 8-1

Figure 8-1
Figure 8-2
Figure 8-3

ASP and its underlying protocols 8-4
Differences between ASP and ADSP 8-5
Error reporting in ASP 8-18

AppleTalk Filing Protocol (AFP) 9-1

Figure 9-1

Table 9-1
Table 9-2

AFP and its underlying protocols 9-4

AFP command codes 9-9
Mapping of AFP commands to ASP functions 9-13

Link-Access Protocol (LAP) Manager 10-1

Figure 10-1

Figure 10-2
Figure 10-3
Figure 104

Table 10-1

Listing 10-1
Listing 10-2
Listing 10-3
Listing 10-4
Listing 10-5

Listing 10-6
Listing 10-7

LAP Manager connecting the higher-level AppleTalk protocols with
the selected data link 10-4

Ethermnet Phase 1 packet formats 10-28
Ethernet Phase 2 packet formats 10-29

Using the LAP Manager to receive data for
802.2 protocols 10-31

AppleTalk ttansitions and their constants and
routine selectors 10-9

Checking to determine if the LAP Manager is installed 10-6
Adding an AppleTalk Transition Queue entry 10-8

Removing an AppleTalk Transition Queue entry 10-8

Giue code for a Pascal transition event handler routine 10-12

Giue code to handle the network-connection-change transition
from Pascal 10-19

Using the glue code for the network validation procedure 10-19

Calling a LAP Manager 802.2 routine from assembly
language 10-32

Ethernet, Token Ring, and Fiber Distributed Data Interface 11-1

Figure 11-1

Figure 11-2
Figure 11-3

Listing 11-1
Listing 11-2
Listing 11-3
Listing 11-4

Using protocol handlers to read data directly from the
Ethernet driver 11-4

How AppleTalk uses multivendor support 11-6
An Ethernet write-data structure 11-11

Finding an Ethernet card and opening the .ENET driver 11-8
Sending a data packet over Ethemnet 11-12
Attaching a protocol handler and reading a packet 11-14

Completion routine to process received packet and await
the next packet 11-16

xvii

Chapter 12

xviii

Muitinode Architecture 12-1

Figure 12-1
Figure 12-2

Figure 12-3

Listing 12-1

The long DDP packet header used for multinode 12-5

How a server-client multinode application might send a broadcast
NBP lookup packet 12-7

The write-data structure for a multinode 12-15

Defining a Pascal function that makes an immediate
AddNodecall 129

PREFACE

About This Book

This book, Inside Macintosh: Networking, describes the AppleTalk protocols and
the application programming interfaces to them. AppleTalk is a network
system including hardware and software that supports communication over

a variety of data-link types. Using AppleTalk, applications and processes can
transfer and exchange data and share resources. The central part of the
AppleTalk software consists of a number of protocols arranged in layers, with
each protocol offering different services.

To familiarize you with the functions that each of these protocols provide so
that you can determine which protocols to use for your application, this book
includes an overview of the AppleTalk protocols. This book describes how
to write a networked application that uses the AppleTalk application
programming interfaces to send and receive data. It describes how to use
different methods to send data, such as establishing a sustained connection
across which you can transfer streams of data or transferring data in small,
_discrete units called packets.

To gain an understanding of AppleTalk as a whole and a perspective of the
types of services that each AppleTalk protocol provides, see the chapter
“Introduction to AppleTalk.” This chapter explains some basic networking
concepts and how they apply to AppleTalk. It describes how addressing is
implemented in AppleTalk networks and how this affects your application. It
also explains how you can use each of the AppleTalk protocols for specific
application requirements, and finally, it discusses a feature that is common to
all routines across AppleTalk protocol interfaces: how to use either of two
methods, synchronous or asynchronous, to specify when control is returned
to your program after you call a routine.

To learn how to obtain information about the AppleTalk drivers and the
networking environment and how to send packets to other applications and
processes on your own node, see the chapter “AppleTalk Utilities.”

To determine how to register your application with AppleTalk so that it

is visible on the network and available for other applications and processes
to contact and also how to obtain the addresses of other applications and
processes so that you can contact them, see the chapter “Name-Binding
Protocol (NBP).”

To obtain zone location information for the node that is running your applica-
tion or other applications on an AppleTalk network, see the chapter “Zone
Information Protocol (ZIP).”

To provide support for a networked application that establishes and maintains
a peer-oriented session connection between your application and its partner on
the network and that allows the applications to send streams of data to each

xix

PREFACE

other, see the chapter “AppleTalk Data Stream Protocol (ADSP).” This chapter
also discusses how you can establish a secure connection that provides for user
authentication and data encryption.

To provide support for a transaction-based session application in which

one end of the connection controls the session and issues a transaction
request that the other end carries out, see the chapter “AppleTalk Transaction
Protocol (ATP).”

To gain access to the underlying AppleTalk transport protocol that allows you -
send discrete packets of data across the network without imposing on your
application the additional overhead required to set up and maintain a session,
see the chapter “Datagram Delivery Protocol (DDP).” To use DDP, you must
provide socket-listener code that you must write in assembly language.

To provide complete coverage of the AppleTalk protocols, this book includes
in the chapters “AppleTalk Session Protocol (ASP)” and “AppleTalk Filing
Protocol (AFP)” a discussion of two higher-level protocols that are not
commonly used by application program developers: AppleTalk Session
Protocol (ASP) and AppleTalk Filing Protocol (AFP). ASP allows you to
establish an asymmetrical session between an ASP workstation application
and an ASP server application. The primary use of ASP is to provide services
for the AppleTalk Filing Protocol (AFP) that, in turn, provides all of the
services necessary to access an AppleTalk AppleShare server. AFP allows a
workstation on an AppleTalk network to access and manipulate files on an
AFP file server, such as an AppleShare server. Because you can use the native
file system to access an AFP server from a workstation, in most cases you
should not need to use AFP directly.

To register your application with the LAP Manager so that you will be
notified when an AppleTalk transition event occurs that can affect your
application, and to define a transition event that your application causes

to occur that can affect other applications, see the chapter “Link-Access
Protocol (LAP) Manager.” This chapter also describes how to install a protocol
handler as a client of the LAP Manager if your application processes 802.2
Type 1 packets.

To learn how to write data directly to an Ethernet, token ring, or Fiber
Distributed Data Interface (FDDI) driver instead of using the AppleTalk
protocol stack, see the chapter “Ethernet, Token Ring, and Fiber Distributed
Data Interface.” This chapter also describes how to read data directly from an
Ethernet driver.

To implement a special-purpose application that receives and processes
AppleTalk packets in a custom manner instead of passing them directly on to
a higher-level AppleTalk protocol for processing, see the chapter “Multinode
Architecture.”

What to Read

PREFACE

Because the AppleTalk network system includes both hardware and
software—and because the software includes not only the AppleTalk protocol
stack and the programming interfaces to it, but also file servers, print servers,
internet routers, drivers for circuit card or network interface controllers, and
so forth—the information in this book constitutes only a small part of the
body of literature documenting AppleTalk.

For a detailed description of the AppleTalk protocol specifications, see Inside
AppleTalk, second edition. For a complete description of the LAP Manager,
EtherTalk, and other AppleTalk connections, see the Macintosh AppleTalk
Connections Programmer’s Guide. To learn how to install and operate an
AppleTalk internet, see the AppleTalk Internet Router Administrator’s Guide and
the AppleTalk Phase 2 Introduction and Upgrade Guide. For an introduction to the
hardware and software of an entire AppleTalk network, see Understanding
Computer Networks and the AppleTalk Network System Overview. For informa-
tion on designing circuit cards and device drivers for Macintosh computers,
see Designing Cards and Drivers for the Macintosh Family, second edition.

If you are new to AppleTalk, you should begin with the chapter “Introduc-
tion to AppleTalk.” This chapter describes some basic networking concepts
that pertain to AppleTalk, and it summarizes each of the AppleTalk protocols
and features, suggesting possible uses for them.

The chapter also includes a section that provides an overview of the two
execution modes that you can use to execute routines that belong to the
AppleTalk protocol programming interfaces. Even if you are already familiar
with AppleTalk, you should read this section.

Each of the remaining chapters is devoted to a separate AppleTalk protocol or
feature. Most of the chapters are self-contained; unless otherwise stated, there
are no dependencies on preceding or following chapters. However, in some
cases you may find it helpful to familiarize yourself with the information in
other chapters that address related protocols. In most cases, your application
will use more than one protocol.

The higher-level protocols are described first, followed by the lower-level
protocols and the interfaces to the hardware device drivers, and ending with
the chapter that describes multinode architecture.

PREFACE

Chapter Organization

Most chapters in this book follow a standard general structure. For example,
the chapter “Name-Binding Protocol (NBP)” contains these major sections:

m “About NBP.” This section provides an overview of the Name-Binding
Protocol and its features.

m “Using NBP.” This section describes how to use the most common NBP

functions, gives related user interface information, provides code samples,
and supplies additional information. For example, the section describes
how to register your application with NBP so that users and other
applications can locate and contact your application. It also describes how
to look up another application’s address based on its name and how to
cancel a pending NBP request that you have made.

m “NBP Reference.” This section provides a complete reference to NBP by

describing the constants, data structures, and routines that you use to gain
access to the NBP services. Each routine description follows a standard
format that gives the routine declaration; a description of every parameter;
the routine result, if any; and a list of errors, warnings, and notices. Most
routine descriptions give additional information about using the routine
and include cross-references to related information elsewhere. Many of the
AppleTalk programming interface routines use parameter blocks to pass
information to and receive it from the software driver that implements the
protocol. The parameter block data type is described in the data structures
section, and any parameter block fields that are common to all the routines
that use the parameter block are defined in that section. Fields particular to

a routine, but not common to all routines, are described along with the
routine to which they pertain.

m “Summary of NBP.” This section shows the Pascal, C, and assembly-
language interfaces for the constants, data types, and routines associated
with NBP. It also lists the result codes. :

Conventions Used in This Book

This book uses various conventions to present certain types of information.
For example, parameter blocks are presented in a certain format so that you
can scan them quickly.

PREFACE

Special Fonts

All code listings, reserved words, and the names of data structures,
constants, fields, parameters, and functions are shown in Courier (this
is Courier).

When new terms are introduced, they are in boldface. These terms are also
defined in the glossary.

Types of Notes

There are several types of notes used in this book.

Note

A note formatted like this contains information that is interesting but
possibly not essential to an understanding of the main text. The wording
in the tag may say something more descriptive, such as “Calling
ReadPacket and ReadRest when LocalTalk is the data link.” (This
example appears on page 7-19.) Notes with descriptive titles contain
useful information about a particular aspect of the feature being
described. ¢

IMPORTANT
A note like this contains information that is especially important. (An
example appears on page 7-10.) A

WARNING

Warnings like this indicate potential problems that you should be aware
of as you design your application. Failure to heed these warnings could
result in system crashes or loss of data. (An example appears on
page7-18.) A

Assembly-Language Information

Inside Macintosh provides information about the registers for specific routines
like this:

Registers on entry

A0 Contents of register AQ on entry

Registers on exit
D0 Contents of register DO on exit

xxiii

PREFACE

In addition, Inside Macintosh presents information about the fields of a
parameter block in this format:
Parameter block

— inputl Ptr Input parameter.
« outputl Ptr Output parameter.
© inAndout Integer Input/output parameter.

Numerical Formats

Hexadecimal numbers are preceded by a dollar sign ($).

The numerical values of constants are shown in decimal, unless the constants
are flag or mask elements that can be summed, in which case they are shown
in hexadecimal.

Development Environment

The system software routines described in this book are available using
Pascal, C, or assembly-language interfaces. How you access these routines
depends on the development environment you are using. This book shows
system software routihes in their Pascal interface using the Macintosh
Programmer’s Workshop (MPW).

All code listings in this book are shown in Pascal. They suggest methods of
using various routines and illustrate techniques for accomplishing particular
tasks. However, Apple Computer, Inc., does not intend for you to use these
code samples in your applications.

Developer Products and Support

xxiv

APDA is Apple’s worldwide source for over three hundred development
tools, technical resources, training products, and information for anyone
interested in developing applications on Apple platforms. Customers receive
the quarterly APDA Tools Catalog featuring all current versions of Apple
development tools and the most popular third-party development tools.
Ordering is easy; there are no membership fees, and application forms are not
required for most of our products. APDA offers convenient payment and
shipping options, including site licensing.

PREFACE

To order products or to request a complimentary copy of the APDA Tools
Catalog, contact

APDA

Apple Computer, Inc.

PO. Box 319

Buffalo, NY 14207-0319

Telephone 800-282-2732 (United States)
800-637-0029 (Canada)
716-871-6555 (International)

Fax 716-871-6511

AppleLink APDA

America Online APDA

CompuServe 76666,2405

Internet APDA@applelink.apple.com

If you provide commercial products and services, call 408-974-4897 for
information on the developer support programs available from Apple.

CHAPTER 1

Introduction to AppleTalk

Contents

About Networking on the Macintosh ~ 1-3

AppleTalk Networking 1-4
Basic AppleTalk Networking Concepts ~ 1-4
Addressing and Data Delivery on AppleTalk Networks
AppleTalk Connectivity ~ 1-9

AppleTalk Phase2 1-10

The AppleTalk Protocol Stack ~ 1-11
AppleTalk Filing Protocol (AFP) 1-12
Zone Information Protocol (ZIP) 1-12
AppleTalk Session Protocol (ASP) 1-13
AppleTalk Data Stream Protocol (ADSP) 1-13
AppleTalk Transaction Protocol (ATP) 1-13
AppleTalk Echo Protocol (AEP) 1-14
Name-Binding Protocol (NBP) 1-14
Routing Table Maintenance Protocol (RTMP) 1-15
Datagram Delivery Protocol (DDP) 1-15
Link-Access Protocols ~ 1-15
Multivendor Architecture 1-16
Multinode Architecture 1-16

How the AppleTalk Protocols Are Implemented 1-16

The AppleTalk Manager ~ 1-18
AppleTalk and the OSI Model ~ 1-19
Application Layer ~ 1-19
Presentation Layer ~ 1-20
Session Layer ~ 1-20
Transport Layer 1-21
Network Layer 1-21
Data-Link and Physical Layers 1-21

Contents

11

1-2

CHAPTER 1

Deciding Which AppleTalk Protocol to Use =~ 1-22

Making Your Application Available Throughout the Internet

Identifying Zones = 1-23

Using a Session Protocol to Send and Receive Data ~ 1-24
AppleTalk Data Stream Protocol ~ 1-24
AppleTalk Session Protocol ~ 1-25

Performing a Transaction =~ 1-25

Sending and Receiving Data as Discrete Packets ~ 1-26

Measuring Packet-Delivery Performance 1-26

Accessing AppleShare and Other File Servers ~ 1-27

Receiving Packets Using a Virtual Node and
Processing Them in a Custom Manner 1-27

The LAP Manager 1-27
Directly Accessing a Driver for a Network Type 1-28
The AppleTalk Pascal Interface ~ 1-29

Executing Routines Synchronously or Asynchronously ~ 1-30

Polling the Result Field 1-31
Using a Completion Routine ~ 1-31

Contents

1-22

CHAPTER 1

Introduction to AppleTalk

This chapter provides an overview of the AppleTalk networking system and the
AppleTalk Manager. AppleTalk is a communications network system interconnecting
personal computer workstations, computers acting as file servers and print servers,
printers, and shared modems allowing them to exchange information through a variety
of types of communications hardware and software. The AppleTalk Manager consists of
a set of programming interfaces to the various components of AppleTalk for applications
and processes running on Macintosh computers.

This chapter introduces some of the AppleTalk terminology that is used throughout the
rest of this book. Read this chapter if you want to gain an overview of the AppleTalk
networking system and its component protocols. You should also read this chapter for
suggestions on which AppleTalk protocols to use for various application requirements.

m This first section of this chapter, “About Networking on the Macintosh,” provides an
introduction to AppleTalk networking concepts and terminology, and then it discusses

0 the AppleTalk protocols and their functions
O the AppleTalk Manager

O the layers of the Open Systems Interconnection (OSI) model and how the AppleTalk
protocol stack relates to this model

m The second section of this chapter, “Deciding Which Protocol to Use,” discusses
how you can use each of the AppleTalk protocols that has an application program-
ming interface.

m The third section of this chapter, “The AppleTalk Pascal Interface,” describes the
two modes in which you can execute the routines that make up the interfaces to
the AppleTalk protocols. This information applies to each of the protocols covered
individually throughout the chapters of this book. You should read this section
before you use any of the programming interfaces to the AppleTalk protocols.

The chapters that make up the rest of this book describe how to use the AppleTalk

Manager and the hardware device drivers. Because the AppleTalk network system

includes both hardware and software—and because the software includes not only

the AppleTalk Manager but also file servers, print servers, internet routers, drivers for

circuit cards, and so forth—the information in this book constitutes only a small part of
the body of literature documenting AppleTalk.

About Networking on the Macintosh

Networking on the Macintosh is implemented through AppleTalk. Applications and
processes can communicate across a single AppleTalk network or an AppleTalk internet,
which is a number of interconnected AppleTalk networks. Using AppleTalk, applications
and processes can transfer and exchange data and share resources.

The AppleTalk networking system includes a number of protocols arranged in layers,
which are collectively referred to as the AppleTalk protocol stack. Each of these protocols
provides a set of functions and services that a protocol above it can use and build upon.
A higher-level protocol is considered a client of the protocol that is below it in the
AppleTalk protocol stack. (For information on how these protocols are implemented, see
“The AppleTalk Protocol Stack” beginning on page 1-11.)

About Networking on the Macintosh 1-3

yreLeiddy o) uononposy| -

1-4

CHAPTER 1

Introduction to AppleTalk

Many of the AppleTalk protocols provide application programming interfaces that you
can use to access the services of the protocol. The programming interfaces to these
protocols are collectively referred to as the AppleTalk Manager.

This section provides

® an introduction to some AppleTalk networking fundamentals, including a discussion
of addressing in AppleTalk

m an overview of the AppleTalk protocol stack, with a brief discussion of each protocol

m an overview of the AppleTalk Manager, which includes the LAP Manager
programming interface

AppleTalk Networking

This section introduces some networking concepts and terms that pertain to AppleTalk
and that are used throughout the chapters of this book. It discusses

a fundamental networking concepts and AppleTalk
® addressing in AppleTalk
m AppleTalk connectivity

Basic AppleTalk Networking Concepts

A networking system, such as AppleTalk, consists of hardware and software. Hardware
on an AppleTalk network includes physical devices such as Macintosh personal computer
workstations, printers, and Macintosh computers acting as file servers, print servers, and
routers; these devices are all referred to as nodes on the network.

AppleTalk interconnects these nodes through transmission paths that include both
software and hardware components. The software that governs the transfer of data
across a computer network is commonly designed using a layered architecture or model.
(For more information on networking models and AppleTalk, see “AppleTalk and the
OSI Model” beginning on page 1-19.)

For each layer of a model, protocols exist that specify how the networking software

is to implement the functions which that layer provides and interact with the layer
above and below it. A protocol is a formalized set of procedural rules for the exchange
of information and the interactions between the network’s interconnected nodes. A
network software developer implements these rules in programs that carry out the
functions specified by the protocol. AppleTalk consists of a number of protocols, many
of which are implemented in software programs called drivers.

Note

This book uses the abbreviated term protocol to refer to the
implementation of those rules in software drivers, instead of always
using the complete term protocol implementation.

There are many ways to characterize networks. One characteristic of a network is
whether it is connection-oriented or connectionless. (A protocol can also be considered
connectionless or connection-oriented.) A connection-oriented network is one in which

About Networking on the Macintosh

CHAPTER 1

Introduction to AppleTalk

two nodes on the network, such as computers, that want to communicate must go
through a connection-establishment process, which is called a handshake. This involves
the exchange of predetermined signals between the nodes in which each end identifies
itself to the other. Once a connection is established, the communicating applications or
processes on the nodes at either end can send and receive streams of data.

A connectionless network is one in which two nodes that want to communicate do so
by going directly into a data-transfer state without first setting up a connection. A
connectionless network is also called a datagram or packet-oriented network because
data is sent as discrete packets; a packet is a small unit of data that is sent across a
network. This means that each packet must carry the full addressing information
required to deliver the data from its source node to its destination node. A packet
includes a header portion that holds the addressing information along with some other
information, such as a checksum value that can be used to verify the integrity of the data
delivered, and a data portion that holds the message text. The terms packet and datagram
are synonymous.

A connection-oriented network is analogous to a telephone system. The party who
initiates the call knows whether or not the connection is made because someone at
the other end of the line either answers or not. A connectionless network is analogous
to electronic mail. A person sends a mail message expecting it will be delivered to its
destination. Although the mail usually arrives safely, the sender doesn’t know this
unless the recipient initiates a response affirming it.

There are trade-offs between the two types of networks: a connection-oriented network
provides more function, but at a cost. A connectionless network is less costly in terms of
overhead, but it offers limited support.

A connection-oriented network ensures reliable delivery of data, which includes error
checking and recovery from error or packet loss. Connection-oriented networks provide
support for sessions. In AppleTalk networking, a session is a logical (as opposed to
physical) connection between two entities on an internet. The two communicating
parties can send streams of data across a session, rather than being limited to sending the
data as individual packets. When data is sent as a stream, the networking system
provides flow control to manage the data that makes up the stream. A session must be
set up at the beginning and broken down at the end. All of these services entail overhead.

There is no connection setup or breakdown required for a connectionless network, and
no session is established. A connectionless network offers best-effort delivery only.
Best-effort delivery means that the network attempts to deliver any packets that meet
certain requirements, such as containing a valid destination address, but the network
does not inform the sender when it is unable to deliver the packet, nor does it attempt to
recover from error conditions and packet loss. A connectionless network involves less
overhead because it does not provide network-wide acknowledgments, flow control, or
error recovery.

The terms connectionless and connection-oriented can also be applied to individual
protocols that make up the networking software, as well as to the entire network system
itself. AppleTalk includes protocols that provide connection-oriented services, although,
as a whole, AppleTalk is considered a connectionless network because data is delivered

About Networking on the Macintosh 1-5

seLeiddy o1 uogonposnul .

CHAPTER 1

Introduction to AppleTalk

across an AppleTalk network or internet as discrete packets. One of the AppleTalk
protocals, the Datagram Delivery Protocol (DDP), implements packet delivery. However,
the AppleTalk Data Stream Protocol (ADSP) and the AppleTalk Transaction Protocol
(ATP) provide connection-oriented services, such as session establishment and reliable
delivery of data. The AppleTalk protocols that provide connection-oriented services are
built on top of the datagram services that DDP provides.

In developing AppleTalk applications, you must decide whether to use a connection-
oriented or connectionless AppleTalk protocol. How to choose a protocol to use is
described in “Deciding Which AppleTalk Protocol to Use” beginning on page 1-22.

The connection-oriented AppleTalk protocols support the following two kinds of sessions:

® symmetrical. This session is also referred to as a peer-to-peer session. It is one in which
both ends have equal control over the communication. Both ends can send and receive
data at the same time and initiate or terminate the session. This type of session offers
more capability and is more commonly used than an asymmetrical session.

m asymmetrical. In this type of session, only one end of the connection can control the
communication. One end of the connection makes a request to which the other end
can only respond. This type of session is best suited to a transaction in which a small
amount of data is transferred from one side to the other.

When both ends can send and receive data, the process is called a full-duplex
dialog. When both sides must alternate between sending and receiving data,
the process is called a half-duplex dialog.

Addressing and Data Delivery on AppleTalk Networks

This section discusses some of the aspects of AppleTalk networking that are part of its
addressing and data-delivery scheme. Many components contribute to the addressing
information that is used to identify the location of an application or a process on an
AppleTalk internet. This section defines these names and numbers, and Table 1-1
highlights them.

Table 1-1 AppleTalk addressing numbers and names
Addressing information Description
Network number A unique 16-bit number that identifies the network to which

a node is connected. A single AppleTalk network can be
either extended or nonextended. An extended network is
defined by a range of network numbers.

Node ID A unique 8-bit number that identifies a node on an
AppleTalk network.

Socket number A unique 8-bit number that identifies a socket. A maximum
of 254 different socket numbers can be assigned in a node.

Zone name A name assigned to an arbitrary subset of nodes within an
AppleTalk internet.

About Networking on the Macintosh

CHAPTER 1

Introduction to AppleTalk

A single AppleTalk network can be interconnected with other AppleTalk networks
through routers to create a large, dispersed AppleTalk internet. A router in an internet
can select the most efficient path to the data’s intended destination, while allowing
connected networks to remain fully independent and to retain separate addresses.

Each network is assigned a network number so that packets destined for a particular
network on an AppleTalk internet can be routed to the correct network. A router consults
the packet’s destination network number and forwards the packet throughout the
internet from one router to another until the packet arrives at its destination network.
AppleTalk supports a number of types of networks including LocalTalk, TokenTalk,
EtherTalk, and FDDITalk networks.

AppleTalk assigns a node ID to a node when it connects to the network. Every node on
an AppleTalk network is identified by its unique 8-bit node ID. (Extended networks
include the 16-bit network number.) Once a packet arrives at its destination network, the
packet is delivered to its destination node within that network, based on the node ID.

More than one application or process that uses AppleTalk may be running on a single
node at the same time. Because of this, AppleTalk must have a way to determine for
which application or process a packet that is delivered to the node is intended. AppleTalk
uses sockets to satisfy this requirement. A socket is a piece of software that serves as

an addressable entity on a node. Each process or application that runs on an AppleTalk
network “plugs into” a socket that is identified by a unique number. Applications or
processes exchange data with each other across an internet through sockets. Because
each application or process has its own socket address, a node can have two or more
concurrent open connections, for example, one to a file server and one to a printer.

The socket number identifies the process to which the Datagram Delivery Protocol
(DDP) is to deliver a packet. The combination of the socket number, the node ID, and
the network number creates the internet socket address of an application or process.
An internet socket address provides a unique identifier for any socket in the AppleTalk
internet. When an application or process is associated with a socket, it is referred to

as a socket client.

An application or process becomes accessible from any point in the AppleTalk internet
through its association with an internet socket address and a special name that is
associated with the internet socket address through the AppleTalk Name-Binding
Protocol (NBP). An NBP name contains three parts: object, type, and zone. The zone field
of the name is the zone in which the node resides.

A zone is a logical grouping of nodes in an AppleTalk internet. The use of zones allows
a network administrator to set up departmental or other logical groupings of nodes on
an internet. A single extended network can contain nodes belonging to any number of
zones; an individual node on an extended network can belong to only one zone. Each
zone is identified by a zone name.

An AppleTalk internet always consists of more than one AppleTalk network. It can be
made up of a mix of LocalTalk networks, TokenTalk networks, EtherTalk networks, and
FDDITalk networks. It can also consist of more than one network of a single type, such as

About Networking on the Macintosh 1-7

et eiddy o uonanposu) .

1-8

CHAPTER 1

Introduction to AppleTalk

several LocalTalk networks. A single AppleTalk network can be either a nonextended
network or an extended network. An AppleTalk internet can include both nonextended
and extended networks.

Note

The term internet is used throughout this book to refer to an AppleTalk
internet exclusively. It is not within the scope of this book to discuss
other types of internets, such as Arpanet. &

An AppleTalk nonextended network is one in which

m the network has one network number assigned to it

m the network supports only one zone

m all nodes on the network share the same network number and zone name
m each node on the network has a unique node ID

LocalTalk is an example of a nonextended network. Each node on a nonextended net-
work, such as LocalTalk, has a unique 8-bit node ID. Because there are 256 combinations
of 8 bits, and two combinations are not available (ID 255 is reserved for broadcast
messages and the ID 0 is not allowed), a nonextended network supports up to only

254 active nodes at a time.

An AppleTalk extended network is one in which

m the network has a range of network numbers assigned to it
m the network supports multiple zones

® each node on the network has a unique node ID (Nodes can also have different
network numbers that fall within the network number range and different
zone names.)

A network number range defines the extended network. An extended network uses
what is referred to as extended addressing: in principle, a range of network numbers
allows each extended network to have over 16 million (224) nodes. In any specific
implementation, the hardware or software might limit the network to fewer nodes.

You can think of an extended network as a number of nonextended networks forming a
single network, each providing up to 254 possible node IDs.

Whether the network is extended or nonextended, data is always delivered in DDP
packets that include the DDP header that contains addressing information followed by
the data itself. As the DDP packet is passed down the protocol stack to the layer below,
the packet is extended to include additional information.

At the data-link layer, additional addressing information is prepended to the DDP
header, and the packet is now called a frame. At the physical layer, a frame preamble is
prepended to the frame header and a frame trailer is appended to the end of the data
portion of the DDP packet. (You don’t need to be concerned with the frame preamble
and frame trailer; they are mentioned here and shown in Figure 1-1 for completeness.)
The frame is then transmitted across the network or internet to its destination node.

About Networking on the Macintosh

CHAPTER 1

Introduction to AppleTalk

At the destination node, the frame is received, and as it is passed up through the
protocol stack the additional information that was added to the DDP packet at each layer
on the sending node is used and removed at the corresponding layer on the destination
node. The frame preamble and frame trailer are removed at the physical layer. The frame
header is removed at the data-link layer. You can think of the data that your application
sends as being enclosed successively at each of these layers in envelopes that contain
addressing information necessary to deliver the data; at the corresponding layer on the
destination node, the envelope is removed. Figure 1-1 illustrates this concept.

Figure 1-1 Data delivery on AppleTalk networks

DDP packet DDP packet
Network
; DDP DDP
oy header Data header et
4
Frame Frame E
g;t:;““k Frame | DDP Data Frame | DDP Data
header | header header | header
M
Complete frame @; Complete frame
rhz:'m' Frame | Frame | DDP Data Frame Frame | Frame | DDP Data Frame
oy preamble | header | header trailer preamble | header | header trailer
Physical link |
S LEEA T SR [P PYSSa PR T | L Ry

AppleTalk Connectivity

A fundamental part of a network system is its connectivity infrastructure, which includes
the communication hardware and the protocols for controlling the hardware. The
communication hardware can consist of various media including wire cabling, fiber
optics cabling, and a network interface controller (NIC), if one is used. This hardware
and software constitute the data transmission medium, which is called a data link. A
data link provides nodes with access to the network.

Nodes on a network share and compete for access to the link. The link-access protocol
implemented in the software controls the access of a node to the network hardware and
makes it possible for many nodes to share the same communications hardware. It also
handles the delivery of packets from one node to another over a network. When a packet

About Networking on the Macintosh 1-9

yjeLe|ddy o1 uononposu| -

1-10

CHAPTER 1

Introduction to AppleTalk

is delivered to the link-access protocol for transmission across the network, additional
addressing and control information is added to the packet, and the packet is called
a frame.

AppleTalk connectivity is designed to be link independent, which means that it allows
for the use of various types of data links accessed through the various link-access
protocols, which it supports. AppleTalk provides the following data-link support:

m The LocalTalk Link-Access Protocol (LLAP) supports a LocalTalk link.
m The EtherTalk Link-Access Protocol (ELAP) supports an Ethernet link.
® The TokenTalk Link-Access Protocol (TLAP) supports a token ring link.

m The Fiber Distributed Data Interface Link-Access Protocol (FLAP) supports a Fiber
Distributed Data Interface link.

These protocols provide interfaces between the Datagram Delivery Protocol (DDP) and
the types of data-link hardware that AppleTalk can use. A user can choose to connect to
any of the data links that the node is set up to support.

AppleTalk includes a component called the Link-Access Protocol (LAP) Manager, which
insulates the higher-level AppleTalk protocols from having to identify and connect to the
link that the user has chosen; the LAP Manager connects to the selected link for them.

AppleTalk Phase 2

The current version of AppleTalk, which was introduced in 1989, is AppleTalk Phase 2.
Based on the original version of AppleTalk, it was designed to enhance performance
over large networks through the following improvements:

m The routing protocols that specify how messages are passed between networks were
enhanced to promote improved network traffic and better router selection.

m Extended addressing, which allows a range of network numbers to be assigned to a
single network, was implemented for networks other than LocalTalk.

m Support of multiple zones for extended networks was added. An extended network
can have an associated list of zone names. A single extended network can be
associated with more than one zone name, or a single zone name can be associated
with more than one extended network. Two nodes on the same extended network can
belong to different zones.

Note

The Phase 2 versions of the AppleTalk drivers are included as part of
system software version 7.0 and later. They can be installed on any
Macintosh computer other than the Macintosh 128K, Macintosh 512K,
Macintosh 512K enhanced, and Macintosh XL computers. If you want to
provide AppleTalk Phase 2 drivers with your product, you must obtain
a license from Apple Software Licensing. &

About Networking on the Macintosh

CHAPTER 1

Introduction to AppleTalk

Historical note

AppleTalk Phase 1, the original AppleTalk protocol architecture, was
designed to support small local workgroups. AppleTalk Phase 1
supported the LocalTalk Link-Access Protocol (LLAP), which was
originally called the AppleTalk Link-Access Protocol (ALAP). With the
addition of the EtherTalk Link-Access Protocol (ELAP) and other link-
access protocols, ALAP was renamed to indicate the specific data link
that it supports. ¢

The AppleTalk Protocol Stack

This section explains what an AppleTalk protocol is, then it provides a brief discussion of
each component of the AppleTalk protocol stack, followed by a discussion of how the
AppleTalk protocols are implemented in software drivers.

siieLe|ddy o} uoponposul -

This section also introduces the LAP Manager, multivendor support, and multinode
architecture, which are components of AppleTalk, although strictly considered, they are
not protocols.

To develop applications that use AppleTalk networking services, you don’t need to
understand how AppleTalk implements the protocols it supports. However, under-
standing the functions that each protocol provides will help you determine which
application programming interfaces to use for your application.

The AppleTalk system architecture consists of a number of protocols arranged in layers.
The various AppleTalk protocols are sets of rules, not computer programs, and so can be
implemented in many different ways on many different systems. All of the AppleTalk
protocol functions that you can address or control from a Macintosh application are
implemented as Macintosh device drivers or managers. Many other features of these
protocols are implemented in software located only on internet routers that are not used
to run general applications. Some parts of protocols are implemented by server software
such as file servers or print servers.

When this book refers to a protocol as doing or controlling something, you should
understand the statement to mean that some program that implements the protocol
actually carries out the operation. Each protocol in a specific layer provides services to
one or more protocols in a higher-level layer, which is then the client of the lower-level
protocol. The higher-level protocol builds on the services provided by the lower-level
one. Figure 1-2 on page 1-12 shows the AppleTalk protocols and how they relate to one
another in layers. The following sections describe each protocol in turn, beginning with
AFP, and progressing through the protocols as they appear in the figure.

About Networking on the Macintosh 1-11

CHAPTER 1

Introduction to AppleTalk

Figure 1-2 AppleTalk protocol stack

AppleTalk
Filing Protocol
(AFP)

il

Zone Information AppleTalk AppleTalk
Protocol Session Protocol Data Stream Protocol
(2IP) (ASP) (ADSP)
AN @ @ AN
AppleTalk AppleTalk Name-Binding Routing Table
Transaction Protocol Echo Protocol Protocol Maintenance Protoco!
(ATP) (AEP) (NBP) (RTMP)
- il] g U g
ﬂ\/ V
Datagram Delivery Protocol
(DDP)
LocalTalk EtherTalk .
Link-Access Protocol Link-Access Protocol Otht;rrg?gcglc;cess
(LLAP) (ELAP)

1-12

AppleTalk Filing Protocol (AFP)

The AppleTalk Filing Protocol (AFP) allows a workstation on an AppleTalk network to
access files on AppleShare file servers. When the user opens a session with an AppleShare
file server over an internet, it appears to any application running on the workstation that
uses File Manager routines as if the files on the file server were located on a disk drive
connected to the workstation. The AFP protocol is not commonly used because the native
file system commands allow users to access an AFP server, such as AppleShare, from a
workstation. There is no server-based interface.

The chapter “AppleTalk Filing Protocol (AFP)” in this book describes the application
programming interface to the workstation implementation of AFP. For additional
information about AFP, see “Accessing AppleShare and Other File Servers” on page 1-27.

Zone Information Protocol (ZIP)

The Zone Information Protocol (ZIP) provides applications and processes with access to
zone names. Each node on a network belongs to a zone. Zone names are typically used

About Networking on the Macintosh

CHAPTER 1

Introduction to AppleTalk

to identify groups of nodes belonging to a particular department or area. ZIP allows
applications and processes to gain access to

@ their own node’s zone name
m the names of all the zones on their local network
m the names of all the zones throughout the internet

The chapter “Zone Information Protocol (ZIP)” in this book describes the ZIP application
programming interface. For additional information about ZIP, see “Identifying Zones”
on page 1-23.

AppleTalk Session Protocol (ASP)

The AppleTalk Session Protocol (ASP) sets up and maintains sessions between a
workstation and a server. ASP is an asymmetrical protocol in which one side of the
dialog, the workstation client of ASP, initiates the session and sends commands to the
other side of the dialog. A higher-level protocol that is built on top of the ASP server
interprets and executes the command, and the ASP server returns a reply. ASP also
provides a means by which the server can send a message to the workstation; for
example, a file server can use this messaging system to notify all of the workstations that
are using the file server that it is shutting down. ASP is used by the AppleTalk Filing
Protocol to allow a user to manipulate files on a file server. Because ADSP provides
socket clients at both ends of the connection with equal control, ADSP is more commonly
used than ASP when a session protocol is required.

The chapter “AppleTalk Session Protocol (ASP)” in this book describes the ASP applica-
tion programming interface. For additional information about ASP, see “AppleTalk
Session Protocol” on page 1-25.

AppleTalk Data Stream Protocol (ADSP)

The AppleTalk Data Stream Protocol (ADSP) is a connection-oriented protocol that
supports sessions over which applications and processes that are socket clients can
exchange full-duplex streams of data across an AppleTalk internet. ADSP is a symmetri-
cal protocol; the socket clients at either end of the connection have equal control over the
ADSP session and the data exchange. Through attention messages, ADSP also provides
for out-of-band signaling, a process of sending data outside the normal session dialog so
as not to interrupt the data flow.

The chapter “AppleTalk Data Stream Protocol (ADSP)” in this book describes the ADSP
application programming interface. For additional information about ADSP, see
“AppleTalk Data Stream Protocol” on page 1-24.

AppleTalk Transaction Protocol (ATP)

The AppleTalk Transaction Protocol (ATP) is a transaction protocol that allows one
socket client to transmit a request that some action be performed to another socket client
that carries out the action and transmits a response reporting the outcome. ATP provides
reliable delivery of data by retransmitting any data packets that are lost and ensuring
that the data packets are delivered in the correct sequence.

About Networking on the Macintosh 1-13

MleLeiddy o} uononposul -

1-14

CHAPTER 1

Introduction to AppleTalk

The chapter “AppleTalk Transaction Protocol (ATP)” in this book describes the ATP
application programming interface. For additional information about ATP, see
“Performing a Transaction” on page 1-25.

AppleTalk Echo Protocol (AEP)

The AppleTalk Echo Protocol (AEP) exists on every node as a DDP client process called
the AEP Echoer. The AEP Echoer uses a special socket to listen for packets sent to it from
socket clients on other nodes. When it receives such a packet, the AEP Echoer returns it
directly to the sender. A socket client can send a packet to the AEP Echoer on another
node to determine if that node can be accessed over the internet and to determine how
long it takes a packet to reach that node. There is no application programming interface
to AEP. A socket client can send packets to an AEP Echoer socket on another node from a
DDP socket, but it cannot access the AEP implementation directly.

The chapter “Datagram Delivery Protocol (DDP)” in this book describes how to send
packets to the AEP socket. For additional information about AEP, see “Measuring
Packet-Delivery Performance” on page 1-26.

Name-Binding Protocol (NBP)

The Name-Binding Protocol (NBP) provides your application or process with a way

to map names that are useful to people using your program to numbers or addresses
that are useful to computers. NBP associates a user-friendly three-part name that can be
displayed to end users with the internet socket address of the application or process.
When a user launches it, your application can register itself with NBP. When a user quits
the application or when you no longer wish to advertise your application, your
application can delete its entry from the NBP names table. Once your application
registers itself with NBP, other applications can locate it.

All applications and processes that use AppleTalk use NBP to make their services known
and available throughout an AppleTalk internet and to locate other applications and
processes in the internet. An application or process can use NBP to

m register itself with NBP. Registering an application or process with NBP makes that
process a network-visible entity. (NBP lets your application or process bind a
three-part name to its internet socket address.)

m look up or confirm the address of another application or process that is registered
with NBP.

® remove its entry from the NBP names table when it no longer wants to advertise
its services.

The chapter “Name-Binding Protocol (NBP)” in this book describes the NBP application
programming interface. For additional information about NBP, see “Making Your
Application Available Throughout the Internet” on page 1-22.

About Networking on the Macintosh

CHAPTER 1

Introduction to AppleTalk

Routing Table Maintenance Protocol (RTMP)

The Routing Table Maintenance Protocol (RTMP) provides AppleTalk internet routers
with a means of managing routing tables used to determine how to forward a datagram
from one socket to another across an internet based on the datagram’s destination
network number. The RTMP implementation on a router maintains a table called a
routing table that specifies the shortest path to each possible destination network
number. The AppleTalk protocol software in a workstation (that is, a node other than a
router) contains only a small part of RTMP, called the RTMP stub, that DDP uses to
determine the network number (or range of network numbers) of the network cable to
which the node is connected and to determine the network number and node ID of one
router on that network cable. There is no application programming interface to the
RTMP stub; therefore, RTMP is not discussed in this book.

Datagram Delivery Protocol (DDP)

The Datagram Delivery Protocol (DDP) is a connectionless protocol that transfers

data between sockets as discrete packets, or datagrams, with each packet carrying its
destination internet socket address. DDP provides best-effort delivery. It does not
include support to ensure that all packets sent are received at the destination or that
those packets that are received are in the correct order. Higher-level protocols that use
the services of DDP provide for reliable delivery of data. DDP uses whichever link-
access protocol the user selects; that is, DDP can send its datagrams through any type of
data link and transport media.

The chapter “Datagram Delivery Protocol (DDP)” in this book describes the DDP
application programming interface. For additional information about DDP, see “Sending
and Receiving Data as Discrete Packets” on page 1-26.

Link-Access Protocols

AppleTalk supports various network (or link) types and allows the user to select and
switch among the types of networks to be used based on how the user’s machine is
configured; that is, if the machine has the proper hardware and software installed for a
link type, the user can select that link. AppleTalk includes the link-access protocols for
LocalTalk, EtherTalk, TokenTalk, and FDDITalk (Fiber Distributed Data Interface).
AppleTalk uses connection files of type 'adev' that contain software that supports a
particular type of data link.

To achieve link independence, AppleTalk relies on the Link-Access Protocol (LAP)
Manager, which is a set of operating-system utilities, not an AppleTalk protocol. The
main function of the LAP Manager is to act as a switching mechanism that connects
the AppleTalk link-access protocol for the link type that the user selects to both the
higher-level AppleTalk protocols and the lower-level hardware device driver for that
data link. From the Network control panel, a user can select which network is to be
used for the node’s AppleTalk connection.

About Networking on the Macintosh 1-15

yreLejddy o) uononponu -

1-16

CHAPTER 1

Introduction to AppleTalk

The AppleTalk connection files of type 'adev' and the LAP Manager work together

with the Network control panel file of type 'cdev'. When the user selects a network
type from the Network control panel, the LAP Manager routes AppleTalk communi-

cations through the link-access protocol for the selected network.

The LAP Manager also provides an application with access to the AppleTalk Transition
Queue. You can place an entry for your application in the AppleTalk Transition Queue so
that the LAP Manager will notify you when an AppleTalk transition occurs or is about to
occur. An AppleTalk transition is an event, such as an AppleTalk driver being opened or
closed, that can affect your AppleTalk application.

The chapter “Link-Access Protocol (LAP) Manager” in this book describes the LAP
Manager and the AppleTalk Transition Queue. For additional information about the
LAP Manager, see the Macintosh AppleTalk Connections Programmer’s Guide.

Multivendor Architecture

In addition to supporting various types of networks, Apple also provides what is known
as multivendor support. The multivendor architecture allows for multiple brands of
Ethernet, token ring, and FDDI NuBus™ network interface controllers (NICs) to be
installed on a single node at the same time. In addition to selecting the type of network
connection, the user can now select a particular device to be used for the network
connection. The chapter “Ethernet, Token Ring, and Fiber Distributed Data Interface” in
this book describes multivendor architecture.

Multinode Architecture

Multinode architecture is an AppleTalk feature that allows an application to acquire
node IDs in addition to the standard node ID that is assigned to the system when the
node joins an AppleTalk network. Multinode architecture is provided to meet the needs
of special-purpose applications that receive and process AppleTalk packets in a custom
manner instead of passing them directly on to a higher-level AppleTalk protocol for
processing. A multinode ID allows the system that is running your application to appear
as multiple nodes on the network. The prime example of a multinode application is
Apple Remote Access (ARA). The chapter “Multinode Architecture” in this book
describes this feature.

How the AppleTalk Protocols Are Implemented

Above the data-link level, all of the AppleTalk protocols that you can address or control
from a Macintosh application through a programming interface as well as multinode
architecture are implemented as Macintosh device drivers. Table 1-2 identifies the
AppleTalk drivers and the protocols they implement.

About Networking on the Macintosh

CHAPTER 1

Introduction to AppleTalk

Table 1-2 AppleTalk drivers and the protocols they implement

AppleTalk driver Protocols it implements

.MPP DDP, NBP, AEP, RTMP stub, multinode
ATP ATP

XPP ASP, workstation portions of ZIP and AFP
.DSP ADSP

Figure 1-3 shows the AppleTalk protocols with the name of the driver that implements

the protocol and the connection files of type 'adev' that AppleTalk provides for various
types of links. Notice how the LAP Manager acts as a switching mechanism between
the higher-level protocols and the link-access protocols. Many other features of these
protocols are implemented in software located only on internet routers that are not used
to run general applications. Some parts of protocols are implemented by server software

such as file servers and print servers.

Figure 1-3 Device drivers and connections files that implement AppleTalk protecols

AEP

_MPP:driver

]

RTMP

- MNPPdriver

]

DDP

___MPPdriver

‘LAPMdnager -~ °

ELAP
LLAP

ELAP 'adov'

file .

TLAP 'adav’ file

About Networking on the Macintosh

1-17

yeLsiddy o} uononposu) -

CHAPTER 1

Introduction to AppleTalk

The AppleTalk Manager

Your application accesses the services of the AppleTalk protocols through the AppleTalk
Manager, which is a collection of the application programming interfaces to the
AppleTalk protocols. The AppleTalk Manager includes the LAP Manager, which collects
together the interfaces to the supported AppleTalk data links. Note that not all
AppleTalk protocols have programming interfaces.

Figure 1-4 shows the AppleTalk protocols; those protocols that have programming
interfaces are shaded.

Figure 1-4 AppleTalk protocols with programming interfaces

1-18

Typically, an application uses the services of more than one protocol. For example, you
might choose to use ADSP to set up a symmetrical session over which the users of your
application can transfer data, but you would also use NBP to register your application to
make it available to users and other applications throughout the internet. For informa-
tion on how to select which protocols to use, see “Deciding Which AppleTalk Protocol to
Use” on page 1-22.

About Networking on the Macintosh

CHAPTER 1

Introduction to AppleTalk

AppleTalk and the OSI Model

This section provides general information about the relationship between AppleTalk and
an industry-standard networking model. You do not need to read this section to under-
stand the AppleTalk protocols or to use the AppleTalk Manager.

Most networking systems are designed as layered architectures that relate to what are
called reference models. These matrices offer a structure that network designers can refer
to in developing a network architecture; they are guidelines and not rules. Each layer
of a model collects together those functions that are similar or highly interrelated

and provides services to the layer above it. Network designers develop protocols that
encompass the functions of each layer. Often more than one protocol is defined and
implemented to handle the requirements of a layer in different ways. Some protocols
include functions that span more than one layer specified by a model. For example, in
favor of efficiency, a network protocol developer may elect to define a single protocol
that spans two or more layers of a reference model.

Various layered models have been developed that provide standards for the design and
development of networking software. One of these models is the Open Systems
Interconnection (OSI) model, which is a seven-layered standard that was published by
the International Standards Organization (ISO) in the 1970s. This is the model with
which the AppleTalk network system architecture is most closely aligned.

Note

Although this section discusses AppleTalk in relation to the OSI
model, it does not claim a protocol compatibility of AppleTalk
with the OSI protocols currently in various stages of definition,
approval, and deployment. ¢

Figure 1-5 on page 1-20 shows the relationships among the AppleTalk protocols and
how they map to the OSI model. The shaded area of the graphic shows the name of
the OSI layer. A connection between one protocol and another above or below it in the
figure indicates that the upper protocol is a client of the lower protocol, that is, the
upper protocol uses services provided by the lower protocol in order to carry out
some functions.

Application Layer

The highest layer of the OSI model is the application layer. This layer allows for the
development of application software. Software written at this layer benefits from the
services of all the underlying layers. There is no AppleTalk protocol that maps directly

to this layer, although some of the functions of the AppleTalk Filing Protocol (AFP) fulfill
this layer.

About Networking on the Macintosh 1-19

ieLeiddy o} uonanpoul -

CHAPTER 1

Introduction to AppleTalk

Figure 1-5 AppleTalk protacol stack and the OSI model

1-20

Application
: AFP
Presentation m
Y
Session ZIP ASP ADSP
<> @ ﬁ] £
Trangsport ATP AEP NBP RTMP
Network DDP
@ At A
4 v 4
Data-{Ink LLAP ELAP TLAP FDDI
driver driver driver

Presentation Layer

The presentation layer assumes that an end-to-end path or connection already exists
across the network between the two communicating parties, and it is concerned with
the representation of data values for transfer, or the transfer syntax. In the OSI model, the
AppleTalk Filing Protocol (AFP) spans the presentation and application layers. AFP
provides an interface between an application and a file server. It uses the services of
ASP, which, in turn, is a client of ATP.

AFP allows a workstation on an AppleTalk network to access files on an AFP file server,
such as an AppleShare file server. When the user opens a session with an AppleShare file
server over an internet, it appears to any application running on the workstation that
uses File Manager routines as if the files on the file server were located on a disk drive
connected to the workstation.

Session Layer

The session layer serves as an interface into the transport layer, which is below it. The
session layer allows for session establishment, which is the process of setting up a
connection over which a dialog between two applications or processes can occur. Some
of the functions that the session layer provides for are flow control, establishment of
synchronization points for checks and recovery for file transfer, full-duplex and half-
duplex dialogs between processes, and aborts and restarts.

About Networking on the Macintosh

CHAPTER 1

Introduction to AppleTalk

The AppleTalk protocols implemented at the session layer are

m the AppleTalk Data Stream Protocol (ADSP), which provides its own stream-based
transport layer services that allow for full-duplex dialogs

m the AppleTalk Session Protocol (ASP), which uses the transaction-based services of
ATP to transport workstation commands to servers

m the Zone Information Protocol (ZIP), which provides applications and processes with
access to zone names. Each node on a network belongs to a zone.

Transport Layer

The transport layer isolates some of the physical and functional aspects of a packet
network from the upper three layers. It provides for end-to-end accountability, ensuring
that all packets of data sent across the network are received and in the correct order.
This is the process that is referred to as reliable delivery of data, and it involves providing
a means of identifying packet loss and supplying a retransmission mechanism. The
transport layer also provides connection and session management services.

The following AppleTalk protocols are implemented at the transport layer:
® Name-Binding Protocol (NBP)

m AppleTalk Transaction Protocol (ATP)

m AppleTalk Echo Protocol (AEP)

m Routing Table Maintenance Protocol (RTMP)

In addition to these transport layer protocols, the AppleTalk Data Stream Protocol
(ADSP) includes functions that span both the transport and the session layers. ADSP
provides for reliable delivery of data, and in that capacity it covers the transport layer
requirements.

Network Layer

The network layer specifies the network routing of data packets between nodes and

the communications between networks, which is referred to as internetworking. The
Datagram Delivery Protocol (DDP) is the AppleTalk protocol implemented at the
network layer. DDP is a connectionless datagram protocol providing best-effort delivery.
This means that DDP transfers data as discrete packets and that DDP does not include
support to ensure that all packets sent are received at the destination or that those
packets that are received are in the correct order. Higher-level protocols that use the
services of DDP provide for this kind of reliability.

Data-Link and Physical Layers

The data-link layer and the physical layer provide for connectivity. The communication
between networked systems can be via a physical cable made of wire or fiber optic, or it
can be via infrared or microwave transmission. In addition to these, the hardware can
include a network interface controller (NIC), if one is used. The hardware or transport
media and the device drivers for the hardware comprise the physical layer. LocalTalk,

About Networking on the Macintosh 1-21

sleLojddy o} uogonpoRu| -

CHAPTER 1

Introduction to AppleTalk

token ring, Ethernet, and Fiber Distributed Data Interface (FDDI) are examples of types
of networking hardware that AppleTalk supports.

The physical hardware provides nodes on a network with a shared data transmission
medium called a link. The data-link layer includes a protocol that specifies the physical
aspects of the data link and the link-access protocol, which handles the logistics of
sending the data packet over the transport medium. AppleTalk is designed to be
data-link independent, allowing for the use of various types of hardware and their
link-access protocols.

Deciding Which AppleTalk Protocol to Use

1-22

The AppleTalk Manager consists of a collection of application programming interfaces

to the AppleTalk protocols and the LAP Manager. Each of the AppleTalk protocols
implements a different set of functions and services, and the programming interface for a
specific protocol includes a set of routines that give your application access to the
protocol’s functions and services.

AppleTalk offers programming interfaces to a variety of communications protocols at
different levels. Your choice of protocol or protocols to use depends primarily on your
application’s needs.

This section provides a brief discussion of how your application can use each protocol.
The AppleTalk protocols are layered in a stack with each protocol benefiting from the
services of the protocols in layers below it. Looked at from a top-down approach, the
high-level protocols provide an accretion of all the services of the underlying protocols.

A developer who uses the higher-level protocols that provide for reliable delivery of
data and error recovery does not have to implement these services as part of an
application. An application developer who wants to write a program for end users

that runs on an AppleTalk network would typically use the interfaces to one or more
higher-level protocols. For example, you might use NBP to register the program with the
network so that it is visible to users and other applications, and, perhaps, ADSP to

" transfer data.

A network software developer who wants to implement a custom session-oriented
protocol, instead of using ADSP or ASP, would typically use the interface to a protocol
such as DDP or any of the protocols below it. A network software developer who wants
to implement a custom protocol stack instead of using AppleTalk can use a low-level
protocol interface to attach a protocol handler that receives data from the network.

Making Your Application Available Throughout the. Internet

This section discusses the Name-Binding Protocol (NBP) that you can use to make your
application or process visible to users and other applications and processes throughout
an AppleTalk internet.

Deciding Which AppleTalk Protocol to Use

CHAPTER 1

Introduction to AppleTalk

NBP binds the internet socket address assigned to a process or application to a special
human-readable name that contains three parts: the object, type, and zone fields. The
NBP name is different from the name of the application. The object and type are assigned
by the process itself and can be anything the user or application developer selects; the
zone is the one in which the node resides.

NBP maintains a table on each node that contains the name-and-address pair for each
application or process on that node that is registered with NBP. Once an application or
process is registered with NBP, it becomes visible to users and other applications and
processes throughout the internet. When a process or application is registered with NBP,
it is referred to as a network-visible entity.

Users can select an application by its NBP name. Based on the name or a part of the
name, applications and processes can request NBP to look up the internet socket address
for the entity.

When you use other AppleTalk protocols that send and receive data, your application or
process becomes associated with an internet socket address. Although applications and
processes need the internet socket addresses of other applications and processes that
they want to connect with, a name identifying the type of application and its location is
more meaningful to an end user. Your application or process can use NBP to find all
other applications or processes of the same type and get their internet socket addresses.
Your application could then display the NBP names of other applications to an end user
so that the user can select an application to connect to. Your application could then use
another AppleTalk protocol, such as ADSP, to connect to the partner application.

An application, such as a network management tool, could use NBP to collect information
so that it can provide an inventory of all nodes belonging to a zone and list the applica-
tions running on each of those nodes. It could sort the applications by type. For example,
it could provide a list of all file servers on an AppleTalk internet.

Identifying Zones

The Zone Information Protocol (ZIP) maintains a zone information table in each internet
router that lists the relationships between zone names and network numbers. You can
use the part of ZIP that is implemented on a nonrouter node to get the name of the zone
to which the node that is running the application belongs. Your application can also call
ZIP to get a list of all the zones in the internet.

An application running on a node that belongs to an extended network can call ZIP to
get a list of all the zone names associated with that network. For example, an application
that supports network administration might use these service to provide a network
administrator with a list of the zones for a particular network so that the administrator
can select the correct zone for a node when adding nodes to a network.

An application could collect other kinds of information, such as what services are
running on nodes, and then sort the information by zone.

Deciding Which AppleTalk Protocol to Use 1-23

ylel ejddy 0} uoponpony| -

1-24

CHAPTER 1

Introduction to AppleTalk

Using a Session Protocol to Send and Receive Data

AppleTalk includes two session protocols that you can use to send and receive data:

m ADSP provides a symmetrical session.
m ASP provides an asymmetrical session.
Most applications use ADSP, which was made available after ASP.

AppleTalk Data Stream Protocol

Your application can use ADSP to set up and maintain a connection with another
application over an internet. Through this connection, both applications can send and
receive streams of data at any time. Because ADSP allows for the continuous exchange of
data, any application that needs to support the exchange of more than a small amount

of data should use ADSP. In addition to providing for a duplex data stream, ADSP also
provides an application with a means of sending attention messages to pass control
information between the two communicating applications without disrupting the main
flow of data.

In most cases, ADSP is the protocol that Apple recommends applications use for sending
and receiving data. In addition to ensuring reliable delivery of data, ADSP provides a
peer-to-peer connection, that is, both ends of the connection can exert equal control over
the exchange of data.

Note

Because ADSP is connection-oriented, it entails additional processing
and memory usage in setting up and maintaining the connection
between the two applications. Therefore, if your application needs to
send a small amount of data, such as a request that the other end
perform a task and report the result in response, and you don’t want to
incur the overhead involved in establishing, maintaining, and breaking
a connection, you should consider using ATP rather than ADSP for
data transfer.

ADSP appears to its clients to maintain an open pipeline between the two entities at
either end. Either entity can write a stream of bytes to the pipeline or read data bytes
from the pipeline. However, because ADSP, like all other higher-level AppleTalk
protocols, is a client of DDP, the data is actually sent as datagrams. This allows ADSP to
correct transmission errors in a way that would not be possible for a true data stream
connection. Thus, ADSP retains many of the advantages of a connectionless protocol
while providing to its clients a connection-oriented full-duplex data stream.

An application that uses ADSP can treat the data to be transferred as continuous streams
of data, or it can treat it as discrete messages to be interpreted individually. Applications
that might use ADSP include server software applications such as mail servers, terminal
emulation programs, or any application that requires two-way communication between
computers. ADSP also includes features that let you authenticate the identity of the party
at the other end of the connection and send encrypted data across the session, which is
then decrypted at the other end. The authentication and encryption features of ADSP are
referred to as AppleTalk Secure Data Stream Protocol (ASDSP).

Deciding Which AppleTalk Protocol to Use

CHAPTER 1

Introduction to AppleTalk

AppleTalk Session Protocol

You can use the AppleTalk Session Protocol (ASP) to implement workstation applica-
tions that require an asymmetrical dialog with a server in which the workstation
application initiates and controls the dialog. The workstation application tells the server
application what to do and the server responds. ASP provides for the setting up, main-
taining, and closing down of a session between a workstation and a server.

A workstation application that requires a state-dependent service should use ASP
instead of ATP. State dependence means that the response to a request is dependent on
a previous request. Consider the example of a workstation application connecting to a
file server to read a file: before the application can read the file, it must have first issued
a request to open the file. (For example, the AppleTalk Filing Protocol [AFP] uses ASP.
However, only the client side of ASP is implemented on the Macintosh.) When a dialog
is state dependent, all requests must be delivered in order and duplicate packets must
not be sent: ASP provides for this.

An ATP transaction-based request, such as a workstation application requesting a server
to return the time of day, is independent of other requests and not state dependent.

ASP assigns each session a unique identifier called a session reference number that
allows more than one workstation to establish a session with the same server at the same
time. For example, a server might use session reference numbers to distinguish between
commands received from various clients of sessions.

ASP ensures that commands from a workstation are delivered without duplication and
in the same order in which they were sent. ASP conveys the results of these commands
back to the workstation. As long as the session is open, the workstation can request
directory information, change filenames, and so forth. The file server must respond to
the workstation’s commands and cannot initiate any actions on its own.

Performing a Transaction

If you want to write an application that performs a transaction, you can use the
AppleTalk Transaction Protocol (ATP). A transaction is an interaction between two
applications that are clients of ATP in which one application, known as the requester,
sends a request to the other application, known as the responder, to perform a task and
return a response that reports the outcome of the task. The transaction request must fit in
a single packet; however, the response can contain up to eight packets. ATP transactions
are an efficient means of transporting small amounts of data across the network. ATP
provides a reliable loss-free transport service. ATP’s means of ensuring reliable delivery
of data is based on the request-response paradigm as opposed to the data stream model
that ADSP uses for reliable delivery of data.

You should use ATP
a if you want to send a small amount of data

m if your application requires delivery of all packets
m if your application can tolerate a minor degree of performance degradation
[

if you do not want to incur the overhead and more extensive performance
degradation involved in maintaining a session

Deciding Which AppleTalk Protocol to Use . 1-25

sieLeiddy o) uoonponu -

1-26

CHAPTER 1

Introduction to AppleTalk

ATP is useful for collecting status information; for example, a network management
application might include a responder program on each node to which the central
application sends out ATP requests asking for version information, such as the version of
AppleTalk that the node is running. The responder program could check the version and
send the information back to the main application in response to the request. Games that
are based on request-and-response types of dialogs can make efficient use of ATP.

Sending and Receiving Data as Discrete Packets

Your application can use the Datagram Delivery Protocol (DDP) to transmit data in the
form of packets across an AppleTalk internet. Because DDP provides best-effort delivery
of datagrams with no recovery when packets are lost or discarded because of errors, it
involves less overhead and provides for faster performance than do the higher-level
protocols that add reliable delivery.

For applications, such as some games that don’t require reliable delivery of data and can
tolerate possible packet loss or diagnostic tools that retransmit at regular intervals to
estimate averages, DDP suffices, and it offers the value of good performance. In fact, if
you develop a game application that limits players to nodes on a single network, DDP
will use short addressing headers on packets, requiring 8 fewer bytes per packet, which
are faster to send.

If you are a network software developer who wants to develop a session-oriented
protocol, a client-server protocol, or a transaction-based protocol that offers services
different from those provided by ADSP, ASPF, or ATP, you can design and implement
your protocol as a client of DDP. However, this can entail providing your own server
implementation in some cases. For a detailed description of DDP and the other
AppleTalk protocols, see Inside AppleTalk, second edition.

If you use the DDP interface, you must provide a process called a socket listener to receive
datagrams addressed to the socket. The chapter “Datagram Delivery Protocol (DDP)” in
this book describes how to write a socket listener.

Measuring Packet-Delivery Performance

You can use the AppleTalk Echo Protocol (AEP) to measure the timing of send-receive
cycles and to determine if another node is online. There is no application programming
interface to AEP. However, to measure the round-trip packet delivery time from your
node to another node, your application or process can send a packet that is addressed to
the AEP socket, referred to as the AEP Echoer, on the destination node, and AEP will
return a copy of that packet directly to you.)

You can use this echo test as part of a diagnostic tool application, for example. A
diagnostic tool could troubleshoot a suspect node and report how long it took the packet
to travel to and from the node. Your application could use repeated transmissions to
determine if a packet takes longer than the typical amount of time to reach the node,

if it contains corrupted data, or if it doesn’t make it back at all.

Deciding Which AppleTalk Protocol to Use

CHAPTER 1

Introduction to AppleTalk

To determine if another node is on the network, you can send a packet to that node’s
AEP socket. For a conclusive test, you should send more than one packet, in case the first
packet is lost or discarded by DDP.

Accessing AppleShare and Other File Servers

The AppleTalk Filing Protocol (AFP) provides an interface between an application and
an AFP file server. For example, it allows workstations on an AppleTalk network to
access files on AppleShare file servers. AFP uses the services of ASP.

Only the workstation side of AFP is implemented on the Macintosh. Few application
developers use AFP because the existing File Manager commands perform most
functions needed to access and manipulate files on an AppleShare server.

If you choose to use AFP, your application can provide support that allows a workstation
user to use the workstation’s own local or native file system commands to manipulate
files on a remote node. The chapter “AppleTalk Filing Protocol (AFP)” in this book
describes how to use AFP.

Receiving Packets Using a Virtual Node and
Processing Them in a Custom Manner

Your application can use the AppleTalk multinode architecture to acquire node IDs that
are in addition to the standard user node ID assigned to the system. You can use these
virtual node IDs, called multinodes, to receive all broadcast packets and all AppleTalk
packets addressed to the multinode. You can then process the packets in a custom
manner. A multinode ID is not connected to the AppleTalk protocol stack above the
data-link layer; this means that an application that uses a multinode is not connected

to the AppleTalk protocol above the data-link level, and it cannot use their services. For
example, Apple Remote Access (ARA) uses this multinode capability to implement
remote access. The chapter “Multinode Architecture” describes how to acquire a multi-
node ID and send and receive packets using the multinodes.

The LAP Manager

The LAP Manager acts as an interface between the link types and the higher-level
AppleTalk protocols. The LAP Manager contains a protocol handler that it attaches
directly to the hardware device driver to receive 802.2 Type 1 packets for Ethernet, token
ring, and FDDL. If your application handles 802.2 Type 1 packets, you must provide a
protocol handler to read the packets and install your protocol handler as a client of the
LAP Manager. A protocol handler is a piece of assembly-language code that controls

the reception of a packet of a particular protocol type. When an 802.2 packet for your
application arrives, the LAP Manager will call your protocol handler to read the packet.

The LAP Manager also provides and maintains a service called the AppleTalk Transition
Queue (ATQ) that you can use to ensure that your application is not adversely affected
when an AppleTalk transition occurs.

Deciding Which AppleTalk Protocol to Use 1-27

yiel ajddy 0} uoionposu| -

1-28

CHAPTER 1

Introduction to AppleTalk

An example of an AppleTalk transition is an AppleTalk driver being closed or opened
by another routine or the operating system. At any given time, there might be two or
more applications running that use AppleTalk. If one of these applications closes the
AppleTalk drivers, all AppleTalk applications are affected.

Your application can register itself with the AppleTalk Transition Queue by placing an
entry in the queue. The LAP Manager sends a message to each entry in the AppleTalk
Transition Queue when a transition occurs. Your application or other routines can also
define their own AppleTalk events and call the AppleTalk Transition Queue to inform it
that such an event occurred.

The AppleTalk Transition Queue also allows an application that uses the Flagship
Naming Service to place an entry in the queue that enables it to stay informed as to
changes to the flagship name. A flagship name is a personalized name that users can
enter to identify their nodes when they are connected to an AppleTalk network. The
flagship name is different from the Chooser name that a node uses for server-connection
identification. The LAP Manager uses the transition queue message system to communi-
cate name changes between applications and processes whenever the user resets the
flagship name.

The chapter “Link-Access Protocol (LAP) Manager” in this book describes the LAP
Manager services and interface. For more information about the LAP Manager, see
the Macintosh AppleTalk Connection Programmer’s Guide.

Using AppleTalk’s link independence to write portable applications

If you write an application that uses one of the high-level AppleTalk
protocols, such as ADSP or ATPF, your program will run over any link
type. A user running your application can switch between link types, for
example, move from one type of network, such as token ring, to another,
such as Ethernet, without affecting your program. The LAP Manager
handles the interface and connection to the correct link-access protocol
based on the link type the user selects.

Directly Accessing a Driver for a Network Type

The .ENET, the .TOKN, or the .FDDI driver is normally called by the AppleTalk Manager
through the AppleTalk connection file for the link type (EtherTalk, TokenTalk, or
FDDITalk) when the user has selected one of these network types from the Network
control panel. You can write your own protocol stack or application that uses one of
these drivers directly rather than through AppleTalk.

The interface at this level allows you to open the driver and send data to it directly for
transmission over the network. However, to receive data from the network, you need to
provide a protocol handler written in assembly language.

For Phase 1 Ethernet packets, that is, the original version of Ethernet packets, you can
read data directly from an Ethernet driver using the default protocol handler that Apple
provides or your own protocol handler.

Deciding Which AppleTalk Protocol to Use

CHAPTER 1

Introduction to AppleTalk

For IEEE 802.2 packets, you must use the interface to the Link-Access Protocol (LAP)
Manager to attach your protocol handler to read data from an Ethernet, token ring,
or FDDI driver. Token ring and FDDI support only 802.2 packets.

The chapter “Ethernet, Token Ring, and Fiber Distributed Data Interface” in this -
book describes how to use the interface for Phase 1 Ethernet packets. The chapter
“Link-Access Protocol (LAP) Manager” in this book describes how to use the interface
for IEEE 802.2 packets.

The AppleTalk Pascal Interface

This section provides an overview of the two execution modes that you can use to
execute routines that belong to the AppleTalk protocol interfaces.

When your application calls an AppleTalk routine, you set a Boolean value as a param-
eter to the routine that directs the system software to execute the routine synchronously
or asynchronously:

m If you set the routine to run synchronously, your application program cannot continue
executing until the operation completes.

m If you set the routine to execute asynchronously, the system software returns control
to your application program immediately and one of two methods is used to signal
your program later when the operation completes; these methods are the use of a
completion routine or a polling strategy.

The first version of the AppleTalk Pascal interfaces is now referred to collectively as the
alternate interface. Routines belonging to the alternate interface that were executed
asynchronously signaled the application that the operation had completed through the
use of a network event.

Note

The use of network events introduced problems that were remedied
by the creation of a new interface whose routines relied on the use
of a completion routine or a result-field polling strategy rather

than a network event as a completion-signaling mechanism for
asynchronous calls. &

The new interface was designed to be similar to that of the Device Manager and the
File Manager. Its routines use parameter blocks to pass input and output values.
The interface glue code converts the parameter block values into a Device Manager
PBControl call to the appropriate AppleTalk device driver. Called the preferred
interface in the past, this interface is now the standard AppleTalk interface.

When writing new applications that use AppleTalk, you should use the routines
belonging to the interface described in this book. Use of the alternate interface calls
could cause compatibility problems with current and future system software, although
the alternate interface is still provided in the header files for backward compatibility.

The AppleTalk Pascal Interface 1-29

yjersjddy o1 uononposu| -

1-30

CHAPTER 1

Introduction to AppleTalk

Note

For functions that execute asynchronously, you must not move or
dispose of the parameter block before the function completes execution;
while the function is executing, AppleTalk owns the memory that you
allocated for the function’s use. After the call returns, you need to
dispose of the memory allocated for the parameter block unless you
intend to reuse the parameter block, for example, for another function. ¢

Executing Routines Synchronously or Asynchronously

Your program can execute the routines that make up the interface to the AppleTalk
protocols either synchronously or asynchronously. Synchronous execution means that
your program is prevented from doing any other processing until the current operation
completes. Asynchronous execution means that the system returns control to your
program after your program calls the routine so that your program can continue with
other processing while the asynchronous operation completes.

If you execute a routine synchronously, the call does not return until the operation
completes; you do not have to use a completion routine that runs at interrupt level or
poll a result field to determine when the operation completes; on the other hand, your
program cannot continue running until the call returns, which causes the system to come
to a standstill. Synchronous calls are useful for operations that execute and return to the
calling program quickly, such as opening or closing sockets. On an AppleTalk internet,
data is transferred between sockets, which must be opened before they can be used and
closed when they are no longer needed.

Calling a routine asynchronously directs the system software to begin the operation
process now, return control to the calling program, then complete execution of the
routine as soon as possible. Asynchronous execution eliminates program execution delay
time, but it requires that your application provide a means of determining when the
operation has completed execution. There are two methods an application can use to
determine when an operation completes execution:

® An application can provide a completion routine to be called at interrupt level.

® An application can poll the routine’s parameter block result field.

The parameter block that is used to contain input and output information for
a function includes a result field called ioResult. When your application calls a
function asynchronously,

m the driver executes the function, if possible.

m if the driver is busy, the driver queues the function and sets the ioResult field to 1.

When the function completes execution, the driver sets the result field to a value that
indicates either that no error occurred (noErr) or an error condition code value that
identifies the type of error.

The AppleTalk Pascal Interface

CHAPTER 1

Introduction to AppleTalk

Polling the Result Field

Your application can poll the result field to determine when the result value changes. Your
application can use the polling process to inform the user that the system is still busy
performing the operation that handles the request; for processes that may take a long
time, your application can display a progress dialog box to the user.

Note

If you use polling, you must set the call’s parameter block
ioCompletion field to NIL. &

Using a Completion Routine

Instead of polling the result field, your application can supply a completion routine to
be executed at interrupt level when the operation completes. You provide the address
of the completion routine in the call’s parameter block ioCompletion field. Because

completion routines are executed at interrupt level, they cannot call any routines that

move memory.

The AppleTalk Pascal Interface 1-31

sieLeddy o} uosonponu .

CHAPTER 2

AppleTalk Utilities

Contents

About the AppleTalk Utilities 2-3
Using the AppleTalk Utilities =~ 2-4
Determining Whether AppleTalk Phase 2 Drivers Are Supported 2-4

Getting Information About the .MPP Driver and the
Network Environment 2-4

Getting the Address of Your Node or Your Local Router ~ 2-6
Sending Packets to Applications and Processes on Your Own Node 2-6
Selecting a Node in the Server Range ~ 2-7
AppleTalk Utilities Reference ~ 2-8
Data Structures ~ 2-9
MPP Parameter Block 2-9
Routines 2-11

Obtaining Information About the MPP Driver and the
Current Network Environment 2-11

Enabling Intranode Delivery of DDP Packets 2-15
Getting the Addresses of Your Node and Local Internet Router ~ 2-17
Opening and Closing Drivers ~ 2-18
Summary of AppleTalk Utilities =~ 2-23

Pascal Summary 2-23
Constants ~ 2-23
Data Types 2-23
Routines 2-24

CSummary 2-25
Constants ~ 2-25
Data Types 2-25
Routines 2-26

Assembly-Language Summary = 2-27
Constants ~ 2-27
Data Structures ~ 2-28

Result Codes 2-28

Contents 2-1

CHAPTER 2

AppleTalk Utilities

This chapter describes the AppleTalk functions and services that do not belong to a
specific AppleTalk protocol interface but that apply to AppleTalk as a whole.

The chapter describes how to

m obtain a wide variety of information about AppleTalk and the network environment
of your node, including the maximum number of protocol handlers and concurrent
NBP calls that the installed .MPP driver supports

m obtain the addresses of your node and its local internet router

m enable intranode delivery, which lets you send packets to your own application or
other applications and processes running on the same node as yours

m determine if the AppleTalk Phase 2 drivers are installed on your system
® select a node ID in the server range
m open the MPP and .XPP drivers

The .MPP driver opens the .ATP driver. The chapter “AppleTalk Data Stream Protocol
(ADSP)” in this book describes how to open the .DSP driver. Although Apple Computer,
Inc. recommends that you not close any of the AppleTalk drivers because other applica-
tions that are coresident may be using them, this chapter explains how to close the .MPP
driver, if, for some reason, you must.

About the AppleTalk Utilities

semnN NeLejddy -

The AppleTalk Utilities are a group of diverse functions, some of which allow you to
obtain information about AppleTalk and the networking environment of your node
and some of which allow you change values that affect AppleTalk features.

The PGetAppleTalkInfo function returns a wide range of information, including
some information that other functions belonging to the AppleTalk Utilities also return.
For example, both PGetAppleTalkInfo and GetNodeAddress return the node ID
and network address of the user node that is running your application. The
PGetAppleTalkInfo function returns the node ID and the network number of

the last router from which the node that is running your application has heard; the
GetBridgeAddress function also returns the node ID of the internet router on your
node’s local network.

Note

The PGetAppleTalkInfo function was developed and made available
after the GetNodeAddress and GetBridgeAddress functions. Apple
Computer, Inc. recommends that you use the PGetAppleTalkInfo
function to obtain addressing information for a user node or router
instead of using the GetNodeAddress and GetBridgeAddress
functions. &

Although the AppleTalk interface does not include a function that you can use to direct
AppleTalk to select a node ID from the server node range when you open AppleTalk,
this chapter describes how you can do this. If your application or the application that

About the AppleTalk Utilities 2-3

2-4

CHAPTER 2

AppleTalk Utilities

opened AppleTalk directed AppleTalk to assign a server node ID to the node, the
PGetAppleTalkInfo function will return a flag that tells you this request was made.

AppleTalk includes a feature called intranode delivery that allows two programs
running on the same node to communicate with each other through the AppleTalk
protocols. The AppleTalk Utilities include the PSetSel£fSend function, which you can
use to enable or disable intranode delivery. The PGetAppleTalkInfo function will
tell you if intranode delivery is on or off.

Using the AppleTalk Utilities

This section describes how to use some of the functions and services that make up the
AppleTalk Utilities. It explains how to

m check the version of the AppleTalk drivers that are installed
get information about the .MPP driver and the network environment
get the address of your node and locate your local router

enable intranode delivery

request AppleTalk to assign to your node an ID that is in the range of numbers that
are reserved for server nodes

Determining Whether AppleTalk Phase 2 Drivers Are Supported

Once the .MPP driver has been loaded into memory, you can use the Gestalt function
with the gestaltAppleTalkVersion selector to check the version of AppleTalk. The
Gestalt function returns the version of the .MPP driver. If the version is equal to or
greater than 53, then the MPP driver supports AppleTalk Phase 2.

Alternatively, you can call the SysEnvirons function. If the atDrvrVersNum field of
the SysEnvRec data structure returned by this function is equal to or greater than 53,
then the .MPP driver supports AppleTalk Phase 2.

Getting Information About the .MPP Driver and the
Network Environment

This section describes how you can use the PGetAppleTalkInfo function to obtain
information about the installed version of the .MPP driver, the network environment,
and the .MPP driver’s maximum capacities, such as the number of sockets and the
number of NBP calls that the MPP driver supports. The .MPP driver implements
these protocols:

m Datagram Delivery Protocol (DDP)
® Routing Table Maintenance Protocol (RTMP) stub

About the AppleTalk Utilities

CHAPTER 2

AppleTalk Utilities

® Name-Binding Protocol (NBP)
m AppleTalk Echo Protocol (AEP)

Before you call the PGetAppleTalkInfo function, you must allocate memory for and
define a parameter block of type MPPParmType. The section “MPP Parameter Block”
beginning on page 2-9 shows this data structure. You must also allocate memory for and
provide pointers to the data buffers into which the PGetAppleTalkInfo function
returns the data-link address and zone name for extended networks.

The PGetAppleTalkInfo function’s Boolean parameter allows you to specify whether
the function is to be executed synchronously or asynchronously. This function is
generally executed synchronously. (For information on these two modes, see the chapter
“Introduction to AppleTalk” in this book.)

The PGetAppleTalkInfo function returns the following information:
a pointer to the MPP global variables
a pointer to the .MPP driver’s device control entry (DCE) data structure

configuration flags that indicate the status of certain conditions that are set at startup

a value (the self£Send flag) that indicates whether the node can send packets to itself
(See “Sending Packets to Applications and Processes on Your Own Node” on page 2-6
and “Enabling Intranode Delivery of DDP Packets” on page 2-15 for more
information.)

m the range of network numbers for the network to which the node is attached
m the 8-bit node ID and 16-bit network number of the node

m the 8-bit node ID and 16-bit network number of the last router from which the node
has heard

m the maximum capacities of the .MPP driver, such as the maximum number of protocol
handlers and the maximum number of static sockets allowed by this driver

® a pointer to the registered names queue

m the address of the node on the underlying data link (for example, the Ethernet
hardware address)

® the node’s zone name

The data-link address and the zone name are returned only for extended networks—that
is, network types that allow more than one network number per network. You use the
laLength parameter to specify the length of the data-link address you want returned;
the function returns the actual length of the data in the 1aLength parameter and returns
the data in the buffer you provide.

The ExtendedBit flag returned by the PGetAppleTalkInfo function is TRUE if the
node is connected to an extended AppleTalk network. (The ExtendedBit flag is bit 15
of the configuration parameter returned by this function.) Note that the presence of
the AppleTalk Phase 2 drivers does not of itself indicate that the node is connected to
an extended network. For more information, see “PGetAppleTalkInfo” beginning on
page 2-11.

About the AppleTalk Utilities 2-5

senyn yeLelddy -

2-6

CHAPTER 2

AppleTalk Utilities

Note

Always use the PGetAppleTalkInfo function to obtain information
about the .MPP driver. You cannot rely on the validity of the MPP global
variables pointed to by the varsPtr parameter block field value for this
information. &

Getting the Address of Your Node or Your Local Router

You can use the AppleTalk Utilities GetNodeAddress function to get the node ID of the
node that is running your application and the number of the network to which that node
is connected.

Note

If GetNodeAddress returns a network number of 0, this means that
there is no internet router available. However, your application or
process should call GetBridgeAddress to determine if there are
router-like services, such as Apple Remote Access (ARA), available to
that node. ¢

To locate your local router, you can first call GetNodeAddress for the router’s network
number; the network number that GetNodeAddress returns for a node is also valid for
the internet router on that local network. To get the node ID part of a local router’s
address, you can call the GetBridgeAddress function. If there is not a router on the
local network, GetBridgeAddress returns a function result of 0.

Note

You can also use GetZoneList to determine if there is a router on the
local network. For information on GetZoneList, see the chapter “Zone
Information Protocol (ZIP)” in this book. ¢

Sending Packets to Applications and
Processes on Your Own Node

Because more than one application or process can be running on a single node at the
same time, it is reasonable to assume that you may want to send packets from your
application or process to other applications and processes running on the same node. To
support this, AppleTalk includes a function that lets you turn on (or off) an intranode
delivery feature.

When intranode delivery is on, two programs running on the same node can communi-
cate with each other through the AppleTalk protocols. You can address and send a packet
to another application or process that is an internet socket client running on your own
node from any of the AppleTalk protocols that provide programming interfaces.

You use the PSetSelfSend function to enable or disable intranode delivery. The
PSetSelfSend function returns the value of the previous setting, so that you can
save it and reinstate the value later if it differs from the setting that you specify. For
more information about enabling or disabling intranode delivery, see “PSetSelfSend”

beginning on page 2-15.

About the AppleTalk Utilities

CHAPTER 2

AppleTalk Utilities

Note

Intranode delivery applies to user node applications and processes.
Sending packets between a multinode application and user node
applications on the same machine is independent of the intranode
delivery feature. A multinode is treated as a virtual node distinct from
the user node; both the user node and the multinode have their own
node IDs. ¢

Selecting a Node in the Server Range
AppleTalk node IDs are divided into two classes: user node IDs and server node IDs.
® User node IDs are in the range 1-127 ($01-$7F).

m Server node IDs are in the range 128-254 ($80-$FE).

AppleTalk’s dynamic node assignment occurs through a process in which the node
acquiring a node ID sends out enquiry packets to determine if the ID that the node
suggests is available. Although unlikely, problems can occur if a node that owns the
suggested ID fails to respond to the enquiry because it is busy.

User nodes are switched on and off more frequently than are server nodes. Separating
user node ID assignment from server node ID assignment allows for different degrees of
verification.

Within the user node ID range, verification is performed quickly with fewer retransmis-
sions of the enquiry control packet than are sent for server node ID verification; this
decreases the initialization time for user nodes. A more thorough node ID verification is
performed for servers. This scheme increases the initialization time for server nodes but
is not detrimental to the server’s operation because server nodes are rarely switched on
and off.

You can start up AppleTalk so that it will assign a node ID within the server range by
making an extended Open call to the .MPP driver. To do this, you set the immediate

bit in the _Open trap. To request a server node ID, set to 1 the high bit (bit 31) of the
extension longword field ioMix in the extended call. Set to 0 the remaining bits in the
ioMix field and the bits of all the other unused fields in the queue element. The code in
Listing 2-1 sets the high bit in the ioMix field, then it calls an assembly-language routine
that is not shown in this listing, PBOpenImmedSync, to make the extended open call.
The code uses the following global constants:

$01FB;
$FO0;

SPConfig
portBClearMask

The code in Listing 2-1 assumes that the .MPP driver is not currently open. It is
important to remember that you can only request a server node ID when you first
open the MPP driver.

About the AppleTalk Utilities 2-7

senin yeLoiddy -

CHAPTER 2

AppleTalk Utilities

Listing 2-1 Opening the .MPP driver and obtaining a node ID in the server range

FUNCTION PBOpenImmedSync(paramBlock: ParmBlkPtr): OSErr;
INLINE $205F,$A200,$3E80;
FUNCTION OpenNodeInServerRange: OSerr;

IMPLEMENTATION
FUNCTION OpenNodeInServerRange: OSerr;
VAR
MPPPtr: ParmBlkPtr;
err: OSerr;
MPPName: Str3l;
SpConfigPtr: Ptr;
BEGIN
IF IsMPPOpen THEN
BEGIN
OpenNodeInServerRange := openErr;
END
ELSE
BEGIN

SPConfigPtr := Ptr(SPConfig);
SPConfigPtr” := BYTE(BAND(SPConfigPtr”, portBClearMask));
SPConfigPtr” := BYTE(BOR(SPConfigPtr", UseATalk));
MPPName := '.MPP';
MPPPtr := ParmBlkPtr(NewPtrClear(sizeof(ParamBlockRec)));
MPPPtr”.ioMix := Ptr($80000000);
MPPPtr”.ioNamePtr := @MPPName;
OpenNodeInServerRange := PBOpenImmedSync(MPPPtr);
END
END;

AppleTalk Utilities Reference

2-8

This section describes the data structure and the routines that make up the AppleTalk
Utilities. The “Data Structures” section shows the MPP parameter block required for
the PSetSelfSend and the PGetAppleTalkInfo functions.

The “Routines” section describes the routines for

m getting information about the installed .MPP driver and the current network
environment '

m enabling intranode delivery
s getting the addresses of your node and your local internet router
8 opening the MPP and .XPP drivers (The .MPP driver opens the .ATP driver.)

AppleTalk Utilities Reference

CHAPTER 2

AppleTalk Utilities

Data Structures

This section describes the MPP parameter block that you use for the PSetSelfSend and

PGetAppleTalkInfo functions.

MPP Parameter Block

The PSetSel£fSend and PGetAppleTalkInfo functions require a pointer to the MPP
parameter block. The MPPParamBlock data type defines the MPP parameter block.

m The PGetAppleTalkInfo function uses the MPP parameter block with the
GetAppleTalkInfoParm variant record to pass information to and receive it

from the .MPP driver.

m The PSetSelfSend function uses the MPP parameter block with the
SetSelfSendParm variant record to pass information to and receive it from
the MPP driver. The MPPParamBlock data type defines the MPP parameter block.
This section defines the fields common to both of these functions. The fields for the
variant records are defined in the function description that uses the record.

TYPE
MPPParmType = (...SetselfsendParm,
GetAppleTalkInfoParm...);
MPPPBPtr = “MPPParamBlock;
MPPParamBlock =
PACKED RECORD
gLink: QElemPtr; {reserved}
qType: Integer; {reserved}
ioTrap: Integer; {reserved}
ioCmdAddr: Ptr; {reserved}
ioCompletion: ProcPtr; {completion routine}
ioResult: OSErr; {result code}
ioNamePtr: StringPtr; {reserved}
ioVRefNum: Integer; {reserved}
ioRefNum: Integer; {driver reference }
{ number}
csCode: Integer; {primary command code}
CASE MPPParmType OF
SetSelfsendParm:
(newSelfFlag: Byte; {self-send toggle flag}
oldselfFlag: Byte); {previous self-send }
{ state}
GetAppleTalkInfoParm:
(version: Integer; {requested info version}
varsPtr: Ptr; {pointer to MPP }

AppleTalk Utilities Reference

{ variables}

semnn eLeiddy -

2-10

CHAPTER 2

AppleTalk Utilities

DCEPtr: Ptr; {pointer to MPP DCE}

portID: Integer; {port number [{0..7]}

configuration: LongInt; {32-bit configuration }

’ { word}

selfSend: Integer; {nonzero if self-send }
{ enabled}

netLo: Integer; {low value of network }
{ range}

netHi: Integer; {high value of network }
{ range}

ourAddr: LongiInt; {our 24-bit AppleTalk }
{ address}

routerAddr: LongInt; {24-bit address of }
{ last router}

numOfPHs : Integer; {max. number of }
{ protocol handlers}

numOfSkts: Integer; {max. number of static }
{ sockets}

numNBPESs : Integer; {max. concurrent NBP }
{ requests}

ntQueue: Ptr; {pointer to registered }
{ name queue}

LAlength: Integer; {length in bytes of }
{ data-link address}

linkAddr: Ptr; {data-link address }
{ returned}

zoneName: Ptr); {zone name returned}

END;

Field descriptions
ioCompletion

ioResult

ioRefNum

A pointer to a completion routine that you can provide. When you
execute the PGetAppleTalkInfo function or the PSetSelfSend
function asynchronously, the MPP driver calls your completion
routine when it completes execution of the function. Specify NIL for
this field if you do not wish to provide a completion routine. If you
execute the function synchronously, the .MPP driver ignores the
ioCompletion field.

The result of the function. When you execute the function asynchro-
nously, the function sets this field to 1 and returns a function result
of noErr as soon as the function begins execution. When the
function completes execution, it sets the ioResult field to the
actual result code.

The .MPP driver reference number. The MPW interface fills in
this field.

AppleTalk Utilities Reference

CHAPTER 2

AppleTalk Utilities

csCode The routine selector command code of the MPP command
to be executed. The MPW interface fills in this field. For
the PGetAppleTalkInfo function, csCode is always
GetATalkInfo. For the PSetSelfSend function, csCode
is always setSelfSend.

Routines

This section describes the routines that you use to obtain information about AppleTalk
and the network environment, enable intranode delivery of DDP packets, obtain your

node’s address and your local network router’s address, and open and close the MPP,
.ATP, and .XPP drivers.

Obtaining Information About the MPP Driver and the Current Network Environment

You can use the PGetAppleTalkInfo function to obtain a wide variety of information
about the .MPP driver that is installed on the node that is running your application

and the network environment of that node. Among the information that the
PGetAppleTalkInfo function returns are

m the address and zone name of the node that is running your application
m the number of concurrent NBP calls that the installed .MPP driver supports

s the range of network numbers for the network, if it is an extended network

PGetAppleTalkInfo

The PGetAppleTalkInfo function returns information about the currently installed
version of the .MPP driver and the network environment.

FUNCTION PGetAppleTalkInfo (thePBptr: MPPPBPtr; async:
Boolean): OSErr;

thePBptr A pointer to an MPP parameter block.

async A Boolean that specifies whether the function should be executed
asynchronously. Specify TRUE for asynchronous execution.

Parameter block

- ioCompletion ProcPtr A pointer to a completion routine.
« ioResult Oserr The result code.

- ioRefNum Integer The .MPP driver reference number.
— csCode Integer Always GetATalkInfo.

- version Integer The version of the function.

¢« varsPtr Ptr A pointer to the MPP globals.

continued

AppleTalk Utilities Reference 2-11

semn eLoiddy -

2-12

CHAPTER 2

AppleTalk Utilities

Field descriptions
version

varsPtr

DCEPtr

portID

configuration

&« DCEPtr Ptr A pointer to DCE for the .MPP driver.

< portID Integer The port number.

« configuration LongInt The configuration flags.

<« selfSend Integer Nonzero if self-sending is enabled.

<« netlLo Integer The low value of the network range.

¢« netHi Integer The high value of the network range.

<« ourAddr LongInt The local 24-bit AppleTalk address.

« routerAddr LongInt The 24-bit address of the router.

< numOfPHs Integer The maximum number of protocol handlers.

«— numOfskts Integer The maximum number of static sockets.

< numNBPEs Integer The maximum concurrent NBP requests.

< ntQueue Ptr A pointer to registered names table.

< LAlength Integer The length in bytes of data-link address
(extended networks only).

— linkAddr Ptr A pointer to data-link address buffer
(extended networks only).

— zoneName Ptr A pointer to zone name buffer.

The version number of the PGetAppleTalkInfo function you are
calling. For version number 53 and greater of the MPP driver, this
number is always 1.

A pointer to the MPP global variables. This parameter is reserved
for the use of Apple Computer, Inc.; you cannot rely on the validity
of the variables pointed to by this parameter.

A pointer to the device control entry (DCE) data structure for the
.MPP driver. For information about the DCE, see the chapter
“Device Manager” in Inside Macintosh: Devices.

The port number for the MPP driver. The port number is always 0
unless you are requesting information for an .MPP driver being
used by a router.

A 32-bit longword of configuration flags. The following flags are
currently defined:

Bit Flag
31 SrvAdrBit

Description

TRUE (equal to 1) if the routine that
opened the .MPP driver requested
a server node number. For more
information on server nodes, see
“Selecting a Node in the Server
Range” on page 2-7. This flag
indicates only that the server node
number was requested, not that it
was returned. Some AppleTalk data
links, such as EtherTalk, TokenTalk,
and FDDITalk, do not honor a
request for a server node number.

continued

AppleTalk Utilities Reference

CHAPTER 2

AppleTalk Utilities

selfSend

netLo

netHi

ourAddr

routerAddr

Bit Flag Description

30 RouterBit TRUE (equal to 1) if an AppleTalk
internet router was loaded at system
startup (that is, there’s a router
operating on the same node as your
application). A router can be loaded
and not active.

15 ExtendedBit TRUE (equal to 1) if the node is on

’ an extended network. Testing this
bit is the only way to determine
whether you are on an extended
network.

7 BadZoneHintBit TRUE (equal to 1) if the zone name
: of the node you are on was not the

same as the zone name stored in
parameter RAM (sometimes
referred to as the zone name hint)
when the MPP driver was opened.
If the zone name hint is invalid,
then the AppleTalk Manager uses
the default zone for the network.
The default zone is defined by the
network administrator.

6 OneZoneBit TRUE (equal to 1) if only one zone is
assigned to your extended network
or if you are not on an extended
network. Use the ExtendedBit
flag to determine whether you are
on an extended network.

The ability of a node to send packets to itself. This feature, called
intranode delivery, is enabled when this parameter is nonzero.
Use the PSetSelfSend function, which is described beginning
on page 2-15, to enable or disable this feature.

The low value of the range of network numbers on the local cable.
Only extended networks can have a range of network numbers. For
a nonextended network, this parameter returns the network number.

The high value of the range of network numbers on the local cabie.
Only extended networks can have a range of network numbers. For
a nonextended network, this parameter returns the network number.

The 24-bit AppleTalk network address of the node you are on. The
least significant byte of the longword is the node ID. The middle
16 bits are the network number. The most significant byte of the
longword is reserved for use by Apple Computer, Inc.

The 24-bit AppleTalk network address of the last router from which
your node heard traffic. The least significant byte of the longword
is the node ID. The middle 16 bits are the network number. The
most significant byte of the longword is reserved for use by Apple
Computer, Inc. You should always use this address when you want
to communicate with a router.

AppleTalk Utilities Reference 2-13

sonN yeLoiddy -

DESCRIPTION

2-14

CHAPTER 2

AppleTalk Utilities

numOfPHs

numO£fSkts

numNBPEs

ntQueue

LAlength

linkAddr

zoneName

The maximum number of protocol handlers that this .MPP
driver allows.

The maximum number of statically assigned sockets that this .MPP
driver allows. Statically assigned sockets are described in Inside
AppleTulk, second edition. For more information about sockets, see
the chapter “Datagram Delivery Protocol (DDP)” in this book.

The maximum number of concurrent requests to NBP that this
.MPP driver allows.

A pointer to the first entry in the names table for the local node. You
can use NBP routines to look up and register names in the names
table. The names table is described in the chapter “Name-Binding
Protocol (NBP)” in this book.

The number of bytes of the data-link address that the function
should place in the buffer pointed to by the LinkAddr parameter.
You use this parameter when you call the PGetAppleTalkInfo
function on a node on an extended network. If you request more
bytes than the total number of bytes in the address, then the function
returns in the LAlength parameter the actual number of bytes it
placed in the buffer. If the address is longer than the size of the
buffer, then the PGetAppleTalkInfo function fills the buffer and
returns in the LAlength parameter the actual length of the address,
not the number of bytes returned. The function does not return an
error when the buffer is too large or too small for the address. A
value of 6 bytes for LAlength is sufficient for most purposes.

A pointer to a buffer for the data-link address returned for extended
networks only. You use the LAlength parameter to specify the
number of bytes of the address that you want placed in this buffer.
You must allocate a buffer large enough to hold the number of bytes
you specify. Specify NIL for this parameter if you do not want the
function to provide a data-link address.

A pointer to a buffer into which the PGetAppleTalkInfo function
places the local node’s zone name. You must allocate a buffer of at
least 33 bytes to hold this data, or you must specify NIL for the
zoneName parameter if you do not want to obtain the zone name.
This field is returned only if the node is on an extended network.

The PGetAppleTalkInfo function returns a variety of information about the current
networking environment. For example, it returns information telling you whether or not
applications running on the node can send packets to themselves or to other applica-
tions or processes on the same node. An application can call PGetAppleTalkInfo to
determine if the node on which it is running has an ID that falls within the server node
ID range. It can also obtain the address of the last router that the node communicated
with and the node’s own address.

You must allocate memory for and define a parameter block of type MPPParmType and
pass that parameter block’s pointer to PGetAppleTalkInfo when you call the function.
You must also allocate memory for and provide pointers to the data buffers into which

AppleTalk Utilities Reference

CHAPTER 2

AppleTalk Utilities

the PGetAppleTalkInfo function returns the data-link address and zone name.
You pass a pointer to the buffer for the returned data-link address as the value of the
linkAddr field. You pass a pointer to the buffer for the returned zone name as the
value of the zoneName parameter block field.

SPECIAL CONSIDERATIONS

If the node on which your application is running happens also to be running AppleTalk
internet router software in the background, more than one set of MPP global variables
may be in RAM. To make sure you obtain information about the .MPP driver that handles
application software, always use the PGetAppleTalkInfo function rather than the
Device Manager’s PBControl function. However, if you want to use the PBControl
function, you must use a device driver reference number of —10 for the .MPP driver.

The memory that you allocated for the parameter block and data buffers belongs to the
.MPP driver until the PGetAppleTalkInfo function completes execution. The memory
must be nonrelocatable. After the PGetAppleTalkInfo function completes execution,
you can reuse the memory or release it.

ASSEMBLY-LANGUAGE INFORMATION

If you use assembly language to call this function, you must use a device driver
reference number of -10 for the .MPP driver.

RESULT CODES

noErr 0 No error
paramErr -50 Version number is too high

Enabling Intranode Delivery of DDP Packets

This section describes how the PSetSel£Send function allows applications and
processes running on the same node to send packets to one another.

PSetSelfSend

The PSetSelfSend function enables or disables the AppleTalk intranode
delivery service.

FUNCTION PSetSelfSend (thePBptr: MPPPBPtr; async: Boolean): OSErr;

thePBptr A pointer to an MPP parameter block.

async A Boolean that specifies whether the function should be executed
asynchronously. Specify TRUE for asynchronous execution.

AppleTalk Utilities Reference 2-15

semunN eLeiddy n

CHAPTER 2

AppleTalk Utilities

Parameter block

- ioCompletion ProcPtr A pointer to a completion routine.

« ioResult OSErr The function result.

- ioRefNum Integer The .MPP driver reference number.

- csCode Integer Always setSelfSend.

— newSelfFlag Byte A flag that turns intranode delivery on or off.
< oldselfFlag Byte A flag that reports the previous state of

intranode delivery, whether it was on or off.

Field descriptions

newSelfFlag A flag that enables or disables the intranode delivery feature. Set
this field to a nonzero number to enable the feature; set it to zero to
turn off the feature.

oldselfFlag A flag indicating the previous state of the intranode delivery
feature. The PSetSelfSend function returns this value. A nonzero
value indicates that intranode delivery was enabled; a value of
zero indicates it was disabled.

DESCRIPTION

The PSetSel£fSend function turns on or off the intranode delivery feature that allows
you to send a packet to another socket on the same node. You can use this feature, for
example, to send data from an application to a print spooler that is running in the
background on the same node.

When PSetSelfSend is enabled, you can send packets to socket clients on your node
from all levels of the AppleTalk protocol stack for which there are programming
interfaces. The PSetSel£fSend function returns in the oldSel£fFlag field the previous
setting for the intranode delivery feature so that you can restore it later, if you want to.
Because intranode delivery is enabled on most systems running AppleTalk, you should
assume that it is turned on and take this into account when you write your code.

Note that intranode delivery applies to the user node applications. Sending packets
between a multinode application and user node applications on the same machine is
independent of the intranode delivery feature. A multinode is treated as a virtual node
distinct from the user node; both the user node and the multinode have their own
node IDs.

SPECIAL CONSIDERATIONS

Enabling or disabling the intranode delivery feature affects the entire node. For example,
an application that uses NBP to look up names and then display them to a user might
not expect to receive names of other network-visible entities within its own node; when
intranode delivery is enabled, this will occur.

ASSEMBLY-LANGUAGE INFORMATION

To execute the PSetSelfSend function from assembly language, call the _Control
trap macro with a value of setSelfSend in the csCode field of the parameter block.

2-16 AppleTalk Utilities Reference

RESULT CODES

CHAPTER 2

AppleTalk Utilities

noErr 0 No error

Getting the Addresses of Your Node and Local Internet Router

This section describes the GetNodeAddress and GetBridgeAddress functions, which
you can use to get the address of the node that is running your application or process
and to determine if the local network to which that node is connected includes a router.
If there is a router on the local network, GetBridgeaAddress will return the node ID of
that router. The router’s network number is the same as that of your local network.

GetNodeAddress

DESCRIFTION

The GetNodeAddress function returns the current node ID and network number of the
node on which the calling program is running.

FUNCTION GetNodeAddress (VAR myNode,myNet: Integer): OSErr;

myNode The node ID of the node on which your application or process is running.

myNet The network number of the network to which the node is attached that is
running your application or process. If myNet returns 0, this means that
there is no internet router available. However, your application or process
should call GetBridgeAddress to determine if there are router-like
services available to that node.

The GetNodeAddress function returns the address of a node on a network. If the
network is not an extended network, the network number that GetNodeAddress
returns is 0. Note that even if GetNodeAddress returns a network number of 0, there
may be a router service on the local network. For example, a node can be on a network
whose network number is 0 and be connected to a remote network through Apple
Remote Access (ARA).

If the .MPP driver is not installed, the GetNodeAddress function returns a function
result of noMPPErr. To install the MPP driver, open it using the Device Manager’s
OpenDriver function or the MPPOpen function.

ASSEMBLY-LANGUAGE INFORMATION

This function is implemented in the MPW glue code only. It is not accessible from
assembly language.

AppleTalk Utilities Reference 2-17

senunn yeLeiddy n

CHAPTER 2

AppleTalk Utilities

RESULT CODES

noErr 0 No error

noMPPErr -3102 The .MPP driver is not installed
GetBridgeAddress

The GetBridgeAddress function returns the node ID of the router on your
local network.

FUNCTION GetBridgeAddress: Integer;

DESCRIPTION

The GetBridgeAddress function returns the current node ID of an internet router in
the low-order byte of the function result. If the function result is 0, there is no router

on the local network. The router’s network number is that of the local network; you can
use the GetNodeAddress function to get the network number.

ASSEMBLY-LANGUAGE INFORMATION
This function is implemented in the MPW glue code only. It is not accessible from

assembly language.

SEE ALSO
To obtain the network number of the local network, use the GetNodeAddress function
described on page 2-17.

Opening and Closing Drivers

This section describes the functions that you can use to open the .MPP and .XPP drivers,
MPPOpen and OpenXPP. The .MPP driver opens the .ATP driver. This section also
describes the function that closes the MPP driver, MPPClose.

The MPPOpen and OpenXPP functions are included to provide a complete description of
the AppleTalk programmatic interface. Apple Computer, Inc. recommends that you use
the Device Manager’s OpenDriver function to open the MPP and .XPP drivers. In
addition to opening a driver, the OpenDriver function returns the driver reference
number. If the driver is already open, the OpenDriver function simply returns the
driver reference number. For information on the OpenDriver function, see the chapter
“Device Manager” in Inside Macintosh: Devices.

The .MPP, .ATP, and .XPP drivers must always be open before you can use the AppleTalk
protocols that they implement. The .MPP driver must be open before you open the .XPP
driver. How to open the .DSP driver is described in the chapter “AppleTalk Data Stream
Protocol (ADSP)” in this book.

2-18 AppleTalk Utilities Reference

MPPOpen

CHAPTER 2

AppleTalk Utilities

WARNING
Because coresident programs might also be using AppleTalk,
you should not close the AppleTalk drivers. A

This section also includes the IsMPPOpen and IsATPOpen functions that determine if
the MPP and the .ATP drivers are already open.

DESCRIPTION

If the .MPP driver has not already been opened, the MPPOpen function opens
the .MPP driver, initializes the driver’s variables, and assigns a node ID to the
Macintosh computer.

FUNCTION MPPOpen: OSErr;

The MPPOpen function first determines whether the MPP driver has already been
opened. If it has, MPPOpen returns an error code. If the MPP driver is not open,
MPPOpen loads the driver into the system heap and then initializes the driver’s variables
before dynamically assigning a node ID to the system. It also loads the .ATP driver

and the NBP code into the system heap.

Apple Computer, Inc. recommends that you use the Device Manager’s OpenDriver
function to open the .MPP driver instead of using the MPPOpen function.

SPECIAL CONSIDERATIONS

RESULT CODES

SEE ALSO

For versions of AppleTalk before AppleTalk version 56, if serial port B isn’t configured
for AppleTalk or if it is already in use, the MPP driver is not loaded and the portInUse
result code is returned.

noErr 0 Noerror
portInUse —97 Driver open error code indicating that the port is in use
portNotCE -98 Driver open error code indicating that the parameter RAM is

not configured for this connection

The MPPOpen function does not return the .MPP driver reference number, as the
OpenDriver function does. For information on the OpenDriver function, see
the chapter “Device Manager” in Inside Macintosh: Devices.

AppleTalk Utilities Reference 2-19

sennn YeLejddy -

—— ey - ————— —— — S—— -

CHAPTER 2

AppleTalk Utilities

MPPClose

The MPPClose function closes the .MPP driver and removes from memory any data
structures associated with it.

FUNCTION MPPClose: OSErr;

DESCRIPTION

In addition to closing the .MPP driver, the MPPClose function also closes and removes
from memory the .ATP driver and the NBP code if they are installed. Calling MPPClose
completely disables AppleTalk.

A WARNING
Apple Computer, Inc. strongly recommends that you not use this call
because other coresident applications could also be using AppleTalk. o

Calling MPPClose completely disables AppleTalk.

SPECIAL CONSIDERATIONS

If the current connection is LocalTalk, MPPClose also returns the use of port B to the
serial driver.

RESULT CODES
noErr 0 No error

IsMPPOpen

The IsMPPOpen function determines and reports whether or not the MPP driver is
loaded and running. '

FUNCTION IsMPPOpen: Boolean;

DESCRIPTION
If the MPP driver is open, the IsMPPOpen function returns a value of TRUE; if the
.MPP driver is not open, it returns FALSE. If you want to obtain a node ID in the server
range, you can request the assignment only when you first open the .MPP driver. In
this case, you can use the IsMPPOpen function to determine if the .MPP driver has
already been opened.

2-20 AppleTalk Utilities Reference

CHAPTER 2

AppleTalk Utilities

RESULT CODES

SEE ALSO

noErr 0 No error

You can also use the Device Manager’s OpenDriver function to ensure that the MPP
driver is open. If it is not, OpenDriver will open the MPP driver and return the driver
reference number. If the MPP driver is already open, the OpenDriver function will

return the reference number without performing additional processing, and therefore
without incurring much additional overhead.

IsATPOpen

DESCRIPTION

The IsATPOpen function determines and reports whether or not the .ATP driver is
loaded and running.

FUNCTION IsATPOpen: Boolean;

If the .ATP driver is open, the IsATPOpen function returns a value of TRUE; if the
.ATP driver is not open, it returns FALSE. Because the MPP driver opens the .ATP
driver, this function is seldom used. It is included to provide a complete description
of the AppleTalk programmatic interface.

RESULT CODES

SEE ALSO

noErr 0 No error

To open the .ATP driver, you open the MPP driver. You can use the Device Manager’s
OpenDriver function to ensure that the MPP driver is open. If the .MPP driver is open,
then the .ATP driver is also open. If the . MPP and .ATP drivers are already open, the
OpenDriver function will return the MPP driver reference number without performing
additional processing, and therefore without incurring much additional overhead.

For information on the OpenDriver function, see the chapter “Device Manager” in
Inside Macintosh: Devices.

AppleTalk Utilities Reference) 2-21

semN NeLeiddy -

OpenXPP

CHAPTER 2

AppleTalk Utilities

DESCRIPTION

The OpenXPP function opens the .XPP driver and returns the driver reference number.
FUNCTION OpenXPP (VAR xppRefnum: Integer): OSErr;

xppRefnum The .XPP driver reference number, which the function returns.

Before you can use the protocol interfaces (ZIP, ASP, and AFP) that are implemented

by the .XPP driver, you must open the driver. You can use the OpenXPP function to open
the .XPP driver, or you can call the Device Manager’s OpenDriver function. In either
case, before you open the .XPP driver, you must ensure that the .MPP driver and the
.ATP driver are open.

Apple Computer, Inc. recommends that you use the Device Manager’s OpenDriver
function to open the .XPP driver instead of using the OpenXPP function. The OpenXPP
function is included to provide a complete description of the AppleTalk programmatic
interface.

SPECIAL CONSIDERATIONS

RESULT CODES

SEE ALSO

2-22

Under most circumstances, you should not close the .XPP driver because other applica-
tions and processes could be using it. However, if you must close the .XPP driver, you
can use the Device Manager’s CloseDriver function. The CloseDriver function
should be used only by system-level applications.

noErr 0 Noerror _
portInUse =97 Either AppleTalk is not open or the AppleTalk port is in use by
another driver

The OpenXPP function does not return the .MPP driver reference number, as does the
OpenDriver function. For information on the OpenDriver and CloseDriver
functions, see the chapter “Device Manager” in Inside Macintosh: Devices.

AppleTalk Utilities Reference

CHAPTER 2

AppleTalk Utilities

Summary of AppleTalk Utilities

Pascal Summary

Constants
CONST .
setSelfSend = 256; {allow intranode delivery, csCode}
GetATalkInfo = 258; {get AppleTalk information, csCode}
Data Types

MPP Parameter Block for PSetSelfSend and PGetAppleTalkInfo

TYPE MPPParmType = (...SetSelfSendParm,
GetAppleTalkInfoParm...);
TYPE MPPParamBlock =
PACKED RECORD

qLink: QElemPtr; {reserved}

qType: Integer; {reserved}

ioTrap: Integer; {reserved}

ioCmdAddr: Ptr; {reserved}

ioCompletion: ProcPtr; {completion routine}

ioResult: OSErr; {result code}

ioNamePtr: StringPtr; {reserved}

ioVRefNum: Integer; {reserved}

ioRefNum: Integer; {driver reference number}

csCode: Integer; {primary command code}

CASE MPPParmType OF

SetSelfSendParm:
(newSelfFlag: Byte; {self-send toggle flag}
oldselfFlag: Byte); {previous self-send state}

GetAppleTalkInfoParm:
(version: Integer; {requested info version}
varsPtr: Ptr; {pointer to MPP variables}
DCEPtr: Ptr; {pointer to MPP DCE}
portiD: Integer; {port number [0..7]}

Summaty of AppleTalk Utilities 2-23

sennn yeLsiddy -

CHAPTER 2

AppleTalk Utilities

configuration:
selfSend:
netLo:

netHi:
ourAddr:
routerAddr:
numOfPHs:

numOfSkts
numNBPEs :
ntQueue:

LAlength:
linkAddr:
zoneName:

END;

MPPPBPtr = “MPPParamBlock;

Routines

LongInt; {32-bit configuration word}
Integer; {nonzero if self-send enabled}
Integer; {low value of network range}
Integer; {high value of network range}
LongInt; {our 24-bit AppleTalk address}
LongInt; {24-bit address of last router}
Integer; {maximum number of protocol }

{ handlers}
Integer; {maximum number of static sockets}
Integer; {maximum concurrent NBP requests}
Ptr; {pointer to registered name queue}
Integer; {length in bytes of data-link addr}
Ptr;) {data-link address returned}
Ptr); {zone name returned}

Obtaining Information About the .MPP Driver and the Current Network Environment

FUNCTION PGetAppleTalkInfo

(thePBptr: MPPPBPtr; async: Boolean): OSErr;

Enabling Intranode Delivery of DDP Packets

FUNCTION PSetSelfSend

(thePBptr: MPPPBPtr; async: Boolean): OSErr;

Getting the Addresses of Your Node and Local Internet Router

FUNCTION GetNodeAddress
FUNCTION GetBridgeAddress:

Opening and Closing Drivers
FUNCTION MPPOpen:
FUNCTION MPPClose:
FUNCTION IsMPPOpen:
FUNCTION IsATPOpen:
FUNCTION OpenXPP

(VAR myNode: Integer; VAR myNet: Integer): OSErr;
Integer;

OSErr;

OSErr;

Boolean;

Boolean;

(VAR xppRefnum: Integer): OSErr;

2-24 Summary of AppleTalk Utilities

CHAPTER 2

AppleTalk Utilities

C Summary

Constants

/*csCodes/

enum {
setSelfSend
GetATalkInfo =

Data Types

256, /*intranode packet delivery*/
258 /*get AppleTalk information*/

MPP Parameter Block for PSetSelfSend and PGetAppleTalkInfo

union ParamBlockRec {
MPPparms MPP;

/*general MPP parms*/

typedef MPPParamBlock *MPPPBPtr;

#define MPPATPHeader \

QElem *qgLink; /*reserved*/\

short qType; /*reserved*/\

short ioTrap; /*reserved*/\

Ptr ioCmdAddr; /*reserved*/\

ProcPtr ioCompletion; /*completion routine*/\

OSErr ioResult; /*result code*/\

long userData; /*reserved*/\

short reqTID; /*resexrved*/\

short ioRefNum; /*driver reference number*/\

short csCode; /*call command code*/
typedef struct {

MPPATPHeader

char newSelfFlag; /*self-send toggle flag*/

char oldselfFlag; /*previous self-send state*/
}SetSelfparms;
typedef struct {

MPPATPHeader

short version; /*requested info version*/

Ptr varsPtr; /*pointer to well-known MPP vars*/

Summary of AppleTalk Utilities

2-25

semmn yeLoiddy -

CHAPTER 2

AppleTalk Utilities

Ptr DCEPtr; /*pointer to MPP DCE*/

short portID; /*port number [0..7]%*/

long configuration; /*32-bit configuration word*/

short selfSend; /*nonzero if self-send enabled*/

short netLo; /*low value of network range*/

short netHi; /*high value of network range*/

long ourAdd; /*our 24-bit AppleTalk address*/

long routerAddr; /*24-bit address of last router*/

short numOfPHs; /*maximum number of protocol handlers*/
short numOfSkts; /*maximum number of static sockets*/
short numNBPES ; /*maximum number of concurrent NBP requests*/
Ptr nTQueue; /*pointer to registered name queue*/
short LAlength; /*length in bytes of data-link addr*/
Ptr linkAddr; /*data-link address returned*/

Ptr zoneName; /*zone name returned*/

}GetAppleTalkInfoParm;

typedef union {

MPPparms MPP; /*general MPP parms*/
SetSelfparms SETSELF;
GetAppleTalkInfoParm GAIINFO;

}MPPParamBlock;

typedef MPPParamBlock *MPPPBPtr;

Routines

Obtaining Information About the .MPP Driver and the Current Network Environment
pascal OSErr PGetAppleTalkInfo

(MPPPBPtr thePBptr,Boolean async);

Enabling Intranode Delivery of DDP Packets

pascal OSErr PSetSelfSend (MPPPBPtr thePBptr,Boolean async);

Getting the Addresses of Your Node and Local Internet Router

pascal OSErr GetNodeAddress
(short *myNode,short *myNet);

pascal short GetBridgeAddress
(void);

2-26 Summary of AppleTalk Utilities

CHAPTER 2

AppleTalk Utitities

Opening and Closing Drivers

pascal OSErr MPPOpen (void);
pascal OSErr MPPClose (void);
pascal Boolean IsMPPOpen (void);
pascal Boolean ISATPOpen (void);
pascal OSErr OpenXPP (short *xppRefnum);

Assembly-Language Summary

Constants

Unit Number for the MPP driver

mppUnitNum EQU 9 sMPP unit number
mppRefNum EQU =10 ;MPP driver reference number

Command Codes

setSelfSend EQU 256 :set to allow writes to self, control call
GetATalkInfo EQU 258 ;get AppleTalk information, control call

Zone and Router Bits

BadZoneHintBit EQU 7 ;1, if zone hint was found invalid when the
; .MPP driver was opened
RouterBit EQU 30 ;1, if this is a router port

MPP Queue Element Standard Structure

;arguments passed in the CSParam area

newSelfFlag EQU $lc ;offset, new value for self-send flag
oldselfFlag EQU $1D ;old value of self-send flag
GetAppleTalkInfo

GAlIVersion EQU 1 ;shighest version for GAI params

Summary of AppleTalk Utilities 2-27

sennn eLolddy n

CHAPTER 2

AppleTalk Utilities

Data Structures

MPP Parameter Block Common Fields for PGetAppleTalkInfo and PSetSelfSend

0 gqLink long reserved
4 qType word reserved
6 ioTrap word reserved
8 ioCmdAddr long reserved
12 ioCompletion long address of completion routine
16 ioResult word result code
18 ioNamePtr long reserved
22 ioVRefNum word reserved
24 ioRefNum word driver reference number

GetAppleTalkInfo Parameter Variant

16 ioResult word result code

26 csCode word command code; always GetAppleTalkInfo

28 version word version of function

30 varsPtr long pointer to the .MPP driver variables

34 DCEPtr long pointer to DCE for the MPP driver

38 portID word port number

40 configuration long configuration flags

44 selfsend word nonzero if self-send is enabled

46 netlo word low value of network range

48 netHi word high value of network range

50 ourAddr long local 24-bit AppleTalk address

54 routerAddr long 24-bit address of router

58 numOfPHs word maximum number of protocol handlers

60 numOfskts word maximum number of static sockets

62 numNBPEs word maximum number of concurrent NBP requests

64 ntQueue long pointer to registered names table

68 LAlength word length in bytes of data-link address (extended networks only)
70 linkAddr long pointer to data-link address buffer (extended networks only)
74 zoneName long pointer to zone name buffer

PSetSelfSend Parameter Variant

26 csCode word always setSelfSend
28 newsSelfFlag byte flag that turns intranode delivery on or off

29 oldselfFlag byte flag that reports the previous state of intranode delivery, whether
it was on or off

Result Codes

noErr 0 Noerror

paramErr =50 Version number is too high

portInUse -97 Driver open error code indicating that the port is in use

portNotCE 98 Driver open error code indicating that the parameter RAM is not configured
for this connection

noMPPErr -3102 The .MPP driver is not installed

2-28 Summary of AppleTalk Utilities

CHAPTER 3

Name-Binding Protocol
(NBP)

Contents

AboutNBP 3-3
Using NBP 3-6
Registering Your Entity With NBP ~ 3-7
Setting Up a Names Table Entry 3-8
Registering a Names Table Entry ~ 3-9
Handling Names Table Entry Requests ~ 3-12
Preparing an Entity Name 3-12
Looking Up a Name 3-13
Extracting a Name From a List of Returned Names 3-16
Confirming a Name 3-17
Removing an Entry From the Names Table ~ 3-18
Canceling a Request ~ 3-19
NBP Reference ~ 3-20
Data Structures ~ 3-20
Address Block Record ~ 3-20
Names Table Entry Record ~ 3-21
Entity Name Record ~ 3-21
The MPP Parameter Block for NBP 3-22
Routines 3-23
Registering an Entity ~ 3-24
Handling Name and Address Requests ~ 3-28
Summary of NBP 3-40
Pascal Summary 3-40
Constants 3-40
Data Types 3-40
Routines 3-42

Contents 3-1

3-2

CHAPTER 3

CSummary 3-42
Constants 342
Data Types 3-43
Routines 3-45
Assembly-Language Summary 3-46
Constants 3-46
Data Structures 3-47
Result Codes 3-48

Contents

CHAPTER 3

Name-Binding Protocol (NBP)

This chapter describes the Name-Binding Protocol (NBP) that you can use to make your
process or application available to other processes or applications across the network.
This chapter also describes how you can use NBP to obtain the addresses of other
processes and applications on the network.

This chapter uses the term entity to refer to processes and applications that run on an
AppleTalk network. You use NBP in conjunction with another protocol that allows you
to send and receive data. For example, you can register your entity with NBP and then
use a transport protocol such as ADSP to communicate with other entities; ADSP opens
a socket for your entity to use and assigns that socket number to the entity. Your entity
registers an NBP name in conjunction with this socket number.

You should read this chapter if you want to

m register an entity with NBP to make it available for other network entities to contact
m obtain another entity’s address so that you can contact it

m obtain the NBP names and internet socket addresses of all registered entities whose
NBP names match your partial specified name

For an overview of the Name-Binding Protocol and how it fits within the AppleTalk
protocol stack, read the chapter “Introduction to AppleTalk” in this book, which also
introduces and defines some of the terminology used in this chapter. For a description
of the Name-Binding Protocol specification, see Inside AppleTalk, second edition.

About NBP

NBP allows you to bind a name to the internal storage address for your entity and
register this mapping so that other entities can look it up. Applications can display NBP
names to users and use addresses internally to locate entities. When you register your
entity’s name and address pair, NBP validates its uniqueness.

An entity name consists of three fields: object, type, and zone. The value for each of
these fields can be an alphanumeric string of up to 31 characters. The entity name is not
case sensitive. You specify the value for the object and type fields.

The object field typically identifies the user of the system, or the system itself, in the case
of a server. Applications commonly set this value to the owner name, which the user
specifies through the Sharing Setup control panel.

The type field generally identifies the type of service that the entity provides, for
example, “Mailbox” for an electronic mailbox on a server. Entities of the same type can
find one another and identify potential partners by looking up addresses based on the
type portion of the name alone.

The zone field identifies the zone to which the node belongs. You do not specify this
value; when you register your process, you specify an asterisk (*) for this field. NBP
interprets the asterisk to mean the current zone or no zone, in the case of a simple
network configuration not divided into zones.

About NBP 3-3

(dEN) 000101d Buipuig-sureN -

CHAPTER 3

Name-Binding Protocol (NBP)

The mapping of names to addresses that NBP maintains is important for AppleTalk
because the addressing numbers that AppleTalk uses are not fixed. AppleTalk assigns
an address dynamically to a node when the node first joins the network and whenever
the node is rebooted. Because of this, the address of a node on an AppleTalk network
can change from time to time. Although a network number corresponds to a particular
wire and the network number portion of an address is relatively stable, the socket
number that is assigned to an entity is usually randomly generated. (For an overview
of AppleTalk addresses and the addressing scheme, see the chapter “Introduction to
AppleTalk” in this book.) Although NBP is not a transport protocol, that is, you do not
use it to send and receive data, NBP is a client of DDP. Figure 3-1 shows NBP and its
underlying protocols.

Figure 3-1 The Name-Binding Protocol and the underlying AppleTalk protocols

3-4

Bl

D

LAP Manager

o

Port

NBP provides network entities with access to current addresses of other entities. The
name part of an NBP mapping is also important in identifying and locating an entity on
the network. The NBP entity name is different from the application name. An application
can display entity names to users and look up addresses based on names.

For example, an entity name can include a portion that identifies that entity type. An
application can request NBP to return the names of all of the registered entities of a
certain type, such as a particular type of game. The application can then display those
entity names to a user to allow the user to select a partner. When the user selects

an entity name, the application can request NBP to return the address that is mapped to
the entity name.

About NBP

CHAPTER 3

Name-Binding Protocol (NBP)

When you register your entity with NBP, it is made visible to other entities throughout
the network. A network entity that is registered with NBP is referred to as a network-
visible entity. A mail server application is an example of a network-visible entity. When
a mail server is registered with NBP, workstation clients with mailboxes can access the
mail server program to send and receive mail.

A server application might call NBP to register itself at initialization time so that its
clients can access the server when they come online. However, a game application
might register itself when a user launches it so that partner applications of the same
type can locate it, then remove its entry from the NBP names directory when the user
quits the application.

You use the NBP routines to register your entity so that other entities can find it and

to retrieve the addresses of other entities with which you want to communicate. You
specify an entity name that adheres to a defined format and register that name with
NBP in conjunction with the socket number that your entity uses. NBP then makes your
entity’s complete address available to other entities. To retrieve the address of another
entity that is registered with NBP, you supply that entity’s NBP name. You can retrieve
the addresses of more than one entity by using wildcards instead of a fully qualified
NBP name.

Although you register your entity’s NBP name in association with the socket that it uses,
NBP maintains an entry that contains your entity’s complete internet socket address. The
internet socket address, also called the internet address, includes the socket number, the
node ID, and the network number. All network-visible entities on an internet are socket
clients, which means that each one is associated with a socket. Each socket has a unique
number, and every entity has a unique internet socket address that identifies it. The
socket number part of the internet address ensures that data intended for an entity is
delivered to that particular entity.

The link-access protocol dynamically assigns a unique node ID to each node when it
joins the network. When the user reboots the system, sometimes the same node ID is
available and sometimes a new node ID is assigned. The network number is the number
of the network to which the node is directly connected, and it remains the same as

long as the node is physically connected to that network. NBP fills in the node ID

and the network number in a names table entry. You don’t supply these parts of the
internet address.

NBP maintains a names table in each node that contains the name and internet address
of each registered entity in that node. Each name and address pair is called a tuple.
When you register your process with NBP, you provide a names table entry. NBP builds
its names table on a node from the entries that entities supply.

The NBP routines include a procedure, NPBSetNTE, that you can use to fill in a names
table entry that is in the format that NBP expects. The NPBSetNTE procedure takes the
name and the socket ID that you specify and builds a names table entry in the buffer that
you provide. (For information on using NPBSetNTE, see “Registering Your Entity With
NBP” beginning on page 3-7.)

About NBP 3-5

(dEN) (0901014 Buipuig-awen -

CHAPTER 3

Name-Binding Protocol (NBP)

To form a names table for a node, NBP connects together as a linked list the names table
entries of all the registered entities on that node. The collection of names tables on all the
nodes in an internet is known as the NBP names directory. Figure 3-2 shows a number
of nodes on a network, each with its own names table; each names table contains an
entry for each registered entity on its node.

Figure 3-2 The NBP names table on each node, collectively forming an NBP names directory

NBP names
table

-

(R T I

Whenever a node receives an NBP lookup request, NBP searches through its names table
for a match and, if it finds a match, returns the information to the requester.

Using NBP

This section describes how you can use NBP to

= set up a names table entry for your entity and register your entity’s name and address
pair with NBP for other entities to access

m look up an address based on a name

m confirm a name and address that you already have

® remove your entity’s name and address from the NBP names directory
m cancel a pending NBP request

The .MPP driver implements the NBP protocol. Your application should check to ensure
that the .MPP driver is already loaded on the system running your application before it
attempts to call NBP. If the driver is not already open, your application should open it by

Using NBP

CHAPTER 3

Name-Binding Protoco! (NBP)

calling the Device Manager’s OpenDriver function. The following example shows how
to open the MPP driver.

BEGIN
myErr := OpenDriver('.MPP', mppRefNum); {open .MPP driver}
IF myErr <> noErr THEN DoOErr (myErr); {check and handle }

{ error}

For more information on determining if the MPP driver is open and opening the
AppleTalk drivers, see the chapter “AppleTalk Utilities” in this book.

Your application can have multiple concurrent active NBP requests. For example,

your application can perform a number of PRegisterName, PLookupName and
PConfirmName requests concurrently. The maximum number of concurrent requests

is machine dependent. You can use the PGetAppleTalkInfo function to determine
the maximum number of concurrent NBP requests supported by the MPP driver

on the node running your application. For information about the PGetAppleTalkInfo
function, see the chapter “AppleTalk Utilities” in this book.

All of the NBP functions use parameter blocks to hold input and output values. Whether
you execute a function synchronously or asynchronously, you must not alter the contents
of the parameter block until after the NBP function that uses it completes the operation.
In effect, the parameter block belongs to the NBP function until the function completes
execution. (For a discussion of synchronous and asynchronous execution, see the chapter
“Introduction to AppleTalk” in this book.) When the operation completes, you can either
reuse the memory allocated for the parameter block or release it.

In addition to the parameter block used for the function, the memory that you allocate
for any records and buffers whose pointers you pass to NBP through a parameter block
field must also be nonrelocatable until the function completes execution. When the
operation completes, you can reuse these data structures or release the memory that you
allocated for them.

To allocate nonrelocatable memory, you can use the Memory Manager’s NewPtr or
NewPtrsSys function. If you use NewHandle instead, you need to lock the memory. For
more information about these functions, see Inside Macintosh: Memory.

Registering Your Entity With NBP

You register your entity with NBP to make its services available to other entities through-
out the network. Once the entity is registered, other entities can look up its name and
address pair based on its name or a part of that name.

Your process can register itself with several names all associated with the same socket.
To register itself, your entity calls two NBP routines:

m the set names table entry (NBPSetNTE) procedure, which prepares the names
table entry

m the register name (PRegisterName) function, which provides NBP with a pointer to
the names table entry so that NBP can register the entry on the node

Using NBP 3-7

(daN) 1000101¢ Buipuig-ewen -

CHAPTER 3

Name-Binding Protocol (NBP)

Setting Up a Names Table Entry

The NBPSetNTE procedure creates a names table entry in the format that Figure 3-4 on
page 3-9 shows. You associate an NBP entity name with the socket number assigned to
your entity.

When you create the names table entry, you provide NBP with the socket number that
your entity uses. This is the socket ID that was assigned to your entity when it opened
a socket.

Figure 3-3 shows a complete internet socket address belonging to an entity and the entity
name that is associated with the address.

Figure 3-3 The intemet socket address and entity name of an application

3-8

Internet socket address

T Socket

el . Nefworknumber 21D: -} mber
i vork-umbe ~ |- inumber
‘
Entity name
: Pegay:SuriPaint®GraphicsGroup:

Along with the individual fields of the name and the socket number, you pass
NBPSetNTE a pointer to a buffer that is 108 bytes long. You create a record of type
NamesTableEntry as the buffer to be used for the names table entry. When you
register your entity, NBP uses the buffer that you pass it as the actual names table entry
for that entity; it does not make a copy of the buffer. NBP links the NamesTableEntry
record that you provide to other names table entries on the node to create a names
table for that node. For this reason, memory that you allocate for the buffer must be
nonrelocatable.

Figure 3-4 shows the structure of the names table entry record.

Notice that the first field in the NamesTableEntry record is a pointer to the next entry
in the linked list. NBP maintains the value of this field. You do not supply this value.
However, you can get a pointer to the first entry in the names table on the node

where the entity is running by calling the PGetAppleTalkInfo function. For informa-
tion about the PGetAppleTalkInfo function, see the chapter “AppleTalk Utilities” in
this book.

Using NBP

CHAPTER 3

Name-Binding Protocol (NBP)

Figure 3-4 Names table entry record format
Bytes
—
Paointer to next entry 4
Intemet address ——
Network number 4
Node ID 1
_ Socket number 1
Reserved 1
. Length of object name 1
Variable
/ Object name (ASCHI) i
Length of type name 1
Name of network- — Variab!
visible enti ariable
ty / Type name (ASCII) longth
Length of zone name 1
Variable
{ Zone name (ASCII) { length
—

Registering a Names Table Entry

After you create the names table entry using NBPSetNTE, you register it by calling the
PRegisterName function. When you call PRegisterName, NBP fills in the network
number and node ID for the names table entry; because these values are the same for all
entities on the node, you do not need to supply them.

Before you call the PRegisterName function, you must supply values for the function’s
parameter block input fields. These fields are interval, count, entityPtr, and
verifyFlag. If you execute the function asynchronously, you must also supply a value
for the ioCompletion field. After you call the PRegisterName function, you must not
alter the contents of the parameter block until the function completes execution, and you
must not modify or manipulate the names table entry until you remove it from the NBP
name and address pair directory. ‘

You set the parameter block’s entityPtr field to the names table entry’s pointer. For
released software, you should always set the verifyFlag field to a nonzero number.
This directs NBP to check throughout the network to determine that the name you want
to register is unique. Ensuring that a name is unique avoids the occurrence of problems
that can arise when two entities are registered with the same name. If the entity name is
already registered for another entity, the PRegisterName function result indicates that
the name is a duplicate by returning a function result of nbpDuplicate.

Using NBP 3-9

(daN) (090014 Buipuig-ewenN -

3-10

CHAPTER 3

Name-Binding Protocol (NBP)

You can specify how many times NBP should attempt to verify the name’s uniqueness
by assigning a value to the count field. You can control how long NBP waits between
each check by assigning a value to the interval field.

The interval and count parameters are both 1 byte long, which limits them to a value
within the range of 0 to 255 ($00-$FF). However, you should not specify a value of 0
(which is equivalent to 256) for the retransmit interval; the task will never be executed if
you do.

You measure intervals in 8-tick units. You can use this equation to determine how long in
ticks a function will take to complete:

TimeToCompleteInTicks := count * interval * 8;

A value of 7 for the interval field is usually sufficient (7 x 8 = 56 ticks equals approxi-
mately 1 second). A retry count of 5 is usually sufficient. However, on a large network,
base the interval value on the speed of the network. Base the retry count on how likely it
is for a particular kind of device to catch or miss the NBP lookup request and how many
devices of this kind are on the network.

Some kinds of devices are more likely to receive the NBP lookup request than are others.
For example, the AppleTalk ImageWriter has a dedicated processor on the LocalTalk
option card to handle AppleTalk processing. A dedicated processor is likely to be
available to receive an NBP lookup request, so the count for a device of this type can be
relatively low. However, most Macintosh computers and LaserWriter printers depend on
the system’s shared processor to handle all processing, so the count for these kinds of
devices should be higher. On a network with slow connections, for example, one that
uses a modem bridge, you should increase the interval.

You can use different values for different types of devices. You can store these values in a
preferences resource so that you can easily change them to correspond to changes in the
network. For example, you could include values such as the following for these devices:

Device Interval Count
AppleShare $07 $05
AppleTalk ImageWriter $07 $02
LaserWriter $0B $05

You pass to the PRegisterName function a pointer to a parameter block and a Boolean
value indicating if the function is to be executed asynchronously or synchronously. If
you set the async Boolean parameter to TRUE, you must either provide a completion
routine or set the ioCompletion field value to NIL, in which case, your process must
poll the parameter block’s ioResult field to determine when the function completes
the operation. For a discussion of synchronous and asynchronous execution, see the
chapter “Introduction to AppleTalk” in this book.

Listing 3-1 shows a segment of code that registers an application with NBP. First the
code allocates nonrelocatable memory for the names table entry. Then the code calls
NBPSetNTE to set up the names table entry in the format that the PRegisterName
function expects.

Using NBP

CHAPTER 3

Name-Binding Protocol (NBP)

Next, the code assigns values to the input fields of the parameter block to be used for
the PRegisterName function. The code doesn't assign values to the ioRefNum and
csCode fields because these field values are filled in by the PRegisterName function’s
glue code in the MPW interface.

Notice that the code assigns to the entityPtr field the ntePtr pointer to the buffer
that the code passed to the NBPSetNTE function. After it sets up the parameter block,
the code makes a synchronous call to the PRegisterName function to register the
names table entry. If the PRegisterName function returns an error, the code releases
the nonrelocatable memory that it allocated for the names table entry.

Listing 3-1 Registering an application with NBP

FUNCTION MyRegisterName (entityObject: Str32; entityType: Str32;
socket: Integer; VAR ntePtr: Ptr): OSErr;

VAR

mppPB: MPPParamBlock;

result: OSErr;
BEGIN

ntePtr := NewPtrSys(sizeof (NamesTableEntry));

IF ntePtr = NIL THEN

BEGIN
result := MemError; {return memory error}
ntePtr := NIL;
END
ELSE
BEGIN

{Build the names table entity.}
NBPSetNTE (ntePtr, entityObject, entityType, '*', socket);
WITH mppPB DO

BEGIN
interval := $0F; {reasonable values for the }
count := $03; { interval and retry count}
entityPtr := ntePtr; {pointer to NamesTableEntry}
verifyFlag := Byte(TRUE); {ensure that name is unique}
END;

result := PRegisterName(@mppPB, FALSE);{register the name}
IF (result <> noErr) THEN

BEGIN
DisposPtr(ntePtr); {if error, release memory}
ntePtr := NIL;
END;
END;
MyRegisterName := result;

END;

Using NBP 3-11

(daN) 1000101d Buipuig-eureN’ -

CHAPTER 3

Name-Binding Protoco! (NBP)

Handling Names Table Entry Requests

In addition to providing services that let you register an entity name and socket address
for your process, NBP lets you look up addresses of other entities based on a name,
confirm that a process whose entity name and address you already have is still registered
with NBP and that the address is correct, remove your process’s name and address from
the names table when you no longer want to make the entity available, and cancel a
pending request. You use

m the NBPSetEntity procedure to prepare an entity name in the format required by
the NBP functions

m the PLookupName function to retrieve another entity’s address based on the entity’s
complete NBP name, or to retrieve the addresses of multiple entities that match an
NBP name that includes wildcards

a the NBPExtract function to read a retrieved address from the return buffer
m the PConfirmName function to verify a name and address

m the PRemoveName function to remove your process’s name and address from the
NBP names directory '

m the PKil1lNBP function to cancel a request to register, confirm, or look up a names
table entry if the function was called asynchronously and it has not already been
executed

Preparing an Entity Name

To prepare an entity name using NBPSetEntity, you allocate a buffer that is at least
99 bytes long. You can allocate a record of type EntityName for this buffer. You pass
NBPSetEntity a pointer to the buffer along with the three parts of the name (object,
type, and zone), and NBPSetEnt ity writes the entity name to the buffer in the
format that the PLookupName, PConfirmName, and PRemoveName functions require.
Figure 3-5 shows the format of the entity name record.

Figure 3-5 Entity name record format
Bytes
Length of object name 1
. Variable
Z Object name (ASCII) length
Length of type name 1
Variable
/ Type name (ASCII) et
Length of zone name 1
Variable
{ Zone name (ASCI) flen -

3-12 Using NBP

CHAPTER 3

Name-Binding Protocol (NBP)

For the PConfirmName and PRemoveName functions, you must specify explicit values
for the nbpObject, nbpType, and nbpZone parameters. However, you can specify
wildcards for these parameters for PLookupName.

Looking Up a Name

You can use the PLookupName function to look up the address of a particular entity
whose NBP name you know. You can also use the PL.ookupName function to find the
addresses of more than one entity whose NBP names match a partial name that includes
wildcards.

If you want to retrieve the address of a particular entity, you assign to the entityPtr
field of the parameter block a pointer to a fully qualified entity name that you provided
using NBPSetEntity. You create a buffer to hold the name and address that
PLookupName returns and set the parameter block’s return buffer pointer (retBuf £Ptr)
field to this buffer’s pointer. Because the data is packed and each tuple takes a maximum
of 104 bytes, to look up a particular name you need to set the return buffer size
(retBuffsize) field to the buffer size of 104 bytes. Figure 3-6 shows the format of

the record for a tuple that PLookupName returns.

Figure 3-6 Tuple returned by the PLookupName function

Bytes
r Network number 2
Internet address —— Node ID 1
- Socket number 1
Reserved 1
. Length of object name 1
! Variable
/ Objectname (ASCl) /et
Length of type name 1
Name of network- — i
visible entity / Type name (ASCII) { I\éir;lt?le
Length of zone name 1
Variable
{ Zone name (ASCII) { length
A

If you want only one name and address pair returned, you set the maximum number of
matches (maxToGet) field to 1. When you call the function asynchronously, you must
assign to the ioCompletion field a pointer to your completion routine or set this field
to NIL. For more information about executing routines synchronously or asynchro-
nously, see the chapter “Introduction to AppleTalk” in this book.

Using NBP 3-13

(daN) 102010.4 Bujpuig-aweN -

3-14

CHAPTER 3

Name-Binding Protocol (NBP)

If you want to obtain the addresses of other instances of the same type of entity that are
running on other nodes in the network, you can look up the addresses of these entities
by specifying wildcards. In this case, you specify a type field value and wildcards for the
object and zone fields.

Table 3-1 shows the wildcards that you can use to control the kind of matches that you
want NBP to return.

Table 3-1 NBP wildcards

Character Meaning

= All possible values. You can use the equal sign (=) alone instead of
specifying a name in the object or type field.

= Any or no characters in this position. You can use the double tilde (=) to
obtain matches for object or type fields. For example, pa=I matches pal,
paul, paper ball, and so forth. You can use only one double tilde in any
string. Press Option-X to type the double tilde character on a Macintosh
keyboard. If you use the double tilde alone, it has the same meaning as
the equal sign (=).

NOTE Any node not running AppleTalk Phase 2 drivers will not recognize this character.

This zone. You can use the asterisk (*) in place of the name of the zone to
which this node belongs.

For example, if you want to retrieve the names and addresses of all the mailboxes in the
same zone as one in which your process is running, you can set the entity name object
field to the equal sign (=), the type field to Mailbox, and the zone field to the asterisk (*).
The PLookupName function will return the entity names and internet addresses of all
mailboxes in that zone excluding your own entity’s name and address.

You can specify how thorough the lookup should be by defining the number of times
that NBP should broadcast the lookup packets and the time interval between these
retries. To do this, you assign values to the parameter block’s count and interval
fields. See the discussion on how to determine these values in the section “Registering a
Names Table Entry” beginning on page 3-9.

You must also create a buffer large enough to hold all of the tuples for the matches that
NBP returns. (See Listing 3-3 on page 3-17.) You assign the buffer’s pointer to the
parameter block’s retBuf £Ptr field and the buffer’s size in bytes to the retBuffsSize
field. Allow 104 bytes for each match. You set the maximum number of matches for NBP
to return as the value of the maxToGet field.

The PLookupName function keeps track of the number of matches it writes to the return
buffer each time it receives a returned packet containing one or more matches, and it
updates the number of matches returned (numGotten) field after it returns each match.
Because PLookupName maintains numGotten, you can start reading the names and
addresses in the buffer and storing them or displaying them for the user before the
function completes execution.

Using NBP

CHAPTER 3

Name-Binding Protocol (NBP)

A single lookup request or retry can return more than one match in a reply packet. When
this happens, the PLookupName function will return as many of the matches that the
packet contains as will fit in the buffer. In cases such as this, you will find that the
number of tuples that PLookupName writes to the return buffer may exceed the
maximum number of matches to be returned as specified by maxToGet. When this
occurs you can assume that there may be additional matches that did not fit in the buffer
or additional reply packets containing matches that PLookupName did not process. To
receive all the matches, you should increase the size of the buffer and the maxToGet
number, and call the PLookupName function again.

If the bulffer is too small to accommodate all of the returned matches in a packet,
the PLookupName function returns a function result of nbpBuffOvr. In any case,
the numGotten field always indicates the actual number of tuples returned in the
buffer. (See also “PLookupName” beginning on page 3-30 for more information
about this function.)

The code in Listing 3-2 assigns values to the fields of the parameter block to be used for
the PLookupName function call. The value theEntity points to a packed entity-name
record that you prepared using NBPSetEntity. This is the name that will be looked
for. The value returnBuf ferPtr points to the buffer where PLookupName will return
any matches that it finds. The buffer must be able to hold the number of matches
specified by the input value of entityCount; each match is 104 bytes long. On return,
entityCount contains the number of matches that the PLookupName function found
and returned in the buffer pointed to by returnBufferPtr. The PLookupName
function’s glue code in the MPW interface fills in the values for the ioRefNum and
csCode fields.

Listing 3-2 Calling PLookupName to find matches for an entity name

FUNCTION MyLookupName (theEntity: EntityName; VAR entityCount: Integer;
returnBufferPtr: Ptr): OSErr;
CONST '
kTupleSize = 104; {sizeof (AddrBlock) + a one-byte enumerator + }
{ sizeof(EntityName)}
VAR
mppPB: MPPParamBlock;

BEGIN
WITH mppPB DO
BEGIN

interval := $0F; {reasonable values for the }

count := $03; { interval and retry count}

entityPtr := @theEntity; {pointer to the entity name to }
{ look for}

retBuffPtr := returnBufferPtr; {pointer to the buffer for the }
{ tuples}

Using NBP 3-15

(d8N) 1000101 Bulpuig-sweN ‘

CHAPTER 3

Name-Binding Protoco! (NBP)

RetBuffSize := entityCount * kTupleSize;

{return buffer size}

maxToGet := entityCount; {the number of entities that the }

{ return buffer can hold}

MyLookupName := PLookupName(@mppPB, FALSE);

{look up the entity name}

entityCount := mppPB.numGotten;

END;

3-16

{return the number of matches found}

The tuples in the buffer are in the format used in the NBP names table, as shown in
Figure 3-6 on page 3-13. Because data is packed, the object, type, and zone names in this
format are of arbitrary length; you cannot use Pascal to read these tuples. You can use
the NBPExtract function to read tuples from the buffer.

Extracting a Name From a List of Returned Names

After NBP returns the matches to your buffer, you need to extract the match or matches
that you want to use. You can use the NBPExtract function to read a name and address
pair from the return buffer that you supplied to PLookupName. Before you call
NBPExtract, you need to allocate memory for two buffers: one buffer that is at least
102 bytes long to hold the name part of the tuple and another buffer that is 4 bytes long
to hold the address. You pass the NBPExtract function pointers to these buffers. The
NBPExtract function unpacks the name and address data and writes it to the buffers
that you supply.

You also pass NBPExtract a pointer to the buffer containing the returned tuples; this is
the pointer that you assigned to the PLookupName function’s retBuf fPtr parameter
block field. For the numInBuf parameter, you specify the number of tuples in the return
buffer; this is the value that the PLookupName function returned in the numGotten
parameter block field. Counting the first returned tuple as one and following in sequence
to the value of numGotten, you identify which name and address pair you want to
extract as the value of the whichOne parameter. You can use the NBPExtract function
in a loop that varies the value of the whichOne parameter (entityCount in the
following code example) from 1 to the total number of tuples in the list to extract all the
names in the list.

Listing 3-3 shows an application-defined procedure, DoMyLookupName, that allocates a
buffer to hold the matches that the PLookupName function returns; the MyLookupName
function, shown in Listing 3-2 on page 3-15, calls the PLookupName function. The
DoMyLookupName procedure calls the MyLookupName function.

If the MyLookupName function returns a result code of noErz, then the code calls the
NBPExtract function to read the matches that are in the buffer and write them to

the application’s buffer with an application-defined routine, MyAddToMatchList; the
listing does not show the MyAddToMatchList routine. After the matches are extracted,
the code disposes of the return buffer.

Using NBP

CHAPTER 3

Name-Binding Protoco! (NBP)

Listing 3-3 Creating a buffer to hold name matches found, then using NBPExtract to read

the matches

PROCEDURE DoMyLookupName;

CONST
kTupleSize = 104; {sizeof (AddrBlock) + a one-byte enumerator + }
{ sizeof(EntityName)}
kMaxMatches = 100; {number of matches to get}
VAR
result: OSErr;
returnBufferPtr: Ptr;
theEntity: EntityName;
entityCount: Integer;
index: Integer;

entityAddress: AddrBlock;

BEGIN

returnBufferPtr := NewPtr(kMaxMatches * LongInt(kTupleSize));
IF returnBufferPtr <> NIL THEN

BEGIN

{Create a packed entity name.}

END;
END;

NBPSetEntity(@theEntity, '=', 'AFPServer', '*');
entityCount := kMaxMatches; {maximum number of matches we want}
result := MyLookupName(theEntity, entityCount, returnBufferPtr);
IF result = noErr THEN
{Extract the matches and add them to the match list.}

FOR index := 1 TO entityCount DO

IF NBPExtract(returnBufferPtr, entityCount, index, theEntity,
entityAddress) = noErr THEN
AddToMatchList (theEntity, entityAddress)
DiposPtr(returnBufferPtr); {release the memory}

Confirming a Name

If you know the name and address of an entity, and you only want to confirm that the
tuple is still registered with NBP and that the address hasn’t been changed, you should
call the PConfirmName function instead of calling PLookupName.

The PConfirmName function is faster than PLookupName because NBP can send a
request packet directly to the node based on the address that you supply rather than
having to broadcast lookup packets throughout the network to locate the names table
entry based on the entity name alone.

The code in Listing 3-4 sets up the parameter block to be used for the PConfirmName
function and calls PConfirmName to verify that the name and address still exist, and

Using NBP 3-17

(dEIN) 10901014 Buipuig-sureN -

CHAPTER 3

Name-Binding Protocol (NBP)

that the address is unchanged. If the application is using a different socket,
PConfirmName returns a function result of nbpConfDiff and gives the new
socket number in the parameter block’s newSocket field.

Listing 3-4 Confirming an existing NBP name and address

FUNCTION MyConfirmName (theEntity: EntityName; entityAddress: AddrBlock;

VAR

VAR socket: Integer): OSErr;

mppPB: MPPParamBlock;

BEGIN

WITH mppPB DO

BEGIN

interval := $0F; {reasonable values for the interval }
count := $03; { and retry count}
entityPtr := @theEntity; {entity name to look for}

confirmAddr := entityAddress; {entity's network address}

MyConfirmName := PConfirmName(@mppPB, FALSE);

socket

END;

3-18

:= mppPB.newSocket; {return the socket number, which is }

{ the new socket number if }
{ PConfirmName's result is }
{ nbpConfDiff}

Removing an Entry From the Names Table

After you close the socket that your process uses or when you no longer want to make
the process available throughout the network, you remove the names table entry from
the node on which it resides using the PRemoveName function.

There are two ways to remove a names table entry:

" m For the first method, you use the NBPSetEntity procedure to put the entity name of

an existing registered entity into the structure that NBP requires. Then you specify the
pointer to this record as the value of the entityPtr field of the parameter block.

m For the second method, you provide the PRemoveName function with a pointer to the
names table entry record that you used to register the name.

The PRemoveName function removes the entry from the node’s names table unless the
name is no longer registered, in which case, PRemoveName returns a function result of
nbpNotFound. An entity name may not be included in the node’s names table if, for
example, the request to register the name had been canceled by the PKi11NBP function
before the PRegisterName function used to register the name was executed.

The code in Listing 3-5 shows how to remove a names table entry using PRemoveName.
The PRemoveName function’s glue code fills in the ioRefNum and csCode values. The
code in Listing 3-5 provides the pointer to the names table entry record that was used to

Using NBP

CHAPTER 3

Name-Binding Protocol (NBP)

register the name; it assigns this value to the entityPtr field of the parameter block
used for the PRemoveName function call. (The code in Listing 3-1 on page 3-11 created the
names table entry record.) If the application-defined MyRemoveName function returns a
function result of noErr, the code disposes of the memory block pointed to by ntePtr.

Listing 3-5 Removing an NBP names table entry

FUNCTION MyRemoveName (ntePtr: Ptr): OSErr;
VAR
mppPB: MPPParamBlock;
result: OSErr;
BEGIN
mppPB.entityPtr := Ptr(ORD4(ntePtr) + 9);
{the entity name is at offset 9 in the NTE}
result := PRemoveName(€@mppPB, FALSE);{remove the name}
IF (result = noErr) THEN
DisposPtr(ntePtr); {release the memory}
MyRemoveName := result;
END;

Canceling a Request

You can use the PKil1NBP function to cancel a request to register, look up, or confirm
a names table entry if the function was called asynchronously and it has not already
been executed.

When you call PRegisterName, PLookupName, or PConf irmName, NBP calls the
Device Manager, which places your request in the MPP driver queue with other
requests waiting to be executed. To queue the request, the Device Manager places

a pointer to the function’s parameter biock in the .MPP driver queue. You assign this
pointer to the PKi11NPB parameter block’s queue element (nkKil1QE1) field.

If the function request that you want to cancel is not in the queue, PKil11NBP returns
a function result of cbNotFound. If PKil1NBP cancels the function, it returns a
function result of noErr, and the function that it canceled returns a function result
of regAborted.

The code in Listing 3-6 on page 3-20 shows how to cancel a PRegisterName,
PLookupName, or PConfirmName function call. The application-defined MyKi11NBP
function takes as an input parameter a pointer to the parameter block that was used

to make the PLookupName, PRegisterName, or PConfirmName function call to be
canceled. The code assigns this pointer to the nKi11QE1l field of the parameter block to
be passed to the PKil1NBP function. The ioRefNum and csCode field values are filled
in by the PKil1NBP function’s glue code in the MPW interface.

Using NBP 3-19

(dEN) 10901019 Bujpuig-sureN -

CHAPTER 3

Name-Binding Protocol (NBP)

Listing 3-6 Canceling a request to look up a name

FUNCTION MyKillNBP (requestPBPtr: MPPPBptr): OSErr;
VAR
mppPB: MPPParamBlock;
BEGIN
mppPB.nKillQEl := Ptr(requestPBPtr);
MyKillNBP := PKillNBP(@mppPB, FALSE);
END;

NBP Reference

This section describes the data structures and routines that are specific to the Name-
Binding Protocol (NBP). The “Data Structures” section shows the Pascal data structures
for the records and the parameter block that the NBP functions use. The “Routines”
section describes the NBP routines.

Data Structures

This section describes the data structures that you use to provide information to and
receive it from NBP.

Address Block Record

The address block record is a data structure of type AddrBlock that defines a packed
record that is used to contain an internet socket address. The names table entry record
includes a field that takes a value of this record type.

AddrBlock = PACKED RECORD

aNet: Integer;

aNode: Byte;

aSocket: Byte;
END;
Fleld descriptions
aNet The network number.
aNode The node ID.
aSocket The socket number.

3-20 NBP Reference

CHAPTER 3

Name-Binding Protocol (NBP)

Names Table Entry Record

The names table entry record is a data structure of type NamesTableEntry that is used
to hold an NBP names table tuple, consisting of a name and address. Because the object,
type, and zone names in a names table entry are packed data of arbitrary length, you
cannot create this record in Pascal (which requires you to declare the length of character
strings when you define the record). If you are using the NBP Pascal interface, you use
the NPBSetNTE procedure to create a names table entry. For illustration of the names
table record format, see Figure 3-4 on page 3-9.

TYPE
NamesTableEntry =
RECORD
gLink: QElemPtr;
nteAddress: AddrBlock;
nteData: PACKED ARRAY[1l..100] OF Char;
END;

Field descriptions

gLink A pointer to the next names table entry in the names table linked
list that NBP maintains on the node. (This field is used internally
by NBP.)
nteAddress The internet socket address.
nteData The NBP name associated with the entity’s address.
Entity Name Record

The entity name record is a data structure of type EntityName that is used to hold the
NBP name for an entity that is associated with a socket address. Your application looks
up or confirms an address or removes a names table entry based on an entity name.

Because the object, type, and zone names that constitute the entity name in this format
are packed data and of arbitrary length, you cannot create this record in Pascal (which
requires you to declare the length of character strings when you define the record). If you
are using the NBP Pascal interface, you put an existing entity name into the structure
that NBP requires using the NBPSetEntity procedure.

TYPE

EntityName =

RECORD
objStr: Str32;
typeStr: Str32;
zoneStr: Str32;

END;

EntityPtr = “EntityName;

NBP Reference 3-21

(dgN) 10901014 Bujpuig-swepN -

CHAPTER 3

Name-Binding Protocol (NBP)

Field descriptions
objstr The object part of an entity name. It consists of an alphanumeric
string of up to 31 characters. The object part of the name can be any

valid string; it is commonly used to identify the user of the system.

The type part of an entity name. It consists of an alphanumeric
string of up to 31 characters. The type part of the name can be any
valid string, but it is commonly used to identify the type of service
that the entity provides.

The zone part of an entity name. It consists of an alphanumeric
string of up to 31 characters that identifies the zone to which the
node belongs that is running the process.

typeStr

zoneStr

The MPP Parameter Block for NBP

The NBP functions use the MPP parameter block defined by the MPPParamBlock data
type to pass information to and receive it from the MPP driver. You use these fields to
specify input values to and receive output values from an NBP function. This section
defines the fields common to all NBP functions, except those that are reserved for
internal use by the .MPP driver or not used.

TYPE
MPPParmType = (...RegisterNameParm, LookupNameParm,
ConfirmNameParm,RemoveNameParm, KillNBPParm...);
MPPPBPtr = “MPPParamBlock;
MPPParamBlock =
PACKED RECORD
gLink: QElemPtr; {reserved}
qType: Integer; {reserved}
ioTrap: Integer; {reserved}
ioCmdaddr: Ptr; {reserved}
ioCompletion: ProcPtr; {completion routine}
ioResult: OSErr; {result code}
ioNamePtr: StringPtr; {reserved}
ioVRefNum: Integer; {reserved}
ioRefNum: Integer; {driver reference number}
csCode: Integer; {primary command code}
CASE MPPParmType OF
RegisterNameParm,
LookupNameParm,
ConfirmNameParm,
RemoveNameParm:
(interval: Byte; {retry interval}
count: Byte; {retry count}
entityPtr: Ptr; {pointer to entity name or }

{ names table element}

3-22 NBP Reference

Kil

END;

Routines

CHAPTER 3

Name-Binding Protocol (NBP)

CASE MPPParmType OF

RegisterNameParm:
(verifyFlag: Byte;
filler3: Byte;)

LookupNameParm:

(retBuffPtr: Ptr;
retBuffSize: Integer;

{verify uniqueness of name or not}

{pointer to return buffer}
{return buffer size}
{matches to get}

{matches gotten}

(confirmAddr: AddrBlock; {pointer to entity name}

maxToGet: Integer;
numGotten: Integer;)
ConfirmNameParm:
newSocket: Byte;
filler4: Byte);
) .
INBPParm:
(nKillQEl: Ptr;)

{socket number}

{pointer to queue element to cancel}

The fields for each variant record are defined in the function description that uses

the record.

This section describes the NBP routines. The NBP routines allow you to

create an NBP names table entry

® register an NBP names table entry with the NBP names directory

put an existing NBP entity name into the structure that NBP requires for you to look

up, confirm, or remove an existing registered entity name

cancel an NBP request

look up the address of a network entity based on its NBP name
read a name and address from a list of pairs that NBP returns
confirm that a name and address pair is registered with NBP

remove a registered name from the NBP names directory

An arrow preceding a parameter indicates whether the parameter is an input parameter,

an output parameter, or both:

Arrow Meaning

- Input
« Output
© Both
NBP Reference

3-23

(dEN) 1000101 Butpuig-euen -

CHAPTER 3

Name-Binding Protocol (NBP)

You can use the PGetAppleTalkInfo function to determine the maximum number of
concurrent NBP requests that the MPP driver installed on the system that is running
your process supports. See the chapter “AppleTalk Utilities” for information on the
PGetAppleTalkInfo function.

Registering an Entity

This section describes the NBPSetNTE and the PRegisterName routines. You can use
the NBPSetNTE procedure to create an NBP names table entry to be used to register the
name and address of an entity with NBP so that the entity is made visible throughout the
network. You use the PRegisterName function to register a names table entry that you
created through the NBPSetNTE procedure.

NBPSetNTE

3-24

The NBPSetNTE procedure creates a new NBP names table entry to be added to the NBP
names table through the PRegisterName function.

PROCEDURE NBPSetNTE (ntePtr: Ptr; nbpObject,nbpType,nbpZone: Str32;
' socket: Integer);

ntePtr A pointer to a buffer that you provide that is at least 108 bytes long. The
NBPSetNTE procedure fills this buffer with a names table entry based on
the remaining parameter values that you specify. This buffer should be a
record of type NamesTableEntry.

nbpObject The object part of the name for the names table entry. This value can be
up to 31 characters long. You cannot use any wildcard characters in this
name. (An object name typically identifies the node and is commonly set
to the Chooser name that the user specified.)

nbpType The type part of the name for the names table entry. This value can be up
to 31 characters long. You cannot use any wildcard characters in this
name. This part of an NBP name usually identifies the type of service to
which the name is assigned.

nbpZone The zone part of the name for the names table entry. You must use an
asterisk (*) for this name, indicating the local zone.
socket The number of the socket that was returned and assigned to your process

when you opened a socket using one of the AppleTalk transport
protocols. The NBP entity name is associated with the socket number that

you specify.

NBP Reference

DESCRIPTION

CHAPTER 3

Name-Binding Protocol (NBP)

The NBPSetNTE procedure creates a names table entry that you can register with

the NBP names directory using the PRegisterName function. When you call
PRegisterName to register the name, you must provide a pointer to the NBP names
table entry that you created previously.

Because the object, type, and zone names in a names table entry are packed data of
arbitrary length, you cannot create this record in Pascal (which requires you to declare
the length of character strings when you define the record). Use the NBPSetNTE
procedure to create the names table entry.

SPECIAL CONSIDERATIONS

The names table entry that you provide remains the property of NBP once you register it
using PRegisterName and until you remove it using the PRemoveName function. You
can allocate a block of nonrelocatable memory for the names table entry buffer using the
Memory Manager’s NewPtr or NewPtrSys function.

If instead you use the NewHand1le function to allocate the buffer memory, you must lock
the memory before you call PRegisterName to register the name because NBP adds the
actual names table entry to the NBP names table for that node, and the names table entry
remains part of the table until you remove it.

ASSEMBLY-LANGUAGE INFORMATION

The NBPSetNTE procedure is implemented entirely in the MPW interface files. There is
no assembly-language equivalent for this procedure.

SEE ALSO
For the names table entry record format, see Figure 3-4 on page 3-9.
For the NamesTableEntry data type declaration, see “Data Structures” on page 3-20.
For information on allocating memory, see Inside Macintosh: Memory.
The PRegisterName function is described next.
PRegisterName

The PRegisterName function adds a unique names table entry to the local node’s NBP
names table.

FUNCTION PRegisterName (thePBptr: MPPPBPtr; async: Boolean): OSErr;

thePBptr A pointer to an MPP parameter block.

async A Boolean that indicates whether the function should be executed asyn-
chronously or synchronously. Specify TRUE for asynchronous execution.

NBP Reference 3-25

(daN) |0v0j01d Bupuig-sweN '

3-26

CHAPTER 3

Name-Binding Protocol

Parameter block

ioResult
ioRefNum
¢sCode
interval
count
entityPtr
verifyFlag

L1TLLLT!

Field descriptions
ioCompletion

ioResult

ioRefNum
csCode

interval

count

entityPtr

verifyFlag

NBP Reference

(NBP)

ioCompletion ProcPtr A pointer to a completion routine.

OSErxr The function result.

Integer The .MPP driver reference number.

Integer Always registerName.

Byte The retry interval.

Byte The retry count.

Ptr A pointer to a names table entry.

Byte A flag to indicate whether NBP is to verify
NBP names as unique.

A pointer to a completion routine that you can provide. When you
execute a function asynchronously, the MPP driver calls your
completion routine when it completes execution of the function if
you specify a pointer to the routine as the value of this field. Specify
NIL for this field if you do not wish to provide a completion
routine. If you execute a function synchronously, the MPP driver
ignores the ioCompletion field. For information about completion
routines, see the chapter “Introduction to AppleTalk” in this book.

The result of the function. When you execute the function asynchro-
nously, the function sets this field to 1 and returns a function

result of noErr as soon as the function begins execution. When

the function completes execution, it sets the ioResult field to the
actual result code.

The .MPP driver reference number. The MPW interface fills in
this field.

The command code of the MPP command to be executed. The
MPW interface fills in this field.

The retry interval to be used by NBP when it verifies the uniqueness
of the name. The retry interval value specifies how long the
function is to wait between retries in 8-tick units. A value of 7 for
the interval field is usually sufficient (7 x 8 = 56 ticks equals
approximately 1 second).

On input, the retry count to be used by NBP when it verifies the
uhiqueness of the name. Its value tells the PRegisterName
function how many times to retry. A retry count of 5 is usually
sufficient. On return, the number of times that NBP actually
attempted to verify the uniqueness of the name.

A pointer to a names table entry. You can use the NBPSetNTE
procedure to create a names table entry.You cannot use wildcard
characters in the object name and type name fields of the names
table entry, but you must use an asterisk (*)—indicating the local
zone—for the zone name field.

A flag that determines whether NBP attempts to verify that the
name you are adding to the names table is unique. Set this flag to a
nonzero number to have NBP verify the name. You can set this flag
to zero during program development, but to avoid confusion
caused by duplicate names on a network, you should always set the
verifyFlag parameter to a nonzero number in released software.

CHAPTER 3

Name-Binding Protocol (NBP)

DESCRIPTION

Before another entity can serid information to your entity over AppleTalk, it must have
your entity’s internet socket address. Also, for users to be able to select your application,
the entity must be made visible throughout the network.

The PRegisterName function adds an entry for a network entity to the node’s NBP
names table, making it possible for a user or another process to locate that entity through
its NBP name (consisting of object, type, and zone names). The process whose name is
registered with NBP is referred to as a network-visible entity.

Because the object, type, and zone names in a names table entry are of arbitrary length,
you cannot create this record in Pascal (which requires you to declare the length of
character strings when you define the record). Use the NBPSetNTE procedure to create
the names table entry. If you execute the function asynchronously and you do not specify
a completion routine, your process can poll the ioResult field to determine when the
function completes execution.

You can assign any number of names to a single socket. If you use a single socket for
more than one process, you must provide a socket listener.

If you use the PKi11NPB function to cancel the PRegisterName function and the cancel
request is successful, PRegisterName returns a function result of reqAborted.

SPECIAL CONSIDERATIONS

The names table entry that you provide remains the property of NBP until you use the
PRemoveName function to remove the entry from the names table. You must allocate a
nonrelocatable block for the names table entry, or lock any relocatable block that you use
for it until you are ready to remove the entry.

ASSEMBLY-LANGUAGE INFORMATION

To execute the PRegisterName function from assembly language, call the _Control
trap macro with a value of registerName in the csCode field of the parameter block.
To execute the _Control trap asynchronously, include the value , ASYNC in the operand
field. To execute this function from assembly language, you must also specify the driver

reference number.
RESULT CODES
noErr 0 Noerror
nbpDuplicate -1027 Name already exists
tooManyRegs -1097 Too many concurrent requests; wait a few minutes, then
try the request again
regAborted -1105 Request canceled

NBP Reference 3-27

(dGN) 1090j014 Buipuig-swenN -

SEE ALSO

CHAPTER 3

Name-Binding Protocol (NBP)

To create a names table entry, use the NBPSetNTE procedure, described on page 3-24.
For the names table entry record format, see Figure 3-2 on page 3-6.

For the NamesTableEntry data type declaration, see “Names Table Entry Record” on
page 3-21.

To cancel a name registration request, use the PKil1NBP function, described on

page 3-38.

For information about socket listeners, see the chapter “Datagram Delivery Protocol
(DDP)” in this book.

Handling Name and Address Requests

This section describes

m the NBPSetEntity procedure, which you can use to put an existing NBP entity name
into the structure that NBP requires for you to look up, confirm, or remove an existing
registered entity name

m the PLookupName function, which you can use to look up the network address of an
entity, based on the NBP registered name for that entity, or using wildcards

m the NBPExtract function, which you can use to read a name and address pair from
the buffer containing the list of tuples that PLookupName returns

m the PConfirmName function, which you can use to confirm that a name whose
address you know is still associated with that address, and that the pair is still
registered with the NBP names directory

m the PRemoveName function, which you can use to remove a name and address pair
from the NBP names directory when you no longer want to make the service
associated with the tuple available throughout the network

® the PKillNBP function, which you can use to cancel requests to NBP

NBPSetEntity

3-28

The NBPSetEntity procedure puts an existing NBP name of a network-visible
entity into the packed-record format that the PLookupName, PConfirmName, and
PRemoveName functions require.

PROCEDURE NBPSetEntity (buffer: Ptr;
nbpObject, nbpType,nbpZone: Str32);

buffer A pointer to a buffer that you provide that is at least 99 bytes long. The

NBPSetEntity procedure fills this buffer with the entity name you
specify in the other three parameters.

NBP Reference

DESCRIPTION

CHAPTER 3

Name-Binding Protocol (NBP)

nbpObject The object part of the registered NBP name. You can specify wildcard
characters in this part of the name only for use with the PLookupName
function.

nbpType The type part of the registered NBP name. You can use wildcard
characters in this part of the name only for use with the PLookupName
function.

nbpZone The zone part of the registered NBP name. You can use wildcard

characters in this part of the name only for use with the PLookupName
function.

Table 3-1 on page 3-14 describes the wildcard characters that you can specify for the
nbpObject, nbpType, and nbpZone fields for use with the PLookupName function.

When you call the PRemoveName function to remove the name of a network-visible
entity from the NBP names table, or call the PL.ookupName or PConf irmName function
to look up network-visible entities, you must specify an entity name in the format shown
in Figure 3-5 on page 3-12. (For PRemoveName, instead of creating the entity-name
record, you can provide a pointer to the names table entry record that you used to
register the name.)

The object, type, and zone names that constitute the entity name in this format are
packed data and of arbitrary length. Therefore, you cannot create this record in Pascal
(which requires you to declare the length of character strings when you define the
record). Use the NBPSetEntity procedure to provide the entity name in the format
that NBP requires.

SPECIAL CONSIDERATIONS

The memory that you allocate for the entity name buffer belongs to NBP until the
function completes execution. You can reuse it or dispose of it after the operation
completes.

ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

The NBPSetEntity procedure is implemented entirely in the MPW interface files. There
is no assembly-language equivalent for this procedure.

The PLookupName function is described next.

For a discussion of how to use NBPSetEntity, see “Preparing an Entity Name”
beginning on page 3-12.

To confirm that an entity is still registered with NBP, use the PConf irmName function,
described on page 3-34.

To remove a registered name from the NBP names table, use the PRemoveName function,
described on page 3-36.

NBP Reference 3-29

(dEN) 1090101d Buipuig-sweN n

CHAPTER 3

Name-Binding Protocol (NBP)

PLookupName

3-30

The PLookupName function returns the names and addresses of all the network-visible
entities that match a name that you supply, which can include wildcard characters.

FUNCTION PLookupName (thePBptr: MPPPBPtr; async: Boolean): OSErr;

thePBptr A pointer to an MPP parameter block.

async A Boolean that specifies whether the function should be executed
asynchronously or synchronously. Specify TRUE for asynchronous
execution.

Parameter block

Field descriptions
ioCompletion’

ioResult

ioRefNum
csCode

interval

NBP Reference

- ioCompletion ProcPtr A pointer to a completion routine.

« ioResult OSErr The function result.

- ioRefNum Integer The .MPP driver reference number.

- csCode Integer Always lookupName.

- interval Byte The retry interval.

& count Byte The retry count.

- entityPtr Ptr A pointer to an entity name.

- retBuffPtr Ptr A pointer to the return data buffer.

— retBuffSize Integer The return buffer size in bytes.

- maxToGet Integer The maximum number of matches to get.
« numGotten Integer The number of addresses found and returned.

A pointer to a completion routine that you can provide. When you
execute a function asynchronously, the .MPP driver calls your
completion routine when it completes execution of the function if
you specify a pointer to the routine as the value of this field. Specify
NIL for this field if you do not wish to provide a completion
routine. If you execute a function synchronously, the MPP driver
ignores the ioCompletion field. For information about completion
routines, see the chapter “Introduction to AppleTalk” in this book.

The result of the function. When you execute the function asynchro-
nously, the function sets this field to 1 and returns a function result
of noErr as soon as the function begins execution. When the
function completes execution, it sets the ioResult field to the
actual result code.

The .MPP driver reference number. The MPW interface fills in
this field.

The command code of the .MPP command to be executed. The
MPW interface fills in this field.

The retry interval to be used by NBP when it looks on the internet
for matching names. The retry interval value specifies how long the
function is to wait between retries in 8-tick units. The retry interval
equals the interval field value x 8 ticks. A value of 7 for the

DESCRIPTION

CHAPTER 3

Name-Binding Protocol (NBP)

interval field is usually sufficient (7 x 8 = 56 ticks equals approxi-
mately 1 second). However, on a large network, you should base
the interval value on the speed of the network and how many
devices of this type you expect to be on the network.

count The retry count to be used by NBP when it looks on the internet
for matching names. Its value specifies the number of times
PLookupName is to retry the operation. A retry count of 3 or 4 is
usually sufficient. However, on a large network, you should base
the value on how likely it is for the type of device to miss the NBP
request. For example, the AppleTalk ImageWriter has a dedicated
processor on the LocalTalk option card to handle AppleTalk
processing, so the retry count for a device of this type can be low,
whereas most Macintosh systems and LaserWriter printers depend
on their shared processor to handle all system processing, so
a retry count for a device of these types should be higher. The
PLookupName function decrements this field each time it looks

for names.

entityPtr A pointer to an entity name in the format shown in Figure 3-5 on
page 3-12. You can use the NBPSetEntity procedure to prepare
the entity name record.

retBuffPtr A pointer to a buffer you provide into which the PLookupName

function puts the names and addresses that it finds. Each matching
tuple takes a maximum of 104 bytes, and you use the maxToGet
field to specify the maximum number of tuples to be returned.

(dEN) 10201014 Buipuig-eweN -

retBuffSize The size of the buffer you are providing.
maxToGet The maximum number of matches to be returned.
numGotten The actual number of matches that PLookupName returned. The

PLookupName function updates this field each time it receives an
NBP returned packet and adds names to the return buffer. If there is
space remaining in the buffer, NBP may return more matches than
the number specified by maxToGet. If numGotten is greater than
or equal to maxToGet, there may be additional matches. In this
case, you should increase the size of the buffer pointed to by
retBuffPtr and call the PLookupName function again.

Before you can send data to another entity, you must have the network address of
that entity. The PLookupName function returns the names and addresses of any
network-visible entities whose names match the entity name you specify. The entity
name can include any of the wildcard characters given in Table 3-1 on page 3-14.

The PLookupName function completes execution when the number of matches
returned is equal to or greater than the number in the maxToGet field, the function
exceeds the retry count, the buffer overflows, or the request is canceled through the
PKillNBP function.

The number of matches returned can be greater than the number specified in the
maxToGet field under the following circumstances: A single lookup request or retry can
return more than one match in a reply packet. If there is space remaining in the buffer

NBP Reference 3-31

CHAPTER 3

Name-Binding Protocol (NBP)

and NBP receives a packet containing multiple matches, PLookupName will return

as many of the matches as fit in the buffer. If this occurs, you should increase the size
of the buffer and call the PLookupName function again to ensure that you obtain all of
the matches. '

If all of the tuples returned in a reply packet do not fit in the buffer, then the function
completes with as many tuples as can fit. Whether NBP returns more or fewer matches
than you specify as the value of maxToGet, the value of numGotten reflects the actual
number of tuples that PLookupName writes to the return buffer.

Because the function updates the numGotten field each time it receives a returned
packet containing one or more matches and writes those name and address pairs to
the return buffer, you can start reading the names in the buffer and displaying them
for the user before the function completes execution.

The tuples in the buffer are in the format used in the NBP names table, as shown in
Figure 3-6 on page 3-13. Because the object, type, and zone names in this format are
of arbitrary length, you cannot use Pascal to read these tuples. Use the NBPExtract
function to read tuples from the buffer.

SPECIAL CONSIDERATIONS

Memory used for the entity name record and the return buffer belongs to PLookupName
until the function completes execution and must be nonrelocatable.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

3-32

To execute the PLookupName function from assembly language, call the _Control trap
macro with a value of lookupName in the csCode field of the parameter block. To
execute the _Control trap asynchronously, include the value , ASYNC in the operand
field. To execute this function from assembly language, you must also specify the driver
reference number.

noErr 0 No error

tooManyRegs -1097 Too many concurrent requests; wait a few minutes, then
try the request again

regAborted -1105 Request canceled

To read tuples from the buffer, use the NBPExtract function, described next.

To create the entity name record, use the NBPSetEntity procedure, described on
page 3-28.

To check that a network-visible entity whose name and address you already know is still
available on the network, use the PConf i rmName function, described on page 3-34.

To cancel a name lookup request, use the PKil1NBP function, described on page 3-38.

NBP Reference

NBPExtract

CHAPTER 3

Name-Binding Protocol (NBP)

DESCRIPTION

The NBPExtract function returns one tuple (entity name and internet address) from the
list of tuples placed in a buffer by the PLookupName function.

FUNCTION NBPExtract (theBuffer: Ptr; numInBuf: Integer;
whichOne: Integer;
VAR abEntity: EntityName;
VAR address: AddrBlock): OSErr;

theBuffer A pointer to the buffer containing the tuples returned by the
PLookupName function.

numInBuf The number of tuples returned by the PLookupName function in the
numGotten parameter.

whichOne The sequence number of the tuple that you want the function to return.
This parameter can be any integer in the range 1 through numInBuf.

abEntity A pointer to a buffer that you provide to hold the name returned by the
function. This buffer must be at least 102 bytes long.

address A pointer to a buffer that you provide to hold the address returned by the
function. The buffer must be at least 4 bytes long.

The NBPExtract function extracts a name and address pair from the list of tuples that
the PLookupName function returns. The PLookupName function returns the names of
network-visible entities in a packed format that you cannot read from Pascal. Use the
NBPExtract function in a loop that varies the value of the whichOne parameter from 1
to the total number of tuples in the list to extract all the names in the list.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The NBPExtract function is implemented entirely in the MPW interface files. There is
no assembly-language equivalent to this procedure.

noErr 0 Noerror
extractErr -3104 Can'tfind tuple in buffer

To look up the name and address of an entity registered with NBP, use the PLookupName
function, described on page 3-30.

For a description of the EntityName data type, see “Entity Name Record” on page 3-21.
For a description of the AddrBlock data type, see “Address Block Record” on page 3-20.

NBP Reference 3-33

(daN) 10901014 Buipuig-eweN -

CHAPTER 3

Name-Binding Protoco! (NBP)

PConfirmName

3-34

The PConfirmName function confirms that a network-visible entity whose name you
know is still available on the network and that the address associated with the name has

not been changed.

FUNCTION PConfirmName (thePBptr: MPPPBPtr; async: Boolean): OSErr;

thePBptr A pointer to an MPP parameter block.

async A Boolean that specifies whether the function should be executed
asynchronously or synchronously. Specify TRUE for asynchronous
execution.

Parameter block

Field descriptions
ioCompletion

ioResult

ioRefNum
csCode

interval

NBP Reference

- ioCompletion ProcPtr A pointer to a completion routine.
« ioResult OSErr The function result.

- ioRefNum Integer The .MPP driver reference number.
- csCode Integer Always confirmName.

— interval Byte The retry interval.

< count Byte The retry count.

- entityPtr Ptr A pointer to an entity name.

— confirmAddr AddrBlock The entity address.

« newSocket Byte The current socket number.

A pointer to a completion routine that you can provide. When you
execute a function asynchronously, the .MPP driver calls your
completion routine when it completes execution of the function if
you specify a pointer to the routine as the value of this field. Specify
NIL for this field if you do not wish to provide a completion
routine. If you execute a function synchronously, the MPP driver
ignores the ioCompletion field. For information about completion
routines, see the chapter “Introduction to AppleTalk” in this book.

The result of the function. When you execute the function asynchro-
nously, the function sets this field to 1 and returns a function result
of noErr as soon as the function begins execution. When the
function completes execution, it sets the ioResult field to the
actual result code.

The .MPP driver reference number. The MPW interface fills in
this field.

The command code of the . MPP command to be executed. The
MPW interface fills in this field.

The retry interval to be used by NBP when it looks on the internet
for the entity. The retry interval value specifies how long the
function is to wait between retries in 8-tick units. A value of 7 for
the interval field is usually sufficient (7 x 8 = 56 ticks equals
approximately 1 second).

DESCRIPTION

CHAPTER 3

Name-Binding Protocol (NBP)

count

entityPtr

confirmAddr

newSocket

The retry count to be used by NBP when it looks on the internet for
the entity. The value of count specifies the number of times the
PConfirmName function is to retry the operation. A retry count of 3
or 4 is usually sufficient. The PConf i rmName function decrements
this field each time it looks for names.

A pointer to an entity name that you want to confirm. The entity
name must be in the format that Figure 3-5 on page 3-12 shows.
You can use the NBPSetEnt ity procedure to create the entity
name record.

The last known address of the network-visible entity whose
existence you wish to confirm.

The current socket number of the entity. If the socket number of
the entity has changed, the PConf irmName function returns the
new socket number in this field and returns the nbpConfDiff
result code.

If you already know the name and address of a network-visible entity, but want to
confirm that the name is still registered with NBP and that the address hasn’t changed
before you attempt to send data to it, you can use the PConfirmName function. If the
address is no longer associated with the name, PConf i rmName returns a result code
of nbpNoConfirm, indicating that the name may have been removed from the socket.
If the name is assigned to another socket, PConf irmName returns the current socket
number in the parameter block’s newSocket field and a result code of nbpConfDif€£.
This function generates less network traffic than the PLookupName function.

SPECIAL CONSIDERATIONS

Memory used for the buffer containing the entity name and the record containing the
entity address belongs to PConf i rmName until the function completes execution.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

To execute the PConf irmName function from assembly language, call the _Control
trap macro with a value of confirmName in the csCode field of the parameter block. To
execute the _Control trap asynchronously, include the value , ASYNC in the operand
field. To execute this function from assembly language, you must also specify the driver

reference number.

noErr
nbpNoConfirm
nbpConfDiff
tooManyRegs

regAborted

NBP Reference

0 Noerror
-1025 Name not confirmed
-1026 Name confirmed for different socket
-1097 Too many concurrent requests; wait a few minutes, then
try the request again
-1105 Request canceled

3-35

(dgaN) 10001014 Buipuig-eweN ‘

CHAPTER 3

Name-Binding Protocol (NBP)

SEE ALSO
For a description of the AddrBlock data type, see “Address Block Record” on page 3-20.
To find the address of a network-visible entity whose name or address you do not
already know, use the PLookupName function, described on page 3-30.
To cancel a name confirmation request, use the PKil1NBP function, described on
page 3-38.
PRemoveName
The PRemoveName function removes a previously registered name from the NBP
names table.
FUNCTION PRemoveName (thePBptr: MPPPBPtr; async: Boolean): OSErr;
thePBptr A pointer to an MPP parameter block.
async A Boolean that specifies whether the function should be executed
asynchronously or synchronously. Specify TRUE for asynchronous
execution.
Parameter block
- ioCompletion ProcPtr A pointer to a completion routine.
< ioResult OSErr The function result.
- ioRefNum Integer The .MPP driver reference number.
— csCode Integer Always removeName.
— entityPtr Ptr A pointer to an entity name.
Field descriptions
ioCompletion A pointer to a completion routine that you can provide. When you
: execute a function asynchronously, the MPP driver calls your
completion routine when it completes execution of the function if
you specify a pointer to the routine as the value of this field. Specify
NIL for this field if you do not wish to provide a completion
routine. If you execute a function synchronously, the MPP driver
ignores the ioCompletion field. For information about completion
routines, see the chapter “Introduction to AppleTalk” in this book.
ioResult The result of the function. When you execute the function asynchro-
nously, the function sets this field to 1 and returns a function
result of noErr as soon as the function begins execution. When
the function completes execution, it sets the ioResult field to the
actual result code.
ioRefNum The .MPP driver reference number. The MPW interface fills in
this field.
csCode The command code of the .MPP command to be executed. The
MPW interface fills in this field.
3-36 NBP Reference

DESCRIPTION

CHAPTER 3

Name-Binding Protocol (NBP)

entityPtr A pointer to the name of the network-visible entity that you wish
to remove from the names table. The name must be in the format
shown in Figure 3-5 on page 3-12. You cannot use any wildcard
characters in the name.

When you close a socket or terminate an application or process that you registered in the
NBP names table as a network-visible entity, you must use the PRemoveName function
to remove the name from the names table.

To remove the names table entry, you assign to the entityPtr field of the parameter
block a pointer to a fully qualified entity name. The entity name is a packed array of
Pascal strings. Because the object, type, and zone names in this format are of arbitrary
length, you cannot create this record in Pascal (which requires you to declare the length
of character strings when you define the record). You can use the NBPSetEntity
procedure to create this record, or you can provide PRemoveName with a pointer to the
names table entry record that you used to register the name.

SPECIAL CONSIDERATIONS

Memory used for the buffer containing the entity name belongs to the PRemoveName
function until the function completes execution and must be nonrelocatable. After you
remove the names table entry, you can reuse the memory or release it.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

To execute the PRemoveName function from assembly language, call the _Control trap
macro with a value of removeName in the csCode field of the parameter block. To
execute the _Control trap asynchronously, include the value ,ASYNC in the operand
field. To execute this function from assembly language, you must also specify the driver
reference number.

noErr 0 No error
nbpNotFound -1028 Name not found
regAborted -1105 Request canceled

To create an entity name record of the form required by the PRemoveName function, use
the NBPSetEntity procedure, described on page 3-28.

NBP Reference 3-37

(daN) 10001014 Buipuig-eweN -

PKilINBP

CHAPTER 3

Name-Binding Protocol (NBP)

DESCRIPTION

3-38

The PKillNBP function cancels NBP function calls to the PLookupName,
PRegisterName, or PConfirmName function.

FUNCTION PKillNBP (thePBptr: MPPPBPtr; async: Boolean): OSErr;

thePBptr A pointer to an MPP parameter block.

async A Boolean that specifies whether the function should be executed
asynchronously or synchronously. Specify TRUE for asynchronous
execution.

Parameter block

- ioCompletion ProcPtr A pointer to a completion routine.

< ioResult OSErr The function result.

- ioRefNum Integer The .MPP driver reference number.

— csCode Integer Always killNBP.

— nKillQEl Ptr A pointer to a queue element.

Field descriptions
ioCompletion

ioResult

ioRefNum

csCode

nKillQEl

A pointer to a completion routine that you can provide. When you
execute a function asynchronously, the MPP driver calls your
completion routine when it completes execution of the function if
you specify a pointer to the routine as the value of this field. Specify
NIL for this field if you do not wish to provide a completion
routine. If you execute a function synchronously, the .MPP driver
ignores the ioCompletion field. For information about completion
routines, see the chapter “Introduction to AppleTalk” in this book.

The result of the function. When you execute the function asynchro-
nously, the function sets this field to 1 and returns a function result
of noErr as soon as the function begins execution. When the
function completes execution, it sets the ioResult field to the
actual result code.

The .MPP driver reference number. The MPW interface fills in
this field.

The command code of the MPP command to be executed. The
MPW interface fills in this field.

A pointer to the MPP parameter block for the NBP request you
want to cancel.

When you call the PLookupName, PRegisterName, or PConfirmName function asyn-
chronously, the Device Manager puts your request in the .MPP driver’s queue with
other requests. If you want to cancel a pending NBP request, you pass a pointer to the
parameter block for that request to the PKil1NBP function.

NBP Reference

CHAPTER 3

Name-Binding Protocol (NBP)

If the function’s parameter block is in the MPP driver’s queue waiting for the function
to be executed, the PKi11NBP function deletes the entry from the queue and returns

a function result of noErr. The function whose parameter block is deleted completes
execution and returns a function result of reqAborted, indicating that the function
was canceled.

If the function has already been executed, that is, it is no longer in the queue, PKil1NBP
returns a function result of cbNotFound, indicating that the parameter block for the
function to be canceled was not in the .MPP driver’s queue.

The function also calls the completion routine for the canceled request with the result
code reqAborted (-1105) in the DO register.

ASSEMBLY-LANGUAGE INFORMATION

To execute the PKi11NBP function from assembly language, call the _Control trap
macro with a value of kil1NBP in the csCode field of the parameter block. To execute
the _Control trap asynchronously, include the value , ASYNC in the operand field.

To execute this function from assembly language, you must also specify the driver

reference number.
RESULT CODES
noBrr 0 No error
cbNotFound -1102 NBP queue element not found

NBP Reference 3-39

(dGN) 10901014 Butpuig-sweN -

CHAPTER 3

Name-Binding Protocol (NBP)

Summary of NBP

Pascal Summary

Constants

CONST
{.MPP driver unit and reference number}
mppUnitNum = 9; {MPP driver unit number}
mppRefNum = -10; {MPP reference number}

{csCodes for NBP}

confirmName = 250; {confirm name}
lookupName = 251; {lookup name}
removeName = 252; {remove name from names table}
registerName = 253; {register name in names table}
killNBP = 254; {kill outstanding NBP request}
Data Types
Address Block Record
AddrBlock =
PACKED RECORD
aNet: Integer; {network number}
aNode: Byte; {node ID}
aSocket: Byte; {socket number}
END;
Names Table Entry Record
TYPE NamesTableEntry =
RECORD
gLink: OElemPtr; {pointer to next NTE in names table}
nteAddress: AddrBlock; {pointer to this names table entry}

nteData: PACKED ARRAY[1..100] OF Char;
{names table entry}
END;

3-40 Summary of NBP

CHAPTER 3

Name-Binding Protocol (NBP)

Entity Name Record

EntityName =

RECORD
objStr: Str32;
typeStr: Str32;
zoneStr: Sstr32;

END;

EntityPtr = “EntityName;

MPP Parameter Block for NBP

MPPParmType =

{object name}
{type name}
{zone name}

(...RegisterNameParm, LookupNameParm,

ConfirmNameParm, RemoveNameParm...);

TYPE MPPParamBlock =
PACKED RECORD

qLink: QElemPtr;
qType: Integer;
ioTrap: Integer;
ioCmdAddr: Ptr;
ioCompletion: ProcPtr;
ioResult: OSErr;
ioNamePtr:
ioVRefNum: Integer;
ioRefNum: Integer;
csCode: Integer;
CASE MPPParmType OF

RegisterNameParm,
LookupNameParm,
ConfirmNameParm,
RemoveNameParm:

(interval: Byte;

count: Byte;

entityPtr: Ptr;

CASE MPPParmType OF

RegisterNameParm:

(verifyFlag:
filler3:
LookupNameParm:
(retBuffPtr:
retBuffSize:
maxToGet:
numGotten:

Summary of NBP

StringPtr;

Integer;)

{reserved}

{reserved}

{reserved}

{reserved}

{completion routine}
{result code}

{reserved}

{reserved}

{driver reference number}
{primary command code}

{retry interval}

{retry count}

{pointer to entity name or }
{ names table entry}

{verify uniqueness of name or not}

{pointer to return buffer}
{return buffer size}
{matches to get}

{matches gotten}

(daIN) 100010.d Buipuig-eweN -

CHAPTER 3

Name-Binding Protoco! (NBP)

ConfirmNameParm:
(confirmAddr: AddrBlock; {pointer to entity name}
newSocket: Byte; {socket number}
filler4: Byte);
)
KillNBPParm:
(nKillQEl: Ptr;) {pointer to queue element to cancel}
END;
MPPPBPtr = “MPPParamBlock;
Routines
Registering an Entity
PROCEDURE NBPSetNTE (ntePtr: Ptr; nbpObject,nbpType,nbpZone: Str32;
socket: Integer);
FUNCTION PRegisterName (thePBptr: MPPPBPtr; async: Boolean): OSErr;

Handling Name and Address Requests

PROCEDURE NBPSetEntity (buffer: Ptr; nbpObject,nbpType,nbpZone: Str32);
FUNCTION PLookupName (thePBptr: MPPPBPtr; async: Boolean): OSErr;
FUNCTION NBPExtract (theBuffer: Ptr; numInBuf: Integer; whichOne:

Integer; VAR abEntity: EntityName; VAR address:
AddrBlock): OSErr;

FUNCTION PConfirmName (thePBptr: MPPPBPtr; async: Boolean): OSErr;
FUNCTION PRemoveName (thePBptr: MPPPBPtr; async: Boolean): OSErr;
FUNCTION PKillNBP (thePBptr: MPPPBPtr; async: Boolean): OSErr;
C Summary

Constants

/*NBP parameter constants*/

#define MPPioCompletion MPP.ioCompletion
#define MPPioResult MPP.ioResult
#define MPPioRefNum MPP.ioRefNum
#idefine MPPcsCode MPP.csCode

#define NBPinterval NBP.interval

#define NBPcount NBP.count

3-42 Summary of NBP

CHAPTER 3

Name-Binding Protocol (NBP)

#define NBPntQElPtr NBP.NBPPtrs.ntQElPtr

#define NBPentityPtr NBP.NBPPtrs.entityPtr

#define NBPverifyFlag NBP.parm.verifyFlag

#define NBPretBuffPtr NBP.parm.Lookup.retBuffPtr
#define NBPretBuffSize NBP.parm.Lookup.retBuffSize
#define NBPmaxToGet NBP.parm.Lookup.maxToGet
#define NBPnumGotten NBP.parm.Lookup.numGotten
#define NBPconfirmAddr NBP.parm.Confirm.confirmaAddr
#define NBPnKillQEl NBPKILL.nKillQE1

#define NBPnewSocket NBP.parm.Confirm.newSocket

enum { /* MPP driver unit and reference */
/* number*/
mppUnitNum = 9, /*.MPP driver unit number*/
mppRefNum = -10}; /*MPP reference number*/
enum { /*.MPP csCodes*/
confirmName = 250, /*confirm name*/
lookupName = 251, /*lookup name*/
removeName = 252, / *remove name from names table*/
registerName = 253, /*register name in names table*/
killNBP = 254}; /*kill outstanding NBP request*/
Data Types
Address Block Record
struct AddrBlock {
short aNet; /*network name*/
unsigned char aNode; /*node name*/
unsigned char aSocket; /*socket number*/

typedef struct AddrBlock AddrBlock;

Names Table Entry Data Structure

struct {
Ptr gNext;
NTElement nt;
}NamesTableEntry;

Summary of NBP

/*pointer to next names table element*

/

3-43

(daN) 10001014 Bujpuig-aweN -

CHAPTER 3

Name-Binding Protocol (NBP)

Entity Name Record

struct EntityName
Str32
char
Str32
char
Str32
char

{
objstr;
padl;
typeStr;
pad2;
zonesStr;
pad3;

/*object name*/

/*Str32's aligned on even word boundaries*/

/*type name*/

/*zone name*/

typedef struct EntityName EntityName;
typedef EntityName *EntityPtr;

MPP Parameter Block for NBP

#define MPPATPHeader \

QElem
short
short
Ptr
ProcPtr
OSErr
long
short
short
short

typedef struct {
MPPATPHeader
}MPPparms;

typedef struct {

MPPATPHeader
char
char
union {
Ptr
Ptr

} NBPPtrs;

*qLink;
qType;
ioTrap;
ioCmdaddr;
ioCompletion;
ioResult;
userData;
reqTID;
ioRefNum;
csCode;

interval;
count;

ntQElPtr;
entityPtr;

Summary of NBP

/*reserved*/\

/*reserved*/\

/*reserved*/\

/*reserved*/\

/*completion routine*/\

/*result code*/\

/*command result (ATP user bytes)*/\
/*request transaction ID*/\

/*driver reference number*/\
/*primary command code*/

/*retry interval*/
/*retry count*/

/*pointer to queue element to cancel#*/

/*pointer to entity name or names */

/* table entry*/

CHAPTER 3

Name-Binding Protocol (NBP)

union {
char verifyFlag; /*verify uniqueness of name or not*/
struct { .
Ptr retBuffPtr; /*pointer to return buffer*/
short retBuffSize; /*return buffer size*/
short maxToGet; /*matches to get*/
short numGotten; /*matches gotten*/
} Lookup;
struct {
AddrBlock confirmaAddr; /*pointer to entity name*/
char newSocket; /*socket number*/
} Confirm;
} parm;
}NBPparms;
struct {
MPPATPHeader
Ptr nKillQEl;
/*pointer to queue element to cancel*/
}NBPKillparms;

union ParamBlockRec {

MPPparms MPP; /*general MPP parms*/
NBPparms NBP; /*NBP calls*/
NBPKillparms NBPKILL; /*cancel call to NBP*/

}:
typedef MPPParamBlock *MPPPBPtr;

Routines

Registering an Entity

pascal void NBPSetNTE (Ptr ntePtr, Ptr nbpObject, Ptr nbpType,
' Ptr nbpZone, short socket);

pascal OSErr PRegisterName (MPPPBPtr thePBpt, Boolean async);

Handling Name and Address Requests

pascal void NBPSetEntity (Ptr buffer, Ptr nbpObject, Ptr nbpType,
Ptr nbpZone);
pascal OSErr PLookupName (MPPPBPtr thePBptr, Boolean async);

Summary of NBP 3-45

(dEN) 10001014 Bujpuig-eweN -

CHAPTER 3

Name-Binding Protocol (NBP)

pascal OSErr NBPExtract (Ptr theBuffer, short numInBuf, short whichOne,
EntityName *abEntity, AddrBlock *address);

pascal OSErr PConfirmName (MPPPBPtr thePBptr, Boolean async);
pascal OSErr PRemoveName (MPPPBPtr thePBptr, Boolean async);
pascal OSErr PKillNBP (MPPPBPtr thePBptr, Boolean async);

Assembly-Language Summary

Constants

Unit Number for the MPP Driver

mppUnitNum EQU 9 :MPP unit number

NBP Symbolic Characters

equals EQU ‘=t ;wildcard symbol

NBPWildCard EQU ‘=t ;wildcard symbol

star EQU T :"This zone" symbol

NBP Command Codes

registerName EQU 253 ;register name in names table
lookupReply EQU 242 ;used internally

lookupName EQU 251 ;look up an NBP name
confirmName EQU 250 sconfirm name

removeName EQU 252 ;remove name from names table
killNBP EQU 254 ;kill outstanding NBP request
NBP Packet

nbp EQU $02 ;DDP protocol type code for NBP
nbpControl EQU 0 scontrol code

nbpTCount EQU 0 :tuple count

nbpID EQU 1 ;NBP ID

nbpTuple EQU 2 ;start of the first tuple

NBP Tuple Header Offsets

tupleNet EQU 0 ;offset to network number (word)
tupleNode EQU 2 ;offset to node ID (byte)
tuplesSkt EQU 3 ;offset to socket number (byte)

3-46 Summary of NBP

CHAPT

ER 3

Name-Binding Protocol (NBP)

tupleEnum
tupleName
tupleAddrsz

NBP Packet Types

brRg
1kUp

1kUpReply

EQU 4
EQU 5
EQU 5
EQU 1
EQU 2
EQU 3

;offset to enumerator (byte)
;offset to name part of tuple (byte)
;tuple address field size

;broadcast request
;lookup request
;lookup reply

NBP Names Information Socket (NIS) Number

nis

EQU 2

sNIS number

Maximum Number of Tuples in NBP Packet, Maximum Size of a Tuple Name

tupleMax

NBPMaxTupleSize

Data Structures

EQU 15

EQU 32

;maximum number of tuples returned from

; a lookup request
;maximum size of a tuple name

MPP Parameter Block Common Fields for NBP

0
4
6
8
12
16
18
22
24

qLink

qType

ioTrap
ioCmdAddr
ioCompletion
ioResult
ioNamePtr
ioVRefNum
ioRefNum

long
word
word
long
long
word
long
word
word

reserved

reserved

reserved

reserved

address of completion routine
result code

reserved

reserved

driver reference number

PRegisterName Parameter Variant

26
28
29
30

34
40

csCode
interval
count
entityPtr
(ntQE1Ptr)
verifyFlag
filler

word
byte
byte
long

byte
byte

Summary of NBP

command code; always registerName
retry interval

retry count

names table queue element pointer

verify name flag
reserved

3-47

(daN) 10901014 Buipuig-ewen -

CHAPTER 3

Name-Binding Protocol (NBP)

PLookupName Parameter Variant

26 csCode word command code; always LookupName
28 interval byte retry interval

29 count byte retry count

30 entityPtr long pointer to entity name

34 retBuffpPtr long pointer to return data buffer

38 retBuffsize word size in bytes of return buffer

40 maxToGet word maximum number of matches to get
42 numGotten . word number of matches returned

PConfirmName Parameter Variant

26 csCode word command code; always confirmName

28 interval byte retry interval

29 count byte retry count

30 entityPtr long pointer to entity name

34 confirmAddr long address of names table entry to confirm

38 newSocket byte socket number, if different from specified one
39 filler byte reserved

PRemoveName Parameter Variant

26 csCode word command code; always removeName
28 filler word reserved
30 entityPtr long pointer to entity name

PKilINBP Parameter Variant

26 csCode word command code; always kil1NBP
28 nKillQEl long pointer to queue element to remove

Result Codes

noErr 0 Noerror

nbpNoConfirm -1025 Name not confirmed

nbpConfDiff -1026 Name confirmed for different socket

nbpDuplicate -1027 Name already exists

nbpNotFound -1028 Name not found

tooManyRegs -1097 Too many concurrent requests; wait a few minutes, then try the
request again :

cbNotFound -1102 NBP queue element not found

reqAborted -1105 Request canceled

extractErr -3104 Can’tfind tuple in buffer

3-48 Summary of NBP

CHAPTER ¢4

Zone Information Protocol
(Z1IP)

Contents

AboutZIP 4-3
Using ZIP 44
Getting the Name of Your Application’s Zone = 4-6

Getting a List of Zone Names for Your Local Network or
Its Internet ~ 4-7

ZIP Reference 4-10
Data Structures 4-10
The XPP Parameter Block for ZIP 4-10
Routines 4-11
Obtaining Zone Information =~ 4-12
Summary of ZIP 4-19
Pascal Summary 4-19
Constants 4-19
Data Types 4-19
Routines 4-20
CSummary 4-20
Constants 4-20
Data Types 4-21
Routines 4-21
Assembly-Language Summary 4-22
Constants 4-22
Data Structures 4-22
Result Codes 4-23

Contents

4-1

CHAPTER 4

Zone Information Protocol (ZIP)

This chapter describes the Zone Information Protocol (ZIP) that maintains mappings of
zone names to network numbers on internet routers. ZIP is primarily implemented by
routers. A small portion of ZIP is implemented on nodes that are not routers to allow
you to obtain zone information from a router node. This chapter describes only the
portion of ZIP that is implemented on a node that is not a router.

You should read this chapter if you want to obtain

@ the name of the zone to which the node belongs that is running your application

m the names of the zones for the local network to which your application’s node
is connected

= the names of all the zones that exist throughout the AppleTalk internet to which your
local network belongs

The portion of ZIP that is implemented on nodes that are not routers uses the AppleTalk
Transaction Protocol (ATP) to send requests for zone information to a router node. To
better understand how ZIP handles your requests for information and returns to you
responses to those requests, you should read the chapter “AppleTalk Transaction
Protocol (ATP)” in this book.

For an overview of the Zone Information Protocol and how it fits within the AppleTalk
protocol stack, read the chapter “Introduction to AppleTalk” in this book, which also
introduces and defines some of the terminology used in this chapter. For a description of
the Zone Information Protocol specification, see Inside AppleTalk, second edition.

About ZIP

The Zone Information Protocol (ZIP) provides applications and processes with access to
zone hames. A zone is a logical grouping of nodes in an AppleTalk internet, and each
zone is‘identified by a name. A zone name is typically used to identify an affiliation
between a group of nodes, such as a group of nodes belonging to a particular department
within an organization.

ZIP maintains the mapping of networks and the zones they include for all networks
belonging to an AppleTalk internet:

= Every node on a network belongs to a zone; a node can belong to only one zone at
a time.

® A nonextended network contains only one zone, and all nodes in that network belong
to the same zone.

m A single extended network can contain nodes that belong to up to 255 different zones.
A single zone can include nodes that belong to different extended networks. Each
AppleTalk extended network has associated with it a list of the zones to which its
nodes can belong. A node joining the network can select its zone from this list.

On each router node in the internet, ZIP builds a zone information table that includes
each network’s number (extended networks have network number ranges) in association
with the network'’s list of zones. Nodes that are not routers, such as end-user systems, do
not contain a zone information table. However, a portion of ZIP is implemented on each

About ZIP 4-3

(diZ) 1090101 UOFBULIOJU| BUCZ -

CHAPTER 4

Zone Information Protocol (ZIP)

nonrouter node so that applications and processes can gain access to their own node’s
zone name, names of all the zones on their local network, or names of all the zones
throughout the internet. The .XPP driver implements the part of ZIP that is on nonrouter
nodes, and it provides an interface that allows an application or process to request zone
name information in a transaction-based dialog. ZIP uses the transaction-based services
of ATP to transport requests from workstation nodes to router nodes. Figure 4-1 shows
ZIP and its underlying protocols. The portion of ZIP that is implemented on nonrouter
nodes, such as workstations, uses the services of ATP.

Figure 4-1 The Zone Information Protocol (ZIP) and the underlying AppleTalk protocols

=

! zP

=

ATP

P Manager

S
<l
=

Using ZIP

The Zone Information Protocol provides three functions that you can use to obtain the
names of registered zones. You can use these functions to obtain

m the name of the zone to which your application and its node belong

a the names of the zones in your local network or the names of all the zones that exist
throughout the AppleTalk internet to which your local network belongs

44 Using ZIP

CHAPTER 4

Zone Information Protocol (ZIP)

Applications running on nodes connected to both extended and nonextended networks
can use ZIP to get the name of their node’s zone. An application running on a node that
belongs to an extended network can call ZIP to get a list of all the zone names associated
with that network. For example, a network administration application might use ZIP to
provide an administrator with a list of the zones for a particular network so that the
administrator can select the correct zone for a node when adding nodes to a network.

You can use ZIP in conjunction with NBP. For example, you can use ZIP to look up zones
on the network, then use NBP to look up names in each zone.

ZIP sends the GetMyZone, GetLocalZones, and GetZoneList functions as AppleTalk
Transaction Protocol (ATP) requests. These requests always ask for a single response.

For example, when you call ZIP to request zone name information, the portion of ZIP
implemented on the node running your application sends a request using the transaction-
based services of ATP to the portion of ZIP implemented on a local router that contains
the zone information table; using ATP, ZIP on the router node transmits a response to
your request.

When you call GetMyZone to get the name of your node’s zone, ZIP returns the
complete zone name in a single ATP response and writes that zone name to the buffer
you provide. However, when you want to retrieve a list of zone names belonging
either to your local network or to all of the networks forming the internet, ZIP may not
always be able to return the complete list of names in a single ATP response. In this
case, you need to call the ZIP function repeatedly in a loop in order to retrieve all of the
Zone names.

The GetMyZone, GetLocalZones, and GetZoneList functions each use a parameter
block of type XPPParamBlock to contain input and output values for the call. You use
the xCallParam variant record to the XPP parameter block for the ZIP functions. This
parameter block contains an ioRefNum field, which the MPW interface sets to the .XPP
driver reference number.

The parameter block for each of the three ZIP functions includes a csCode field and an
xppSubCode field. You do not need to set these field values before you call the function;
the MPW interface fills in the value for each of these fields. The value for the csCode
field is always xCall. The xppSubCode field value identifies the specific ZIP function,
and it differs for each of the three functions.

For the three ZIP functions, you specify timeout and retry values that determine the
behavior of the ATP transaction that the ZIP call relies on. You need to set values for
these fields before you call the ZIP function. You use the parameter block’s xppTimeout
field to set the timeout value and the xppRetry field to set the retry value. The timeout
tells ATP how long in seconds to wait between each attempt, and the retry value tells it
how may retries it should attempt. For information on how ATP uses these values, see
the chapter “AppleTalk Transaction Protocol (ATP)” in this book.

For each function, you supply a buffer to hold the returned zone name data and a buffer
that ZIP requires for its own use. These two buffers and the XPPParamBlock parameter
block that you allocate for the function belong to ZIP for the life of the call; you must not

Using ZIP 4-5

(di2) 10901014 UORBULIOJU] BUOZ -

CHAPTER 4

Zone Information Protocol (ZIP)

manipulate them or alter their contents during the operation. The memory for these
buffers and the parameter block belongs to the function until the function completes
execution.

If you set the function’s async Boolean parameter to TRUE, either you must provide a
completion routine or your application must poll the parameter block’s ioResult field
to determine when the function completes the operation. See the chapter “Introduction
to AppleTalk” in this book for a discussion of synchronous and asynchronous execution
as it applies to the Boolean parameter.

Getting the Name of Your Application’s Zone

Your application can get the name of the zone for the node on which it is running by
calling the GetMyZone function. The zone name is a data structure of type Str32,
and the GetMyZone function writes the zone name to a buffer that you supply. You
set the parameter block’s zipBuf£Ptr field to a pointer for a buffer that must be at
least 33 bytes in size.

You also supply a buffer that is 70 bytes in size as the value of the zipInfoField. You
must set the first word of this buffer to 0 before you call the function. This buffer is for
ZIP to use.

Listing 4-1 shows the application-defined DoGetMyZone function, which illustrates the
use of the GetMyZone function. The DoGetMyZone function declares the parameter block
and the return buffer. Then it assigns values to the some of parameter block fields and
initializes to 0 the first word of the zipInfoField parameter before it calls GetMyZone.
The MPW interface fills in the XPP parameter block ioRefNum, csCode, and
xppSubCode fields, so the DoGetMyZone function doesn’t need to assign these values.

Listing 4-1 Using the GetMyZone function

FUNCTION DoGetMyZone (VAR myZoneName: Str32): OSErr;

VAR

XppPB: XPPParamBlock;

myZoneName s ARRAY[1..33] OF Char;
BEGIN

WITH xppPB DO

0
zipInfoField[2] := 0

BEGIN

xppTimeout := 3; {timeout interval}

xppRetry := 4; {retry count for ZIP requests}
zipBuffPtr := @myZoneName; {buffer for returned zone name}
zipInfoField[1l] :=

; {initialize first word to 0}
H

DoGetMyZone := GetMyZone(@xppPB, FALSE);

END;

4-6

Using ZIP

CHAPTER 4

Zone Information Protocol (ZIP)

If there is no router present in the network, the function returns a function result of
noBridgeErr. If the retry count is exceeded before the ATP transaction that ZIP relies
on receives a valid response, the function returns a function result of reqFailed. The
function returns a function result of tooManyReq when too many concurrent ATP
requests have been made. If you receive a function result of tooManyReq, wait a minute
or so, and then try again; some transactions can take up to 30 seconds to complete. For
the complete list of function results, see the description of the function GetMyZone

beginning on page 4-12.

Getting a List of Zone Names for Your Local Network
or Its Internet

If your application is running on a node that belongs to an extended network, the
application can use the GetLocalZones function to obtain a list of the names of the
zones in its node’s local network. An application running on a node that belongs to an
extended network can also use the GetZoneList function to obtain a list of the names
of the zones throughout the AppleTalk internet to which its node’s local network
belongs. These functions behave similarly.

ZIP returns a single ATP response per request. Because the complete list of zone
names may not fit in a single ATP response, you need to make repeated calls to either
GetLocalZones or GetZoneList until you receive all of the zone names. You must
allocate a buffer to hold the zone names data that the ZIP function returns and point
to that buffer from the function’s zipBuf fPtr parameter block field. This buffer must
be 578 bytes in size, large enough to hold an entire ATP response. ZIP returns the zone
names into this buffer as a packed array of packed Pascal strings.

The zipNumZones field returns the actual number of zone names that ZIP placed in the
buffer. You must set the zipLastFlag field to 0 before you execute the GetZoneList
or GetLocalZones function. If the zipLastFlag parameter is still 0 when the
command has completed execution, then ZIP is waiting to return more zone names. In
this case you must empty the buffer, or allocate a new one, and call the GetZoneList or
GetLocalZones function again immediately. When there are no more zone names to
return, ZIP sets the zipLastF1lag field to a nonzero value. The zipInfoField field is
a 70-byte data buffer that you must allocate for use by ZIP. The first time you call any of
these functions, you must set the first word of this field to 0. You must not change any
values in this field subsequently.

(d12) 10001014 UOREULOJU| BUOZ -

Listing 4-2 shows the application-defined DoGet ZoneList function, which illustrates
how to use the GetZoneList function. The GetLocalZones function operates in
exactly the same fashion.

This DoGetZoneList function allocates a buffer for zone names and repeatedly calls
the GetZoneList function to get a list of zone names. If GetZoneList returns a
function result of noErr, then the DoGetZoneList code calls the application-defined
MyZIPExtract function, shown in Listing 4-3, to remove a zone name from the
GetZoneList buffer and place it in the application’s buffer. The DoGetZoneList code
in Listing 4-2 does not show the application-defined MyAddToZoneList that writes the
zone name to the application’s buffer.

Using ZIP 4-7

CHAPTER 4

Zone Information Protocol (ZIP)

Listing 4-2 Using Get ZoneList to retrieve names of zones throughout the AppleTalk internet

FUNCTION DoGetZoneList: OSErr;
CONST
kZoneBufferSize = 578; {required size of zone list buffer}
VAR
xppPB: XPPParamBlock;
result: OSErr;
zoneBuffer: Ptr;
index: Integer;
zoneName: Str32;
BEGIN
{Allocate buffer for returned zone names.}
zoneBuffer := NewPtr(kZoneBufferSize);
IF zoneBuffer = NIL THEN
result := MemError

ELSE
BEGIN
WITH xppPB DO
BEGIN
xppTimeout := 3; {timeout interval}
xppRetry := 4; {retry count}
zipBuffPtr := zoneBuffer; {zone names returned here}
zipLastFlag := 0; {set to 0 first time through}
zipInfoField[1l] := O0; {first word of zipInfoField must be }
zipInfoField{[2] := 0; { initialized to 0 the first time}
END;

{Loop to get all of the zone names.}
REPEAT
result := GetZoneList(@xppPB, FALSE);
IF (result = noErr) THEN
FOR index := 1 TO xppPB.zipNumZones DO
IF MyZIPExtract(zoneBuffer, xppPB.zipNumZones, index,
zoneName) = noErr THEN
MyAddToZoneList (zoneName) ;
UNTIL (xppPB.zipLastFlag <> 0) OR (result <> noErr);

DisposPtr(zoneBuffer); {release memory}
END;
DoGetZonelList := result;

END;

When you call the GetZoneList function or the GetLocalZones function to obtain a
list of zone names, ZIP returns the zone names as a packed array of packed Pascal

strings. Your application must include a routine to extract the zone names that you want
from the buffer.

4-8 Using ZIP

CHAPTER 14

Zone Information Protocol (ZIP)

Listing 4-3 shows an application-defined function called MyZipExtract that extracts
a particular zone name from the buffer of packed zone names returned by either
GetZoneList or GetLocalZones.

The MyZipExtract function takes a numInBuf input parameter that specifies the
number of zone names in the buffer pointed to by the theBuf fer parameter. For the
numInBuf parameter, you specify the value that ZIP returned in the zipNumZones field
of the XPP parameter block used for the GetZoneList or GetLocalZones function.

You use the whichOne input parameter to identify the zone name to extract. The
MyZIPExtract function returns the zone name in the zoneName string parameter.

The MyZIPExtract function returns a result of paramErr if whichOne is 0 or
whichoOne is greater than the number of zones in the buffer. Otherwise, the function
returns a function result of noErr.

Listing 4-3 Extracting a zone name from the list of zone names returned in the buffer

FUNCTION MyZIPExtract (theBuffer: Ptr; numInBuf: Integer; whichOne: Integer;

VAR

VAR 2zoneName: Str32): OSErr;

result: OSErr;
zonePtr: Ptr;

BEGIN

{preflight the input parameters}
IF (whichOne = 0) OR (whichOne > numInBuf) THEN

result := paramErr
ELSE
BEGIN
zonePtr := theBuffer;
{Look for whichOne}
REPEAT
whichOne := whichOne - 1;
IF whichOne <> 0 THEN

{move pointer to next zone name}
zonePtr := Ptr(ORD4(zonePtr) +
Length(StringPtr(zonePtr)") + 1);

UNTIL whichOne = 0;

{return the zone name}

BlockMove(zonePtr, @zoneName,

Length(StringPtr(zonePtr)") + 1);

result := noErr;
END;

MyZIPExtract := result;

END;

Using ZIP 49

(d1Z) 1090101 UOnEWLIOJU| BUOZ -

CHAPTER 4

Zone Information Protocol (ZIP)

ZIP Reference

This section describes the data structure and the functions that are specific to the
Zone Information Protocol (ZIP). The “Data Structures” section shows the Pascal
data structure for the XPP parameter block. The “Routines” section describes the
ZIP functions.

Data Structures

This section describes the XPP parameter block that you use to provide information to
and receive it from ZIP.

The XPP Parameter Block for ZIP

The Zone Information Protocol’s GetMyZone, GetLocalZones, and GetZoneList
functions implemented by the .XPP driver use the xCallParam variant record to the
XPP parameter block defined by the XPPParamBlock data type. Your application uses
this parameter block to specify input values to ard receive output values from a ZIP
function. This section defines the parameter block fields that are common to all of the
ZIP functions and that are filled in by the MPW interface or returned by the function;
your application does not need to fill in these fields. This section does not define
reserved fields, which are used either internally by the .XPP driver or not at all. The
fields for the xCallParam variant record are defined in the function descriptions.

TYPE XPPParamBlock =
PACKED RECORD

gLink: QElemPtr; {reserved}

gType: Integer; {reserved}

ioTrap: Integer; {reserved}

ioCmdAddr: Ptr; {reserved}

ioCompletion: ProcPtr; {completion routine}

ioResult: OSErr; {result code}

cmdResult: LongInt; {reserved}‘

ioVRefNum: Integer; {reserved}

ioRefNum: Integer; {driver reference number}

csCode: Integer; {primary command code}

CASE XPPPrmBlkType OF

xCallParam

xppSubCode: Integer; {secondary command code}
xppTimeout: Byte; {.XPP timeout period}
XppRetry: Byte; {retry count}
fillerl: Integer; {feserved}

4-10 ZIP Reference

END;

CHAPTER 14

Zone Information Protocol (ZIP)

zipBuffPtr: Ptr; {returned zone names}

zipNumZones: Integer; {number of zones returned}

zipLastFlag: Byte; {nonzero when all zone names }
{ have been returned}

filler2: Byte; {reserved}

zipInfoField: PACKED ARRAY[1..70) OF Byte;

{reserved}

XPPParmBlkPtr = “XPPParamBlock:

Routines

Field descriptions
ioCompletion

ioResult

ioRefNum

csCode

A pointer to a completion routine that you can provide. When you
execute a function asynchronously, the .XPP driver calls your
completion routine when it completes execution of the function if
you specify a pointer to the routine as the value of this field. Specify
NIL for this field if you do not wish to provide a completion
routine. If you execute a function synchronously, the XPP driver
ignores the ioCompletion field. For information about completion
routines, see the chapter “Introduction to AppleTalk” in this book.

The result of the function. When you execute the function asynchro-
nously, the function sets this field to 1 and returns a function result
of noExr as soon as the function begins execution. When the
function completes execution, it sets the ioResult field to the
actual result code.

The .XPP driver reference number. The MPW interface fills in

this field.

The command code of the XPP command to be executed. The MPW
interface fills in this field.

This section describes the ZIP functions. The ZIP functions allow you to

m obtain the name of the zone to which the node belongs that is running your

application

m obtain a list of all the zones for the local network of the node that is running your

application

m obtain a list of all the zones associated with the internet that the node running your
application belongs to

An arrow preceding a parameter indicates whether the parameter is an input parameter,
an output parameter, or both:

Arrow Meaning

- Input
« Output
L Both

ZIP Reference

4-11

(d1Z) 10905014 uojjeWIO] BUCZ -

CHAPTER 4

Zone Information Protocol (ZIP)

Obtaining Zone Information

This section describes the Zone Information Protocol (ZIP) functions: GetMyZone,
GetLocalZones, and GetZoneList. The GetMyZone function returns the name of the
zone that your application’s node belongs to. The GetLocalZones function returns a
list of zone names on the local network that your application’s node belongs to. The
GetZoneList function returns a complete list of zones on the internet that your
application’s node belongs to.

Assembily-language note

The .XPP driver functions all use the same value (xCall, which is equal
to 246) for the csCode parameter to the XPP parameter block. The
xCall routine uses the value of the xppSubCode parameter to
distinguish between the functions, as follows:

Function xppSubCode Value

GetMyZone zipGetMyZone 7

GetLocalZones zipGetLocalZones 5

GetZonelist zipGetZoneList 6 .
GetMyZone

4-12

The GetMyZone function returns the zone name of the node on which your application
is running. '

FUNCTION GetMyZone (thePBptr: XPPParmBlkPtr;
async: Boolean): OSErr;

thePBptr A pointer to an XPP parameter block.

async A Boolean that indicates whether the function should be executed
asynchronously or synchronously. Specify TRUE for asynchronous
execution.

Parameter block

- ioCompletion ProcPtr A pointer to a completion routine.
« ioResult OSErr The function resuit.
- csCode Integer Always xCall for this function.
- xppSubCode Integer Always zipGetMyZone for
this function.
- xppTimeout Byte The retry interval in seconds.
- XppRetry Byte The retry count.
- zipBuffPtr Ptr A pointer to data buffer.
- zipInfoField PACKED ARRAY A data buffer for use by ZIP; first

word set to 0.

ZIP Reference

CHAPTER 4

Zone Information Protocol (ZIP)

Fleld descriptions

xppSubCode A routine selector. This field is automatically set by the MPW
interface to zipGetMyZone for this function.

xppTimeout The amount of time, in seconds, that the .ATP driver should wait

between attempts to obtain the data. A value of 3 or 4 seconds for
the xppTimeout field is usually sufficient.

xppRetry The number of times the .ATP driver should attempt to obtain the
data before returning the request failed (regFailed) result code.
A value of 3 or 4 is usually sufficient.

zipBuffPtr A pointer to a 33-byte data buffer that you must allocate. ZIP
returns the zone name into this buffer as a Pascal string.
zipInfoField A70-byte data buffer that you must allocate and initialize for use by

ZIP. You must set the first word of this buffer to 0 before you call the
GetMyZone function.

DESCRIPTION

Before you call GetMyZone, you must allocate a buffer that is 33 bytes in size and set the
zipBuf fPtr parameter block field to point to this buffer. ZIP writes the zone name that
it retrieves to this buffer that you supply. You must also supply a buffer that is 70 bytes
in size as the value of the zipInfoField field. This buffer is for ZIP to use. An applica-
tion running on a node on either an extended or a nonextended network can use this
function to retrieve the node’s zone name.

SPECIAL CONSIDERATIONS

The memory that you allocate for the parameter block and the two buffers required
by the GetMyZone function belongs to the .XPP driver until the function completes
execution. You can reuse the memory or dispose of it after the operation completes.

ASSEMBLY-LANGUAGE INFORMATION

To execute the GetMyZone function from assembly language, call the _Control
trap macro with a value of xCall in the csCode field of the parameter block and

a value of zipGetMyZone in the xppSubCode field of the parameter block. To
execute this function from assembly language, you must also specify the .XPP driver

reference number.
RESULT CODES
noErr 0 Noerror
noBridgeErr -93 No router is available
reqFailed -1096 Request to contact router failed; retry count exceeded
tooManyReqgs -1097 Too many concurrent requests
noDataArea -1104 Too many outstanding ATP calls

ZIP Reference 4-13

(dIZ) 10903014 UoRERULOJU] BUOZ '

CHAPTER ¢

Zone Information Protocol (ZIP)

SEE ALSO
For the XPPParamBlock data type, see “The XPP Parameter Block for ZIP” beginning
on page 4-10.
To get the correct reference number for the .XPP driver, you can use the Device
Manager’s OpenDriver function, which returns the driver reference number. For
information about the OpenDriver function, see the chapter “Device Manager” in
Inside Macintosh: Devices.

GetLocalZones

The GetLocalZones function returns a list of all the zone names on the local network—
that is, the network that includes the node on which your application is running.

FUNCTION GetLocalZones (thePBptr: XPPParmBlkPtr;
async: Boolean): OSErr;

thePBptr A pointer to an XPP parameter block.

async A Boolean that indicates whether the function should be executed
asynchronously or synchronously. Specify TRUE for asynchronous
execution.

Parameter block

- ioCompletion ProcPtr A pointer to a completion routine.

« ioResult OSErr The function result code.

— csCode Integer Always xCall for this function.

- xppSubCode Integer Always zipGetLocalZones.

- xppTimeout Byte The retry interval in seconds.

- xXppRetry Byte The retry count.

- zipBuffPtr Ptr A pointer to data buffer.

« zipNumZones Integer The number of names returned.

« zipLastFlag Byte A flag that is nonzero if there are no
more names.

— zipInfoField PACKED ARRAY A data buffer for use by ZIP; first word
set to 0.

Field descriptions -

xppSubCode A routine selector. This field is automatically set by the MPW
interface to zipGetLocalZones for this function.
xppTimeout The amount of time, in seconds, that the .ATP driver should wait

between attempts to obtain the data. A value of 3 or 4 seconds for
the xppTimeout field is usually sufficient.

xppRetry The number of times the .ATP driver should attempt to obtain the
data before returning the request failed (regFailed) result code. A
value of 3 or 4 is usually sufficient.

4-14 ZIP Reference

CHAPTER 4

Zone Information Protocol (ZIP)

zipBuffPtr A pointer to a 578-byte data buffer that you must allocate. ZIP
returns the zone names into this buffer as a packed array of
Pascal strings.

zipNumZones The number of zone names that ZIP placed in the data buffer.

zipLastFlag A value that indicates if there are more zone names for your

network beyond those that ZIP returned in the zipBuff£Ptr field.
The .XPP driver sets this field to 1 if there are no more zone names
for your network.

zipInfoField A70-byte data buffer that you must allocate for use by ZIP. You
must set the first word of this buffer to 0 before you call the
GetLocalZones function the first time through the loop, and
you must not change the contents of this field thereafter.

DESCRIPTION

A single extended network can have more than one zone associated with it. Your
application can use the GetLocalZones function to retrieve the list of zones for its
node’s local network. The GetLocalZones function uses ATP to retrieve the zone
information. The buffer that you allocate to hold the returned zone names is the size
of a single ATP response. You must call the GetLocalZones function repeatedly until
all of the zones for the local network have been returned.

Your application must check the zipLastFlag field to determine if there are more zone
names for your network. If the value of this field is 1, there are no more zone names for
your local network. If the value of this field is still 0 when the GetLocalZones function
completes execution, you must empty the data buffer pointed to by the zipBuf fPtr
parameter and immediately call the GetLocalZones function again without changing
the value in the zipInfoField parameter.

If you receive a GetLocalZones function result of tooManyRegs, wait a minute or so,
and then try again; some transactions can take up to 30 seconds to complete.

This function works for extended networks only. If the node that is running your
application is on a nonextended network and you want the name of that node’s zone,
use the GetMyZone function.

SPECIAL CONSIDERATIONS

The memory that you allocate for the parameter block and the two buffers required by
the GetLocalZones function belongs to the .XPP driver until the function completes
execution. You can reuse the memory or dispose of it after the operation completes.

ASSEMBLY-LANGUAGE INFORMATION

To execute the GetLocalZones function from assembly language, call the _Control
trap macro with a value of xCall in the csCode field of the parameter block and a
value of zipGetLocalZones in the xppSubCode field of the parameter block. To
execute this function from assembly language, you must also specify the .XPP driver
reference number.

ZIP Reference 4-15

(d12) 10001014 uoneuLIOU) BUOZ -

CHAPTER 4

Zone Information Protocol (ZIP)

RESULT CODES
noErr 0 No error
noBridgeErr -93 No router is available
reqFailed -1096 Request to contact router failed; retry count exceeded
tooManyReds -1097 Too many concurrent requests
noDataArea -1104 Too many outstanding ATP calls
SEE ALSO

For the XPPParamBlock data type, see “The XPP Parameter Block for ZIP” beginning
on page 4-10.

To get the correct reference number for the .XPP driver, you can use the Device
Manager’s OpenDriver function, which returns the driver reference number. For
information about the OpenDriver function, see the chapter “Device Manager” in
Inside Macintosh: Devices.

GetZonelList

The GetZoneList function returns a complete list of all the zone names on the internet.

FUNCTION GetZoneList (thePBptr: XPPParmBlkPtr;
async: Boolean): OSErr;

thePBptr A pointer to an XPP parameter block.

async A Boolean that indicates whether the function should be executed
asynchronously or synchronously. Specify TRUE for asynchronous
execution.
Parameter block
— ioCompletion ProcPtr A pointer to a completion routine.
« ioResult OSErr The function result.
- csCode Integer Always xCall for this function.
- xppSubCode Integer Always zipGetZoneList for this
function.
- xppTimeout Byte The retry interval in seconds.
- xppRetry Byte The retry count.
— zipBuffPtr Ptr A pointer to data buffer.
« zipNumZones Integer The number of names returned.
« zipLastFlag Byte A flag that is nonzero if there are no
more names.
- zipInfoField PACKED ARRAY A data buffer for use by ZIP; first word
setto 0.

4-16 ZIP Reference

DESCRIPTION

CHAPTER 4

Zone Information Protocol (ZIP)

Field descriptions

xppSubCode A routine selector. This field is automatically set by the MPW
interface to zipGetZoneList for this function.

xppTimeout The amount of time, in seconds, that the .ATP driver should wait

between attempts to obtain the data. A value of 3 or 4 seconds for
the xppTimeout field generally gives good results.

xppRetry The number of times the .ATP driver should attempt to obtain the
data before returning the request failed (reqFailed) result code.
A value of 3 or 4 is usually sufficient.

zipBuffPtr A pointer to a 578-byte data buffer that you must allocate. ZIP
returns the zone names into this buffer as a packed array of
Pascal strings.

zipNumZones The number of zone names that ZIP placed in the data buffer.

zipLastFlag A value that indicates if there are more zone names for your

network beyond those that ZIP returned in the zipBuffPtr field.
The .XPP driver sets this field to 1 if there are no more zone names
for your network.

zipInfoField A70-byte data buffer that you must allocate for use by ZIP.
Typically, you call GetZoneList repeatedly from within a loop.
You must set the first word of this buffer to 0 before you call the
GetZoneList function the first time through the loop, and you
must not change the contents of this field thereafter.

The GetZoneList function returns a complete list of all the zone names on the internet
to which the local network of the node running your application belongs. The
GetZoneList function uses ATP to retrieve the zone information. The buffer that you
allocate to hold the returned zone names is the size of a single ATP response. You must
call the GetZoneList function repeatedly until all of the zones for the local network
have been returned.

Your application must check the zipLastFlag field to determine if there are more zone
names for your network. If the value of this field is 1, there are no more zone names for
your local network. If the value of this field is still 0 when the GetZoneList function
completes execution, you must empty the data buffer pointed to by the zipBuffpPtr
parameter and immediately call the GetZoneList function again without changing the
value in the zipInfoField parameter.

If you receive a GetZoneList function result of tooManyRegqs, wait a minute or so,
and then try again; some transactions can take up to 30 seconds to complete.

To obtain a list of only the zone names on the local network, use the GetLocalZones
function instead. If you use the GetZoneList function on a nonextended network, the
function returns the reqFailed result code.

ZIP Reference 4-17

(dI2) 10901014 uoneWIOU| BUOZ -

CHAPTER 4

Zone Information Protocol (ZIP)

SPECIAL CONSIDERATIONS

The memory that you allocate for the parameter block and the two buffers required by
the GetZoneList function belongs to the XPP driver until the function completes
execution. You can reuse the memory or dispose of it after the operation completes.

ASSEMBLY-LANGUAGE INFORMATION

To execute the GetZoneList function from assembly language, call the _Control trap
macro with a value of xCall in the csCode field of the parameter block and a value of
zipGetZoneList in the xppSubCode field of the parameter block. To execute this
function from assembly language, you must also specify the .XPP driver reference

number.
RESULT CODES
noErr 0
noBridgeErr -93
reqgFailed -1096
tooManyReqs -1097
noDataArea -1104
SEE ALSO

No error

No router is available

Request to contact router failed; retry count exceeded
Too many concurrent requests

Too many outstanding ATP calls

For the XxPPParamBlock data type, see “The XPP Parameter Block for ZIP” beginning

on page 4-10.

To get the correct reference number for the .XPP driver, you can use the Device
Manager’s OpenDriver function, which returns the driver reference number. For
information about the OpenDriver function, see the chapter “Device Manager” in

Inside Macintosh: Devices.

4-18 ZIP Reference

CHAPTER 4

Zone Information Protocol (ZIP)

Summary of ZIP

Pascal Summary

Constants

CONST
{csCode for .XPP extended calls}
xCall = 246;

{.XPP driver unit and reference number}
xppUnitNum = 40;
xppRefNum = -41;

{routine selectors}

zipGetLocalZones = 5; {routine selector for local zone names}

zipGetZoneList = 6; {routine selector for internet zone list}

zipGetMyZone = 7; {routine selector for node's zone name}
Data Types

The XPP Parameter Block for ZIP

TYPE XPPParamBlock =
PACKED RECORD

qgLink: QElemPtr; {reserved}

qType: Integer; {reserved}

ioTrap: Integer; {reserved}

ioCmdAddr: Ptr; {reserved}

ioCompletion: ProcPtr; {completion routine}
ioResult: OSErr; {result code}

cmdResult: LongInt; {reserved}

ioVRefNum: Integer; {reserved}

ioRefNum: Integer; {driver reference number}
csCode: Integer; {primary command code}

Summary of ZIP 4-19

(dI2) 1090101 uoHRULIOJU| BUOZ -

CHAPTER 14

Zone Information Protocol (ZIP)

CASE XPPPrmBlkType OF

xCallParam
xppSubCode: Integer; {secondary command code}
xppTimeout: Byte; {timeout period for .XPP}
XppRetry: Byte; {retry count}
fillerl: Integer; {reserved}
zipBuffPtr: Ptr; {returned zone names}
zipNumZones: Integer; {number of zones returned}
zipLastFlag: Byte; {nonzero when all zone }

{ names have been returned}

filler2: Byte; {reserved}

zipInfoField: PACKED ARRAY[1..70] OF Byte;
{reserved for use by .XPP}
END;
XPPParmBlkPtr = “XPPParamBlock;

Routines

Obtaining Zone Information

FUNCTION GetMyZone (thePBptr: XPPParmBlkPtr; async: Boolean): OSErr;
FUNCTION GetLocalZones (thePBptr: XPPParmBlkPtr; async: Boolean): OSErr;
FUNCTION GetZoneList (thePBptr: XPPParmBlkPtr; async: Boolean): OSErr;
C Summary

Constants

/*MPP parameter constants*/

#define MPPioCompletion MPP.ioCompletion
#define MPPioResult MPP.ioResult
#define MPPioRefNum MPP.ioRefNum
#define MPPcsCode MPP.csCode

enum { /* .XPP csCode*/
xCall = 246}; /*csCode for .XPP extended calls*/
enum { /*.XPP driver unit and reference */
/* numbers*/
XppUnitNum = 40, /*XPP unit number */
xppRefNum = -41}; /*XPP reference number */

4-20 Summary of ZIP

CHAPTER 4

Zone Information Protocol (ZIP)

enum {
zipGetLocalZones = 5,
zipGetZoneList = 6,
zipGetMyZone = 7};
Data Types

/*XPP routine selectors*/

/*routine selector for local zone names*/
/*routine selector for internet zone list*/
/*routine selector for node's zone name*/

The XPP Parameter Block for ZIP
#define XPPPBHeader

QElem
short
short
Ptr
ProcPtr
OSErr
long
short
short
short

typedef struct {
XPPPBHeader

short
char
char
short
Ptr
short
char
char
char
}XCallParam;

Routines

*qLink;
qType;
ioTrap;
ioCmdaddr;
ioCompletion;
ioResult;
cmdResult;
ioVRefNum;
ioRefNum;
csCode;

xppSubCode;
xppTimeout;
XppRetry;
fillerl;
zipBuffPtr;
zipNumZones;
zipLastFlag;
filler2;

/*reserved*/\

/*reserved*/\

/*reserved */\
/*reserved*/\

/*completion routine*/\
/*result code*/\
/*reserved+*/\

/*reserved*/\

/*driver reference number*/
/*primary command code*/

/*secondary command code*/
/*retry interval in seconds*/
/*retry count*/

/*pointer to buffer of 578 bytes*/
/*number of zone names in response*/
/*nonzero if no more zones*/
/*filler*/

zipInfoField[70]; /*initial call, set first word to 0*/

Obtaining Zone Information

pascal OSErr GetMyZone
pascal OSErr GetLocalZones
pascal OSErr GetZoneList

Summary of ZIP

(XPPParmBlkPtr thePBptr, Boolean async);
(XPPParmBlkPtr thePBptr, Boolean async);
(XPPParmBlkPtr thePBptr, Boolean async);

4-21

(dI2) 10901014 UOREULIOJU| BUOZ -

CHAPTER 4

Zone Information Protocol (ZIP)

Assembly-Language Summary

Constants

XPP ¢sCode

xCall EQU 246 ;csCode for XPP extended calls

XPP Driver Unit Reference Number

XppUnitNum EQU 9 ;XPP unit

XPP xCall Subcodes for ZIP Commands

ZGetMyZone EQU 7 ;selector
Z2GetZoneList EQU 8 ;selector
ZGetLocalZones EQU 9 ;selector

Data Structures

number

for GetMyZone command
for GetZoneList command
for GetLocalZones command

XPP Parameter Block Common Fields for ZIP Routines

0 quink long reserved
4 qType word reserved
6 ioTrap word reserved
8 ioCmdAddr long reserved
12 ioCompletion long address of completion routine
16 ioResult word result code
18 cmdResult long reserved
22 ioVRefNum word reserved
24 ioRefNum word driver reference number
GetMyZone
28 xppSubCode word always zipGetZoneList for this function
30 xppTimeout byte retry interval in seconds
31 XppRetry byte retry count
34 zipBuffPtr long pointer to data buffer

42 zipInfoField 70bytes databuffer for use by ZIP; first word set to 0

4-22 Summary of ZIP

CHAPTER 4

Zone Information Protocol (ZIP)

GetLocalZones
28 xppSubCode word always zipGetLocalzones for this function
30 xppTimeout byte retry interval in seconds
31 xppRetry byte retry count
34 zipBuffPtr long pointer to data buffer
38 zipNumZones word number of names returned
40 zipLastFlag byte nonzero if no more names
42 zipInfoField 70bytes data buffer for use by ZIP; first word set to 0
GetZoneList
28 xppSubCode word always zipGetZoneList for this function
30 xppTimeout byte retry interval in seconds
31 XppRetry byte retry count
34 zipBuffPtr long pointer to data buffer
38 zipNumZones word number of names returned
40 zipLastFlag byte nonzero if no more names
42 zipInfoField 70 bytes data buffer for use by ZIP; first word set to 0
Result Codes
noErr 0 No error
noBridgeErr -93 No router is available
reqgFailed -1096 Request to contact router failed; retry count exceeded
tooManyRegs -1097 Too many concurrent requests
noDataArea -1104 Too many outstanding ATP calls
Summary of ZIP 4-23

(d12) 10901014 uoieULIOJU| BUOZ .

AppleTalk Data Stream
Protocol (ADSP)

Contents

About ADSP 5-3
Connections, Connection Ends, and Connection States ~ 5-6
Connection Listeners ~ 5-7
Reliable Delivery of Data ~ 5-8
Unsolicited ADSP Events 5-8
About ASDSP 59
The Authentication Process 5-10
The Data Encryption Feature ~ 5-11
Using ADSP 5-11
Allocating Memory for ADSP 5-12
Creating and Using a Connection Control Block ~ 5-12
Opening and Maintaining an ADSP Connection ~ 5-13
Creating and Using a Connection Listener ~ 5-22
Writing a User Routine for Connection Events ~ 5-26
Using ASDSP 5-29 .
Opening a Secure Connection ~ 5-30
From the Initiator’s End 5-30
From the Recipient End 5-32
Sending Encrypted Data Across a Secure Connection ~ 5-34
ADSP Reference 5-35
Data Structures ~ 5-35
The ADSP Connection Control Block Record 5-35
The Address Block Record ~ 5-38
The DSP Parameter Block 5-38
The ASDSP Parameter Block 5-41
The TRSecureParams Record 5-42

Contents 5-1

5-2

CHAPTER 5

Routines 5-43
Establishing and Terminating an ADSP Connection ~ 5-44
Establishing and Terminating an ADSP Connection Listener ~ 5-63
Maintaining an ADSP Connection and Using It to Exchange Data ~ 5-69
Summary of ADSP 5-77
Pascal Summary 5-77
Constants ~ 5-77
Data Types 5-78
CSummary 5-82
Constants 5-82
Data Types 5-84
Assembly-Language Summary 5-90
Constants 5-90
Data Structures ~ 5-92
Result Codes 5-94

Contents

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

This chapter describes the AppleTalk Data Stream Protocol (ADSP) that you use to
establish a session to exchange data between two network processes or applications in
which both parties have equal control over the communication. You should read this
chapter if you want to write an application that supports the exchange of more than a

small amount of data between two parties who each can both send and receive streams
of data.

This chapter also describes the AppleTalk Secure Data Stream Protocol (ASDSP), a secure
version of ADSP, that allows users of your application to communicate over an ADSP
session after the users’ identities have been authenticated. Users can then exchange
encrypted data over the session. For your application to use ASDSP, the system on which
it runs must have the AppleTalk Open Collaboration Environment (AOCE) software
installed and must have access to an AOCE server. To use ASDSP, you must also use the
Authentication Manager, which is a component of the AOCE software. For information
on the Authentication Manager, refer to Inside Macintosh: AOCE Application Programming
Interfaces.

ASDSP enhances ADSP with authentication and encryption features. When this chapter
discusses components of ADSP, such as connection ends and connection listeners, you
can assume that the information also applies to ASDSP. The sections in this chapter that
discuss ASDSP describe any specific differences between it and the standard version of
ADSP. To use ASDSP, you should be familiar with ADSP.

For an overview of ADSP and how it fits within the AppleTalk protocol stack, read the
chapter “Introduction to AppleTalk” in this book, which also introduces and defines
some of the terminology used in this chapter. For a complete explanation of the ADSP
specification, see Inside AppleTalk, second edition.

About ADSP

ADSP includes both session and transport services, and it is the most commonly used of
the AppleTalk transport protocols. The .DSP driver implements ADSP. ADSP allows you
to establish and maintain a connection between two AppleTalk network entities and
transfer data across this connection as a continuous stream. Because ADSP is a client

of DDP, data that you transmit using ADSP is actually sent and received over the
AppleTalk internet in packets. However, ADSP builds a session connection on top of

the packet transfer services that DDP provides so that applications using ADSP can
exchange data as a continuous stream. Figure 5-1 on page 5-4 shows ADSP and the

underlying protocols that it uses; ADSP is a client of DDP, just as your application is a
client of ADSP.

About ADSP 5-3

(dSaV) 10901014 Weens eeq el eiddy .

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

Figure 5-1 ADSP and its underiying protocols

5-4

ADSP

<l

9
T

D

LAP Manager

<

v

ort

Communication between two applications using ADSP occurs over a connection that is
made between the two sockets that these network entities use; ADSP assigns a socket to
be used when you initialize each end of the connection, and your application becomes
a client of that socket. Because this connection exists for the duration of the exchange,
ADSP is called a connection-oriented protocol. ADSP manages and controls the data flow
between the two sockets throughout the session to ensure that

» the data is delivered and received in the order in which it was sent
m duplicate data is not sent

m the application or process at the receiving end of the connection has the buffer
capacity to accept the data

In an ADSP session, both ends of the connection have equal control over the communica-
tion in a peer-to-peer relationship. For the two ends of an ADSP connection to function
properly, each must maintain information to control the connection and determine the
connection state. To accommodate these requirements, the socket at either end of the
connection has associated with it information that defines the state of the connection

and information that the application and ADSP use to control the connection and
communicate over it. The combination of a socket and the ADSP information maintained
by the socket client is referred to as a connection end. To create a connection, two
connection ends must be set up and initialized. Each connection end views itself as the
local end and the other as the remote end.

About ADSP

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

Your application can use ADSP to

create a connection end
request a connection with a remote connection end

create a connection listener to wait passively for connection requests from remote
connection ends (see “Connection Listeners” on page 5-7 for more information)

read data from and write it to an open connection
close a connection without removing it

remove a connection end

Figure 5-2 shows the order in which applications commonly call the ADSP routines to
perform these functions for a connection end. (Figure 5-4 on page 5-8 shows this for a
connection listener.)

Figure 5-2 Steps for creating an ADSP connection end

Create connection end

0

Open connection

g

Use connection
(read bytes, write bytes,
send attention message,
get status, forward reset)

g

Close connection

g

Remove connection end

ADSP provides for a full-duplex data stream between the two ends of the connection
that allows for a full-duplex dialog; this means that either end of the connection can
call routines to send data at any time. (However, full-duplex does not mean that both
connection ends actually send electrical signals at the same time; ADSP controls this

process.) See the chapter “Introduction to AppleTalk” in this book for more information

on full-duplex communication.

About ADSP

(dSAV) 1090101 weens eleq yeLoiddy H

5-6

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

In addition to the full-duplex data stream that an ADSP session maintains, ADSP allows
either end of a connection to send an attention message to the other end without
interrupting the primary flow of data.

Among the features that ADSP provides are
® an end-of-message feature that lets you break streams of data into logical messages

® an attention-message feature that lets you and your partner application signal to each
other outside the normal exchange of data

m a forward-reset feature that lets you cancel the delivery of any data that is in your
connection end’s send queue and any data that you have sent that is in transit and
that the remote connection end has not received

® a built-in flow control feature that ensures that your application sends data only if its
remote partner has the buffer capacity to receive it

Connections, Connection Ends, and Connection States

A connection is an association between two sockets that supports the flow of data
between the clients of those sockets in a reliable way. Each socket can maintain
concurrent ADSP connections with several other sockets, but there can be only one
ADSP connection between any two sockets at one time. For example, a single socket on
node A can have multiple concurrent sessions consisting of one connection to a socket on
node B, one connection to a socket on node C, and one connection to a socket on node D.

When you establish an ADSP connection end, you allocate a nonrelocatable block of
memory called a connection control block (CCB) in which ADSP stores state informa-
tion about the connection end. When you initialize the connection end, ADSP uses the
CCB to set up control information that it maintains and uses for synchronizing communi-
cation with the other socket client and for error checking.

You can read the CCB fields to gain information about the current state of the connection
end. In addition to the unique AppleTalk internet address associated with a socket, each
instance of a connection end has associated with it a connection ID that identifies it. You
can open a connection for a socket and close that connection without actually removing
the connection end, and then open another connection for the same socket. When you
close a connection, the socket number remains associated with the connection, as do the
data structures whose memory you allocated. ADSP uses this to ensure that any data
meant for the old connection end is not delivered to the new connection end using the
same socket number and data structures.

ADSP cannot deliver packets to a connection end based on the AppleTalk internet socket
address alone. The connection ID ensures that a packet is delivered to the specific
connection end for which it was intended. You call the new connection ID (dspNewCID)
routine to cause ADSP to assign a connection ID to the connection end before you open a
connection. ADSP assigns a connection ID number, which it includes in every packet that
it delivers from your connection end to a remote connection end.

About ADSP

CHAPTER §

AppleTalk Data Stream Protocol (ADSP)

Figure 5-3 ADSP connection ends and their components

Application

(}9 Connection ID

Connection end Connection end

Connection ID @

Socket | Intemet address

Socket | Internet address

Session
Connection control and Connection control and
state information state information

Application

Figure 5-3 shows two connection ends and the client applications that use them to
participate in a session with each other over an ADSP connection. This figure shows
the components that constitute a connection end.

At any time, either end of a potential ADSP connection can initiate a session. Also, either
end of the connection can tear down the connection when it is no longer needed.

m When two connection ends establish communication, the connection is considered an
open connection.

® When both connection ends terminate the connection and dispose of the connection
information each maintains, the connection is considered a closed connection.

m If one connection end is established but the other connection end is unreachable or
has disposed of its connection information, the connection is considered a half-open
connection.

No communication can occur over a half-open or closed connection.

To prevent a half-open connection from tying up resources, ADSP automatically closes
any half-open connection that cannot reestablish communication within two minutes
and informs its client that the connection is closed. Under these circumstances, ADSP
will call the application-supplied completion routine for any pending asynchronous
ADSP routine, if one was provided. Otherwise, the pending ADSP routine will return to
the calling program with an errState error message. If you attempt to call an ADSP
routine on a half-open connection, ADSP also returns the errState error message.

Connection Listeners

A connection listener or a connection-listening socket is a socket that accepts open-
connection requests and passes them along to its client, a connection server process,

for further processing. The server then selects a socket and requests ADSP to open a
connection using that socket. The connection listener can also deny an open-connection
request. By specifying filtering values for the network address of the requester, you can
control which requests are accepted or denied. The use of a connection listener is typical
of a server environment in which a server, such as a file server, is registered with NBP

About ADSP 5-7

(dSQV) 10901014 weens ejeq yeLejddy -

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

using a single name. Various connection ends throughout the network contact the
server’s connection listener with open-connection requests. The connection server can
honor the requests, or it can deny them. It might deny a request, for example, when its
resources are exhausted. Figure 5-4 shows the tasks for an ADSP connection listener in
the order that applications commonly perform them.

Figure 5-4 Standard tasks for an ADSP connection listener

5-8

Create connection
listener

U

Listen for
connection request

T
(& 1)}

Deny connection Remove
request connection listener

Get connection ID

g

Create
connection end

y

Go to steps for creating an ASDP connection end.

Reliable Delivery of Data

ADSP guarantees that data bytes are delivered in the same order as they were sent and
that they are free of duplicates. It ensures that all data sent is delivered to the remote
connection end’s receive buffer. To accomplish this, ADSP associates a sequence number
with each byte that it sends. ADSP discards any out-of-sequence data or any duplicates
that are delivered. ADSP uses the sequence numbers to ensure that all of the data that
one end sends is received by the other end. If data is lost, ADSP retransmits it. ADSP
can send the data again because the data remains in the sending connection end’s send
queue until the remote end actually receives a copy of it. For more information about
how ADSP delivers data, see Inside AppleTalk, second edition.

Unsolicited ADSP Events

After you open a connection, you can receive events that are not generated in response to
any of the ADSP calls that your application makes. The other connection end or ADSP
initiates these events. For example, the remote connection end can send you an attention
message or a forward reset.

About ADSP

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

You receive a forward reset event when the remote connection end cancels delivery of all
outstanding data to your connection end. A forward reset causes ADSP to discard all
data in the send queue, all data in transit to the remote connection end, and all data in
the remote connection end’s receive queue that the client has not yet read.

The remote connection end can close the connection, and this, too, will generate an event
notification for your connection end. You also receive event notification when ADSP
tears down a connection because the remote end has become unreachable.

ADSP sets the bits of your connection end’s connection control block user flags field to
identify the type of event. For more information about this field, see “Creating and Using
a Connection Control Block” on page 5-12. You can provide a user routine that ADSP is
to call whenever you receive one of these events. This user routine is similar in concept
and use to an ioCompletion routine that many of the other AppleTalk protocols use.
See “Writing a User Routine for Connection Events” on page 5-26 for information on
how to write a user routine.

About ASDSP

This section describes the secure version of ADSP referred to as AppleTalk Secure
Data Stream Protocol (ASDSP). ASDSP is a superset of ADSP that includes authentica-

tion and encryption features. To use ASDSP, you should be familiar with both ADSP
and ASDSP.

ASDSP features allow you to provide users of your application with the ability to
exchange encrypted data across a secure session that is established after the users’
identities are proven through what is known as the authentication process. Before
transmitting the data that a user sends, ASDSP encrypts it and then decrypts the data
before delivering it to the application at the remote connection end. Users might want
to identify one another, for example, to verify that a piece of electronic mail came from
the sender who claimed to be its author, and they might want to encrypt data that
traverses a network if that data is considered confidential or private and they do not
want others to intercept and read the data.

To verify the identities of two ends of a connection, an ASDSP application relies on
information that is provided by an Apple Open Collaboration Environment (AOCE)
authentication server. Your ASDSP client application at the connection end that initiates
the session calls the AOCE Authentication Manager to acquire the information necessary
for the authentication process from the authentication server, and then it passes this
information on to ASDSP.

Note

Because ASDSP is dependent on information from the authentication
server, your ASDSP application can only run on systems that also run
AOCE and that have access to an AOCE authentication server. If

the AOCE software is installed on the system that runs your application
and if the system has access to an AOCE authentication server, your
application can use ASDSP. &

About ASDSP 5-9

(dSQav) 10901014 Weans ejeq yeLoiddy -

5-10

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

You perform the first part of the authentication process by requesting information from
the authentication server and giving that information to ASDSP to transmit to the other
end of the connection. The authentication process culminates in a challenge-and-reply
handshake that the ASDSP code performs on behalf of your ASDSP client application
at each end of the connection to ensure that the application users are who they claim to
be. The ASDSP client application of the connection end that retrieves the information
from the authentication server and makes the request to open the session is called the
initiator; the ASDSP client application of the connection end that receives the request
and the information from the server is called the recipient.

The Authentication Process

This section describes the general strategy of the authentication process. Understanding
what this process entails can be helpful in understanding the meaning and use of the
parameters that you get from the authentication server and pass to ASDSP.

The initiator and the recipient each have a private key. The private key, also called a user
key or client key, is a number that is derived from a password; the number is used by an
encryption algorithm.

The initiator calls the authentication server to request information and credentials

to be used by ASDSP in establishing an authenticated session. The credentials contain
information that is required in order to prove that the users of both ends of the
connection are who they claim to be. The user of the initiator ASDSP client application
gives the authentication server his own name or identity and that of the user of the
recipient ASDSP client application.

The authentication server returns to the initiator a unique session key that the server
generates exclusively for use by the authentication process for this session; the session
key is valid for a limited time only. The authentication server also returns to the initiator
a set of credentials that are encrypted in the recipient’s private key. The credentials
contain the session key also and the initiator’s identity, as well as the identity of an
intermediary or proxy, if one was used to obtain the credentials from the authentica-
tion server.

The initiator passes a block of data containing the credentials to ASDSF, and ASDSP
on the initiator’s end sends the credentials to ASDSP on the recipient’s end. The latter
decrypts the entire credentials block, obtaining the session key from the credentials
block. ASDSP on the recipient’s end then uses the session key in the authentication
process that it performs on behalf of the recipient. ASDSP has the recipient’s private
key, which it uses to decrypt the credentials. If the authentication process succeeds,
ASDSP returns all of the credentials to the recipient.

Because the initiator and ASDSP on behalf of the recipient must each decrypt the session
key using their own private key, they can each be convinced that the other is who they
claim to be if they can conclude that the other knows the session key. The need for this
conviction begins the challenge-and-reply authentication process that enables each end
to confirm that the other end also knows the unique session key.

About ASDSP

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

ASDSP performs the challenge-and-reply process on behalf of the client applications in
a manner that is transparent to the applications. If the authentication process completes
successfully, ASDSP opens a secure connection; if the authentication process fails,
ASDSP returns an error code to both the initiator and the recipient and tears down the
connection that was established to perform the authentication process. To learn more
about the challenge-and-reply process, see the chapter “Authentication Manager” in
Inside Macintosh: AOCE Application Programming Interfaces.

The Data Encryption Feature

After ASDSP successfully completes the authentication process, the two ends of the
connection whose identities have been verified can exchange data and they can also
encrypt that data. The ASDSP encryption feature allows each party to send data that can
be trusted to be securely transmitted in a manner that is unreadable by anyone other
than the intended recipient until that data is decrypted by ASDSP and delivered to the
recipient at the other end of the ASDSP session connection. ASDSP encrypts only data
in the main data stream; it does not encrypt data in attention messages or ASDSP

packet headers.

Using ADSP

This section describes how to use ADSP to

® open and maintain an ADSP connection, including how to
O initialize the connection end (dspInit)
O set options that control the behavior of the connection end (dspOptions)
O open the connection (dspOpen)
0 read (dspRead) and write (dspWrite) data over the connection
w]

send an attention code and an attention message to the remote connection end
(dspAttention)

O close the connection (dspClose) and remove it (dspRemove)

m create and use a connection listener, including how to
O initialize a connection listener (dspCLInit)

O activate the connection listener, causing it to listen for an open-connection request
(dspCLListen), filtering requests that you will accept by restricting network
addresses

O initialize (dspInit) and open (dspOpen) a connection end in response to an open
request that you want to accept

0 read (dspRead) and write (dspWrite) data over the connection and close the
connection (dspClose)

O remove the connection listener when you are finished with it (dspCLRemove)

m handle unsolicited connection events using your own user routine

Using ADSP 5-11

(dSQV) |000101d Weeng eleq yeLsiddy -

5-12

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

You execute ADSP routines by calling the Device Manager’s PBControl function. When
you call the PBControl function for an ADSP routine, you provide a pointer to a
parameter block of type DSPParamBlock.

You use the parameter block fields to specify the input parameters that ADSP requires to
execute the command. The parameter block also includes fields whose values ADSP
returns. For a complete description of the DSP parameter block and its fields, see “The
DSP Parameter Block” beginning on page 5-38.

Allocating Memory for ADSP

To open and maintain an ADSP session, you must allocate memory required for the
session. Depending on the ADSP routine that you call, you must allocate the following:

m storage of the state information that ADSP maintains at either end of a connection (see
the discussion of the connection control block in “Connections, Connection Ends, and
Connection States” on page 5-6)

® a parameter block that you use to pass parameters when you execute an ADSP routine
m asend queue and a receive queue
m an attention message buffer

This memory belongs to ADSP until you explicitly remove the connection end.

Creating and Using a Connection Control Block

When you establish an ADSP connection end, you must allocate a nonrelocatable block
of memory for (and provide a pointer to) a connection control block (CCB) data
structure, which ADSP uses to store state information about the connection end. This
memory belongs to ADSP until you explicitly remove the connection end using the
dspRemove routine (see “dspRemove” on page 5-62). Only then can you release or reuse
the memory that you allocated for the CCB.

Most of the fields of the CCB are for ADSP’s internal use. Although you must not alter
any of the CCB fields except one, the userFlags field, you may poll them to gain
information about the current state of the connection end.

When your connection end receives an unsolicited event, such as an attention message
or a forward reset, ADSP’s interrupt handler sets a bit corresponding to the event type in
the userFlags field and calls your user routine, if you provided one. If you did not
provide a user routine, you can test these bits to determine when an unsolicited event
occurs on the connection end.

After you read them, you must clear the bits either through your user routine or directly
before you handle the event.

The CCB is a record of type TRCCB that must consist of 242 bytes. See “The ADSP
Connection Control Block Record” beginning on page 5-35 for a description of the
CCB and the fields that comprise it.

Using ADSP

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

Opening and Maintaining an ADSP Connection

To use ADSP to establish and maintain a connection between a socket on your local node
and a remote socket, use the following procedure:

1. Use the Device Manager’s OpenDriver function to open the MPP driver, and then
use it again to open the .DSP driver. The .MPP driver must be open before you open
the .DSP driver. The OpenDriver function call for the .DSP driver returns the driver
reference number. You must supply this reference number each time you call the
Device Manager’s PBControl function to execute an ADSP routine.

2. Allocate nonrelocatable memory for a CCB, send and receive queues, and an attention-
message buffer. If you need to allocate the memory dynamically while the program
is running, use the NewPtr routine. Otherwise, the way in which you allocate the
memory depends on the compiler you are using. (Listing 5-1 on page 5-17 shows how
to do this in Pascal.) The memory that you allocate becomes the property of ADSP
when you call the dspInit routine to establish a connection end. You cannot write
any data to this memory except by calling ADSP, and you must ensure that the
memory remains locked until you call the dspRemove routine to eliminate the
connection end.

The CCB is 242 bytes. The attention-message buffer must be 570 bytes. When you
send bytes to a remote connection end, ADSP stores the bytes in a buffer called the
send queue. Until the remote connection end acknowledges their receipt, ADSP keeps
the bytes you sent in the send queue so that they are available to be retransmitted if
necessary. When the local connection end receives bytes, it stores them in a buffer,
called the receive queue, until you read them. The sizes you need for the send and
receive queues depend on the lengths of the messages being sent.

ADSP does not transmit data from the remote connection end until there is room for
it in your receive queue. If your send or receive queues are too small, they limit the
speed with which you can transmit and receive data. A queue size of 600 bytes should
work well for most applications. If you are using ADSP to send a continuous flow

of data, a larger data buffer improves performance. If your application is sending or
receiving the user’s keystrokes, a smaller buffer should be adequate. The constant
minDSPQueueSize, which is defined in the MPW interface file for ADSP, indicates
the minimum queue size that you can use.

If you are using a version of the .DSP driver prior to version 1.5, you must allocate
send and receive queues that are 12 percent larger than the actual buffer sizes you
need. You must do this in order to provide some extra space for use by the .DSP
driver. Version 1.5 and later versions of the .DSP driver use a much smaller, and
variable, portion of buffer space for overhead. The .DSP driver version number is
stored in the low byte of the gFlags field, which is the first field in the dCt 1QHdr
field in the driver’s device control entry (DCE) data structure. Version 1.5 of the

.DSP driver has a version number of 4 in the DCE. See the chapter “Device Manager”
in Inside Macintosh: Devices for information on the DCE.

3. Use the dspInit routine to establish a connection end. You must provide pointers
to the CCB, send queue, receive queue, and attention-message buffer. You may also
provide a pointer to a user routine that ADSP calls when your connection end
receives an unsolicited connection event. See the section”“Writing a User Routine for
Connection Events” on page 5-26 for information on providing a user routine.

Using ADSP 5-13

(dSQV) (000104d Weaxg ejeq yeLeiddy -

5-14

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

If there is a specific socket that you want to use for the connection end, you can
specify the socket number in the localSocket parameter. If you want ADSP to
assign the socket for you, specify 0 for the localSocket parameter; in this case,
ADSP returns the socket number when the dspInit routine completes execution.

4. If you wish, you can use the Name-Binding Protocol (NBP) routines to add the name
and address of your connection end to the node’s names table. See the chapter
“Name-Binding Protocol (NBP)” in this book for information on NBP.

5. You can use the dspOptions routine to set several parameters that control the
behavior of the connection end. Because every parameter has a default value, the use
of the dspOptions routine is optional. You can specify values for the following
parameters:

0 The sendBlocking parameter, which sets the maximum number of bytes that
may accumulate in the send queue before ADSP sends a packet to the remote
connection end. You can experiment with different values of the sendBlocking
parameter to determine which provides the best performance. Under most
circumstances, the default value of 16 bytes gives good performance.

0 The badSegMax parameter, which sets the maximum number of out-of-sequence
data packets that the local connection end can receive before requesting the remote
connection end to retransmit the missing data. Under most circumstances, the
default value of 3 provides good performance.

0 The useCheckSum parameter, which determines whether the Datagram Delivery
Protocol (DDP) should compute a checksum and include it in each packet that it
sends to the remote connection end. Using checksums slows communications
slightly. Normally ADSP and DDP perform enough error checking to ensure safe
delivery of all data. Set the useCheckSum parameter to 1 only if you feel that the
network is highly unreliable.

6. Call the dspOpen routine to open the connection. The dspOpen routine has four
possible modes of operation: ocAccept, ocEstablish, ocRequest, and
ocPassive. Normally you use either the ocRequest or ocPassive mode. You
must specify one of these four modes for the ocMode parameter when you call
the dspOpen routine.

The ocAccept mode is used only by connection servers. The ocEstablish mode
is used by routines that determine their connection-opening parameters and establish
a connection independently of ADSP, but use ADSP to transmit and receive data.

Use the ocRequest mode when you want to establish communications with a
specific socket on the AppleTalk internet. When you execute the dspOpen routine

in the ocRequest mode, ADSP sends an open-connection request to the address
you specify.

If the socket to which you send the open-connection request is a connection listener,
the connection server that operates that connection listener can select any socket

on the internet to be the connection end that responds to the open-connection request.
To restrict the socket from which you will accept a response to your open-connection
request, specify a value for the filterAddress parameter to the dspOpen routine.
When your connection end receives a response from a socket that meets the
restrictions of the filterAddress parameter, it acknowledges the response and
ADSP completes the connection.

Using ADSP

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

To use the ocRequest mode, you must know the complete internet address of the
remote socket, and the ADSP client at that address must either be a connection listener
or have executed the dspOpen routine in the ocPassive mode. You can tise the NBP
routines to obtain a list of names of objects on the internet and to determine the
internet address of a socket when you know its name. See the chapter “Name-Binding
Protocol (NBP)” in this book for information on the NBP routines.

Use the ocPassive mode when you expect to receive an open-connection request
from a remote socket. You can specify a value for the filterAddress parameter to
restrict the network number, node ID, or socket number from which you will accept
an open-connection request. When your connection end receives an open-connection
request that meets the restrictions of the filterAddress parameter, it acknowledges
the request and ADSP completes the connection.

You can poll the state field in the CCB to determine when the connection end is
waiting to receive an open-connection request, when the connection end is waiting to
receive an acknowledgment of an open-connection request, and when the connection
is open. See the section “The ADSP Connection Control Block Record” beginning on
page 5-35 for a description of the CCB fields. Alternatively, you can check the result
code for the dspOpen routine when the routine completes execution. If the routine
returns the noErr result code, then the connection is open.

7. Use the dspRead routine to read data that your connection end has received from
the remote connection end. Use the dspWrite routine to send data to the remote
connection end. Use the dspAttention routine to send attention messages to the
remote connection end.

The dspWrite routine places data in the send queue. ADSP is a full-duplex, symmetric
communications protocol: You can send data at any time, and your connection end can
receive data at any time, even at the same time as you are sending data. ADSP
transmits the data in the send queue when one of the following conditions occurs:

O You call the dspWrite routine with the flush parameter set to a nonzero number.

O The number of bytes in the send queue equals or exceeds the blocking factor that
you set with the dspOptions routine.

O The send timer expires. The send timer sets the maximum amount of time that can
pass before ADSP sends all unsent data in the send queue to the remote connection
end. ADSP calculates the best value to use for this timer and sets it automatically.

O A connection event requires that the local connection end send an acknowledgment
packet to the remote connection end.

If you send more data to the send queue than it can hold, the dspWrite routine does
not complete execution until it has written all the data to the send queue. If you
execute the dspWrite routine asynchronously, ADSP returns control to your program
and writes the data to the send queue as quickly as it can. This technique provides the
most efficient use of the send queue by your program and by ADSP. Because ADSP
does not remove data from the send queue until that data has been not only sent but
also acknowledged by the remote connection end, using the £1lush parameter to the
dspWrite routine does not guarantee that the send queue is empty. You can use

the dspStatus routine to determine how much free buffer space is available in the
send queue.

Using ADSP 5-15

(dSQV) 1000101d Weexns eyeq yeLojddy -

5-16

CHAPTER 5

AppleTalk Data Stream Protoco! (ADSP)

The dspRead routine reads data from the receive queue into your application’s
private data buffer. ADSP does not transmit data until there is space available in
the other end’s receive queue to accept it. Because a full receive queue slows the
communications rate, you should read data from the receive queue as often as
necessary to keep sufficient buffer space available for new data. You can use either
of two techniques to do this:

O Allocate a small receive queue (about 600 bytes) and call the dspRead routine
asynchronously. Your completion routine for the dspRead routine should then
call the dspRead routine again.

O Allocate a large receive queue and call the dspRead routine less frequently.

If there is less data in the receive queue than the amount you specify with the
reqCount parameter to the dspRead command, the command does not complete
execution until there is enough data available to satisfy the request. There are three
exceptions to this rule:

O If the end-of-message bit in the ADSP packet header is set, the dspRead command
reads the data in the receive queue, returns the actual amount of data read in the
actCount parameter, and returns the eom parameter set to 1.

O If you have closed the connection end before calling the dspRead routine (that is,
the connection is half open), the command reads whatever data is available and
returns the actual amount of data read in the actCount parameter.

O If ADSP has closed the connection before you call the dspRead routine and there is
no data in the receive queue, the routine returns the noErr result code with the
actCount parameter set to 0 and the eom parameter set to 0.

In addition to the byte-stream data format implemented by the dspRead and
dspWrite routines, ADSP provides a mechanism for sending and receiving control
signals or information separate from the byte stream. You use the dspAttention
routine to send an attention code and an attention message to the remote connection
end. When your connection end receives an attention message, ADSP’s interrupt
handler sets the eAttention flag in the userFlags field of the CCB and calls your
user routine. Your user routine must first clear the userFlags field. Then your
routine can read the attention code and attention message and take whatever action
you deem appropriate.

Because ADSP is often used by terminal emulation programs and other applications
that pass the data they receive on to the user without processing it, attention messages
provide a mechanism for the applications that are clients of the connection ends to
communicate with each other. For example, you could use attention messages to
implement a handshaking and data-checking protocol for a program that transfers
disk files between two applications, neither one of which is a file server. Or a database
server on a mainframe computer that uses ADSP to communicate with Macintosh
computer workstations could use the attention mechanism to inform the workstations
when the database is about to be closed down for maintenance.

. When you are ready to close the ADSP connection, you can use the dspClose or

dspRemove routine to close the connection end. Use the dspClose routine if you
intend to use that connection end to open another connection and do not want

to release the memory you allocated for the connection end. Use the dspRemove
routine if you are completely finished with the connection end and want to release
the memory.

Using ADSP

CHAPTER 5

AppleTalk Data Stream Protoco! (ADSP)

You can continue to read data from the receive queue after you have called the
dspClose routine, but not after you have called the dspRemove routine. You can

use the dspStatus routine to determine whether any data is remaining in the receive
queue, or you can read data from the receive queue until both the actCount and
eon fields of the dspRead parameter block return 0.

If you set the abort parameter for the dspClose or dspRemove routine to 0, then
ADSP does not close the connection or the connection end until it has sent—and
received acknowledgment for—all data in the send queue and any pending attention
messages. If you set the abort parameter to 1, then ADSP discards any data in the
send queue and any attention messages that have not already been sent.

After you have executed the dspRemove routine, you can release the memory you
allocated for the CCB and data buffers.

Listing 5-1 illustrates the use of ADSP. This routine opens the .MPP and .DSP drivers and
allocates memory for its internal data buffers, for the CCB, and for the send, receive, and
attention-message buffers. Then the routine uses the dspInit routine to establish a
connection end and uses NBP to register the name of the connection end on the internet.
(The user routine specified by the userRoutine parameter to the dspInit function is
shown in Listing 5-3 on page 5-28.) Next, Listing 5-1 uses the dspOptions routine to
set the blocking factor to 24 bytes. This routine then uses NBP to determine the address
of a socket whose name was selected by the user and sends an open-connection request
(dspOpen) to that socket. When the dspOpen routine completes execution, it sends data
and an attention message to the remote connection end and reads data from its receive
queue. Finally, the routine closes the connection end with the dspRemove routine and
releases the memory it allocated.

Listing 5-1 Using ADSP to establish and use a connection

PROCEDURE MyADSP;

CONST
gSize = 600;

myDataSize = 128;

blockFact = 24;

TYPE

{queue space}
{size of internal read/write buffers}
{blocking factor}

{Modify the connection control block to add storage for AS5.}

myTRCCB =
RECORD

myA5: LongInt;

u: TRCCB;

END;

VAR
dspSendQPtr: Ptr;
dspRecvQPtr: Ptr;

Using ADSP

5-17

(dSQAV) 10001014 Weens eleq yeLoiddy -

CHAPTER 5§

AppleTalk Data Stream Protocol (ADSP)

dspAttnBufPtr: Ptr;
myData2ReadPtr: Ptr;
myData2WritePtr: Ptr;

myAttnMsgPtr: Ptr;
dspCCB: myTRCCB;
myDSPPBPtr: DSPPBPtr;
myMPPPBPtr: MPPPBPtr;
myNTEName : NamesTableEntry;
myAddrBlk: AddrBlock;
drvrRefNum: Integer;
mppRefNum: Integer;
connRefNum: Integer;
gReceivedAnEvent: Boolean;
myAttnCode: Integer;
tempFlag: Byte;
tempCFlag: Integer;
myErr: OSErr;
BEGIN
myErr := OpenDriver('.MPP', mppRefNum); {open .MPP driver}
IF myErr <> noErr THEN DoErr (myErr); {check and handle error}
myErr := OpenDriver('.DSP', drvrRefNum); {open .DSP driver}
IF myErr <> noErr THEN DoErr(myErr); {check and handle error}

{Allocate memory for data buffers.}

dspSendQPtr := NewPtr(gSize); {ADSP use only}
dspRecvQPtr := NewPtr(gSize); {ADSP use only}
dspAttnBufPtr := NewPtr(attnBufSize); {ADSP use only}

myData2ReadPtr := NewPtr(myDataSize);

myData2WritePtr := NewPtxr(myDataSize);

myAttnMsgPtr := NewPtr(myDataSize);

myDSPPBPtr := DSPPBPtr(NewPtr(SizeOf (DSPParamBlock)));
myMPPPBPtr := MPPPBPtr(NewPtr(SizeOf (MPPParamBlock)));

WITH myDSPPBPtr” DO {set up dspInit parameters}
BEGIN
ioCRefNum := drvrRefNum; {ADSP driver ref num}
csCode := dspInit;
ccbPtr := @dspCCB; {pointer to CCB}

userRoutine := @myConnectionEvtUserRoutine;
{see Listing 5-3}

sendQSize := gSize; {size of send queue}
sendQueue := dspSendQPtr; {send-queue buffer}
recvQSize := gSize; {size of receive queue}

5-18 Using ADSP

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

recvQueue := dspRecvQPtr;
attnPtr := dspAttnBufPtr;
localSocket := 0;

END;

gReceivedAnEvent := FALSE;
dspCCB.myA5 := SetCurrentAS5;
{Establish a connection end.}

{receive-queue buffer}
{receive-attention buffer}
{let ADSP assign socket}

{save A5 for the user routine}

myErr := PBControl(ParmBlkPtr(myDSPPBPtr), FALSE);

IF myErr <> noErr THEN DOErr (myErr);

connRefNum := myDSPPBPtr”.ccbRefNum;

NBPSetNTE (@myNTEName, 'The Object', 'The
'*', myDSPPBPtr”.localSocket);

WITH myMPPPBPtr” DO

BEGIN
interval := 7;

entityPtr := @myNTEName;
verifyFlag := 1;

END;

{Register this socket.}

{check and handle error}

{save CCB ref num for later}
Type',

{set up NBP names table entry}
{set up PRegisterName }
{ parameters}

{retransmit every 7*8=56 ticks}
{retry 3 times}

{name to register}

{verify this name}

myErr := PRegisterName(myMPPPBPtr, FALSE);

IF myErr <> noErr THEN DoErr(myErr);

WITH myDSPPBPtr” DO

BEGIN
ioCRefNum := drvrRefNum;
csCode := dspOptions;
ccbRefNum := connRefNum;
sendBlocking := blockFact;
badSegMax := 0;
useCheckSum := 0;

END;

{register this socket}

{check and handle error}

{set up dspOptions parameters}
{ADSP driver ref num}

{connection ref num}
{quantum for data packet}
{use default}

{don't calculate checksum}

myErr := PBControl (ParmBlkPtr(myDSPPBPtr), FALSE);

IF myErr <> noErr THEN DoErr (myErr);

Using ADSP

{set optionsj

{check and handle error}

5-19

(dSQv) loo0l01d Weeng ereq yeLs|ddy -

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

PickASocket (myAddrBlk);

{routine using the PLookupName }
{ function to pick a socket }
{ for the connection}

{Open a connection with the selected socket.}

WITH myDSPPBPtr” DO

BEGIN
ioCRefNum := drvrRefNum;
csCode := dspOpen;
ccbRefNum := connRefNum;

remoteAddress := myAddrBlk;

filterAddress := myAddrBlk;

ocMode := ocRequest;
ocInterval := 0;
ocMaximum := 0;

END;

{set up dspOpen parameters}

{ADSP driver ref num}

{connection ref num}
{address of remote socket }
{ from PLookupName function}
{address filter,specified }
{ socket address only}

{open connection mode}

{use default retry interval}
{use default retry maximum}

myErr := PBControl(ParmBlkPtr (myDSPPBPtr), FALSE);

IF myErr <> noErr THEN DoErr(myErr);

{open a connection}
{check and handle error}

{The connection with the selected socket is open, so now send }
{ to the send queue exactly myDataSize number of bytes.}

WITH myDSPPBPtr”* DO

BEGIN
ioCRefNum := drvrRefNum;
csCode := dspWrite;
ccbRefNum := connRefNum;
reqCount := myDataSize;

dataPtr := myData2WritePtr;

eom := 1;
flush := 1;
END;

{set up dspWrite parameters}
{ADSP driver ref num}

{connection ref num}
{write this number of bytes}

{pointer to send queue}
{1 means last byte is }
{ logical end-of-message}
{1 means send data now}

myErr := PBControl(ParmBlkPtr(myDSPPBPtr), FALSE);

IF myErr <> noErr THEN DoErr (myErr);

5-20 Using ADSP

{send data to the remote }
{ connection}

{check and handle error}

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

{Now send an attention message to the remote connection end.}

WITH myDSPPBPtr” DO {set up dspAttention parameters}
BEGIN
ioCRefNum := drvrRefNum; {ADSP driver ref num}
csCode := dspAttention;
ccbRefNum := connRefNum; {connection ref num}
attnCode := 0; {user-defined attention code}
attnSize := myDataSize; {length of attention message}
attnData := myAttnMsgPtr; {attention message}
END;

myErr := PBControl (ParmBlkPtr (myDSPPBPtr), FALSE);
IF myErr <> noErr THEN DoErr(myErr);
{check and handle error}

{Now read from the receive queue exactly myDataSize number }
{ of bytes.}

WITH myDSPPBPtr” DO {set up dspRead parameters}
BEGIN
ioCRefNum := drvrRefNum; {ADSP driver ref num}
csCode := dspRead;
ccbRefNum := connRefNum; {connection ref num}
reqCount := myDataSize; {read this number of bytes}
dataPtr := myData2ReadPtr; {pointer to read buffer}
END;

myErr := PBControl (ParmBlkPtr (myDSPPBPtr), FALSE);
{read data from the remote }
{ connection}

IF myErr <> noErr THEN DoErr (myErr); {check and handle error}

{We're finished with the connection, so remove it.}

WITH myDSPPBPtr” DO {set up dspRemove parameters}
BEGIN
ioCRefNum := drvrRefNum; {ADSP driver ref num}

csCode := dspRemove;

ccbRefNum := connRefNum; {connection ref num}
abort := 0; {don't close until }
{ everything is sent and }
{ received}
END;
myErr := PBControl (ParmBlkPtr (myDSPPBPtr), FALSE);
{close and remove the }
{ connection}
IF myErr <> noErr THEN DOErr(myErr);
{check and handle error}

Using ADSP 5-21

(dSav) 10901014 weans ejeq seLejddy -

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

{You're finished with this connection, so release the memory.}
DisposPtr(dspSendQPtr);

DisposPtr (dspRecvQPtr);

DisposPtr(dspAttnBufPtr);

DisposPtr(myData2ReadPtr);

DisposPtr(myData2WritePtr);

DisposPtr(myAttnMsgPtr);

DisposPtr (Ptr(myDSPPBPtr));

DisposPtr (Ptr (myMPPPBPtr));

END; {MyADSP}

Creating and Using a Connection Listener

A connection listener is a special sort of ADSP connection end that cannot receive or
transmit data streams or attention messages. The sole function of a connection listener
is to wait passively to receive an open-connection request and to inform its client, the
connection server, when it receives one. The connection server can then accept or deny
the open-connection request. If it accepts the request, the connection server selects a
socket to use as a connection end, establishes a connection end on that socket, and sends
an acknowledgment and connection request back to the requesting connection end. The
connection server can use the same socket as it used for the connection listener, or it

can select a different socket as the connection end.

Use the following procedure to establish a connection listener and to use that connection
listener to open a connection with a remote connection end:

1. Use the Device Manager’s OpenDriver function to open the .MPP driver and then
use the OpenDriver function to open the .DSP driver. The OpenDriver function
returns the reference number for the .DSP driver. You must supply this reference
number each time you call the .DSP driver.

2. Allocate nonrelocatable memory for a connection control block, which is described
in “Connections, Connection Ends, and Connection States” on page 5-6. The CCB
is 242 bytes. A connection listener does not need send and receive queues or an
attention-message buffer. The memory that you allocate becomes the property of
ADSP when you call the dspCLInit routine to establish a connection listener. You
cannot write any data to this memory except by calling ADSP, and you must ensure
that the memory remains locked until you call the dspRemove routine to eliminate
the connection end.

3. Call the dspCLInit routine to establish a connection listener. You must provide a
pointer to the CCB.

If there is a specific socket that you want to use for the connection listener, you can
specify the socket number in the 1ocalSocket parameter. If you want ADSP to
assign the socket for you, specify 0 for the localSocket parameter. ADSP returns
the socket number when the dspCLInit routine completes execution.

5-22 Using ADSP

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

4. If you wish, you can use the NBP routines to add the name and address of your
connection listener to the node’s names table. See the chapter “Name-Binding
Protocol (NBP)” in this book for information on NBP.

5. Use the dspCLListen routine to cause the connection listener to wait for an open-
connection request. Because the dspCLListen routine does not complete execution
until it receives a connection request, you should call this routine asynchronously.
You can specify a value for the £ilterAddress parameter to restrict the network
number, node ID, or socket number from which you will accept an open-connection
request.

When the dspCLListen routine receives an open-connection request that meets
the restrictions of the filterAddress parameter, it returns a noErr result code

(if you executed the routine asynchronously, it places a noErr result code in the
ioResult parameter) and places values in the parameter block for the remoteCID,
remoteAddress, sendSeq, sendWindow, and attnSendSeq parameters.

6. If you want to open the connection, call the dspInit routine to establish a connection
end. You can use any available socket on the node for the connection end, including
the socket that you used for the connection listener. Because a single socket can have
more than one CCB connected with it, the socket can function simultaneously as a
connection end and a connection listener.

You can check the address of the remote socket to determine if it meets your criteria for
a connection end. Although the £ilterAddress parameter to the dspCLListen
routine provides some screening of socket addresses, it cannot check for network
number ranges, for example, or for a specific set of socket numbers. If for some reason
you want to deny the connection request, call the dspDeny routine, specifying the CCB
of the connection listener in the ccbRe£Num parameter. Because the dspCLListen
routine completes execution when it receives an open-connection request, you must
return to step 5 to wait for another connection request.

7. Call the dspOpen routine to open the connection. Specify the value ocAccept for the
ocMode parameter and specify in the ccbRefNum parameter the reference number
of the CCB for the connection end that you want to use. When you call the dspOpen
routine, you must provide the values returned by the dspCLListen routine for
the remoteCID, remoteAddress, sendSeq, sendWindow, and attnSendSeq
parameters.

You can poll the state field in the CCB to determine when the connection is open.
Alternatively, you can check the result code for the dspOpen routine when the routine
completes execution. If the routine returns the noErr result code, then the connection
is open.

8. You can now send and receive data and attention messages over the connection, as
described in “Opening and Maintaining an ADSP Connection” beginning on page 5-13.
When you are ready to close the connection, you can use the dspClose or dspRemove
routine, both of which are also described in the section “Creating and Using a
Connection Control Block.”

9. When you are finished using the connection listener, you can use the dspCLRemove
routine to eliminate it. Once you have called the dspCLRemove routine, you can
release the memory you allocated for the connection listener’s CCB.

Using ADSP 5-23

(dSaV) |090101d Weans eleq yeLeiddy -

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

Listing 5-2 illustrates the use of ADSP to establish and use a connection listener. It opens
the MPP and .DSP drivers and allocates memory for the CCB. Then it uses the
dspCLInit routine to establish a connection listener, uses NBP to register the name of
the connection end on the internet, and uses the dspCLListen routine to wait for a
connection request. When the routine receives a connection request, it calls the dspOpen
routine to complete the connection.

Listing 5-2 Using ADSP to establish and use a connection listener

VAR
dspCCBPtr: TPCCB;
myDSPPBPtr: DSPPBPtr;
myMPPPBPtr: MPPPBPtr;

myNTEName : NamesTableEntry;
drvrRefNum: Integer;
mppRefNum: Integer;
connRefNum: Integer;
myErr: OSErr;

BEGIN

myErr := OpenDriver('.MPP', mppRefNum);
{open .MPP driver}
IF myErr <> noErr THEN DoErr (myErr);
{check and handle error}
myErr := OpenDriver('.DSP', drvrRefNum);
{open .DSP driver}
IF myErr <> noErr THEN DoOErr(myErr);
{check and handle error}
{Allocate memory for data buffers.}
dspCCBPtr := TPCCB(NewPtr(SizeOf(TRCCB)));
myDSPPBPtr := DSPPBPtr (NewPtr(SizeOf(DSPParamBlock)));
myMPPPBPtr := MPPPBPtr (NewPtr(SizeOf (MPPParamBlock)));
WITH myDSPPBPtr”" DO {set up dspCLInit parameters}
BEGIN
ioCRefNum := drvrRefNum; {ADSP driver ref num}
csCode := dspCLInit;

ccbPtr := dspCCBPtr; {pointer to CCB}
localSocket := 0; {local socket number}
END; '

myErr = PBControl (ParmBlkPtr (myDSPPBPtr), FALSE);

{establish a connection listener}
IF myErr <> noErr THEN DoErr(myErr);

{check and handle error}
connRefNum := myDSPPBPtr”.ccbRefNum;

{save CCB ref num for later}

5-24 Using ADSP

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

NBPSetNTE (@myNTEName, 'The Object', 'The Type',
'+*', myDSPPBPtr”.localSocket);
{set up NBP names table entry}

WITH myMPPPBPtr” DO {set up PRegisterName parameters}
BEGIN
interval := 7; {retransmit every 7*8=56 ticks }
count := 3; { and retry 3 times}
entityPtr := @myNTEname; {name to register}
verifyFlag := 1; {verify this name}
END;

myErr := PRegisterName(myMPPPBPtr, FALSE);
{register this name}
IF myErr <> noErr THEN DoErr(myErr):
{check and handle error}

WITH myDSPPBPtr” DO {set up dspCLListen parameters}
BEGIN
ioCRefNum := drvrRefNum; {ADSP driver ref num}
csCode := dspCLListen;
ccbRefNum := connRefNum; {connection ref num}
filterAddress := AddrBlock(0);
{connect with anybody}
END; _
myErr := PBControl (ParmBlkPtr(myDSPPBPtr), TRUE);
{listen for connection requests}
WHILE myDSPPBPtr”.ioResult = 1 DO
BEGIN
{Return control to user while waiting for a connection }
{ request.}
GoDoSomething;
END;
IF myErr <> noErr THEN DoErr(myErr);
{check and handle error}

WITH myDSPPBPtr” DO {set up dspInit parameters}
BEGIN
ioCRefNum := drvrRefNum; {ADSP driver ref num}
csCode := dspInit;

ccbPtr := @dspCCB; {pointer to CCB}
userRoutine := @myConnectionEvtUserRoutine;
sendQSize := gSize; {size of send queue}
sendQueue := dspSendQPtr; {send-queue buffer}
recvQSize := gSize; {size of receive queue}
recvQueue := dspRecvQPtr; {receive-queue buffer}

Using ADSP 5-25

(dSav) (0001014 weens eleq yeLeiddy -

5-26

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

attnPtr := dspAttnBufPtr; {receive-attention buffer}
localSocket := 0; {let ADSP assign socket}
END;

dspCCB.myA5 := SetCurrentAS5; {save A5 for the user routine}

{Establish a connection end.}
myErr := PBControl(ParmBlkPtr(myDSPPBPtr), FALSE);
IF myErr <> noErr THEN DoErr(myErr);
{check and handle error}
connRefNum := myDSPPBPtr”.ccbRefNum;
{save CCB ref num for later}

{You received a connection request: now open a connection. }
{ The dspCLListen call has returned values into the }

{ remoteCID, remoteAddress, sendSeq, sendWindow, }

{ and attnSendSeq fields of the parameter block.}

WITH myDSPPBPtr” DO {set up dspOpen parameters}
BEGIN
ioCRefNum := drvrRefNum; {ADSP driver ref num}
csCode := dspOpen;
ccbRefNum := connRefNum; {connection ref num}

ocMode := ocAccept; {open connection mode}

ocInterval := 0; {use default retry interval}

ocMaximum := 0; {use default retry maximum}
END;

myErr := PBControl(ParmBlkPtr(myDSPPBPtr), FALSE);
{open a connection}
IF myErr <> noErr THEN DoOErr(myErr)
{check and handle error}
END; {MyCLADSP}

Writing a User Routine for Connection Events

When you execute the dspInit routine, you can specify a pointer to a routine that
you provide (referred to as the user routine). Whenever an unsolicited connection event
occurs, ADSP sets a flag in the CCB and calls the user routine. The user routine must
clear the flag to acknowledge that it has read the flag field, and then it can respond to the
event in any manner you deem appropriate. The CCB flags are described in“The ADSP
Connection Control Block Record” beginning on page 5-35. The four following types

of unsolicited connection events set flags in the CCB:

m ADSP has been informed by the remote connection end that the remote connection
end is about to close the connection. An appropriate response might be to store a flag

Using ADSP

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

indicating that the connection end is about to close. When your application regains
control, it can then display a dialog box informing the user of this event and asking
whether the application should attempt to reconnect later.

m ADSP has determined that the remote connection end is not responding and so has
closed the connection. Your user routine can attempt to open a new connection
immediately. Alternatively, you can store a flag indicating that the connection has
closed, and when your application regains control, it can display a dialog box asking
the user whether to attempt to reconnect.

m ADSP has received an attention message from the remote connection end. Depending
on what you are using the attention-message mechanism for, you might want to read
the attention code in the attnCode field of the CCB and the attention message
pointed to by the attnPtr field of the CCB.

m ADSP has received a forward reset command from the remote client end. It has then
discarded all ADSP data not yet delivered, including the data in the receive queue of
the local client end, and has resynchronized the connection. Your response to this
event depends on the purpose for which you are using the forward reset mechanism.
You might want to resend the last data you have sent or inform the user of the event.

When ADSP calls your user routine, the CPU is in interrupt-processing mode and
register Al contains a pointer to the CCB of the connection end that generated the event.
You can examine the userFlags field of the CCB to determine what event caused the

interrupt, and you can examine the state field of the CCB to determine the current state
of the connection.

Because the CPU is set to interrupt-processing mode, your user routine must preserve

all registers other than A0, A1, DO, D1, and D2. Your routine must not make any direct

or indirect calls to the Memory Manager, and it cannot depend on handles to unlocked
blocks being valid. If you want to use any of your application’s global variables, you must
save the contents of the A5 register before using the variables, and you must restore the
AS5 register before your routine terminates. Listing 5-1 and Listing 5-3 illustrate the use of
the CCB to store the pointer to your application’s global variables.

If you want to execute a routine each time an unsolicited connection event occurs but the
interrupt environment is too restrictive, you can specify a NIL pointer to the user routine
and periodically poll the userFlags field of the CCB.

WARNING

When an unsolicited connection event occurs, you must clear the bit in
the userFlags field by setting it to 0 or the connection will hang. To
ensure that you do not lose any attention messages, you must read any
attention messages into an internal buffer before you clear the bit in the
userFlags field. A

Listing 5-3 on page 5-28 shows the user routine called by Listing 5-1 on page 5-17. When
this routine is called, it first checks the CCB to determine the source of the interrupt

and then clears the bit in the userFlags field of the CCB. If the routine has received

an attention message, the user routine reads the message into an internal buffer before

it clears the £1lag bit. The definitions of procedures PushA5, GetMyTRCCBAS5, and
PopA5 are shown in Listing 5-3 for your convenience. In a complete application these
procedures would be defined in the calling routine (see Listing 5-1 for an example).

Using ADSP 5-27

(dSAV) 10001014 Weeng eleq seLe|ddy -

CHAPTER 5

AppleTalk Data Stream Protoco! (ADSP)

Listing 5-3 An ADSP user routine

PROCEDURE PushAS5; {moves current value of A5 onto stack}
INLINE $2FO0D; {MOVE.L A5,-(SP)}
PROCEDURE GetMyTRCCBAS; {retrieves A5 from the head of the TRCCB }

{ (pointed to by Al) and puts it in A5 register}
INLINE $2A69, SFFFC; {MOVE.L -4(Al), A5}

PROCEDURE POpA5; {restores A5 from stack}
INLINE $2ASF; {MOVE.L (SP)+, A5}

PROCEDURE MyConnectionEvtUserRoutine;

BEGIN
{The connection received an unexpected connection event. Find }
{ out what kind and process accordingly.}

Pushas; {save the current A5}
GetMyTRCCBAS5; {set up A5 to point to your }
{ application's global variables}

WITH dspCCB.u DO
BEGIN
IF BAND(userFlags, eClosed) <> 0 THEN TellUserItsClosed;
IF BAND(userFlags, eTearDown) <> 0 THEN TellUserItsBroken;
IF BAND(userFlags, eFwdReset) <> 0 THEN TellUserItsReset;
IF BAND(userFlags, eAttention) <> 0 THEN
BEGIN {the event is an attention message}
myAttnCode := AttnCode;
{get the attention code}
CopyAttnMsg(AttnPtr, AttnSize, @myAttnData);
{copy the attention message into your buffer}
tempFlag := userFlags;
tempCFlag := eAttention;
BClr (LongInt (tempFlag), tempCFlaqg);
{clear the flag}
userFlags := tempFlag;
{Do something with the message.}

END;
gReceivedAnEvent := TRUE
END;
PopAS {restore the current A5}

END;

5-28 Using ADSP

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

Using ASDSP

You can write an application that uses the AppleTalk Secure Data Stream Protocol
(ASDSP) to

® open a secure ASDSP connection (sdspOpen)
® transmit encrypted data across a secure session (dspWrite using the encrypt flag)

m read data decrypted by ASDSP that was sent as encrypted across a secure session
(dspRead)

The initiator end of your ASDSP client application must call the AOCE Authentication
Manager to obtain credentials to pass on to ASDSP. ASDSP passes these credentials to
the recipient end of the client application and uses them to establish a secure session in
which the users of the client applications at both ends of the connection are positively
identified. See “About ASDSP” beginning on page 5-9 for more information about this
process. ASDSP client applications at either end of a connection can send data to each
other that ASDSP encrypts for transmission and then decrypts before delivering it to the
client at the receiving end.

An application that currently uses ADSP needs little modification to use ASDSP. To open
an ASDSP connection, the client application at each end must issue the secure data stream
protocol open routine (sdspOpen) instead of the standard open routine (dspOpen).

The sdspOpen routine uses a parameter block that, in addition to the standard ADSP
parameters required to open a connection, contains the identity and credentials used in
the challenge process; only the initiator end of the connection passes the credentials to
ASDSP as input parameter values. The initiator and the recipient ends of a session each
open the connection in a different manner:

m The initiator end of a session calls the sdspOpen routine using the request mode to
direct ASDSP to open a connection with a specific socket.

m The recipient end of a session calls the sdspOpen routine in either passive mode or
accept mode. A recipient end of a connection can be either of the following:

O a specific socket that waits passively to receive an ASDSP connection request (the
connection end associated with the socket calls the sdspOpen routine with a value
of ocPassive for the ocMode parameter)

O a connection listener that listens for connection requests and passes them on to a
connection server (the connection listener calls the sdspOpen routine with a value
of ocAccept for the ocMode parameter, and the connection server accepts and
acknowledges receipt of a connection request)

You issue the sdspOpen routine by calling the Device Manager’s PBControl function
and passing it a pointer to the DSP parameter block for ASDSP that holds all of the input
and output parameters for the call. The parameters that the sdspOpen call requires
differ for the initiator and recipient ends of a connection. The next section describes how
to open an ASDSP connection and how to send encrypted data across it.

Using ASDSP 5-29

(dSaV) 10901014 Weeng ereq YL ojddy -

5-30

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

Opening a Secure Connection

To open a secure ASDSP connection, both the initiator and the recipient must call the
sdspOpen routine after calling the dspInit routine and, optionally, the dspOptions
routine. First this section describes how the initiator part of an application opens a
secure connection. Then it describes how the recipient end of an application opens

a secure connection.

From the Initiator’'s End

An initiator can send a request to open a secure session to

m a specific socket whose client application has opened a connection end to wait
passively for a connection request

® a connection listener whose function is to accept requests for secure connections and
pass those requests on to a connection server

The initiator makes either an AOCE AuthTradeProxyForCredentials call or an
AOCE AuthGetCredentials call to the authentication server. It passes to the authenti-
cation server its own name and the name of the recipient and gets back the session key
and the credentials for the session. For an explanation of the calls that the initiator must
make to the Authentication Manager, see the chapter “Authentication Manager” in Inside
Macintosh: AOCE Application Programming Interfaces.

Through the sdspOpen call, the initiator passes the credentials to ASDSP to send to the
recipient. ASDSP decrypts the credentials and passes the decrypted credential informa-
tion to the recipient.

To open a secure ASDSP connection, the initiator performs the following procedure:

1. Determine if the Apple Open Collaboration Environment (AOCE) software is installed
by calling the Gestalt function. See the chapter “Introduction to AOCE” in Inside
Macintosh: AOCE Application Programming Interfaces for a description of the selector
values that you use.

2. Allocate memory for the required data structures identified in this step. The memory
belongs to ASDSP until the routine completes execution, after which you can either
release or reuse the memory. You must either allocate nonrelocatable memory or lock
the memory until the routine completes. See the chapter “Authentication Manager” in
Inside Macintosh: AOCE Application Programming Interfaces for a description of the
memory that you need to allocate for calls that you make to that interface. The data
structures that you need to allocate memory for are listed here:

O An ASDSP parameter block of type SDSPParamBlock. You pass a pointer to this
parameter block as the value of the paramBlock parameter to the PBControl
function. (See “The ASDSP Parameter Block” on page 5-41.)

O Aworkspace buffer that the sdspOpen routine uses internally whose size is equal to
sdspWorksize. The memory for this buffer must be aligned on an even boundary.
You pass a pointer to this buffer as the value of the workspace parameter.

0 Abuffer for the credentials retrieved from the authentication server and passed
to ASDSP.

O Abuffer for the session key retrieved from the authentication server and passed to
ASDSP. This is a data structure of type AuthKey.

Using ASDSP

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

3. Call the Authentication Manager’s AuthGetUTCTime function to get the universal
coordinated time (UTC). You base the credentials expiration time that you specify
as input to the AuthGetCredentials function on the UTC. See the chapter
“Authentication Manager” for a description of the AuthGetUTCTime function.

4. Obtain your (the initiator’s) identity and the recipient’s record ID. (You can use the
local identity or get a specific identity for the initiator.) You need to pass these values
to the authentication server to get the session key and credential block from the server.
See the chapter “Authentication Manager” for a discussion of identities and complete
instruction on how to get these values.

5. Call the Authentication Manager’s AuthGetCredentials function or
AuthTradeProxyForCredentials function to get the credentials and the session
key. You use these values as input to the sdspOpen routine. See the chapter
“Authentication Manager” for information on the AuthGetCredentials and
AuthTradeProxyForCredentials functions.

You pass the AuthGetCredentials function or AuthTradeProxyForCredentials
function the following values returned from the functions that you called in the
previous steps:

O The initiator’s identity.
O A pointer to a buffer containing the record ID for the recipient.

O The desired expiration time of the credentials. You use the expiry parameter to
specify for how long you want the credentials to be valid. Credentials are valid for
at most eight hours after they are returned to the initiator by the server. You base
the expiration time on the UTC time returned by the AuthGetUTCTime function.

O The expected length of the credentials. A buffer three times the size of a packed
record ID is usually sufficient for credentials. The AOCE constant
kPackedRecordIDMaxBytes specifies the size of a single packed record ID.

6. Call the sdspOpen routine to open a secure connection. To call the sdspOpen routine,
you call the Device Manager’s PBControl function and specify sdspOpen as the
value of the csCode parameter. The parameter block for the sdspOpen routine
includes fields also used for the standard dspOpen routine. In addition to these
parameters, you specify parameters used in the authentication process to establish
the secure connection. :

The initiator application calls the sdspOpen routine with a value of ocRequest for
the ocMode parameter to direct ASDSP to open a connection with a specific socket on
the AppleTalk internet. When you execute the sdspOpen routine in the ocRequest
mode, ASDSP sends an open-connection request to the address you specify.

If the socket to which you send the open-connection request is a connection listener,
the connection server that operates that connection listener can select any socket on
the internet to be the connection end that responds to the open-connection request. To
restrict the socket from which you will accept a response to your open-connectidn
request, specify a value for the filterAddress parameter to the sdspOpen routine.

To use the ocRequest mode, you must know the complete internet address of the
remote socket, and the ASDSP client at that address must either be a connection
listener or have executed the sdspOpen routine in the ocPassive mode. You can use
the NBP routines to obtain a list of the names of objects on the internet and to
determine the internet address of a socket when you know its name. See the chapter
“Name-Binding Protocol (NBP)” in this book for information on the NBP routines.

Using ASDSP 5-31

(dSaV) [000101d Weens ejed el ejddy -

5-32

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

In addition to the standard ADSP parameters required for a dspOpen call, the
initiator supplies the following input values to the sdspOpen call:

Parameter Value

secure To open a secure authenticated connection, pass a value
of TRUE. To open a normal, unauthenticated connection,
pass a value of FALSE.

sessionKey A pointer to the encryption key returned from

the AuthGetCredentials or
AuthTradeProxyForCredentials function.

credentialsSize The value that the AuthGetCredentials function or

the AuthTradeProxyForCredentials function returned
that specifies the length of the credentials.

credentials A pointer to the credentials that the AuthGetCredentials
function or the AuthTradeProxyForCredentials
function returned.

workspace A pointer to the workspace buffer that you allocated, which

is for ASDSP’s internal use.

From the Recipient End

To open a secure ASDSP connection, the recipient performs the following procedure:

1. Allocate memory for the following data structures. The memory belongs to ASDSP
until the routine completes execution, after which you can either release or reuse the
memory. You must either allocate nonrelocatable memory or lock the memory until
the routine completes.

O

An ASDSP secure parameter block of type SDSPParamBlock. You pass a pointer to
this parameter block as the value of the paramBlock parameter to the PBControl
function. (See “The ASDSP Parameter Block” beginning on page 5-41.)

A workspace buffer that the sdspOpen routine uses internally whose size is equal
to sdspWorksize. The memory for this buffer must be aligned on an even
boundary. You must pass a pointer to the buffer as the value of the workspace
parameter.

A data structure of type AuthKey for the session key retrieved from the authentica-
tion server and passed to ASDSP. ASDSP breaks out from the credentials block the
session key encrypted in the recipient’s private key and returns the session key to
the recipient in the sessionKey buffer.

A buffer for the record ID of the initiator that ASDSP returns to the recipient in
response to the recipient’s sdspOpen routine. You pass a pointer to this buffer as
the value of the initiator parameter. ASDSP breaks out the initiator’s record ID
from the credential block that the initiator passes to ASDSP and returns it to the
recipient. See the chapter “Authentication Manager” in Inside Macintosh: AOCE
Application Programming Interfaces for a description of how to create a maximum-
size record ID structure that is large enough to hold any record ID.

A buffer for the record ID of the intermediary that ASDSP returns to the recipient if
an intermediary is found in the credentials. You pass a pointer to this buffer as the
value of the intermediary parameter. An intermediary is a proxy that has used
the AuthTradeProxyForCredentials function to obtain the credentials used in

Using ASDSP

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

the authentication process. See the chapter “Authentication Manager” in Inside
Macintosh: AOCE Application Programming Interfaces for a discussion of the use of an
intermediary and the AuthTradeProxyForCredentials function and for a
description of how to create a maximum-size record ID structure that is large
enough to hold any record ID.

2. Call the sdspOpen routine to open a secure connection. To call the sdspOpen routine,
you call the Device Manager’s PBControl function and specify sdspOpen as the
value of the csCode parameter. The parameter block for the sdspOpen routine
includes fields also used for the standard dspOpen routine. In addition to these
parameters, you specify parameters used in the authentication process to establish
the secure connection.

A recipient end of a connection can be either a connection listener that listens for
connection requests and passes them on to a connection server or a socket that waits
passively to receive a connection request.

If the recipient is a connection listener, it calls the sdspOpen routine with a

value of ocAccept for the ocMode parameter. The connection server accepts

and acknowledges receipt of a connection request. When you call the sdspOpen
routine, you must provide the values returned by the dspCLListen routine

for the remoteCID, remoteAddress, sendSeq, sendWindow, and attnSendSeq
parameters. You can poll the state field in the CCB to determine when the
connection is open. Alternatively, you can check the result code for the sdspOpen
routine when the routine completes execution. If the routine returns the noErr
result code, then the connection is open.

If the recipient is a connection end associated with a passive socket that calls the
sdspOpen routine with a value of ocPassive for the ocMode parameter, use the
ocPassive mode when you expect to receive an open-connection request from a
remote socket. You can specify a value for the filterAddress parameter to restrict
the network number, node ID, or socket number from which you will accept an
open-connection request.

You can poll the state field in the CCB to determine when the connection end is
waiting to receive an open-connection request, when the connection end is waiting to
receive an acknowledgment of an open-connection request, and when the connection
is open. See the section “The ADSP Connection Control Block Record” beginning on
page 5-35 for a description of the CCB fields. Alternatively, you can check the result
code for the dspOpen routine when the routine completes execution. If the routine
returns the noErr result code, then the connection is open.

In addition to the standard ADSP parameters required for a dspOpen call, the
recipient supplies the following input values to the sdspOpen call:

Parameter Value

sessionKey A pointer to a data structure of type AuthKey, which you
allocated. ASDSP copies the session key into this buffer if
an authenticated connection was successfully opened.

workspace A pointer to the workspace buffer that you allocated, which is
for ASDSP’s internal use.
recipient The identity of the recipient.
continued

Using ASDSP 5-33

(dSQav) (0901014 Weexg eleq el elddy -

5-34

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

Parameter Value

initiator A pointer to a maximum-size record ID. ASDSP copies the
initiator’s record ID into this structure if an authenticated
connection was successfully opened.

intermediary A pointer to a maximum-size record ID. ASDSP copies the
intermediary’s record ID into this structure if an authenticated
connection was successfully opened and an intermediary was
used to obtain the credentials used to authenticate the call.

If a secure connection was successfully opened, ASDSP returns the following values:

Parameter Value

issueTime The time when the credentials were issued. ASDSP copies
this value from the credentials.

expiry The time when the credentials expire. ASDSP copies this

value from the credentials.

sessionKey The encryption key for the session. ASDSP copies this value
from the credentials.

initiator A pointer to a maximum-size record ID structure. If an
authenticated connection was successfully opened, this
structure holds the initiator’s record ID.

hasIntermediary A flag that is set to TRUE if an intermediary was used to
obtain the credentials.

intermediary A pointer to a maximum-size record ID. If an authentication
connection was successfully opened and an intermediary
was used to obtain the credentials, this structure holds the
intermediary’s record ID.

Sending Encrypted Data Across a Secure Connection

After a secure connection is established, both ends can send encrypted data over the
session. ASDSP client applications use the dspWrite routine to send data, encrypted -
or not, over a secure connection. You can turn the encryption feature on or off on a
message-by-message basis by setting one flag to direct ASDSP to encrypt the data and
setting another flag to terminate the message.

To set these flags, you use the bits of the end-of-message (eom) field; this field is part of
the ioParams variant record of the DSP parameter block that you pass to the dspWrite
routine. For secure connections, the eom field comprises these two single-bit flags instead
of a zero-nonzero byte. You can use the dspEncryptMask and dspEOMMask masks to
set these flags, or you can use the dspEncryptBit or dSpEOMBit constant.

Note

Apart from the dspWrite routine’s eom parameter, the interface to

ADSP remains unchanged in regard to encryption. ¢

The encryption process is transparent to the client application that receives the data;
ASDSP determines if the received information is encrypted, and, if so, it decrypts the
byte stream before copying the data to the read buffer specified by the dspRead routine.

Using ASDSP

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

To write data that ASDSP encrypts and then transmits or to terminate data encryption,
you call the dspWrite routine using the Device Manager’s PBControl function.

m Set the encrypt bit of the eom field (bit 1) of the DSP parameter block. To set the
encrypt bit, you use the dspEncryptMask mask or the dspEncryptBit constant.
Note that ASDSP checks this flag on the first write of the connection or the first write
following a write for which the end-of-message flag (bit 0 of the eom field) is set.

m Set the end-of-message bit (bit 0) of the eom field to terminate the encrypted message.
To set the end-of-message bit, you use the dspEOMMask mask or the dspEOMBit
constant.

If you want to encrypt all messages, you can simply set the encrypt bit on all
dspWrite calls.

ADSP Reference

This section describes the data structures and routines that are specific to ADSP and

to its secure version, ASDSP. The “Data Structures” section shows the Pascal data
structures for

m the ADSP connection control block

m the address block record

m the DSP parameter block

m the ASDSP version of the DSP parameter block
m the TRSecureParams record

The “Routines” section describes routines for setting up and tearing down an ADSP
or an ASDSP (secure) connection, setting up and tearing down an ADSP connection
listener, and maintaining an ADSP connection over which to send and receive data
and enable encryption of the data to be sent.

Data Structures

This section describes the connection control block that you allocate for use by ADSP in
maintaining the state of a connection end and the DSP parameter block that you use to
specify input parameters for and receive output parameters from an ADSP routine. It
also describes the address block record that you use to specify the remote connection
end’s AppleTalk internet address.

The ADSP Connection Control Block Record

The connection control block (CCB) data structure is a record of type TRCCB that consists
of 242 bytes. ADSP uses the CCB to store state information about the connection end.
You allocate a nonrelocatable block of memory for this data structure when you create a

ADSP Reference 5-35

(dSaV) 10901014 Weans eleq yeLe|ddy -

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

connection end. You may read the fields in the CCB to obtain information about the
connection end, but you are not allowed to write to any of the fields except one, the
userFlags field.

TYPE TRCCB =
PACKED RECORD
ccbLink: TPCCB; {link to next CCB}
refNum: Integer; {reference number}
state: Integer; {state of the connection end}
userFlags: Byte; {user flags for connection}
localSocket: Byte; {local socket number}
remoteAddress: AddrBlock; {remote end internet address}
attnCode: Integer; {attention code received}
attnSize: Integer; {size of attention data}
attnPtr: Ptr; {pointer to attention data}
reserved: PACKED ARRAY[1..220] OF Byte;
{reserved for use by ADSP}
END;
Field descriptions
ccbLink A pointer to the next CCB. This field is for use by ADSP only.
refNum The reference number of the CCB. This number is assigned by
ADSP when you establish the connection end.
state The state of the connection end, as follows:
State Value Meaning
sListening 1 The socket is a connection listener—

that is, a socket that accepts ADSP
requests to open connections and
passes them on to a socket client. A
connection listening socket passes
the open-connection request on to a
routine that can establish the connec-
tion on any socket. The connection
listening state is ordinarily used only
by connection servers.

sPassive 2 The socket client is inactive but capable
of accepting an ADSP request to open
a connection. Unlike a connection
listening socket, a socket client in the
sPassive state can accept an open-
connection request only to establish

itself as a connection end.

sOpening 3 The socket client has sent an
open-connection request and is waiting
for acknowledgment.

sOpen 4 The connection is open.

5-36 ADSP Reference

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

userFlags

localSocket

remotelAddress

ADSP Reference

State Value Meaning

sClosing 5 The socket client has requested that
ADSP close the connection, and ADSP
is sending data or waiting for acknowl-
edgment of data it has sent before
closing the connection.

sClosed 6 The connection is closed.

Flags that indicate an unsolicited connection event has occurred. An
unsolicited connection event is an event initiated by ADSP or the
remote connection end that is not in response to any ADSP routine
that you executed.

Each time an unsolicited connection event occurs, ADSP sets a flag
in the userFlags field of the CCB and calls the routine you
specified in the userRoutine parameter to the dspInit routine
(if any). The user routine must read the userFlags field and then
clear the flag to 0. ADSP cannot notify your routine of future events
unless you clear the flag after each event.

ADSP recognizes four types of unsolicited connection events, one
corresponding to each of the flags in this field. The events and flags
are defined as follows, where bit 7 is the most significant bit:

Flag
Event bit Meaning
eClosed 7 ADSP has been informed by the
remote connection end that the remote
connection end has closed the
connection.

eTearDown 6 ADSP has determined that the remote
connection end is not responding and
so has closed the connection.

eAttention 5 ADSP has received an attention
message from the remote connection
end.

eFwdReset 4 ADSP has received a forward reset
command from the remote connection
end, has discarded all ADSP data not
yet delivered—including the data in
the local client end’s receive queue—
and has resynchronized the
connection.

None 3-0 Reserved.
The socket number through which DDP transmits and receives the
ADSP packets.

The AppleTalk internet address of the socket used by the remote
connection end.

5-37

(dSQV) 10901014 Weens ejeq el eiddy -

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

attnCode The attention code received by ADSP when the remote connection
end sends an attention message.

attnsize The size of the attention message received by ADSP when the
remote connection end sends an attention message.

attnPtr A pointer to a buffer containing the attention message received by
ADSP from the remote connection end.

reserved A data buffer reserved for use by ADSP.

The Address Block Record

The address block record defines a data structure of AddrBlock type. ADSP routines
use this data type to specify the AppleTalk internet socket address of the remote
connection end in the CCB. You can use NBP to get the address of an application that

is registered with NBP. See the chapter “Name-Binding Protocol (NBP)” in this book for
more information. ATP functions also use this data type to specify AppleTalk internet
socket addresses.

TYPE AddrBlock =
PACKED RECORD

aNet: Integer; {network number}

aNode: Byte; {node ID}

aSocket: Byte; {socket number}
END;

Field descriptions

aNet The network number to which the node belongs that is running the
ADSP or ATP client application whose address you are specifying.
aNode The node ID of the machine running the ADSP or ATP client
application whose address you are specifying,
aSocket The number of the socket used for the ADSP or ATP client
application.
The DSP Parameter Block

5-38

The ADSP routines, which you execute by calling the Device Manager’s PBControl
function, require a pointer to a DSP parameter block that holds all of the input and
output values associated with the routine. The DSP parameter block contains variant
records used by particular routines. The DSPParamBlock data type defines the DSP
parameter block.

This section defines the fields that are common to all ADSP routines that use the DSP
parameter block. The fields that are used for specific routines only are defined in the
descriptions of the routines to which they apply. The reserved fields, which are used
internally by the .DSP driver or not at all, are not defined.

ADSP Reference

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

TYPE DSPParamBlock =
PACKED RECORD

gLink: QElemPtr;
qType: Integer;
ioTrap: Integer;
ioCmdAddr: Ptr;
ioCompletion: ProcPtr;
ioResult: OSErr;
ioNamePtr: StringPtr;
ioVRefNum: Integer;
ioCRefNum: Integer;
csCode: Integer;
gStatus: LongInt;
ccbRefNum: Integer;

CASE Integer OF

dspInit, dspCLInit:
(ccbPtr: TPCCB;
userRoutine: ProcPtr;
sendQSize: Integer;
sendQueue: Ptr;
recvQSize: Integer;
recvQueue: Ptr;
attnPtr: Ptr;
localSocket: Byte;
fillerl: Byte);

dspOpen, dspCLListen, dspCLDeny:
(localCiD: Integer;
remoteCID: Integer;

remoteAddress: AddrBlock;
filterAddress: AddrBlock;

sendSeq: LongInt;
sendWindow: Integer;
recvsSeq: LongInt;
attnSendSeq: LongInt;
attnRecvSeq: LongInt;
ocMode: Byte;
ocInterval: Byte;
ocMaximum: Byte;
filler2: Byte);
dspClose, dspRemove:
(abort: Byte;
filler3: Byte);
ADSP Reference

{reserved}

{reserved}

{reserved}

{reserved}

{completion routine}
{result code}
{reserved}

{reserved}

{driver reference number}
{primary command code}
{reserved}

{CCB reference number}

{pointer to CCB}

{pointer to user routine}
{size of send queue}
{pointer to send queue}
{size of receive queue}
{pointer to receive queue}

{pointer to attention-message }

{ buffer}
{local socket number}
{filler for proper alignment}

{local connection ID}

{remote connection ID}
{remote internet address}
{address filter}

{send sequence number}

{size of remote buffer}
{receive sequence number}
{attention send seq number}
{attention receive seq num}
{connection-opening mode}
{interval bet. open requests}
{retries of open-conn req}
{filler for proper alignment}

{abort send requests}
{filler for proper alignment}

5-39

(dSav) 10001014 ureang ejeq yeLojddy -

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

dspStatus:
(statusCCB: TPCCB; {pointer to CCB}
sendQPending: Integer; {bytes waiting in send queue}
sendQFree: Integer; {available send-queue buffer}
recvQPending: Integer; {bytes in receive queue}
recvQFree: Integer); {avail receive-queue buffer}
dspRead, dspWrite:
(reqCount: Integer; {requested number of bytes}
actCount: Integer; {actual number of bytes}
dataPtr: Ptr; {pointer to data buffer}
eom: Byte; {1 if end of message}
flush: Byte); {1 to send data now}
dspAttention:
(attnCode: Integer; {client attention code}
attnSize: Integer; {size of attention data}
attnData: Ptr; {pointer to attention data}
attnInterval: Byte; {reserved}
filler4: Byte); {filler for proper alignment}
dspOptions:
(sendBlocking: Integer; {send-blocking threshold}
sendTimer: Byte; {reserved}
rtmtTimer: Byte; {reserved}
badsegMax: Byte; {retransmit advice threshold}
useCheckSum: Byte); {DDP checksum for packets}
dspNewCID:
(newCID: Integer); {new connection ID}
END;

Field descriptions
ioCompletion A pointer to a completion routine that you can provide; the Device
’ Manager calls your completion routine when it completes execution

of the PBControl function, if you execute PBControl asynchro-
nously and you specify a pointer to the routine as the value of this
field. Specify NIL for this field if you do not wish to provide a
completion routine. If you execute a function synchronously,
AppleTalk ignores the ioCompletion field. For information about
completion routines, see the chapter “Introduction to AppleTalk” in
this book.

ioResult The result of the function. If you call the routine asynchronously,
the Device Manager sets this field to 1 as soon as you call the
routine and it changes the field to the actual result code when the
routine completes execution.

5-40 ADSP Reference

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

ioCRefNum

csCode

gStatus
ccbRefNum

The ASDSP Parameter Block

The driver reference number that is returned by the OpenDriver
function. You must specify this number every time you call the
.DSP driver.

The command code for the ADSP routine to be executed. You must
fill in this field before calling the PBControl function. You use the
following constants as values for this field:

csCode command Action

dspInit Create a new connection end
dspRemove Remove a connection end
dspOpen Open a connection

dspClose Close a connection

dspCLInit Create a connection listener
dspCLRemove Remove a connection listener
dspCLListen Post a listener request
dspCLDeny Deny an open-connection request
dspStatus Get status of connection end
dspRead Read data from the connection
dspWrite Write data on the connection
dspAttention Send an attention message
dspOptions Set connection end options
dspReset Forward reset the connection
dspNewCID Generate a CID for a connection end

This field is reserved for use by ADSP.

The reference number of the connection control block (CCB). ADSP
returns the CCB reference number in response to the dspInit
routine. You must specify this number as a parameter to every .DSP
driver routine you call subsequently.

To open an ASDSP connection, the client application at each end must call the Device
Manager’s PBControl function with a command code that specifies the ASDSP open
routine (sdspOpen). This section describes the ASDSP parameter block whose pointer
you pass to PBControl to execute the sdspOpen routine. The ASDSP parameter block
contains fields that carry the input and output parameters associated with the function.
The sDsPParamBlock data type defines the ASDSP parameter block.

For a description of the fields that are common to both the DSP and ASDSP parameter
blocks and that are used in exactly the same way, see “The DSP Parameter Block”
beginning on page 5-38. For a description of the fields that are particular to the
sdspOpen routine, see “sdspOpen” beginning on page 5-54.

ADSP Reference

5-41

(dSQav) 1000j01d wieang ejeq yeLa|ddy -

CHAPTER

5

AppleTalk Data Stream Protoco! (ADSP)

SDSPParamBlock =
PACKED RECORD
CASE INTEGER OF

1: (dspParamBlock: DSPParamBlock);

2: (gLink:
qType:
ioTrap:
ioCmdAddr:
ioCompletion:
ioResult:
ioNamePtr:
ioVRefNum:
ioCRefNum:
csCode:
gStatus:
ccbRefNum:
secureParams:

END;

QElemPtr;
Integer;
Integer;
Ptr;
ProcPtr;
OSErr;
StringPtr;
Integer;
Integer;
Integer;
LongInt;
Integer;
TRSecureParams) ;

SDSPPBPtr = "“SDSPParamBlock;

Field descriptions

csCode

secureParams

{reserved}

{reserved}

{reserved}

{reserved}

{pointer to completion routine}
{routine result}

{reserved}

{reserved}

{ASDSP driver refNum}
{ASDSP driver control code}
{reserved}

{connection end refNum}
{dspOpenSecure}

The command code for the ASDSP routine to be executed. You must
fill in this field before calling the PBControl function. To call the
sdspOpen routine to open a secure connection, you specify the
constant sdspOpen as the value of this parameter.

A record of type TRSecureParams that contains the additional

parameters required to open a secure ASDSP session.

The TRSecureParams Record

The ASDSP parameter block is a variant parameter block that includes a field that is a
record of type TRSecureParams, which defines the additional parameters required for
an ASDSP session. This section shows the declaration for the TRSecureParams record.
The routine description “sdspOpen” beginning on page 5-54 includes the field definitions
for the TRSecureParams record. ‘

The TRSecureParams record is defined as follows:

TYPE TRSecureParams

PACKED RECORD
localCIiD:
remoteCID:
remoteAddress:
filterAddress:
sendSeq:

Integer;
Integer;
AddrBlock;
AddrBlock;
Longint;

5-42 ADSP Reference

{local connection ID}
{remote connection ID}
{address of remote end}
{address filter}

{local send sequence number}

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

sendWindow: Integer; {send window size}
recvsSeq: LongInt; {receive sequence number}
attnSendSeq: LongInt; {attention send sequence number}
attnRecvSeq: LongInt; {attention receive sequence number}
ocMode: Byte; {open connection mode}
ocInterval: Byte; {open connection request retry }

{ interval}
ocMaximum: Byte; {open connection request retry }

{ maximum}
secure: s Boolean; {for initiator, TRUE if session is

{ authenticated }
{for recipient, TRUE if session was }
{ authenticated}

sessionKey: AuthKeyPtr; {encryption key for session}
credentialsSize: LongInt; {length of credentials}
credentials: Ptr; {pointer to credentials}
workspace: Ptr; {pointer to workspace for }

{ connection. Align on even boundary }
{ and length = sdspWorkSize}

recipient: AuthIdentity; {identity of recipient or initiator }
{ if active mode}
issueTime: UTCTime; {time when credentials were issued}
expiry: UTCTime; {time when credentials expire}
initiator: RecordIDPtr; {RecordID of initiator returned in }
{ buffer pointed to by this field}
hasIntermediary: Boolean; {set if credentials has an }
{ intermediary}
intermediary: RecordIDPtr; {RecordID of intermediary returned }
{ here}
END;
Routines

This section describes the ADSP and ASDSP routines that you use to
establish and terminate an ADSP connection
establish a secure (ASDSP) connection

establish and terminate an ADSP connection listener

@ maintain an ADSP connection, including sending and receiving data across an ADSP
or ASDSP connection and enabling encryption of the data to be sent

ADSP Reference 5-43

(dSav) 100010d Weens eleq eLejddy -

DESCRIPTION

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)
You use the Device Manager’s PBControl function for all of the ADSP and ASDSP
routine calls.

FUNCTION PBControl (paramBlock: ParmBlkPtr;
async: Boolean): OSErr;

paramBlock
A pointer to the DSP parameter block that the PBControl function uses
for DSP routines.

async A Boolean that specifies whether the function is to execute synchronously
or asynchronously. Set the async parameter to TRUE to execute the
function asynchronously.

All of the ADSP routines are implemented through a call to the PBControl function.
The PBControl function takes a pointer to a parameter block and a Boolean value that
specifies the mode in which the function is to be executed. You use the DSP parameter
block for all ADSP calls.

The parameter block includes a field, csCode, in which you specify the routine selector
for the particular routine to be executed; you must specify a value for this field. Each
ADSP routine may use different fields of the DSP parameter block for parameters
specific to that routine. The description of a function in this section includes the specific
parameters used for that function. See the section “The DSP Parameter Block” beginning
on page 5-38 for the complete DSP parameter block data structure.

An arrow preceding a parameter indicates whether the parameter is an input parameter,
an output parameter, or both:

Arrow Meaning

- Input
« Output
© Both

Establishing and Terminating an ADSP Connection

5-44

You can use the routines described in this section to

m establish and initialize a connection end

set the values for parameters that control the behavior of a connection end
open an ADSP or ASDSP connection

assign an identification number to a connection end

close a connection end

eliminate a connection end

ADSP Reference

dsplnit

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

The dspInit routine establishes a connection end, that is, it assigns a specific socket for
the ADSP connection end to use and initializes the variables that ADSP uses to maintain
the connection. You use the PBControl function to call the dspInit routine. See
“Routines” beginning on page 5-43 for a description of the PBControl function.

Parameter block

- ioCompletion ProcPtr A pointer to a completion routine.

« ioResult OSErr The function result.

- ioCRefNum Integer The driver reference number.

- csCode Integer Always dspInit for this function.

« ccbRefNum Integer The CCB reference number.

— ccbPtr TPCCB A pointer to the CCB.

— userRoutine ProcPtr A pointer to a routine to call on
connection events.

- sendQSize Integer The size in bytes of the send queue.

- sendQueue Ptr A pointer to the send queue.

- recvQSize Ptr The size in bytes of the receive queue.

- recvQueue Ptr A pointer to the receive queue.

- attnPtr Ptr A pointer to the buffer for incoming
attention messages.

“ localSocket Byte The DDP socket number for this
connection end.

Field descriptions
csCode
ccbRefNum

ccbPtr

userRoutine

sendQSize

sendQueue

ADSP Reference

The routine selector, always equal to dspInit for this routine.

The connection control block (CCB) reference number. The dspInit
routine returns the CCB reference number for this connection end
as the value of the ccbRefNum parameter. You must provide this
number in all subsequent calls to this connection end.

A pointer to the CCB that you allocated to be used by this connection
end. The CCB is 242 bytes in size and is described in “The ADSP
Connection Control Block Record” beginning on page 5-35. See also
“Creating and Using a Connection Control Block” on page 5-12.

A pointer to a routine that ADSP is to call each time the connection
end receives an unsolicited connection event. Specify NIL for this
parameter if you do not want to supply a user routine. Connection
events and user routines are discussed in “Writing a User Routine
for Connection Events” beginning on page 5-26.

The size in bytes of the send queue. A queue size of 600 bytes should
work well for most applications. If you are using ADSP to send a
continuous flow of data, a larger data buffer improves performance.
If your application is sending the user’s keystrokes, a smaller buffer
should be adequate. The constant minDSPQueueSize indicates the
minimum queue size that you can use.

A pointer to the send queue that you allocated.

5-45

(dSQV) 109010:d wesns eleq el ejddy -

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

recvQSize The size in bytes of the receive queue. A queue size of 600 bytes
should work well for most applications. If you are using ADSP to
receive a continuous flow of data, a larger data buffer improves
performance. If your application is receiving a user’s keystrokes, a
smaller buffer should be adequate. The constant minDSPQueueSize
indicates the minimum queue size that you can use.

recvQueue A pointer to the receive queue that you allocated.

attnPtr A pointer to the attention-message buffer that you allocated. The
attention-message buffer must be the size of the constant
attnBufsSize.

localSocket The DDP socket number of the socket that you want ADSP to use
for this connection end. Specify 0 for this parameter to cause ADSP
to assign the socket; in this case, ADSP returns the socket number
when the dspInit routine completes execution.

DESCRIPTION

The dspInit routine creates and initializes a connection end. The dspInit routine
does not open the connection end or establish a connection with a remote connection
end; you must follow the dspInit routine with the dspOpen routine to perform
those tasks.

When you send bytes to a remote connection end, ADSP stores the bytes in a buffer
called the send queue. Until the remote connection end acknowledges their receipt, ADSP
keeps the bytes you sent in the send queue so that they are available to be retransmitted
if necessary. When the local connection end receives bytes, it stores them in a buffer
called the receive queue until you read them.

You must allocate memory for the send (sendQueue) and receive (recvQSsize) queues
and for a buffer (attnPtr) that holds incoming attention messages. You must also
allocate a nonrelocatable block of memory (ccbPtr) for the CCB for this connection end.

SPECIAL CONSIDERATIONS
You must allocate nonrelocatable memory for the CCB, the send queue, the receive
queue, and the attention-message buffer, and ensure that the memory remains locked
until you explicitly remove the connection end by calling the dspRemove routine. Do
not write any data to this memory except by calling ADSP routines.

ASSEMBLY-LANGUAGE INFORMATION

To execute the dspInit routine from assembly language, call the _Control trap macro
with a value of dspInit in the csCode field of the parameter block.

RESULT CODES
noErr 0 Noerror
ddpSktErr -91 Error opening DDP socket
errDSPQueueSize -1274 Send or receive queue is too small

5-46 ADSP Reference

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

dspOptions

The dspOptions routine allows you to set values for several parameters that affect
the behavior of the local connection end. You use the PBControl function to call the
dspOptions routine. See “Routines” on page 5-43 for a description of the PBControl

function.

Parameter block

- ioCompletion ProcPtr A pointer to a completion routine.

«~ ioResult OSErr The function result.

- ioCRefNum Integer The driver reference number.

- csCode Integer Always dspOptions for this function.

- ccbRefNum Integer The CCB reference number.

- sendBlocking Integer The send-blocking threshold.

- badSegMax Byte The threshold to send retransmit advice.

— useCheckSum Byte A DDP checksum flag.

Field descriptions

csCode The routine selector, always equal to dspOptions for this routine.

ccbRefNum The connection control block (CCB) reference number that the
dspInit routine returned.

sendBlocking The maximum number of bytes that may accumulate in the send

badSegMax

ADSP Reference

queue before ADSP sends a packet to the remote connection end.
ADSP sends a packet before the maximum number of bytes
accumulates if the period specified by the send timer expires, if
you execute the dspWrite routine with the flush parameter set
to 1, or if a connection event requires that the local connection end
send an acknowledgment packet to the remote connection end.

You can set the sendBlocking parameter to any value from

1 byte to the maximum size of a packet (572 bytes). If you set the
sendBlocking parameter to 0, the current value for this parameter
is not changed. The default value for the sendBlocking parameter
is 16 bytes.

The maximum number of out-of-sequence data packets that the
local connection end can receive before requesting the remote
connection end to retransmit the missing data. Because a connection
end does not acknowledge the receipt of a data packet received out
of sequence, the retransmit timer of the remote connection end will
expire eventually and the connection end will retransmit the data.
The badSegMax parameter allows you to cause the data to be
retransmitted before the retransmit timer of the remote connection
end has expired.

You can set the badSegMax parameter to any value from 1 to 255.

If you set the badSeqMax parameter to 0, the current value for

this parameter is not changed. The default value for the badsegMax
parameter is 3.

(dSaV) 1000101d Weens eleq yeLeiddy '

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

useCheckSum A flag specifying whether DDP should compute a checksum and
include it in each packet that it sends to the remote connection end.
Set this parameter to 1 if you want DDP to use checksums or to 0
if you do not want DDP to use checksums. The default value for
useCheckSumis 0.
ADSP cannot include a checksum in a packet that has a short DDP
header—that is, a packet being sent over LocalTalk to a remote
socket that is on the same cable as the local socket. Note that the
useCheckSum parameter affects only whether ADSP includes a
checksum in a packet that it is sending. If ADSP receives a packet
that includes a checksum, it validates the checksum regardless of
the setting of the useCheckSum parameter.

DESCRIPTION

The dspOptions routine lets you set values that determine the behavior of a connection
end, such as the blocking factor, which is maximum number of bytes that should
accumulate in the connection end’s send queue before ADSP sends a packet to the
remote connection end, the maximum number of out-of-sequence packets received by
the connection end before ADSP sends a request for the missing packets, and whether or
not DDP should use checksums for all the packets that it transmits. You can set the
options for any established connection end, whether or not the connection end is open.

ASSEMBLY-LANGUAGE INFORMATION

To execute the dspOptions routine from assembly language, call the _Control trap
macro with a value of dspOptions in the csCode field of the parameter block.

RESULT CODES

noErr -0 No error
errRefNum -1280 Bad connection reference number

SEE ALSO

Use the dspInit routine, described on page 5-45, to return the connection control block
(CCB) reference number.

dspOpen

The dspOpen routine opens a connection end. You can open a connection end in request
mode, passive mode, accept mode, or establish mode. You use the PBControl function
to call the dspOpen routine. See “Routines” on page 5-43 for a description of the
PBControl function.

5-48 ADSP Reference

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

Parameter block

LILITITTLETT L LT

ioCompletion
ioResult
ioCRefNum
csCode
ccbRefNum
localCID
remoteCID
remotelAddress
filterAddress
sendSeq
sendWindow
recvsSeq
attnSendSeq
attnRecvSeq
ocMode
ocInterval
ocMaximum

ProcPtr
OSErr

Integer
Integer
Integer
Integer
Integer

AddrBlock
AddrBlock

LongInt
Integer
LongInt
LongInt
LongInt
Byte
Byte
Byte

A pointer to completion routine.

The function result.

The driver reference number.

Always dspOpen for this function.

The CCB reference number.

The ID of this connection end.

The ID of remote connection end.

A remote internet address.

A filter for open-connection requests.
The initial send sequence number.

The initial size of remote receive queue.
The initial receive sequence number.
The attention send sequence number.
The attention receive sequence number.
The connection-opening mode.

The interval between open requests.
The number of open-connection

request retries.

The use of parameters by the dspOpen routine depends on the mode in which the
routine is executed, as follows:

ocRequest

L S U N A A AR A N

T

—_
-
_)

Key: = input ¢ output < inputand output

ioCompletion
ioResult
ioCRefNum
csCode
ccbRefNum
localCID
remoteCID
remoteAddress
filterAddress
sendSeq
sendWindow
recvSeq
attnSendSeq
attnRecvSeq
ocMode
ocInterval

ocMaximum

ADSP Reference

ocPassive

TTdiTT 1Tl LTl

1

e

-

._)

ioCompletion
ioResult
ioCRefNum
csCode
ccbRefNum
localCID

remoteCID

remoteAddress

filterAddress
sendSeq
sendWindow
recvsSeq
attnSendSeq
attnRecvSeq
ocMode
ocInterval

ocMaximum

ocAccept ocEstablish
— ioCompletion — ioCompletion
¢« 1ioResult ¢ ioResult
— ioCRefNum — ioCRefNum
— csCode — c¢sCode
—> ccbRefNum — ccbRefNum
< localCID — localcCiD
— remoteCID — remoteCID
— remoteAddress — remoteAddress
— filteraddress — filterAddress
— sendSeq — sendSeq
— sendWindow — sendWindow
— recvSeq — recvSeq
— attnSendSeq — attnSendSeq
— attnRecvSeq — attnRecvSeq
— ocMode — ocMode
— ocInterval — ocInterval
— ocMaximum — ocMaximum

— not used

5-49

(dSaV) (0901014 Weaeng ejeq yeLojddy -

5-50

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

Field descriptions
csCode

ccbRefNum

localCiD

remoteCID

remoteAddress

filterAddress

ADSP Reference

The routine selector, always equal to dspOpen for this routine.

The connection control block (CCB) reference number that was
returned by the dspInit routine for the connection end that you
want to use.

The identification number of the local connection end. This number
is assigned by ADSP when you open the connection. ADSP includes
this number in every packet sent to a remote connection end. Before
you call the dspOpen routine in ocEstablish mode, you must
call the dspNewC1ID routine to cause ADSP to assign this value.

The identification number of the remote connection end. This
parameter is returned by the dspOpen routine in the ocRequest
and ocPassive modes. A connection server must provide this
number to the dspOpen routine when the server executes the
routine in ocAccept mode; in this case, the connection server
obtains the remoteCID value from the dspCLListen routine. You
must provide the remoteCID value to the dspOpen routine when
you use the routine in ocEstablish mode.

The internet address of the remote socket with which you wish to
establish communications. This address consists of a 2-byte network
number, a 1-byte node ID, and a 1-byte socket number. You must
provide this parameter when you call the dspOpen routine in the
ocRequest or ocEstablish mode. This parameter is returned by
the dspOpen routine when you call the routine in the ocPassive
mode. When you call the dspOpen routine in the ocAccept mode,
you must use the value for the remoteAddress parameter that
was returned by the dspCLListen routine.

The internet address of the socket from which you will accept a
connection request. The address consists of three fields: a 2-byte
network number, a 1-byte node ID, and a 1-byte socket number.
Specify 0 for any of these fields for which you wish to impose no
restrictions. If you specify a filter address of $00082500, for example,
the connection end accepts a connection request from any socket at
node $25 of network $0008. Set the £ilterAddress parameter
equal to the remoteAddress parameter to accept a connection
only with the socket to which you sent a connection request.

When you execute the dspOpen routine in the ocPassive mode,
you can receive a connection request from any ADSP connection
end on the internet. When you execute the dspOpen routine in the
ocRequest mode, your connection end can receive a connection
request acknowledgment from an address different from the one
you specified in the remoteAddress parameter only if the remote
address you specified was that of a connection listener. In either
case, you can use the filterAddress parameter to avoid acknowl-
edging unwanted connection requests.

When you execute the dspOpen routine in the ocAccept mode,
your connection listener has already received and decided to accept
the connection request. You can specify a filter address for a

CHAPTER 5

AppleTalk Data Stream Protoco! (ADSP)

sendSeq

sendWindow

recvsSeq

attnSendsSeq

attnRecvSeq

ADSP Reference

connection listener with the dspCLListen routine. A connection
server can use the dspCLDeny routine to deny a connection request
that was accepted by its connection listener.

You cannot use the filter address when you execute the dspOpen
routine in ocEstablish mode.

The sequence number of the first byte that the local connection end
will send to the remote connection end. ADSP uses this number to
coordinate communications and to check for errors. ADSP returns a
value for the sendSeq parameter when you execute the dspOpen
routine in the ocRequest or ocPassive mode. When you execute
the dspOpen routine in the ocAccept mode, you must specify

the value for the sendSeq parameter that was returned by the
dspCLListen routine. You must provide the value for this
parameter when you execute the dspOpen routine in the
ocEstablish mode.

The sequence number of the last byte that the remote connection
end has buffer space to receive. ADSP uses this number to
coordinate communications and to check for errors. ADSP returns

a value for the sendWindow parameter when you execute the
dspOpen routine in the ocRequest or ocPassive mode. When
you execute the dspOpen routine in the ocAccept mode, you must
specify the value for the sendWindow parameter that was returned
by the dspCLListen routine. You must provide the value for this
parameter when you execute the dspOpen routine in the
ocEstablish mode.

The sequence number of the next byte that the local connection
end expects to receive. ADSP uses this number to coordinate
communications and to check for errors. You must provide the
value for this parameter when you execute the dspOpen routine
in the ocEstablish mode. The dspOpen routine does not use
this parameter when you execute it in any other mode.

The sequence number of the next attention packet that the local
connection end will transmit. ADSP uses this number to coordinate
communications and to check for errors. ADSP returns a value

for the attnSendSeq parameter when you execute the dspOpen
routine in the ocRequest or ocPassive mode. When you execute
the dspOpen routine in the ocAccept mode, you must specify

the value for the attnSendSeq parameter that was returned

by the dspCLListen routine. You must provide the value for

this parameter when you execute the dspOpen routine in the
ocEstablish mode.

The sequence number of the next attention packet that the local
connection end expects to receive. ADSP uses this number to ensure
that packets are delivered in the correct order and to check for
errors. You must provide a value for this parameter when you
execute the dspOpen routine in the ocEstablish mode. The
dspOpen routine does not use this parameter when you execute it
in any other mode.

5-51

(dSav) 1030101d Weens ejeq yeLo|ddy -

DESCRIPTION

5-52

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

ocMode The mode in which the dspOpen routine is to operate, as follows:

Mode Value Meaning

ocRequest 1 ADSP attempts to open a connection
with the socket you specify.

ocPassive 2 The connection end waits to receive a
connection request.

ocAccept 3 The connection server accepts and
acknowledges receipt of a connection
request.

ocEstablish 4 ADSP considers the connection

established and open; you are
responsible for setting up and
synchronizing both connection ends.

ocInterval The period between transmissions of open-connection requests.
If the remote connection end does not acknowledge or deny an
open-connection request, ADSP retransmits the request after a
time period specified by this parameter. The time period used by
ADSP is (ocInterval x 10) ticks, or (ocInterval /6) seconds.
For example, if you set the ocInterval parameter to 3, the time
period between retransmissions is 30 ticks (*/2second). You can set
the ocInterval parameter to any value from 1 (/6 second) to
180 (30 seconds). If you specify 0 for the ocInterval parameter,
ADSP uses the default value of 6 (1 second).

You must provide a value for the ocInterval parameter when
you execute the dspOpen routine in the ocRequest, ocPassive,
or ocAccept mode. The dspOpen routine does not use this
parameter when you execute it in the ocEstablish mode.

ocMaximum The maximum number of times to retransmit an open-connection
. request before ADSP terminates execution of the dspOpen routine.

If you specify 0 for the ocMaximum parameter, ADSP uses the
default value of 3. If you specify 255 for the ocMaximum parameter,
ADSP retransmits the open-connection request indefinitely until the
remote connection end either acknowledges or denies the request.
You must provide a value for the ocMaximum parameter when you
execute the dspOpen routine in the ocRequest, ocPassive, or
ocAccept mode. The dspOpen routine does not use this parameter
when you execute it in the ocEstablish mode.

The dspOpen routine opens a connection end. You set the ocMode field of the parameter
block to specify the opening mode that the dspOpen routine is to use. The dspOpen
routine puts a connection end into one of the four following opening modes:

® The ocRequest mode, in which ADSP attempts to open a connection with the socket
at the internet address you specify as the remoteAddress parameter. If the socket
you specify as a remote address is a connection listener, it is possible that your
application will receive a connection acknowledgment and request from a different

ADSP Reference

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

address than the one to which you sent the open-connection request. You can use
the filterAddress parameter to restrict the addresses with which you will accept
a connection.

The dspOpen routine completes execution in the ocRequest mode when one of the
following occurs: ADSP establishes a connection, your connection end receives

a connection denial from the remote connection end, your connection end denies the
connection request returned by a connection listener, or ADSP cannot complete

the connection within the maximum number of retries that you specified with the
ocMaximum parameter.

m The ocPassive mode, in which the connection end waits to receive an open-
connection request from a remote connection end. You can use the filterAddress
parameter to restrict the addresses from which you will accept a connection request.

The dspOpen routine completes execution in the ocPassive mode when ADSP
establishes a connection or when either connection end receives a connection denial.

® The ocAccept mode, used by connection servers to complete an open-connection
dialog. When a connection server is informed by its connection listener that the
connection listener has received an open-connection request, the connection server
calls the dspInit routine to establish a connection end and then calls the dspOpen
routine in ocAccept mode to complete the connection. You must obtain the following
parameters from the dspCLListen routine and provide them to the dspOpen
routine: remoteAddress, remoteCID, sendSeq, sendWindow, and attnSendSeq.
Connection listeners and connection servers are described in “Creating and Using a
Connection Listener” beginning on page 5-22 and in “Establishing and Terminating an
ADSP Connection” beginning on page 5-44. See “Connection Listeners” on page 5-7
for a brief introduction to connection listeners.

The dspOpen routine completes execution in the ocAccept mode when ADSP
establishes a connection or when either connection end receives a connection denial.

@ The ocEstablish mode, in which ADSP considers the connection end established
and the connection state open. This mode is for use by clients that determine their
connection-opening parameters without using ADSP or the .DSP driver to do so.

You must first use the dspInit routine to establish a connection end and then
execute the dspNewCID routine to obtain an identification number (ID) for the

local connection end. You must then communicate with the remote connection end
to send it the local connection ID and to determine the values of the following
parameters: remoteAddress, remoteCID, sendSeq, sendWindow, recvSeq,
attnSendSeq, and attnRecvSeq. Only then can you execute the dspOpen routine
in the ocEstablish mode.

The dspOpen routine completes execution in the ocEstablish mode immediately.

ASSEMBLY-LANGUAGE INFORMATION

To execute the dspOpen routine from assembly language, call the _Control trap macro
with a value of dspOpen in the csCode field of the parameter block.

(dSQaV) 1090101d weens ejeq yeLejddy n

ADSP Reference 5-53

RESULT CODES

sdspOpen

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

noErr
errOpenDenied
errOpening
errState
errAborted
errRefNum

0 No error
-1273
-1277
-1278
-1279
-1280

Open request denied by recipient

Attempt to open connection failed

Connection end must be closed

Request aborted by dspRemove or dspClose routine
Bad connection reference number

5-54

The sdspOpen routine opens a secure (ASDSP) connection and causes ASDSP to
perform the challenge-and-reply process that authenticates the ASDSP clients at either
end of the connection. You use the PBControl function to call the sdspOpen routine.
See “Routines” on page 5-43 for a description of the PBControl function.

Parameter block

ioCompletion
ioResult
ioCRefNum
csCode
ccbRefNum

localCID
remoteCID
remoteAddress
filterAddress
sendSeq
sendWindow
recvSeq
attnSendSeq
attnRecvSeq
ocMode
oclInterval
ocMaximum

secure

sessionKey

credentialsSize

credentials
workspace
recipient
issueTime
expiry
initiator

hasIntermediary

intermediary

ADSP Reference

ProcPtr
OSErr

Integer
Integer
Integer

Integer
Integer
AddrBlock
AddrBlock
LongInt
Integer
LongInt
LongInt
LongInt
Byte

Byte

Byte

Boolean

AuthKeyPtr
LongInt

Ptr

Ptr
AuthIdentity
UTCTime
UTCTime
RecordIDPtr
Boolean
RecordIDPtr

A pointer to completion routine.
Aresult code.

The ADSP driver reference number.
Always sdspOpen for this function.
The CCB reference number for
connection end.

The ID of this connection end.

The ID of remote connection end.

A remote internet address.

A filter for open connection end.

The initial send sequence number.

The initial size of remote receive queue.
Not used for ASDSP.

The attention send sequence number.
Not used for ASDSP.

The connection-opening mode.

The interval between open requests.
The maximum number of retries of the
open-connection request.

A flag that determines if ASDSP
authenticates the connection.

A pointer to the session encryption key.
The length of credentials.

A pointer to credentials.

A pointer to workspace for connection.
The identity of recipient.

The time when credentials were issued.
The time when credentials expire.

A pointer to record ID of initiator.
TRUE if credentials has an intermediary.
A pointer to record ID of intermediary.

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

The use of parameters by the sdspOpen routine depends on the mode in which the

routine is executed, as follows:

ocRequest
ioCompletion
ioResult
ioCRefNum
csCode
ccbRefNum
localCID
remoteCID
remoteAddress
filterAddress
sendSeq

L U S B N A

sendWindow

recvSeq

T

attnSendSeq

attnRecvSeq
ocMode
ocInterval
ocMaximum
secure
sessionKey
credentialsSize

credentials

N R R A A

workspace

recipient
issueTime

expiry

— initiator

— hasIntermediary
— intermediary

Key: — input <« output

Field descriptions
csCode

ccbRefNum

ocPassive ocAccept
ioCompletion — ioCompletion

« ioResult ¢« ioResult

— ioCRefNum — ioCRefNum

— c¢sCode —> csCode

— ccbRefNum — ccbRefNum

¢« localCID ¢« localCID

< remoteCID — remoteCID

< remoteAddress — remoteAddress

— filterAddress — filterAddress

« sendSeq — sendSeg

¢« sendWindow — sendWindow

— recvSeq — recvSeq

¢« attnSendSeq — attnSendSeq

— attnRecvSeq — attnRecvSeq

— ocMode — ocMode

— oclInterval — ocInterval

— ocMaximum —= ocMaximum

« secure ¢« secure

¢« sessionKey < sessionKey

— credentialsSize — credentialsSize

— credentials — credentials

— workspace — workspace

— recipient — recipient

« issueTime ¢« issueTime

« expiry « expiry

¢« initiator & initiator

¢« hasIntermediary « hasIntermediary

& intermediary & intermediary

< input and output — not used

The routine selector, always equal to sdspOpen for this routine.
This field is used in the same way that it is used for ADSP. See the

description of this field under “dspOpen” beginning on page 5-48.

localCID

This field is used in the same way that it is used for ADSP. See the

description of this field under “dspOpen” beginning on page 5-48.

ADSP Reference

5-55

(dSavV) (0001014 Weeng eleq eLoiddy -

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

remoteCID

remoteAddress

filterAddress

sendSeq

sendWindow

recvSeq
attnSendSeq

attnRecvSeq

5-56 ADSP Reference

The identification number of the remote connection end. This
parameter is returned by the sdspOpen routine in the ocRequest
and ocPassive modes. A connection server must provide this
number to the sdspOpen routine when the server executes the
routine in ocAccept mode; in this case, the connection server
obtains the remoteCID value from the dspCLListen routine.

The internet address of the remote socket with which you wish to
establish communications. This address consists of a 2-byte network
number, a 1-byte node ID, and a 1-byte socket number. You must
provide this parameter when you call the sdspOpen routine in

the ocRequest or ocAccept mode. When you call the sdspOpen
routine in the ocAccept mode, you must use the value for the
remoteAddress parameter that was returned by the dspCLListen
routine. This parameter is returned by the sdspOpen routine when
you call the routine in the ocPassive mode.

This field is used in the same way that it is used for ADSP. See the
description of this field under “dspOpen” beginning on page 5-48.

The sequence number of the first byte that the local connection end
will send to the remote connection end. ASDSP uses this number
to coordinate communications and to check for errors. ASDSP
returns a value for the sendSeq parameter when you execute

the sdspOpen routine in the ocRequest or ocPassive mode.
When you execute the sdspOpen routine in the ocAccept mode,
you must specify the value for the sendSeq parameter that was
returned by the dspCLListen routine.

The sequence number of the last byte that the remote connection
end has buffer space to receive. ASDSP uses this number to
coordinate communications and to check for errors. ASDSP returns
a value for the sendWindow parameter when you execute the
sdspOpen routine in the ocRequest or ocPassive mode. When
you execute the sdspOpen routine in the ocAccept mode, you
must specify the value for the sendWindow parameter that was
returned by the dspCLListen routine.

This field is not used by ASDSP.

The sequence number of the next attention packet that the local
connection end will transmit. ASDSP uses this number to
coordinate communications and to check for errors. ASDSP returns
a value for the attnSendSeq parameter when you execute the
sdspOpen routine in the ocRequest or ocPassive mode. When
you execute the sdspOpen routine in the ocAccept mode, you
must specify the value for the attnSendSeq parameter that was
returned by the dspCLListen routine.

This field is not used by ASDSP.

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

ocMode

ocInterval
ocMaximum

secure

sessionkey

credentialsSize

credentials

ADSP Reference

The mode in which the sdspOpen routine is to operate, as follows:

Mode Value Meaning

ocRequest 1 ADSP attempts to open a connection
with the remote socket you specify.

ocPassive 2 The connection end waits to receive
a connection request.

ocAccept 3 The connection server accepts and
acknowledges receipt of a connec-
tion request.

This field is used in the same way that it is used for ADSP. See the
description of this field under “dspOpen” beginning on page 5-48.
This field is used in the same way that it is used for ADSP. See the
description of this field under “dspOpen” beginning on page 5-48.

A flag that determines whether ASDSP authenticates the connection.
On input for the initiator end, you must set this value to TRUE if you
want ASDSP to authenticate the connection. You must provide a
value for the secure parameter when you execute the sdspOpen
routine in the ocRequest mode. ASDSP returns a value of TRUE for
this parameter to the recipient for all modes if the session was
authenticated.

A pointer to a buffer containing the session key returned by

the Authentication Manager’s AuthGetCredentials or
AuthTradeProxyForCredentials function. The initiator
connection end must provide an input value for this parameter.

For the recipient connection end, ASDSP breaks out the session

key from the credentials block and returns a copy of the session key
as the value of this parameter. See the description of the data
structures that you need to allocate for ASDSP in the section
“Opening a Secure Connection” beginning on page 5-30 for more
information about the buffer.

The size in bytes of credentials returned by the Authentica-

tion Manager’s AuthTradeProxyForCredentials or
AuthGetCredentials function.You must provide a value for the
credentialsSize parameter when you execute the sdspOpen
routine in the ocRequest mode. This parameter is not used for the
recipient end of the connection when you call the sdspOpen
routine in ocAccept mode or ocPassive mode.

A pointer to the credentials for this session that the Authentica-
tion Manager’s AuthTradeProxyForCredentials or
AuthGetCredentials function returned when you called it.
Specify the size in bytes of the credential block pointed to by this
parameter as the value of the credentialsSize parameter when
you call the sdspOpen routine in the ocRequest mode. This
parameter is not used for the recipient end of the connection when
you call the sdspOpen routine in ocAccept mode or ocPassive
mode. See the chapter “Authentication Manager” in Inside
Macintosh: AOCE Application Programming Interfaces.

5-57

(dSav) (09010id Weens eleq e)eiddy -

DESCRIPTION

5-58

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

workspace

recipient

issueTime

expiry

initiator

hasIntermediary

intermediary

A pointer to a buffer that you allocate as workspace for the
sdspOpen routine’s internal use. The memory for the buffer that
you allocate must be aligned on an even boundary and must be
equal in size to the sdspWorksSize constant, which is 2048 bytes.

When the value of the ocMode parameter is ocAccept, you specify
the identity of the connection server as the value of the

recipient parameter. When the value of the ocMode parameter
is ocPassive, you specify the identity of the socket that is the
recipient of the request call as the value of the recipient
parameter. This field is not used when the ocMode parameter

value is ocRequest.

The time when the authentication credentials were issued. Together
with the expiry parameter value, the issueTime parameter
specifies the period of time for which the credentials are valid.
ASDSP extracts the value for the issueTime parameter from the
decrypted credentials. ASDSP returns this value when the mode is
ocPassive or ocAccept. The issueTime field is not used when
the ocMode parameter value is ocRequest.

The time when the authentication credentials expire. Together with
the issueTime parameter value, the expiry parameter specifies
the duration for which the credentials are valid. ASDSP extracts the
value for the expiry parameter from the decrypted credentials. This
field is not used when the ocMode parameter value is ocRequest.

A pointer to the record ID of the initiator that ASDSP returns when
the value of the ocMode parameter is ocAccept or ocPassive.
ASDSP extracts this value from the encrypted credentials. This field
is not used when the ocMode parameter value is ocRequest.

A flag that ASDSP sets if the credentials have an intermediary.
When this flag is set, a proxy was used; an intermediary used
the AuthTradeProxyForCredentials function to obtain the
credentials used in the authentication process. The sdspOpen
routine returns this value when the ocMode parameter value is
ocPassive or ocAccept.

A pointer to a buffer that is used to store the record ID of the inter-
mediary, if ASDSP finds an intermediary in the credentials. The
sdspOpen routine returns this value when the ocMode parameter
value is ocPassive or ocAccept.

The sdspOpen routine opens a secure connection end if the identities of both the
initiator and the recipient connection ends can be proven in the authentication process.
You set the ocMode field of the parameter block to specify the opening mode that the
sdspOpen routine is to use. The sdspOpen routine puts a connection end into one of the
three following opening modes:

m In the ocRequest mode, ASDSP attempts to open a connection with the socket at the
internet address you specify as the remoteAddress parameter.

ADSP Reference

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

m In the ocPassive mode, the connection end waits to receive an open-connection
request from a remote connection end. You can use the filterAddress parameter
to restrict the addresses from which you will accept a connection request.

m In the ocAccept mode, connection servers complete open-connection dialogs. When a

connection server is informed by its connection listener that the connection listener has
received an open-connection request, the connection server calls the dspInit routine
to establish a connection end and then calls the sdspOpen routine in ocAccept mode
to complete the connection. Connection listeners and connection servers are described
in “Creating and Using a Connection Listener” beginning on page 5-22 and in
“Establishing and Terminating an ADSP Connection” beginning on page 5-44. See
“Connection Listeners” on page 5-7 for a brief introduction to connection listeners.

Except for the authentication process, these three modes are used by ASDSP and
ADSP in the same way and their behavior is the same. See the description of how
these modes are used in “dspOpen” beginning on page 5-48.

If ASDSP cannot successfully complete the authentication process, ASDSP tears down
the connection and the sdspOpen calls made by both the initiator and the recipient
return a result code reporting the reason why the authentication process failed. For
the conditions that can cause the authentication process to fail, see the list of result

codes that follows.

ASSEMBLY-LANGUAGE INFORMATION

To execute the sdspOpen routine from assembly language, call the _Control trap
macro with a value of sdspOpen in the csCode field of the parameter block.

RESULT CODES

noErr 0 Noerror

errOpenDenied -1273 Open request denied by recipient

errFwdReset -1276 A forward reset caused ASDSP to terminate
the request

errOpening -1277 Attempt to open connection failed

errState -1278 Connection end is not open

errAborted -1279 Request aborted by dspRemove or
dspClose routine

errRefNum -1280 Bad connection reference number

kOCEUnsupportedCredentialsVersion -1543 Credentials version not supported

kOCEBadEncryptionMethod -1559 During the authentication process, the
ASDSP implementations could not agree on
an encryption method to be used (ASDSP
can support multiple stream encryption
methods. In Release 1, only RC4 and “no
encryption” are supported.)

kOCENoASDSPWorkSpace -1570 You passed NIL for the workspace
parameter

kOCEAuthenticationTrouble -1571 Authentication process failed

ADSP Reference

5-59

(dSAV) 1090101d wesns ereq yeLs|ddy -

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

dspNewCID

DESCRIPTION

The dspNewCID routine creates a connection ID to be used in setting up a connection.
You use the PBControl function to call the dspNewCID routine. See “Routines” on
page 5-43 for a description of the PBControl function.

Parameter block

- ioCompletion ProcPtr A pointer to a completion routine.

« ioResult OSErr The function result.

- ioCRefNum Integer The driver reference number.

- csCode Integer Always dspNewCID for this function.
- ccbRefNum Integer The CCB reference number.

« newCID Integer The ID of new connection.

Field descriptions

csCode The routine selector, always equal to dspNewCID for this routine.

ccbRefNum The connection control block (CCB) reference number that was
returned by the dspNewC1ID routine for the connection end that
you want to use.

newCID The connection-end ID that this routine returns. You must provide

this number to the client of the remote connection end so that
it can use it for the remoteCID parameter when it calls the
dspOpen routine.

The dspNewCID routine causes ADSP to assign an ID to a connection end without
opening the connection end or attempting to establish a connection with a remote
connection end. Use this routine only if you implement your own protocol to establish
communication with a remote connection end. You must first use the dspInit routine
to establish a connection end. Next, you must call the dspNewCID routine to obtain a
connection-end ID. Then you must establish communication with a remote connection
end and pass the ID to the remote connection end. Finally, you must call the dspOpen
routine in ocEstablish mode to cause ADSP to open the connection.

ASSEMBLY-LANGUAGE INFORMATION

5-60

To execute the dspNewCID routine from assembly language, call the _Control trap
macro with a value of dspNewCID in the csCode field of the parameter block.

ADSP Reference

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

RESULT CODES
noErr 0 No error
errState -1278 Connection is not closed .
errRefNum -1280 Bad connection reference number
SEE ALSO

dspClose

To establish a connection, use the dspInit routine, described on page 5-45.

To obtain a connection-end ID, use the sdspOpen routine, described on page 5-54.

To open a connection in ocEstablish mode, use the dspOpen routine, described on

see page 5-48.

The dspClose routine closes a connection end. You use the PBControl function
to call the dspClose routine. See “Routines” on page 5-43 for a description of the

PBControl function.

Parameter block

- ioCompletion ProcPtr
« ioResult OSErr

- ioCRefNum Integer
- csCode Integer
- ccbRefNum Integer
- abort Byte

Field descriptions

A pointer to a completion routine.
The function result.

The driver reference number.
Always dspClose for this function.
The CCB reference number.

A value specifying to abort send requests
if not 0.

csCode The routine selector, always equal to dspClose for this routine.

ccbRefNum The connection control block (CCB) reference number that was
returned by the dspNewCID routine for the connection end that
you want to close.

abort A value that specifies whether or not to send all of the data in the

send queue and all outstanding messages before closing the
connection end. If the abort parameter is nonzero, ADSP cancels
any outstanding requests to send data packets (such as the
dspAttention routine) and discards all data in the send queue.
If the abort parameter is 0, ADSP does not close the connection
end until all of the data in the send queue and all outstanding
attention messages have been sent and acknowledged.

ADSP Reference

(dSAv) 10901014 Weang ejeq era|ddy -

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

DESCRIPTION

The dspClose routine closes the connection end. The connection end is still established;
that is, ADSP retains ownership of the CCB, send queue, receive queue, and attention-
message buffer. You can continue to read bytes from the receive queue after you have
called the dspClose routine. Use the dspRemove routine instead of the dspClose
routine if you are finished with reading bytes from the receive queue and want to release
the memory associated with the connection end.

SPECIAL CONSIDERATIONS

The dspClose routine does not return an error if you call it for a connection end that is
already closed.

ASSEMBLY-LANGUAGE INFORMATION

To execute the dspClose routine from assembly language, call the _Control trap
macro with a value of dspClose in the csCode field of the parameter block.

RESULT CODES

noErr 0 No error
errRefNum -1280 Bad connection reference number

SEE ALSO

For information on how to remove a connection end and release the memory associated
with it, see the description of the dspRemove routine that follows.

dspRemove

The dspRemove routine closes any open connection and eliminates the connection
end, releasing all memory associated with it. You use the PBControl function to
call the dspRemove routine. See “Routines” on page 5-43 for a description of the
PBControl function.

Parameter block

- ioCompletion ProcPtr A pointer to a completion routine.

« ioResult OSErr The function result.

- ioCRefNum Integer The driver reference number.

- csCode Integer Always dspRemove for this function.

- ccbRefNum Integer The CCB reference number.

- abort Byte ﬁvalue specifying to abort connection
if not 0.

5-62 ADSP Reference

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

- Field descriptions
csCode

ccbRefNum

abort

DESCRIPTION

The routine selector, always equal to dspRemove for this routine.

The connection control block (CCB) reference number that was
returned by the dspNewCID routine for the connection end that
you want to remove.

A value that specifies whether or not to send all of the data in
the send queue and all outstanding messages before closing the
connection end. If the abort parameter is nonzero, ADSP cancels
any outstanding requests to send data packets (such as the
dspAttention routine) and discards all data in the send queue.
If the abort parameter is 0, ADSP does not close the connection
end until all of the data in the send queue and all outstanding
attention messages have been sent and acknowledged.

The dspRemove routine closes the connection end whose connection control block
(CCB) you specify, and it eliminates that connection end; that is, ADSP no longer retains
control of the CCB, send queue, receive queue, and attention-message buffer. You cannot
continue to read bytes from the receive queue after you have called the dspRemove
routine. After you call the dspRemove routine, you can release all of the memory you
allocated for the connection end if you do not intend to reopen the connection end.

ASSEMBLY-LANGUAGE INFORMATION

To execute the dspRemove routine from assembly language, call the _Control trap
macro with a value of dspRemove in the csCode field of the parameter block.

RESULT CODES
noErr

0 No error

errRefNum -1280 Bad connection reference number

Establishing and Terminating an ADSP Connection Listener

A connection listener is a special kind of connection end that listens for open-connection
requests from remote connection ends. Connection listeners are used by connection
servers—that is, programs that assign a socket for the local connection end only after
they receive a connection request from a remote connection end. A single connection
listener can receive connection requests from any number of remote connection ends.

You can use the routines in this section to

m establish a connection listener

m cause the connection listener to listen for a connection request

m deny a connection request

m close and eliminate a connection listener

ADSP Reference

5-63

| (dSaV) 10001014 Weexg eleq seLoiddy -

dspCLInit

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

DESCRIPTION

The dspCLInit routine establishes and initializes a connection listener. You use the
PBControl function to call the dspCLInit routine. See “Routines” on page 5-43 for a
description of the PBControl function.

Parameter block

— ioCompletion ProcPtr A pointer to a completion routine.

« ioResult OSErr The function result.

- ioCRefNum Integer The driver reference number.

- csCode Integer Always dspCLInit for this function.
« ccbRefNum Integer The CCB reference number.

— ccbPtr TPCCB A pointer to CCB.

© localSocket Byte The local DDP socket number.

Field descriptions

csCode The routine selector, always equal to dspCLInit for this routine.

ccbRefNum The connection control block (CCB) reference number. The
dspCLInit routine returns this value.You must provide this
number in all subsequent dspCLListen and dspCLRemove
calls to this connection listener.

ccbPtr A pointer to the CCB that you allocated. The CCB is 242 bytes
in size.

localSocket The number of the DDP socket that you want ADSP to use for this
connection end. Specify 0 for this parameter to cause ADSP to
assign the socket; in this case, ADSP returns the socket number
when the dspCLInit routine completes execution.

The dspCLInit routine establishes a connection listener; that is, it assigns a specific
socket for use by ADSP and initializes the variables that ADSP uses to maintain a
connection listener. The dspCLInit routine does not cause the connection listener
to listen for connection requests; you must follow the dspCLInit routine with the
dspCLListen routine to activate the connection listener.

You must allocate a block of nonrelocatable memory for a CCB before you call the
dspCLInit routine and pass a pointer to that CCB as the value of the ccbPtr
parameter. See the section “Creating and Using a Connection Control Block” on

page 5-12 and the section “The ADSP Connection Control Block Record” on page 5-35
for more information.

SPECIAL CONSIDERATIONS

5-64

The connection control block for which you allocate memory belongs to ADSP until you
explicitly remove the connection listener. You cannot release the memory for the CCB
until after you eliminate the connection listener.

ADSP Reference

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO
To establish a connection end that is not a connection listener, use the dspInit routine
described on page 5-45.
To eliminate a connection listener, use the dspCLRemove routine, described on page 5-68.
dspCLListen

To execute the dspCLInit routine from assembly language, call the _Control trap
macro with a value of dspCLInit in the csCode field of the parameter block.

noErr 0 No error
ddpSktErr -91 Error opening socket

The dspCLListen routine causes a connection listener to listen for connection requests.
You use the PBControl function to call the dspCLListen routine. See “Routines” on
page 5-43 for a description of the PBControl function.

Parameter block

- ioCompletion ProcPtr A pointer to a completion routine.
¢« ioResult OSErr The function result.
- ioCRefNum Integer The driver reference number.
- csCode Integer Always dspCLListen for this function.
- ccbRefNum Integer The CCB reference number.
« remoteCID Integer The ID of the remote connection end.
¢« remoteAddress AddrBlock The remote internet address.
- filterAddress AddrBlock A filter for open-connection requests.
¢« sendSeq LongInt The initial send sequence number.
« sendWindow Integer The initial size of the remote
receive queue.
<« attnSendSeq LongInt The attention send sequence number.

Field descriptions

csCode “The routine selector, always dspCLListen for this routine.
ccbRefNum The CCB reference number that the dspCLInit routine returned.
remoteCID The identification number of the remote connection end. You must

pass this value to the dspOpen routine when you open the connec-
tion or to the dspCLDeny routine when you deny the connection
request. The dspCLListen routine returns this number.

remoteAddress The internet address of the remote socket that sent a request to open
a connection. This address consists of a 2-byte network number, a
1-byte node ID, and a 1-byte socket number. You must pass this
value to the dspOpen routine when you open the connection or to
the dspCLDeny routine when you deny the connection request.

ADSP Reference 5-65

(dSAV) 10901014 weess eleq yeLsjddy -

DESCRIPTION

CHAPTER 5

AppleTalk Data Stream Protoco! (ADSP)

filterAddress The internet address of the socket from which you will accept a
connection request. The address consists of three fields: a 2-byte
network number, a 1-byte node ID, and a 1-byte socket number.
Specify 0 for any of these fields for which you wish to impose no
restrictions. If you specify a filter address of $00082500, for example,
the connection listener accepts a connection request from any socket
at node $25 of network $0008.

sendSeq The sequence number of the first byte that the local connection end
will send to the remote connection end. ADSP uses this number to
coordinate communications and to check for errors. You must pass
this value to the dspOpen routine when you open the connection.

sendWindow The sequence number of the last byte that the remote connection
end has buffer space to receive. ADSP uses this number to
coordinate communications and to check for errors. You must pass
this value to the dspOpen routine when you open the connection.

attnSendSeq The sequence number of the next attention packet that the local
connection end will transmit. ADSP uses this number to ensure that
attention packets are delivered in the correct order and to check for
errors. You must pass this value to the dspOpen routine when you
open the connection.

The dspCLListen routine initiates the connection listener. You must have already used
the dspCLInit routine to establish a connection listener before using the dspCLListen
routine. The dspCLListen routine is used only by connection servers.

When ADSP receives an open-connection request from a socket that satisfies the address
requirements of the filterAddress parameter, it returns values for the remoteCID,
remoteAddress, sendSeq, sendWindow, and attnSendSeq parameters and
completes execution of the dspCLListen routine. You must then either accept the
open-connection request by calling the dspOpen routine in the ocAccept mode or
deny the request by calling the dspCLDeny routine.

You can call the dspCLListen routine several times, specifying the same connection
listener. For example, if you wanted to accept connections from any or all of three
different addresses, you could call the dspCLListen routine three times with a different
value for the filterAddress parameter each time. Note that you must execute the
dspCLListen routine asynchronously to take advantage of this feature.

ASSEMBLY-LANGUAGE INFORMATION

5-66

To execute the dspCLListen routine from assembly language, call the _Control trap
macro with a value of dspCLListen in the csCode field of the parameter block.

ADSP Reference

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

RESULT CODES
noErr 0 No error
errState -1278 Not a connection listener
errAborted -1279 Request aborted by the dspRemove routine
errRefNum -1280 Bad connection reference number
dspCLDeny

The dspCLDeny routine denies a connection request from a remote connection end. You
use the PBControl function to call the dspCLDeny routine. See “Routines” on
page 5-43 for a description of the PBControl function.

Parameter block.

— ioCompletion ProcPtr A pointer to a completion routine.

« ioResult OsErr The function result.

- ioCRefNum Integer The driver reference number.

- csCode Integer Always dspCLDeny for this function.

- ccbRefNum Integer The CCB reference number.

- remoteCID Integer The ID of the remote connection end.

- remoteAddress AddrBlock The remote internet address.

Field descriptions

csCode The routine selector, always dspCLDeny for this routine.

ccbRefNum The CCB reference number for the connection listener that received
the request. This is the CBB number that the dspCLInit routine
returned for the connection listener when you established a
connection listener.

remoteCID The ID of the remote connection end. The dspCLListen routine
returns this value.

remoteAddress The internet address of the remote connection end. The
dspCLListen routine returns this value.

DESCRIPTION

A connection server uses the dspCLDeny routine to inform a remote connection end that
its request to open a connection cannot be honored. If you want your connection listener
to continue to listen for further connection requests, you must call the dspCLListen
request again after you call dspCLDeny.

ASSEMBLY-LANGUAGE INFORMATION

To execute the dspCLDeny routine from assembly language, call the _Control trap
macro with a value of dspCLDeny in the csCode field of the parameter block.

ADSP Reference 5-67

(dSaV) 10901014 weeng ereq yeLsiddy -

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

RESULT CODES
noErr 0 No error
errState -1278 Not a connection listener
errAborted -1279 Request aborted by the dspRemove routine
errRefNum -1280 Bad connection reference number
dspCLRemove

The dspCLRemove routine closes a connection end used as a connection listener. You use
the PBControl function to call the dspCLRemove routine. See “Routines” on page 5-43
for a description of the PBControl function.

Parameter block

- ioCompletion ProcPtr A pointer to a completion routine.

< ioResult OSErr The function result.

- ioCRefNum Integer The driver reference number.

— csCode Integer Always dspCLRemove for this function.

- ccbRefNum Integer The CCB reference number.

— abort Byte A value specifying to abort outstanding

requests if not 0.

Field descriptions

csCode The routine selector, always dspCLRemove for this routine.

ccbRefNum The connection control block (CCB) reference number that the
dspCLInit routine returned.

abort A value directing ADSP whether or not to cancel any outstanding

listen and deny requests. If this value is nonzero, ADSP cancels
outstanding dspCLListen and dspCLDeny requests. If this value
is 0, ADSP does not cancel these requests.

DESCRIPTION

The dspCLRemove routine closes a connection end used as a connection listener. After
you call the dspCLRemove routine, you can release the memory that you allocated for
the CCB if you do not intend to reopen the connection end.

ASSEMBLY-LANGUAGE INFORMATION

To execute the dspCLRemove routine from assembly language, call the _Control trap
macro with a value of dspCLRemove in the csCode field of the parameter block.

RESULT CODES

noErr 0 No error
errRefNum -1280 Bad connection reference number

5-68 ADSP Reference

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

Maintaining an ADSP Connection and Using It to Exchange Data

Once you have established a connection end and opened a connection, you can send and
receive data over the connection. You can use the routines in this section to

m determine the status of a connection

m read bytes from the connection end’s receive queue

m write bytes to the connection end’s send queue and transmit them to the remote

connection end

m send an attention message to the remote connection end

m discard all data that has been sent but not yet delivered, and reset the connection

dspStatus
The dspStatus routine returns the number of bytes waiting to be read and sent and the
amount of space available in the send and receive queues. You use the PBControl
function to call the dspStatus routine. See “Routines” on page 5-43 for a description of
the PBControl function.
Parameter block
— ioCompletion ProcPtr A pointer to a completion routine.
< 1ioResult OSErr The function result.
- ioCRefNum Integer The driver reference number.
- csCode Integer Always dspStatus for this function.
- ccbRefNum Integer The CCB reference number.
<« statusCCB TPCCB A pointer to the CCB.
<« sendQPending Integer Bytes waiting to be sent or acknowledged.
< sendQFree Integer Available send queue in bytes.
< recvQPending Integer Bytes waiting to be read from queue.
- recvQFree Integer Available receive queue in bytes.

Field descriptions

csCode
ccbRefNum

statusCCB

sendQPending

ADSP Reference

The routine selector, always dspStatus for this routine.

The connection control block (CCB) reference number that the
dspInit routine returned.

A pointer to the CCB of the connection specified by the ccbRe£fNum
parameter value.

The number of bytes of data that are in the send queue waiting to be
sent, including 1 byte for each logical end-of-message (EOM)
indicator in the send queue. (ADSP counts 1 byte for each EOM,
even though no actual data corresponds to the EOM indicator.) The
send queue contains all data that has been sent to ADSP for
transmission and that has not yet been acknowledged. Some of the
data in the send queue might have already been transmitted, but
ADSP retains it in the send queue until the remote connection end
acknowledges its receipt in case the data has to be retransmitted.

5-69

(dSAV) 10901014 Wieans ereq yel sjddy -

DESCRIPTION

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

sendQFree The number of bytes available in the send queue for additional data.

recvQPending The number of bytes in the receive queue, including 1 byte for each
EOM if the EOM bit is set in an ADSP packet header. The receive
queue contains all of the data that has been received by the
connection end but not yet read by the connection end’s client.

recvQFree The number of bytes available in the receive queue for
additional data.

The dspStatus routine provides information about an open connection. In addition to
returning the number of bytes waiting to be read and sent and the space available in the
send and receive queues, this routine also returns a pointer to the CCB, which contains
information about the state of the connection end and about connection events received
by the connection end. For more information about the CCB, see “Creating and Using a
Connection Control Block” on page 5-12 and “The ADSP Connection Control Block
Record” beginning on page 5-35.

ASSEMBLY-LANGUAGE INFORMATION

To execute the dspStatus routine from assembly language, call the _Control trap
macro with a value of dspStatus in the csCode field of the parameter block.

RESULT CODES

dspRead

noErr 0
errRefNum -1280

No error
Bad connection reference number

5-70

The dspRead routine reads data from a connection end’s receive queue and writes the
data to a buffer that you specify. You use the PBControl function to call the dspRead
routine. See “Routines” on page 5-43 for a description of the PBControl function.

Parameter block

ioCompletion
ioResult
ioCRefNum
csCode
ccbRefNum
reqCount
actCount
dataPtr

eom

TITILLLTd

ADSP Reference

ProcPtr
OSErr
Integer
Integer
Integer
Integer
Integer
Ptr
Byte

A pointer to a completion routine.
The function result.

The driver reference number.
Always dspRead for this function.
The CCB reference number.

The requested number of bytes.

The actual number of bytes read.

A pointer to the data buffer.

A flag indicating the end of message.

CHAPTER 5§

AppleTalk Data Stream Protocol (ADSP)

Field descriptions

csCode The routine selector, always dspRead for this routine.

ccbRefNum The connection control block (CCB) reference number that the
dspInit routine returned.

reqCount The number of bytes that ADSP is to read.

actCount The actual number of bytes that ADSP read.

dataPtr A pointer to the buffer into which ADSP is to place the data.

eom A flag indicating if the last byte that ADSP read was a logical

end-of-message indicator. If the last byte constitutes an EOM,
ADSP sets this parameter to 1. If not, it sets this parameter to 0.

DESCRIPTION

The dspRead routine reads data from an ADSP connection. You can continue to read
bytes as long as data is in the receive queue, even after you have called the dspClose
routine or after the remote connection end has called the dspClose or dspRemove
routine. The dspRead routine completes execution when it has read the number of
bytes you specify or when it encounters an end of message (that is, the last byte

of data in an ADSP packet that has the EOM bit set in the packet header).

You can call the dspStatus routine to determine the number of bytes remaining to be
read from the read queue, or you can continue to call the dspRead routine until the
actCount and eom parameters both return 0.

If either end closes the connection before you call the dspRead routine, the command
reads whatever data is available and returns the actual amount of data read in the
actCount parameter. If the connection is closed and there is no data in the receive
queue, the dspRead routine returns the noErr result code with the actCount
parameter set to 0 and the eom parameter set to 0.

ASSEMBLY-LANGUAGE INFORMATION

To execute the dspRead routine from assembly language, call the _Control trap macro
with a value of dspRead in the csCode field of the parameter block.

RESULT CODES
noErr 0 No error
errFwdReset -1275 Read terminated by forward reset
errsState -1278 State isn’t open, closing, or closed
errAborted -1279 Request aborted by dspRemove or dspClose routine
errRefNum -1280 Bad connection reference number

ADSP Reference 5-71

(dSav) 1090101d Weans ejeq el sddy -

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

dspWrite
The dspWrite routine writes bytes into a connection end’s send queue for ADSP or
ASDSP to transmit across a connection. When ASDSP is used and the encrypt bit is
set, ASDSP encrypts the data before sending it. You use the PBControl function to
call the dspWrite routine. See “Routines” on page 5-43 for a description of the
PBControl function.
Parameter block
- ioCompletion ProcPtr A pointer to a completion routine.
«— ioResult OSErr ~ The function result.
- ioCRefNum Integer The driver reference number.
- csCode Integer Always dspWrite for this function.
- ccbRefNum Integer The CCB reference number.
- reqgCount Integer The requested number of bytes.
« actCount Integer The actual number of bytes written.
- dataptr Ptr A pointer to the data buffer.
- eom Byte - For ADSP: a flag indicating end of message.
For ASDSP: a flag indicating end of
message or encryption.
- flush Byte A flag indicating whether to send
buffered data.
Field descriptions
csCode The routine selector, always dspWrite for this routine.
ccbRefNum The connection control block (CCB) reference number that the
dspInit routine returned.
reqCount The number of bytes to write.
actCount The actual number of bytes written to the send queue.
dataPtr A pointer to the buffer from which ADSP or ASDSP should read the
data that is to be sent.
eom For ADSP, a flag indicating if the last byte written to the send queue
was a logical end-of-message indicator. If the last byte constitutes
an EOM, you set this parameter to 1. If not, you set this parameter
to 0. The high-order bits of the eom parameter are reserved for use
by ADSP; you must leave these bits equal to 0.
For ASDSP, if this is a secure connection, this field constitutes two
single-bit flags instead of a zero/nonzero byte. If set to 1, bit 0
indicates the end of message; if set to 1, bit 1 turns on encryption.
Note that ASDSP checks this flag on the first write of the connection
and the first write following a write for which the end-of-message
flag (bit 0 of the eom field) is set.
flush A flag indicting whether or not ADSP or ASDSP should immediately
send the data in the send queue to the remote connection. Set £lush
to 1 to cause ADSP or ASDSP to immediately transmit any data in the
send queue that has not already been transmitted. Set £1ush to 0 to
5-72 ADSP Reference

DESCRIPTION

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

allow data to accumulate in the send queue until another condition
occurs that causes data to be transmitted. The high-order bits of the

flush parameter are reserved for use by ADSP or ASDSP; you must
leave these bits equal to 0.

The dspWrite routine sends data across an ADSP or ASDSP connection. The send
queue contains all data that has been sent to ADSP or ASDSP for transmission and that
has not yet been acknowledged. Some of the data in the send queue might have already
been transmitted, but ADSP or ASDSP retains it in the send queue until the remote
connection end acknowledges its receipt in case the data has to be retransmitted. The
dspWrite routine completes execution when it has copied all of the data from the data
buffer into the send queue.

ADSP or ASDSP transmits the data in the send queue when the remote connection end
has room to accept the data and one of the following conditions occurs:

m You call the dspWrite routine with the flush parameter set to a nonzero number.

m The number of bytes in the send queue equals or exceeds the blocking factor. (You use
the sendBlocking parameter to the dspOptions routine to set the blocking factor.)

m The send timer expires.

m A connection event requires that the local connection end send an acknowledgment
packet to the remote connection end.

For an ADSP dspWrite call, you can set the reqCount parameter to 0 and the eom
parameter to 1 to indicate that the last byte you sent the previous time you called the
dspWrite routine was the end of the message. You can set the reqCount parameter to
a value larger than the size of the send queue. If you do so, the dspWrite routine writes
as much data as it can into the send queue, sends the data and waits for acknowledg-
ment, and then writes more data into the send queue until it has written the amount of
data you requested. In this case, the routine does not complete execution until it has
finished writing all of the data into the send queue.

For an ASDSP dspWrite call, you can set the encrypt bit of the eom field (bit 1) of the
DSP parameter block. Note that ASDSP checks this flag on the first write of the connec-
tion or the first write following a write for which the end-of-message flag (bit 0 of the
eom field) is set. You can set the end-of-message bit (bit 0) of the eom field to indicate the
end of the message.

m To set the encrypt bit, you use the dspEncryptMask mask or the
dspEncryptBit constant.

m To set the end-of-message bit, you use the dspEOMMask mask or the
dspEOMBit constant.

Set the £1ush parameter to 1 to cause ADSP to immediately transmit any data in the
send queue that has not already been transmitted. Set the £1ush parameter to 0 to allow
data to accumulate in the send queue until another condition occurs that causes data to
be transmitted.

ADSP Reference 5-73

(dSAV) 1090101d Weens ejeq el siddy -

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

If you want to encrypt all messages, you can simply set the encrypt bit on all calls to the

dspWrite function.

ASSEMBLY-LANGUAGE INFORMATION

To execute the dspWrite routine from assembly language, call the _Control trap
macro with a value of dspWrite in the csCode field of the parameter block.

RESULT CODES
noErr 0 No error
errState -1278
errAborted -1279
errRefNum -1280
dspAttention

Connection is not open
Request aborted by dspRemove or dspClose routine
Bad connection reference number

5-74

The dspAttention routine sends an attention code and an attention message to the
remote connection end. You use the PBControl function to call the dspAttention
routine. See “Routines” on page 5-43 for a description of the PBControl function.

Parameter block

Field descriptions
csCode

ccbRefNum

attnCode

attnSize
attnData

ADSP Reference

- ioCompletion ProcPtr
« ioResult OSExrr

- ioCRefNum Integer
- csCode Integer
- ccbRefNum Integer
- attnCode Integer
- attnSize Integer
- attnData Ptr

A pointer to a completion routine.

The function result.

The driver reference number.

Always dspAttention for this function.
The CCB reference number.

The client attention code.

The size of attention data in bytes.

A pointer to attention data.

The routine selector, always dspAttention for this routine.
The connection control block (CCB) reference number that the
dspInit routine returned.

The 2-byte attention code that you wish to send to the remote
connection end. You can use any value from $0000 through $EFFF
for the attention code. The values $F000 through $FFFF are reserved

for use by ADSP.

The size in bytes of the attention message you wish to send.

A pointer to the attention message. The attention message can be
any size from 0 through 570 bytes. There are no restrictions on the
content of the attention message.

DESCRIPTION

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

The dspAttention routine sends an attention code and message. Attention codes and
attention messages can have any meaning that your application and the application at
the remote connection end both recognize. The purpose of attention codes and messages
is to allow clients of ADSP to send messages outside the normal data stream.

For example, if a connection end on a mainframe computer is connected to several
connection ends in Macintosh computers being used as remote terminals, the mainframe
computer might wish to inform the remote terminals that all connections will be
terminated in ten minutes. The mainframe application could send an attention message
to each of the remote terminals informing them of this fact, and the terminal emulation
programs in the Macintosh computers could then display an alert message on the screen
so that the users could prepare to shut down.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

dspReset

To execute the dspAttention routine from assembly language, call the _Control trap
macro with a value of dspAttention in the csCode field of the parameter block.

noErr 0 No error

errAttention -1276 Attention message too long

errState -1278 Connection is not open

errAborted -1279 Request aborted by dspRemove or dspClose routine
errRefNum ~1280 Bad connection reference number

The dspReset routine clears all the data associated with the connection that the remote
connection client has not already read and resynchronizes the connection. You use the
PBControl function to call the dspReset routine. See “Routines” on page 5-43 for a
description of the PBControl function.

Parameter block

- ioCompletion ProcPtr A pointer to a completion routine.
« ioResult OSErr The function result.

- ioCRefNum Integer The driver reference number.

- csCode Integer Always dspReset for this routine.
- ccbRefNum Integer The CCB reference number.

Field descriptions
csCode The routine selector, always dspReset for this routine.

ccbRefNum The connection control block (CCB) reference number that the
dspInit routine returned.

ADSP Reference 5-75

(dSQav) 10001014 weans ejeq yjel ejddy n

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

DESCRIPTION

The dspReset routine causes ADSP to discard all data in the send queue, all data in
transit to the remote connection end, and all data in the remote connection end’s receive
queue that the client has not yet read. This process is known as a forward reset. ADSP
then resynchronizes the connection. You can determine that your connection end has
received a forward reset and has discarded all data in the receive queue by checking the
eFwdReset flag in the userFlags field of the CCB. For information on the CCB, see
“Connections, Connection Ends, and Connection States” beginning on page 5-6.

ASSEMBLY-LANGUAGE INFORMATION

To execute the dspReset routine from assembly language, call the _Control trap
macro with a value of dspReset in the csCode field of the parameter block.

RESULT CODES
noErr 0 No error
errState -1278 Connection is not open
errAborted -1279 Request aborted by dspRemove or dspClose routine
errRefNum -1280 Bad connection reference number

5-76 ADSP Reference

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

Summary of ADSP

Pascal Summary

Constants

CONST
{ADSP routine selectors}
dspInit = 255; {create a new connection end}
dspRemove = 254; {remove a connection end}
dspOpen = 253; {open a connection}
dspClose = 252; {close a connection}
dspCLInit = 251; {create a connection listener}
dspCLRemove = 250; {remove a connection listener}
dspCLListen = 249; {post a listener request}
dspCLDeny = 248; {deny an open-connection request}
dspStatus = 247; {get status of connection end}
dspRead = 246; {read data from the connection}
dspWrite = 245; {write data on the connection}
dspAttention = 244; {send an attention message}
dspOptions = 243; {set connection end options}
dspReset = 242; {forward reset the connection}
dspNewCID = 241; {generate a CID for a }

{ connection end}

sdspOpen = 229; {open a secure connection}

{ADSP connection-opening modes}

ocRequest = 1;
ocPassive = 2;
ocAccept = 3;
ocEstablish = 4;

{ADSP connection end states}
sListening = 1;
sPassive 2;

Summary of ADSP

{request a connection with a }

{ remote connection end}

{wait for a connection request }
{ from remote connection end}
{accept request as delivered by }
{ listener}

{consider connection to be open}

{for connection listeners}
{waiting for a connection }
{ request from remote }

{ connection end}

5-77

(dSQV) |000101d Weeng ejeq yeLojddy -

CHAPTER 5

AppleTalk Data Stream Protoco! (ADSP)

sOpening = 3; {requesting a connection }

{ with remote connection end}
sOpen = 4; {connection is open}
sClosing = 5; {connection is being torn down}
sClosed = 6; {connection end state is closed}

{ASDSP end-of-message and encrypt flags and masks}

dspEncryptBit = 1; {set to encrypt message}

dspEOMBit = 0; {set if EOM at end of write}
dspEOMMask = $1; {mask for setting the EOM bit}
dspEncryptMask = $2; {mask for setting the encrypt bit}

{ADSP client event flags}

eClosed = $80; {received connection-closed event}
eTearDown = $40; {closed due to broken connection}
eAttention = $20; {received attention message}
eFwdReset = $10; {received forward reset event}

{miscellaneous ADSP constants}
attnBufSize = 570; {size of client attention buffer}
minDSPQueueSize = 100; {minimum size of receive or }

{ send queue}

{driver control ioResults}

errRefNum = ~-1280; {bad connection refNum}

errAborted = =1279; {control call was aborted}

errState = =1278; {bad connection state for this }

{ operation}

errOpening = =1277; {open connection request failed}

errAttention = -1276; {attention message too long}

errFwdReset = -1275; {read terminated by forward reset}

errDSPQueueSize = =1274; {DSP read/write queue too small}

errOpenDenied = =1273; {open connection request denied}
Data Types

The ADSP Connection Control Block Record

TYPE TRCCB =
PACKED RECORD
ccbLink: TPCCB; {link to next CCB}
refNum: Integer; {reference number}
state: Integer; {state of the connection end}

5-78 Summary of ADSP

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

userFlags:
localSocket:
remoteAddress:
attnCode:
attnSize:
attnPtr:
reserved:

END;

The Address Block Record

TYPE AddrBlock =
PACKED RECORD
aNet:
aNode:
aSocket:
END;

The DSP Parameter Block

TYPE DSPParamBlock =

PACKED RECORD
qLink:
qType:
ioTrap:
ioCmdAddr:
ioCompletion:
ioResult:
ioNamePtr:
ioVRefNum:
ioCRefNum:
csCode:
gStatus:
ccbRefNum:

CASE Integer OF

dspInit, dspCLInit:
(ccbPtr:
userRoutine:
sendQSize:
sendQueue:
recvQSize:
recvQueue:
attnPtr:

Summary of ADSP

Byte;
Byte;
AddrBlock;
Integer;
Integer;
Ptr;

{user flags for connection}

{local socket number}

{remote end internet address}
{attention code received}

{size of attention data}

{pointer to attention data}

PACKED ARRAY[1..220] OF Byte;

Integer;
Byte;
Byte;

QElemPtr;
Integer;
Integer;
Ptr;
ProcPtr;
OSErr;
StringPtr;
Integer;
Integer;
Integer;
LongInt;
Integer;

TPCCB;
ProcPtr;
Integer;
Ptr;
Integer;
Ptr;
Ptr;

{reserved for use by ADSP}

{network number}
{node ID}
{socket number}

{reserved}

{reserved}

{reserved}

{reserved}

{completion routine}
{result code}
{reserved}

{reserved}

{driver reference number}
{primary command code}
{reserved}

{CCB reference number}

{pointer to CCB}

{pointer to user routine}
{size of send queue}
{pointer to send queue}
{size of receive queue}

{pointer to receive queue}
{pointer to attention-message buffer}

5-79

(dSQV) 1090101d Wiesns ejeq yeLsiddy ‘

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

localSocket: Byte;
fillerl: Byte);
dspOpen, dspCLListen, dspCLDeny:
(localCID: Integer;
remoteCID: Integer;
remoteAddress: AddrBlock;
filterAddress: AddrBlock;
sendSeq: LongInt;
sendWindow: Integer;
recvSeq: LongInt;
attnSendSeq: LongInt;
attnRecvSeq: LongInt;
ocMode: Byte;
ocInterval: Byte;
ocMaximum: Byte;
filler2: Byte);
dspClose, dspRemove:
(abort: Byte;
filler3: Byte);
dspStatus:
(statusCCB: TPCCB;
sendQPending: Integer;
sendQFree: Integer;
recvQPending: Integer;
recvQFree: Integer);
dspRead, dspWrite:
(reqgCount: Integer;
actCount: Integer;
dataPtr: Ptr;
eom: Byte;
flush: Byte);
dspAttention:
(attnCode: Integer;
attnSize: Integer;
attnData: Ptr;
attnInterval: Byte;
filler4: Byte);
dspOptions:
(sendBlocking: Integer;
sendTimer: Byte;
rtmtTimer: Byte;
badSegMax: Byte;
useCheckSum: Byte):;

5-80 Summary of ADSP

{local socket number}
{filler for proper alignment}

{local connection ID}

{remote connection ID}
{remote internet address}
{address filter}

{send sequence number}

{size of remote buffer}
{receive sequence number}
{attention send seq number}
{attention receive seq num}
{connection-opening mode}
{interval bet. open requests}
{retries of open-conn req}'
{filler for proper alignment}

{abort send requests}
{filler for proper alignment}

{pointer to CCB}

{bytes waiting in send queue}
{available send-queue buffer}
{bytes in receive queue}
{avail receive-queue buffer}

{requested number of bytes}
{actual number of bytes}
{pointer to data buffer}

{1 if end of message}

{1 to send data now}

{client attention code}

{size of attention data}
{pointer to attention data}
{reserved}

{filler for proper alignment}

{send-blocking threshold}
{reserved}

{reserved}

{retransmit advice threshold}
{DDP checksum for packets}

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

dspNewCID:
(newCID:
END;

Integer);

DSPPBPtr = "DSPParamBlock;

The ASDSP Parameter Block

TYPE SDSPParamBlock =
PACKED RECORD
CASE INTEGER OF

{new connection ID}

1l: (dspParamBlock: DSPParamBlock);

2: (gLink: QElemPtr;
qType: Integer;
ioTrap: Integer;
ioCmdAaddr: Ptr;
ioCompletion: ProcPtr;
ioResult: OSErr;
ioNamePtr: StringPtr;
ioVRefNum: Integer;
ioCRefNum: Integer;
csCode: Integer;
gStatus: Longint;
ccbRefNum: Integer;
secureParams:

END;

SDSPPBPtr = “SDSPParamBlock;

The TRSecureParams Record

TYPE TRSecureParams =
PACKED RECORD

localCiD: Integer;
remoteCID: Integer;
remoteAddress: AddrBlock;
filterAddress: AddrBlock;
sendSeq: Longint;
sendWindow: Integer;
recvsSeq: Longint;
attnSendSeq: Longint;
attnRecvSeq: Longint;
ocMode: Byte;

Summary of ADSP

{reserved}

{reserved}

{reserved}

{reserved}

{completion routine}
{result code}
{reserved}

{reserved}

{adsp driver refNum}
{asdsp driver control code}
{reserved}

{connection end refNum}

TRSecureParams) ;

{parameters for dspOpenSecure}

{local connection ID}

{remote connection ID}

{address of remote end}

{address filter}

{local send sequence number}

{send window size}

{receive sequence number}
{attention send sequence number}
{attention receive sequence number}
{open connection mode}

5-81

(dSQV) [000j01d Weeng eleq yeLeiddy -

CHAPTER 5§

AppleTalk Data Stream Protocol (ADSP)

ocInterval: Byte; {open connection request }

{ retry interval}
ocMaximum: Byte; {open connection request }

{ retry maximum}
secure: Boolean; {for initiator, TRUE if session is }

{ authenticated}

{for recipient, TRUE if session was }

{ authenticated}
sessionKey: AuthKeyPtr; {encryption key for session}
credentialsSize: Longint; {length of credentials}
credentials: Ptr; {pointer to credentials}
workspace: Ptr; {pointer to workspace for }

{ connection. Align on }

{ even boundary and }

{ length = sdspWorkSize}
recipient: AuthIdentity; {identity of recipient }

{ or initiator if active mode}
issueTime: UTCTime; {time when credentials were issued}
expiry: UTCTime; {time when credentials expire}
initiator: RecordIDPtr; {RecordID of initiator returned in }

{ the buffer pointed to by this field}
hasIntermediary: Boolean; {set if credentials has an }

{ intermediary}
intermediary: RecordIDPtr; {Record ID of intermediary returned}

END;
C Summary
Constants

/*workspace used internally by ASDSP for the sdspOpen call*/

#define sdspWorkSize

enumq{
dspInit
dspRemove
dspOpen
dspClose
dspCLInit
dspCLRemove
dspCLListen

5-82 Summary of ADSP

2048

= 255,
= 254,
= 253,
= 252,
= 251,
= 250,
= 249,

/*size of ASDSP workspace*/

/*ADSP routine selectors*/
/*create a new connection end*/
/*remove a connection end*/
/*open a connection*/

/*close a connection*/

/*create a connection listener*/
/*remove a connection listener*/
/*post a listener request*/

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

dspCLDeny = 248, /*an open-connection request*/
dspStatus = 247, /*get status of connection end*/
dspRead = 246, /*read data from the connection*/
dspWrite = 245, /*write data on the connection*/
dspAttention = 244, /*send an attention message*/
dspOptions = 243, /*set connection end options*/
dspReset = 242, /*forward reset the connection*/
dspNewCID = 241, /*generate a CID for a */
/* connection end*/
sdspOpen = 229; /*open a secure connection*/
enum { /*ADSP connection-opening modes*/
ocRequest = 1, /*request a connection with a */
/* remote connection end*/
ocPassive = 2, /*wait for a connection request */
/* from remote connection end*/
ocAccept = 3, /*accept request as delivered by */
/* listener*/
ocEstablish = 4}; /*consider connection to be */
/* open*/
enum { /*BADSP connection end states*/
sListening =1, /*fot connection listeners*/
sPassive = 2, /*waiting for a connection */

/* réquest from remote */
/* connection end*/

sOpening = 3, /*requesting a connection */

/* with remote connection end*/
sOpen = 4, /*connection is open*/
sClosing =5, /*connection is being torn down*/
sClosed = 6}; /*connection end state */

/* is closed*/

/*ASDSP end-of-message and encrypt flags and masks*/

enum {
dspEOMBit =0, /*set if EOM at end of write*/
dspEncryptBit = 1}; /*set to encrypt message*/
enum {
dspEOMMask = 1<<dspEOMBit,
dspEncryptMask = l<<dspEncryptBit
}i

Summary of ADSP 5-83

(dSav) 1090101d Wesns ereq yeLsiddy -

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

enum { /*ADSP client event flags*/
eClosed = $80, /*received connection-closed */
/* event*/
eTearDown = $40, /*closed due to broken */
) /* connection*/
eAttention = $20, . /*received attention message*/
eFwdReset = $10}; /*received forward reset event*/
enum { /*miscellaneous ADSP constants*/
attnBufSize = 570, /*size of client attention */
/* buffer*/
minDSPQueueSize = 100}; /*minimum size of receive or */

/* send queue*/

enum { /*driver control ioResults*/
errRefNum = =1280, /*bad connection refNum*/
errAborted = =1279, /*control call was aborted*/
errState = -1278, /*bad connection state for this */
/* operation*/
errOpening = -1277, /*open connection request */
/* failed*/
errAttention = -1276, /*attention message too long*/
errFwdReset = =1275, /*read terminated */
/* by forward reset*/
errDSPQueueSize = =1274, /*DSP read/write queue */
/* too small*/
errOpenDenied = -1273}; /*open connection request */

/* denied*/

Data Types

The ADSP Connection Control Block Record

struct TRCCB {

unsigned char *ccbLink; /*link to next CCB*/

unsigned short refNum; /*reference number*/

unsigned short state; /*state of the connection end*/
unsigned char userFlags; /*user flags for connection*/
unsigned char localsocket; /*local socket number*/
AddrBlock remoteAddress; /*remote end internet address*/
unsigned short attnCode; /*attention code received*/
unsigned short attnSize; /*size of attention data*/

5-84 Summary of ADSP

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

unsigned char *attnPtr; /*pointer to attention data*/
unsigned char reserved([220]; /*reserved*/

}:

typedef struct TRCCB TRCCB;
typedef TRCCB *TPCCB;

The Address Block Record

struct AddrBlock {
short aNet; /*network number*/
unsigned char aNode; /*node ID*/
unsigned char aSocket; /*socket number*/

}:

typedef struct AddrBlock AddrBlock;

Parameter Block for dsplInit and dspCLInit

struct TRinitParams {

TPCCB ccbPtr; /*pointer to connection control block*/
ProcPtr userRoutine; /*client routine to call on event*/
unsigned short sendQSize; /*size of send queue (0..64K bytes)*/
unsigned char *sendQueue; /*client passed send queue buffer*/
unsigned short recvQSize; /*size of receive queue */

/* (0..64K bytes)*/
unsigned char *recvQueue; /*client passed receive queue buffer*/
unsigned char *attnPtr; /*client passed receive attention */

/* buffer*/
unsigned char localSocket; /*local socket number*/

}i

typedef struct TRinitParams TRinitParams;

Parameter Block for dspOpen, dspCLListen, and dspCLDeny

struct TRopenParams {

unsigned short localCiD; /*local connection ID*/
unsigned short remoteCID; /*remote connection ID*/
AddrBlock remoteAddress; /*address of remote end*/
AddrBlock filterAddress; /*address filter*/

unsigned long sendSeq; /*local send sequence number*/
unsigned short sendWindow; /*send window size*/

unsigned long recvSeq; /*receive sequence number*/

Summary of ADSP 5-85

(dSav) 10901014 weens eleq yeLejddy -

CHAPTER 5§

AppleTalk Data Stream Protocol (ADSP)

unsigned long attnSendSeq; /*attention send sequence number*/
unsigned long attnRecvSeq; /*attention receive sequence */
/* number*/
unsigned char ocMode; /*open connection mode*/
unsigned char ocInterval; /*open connection request retry */
/* interval*/
unsigned char ocMaximum; /*open connection request retry */
}: /* maximum*/

typedef struct TRopenParams TRopenParams;

Parameter Block for dspClose and dspRemove

struct TRcloseParams {
unsigned char abort; /*abort connection immediately if nonzero*/

}:

typedef struct TRcloseParams TRcloseParams;

Parameter Block for dspStatus

struct TRstatusParams {

TPCCB ccbPtr; /*pointer to cch*/
unsigned short sendQPending; /*pending bytes in send queue*/
unsigned short sendQFree; /*available buffer space in send */
/* queue*/
unsigned short recvQPending; /*pending bytes in receive queue*/
unsigned short recvQFree; /*available buffer space in */
}: /* receive queue*/

typedef struct TRstatusParams TRstatusParams;

Parameter Block for dspRead and dspWrite

struct TRioParams {

unsigned short reqCount; /*requested number of bytes*/
unsigned short actCount; /*actual number of bytes*/

unsigned char *dataPtr; /*pointer to data buffer*/

unsigned char eom; /*indicates logical end of message*/
unsigned char flush; /*send data now*/

}:

typedef struct TRioParams TRioParams;

5-86 Summary of ADSP

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

Parameter Block for dspAttention

struct TRattnParams {

unsigned short attnCode; /*client attention code*/
unsigned short attnSize; /*size of attention data*/
unsigned char *attnData; /*pointer to attention data*/
unsigned char attnInterval; /*retransmit timer in 10-tick */

/* intervals*/

typedef struct TRattnParams TRattnParams;

Parameter Block for dspOptions

struct TRoptionParams {

unsigned short sendBlocking; /*quantum for data packets*/
unsigned char sendTimer; /*send timer in 10-tick intervals*/
unsigned char rtmtTimer; /*retransmit timer in 10-tick */
/* intervals*/
unsigned char badSegMax; /*threshold for sending retransmit */
/* advice*/
unsigned char useCheckSum; /*use ddp packet checksum*/

}:

typedef struct TRoptionParams TRoptionParams;

Parameter Block for dspNewCID

struct TRnewcidParams {
unsigned short newcid;

}i

/*new connection ID returned*/

typedef struct TRnewcidParams TRnewcidParams;

The DSP Parameter Block
struct DSPParamBlock {
struct QElem *qLink; /*reserved*/
short qType; /*reserved*/
short ioTrap; /*reserved*/
Ptr ioCmdAddr; /*reserved*/
ProcPtr ioCompletion; /*pointer to completion routinex*/
OSErr ioResult; /*routine result*/
char *joNamePtr; /*reserved*/
short ioVRefNum; /*reserved*/

Summary of ADSP

(dSQv) 10001014 Weens eleq el ejddy -

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

short ioCRefNum;
short csCode;
long | gStatus;
short ccbRefNum;
union{
TRinitParams initParams;
TRopenParams openParams;
TRcloseParams closeParams;
TRioParams ioParams;
TRattnParams attnParams;
TRstatusParams statusParams;
TRoptionParams optionParams;
TRnewcidParams newCIDParams;
} u;

/*ADSP driver refNum*/
/*ADSP driver control code*/
/*reserved*/

/*dspInit, dspCLInit*/

/*dspOpen, dspCLListen, dspCLDeny*/
/*dspClose, dspRemove*/

/*dspRead, dspWrite*/
/*dspAttention*/

/*dspStatus*/

/*dspOptions*/

/*dspNewCID*/

typedef struct DSPParamBlock DSPParamBlock;

typedef DSPParamBlock *DSPPBPtr;

The ASDSP Parameter Block

struct TRSecureParams {

/*local connection ID*/

/*remote connection ID*/

/*address of remote end*/
/*address filter*/

/*local send sequence number*/
/*send window size*/

/*receive sequence number*/
/*attention send sequence number*/
/*attention receive sequence */

/* number*/

/*open connection mode*/

/*open connection request retry */
/* interval¥*/

/*open connection request retry */
/* maximum*/

/*TRUE if session was */

/* authenticated*/

/*encryption key for session*/

/*length of credentials*/
/*pointer to credentials*/

unsigned short localCiD;
unsigned short remoteCID;
AddrBlock remoteAddress;
AddrBlock filterAddress;
unsigned long sendSeq;
unsigned short sendWindow;
unsigned long recvSedq;
unsigned long attnSendSeq;
unsigned long attnRecvSeq;
unsigned char ocMode;
unsigned char oclnterval;
unsigned char ocMaximum;
Boolean secure;
AuthKeyPtr sessionKey;
unsigned longcredentialsSize;
Ptr credentials;
5-88 Summary of ADSP

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

Ptr workspace; /*pointer to workspace for */
/* connection. align on even */
/* boundary and length equals */
/* sdspWorkSize*/
AuthIdentity recipient; /*identity of recipient */
/* (or initiator if active mode)*/
UTCTime issueTime; /*when credentials were issued*/
UTCTime expiry; /*when credentials expire*/
RecordIDPtr initiator; /*pointer to RecordID of */
/* initiator returned*/
Boolean hasIntermediary; /*is set if credentials */
/* have an intermediary*/
RecordIDPtr intermediary; /*pointer to RecordID of */
/* intermediary returned*/
}i

The TRSecureParams Record

typedef struct TRSecureParams TRSecureParams;

struct SDSPParamBlock {

struct QElem *qLink; /*reserved*/
short qType; /*reserved*/
short ioTrap; /*reserved*/
Ptr ioCmdAddr; /*reserved*/
ProcPtr ioCompletion;
/*pointer to completion routine*/
OSErr ioResult; /*routine result*/
char *joNamePtr; /*reserved*/
short ioVRefNum; /*reserved*/
short ioCRefNum; /*ADSP driver refNum*/
short csCode; /*ADSP driver control code*/
long gStatus; /*ADSP internal use*/
short ccbRefNum; /*connection end refNum*/
union {
TRinitParams initParams; /*dspInit, dspCLInit*/
TRopenParams openParams; /*dspOpen, dspCLListen, dspCLDeny*/
TRcloseParams closeParams; /*dspClose, dspRemove*/
TRioParams ioParams; /*dspRead, dspWrite*/
TRattnParams attnParams; /*dspAttention*/
TRstatusParams statusParams; /*dspStatus*/
TRoptionParams optionParams; /*dspOptions*/
Summary of ADSP 5-89

(dSaV) |000101d Weexng ejeq el ejddy -

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

TRnewcidParams
TRSecureParams

} u;

}i

newCIDParams;
secureParams;

/*dspNewCID*/
/*dspOpenSecure*/

typedef struct SDSPParamBlock SDSPParamBlock;
typedef SDSPParamBlock *SDSPPBPtr;

Assembly-Language Summary

Constants

ADSP Queue Element Equates and Sizes

csQStatus
¢sCCBRef

Command Codes

dspInit
dspRemove
dspOpen
dspClose
dspCLInit
dspCLRemove
dspCLListen
dspCLDeny
dspStatus
dspRead
dspWrite
dspAttention
dspOptions
dspReset
dspNewCID
sdspOpen

5-90 Summary of ADSP

EQU
EQU

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

CSParam
csQStatus+4

255
254
253
252
251
250
249
248
247
246
245
244
243
242
241
229

;ADSP internal use
;refnum of ccb

:create a new connection end
;remove a connection end

;open a connection

:close a connection

;Create a connection listener
;jremove a connection listener
;post a listener request

;deny an open connection request
;get status of connection end
sread data from the connection
;write data on the connection
;send an attention message

;set connection end options
;forward reset the connection
sgenerate a cid for a connection end
;open a secure connection

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

Open Connection Modes

ocRequest EQU 1 ;request a connection with remote
ocPassive EQU 2 ;wait for a connection request from
;s remote
ocAccept EQU 3 ;accept request as delivered by
; listener
ocEstablish EQU 4 ;consider connection to be open

Connection States

sListening EQU 1 ;for connection listeners
sPassive EQU 2 ;waiting for a connection request

; from remote
sOpening EQU 3 ;jrequesting a connection with remote
sOpen EQU 4 ;connection is open
sClosing EQU 5 ;connection is being torn down
sClosed EQU 6 ;connection end state is closed

Client Event Flags (Bit-Mask)

eClosed EQU $80 ;received connection closed advice
eTearDown EQU $40 ;closed due to broken connection
eAttention EQU $20 ;received attention message
eFwdReset EQU $10 ;received forward reset advice

Miscellaneous Equates

attnBufsSize EQU 570 ;size of client attention message
minDSPQueueSize
EQU 100 ;sminimum size for both receive and
; send queues
sdspWorkSize EQU 2048 ;size of ASDSP workspace

ASDSP Encrypt and End-of-Message Flags and Masks

dspEOMBit EQU 0 ;set if EOM at end of write
dspEncryptBit EQU 1 ;set to encrypt message
dspEncryptMask EQU $1 ;mask for setting the encrypt bit
dspEOMMask EQU $2 ;mask for setting the EOM bit

Summary of ADSP 5-91

(dSQaV) 10901014 Weang ereq yeLeiddy -

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

Data Structures

ADSP Connection Control Block Data Structure

0 ccbLink long link to next CCB

4 refNum word reference number

6 state word state of the connection end

8 userFlags byte user flags for connection

9 localSocket byte local socket number
10 remoteAddress long internet address of remote end
14 attnCode word attention code received
16 attnSize word size of received attention data
18 attnPtr long pointer to received attention data
22 reserved 220bytes reserved

DPS Parameter Block Common Fields for ADSP and ASDSP

0 qLink long reserved
4 qType word reserved
6 ioTrap word reserved
8 ioCmdAddr long reserved
12 ioCompletion long address of completion routine
16 ioResult word result code
18 ioNamePtr long reserved
22 ioVRefNum word reserved
24 ioCRefNum word driver reference number
28 gStatus long reserved
32 ccbRefNum word reference number of CCB

dsplnit and dspCLInit Parameter Variant

26 csCode word dspInit or dspCLInit

34 ccbPtr long pointer to CCB

38 userRoutine long pointer to routine to call on connection events

42 sendQSize word size in bytes of the send queue

44 sendQueue long pointer to send queue

48 recvQSize word size in bytes of the receive queue

50 recvQueue long pointer to receive queue

54 attnPtr long pointer to buffer for incoming attention messages
58 localsocket byte DDP socket number for this connection end

dspOptions Parameter Variant

16 ioResult word result code

24 ioCRefNum word driver reference number

26 csCode word always dspOptions

34 sendBlocking word send-blocking threshold

38 badsegMax byte threshold to send retransmit advice
39 useCheckSum byte DDP checksum flag

5-92 Summary of ADSP

CHAPTER 5

AppleTalk Data Stream Protoco! (ADSP)

dspOpen, dspCLListen, and dspCLDeny Parameter Variant

26 csCode word dspOpen, dspCLListen, or dspCLDeny
34 localCiD word D of this connection end

36 remoteCID word ID of remote connection end

38 remoteAddress long remote internet address

42 filterAddress long filter for open-connection requests
46 sendSeq long initial send sequence number

50 sendWindow word initial size of remote receive queue
52 recvSeq long initial receive sequence number

56 attnSendSeq long attention send sequence number
60 attnRecvSeq long attention receive sequence number
64 ocMode byte connection-opening mode

65 oclnterval byte interval between open requests

66 ocMaximum byte retries of open-connection request

sdspOpen Parameter Variant

26 csCode word sdspOpen

34 localCID word D of this connection end

36 remoteCID word ID of remote connection end

38 remoteAddress long remote internet address

42 filterAddress long filter for open-connection requests

46 sendSeq long initial send sequence number

50 sendwWindow word initial size of remote receive queue

52 recvSeq long not used for ASDSP

56 attnSendSeq long attention send sequence number

60 attnRecvSeq long not used for ASDSP

64 ocMode byte connection-opening mode

65 ocInterval byte interval between open requests

66 ocMaximum byte retries of open-connection request

68 secure word flag that determines if ASDSP authenticates

the connection

70 sessionKey long pointer to the encryption key for the session

74 credentialsSize long length of credentials

78 credentials long pointer to credentials

82 workspace long pointer to workspace for connection

86 recipient long identity of recipient

90 issueTime long time when credentials were issued

94 expiry long time when credentials expire

98 initiator long pointer to record ID of initiator
102 hasIntermediary word TRUE if credentials have an intermediary
104 intermediary long pointer to record ID of intermediary

dspNewCID Parameter Variant

26 csCode word always dspNewCID
34 newCID word ID of new connection

dspClose, dspRemove, and dspCLRemove Parameter Variant

26 csCode word dspClose, dspRemove, or dspCLRemove
34 abort byte abort send requests or connection listener if not 0

Summary of ADSP 5-93

(dSaV) [000101d Weang ejeq e eiddy -

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

dspStatus Parameter Variant

26 csCode word always dspStatus

34 statusCCB pointer pointer to CCB

38 sendQPending word bytes waiting to be sent or acknowledged
40 sendQFree word available send queue in bytes

42 recvQPending word bytes waiting to be read from queue

4 recvQFree word available receive queue in bytes

dspRead and dspWrite Parameter Variant

26 csCode word dspRead or dspWrite

34 reqCount word requested number of bytes

36 actCount word actual number of bytes read or written

38 dataPtr pointer pointer to data buffer

42 eom byte for ADSP: 1 if end of message; 0 otherwise
for ASDSP: bit 0 = end of message; bit 1 turns on
encryption, if set

43 flush byte 1 to send data now; 0 otherwise

dspAttention and dspReset Parameter Variant

26 csCode word dspAttention or dspReset

34 attnCode word client attention code

36 attnSize word size of attention data in bytes

38 attnData pointer pointer to attention data

Result Codes

noErr 0 No error or unrecognized event code

ddpSktErr -91 Error opening socket

errOpenDenied -1273 Open request denied by recipient

errDSPQueueSize -1274 Send or receive queue is too small

errFwdReset -1275 Read terminated by forward reset

errAttention -1276 Attention message too long

errOpening -1277 Attempt to open connection failed

errState -1278 Bad connection state for this operation

errAborted -1279 Request aborted by dspRemove or
dspClose routine

errRefNum -1280 Bad connection reference number

kOCEUnsupportedCredentialsVersion -1543 Credentials version not supported

kOCEBadEncryptionMethod -1559 During the authentication process, the

ASDSP implementations could not agree
on an encryption method to be used
(ASDSP can support multiple stream
encryption methods. In Release 1, only
RC4 and “no encryption” are supported.)

kOCENoASDSPWorkSpace -1570 You passed NIL for the workspace
parameter
kOCEAuthenticationTrouble -1571 Authentication process failed

5-94 Summary of ADSP

CHAPTER 6

AppleTalk Transaction
Protocol (ATP)

Contents

About ATP 6-3
The ATP Packet Format ~ 6-5
At-Least-Once and Exactly-Once Transactions 6-7
The Buffer Data Structure =~ 6-8
ATP Flags 6-8
Using ATP 69
Writing a Requester ATP Application ~ 6-9
Creating a Buffer Data Structure ~ 6-12
Specifying the Parameters for the Send Request Function ~ 6-12
Writing a Responder ATP Application 6-14
Opening and Setting Up a Socket to Receive Requests ~ 6-14
Responding to Requests ~ 6-16
Canceling an ATP Function ~ 6-19
ATP Reference 6-20
Data Structures ~ 6-20
The Buffer Data Structure ~ 6-20
The ATP Parameter Block 6-21
The Address Block Record ~ 6-23
Routines 6-23
Sending an ATP Request ~ 6-24
Opening and Closing an ATP Socket ~ 6-30
Setting Up a Socket to Listen for Requests ~ 6-32
Responding to Requests ~ 6-34
Canceling Pending ATP Functions 6-38
Building a Buffer Data Structure ~ 6-44

Contents 6-1

6-2

CHAPTER 6

Summary of ATP 6-46

Pascal Summary 6-46
Constants 6-46
Data Types 6-46
Routines 6-48

C Summary 6-49
Constants 6-49
Data Types 6-50
Routines 6-53

Assembly-Language Summary

Constants 6-54
Data Structures 6-55
Result Codes 6-58

Contents

CHAPTER 6

AppleTalk Transaction Protocol (ATP)

This chapter describes the AppleTalk Transaction Protocol (ATP) that you use to send

a request from one application or process to another that can satisfy the request and
respond to it. Because ATP is transaction-based—that is, the response data is bound to
the request data and the exchange of information is limited to the transaction—you do
not incur the overhead entailed in establishing, maintaining, and breaking a connection
that is associated with connection-oriented protocols, such as ADSP. However, you can
transfer only a limited amount of data using ATP.

You should read this chapter if you want to write an application that requires reliable
delivery of data while allowing one side of the communication to ask the other side to
perform a service and return a small amount of data.

For an overview of ATP and how it fits within the AppleTalk protocol stack, read the
chapter “Introduction to AppleTalk” in this book, which also introduces and defines
some of the terminology used in this chapter. For complete explanation of the ATP
specification, see Inside AppleTalk, second edition.

About ATP

The AppleTalk Transaction Protocol offers a simple, efficient means of transferring
small amounts of data across a network; it lets one network entity request information

of another entity that possesses only the ability to respond to the request. ATP ensures
that data is delivered without error or packet loss.

ATP communication is based on the concept of a transaction: one party, the requester,
makes a request of another party, the responder, to perform a service and return a
response. This discussion uses the term requester to refer to an application that uses ATP

to make a request and responder to refer to an application that uses ATP to respond to
a request.

When it receives a request, the responder application performs the necessary processing
to service it and sends a response message back to the requester, completing the
transaction. The response message can be data that reports the result of the trans-

action or information produced as a result of the processing. Here is how a basic
transaction occurs:

m The requester application calls the .ATP interface, and the .ATP driver on the
requester side sends the request to the .ATP driver on the responder side.

m The .ATP driver on the responder side passes the request to the responder application,
which is listening for incoming .ATP requests.

m The responder application satisfies the request and prepares a response, then calls
the ATP interface to transmit the response via the .ATP driver back to the requester
application.

Figure 6-1 shows this interaction.

About ATP 6-3

(d.Lv) 10901014 UonoeSUBI] Yjey ejddy -

CHAPTER 6

AppleTalk Transaction Protocol (ATP)

Figure 6-1 An ATP transaction

6-4

e e e

@ &

ATP transaction ATP transaction
requester responder
ATP ATP
requesting responding
end end

-ljt ATP dialog ;:

The amount of data that a requester application can send is limited to 578 bytes; the
amount of data that a responder application can return is limited to 4624 bytes. The ATP
programming interface includes a function that lets you add one or more single packets
to follow the initial response, up to a total of eight packets including the initial number
of packets sent, if you do not send eight packets in the initial response.

Note

Although you can use the ATP add-response function to extend the
amount of response data, if you intend for your application to transfer
large amounts of data, you should choose a transport protocol other
than ATP. For example, you can use ADSP, which allows you to send
and receive continuous streams of data. ¢

You can implement applications that use ATP to perform network-based transactions in
the following two ways:

® You can write a single application that handles both the responder and requester
actions of an ATP transaction and run that application on two networked nodes. This
method allows each application to act as either the requester or the responder. The
interaction remains asymmetric; only one side can control the communication during
a single transaction. However, each side has the capacity to initiate a transaction by
sending a request to the other side.

® You can write two distinct applications, one application that implements only the
requester part of a transaction and another application that implements only the
responder side. This scenario lends itself to a client-server model in which many
nodes on a network run the requester application (client), while one or more nodes
run the responder application (server); one server can respond to transaction requests
from various clients.

About ATP

CHAPTER 6

AppleTalk Transaction Protocol (ATP)

ATP is a direct client of DDP, and it adds reliable delivery of data to the transport

delivery services that DDP provides. Figure 6-2 shows ATP and the underlying
protocol stack.

Figure 6-2 ATP and its underlying protocols

.

| | LAP Manager

y
]
]
.
e

The ATP Packet Format

An ATP packet includes an 8-byte header followed by up to 578 bytes of data. An ATP

packet is preceded by the DDP header that, in turn, is preceded by the data-link header,
referred to as the frame header.

The ATP header contains the following information:

m The first byte consists of control information. Bits within this byte are set to identify
aspects of a request or a response function.

m The second byte contains a bitmap/sequence number. This field is 8 bits wide, and
its use and significance depend on whether the ATP packet is a request packet or a
response packet. For request packets, this field is referred to as the transaction
bitmap, and it identifies the number of buffers that a requester application has
reserved for the response data. For response packets, this field is referred to as the
ATP sequence number, and it is used to identify the sequential position of the
response packet in the complete response message; ATP uses the sequence number
to manage and handle lost or out-of-sequence response packets.

About ATP 6-5

(d.LV) 10901014 uopoesuel] yjersiddy n

CHAPTER 6

AppleTalk Transaction Protocol (ATP)

m The third and fourth bytes carry the transaction ID assigned to a request and used by
the response to that request.

m The fifth through eighth bytes carry user data; an application can use these bytes for
its own purposes, for example, to transfer command information.

The ATP data follows the header. It can consist of from 0 to 578 bytes. An ATP packet is
enclosed in a DDP datagram that is enclosed in a data-link frame. Figure 6-3 shows a
close-up view of the first byte of the ATP header, the control information byte.

Figure 6-3 The ATP packet header control information byte

6-6

Supplied
by interface
7/6(514(3[2(1]0
_ J| | l
X0 STS Chksum
EOM TID valid
Reserved XCall

The Control Information Byte

ATP applications call response and request functions that generate request and
response packets. (ATP uses the release packet internally.) When set, the bits have
the following meanings:

Bit Meaning
Use the DDP checksum feature for this packet.

ATP has assigned the request transaction ID; the TID field value is now valid.
This request uses an extended parameter block.

To the requester: retransmit the request immediately (send-transmission status).
This is the last packet of the response message (end of message).

G b W N = O

This request is an exactly-once transaction.

The Bitmap/Sequence Number

ATP ensures reliable delivery of data. This means that ATP retransmits all lost or
dropped packets, and if it is unable to complete a transaction properly, ATP returns an
error as the function result. To receive all the packets that make up a response message,
a requester application must provide enough buffer space to hold the data. A request
message consists of a single packet, while each response message can contain up to eight
response packets.

About ATP

CHAPTER 6

AppleTalk Transaction Protocol (ATP)

Response packets are numbered from 0 to 7. ATP uses the sequence number to manage
the transmission and receipt of response packets; the packet header ATP sequence
number field contains 8 bits, 1 for each response packet.

ATP sets the sequence number in the request header to tell the .ATP driver code on the
responder side which response packets the requester has not received. When a requester
does not receive a complete response message, the .ATP driver code on the responder
side can then send again only the packets that the requester side has not received, based
on the bit settings of the transaction sequence number. ATP handles the retransmission
of data internally without requiring any action on the part of your application. For
information about the buffer records, see “The Buffer Data Structure” on page 6-20.

The Transaction ID

The third and fourth bytes of the ATP header carry a 16-bit transaction ID. The .ATP
driver code on the requester side of a transaction assigns a unique transaction ID to each
request that a requester application makes. The responder application that services the
request includes this number as a parameter to the response call that it issues to send

its response back to the requester. The transaction ID ties together the request and its
response, ensuring that ATP delivers the correct data in response to each request. An
application can issue and have pending multiple concurrent asynchronous requests; ATP
uses the transaction ID to keep track of them.

User Bytes

ATP does not concern itself with the last 4 bytes of the ATP header. They are reserved for
your use. You can use these bytes for any purpose prearranged by the requester and

responder applications. The ATP functions include a parameter that you use to specify
this data.

At-Least-Once and Exactly-Once Transactions

ATP supports two types of transactions: at-least-once transactions and exactly-once
transactions. An at-least-once transaction ensures that the responder application
receives every request directed to it at least once. However, this mode allows for the
possibility of a responder application receiving duplicate requests.

For example, when you send a request that the .ATP driver code on the responder side
receives, it passes the request on to the responder application. Your responder applica-
tion then processes the request and creates a response to it. The ATP responder driver
sends that response to your requester application. If the response is lost during the
transmission, ATP retransmits the request after a period of time passes; you can set

a value to control this timeout period. The ATP responder driver code receives the
duplicate request and repeats the cycle of passing it on to your responder application for
processing. At-least-once transactions ensure that the data is delivered at least once, and
possibly more than once. You can use this transaction mode if it does not have adverse
affects on the responder application.

About ATP 6-7

(d1y) |00016]d uojjoesuelj el ajddy -

6-8

CHAPTER 6

AppleTalk Transaction Protocol (ATP)

An exactly-once transaction ensures that the responder application receives a specific
request only once. These are also referred to as XO, as in exactly-once transactions.

To create this result, the ATP responder code saves the response packets until the
transaction is complete. This means that ATP itself can retransmit packets without
requiring that your responder application reprocess the request.

The ATP responder code saves the response packets until the ATP code on the requester
side indicates that it has received all of the packets. The ATP code on the requester side
sends a transaction release packet to the ATP code on the responder side to signal that
the requester application has received all of the response packets, so that ATP can now
release them.

Because the transaction release packet could also be lost during transmission, ATP backs
up this process with a transaction release timer. ATP marks packets saved for retrans-
mission with a timestamp. When a packet ages beyond the amount of time that you set
for the responder’s release timer, ATP discards the packet.

You can set the release timer value that the ATP code on the responder end uses from
your requester application; the send request functions include a release timer parameter
for this purpose. For more information about this parameter, see “PSendRequest” on
page 6-24 or “PNSendRequest” on page 6-27.

The Buffer Data Structure

The responder application needs to provide space to store the data to be sent to the
requester until the requester application has received all of the data. The requester
application needs to provide space to receive the data that it expects to receive as a result
of the transaction. Each response can include up to eight packets. To handle the storage
of these packets, the ATP client application at each end of the transaction provides a
buffer data structure. The buffer data structure is designed to allow ATP to easily
manage reliable transfer of multiple packets belonging to a single response message. A
buffer data structure consists of an array of eight elements, each of which contains a
pointer to a record of type BDSElement.

Each record contains a field for the size of the buffer created to hold the data and a
pointer to that buffer. It also contains fields for the size of the data in the response packet
and the user bytes that were passed in the packet header, if these bytes were used to
communicate additional information. You can create your own buffer data structures,

or you can use the ATP utility provided for this purpose. For a description of the BDS
data type, see “The Buffer Data Structure” on page 6-20. For a description of the utility
that you can use to build the buffer data structure, see “BuildBDS” on page 6-44.

ATP Flags

Many of the functions that you use for an ATP transaction pass control information in an
ATP parameter block field called atpFlags. This field comprises a single byte whose
bits you can set to signal control information, if appropriate. In some cases, ATP sets
these flag bits for its own use. The discussion of each function that uses these flags
includes the control information about the bits specific to that function. Table 6-1 shows
the Pascal and assembly constants defined for these bits.

About ATP

CHAPTER 6

AppleTalk Transaction Protocol (ATP)

Table 6-1 Constants for ATP flag bits

Pascal Assembly

constant constant Meaning

atpSendChkvalue sendChk Use DDP’s checksum feature when sending a
packet.

atpTIDValidvalue tidvalid The transaction ID value that ATP assigns is set;
you can check the reqTID field now.

None atpXcall This exactly-once transaction request uses an
extended parameter block, the last field of which
(TRelTime) is set to the release timer value for
the ATP responder side.

atpSTSvalue atpSTSBit The ATP requester must retransmit a request
immediately. (ATP sets the send-transmission-
status bit, which it uses internally.)

atpEOMvalue atpEOMBit The last packet in this response is the end
of the message.

atpXoOvalue atpXOBit This request is an exactly-once transaction.

Using ATP

This section describes how to use ATP to

m send a transaction request to a responder application that is an ATP socket client
m receive a request from an ATP requester application and respond to it
m cancel pending ATP requests and responses

You can write a single ATP application that includes both the responder and requester
code or two ATP applications that separately provide the responder and the requester
services. This section describes how to write a requester application, and then it describes
how to write a responder application.

Writing a Requester ATP Application

You use the PSendRequest function or the PNSendRequest function to send an ATP
request to another socket.

Before you can use ATP, you must first open the .MPP driver, which in turn opens the
.ATP driver. Use the Device Manager’s OpenDriver function to open the .MPP driver.
Even if you suspect that the MPP and the .ATP drivers are open, you should call

the OpenDriver function for the MPP driver to ensure that this is the case. Calling
OpenbDriver for a driver that is already open will not produce harmful repercussions.
See the chapter “Device Manager” in Inside Macintosh: Devices for information on

the OpenDriver function. Do not close the .MPP driver when you are finished using

Using ATP 6-9

(d1V) 1090101d uonoeSUEI] YEl ojddy '

CHAPTER 6

AppleTalk Transaction Protocol (ATP)

ATP because other applications dependent on it or on the .ATP driver require that it
remain open.

To send an ATP request, follow these steps:

1. Create a buffer data structure (BDS) to hold the data that you expect to receive in
response to your request. For information on how to do this, see “Creating a Buffer
Data Structure” on page 6-12.

2. To allow ATP to assign the socket to be used to send the request, use the
PSendRequest function. To specify a particular socket to be used to send the request,
use the PNSendRequest function; in this case, you must call POpenATPSocket to
first open the socket (see “POpenATPSkt” on page 6-30 for information about this
function). For information on the parameters required for these functions, see
“Specifying the Parameters for the Send Request Function” on page 6-12.

3. You can get the transaction ID that ATP assigns to a request from the reqTID
parameter; you need this ID to cancel a request. However, before you check this
field, make sure that the valid transaction ID (atpTIDValidvalue) bit (bit 1) of
the atpFlags parameter is set. ATP sets this bit to inform you that it has assigned
a transaction ID and that the reqT1ID field is now valid.

4. If you opened a socket to be used for the PNSendRequest call, close the socket using
PCloseATPSkt. See”PCloseATPSkt” on page 6-31 for information on how to use this
function. If you use the PSendRequest function, ATP allocates a socket and opens
and closes it for you.

The code in Listing 6-1 shows how to open a socket and issue a call to the PSendRequest
function. The code uses the BuildBDS function to create a buffer data structure to

hold the response data it expects in response. This segment of code assumes that the
application has already called the OpenDriver function to open the MPP and

.ATP drivers.

Listing 6-1 Opening a socket and sending an ATP request

CONST
kMaxPacketSize = 578; {maximum packet size we can receive}
kNRespBuffs = 8; {you allow eight response buffers}

kOurRespBufSize = kMaxPacketSize * kNRespBuffs;
{response buffer size}

VAR
err: OSErr;
reqLength: Integer;
nBufs: Integer;
ref: Integer;
targetAddr: AddrBlock;
gAtpPBPtr: ATPPBPtr;
gRegBufPtr: Ptr;

gRespBufPtr: Ptr;
gSRespBdsPtr: BDSPtr;

6-10 Using ATP

CHAPTER 6

AppleTalk Transaction Protocol (ATP)

BEGIN

gAtpPBPtr := ATPPBPtr(NewPtr(SizeOf (ATPParamBlock)));
gRegqBufPtr := NewPtr(kMaxPacketSize);

gRespBufPtr := NewPtr (kOurRespBufSize);

gSRespBdsPtr := BDSPtr(NewPtr(SizeOf (BDSType)));

err := OpenDriver('MPP',ref);

if err <> noErr THEN DoErr(err);

WITH gAtpPBPtr" DO

BEGIN

atpSocket := 0; {dynamically allocate a socket}
addrBlock.aNet := 0; {accept requests from anyone}
addrBlock.aNode := 0;
addrBlock.aSocket := 0;
END; *
err := POpenATPSkt (gAtpPBPtr,false); {socket is returned in }
{ gAtpPBPtr”".atpSocket}

IF err <> noErr THEN DoErr(err);
IF gAtpPBPtr”.ioResult <> noErr THEN DOErr(err):

MyPrepareRequestData(gReqBufPtr, @reqLength);
{user routine that prepares the }
{ request data to be sent}
MyLocateTargetAddress(@targetAddr);
{user routine that locates the }
{ target machine}

{Set up your BDS structure.}
nBufs := BuildBDS(gRespBufPtr,Ptr(gSRespBdsPtr), kOurRespBufSize);

WITH gAtpPBPtr” DO
BEGIN
atpFlags := atpXOvalue; {issue an exactly-once transaction}
addrBlock.aNet := targetAddr.aNet;
{set up the target machine}
addrBlock.aNode := targetAddr.aNode;
addrBlock.aSocket := targetAddr.aSocket;

reqLength := reqgLength; {size of your request data}
reqgPointer := gReqBufPtr; {pointer to actual request data}
numOfBuffs := nBufs; {number of responses expected}

bdsPointer := Ptr(gSRespBdsPtr); {your BDS pointer}

timeOutval := 3; {timeout interval}
retryCount := 5; {number of retries}
END;

err := PSendRequest(gAtpPBPtr,false);

Using ATP 6-11

(d1v) 10001014 uonoesuel] el sjddy -

CHAPTER 6

AppleTalk Transaction Protocol (ATP)

IF err <> noErr THEN DoErr(err);

MyProcessResponses (gAtpPBPtr” .bdsPointer, gAtpPBPtr” .numOfResps) ;

{user routine to process the }
{ response data returned}

{Clean up after you are done.}
DisposePtr (Ptr(gAtpPBPtr));
DisposePtr(gRegBufPtr);
DisposePtr(gRespBufPtr);
DisposePtr(Ptr(gSRespBdsPtr));

END.

6-12

Creating a Buffer Data Structure

Response data can comprise up to eight packets. ATP uses the organization of the buffer
data structure (BDS) to manage these packets and ensure their complete delivery. The BDS
must be an array of up to eight elements. You can create the buffer data structure yourself,
or you can use the BuildBDS function for this purpose. You pass BuildBDS a pointer to a
buffer and the length of the buffer, and it creates up to eight elements, one for each packet,
depending on the size of the buffer that you supply. BuildBDS returns as its function
result the number of elements that it creates; you pass this number and a pointer to the
buffer data structure to the PSendRequest or PNSendRequest function that you call to
issue the request. The memory that you allocate for the buffer must be nonrelocatable
until the PSendResponse call completes execution. After PSendResponse returns, you
should release this memory if you do not intend to reuse it.

Specifying the Parameters for the Send Request Function

When you call either the PSendRequest function or the PNSendRequest function to
send an ATP request, you must do these tasks:

m Specify as the value of the addrBlock parameter the AppleTalk internet address of
the socket whose client responder application you are sending the request to.

m Specify in the reqLength field the size in bytes of the request and in the regPointer
field a pointer to the request data. The buffer that you use to store the request belongs
to ATP until the PSendRequest (or PNSendRequest) function completes execution,
after which you can either reuse the memory or release it.

m Set the timeOutVal and retryCount parameters appropriately for your network.
See the following section, “Setting the Timeout and Retry Count Parameters.” If this is
an exactly-once request, set bit 5 (atpXOvalue) of the atpFlags parameter to ensure
that the responder application receives a specific request only once. For additional
information about exactly-once transactions, see “At-Least-Once and Exactly-Once
Transactions” on page 6-7.

Using ATP

CHAPTER 6

AppleTalk Transaction Protocol (ATP)

You can send up to 4 bytes of additional information in the userData parameter,
and ATP will pass this to the responder application in the userData parameter of its
PGetRequest call. To make this parameter meaningful, both the requester and the
responder applications should agree on the use of these additional data bytes that are
separate from the request or response data sent in an ATP transaction.

Setting the Timeout and Retry Count Parameters

When a transaction does not complete on the first transmission, ATP retries it a number
of times. You can control ATP’s retry behavior by setting these two parameters: the
timeoOutVval field and the retryCount field. The timeOutvVal value determines

in seconds how long ATP waits before resending the original request packet; the
retryCount value determines how many times ATP retries to send the request.

ATP optimizes how it performs retries based on the response bitmap; ATP on the
requester side resends the request with the header bitmap indicating to the ATP driver
on the responder side which packets it should resend. (See the “The Bitmap/Sequence
Number” on page 6-6 for more information.) ATP makes this request to resend until it
receives all of the packets or it exhausts the number of retry attempts that you specify. If
ATP exhausts all of the retry attempts before the requester side receives all of the
packets, ATP returns an error.

To choose the correct timeout value and retry count combination, you should consider
the speed and complexity of your network—for example, take into account the degree of
traffic congestion and whether your network contains multiple routers. You can use the
AppleTalk Echo Protocol (AEP) echo socket to test the network performance and adjust
the values accordingly. For more information about using the AEP echo socket to test
network performance, see the chapter “Datagram Delivery Protocol (DDP)” in this book.
You can store various pairs of values in a preferences resource file so that you can easily
change them to adapt to the speed of the network.

If you want ATP to retry indefinitely to send the request, you can set the retryCount
parameter to 255. In this case, ATP will send the request repeatedly until either the ATP
responder end satisfies the request and sends back a response or you cancel the request.
To cancel a PSendRequest call, you can use either the PKillSendReq function or the
PRelTCB function. To cancel a PNSendRequest call, you can use the PKillSendReq
function only.

Setting the Release Timer Value

For exactly-once transactions, the ATP responder code saves the response packets until
the ATP code on the requester side indicates that it has received all of them. When this is
the case, the ATP code on the requester side sends a transaction release packet to tell the
ATP code on the responder side to release the response packets. Because this packet
could be dropped or lost during transmission, ATP uses a release timer to discard the
retained packets after a specified amount of time and to release the memory used to
store them.

Using ATP 6-13

(d.LV) [090}01d Uonoesuei] yeLajddy -

6-14

CHAPTER 6

AppleTalk Transaction Protocol (ATP)

If the nodes at both ends of the ATP connection are running AppleTalk Phase 2
drivers, you can control the release timer value that determines when ATP releases
the response packets by setting the 3 lower bits of the TRelTime parameter to one
of the following values:

Setting of
TRelTime release timer
000 30 seconds
001 1 minute
010 4 minutes
100 8 minutes

Writing a Responder ATP Application

A responder application receives incoming ATP requests, processes them, and sends a
response to the requester application. To write a responder application, you open a
socket that you set up to listen for requests. When you receive a request, you process it
and send a response back to the requester application. The response can consist of a
message reporting the outcome of the processing you performed or data resulting from
the processing.

Before you can use ATP, you must first open the .MPP driver, which in turn opens the
.ATP driver. Use the Device Manager’s OpenDriver function to open the .MPP driver.
Even if you suspect that the .MPP and the .ATP drivers are open, you should call the
OpenDriver function for the MPP driver to ensure that this is the case. Calling
OpenDriver for a driver that is already open will not produce harmful repercussions.
See the chapter “Device Manager” in Inside Macintosh: Devices for information on the
OpenDriver function. Do not close the .MPP driver when you are finished using ATP
because other applications dependent on it or the . ATP driver require that it remain open.

Opening and Setting Up a Socket to Receive Requests

To open a socket to receive incoming requests, you use the following procedure:

1. To open the socket, call the POpenATPSkt function, providing it with values as
follows:

o To direct ATP to open a specific socket, provide the number of that socket as the
value of the atpSocket parameter; to allow ATP to dynamically assign a socket,
specify 0 as the value of this field.

o To filter the sockets from which you will accept requests, set the internet socket
address fields of the addrBlock parameter; to accept requests from any socket,
set all three fields to 0. You can filter requests based on network, socket, or node
numbers. For example, to accept requests from all sockets on the node whose ID
is 112, you set the network and socket number fields of the address block record to
0 and the node ID field to 112.

Using ATP

CHAPTER 6

AppleTalk Transaction Protocol (ATP)

2. To set up the socket to receive requests, call the PGetRequest function, which listens

for an incoming request on the socket you specify. You provide it with the parameter
values as follows:

0 Allocate a buffer to store the incoming request; you pass PGetRequest a pointer
to this buffer and the length of the buffer. Unless you know the exact size of the
incoming request, allocate at least 578 bytes of nonrelocatable memory for this
buffer to accommodate the maximum request packet size. Set the reqPointer
parameter to point to the buffer, and set the reql.ength parameter to the size in
bytes of the buffer.

O Set the atpSocket parameter to the number of the socket to be used to listen for
the request; this is the socket you opened through the POpenATPSkt call.

O Set the ioCompletion parameter. In most cases, you should issue the
PGetRequest call asynchronously so that your application can continue execution
while PGetRequest listens for an incoming call; the PGetRequest function
returns after it receives an incoming request or encounters an error condition. If
you issue this call asynchronously, you must either specify a completion routine or
set the ioCompletion parameter to NIL. If you use a completion routine, before it
exits, your completion routine can call the PGetRequest function again to listen
for the next incoming request. If you do not use a completion routine, you must
poll the ioResult field for indication of an incoming request to determine when
the function completes execution and whether an error condition or an incoming
request caused the function to complete. For more information on calling a routine
asynchronously, see the chapter “Introduction to AppleTalk” in this book.

3. Process the values that PGetRequest returns. The PGetRequest function returns
the following values that may be of use to your application:

O The request transaction ID reqTID that ATP assigns to this request. If you intend
to respond to the request, save this value because you will need to pass it to the
PSendResponse function and the PAddResponse function to identify the request
for which the response message is intended. For more information on the trans-
action ID, see the discussion in the section “The ATP Packet Format” beginning on
page 6-5.

0 The userData parameter, which contains any additional information that the
requester application has sent. To make this parameter meaningful, both the
requester and the responder applications should agree on the use of these
additional data bytes that are separate from the request or response data sent
in an ATP transaction.

O The exactly-once bit (bit 5) of the atpFlags parameter, which is set if the request
received is part of an exactly-once transaction. ATP uses this information internally
to ensure that your responder application receives this request only once.

Listing 6-2 on page 6-17 shows how to open a socket and issue a call to the PGetRequest
function to receive requests.

Using ATP 6-15

(dLv) 10901014 uonoesuel] yjey ejddy -

6-16

CHAPTER 6

AppleTalk Transaction Protocol (ATP)

Responding to Requests

After you process a request and create a response message, you call the PSendResponse
function to send the response. ATP assembles the response packets into a message and
returns them to the requester application. You can send the request through the same
socket that you use to receive incoming requests, or you can specify a different socket to
be used for this purpose. To use a different socket, you must first open the socket by
calling POpenATPSocket. The code in Listing 6-2 opens a new socket that it uses to
send the response.

1. Create a buffer data structure to hold the response data that you want to send.

The buffer data structure (BDS) must be an array of up to eight elements. You can use
the BuildBDS function to create the BDS. You pass BuildBDS a pointer to a buffer
and the length of the buffer, and it creates up to eight elements depending on the size
of the buffer that you supply. BuildBDS returns as its function result the number of
elements that it creates; you pass this number and a pointer to the buffer data
structure to the PSendResponse call. The memory that you allocate for the buffer
must be nonrelocatable until the PSendResponse call completes execution. After
PSendResponse returns, you should release this memory.

2. To send the response, call the PSendResponse function. The response data cannot
exceed 4624 bytes. If you need to send more information, you can follow the
PSendResponse function with one or more calls to the PAddResponse function
until you have sent a total of eight packets, including the packets that you sent
when you called the PSendResponse function; each time you call the PAddResponse
function, you can send one additional packet consisting of 578 bytes of data.

O For the input address block (addrBlock) and transaction ID (transID)
parameters to PSendResponse, use the address block (addrBlock) and
request transaction ID (reqTID) parameter values that the PGetRequest
function returned.

0 Set the numo£fBuf£s field to the number of response packets that you are sending.
If you are sending fewer packets than the requester expects to receive, you must set
the end-of-message (atpEOMvalue) bit (bit 4) in the atpFlags field to indicate
that the last packet is the final one in the response message. The bitmap returned
by the PGetRequest function indicates the number of packets that the requester
expects in response.

0 Set the atpSocket field to the number of the socket that you are using to send
the response.

3. Call the CloseATPSkt function to close the socket that you opened to receive
requests and respond to them after you are finished with this socket. You can use
the socket to continue to listen for requests until your application completes
execution, but you should explicitly close the socket before exiting the program.

The code in Listing 6-2 first shows how to open a socket and issue a call to the
PGetRequest function to receive requests. Then it shows how to prepare the
response data and send it.

Using ATP

CHAPTER 6

AppleTalk Transaction Protocol (ATP)

Listing 6-2 Opening a socket to receive a request and sending response data
CONST
kMaxPacketSize = 578; {maximum packet size you can receive}
kMaxResponses = 8; {maximum number of responses to expect}

kRespBufSize = kMaxPacketSize * kMaxResponses;
{your response buffer}

VAR
err: OSErr;
NumOfBufs: Integer;
ref: Integer;
nBufs: Integer;
RegBitMap: BitMapType;
thisBit: LongInt;
gAtpPBPtr: ATPPBPtr;
gSendRespPBPtr: ATPPBPtr;
gGetRegBufPtr: Ptr;
gSRespBuf: Ptr;
gSRespBdsPtr: BDSPtr;

BEGIN

gAtpPBPtr := ATPPBPtr(NewPtr(SizeOf (ATPParamBlock)));
gSendRespPBPtr := ATPPBPtr (NewPtr(SizeOf (ATPParamBlock)));
gGetReqBufPtr := NewPtr(kMaxPacketSize);

gSRespBdsPtr := BDSPtr(NewPtr(SizeOf (BDSType))):

gSRespBuf := NewPtr(kRespBufSize);

err := OpenDriver('MPP',ref);
if err <> noErr THEN DoErr(err);

WITH gAtpPBPtr” DO
BEGIN
atpSocket := 0; {dynamically allocate a socket}
addrBlock.aNet := 0; {accept requests from anyone}
addrBlock.aNode := 0;
addrBlock.aSocket := 0;
END;
err := POpenATPSkt(gAtpPBPtr,false);{socket is returned in }
{ gAtpPBPtr".atpSocket}

IF err <> noErr THEN DoErr(err);
IF gAtpPBPtr”.ioResult <> noErr THEN DoOErr(err);

Using ATP 6-17

(d1V) 10001014 UopoBSUEL) Sjfey ejddy n

CHAPTER 6

AppleTalk Transaction Protocol (ATP)

WITH gAtpPBPtr" DO

BEGIN
reqLength := 0; {request data length will be returned }
{ to you here}
reqPointer := gGetRegBufPtr; {pointer to buffer for incoming request }
{ data}
END;

err := PGetRequest(gAtpPBPtr,TRUE); {asynchronous PGetRequest}
IF err <> noErr THEN DoErr(err);

{Poll ioResult until the call completes.}
WHILE gAtpPBPtr”.ioResult > noErr DO

BEGIN
GoDoSomething; {return control to user while you wait }
{ for PGetRequest to complete}
END;

IF gAtpPBPtr”.ioResult <> noErr THEN DoErr(err);

MyProcessRequestReceived (gAtpPBPtr”.reqPointer,gAtpPBPtr".reglLength)
{user routine that looks at the request }
{ data received}

{Walk through the bitmap and see how many response buffers you need.}
NumOfBufs := 0;
FOR thisBit := 0 to 7 DO
BEGIN
{Each bit that is set corresponds to a buffer.}
if BitTst(@gAtpPBPtr".bitMap,thisBit) = TRUE THEN
BEGIN
{Your routine to £fill in the appropriate response data.}
SetUpResponseData(gSRespBuf,thisBit);
NumOfBufs := NumOfBufs + 1;
END
END;

{Put your response data into the BDS structure.}
nBufs := BuildBDS(gSRespBuf,Ptr (gSRespBdsPtr), (NumOfBufs * kMaxPacketSize));

6-18 Using ATP

CHAPTER 6

AppleTalk Transaction Protocol (ATP)

WITH gSendRespPBPtr” DO
BEGIN

atpSocket := gAtpPBPtr”".atpSocket;

atpFlags := atpEOMvalue;

{indicate end of message}

{Send response to the machine that sent you the request.}
addrBlock.aNet := gAtpPBPtr”.addrBlock.aNet;
addrBlock.aNode := gAtpPBPtr”.addrBlock.aNode;
addrBlock.aSocket := gAtpPBPtr”.addrBlock.aSocket;

bdsPointer := Ptr(gSRespBdsPtr);
numOfBuffs := NumOfBufs;
bdsSize := nBufs;

transID := gAtpPBPtr".transID;

END;

{send all of the responses back now}

{indicate how many responses you are }

{ sending}
{use transID returned from the }
{ PGetRequest function}

err := PSendResponse(gSendRespPBPtr,FALSE);

IF err <> noErr THEN DoErr(err);

{Clean up after you are done.}
DisposePtr(Ptr(gAtpPBPtr));
DisposePtr (Ptr(gSendRespPBPtr));
DisposePtr (gGetRegBufPtr);
DisposePtr(Ptr(gSRespBdsPtr));
DisposePtr(gSRespBuf);

END.

Canceling an ATP Function

You can cancel all pending ATP function calls made on a specific socket by closing the
socket. However, ATP provides functions that allow you to cancel individual function
calls or all function calls of a particular kind. If you want to close a socket for which there
are still pending requests that you don’t want executed, you should first explicitly cancel
those requests by using the ATP function provided for this purpose, instead of simply

closing the socket.

You can use the following functions to cancel specific requests:

m To cancel a PGetRequest function, use the PKillGetReq function, which is
described on page 6-41. You identify the request to be canceled by specifying

the pointer to the parameter block that you passed to the PGetRequest function

when you called it.

Using ATP

6-19

(d.Lv) 10901014 uonoeSUEl] Ye) eddy -

CHAPTER 6

AppleTalk Transaction Protocol (ATP)

m To cancel all pending PGetRequest functions on a certain socket, use the
ATPKillAllGetReq function described on page 6-42; you specify the socket number,
whose pending get requests you want to cancel, as the value of the atpSocket
parameter.

m To cancel a PSendRequest or a PNSendRequest function, use the PKillSendReq
function described beginning on page 6-38. You identify the request to be canceled
by specifying the pointer to the parameter block that you passed to the function
when you issued it. To cancel a PSendRequest function, use the PRe1TCB function
described beginning on page 6-40. You identify the request to be canceled by
specifying the request transaction ID as the transID parameter and the destination
socket of the request as the addrBlock parameter.

m To cancel an exactly-once PSendResponse function, use the PRe1RspCB function,
described beginning on page 6-43. You identify the request to be canceled by
specifying the transaction ID of the associated request as the transID parameter and
the PSendResponse destination socket number as the atpSocket parameter.

ATP Reference

This section describes the data structures and routines that are specific to ATP.

m The “Data Structures” section shows the Pascal data structures for the buffer data
structure (BDS) array, the ATP parameter block, and the address block record.

m The “Routines” section describes the ATP routines for making a transaction request,
receiving and responding to a transaction request, canceling a call to an ATP function,
and building a buffer data structure to be used to hold response data to be sent
and received.

Data Structures

This section describes the data structures that are specific to ATP. These data structures
include the buffer data structure that is used to hold the response data packets to be sent
from one application and received by another, the ATP parameter block that is used to
hold input and output values for ATP functions, and the address block record data
structure that ATP functions use to specify an AppleTalk internet socket address.

The Buffer Data Structure

6-20

The buffer data structure (BDS) is an array of type BDSElement containing up to eight
records, each of which is used to hold a response packet. You create a BDS to hold

the response data that you send using the PSendResponse function. You also create

a BDS to receive the response packets that you request through a PSendRequest or
PNSendRequest function. You can use the BuildBDS function to create this data
structure, or you can create the data structure in Pascal.

ATP Reference

CHAPTER 6

AppleTalk Transaction Protocol (ATP)

TYPE BDSElement =
RECORD

buffSize: Integer;
buffPtr: Ptr;
dataSize: Integer;
userBytes: Longint;
END;
BDSType = ARRAY[0..7] OF BDSElement;
BDSPtr = “BDSType;
BitMapType = PACKED ARRAY[0..7] OF Boolean;

Field descriptions

buffsize The size in bytes of the buffer. -

buffPtr A pointer to the buffer.

datasize The size of the data received.

userBytes Up to 4 bytes of additional data separate from the response data.
The ATP Parameter Block

The ATP functions require a pointer to an ATP parameter block that is used to pass the
input and output parameters associated with the function. The ATPParamBlock data
type defines the ATP parameter block. The ATP parameter block includes variant records
for the fields that are particular to an ATP routine.

This section defines the fields that are common to all ATP functions that use the ATP
parameter block. (The BuildBDS function does not use the ATP parameter block.) These
common fields are either filled in by the MPW interface or returned by the function; your
application does not need to provide values for these fields. This section does not define
reserved fields, which are used internally by the .ATP driver or not at all. The fields that
are used for specific functions only are defined in the descriptions of the functions to
which they apply.

TYPE ATPParamBlock =
PACKED RECORD

gLink: QElemPtr; {reserved}

qType: Integer; {reserved}

ioTrap: Integer; {reserved}

ioCmdAddr: Ptr; {reserved}

ioCompletion: ProcPtr; {completion routine}
ioResult: OSErr; {result code}

userData: Longint; {ATP user bytes}

reqTID: Integer; {request transaction ID}
ioRefNum: Integer; {driver reference number}
csCode: Integer; {call command code}
atpSocket: Byte; {currBitMap or socket number}

ATP Reference 6-21

(d1v) [000101¢ UonoESUEI yjeLojddy n

CHAPTER 6

AppleTalk Transaction Protocol (ATP)

CASE MPPParmType OF

SendRequestParm,

SendResponseParm,

GetRequestParm,

AddResponseParm,

KillSendRegParm:
(atpFlags: Byte; {control information}
addrBlock: AddrBlock;

{source/dest. socket address}
reqLength: Integer; {request/response length}
regPointer: Ptr; {ptr to request/response data}
bdsPointer: Ptr; {ptr to response BDS}

CASE MPPParmType OF

SendRequestParm:
(numOfBuffs: Byte; {number of responses expected}
timeOutval: Byte; {timeout interval}
numOfResps: Byte; {number of responses }
{ actually received}

retryCount: Byte; {number of retries}
intBuff: Integer; {used internally for }

{ PNSendRequest}

TRelTime: Byte):; {TRelease time for extended }

{ send request}
SendResponseParm:

(fillero0: Byte; {bitmap}

bdsSize: Byte; {number of BDS elements}

transID: Integer); {transaction ID}
GetRequestParm:

(bitmap: Byte; {bitmap}

fillerl: Byte); {reserved}
AddResponseParm:

(rspNum: Byte; {sequence number}

filler2: Byte); {reserved}
KillSendRegParm

(aKillQE1l: Ptr)); {ptr to (queue element) function to }

{ cancel}
END;

ATPPBPtr = “ATPParamBlock;

Field descriptions

ioCompletion A pointer to a completion routine that you can provide. When you
execute a function asynchronously, the .ATP driver calls your
completion routine when it completes execution of the function if

6-22 ATP Reference

CHAPTER 6

AppleTalk Transaction Protocol (ATP)

you specify a pointer to the routine as the value of this field. Specify

NIL for this field if you do not wish to provide a completion routine.

If you execute a function synchronously, the .ATP driver ignores the
ioCompletion field. For information about completion routines,
see the chapter “Introduction to AppleTalk” in this book.

ioResult The result of the function. If you call the function asynchronously,
the .ATP driver sets this field to 1 as soon as you call the function,
and it changes the field to the actual result code when the function

completes execution.
ioRefNum The .ATP driver reference number. The MPW interface fills in
this field.
csCode The command code for the ATP function to be executed. The MPW

interface fills in this value for you.

The Address Block Record

Routines

The address block record defines a data structure of AddrBlock type. The following
ATP functions use this data type to specify AppleTalk internet socket addresses:
PSendRequest, PSendResponse, PNSendResponse, POpenATPSkt, PGetRequest,
PSendResponse, PAddResponse, PRelTCB, PRel1RspCB.

TYPE AddrBlock =
PACKED RECORD

aNet: Integer; {network number}

aNode: Byte; {node ID}

asocket: Byte; {socket number}
END;

Fleld descriptions

aNet The network number to which the node belongs that is running the
ATP client application whose address you are specifying.

aNode The node ID of the machine running the ATP client application
whose address you are specifying.

aSocket The number of the socket used for the ATP client application.

This section describes the ATP routines that you use to
m send a request to a responder socket client

m open and close an ATP socket

m set up a socket to listen for a request

@ send a response to a requester socket client

® cancel a response or a request function

m build a buffer data structure to store the response data

ATP Reference 6-23

(dLV) 10901014 uooESUEI] YeLe/ddy -

CHAPTER 6

AppleTalk Transaction Protocol (ATP)

All of the ATP functions except the BuildBDS function use the ATP parameter block to
pass input and output parameters. Each function description shows the parameter block
for that function. An arrow preceding a parameter indicates whether the parameter is an
input parameter, an output parameter, or both:

Arrow Meaning

- Input

« Output

© Both
Sending an ATP Request

This section describes the PSendRequest function that you use to send a request to
another socket’s client application, allowing ATP to dynamically allocate the socket to be
used to send the request; in this case, ATP opens the socket when you issue the function
and closes it after the call completes execution. It also describes the PNSendRequest
function that you can use to send a request to another socket while specifying the socket
to be used to send the request; you must open the socket to be used and close it when
you're finished with it.

PSendRequest

6-24

The PSendRequest function sends a request to another socket whose client application
is to respond to the request. PSendRequest then waits for a response before completing
execution.

FUNCTION PSendRequest (thePBPtr: ATPPBPt; async: Boolean): OSErr;

thePBPtr A pointer to an ATP parameter block.

async A Boolean that indicates whether the function should be executed
asynchronously or synchronously. Specify TRUE for asynchronous
execution.

Parameter block

- iocompletion ProcPtr A pointer to a completion routine.

«— ioResult OSExrr The function result.

— userData LongInt Four bytes of user data.

< reqTID Integer The transaction ID for this request.

- csCode Integer Always sendRequest for this function.

« currBitMap Byte A bitmap.

© atpFlags Byte The control information.

- addrBlock AddrBlock The destination socket address.

— reqLength Integer The size in bytes of the request.

ATP Reference

CHAPTER 6

AppleTalk Transaction Protocol (ATP)

— regPointer Ptr A pointer to request data.

— bdsPointer Ptr A pointer to response data.

— numOfBuffs Byte The number of responses expected.
- timeOutval Byte The timeout interval.

«— numOfResps Byte The number of responses received.
« retryCount Byte The number of retries.

— TRelTime Byte The release timer setting.

Fleld descriptions

userData Four bytes of user data that are sent in the header of the message.

You can use these bytes for any purpose that you wish.

A number that identifies this transaction request. If you want to use
the PRe1TCB function to cancel the transaction, you must pass it
this number.

A bitmap showing which packets of the transaction were received.

A control information field whose bits, numbered 0-7, are used
as flags.

You set bit 5 (atpXxOvalue) to specify an exactly-once transaction.
To specify an at-least-once transaction, you clear the bit.

To set the other connection end’s release timer, set bit 2 of this flag,
and use the TRelTime field to indicate the amount of time. Bit 2
(atpXcallvalue) indicates that the parameter block is extended to
include the release timer field.

ATP sets the atpTIDValidvalue bit (bit 1) of this field to indicate
that the transaction ID field (reqT1D) now contains valid data; you
should determine if this bit is set before you check the request
transaction ID.

To direct ATP to use DDP’s checksum feature, set the send
checksum (atpSendChkvalue) bit (bit 0) of this flag.

The AppleTalk internet address of the socket to which the request is
to be sent.

reqTID

currBitMap
atpFlags

addrBlock

reqLength
regPointer
bdsPointer

numOfBuffs

timeOutval

numOfResps
retryCount

ATP Reference

The size of the request to be sent.

A pointer to the request data to be sent.

A pointer to a buffer data structure (BDS) that is to be used to hold
the responses.

On input, the number of response packets that you expect from the
responder application. If this field contains a nonzero number on
return, you can examine the currBitMap field to determine which
packets of the transaction were actually received.

The number of seconds that ATP should wait for a response before
resending the request.

The number of responses actually received.

The maximum number of times ATP should retry to send the
request. This field is used to monitor the number of retries; for
each retry, ATP decrements it by 1.

6-25

(d1v) |000j014 uonoesuel] yejsiddy n

CHAPTER 6

AppleTalk Transaction Protocol (ATP)

TRelTime The release timer setting. Set the 3 lower bits of this field value to
indicate the time to which the release timer should be set for the
other end of the connection:

Setting of
TRelTime release timer
000 30 seconds
001 1 minute
010 4 minutes
100 8 minutes

DESCRIPTION

The PSendRequest function sends your request data to the destination ATP socket that
you specify, and then it waits for that socket’s client to return a response message. ATP
dynamically assigns and opens the socket to be used to send the request, and it closes
the socket when the function completes execution. Before you call the PSendRequest
function, you must build a buffer data structure to hold the response data. You can use
the BuildBDS function to do this. See “The Buffer Data Structure” on page 6-8 and
“BuildBDS” on page 6-44 for a discussion of this function.

If you want to include additional information along with the request message, you can
use the user bytes to include it; for example, you can use these bytes for command
information.

The PSendRequest function completes execution when it receives an entire response or
when the retry count is exceeded. The timeout value (t imeOutval) determines how
many seconds PSendRequest waits before resending the original request packet. The
retry count (retryCount) value determines the maximum number of times that ATP is
to resend the request. Together the timeout value and the retry count determine the total
retry time in seconds (timeOutval x retryCount = total retry time). ATP modifies the
retry count field value during execution of the PSendRequest function if it resends the
request; ATP decrements the field by 1 for each retry. See “Writing a Requester ATP
Application” beginning on page 6-9 for information on how to select these values.

The .ATP driver maintains a timer, called the release timer, for each call to the
PSendResponse function that is part of an exactly-once (XO) transaction. If the timer
expires before the transaction is complete (that is, before the socket receives the
transaction release packet), the driver completes the PSendResponse function. Before
AppleTalk Phase 2, the release timer was always set to 30 seconds. You can set the
responding socket’s release timer to a value other than 30 seconds. To do this, set

the extended call bit (bit 2) of the atpFlags field in the parameter block for the
PSendRequest function and specify the release timer parameter as the value of the

6-26 ATP Reference

CHAPTER 6

AppleTalk Transaction Protocol (ATP)

TRelTime field. The nodes at both ends of the ATP connection must be running
AppleTalk Phase 2 drivers for this feature to work. For a discussion of exactly-once
transactions and use of the release timer, see “At-Least-Once and Exactly-Once
Transactions” on page 6-7. You should set the exactly-once flag (bit 5) if you want the
request to be part of an exactly-once transaction.

You can use the PKillSendReq function or the PRel1TCB function to cancel a
PSendRequest call. For the PRe1TCB function, you need the request transaction ID that
ATP returns in the request transaction ID (reqT1ID) field of the PSendRequest call’s
parameter block. You can examine the request transaction ID field before the completion
of the call, but its contents are valid only after the tidvalid bit (bit 1) of the atpFlags
field has been set. You should determine if this bit is set before you check the request
transaction ID.

ASSEMBLY-LANGUAGE INFORMATION

To execute the PSendRequest function from assembly language, call the _Control
trap macro with a value of sendRequest in the csCode field of the parameter block. To
execute this function from assembly language, you must also specify the .ATP driver
reference number.

RESULT CODES
noErr 0 Noerror
reqgFailed -1096 Retry count exceeded
tooManyReqs -1097 Too many concurrent requests
noDataArea -1104 Too many outstanding ATP calls
regAborted -1105 Request canceled
PNSendRequest

The PNSendRequest function sends a request to another socket’s client. It uses the
socket that you specify to send the request.

FUNCTION PNSendRequest (thePBPtr: ATPPBPtr; async: Boolean): OSErr;

thePBPtr A pointer to an ATP parameter block.

async A Boolean that indicates whether the function should be executed
asynchronously or synchronously. Specify TRUE for asynchronous
execution.

ATP Reference 6-27

(dLY) 1090101 uonoESUEL] HELeddy -

CHAPTER 6

AppleTalk Transaction Protocol (ATP)

Parameter block

- iocompletion ProcPtr A pointer to a completion routine.

« ioResult OSErr The function result.

— userData LongInt Four bytes of user data.

« reqTID Integer The transaction ID for this request.

— csCode Integer Always nSendRequest for this function.
- atpSocket Byte The socket number to send the request.
© atpFlags Byte The control information.

— addrBlock AddrBlock The destination socket address.

- reqLength Integer The size in bytes of the request.

— reqPointer Ptr A pointer to the request data.

— bdsPointer Pointer A pointer to the BDS.

- numOfBuffs Byte The number of responses expected.

— timeOutVval Byte The timeout interval.

< numOfResps Byte The number of responses received.

© retryCount Byte The number of retries.

« intBuff Integer A buffer that ATP uses internally.

— TRelTime Byte The release timer setting.

Field descriptions

userData Four bytes of user data that are sent in the header of the message.

You can use these bytes for any purpose that you wish.
reqTID A number that identifies this transaction request.
atpSocket The socket to be used to send the request. You must have previously
opened this socket by calling the POpenATPSkt function.

A control information field whose bits, numbered 0-7, are used
as flags.

atpFlags

You set bit 5 (atpXOvalue) to specify an exactly-once transaction.
To specify an at-least-once transaction, you clear the bit.

To set the other connection end’s release timer, set bit 2 of this flag
(atpXcallvalue) to signal that this is an extended call and that
the parameter block includes an additional field. Then you use the
TRelTime field to indicate the amount of time.

ATP sets the atpTIDidValidvalue bit (bit 1) of this field to
indicate that the transaction ID field (reqTID) now contains

valid data; you should determine if this bit is set before you

check the request transaction ID.

To direct ATP to use DDP’s checksum feature, set the
atpSendChkvalue bit (bit 0) of this flag.

The AppleTalk internet socket address of the application to which
the request is being sent.

The size in bytes of the request data to be sent.

addrBlock

reqgLength

6-28

reqPointer
bdsPointer

numOfBuffs

ATP Reference

A pointer to the request data to be sent.

A pointer to the buffer data structure (BDS) that is to hold the data
returned in response to the request.

The number of response packets requested and expected from the
responder application.

DESCRIPTION

CHAPTER 6

AppleTalk Transaction Protocol (ATP)

timeOutval The number of seconds that ATP should wait for a response before
resending the request.

numOfResps The number of response packets actually received.

retryCount The maximum number of times ATP should retry to send the

request. This field value is used to monitor the number of retries;
for each retry, ATP decrements the value by 1.

intBuff Two bytes that are used internally by ATP.
TRelTime The release timer setting. The 3 lower bits of this field value indicate
the time to which the release timer is to be set, as follows:
Setting of
TRelTime release timer
000 30 seconds
001 1 minute
010 4 minutes
100 8 minutes

The PNSendRequest function is similar to the PSendRequest function except that
rather than relying on ATP to dynamically allocate a socket to use for the transaction,
PNSendRequest lets you specify the socket to be used to send the request. You set the
atpSocket field of the parameter block to the number of the socket to be used for the
request; you must have previously opened the socket by calling the POpenATPSkt
function. POpenATPSkt lets you send more than one asynchronous request using the
same socket. The number of concurrent requests that you send using PNSendRequest
is machine dependent. If you exceed this limit, ATP returns an error message
(tooManyRegs) indicating this. Note that if you call the PNSendRequest function
without having previously opened the socket that you specify for the send request, ATP
returns a bad ATP socket (badATPSkt) error.

The .ATP driver maintains a timer, called the release timer, for each call to the
PSendResponse function that is part of an exactly-once (XO) transaction. If the timer
expires before the transaction is complete (that is, before the socket receives the
transaction release packet), the driver completes the PSendResponse function. Before
AppleTalk Phase 2, the release timer was always set to 30 seconds. To set the other
connection end’s release timer to another value, set bit 2 of the atpFlags field in the
parameter block for the PNSendRequest function to indicate that this is an extended
call, then set the TRelTime field to the new value. The nodes at both ends of the ATP
connection must be running AppleTalk Phase 2 drivers for this feature to work. For a
discussion of exactly-once transactions and use of the release timer, see “ At-Least-Once
and Exactly-Once Transactions” on page 6-7. You should set the exactly-once flag if
you want the request to be part of an exactly-once transaction.

You can use the PKillSendReq function to cancel a pending PNSendRequest call.
Unlike PSendRequest, you cannot use the PRe1TCB function to kill this request call.

ATP Reference 6-29

(d1v) (0301014 uonoesuel] yfels|ddy -

CHAPTER 6

AppleTalk Transaction Protocol (ATP)

SPECIAL CONSIDERATIONS

The parameter block for the PNSendRequest function requires 2 additional bytes,
intBuff, for ATP’s internal use. You must not modify these bytes.

ASSEMBLY-LANGUAGE INFORMATION

To execute the PNSendRequest function from assembly language, call the _Control
trap macro with a value of nSendRequest in the csCode field of the parameter block.
To execute this function from assembly language, you must also specify the .ATP driver

reference number.
RESULT CODES

noErr 0
reqFailed -1096
tooManyReqs -1097
badATPSkt -1099
noDataArea -1104
regAborted -1105

No error

Retry count exceeded

Too many concurrent requests
Specified socket is not opened
Too many outstanding ATP calls
Request canceled

Opening and Closing an ATP Socket

This section describes the POpenATPSkt function that you use to open a socket for
receiving ATP requests from another socket’s client application. It also describes the
PCloseATPSkt function that you use to close a socket used for receiving requests after
you are finished with that socket. You also use the POpenATPSkt and PCloseATPSkt
functions to open and close a socket that you want to use to send requests through a
specific socket by calling the PNSendRequest function.

POpenATPSkt

The POpenATPSkt function opens a socket to be used to receive ATP requests or to be
used to send ATP requests through the PNSendRequest function.

FUNCTION POpenATPSkt (thePBptr: ATPPBPtr; async: Boolean): OSErxrr;

thePBptr A pointer to an ATP parameter block.

async A Boolean that indicates whether the function should be executed
asynchronously or synchronously. Specify TRUE for asynchronous

execution.

Parameter block

- ioCompletion
« ioResult

- csCode

© atpSocket

- addrBlock

6-30 ATP Reference

ProcPtr A pointer to a completion routine.
OSErr The function result.

Integer Always openATPSkt for this function.
Byte The socket number to be used.

AddrBlock The socket request specification.

DESCRIPTION

CHAPTER 6

AppleTalk Transaction Protocol (ATP)

Field descriptions

atpSocket The number of the socket that ATP is to open. To direct ATP to
dynamically assign a socket number, which it returns as the value
of this field, specify 0.

addrBlock A value that specifies the AppleTalk internet socket addresses
that the atpSocket field will receive requests from; specify 0 for
the network number, the node ID, or the socket number to accept

all requests based on the value of that part of the AppleTalk internet
socket address.

The POpenATPSkt routine serves two purposes: you use it to open a socket to be used
for incoming requests, and you use it to open a socket to send requests using a specific
socket. (The PNSendRequest function lets you send a request using a specific socket,
but you must first open that socket using POpenATPSkt.) You can use the addrBlock
field to filter requests that you will accept by restricting network addresses.

ASSEMBLY-LANGUAGE INFORMATION

To execute the POpenATPSkt function from assembly language, call the _Control trap
macro with a value of openATPSkt in the csCode field of the parameter block. To

execute this function from assembly language, you must also specify the .ATP driver
reference number.

RESULT CODES
noErr 0 Noerror
tooManySkts -1098 Too many responding sockets
noDataArea -1104 Too many outstanding ATP calls
SEE ALSO
The PNSendRequest function is described on page 6-27.
PCloseATPSkt

The PCloseATPSkt function closes a socket that was opened to receive ATP requests or
to send requests over a specific socket.

FUNCTION PCloseATPSkt (thePBPtr: ATPPBPtr; async: Boolean): OSErr;

thePBPtr A pointer to an ATP parameter block.

async A Boolean that indicates whether the function should be executed

asynchronously or synchronously. Specify TRUE for asynchronous
execution.

ATP Reference 6-31

(dLv) 10901014 UonoESUEI] Yjel ajddy n

CHAPTER 6

AppleTalk Transaction Protocol (ATP)

Parameter block

- ioCompletion ProcPtr A pointer to a completion routine.

« ioResult OSErr The function result.

— csCode Integer Always closeATPSkt for this function.
- atpSocket Byte The socket number.

Fleld descriptions

atpSocket The number of the socket to be closed.

DESCRIPTION

The PCloseATPSkt function closes the socket that you opened to receive ATP requests
or to send them over a specific socket.

ASSEMBLY-LANGUAGE INFORMATION

To execute the PCloseATPSkt function from assembly language, call the _Control
trap macro with a value of closeATPSkt in the csCode field of the parameter block.
To execute this function from assembly language, you must also specify the .ATP driver

reference number.
RESULT CODES
noErr 0 No error
noDataArea -1104 Too many outstanding ATP calls

Setting Up a Socket to Listen for Requests

After you open a socket to be used to response to requests, you need to set up that socket
to receive requests. You use the PGetRequest function for this purpose.

PGetRequest

The PGetRequest function sets up a socket to listen for a request from another socket.
FUNCTION PGetRequest (thePBPtr: ATPPBPtr; async: Boolean): OSErr;

thePBPtr A pointer to an ATP parameter block.

async A Boolean that indicates whether the function should be executed
asynchronously or synchronously. Specify TRUE for asynchronous
execution.

6-32 ATP Reference

DESCRIPTION

CHAPTER 6

AppleTalk Transaction Pratocol (ATP)

Parameter block

- ioCompletion ProcPtr A pointer to a completion routine.

« ioResult OSErr The function result.

<« userData LongInt Four bytes of user data.

— reqTID Word The transaction ID.

- csCode Integer Always getRequest for this function.

- atpSocket Byte The socket number.

« atpFlags Byte The control information.

« addrBlock LonglInt The destination socket address.

& reqlength Word On input, the request buffer size. On return,
the actual of the request received.

— reqPointer Ptr A pointer to the request buffer.

« bitMap Byte Abitmap.

Field descriptions
userData

reqTID

The 4 user bytes from the request.

The transaction ID of the request that PGetRequest has received.
ATP supplies this value.

The number of the socket that is to be used to listen for requests.
This is the number of a socket you opened using the POpenATPSkt
function call.

A control information field whose bits, numbered 0-7, are used
as flags.

ATP sets bit 5, the exactly-once flag (atpXOvalue), if the request
received is part of an exactly-once transaction.

The AppleTalk internet address of the socket from which the
request was sent. ATP returns this value.

On input, the size in bytes of the buffer to be used to store the
incoming request. On return, the actual number of bytes of the
request received.

A pointer to the location of the buffer to be used to store the
incoming request.

A bitmap of the transaction that ATP returns.

atpSocket

atpFlags

addrBlock

reqLength

reqPointer

bitMap

To receive an ATP request, you must set up a socket to listen for incoming requests; you
use the PGetRequest function to do this. In almost all cases, you should call the
PGetRequest function asynchronously to avoid delaying execution of your program
until after an ATP request comes in. The PGetRequest function completes execution
after it receives an ATP request.

The PGetRequest function returns the transaction ID of the request that it receives in the
reqTID field. You should save this value if you intend to respond to the request; this
transaction ID is used as an input parameter to the PSendResponse and PAddResponse
functions. To determine that the request transaction ID specified in the reqTID field is
valid, first check the atpTIDValidvalue bit (bit 1) of the atpFlags field. If this bit is
set, the reqT1ID field value is valid.

ATP Reference 6-33

(L) 10901014 UonOESUEL] SjfE) Sddy n

CHAPTER 6

AppleTalk Transaction Protocol (ATP)

You must allocate nonrelocatable memory to be used as the buffer to hold an incoming
request. Make sure that you allocate enough memory to hold the entire request; ATP
will not deliver more data than will fit in the amount of buffer space that you specified
as the value of the reqLength field. The buffer should be 578 bytes long, which is the
maximum size of a request packet, unless you know the exact size of the request.

SPECIAL CONSIDERATIONS
Memory used for the incoming request buffer belongs to ATP for the life of the call.

ASSEMBLY-LANGUAGE INFORMATION

To execute the PGetRequest function from assembly language, call the _Control trap
macro with a value of getRequest in the csCode field of the parameter block. To
execute this function from assembly language, you must also specify the .ATP driver
reference number.

RESULT CODES

noErxr 0 Noerror
badATPSkt -1099 Bad responding socket

SEE ALSO

For information on opening a socket that you can set up to receive requests, use the
POpenATPSkt function, described on page 6-30.

Responding to Requests

After you receive and process a request, you can call the PSendResponse function to
send the response data to the requesting socket. If you need to send additional data, you
can call the PAddResponse function after you call PSendResponse. This section
discusses the PSendResponse and PAddResponse functions.

PSendResponse

The PSendResponse function sends the response message to the requester.
FUNCTION PSendResponse (thePBPtr: ATPPBPtr; async: Boolean): OSErr;

thePBPtr A pointer to an ATP parameter block.

async A Boolean that indicates whether the function should be executed
asynchronously or synchronously. Specify TRUE for asynchronous
execution.

6-34 ATP Reference

DESCRIPTION

CHAPTER 6

AppleTalk Transaction Protocol (ATP)

Parameter block

— ioCompletion ProcPtr A pointer to a completion routine.

¢« ioResult OSErr The function result.

— userData LongInt Four bytes of user data.

— csCode Integer Always sendResponse for this function.
— atpSocket Byte The socket number.

— atpFlags Byte The control information.

— addrBlock AddrBlock The destination socket address.

— bdsPointer Ptr A pointer to the response BDS.

—= numOfBuffs Byte The number of response packets to be sent.
— bdssize Byte The BDS size in elements.

— transID Integer The transaction ID.

Field descriptions

userData Four bytes of user data that are sent in the header of the message. If
the response was part of an exactly-once transaction, this field
contains the user bytes from the TRel packet.

atpSocket The number of the socket that is sending the response.
atpFlags A control information field whose bits, numbered 0-7, are used
as flags.

To signal that this packet is the last packet in the transaction’s
response message when the number of responses is less than
expected, set the end-of-message (atpEOMvalue) bit (bit 4).

ATP sets the send-transmission-status (atpSTSvalue) bit (bit 3) to
force the requester to retransmit a request immediately, when this
is necessary.

To direct ATP to use DDP’s checksum feature, set the send checksum
(atpsendchkvalue) bit (bit 0) of this flag.

addrBlock The AppleTalk internet socket address of the socket to which the
response is to be sent.

bdsPointer A pointer to the response buffer data structure (BDS) that contains
the response data.

numOfBuffs The number of response packets to be sent.

bdsSize The number of elements in the buffer data structure (BDS).

transID The transaction ID of the request for which this response is meant.

You call PSendResponse when you receive a request, and after you have created a
response message. The PSendResponse function sends the data to the socket whose
address you specify; this is the address of the requester socket. If you cannot or do not
want to send the entire response at one time, you can call PSendResponse to send the
first part of it, then call PAddResponse later to send the remainder of the response.

To signal the requester socket that you are sending fewer response packets than it
expects to receive, you must set the end-of-message flag (bit 4) of the atpFlags
parameter.

ATP Reference 6-35

(d1v) 1000j01d uopoesues| yeLsjddy -

CHAPTER 6

AppleTalk Transaction Protocol (ATP)

For each call to the PSendResponse function that is part of an exactly-once (XO)
transaction, ATP maintains a timer, called the release timer. If the timer expires before

the transaction is completed, that is, before the socket receives the transaction release
packet, ATP completes the PSendResponse function. Before AppleTalk Phase 2, the
release timer was always set to 30 seconds. The PSendRequest or the PNSendRequest
function can set the release timer for the responder to a different value. For more
information about sending a response, see “Responding to Requests” beginning on

page 6-16.

SPECIAL CONSIDERATIONS

During exactly-once transactions, PSendResponse doesn’t complete until either a TRel
packet is received from the socket that made the request or the retry count is exceeded.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

To execute the PSendResponse function from assembly language, call the _Control
trap macro with a value of sendResponse in the csCode field of the parameter block.
To execute this function from assembly language, you must also specify the .ATP driver
reference number.

noErr 0 Noerror

badATPSkt -1099 Bad responding socket

badBuf fNum -1100 Sequence number out of range
noRelErr -1101 No release received
noDataArea -1104 Too many outstanding ATP calls

See the chapter “Introduction to AppleTalk” in this book for a description of the
AppleTalk internet socket address structure.

For a description of the possible release timer values that PSendRequest or
PNSendRequest can set, see either the PSendRequest function on page 6-24
or the PNSendRequest function on page 6-27.

PAddResponse

6-36

The PAddResponse function sends an additional response packet to a socket that
has already been sent the first part of the response message through the
PSendResponse function.

FUNCTION PAddResponse (thePBPtr: ATPPBPtr; async: Boolean): OSErr;

ATP Reference

DESCRIPTION

CHAPTER 6

AppleTalk Transaction Protoco! (ATP)

thePBPtr A pointer to an ATP parameter block.

async A Boolean that indicates whether the function should be executed
asynchronously or synchronously. Specify TRUE for asynchronous
execution.

Parameter block

- ioCompletion ProcPtr A pointer to a completion routine.

« ioResult OSErr The function result.

— userData LongInt Four bytes of user data.

- csCode Integer Always addResponse for this function.

- atpSocket Byte The source socket number.

- atpFlags Byte The control information.

- addrBlock AddrBlock The destination socket address.

— regLength Integer The size in bytes of the response data.

— reqgPointer Ptr A pointer to the response data.

- rspNum Byte The sequence number.

- transID Integer The transaction ID.

Field descriptions
userData

atpSocket

atpFlags

addrBlock

reqLength
regPointer
rspNum
reqTID

The PAddResponse

Four bytes of user data that are sent in the header of the message.
You can use these bytes for any purpose that you wish.

The number of the socket that is used to send the additional
response.

A control information field whose bits, numbered 0-7, are used
as flags.

To signal that this packet is the last packet in the transaction’s
response message when the number of responses is less than
expected, set the end-of-message (atpEOMvalue) bit (bit 4).

ATP sets the send-transmission-status (atpSTSvalue) bit (bit 3) to
force the requester to retransmit a request immediately, when this
is necessary.

To direct ATP to use DDP’s checksum feature, set the send
checksum (atpSendChkvalue) bit (bit 0) of this flag.

The number of the socket to which the additional response packet is
to be sent.

The size in bytes of the response data to be sent.

A pointer to the response data to be sent.

The sequence number of the response, in the range of 0 to 7.

The transaction ID of the request for which this response is meant.

function sends an additional response packet, following the initial

response sent in return to a PSendResponse request message. You can send multiple
additional response packets, one at a time, up to a total of eight packets including the
initial response packets sent in the PSendResponse function.

ATP Reference

6-37

(d1v) [000j014 uonoesuel] ye] ejddy -

CHAPTER 6

AppleTalk Transaction Protocol (ATP)

You cannot issue a PAddResponse call without having first called PSendResponse.
You must provide a pointer to the buffer containing the data to be sent and specify the
amount of data. Each packet can contain up to 578 bytes of data. You also must specify
the sequence number of the response.

SPECIAL CONSIDERATIONS

If the transaction is part of an exactly-once transaction, you must allocate nonrelocatable
memory for the buffer that you use for the response data, and you must not alter the
contents of this buffer until the corresponding PSendRequest function has completed
execution.

ASSEMBLY-LANGUAGE INFORMATION

To execute the PAddResponse function from assembly language, call the _Control
trap macro with a value of addResponse in the csCode field of the parameter block.
To execute this function from assembly language, you must also specify the .ATP driver
reference number.

RESULT CODES
noErr 0 Noerror
badATPSkt -1099 Bad responding socket
badBuffNum -1100 Sequence number out of range
noSendResp -1103 PAddResponse issued before PSendResponse
noDataArea -1104 Too many outstanding ATP calls

Canceling Pending ATP Functions

This section describes the functions that you use to cancel pending ATP functions.
It describes the PKillSendReq function that you use to cancel a PSendRequest
or PNSendRequest function, the PRe1TCB function that you use to cancel a
PSendRequest function, the PKillGetReq function that you use to cancel a
PGetRequest function, the ATPKillAllGetReq function that you use to cancel
all pending PGetRequest functions, and the PRe1RspCB function that you use to
cancel a PSendResponse call that specifies an exactly-once transaction.

PKillSendReq

The PKillSendReq function cancels the pending PSendRequest or PNSendRequest
functions whose queue element pointer you specify.

FUNCTION PKillSendReq (thePBPtr: ATPPBPtr; async: Boolean): OSErr;

6-38 ATP Reference

DESCRIPTION

CHAPTER 6

AppleTalk Transaction Protocol (ATP)

thePBPtr A pointer to an ATP parameter block.

async A Boolean that indicates whether the function should be executed
asynchronously or synchronously. Specify TRUE for asynchronous
execution.

Parameter block

- ioCompletion ProcPtr A pointer to the completion routine.

¢« ioResult OSErr The function result.

— csCode Integer Always killSendReq for this function.

— akKillgQEl Ptr A pointer to queue element of function

to be removed.
Field descriptions
aKillQEl A pointer to the queue element of the pending function that is to be

canceled. This is the pointer to the parameter block that you passed
to the send request function when you issued the function.

To cancel a specific pending PSendRequest or PNSendRequest function, you specify
the pointer to the queue element for the function in the aKi11QE1 field of the parameter
block for the PKillSendReq function, then call the function. If the function has

already completed execution or if it is not in the ATP queue for any other reason,

PKillSendReq returns a message (cbNotFound) indicating that it could not find the
parameter block.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

To execute the PKillSendReq function from assembly language, call the _Control
trap macro with a value of killSendReq in the csCode field of the parameter block. To

execute this function from assembly language, you must also specify the .ATP driver
reference number.

noErr 0 Noerror
cbNotFound -1102 The aKillQE1 parameter does not point to a
PSendRequest or PNSendRequest queue element

To send requests, use the PSendRequest function, described on page 6-24, and the
PNSendRequest function, described on page 6-27.

ATP Reference 6-39

(dv) 10901014 uonoesuel) ey ojddy n

CHAPTER ¢

AppleTalk Transaction Protocol (ATP)

PRelTCB

The PRelTCB function cancels the pending PSendRequest function that you specify.
FUNCTION PRelTCB (thePBPtr: ATPPBPtr; async: Boolean): OSErr;

thePBPtr A pointer to an ATP parameter block.

async A Boolean that indicates whether the function should be executed
asynchronously or synchronously. Specify TRUE for asynchronous
execution.

Parameter block

ioCompletion ProcPtr A pointer to a completion routine.

ioResult OSErr The function result.

csCode Integer Always relTCB for this function.

addrBlock AddrBlock The destination socket address.

transID Integer The transaction ID of the request
to be canceled.

lLllTl

Fieid descriptions
addrBlock The AppleTalk internet address of the destination socket for which
the PSendRequest function that is to be canceled was meant.

transID The transaction ID of the PSendRequest function to be canceled.
You can get the transaction ID from the reqTID field of the
PSendRequest parameter block queue entry.

DESCRIPTION

The PRel1TCB function releases the queued parameter block for the PSendRequest
function whose transaction ID you specify. The PRe1TCB function returns a function
result of regAborted for the canceled PSendRequest function.

SPECIAL CONSIDERATIONS

You cannot use this function to cancel a send request that you made using the
PNSendRequest function.

ASSEMBLY-LANGUAGE INFORMATION

To execute the PRe1TCB function from assembly language, call the _Control trap
macro with a value of relTCB in the csCode field of the parameter block. To
execute this function from assembly language, you must also specify the .ATP

driver reference number.
RESULT CODES
noErr 0 No error
cbNotFound -1102 The ATP control block was not found
noDataArea -1104 Too many outstanding ATP functions

6-40 ATP Reference

CHAPTER 6

AppleTalk Transaction Protocol (ATP)

PKillGetReq

DESCRIPTION

The PKillGetReq function cancels the pending PGetRequest function that
you specify.

FUNCTION PKillGetReq (thePBPtr: ATPPBPtr; async: Boolean): OSErr;

thePBPtr A pointer to an ATP parameter block.

async A Boolean that indicates whether the function should be executed

asynchronously or synchronously. Specify TRUE for asynchronous
execution.

Parameter block

— ioCompletion ProcPtr A pointer to a completion routine.

< ioResult OSErr The function result.

— csCode Integer Always killGetReq for this function.

— aKillgQEl Pointer A pointer to the queue element

Field descriptions

aKillQEl A pointer to the queue element of the pending call that is to
be canceled.

The PKillGetReq function lets you cancel a specific outstanding PGetRequest
function without having to cancel all pending get requests or having to close the
socket to do this; closing the socket cancels all outstanding functions on that socket.

To cancel a specific pending PGetRequest function, you specify the pointer to the
queue element for the function in the aKil1QE1 field of the parameter block for the
PKillGetReq function. The queue element pointer is the pointer to the parameter block
of the PGetRequest function to be canceled. If the function has already completed
execution or if it is not in the ATP queue for any other reason, PKillGetReq returns a
message (cbNotFound) indicating that it could not find the parameter block..

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

To execute the PKillGetReq function from assembly language, call the _Control trap
macro with a value of killGetReq in the csCode field of the parameter block.

To execute this function from assembly language, you must also specify the .ATP driver
reference number.

noErr 0 No error
cbNotFound -1102 The aKilllQE1 parameter does not point to a
PGetRequest queue element

ATP Reference 6-41

(d1v) 10001014 uonoesuel] yejejddy -

CHAPTER 6

AppleTalk Transaction Protocol (ATP)

ATPKillAllGetReq

The ATPKillAl1lGetReq function cancels all pending calls to the PGetRequest
function for a specific socket.

FUNCTION ATPKillAllGetReq (thePBPtr: ATPPBPtr;
async: Boolean): OSErr;

thePBPtr A pointer to an ATP parameter block.

async A Boolean that indicates whether the function should be executed
asynchronously or synchronously. Specify TRUE for asynchronous
execution.

Parameter block

- ioCompletion ProcPtr A pointer to the completion routine.

<« ioResult OSErr The function result.

- csCode Integer Always kil1Al1lGetReq for this function.

— atpSocket Byte The socket number whose pending

PGetRequest functions are to be canceled.

Field descriptions

atpSocket The socket whose pending PGetRequest functions are to
be canceled.

DESCRIPTION

The ATPKillAl1GetReq function cancels all pending PGetRequest functions issued
on a specific socket without closing the socket. For each function executed asynchro-
nously, ATPKil1Al1lGetReq also calls the completion routine with the value
regAborted (-1105) in the DO register. You should call the ATPKillAllGetReq
function before closing a socket.

ASSEMBLY-LANGUAGE INFORMATION

To execute the ATPKi11A11GetReq function from assembly language, call the
_Control trap macro with a value of kill1AllGetReq in the csCode field of the
parameter block. To execute this function from assembly language, you must also
specify the .ATP driver reference number.

RESULT CODES

noErr 0 Noerror
cbNotFound -1102 Control block not found; no pending asynchronous calls

6-42 ATP Reference

CHAPTER 6

AppleTalk Transaction Protocol (ATP)

PRelRspCB

DESCRIPTION

The PRelRspCB function cancels a PSendResponse function that is an exactly-once

transaction.

FUNCTION PRelRspCB (thePBPtr: ATPPBPtr; async: Boolean): OSErr;

thePBPtr A pointer to an ATP parameter block.

async A Boolean that indicates whether the function should be executed
asynchronously or synchronously. Specify TRUE for asynchronous
execution.

Parameter block

— ioCompletion ProcPtr A pointer to the completion routine.

< ioResult OSErr The function result.

— csCode Integer Always relRspCB for this function.

- atpSocket Byte The number of the socket on which the
request was received.

— addrBlock AddrBlock The internet socket address of the source
of the request.

— transID Byte The transaction ID of the request with
which the PSendResponse function to
be canceled is associated.

Field descriptions

atpSocket The number of the socket on which the request was received and

from which the PSendResponse function that is to be canceled
was sent.

addrBlock The internet socket address of the application that issued

the request.
transID The transaction ID of the PSendResponse call to be canceled.

You can get the transaction ID from the reqTID field of the
PSendResponse parameter block queue entry.

The PRel1RspCB function releases the queued parameter block for the exactly-once
transaction PSendResponse function without waiting for the release timer to expire
or for a TRel packet to be received; PRe1RspCB returns a function result of noErr
for the canceled PSendResponse call.

If you call PRelRspCB to cancel a transaction that is not an exactly-once service,
RelRspCB returns a function result of cbNotFound for the PSendResponse call.

ATP Reference

6-43

(d1V) 10901014 uonoesuel] yje| ejddy -

CHAPTER 6

AppleTalk Transaction Protocol (ATP)

ASSEMBLY-LANGUAGE INFORMATION

To execute the PRe1RspCB function from assembly language, call the _Control trap
macro with a value of re1RspCB in the csCode field of the parameter block. To
execute this function from assembly language, you must also specify the .ATP driver
reference number.

RESULT CODES

noErr 0 Noerror

cbNotFound -1102 Control block not found; no pending asynchronous calls
Building a Buffer Data Structure

BuildBDS

You need to provide a buffer data structure (BDS) to hold data that comprises multiple
response packets whether you are sending the response data or receiving it. This section
describes a utility, Bui1ldBDS, that ATP provides that allows you to create a BDS to be
used for this purpose.

DESCRIPTION

6-44

From the buffer that you supply, the BuildBDS function creates a buffer data structure
(BDS) to be used to hold data for ATP functions that send and receive response data.

FUNCTION BuildBDS (buffPtr: Ptr; bdsPtr: Ptr;
buffSize: Integer): Integer;

buffPtr A pointer to a data buffer.
buffsize Thelength in bytes of the buffer data structure.

The PSendResponse, PSendRequest, and PNSendRequest functions require a buffer
data structure of a specific format to be used to hold the response data. You can use the
BuildBDS function to create this data structure, or you can build it yourself from Pascal.

The BuildBDS function creates a buffer data structure consisting of an array of
elements—one for each response packet—to be used to hold response data. You pass
this function a painter to the memory to be used for this buffer and the size in bytes

of the memory. You should allocate enough memory to hold the response data that
you are either sending or receiving. Because an entire response message cannot exceed
4624 bytes, the amount of memory that you allocate for this data structure should not
exceed this size.

ATP Reference

CHAPTER 6

AppleTalk Transaction Protocol (ATP)

BuildBDS creates up to eight elements for a buffer data structure. If you provide the
maximum space of 4624 bytes, BuildBDS returns eight elements; if the response
message is shorter and you specify fewer bytes, BuildBDS returns the equivalent
number of elements. BuildBDS returns as a function result the number of buffer data
structure elements that it creates. For more information about the BDS data structure,
see “The Buffer Data Structure” on page 6-20.

RESULT CODES

noErr 0 Noerror
paramErr -50 Version number is too high

SEE ALSO

See “PSendResponse” on page 6-34, “PSendRequest” on page 6-24, and
“PNSendRequest” on page 6-27 for more information about the functions that
require a buffer data structure.

ATP Reference 6-45

(d1v) j00030.1d uonoesuel] yje| ojddy -

CHAPTER 6

AppleTalk Transaction Protocol (ATP)

Summary of ATP

Pascal Summary

Constants
CONST
{csCodes}
nSendRequest = 248; {send request using a specific socket}
relRspCB = 249; {release RspCB}
closeATPSkt = 250; {close ATP socket}
addResponse = 251; {add response}
sendResponse = 252; {send response}
getRequest = 253; {get request}
openATPSkt = 254; {open ATP socket}
sendRequest = 255; {send request}
relTCB = 256; {release TCB}
killGetReq = 257; {kill getRequest}
killSendReq ' = 258; {kill sendRequest}
killAallGetReq = 259; {kill all getRequests for a socket}

{ATP flags}

atpXOvalue = 32; {ATP exactly-once bit}
atpEOMvalue = 16; {ATP end-of-message bit}
atpSTSvalue = 8; {ATP send-transmission-status bit}
atpTIDValidvalue = 2; {ATP trans. ID valid bit}
atpSendChkvalue = 1; {ATP send checksum bit}

Data Types

The Buffer Data Structure

TYPE BDSElement =
RECORD
buffSize: Integer;
buffPtr: Ptr;
dataSize: Integer;
userBytes: LongInt;
END;

6-46 Summary of ATP

CHAPTER 6

AppleTalk Transaction Protocol (ATP)

BDSType = ARRAY[0..7] OF BDSElement;

BDSPtr = “BDSType;

BitMapType = PACKED ARRAY[0..7] OF Boolean;

The Address Block Record

TYPE AddrBlock =
PACKED RECORD
aNet:
aNode:
asocket:
END;

Integer;
Byte;
Byte;

The ATP Parameter Block

TYPE ATPParamBlock =

PACKED RECORD
gLink:
qType:
ioTrap:
ioCmdAddr:
ioCompletion:
ioResult:
userData:
reqTID:
ioRefNum:
csCode:

QElemPtr;
Integer;
Integer;
Ptr;
ProcPtr;
OSErr;
Longint;
Integer;
Integer;
Integer;

atpSocket: Byte;
CASE MPPParmType OF
SendRequestParm,
SendResponseParm,
GetRequestParm,
AddResponseParm,
KillSendRegParm:
(atpFlags:
addrBlock:

reqgLength:
reqPointer:
bdsPointer:
CASE MPPParmType OF
SendRequestParm:
(numOfBuffs:

Summary of ATP

{network number}
{node ID}
{socket number}

{next queue entry}

{queue type}

{routine trap}

{routine address}
{completion routine}
{result code}

{ATP user bytes}

{request transaction ID}
{driver reference number}
{call command code }

{ automatically set}
{currBitMap or socket number}

Byte; {control information}
AddrBlock;

{source/dest. socket address}
Integer; {request/response length}
Ptr; {ptr to request/response data}
Ptr; {ptr to response BDS}

Byte; {number of responses expected}

6-47

(d1v) 10901014 uonoesuel] yje| ejddy -

CHAPTER 6

AppleTalk Transaction Protocol (ATP)

timeOutval: Byte; {timeout interval}
numOfResps: Byte; {number of responses }
{ actually received}
retryCount: Byte; {number of retries}
intBuff: Integer; {used internally for PNSendRequest}
TRelTime: Byte); {TRelease time for extended }
{ send request}
SendResponseParm:
(filleroO: Byte; {numOfBuffs}
bdsSize: Byte; {number of BDS elements}
transID: Integer); {transaction ID}
GetRequestParm:
(bitMap: Byte; {bitmap}
fillerl: Byte);
AddResponseParm:
(rspNum: Byte; {sequence number}
filler2: Byte);
KillSendReqParm:
(aKillQE1l: Ptr)); {pointer to queue element to cancel}
END;
ATPPBPtr = “ATPParamBlock;
Routines
Sending an ATP Request
FUNCTION PSendRequest (thePBPtr: ATPPBPt; async: Boolean): OSErr;
FUNCTION PNSendRequest (thePBPtr: ATPPBPtr; async: Boolean): OSErr;

Opening and Closing an ATP Socket

FUNCTION POpenATPSkt
FUNCTION PCloseATPSkt

(thePBptr:
(thePBPtr:

Setting Up a Socket to Listen for Requests

FUNCTION PGetRequest (thePBPtr:
Responding to Requests

FUNCTION PSendResponse (thePBPtr:
FUNCTION PAddResponse (thePBPtr:

6-48 Summary of ATP

ATPPBPtr;
ATPPBPtr;

async: Boolean): OSErr;

async: Boolean): OSErr;

ATPPBPtr; async: Boolean): OSErr;

ATPPBPtr;
ATPPBPtr;

async: Boolean): OSErr;

async: Boolean): OSErr;

CHAPTER 6

AppleTalk Transaction Protocol (ATP)

Canceling Pending ATP Functions

FUNCTION PKillSendReq (thePBPtr:
FUNCTION PRelTCB (thePBPtr:
FUNCTION PKillGetReq (thePBPtr:
FUNCTION ATPKillAllGetReq (thePBPtr:
FUNCTION PRelRspCB (thePBPtr:

Building a Buffer Data Structure

ATPPBPtr;
ATPPBPtr;
ATPPBPtr;
ATPPBPtr;
ATPPBPtr;

async:
async:
async:
async:

async:

Ptr; bdsPtr: Ptr;

Boolean): OSErr;
Boolean): OSErr;
Boolean): OSErr;
Boolean): OSErr;
Boolean): OSErr;

buffSize: Integer):

FUNCTION BuildBDS (buffPtr:
Integer;

C Summary

Constants

/*ATP parameter constants*/

#define ATPioCompletion ATP.ioCompletion

#define ATPioResult ATP.ioResult
#define ATPuserData ATP.userData
#define ATPreqTID ATP.reqTID

#define ATPioRefNum ATP.ioRefNum
#define ATPcsCode ATP.csCode

#define ATPatpSocket ATP.atpSocket
#define ATPatpFlags ATP.atpFlags
#define ATPaddrBlock ATP.addrBlock
#define ATPreqLength ATP.reqLength
#define ATPreqPointer ATP.reqPointer
#define ATPbdsPointer ATP.bdsPointer
#define ATPtimeQutVal SREQ.timeOutVal
#define ATPnumOfResps SREQ.numOfResps
#define ATPretryCount SREQ.retryCount

#define ATPnumOfBuffs OTH1l.u0.numOfBuffs

#define ATPbitMap OTH1l.u0.bitMap
#define ATPrspNum OTH1.u0.rspNum
#define ATPbdsSize OTH2.bdsSize
#define ATPtransID OTH2.transID
#define ATPaKillQEl KILL.aKillQE1l

Summary of ATP

6-49

(dL) 10901014 UonoBSUEI) YeLejddy -

CHAPTER 6

AppleTalk Transaction Protocol (ATP)

/*csCodes*/

enum { /*csCodes*/
nSendRequest = 248, /*send request using a specific */

/* socket*/

relRspCB = 249, /*release RspCB*/
closeATPSkt = 250, /*close ATP socket*/
addResponse = 251, /*add response*/
sendResponse = 252, /*send response*/
getRequest = 253, /*get request*/
'openATPSkt = 254, /*open ATP socket*/
sendRequest = 255, /*send request*/
relTCB = 256, /*release TCB*/
killGetReq = 257, /*kill getRequest*/
killsendReq = 258, /*kill sendRequest*/
killAllGetReq = 259}; /*kill all getRequests for */

/* a socket*/

/*ATP flags*/

enum {
atpXovalue = 32, /*ATP exactly-once bit*/
atpEOMvalue = 16, /*ATP end-of-message bit*/
atpSTSvalue = 8, /*ATP send-transmission-status */
/* bit*/
atpTiDValidvalue = 2, /*ATP trans. ID valid bit*/
atpSendChkvalue = 1}; /*ATP send checksum bit*/
Data Types
The Buffer Data Structure
struct BDSElement {
short buffsSize;
Ptr buffPtr;
short dataSize;
long userBytes;

typedef struct BDSElement BDSElement;

typedef BDSElement BDSType([8];
typedef BDSElement *BDSPtr;
typedef char BitMapType;

6-50 Summary of ATP

CHAPTER 6

AppleTalk Transaction Protocol (ATP)

The Address Block Record
struct AddrBlock {
short aNet ;"
unsigned char aNode;
unsigned char aSocket;

typedef struct AddrBlock AddrBlock;

The ATP Parameter Block

#define MPPATPHeader \
QElem *gLink;
short qType;
short ioTrap;
Ptr ioCmdAddr;
ProcPtr ioCompletion;
OSErr ioResult;
long userData;
short reqT1D;
short ioRefNum;
short csCode;

typedef struct {
MPPATPHeader
}MPPparms;

#define MOREATPHeader \

char atpSocket;
char atpFlags;

AddrBlock addrBlock;
short reqlLength;
Ptr reqgPointer;
Ptr bdsPointer;

typedef struct {
MPPATPHeader
MOREATPHeader

}ATPparms;

Summary of ATP

/*next queue entry*/\

/*queue type*/\

/*routine trap*/\

/*routine address*/\

/*completion routine*/\

/*result code*/\

/*command result (ATP user bytes)*/\
/*request transaction ID*/\

/*driver reference number*/\

/*call command code*/

/*currbitmap for requests or ATP */\
/* socket number*/\

/*control information*/\
/*source/dest. socket address*/\
/*request/response length*/\
/*pointer to request/response data*/\
/*pointer to response BDS*/

6-51

(d1v) 1090014 uonoEsuelL yeLe|ddy -

CHAPTER 6

AppleTalk Transaction Protocol (ATP)

typedef struct {

MPPATPHeader

MOREATPHeader

char filler; /*numOfBuffs*/

char timeOutval; /*timeout interval*/

char numOfResps; /*number of responses actually */
/* received*/

char retryCount; /*number of retries*/

short intBuff; , /*used internally for NSendRequest*/

char TRelTime; /*TRelease time for extended send */
/* request*/

}SendRegparms;

typedef struct {

MPPATPHeader
MOREATPHeader
union {
char bitMap; /*bitmap received*/
char numOfBuffs; /*number of responses being sent*/
char rspNum; /*sequence number*/
} uo;
}ATPmiscl;

typedef struct {

MPPATPHeader

MOREATPHeader

char filler;

char bdssize; /*number of BDS elements*/

short transID; /*transaction ID*/
}ATPmisc?;

typedef struct {

MPPATPHeader
MOREATPHeader
Ptr aKillQEl; /*pointer to i/o queue element to */
/* cancel*/
}Killparms;

union ATPParamBlock {

ATPparms ATP; /*general ATP parms*/
SendRegparms SREQ; /*send request parms*/
ATPmiscl OTH1; /*miscellaneous parms*/
ATPmisc2 OTH2; /*miscellaneous parms*/
Killparms KILL; /*kill request parms*/

16-52 Summary of ATP

CHAPTER 6

AppleTalk Transaction Protocol (ATP)

typedef union ATPParamBlock ATPParamBlock;

typedef ATPParamBlock *ATPPBPtr;

Routines
Sending an ATP Request
pascal OSErr PSendRequest (ATPPBPtr thePBPtr,Boolean async);
pascal OSErr PNSendRequest (ATPPBPtr thePBPtr,Boolean asynct);
Opening and Closing an ATP Socket '
pascal OSErr POpenATPSkt (ATPPBPtr thePBptr,Boolean async);
pascal OSErr PCloseATPSkt (ATPPBPtr thePBPtr,Boolean async);
Setting Up a Socket to Listen for Requests
pascal OSErr PGetRequest (ATPPBPtr thePBPtr,Boolean async);
Responding to Requests
pascal OSErr PSendResponse (ATPPBPtr thePBPtr,Boolean asyncﬁ;
pascal OSErr PAddResponse (ATPPBPtr thePBPtr,Boolean async);
Canceling Pending ATP Functions
pascal OSErr PKillSendReq (ATPPBPtr thePBPtr,Boolean async);
pascal OSErr PRelTCB (ATPPBPtr thePBPtr,Boolean async);
pascal OSErr PKillGetReq (ATPPBPtr thePBPtr,Boolean async);
pascal OSErr ATPKillAllGetReq

(ATPPBPtr thePBPtr,Boolean async);
pascal OSErr PRelRspCB (ATPPBPtr thePBPtr,Boolean async);

Building a Buffer Data Structure
pascal short BuildBDS

Summary of ATP

(Ptr buffPtr,Ptr bdsPtr,short buffSize);

6-53

(d.Lv) 10901014 uonoesuel] e ejddy n

CHAPTER 6

AppleTalk Transaction Protocol (ATP)

Assembly-Language Summary

Constants

ATP Header

atpControl EQU 0 ;control field (byte)

atpBitmap EQU 1 ;bitmap (requests only) (byte)
atpRespNo EQU 1 ;response number (responses only) (byte)
atpTransID EQU 2 ;transaction ID (word)

atpUserbData EQU 4 ;start of user data (long)

atpHdSz EQU 8 ;size of ATP header

ATP Control Field

atpRegCode EQU $40 ;request code after masking
atpRspCode EQU $80 ;response code after masking
atpRelCode EQU $CO ;jrelease code after masking

atpXOBit EQU 5 ;bit number of exactly-once bit
atpEOMBit EQU 4 ;bit number of end-of-message bit
atpSTSBit EQU 3 ;send transmission status bit number
flagMask EQU $3F ;mask for just flags

controlMask EQU $F8 ;mask for good control bits

ATP Type Code

atp EQU $3 ;ATP type code (in DDP header)

ATP Limits

atpMaxNum EQU 8 ;maximum number of responses per request
atpMaxData EQU $242 ;maximum data size in ATP packet
ATP Command Codes

nSendRequest EQU 248 ;PNSendRequest code

relRspCB EQU 249 ~ j;release RspCB

closeATPSkt EQU 250 ;close ATP socket

addResponse EQU 251 ;add response code

sendResponse EQU 252 ;send response code

getRequest EQU 253 sget request code

6-54 Summary of ATP

openATPSkt

sendRequest

relTCB
killGetReq

killSendReq

CHAPTER 6

AppleTalk Transaction Protocol (ATP)

EQU
EQU
EQU
EQU
EQU

killallGetReq EQU

254
255
256
257
258
259

sopen ATP socket

;send request code

srelease TCB

+kill GetRequest

+kill SendRequest

;kill all getRequests for a socket

ATPQueue Element Standard Structure

;rarguments passed in the CSParam area

atpSocket EQU $1cC ;socket number is first parameter [byte]
atpFlags EQU $1D ;flag [byte]
addrBlock EQU $1E ;start of address block
reqgLength EQU $22 ;size of request buffer [word]
reqPointer EQU $24 ;pointer to request buffer or data
bdsPointer EQU $28 ;pointer to buffer data structure (BDS)
gulrea EQU s$2¢ ;start of general-use area
userData EQU $12 ;user bytes
ATP Bits
sendCHK EQU 0 ;bit number of send-checksum bit in flags
tidvalid EQU 1 ;bit set when TID valid in SendRequest
Data Structures
Buffer Data Structure (BDS)
bdsBuffsz EQU 0 ;send: data length

; receive: buffer length
bdsBuffadr EQU 2 ;send: data address

: receive: buffer address
bdsDataSz EQU 6 ssend: used internally

; receive: data length
bdsUserData EQU 8 ;send: 4 user bytes

;s receive: 4 user bytes
bdsEntrySz EQU 12 ;size of a BDS entry

Summary of ATP

6-55

(d1v) 10901014 uopoesue gL e/ddy -

CHAPTER 6

AppleTalk Transaction Protocol (ATP)

ATP Parameter Block Common Fields

0
4
6
8
12
16
18
22
24
26
28

qLink
qType
ioTrap
ioCmdAddr

ioCompletion

ioResult
userData
reqTID
ioRefNum
csCode
atpSocket

long
word
word
long
long
word
long
word
word
word
byte

SendRequest Parameter Variant

26
28
29
30
34
36
40
44
45
46
47
50

NSendRequest Parameter Variant

csCode
currBitMap
atpFlags
addrBlock
reqLength
reqgPointer
bdsPointer
numOfBuffs
timeOutval
numOfResps
retryCount
TrelTime

word
byte
byte
long
word
long
long
byte
byte
byte
byte
byte

22 reqTID word
26 csCode word
29 atpFlags byte
30 addrBlock long
34 reqLength word
36 reqPointer long
40 bdsPointer long
44 numOfBuffs byte
45 timeOutval byte
46 numOfResps byte
47 retryCount byte
50 TrelTime byte
OpenATPSkt Parameter Variant
26 csCode word
30 addrBlock long
6-56 Summary of ATP

reserved

reserved

reserved

reserved

address of completion routine
result code

user bytes

request transaction ID

driver reference number
command code

current bitmap or socket number

command code; always sendRequest
current bitmap

control information

destination socket address

request size in bytes

pointer to request data

pointer to response BDS

number of responses expected
timeout interval

number of responses received

number of retries

release time for extended send request

request transaction ID

command code; always nSendRequest
control information

destination socket address

request size in bytes

pointer to request data

pointer to response BDS

number of responses expected
timeout interval

number of responses received

number of retries

release time for extended send request

command code; always openATPSkt
socket request specification

CHAPTER 6

AppleTalk Transaction Protocol (ATP)

CloseATPSkt Parameter Variant

26

GetRequest Parameter Variant

22
26
29
30
34
36
44

csCode word

reqTiD word
csCode word
atpFlags byte
addrBlock long
regLength word
reqPointer long
bitMap byte

command code; always closeATPSkt

request transaction ID

command code; always getRequest
control information

destination socket address

request size in bytes

pointer to request data

current bitmap

SendResponse Parameter Variant

26
29
30
40
4
45
46

csCode word
atpFlags byte
addrBlock long
bdsPointer long
numOfBuffs byte
bdssize byte
transID word

command code; always sendResponse
control information

destination socket address

pointer to response BDS

number of responses expected

BDS size in elements

transaction ID

AddResponse Parameter Variant

26
29
30
34
36
44
46

csCode word
atpFlags byte
addrBlock long
reqLength word
regPointer long
rspNum byte
transID word

command code; always addResponse
control information

destination socket address

response size in bytes

pointer to response data

sequence number

transaction ID

KillSendReq Parameter Variant

26 csCode word
44 aKillQEl long
RelTCB Parameter Variant
26 csCode word
30 addrBlock long
46 transiID word

KillGetReq Parameter Variant

26
4

csCode word
aKillQEl long
Summary of ATP

command code; always killSendReq
pointer to queue element of function to be removed

command code; always relTCB
destination socket address of request
transaction ID of request to be canceled

command code; always killGetReq
pointer to queue element of function to be removed

6-57

(dLv) 10901014 uopoesueiL yjeLejddy n

CHAPTER 6

AppleTalk Transaction Protocol (ATP)

KillAllGetReq Parameter Variant

26 csCode word command code; always killAllGetReq
RelRspCB Parameter Variant
26 csCode word command code; always rel1RspCB
30 addrBlock long internet socket address of the source of the request
46 transID word transaction ID of request with which the PSendResponse
function to be canceled is associated
Result Codes
noErr 0 Noerror
paramErr -50 Version number is too high
reqFailed -1096 Retry count exceeded
tooManyReqs -1097 Too many concurrent requests
tooManySkts -1098 Too many responding sockets
badATPSkt -1099 Bad responding socket
badBuffNum -1100 Sequence number out of range
noRelErr -1101 No release received
cbNotFound -1102 The aKillQE1 parameter does not point to a PSendRequest or
PNSendRequest queue element
noSendResp -1103 PAddResponse issued before PSendResponse
noDataArea -1104 Too many outstanding ATP calls
regAborted -1105 Request canceled
6-58 Summary of ATP

CHAPTER 7

Datagram Delivery Protocol

(DDP)

Contents

AboutDDP 7-3

About Sockets and Socket Listeners ~ 7-4

Assigning Socket Numbers ~ 7-6

DDP Client Protocol Types ~ 7-7

Obtaining Data From the Network ~ 7-8

UsingDDP 7-8

Sending and Receiving Data: An Overview 79
Opening a Socket ~ 7-9
Sending Data 7-10
Receiving Data ~ 7-10

Creating a DDP Write-Data Structure ~ 7-12

Using Registers and Packet Headers ~ 7-13
How the .MPP Driver Calls Your Socket Listener
The DDP Packet and Frame Headers ~ 7-14
The MPW Equates 7-16
Reading an Incoming Packet ~ 7-17
Using Checksums 7-19

A Sample Socket Listener ~ 7-20
Socket Listener Queues and Buffers ~ 7-20
Setting Up the Socket Listener ~ 7-22
Initializing the Socket Listener ~ 7-24
Processing a Packet ~ 7-25
Testing for Available Packets 7-31

Measuring Packet-Delivery Performance = 7-32

Contents

7-13

7-1

7-2

CHAPTER 7

DDP Reference 7-34
Data Structures 7-34
The Write-Data Structure 7-35
The Address Block Record 7-35
MPP Parameter Block 7-36
Routines 7-37
Opening and Closing DDP Sockets
Sending DDP Datagrams 7-40
Summary of DDP 7-44
Pascal Summary 7-44
Constants 7-44
Data Types 7-44
Routines 7-45
CSummary 7-46
Constants 7-46
Data Types = 7-46
Routines 7-47

Assembly-Language Summary 7-48

Constants 7-48
Data Structures 7-49
Result Codes 7-50

Contents

7-37

CHAPTER 7

Datagram Delivery Protocol (DDP)

This chapter describes how you can use the Datagram Delivery Protocol (DDP) to send
data to and receive it from another socket across an AppleTalk internet. To use DDP, you
send and receive data as discrete packets, each packet carrying its own addressing
information. DDP does not allow you to set up a connection between two sockets, nor
does DDP ensure that data is delivered error free as do some of the AppleTalk protocols
that are built on top of it.

You should use DDP if your application does not require reliable delivery of data and
you do not want to incur the additional processing associated with the use of a protocol
that entails setting up and breaking down a connection. Because it is connectionless
and does not include reliability services, DDP offers faster performance than do the
higher-level protocols that add these services. Applications such as diagnostic tools that
retransmit packets at regular intervals to estimate averages or games that can tolerate
packet loss are good candidates for the use of DDP.

(daaq) 10001014 Aieneq weibejeq -

A series of DDP packets transmitted over an AppleTalk internet from one node to
another may traverse a single high-speed EtherTalk network or they may wind across
multiple intermediate data links such as LocalTalk or TokenTalk, which are connected
by routers. During the course of this process, some packet loss can occur, for example,
as a result of collisions. If you do not plan on implementing recovery from packet loss
in your application, but your application requires it, you should consider using an
AppleTalk transport protocol, such as the AppleTalk Data Stream Protocol (ADSP) or
the AppleTalk Transaction Protocol (ATP); these protocols protect against packet loss
and ensure reliability by using positive acknowledgment with packet retransmission
mechanisms.

This chapter describes how to

m open and close sockets for sending and receiving DDP packets

m prepare the data and addressing information for each packet that you want to send

m write a socket listener that receives packets addressed to the DDP socket associated
with your application

® measure packet-delivery performance

This chapter includes a sample socket listener that you can yse as a model for your own
socket listener or modify to fit your application’s requirements.

For an overview of DDP and how it fits within the AppleTalk protocol stack, read the
chapter “Introduction to AppleTalk” in this book, which also introduces and defines
some of the terminology used in this chapter.

For an explanation of the DDP specification, see Inside AppleTalk, second edition.

About DDP

The protocol implementations at the physical and data-link layers of the AppleTalk
protocol stack provide node-to-node delivery of data on the internet. DDP is a client

of the link-access protocol—whether LLAP, ELAP, TLAP, or FDDILAP—and it uses the
node-to-node delivery services provided by the data link to send and receive data. DDP
is responsible for delivering data from socket to socket over an AppleTalk internet.

About DDP 7-3

7-4

CHAPTER 7

Datagram Delivery Protocol (DDP)

DDP is central to the process of sending and receiving data across an AppleTalk internet.
Regardless of which data link is being used and which (if any) higher-level protocols are
processing data, all AppleTalk data is carried in the form of DDP packets known as
datagrams. (This chapter uses the terms datagram and DDP packet interchangeably.) A
datagram consists of a header followed by data.

DDP lets you send and receive data a packet at a time. If you use DDP, you must address
each data packet to the socket for which it is intended. A socket is a piece of software
that serves as an addressable entity in a networked node. Sockets are numbered, and
each application that uses DDP to transfer data is associated with a unique socket. You
cannot open and maintain a session between two sockets using DDP, and for this reason,
DDP is called a connectionless protocol.

To use DDP, you must provide a socket listener and a routine that reads packets from
the socket listener code after it receives them. A socket listener is a process that receives
packets addressed to the DDP socket associated with your application. Because the
driver that implements DDP, the MPP driver, uses registers not accessible from higher-
level languages such as Pascal to pass information to your socket listener, you must
write the socket listener code in assembly language.

DDP is said to provide a best-effort socket-to-socket delivery of datagrams over
the internet.

m Socket-to-socket delivery means that when the data link delivers a packet to a node,
the DDP implementation in that node determines the socket for which the packet
is intended and calls the socket listener for that socket.

m Best-effort delivery means that DDP attempts to deliver any datagram that has a valid
address to an open socket; as long as the length of the datagram received is the same
as the length indicated by the header, the data is not longer than 586 bytes, and the
datagram does not include an invalid checksum. DDP has no provision for requesting
the sender to retransmit a lost or damaged datagram.

Note

You can send DDP packets to another socket in your own node if you
have enabled the intranode delivery feature of AppleTalk. By default,
intranode delivery is disabled; to turn it on, you use the PSetSelfSend
function, which is described in the chapter “AppleTalk Utilities” in

this book. ¢

About Sockets and Socket Listeners

Every application that uses DDP to transfer data must send or receive that data through
a socket. The use of sockets allows DDP to determine for which application a packet

is intended. Each node supports up.to 254 sockets, and each socket is identified by an
8-bit number that combines with the network number and the node ID to form the
internet socket address of the application. When an application or process calls DDP to
open a socket, DDP associates the number of that socket with the application, making
the application distinct from other applications on the same node. An application

that is associated with a specific socket through DDP is the client of that socket, or a
socket client.

About DDP

CHAPTER 7

Datagram Delivery Protocol (DDP)

The use of sockets allows multiple processes or applications that run on a single node
connected to AppleTalk to be open at the same time. In Figure 7-1, a printer server client
application and a file server client application are open on the same node at the same
time. Each application is associated with a unique socket, and packets for that applica-
tion are addressed to that socket number.

Figure 7-1 Two applications running on the same node, each with its own socket

Socket 191

Q

.- File server
«~.-"client application

Printer server
client application

Applications exchange data with each other through their sockets. A socket client can
send and receive datagrams only through its associated socket. Moreover, every
socket-client application that uses DDP directly to transfer data must have associated
with it a socket listener that receives datagrams addressed to the socket on behalf of
that socket’s client application.

A socket listener is a process that you provide as part of your client application. You must
write your socket listener in assembly language and adhere to specific requirements in
regard to the use of registers and the routines that you call to receive packets. Beyond
meeting these AppleTalk requirements, your socket listener can perform any other
functions that your socket-client application requires. See “A Sample Socket Listener”
beginning on page 7-20 for more details.

When you call DDP to open a socket, you provide a pointer to your socket listener for
that socket. DDP maintains a socket table that includes an entry for every open socket
and its socket listener. When the .MPP driver receives a packet, it does not read and
process the packet. Instead, it reads the socket number portion of the internet socket
address and then checks the socket table to determine if that socket is open. If so, the
MPP driver calls the socket listener associated with the socket to handle reception of
the packet for the client application. The use of socket listeners helps to maximize
throughput between DDP and the link-access protocol layer by eliminating unnecessary
buffer copying.

About DDP 7-5

(daaq) 10001044 Aiaajag welbejeq -

CHAPTER 7

Datagram Delivery Protocol (DDP)

Figure 7-2 shows a socket-client application that calls DDP to send data to another
socket. The socket-client application includes code that comprises its socket listener.
When DDP receives a packet addressed to this socket, it checks the socket table for the
entry that contains the socket number and the address of the socket listener belonging to
the application that owns the socket; then DDP calls the socket listener to receive the
packet for the application.

Figure 7-2 Sending and receiving data using DDP

7-6

C = v
AREEN . Dia!og With
. e DDP remote end
Socket client . “roor
€ . Socket <:]
application .| joner

Assigning Socket Numbers

DDP maintains two classes of sockets: sockets that are assigned statically and sockets
that are assigned dynamically. There are some restrictions on which socket numbers
they use:
m Statically assigned sockets have numbers in the range of 1-127.

O Socket numbers 1-63 are reserved for use by Apple Computer, Inc.

O Socket numbers 64-127 are available for program development.

m Dynamically assigned sockets have numbers within the range of 128-254.

To use a statically assigned socket, an application must request a specific socket number.
In most cases, you should not use statically assigned sockets.

IMPORTANT

Although you can use statically assigned sockets whose numbers fall
within the range of 64-127 for program development, you must not
use a statically assigned socket number for a released product. To do
so creates the possibility of conflicts arising, for example, when two
applications that both use the same statically assigned socket are open
on the same node at the same time. Data intended for one application
could be delivered to the other application, and vice versa. A

DDP maintains a pool of available sockets from which it selects a socket number to
assign dynamically for your use when you call DDP to open a socket and you do not
specify a number within the range of statically assigned sockets.

Figure 7-3 illustrates conceptually what happens when an application calls DDP to open
and assign a socket dynamically. In this example, DDP assigns socket number 130

to the application that requests a socket. (Socket number 129 is already assigned to

an application.)

About DDP

CHAPTER 7

Datagram Delivery Protocol (DDP)

Figure 7-3 Assigning sockets

DDP :
Open socket | |_Sockettable- -
—— Socket 129 | | ————>
Socket 130

Socket client Socket client
application Socket 131 application
Socket n

Socket 130

To let DDP choose a socket number from the pool of available sockets within the range of
dynamically assigned sockets, you specify 0 for the socket number. However, you can
choose a specific socket within that range and pass the number of that socket to DDP

to open. If that socket is available, DDP opens it, assigns it to your application, and
associates your socket listener with it. If the socket number you specify is not available,
DDP returns an error result.

DDP Client Protocol Types

AppleTalk allows for the implementation of up to 254 parallel protocols that are clients
of DDP. The DDP protocol type field, which is the last field of the DDP packet header,
specifies the type of protocol that the packet is intended for. Figure 7-6 on page 7-15
shows the 1-byte DDP protocol type field of the DDP packet header.

The socket listener for a single socket can receive packets whose protocol type fields
contain different values. It is the responsibility of your socket-client application to define
its own protocol types. Your socket-client application can define more than one DDP
protocol type and receive packets for any of the protocol types it handles, sorting them
by reading the value of the DDP protocol type field.

For example, if you are implementing a server, you might define one protocol type
for data and another for attention messages, and have separate routines to handle
the different packet types. You fill in the DDP protocol type field when you build the
contents of a DDP packet to be sent to another socket.

For more information on how to specify a protocol type for a DDP client application
and the range of valid values for the DDP protocol type field, see Appendix C in Inside
AppleTalk, second edition. ’

About DDP 7-7

(daq) 10201014 Aionjeg weibereq -

CHAPTER 7

Datagram Delivery Protocol (DDP)

Obtaining Data From the Network

DDP supports a number of client protocols that are built on top of it, and DDP itself is a
client protocol of the underlying data-link protocol. DDP has its own protocol handler
that the link-access protocol calls when it receives a DDP packet. A protocol handler

is a process that receives packets for a specific protocol type much like a socket listener
receives packets for a specific socket. A DDP packet or datagram is sent from its source
socket through one or more AppleTalk networks to its destination network.

A datagram is sent across the network enclosed in a frame. The frame contains addi-
tional information that the link-access protocol requires, such as addressing information
that identifies the node and the socket number for which the frame is meant. The frame
addressing information is contained in the frame’s header, which is followed by the
datagram. The frame header also identifies the protocol type of the enclosed packet. In
addition to a header, a frame also contains a trailer that follows the datagram. The frame
trailer contains a frame check sequence number that the AppleTalk hardware generates
and uses to detect transmission errors.

The link-access protocol in the destination network delivers the frame to the node
containing the destination socket. When a frame addressed to a particular node arrives
at that node, the node’s CPU is interrupted and the .MPP driver s interrupt handler gets
control to service the interrupt. As the frame’s first 3 bytes are read into the first-in
first-out (FIFO) buffer, the MPP driver’s interrupt handler moves these bytes into its
own internal buffer.

If the frame is a data frame containing a packet intended for a higher-level protocol, the
.MPP driver’s interrupt handler passes control to the protocol handler for the protocol
type specified in the frame’s header. For example, when a frame whose header specifies
the DDP protocol type is delivered to a node, the link-access protocol passes control to
the .MPP driver. The MPP driver then calls the DDP protocol handler. DDP, which is
implemented by the .MPP driver, determines for which socket the packet is meant and
calls the socket listener that is associated with the socket. The socket listener, in turn,
actually reads in the packet.

Using DDP

7-8

This section describes how to send data packets to a socket and how to receive them
from another socket over an AppleTalk network or internet using DDP. It also describes
how to use the AEP Echoer to measure packet-delivery performance and to determine if
anode is on the network.

Note

You do not need to use the AEP Echoer to send and receive data using
DDP. This chapter describes the AEP Echoer because you must use
the programming interface to DDP in order to use the AEP Echoer.
Applications that use higher-level AppleTalk protocols, such as ATP
or ADSP, can also use the AEP Echoer to measure packet-delivery
performance. ¢

Using DDP

CHAPTER 7

‘

Datagram Delivery Protocol (DDP)

Sending and Receiving Data: An Overview

To send data, you must address each packet to the socket for which it is intended
because you cannot open and maintain a connection between two sockets using DDP. To
receive a data packet using DDP, you must provide a socket listener process that DDP
associates with the socket that your application uses. When you open the socket for your
application to use, you must provide a pointer to the socket listener. DDP associates the
address of the socket listener with your application’s socket so that the .MPP driver can
call your socket listener when it receives a packet that is addressed to your socket-client
application. DDP maintains a separate entry in its socket table for each socket and socket
listener pair.

Applications developers commonly write a single socket-client application that both
sends and receives data and that includes a socket listener process to receive data.
To clarify the steps involved in sending and receiving data, this section gives you an
overview of these tasks as separate sequences after it explains how to open a socket.
The steps for sending and receiving data refer to sections that are provided later in
this chapter that describe how to

m create a write-data structure, which you need to send data
m use the registers that the MPP driver uses to pass parameters to your socket listener
m write a socket listener, with sample code illustrating this

If you want to provide features in addition to the DDP checksum feature to check data
and correct errors, you can include them in your application, you can define your own
AppleTalk protocol, or you can use a higher-level AppleTalk protocol such as ATP or
ADSP instead of calling DDP directly. (For information about DDP checksums, see
“Using Checksums” beginning on page 7-19.)

To make your application available to other users of AppleTalk, you must use the NBP
PRegisterName function to register the name that represents your socket-client applica-
tion. When you are finished using the socket, you must use the NBP PRemoveName
function to remove this name from the NBP names table. See the chapter “Name-Binding
Protocol (NBP)” in this book for more information about these functions.

Opening a Socket

To send and receive data using DDP, your application must first open a socket. Opening
a socket makes your application a client of that socket. You open a socket with the
POpenskt function. When you open a socket, you must provide a pointer to your socket
listener and you must specify 0 for the socket number if you want DDP to dynamically
assign a socket.

The POpensSkt function assigns a socket number to your application and enters the
number in the socket table along with the pointer to the socket listener that you provide.
The POpenskt function returns the socket number to you in the socket field of the
parameter block.

Using DDP 7-9

(daq) 10001014 Aisnjaq welbejeq -

7-10

CHAPTER 7

Datagram Delivery Protocol (DDP)

Associating a single socket listener with more than one socket

If your application includes processes that each have their own sockets,
you can assign a single socket listener to more than one socket, but each
socket should have its own buffer or set of buffers for receiving data.

If you do not want DDP to randomly assign a socket number to your application, you
can specify the number of a particular socket for DDP to open. For information on the
range of socket numbers from which you can select, see “Assigning Socket Numbers” on
page 7-6.

IMPORTANT

You cannot specify a NIL pointer to the socket listener. If you do,
the system on which your application is running will crash. A

When your application is finished using a socket, you must use the PCloseskt function
to close the socket.

Sending Data

To send data, you must create a write-data structure that contains the data in a specific
format and then call a DDP function to send the data. After you have opened a socket
using the POpensSkt function, here are the steps that you follow to send data using DDP:

1. Create a write-data structure.
2. Use the DDP function PWriteDDP to send the data.

See “Creating a DDP Write-Data Structure” beginning on page 7-12 for information
about how to create a write-data structure using the DDP procedure BuildDDPwds
or your own code.

Packets with long headers can include a checksum that can be used to verify the
integrity of the packet data. For information on how to direct DDP to calculate a
checksum for data that you want to send, see “Using Checksums” beginning on
page 7-19. For details of the contents of a long header, see “The DDP Packet and
Frame Headers” beginning on page 7-14.

Receiving Data

To receive data using DDP, you must provide a socket listener that is part of your socket-
client application. The socket listener code must

m be written in assembly language because it must read from and write to the
CPU'’s registers

m include buffers to hold the data that it reads
= use the register values that the MPP driver passes to your socket listener

m determine the type of packet, if you have defined more than one protocol type that
your application handles

m if the packet includes a long header, calculate the checksum value, if one is used

Using DDP

CHAPTER 7

Datagram Delivery Protocol (DDP)

There are many ways to design and write a socket-client application and socket listener.
This chapter offers one possibility. For details of this sample socket listener and for its
code, see “A Sample Socket Listener” beginning on page 7-20.

Note

Your socket-client application should test to find out when the socket
listener finishes processing a packet so that the socket-client application
can begin its own packet reading and processing. &

To receive data, your application must have already opened a socket using the
POpenskt function and have passed the POpenskt function a pointer to your
socket listener.

Here are the tasks involved in receiving data using DDP:

1. The .MPP driver calls your socket listener when it receives a packet addressed to your
socket-client application. The .MPP driver passes values to you in the CPU’s registers.
You need to know how the .MPP driver uses these registers and how you can use
them. For information about these registers, see “How the .MPP Driver Calls Your
Socket Listener” beginning on page 7-13. One of the values that the .MPP driver
passes to you is a pointer to the buffer that holds the DDP packet header. You need
to know how the DDP packet header and the frame header are structured. For
information about these headers, see “The DDP Packet and Frame Headers”
beginning on page 7-14.

2. To hold the data that it reads, your socket listener must allocate memory for buffers.
In addition to allocating data buffers, either your socket-client application or the
socket listener (if you write the socket listener code to carry out this function) must
perform some initialization tasks. For information about these tasks and how the
sample socket listener handles them, see “Socket Listener Queues and Buffers”
beginning on page 7-20, “Setting Up the Socket Listener” beginning on page 7-22,
and “Initializing the Socket Listener” beginning on page 7-24.

3. When the .MPP driver calls your socket listener, the socket listener must read the
incoming packet into one or more data buffers. To do this, the socket listener uses two
processes, ReadPacket and ReadRest, which are implemented as a single routine
in the hardware driver. The .MPP driver passes you the address of this routine in one
of the CPU'’s registers. For more information, see “Reading an Incoming Packet”

beginning on page 7-17.
4. If you have defined more than one DDP protocol type that your application handles,

check the DDP protocol type field of the datagram header (see Figure 7-6 on
page 7-15) to determine the protocol type of the packet you have just received.

The AppleTalk internet address (network number, node ID, and socket number) is
insufficient to distinguish between packets intended for different processes that are
using the same socket. Your socket listener must use some other information (such as
the DDP protocol type or a higher-level protocol header imbedded in the DDP packet
data) to make this distinction.

5. If the packet contains a long header, the socket listener needs to find out if the header
contains a checksum. If it does, the socket listener needs to calculate the checksum to
determine if the packet’s data has been corrupted. For more information, see “Using
Checksums” beginning on page 7-19.

Using DDP 7-11

(daaq) 10001014 Aisaijeq welbejeq -

7-12

CHAPTER 7

Datagram Delivery Protocol (DDP)

6. The socket listener can now process the packet or pass it to the client application for
processing. The sample socket listener provided here writes the packet buffer to a
queue that it uses for successfully processed packets and removes the packet from the
queue for incoming packets. For a description of how the sample socket listener does
this, see “Processing a Packet” beginning on page 7-25.

7. The client application can now read in the packet for its own purposes. The client
application should include code that periodically checks to determine whether the
socket listener has finished processing an incoming packet. For a description of how
the sample socket listener’s client application performs this task and some sample
code, see “Testing for Available Packets” beginning on page 7-31.

Creating a DDP Write-Data Structure

When you use the PWriteDDP function to send a DDP packet to another socket, you
provide a pointer to a write-data structure that you have already created. A write-data
structure contains a series of pairs of length words and pointers and ends with a 0 word.
Each pair indicates the length and location of a portion of the data that constitutes the
packet to be sent over the network. The first entry in the write-data structure consists of
only a pointer. It does not include a length word, because the length is always the same.

The first pointer indicates a 16-byte header block, which must start at an odd address.
You fill in the destination network number, destination node ID, destination socket
number, and DDP protocol type, and the .MPP driver fills in the other fields of the
packet header. DDP protocol types 1 through 15 are reserved for use by Apple. A DDP
packet may have a maximum of 586 bytes of data. Figure 7-4 shows the write-data
structure and the header block.

Because the first pointer in the write-data structure must point to an odd address, it is
difficult to use Pascal to create a write-data structure. If you are programming in Pascal,
you can use the BuildDDPwds procedure to create a write-data structure. You must
provide a 17-byte buffer for the header block, a 14-byte buffer to hold the write-data
structure, and a pointer to the data you want to send. The header block is only 16 bytes,
but because it begins on an odd address, the first byte is not used. The write-data
structure created by the BuildDDPwds procedure is 14 bytes long, consisting of only a
pointer to the header, a length-pointer pair for the data block, and the terminating 0
word. Although a write-data structure allows you to divide the data into as many blocks
as you wish, the BuildDDPwds procedure assumes that the data is in a single block.

In most cases, if you are using DDP directly to send data across a network, a single block
of data should be adequate. However, if you are implementing a protocol on top of DDP
and you want to send blocks of data that are stored separately as parts of the same
datagram, you will have to build your own write-data structure that includes multiple
pairs of pointers and lengths. For a description of the write-data structure that you need
to build in this case, see “The Write-Data Structure” on page 7-35. Notice that the pointer
to the first entry indicates an odd address and that there is no length word for the

first entry.

Using DDP

CHAPTER 7

Datagram Delivery Protocol (DDP)

Figure 7-4 DDP write-data structure

Bytes Bytes
Reserved 2 Odd address o
Reserved 7
Pointer to first entry 4
Destination network number 2
Length of second entry 2 Reserved 2
Destination node ID 1
Pointer to second entry 4 Reserved 1
Destination socket number 1
Reserved 1
Variable DDP protocol type 1
length -
Length of rth ent Variable
gt ry 2 % Data % length

Pointer to nth entry 4 >
Variable
Data
o 5 5 }Iength

Using Registers and Packet Headers

To receive data at the DDP level, you need to include as part of your socket-client
application a socket listener that reads packets addressed to your application and passes
them to the application for further processing. DDP maintains a table with an entry

for each socket and socket listener pair.

When the .MPP driver receives a packet addressed to your socket-client application, it
calls your socket listener, using the CPU’s registers to pass pointers to the internal buffer
where it has stored the packet’s headers and to some data values that your socket
listener uses during its processing.

The CPU's registers that the .MPP driver uses to pass parameters to your socket listener
are not directly accessible from Pascal. Because a DDP socket listener must read from
and write to the CPU's registers, you must write a socket listener in assembly language;
you cannot use Pascal. However, you can write the remainder of the client application
that includes the socket listener in a high-level language such as Pascal. The client
application sample code that this chapter shows is written in the Pascal language.

How the .MPP Driver Calls Your Socket Listener

When a frame addressed to a particular node arrives at that node and the frame contains
a DDP packet, the node’s CPU is interrupted and the link-access protocol calls the MPP
driver to receive the packet. When the .MPP driver receives a DDP packet, it reads the

Using DDP 7-13

(daq) l0o0101d Aisaljeg wesbeleq -

CHAPTER 7

Datagram Delivery Protocol (DDP)

first 3 bytes of the frame header into an internal buffer called the read-header area
(RHA). After the frame header is read into the RHA, 8 bytes of the RHA are still
available for your use.

Next, the MPP driver reads the socket address and calls the socket listener for that
socket. The .MPP driver uses the CPU’s registers to pass parameters to your socket
listener as follows:

Registers on call to DDP socket listener

A0 Reserved for internal use by the MPP driver. You must preserve this register
until after the ReadRest routine has completed execution.

Al Reserved for internal use by the MPP driver. You must preserve this register
until after the ReadRest routine has completed execution.

A2 Pointer to the MPP driver’s local variables. The value at the offset toRHA from
the value in the A2 register points to the start of the RHA.

A3 Pointer to the first byte in the RHA past the DDP header bytes (the first byte
after the DDP protocol type field).

A4 Pointer to the ReadPacket routine. The ReadRest routine starts 2 bytes after
the start of the ReadPacket routine.

A5 Free for your use before and until your socket listener calls
the ReadRest routine.

DO Lower byte is the destination socket number of the packet.

D1 Word indicating the number of bytes in the DDP packet left to be read (that is,
the number of bytes following the DDP header).

D2 Free for your use.
D3 Free for your use.

When the .MPP driver calls your socket listener, you can read the destination socket
number that is in the DO register and the frame header that is in the RHA. You should
assume that only 8 bytes are still available in the RHA for your use. Figure 7-5 shows the
beginning of the RHA where the frame header begins; the frame header is followed by
either a short or a long DDP header.

The DDP Packet and Frame Headers

A DDP packet includes a packet header followed by data. The DDP packet header is
preceded by the frame header. Figure 7-6 shows both headers; they do not include the
data portion. The DDP packet header can be long or short; if the destination and source
network numbers are different, DDP uses a long header, which includes some additional
fields.

The frame header includes
m the source and destination node IDs

m the DDP header type (1 = short, 2 = long)

7-14 Using DDP

CHAPTER 7

Datagram Delivery Protocol (DDP)

Figure 7-5 The RHA for both long and short DDP headers
DDP short header B DDP long header Bytes
tORHA (A2) —= toRHA (A2) —»
Frame header 3 Frame header 3
DDP short header 5
Register A3 —»
DDP long header 13
Register A3 >
Figure 7-6 Data-link frame header and DDP packet header
DDP short header Bytes DDP long header Bytes
6 Destination node ID 1 F‘ Destination node ID 1
Frame — Source node ID 1 Frame — Source user node ID 1
header | DDP header type, value 1 1 header | DDP header type, value 2 1
. Unused | 1 r Unused| Hopcount | 1
Datagram length (10 bits) 1 Datagram length (10 bits) 1
DDP — Destinaticn socket number 1 DDP checksum 2
packet Source socket number 1
header - DDP protocol type 1 Destination network number 2
DDP — Source network number 2
packet —
header Destination node ID 1
! Source node ID 1
Destination socket number 1
! Source socket number 1
’ _ DDP protocol type 1

The DDP long and short packet headers have these fields in common:

the datagram length (10 bits)

the source socket number

(]
m the destination socket number
.
.

the DDP protocol type

Using DDP

7-15

(daq) 10001014 Aueatjeq wesbejeq -

CHAPTER 7

Datagram Delivery Protoco! (DDP)

Along DDP packet header also includes

m a hop count

m a checksum value, if one was calculated

m the source network number and node ID

m the destination network number and node ID

The MPW Equates

You can use the following equates from the MPW interface files in writing your socket
listener process and the client application that includes it:

; frame header

1

lapDstAdr EQU 0 ;destination node address [byte]
lapSrcAdr EQU 1 ;source node address [byte]
lapType EQU 2 ;LAP type field [bYte]

lapHdSz EQU 3 ;size of LAP header

;DDP packet header

.
r

ddpHopCnt EQU 0 ;hop count (only used in long
; header) [byte]

packet length (from this word
onward) [word]

checksum [word]
destination network no. [word]
network of origin [word]
destination node address [byte]
node of origin [byte]
d
s
D
d

ddpLength EQU 0

’
H
H
ddpChecksum EQU 2 H
ddpDstNet EQU 4 :
ddpSrcNet EQU 6 ;
ddpDstNode EQU 8 ;
ddpSrcNode EQU 9 ;
ddpDstSkt EQU 10 ;destination socket number [byte]
;source socket number ([byte]
;DDP protocol type field [byte]
;destination socket number (short
; header) [byte]
;source socket number (short
; header) [byte]
i
i

DDP protocol type field (short header)

ddpSrcSkt EQU 11
ddpType EQU 12
sddpDstSkt EQU 2
sddpSrcSkt EQU 3

sddpType EQU 4

[byte]
;
ddphSzLong EQU 13 ;size of extended DDP header
ddphSzShort EQU 5 ;size of short DDP header

1

shortDDP EQU $01 ;LAP type code for DDP (short header)
longDDP EQU $02 ;LAP type code for DDP (long header)

7-16 Using DDP

CHAPTER 7

Datagram Delivery Protocol (DDP)

Reading an Incoming Packet

Your socket listener calls the ReadPacket and ReadRest processes to read the incoming
data packet. You can call ReadPacket as many times as you like to read the data piece by
piece into one or more data buffers, but you must always use ReadRest to read the final
piece of the data packet. Alternatively, you can read all of the data using only ReadRest.
The ReadRest routine restores the machine state (the stack pointers, status register, and
so forth) and checks for error conditions.

Note
You can ignore any remaining data instead of reading it
by setting the D3 register to 0 and calling ReadRest. ¢

Before you call the ReadPacket routine, you must allocate memory for a data buffer
and place a pointer to the buffer in the A3 register. You must also place the number of
bytes you want to read in the D3 register. You must not request more bytes than remain
in the data packet.

The buffer that you allocate must be large enough to hold all of the data and—if your
socket listener places the packet header in the buffer—the header as well. The maximum
amount of data in a DDP data packet is 586 bytes. A long DDP packet header is 13 bytes
long; a short header is 5 bytes. The frame header is 3 bytes. Therefore, the maximum
amount of data from the packet that the socket listener can return is 602 bytes. You can
use the buffer as a data structure to hold other information as well, such as the number
of bytes of data actually read by the socket listener, a flag that indicates when the data
has been returned, and result codes.

After you have called the ReadRest routine, you can use registers A0 through A3 and
DO through D3 for your own use, but you must preserve all other registers. You cannot
depend on having access to your application’s global variables.

To call the ReadPacket routine, execute a JSR instruction to the address in the A4
register. The ReadPacket routine uses the registers as follows:

Registers on entry to the ReadPacket routine
A3 Pointer to a buffer to hold the data you want to read

D3 Number of bytes to read; must be nonzero

Registers on exit from the ReadPacket routine
A0 Unchanged

Al Unchanged

A2 Unchanged

A3 Address of the first byte after the last byte read into buffer

A4 Unchanged

D0 Changed

D1 Number of bytes left to be read

D2 Unchanged

D3 Equals 0 if requested number of bytes were read, nonzero if error

Using DDP 717

(daq) 10901014 A1anjeq weibejeq -

7-18

CHAPTER 7

Datagram Delivery Protocol (DDP)

After every time you call ReadPacket or ReadRest, you must check the zero (z) flag
in the status register for errors because the ReadPacket routine indicates an error

by clearing it to 0. If the ReadPacket routine returns an error, you must terminate
execution of your socket listener with an RTS instruction without calling ReadPacket
again or calling ReadRest at all.

Call the ReadRest routine to read the last portion of the data packet, or call it after
you have read all the data with ReadPacket routines and before you do any other
processing or terminate execution. After you call the ReadRest routine, you must
terminate execution of your socket listener with an RTS instruction whether or not the
ReadRest routine returns an error.

When you call the ReadRest routine, you must provide in the A3 register a pointer to
a data buffer and must indicate in the D3 register the size of the data buffer. If you
have already read all of the data with calls to the ReadPacket routine, specify a buffer
of size 0.

WARNING

If you do not call the ReadRest routine after the last time you call the
ReadPacket routine successfully, the system will crash. You do not
need to call the ReadPacket routine; you can call only the ReadRest
routine to read in the entire packet. However, you must call the
ReadRest routine. A

To call the ReadRest routine, execute a JSR instruction to an address 2 bytes past the
address in the A4 register. The ReadRest routine uses the registers as follows:

Registers on entry to the ReadRest routine
A3 Pointer to a buffer to hold the data you want to read
D3 Size of the buffer (word length); may be 0

Registers on exit from the ReadRest routine
AQ Unchanged

Al Unchanged

A2 Unchanged

A3 Pointer to first byte after the last byte read into buffer
D0 Changed

D1 Changed

D2 Unchanged

D3 Equals 0 if requested number of bytes exactly equaled the size of the buffer;
less than 0 if more data was left than would fit in buffer (extra data equals ~-D3
bytes); greater than 0 if less data was left than the size of the buffer (extra buffer
space equals D3 bytes)

Using DDP

CHAPTER 7

Datagram Delivery Protocol (DDP)

Calling ReadPacket and ReadRest when LocalTalk is the data link

If LocalTalk is the data link that is being used, your socket listener
has less than 95 microseconds (best case) to read more data with a
ReadPacket or ReadRest call. If you need more time, you can read
another 3 bytes into the RHA, which will allow you an additional

95 microseconds. ¢

In implementing your socket listener, you can use the registers as follows:
m You can use registers D0, D2, and D3 freely throughout the socket listener code.
m You must preserve the contents of registers A6 and D4 to D7.

m From entry to your socket listener until you call ReadRest
O you can use A5 register
O you must preserve registers A0 to A2, A4, and D1

m From ReadRest until your application exits from the socket listener
O you must preserve register A5
O you can use registers AQ to A3 and D0 to D3

Using Checksums

For packets that include a long header, DDP includes a checksum feature that you can
use to verify that the packet data has not been corrupted by memory or data bus errors
within routers on the internet.

When you use the PWriteDDP function to send a DDP packet across an AppleTalk
internet, you can set a flag (checksumF1lag) to direct DDP to calculate a checksum
for the packet.

If the checksum flag is set and the socket to which you are sending the packet (the
destination socket) has a network number that is different from that of the socket from
which you are sending the packet (the source socket), then the PWriteDDP function
calculates a checksum for the datagram and includes it in the datagram packet header. In
this case, DDP uses a long header for the packet; Figure 7-6 on page 7-15 shows both the
long and short DDP headers.

When your socket listener receives a packet that has a long header, the socket listener
must determine whether DDP calculated a checksum for the packet, and if so, use the
checksum to verify that the data was delivered intact. You can use the equates from the
MPW interface files in calculating checksums: see “The MPW Equates” on page 7-16.

To determine this, your socket listener code should take the following steps:

1. Check the DDP header type field. This is set to 2 for a packet with a long header and 1
for a packet with a short header.

2. Check the checksum field (checksumF1lag). This is set to a nonzero value if the
sender specified that DDP should calculate a checksum for the packet; a short header
does not include a checksum field.

Using DDP 7-19

(daq) 10903014 Aiaaljeq weibereqg -

7-20

CHAPTER 7

Datagram Delivery Protoco! (DDP)

3. Calculate the checksum using the following algorithm to calculate the checksum,
starting with the byte immediately following the checksum field in the header and
ending with the last data byte:
checksum := checksum + next byte; {unsigned addition}

Rotate the most significant bit to the least significant bit
Repeat

4. Compare the calculated checksum against the value set in the checksum field of the
DDP packet header.

You can use the equates from the MPW interface files in calculating checksums: see
“The MPW Equates” on page 7-16.

A Sample Socket Listener

There are many ways to implement a socket listener that follow the requirements
described previously for using and preserving registers and reading packets. This
section uses a sample socket listener that shows one way to implement the process
within a DDP socket-client application that reads in the packet contents. The sample
code also shows those segments of the sample client application that set up the socket
listener and check to determine when a packet that the socket listener has read is
available for processing by the client application.

Some of the tasks that your socket listener can do that this sample socket listener does
not illustrate are how to

m route packets to different sockets based on the socket number in register DO when
more than one socket uses your socket listener

m check the DDP protocol type field and ignore any packets that do not match the
desired packet types that your socket listener is set up to receive

m check the source node ID and ignore any packets that don’t come from a desired node
m implement a completion routine to be executed after a packet is processed

The sample socket listener does, however, show you how to

m buffer multiple packets

m retrieve the frame and DDP packet header information that DDP has already read into
the RHA

m calculate and compare the packet checksum when a packet uses a long DDP header
that includes the checksum value

Socket Listener Queues and Buffers

The sample socket listener uses two standard operating-system queues to manage the
contents of the packets that it receives and makes available to the socket-client
application. It calls these linked lists a free queue and a used queue. The use of two queues
allows the socket listener to receive and process packets while the client application is
reading the data from those packets that the socket listener has already processed.

Using DDP

CHAPTER 7

Datagram Delivery Protocol (DDP)

The free queue is used to manage available buffers that consist of data structures
declared as PacketBuf fer records. The sample socket listener uses the buffers in the
free queue one at a time to hold the contents of an incoming packet as it processes

the packet header and data fields. The socket listener’s initialization module,
SL_InitSktListener, shown in Listing 7-5 on page 7-24, releases the first element
or buffer of the free queue and points to it from the current queue element
(current_gelem) variable; it is this buffer that the socket listener uses when the MPP
driver calls the socket listener with a packet for it to process.

After the socket listener fills in the fields of the record pointed to by current_gelem
with the processed contents of the packet, it moves the buffer into the used queue,
pointed to by used_queue, for the client application to read. Then the socket listener
releases the next record buffer from the free queue and points to it using the
current_gelem variable. The sample code in Listing 7-7 on page 7-31 shows that when
the client application has finished reading the contents of a used queue buffer element, it
returns the buffer to the free queue pointed to by free_queue to make the buffer
available again to the socket listener.

The socket listener uses the variables declared in Listing 7-1 to point to
m the free queue’s queue header
m the used queue’s queue header

m the current buffer queue element

Listing 7-1 Declarations for pointers to the sample socket listener’s queues and packet buffer

SL_Locals PROC
ENTRY free_gueue,used_gueue,current_gelem
free_queue DC.L 0 ;pointer to freeQ QHdAr ;
; initialized by InitSktListener

r
used_queue DC.L 0 ;pointer to usedQ QHdr ;

; initialized by InitSktListener
current_gelem DC.L 0 ;pointer to current

;s PacketBuffer record
ENDP;

Listing 7-4 on page 7-23 shows the Pascal-language client application
SetUpSocketListener procedure. This procedure calls the SL_InitSktListener
function to pass to the socket listener pointers to these two operating-system queues.

When the .MPP driver calls the socket listener, if there is an available buffer, the socket
listener processes the packet and returns in the fields of the packet buffer record the DDP
type, the destination node ID, the source address in AddrBlock format, the hop count,
the size of the packet, a flag to indicate whether a checksum error occurred, and the data
delivered in the packet. If you use the sample record data structure as a model, you can
extend it to include fields to hold additional values, such as the tick count at the time
when the .MPP driver called your socket listener. Listing 7-2 shows the assembly-
language declaration for the PacketBuffer record.

Using DDP 7-21

(daq) 10001014 Liaayaq weibejeq .

CHAPTER 7

Datagram Delivery Protocol (DDP)

Listing 7-2 Declaration for the sample socket listener’s packet buffer record
PacketBuffer RECORD 0
qLink DS.L 1
qType DS.W 1
buffer_ Type DS.W 1 :DDP protocol type
buffer NodeID DS.W 1 ;destination node
buffer Address DS.L 1 ;source address in AddrBlock format
buffer Hops DS.W 1 shop count
buffer ActCount DS.W 1 :length of DDP datagram
buffer CheckSum DS.W 1 ;chksum error returned here

; (cksumErr or noErr)
buffer Data DS.B ddpMaxData
;the DDP datagram
ENDR

Listing 7-3 shows the socket listener’s declaration for the queue header record, which is
defined and used to make the code easier to read.

Listing 7-3 Declaration for the sample socket listener’s queue header record
QHdr RECORD 0
gFlags DS.W 1
gHead DS.L 1
gTail DS.L 1

ENDR

Setting Up the Socket Listener

The client application that includes the sample socket listener uses a Pascal procedure,
SetUpSocketListener, to set up the socket listener’s initialization routine.
The setUpSocketListener procedure defines

m the free and used queue variables of type QHdr

m a packet buffer record of type PacketBuffer to match the data structure defined
in the socket listener code (The sample Pascal code declares an array of 10 packet
buffer records.)

If you base your own code on the sample code, you can add new fields to the record
declaration, if you need them. If you do this, you must modify the packet buffer data
structure defined in the socket listener code to match the high-level language record
declaration.

Listing 7-4 shows the client-application’s Pascal code that initializes the packet buffer
records and then adds them to the free queue using the _Enqueue trap. The code calls
the SL_InitSktListener routine and passes to it pointers to the queue header for the
free queue and the queue header for the used queue.

7-22 Using DDP

CHAPTER 7

Datagram Delivery Protocol (DDP)

Listing 7-4 Setting up the socket listener from the client application

CONST
ddpMaxData = 586;
TYPE
PacketBuffer = RECORD
qLink: QElemPtr;
qType: Integer;
buffer Type: Integer;
buffer NodeID: Integer;
buffer Address: AddrBlock;
buffer_ Hops: Integer;
buffer ActCount: Integer;
buffer CheckSum: OSErr;
buffer Data: ARRAY[1l..ddpMaxData] OF SignedByte;
END;

VAR
freeQ, usedQ: QHdr;
Buffers: ARRAY[1..10] OF PacketBuffer;

PROCEDURE SL_TheListener;
External;

FUNCTION SI_InitSktListener (freeQ, usedQ: QHdrPtr): OSErr;
External;

PROCEDURE SetUpSocketListener;
VAR
err: OSErr;
i: Integer;

BEGIN
freeQ.QHead := NIL; {initialize to nil to indicate empty queue}
freeQ.QTail := NIL; {initialize to nil to indicate end of queue}
usedQ.QHead := NIL; {initialize to nil to indicate empty queue}
usedQ.QTail := NIL; {initialize to nil to indicate end of queue}
FOR i := 1 TO 10 DO {add all buffers to the free queue}

Enqueue(@Buffersfi], @freeQ);

err := SL_InitSktListener(@freeQ, @€usedQ);
{initialize the socket listener code}

Using DDP v 7-23

(daaq) 10001044 Aieneg weibejeq -

CHAPTER 7

Datagram Delivery Protocol (DDP)

IF err <> noErr THEN
BEGIN
{Perform error processing here}
END;
{You can now call POpenSkt because the socket listener is ready to }
{ process packets.}
END;

Initializing the Socket Listener

The sample socket-client application procedure SetUpSocketListener (shown in the
preceding listing) calls the socket listener SL_InitSktListener initialization routine
provided in Listing 7-5 to pass it pointers to the two operating-system queues (used and
free) that the socket listener uses after the SetUpSocketListener procedure initializes
these queues.

The SI._InitSktListener routine sets up its local variables used_queue and
free_queue to point to the queue headers for the two queues. Then the routine releases
from the free queue the first buffer and sets the current_gelem variable to point to it.
This is the buffer that the socket listener uses when it next reads a packet.

Listing 7-5 Initializing the socket listener

;Function SL_InitSktListener(freeQ, usedQ: QHdrPtr): OSErr;

.
[

SL_InitSktListener PROC EXPORT

StackFrame RECORD {A6Link},DECR ;build a stack frame record
Resultl DS.W 1 ;function's result returned to caller
ParamBegin EQU * ;start parameters after this point
freeQ DS.L 1 ; freeQ parameter
usedQ DS.L 1 ;jusedQ parameter
ParamSize EQU ParamBegin-* ;size of all the passed parameters
RetAddr DS.L 1 ;pPlaceholder for return address
A6Link DS.L 1 ;placeholder for A6 link
LocalSize EQU * ;size of all the local variables
ENDR
WITH StackFrame,QHdr; ;use these record types
LINK A6,#LocalSize sallocate your local stack frame

;Copy the queue header pointers into our local storage for use in the
; listener

7-24 Using DDP s

CHAPTER 7

Datagram Delivery Protocol (DDP)

LEA used_gueue, A0 ;copy usedQ into used_gueue
MOVE.L usedQ(A6), (A0)
LEA free_queue,A0 ;copy freeQ into free_gqueue
MOVE.L freeQ(A6), (A0)

iRelease the first buffer record from freeQ and set current_gelem to it

é1

MOVEA.L freeQ(A6) ,Al ; Al = “freeQ

LEA current_gelem,A0 ;copy freeQ.qHead into current_gelem
MOVE.L gHead (Al), (A0)

MOVEA.L gHead (Al) ,A0 ;A0 = freeQ.gHead

_Dequeue

MOVE.W DO ,Resultl(A6) ;return status

UNLK A6 sdestroy the link

MOVEA.L (SP)+,A0 ;pull off the return address

ADDA.L #ParamSize, SP ;strip all of the caller's parameters
JMP (A0) ;return to the caller

ENDP

END

Processing a Packet

When the .MPP driver calls the sample socket listener, the socket listener’s main module,
the SL_TheListener procedure, reads and processes a packet addressed to the socket-
client application. However, the socket listener can only process a packet if there is a
packet buffer record available to hold the processed packet.

The code shown in Listing 7-6 determines if the current_gelem variable is NIL or not.
If it is not NIL, the code gets a buffer, if one is available.

m If there is no buffer available, the code ignores the packet and calls the ReadRest
routine with a buffer size value of 0. Before returning to the calling program, the code
calls its GetNextBuffer routine to set up the current_gelem variable to point to
the next available buffer, if there is one.

m If there is a buffer available, the code reads in the packet data and processes it.

If the socket listener reads the packet successfully, it processes the header information
that the hardware driver has stored in the .MPP driver’s local variable space pointed to
by the value in register A2. To do this, the socket listener

m fills in a value for the hop count field of the packet buffer record and determines the
packet length

m determines whether the DDP header is short or long and fills in the remaining fields
of the packet buffer

Using DDP 7-25

(daq) 1000014 Aienyeq weibereq -

CHAPTER 7

Datagram Delivery Protocol (DDP)

m tests the checksum field of long DDP headers to determine if they are nonzero,
indicating that the packet contains a checksum, and, if so, calculates the checksum

® adds the packet buffer to the used queue and then gets the next free buffer from the
free queue and points to it with current_gelem

The socket listener then returns control to the calling program and waits until the .MPP
driver calls it again when the .MPP driver next receives a packet addressed to a socket
that is associated with the socket listener. Listing 7-6 shows the SL._TheListener
procedure.

Listing 7-6 Receiving and processing a DDP packet

;SL_TheLi
;Input:
DO
D1
A0Q
Al
A2
A3
A4

Return:
DO
D3

Ne Ne Ne NE NE e NP Ne N we we

stener

(byte)
(word)
points
points
points
points
points

packet's destination socket number
number of bytes left to read in packet
to the bytes to checksum

to the bytes to checksum

to MPP's local variables

to next free byte in read-header area
to ReadPacket and ReadRest jump table

is modified

(word)

= accumulated checksum

SL_TheListener PROC EXPORT
PacketBuffer

WITH

;Get pointer to current PacketBuffer.

GetBuffer
LEA
MOVE.L
MOVE.L
BEQ.S

current_gelem,A3 ;get the pointer to PacketBuffer
(A3),A3

A3,D0 ;if no PacketBuffer

NoBuffer ; then ignore packet

;Read rest of packet into PacketBuffer.datagramData.

MOVE.L D1,D3 ;read rest of packet

LEA buffer data(A3),A3 ;A3 = “bufferData

JSR 2(A4) ;jcall ReadRest

BEQ.S ProcessPacket :+if no error, continue

BRA RCVRTS ;if error, ignore the packet
sNo buffer; ignore the packet.
NoBuffer CLR D3 ;set to ignore packet (buffer size
7-26 Using DDP

0)

CHAPTER 7

Datagram Delivery Protocol (DDP)

JSR 2(A4) ;call ReadRest

BRA GetNextBuffer ;no buffer available, so read next packet;
; maybe there will be a buffer
; for the next packet

;Process the packet you just read in.
; ReadRest has been called so registers A0-A3 and D0-D3 are free
; to use. Use registers this way:
PktBuff EQU A0 ;jcurrent PacketBuffer
MPPLocals EQU A2 ;pointer to MPP's local variables
; (still set up from entry to
; socket listener)

HopCount EQU DO ;gets the hop count
DatagramLength EQU D1 ;determines the datagram length
SourceNetAddr EQU D2 sbuilds the source network address
ProcessPacket:
LEA current_gelem,PktBuff
;PktBuff = curtrent_gelem
MOVE.L (PktBuff),PktBuff

;Do everything that's common to both long and short DDP headers
; first, clear buffer Type and buffer NodeID to ensure their high
; bytes are 0.

CLR.W buffer Type(PktBuff)
;clear buffer_ Type
CLR.W buffer NodelID(PktBuff)

;clear buffer_ NodelD

;Clear SourceNetAddr to prepare to build network address.
MOVEQ #0, SourceNetAddr ;build the network address in
; SourceNetAddr
;Get the hop count

MOVE.W toRHA+lapHdSz+ddpLength(MPPLocals) ,HopCount
;get hop/length field
ANDI.W #DDPHopsMask, HopCount
;mask off the hop count bits
LSR.W #2 ,HopCount ;shift hop count into low bits
; of high byte
LSR.W #8,HopCount :shift hop count into low byte
MOVE.W HopCount,buffer_ Hops (PktBuff)
: and move it into the
; PacketBuffer

Using DDP 7-27

(daq) 10001014 AieAyeq weiBereq .

CHAPTER 7

Datagram Delivery Protocol (DDP)

;Get the packet length (including the DDP header).

MOVE.W toRHA+lapHdSz+ddpLength (MPPLocals) ,DatagramLength
;get length field
ANDI.W #ddpLenMask,DatagramLength

;mask off the hop count bits

:Now, find out if the DDP header is long or short.

MOVE.B toRHA+lapType (MPPLocals),D3
;get LAP type

CMPI.B #shortDDP,D3 ;is this a long or short DDP
; header?

BEQ.S IsShortHdr ;skip if short DDP header

;It's a long DDP header.

MOVE.B toRHA+lapHdSz+ddpType (MPPLocals),buffer Type+l(PktBuff)
;get DDP type

MOVE.B

toRHA+lapHdSz+ddpDstNode (MPPLocals) ,buffer NodeID+1 (PktBuff)

;get destination node from frame header

MOVE.L toRHA+lapHdSz+ddpSrcNet (MPPLocals), SourceNetAddr
;source network in high word,

: ; source node in low byte

LSL.W #8,SourceNetAddr ;shift source node up to high byte
; of low word; get source socket
: from DDP header

MOVE.B toRHA+lapHdSz+ddpSrcSkt (MPPLocals) , SourceNetAddr

SUB.W #ddpType+1,Datagramlength
;DatagramLength = number of
; bytes in datagram

BRA.S MoveToBuffer

;Determine if there is a checksum.
TST.W toRHA+lapHdSz+ddpChecksum(MPPLocals)
;does packet have checksum?
BEQ.S noChecksum

;Calculate checksum for the DDP header.
MOVE.L DatagramLength,-(SP);save DatagramLength (D1l)
CLR D3 ;set checksum to 0
MOVEQ #ddphSzLong-ddpDstNet, D1
;D1 = length of header part to
; checksum pointer to destination
; network number in DDP header

7-28 Using DDP

CHAPTER 7

Datagram Delivery Protocol (DDP)

LEA
JSR

toRHA+lapHdSz+ddpDstNet (MPPLocals) ,Al
SL_DoChksum ;checksum of DDP header part
; (D3 holds accumulated

; checksum)

.

;Calculate checksum for the data portion of the packet (if any).

MOVE.L

MOVE.L

MOVE.L

BEQ.S

JSR

TestChecksum:

MOVE.L

buffer Data(PktBuff),Al

;pointer to datagram
(SP)+,DatagramLength

;restore DatagramLength (D1)
DatagramLength, - (SP)

;save DatagramLength (D1)

; before calling SL_DoChksum
TestChecksum ;don't checksum datagram if

; its length = 0
SL_DoChksum ;checksum of DDP datagram part
H

(D3 holds accumulated checksum)

(SP)+,DatagramLength
;restore DatagramLength (D1)

;Now make sure the checksum is OK.

TST.W
BNE.S
SUBQ.W

NotZero:
CMP.W
BNE.S
MOVE.W

BRA.S

ChecksumErr:

MOVE.W

noChecksum:
BRA.S

D3 ;is the calculated value 0?
NotZero ;if nonzero, go and use it
#1,D3 ;1f 0, make it -1

toRHA+lapHdSz+ddpChecksum(MPPLocals) ,D3
ChecksumErr :bad checksum
#0,buffer CheckSum(A0)

;no errors
noChecksum

#ckSumErr,buffer_ CheckSum(PktBuff)
schecksum error

MoveToBuffer

Using DDP

7-29

(daq) 1ooctod Aienyeq weibereq .

CHAPTER 7

Datagram Delivery Protocol (DDP)

;It's a short DDP header.

IsShortHdr:
MOVE.B toRHA+lapHdSz+sddpType (MPPLocals) ,buffer_ Type+l (PktBuff)
;get DDP type
MOVE.B toRHA+lapDstAdr (MPPLocals) ,buffer_ NodeID+1 (PktBuff)
;get destination node from LAP header
MOVE.B toRHA+lapSrcAdr (MPPLocals),SourceNetAddr
;get source node from LAP header
LSL.W #8,SourceNetAddr ;shift src node up to high byte of low word
MOVE.B toRHA+lapHdSz+sddpSrcSkt (MPPLocals) , SourceNetAddr
;get source socket from short DDP header
SUB.W #sddpType+1,DatagramlLength
;DatagramlLength = number of bytes in
; datagram
MoveToBuffer:
MOVE.L SourceNetAddr ,buffer Address(PktBuff)

;move source network address into
; PacketBufffer
MOVE.W DatagramLength,buffer_ ActCount (PktBuff)
;move datagram length into PacketBuffer

;Write the packet into the used queue and
; get another buffer from the free queue for the next packet.
LEA used_queue,Al ;Al = “used_gueue
MOVE.L (Al),Al ;Al = used_queue (pointer to usedQ)
14

_Enqueue put the PacketBuffer in the used queue
GetNextBuffer:
LEA free_queue,Al ;Al = “free_queue
MOVE.L (Al),Al ;Al = free queue (pointer to freeQ)
LEA current_gelem,A0 ;jcopy freeQ.qHead into current_gelem
MOVE.L gHead(Al), (AO)
MOVEA.L gHead(Al),A0 ;A0 = freeQ.gHead
_Dequeue
RCVRTS:
RTS sreturn to caller
ENDP

7-30 Using DDP

CHAPTER 7

Datagram Delivery Protocol (DDP)

Testing for Available Packets

Your client application must include a routine that determines if the socket listener has
processed a packet for a socket associated with your client application. If it has, your
client application routine must itself read and process the packet’s contents, which are
made available by the socket listener.

If your client application includes several processes each with its own socket that use the
same socket listener, your client application routine must include a mechanism to scan
for packets addressed to specific sockets.

If you expect to receive multiple packets for a specific socket, you should anticipate the
possibility that the client application might handle the first packet for a socket before
the socket listener processes the second packet for that socket. For example, to prepare
for reception of multiple related packets addressed to the same socket, the sample client
application’s routine could check the socket listener’s used queue QHead field for addi-
tional packets periodically after it read the first packet.

If you design your socket listener based on the sample one, your client’s application
should define a sufficient number of packet buffers so that as the client application
releases a buffer from the used queue, processes its contents, and then moves that buffer
back into the free queue for the socket listener to use, there are always buffers available
in the free queue.

Listing 7-7 shows the code that the sample client application uses for this purpose. It
periodically checks the QHead element of the socket listener’s used queue. When QHead
is not NIL, the client application knows that a packet is available for processing.

Listing 7-7 Determining if the socket listener has processed a packet

TYPE

PacketBuffer = RECORD

END;

PacketPtr

VAR

gLink: QElemPtr;

gType: Integer;

buffer_ Type: Integer;

buffer_ NodeID: Integer;

buffer Address: AddrBlock;

buffer Hops: Integer;

buffer_ActCount: Integer;

buffer_CheckSum: OSErr;

buffer Data: ARRAY[1l..ddpMaxData] OF SignedByte;

= “PacketBuffer;

freeQ, usedQ: QHdr;

bufptr

PacketPtr;

Using DDP 7-31

(daq) j090101d Aienjeq weibereq -

CHAPTER 7 |

Datagram Delivery Protocol (DDP)

WHILE (usedQ.QHead <> nil) DO
BEGIN
bufPtr := PacketPtr(usedQ.QHead); {get the packet ptr}
IF (Dequeue(QElemPtr (bufPtr), €usedQ) <> noErr) THEN
BEGIN
{process the packet information}
Enqueue(QElemPtr (bufPtr), @freeQ);
{requeue the packet buffer for use}

END
ELSE
BEGIN
{Error occurred dequeueing packet - perform error }
{ processing here. However, because this is the only }
{ place in the code where buffers are dequeued, your error }
{ code should never be called. You can include a debugging }
{ statement here.}
END;

END;

Measuring Packet-Delivery Performance

You use the AppleTalk Echo Protocol (AEP) to measure the performance of an AppleTalk
network. Knowing the approximate speed at which an AppleTalk internet delivers
packets is helpful in tuning the behavior of an application that uses one of the
higher-level AppleTalk protocols, such as ATP and ADSP. You can also use AEP to test
whether a node is on the network.

To tune an application, you need to know the round-trip time of a packet between two
nodes on an AppleTalk internet. This is dependent on such factors as the network
configuration, the number of routers and bridges that a packet must traverse, and the
amount of traffic on the network; as these change, so does the packet transmission time.
Routines belonging to the interfaces of both ATP and ADSP let you specify retry count
and interval numbers whose optimum values you can better assess if you know the
average round-trip time of a packet on your application’s network.

AEP is implemented in each node as a DDP client process referred to as the AEP Echoer.
The AEP Echoer uses a statically assigned socket, socket number 4, known as the echoer
socket. The AEP Echoer listens for packets received through this socket.

7-32 Using DDP

CHAPTER 7

Datagram Delivery Protocol (DDP)

Whenever it receives a packet, the AEP Echoer examines the packet’s protocol type field
to determine if the packet is an AEP packet, indicated by a value of 4. If it is, the first byte
of the data portion of the packet serves as a function field. AEP uses two function codes:

m Avalue of 1 identifies the packet as an Echo Request packet.

m A value of 2 identifies the packet as an Echo Reply packet.

The AEP Echoer sets this field to a value of 2 to indicate that the packet is now a reply
packet, then it calls DDP to send a copy of the packet back to the socket from which it
originated. The AEP packet that you send is referred to as an Echo Request packet; the
modified AEP packet that the AEP Echoer sends back to you is referred to as an Echo
Reply packet.

Here are some general guidelines that you should follow in using the AEP Echoer:
m Use the maximum packet size that you plan on using in your application.

m To test if a node is on the network, send several packets to that node because DDP can
sometimes drop a packet.

m To test packet-delivery performance, send more than one packet and calculate the
average round-trip time.

Typically, you should receive an Echo Reply packet within a few milliseconds. If you
do not get a response after about 10 seconds, you can assume that DDP dropped or
lost your Echo Request packet, and you should resend the packet.

The Echo Reply packet contains the same data that you sent in the Echo Request
packet. If you send multiple packets to determine an average turnaround time and
to compensate for the possibility of lost or dropped packets, you should include
different data in the data portion of each packet; this will allow you to distinguish
between replies to different request packets in the event that some replies are not
delivered in the same order that you sent them or that some packets are dropped.

m To test packet-delivery performance time, your socket listener can include a field in its
packet buffer record that saves the time in ticks when you sent the packet to compare
against the response time.

m Accept only packets from the target node. Use your socket listener to filter out packets
from nodes other than the target node to which you sent the Echo Request packet.

Follow these steps to send a packet to a target node and have AEP echo that packet back
to your socket listener:

1. Write a socket listener to be used to receive an Echo Reply packet back from the target
node to which you are sending the Echo Request packet.
The AEP Echoer will send the Echo Reply packet to the socket from which you send
the Echo Request packet. Follow the general instructions described earlier in this
chapter that explain how to write a socket listener.

2. Call the POpenskt function to open a socket from which to send an Echo Request
packet, and assign your socket listener to that socket.

Using DDP 7-33

(daq) (02001014 Ausnjeg wesbeyeq .

CHAPTER 7

Datagram Delivery Protocol (DDP)

3. Determine the internet address of the target node to which you want to send an Echo

Request packet.
You can use the Name-Binding Protocol (NBP) to get the address of the destination

application for which you want to measure round-trip packet delivery, and substitute

the socket ID of the AEP Echoer; the socket number of the AEP Echoer is always 4
on every node. NBP routines are described in the chapter “Name-Binding Protocol
(NBP)” in this book.

4. Prepare the datagram to be sent to the AEP Echoer on the target node by building
a write-data structure with specific values for certain fields. You can use the
BuildDDPwds procedure for this purpose.

Set the destination socket number equal to 4 to indicate that it’s the Echoer socket; set

the DDP protocol type field also equal to 4 to indicate that the packet belongs to the

AEP implementation on the target node; set the first byte of the data portion equal to

1 to indicate that this is an Echo Request packet. Fill in the destination network
number and node ID for the target system; these are the numbers that NBP returned
to you (see the preceding step).

5. Call the PWriteDDP function to send the Echo Request to the target node. As the

value of the wdsPointer parameter, specify the pointer to the write data structure

that you created.

DDP Reference

This section describes the data structures and routines that are specific to DDP. The

“Data Structures” section shows the Pascal data structures for the records and parameter

block that functions use for the protocol interface. The “Routines” section describes the
DDP routines.

Data Structures

7-34

This section describes the data structures that you use to provide information to and
receive it from DDP. It includes

m the write-data structure
m the address block record
m the MPP parameter block

DDP Reference

CHAPTER 7

Datagram Delivery Protocol (DDP)

The Write-Data Structure

A write-data structure is of type WDSElement and contains a series of pairs of length
words and pointers. Each pair indicates the length and location of a portion of the data,
including the header information, that constitutes the packet to be sent over the network.

You pass the PWriteDDP function a pointer to a write-data structure to send a DDP
packet to another socket. You can use the BuildDDPwds procedure described on
page 7-42 to create a write-data structure. '

TYPE WDSElement =

RECORD
entryLength: Integer;
entryPtr: Ptr;
END;
Field descriptions
entryLength The length of the data pointed toby entryPtr.
entryPtr A pointer to the DDP packet data to be sent using the PWriteDDP
function.
The Address Block Record

The address block record defines a data structure of AddrBlock type. The destAddress
parameter of the BuildDDPwds procedure takes an AppleTalk internet address value
specified in this format.

You use NBP routines to get the address of an application that is registered with NBF.
For more information about these routines, see the chapter “Name-Binding Protocol
(NBP)” in this book.

TYPE AddrBlock =
PACKED RECORD

aNet: Integer; {network number}

aNode: Byte; {node ID}

asocket: Byte; {socket number}
END;

Field descriptions

aNet The number of the network to which the node belongs that
is running the DDP client application whose address you
are specifying.

aNode The node ID of the machine running the DDP client application
whose address you are specifying.
aSocket The number of the socket used for the DDP client application.

DDP Reference 7-35

(daq) loo0t014 Aisnjeq weibereq -

CHAPTER 7

Datagram Delivery Protocol (DDP)

MPP Parameter Block

The DDP POpensSkt