
by Apple Computer, Inc.

•

INSIDE MACINTOSH

Networking

....
TT
Addison-Wesley Publishing Company

Reading, Massachusetts Menlo Park, California New York
Don Mills, Ontario Wokingham, England Amsterdam Bonn
Sydney Singapore Tokyo Madrid San Juan
Paris Seoul Milan Mexico City Taipei

ti Apple Computer, Inc.
© 1994 Apple Computer, Inc.
All rights reserved.
No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form or
by any means, mechanical, electronic,
photocopying, recording, or otherwise,
without prior written permission of
Apple Computer, Inc. Printed in the
United States of America.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual property
rights associated with the technology
described in this book. This book is
intended to assist application
developers to develop applications only
for Apple Macintosh computers.
Every effort has been made to ensure
that the information in this manual is
accurate. Apple is not responsible for
printing or clerical errors.

Apple Computer, Inc.
20525 Mariani Avenue
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, APDA,
AppleLink, AppleShare, Apple Talk,
EtherTalk, ImageWriter, LaserWriter,
LocalTalk, Macintosh, MPW, ProOOS,
and Token Talk are trademarks of Apple
Computer, Inc., registered in the United
States and other countries.
System 7 is a trademark of
Apple Computer, Inc.
Adobe lllustrator, Photoshop, and
PostScript are trademarks of Adobe
Systems Incorporated, which may be
registered in certain jurisdictions.
America Online is a service mark of
Quantum Computer Services, Inc.
CompuServe is a registered service
mark of CompuServe, Inc.
FrameMaker is a registered trademark
of Frame Technology Corporation.

ISBN 0-201-62269-6
2 3 4 56 7-CRW-97969594
Second printing, May 1994

The paper used in this book meets the
EPA standards for recycled fiber.

Helvetica and Palatino are registered
trademarks of Linotype Company.
Internet is a trademark of Digital
Equipment Corporation.
lTC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.
NuBus is a registered trademark of
Texas Instruments, Inc.
Optrotech is a trademark of Orbotech
Corporation.

Simultaneously published in the United
States and Canada.

LIMITED WARRANTY ON MEDIA AND
REPLACEMENT

ALL IMPLIED WARRANTIES ON THIS
MANUAL, INCLUDING IMPLIED
WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR
PURPOSE, ARE LIMITED IN DURATION
TO NINETY (90) DAYS FROM THE DATE
OF THE ORIGINAL RETAIL PURCHASE
OF THIS PRODUCT.

Even though Apple has reviewed this
manual, APPLE MAKES NO WARRANTY
OR REPRESENTATION, EITHER EXPRESS
OR IMPLIED, WITH RESPECT TO THIS
MANUAL, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. AS A RESULT,
THIS MANUAL IS SOLD "AS IS," AND
YOU, THE PURCHASER. ARE ASSUMING
THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECf, INDIRECf, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the possibility
of such damages.

THE WARRANTY AND REMEDIES SET
FORTH ABOVE ARE EXCLUSIVE AND IN
LIEU OF ALL OTHERS, ORAL OR
WRITTEN, EXPRESS OR IMPLIED. No
Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or liability
for incidental or consequential damages, so
the above limitation or exclusion may not
apply to you. This warranty gives you
specific legal rights, and you may also have
other rights which vary from state to state.

Library of Congress Cataloging-in-Publication Data

Inside Macintosh. Networking I by Apple Computer, Inc.
p. em.

Includes index.
ISBN 0-201-62269-6
1. Macintosh (Computer) 2. AppleTalk. 3. Computer networks.

I. Apple Computer, Inc.
QA76.8.M3152 1994
004.6'8-dc20 93-46639

CIP

Contents

Figures, Tables, and Listings xv

Preface About This Book xix

What to Read xxi
Chapter Organization xxii
Conventions Used in This Book xxii

Special Fonts xxiii
Types of Notes xxn1
Assembly-Language Information xxiii
Numerical Formats xxiv

Development Environment xxiv
Developer Products and Support xxiv

Chapter 1 Introduction to Apple Talk 1-1

About Networking on the Macintosh 1-3
AppleTalk Networking 1-4

Basic Apple Talk Networking Concepts 1-4
Addressing and Data Delivery on AppleTalk Networks 1-6
AppleTalk Connectivity 1-9

AppleTalk Phase 2 1-10
The Apple Talk Protocol Stack 1-11

AppleTalk Filing Protocol (AFP) 1-12
Zone Information Protocol (ZIP) 1-12
AppleTalk Session Protocol (ASP) 1-13
AppleTalk Data Stream Protocol (ADSP) 1-13
Apple Talk Transaction Protocol (ATP) 1-13
AppleTalk Echo Protocol (AEP) 1-14
Name-Binding Protocol (NBP) 1-14
Routing Table Maintenance Protocol (RTMP) 1-15
Datagram Delivery Protocol (DDP) 1-15
Link-Access Protocols 1-15
Multivendor Architecture 1-16
Multinode Architecture 1-16
How the Apple Talk Protocols Are Implemented 1-16

The Apple Talk Manager 1-18
AppleTalk and the OSI Model 1-19

Application Layer 1-19
Presentation Layer 1-20
Session Layer 1-20

iii

Chapter 2

iv

Transport Layer 1-21
Network Layer 1-21
Data-Link and Physical Layers 1-21

Deciding Which Apple Talk Protocol to Use 1-22
Making Your Application Available Throughout the Internet 1-22
Identifying Zones 1-23
Using a Session Protocol to Send and Receive Data 1-24

Apple Talk Data Stream Protocol 1-24
Apple Talk Session Protocol 1-25

Performing a Transaction 1-25
Sending and Receiving Data as Discrete Packets 1-26
Measuring Packet-Delivery Performance 1-26
Accessing AppleShare and Other File Servers 1-27
Receiving Packets Using a Virtual Node and Processing Them

in a Custom Manner 1-27
The LAP Manager 1-27
Directly Accessing a Driver for a Network Type 1-28

The AppleTalk Pascal Interface 1-29
Executing Routines Synchronously or Asynchronously 1-30

Polling the Result Field 1-31
Using a Completion Routine 1-31

Apple Talk Utilities 2-1

About the Apple Talk Utilities 2-3
Using the AppleTalk Utilities 2-4
Determining Whether AppleTalk Phase 2 Drivers Are Supported 2-4
Getting Information About the .MPP Driver and the

Network Environment 2-4
Getting the Address of Your Node or Your Local Router 2-6
Sending Packets to Applications and Processes on Your Own Node 2-6
Selecting a Node in the Server Range 2-7

AppleTalk Utilities Reference 2-8
Data Structures 2-9

MPP Parameter Block 2-9
Routines 2-11

Obtaining Information About the .MPP Driver and the
Current Network Environment 2-11

Enabling Intranode Delivery of DDP Packets 2-15
Getting the Addresses of Your Node and Local Internet Router 2-17
Opening and Closing Drivers 2-18

Summary of AppleTalk Utilities 2-23
Pascal Summary 2-23

Constants 2-23
Data Types
Routines

2-23
2-24

C Summary 2-25
Constants 2-25
Data Types 2-25
Routines 2-26

Assembly-Language Summary 2-27
Constants 2-27
Data Structures 2-28

Result Codes 2-28

Chapter 3 Name-Binding Protocol (NBP) 3-1

About NBP 3-3
Using NBP 3-6

Registering Your Entity With NBP 3-7
Setting Up a Names Table Entry 3-8
Registering a Names Table Entry 3-9

Handling Names Table Entry Requests 3-12
Preparing an Entity Name 3-12
Looking Up a Name 3-13
Extracting a Name From a List of Returned Names 3-16
Confirming a Name 3-17
Removing an Entry From the Names Table 3-18
Canceling a Request 3-19

NBP Reference 3-20
Data Structures 3-20

Address Block Record 3-20
Names Table Entry Record 3-21
Entity Name Record 3-21
The MPP Parameter Block for NBP 3-22

Routines 3-23
Registering an Entity 3-24
Handling Name and Address Requests 3-28

Summary of NBP 3-40
Pascal Summary 3-40

Constants 3-40
Data Types 3-40
Routines 3-42

C Summary 3-42
Constants 3-42
Data Types 3-43
Routines 3-45

Assembly-Language Summary 3-46
Constants 3-46
Data Structures 3-47

Result Codes 3-48

v

Chapter4 Zone Information Protocol (ZIP) 4-1

About ZIP 4-3
Using ZIP 4-4

Getting the Name of Your Application's Zone 4-6
Getting a List of Zone Names for Your Local Network or

Its Internet 4-7
ZIP Reference 4-10

Data Structures 4-10
The XPP Parameter Block for ZIP 4-10

Routines 4-11
Obtaining Zone Information 4-12

Summary of ZIP 4-19
Pascal Summary 4-19

Constants 4-19
Data Types 4-19
Routines 4-20

C Summary 4-20
Constants 4-20
Data Types 4-21
Routines 4-21

Assembly-Language Summary 4-22
Constants 4-22
Data Structures 4-22

Result Codes 4-23

Chapter 5 Apple Talk Data Stream Protocol (ADSP) 5-1

About ADSP 5-3
Connections, Connection Ends, and Connection States 5-6
Connection Listeners 5-7
Reliable Delivery of Data 5-8
Unsolicited ADSP Events 5-8

About ASDSP 5-9
The Authentication Process 5-10
The Data Encryption Feature 5-11

Using ADSP 5-11
Allocating Memory for ADSP 5-12
Creating and Using a Connection Control Block 5-12
Opening and Maintaining an ADSP Connection 5-13
Creating and Using a Connection Listener 5-22
Writing a User Routine for Connection Events 5-26

Using ASDSP 5-29
Opening a Secure Connection 5-30

From the Initiator's End 5-30

vi

From the Recipient En~ 5-32
Sending Encrypted Data Across a Secure Connection 5-34

ADSP Reference 5-35
Data Structures 5-35

The ADSP Connection Control Block Record 5-35
The Address Block Record 5-38
The DSP Parameter Block 5-38
The ASDSP Parameter Block 5-41
The TRSecureParams Record 5-42

Routines 5-43
Establishing and Terminating an ADSP Connection 5-44
Establishing and Terminating an ADSP Connection Listener 5-63
Maintaining an ADSP Connection and Using It to Exchange Data 5-69

Summary of ADSP 5-77
PascalSurnnnnary 5-77

Constants 5-77
Data Types 5-78

C Summary 5-82
Constants 5-82
Data Types 5-84

Assembly-Language Summary 5-90
Constants 5-90
Data Structures 5-92

Result Codes 5-94

Chapter 6 Apple Talk Transaction Protocol (ATP) 6-1

About ATP 6-3
The ATP Packet Format 6-5
At-Least-Once and Exactly-Once Transactions 6-7
The Buffer Data Structure 6-8
ATP Flags 6-8

UsingATP 6-9
Writing a Requester ATP Application 6-9

Creating a Buffer Data Structure 6-12
Specifying the Parameters for the Send Request Function 6-12

Writing a Responder ATP Application 6-14
Opening and Setting Up a Socket to Receive Requests 6-14
Responding to Req~ests 6-16

Canceling an ATP Function 6-19
ATP Reference 6-20

Data Structures 6-20
The Buffer Data Structure 6-20
The ATP Parameter Block 6-21
The Address Block Record 6-23

vii

Routines 6-23
Sending an ATP Request 6-24
Opening and Closing an ATP Socket 6-30
Setting Up a Socket to Listen for Requests 6-32
Responding to Requests 6-34
Canceling Pending ATP Functions 6-38
Building a Buffer Data Structure 6-44

Summary of ATP 6-46
PascalSurrnr.nary 6-46

Constants 6-46
Data Types 6-46
Routines 6-48

C Summary 6-49
Constants 6-49
Data Types 6-50
Routines 6-53

Assembly-Language Summary 6-54
Constants 6-54
Data Structures 6-55

Result Codes 6-58

Chapter 7 Datagram Delivery Protocol {DDP) 7-1

AboutDDP 7-3
About Sockets and Socket Listeners 7-4
Assigning Socket Numbers 7-6
DDP Client Protocol Types 7-7
Obtaining Data From the Network 7-8

Using QDP 7-8
Sending and Receiving Data: An Overview 7-9

Opening a Socket 7-9
Sending Data 7-10
Receiving Data 7-10

Creating a DDP Write-Data Structure 7-12
Using Registe~s and Packet Headers 7-13

How the .MfP Driver Calls Yo4r Socket Listener 7-13
The DDP Packet and Frame Headers 7-14
The MPW Equates 7-16
Reading an Incoming Packet 7-17
Using Checksums 7-19

A Sample Socket Listener 7-20
Socket Listener Queues and Buffers 7-20
Setting Up the Socket Listener 7-22
Initializing the Socket Listener 7-24
Processing a Packet 7-25
Testing for Available Packets 7-31

Measuring Packet-Delivery Performance 7-32

viii

DDP Reference 7-34
Data Structures 7-34

The Write-Data Structure 7-35
The Address Block Record 7-35
MPP Parameter Block 7-36

Routines 7-37
Opening and Ciosing DDP Sockets 7-37
Sending DDP Data grams 7-40

Summary of DDP 7-44
PascalSummary 7-44

Constants 7-44
Data Types 7-44
Routines 7-45

C Summary 7-46
Constants 7-46
Data Types 7-46
Routines 7-47

Assembly-Language Summary 7-48
Constants 7-48
Data Structures 7-49

Result Codes 7-50

Chapter 8 Apple Talk Session Protocol (ASP) 8-1

About ASP 8-3
ASP Reference 8-6

Data Structures 8-6
XPP Parameter Block for ASP 8-6

Routines 8-8
Opening and Closing ASP Sessions 8-9
Sending Commands and Writing Data From the Workstation

to the Server 8-15
Obtaining Information About ASP's Maximum Capacities and

the Status of the Server 8-21
Canceling an ASP Request to Open a Session 8-25

Summary of ASP 8-27
PascalSummary 8-27

Constants 8-27
Data Types 8-27
Routines 8-29

C Summary 8-29
Constants 8-29
Data Types 8-30
Routines 8-31

Assembly-Language Summary 8-32
Constants 8-32
Data Structures 8-33

Result Codes 8-35

ix

Chapter 9 AppleTalk Filing Protocol (AFP) 9-1

AboutAFP 9-3
AFP Reference 9-5

Data Structures 9-5
AFP Command Block Record 9-5
XPP Parameter Block 9-6

Routines 9-8
Summary of AFP 9-26

Pascal Summary 9-26
Constants 9-26
Data Types 9-27
Routines 9-29

CSummary 9-29
Constants 9-29
Data Types 9-31
Routines 9-32

Assembly-Language Summary 9-33
Constants 9-33
Data Structures 9-34

Result Codes 9-36

Chapter 10 Link-Access Protocol (LAP) Manager 10-1

About the LAP Manager 10-3
Using the LAP Manager 10-5

Determining if the LAP Manager Is Installed 10-5
Adding an Entry to the AppleTalk Transition Queue 10-7
How the LAP Manager Calls Your Transition Event

Handler Routine 10-9
Writing a Transition Event Handler Routine Using Pascal 10-11
Open Transition 10-13
Prepare-to-Close Transition 10-14
Permission-to-Close Transition 10-15
Cancel-Close Transition 10-17
Network-Connection-Change Transition 10-17
. Flagship-Name-Change Transition 10-21
Permission-to-Change-Flagship-Name Transition 10-22
Cancel-Flagship-Name-Change Transition 10-23
Cable-Range-Change Transition 10-24
CPU-Speed-Change Transition 10-25
Developer-Defined Transitions 10-26

Defining Your Own Apple Talk Transition 10-27
The LAP Manager and 802.2 Protocol Packets 10-27

Attaching and Detaching 802.2 Protocol Handlers 10-30

X

Chapter 11

LAP Manager Reference 10-32
Data Structures 10-33

The Apple Talk Transition Queue Entry 10-33
Routines 10-33

Adding and Removing Apple Talk Transition Queue Entries 10-34
Notifying Routines When Your Application-Defined

Transition Occurs 10-37
Attaching and Detaching 802.2 Protocol Handlers 10-39

Summary of the LAP Manager 10-43
Pascal Summary 10-43

Constants 10-43
Data Types 10-43
Routines 10-44

C Summary 10-44
Constants 10-44
Data Types 10-45
Routines 10-45

Assembly-Language Summary 10-45
Constants 10-45
Data Structures 10-46

Result Codes 10-46

Ethernet, Token Ring, and Fiber Distributed
Data Interface 11-1

About Ethernet, Token Ring, and FDDI Support 11-3
About Multivendor Network Interface Controller (NIC) Support 11-5
About Multicast Addressing 11-7

Using Ethernet, Token Ring, and FDDI Drivers 11-7
Using the Ethernet Driver 11-7

Opening the Ethernet Driver 11-8
Using a Write-Data Structure to Transmit Ethernet Data
Using the Default Ethernet Protocol Handler to Read Data
Using Your Own Ethernet Protocol Handler to Read Data
Changing the Ethernet Hardware Address 11-19

Using the Token Ring Driver 11-20
Applying Ethernet Functions 11-20
Sending and Receiving Data 11-21

Using the FDDI Driver 11-23
Applying Ethernet Functions 11-23
Sending and Receiving Data 11-24

Ethernet, Token Ring, and FDDI Refe~ce 11-25
Data Structures 11-26

The Write-Data Structure 11-26

11-10
11-13

11-17

The Parameter Block for Ethernet, Token Ring, and FDDI Driver
Functions 11-26

xi

Routines 11-28
Attaching and Detaching an Ethernet Protocol Handler 11-28
Writing and Reading Ethernet Packets 11-32
Obtaining Information About the Ethernet Driver and

Switching Its Mode 11-36
Adding and Removing Ethernet Multicast Addresses 11-40

Summary of Ethernet, Token Ring, and FDDI 11-43
Pascal Summary 11-43

Constants 11-43
Data Structures 11-43
Routines 11-44

C Summary 11-45
Constants 11-45
Data Types 11-45
Routines 11-46

Assembly-Language Summary 11-47
Constants 11-47
Data Structures 11-47

Result Codes 11-48

Chapter 12 Multinode Architecture 12-1

About Multinode Architecture 12-4
Using Multinode Architecture 12-8

Acquiring and Removing Multinodes 12-8
Handling an Apple Talk Cable-Range-Change Transition Event 12-10
Receiving Packets Addressed to Your Multinode 12-10

Calling ReadPacket to Read in the Packet Contents 12-12
Calling ReadRest to Complete Reading in the Packet Contents 12-13

Sending Packets Using a Multinode 12-14
Preparing a Write-Data Structure 12-14
Using a Checksum 12-16

Multinode Architecture Reference 12-17
Data Structures 12-18

The Write-Data Structure 12-18
The Address Block Record 12-18
The Multinode Parameter Block 12-19

Routines 12-20
Adding and Removing Multinode Addresses 12-21
Sending Datagrams Through Multinodes 12-25

Summary of Multinode Architecture 12-28
Pascal Summary 12-28

Constants 12-28
Data Types 12-28

xii

C Summary 12-30
Constants 12-30
Data Types 12-30

Assembly-Language Summary 12-31
Result Codes 12-32

Glossary GL-1

Index IN-1

xiii

Chapter 1

Chapter 2

Chapter 3

Chapter4

Figures, Tables, and Listings

Introduction to Apple Talk 1-1

Figure 1-1
Figure 1-2
Figure 1-3

Figure 1·4
Figure 1-5

Table 1-1
Table 1·2

Data delivery on Apple Talk networks 1-9
AppleTalk protocol stack 1-12
Device drivers and connections files that implement Apple Talk
protocols 1-17 ·
AppleTalk protocols with programming interfaces 1-18
Apple Talk protocol stack and the OSI model 1-20

AppleTalk addressing numbers and names 1-6
AppleTalk drivers and the protocols they implement 1-17

AppleTalk Utilities 2-1

Listing 2-1 Opening the .MPP driver and obtaining a node ID
in the server range 2-8

Name-Binding Protocol (NBP) 3-1

Figure 3·1

Figure 3-2

Figure3-3

Figure 3-4
Figure 3-5
Figure 3-6

Table3-1

Listing 3-1
Listing 3·2
Listing 3·3

Listing 3-4
Listing 3·5
Listing 3·6

The Name-Binding Protocol and the underlying
Apple Talk protocols 3-4
The NBP names table on each node, collectively forming an NBP
names directory 3-6
The internet socket address and entity name of
an application 3-8
Names table entry record format 3-9
Entity name record format 3-12
Tuple returned by the PLookupName function 3-13

NBP wildcards 3-14

Registering an application with NBP 3-11
Calling PLookupName to find matches for an entity name 3-15
Creating a buffer to hold name matches found, then using
NBPExtract to read the matches 3-17
Confirming an existing NBP name and address 3-18
Removing an NBP names table entry 3-19
Canceling a request to look up a name 3-20

Zone Information Protocol (ZIP) 4-1

Figure 4-1 The Zone Information Protocol (ZIP) and the underlying
AppleTalk protocols 4-4

XV

Chapter 5

ChapterS

Chapter 7

xvi

Listing 4-1
Listing 4-2

Listing 4-3

Using the GetMyZone function 4-6
Using GetzoneList to retrieve names of zones throughout the
Apple Talk internet 4-8
Extracting a zone name from the list of zone names returned
in the buffer 4-9

Apple Talk Data Stream Protocol (ADSP) 5-1

Figure 5·1
Figure 5-2
Figure 5·3
Figure 5·4

Listing 5·1
Listing 5·2
Listing 5-3

ADSP and its underlying protocols 5-4
Steps for creating an ADSP connection end 5-5
ADSP connection ends and their components 5-7
Standard tasks for an ADSP connection listener 5-8

Using ADSP to establish and use a connection 5-17
Using ADSP to establish and use a connection listener 5-24
An ADSP user routine 5-28

Apple Talk Transaction Protocol (ATP) 6-1

~igure 6·1
Figure 6-2
Figure 6-3

Table 6-1

Listing 6·1
Listing 6-2

An ATP transaction 6-4
ATP and its underlying protocols 6-5
The ATP packet header control information byte 6-6

Constants for ATP flag bits 6-9

Opening a socket and sending an ATP request 6-1 0
Opening a socket to receive a request and sending
response data 6-17

Datagram Delivery Protocol (DDP) 7-1

Figure 7-1

Figure 7-2
Figure 7-3
Figure 7-4
Figure 7-5
Figure 7-6

Listing 7-1

Listing 7-2

Listing 7-3

Listing 7-4
Listing 7-5
Listing 7-6
Listing 7-7

Two applications running on the same node, each with
its own socket 7-5
Sending and receiving data using DDP 7-6
Assigning sockets 7-7
DDP write-data structure 7-13
The AHA for both long and short DDP headers 7-15
Data-link frame header and DDP packet header 7-15

Declarations for pointers to the sample socket listener's queues
and packet buffer 7-21
Declaration for the sample socket listener's packet
buffer record 7-22
Declaration for the sample socket listener's queue
header record 7-22
Setting up the socket listener from the client application 7-23
Initializing the socket listener 7-24
Receiving and processing a DDP packet 7-26
Determining if the socket listener has processed a packet 7-31

Chapter 8

Chapter9

Chapter 10

Chapter 11

Apple Talk Session Protocol (ASP) 8-1

Figure8-1
Figure8-2
Figure8-3

ASP and its underlying protocols
Differences between ASP and ADSP
Error reporting in ASP 8-18

8-4
8-5

AppleTalk Filing Protocol (AFP) 9-1

Figure9-1

Table 9-1
Table 9-2

AFP and its underlying protocols 9-4

AFP command codes 9-9
Mapping of AFP commands to ASP functions 9-13

Link-Access Protocol (LAP) Manager 10-1

Figure 10-1

Figure 10-2
Figure 1Q-3
Figure 1G-4

Table 10-1

Listing 10-1
Listing 10-2
Listing 10-3
Listing 10-4
Listing 10-5

Listing 10-6
Listing 10-7

LAP Manager connecting the higher-level Apple Talk protocols with
the selected data link 1 0-4
Ethernet Phase 1 packet formats 1 0-28
Ethernet Phase 2 packet formats 1 0-29
Using the LAP Manager to receive data for
802.2 protocols 1 0-31

Apple Talk ttansitions and their constants and
routine selectors 1 0-9

Checking to determine if the LAP Manager is installed 1 0-6
Adding an Apple Talk Transition Queue entry 10-8
Removing an Apple Talk Transition Queue entry 10-8
Glue code for a Pascal transition event handler routine 1 0-12
Glue code to handle the network-connection-change transition
from Pascal 1 0-19
Using the glue code for the network validation procedure
Calling a LAP Manager 802.2 routine from assembly
language 1 0-32

10-19

Ethernet, Token Ring, and Fiber Distributed Data Interface 11-1

Figure 11·1

Figure 11-2
Figure 11-3

Listing 11-1
Listing 11-2
Listing 11-3
Listing 11-4

Using protocol handlers to read data directly from the
Ethernet driver 11-4
How Apple Talk uses multivendor support 11-6
An Ethernet write-data structure 11-11

Finding an Ethernet card and opening the .ENET driver 11-8
Sending a data packet over Ethernet 11-12
Attaching a protocol handler and reading a packet 11-14
Completion routine to process received packet and await
the next packet 11-16

xvii

Chapter 12

xviii

Multinode Architecture 12-1

Figure 12·1
Figure 12-2

Figure 12-3

Listing 12-1

The long DDP packet header used for multinode 12-5
How a server-client multinode application might send a broadcast
NBP lookup packet 12-7
The write-data structure for a multinode 12-15

Defining a Pascal function that makes an immediate
AddNode call 12-9

PREFACE

About This Book

This book, Inside Macintosh: Networking, describes the AppleTalk protocols and
the application programming interfaces to them. AppleTalk is a network
system including hardware and software that supports communication over
a variety of data-link types. Using AppleTalk, applications and processes can
transfer and exchange data and share resources. The central part of the
Apple Talk software consists of a number of protocols arranged in layers, with
each protocol offering different services.

To familiarize you with the functions that each of these protocols provide so
that you can determine which protocols to use for your application, this book
includes an overview of the Apple Talk protocols. This book describes how
to write a networked application that uses the AppleTalk application
programming interfaces to send and receive data. It describes how to use
different methods to send data, such as establishing a sustained connection
across which you can transfer streams of data or transferring data in small,

. discrete units called packets.

To gain an understanding of Apple Talk as a whole and a perspective of the
types of services that each Apple Talk protocol provides, see the chapter
"Introduction to AppleTalk." This chapter explains some basic networking
concepts and how they apply to Apple Talk. It describes how addressing is
implemented in Apple Talk networks and how this affects your application. It
also explains how you can use each of the Apple Talk protocols for specific
application requirements, and finally, it discusses a feature that is common to
all routines across Apple Talk protocol interfaces: how to use either of two
methods, synchronou~ or asynchronous, to specify when control is returned
to your program after you call a routine.

To learn how to obtain information about the Apple Talk drivers and the
networking environment and how to send packets to other applications and
processes on your own node, see the chapter "Apple Talk Utilities."

To determine how to register your application with Apple Talk so that it
is visible on the network and available for other applications and processes
to contact and also how to obtain the addresses of other applications and
processes so that you can contact them, see the chapter "Name-Binding
Protocol (NBP)."

To obtain zone location information for the node that is running your applica­
tion or other applications on an Apple Talk network, see the chapter "Zone
Information Protocol (ZIP)."

To provide support for a networked application that establishes and maintains
a peer-oriented session connection between your application and its partner on
the network and that allows the applications to send streams of data to each

xix

XX

PREFACE

other, see the chapter "Apple Talk Data Stream Protocol (ADSP)." This chapter
also discusses how you can establish a secure connection that provides for user
authentication and data encryption.

To provide support for a transaction-based session application in which
one end of the connection controls the session and issues a transaction
request that the other end carries out, see the chapter "Apple Talk Transaction
Protocol (ATP}."

To gain access to the underlying AppleTalk transport protocol that allows you-­
send discrete packets of data across the network without imposing on your
application the additional overhead required to set up and maintain a session,
see the chapter "Datagram Delivery Protocol (DDP)." To use DDP, you must
provide socket-listener code that you must write in assembly language.

To provide complete coverage of the AppleTalk protocols, this book includes
in the chapters "Apple Talk Session Protocol (ASP)" and "Apple Talk Filing
Protocol (AFP)" a discussion of two higher-level protocols that are not
commonly used by application program developers: Apple Talk Session
Protocol (ASP) and Apple Talk Filing Protocol (AFP). ASP allows you to
establish an asymmetrical session between an ASP workstation application
and an ASP server application. The primary use of ASP is to provide services
for the Apple Talk Filing Protocol (AFP) that, in turn, provides all of the
services necessary to access an Apple Talk AppleShare server. AFP allows a
workstation on an Apple Talk network to access and manipulate files on an
AFP file server, such as an AppleShare server. Because you can use the native
file system to access an AFP server from a workstation, in most cases you
should not need to use AFP directly.

To register your application with the LAP Manager so that you will be
notified when an Apple Talk transition event occurs that can affect your
application, and to define a transition event that your application causes
to occur that can affect other applications, see the chapter "Link-Access
Protocol (LAP) Manager." This chapter also describes how to install a protocol
handler as a client of the LAP Manager if your application processes 802.2
Type 1 packets.

To learn how to write data directly to an Ethernet, token ring, or Fiber
Distributed Data Interface (FDDI) driver instead of using the Apple Talk
protocol stack, see the chapter "Ethernet, Token Ring, and Fiber Distributed
Data Interface." This chapter also describes how to read data directly from an
Ethernet driver.

To implement a special-purpose application that receives and processes
Apple Talk packets in a custom manner instead of passing them directly on to
a higher-level Apple Talk protocol for processing, see the chapter "Multinode
Architecture."

What to Read

PREFACE

Because the Apple Talk network system includes both hardware and
software-and because the software includes not only the AppleTalk protocol
stack and the programming interfaces to it, but also file servers, print servers,
internet routers, drivers for circuit card or network interface controllers, and
so forth-the information in this book constitutes only a small part of the
body of literature documenting AppleTalk.

For a detailed description of the Apple Talk protocol specifications, see Inside
AppleTalk, second edition. For a complete description of the LAP Manager,
EtherTalk, and other Apple Talk connections, see the Macintosh AppleTalk
Connections Programmer's Guide. To learn how to install and operate an
AppleTalk internet, see the AppleTalk Internet Router Administrator's Guide and
the AppleTalk Phase 2 Introduction and Upgrade Guide. For an introduction to the
hardware and software of an entire Apple Talk network, see Understanding
Computer Networks and the AppleTalk Network System Overview. For informa­
tion on designing circuit cards and device drivers for Macintosh computers,
see Designing Cards and Drivers for the Macintosh Family, second edition.

If you are new to Apple Talk, you should begin with the chapter "Introduc­
tion to AppleTalk." This chapter describes some basic networking concepts
that pertain to Apple Talk, and it summarizes each of the Apple Talk protocols
and features, suggesting possible uses for them.

The chapter also includes a section that provides an overview of the two
execution modes that you can use to execute routines that belong to the
Apple Talk protocol programming interfaces. Even if you are already familiar
with Apple Talk, you should read this section.

Each of the remaining chapters is devoted to a separate Apple Talk protocol or
feature. Most of the chapters are self-contained; unless otherwise stated, there
are no dependencies on preceding or following chapters. However, in some
cases you may find it helpful to familiarize yourself with the information in
other chapters that address related protocols. In most cases, your application
will use more than one protocol.

The higher-level protocols are described first, followed by the lower-level
protocols and the interfaces to the hardware device drivers, and ending with
the chapter that describes multinode architecture.

xxi

PREFACE

Chapter Organization

Most chapters in this book follow a standard general structure. For example,
the chapter "Name-Binding Protocol (NBP)" contains these major sections:

• "About NBP." This section provides an overview of the Name-Binding
Protocol and its features.

• "Using NBP." This section describes how to use the most common NBP
functions, gives related user interface information, provides code samples,
and supplies additional information. For example, the section describes
how to register your application with NBP so that users and other
applications can locate and contact your application. It also describes how
to look up another application's address based on its name and how to
cancel a pending NBP request that you have made.

• "NBP Reference." This section provides a complete reference to NBP by
describing the constants, data structures, and routines that you use to gain
access to the NBP services. Each routine description follows a standard
format that gives the routine declaration; a description of every parameter;
the routine result, if any; and a list of errors, warnings, and notices. Most
routine descriptions give additional information about using the routine
and include cross-references to related information elsewhere. Many of the
Apple Talk programming interface routines use parameter blocks to pass
information to and receive it from the software driver that implements the
protocol. The parameter block data type is described in the data structures
section, and any parameter block fields that are common to all the routines
that use the parameter block are defined in that section. Fields particular to
a routine, but not common to all routines, are described along with the
routine to which they pertain.

• "Summary of NBP." This section shows the Pascal, C, and assembly­
language interfaces for the constants, data types, and routines associated
with NBP. It also lists the result codes.

Conventions Used in This Book

xxii

This book uses various conventions to present certain types of information.
For example, parameter blocks are presented in a certain format so that you
can scan them quickly.

PREFACE

Special Fonts
All code listings, reserved words, and the names of data structures,
constants, fields, parameters, and functions are shown in Courier (this
is Courier).

When new terms are introduced, they are in boldface. These terms are also
defined in the glossary.

Types of Notes
There are several types of notes used in this book.

Note
A note formatted like this contains information that is interesting but
possibly not essential to an understanding of the main text. The wording
in the tag may say something more descriptive, such as "Calling
ReadPacket and ReadRest when LocalTalk is the data link." (This
example appears on page 7-19.) Notes with descriptive titles contain
useful information about a particular aspect of the feature being
described. •

IMPORTANT

A note like this contains information that is especially important. (An
example appears on page 7-10.) &

A WARNING

Warnings like this indicate potential problems that you should be aware
of as you design your application. Failure to heed these warnings could
result in system crashes or loss of data. (An example appears on
page 7-18.) &

Assembly-Language Information
Inside Macintosh provides information about the registers for specific routines
like this:

Registers on entry

AO Contents of register AO on entry

Registers on exit

DO Contents of register DO on exit

xxiii

P R E ·F A C E

In addition, Jnside Macintosh presents information about the fields of a
parameter block in this format:

Parameter block

inputl

outputl

inAndOut

Ptr

Ptr

Integer

Numerical Formats

Input parameter.

Output parameter.

Input/ output parameter.

Hexadecirhal niunbers are preceded by a dollar sign ($).

The numerical values of constants are shown in decimal, unless the constants
are flag or mask elements that can be sUillliled, in which case they are shown
iil hexadecimal.

Development Environment

The system software routines described in this book are available using
Pascal, C, or assembly-language interfaces. How you access these routines
depends on the development environment you are using. This book shows
system software routines in their Pascal interface using the Macintosh
Programmer's Workshop (MPW).

All code listings in this book ar~ shown in Pascal. They suggest methods of
usiilg various routines and illuStrate techniques for accomplishing particular
tasks. However, Apple Computer, Inc., does not intend for you to use these
code samples in your appllcations.

Developer Products and Support

xxiv

APDA is Apple's worldwide source for over three hundred development
tools, technical resources, training products, and information for anyone
interested in developing applications on Apple platforms. Customers receive
the quarterly APDA Tools Catalog featuring all current versions of Apple
development tools and the most popular third-party development tools.
Ordering is easy; there are no membership fees, and application forms are not
required for most of our products. APDA offers convenient payment and
shipping options, including site licensing.

PREFACE

To order products or to request a complimefttary copy of the APDA Tools
Catalog, contact

APDA
Apple Computer, Inc.
P.O. Box319
Buffalo, NY 14207-0319

Telep~one

Fax

Apple Link

America Online

CompuServe

Internet

800-282-2732 (United States)
~00-637-0029 (Canada)
716-871-6555 (International)

716-871-6511

APDA
APDA
76666,2405

APPA@applelink.apple.com

H you provide co~ercial products and services, call408-974-4897 for
information on tpe developer support programs available from Apple.

XXV

CHAPTER 1

Introduction to Apple Talk

Contents

About Networking on the Macintosh 1-3
Apple Talk Networking 1-4

Basic AppleTalk Networking Concepts 1-4
Addressing and Data Delivery on Apple Talk Networks 1-6
AppleTalk Connectivity 1-9

AppleTalk Phase 2 1-10
The AppleTalk Protocol Stack 1-11

Apple Talk Filing Protocol (AFP) 1-12
Zone Information Protocol (ZIP) 1-12
AppleTalk Session Protocol (ASP) 1-13
AppleTalk Data Stream Protocol (ADSP) 1-13
Apple Talk Transaction Protocol (ATP) 1-13
AppleTalk Echo Protocol (AEP) 1-14
Name-Binding Protocol (NBP) 1-14
Routing Table Maintenance Protocol (RTMP) 1-15
Datagram Delivery Protocol (DDP) 1-15
Link-Access Protocols 1-15
Multivendor Architecture
Multinode Architecture

1-16
1-16

How the Apple Talk Protocols Are Implemented
The AppleTalk Manager 1-18
AppleTalk and the OSI Model 1-19

Application Layer 1-19
Presentation Layer 1-20
Session Layer 1-20
Transport Layer 1-21
Network Layer 1-21
Data-Link and Physical Layers 1-21

Contents

1-16

1-1

CHAPTER 1

Deciding Which AppleTalk Protocol to Use 1-22
Making Your Application Available Throughout the Internet 1-22
Identifying Zones 1-23
Using a Session Protocol to Send and Receive Data 1-24

AppleTalk Data Stream Protocol 1-24
AppleTalk Session Protocol 1-25

Performing a Transaction 1-25
Sending and Receiving Data as Discrete Packets 1-26
Measuring Packet-Delivery Performance 1-26
Accessing AppleShare and Other File Servers 1-27
Receiving Packets Using a Virtual Node and
Processing Them in a Custom Manner 1-27
The LAP Manager 1-27
Directly Accessing a Driver for a Network Type 1-28

The AppleTalk Pascal Interface 1-29
Executing Routines Synchronously or Asynchronously 1-30

Polling the Result Field 1-31
Using a Completion Routine 1-31

1-2 Contents

CHAPTER 1

Introduction to Apple Talk

This chapter provides an overview of the Apple Talk networking system and the
Apple Talk Manager. Apple Talk is a communications network system interconnecting
personal computer workstations, computers acting as file servers and print servers,
printers, and shared modems allowing them to exchange information through a variety
of types of communications hardware and software. The Apple Talk Manager consists of
a set of programming interfaces to the various components of Apple Talk for applications
and processes running on Macintosh computers.

This chapter introduces some of the AppleTalk terminology that is used throughout the
rest of this book. Read this chapter if you want to gain an overview of the Apple Talk
networking system and its component protocols. You should also read this chapter for
suggestions on which Apple Talk protocols to use for various application requirements.

• This first section of this chapter, "About Networking on the Macintosh," provides an
introduction to Apple Talk networking concepts and terminology, and then it discusses

o the Apple Talk protocols and their functions

o the Apple Talk Manager

o the layers of the Open Systems Interconnection (OSI) model and how the AppleTalk
protocol stack relates to this model

• The second section of this chapter, "Deciding Which Protocol to Use," discusses
how you can use each of the Apple Talk protocols that has an application program­
ming interface.

• The third section of this chapter, "The Apple Talk Pascal Interface," describes the
two modes in which you can execute the routines that make up the interfaces to
the Apple Talk protocols. This information applies to each of the protocols covered
individually throughout the chapters of this book. You should read this section
before you use any of the programming interfaces to the Apple Talk protocols.

The chapters that make up the rest of this book describe how to use the Apple Talk
Manager and the hardware device drivers. Because the AppleTalk network system
includes both hardware and software-and because the software includes not only
the Apple Talk Manager but also file servers, print servers, internet routers, drivers for
circuit cards, and so forth-the information in this book constitutes only a small part of
the body of literature documenting Apple Talk.

About Networking on the Macintosh

Networking on the Macintosh is implemented through Apple Talk. Applications and
processes can communicate across a single Apple Talk network or an Apple Talk internet,
which is a number of interconnected Apple Talk networks. Using Apple Talk, applications
and processes can transfer and exchange data and share resources.

The Apple Talk networking system includes a number of protocols arranged in layers,
which are collectively referred to as the Apple Talk protocol stack. Each of these protocols
provides a set of functions and services that a protocol above it can use and build upon.
A higher-level protocol is considered a client of the protocol that is below it in the
Apple Talk protocol stack. (For information on how these protocols are implemented, see
"The AppleTalk Protocol Stack" beginning on page 1-11.)

About Networking on the Macintosh 1-3

1-4

CHAPTER 1

Introduction to Apple Talk

Many of the Apple Talk protocols provide application programming interfaces that you
can use to access the services of the protocol. The programming interfaces to these
protocols are collectively referred to as the Apple Talk Manager.

This section provides

• an introduction to some Apple Talk networking fundamentals, including a discussion
of addressing in Apple Talk

• an overview of the Apple Talk protocol stack, with a brief discussion of each protocol

• an overview of the AppleTalk Manager, which includes the LAP Manager
programming interface

Apple Talk Networking
This section introduces some networking concepts and terms that pertain to AppleTalk
and that are used throughout the chapters of this book. It discusses

• fundamental networking concepts and Apple Talk

• addressing in Apple Talk

• AppleTalk connectivity

Basic Apple Talk Networking Concepts

A networking system, such as Apple Talk, consists of hardware and software. Hardware
on an Apple Talk network includes physical devices such as Macintosh personal computer
workstations, printers, and Macintosh computers acting as file servers, print servers, and
routers; these devices are all referred to as nodes on the network.

AppleTalk interconnects these nodes through transmission paths that include both
software and hardware components. The software that governs the transfer of data
across a computer network is commonly designed using a layered architecture or model.
(For more information on networking models and Apple Talk, see II Apple Talk and the
OSI Model" beginning on page 1-19.)

For each layer of a model, protocols exist that specify how the networking software
is to implement the functions which that layer provides and interact with the layer
above and below it. A protocol is a formalized set of procedural rules for the exchange
of information and the interactions between the network's interconnected nodes. A
network software developer implements these rules in programs that carry out the
functions specified by the protocol. Apple Talk consists of a number of protocols, many
of which are implemented in software programs called drivers.

Note
This book uses the abbreviated term protocol to refer to the
implementation of those rules in software drivers, instead of always
using the complete term protocol implementation. +
There are many ways to characterize networks. One characteristic of a network is
whether it is connection-oriented or connectionless. (A protocol can also be considered
connectionless or connection-oriented.) A connection-oriented network is one in which

About Networking on the Macintosh

CHAPTER 1

Introduction to Apple Talk

two nodes on the network, such as computers, that want to communicate must go
through a connection-establishment process, which is called a handshake. This involves
the e~change of predetermined signals between the nodes in which each end identifies
itself to the other. Once a connection is established, the communicating applications or
processes on the nodes at either end can send and receive streams of data.

A connectionless network is one in which two nodes that want to communicate do so
by going directly into a data-transfer state without first setting up a connection. A
connectionless network is also called a datagram or packet-oriented network because
data is sent as discrete packets; a packet is a small unit of data that is sent across a
network. This means that each packet must carry the full addressing information
required to deliver the data from its source node to its destination node. A packet
includes a header portion that holds the addressing information along with some other
information, such as a checksum value that can be used to verify the integrity of the data
delivered, and a data portion that holds the message text. The terms packet and datagram
are synonymous.

A connection-oriented network is analogous to a telephone system. The party who
initiates the call knows whether or not the connection is made because someone at
the other end of the line either answers or not. A connectionless network is analogous
to electronic mail. A person sends a mail message expecting it will be delivered to its
destination. Although the mail usually arrives safely, the sender doesn't know this
unless the recipient initiates a response affirming it.

There are trade-offs between the two types of networks: a connection-oriented network
provides more function, but at a cost. A connectionless network is less costly in terms of
overhead, but it offers limited support.

A connection-oriented network ensures reliable delivery of data, which includes error
checking and recovery from error or packet loss. Connection-oriented networks provide
support for sessions. In AppleTalk networking, a session is a logical (as opposed to
physical) connection between two entities on an internet. The two communicating
parties can send streams of data across a session, rather than being limited to sending the
data as individual packets. When data is sent as a stream, the networking system
provides flow control to manage the data that makes up the stream. A session must be
set up at the beginning and broken down at the end. All of these services entail overhead.

There is no connection setup or breakdown required for a connectionless network, and
no session is established. A connectionless network offers best-effort delivery only.
Best-effort delivery means that the network attempts to deliver any packets that meet
certain requirements, such as containing a valid destination address, but the network
does not inform the sender when it is unable to deliver the packet, nor does it attempt to
recover from error conditions and packet loss. A connectionless network involves less
overhead because it does not provide network-wide acknowledgments, flow control, or
error recovery.

The terms connectionless and connection-oriented can also be applied to individual
protocols that make up the networking software, as well as to the entire network system
itself. Apple Talk includes protocols that provide connection-oriented services, although,
as a whole, Apple Talk is considered a connectionless network because data is delivered

About Networking on the Macintosh 1-5

1-6

CHAPTER 1

Introduction toAppleTalk

across an Apple Talk network or internet as discrete packets. One of the Apple Talk
protocols, the Datagram Delivery Protocol (DDP), implements packet delivery. However,
the AppleTalk Data Stream Protocol (ADSP) and the Apple Talk Transaction Protocol
(ATP) provide connection-oriented services, such as session establishment and reliable
delivery of data. The Apple Talk protocols that provide connection-oriented services are
built on top of the datagram services that DDP provides.

In developing Apple Talk applications, you must decide whether to use a connection­
oriented or connectionless Apple Talk protocol. How to choose a protocol to use is
described in 11Deci9.ing Which Apple Talk Protocol to Use" beginning on page 1-22.

The connection-oriented Apple Talk protocols support the following two kinds of sessions:

• s~etrical. This session is also referred to as a peer-to-peer session. It is one in which
bofl1. ends have equal control over the communication. Both ends can send and receive
data at the same time and initiate or terminate the session. This type of session offers
more capability and is more commonly used than an asymmetrical session.

• asymmetrical. In this type of session, only one end of the connection can control the
communication. One end of the connection makes a request to which the other end
can only respond. This type of session is best suited to a transaction in which a small
amount of data is transferred from one side to the other.

When both ends can send and receive data, the process is called a full-duplex
dialog. When both sides must alternate between sending and receiving data,
the process is called a half-duplex dialog.

Addressing and DB;ta Delivery on Apple Talk Networks

This section discusses some of the aspects of Apple Talk networking that are part of its
addressing and data-delivery scheme. Many components contribute to the addressing
information that is psed to identify the location of an application or a process on an
AppleTalk internet. This section defines these names and numbers, and Table 1-1
highlights them.

Table 1-1 AppleTalk addressing numbers and names

Addressing information

Network number

NodeiD

Socket number

Zone name

Description

A unique 16-bit number that identifies the network to which
a node is connected. A single Apple Talk network can be
either extended or nonextended. An extended network is
defined by a range of network numbers.

A unique 8-bit number that identifies a node on an
AppleTalk network.

A unique 8-bit number that identifies a socket. A maximum
of 254 different socket numbers can be assigned in a node.

A name assigned to an arbitrary subset of nodes within an
AppleTalk internet.

About Networking on the Macintosh

CHAPTER 1

Introduction to Apple Talk

A single Apple Talk network can be interconnected with other Apple Talk networks
through routers to create a large, dispersed Apple Talk internet. A router in an internet
can select the most efficient path to the data's intended destination, while allowing
connected networks to remain fully independent and to retain separate addresses.

Each network is assigned a network number so that packets destined for a particular
network on an Apple Talk internet can be routed to the correct network. A router consults
the packet's destination network number and forwards the packet throughout the
internet from one router to another until the packet arrives at its destination network.
Apple Talk supports a number of types of networks including Local Talk, Token Talk,
EtherTalk, and FDDITalk networks.

Apple Talk assigns a node ID to a node when it connects to the network. Every node on
an Apple Talk network is identified by its unique 8-bit node ID. (Extended networks
include the 16-bit network number.) Once a packet arrives at its destination network, the
packet is delivered to its destination node within that network, based on the node ID.

More than one application or process that uses Apple Talk may be running on a single
node at the same time. Because of this, Apple Talk must have a way to determine for
wl'Uch application or process a packet that is delivered to the node is intended. AppleTalk
uses sockets to satisfy this requirement. A socket is a piece of software that serves as
an addressable entity on a node. Each process or application that runs on an Apple Talk
network "plugs into" a socket that is identified by a unique number. Applications or
processes exchange data with each other across an internet through sockets. Because
each application or process has its own socket address, a node can have two or more
concurr~nt open connections, for example, one to a file server and one to a printer.

The socket number identifies the process to which the Datagram Delivery Protocol
(DDP) is to deliver a packet. The combination of the socket number, the node ID, and
the network number creates the internet socket address of an application or process.
An internet socket address provides a unique identifier for any socket in the AppleTalk
internet. When an application or process is associated with a socket, it is referred to
as a socket client.

An application or process becomes accessible from any point in the Apple Talk internet
through its association with an internet socket address and a special name that is
associated with the internet socket address through the Apple Talk Name-Binding
Protocol (NBP). An NBP name contains three parts: object, type, and zone. The zone field
of the name is the zone in which the node resides.

A zone is a logical grouping of nodes in an Apple Talk internet. The use of zones allows
a network administrator to set up departmental or other logical groupings of nodes on
an internet. A single extended network can contain nodes belonging to any number of
zones; an individual node on an extended network can belong to only one zone. Each
zone is identified by a zone name.

An Apple Talk internet always consists of more than one Apple Talk network. It can be
made up of a mix of LocalTalk networks, Token Talk networks, EtherTalk networks, and
FDDITalk networks. It can also consist of more than one network of a single type, such as

About Networking on the Macintosh 1-7

•

1-8

CHAPTER 1

Introduction to Apple Talk

several LocalTalk networks. A single Apple Talk network can be either a nonextended
network or an extended network. An Apple Talk internet can include both nonextended
and extended networks.

Note
The term internet is used throughout this book to refer to an Apple Talk
internet exclusively. It is not within the scope of this book to discuss
other types of internets, such as Arpanet. •

An Apple Talk nonextended network is one in which

• the network has one network number assigned to it

• the network supports only one zone

• all nodes on the network share the same network number and zone name

• each node on the network has a unique node ID

LocalTalk is an example of a nonextended network. Each node on a nonextended net­
work, such as LocalTalk, has a unique 8-bit node ID. Because there are 256 combinations
of 8 bits, and two combinations are not available (ID 255 is reserved for broadcast
messages and the ID 0 is not allowed), a nonextended network supports up to only
254 active nodes at a time.

An Apple Talk extended network is one in which

• the network has a range of network numbers assigned to it

• the network supports multiple zones

• each node on the network has a unique node ID (Nodes can also have different
network numbers that fall within the network number range and different
zone names.)

A network number range defines the extended network. An extended network uses
what is referred to as extended addressing: in principle, a range of network numbers
allows each extended network to have over 16 million (224) nodes. In any specific
implementation, the hardware or software might limit the network to fewer nodes.

You can think of an extended network as a number of nonextended networks forming a
single network, each providing up to 254 possible node IDs.

Whether the network is extended or nonextended, data is always delivered in DDP
packets that include the DDP header that contains addressing information followed by
the data itself. As the DDP packet is passed down the protocol stack to the layer below,
the packet is extended to include additional information.

At the data-link layer, additional addressing information is prepended to the DDP
header, and the packet is now called a frame. At the physical layer, a frame preamble is
prepended to the frame header and a frame trailer is appended to the end of the data
portion of the DDP packet. (You don't need to be concerned with the frame preamble
and frame trailer; they are mentioned here and shown in Figure 1-1 for completeness.)
The frame is then transmitted across the network or internet to its destination node.

About Networking on the Macintosh

Network
layer

Data-link
layer

Physical
layer

CHAPTER 1

Introduction to Apple Talk

At the destination node, the frame is received, and as it is passed up through the
protocol stack the additional information that was added to the DDP packet at each layer
on the sending node is used and removed at the corresponding layer on the destination
node. The frame preamble and frame trailer are removed at the physical layer. The frame
header is removed at the data-link layer. You can think of the data that your application
sends as being enclosed successively at each of these layers in envelopes that contain
addressing information necessary to deliver the data; at the corresponding layer on the
destination node, the envelope is removed. Figure 1-1 illustrates this concept.

Figure 1-1 Data delivery on Apple Talk networks

DDP packet DDP packet

I DDP I Data I header I DDP I Data I header

Frame Frame

I Frame I DDP I Data I
header header

I Frame I DDP I Data I
header header

Complete frame Complete frame

I Frame
1
1 Frame I DDP I Data I Frame I

preamble header header trailer
I Frame I Frame I DDP I Data I Frame I
preamble header header trailer

Physical link

AppleTalk Connectivity

A fundamental part of a network system is its connectivity infrastructure, which includes
the communication hardware and the protocols for controlling the hardware. The
communication hardware can consist of various media including wire cabling, fiber
optics cabling, and a network interface controller (NIC), if one is used. This hardware
and software constitute the data transmission medium, which is called a data link. A
data link provides nodes with access to the network.

Nodes on a network share and compete for access to the link. The link-access protocol
implemented in the software controls the access of a node to the network hardware and
makes it possible for many nodes to share the same communications hardware. It also
handles the delivery of packets from one node to another over a network. When a packet

About Networking on the Macintosh 1-9

•

CHAPTER 1

Introduction to Apple Talk

is delivered to the link-access protocol for transmission across the network, additional
addressing and control information is added to the packet, and the packet is called
a frame.

Apple Talk connectivity is designed to be link independent, which means that it allows
for the use of various types of data links accessed through the various link-access
protocols, which it supports. Apple Talk provides the following data-link support:

• The LocalTalk Link-Access Protocol (LLAP) supports a LocalTalk link.

• The EtherTalk Link-Access Protocol (ELAP) supports an Ethernet link.

• The TokenTalk Link-Access Protocol (TLAP) supports a token ring link.

• The Fiber Distributed Data Interface Link-Access Protocol (FLAP) supports a Fiber
Distributed Data Interface link.

These protocols provide interfaces between the Datagram Delivery Protocol (DDP) and
the types of data-link hardware that AppleTalk can use. A user can choose to connect to
any of the data links that the node is set up to support.

AppleTalk includes a component called the Link-Access Protocol (LAP) Manager, which
insulates the higher-level Apple Talk protocols from having to identify and connect to the
link that the user has chosen; the LAP Manager connects to the selected link for them.

Apple Talk Phase 2
The current version of AppleTalk, which was introduced in 1989, is AppleTalk Phase 2.
Based on the original version of Apple Talk, it was designed to enhance performance
over large networks through the following improvements:

• The routing protocols that specify how messages are passed between networks were
enhanced to promote improved network traffic and better router selection.

• Extended addressing, which allows a range of network numbers to be assigned to a
single network, was implemented for networks other than LocalTalk.

• Support of multiple zones for extended networks was added. An extended network
can have an associated list of zone names. A single extended network can be
associated with more than one zone name, or a single zone name can be associated
with more than one extended network. Two nodes on the same extended network can
belong to different zones.

Note
The Phase 2 versions of the Apple Talk drivers are included as part of
system software version 7.0 and later. They can be installed on any
Macintosh computer other than the Macintosh 128K, Macintosh 512K,
Macintosh 512K enhanced, and Macintosh XL computers. If you want to
provide AppleTalk Phase 2 drivers with your product, you must obtain
a license from Apple Software Licensing. •

1-10 About Networking on the Macintosh

CHAPTER 1

Introduction to Apple Talk

Historical note
Apple Talk Phase 1, the original Apple Talk protocol architecture, was
designed to support small local workgroups. AppleTalk Phase 1
supported the LocalTalk Link-Access Protocol (LLAP), which was
originally called the AppleTalk Link-Access Protocol (ALAP). With the
addition of the EtherTalk Link-Access Protocol (ELAP) and other link­
access protocols, ALAP was renamed to indicate the specific data link
that it supports. •

The Apple Talk Protocol Stack
This section explains what an Apple Talk protocol is, then it provides a brief discussion of
each component of the Apple Talk protocol stack, followed by a discussion of how the
Apple Talk protocols are implemented in software drivers.

This section also introduces the LAP Manager, multi vendor support, and multinode
architecture, which are components of Apple Talk, although strictly considered, they are
not protocols.

To develop applications that use AppleTalk networking services, you don't need to
understand how Apple Talk implements the protocols it supports. However, under­
standing the functions that each protocol provides will help you determine which
application programming interfaces to use for your application.

The Apple Talk system architecture consists of a number of protocols arranged in layers.
The various Apple Talk protocols are sets of rules, not computer programs, and so can be
implemented in many different ways on many different systems. All of the Apple Talk
protocol functions that you can address or control from a Macintosh application are
implemented as Macintosh device drivers or managers. Many other features of these
protocols are implemented in software located only on internet routers that are not used
to run general applications. Some parts of protocols are implemented by server software
such as file servers or print servers.

When this book refers to a protocol as doing or controlling something, you should
understand the statement to mean that some program that implements the protocol
actually carries out the operation. Each protocol in a specific layer provides services to
one or more protocols in a higher-level layer, which is then the client of the lower-level
protocol. The higher-level protocol builds on the services provided by the lower-level
one. Figure 1-2 on page 1-12 shows the AppleTalk protocols and how they relate to one
another in layers. The following sections describe each protocol in tum, beginning with
AFP, and progressing through the protocols as they appear in the figure.

About Networking on the Macintosh 1-11

•

CHAPTER 1

Introduction to Apple Talk

Figure 1·2 Apple Talk protocol stack

----- ·····---·-·---··-----·---·------

Apple Talk
Filing Protocol

(AFP)

~
Zone Information Apple Talk Apple Talk

~

Protocol Session Protocol Data Stream Protocol
(ZIP) (ASP) (ADSP)

~ ~
{;

Apple Talk Apple Talk Name-Binding Routing Table
Transaction Protocol Echo Protocol Protocol Maintenance Protocol

(ATP) (AEP) (NBP) (RTMP)

~ ~ ~ ~
Datagram Delivery Protocol

(DDP)

~ ~ ~
LocaiTalk EtherTalk Other link-access

Link-Access Protocol Link-Access Protocol protocols
(LLAP) (ELAP)

AppleTalk Filing Protocol (AFP)

The Apple Talk Filing Protocol (AFP) allows a workstation on an Apple Talk network to
access files on AppleShare file servers. When the user opens a session with an AppleShare
file server over an internet, it appears to any application running on the workstation that
uses File Manager routines as if the files on the file server were located on a disk drive
connected to the workstation. The AFP protocol is not commonly used because the native
file system commands allow users to access an AFP server, such as AppleShare, from a
workstation. There is no server-based interface.

The chapter "AppleTalk Filing Protocol {AFP}" in this book describes the application
programming interface to the workstation implementation of AFP. For additional
information about AFP, see "Accessing AppleShare and Other File Servers" on page 1-27.

Zone Information Protocol (ZIP)

The Zone Information Protocol (ZIP) provides applications and processes with access to
zone names. Each node on a network belongs to a zone. Zone names are typically used

1-12 About Networking on the Macintosh

CHAPTER 1

Introduction to Apple Talk

to identify groups of nodes belonging to a particular department or area. ZIP allows
applications and processes to gain access to

• their own node's zone name

• the names of all the zones on their local network

• the names of all the zones throughout the internet

The chapter uzone Information Protocol (ZIP)" in this book describes the ZIP application
programming interface. For additional information about ZIP, see 11ldentifying Zones"
on page 1-23.

AppleTalk Session Protocol (ASP)

The AppleTalk Session Protocol (ASP) sets up and maintains sessions between a
workstation and a server. ASP is an asymmebical protocol in which one side of the
dialog, the workstation client of ASP, initiates the session and sends commands to the
other side of the dialog. A higher-level protocol that is built on top of the ASP server
interprets and executes the command, and the ASP server returns a reply. ASP also
provides a means by which the server can send a message to the workstation; for
example, a file server can use this messaging system to notify all of the workstations that
are using the file server that it is shutting down. ASP is used by the Apple Talk Filing
Protocol to allow a user to manipulate files on a file server. Because ADSP provides
socket clients at both ends of the connection with equal control, ADSP is more commonly
used than ASP when a session protocol is required.

The chapter 11 Apple Talk Session Protocol (ASP)" in this book describes the ASP applica­
tion programming interface. For additional information about ASP, see 11 Apple Talk
Session Protocol" on page 1-25.

Apple Talk Data Stream Protocol (ADSP)

The Apple Talk Data Stream Protocol (ADSP) is a connection-oriented protocol that
supports sessions over which applications and processes that are socket clients can
exchange full-duplex streams of data across an Apple Talk internet. ADSP is a symmebi­
cal protocol; the socket clients at either end of the connection have equal control over the
ADSP session and the data exchange. Through attention messages, ADSP also provides
for out-of-band signaling, a process of sending data outside the normal session dialog so
as not to interrupt the data flow.

The chapter II Apple Talk Data Stream Protocol (ADSP)" in this book describes the ADSP
application programming interface. For additional information about ADSP, see
"AppleTalk Data Stream Protocol" on page 1-24.

Apple Talk Transaction Protocol (ATP)

The Apple Talk Transaction Protocol (ATP) is a transaction protocol that allows one
socket client to transmit a request that some action be performed to another socket client
that carries out the action and transmits a response reporting the outcome. ATP provides
reliable delivery of data by retransmitting any data packets that are lost and ensuring
that the data packets are delivered in the correct sequence.

About Networking on the Macintosh 1-13

CHAPTER 1

Introduction to Apple Talk

The chapter "Apple Talk Transaction Protocol (ATP)" in this book describes the ATP
application programming interface. For additional information about ATP, see
"Performing a Transaction" on page 1-25.

AppleTalk Echo Protocol (AEP)

The Apple Talk Echo Protocol (AEP) exists on every node as a DDP client process called
the AEP Echoer. The AEP Echoer uses a special socket to listen for packets sent to it from
socket clients on other nodes. When it receives such a packet, the AEP Echoer returns it
directly to the sender. A socket client can send a packet to the AEP Echoer on another
node to determine if that node can be accessed over the internet and to determine how
long it takes a packet to reach that node. There is no application programming interface
to AEP. A socket client can send packets to an AEP Echoer socket on another node from a
DDP socket, but it cannot access the AEP implementation directly.

The chapter "Datagram· Delivery Protocol (DDP)" in this book describes how to send
packets to the AEP socket. For additional information about AEP, see "Measuring
Packet-Delivery Performance" on page 1-26.

Name-Binding Protocol (NBP)

The Name-Binding Protocol (NBP) provides your application or process with a way
to map names that are useful to people using your program to numbers or addresses
that are useful to computers. NBP associates a user-friendly three-part name that can be
displayed to end users with the internet socket address of the application or process.
When a user launches it, your application can register itself with NBP. When a user quits
the application or when you no longer wish to advertise your application, your
application can delete its entry from the NBP names table. Once your application
registers itself with NBP, other applications can locate it. _

All applications and processes that use Apple Talk use NBP to make their services known
and available throughout an Apple Talk internet and to locate other applications and
processes in the internet. An application or process can use NBP to

• register itself with NBP. Registering an application or process with NBP makes that
process a network-visible entity. (NBP lets your application or process bind a
three-part name to its internet socket address.)

• look up or confirm the address of another application or process that is registered
with NBP.

• remove its entry from the NBP names table when it no longer wants to advertise
its services.

The chapter "Name-Binding Protocol (NBP)" in this book describes the NBP application
programming interface. For additional information about NBP, see "Making Your
Application Available Throughout the Internet" on page 1-22.

1-14 About Networking on the Macintosh

CHAPTER 1

Introduction to Apple Talk

Routing Table Maintenance Protocol (RTMP)

The Routing Table Maintenance Protocol (RTMP) provides Apple Talk internet routers
with a means of managing routing tables used to determine how to forward a datagram
from one socket to another across an internet based on the datagram's destination
network number. The RTMP implementation on a router maintains a table called a
routing table that specifies the shortest path to each possible destination network
number. The AppleTalk protocol software in a workstation (that is, a node other than a
router) contains only a small part of RTMP, called the RTMP stub, that DDP uses to
determine the network number (or range of network numbers) of the network cable to
which the node is connected and to determine the network number and node ID of one
router on that network cable. There is no application programming interface to the
RTMP stub; therefore, RTMP is not discussed in this book.

Datagram Delivery Protocol (DDP)

The Datagram Delivery Protocol (DDP) is a connectionless protocol that transfers
data between sockets as discrete packets, or datagrams, with each packet carrying its
destination internet socket address. DDP provides best-effort delivery. It does not
include support to ensure that all packets sent are received at the destination or that
those packets that are received are in the correct order. Higher-level protocols that use
the services of DDP provide for reliable delivery of data. DDP uses whichever link­
access protocol the user selects; that is, DDP can send its datagrams through any type of
data link and transport media.

The chapter "Datagram Delivery Protocol (DDP)" in this book describes the DDP
application programming interface. For additional information about DDP, see 11Sending
and Receiving Data as Discrete Packets" on page 1-26.

Link-Access Protocols

Apple Talk supports various network (or link) types and allows the user to select and
switch among the types of networks to be used based on how the user's machine is
configured; that is, if the machine has the proper hardware and software installed for a
link type, the user can select that link. Apple Talk includes the link-access protocols for
LocalTalk, EtherTalk, Token Talk, and FDDITalk (Fiber Distributed Data Interface).
Apple Talk uses connection files of type 1 adev 1 that contain software that supports a
particular type of data link.

To achieve link independence, AppleTalk relies on the Link-Access Protocol (LAP)
Manager, which is a set of operating-system utilities, not an Apple Talk protocol. The
main function of the LAP Manager is to act as a switching mechanism that connects
the AppleTalk link-access protocol for the link type that the user selects to both the
higher-level Apple Talk protocols and the lower-level hardware device driver for that
data link. From the Network control panel, a user can select which network is to be
used for the node's Apple Talk connection.

About Networking on the Macintosh 1-15

CHAPTER 1

Introduction to Apple Talk

The Apple Talk connection files of type I adev I and the LAP Manager work together
with the Network control panel file of type I cdev I • When the user selects a network
type from the Network control panel, the LAP Manager routes Apple Talk communi­
cations through the link-access protocol for the selected network.

The LAP Manager also provides an application with access to the Apple Talk Transition
Queue. You can place an entry for your application in the Apple Talk Transition Queue so
that the LAP Manager will notify you when an Apple Talk transition occurs or is about to
occur. An Apple Talk transition is an event, such as an Apple Talk driver being opened or
closed, that can affect your AppleTalk application.

The chapter "Link-Access Protocol (LAP) Manager" in this book describes the LAP
Manager and the Apple Talk Transition Queue. For additional information about the
LAP Manager, see the Macintosh AppleTalk Connections Programmer's Guide.

Multivendor Architecture

In addition to supporting various types of networks, Apple also provides what is known
as multivendor support. The multi vendor architecture allows for multiple brands of
Ethernet, token ring, and FDDI NuBus™ network i.t.)terface controllers (NICs) to be
installed on a single node at the same time. In addition to selecting the type of network
connection, the user can now select a particular device to be used for the network
connection. The chapter "Ethernet, Token Ring, and Fiber Distributed Data Interface" in
this book describes multivendor architecture.

Multinode Architecture

Multinode architecture is an Apple Talk feature that allows an application to acquire
node IDs in addition to the standard node ID that is assigned to the system when the
node joins an Apple Talk network. Multinode architecture is provided to meet the needs
of special-purpose applications that receive and process Apple Talk packets in a custom
manner instead of passing them directly on to a higher-level Apple Talk protocol for
processing. A multinode ID allows the system that is running your application to appear
as multiple nodes on the network. The prime example of a multinode application is
Apple Remote Access (ARA). The chapter "Multinode Architecture" in this book
describes this feature.

How the Apple Talk Protocols Are Implemented

Above the data-link level, all of the Apple Talk protocols that you can address or control
from a Macintosh application through a programming interface as well as multinode
architecture are implemented as Macintosh device drivers. Table 1-2 identifies the
AppleTalk drivers and the protocols they implement.

1-16 About Networking on the Macintosh

CHAPTER 1

Introduction to Apple Talk

Table 1-2 Apple Talk drivers and the protocols they implement

AppleTalk driver

.MPP

.ATP

J(PP

.DSP

Protocols It Implements

DDP, NBP, AEP, RTMP stub, multinode

ATP

ASP, workstation portions of ZIP and AFP

ADSP

Figure 1-3 shows the AppleTalk protocols with the name of the driver that implements
the protocol and the connection files of type 1 adev 1 that Apple Talk provides for various
types of links. Notice how the LAP Manager acts as a switching mechanism between
the higher-level protocols and the link-access protocols. Many other features of these
protocols are implemented in software located only on internet routers that are not used
to run general applications. Some parts of protocols are implemented by server software
such as file servers and print servers.

Figure 1-3 Device drivers and connections files that implement Apple Talk protocols

DDP

About Networking on the Macintosh 1-17

•

1-18

CHAPTER 1

Introduction to Apple Talk

The Apple Talk Manager
Your application accesses the services of the Apple Talk protocols through the Apple Talk
Manager, which is a collection of the application programming interfaces to the
AppleTalk protocols. The AppleTalk Manager includes the LAP Manager, which collects
together the interfaces to the supported AppleTalk data links. Note that not all
AppleTalk protocols have programming interfaces.

Figure 1-4 shows the AppleTalk protocols; those protocols that have programming
interfaces are shaded.

Figure 1-4 AppleTalk protocols with programming interfaces

I AFP I

1JP I cfJ ADSP

M AEP NBP RTMP

Protocols and drivers that have
programming interfaces.

Typically, an application uses the services of more than one protocol. For example, you
might choose to use ADSP to set up a symmetrical session over which the users of your
application can transfer data, but you would also use NBP to register your application to
make it available to users and other applications throughout the internet. For informa­
tion on how to select which protocols to use, see "Deciding Which AppleTalk Protocol to
Use" on page 1-22.

About Networking on the Macintosh

CHAPTER 1

Introduction to Apple Talk

Apple Talk and the OSI Model
This section provides general information about the relationship between Apple Talk and
an industry-standard networking model. You do not need to read this section to under­
stand the Apple Talk protocols or to use the AppleTalk Manager.

Most networking systems are designed as layered architectures that relate to what are
called reference models. These matrices offer a structure that network designers can refer
to in developing a network architecture; they are guidelines and not rules. Each layer
of a model collects together those functions that are similar or highly interrelated
and provides services to the layer above it. Network designers develop protocols that
encompass the functions of each layer. Often more than one protocol is defined and
implemented to handle the requirements of a layer in different ways. Some protocols
include functions that span more than one layer specified by a model. For example, in
favor of efficiency, a network protocol developer may elect to define a single protocol
that spans two or more layers of a reference model.

Various layered models have been developed that provide standards for the design and
development of networking software. One of these models is the Open Systems
Interconnection (OSI) model, which is a seven-layered standard that was published by
the International Standards Organization (ISO) in the 1970s. This is the model with
which the Apple Talk network system architecture is most closely aligned.

Note
Although this section discusses Apple Talk in relation to the OSI
model, it does not claim a protocol compatibility of Apple Talk
with the OSI protocols currently in various stages of definition,
approval, and deployment. +

Figure 1-5 on page 1-20 shows the relationships among the AppleTalk protocols and
how they map to the OSI model. The shaded area of the graphic shows the name of
the OSI layer. A connection between one protocol and another above or below it in the
figure indicates that the upper protocol is a client of the lower protocol, that is, the
upper protocol uses services provided by the lower protocol in order to carry out
some functions.

Application Layer

The highest layer of the OSI model is the application layer. This layer allows for the
development of application software. Software written at this layer benefits from the
services of all the underlying layers. There is no Apple Talk protocol that maps directly
to this layer, although some of the functions of the Apple Talk Filing Protocol (AFP) fulfill
this layer.

About Networking on the Macintosh 1-19

•

CHAPTER 1

Introduction to Apple Talk

Figure 1·5 Apple Talk protocol stack and the OSI model

Presenwtton

Tr&JUliPPrt

Network

.,...lrik

Presentation Layer

The presentation layer assumes that an end-to-end path or connection already exists
across the network between the two communicating parties, and it is concerned with
the representation of data values for transfer, or the transfer syntax. In the OSI model, the
Apple Talk Filing Protocol (AFP) spans the presentation and application layers. AFP
provides an interface between an application and a file server. It uses the services of
ASP, which, in tum, is a client of ATP.

AFP allows a workstation on an Apple Talk network to access files on an AFP file server,
such as an AppleShare file server. When the user opens a session with an AppleShare file
server over an internet, it appears to any application running on the workstation that
uses File Manager routines as if the files on the file server were located on a disk drive
connected to the workstation.

Session Layer

The session layer serves as an interface into the transport layer, which is below it. The
session layer allows for session establishment, which is the process of setting up a
connection over which a dialog between two applications or processes can occur. Some
of the functions that the session layer provides for are flow control, establishment of
synchronization points for checks and recovery for file transfer, full-duplex and half­
duplex dialogs between processes, and aborts and restarts.

1·20 About Networking on the Macintosh

CHAPTER 1

Introduction to Apple Talk

The Apple Talk protocols implemented at the session layer are

• the Apple Talk Data Stream Protocol (ADSP), which provides its own stream-based
transport layer services that allow for full-duplex dialogs

• the AppleTalk Session Protocol {ASP), which uses the transaction-based services of
ATP to transport workstation commands to servers

• the Zone Information Protocol (ZIP), which provides applications and processes with
access to zone names. Each node on a network belongs to a zone.

Transport Layer

The transport layer isolates some of the physical and functional aspects of a packet
network from the upper three layers. It provides for end-to-end accountability, ensuring
that all packets of data sent across the network are received and in the correct order.
This is the process that is referred to as reliable delivery of data, and it involves providing
a means of identifying packet loss and supplying a retransmission mechanism. The
transport layer also provides connection and session management services.

The following AppleTalk protocols are implemented at the transport layer:

• Name-Binding Protocol (NBP)

• AppleTalk Transaction Protocol {ATP)

• AppleTalk Echo Protocol (AEP)

• Routing Table Maintenance Protocol (RTMP)

In addition to these transport layer protocols, the Apple Talk Data Stream Protocol
(ADSP) includes functions that span both the transport and the session layers. ADSP
provides for reliable delivery of data, and in that capacity it covers the transport layer
requirements.

Network Layer

The network layer specifies the network routing of data packets between nodes and
the communications between networks, which is referred to as internetworking. The
Datagram Delivery Protocol (DDP) is the Apple Talk protocol implemented at the
network layer. DDP is a connectionless datagram protocol providing best-effort delivery.
This means that DDP transfers data as discrete packets and that DDP does not include
support to ensure that all packets sent are received at the destination or that those
packets that are received are in the correct order. Higher-level protocols that use the
services of DDP provide for this kind of reliability.

Data-Link and Physical Layers

The data-link layer and the physical layer provide for connectivity. The communication
between networked systems can be via a physical cable made of wire or fiber optic, or it
can be via infrared or microwave transmission. In addition to these, the hardware can
include a network interface controller (NIC), if one is used. The hardware or transport
media and the device drivers for the hardware comprise the physical layer. LocalTalk,

About Networking on the Macintosh 1-21

CHAPTER 1

Introduction to Apple Talk

token ring, Ethernet, and Fiber Distributed Data Interface (FDDI) are examples of types
of networking hardware that Apple Talk supports.

The physical hardware provides nodes on a network with a shared data transmission
medium called a link. The data-link layer includes a protocol that specifies the physical
aspects of the data link and the link-access protocol, which handles the logistics of
sending the data packet over the transport medium. Apple Talk is designed to be
data-link independent, allowing for the use of various types of hardware and their
link-access protocols.

Deciding Which Apple Talk Protocol to Use

The Apple Talk Manager consists of a collection of application programming interfaces
to the Apple Talk protocols and the LAP Manager. Each of the Apple Talk protocols
implements a different set of functions and services, and the programming interface for a
specific protocol includes a set of routines that give your application access to the
protocol's functions and services.

Apple Talk offers programming interfaces to a variety of communications protocols at
different levels. Your choice of protocol or protocols to use depends primarily on your
application's needs.

This section provides a brief discussion of how your application can use each protocol.
The Apple Talk protocols are layered in a stack with each protocol benefiting from the
services of the protocols in layers below it. Looked at from a top-down approach, the
high-level protocols provide an accretion of all the services of the underlying protocols.

A developer who uses the higher-level protocols that provide for reliable delivery of
data and error recovery does not have to implement these services as part of an
application. An application developer who wants to write a program for end users
that runs on an Apple Talk network would typically use the interfaces to one or more
higher-level protocols. For example, you might use NBP to register the program with the
network so that it is visible to users and other applications, and, perhaps, ADSP to
transfer data.

A network software developer who wants to implement a custom session-oriented
protocol, instead of using ADSP or ASP, would typically use the interface to a protocol
such as DDP or any of the protocols below it. A network softWare developer who wants
to implement a custom protocol stack instead of using Apple Talk can use a low-level
protocol interface to attach a protocol handler that receives data from the network.

Making Your Application Available Throughout the. Internet
This section discusses the Name-Binding Protocol (NBP) that you can use to make your
application or process visible to users and other applications and processes throughout
an Apple Talk internet.

1-22 Deciding Which AppleTalk Protocol to Use

CHAPTER 1

Introduction to Apple Talk

NBP binds the internet socket address assigned to a process or application to a special
human-readable name that contains three parts: the object, type, and zone fields. The
NBP name is different from the name of the application. The object and type are assigned
by the process itself and can be anything the user or application developer selects; the
zone is the one in which the node resides.

NBP maintains a table on each node that contains the name-and-address pair for each
application or process on that node that is registered with NBP. Once an application or
process is registered with NBP, it becomes visible to users and other applications and
processes throughout the internet. When a process or application is registered with NBP,
it is referred to as a network-visible entity.

Users can select an application by its NBP name. Based on the name or a part of the
name, applications and processes can request NBP to look up the internet socket address
for the entity.

When you use other AppleTalk protocols that send and receive data, your application or
process becomes associated with an internet socket address. Although applications and
processes need the internet socket addresses of other applications and processes that
they want to connect with, a name identifying the type of application and its location is
more meaningful to an end user. Your application or process can use NBP to find all
other applications or processes of the same type and get their internet socket addresses.
Your application could then display the NBP names of other applications to an end user
so that the user can select an application to connect to. Your application could then use
another Apple Talk protocol, such as ADSP, to connect to the partner application.

An application, such as a network management tool, could use NBP to collect information
so that it can provide an inventory of all nodes belonging to a zone and list the applica­
tions running on each of those nodes. It could sort the applications by type. For example,
it could provide a list of all file servers on an Apple Talk internet.

Identifying Zones
The Zone Information Protocol (ZIP) maintains a zone information table in each internet
router that lists the relationships between zone names and network numbers. You can
use the part of ZIP that is implemented on a nonrouter node to get the name of the zone
to which the node that is running the application belongs. Your application can also call
ZIP to get a list of all the zones in the internet.

An application running on a node that belongs to an extended network can call ZIP to
get a list of all the zone names associated with that network. For example, an application
that supports network administration might use these service to provide a network
administrator with a list of the zones for a particular network so that the administrator
can select the correct zone for a node when adding nodes to a network.

An application could collect other kinds of information, such as what services are
running on nodes, and then sort the information by zone.

Deciding Which Apple Talk Protocol to Use 1-23

•

CHAPTER 1

Introduction to Apple Talk

Using a Session Protocol to Send and Receive Data
AppleTalk includes two session protocols that you can use to send and receive data:

• ADSP provides a symmetrical session.

• ASP provides an asymmetrical session.

Most applications use ADSP, which was made available after ASP.

Apple Talk Data Stream Protocol

Your application can use ADSP to set up and maintain a connection with another
application over an internet. Through this connection, both applications can send and
receive streams of data at any time. Because ADSP allows for the continuous exchange of
data, any application that needs to support the exchange of more than a small amount
of data should use ADSP. In addition to providing for a duplex data stream, ADSP also
provides an application with a means of sending attention messages to pass control
information between the two communicating applications without disrupting the main
flow of data.

In most cases, ADSP is the protocol that Apple recommends applications use for sending
and receiving data. In addition to ensuring reliable delivery of data, ADSP provides a
peer-to-peer connection, that is, both ends of the connection can exert equal control over
the exchange of data.

Note
Because ADSP is connection-oriented, it entails additional processing
and memory usage in setting up and maintaining the connection
between the two applications. Therefore, if your application needs to
send a small amount of data, such as a request that the other end
perform a task and report the result in response, and you don't want to
incur the overhead involved in establishing, maintaining, and breaking
a connection, you should consider using ATP rather than ADSP for
data transfer. +

ADSP appears to its clients to maintain an open pipeline between the two entities at
either end. Either entity can write a stream of bytes to the pipeline or read data bytes
from the pipeline. However, because ADSP, like all other higher-level Apple Talk
protocols, is a client of DDP, the data is actually sent as datagrams. This allows ADSP to
correct transmission errors in a way that would not be possible for a true data stream
connection. Thus, ADSP retains many of the advantages of a connectionless protocol
while providing to its clients a connection-oriented full-duplex data stream.

An application that uses ADSP can treat the data to be transferred as continuous streams
of data, or it can treat it as discrete messages to be interpreted individually. Applications
that might use ADSP include server software applications such as mail servers, terminal
emulation programs, or any application that requires two-way communication between
computers. ADSP also includes features that let you authenticate the identity of the party
at the other end of the connection and send encrypted data across the session, which is
then decrypted at the other end. The authentication and encryption features of ADSP are
referred to as AppleTalk Secure Data Stream Protocol (ASDSP).

1-24 Deciding Which Apple Talk Protocol to Use

CHAPTER 1

Introduction to Apple Talk

Apple Talk Session Protocol

You can use the Apple Talk Session Protocol (ASP) to implement workstation applica­
tions that require an asymmetrical dialog with a server in which the workstation
application initiates and controls the dialog. The workstation application tells the server
application what to do and the server responds. ASP provides for the setting up, main­
taining, and closing down of a session between a workstation and a server.

A workstation application that requires a state-dependent service should use ASP
instead of ATP. State dependence means that the response to a request is dependent on
a previous request. Consider the example of a workstation application connecting to a
file server to read a file: before the application can read the file, it must have first issued
a request to open the file. (For example, the AppleTalk Filing Protocol [AFP] uses ASP.
However, only the client side of ASP is implemented on the Macintosh.) When a dialog
is state dependent, all requests must be delivered in order and duplicate packets must
not be sent: ASP provides for this.

An ATP transaction-based request, such as a workstation application requesting a server
to return the time of day, is independent of other requests and not state dependent.

ASP assigns each session a unique identifier called a session reference number that
allows more than one workstation to establish a session with the same server at the same
time. For example, a server might use session reference numbers to distinguish between
commands received from various clients of sessions.

ASP ensures that commands from a workstation are delivered without duplication and
in the same order in which they were sent. ASP conveys the results of these commands
back to the workstation. As long as the session is open, the workstation can request
directory information, change filenames, and so forth. The file server must respond to
the workstation's commands and cannot initiate any actions on its own.

Performing a Transaction
If you want to write an application that performs a transaction, you can use the
AppleTalk Transaction Protocol (ATP). A transaction is an interaction between two
applications that are clients of ATP in which one application, known as the requester,
sends a request to the other application, known as the responder, to perform a task and
return a response that reports the outcome of the task. The transaction request must fit in
a single packet; however, the response can contain up to eight packets. ATP transactions
are an efficient means of transporting small amounts of data across the network. ATP
provides a reliable loss-free transport service. ATP's means of ensuring reliable delivery
of data is based on the request-response paradigm as opposed to the data stream model
that ADSP uses for reliable delivery of data.

You should use ATP

• if you want to send a small amount of data

• if your application requires delivery of all packets

• if your application can tolerate a minor degree of performance degradation

• if you do not want to incur the overhead and more extensive performance
degradation involved in maintaining a session

Deciding Which Apple Talk Protocol to Use 1-25

•

CHAPTER 1

ln~roduction to Apple Talk

ATP is useful for collecting status information; for example, a network management
application might include a responder program on each node to which the central
application sends out ATP requests asking for version information, such as the version of
Apple Talk that the node is running. The responder program could check the version and
send the information back to the main application in response to the request. Games that
are based on request-and-response types of dialogs can make efficient use of ATP.

Sending and Receiving Data as Discrete Packets
Your application can use the Datagram Delivery Protocol (DDP) to transmit data in the
form of packets across an AppleTalk internet. Because DDP provides best-effort delivery
of datagrams with no recovery when packets are lost or discarded because of errors, it
involves less overhead and provides for faster performance than do the higher-level
protocols that add reliable delivery.

For applications, such as some games that don't require reliable delivery of data and can
tolerate possible packet loss or diagnostic tools that retransmit at regular intervals to
estimate averages, DDP suffices, and it offers the value of good performance. In fact, if
you develop a game application that limits players to nodes on a single network, DDP
will use short addressing headers on packets, requiring 8 fewer bytes per packet, which
are faster to send.

If you are a network software developer who wants to develop a session-oriented
protocol, a client-server protocol, or a transaction-based protocol that offers services
different from those provided by ADSP, ASP, or ATP, you can design and implement
your protocol as a client of DDP. However, this can entail providing your own server
implementation in some cases. For a detailed description of DDP and the other
AppleTalk protocols, see Inside AppleTalk, second edition.

If you use the DDP interface, you must provide a process called a socket listener to receive
datagrams addressed to the socket. The chapter "Datagram Delivery Protocol (DDP)" in
this book describes how to write a socket listener.

Measuring Packet-Delivery Performance
You can use the AppleTalk Echo Protocol (AEP) to measure the timing of send-receive
cycles and to determine if another node is online. There is no application programming
interface to AEP. However, to measure the round-trip packet delivery time from your
node to another node, your application or process can send a packet that is addressed to
the AEP socket, referred to as the AEP Echoer, on the destination node, and AEP will
return a copy of that packet directly to you. •

You can use this echo test as part of a diagnostic tool application, for example. A
diagnostic tool could troubleshoot a suspect node and report how long it took the packet
to travel to and from the node. Your application could use repeated transmissions to
determine if a packet takes longer than the typical amount of time to reach the node,
if it contains corrupted data, or if it doesn't make it back at all.

1-26 Deciding Which Apple Talk Protocol to Use

CHAPTER 1

Introduction to Apple Talk

To determine if another node is on the network, you can send a packet to that node's
AEP socket. For a conclusive test, you should send more than one packet, in case the first
packet is lost or discarded by DDP.

Accessing AppleShare and Other File Servers
The Apple Talk Filing Protocol (AFP) provides an interface between an application and
an AFP file server. For example, it allows workstations on an Apple Talk network to
access files on AppleShare file servers. AFP uses the services of ASP.

Only the workstation side of AFP is implemented on the Macintosh. Few application
developers use AFP because the existing File Manager commands perform most
functions needed to access and manipulate files on an AppleShare server.

If you choose to use AFP, your application can provide support that allows a workstation
user to use the workstation's own local 9r native file system commands to manipulate
files on a remote node. The chapter "Apple Talk Filing Protocol (AFP)" in this book
describes how to use AFP.

Receiving Packets Using a Virtual Node and
Processing Them in a Custom Manner
Your application can use the Apple Talk multinode architecture to acquire node IDs that
are in addition to the standard user node ID assigned to the system. You can use these
virtual node IDs, called multinodes, to receive all broadcast packets and all Apple Talk
packets addressed to the multinode. You can then process the packets in a custom
manner. A multinode ID is not connected to the Apple Talk protocol stack above the
data-link layer; this means that an application that uses a multinode is not connected
to the Apple Talk protocol above the data-link level, and it cannot use their services. For
example, Apple Remote Access (ARA) uses this multinode capability to implement
remote access. The chapter "Multinode Architecture" describes how to acquire a multi­
node ID and send and receive packets using the multinodes.

The LAP Manager
The LAP Manager acts as an interface between the link types and the higher-level
Apple Talk protocols. The LAP Manager contains a protocol handler that it attaches
directly to the hardware device driver to receive 802.2 Type 1 packets for Ethernet, token
ring, and FDDI. If your application handles 802.2 Type 1 packets, you must provide a
protocol handler to read the packets and install your protocol handler as a client of the
LAP Manager. A protocol handler is a piece of assembly-language code that controls
the reception of a packet of a particular protocol type. When an 802.2 packet for your
application arrives, the LAP Manager will call your protocol handler to read the packet.

The LAP Manager also provides and maintains a service called the AppleTalk Transition
Queue (ATQ) that you can use to ensure that your application is not adversely affected
when an Apple Talk transition occurs.

Deciding Which Apple Talk Protocol to Use 1-27

a a c. c
Q:
0
::s
0
)>
"C
"C
iD
;I
~

CHAPTER 1

Introduction to Apple Talk

An example of an Apple Talk transition is an Apple Talk driver being closed or opened
by another routine or the operating system. At any given time, there might be two or
more applications running that use Apple Talk. If one of these applications closes the
Apple Talk drivers, all AppleTalk applications are affected.

Your application can register itself with the Apple Talk Transition Queue by placing an
entry in the queue. The LAP Manager sends a message to each entry in the Apple Talk
Transition Queue when a transition occurs. Your application or other routines can also
define their own Apple Talk events and call the Apple Talk Transition Queue to inform it
that such an event occurred.

The Apple Talk Transition Queue also allows an application that uses the Flagship
Naming Service to place an entry in the queue that enables it to stay informed as to
changes to the flagship name. A flagship name is a personalized name that users can
enter to identify their nodes when they are connected to an Apple Talk network. The
flagship name is different from the Chooser name that a node uses for server-connection
identification. The LAP Manager uses the transition queue message system to communi­
cate name changes between applications and processes whenever the user resets the
flagship name.

The chapter "Link-Access Protocol (LAP) Manager" in this book describes the LAP
Manager services and interface. For more information about the LAP Manager, see
the Macintosh AppleTalk Connection Programmer's Guide.

Using Apple Talk's link independence to write portable applications

If you write an application that uses one of the high-level Apple Talk
protocols, such as ADSP or ATP, your program will run over any link
type. A user running your application can switch between link types, for
example, move from one type of network, such as token ring, to another,
such as Ethernet, without affecting your program. The LAP Manager
handles the interface and connection to the correct link-access protocol
based on the link type the user selects. •

Directly Accessing a Driver for a Network Type
The .ENET, the .TOKN, or the .FDDI driver is normally called by the Apple Talk Manager
through the Apple Talk connection file for the link type (EtherTalk, Token Talk, or
FDDITalk) when the user has selected one of these network types from the Network
control panel. You can write your own protocol stack or application that uses one of
these drivers directly rather than through Apple Talk.

The interface at this level allows you to open the driver and send data to it directly for
transmission over the network. However, to receive data from the network, you need to
provide a protocol handler written in assembly language.

For Phase 1 Ethernet packets, that is, the original version of Ethernet packets, you can
read data directly from an Ethernet driver using the default protocol handler that Apple
provides or your own protocol handler.

1-28 Deciding Which Apple Talk Protocol to Use

CHAPTER 1

Introduction to Apple Talk

For ffiEE 802.2 packets, you must use the interface to the Link-Access Protocol (LAP)
Manager to attach your protocol handler to read data from an Ethernet, token ring,
or FDDI driver. Token ring and FDDI support only 802.2 packets.

The chapter "Ethernet, Token Ring, and Fiber Distributed Data Interface" in this ·
book describes how to use the interface for Phase 1 Ethernet packets. The chapter
"Link-Access Protocol (LAP) Manager" in this book describes how to use the interface
for ffiEE 802.2 packets.

The Apple Talk Pascal Interface

This section provides an overview of the two execution modes that you can use to
execute routines that belong to the AppleTalk protocol interfaces.

When your application calls an Apple Talk routine, you set a Boolean value as a param­
eter to the routine that directs the system software to execute the routine synchronously
or asynchronously:

• If you set the routine to run synchronously, your application program cannot continue
executing until the operation completes.

• If you set the routine to execute asynchronously, the system software returns control
to your application program immediately and one of two methods is used to signal
your program later when the operation completes; these methods are the use of a
completion routine or a polling strategy.

The first version of the Apple Talk Pascal interfaces is now referred to collectively as the
alternate interface. Routines belonging to the alternate interface that were executed
asynchronously signaled the application that the operation had completed through the
use of a network event.

Note
The use of network events introduced problems that were remedied
by the creation of a new interface whose routines relied on the use
of a completion routine or a result-field polling strategy rather
than a network event as a completion-signaling mechanism for
asynchronous calls. •

The new interface was designed to be similar to that of the Device Manager and the
File Manager. Its routines use parameter blocks to pass input and output values.
The interface glue code converts the parameter block values into a Device Manager
PBControl call to the appropriate AppleTalk device driver. Called the preferred
interface in the past, this interface is now the standard Apple Talk interface.

When writing new applications that use Apple Talk, you should use the routines
belonging to the interface described in this book. Use of the alternate interface calls
could cause compatibility problems with current and future system software, although
the alternate interface is still provided in the header files for backward compatibility.

The Apple Talk Pascal Interface 1-29

•

CHAPTER 1

Introduction to Apple Talk

Note
For functions that execute asynchronously, you must not move or
dispose of the parameter block before the function completes execution;
while the function is executing, Apple Talk owns the memory that you
allocated for the function's use. After the call returns, you need to
dispose of the memory allocated for the parameter biock unless you
intend to reuse the parameter block, for example, for another function. •

Executing Routines Synchronously or Asynchronously
Your program can execute the routines that make up the interface to the AppleTalk
protocols either synchronously or asynchronously. Synchronous execution means that
your program is prevented from doing any other processing until the current operation
completes. Asynchronous execution means that the system returns control to your
program after your program calls the routine so that your program can continue with
other processing while the asynchronous operation completes.

H you execute a routine synchronously, the call does not return until the operation
completes; you do not have to use a completion routine that runs at interrupt level or
poll a result field to determine when the operation completes; on the other hand, your
program cannot continue running until the call returns, which causes the system to come
to a standstill. Synchronous calls are useful for operations that execute and return to the
calling program quickly, such as opening or closing sockets. On an Apple Talk internet,
data is transferred between sockets, which must be opened before they can be used and
closed when they are no longer needed.

Calling a routine asynchronously directs the system software to begin the operation
process now, return control to the calling program, then complete execution of the
routine as soon as possible. Asynchronous execution eliminates program execution delay
time, but it requires that your application provide a means of determining when the
operation has completed execution. There are two methods an application can use to
determine when an operation completes execution:

• An application can provide a completion routine to be called at interrupt level.

• An application can poll the routine's parameter block result field.

The parameter block that is used to contain input and output information for
a function includes a result field called ioResul t. When your application calls a
function asynchronously,

• the driver executes the function, if possible.

• if the driver is busy, the driver queues the function and sets the ioResul t field to 1.

When the function completes execution, the driver sets the result field to a value that
indicates either that no error occurred (noErr) or an error condition code value that
identifies the type of error.

1-30 The Apple Talk Pascal Interface

CHAPTER 1

Introduction to Apple Talk

Polling the Result Field

Your application can poll the result field to determine when the result value changes. Your
application can use the polling process to inform the user that the system is still busy
performing the operation that handles the request; for processes that may take a long
time, your application can display a progress dialog box to the user.

Note

H you use polling, you must set the call's parameter block
ioCompletion field to NIL. •

Using a Completion Routine

Instead of polling the result field, your application can supply a completion routine to
be executed at interrupt level when the operation completes. You provide the address
of the completion routine in the call's parameter block ioCompletion field. Because
completion routines are executed at inter111pt level, they cannot call any routines that
move memory.

The Apple Talk Pascal Interface 1-31

CHAPTER 2

Apple Talk Utilities

Contents

About the Apple Talk Utilities 2-3
Using the Apple Talk Utilities 2-4
Determining Whether Apple Talk Phase 2 Drivers Are Supported 2-4
Getting Information About the .MPP Driver and the
Network Environment 2-4
Getting the Address of Your Node or Your Local Router 2-6
Sending Packets to Applications and Processes on Your Own Node 2-6
Selecting a Node in the Server Range 2-7

AppleTalk Utilities Reference 2-8
Data Structures 2-9

MPP Parameter Block 2-9
Routines 2-11

Obtaining Information About the .MPP Driver and the
Current Network Environment 2-11
Enabling lntranode Delivery of DDP Packets 2-15
Getting the Addresses of Your Node and Local Internet Router 2-17
Opening and Closing Drivers 2-18

Summary of AppleTalk Utilities 2-23
Pascal Summary 2-23

Constants 2-23
Data Types 2-23
Routines 2-24

C Summary 2-25
Constants 2-25
Data Types 2-25
Routines 2-26

Assembly-Language Summary 2-27
Constants 2-27
Data Structures 2-28

Result Codes 2-28

Contents 2-1

CHAPTER 2

Apple Talk Utilities

This chapter describes the Apple Talk functions and services that do not belong to a
specific AppleTalk protocol interface but that apply to Apple Talk as a whole.

The chapter describes how to

• obtain a wide variety of information about Apple Talk and the network environment
of your node, including the maximum number of protocol handlers and concurrent
NBP calls that the installed .MPP driver supports

• obtain the addresses of your node and its local internet router

• enable intranode delivery, which lets you send packets to your own application or
other applications and processes running on the same node as yours

• determine if the Apple Talk Phase 2 drivers are installed on your system

• select a node ID in the server range

• open the .MPP and J(PP drivers

The .MPP driver opens the .ATP driver. The chapter "AppleTalk Data Stream Protocol
(ADSP)" in this book describes how to open the .DSP driver. Although Apple Computer,
Inc. recommends that you not close any of the Apple Talk drivers because other applica­
tions that are coresident may be using them, this chapter explains how to close the .MPP
driver, if, for some reason, you must.

About the Apple Talk Utilities

The Apple Talk Utilities are a group of diverse functions, some of which allow you to
obtain information about Apple Talk and the networking environment of your node
and some of which allow you change values that affect AppleTalk features.

The PGetAppleTalkinfo function returns a wide range of information, including
some information that other functions belonging to the AppleTalk Utilities also return.
For example, both PGetAppleTalkinfo and GetNodeAddress return the node ID
and network address of the user node that is running your application. The
PGetAppleTalkinfo function returns the node ID and the network number of
the last router from which the node that is running your application has heard; the
GetBridgeAddress function also returns the node ID of the internet router on your
node's local network.

Note

The PGetAppleTalkinfo function was developed and made available
after the GetNodeAddress and GetBridgeAddress functions. Apple
Computer, fuc. recommends that you use the PGetAppleTalkinfo
function to obtain addressing information for a user node or router
instead of using the GetNodeAddress and GetBr idgeAddress
functions. +
Although the Apple Talk interface does not include a function that you can use to direct
AppleTalk to select a node ID from the server node range when you open Apple Talk,
this chapter describes how you can do this. If your application or the application that

About the Apple Talk Utilities 2-3

2-4

CHAPTER 2

Apple Talk Utilities

opened Apple Talk directed Apple Talk to assign a server node ID to the node, the
PGetAppleTalkinfo function will return a flag that tells you this request was made.

Apple Talk includes a feature called intranode delivery that allows two programs
running on the same node to communicate with each other through the Apple Talk
protocols. The AppleTalk Utilities include the PSetSelfSend function, which you can
use to enable or disable intranode delivery. The PGetAppleTalkinfo function will
tell you if intranode delivery is on or off.

Using the Apple Talk Utilities
This section describes how to use some of the functions and services that make up the
AppleTalk Utilities. It explains how to

• check the version of the Apple Talk drivers that are installed

• get information about the .MPP driver and the network environment

• get the address of your node and locate your local router

• enable intranode delivery

• request Apple Talk to assign to your node an ID that is in the range of numbers that
are reserved for server nodes

Determining Whether Apple Talk Phase 2 Drivers Are Supported
Once the .MPP driver has been loaded into memory, you can use the Gestalt function
with the gestal tAppleTalkVersion selector to check the version of AppleTalk. The
Gestalt function returns the version of the .MPP driver. If the version is equal to or
greater than 53, then the .MPP driver supports Apple Talk Phase 2.

Alternatively, you can call the SysEnvirons function. If the atDrvrVersNwn field of
the SysEnvRec data structure returned by this function is equal to or greater than 53,
then the .MPP driver supports Apple Talk Phase 2.

Getting Information About the .MPP Driver and the
Network Environment
This section describes how you can use the PGetAppleTalkinfo function to obtain
information about the installed version of the .MPP driver, the network environment,
and the .MPP driver's maximum capacities, such as the number of sockets and the
number of NBP calls that the .MPP driver supports. The .MPP driver implements
these protocols:

• Datagram Delivery Protocol (DDP)

• Routing Table Maintenance Protocol (RTMP) stub

About the Apple Talk Utilities

CHAPTER 2

AppleTalk Utilities

• Name-Binding Protocol (NBP)

• AppleTalk Echo Protocol (AEP)

Before you call the PGetAppleTalkinfo function, you must allocate memory for and
define a parameter block of type MPPParmType. The section "MPP Parameter Block"
beginning on page 2-9 shows this data structure. You must also allocate memory for and
provide pointers to the data buffers into which the PGetAppleTalkinfo function
returns the data-link address and zone name for extended networks.

The PGetAppleTalkinfo function's Boolean parameter allows you to specify whether
the function is to be executed synchronously or asynchronously. This function is
generally executed synchronously. (For information on these two modes, see the chapter
"Introduction to Apple Talk" in this book.)

The PGetAppleTalkinfo function returns the following information:

• a pointer to the MPP global variables

• a pointer to the .MPP driver's device control entry (DCE) data structure

• configuration flags that indicate the status of certain conditions that are set at startup

• a value (the self Send flag) that indicates whether the node can send p·ackets to itself
(See "Sending Packets to Applications and Processes on Your Own Node" on page 2-6
and "Enabling Intranode Delivery of DDP Packets" on page 2-15 for more
information.)

• the range of network numbers for the network to which the node is attached

• the 8-bit node ID and 16-bit network number of the node

• the 8-bit node ID and 16-bit network number of the last router from which the node
has heard

• the maximum capacities of the .MPP driver, such as the maximum number of protocol
handlers and the maximum number of static sockets allowed by this driver

• a pointer to the registered names queue

• the address of the node on the underlying data link (for example, the Ethernet
hardware address)

• the node's zone name

The data-link address and the zone name are returned only for extended networks-that
is, network types that allow more than one network number per network. You use the
laLength parameter to specify the length of the data-link address you want returned;
the function returns the actual length of the data in the laLength parameter and returns
the data in the buffer you provide.

The ExtendedBit flag returned by the PGetAppleTalkinfo function is TRUE if the
node is connected to an extended Apple Talk network. (The ExtendedBi t flag is bit 15
of the configuration parameter returned by this function.) Note that the presence of
the Apple Talk Phase 2 drivers does not of itself indicate that the node is connected to
an extended network. For more information, see "PGetAppleTalklnfo" beginning on
page 2-11.

About the Apple Talk Utilities 2-5

2-6

CHAPTER 2

Apple Talk Utilities

Note
Always use the PGetAppleTalkinfo function to obtain information
about the .MPP driver. You cannot rely on the validity of the MPP global
variables pointed to by the varsPtr parameter block field value for this
information. +

Getting the Address of Your Node or Your Local Router
You can use the Apple Talk Utilities GetNodeAddress function to get the node ID of the
node that is running your application and the number of the network to which that node
is connected.

Note
H GetNodeAddress returns a network number of 0, this means that
there is no internet router available. However, your application or
process should call GetBr idgeAddres s to determine if there are
router-like services, such as Apple Remote Access (ARA), available to
thatnode. •

To locate your local router, you can first call GetNodeAddress for the router's network
number; the network number that GetNodeAddress returns for a node is a~o valid for
the internet router on that local network. To get the node ID part of a local router's
address, you can call the GetBridgeAddress function. V there is not a router on the
local network, GetBridgeAddress returns a function result of 0.

Note
You can also use GetzoneList to determine if there is a router on the
local network. For information on GetZoneList, see the chapter "Zone
Information Protocol {ZIP)" in this book. +

Sending Packets to Applications and
Processes on Your Own Node
Because more than one application or process can be running on a single node at the
same time, it is reasonable to assume that you may want to send packets from your
application or process to other applications and processes running on the same node. To
support this, AppleTalk includes a function that lets you turn on (or off) an intranode
delivery feature.

When intranode delivery is on, two programs running on the same node can communi­
cate with each other through the AppleTalk protocols. You can address and send a packet
to another application or process that is an internet socket client running on your own
node from any of the Apple Talk protocols that provide programming interfaces.

You use the PSetSelfSend function to enable or disable intranode delivery. The
PSetSelfSend function returns the value of the previous setting, so that you can
save it and reinstate the value later if it differs from the setting that you specify. For
more information about enabling or disabling intranode delivery, see "PSetSelfSend"
beginning on page 2-15.

About the Apple Talk Utilities

CHAPTER 2

AppleTalk Utilities

Note

Intranode delivery applies to user node applications and processes.
Sending packets between a multinode application and user node
applications on the same machine is independent of the intranode
delivery feature. A multinode is treated as a virtual node distinct from
the user node; both the user node and the multinode have their own
nodeiDs. •

Selecting a Node in the Server Range
Apple Talk node IDs are divided into two classes: user node IDs and server node IDs.

• User node IDs are in the range 1-127 ($01-$7F).

• Server node IDs are in the r~ge 128-254 ($80-$FE).

AppleTalk's dynamic node assignment occurs through a process in which the node
acquiring a node ID sends out enquiry pClckets to determine if the ID that the node
suggests is available. Although unlikely, problems can occur if a node that owns the
suggested ID fails to respond to the enquiry because it is busy.

User nodes are switched on and off more frequently than are server nodes. Separating
user node ID assignment from server node 10 assignment allows for different degrees of
verification.

Within the user node 10 range, verificatiofl is performed quickly with fewer retransmis­
sions of the enquiry control packet than are sent for server node ID verification; this
decreases the initialization time'for user nodes. A more thorough no4e ID verification is
perfo~e~ for servers. This scheme increases the initialization time for server nodes but
is not detrimental to the server's operation because server nodes are rarely switched on
and off.

You can start up Apple Talk so that it will assign a node ID within the server ra11ge by
making an extended Open call to the .MPP driver. To do this, you set the immediate
bit in the_ Open trap. To request a server node 10, set to 1 the high bit (bit 31) of the
extension longword field ioMix in the extended call. Set to 0 the remaining bits in the
ioMix field and the bits of all the other unused fields in the queue element. The code in
Listing 2-1 sets the high bit in the io~ix field, then it calls an asse~bly-language routine
that is not shown in this listing, PBOpenimmedSync, to make t11e extended open call.
The code uses the following global constants:

SPConfig $01FB~

portBClearMask = $FO;

The code in Listing 2-1 assumes that the .MPP driver is not currently open. It is
important to remember that you can only request a server node ID when you first
open the .MPP driver.

About the Apple Talk Utilities 2-7

CHAPTER 2

AppleTalk Utilities

Listing 2-1 Opening the .MPP driver and obtaining a node ID in the server range

FUNCTION PBOpenimmedSync(paramBlock: ParmBlkPtr): OSErr;
INLINE $205F,$A200,$3E80;
FUNCTION OpenNodeinServerRange: OSerr;
IMPLEMENTATION
FUNCTION OpenNodeinServerRange: OSerr;
VAR

MPPPtr: ParmBlkPtr;
OSerr;
Str31;

err:
MPPName:
SpConfigPtr: Ptr;

BEGIN
IF IsMPPOpen THEN

BEGIN
OpenNodeinServerRange := openErr;

END
ELSE

END;

BEGIN
SPConfigPtr := Ptr(SPConfig);
SPConfigPtrA := BYTE(BAND(SPConfigPtrA, portBClearMask));
SPConfigPtrA .- BYTE(BOR(SPConfigPtrA, UseATalk));
MPPName := 1 .MPP I;
MPPPtr := ParmBlkPtr(NewPtrClear(sizeof(ParamBlockRec)));
MPPPtrA.ioMix := Ptr($80000000);
MPPPtrA.ioNamePtr := @MPPName;
OpenNodeinServerRange := PBOpenimmedSync(MPPPtr);

END

AppleTalk Utilities Reference

2-8

This section describes the data structure and the routines that make up the Apple Talk
Utilities. The "Data Structures" section shows the MPP parameter block required for
the PSetSelfSend and the PGetAppleTalkinfo functions.

The "Routines" section describes the routines for

• getting information about the installed .MPP driver and the current network
environment ·

• enabling intranode delivery

• getting the addresses of your node and your local internet router

• opening the .MPP and J(PP drivers (The .MPP driver opens the .ATP driver.)

AppleTalk Utilities Reference

CHAPTER 2

AppleTalk Utilities

Data Structures

This section describes the MPP parameter block that you use for the PSetSelfSend and
PGetAppleTalkinfo functions.

MPP Parameter Block

The PSetSelfSend and PGetAppleTalkinfo functions require a pointer to the MPP
parameter block. The MPPParamBlock data type defines the MPP parameter block.

• The PGetAppleTalkinfo function uses the MPP parameter block with the
GetAppleTalkinfoParm variant record to pass information to and receive it
from the .MPP driver.

• The PSetSelfSend function uses the MPP parameter block with the
SetSelfSendParm variant record to pass information to and receive it from
the .MPP driver. The MPPParamBlock data type defines the MPP parameter block.

This section defines the fields common to both of these functions. The fields for the
variant records are defined in the function description that uses the record.

TYPE
MPPParmType

MPPPBPtr

=

=

MPPParamBlock =

PACKED RECORD
qLink:
qType:
ioTrap:
ioCmdAddr:
ioCompletion:
ioResult:
ioNamePtr:
ioVRefNum:
ioRefNum:

(••• SetSelfSendParm,
GetAppleTalkinfoParm ••.);

"MPPParamBlock;

QElemPtr; {reserved}
Integer; {reserved}
Integer; {reserved}
Ptr; {reserved}
ProcPtr; {completion routine}
OSErr; {result code}
StringPtr; {reserved}
Integer; {reserved}
Integer; {driver reference }

{ number}
csCode: Integer; {primary command code}

CASE MPPParmType OF
SetSelfSendParm:

(newSelfFlag:
oldSelfFlag:

GetAppleTalkinfoParm:
(version:
varsPtr:

Apple Talk Utilities Reference

Byte;
Byte);

Integer;
Ptr;

{self-send toggle flag}
{previous self-send }
{ state}

{requested info version}
{pointer to MPP }
{ variables}

2-9

CHAPTER 2

Apple Talk Utilities

DCEPtr: Ptr; {pointer to MPP DCE}
portiO: Integer; {port number [0 •• 7]}
configuration: Longint; {32-bit configuration }

{ word}
self Send: Integer; {nonzero if self-send }

{ enabled}
netLo: Integer; {low value of network }

{ range}
netHi: Integer; {high value of network }

{ range}
ourAddr: Longint; {our 24-bit AppleTalk }

{ address}
routerAddr: Longint; {24-bit address of }

{ last router}
numOfPHs: Integer; {max. number of }

{ protocol handlers}
numOfSkts: Integer; {max. number of static }

{ sockets}
numNBPEs: Integer; {max. concurrent NBP }

{ requests}
ntQueue: Ptr; {pointer to registered }

{ name queue}
LAlength: Integer; {length in bytes of }

{ data-link address}
linkAddr: Ptr; {data-link address }

{ returned}
zoneName: Ptr); {zone name returned}

END;

Field descriptions

ioCompletion A pointer to a completion routine that you can provide. When you
execute the PGetAppleTalkinfo function or the PSetSelfSend
function asynchronously, the .MPP driver calls your completion
routine when it completes execution of the function. Specify NIL for
this field if you do not wish to provide a completion routine. If you
execute the function synchronously, the .MPP driver ignores the
ioCompletion field.

ioResult

ioRefNum

The result of the function. When you execute the function asynchro­
nously, the function sets this field to 1 and returns a function result
of noErr as soon as the function begins execution. When the
function completes execution, it sets the ioResul t field to the
actual result code.
The .MPP driver reference number. The MPW interface fills in
this field.

2-10 AppleTalk Utilities Reference

Routines

CHAPTER 2

Apple Talk Utilities

esC ode The routine selector command code of the .MPP command
to be executed. The MPW interface fills in this field. For
the PGetAppleTalkinfo function, csCode is always
GetATalkinfo. For the PSetSelfSend function, csCode
is always setSelfSend.

This section describes the routines that you use to obtain information about Apple Talk
and the network environment, enable intranode delivery of DDP packets, obtain your
node's address and your local network router's address, and open and close the .MPP,
.ATP, and J(PP drivers.

Obtaining Information About the .MPP Driver and the Current Network Environment

You can use the PGetAppleTalkinfo function to obtain a wide variety of information
about the .MPP driver that is installed on the node that is running your application
and the network environment of that node. Among the information that the
PGetAppleTalkinfo function returns are

• the address and zone name of the node that is running your application

• the number of concurrent NBP calls that the installed .MPP driver supports

• the range of network numbers for the network, if it is an extended network

PGetAppleTalklnfo

The PGetAppleTalkinfo function returns information about the currently installed
version of the .MPP driver and the network environment.

FUNCTION PGetAppleTalkinfo (thePBptr: MPPPBPtr: async:
Boolean) : OS Err:

thePBptr A pointer to an MPP parameter block.

async A Boolean that specifies whether the function should be executed
asynchronously. Specify TRUE for asynchronous execution.

Parameter block

~ ioCompletion ProcPtr A pointer to a completion routine.
+-- ioResult OS err The result code.
~ ioRefNum Integer The .MPP driver reference number.
~ csCode Integer Always GetATalkinfo.
~ version Integer The version of the function.
+-- varsPtr Ptr A pointer to the MPP globals.

continued

AppleTalk Utilities Reference 2-11

•

CHAPTER 2

Apple Talk Utilities

~ DCEPtr Ptr A pointer to OCE for the .MPP driver.
~ portiO Integer The port number.
~ configuration Longint The configuration flags.
~ self Send Integer Nonzero if self-sending is enabled.
~ netLo Integer The low value of the network range.
~ netHi Integer The high value of the network range.
~ ourAddr Longint The local24-bit Apple Talk address.
~ routerAddr Longint The 24-bit address of the router.
~ numOfPHs Integer The maximum number of protocol handlers.
~ numOfSkts Integer The maximum number of static sockets.
~ numNBPEs Integer The maximum concurrent NBP requests.
~ ntQueue Ptr A pointer to registered names table.
H LAlength Integer The length in bytes of data-link address

(extended networks only).
~ linkAddr Ptr A pointer to data-link address buffer

(extended networks only).
~ zoneName Ptr A pointer to zone name buffer.

Field descriptions

version The version number of the PGetAppleTalkinfo function you are
calling. For version number 53 and greater of the .MPP driver, this
number is always 1.

varsPtr A pointer to the MPP global variables. This parameter is reserved
for the use of Apple Computer, Inc.; you cannot rely on the validity
of the variables pointed to by this parameter.

DCEPtr A pointer to the device control entry (OCE) data structure for the
.MPP driver. For information about the DCE, see the chapter
"Device Manager" in Inside Macintosh: Devices.

portiO The port number for the .MPP driver. The port number is always 0
unless you are requesting information for an .MPP driver being
used by a router.

configuration A32-bit longword of configuration flags. The following flags are
currently defined:

Bit

31

2-12 AppleTalk Utilities Reference

Flag

SrvAdrBit
Description

TRUE (equal to 1) if the routine that
opened the .MPP driver requested
a server node number. For more
information on server nodes, see
"Selecting a Node in the Server
Range" on page 2-7. This flag
indicates only that the server node
number was requested, not that it
was returned. Some Apple Talk data
links, ·such as EtherTalk, Token Talk,
and FDDITalk, do not honor a
request for a server node number.

continued

CHAPTER 2

Apple Talk Utilities

self Send

netLo

netHi

ourAddr

routerAddr

Bit

30

15

7

6

Flag

RouterBit

ExtendedBit

BadZoneHintBit

OneZoneBit

Description

TRUE (equal to 1) if an AppleTalk
internet router was loaded at system
startup (that is, there's a router
operating on the same node as your
application). A router can be loaded
and not active.

TRUE (equal to 1) if the node is on
an extended network. Testing this
bit is the only way to determine
whether you are on an extended
network.

TRUE (equal to 1) if the zone name
of the node you are on was not the
same as the zone name stored in
parameter RAM (sometimes
referred to as the zone name hint)
when the .MPP driver was opened.
If the zone name hint is invalid,
then the Apple Talk Manager uses
the default zone for the network.
The default zone is defined by the
network administrator.

TRUE (equal to 1) if only one zone is
assigned to your extended network
or if you are not on an extended
network. Use the ExtendedBi t
flag to determine whether you are
on an extended network.

The ability of a node to send packets to itself. This feature, called
intranode delivery, is enabled when this parameter is nonzero.
Use the PSetSelfSend function, which is described beginning
on page 2-15, to enable or disable this feature.

The low value of the range of network numbers on the local cable.
Only extended networks can have a range of network numbers. For
a nonextended network, this parameter returns the network n~ber.

The high value of the range of network numbers on the local cabJe.
Only extended networks can have a range of network numbers. For
a nonextended network, this parameter returns the network number.

The 24-bit Apple Talk network address of the node you are on. The
least significant byte of the longword is the node ID. The middle
16 bits are the network number. The most significant byte of the
longword is reserved for use by Apple Computer, Inc.

The 24-bit Apple Talk network address of the last router from which
your node heard traffic. The least significant byte of the longword
is the node ID. The middle 16 bits are the network number. The
most significant byte of the longword is reserved for use by Apple
Computer, Inc. You should always use this address when you want
to communicate with a router.

Apple Talk Utilities Reference 2-13

DESCRIPTION

CHAPTER 2

Apple Talk Utilities

numOfPHs

numOfSkts

numNBPEs

ntQueue

LAlength

linkAddr

zoneName

The maximum number of protocol handlers that this .MPP
driver allows.

J1te maximum number of statically assigned sockets that this .MPP
driver allows. Statically assigned sockets are described in Inside
AppleTalk, second edition. For more information about sockets, see
the chapter "Datagram Delivery Protocol (DDP)" in this book.

The maximum number of concurrent requests to NBP that this
.MPP driver allows.

A pointer to the first entry in the names table for the local node. You
can use NBP routines to look up and register n&mes in the names
table. The names table is described in the chapter "Name-Binding
Protocol (NBP)" in this book.

The number of bytes of the data-link address that the function
should place in the buffer pointed to by the LinkAddr parameter.
You use this parameter when you call the PGetAppleTalkinfo
function on a ~ode on an extended network. If you request more
b~es than the total number of bytes in the address, then the function
returns in the LAlength parameter the actual number of bytes it
placed in the buffer. If the address is longer than the size of the
buffer, thefl the PGetAppleTalkinfo function fills the buffer and
returns in the LAlength parameter the actual length of the address,
not th~ number of bytes returned. The function does not return an
error when the buffer is too large or too small for the address. A
value of 6 bytes for LAlength is sufficient for most purposes.

A pointer to a buffer for the data-link address returned for extended
networks only. You use the LAlength parameter to specify the
number of bytes of the address that you want placed in this buffer.
You must allocate a buffer large enough to hold the number of bytes
you specify. Specify NIL for this parameter if you do not want the
funcqon to provide a data-link address.

A pointer to a buffer into which the PGetAppleTalkinfo function
places the local node's zone name. You must allocate a buffer of at
least 33 bytes to hold this data, or you must specify NIL for the
zoneName parameter if you do not want to obtain the zone name.
This field is returned only if the node is on an extended network.

The PGetAppleTalkinfo function returns a variety of information about the current
networking environment. For example, it returns information telling you whether or not
applications running on the node can send packets to themselves or to other applica­
tions or processes on the same node. An application can call PGetAppleTalkinfo to
determine if the node on which it is running has an ID that falls within the server node
ID range. It can also obtain the address of the last router that the node communicated
with and the node's own address.

You must allocate memory for and define a parameter block of type MPPParmType and
pass that parameter block's pointer to PGetAppleTalkinfo when you call the function.
You must also allocate memory for and provide pointers to the data buffers into which

2-14 AppleTalk Utilities Reference

CHAPTER 2

AppleTalk Utilities

the PGetAppleTalkinfo function returns the data-link address and zone name.
You pass a pointer to the buffer for the returned data-link address as the value of the
linkAddr field. You pass a pointer to the buffer for the returned zone name as the
value of the zoneName parameter block field.

SPEOAL CONSIDERATIONS

If the node on which your application is running happens also to be running Apple Talk
internet router software in the background, more than one set of MPP global variables
may be in RAM. To make sure you obtain information about the .MPP driver that handles
application software, always use the PGetAppleTalkinfo function rather than the
Device Manager's PBCorttrol function. However, if you want to use the PBControl
function, you must use a device driver reference number of -10 for the .MPP driver.

The memory that you allocated for the parameter block and data buffers belongs to the
.MPP driver until the PGetAppleTalkinfo function completes execution. The memory
must be nonrelocatable. After the PGetAppleTalkinfo function completes execution,
you can reuse the memory or release it.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

If you use assembly language to call this function, you must use a device driver
reference number of -10 for the .MPP driver.

noErr
paramErr

0
-50

No error
Version number is too high

Enabling Intranode Delivery of DDP Packets

This section describes how the PSetSelfSend function allows applications and
processes running on the same node to send packets to one another.

PSetSelfSend

The PSetSelfSend function enables or disables the AppleTalk intranode
delivery service.

FUNCTION PSetSelfSend (thePBptr: MPPPBPtr; async: Boolean): OSErr;

thePBptr

a sync

A pointer to an MPP parameter block.

A Boolean that specifies whether the function should be executed
asynchronously. Specify TRUE for asynchronous execution.

Apple Talk Utilities Reference 2-15

DESCRIPTION

CHAPTER 2

Apple Talk Utilities

Parameter block

ioCompletion
ioResult
ioRefNum
csCode
newSelfFlag
oldSelfFlag

ProcPtr
OSErr
Integer

.Integer
Byte
Byte

A pointer to a completion routine.
The function result.
The .MPP driver reference number.
Always setSelfSend.
A flag that turns intranode delivery on or off.
A flag that reports the previous state of
intranode delivery, whether it was on or off.

Field descriptions

newSelfFlag

oldSelfFlag

A flag that enables or disables the intranode delivery feature. Set
this field to a nonzero number to enable the feature; set it to zero to
turn off the feature.

A flag indicating the previous state of the intranode delivery
feature. The PSetSelfSend function returns this value. A nonzero
value indicates that intranode delivery was enabled; a value of
zero indicates it was disabled.

The PSetSelfSend function turns on or off the intranode delivery feature that allows
you to send a packet to another socket on the same node. You can use this feature, for
example, to send data from an application to a print spooler that is running in the
background on the same node.

When PSetSelfSend is enabled, you can send packets to socket clients on your node
from all levels of the AppleTalk protocol stack for which there are programming
interfaces. The PSetSelfSend function returns in the oldSelfFlag field the previous
setting for the intranode delivery feature so that you can restore it later, if you want to.
Because intranode delivery is enabled on most systems running Apple Talk, you should
assume that it is turned on and take this into account when you write your code.

Note that intranode delivery applies to the user node applications. Sending packets
between a multinode application and user node applications on the same machine is
independent of the intranode delivery feature. A multinode is treated as a virtual node
distinct from the user node; both the user node and the multinode have their own
node IDs.

SPECIAL CONSIDERATIONS

Enabling or disabling the intranode delivery feature affects the entire node. For example,
an application that uses NBP to look up names and then display them to a user might
not expect to receive names of other network-visible entities within its own node; when
intranode delivery is enabled, this will occur.

ASSEMBLY-LANGUAGE INFORMATION

To execute the PSetSelfSend function from assembly language, call the_ Control
trap macro with a value of setSelfSend in the csCode field of the parameter block.

2-16 AppleTalk Utilities Reference

CHAPTER 2

Apple Talk Utilities

RESULT CODES

noErr 0 No error

Getting the Addresses of Your Node and Local Internet Router

This section describes the GetNodeAddress and GetBridgeAddress functions, which
you can use to get the address of the node that is running your application or process
and to determine if the local network to which that node is connected includes a router.
H there is a router on the local network, GetBridgeAddress will return the node ID of
that router. The router's network number is the same as that of your local network. >

:g
ar
~
;i;=

GetNodeAddress ~

DESCRIPTION

The GetNodeAddress function returns the current node ID and network number of the
node on which the calling program is running.

FUNCTION GetNodeAddress (VAR myNode,myNet: Integer): OSErr;

myNode

myNet

The node ID of the node on which your application or process is running.

The network number of the network to which the node is attached that is
running your application or process. H myNet returns 0, this means that
there is no internet router available. However, your application or process
should call GetBridgeAddress to determine if there are router-like
services available to that node.

The GetNodeAddress function returns the address of a node on a network. H the
network is not an extended network, the network number that GetNodeAddress
returns is 0. Note that even if GetNodeAddress returns a network number of 0, there
may be a router service on the local network. For example, a node can be on a network
whose network number is 0 and be connected to a remote network through Apple
Remote Access (ARA).

H the .MPP driver is not installed, the GetNodeAddress function returns a function
result of noMPPErr. To install the .MPP driver, open it using the Device Manager's
OpenDr i ver function or the MPPOpen function.

ASSEMBLY-LANGUAGE INFORMATION

This function is implemented in the MPW glue code only. It is not accessible from
assembly language.

AppleTalk Utilities Reference 2-17

21
m

RESULT CODES

CHAPTER 2

Apple Talk Utilities

noErr
noMPPErr

0
-3102

No error
The .MPP driver is not installed

GetBridgeAddress

DESCRIPTION

The GetBridgeAddress function returns the node ID of the router on your
local network.

FUNCTION GetBridgeAddress: Integer;

The GetBr idgeAddres s function returns the current node ID of an internet router in
the low-order byte of the function result. If the function result is 0, there is no router
on the local network. The router's network number is that of the local network; you can
use the GetNodeAddress function to get the network number.

ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

This function is implemented in the MPW glue code only. It is not accessible from
assembly language.

To obtain the network number of the local network, use the GetNodeAddress function
described on page 2-17.

Opening and Closing Drivers

This section describes the functions that you can use to open the .MPP and J<PP drivers,
MPPOpen and OpenXPP. The .MPP driver opens the .ATP driver. This section also
describes the function that closes the .MPP driver, MPPClose.

The MPPOpen and OpenXPP functions are included to provide a complete description of
the Apple Talk programmatic interface. Apple Computer_, Inc. recommends that you use
the Device Manager's OpenDriver function to open the .MPP and .XPP drivers. In
addition to opening a driver, the OpenDr i ver function returns the driver reference
number. If the driver is already open, the OpenDr i ver function simply returns the
driver reference number. For information on the OpenDr i ver function, see the chapter
"Device Manager" in Inside Macintosh: Devices.

The .MPP, .ATP, and JCPP drivers must always be open before you can use the Apple Talk
protocols that they implement. The .MPP driver must be open before you open the .XPP
driver. How to open the .DSP driver is described in the chapter "Apple Talk Data Stream
Protocol (ADSP)" in this book.

2-18 AppleTalk Utilities Reference

CHAPTER 2

AppleTalk Utilities

.6. WARNING

MPPOpen

DESCRIPTION

Because coresident programs might also be using Apple Talk,
you should not close the Apple Talk drivers. ~

This section also includes the I sMPPOpen and I sATPOpen functions that determine if
the .MPP and the .ATP drivers are already open.

If the .MPP driver has not already been opened, the MPPOpen function opens
the .MPP driver, initializes the driver's variables, and assigns a node ID to the
Macintosh computer.

FUNCTION MPPOpen: OSErr;

The MPPOpen function first determines whether the .MPP driver has already been
opened. If it has, MPPOpen returns an error code. If the .MPP driver is not open,
MPPOpen loads the driver into the system heap and then initializes the driver's variables
before dynamically assigning a node ID to the system. It also loads the .ATP driver
and the NBP code into the system heap.

Apple Computer, Inc. recommends that you use the Device Manager's Openeriver
function to open the .MPP driver instead of using the MPPOpen function.

SPECIAL CONSIDERATIONS

RESULT CODES

SEE ALSO

For versions of Apple Talk before Apple Talk version 56, if serial port B isn't configured
for AppleTalk or if it is already in use, the .MPP driver is not loaded and the portinUse

result code is returned.

No error noErr
portinUse
portNotCf

0
-97
-98

Driver open error code indicating that the port is in use
Driver open error code indicating that the parameter RAM is
not configured for this connection

The MPPOpen function does not return the .MPP driver reference number, as the
Opener i ver function does. For information on the Opener i ver function, see
the chapter "Device Manager" in Inside Macintosh: Devices.

AppleTalk Utilities Reference 2-19

MPPClose

DESCRIPTION

CHAPTER 2

Apple Talk Utilities

The MPPClose function closes the .MPP driver and removes from memory any data
structures associated with it.

FUNCTION MPPClose: OSErr;

In addition to closing the .MPP driver, the MPPClose function also closes and removes
from memory the .ATP driver and the NBP code if they are installed. Calling MPPClose

completely disables Apple Talk .

.A. WARNING

Apple Computer, Inc. strongly recommends that you not use this call
because other coresident applications could also be using Apple Talk. &

Calling MPPClose completely disables Apple Talk.

SPEOAL CONSIDERATIONS

RESULT CODES

If the current connection is Local Talk, MPPClose also returns the use of port B to the
serial driver.

no Err 0 No error

IsMPPOpen

DESCRIPTION

The I sMPPOpen function determines and reports whether or not the .MPP driver is
loaded and running. ·

FUNCTION IsMPPOpen: Boolean;

If the .MPP driver is open, the IsMPPOpen function returns a value of TRUE; if the
.MPP driver is not open, it returns FALSE. If you want to obtain a node ID in the server
range, you can request the assignment only when you first open the .MPP driver. In
this case, you can use the IsMPPOpen function to determine if the .MPP driver has
already been opened.

2-20 AppleTalk Utilities Reference

RESULT CODES

SEE ALSO

lsATPOpen

DESCRIPTION

RESULT CODES

SEE ALSO

CHAPTER 2

AppleTalk Utilities

noErr 0 No error

You can also use the Device Manager's OpenDriver function to ensure that the .MPP
driver is open. If it is not, Open Driver will open the .MPP driver and return the driver
reference number. If the .MPP driver is already open, the OpenDr i ver function will
return the reference number without performing additional processing, and therefore
without incurring much additional overhead.

The IsATPOpen function determines and reports whether or not the .ATP driver is
loaded and running.

FUNCTION IsATPOpen: Boolean;

If the .ATP driver is open, the IsATPOpen function returns a value of TRUE; if the
.ATP driver is not open, it returns FALSE. Because the .MPP driver opens the .ATP
driver, this function is seldom used. It is included to provide a complete description
of the Apple Talk programmatic interface.

noErr 0 No error

To open the .ATP driver, you open the .MPP driver. You can use the Device Manager's
OpenDr i ver function to ensure that the .MPP driver is open. If the .MPP driver is open,
then the .ATP driver is also open. If the .MPP and .ATP drivers are already open, the
OpenDri ver function will return the .MPP driver reference number without performing
additional processing, and therefore without incurring much additional overhead.

For information on the Ope nor i ver function, see the chapter 11Device Manager11 in
Inside Macintosh: Devices.

AppleTalk Utilities Reference 2-21

)>
"C
"C

~ m
~
c e:
:t.
CD
en

OpenXPP

DESCRIPTION

CHAPTER 2

Apple Talk Utilities

The OpenXPP function opens the .XPP driver and returns the driver reference number.

FUNCTION OpenXPP (VAR xppRefnum: Integer): OSErr;

xppRefnum The .XPP driver reference number, which the function returns.

Before you can use the protocol interfaces (ZIP, ASP, and AFP) that are implemented
by the .XPP driver, you must open the driver. You can use the OpenXPP function to open
the .XPP driver, or you can call the Device Manager's OpenDriver function. In either
case, before you open the .XPP driver, you must ensure that the .MPP driver and the
.ATP driver are open.

Apple Computer, Inc. recommends that you use the Device Manager's OpenDriver
function to open the .XPP driver instead of using the OpenXPP function. The OpenXPP
function is included to provide a complete description of the Apple Talk programmatic
interface.

SPEOAL CONSIDERATIONS

RESULT CODES

SEE ALSO

2-22

Under most circumstances, you should not close the .XPP driver because other applica­
tions and processes could be using it. However, if you must close the .XPP driver, you
can use the Device Manager's CloseDriver function. The CloseDriver function
should be used only by system-level applications.

noErr
portinUse

0
-97

No error
Either Apple Talk is not open or the Apple Talk port is in use by
another driver

The OpenXPP function does not return the .MPP driver reference number, as does the
OpenDriver function. For information on the Openoriver and CloseDriver
functions, see the chapter "Device Manager" in Inside Macintosh: Devices.

AppleTalk Utilities Reference

CHAPTER 2

AppleTalk Utilities

Summary of Apple Talk Utilities

Pascal Summary

Constants

CONST
setSelfSend
GetATalkinfo

Data Types

256;

258;

{allow intranode delivery, csCode}
{get AppleTalk information, csCode}

MPP Parameter Block for PSetSelfSend and PGetAppleTalklnfo

rYPE MPPParmType = (••• SetSelfSendParm,
GetAppleTalkinfoParm •••);

TYPE MPPParamBlbck
PACKED R!CORD

qLink:
qTfpe:
ioTrap:
ioCmdAddr:
ioCompletion:
ioResult:
ioNamePtr:
ioVRefNum:
ioRefNum:
csCode:

CASE MPPParmType OF
SetSelfSendParm:

(riewSelfFlag:
oldSelfFlag:

GetAppleTalkinfoParm:
(version:
varsPtr:
DCEPtr:
portiO:

QElemPtr;
Integer;
Integer;
Ptr;
ProcPtr;
OSErr;
StringPtr;
Integer;
Integer;
Integer;

Byte;
Byte);

Integer;
Ptr;
Ptr;
Integer;

Summary of Apple Talk Utilities

{reserved}
{reserved}
{reserved}
{reserved}
{completion routine}
{result code}
{reserved}
{reserved}
{driver reference number}
{primary command code}

{self-send toggle flag}
{previous self-send state}

{requested info version}
{pointer to MPP variables}
{pointer to MPP DCE}
{port number [0 •• 7]}

2-23

END;

CHAPTER 2

Apple Talk Utilities

configuration:
self Send:
netLo:
netHi:
ourAddr:
routerAddr:
numOfPHs:

numOfSkts:
numNBPEs:
ntQueue:
LAlength:
linkAddr:
zoneName:

MPPPBPtr = AMPPParamBlock;

Routines

Longint;
Integer;
Integer;
Integer;
Longint;
Longint;
Integer;

Integer;
Integer;
Ptr;
Integer;
Ptr;
Ptr);

{32-bit configuration word}
{nonzero if self-send enabled}
{low value of network range}
{high value of network range}
{our 24-bit AppleTalk address}
{24-bit address of last router}
{maximum number of protocol }
{ handlers}
{maximum number of static sockets}
{maximum concurrent NBP requests}
{pointer to registered name queue}
{length in bytes of data-link addr}
{data-link address returned}
{zone name returned}

Obtaining Information About the .MPP Driver and the Current Network Environment

FUNCTION PGetAppleTalkinfo (thePBptr: MPPPBPtr; async: Boolean): OSErr;

Enabling Intranode Delivery of DDP Packets

FUNCTION PSetSelfSend (thePBptr: MPPPBPtr; async: Boolean): OSErr;

Getting the Addresses of Your Node and Local Internet Router

FUNCTION GetNodeAddress (VAR myNode: Integer; VAR myNet: Integer): OSErr;

FUNCTION GetBridgeAddress: Integer;

Opening and Oosing Drivers

FUNCTION MPPOpen:

FUNCTION MPPClose:

FUNCTION IsMPPOpen:

FUNCTION IsATPOpen:

FUNCTION OpenXPP

OSErr;

OSErr;

Boolean;

Boolean;

(VAR xppRefnum: Integer): OSErr;

2-24 Summary of Apple Talk Utilities

CHAPTER 2

Apple Talk Utilities

C Summary

Constants

/*csCodes/
enum {

setSelfSend
GetATalkinfo

Data Types

256,

258

/*intranode packet delivery*/
/*get AppleTalk information*/

MPP Parameter Block for PSetSelfSend and PGetAppleTalklnfo

union ParamBlockRec {
MPPparms MPP:

}:

typedef MPPParamBlock *MPPPBPtr:

#define.MPPATPHeader \
QElem *qLink:
short qType;
short
Ptr
ProcPtr
OSErr
long
short
short
short

typedef struct {
MPPATPHeader

ioTrap;
ioCmdAddr;
ioCompletion:
ioResult;
userData:
reqTID;
ioRefNum:
csCode;

char newSelfFlag;
char oldSelfFlag;

}SetSelfparms;

typedef struct {
MPPATPHeader

/*general MPP parms*/

/*reserved*/\
/*reserved*/\
/*reserved*/\
/*reserved*/\
/*completion routine*/\
/*result code*/\
/*reserved*/\
/*reserved*/\
/*driver reference number*/\
/*call command code*/

/*self-send toggle flag*/
/*previous self-send state*/

short
Ptr

version:
varsPtr:

/*requested info version*/
/*pointer to well-known MPP vars*/

Summary of Apple Talk Utilities

•

2-25

CHAPTER 2

Apple Talk Utilities

Ptr DCEPtr;
short portiO;
long configuration;
short self Send;
short netLo;
short netHi;
long ourAdd;
long routerAddr;
short numOfPHs;
short numOfSkts;
short numNBPEs;
Ptr nTQueue;
short LAlength;
Ptr linkAddr;
Ptr zoneName;

}GetAppleTalkinfoParm;

typedef union {
MPPparms
SetSelfparms
GetAppleTalkinfoParm

}MPPParamBlock;

/*pointer to MPP DCE*/
/*port number [0 •• 7]*/
/*32-bit configuration word*/
/*nonzero if self-send enabled*/
/*low value of network range*/
/*high value of network range*/
/*our 24-bit AppleTalk address*/
/*24-bit address of last router*/
/*maximum number of protocol handlers*/
/*maximum number of static sockets*/
/*maximum number of concurrent NBP requests*/
/*pointer to registered name queue*/
/*length in bytes· of data-link addr*/
/*data-link address returned*/
/*zone name returned*/

MPP;
SETSELF;
GAIINFO;

/*general MPP parms*/

typedef MPPParamBlock *MPPPBPtr;

Routines

Obtaining Information About the .MPP Driver and the Current Network Environment

pascal OSErr PGetAppleTalkinfo
(MPPPBPtr thePBptr,Boolean async);

Enabling Intranode Delivery of DDP Packets

pascal OSErr PSetSelfSend (MPPPBPtr thePBptr,Boolean async);

Getting the Addresses of Your Node and Local Internet Router

pascal OSErr GetNodeAddress
(short *myNode,short *myNet);

pascal short GetBridgeAddress
(void);

2-26 Summary of Apple Talk Utilities

CHAPTER 2

Apple Talk Utilities

Opening and Closing Drivers

pascal OSErr MPPOpen

pascal OSErr MPPClose

pascal Boolean IsMPPOpen

pascal Boolean IsATPOpen

pascal OSErr OpenXPP

(void) 1

(void) 1

(void);

(void);

(short *xppRefnum);

Assembly-Language Summary

Constants

Unit Number for the .MPP driver

mppUnitNum
mppRefNum

Command Codes

EQU
EQU

9

-10

1MPP unit number
;MPP driver reference number

setSelfSend
GetATalkinfo

EQU
EQU

256

258

;set to allow writes to self, control call
;get AppleTalk information, control call

Zone and Router Bits

BadZoneHintBit EQU 7 ;1, if zone hint was found invalid when the
; .MPP driver was opened

RouterBit EQU 30 ;1, if this is a router port

MPP Queue Element Standard Structure

;arguments passed in the CSParam area
newSelfFlag EQU $1C 1offset, new value for self-send flag
oldSelfFlag EQU $1D ;old value of self-send flag

GetAppleTalklnfo

GAIVersion EQU 1 ;highest version for GAI params

Summary of Apple Talk Utilities 2-27

CHAPTER 2

Apple Talk Utilities

Data Structures

MPP Parameter Block Common Fields for PGetAppleTalklnfo and PSetSelfSend

0 qLink long reserved
4 qType word reserved
6 ioTrap word reserved
8 ioCmdAddr long reserved

12 ioCompletion long address of completion routine
16 ioResul t word result code
18 ioNamePtr long reserved
22 ioVRefNum word reserved
24 ioRefNum word driver reference number

GetAppleTalklnfo Parameter Variant

16 ioResul t word result code
26 csCode word command code; always GetAppleTalkinfo
28 version word version of function
30 varsPtr long pointer to the .MPP driver variables
34 DCEPtr long pointer to DCE for the .MPP driver
38 portiO word port number
40 configuration long configuration flags
44 self Send word nonzero if self-send is enabled
46 netLo word low value of network range
48 netHi word high value of network range
50 ourAddr long local24-bit Apple Talk address
54 routerAddr long 24-bit address of router
58 numOfPHs word maximum number of protocol handlers
60 numOfSkts word maximum number of static sockets
62 numNBPEs word maximum number of concurrent NBP requests
64 ntQueue long pointer to registered names table
68 LAlength word length in bytes of data-link address (extended networks only)
70 linkAddr long pointer to data-link address buffer (extended networks only)
74 zoneName long pointer to zone name buffer

PSetSelfSend Parameter Variant

26
28
29

csCode
newSelfFlag
oldSelfFlag

Result Codes

noErr
paramErr
portinUse
portNotCf

noMPPErr

0
-50
-97
-98

-3102

word
byte
byte

No error

always setSelfSend
flag that turns intranode delivery on or off
flag that reports the previous state of intranode delivery, whether
it was on or off

Version number is too high
Driver open error code indicating that the port is in use
Driver open error code indicating that the parameter RAM is not configured
for this connection
The .MPP driver is not installed

2-28 Summary of Apple Talk Utilities

CHAPTER 3

Name-Binding Protocol
(NBP)

Contents

About NBP 3-3
Using NBP 3-6

Registering Your Entity With NBP 3-7
Setting Up a Names Table Entry 3-8
Registering a Names Table Entry 3-9

Handling Names Table Entry Requests 3-12
Preparing an Entity Name 3-12
Looking Up a Name 3-13
Extracting a Name From a List of Returned Names 3-16
Confirming a Name 3-17
Removing an Entry From the Names Table 3-18
Canceling a Request 3-19

NBP Reference 3-20
Data Structures 3-20

Address Block Record 3-20
Names Table Entry Record 3-21
Entity Name Record 3-21
The MPP Parameter Block for NBP 3-22

Routines 3-23
Registering an Entity 3-24
Handling Name and Address Requests 3-28

Summary of NBP 3-40
PascalSummary 3-40

Constants 3-40
Data Types 3-40
Routines 3-42

Contents 3-1

CHAPTER 3

C Summary 3-42
Constants 3-42
Data Types 3-43
Routines 3-45

Assembly-Language Summary 3-46
Constants 3-46
Data Structures 3-47

Result Codes 3-48

3-2 Contents

CHAPTER 3

Name-Binding Protocol (NBP)

This chapter describes the Name-Binding Protocol (NBP) that you can use to make your
process or application available to other processes or applications across the network.
This chapter also describes how you can use NBP to obtain the addresses of other
processes and applications on the network.

This chapter uses the term entity to refer to processes and applications that run on an
Apple Talk network. You use NBP in conjunction with another protocol that allows you
to send and receive data. For example, you can register your entity with NBP and then
use a transport protocol such as ADSP to communicate with other entities; ADSP opens
a socket for your entity to use and assigns that socket number to the entity. Your entity
registers an NBP name in conjunction with this socket number.

You should read this chapter if you want to

• register an entity with NBP to make it available for other network entities to contact

• obtain another entity's address so that you can contact it

• obtain the NBP names and internet socket addresses of all registered entities whose
NBP names match your partial specified name

For an overview of the Name-Binding Protocol and how it fits within the Apple Talk
protocol stack, read the chapter "Introduction to Apple Talk" in this book, which also
introduces and defines some of the terminology used in this chapter. For a description
of the Name-Binding Protocol specification, see Inside AppleTalk, second edition.

AboutNBP

NBP allows you to bind a name to the internal storage address for your entity and
register this mapping so that other entities can look it up. Applications can display NBP
names to users and use addresses internally to locate entiti~s. When you register your
entity's name and address pair, NBP validates its uniqueness.

An entity name consists of three fields: object, type, and zone. The value for each of
these fields can be an alphanumeric string of up to 31 characters. The entity name is not
case sensitive. You specify the value for the object and type fields.

The object field typically identifies the user of the system, or the system itself, in the case
of a server. Applications commonly set this value to the owner name, which the user
specifies through the Sharing Setup control panel.

The type field generally identifies the type of service that the entity provides, for
example, "Mailbox" for an electronic mailbox on a server. Entities of the same type can
find one another and identify potential partners by looking up addresses based on the
type portion of the name alone.

The zone field identifies the zone to which the node belongs. You do not specify this
value; when you register your process, you specify an asterisk (*) for this field. NBP
interprets the asterisk to mean the current zone or no zone, in the case of a simple
network configuration not divided into zones.

About NBP 3-3

z
D)

3
(I)

I

tD
5'
a. s·
co
"tJ

I
z
tD
.]!

3-4

CHAPTER 3

Name-Binding Protocol (NBP)

The mapping of names to addresses that NBP maintains is important for Apple Talk
because the addressing numbers that Apple Talk uses are not fixed. AppleTalk assigns
an address dynamically to a node when the node first joins the network and whenever
the node is rebooted. Because of this, the address of a node on an Apple Talk network
c~ change from time to time. Although a network number corresponds to a particular
wire and the network number portion of an address is relatively stable, the socket
number that is assigned to an entity is usually randomly generated. (For an overview
of AppleTalk addresses and the addressing scheme, see the chapter "Introduction to
Apple Talk" in this book.) Although NBP is not a transport protocol, that is, you do not
use it to send and receive data, NBP is a client ofDDP. Figure 3-1 shows NBP and its
underlying protocols.

Figure 3·1 The Name-Binding Protocol and the underlying Apple Talk protocols

NBP

DDP

LAP Manager I

DJ
Port

NBP provides network entities with access to current addresses of other entities. The
name part of an NBP mapping is also important in identifying and locating an entity on
the network. The NBP entity name is different from the application name. An application
can display entity names to users and look up addresses based on names.

For example, an entity name can include a portion that identifies that entity type. An
application can request NBP to return the names of all of the registered entities of a
certain type, such as a particular type of game. The application can then display those
entity names to a user to allow the user to select a partner. When the user selects
an entity name, the application can request NBP to return the address that is mapped to
the entity name.

About NBP

CHAPTER 3

Name-Binding Protocol (NBP)

When you register your entity with NBP, it is made visible to other entities throughout
the network. A network entity that is registered with NBP is referred to as a network­
visible entity. A mail server application is an example of a network-visible entity. When
a mail server is registered with NBP, workstation clients with mailboxes can access the
mail server program to send and receive mail.

A server application might call NBP to register itself at initialization time so that its
clients can access the server when ~ey come online. However, a game application
might register itself when a user launches it so that partner applications of the same
type can locate it, then remove its entry from the NBP names directory when the user
quits the application.

You use the NBP routines to register your entity so that other entities can find it and
to retrieve the addresses of other entities with which you want to communicate. You
specify an entity name that adheres to a defined format and register that name with
NBP in conjunction with the socket number that your entity uses. NBP then makes your
entity's complete address available to other entities. To retrieve the address of another
entity that is registered with NBP, you supply that entity's NBP name. You can retrieve
the addresses of more than one entity by using wildcards instead of a fully qualified
NBPname.

Although you register your entity's NBP name in association with the socket that it uses,
NBP maintains an entry that contains your entity's complete internet socket address. The
internet socket address, also called the internet address, includes the socket number, the
node ID, and the network number. All network-visible entities on an internet are socket
clients, which means that each one is associated with a socket. Each socket has a unique
number, and every entity has a unique internet socket address that identifies it. The
socket number part of the internet address ensures that data intended for an entity is
delivered to that particular entity.

The link-access protocol dynamically assigns a unique node ID to each node when it
joins the network. When the user reboots the system, sometimes the same node ID is
available and sometimes a new node ID is assigned. The network number is the number
of the network to which the node is directly connected, and it remains the same as
long as the node is physically connected to that network. NBP fills in the node ID
and the network number in a names table entry. You don't supply these parts of the
internet address.

NBP maintains a names table in each node that contains the name and internet address
of each registered entity in that node. Each name and address pair is called a tuple.
When you register your process with NBP, you provide a names table entry. NBP builds
its names table on a node from the entries that entities supply.

The NBP routines include a procedure, NPBSetNTE, that you can use to fill in a names
table entry that is in the format that NBP expects. The NPBSetNTE procedure takes the
name and the socket ID that you specify and builds a names table entry in the buffer that
you provide. (For information on using NPBSetNTE, see "Registering Your Entity With
NBP" beginning on page 3-7.)

About NBP 3-5

z
I»
3
<D .
OJ :r
a.
:r

(Q

"'0

I
z
OJ
.:g

CHAPTER 3

Name-Binding Protocol (NBP)

To form a names table for a node, NBP connects together as a linked list the names table
entries of all the registered entities on that node. The collection of names tables on all the
nodes in an internet is known as the NBP names directory. Figure 3-2 shows a number
of nodes on a network, each with its own names table; each names table contains an
entry for each registered entity on its node.

Figure 3-2 The NBP names table on each node, collectively forming an NBP names directory

NBPnames NBPnames NBP names
table table table
--------· --------· --------· -------- -------- --------
--------· --------· --------· ----·-·- -------- --------------- ------· ---------------· ------·-· --------· ------· ------· -------

D

Whenever a node receives an NBP lookup request, NBP searches through its names table
for a match and, if it finds a match, returns the information to the requester.

UsingNBP

3-6

This section describes how you can use NBP to

• set up a names table entry for your entity and register your entity's name and address
pair with NBP for other entities to access

• look up an address based on a name

• confirm a name and address that you already have

• remove your entity's name and address from the NBP names directory

• cancel a pending NBP request

The .MPP driver implements the NBP protocol. Your application should check to ensure
that the .MPP driver is already loaded on the system running your application before it
attempts to call NBP. If the driver is not already open, your application should open it by

Using NBP

CHAPTER 3

Name-Binding Protocol (NBP)

calling the Device Manager's OpenDriver function. The following example shows how
to open the .MPP driver.

BEGIN

myErr .- OpenDriver('.MPP', mppRefNum);

IF myErr <> noErr THEN DoErr(myErr);

{open .MPP driver}

{check and handle }

{ error}

For more information on determining if the .MPP driver is open and opening the
Apple Talk drivers, see the chapter ''Apple Talk Utilities" in this book.

Your application can have multiple concurrent active NBP requests. For example,
your application can perform a number of PRegisterName, PLookupName and
PConfirmName requests concurrently. The maximum number of concurrent requests
is machine dependent. You can use the PGetAppleTalkinfo function to determine
the maximum number of concurrent NBP requests supported by the .MPP driver
on the node running your application. For information about the PGetAppleTalkinfo
function, see the chapter "Apple Talk Utilities" in this book.

All of the NBP functions use parameter blocks to hold input and output values. Whether
you execute a function synchronously or asynchronously, you must not alter the contents
of the parameter block until after the NBP function that uses it completes the operation.
In effect, the parameter block belongs to the NBP function until the function completes
execution. (For a discussion of synchronous and asynchronous execution, see the chapter
"Introduction to Apple Talk" in this book.) When the operation completes, you can either
reuse the memory allocated for the parameter block or release it.

In addition to the parameter block used for the function, the memory that you allocate
for any records and buffers whose pointers you pass to NBP through a parameter block
field must also be nonrelocatable until the function completes execution. When the
operation completes, you can reuse these data structures or release the memory that you
allocated for them.

To allocate nonrelocatable memory, you can use the Memory Manager's NewPtr or
NewPtrSys function. If you use NewHandle instead, you need to lock the memory. For
more information about these functions, see Inside Macintosh: Memory.

Registering Your Entity With NBP
You register your entity with NBP to make its services available to other entities through­
out the network. Once the entity is registered, other entities can look up its name and
address pair based on its name or a part of that name.

Your process can register itself with several names all associated with the same socket.

To register itself, your entity calls two NBP routines:

• the set names table entry {NBPSetNTE) procedure, which prepares the names
table entry

• the register name (PRegisterName) function, which provides NBP with a pointer to
the names table entry so that NBP can register the entry on the node

Using NBP 3-7

z
I»
3
<D

I m s·
a. s·

(Q ,
a
~
z m
.3!

3-8

CHAPTER 3

Name-Binding Protocol (NBP)

Setting Up a Names Table Entry

The NBPSetNTE procedure creates a names table entry in the format that Figure 3-4 on
page 3-9 shows. You associate an NBP entity name with the socket number assigned to
your entity.

When you create the names table entry, you provide NBP with the socket number that
your entity uses. This is the socket ID that was assigned to your entity when it opened
a socket.

Figure 3-3 shows a complete internet socket address belonging to an entity and the entity
name that is associated with the address.

Figure3-3 The internet socket address and entity name of an application

Internet socket address

~ ·~NetWork,,n:umber: , ,,."jj~k~N~~~jtl: 1. ;~:;, ,
~ ~t---~_.....__~~

Entity name

Along with the individual fields of the name and the socket number, you pass
NBPSetNTE a pointer to a buffer that is 108 bytes long. You create a record of type
NamesTableEntry as the buffer to be used for the names table entry. When you
register your entity, NBP uses the buffer that you pass it as the actual names table entry
for that entity; it does not make a copy of the buffer. NBP links the NamesTableEntry
record that you provide to other names table entries on the node to create a names
table for that node. For this reason, memory that you allocate for the buffer must be
nonrelocatable.

Figure 3-4 shows the structure of the names table entry record.

Notice that the first field in the NamesTableEntry record is a pointer to the next entry
in the linked list. NBP maintains the value of this field. You do not supply this value.
However, you can get a pointer to the first entry in the names table on the node
where the entity is running by calling the PGetAppleTalkinfo function. For informa­
tion about the PGetAppleTalkinfo function, see the chapter "Apple Talk Utilities" in
this book.

Using NBP

CHAPTER 3

Name-Binding Protocol (NBP)

Figure3-4 Names table entry record format

.----------·--··-----···

Internet address

Name of network­
visible entity

-

-
-

.,
i.

'1
i.

'?

Pointer to next entry

Network number

NodeiD
Socket number

Reserved
Length of object name

Object name (ASCII)

Length of type name

Type name (ASCII)

Length of zone name

Zone name (ASCII)

Registering a Names Table Entry

Bytes

4

4

1 Variable
J. length

1 Variable
J. length

Variable
length 1

After you create the names table entry using NBPSetNTE, you register it by calling the
PRegisterNa.me function. When you call PRegisterNa.me, NBP fills in the network
number and node ID for the names table entry; because these values are the same for all
entities on the node, you do not need to supply them.

Before you call the PRegisterNa.me function, you must supply values for the function's
parameter block input fields. These fields are interval, count, enti tyPtr, and
verifyFl~g. If you execute the function asynchronously, you must also supply a value
for the ioCompletion field. After you call the PRegisterNa.me function, you must not
alter the contents of the parameter block until the function completes execution, and you
must not modify or manipulate the names table entry until you remove it from the NBP
name and ~ddress pair directory.

You set the parameter block's entityPtr field to the names table entry's pointer. For
released software, you should always set the verifyFlag field to a nonzero number.
This directs NBP to check throughout the network to determine that the name you want
to register is unique. Ensuring that a name is unique avoids the occurrence of problems
that can arise when two entities are registered with the same name. If the entity name is
already registered for another entity, the PRegisterNa.me function result indicates that
the name is a duplicate by returning a function result of nbpDuplicate.

Using NBP 3-9

• z
ll)

3
CD

I

OJ
:r a.
:r
co
""0 a
0
0
Q.

z
OJ
~

CHAPTER 3

Name-Binding Protocol (NBP)

You can specify how many times NBP should attempt to verify the name's uniqueness
by assigning a value to the count field. You can control how long NJJP waits between
each check by assigning a value to the interv~l field.

The interval and count parameters are both 1 byte long, which limits them to a value
within the range of 0 to 255 ($00-$FF). However, you should not specify a value of 0
(which is equivalent to 256) for the retransmit interval; the task will never be executed if
you do.

You measure intervals in 8-tick units. You can use this equation to determine how long in
ticks a function will take to complete:

TimeToCompleteinTicks := count * interval * 8;

A value of 7 for the interval field is usually sufficient (7 x 8 =56 ticks equals approxi­
mately 1 second). A retry count of 5 is usually sufficient. However, o~ a large network,
base the interval value on the speed of the network. Base the retry count on how likely it
is for a particular kind of device to catch or miss the NBP lookup request and how many
devices of this kind are on the network.

Some kinds of devices are more likely to receive the NBP lookup request than are others.
For example, the Apple Talk Image Writer has a dedicated processor on the LocalTalk
option card to handle Apple Talk processing. A dedicated processor is likely to be
available to receive an NBP lookup request, so the count for a device of this type can be
relatively low. However, most Macintosh computers and LaserWriter printers qepend on
the system's shared processor to handle all processing, so the count for these kipds of
devices should be higher. On a network with slow connections, for example, one that
uses a modem bridge, you should increase the interval.

You can use different values for different types of devices. You can store these values in a
preferences resource so that you can easily change them to correspond to changes in the
network. For example, you could include values such as the following for these devices:

Device

AppleShare

Apple Talk Image Writer

Laser Writer

Interval

$07

$07

$0B

Count

$05

$02

$05

You pass to the PRegisterName function a pointer to a parameter block and a Boolean
value indicating if the function is to be executed asynchronously or synchronously. If
you set the async Boolean parameter to TRUE, you must either provide a completion
routine or set the ioCompletion field value to NIL, in which case, your process must
poll the parameter block's ioResult field to determine when the function completes
the operation. For a discussion of synchronous and asynchronous execution, see the
chapter "Introduction to Apple Talk" in this book.

Listing 3-1 shows a segment of code that registers an application with NBP. First the
code allocates nonrelocatable memory for the names table entry. Then the code calls
NBPSetNTE to set up the names table entry in the format that the PRegisterN~Jil~
function expects.

3-10 Using NBP

-
CHAPTER 3

Name-Binding Protocol (NBP)

Next, the code assigns values to the input fields of the parameter block to be used for
the P~egister~ame function. The code doesn't assign values to the ioRefNum and
cscode fields be~use these field values are filled in by the PRegisterName function's
glue ~ode in the MPW interface.

Notice that the code assigns to the entityPtr field the ntePtr pointer to the buffer
that the code passed to the NBPSetNTE function. After it sets up the parameter block,
the code makes a synchronous call to the fRegisterName function to register the
names table entry. If the PRegisterName function returns an error, the code releases
the nonrelocatable memory that it allocated for the nam~s table entry.

Listing 3-1 Registering an application with NBP

FUNCTION My~egisterName (entityObject: Str32; entityType: Str32;
soc~et: Integer; VAR ntePtr: Ptr): OSErr;

VAR
mppPB: MPPParamBlock;
result: OSErr;

BEGIN
ntePtr := NewPtrSys(sizeof(NamesTableEntry));
IF ntePtr = NIL THEN

BEGIN
result := MemError; {return memory error}
ntePtr := NIL;

END
ELSE

BEGIN
{Build the names table entity.}
NBPSetNTE(ntePtr, entityObject, entityType, '*', socket);
WITH mppPB DO

BEGIN
interval := $OF;
count := $03;
entityPtr := ntePtr;
verifyFlag := Byte(TRUE);

{reasonable values for the }
{ interval and retry count}
{pointer to NamesTableEntry}
{ensure that name is unique}

END;
result := PRegisterName(@mppPB, FALSE);{register the name}
IF (result <> noErr) THEN

END;

BEGIN
DisposPtr(ntePtr);
ntePtr := NIL;

END;

MyRegisterName .- result;
END;

Using NBP

{if error, release memory}

3-11

z
m
3
<p
ttl s·
c. s·
co
"'0 a
[

- ---...... --
CHAPTER 3

Name-Binding Protocol (NBP)

Handling Names Table Entry Requests
In addition to providing services that let you register an entity name and socket address
for your process, NBP lets you look up addresses of other entities based on a name,
confirm that a process whose entity name and address you already have is still registered
with NBP and that the address is correct, remove your process's name and address from
the names table when you no longer want to make the entity available, and cancel a
pending request. You use

• the NBPSetEntity procedure to prepare an entity name in the format required by
the NBP functions

• the PLookupName function to retrieve another entity's address based on the entity's
complete NBP name, or to retrieve the addresses of multiple entities that match an
NBP name that includes wildcards

• the NBPExtract function to read a retrieved address from the return buffer

• the PConf irmName function to verify a name and address

• the PRemoveName function to remove your process's name and address from the
NBP names directory

• the PKillNBP function to cancel a request to register, confirm, or look up a names
table entry if the function was called asynchronously and it has not already been
executed

Preparing an Entity Name

To prepare an entity name using NBPSetEntity, you allocate a buffer that is at least
99 bytes long. You can allocate a record of type Enti tyName for this buffer. You pass
NBPSetEnti ty a pointer to the buffer along with the three parts of the name (object,
type, and zone), and NBPSetEnti ty writes the entity name to the buffer in the
format that the PLookupName, PConfirmName, and PRemoveName functions require.
Figure 3-5 shows the format of the entity name record.

Figure 3·5

7

"

1

"
1

3-12 Using NBP

Entity name record format

Length of object name

Object name (ASCII) ~
J.

Length of type name

Type name (ASCII) 1
J.

Length of zone name

Zone name (ASCII) {

Bytes

1

Variable
length

Variable
length

Variable
length

CHAPTER 3

Name-Binding Protocol (NBP)

For the PConfirmName and PRemoveName functions, you must specify explicit values
for the nbpObject, nbpType, and nbpZone parameters. However, you can specify
wildcards for these parameters for PLookupName.

Looking Up a Name

You can use the PLookupName function to look up the address of a particular entity
whose NBP name you know. You can also use the PLookupName function to find the
addresses of more than one entity whose NBP names match a partial name that includes
wildcards.

If you want to retrieve the address of a particular entity, you assign to the enti tyPtr
field of the parameter block a pointer to a fully qualified entity name that you provided
using NBPSetEnti ty. You create a buffer to hold the name and address that
PLookupName returns and set the parameter block's return buffer pointer (retBuffPtr)
field to this buffer's pointer. Because the data is packed and each tuple takes a maximum
of 104 bytes, to look up a particular name you need to set the return buffer size
(retBuffSize) field to the buffer size of 104 bytes. Figure 3-6 shows the format of
the record for a tuple that PLookupName returns.

Flgure3-6 Tuple returned by the PLookupName function

lnlemet address -[

Name of network­
visible entity

'1

7

'1

Network number

NodeiD
Socket number

Reserved
Length of object name

Object name (ASCII)

Length of type name

Type name (ASCII)

Length of zone name

Zone name (ASCII)

'1
~

'1
J.

1

Bytes

2

Variable
length

Variable
length

Variable
length

If you want only one name and address pair returned, you set the maximum number of
matches (maxToGet) field to 1. When you call the function asynchronously, you must
assign to the ioCompletion field a pointer to your completion routine or set this field
to NIL. For more information about executing routines synchronously or asynchro­
nously, see the chapter "Introduction to Apple Talk" in this book.

Using NBP 3-13

z

~
I m s·
a. s·

(Q

"'0

I
z m
.:B

CHAPTER 3

Name-Binding Protocol (NBP)

If you want to obtain the addresses of other instances of the same type of entity that are
running on other nodes in the network, you can look up the addresses of these entities
by specifying wildcards. In this case, you specify a type field value and wildcards for the
object and zone fields.

Table 3-1 shows the wildcards that you can use to control the kind of matches that you
want NBP to return.

Table3-1

Character

=

*

NBP wildcards

Meaning

All possible values. You can use the equal sign(=) alone instead of
specifying a name in the object or type field.

Any or no characters in this position. You can use the double tilde(;::::) to
obtain matches for object or type fields. For example, pa;::l matches pal,
paul, paper ball, and so forth. You can use only one double tilde in any
string. Press Option-X to type the double tilde character on a Macintosh
keyboard. If you use the double tilde alone, it has the same meaning as
the equal sign(=).

NOTE Any node not running Apple Talk Phase 2 drivers will not recognize this character.

This zone. You can use the asterisk (*) in place of the name of the zone to
which this node belongs.

For example, if you want to retrieve the names and addresses of all the mailboxes in the
same zone as one in which your process is running, you can set the entity name object
field to the equal sign (=), the type field to Mailbox, and the zone field to the asterisk (*).
The PLookupName function will return the entity names and internet addresses of all
mailboxes in that zone excluding your own entity's name and address.

You can specify how thorough the lookup should be by defining the number of times
that NBP should broadcast the lookup packets and the time interval between these
retries. To do this, you assign values to the parameter block's count and interval
fields. See the discussion on how to determine these values in the section "Registering a
Names Table Entry" beginning on page 3-9.

You must also create a buffer large enough to hold all of the tuples for the matches that
NBP returns. (See Listing 3-3 on page 3-17.) You assign the buffer's pointer to the
parameter block's retBuffPtr field and the buffer's size in bytes to the retBuffSize
field. Allow 104 bytes for each match. You set the maximum number of matches for NBP
to return as the value of the maxToGet field.

The PLookupName function keeps track of the number of matches it writes to the return
buffer each time it receives a returned packet containing one or more matches, and it
updates the number of matches returned (numGotten) field after it returns each match.
Because PLookupName maintains numGotten, you can start reading the names and
addresses in the buffer and storing them or displaying them for the user before the
function completes execution.

3-14 Using NBP

CHAPTER 3

Name-Binding Protocol (NBP)

A single lookup request or retry can return more than one match in a reply packet. When
this happens, the PLookupName function will return as many of the matches that the
packet contains as will fit in the buffer. In cases such as this, you will find that the
number of tuples that PLookupName writes to the return buffer may exceed the
maximum number of matches to be returned as specified by maxToGet. When this
occurs you can assume that there may be additional matches that did not fit in the buffer
or additional reply packets containing matches that PLookupName did not process. To
receive all the matches, you should increase the size of the buffer and the maxToGet
number, and call the PLookupName function again.

If the buffer is too small to accommodate all of the returned matches in a packet,
the PLookupName function returns a function result of nbpBuffOvr. In any case,
the numGotten field always indicates the actual number of tuples returned in the
buffer. (See also "PLookupName" beginning on page 3-30 for more information
about this function.)

The code in Listing 3-2 assigns values to the fields of the parameter block to be used for
the PLookupName function call. The value theEntity points to a packed entity-name
record that you prepared using NBPSetEnti ty. This is the name that will be looked
for. The value returnBufferPtr points to the buffer where PLookupName will return
any matches that it finds. The buffer must be able to hold the number of matches
specified by the input value of enti tycount; each match is 104 bytes long. On return,
enti tyCount contains the number of matches that the PLookupName function found
and returned in the buffer pointed to by returnBufferPtr. The PLookupName
function's glue code in the MPW interface fills in the values for the ioRefNum and
csCode fields.

Listing 3·2 Calling PLookupName to find matches for an entity name

FUNCTION MyLookupName (theEntity: EntityName; VAR entitycount: Integer;
returnBufferPtr: Ptr): OSErr;

CONST
kTupleSize

VAR

104;

mppPB: MPPParamBlock;

BEGIN
WITH mppPB DO

BEGIN
interval := $OF;
count := $03;

{sizeof(AddrBlock) + a one-byte enumerator + }
{ sizeof(EntityName)}

{reasonable values for the }

entityPtr := @theEntity;
{ interval and retry count}
{pointer to the entity name to }
{ look for}

retBuffPtr := returnBufferPtr;

Using NBP

{pointer to the buffer for the }
{ tuples}

3-15

z m
3
CD o,
:;·
a.
3'
(Q

"tJ a
~
Q..

z
OJ
.::9

CHAPTER 3

Name-Binding Protocol (NBP)

RetBuffSize := entityCount * kTupleSize;

maxToGet := entityCount;

END;

{return buffer size}

{the number of entities that the }

{ return buffer can hold}

MyLookupName := PLookupName(@mppPB, FALSE);

{look up the entity name}

entityCount := mppPB.numGotten;

END;

{return the number of matches found}

The tuples in the buffer are in the format used in the NBP names table, as shown in
Figure 3-6 on page 3-13. Because data is packed, the object, type, and zone names in this
format are of arbitrary length; you cannot use Pascal to read these tuples. You can use
the NBPExtract function to read tuples from the buffer.

Extracting a Name From a List of Returned Names

After NBP returns the matches to your buffer, you need to extract the match or matches
that you want to use. You can use the NBPExtract function to read a name and address
pair from the return buffer that you supplied to PLookupName. Before you call
NBPExtract, you need to allocate memory for two buffers: one buffer that is at least
102 bytes long to hold the name part of the tuple and another buffer that is 4 bytes long
to hold the address. You pass the NBPExtract function pointers to these buffers. The
NBPExtract function unpacks the name and address data and writes it to the buffers
that you supply.

You also pass NBPExtract a pointer to the buffer containing the returned tuples; this is
the pointer that you assigned to the PLookupName function's retBuffPtr parameter
block field. For the numinBuf parameter, you specify the number of tuples in the return
buffer; this is the value that the PLookupName function returned in the numGotten
parameter block field. Counting the first returned tuple as one and following in sequence
to the value of numGotten, you identify which name and address pair you want to
extract as the value of the whichOne parameter. You can use the NBPExtract function
in a loop that varies the value of the whichOne parameter (entityCount in the
following code example) from 1 to the total number of tuples in the list to extract all the
names in the list.

Listing 3-3 shows an application-defined procedure, DoMyLookupName, that allocates a
buffer to hold the matches that the PLookupName function returns; the MyLookupName
function, shown in Listing 3-2 on page 3-15, calls the PLookupName function. The
DoMyLookupName procedure calls the MyLookupName function.

If the MyLookupName function returns a result code of noErr, then the code calls the
NBPExtract function to read the matches that are in the buffer and write them to
the application's buffer with an application-defined routine, MyAddToMatchList; the
listing does not show the MyAddToMatchList routine. After the matches are extracted,
the code disposes of the return buffer.

3-16 Using NBP

CHAPTER 3

Name-Binding Protocol (NBP)

Listing 3-3 Creating a buffer to hold name matches found, then using NBPExtract to read
the matches

PROCEDURE DoMyLookupName;
CONST

kTupleSize = 104; {sizeof(AddrBlock) + a one-byte enumerator + }
{ sizeof(EntityName)}

kMaxMatches = 100;
VAR

{number of matches to get}

BEGIN

result:
returnBufferPtr:
theEntity:
entityCount:
index:
entityAddress:

OSErr;
Ptr;
EntityName;
Integer;
Integer;
AddrBlock;

returnBufferPtr := NewPtr(kMaxMatches * Longint(kTupleSize));
IF returnBufferPtr <> NIL THEN

BEGIN
{Create a packed entity name.}

NBPSetEntity(@theEntity, '=', 'AFPServer', '*');

END;
END;

entityCount := kMaxMatches; {maximum number of matches we want}
result := MyLookupName(theEntity, entityCount, returnBufferPtr);
IF result = noErr THEN
{Extract the matches and add them to the match list.}

FOR index := 1 TO entityCount DO
IF NBPExtract(returnBufferPtr, entityCount, index, theEntity,

entityAddress) = noErr THEN
AddToMatchList(theEntity, entityAddress)

DiposPtr(returnBufferPtr); {release the memory}

Confirming a NafTle

If you know the name and address of an entity, and you only want to confirm that the
tuple is still registered with NBP and that the address hasn't been changed, you should
call the PConfirmName function instead of calling PLookupName.

The PConfirmName function is faster than PLookupName because NBP can send a
request packet directly to the node based on the address that you supply rather than
having to broadcast lookup packets throughout the network to locate the names table
entry based on the entity name alone.

The code in Listing 3-4 sets up the parameter block to be used for the PConfirmName
function and calls PConfirmName to verify that the name and address still exist, and

Using NBP 3-17

z
m
3
tp
[D
:r
0. :r

(Q .,
a
[
z
[D

~

CHAPTER 3

Name-Binding Protocol (NBP)

that the address is unchanged. If the application is using a different socket,
PConfirmName returns a function result of nbpConfDiff and gives the new
socket number in the parameter block's newsocket field.

Listing 3-4 Confirming an existing NBP name and address

FUNCTION MyConfir.mName (theEntity: EntityName; entityAddress: AddrBlock;
VAR socket: Integer): OSErr;

VAR
mppPB: MPPParamBlock;

BEGIN
WITH mppPB DO

BEGIN
interval := $OF;
count ::::: $03;

entityPtr := @theEntity;

{reasonable values for the interval }
{ and retry count}
{entity name to look for}

confirmAddr := entityAddress; {entity's network address}
END;

MyConfirmName := PConfirmName(@mppPB, FALSE);
socket

END;

3-18

:= mppPB.newSocket; {return the socket number, which is
{ the new socket number if }

{ PConfirmName's result is }

{ nbpConfDiff}

Removing an Entry From the Names Table

Mter you close the socket that your process uses or when you no longer want to make
the process available throughout the network, you remove the names table entry from
the node on which it resides using the PRemoveName function.

There are two ways to remove a names table entry:

}

· • For the first method, you use the NBPSetEnti ty procedure to put the entity name of
an existing registered entity into the structure that NBP requires. Then you specify the
pointer to this record as the value of the enti tyPtr field of the parameter block.

• For the second method, you provide the PRemoveName function with a pointer to the
names table entry record that you used to register the name.

The PRemoveName function removes the entry from the node's names table unless the
name is no longer registered, in which case, PRemoveName returns a function result of
nbpNotFound. An entity name may not be included in the node's names table if, for
example, the request to register the name had been canceled by the PKillNBP function
before the PRegisterName function used to register the name was executed.

The code in Listing 3-5 shows how to remove a names table entry using PRemoveName.
The PRemoveName function's glue code fills in the ioRefNum and csCode values. The
code in Listing 3-5 provides the pointer to the names table entry record that was used to

Using NBP

CHAPTER 3

Name-Binding Protocol (NBP)

register the name; it assigns this value to the enti tyPtr field of the parameter block
used for the PRemoveName function call. (The code in Listing 3-1 on page 3-11 created the
names table entry record.) If the application-defined MyRemoveName function returns a
function result of noErr, the code disposes of the memory block pointed to by ntePtr.

Listing 3·5 Removing an NBP names table entry

FUNCTION MyRemoveName (ntePtr: Ptr): OSErr;
VAR

mppPB: MPPParamBlock;
result: OSErr;

BEGIN
mppPB.entityPtr := Ptr(ORD4(ntePtr) + 9);

{the entity name is at offset 9 in the NTE}
result := PRemoveName(@mppPB, FALSE);{remove the name}
IF (result = noErr) THEN

DisposPtr(ntePtr); {release the memory}
MyRemoveName := result;

END;

Canceling a Request

You can use the PKillNBP function to cancel a request to register, look up, or confirm
a names table entry if the function was called asynchronously and it has not already
been executed.

When you call PReg isterName, PLookupName, or PConf irmName, NBP calls the
Device Manager, which places your request in the .MPP driver queue with other
requests waiting to be executed. To queue the request, the Device Manager places
a pointer to the function's parameter biock in the .MPP driver queue. You assign this
pointer to the PKillNPB parameter block's queue element (nKillQEl) field.

If the function request that you want to cancel is not in the queue, PKillNBP returns
a function result of cbNotFound. If PKillNBP cancels the function, It returns a
function result of noErr, and the function that it canceled returns a function result
of reqAborted.

The code in Listing 3-6 on page 3-20 shows how to cancel a PRegisterName,
PLookupName, or PConfirmName function call. The application-defined MyKillNBP
function takes as an input parameter a pointer to the parameter block that was used
to make the PLookupName, PRegisterName, or PConfirmName function call to be
canceled. The code assigns this pointer to the nKillQEl field of the parameter block to
be passed to the PKillNBP function. The ioRefNum and csCode field values are filled
in by the PKillNBP function's glue code in the MPW interface.

Using NBP 3-19

z
D>
3
<D m
:r c. :;·
cc
"'tJ
a
~
z
OJ

.::9

CHAPTER 3

Name-Binding Protocol (NBP)

Listing 3-6 Canceling a request to look up a name

FUNCTION MyKillNBP (requestPBPtr: MPPPBptr): OSErr;
VAR
mppPB: MPPParamBlock;

BEGIN
mppPB.nKillQEl := Ptr(requestPBPtr);
MyKillNBP := PKillNBP(@mppPB, FALSE);

END;

NBP Reference

This section describes the data structures and routines that are specific to the Name­
Binding Protocol (NBP). The "Data Structures" section shows the Pascal data structures
for the records and the parameter block that the NBP functions use. The //Routines"
section describes the NBP routines.

l)ataS~cbures

This section describes the data structures that you use to provide information to and
receive it from NBP.

Address Block Record

The address block record is a data structure of type AddrBlock that defines a packed
record that is used to contain an internet socket address. The names table entry record
includes a field that takes a value of this record type.

AddrBlock = PACKED RECORD
aNet:
aNode:
aSocket:

END;

Field descriptions
aNet
aNode
aSocket

3-20 NBP Reference

Integer;
Byte;
Byte;

The network number.

ThenodeiD.

The socket number.

CHAPTER 3

Name-Binding Protocol (NBP)

Names Table Entry Record

The names table entry record is a data structure of type NamesTableEntry that is used
to hold an NBP names table tuple, consisting of a name and address. Because the object,
type, and zone names in a names table entry are packed data of arbitrary length, you
cannot create this record in Pascal (which requires you to declare the length of character
strings when you define the record). If you are using the NBP Pascal interface, you use
the NPBSetNTE procedure to create a names table entry. For illustration of the names
table record format, see Figure 3-4 on page 3-9.

TYPE
NamesTableEntry =
RECORD

qLink: QElemPtr;
nteAddress: AddrBlock;
nteData: PACKED ARRAY[l •• lOO] OF Char;

END;

Field descriptions

qLink A pointer to the next names table entry in the names table linked
list that NBP maintains on the node. (This field is used internally
byNBP.)

nteAddress The internet socket address.

nteData The NBP name associated with the entity's address.

Entity Name Record

The entity name record is a data structure of type Enti tyName that is used to hold the
NBP name for an entity that is associated with a socket address. Your application looks
up or confirms an address or removes a names table entry based on an entity name.

Because the object, type, and zone names that constitute the entity name in this format
are packed data and of arbitrary length, you cannot create this record in Pascal (which
requires you to declare the length of character strings when you define the record). If you
are using the NBP Pascal interface, you put an existing entity name into the structure
that NBP requires using the NBPSetEnti ty procedure.

TYPE
EntityName =
RECORD

objStr: Str32;
typeStr: Str32;
zoneStr: Str32;

END;
EntityPtr = AEntityName;

NBP Reference 3-21

z
~ cp
llJ :;·
a.
3'
cc
""C
g
a

CHAPTER 3

Name-Binding Protocol (NBP)

Field descriptions

objStr

typeStr

zoneStr

The object part of an entity name. It consists of an alphanumeric
string of up to 31 characters. The object part of the name can be any
valid string; it is commonly used to identify the user of the system.

The type part of an entity name. It consists of an alphanumeric
string of up to 31 characters. The type part of the name can be any
valid string, but it is commonly used to identify the type of service
that the entity provides.

The zone part of an entity name. It consists of an alphanumeric
string of up to 31 characters that identifies the zone to which the
node belongs that is running the process.

The MPP Parameter Block for NBP

The NBP functions use the MPP parameter block defined by the MPPParamBlock data
type to pass information to and receive it from the .MPP driver. You use these fields to
specify input values to and receive output values from an NBP function. This section
defines the fields common to all NBP functions, except those that are reserved for
internal use by the .MPP driver or not used.

TYPE
MPPParmType

MPPPBPtr
MPPParamBlock
PACKED RECORD

qLink:

=

=

qType:
ioTrap:
ioCmdAddr:
ioCompletion:
ioResult:
ioNamePtr:
ioVRefNum:
ioRefNum:
csCode:

CASE MPPParmType OF
RegisterNameParm,
LookupNameParm,
ConfirmNameParm,
RemoveNameParm:

(interval:
count:
entityPtr:

3-22 NBP Reference

(••• RegisterNameParm, LookupNameParm,
ConfirmNameParm,RemoveNameParm, KillNBPParm •••):
"MPPParamBlock:

QElemPtr;
Integer;
Integer:
Ptr:
ProcPtr:
OSErr:
StringPtr;
Integer;
Integer;
Integer;

Byte;
Byte;
Ptr;

{reserved}
{reserved}
{reserved}
{reserved}
{completion routine}
{result code}
{reserved}
{reserved}
{driver reference number}
{primary command code}

{retry interval}
{retry count}
{pointer to entity name or }
{ names table element}

CHAPTER 3

Name-Binding Protocol (NBP)

CASE MPPParmType OF
RegisterNamePar.m:

(verifyFlag:
filler3:

LookupNameParm:
(retBuffPtr:
retBuffSize:
maxToGet:
numGotten:

ConfirmNameParm:
(confirmAddr:
newsocket:
filler4:

Byte~

Byte~)

Ptr;
Integer~

Integer;
Integer~)

AddrBlock~

Byte~

Byte);

{verify uniqueness of name or not}

{pointer to return buffer}
{return buffer size}
{matches to get}
{matches gotten}

{pointer to entity name}
{socket number}

KillNBPParm:
(nKillQEl: Ptr;) {pointer to queue element to cancel}

END~

Routines

The fields for each variant record are defined in the function description that uses
the record.

This section describes the NBP routines. The NBP routines allow you to

• create an NBP names table entry

• register an NBP names table entry with the NBP names directory

• put an existing NBP entity name into the structure that NBP requires for you to look
up, confirm, or remove an existing registered entity name

• look up the address of a network entity based on its NBP name

• read a name and address from a list of pairs that NBP returns

• confirm that a name and address pair is registered with NBP

• remove a registered name from the NBP names directory

• cancel an NBP request

An arrow preceding a parameter indicates whether the parameter is an input parameter,
an output parameter, or both:

Arrow

~

Meaning

Input

Output

Both

NBP Reference 3-23

z
SD
3
<p
aJ s·
a. s·
cc
""[J

a
[
z
aJ
.:g

CHAPTER 3

Name-Binding Protocol (NBP)

You can use the PGetAppleTalkinfo function to determine the maximum number of
concurrent NBP requests that the .MPP driver installed on the system that is running
your process supports. See the chapter "Apple Talk Utilities" for information on the
PGetAppleTalkinfo function.

Registering an Entity

This section describes the NBPSetNTE and the PRegisterName routines. You can use
the NBPSetNTE procedure to create an NBP names table entry to be used to register the
name and address of an entity with NBP so that the entity is made visible throughout the
network. You use the PRegisterName function to register a names table entry that you
created through the NBPSetNTE procedure.

NBPSetNTE

The NBPSetNTE procedure creates a new NBP names table entry to be added to the NBP
names table through the PRegisterName function.

PROCEDURE NBPSetNTE (ntePtr: Ptr; nbpObject,nbpType,nbpZone: Str32;

socket: Integer);

ntePtr A pointer to a buffer that you provide that is at least 108 bytes long. The
NBPSetNTE procedure fills this buffer with a names table entry based on
the remaining parameter values that you specify. This buffer should be a
record of type NamesTableEntry.

nbpObject The object part of the name for the names table entry. This value can be
up to 31 characters long. You cannot use any wildcard characters in this
name. (An object name typically identifies the node and is commonly set
to the Chooser name that the user specified.)

nbpType The type part of the name for the names table entry. This value can be up
to 31 characters long. You cannot use any wildcard characters in this
name. This part of an NBP name usually identifies the type of service to
which the name is assigned.

nbpZone The zone part of the name for the names table entry. You must use an
asterisk (*) for this name, indicating the local zone.

socket The number of the socket that was returned and assigned to your process
when you opened a socket using one of the AppleTalk transport
protocols. The NBP entity name is associated with the socket number that
you specify.

3-24 NBP Reference

DESCRimON

CHAPTER 3

Name-Binding Protocol (NBP)

The NBPSetNTE procedure creates a names table entry that you can register with
the NBP names directory using the PRegisterName function. When you call
PRegisterName to register the name, you must provide a pointer to the NBP names
table entry that you created previously.

Because the object, type, and zone names in a names table entry are packed data of
arbitrary length, you cannot create this record in Pascal (which requires you to declare
the length of character strings when you define the record). Use the NBPSetNTE
procedure to create the names table entry.

SPECIAL CONSIDERATIONS

The names table entry that you provide remains the property of NBP once you register it
using PRegisterName and until you remove it using the PRemoveName function. You
can allocate a block of nonrelocatable memory for the names table entry buffer using the
Memory Manager's NewPtr or NewPtrSys function.

If instead you use the NewBandle function to allocate the buffer memory, you must lock
the memory before you call PRegisterName to register the name because NBP adds the
actual names table entry to the NBP names table for that node, and the names table entry
remains part of the table until you remove it.

ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

The NBPSetNTE procedure is implemented entirely in the MPW interface files. There is
no assembly-language equivalent for this procedure.

For the names table entry record format, see Figure 3-4 on page 3-9.

For the NamesTableEntry data type declaration, see "Data Structures" on page 3-20.

For information on allocating memory, see Inside Macintosh: Memory.

The PRegisterName function is described next.

PRegisterName

The PRegisterName function adds a unique names table entry to the local node's NBP
names table.

FUNCTION PRegisterName (thePBptr: MPPPBPtr; async: Boolean): OSErr;

thePBptr A pointer to an MPP parameter block.

async A Boolean that indicates whether the function should be executed asyn­
chronously or synchronously. Specify TRUE for asynchronous execution.

NBP Reference 3-25

z
~ cp
m
:r c. s·
cc
"'tJ a
~
z m
.:g

CHAPTER 3

Name-Binding Protocol (NBP)

Parameter block

ioCompletion
ioResult
ioRefNum
csCode
interval
count
entityPtr
verifyFlag

ProcPtr
OS Err
Integer
Integer
Byte
Byte
Ptr
Byte

A pointer to a completion routine.
The function result.
The .MPP driver reference number.
Always registerName.
The retry interval.
The retry count.
A pointer to a names table entry.
A flag to indicate whether NBP is to verify
NBP names as unique.

Field descriptions

ioCompletion

ioResult

ioRefNum

csCode

interval

count

entityPtr

verifyFlag

3-26 NBP Reference

A pointer to a completio~ routine that you can provide. When you
execute a function asynchronously, the .MPP driver calls your
completion routine when it completes execution ofthe function if
you specify a po.inter to the routine as the value of this field. Specify
NI~ for this field if you do not wish to provide a completion
routine. If you execute a function synchronously, the .MPP driver
ignores the ioCompletion field. For information about completion
routines, see the chapter "Introduction to Apple Talk" in this book.
The result of the function. When you execute the function asynchro­
nously, the function sets this field to 1 and returns a function
result of noErr as soon as the function begins execution. When
the function completes execution, it sets the ioResul t field to the
actual result code.
The .MPP driver reference number. The MPW interface fills in
this field.
The command code of the .MPP command to be executed. The
MPW interface fills in this field.
The retry interval to be used by NBP when it verifies the uniqueness
of the name. The retry interval value specifies how long the
function is to wait betWeen retries in S-tick units. A value of 7 for
the interval field is usually sufficient (7 x 8 = 56 ticks equals
approximately 1 second).
On input, the retry count to be used by NBP when it verifies the
uhiqueness of the name. Its value tells the PRegisterName
function how many times to retry. A retry count of 5 is usually
suffiCient. On return, the number of times that NBP actually
attempted to verify the uniqueness of the name.
A pointer to a names table entry. You can use the NBPSetNTE
procedure to create a names table entry. You cannot use wildcard
characters in the object name and type name fields of the names
table entry, but you must use an asterisk (*)-indicating the local
zone-for the zone name field.
A flag that determines whether NBP attempts to verify that the
name you are adding to the names table is unique. Set this flag to a
nonzero number to have NBP verify the name. You can set this flag
to zero during program development, but to avoid confusion
caused by duplicate names on a network, you should always set the
verifyFlag parameter to a nonzero number in released software.

DESCRIPTION

CHAPTER 3

Name-Binding Protocol (NBP)

Before another entity can sertd information to your entity over Apple Talk, it must have
your entity's internet socket address. Also, for users to be able to select your application,
the entity must be made visible throughout the network.

the PRegisterName function adds an entry for a network entity to the node's NBP
names table, making it possible for a user or another process to locate that entity through
its NBP name (consisting of object, type, and zone names). The process whose name is
registered with NBP is referred to as a network-visible entity.

Because the object, type, and zone names in a names table entry are of arbitrary length,
you cannot create this record in Pascal (which requires you to declare the length of
character strings when you define the record). Use the NBPSetNTE procedure to create
the names table entry. If you execute the function asynchronously and you do not specify
a completion routine, your process can poll the ioResul t field to determine when the
function completes execution.

You can assign any number of names to a single socket. If you use a single socket for
more than one process, you must provide a socket listener.

If you use the PKillNPB function to cancel the PRegisterName function and the cancel
request is successful, PRegisterName returns a function result of reqAborted.

SPECIAL CONSIDERATIONS

The names table entry that you provide remains the property of NBP until you use the
PRemoveName function to remove the entry from the names table. You must allocate a
nonrelocatable block for the names table entry, or lock any relocatable block that you use
for it until you are ready to remove the entry.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

To execute the PRegisterName function from assembly language, call the_ Control
trap macro with a value of registerName in the csCode field of the parameter block.
To execute the_ Control trap asynchronously, include the value , ASYNC in the operand
field. To execute this function from assembly language, you must also specify the driver
reference number.

noErr
nbpDuplicate
tooManyReqs

reqAborted

NBP Reference

0
-1027
-1097

-1105

No error
Name already exists
Too many concurrent requests; wait a few minutes, then
try the request again
Request canceled

3-27

z
I»
3
CD a,
:r c. s·
co
"tJ a
0
~
z
OJ .:g

SEE ALSO

CHAPTER 3

Name-Binding Protocol (NBP)

To create a names table entry, use the NBPSetNTE procedure, described on page 3-24.

For the names table entry record format, see Figure 3-2 on page 3-6.

For the NamesTableEntry data type declaration, see "Names Table Entry Record" on
page 3-21.

To cancel a name registration request, use the PKillNBP function, described on
page3-38.

For information about socket listeners, see the chapter "Datagram Delivery Protocol
(DDP)" in this book.

Handling Name and Address Requests

This section describes

• the NBPSetEnti ty procedure, which you can use to put an existing NBP entity name
into the structure that NBP requires for you to look up, confirm, or remove an existing
registered entity name

• the PLookupName function, which you can use to look up the network address of an
entity, based on the NBP registered name for that entity, or using wildcards

• the NBPExtract function, which you can use to read a name and address pair from
the buffer containing the list of tuples that PLookupName returns

• the PConf irmName function, which you can use to confirm that a name whose
address you know is still associated with that address, and that the pair is still
registered with the NBP names directory

• the PRemoveName function, which you can use to remove a name and address pair
from the NBP names directory when you no longer want to make the service
associated with the tuple available throughout the network

• the PKillNBP function, which you can use to cancel requests to NBP

NBPSetEntity

The NBPSetEnti ty procedure puts an existing NBP name of a network-visible
entity into the packed-record format that the PLookupName, PConfirmName, and
PRemoveName functions require.

PROCEDURE NBPSetEntity (buffer: Ptr~

nbpObject,nbpType,nbpZone: Str32)~

buffer

3-28 NBP Reference

A pointer to a buffer that you provide that is at least 99 bytes long. The
NBPSetEnti ty procedure fills this buffer with the entity name you
specify in the other three parameters.

DESCRIFI'ION

CHAPTER 3

Name-Binding Protocol (NBP)

nbpObject The object part of the registered NBP name. You can specify wildcard
characters in this part of the name only for use with the PLookupName
function.

nbpType The type part of the registered NBP name. You can use wildcard
characters in this part of the name only for use with the PLookupName
function.

nbpZone The zone part of the registered NBP name. You can use wildcard
characters in this part of the name only for use with the PLookupName
function.

Table 3-1 on page 3-14 describes the wildcard characters that you can specify for the
nbpObj ect, nbpType, and nbpZone fields for use with the PLookupName function.

When you call the PRemoveName function to remove the name of a network-visible
entity from the NBP names table, or call the PLookupName or PConfirmName function
to look up network-visible entities, you must specify an entity name in the format shown
in Figure 3-5 on page 3-12. (For PRemoveName, instead of creating the entity-name
record, you can provide a pointer to the names table entry record that you used to
register the name.)

The object, type, and zone names that constitute the entity name in this format are
packed data and of arbitrary length. Therefore, you cannot create this record in Pascal
(which requires you to declare the length of character strings when you define the
record). Use the NBPSetEnti ty procedure to provide the entity name in the format
that NBP requires.

SPECIAL CONSIDERATIONS

The memory that you allocate for the entity name buffer belongs to NBP until the
function completes execution. You can reuse it or dispose of it after the operation
completes.

ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

The NBPSetEnti ty procedure is implemented entirely in the MPW interface files. There
is no assembly-language equivalent for this procedure.

The PLookupName function is described next.

For a discussion of how to use NBPSetEnti ty, see 11Preparing an Entity Name"
beginning on page 3-12.

To confirm that an entity is still registered with NBP, use the PConfirmName function,
described on page 3-34.

To remove a registered name from the NBP names table, use the PRemoveName function,
described on page 3-36.

NBP Reference 3-29

z
Dl
3
CD
ex,
:r
a. s·
co
'"'0
g
0 a
z
Ill .:g

CHAPTER 3

Name-Binding Protocol (NBP)

PLookupName

The PLookupName function returns the names and addresses of all the network-visible
entities that match a name that you supply, which can include wildcard characters.

FUNCTION PLookupName (thePBptr: MPPPBPtr; async: Boolean): OSErr;

thePBptr A pointer to an MPP parameter block.

async A Boolean that specifies whether the function should be executed
asynchronously or synchronously. Specify TRUE for asynchronous
execution.

Parameter block

--7 ioCompletion ProcPtr A pointer to a completion routine.
~ ioResult OSErr The function result.
--7 ioRefNwn Integer The .MPP driver reference number.
--7 cscode Integer Always lookupName.
--7 interval Byte The retry interval.
H count Byte The retry count.
--7 entityPtr Ptr A pointer to an entity name.
--7 retBuffPtr Ptr A pointer to the return data buffer.
--7 retBuffSize Integer The return buffer size in bytes.
--7 maxToGet
~ numGotten

Field descriptions
ioCompletion·

ioResult

ioRefNum

esC ode

interval

3-30 NBP Reference

Integer The maximum number of matches to get.
Integer The number of addresses found and returned.

A pointer to a completion routine that you can provide. When you
execute a function asynchronously, the .MPP driver calls your
completion routine when it completes execution of the function if
you specify a pointer to the routine as the value of this field. Specify
NIL for this field if you do not wish to provide a completion
routine. If you execute a function synchronously, the .MPP driver
ignores the ioCompletion field. For information about completion
routines, see the chapter "Introduction to Apple Talk" in this book.

The result of the function. When you execute the function asynchro­
nously, the function sets this field to 1 and returns a function result
of noErr as soon as the function begins execution. When the
function completes execution, it sets the ioResult field to the
actual result code.

The .MPP driver reference number. The MPW interface fills in
this field.

The command code of the .MPP command to be executed. The
MPW interface fills in this field.

The retry interval to be used by NBP when it looks on the internet
for matching names. The retry interval value specifies how long the
function is to wait between retries in 8-tick units. The retry interval
equals the interval field value x 8 ticks. A value of 7 for the

DESCRIPTION

CHAPTER 3

Name-Binding Protocol (NBP)

count

entityPtr

retBuffPtr

retBuffSize

maxToGet

numGotten

interval field is usually sufficient (7 x 8 = 56 ticks equals approxi­
mately 1 second). However, on a large network, you should base
the interval value on the speed of the network and how many
devices of this type you expect to be on the network.

The retry count to be used by NBP when it looks on the internet
for matching names. Its value specifies the number of times
PLookupName is to retry the operation. A retry count of 3 or 4 is
usually sufficient. However, on a large network, you should base
the value on how likely it is for the type of device to miss the NBP
request. For example, the Apple Talk Image Writer has a dedicated
processor on the LocalTalk option card to handle AppleTalk
processing, so the retry count for a device of this type can be low,
whereas most Macintosh systems and LaserWriter printers depend
on their shared processor to handle all system processing, so
a retry count for a device of these types should be higher. The
PLookupName.function decrements this field each time it looks
for names.

A pointer to an entity name in the format shown in Figure 3-5 on
page 3-12. You can use the NBPSetEnti ty procedure to prepare
the entity name record.

A pointer to a buffer you provide into which the PLookupName
function puts the names and addresses that it finds. Each matching
tuple takes a maximum of 104 bytes, and you use the maxToGet
field to specify the maximum number of tuples to be returned.

The size of the buffer you are providing.

The maximum number of matches to be returned.

The actual number of matches that PLookupName returned. The
PLookupName function updates this field each time it receives an
NBP returned packet and adds names to the return buffer. If there is
space remaining in the buffer, NBP may return more matches than
the number specified by maxToGet. If numGotten is greater than
or equal to maxToGet, there may be additional matches. In this
case, you should increase the size of the buffer pointed to by
retBuffPtr and call the PLookupName function again.

Before you can send data to another entity, you must have the network address of
that entity. The PLookupName function returns the names and addresses of any
network-visible entities whose names match the entity name you specify. The entity
name can include any of the wildcard characters given in Table 3-1 on page 3-14.

The PLookupName function completes execution when the number ·of matches
returned is equal to or greater than the number in the maxToGet field, the function
exceeds the retry count, the buffer overflows, or the request is canceled through the
PKillNBP function.

The number of matches returned can be greater than the number specified in the
maxToGet field under the following circumstances: A single lookup request or retry can
return more than one match in a reply packet. If there is space remaining in the buffer

NBP Reference 3-31

z
D)

3 cp
aJ s·
a. s·
co
""0

I
z
aJ
.:B

CHAPTER 3

Name-Binding Protocol (NBP)

and NBP receives a packet containing multiple matches, PLookupName will return
as many of the matches as fit in the buffer. If this occurs, you should increase the size
of the buffer and call the PLookupName function again to ensure that you obtain all of
the matches.

If all of the tuples returned in a reply packet do not fit in the buffer, then the function
completes with as many tuples as can fit. Whether NBP returns more or fewer matches
than you specify as the value ofmaxToGet, the value of numGotten reflects the actual
number of tuples that PLookupName writes to the return buffer.

Because the function updates the numGotten field each time it receives a returned
packet containing one or more matches and writes those name and address pairs to
the return buffer, you can start reading the names in the buffer and displaying them
for the user before the function completes execution.

The tuples in the buffer are in the format used in the NBP names table, as shown in
Figure 3-6 on page 3-13. Because the object, type, and zone names in this format are
of arbitrary length, you cannot use Pascal to read these tuples. Use the NBPExtract
function to read tuples from the buffer.

SPECIAL CONSIDERATIONS

Memory used for the entity name record and the return buffer belongs to PLookupName
until the function completes execution and must be nonrelocatable.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

3-32

To execute the PLookupName function from assembly language, call the_ Control trap
macro with a value of lookupName in the csCode field of the parameter block. To
execute the_ Control trap asynchronously, include the value , ASYNC in the operand
field. To execute this function from assembly language, you must also specify the driver
reference number.

noErr
tooManyReqs

reqAborted

0
-1097

-1105

No error
Too many concurrent requests; wait a few minutes, then
try the request again
Request canceled

To read tuples from the buffer, use the NBPExtract function, described next.

To create the entity name record, use the NBPSetEnti ty procedure, described on
page3-28.

To check that a network-visible entity whose name and address you already know is still
available on the network, use the PConf irmName function, described on page 3-34.

To cancel a name lookup request, use the PKillNBP function, described on page 3-38.

NBP Reference

NBPExtract

DESCRIPTION

CHAPTER 3

Name-Binding Protocol (NBP)

The NBPExtract function returns one tuple (entity name and internet address) from the
list of tuples placed in a buffer by the PLookupName function.

FUNCTION NBPExtract (theBuffer: Ptr; numinBuf: Integer;
whichOne: Integer;
VAR abEntity: EntityName;
VAR address: AddrBlock): OSErr;

theBuffer A pointer to the buffer containing the tuples returned by the
PLookupName function.

numinBuf The number of tuples returned by the PLookupName function in the
numGotten parameter.

whichOne The sequence number of the tuple that you want the function to return.
This parameter can be any integer in the range 1 through numinBuf.

abEnti ty A pointer to a buffer that you provide to hold the name returned by the
function. This buffer must be at least 102 bytes long.

address A pointer to a buffer that you provide to hold the address returned by the
function. The buffer must be at least 4 bytes long.

The NBPExtract function extracts a name and address pair from the list of tuples that
the PLookupName function returns. The PLookupName function returns the names of
network-visible entities in a packed format that you cannot read from Pascal. Use the
NBPExtract function in a loop that varies the value of the whichOne parameter from 1
to the total number of tuples in the list to extract all the names in the list.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The NBPExtract function is implemented entirely in the MPW interface files. There is
no assembly-language equivalent to this procedure.

noErr
extractErr

0
-3104

No error
Can't find tuple in buffer

To look up the name and address of an entity registered with NBP, use the PLookupName
function, described on page 3-30.

For a description of the EntityName data type, see 11Entity Name Record" on page 3-21.

For a description of the AddrBlock data type, see "Address Block Record" on page 3-20.

NBP Reference 3-33

z
3
<D
m
3"
a. s·
co
"'tJ

I
z m
.3!

CHAPTER 3

Name-Binding Protocol (NBP)

PConfirmName

3-34

The PConfirmName function confirms that a network-visible entity whose name you
know is still available on the network and that the address associated with the name has
not been changed.

FUNCTION PConfirmName (thePBptr: MPPPBPtr; async: Boolean): OSErr;

thePBptr

a sync

A pointer to an MPP parameter block.

A Boolean that specifies whether the function should be executed
asynchronously or synchronously. Specify TRUE for asynchronous
execution.

Parameter block

~ ioCompletion ProcPtr A pointer to a completion routine.
~ ioResult OS Err The function result.
~ ioRefNum Integer The .MPP driver reference number.
~ csCode Integer Always confirmName.
~ interval Byte The retry interval.
H count Byte The retry count.
~ entityPtr Ptr A pointer to an entity name.
~ confirmAddr AddrBlock The entity address.
~ newsocket

Field descriptions

ioCompletion

ioResult

ioRefNum

csCode

interval

NBP Reference

Byte The current socket number.

A pointer to a completion routine that you can provide. When you
execute a function asynchronously, the .MPP driver calls your
completion routine when it completes execution of the function if
you specify a pointer to the routine as the value of this field. Specify
NIL for this field if you do not wish to provide a completion
routine. If you execute a function synchronously, the .MPP driver
ignores the ioCompletion field. For information about completion
routines, see the chapter ~~Introduction to AppleTalk" in this book.

The result of the function. When you execute the function asynchro­
nously, the function sets this field to 1 and returns a function result
of noErr as soon as the function begins execution. When the
function completes execution, it sets the ioResult field to the
actual result code.

The .MPP driver reference number. The MPW interface fills in
this field.

The command code of the .MPP command to be executed. The
MPW interface fills in this field.

The retry interval to be used by NBP when it looks on the internet
for the entity. The retry interval value specifies how long the
function is to wait between retries in S-tick units. A value of 7 for
the interval field is usually sufficient (7 x 8 =56 ticks equals
approximately 1 second).

DESCRIPTION

CHAPTER 3

Name-Binding Protocol (NBP)

count

entityPtr

confirmAddr

newSocket

The retry count to be used by NBP when it looks on the internet for
the entity. The value of count specifies the number of times the
PConfirmName function is to retry the operation. A retry count of 3
or 4 is usually sufficient. The PConf irmName function decrements
this field each time it looks for names.

A pointer to an entity name that you want to confirm. The entity
name must be in the format that Figure 3-5 on page 3-12 shows.
You can use the NBPSetEnti ty procedure to create the entity
name record.

The last known address of the network-visible entity whose
existence you wish to confirm.

The current socket number of the entity. If the socket number of
the entity has changed, the PConf irmName function returns the
new socket number in this field and returns the nbpConfDiff
result code.

If you already know the name and address of a network-visible entity, but want to
confirm that the name is still registered with NBP and that the address hasn't changed
before you attempt to send data to it, you can use the PConfirmName function. If the
address is no longer associated with the name, PConfirmName returns a result code
of nbpNoConf irm, indicating that the name may have been removed from the socket.
If the name is assigned to another socket, PConfirmName returns the current socket
number in the parameter block's newSocket field and a result code of nbpConfDiff.
This function generates less network traffic than the PLookupName function.

SPECIAL CONSIDERATIONS

Memory used for the buffer containing the entity name and the record containing the
entity address belongs to PConfirmName until the function completes execution.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

To execute the PConfirmName function from assembly language, call the _control
trap macro with a value of confirmName in the csCode field of the parameter block. To
execute the_ Control trap asynchronously, include the value , ASYNC in the operand
field. To execute this function from assembly language, you must also specify the driver
reference number.

noErr
nbpNoConfirm
nbpConfDiff
tooManyReqs

reqAborted

NBP Reference

0
-1025
-1026
-1097

-1105

No error
Name not confirmed
Name confirmed for different socket
Too many concurrent requests; wait a few minutes, then
try the request again
Request canceled

3-35

z
ll)

3
CD

I m
:r a.
:r
cc
-o

I
z m
.3!

SEE ALSO

CHAPTER 3

Name-Binding Protocol (NBP)

For a description of the AddrBlock data type, see "Address Block Record" on page 3-20.

To find the address of a network-visible entity whose name or address you d<;> not
already know, use the PLookupName function, described on page 3-30.

To cancel a name confirmation request, use the PKillNBP function, described on
page 3-38.

PRemoveName

3-36

The PRemoveName function removes a previously registered name from the NBP
names table.

FUNCTION PRemoveName (thePBptr: MPPPBPtr; async: Boolean): OSErr;

thePBptr

a sync

A pointer to an MPP parameter block.

A Boolean that specifies whether the function should be executed
asynchronously or synchronously. Specify TRUE for asynchronous
execution.

Parameter block

ioCompletion
ioResult
ioRefNum
csCode
entityPtr

ProcPtr
OS Err
Integer
Integer
Ptr

A pointer to a completion routine.
The function result.
The .MPP driver reference number.
Always removeName.
A pointer to an entity name.

Field descriptions

ioCompletion

ioResult

ioRefNum

csCode

NBP Reference

A pointer to a completion routine that you can provide. When you
execute a function asynchronously, the .MPP driver calls your
completion routine when it completes execution of the function if
you specify a pointer to the routine as the value of this field. Specify
NIL for this field if you do not wish to provide a completion
routine. If you execute a function synchronously, the .MPP driver
ignores the ioCompletion field. For information about completion
routines, see the chapter "Introduction to Apple Talk" in this book.

The result of the function. When you execute the function asynchro­
nously, the function sets this field to 1 and returns a function
result of noErr as soon as the function begins execution. When
the function completes execution, it sets the ioResult field to the
actual result code.

The .MPP driver reference number. The MPW interface fills in
this field.
The command code of the .MPP command to be executed. The
MPW interface fills in this field.

DESCRIPTION

CHAPTER 3

Name-Binding Protocol (NBP)

entityPtr A pointer to the name of the network-visible entity that you wish
to remove from the names table. The name must be in the format
shown in Figure 3-5 on page 3-12. You cannot use any wildcard
characters in the name.

When you close a socket or terminate an application or process that you registered in the
NBP names table as a network-visible entity, you must use the PRemoveName function
to remove the name from the names table.

To remove the names table entry, you assign to the entityPtr field of the parameter
block a pointer to a fully qualified entity name. The entity name is a packed array of
Pascal strings. Because the object, type, and zone names in this format are of arbitrary
length, you cannot create this record in Pascal (which requires you to declare the length
of character strings when you define the record). You can use the NBPSetEntity
procedure to create this record, or you can provide PRemoveName with a pointer to the
names table entry record that you used to register the name.

SPECIAL CONSIDERATIONS

Memory used for the buffer containing the entity name belongs to the PRemoveName
function until the function completes execution and must be nonrelocatable. Mter you
remove the names table entry, you can reuse the memory or release it.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

To execute the PRemoveName function from assembly language, call the_ Control trap
macro with a value of removeName in the csCode field of the parameter block. To
execute the_ Control trap asynchronously, include the value , ASYNC in the operand
field. To execute this function from assembly language, you must also specify the driver
reference number.

noErr
nbpNotFound
reqAborted

0
-1028
-1105

No error
Name not found
Request canceled

To create an entity name record of the form required by the PRemoveName function, use
the NBPSetEnti ty procedure, described on page 3-28.

NBP Reference 3-37

PKillNBP

DESCRIPTION

3-38

CHAPTER 3

Name-Binding Protocol (NBP)

The PKillNBP function cancels NBP function calls to the PLookupName,
PRegisterName, or PConfirmName function.

FUNCTION PKillNBP (thePBptr: MPPPBPtr; async: Boolean): OSErr;

thePBptr

a sync

A pointer to an MPP parameter block.

A Boolean that specifies whether the function should be executed
asynchronously or synchronously. Specify TRUE for asynchronous
execution.

Parameter block

ioCompletion
ioResult
ioRefNum
csCode
nKillQEl

ProcPtr
OSErr
Integer
Integer
Ptr

A pointer to a completion routine.
The function result.
The .MPP driver reference number.
Always killNBP.
A pointer to a queue element.

Field descriptions
ioCompletion

ioResult

ioRefNum

csCode

nKillQEl

A pointer to a completion routine that you can provide. When you
execute a function asynchronously, the .MPP driver calls your
completion routine when it completes execution of the function if
you specify a pointer to the routine as the value of this field. Specify
NIL for this field if you do not wish to provide a completion
routine. H you execute a function synchronously, the .MPP driver
ignores the iocompletion field. For information about completion
routines, see the chapter "Introduction to Apple Talk" in this book.

The result of the function. When you execute the function asynchro­
nously, the function sets this field to 1 and returns a function result
of noErr as soon as the function begins execution. When the
function completes execution, it sets the ioResult field to the
actual result code.

The .MPP driver reference number. The MPW interface fills in
this field.

The command code of the .MPP command to be executed. The
MPW interface fills in this field.

A pointer to the MPP parameter block for the NBP request you
want to cancel.

When you call the PLookupName, PRegisterName, or PConfirmName function asyn­
chronously, the Device Manager puts your request in the .MPP driver's queue with
other requests. H you want to cancel a pending NBP request, you pass a pointer to the
parameter block for that request to the PKillNBP function.

NBP Reference

CHAPTER 3

Name-Binding Protocol (NBP)

If the function's parameter block is in the .MPP driver's queue waiting for the function
to be executed, the PKillNBP function deletes the entry from the queue and returns
a function result of noErr. The function whose parameter block is deleted completes
execution and returns a function result of reqAborted, indicating that the function
was canceled.

If the function has already been executed, that is, it is no longer in the queue, PKillNBP
returns a function result of cbNotFound, indicating that the parameter block for the
function to be canceled was not in the .MPP driver's queue.

The function also calls the completion routine for the canceled request with the result
code reqAborted (-1105) in the DO register.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

To execute the PKillNBP function from assembly language, call the _control trap
macro with a value of killNBP in the csCode field of the parameter block. To execute
the _control trap asynchronously, include the value ,ASYNC in the operand field.
To execute this function from assembly language, you must also specify the driver
reference number.

noErr
cbNotFound

NBP Reference

0
-1102

No error
NBP queue element not found

3-39

z m
3
CD

I m s·
c. s·
cc
"'tl a
0
~
z m
.:B

CHAPTER 3

Name-Binding Protocol (NBP)

Summary of NBP

Pascal Summary

Constants

CONST

{.MPP driver
mppUnitNum
mppRefNum

unit and reference number}

{csCodes for NBP}
confirmName =
lookupName =
removeName

registerName =
killNBP

9; {MPP driver unit number}

-10; {MPP reference number}

250;
251;

252;

253;
254;

{confirm name}
{lookup name}

{remove name from names table}

{register name in names table}
{kill outstanding NBP request}

Data Types

Address Block Record

AddrBlock =
PACKED RECORD

aNet:
aNode:

aSocket:
END;

Integer;
Byte;
Byte;

Names Table Entry Record

TYPE NamesTableEntry =

RECORD

{network number}
{node ID}
{socket number}

qLink: QElemPtr; {pointer to next NTE in names table}
nteAddress: AddrBlock; {pointer to this names table entry}
nteData: PACKED ARRAY[1 •• 100] OF Char;

{names table entry}
END;

3-40 Summary of NBP

CHAPTER 3

Name-Binding Protocol (NBP)

Entity Name Record

EntityName
RECORD

objStr:
typeStr:
zoneStr:

END;

Str32;
Str32;
Str32;

EntityPtr = AEntityName;

MPP Parameter Block for NBP

{object name}
{type name}
{zone name}

MPPParmType = (••• RegisterNameParm, LookupNameParm,
ConfirmNameParm,RemoveNameParm •••);

TYPE MPPParamBlock
PACKED RECORD

qLink:
qType:
ioTrap:
ioCmdAddr:
iocompletion:
ioResult:
ioNamePtr:
ioVRefNum:
ioRefNum:
csCode:

CASE MPPParmType OF
RegisterNameParm,
LookupNameParm,
ConfirmNameParm,
RemoveNameParm:

(interval:
count:
entityPtr:

QElemPtr;
Integer;
Integer;
Ptr;
ProcPtr;
OSErr;
StringPtr;
Integer;
Integer;
Integer;

Byte;
Byte;
Ptr;

{reserved}
{reserved}
{reserved}
{reserved}
{completion routine}
{result code}
{reserved}
{reserved}
{driver reference number}
{primary command code}

{retry interval}
{retry count}
{pointer to entity name or }
{ names table entry}

CASE MPPParmType OF
RegisterNameParm:

(verifyFlag:
filler3:

Byte;
Byte;)

{verify uniqueness of name or not}

LookupNameParm:
(retBuffPtr:
retBuffSize:
maxToGet:
numGotten:

Summary of NBP

Ptr;
Integer;
Integer;
Integer;)

{pointer to return buffer}
{return buffer size}
{matches to get}
{matches gotten}

3-41

z
"' 3 cp
m
:r a.
:r
co
~ g
0

~
z m
.::g

CHAPTER 3

Name-Binding Protocol (NBP)

ConfirmNameParm:
(confirmAddr:
newSocket:
filler4:

AddrBlock;
Byte;
Byte);

{pointer to entity name}
{socket number}

KillNBPParm:
(nKillQEl: Ptr;) {pointer to queue element to cancel}

END;

MPPPBPtr "'MPPParamBlock;

Routines

Registering an Entity

PROCEDURE NBPSetNTE

FUNCTION PRegisterName

(ntePtr: Ptr; nbpObject,nbpType,nbpZone: Str32;
socket: Integer);

(thePBptr: MPPPBPtr; async: Boolean): OSErr;

Handling Name and Address Requests

PROCEDURE NBPSetEntity

FUNCTION PLookupName

FUNCTION NBPExtract

FUNCTION PConfirmName

FUNCTION PRemoveName

FUNCTION PKillNBP

C Summary

Constants

/*NBP parameter constants*/

(buffer: Ptr; nbpObject,nbpType,nbpZone: Str32);

(thePBptr: MPPPBPtr; async: Boolean): OSErr;

(theBuffer: Ptr; numinBuf: Integer; whichOne:
Integer; VAR abEntity: EntityName; VAR address:
AddrBlock): OSErr;

(thePBptr: MPPPBPtr; async: Boolean): OSErr;

(thePBptr: MPPPBPtr; async: Boolean): OSErr;

(thePBptr: MPPPBPtr; async: Boolean): OSErr;

#define MPPioCompletion MPP.ioCompletion
#define MPPioResult MPP.ioResult
#define MPPioRefNum MPP.ioRefNum
#define MPPcsCode MPP.csCode
#define NBPinterval NBP.interval
#define NBPcount NBP.count

3-42 Summary of NBP

CHAPTER 3

Name-Binding Protocol (NBP)

#define NBPntQElPtr NBP.NBPPtrs.ntQElPtr
#define NBPentityPtr NBP.NBPPtrs.entityPtr
#define NBPverifyFlag NBP.parm.verifyFlag
#define NBPretBuffPtr NBP.parm.Lookup.retBuffPtr
#define NBPretBuffSize NBP.parm.Lookup.retBuffSize
#define NBPmaxToGet NBP.parm.Lookup.maxToGet
#define NBPnumGotten NBP.parm.Lookup.numGotten
#define NBPconfirmAddr NBP.parm.Confirm.confirmAddr
#define NBPnKillQEl NBPKILL.nKillQEl
#define NBPnewSocket NBP.parm.Confirm.newSocket

enum {

mppUnitNum
mppRefNum

enum {
confirmName
lookupName
removeName
registerName
killNBP

Data Types

=
=

Address Block Record

struct AddrBlock {
short

};

unsigned char
unsigned char

9,

-10};

250,
251,
252,

25~,

254};

aNet;
aNode;
aSocket;

/*.MPP driver unit and reference *I
I* number*/
/*.MPP driver unit number*/
/*MPP reference number*/

/*.MPP csCodes*/
/*confirm name*/
/*lookup name*/
/*remove name from names table*/
/*r~gister name in names table*/
/*kill outstanding NBP request*/

/*network name*/
/*node name*/
/*socket number*/

typedef struct AddrBlock AddrBlock;

Names Table Entry Data Structure

struct {
Ptr qNext; /*pointer to next names table element*/
NTElement nt;

}NamesTableEntry;

Summary of NBP 3-43

z
I»
3
<p
m
:r c. s·

CQ

""0 a
a a
z m
.:g

-
CHAPTER 3

Name-Binding Protocol (NBP)

Entity Name Record

struct EntityName {

};

Str32 objStr;
char padl;
Str32 typeStr;
char
Str32
char

pad2;
zoneStr;
pad3;

/*object name*/
/*Str32's aligned on even word boundaries*/
/*type name*/

/*zone name*/

typedef struct EntityName EntityName;
typedef EntityName *EntityPtr;

MPP Parameter Block for NBP

#define MPPATPHeader \
QElem *qLink; /*reserved*/\

/*reserved*/\ short qType;
short
Ptr
ProcPtr
OS Err
long
short
short
short

typedef struct {
MPPATPHeader

}MPPparms;

typedef struct {
MPPATPHeader
char
char
union {

Ptr
Ptr

} NBPPtrs;

ioTrap; /*reserved*/\
ioCmdAddr; /*reserved*/\
ioCompletion; /*completion routine*/\
ioResult; /*result code*/\
userData; /*command result (ATP user bytes)*/\
reqTID; /*request transaction ID*/\
ioRefNum; /*driver reference number*/\
csCode; /*primary command code*/

interval;
count;

ntQElPtr;
entityPtr;

/*retry interval*/
/*retry count*/

/*pointer to queue element to cancel*/

/*pointer to entity name or names */
I* table entry*/

Summary of NBP

union {
char

struct {
Ptr
short
short
short

CHAPTER 3

Name-Binding Protocol (NBP)

verifyFlag~

retBuffPtr~

retBuffSize~

maxToGet~

numGotten;

/*verify uniqueness of name or not*/

/*pointer to return buffer*/
/*return buffer size*/
/*matches to get*/
/*matches gotten*/

} Lookup~
struct {

AddrBlock
char

confirmAddr; /*pointer to entity name*/
newSocket~ /*socket number*/

} Confirm~
} parm~

}NBPparms~

struct {
MPPATPBeader
Ptr

}NBPKillparms~

nKillQEl~

union ParamBlockRec {

}~

MPPparms
NBPparms
NBPKillparms

MPP~

NBP~

NBPKILL~

/*pointer to queue element to cancel*/

/*general MPP parms*/
/*NBP calls*/
/*cancel call to NBP*/

typedef MPPParamBlock *MPPPBPtr;

Routines

Registering an Entity

pascal void NBPSetNTE (Ptr ntePtr, Ptr nbpObject, Ptr nbpType,
Ptr nbpZone, short socket);

pascal OSErr PRegisterName (MPPPBPtr thePBpt, Boolean async);

Handling Name and Address Requests

pascal void NBPSetEntity

pascal OSErr PLookupName

Summary of NBP

(Ptr buffer, Ptr nbpObject, Ptr nbpType,
Ptr nbpZone);

(MPPPBPtr thePBptr, Boolean async);

3-45

CHAPTER 3

Name-Binding Protocol (NBP)

pascal OS Err NBPExtract (Ptr theBuffer, short numinBuf, short whichOne,
EntityName *abEntity, AddrBlock *address);

pascal OSErr PConfirmName (MPPPBPtr thePBptr, Boolean async);

pascal OSErr PRemoveName (MPPPBPtr thePBptr, Boolean async);

pascal OSErr PKillNBP (MPPPBPtr thePBptr, Boolean async);

Assembly-Language Summary

Constants

Unit Number for the .MPP Driver

mppUnitNum EQU

NBP Symbolic Characters

equals
NBPWildCard
star

EQU
EQU
EQU

NBP Command Codes

registerName
lookupReply
lookupName
confirmName
removeName
killNBP

NBPPacket

nbp
nbpControl
nbpTCount
nbpiD
nbpTuple

EQU
EQU
EQU
EQU
EQU
EQU

EQU
EQU
EQU
EQU
EQU

NBP Tuple Header Offsets

tupleNet EQU
tupleNode EQU
tupleSkt EQU

3-46 Summary of NBP

9

1=1

'='
I* I

253

242

251

250

252

254

$02

0

0

1

2

0

2

3

;MPP unit number

;wildcard symbol
;wildcard symbol
;"This zone" symbol

;register name in names
;used internally
;look up an NBP name
;confirm name
;remove name from names

table

table
;kill outstanding NBP request

;DDP protocol type code for NBP
;control code
;tuple count
;NBP ID
;start of the first tuple

;offset to network number (word)
;offset to node ID (byte)
;offset to socket number (byte)

CHAPTER 3

Name-Binding Protocol (NBP)

tupleEnum
tupleName
tupleAddrSz

NBP Packet 'JYpes

brRq
lkUp
lkUpReply

EQU
EQU
EQU

EQU
EQU
EQU

4

5

5

1

2

3

;offset to enumerator (byte)
;offset to name part of tuple (byte)
;tuple address field size

;broadcast request
;lookup request
;lookup reply

NBP Names Information Socket (NIS) Number

nis EQU 2 ;NIS number

Maximum Number of Tuples in NBP Packet, Maximum Size of a Tuple Name

tupleMax EQU 15 ;maximum number of tuples returned from
; a lookup request

NBPMaxTupleSize EQU 32 ;maximum size of a tuple name

Data Structures

MPP Parameter Block Common Fields for NBP

0
4
6
8

12
16
18
22
24

qLink
qType
ioTrap
ioCmdAddr
ioCompletion
ioResult
ioNamePtr
ioVRefNum
ioRefNum

long
word
word
long
long
word
long
word
word

PRegisterName Parameter Variant

26 csCode word
28 interval byte
29 count byte
30 entityPtr long

34
40

(ntQElPtr)
verifyFlag
filler

byte
byte

Summary of NBP

reserved
reserved
reserved
reserved
address of completion routine
result code
reserved
reserved
driver reference number

command code; always registerName
retry interval
retry count
names table queue element pointer

verify name flag
reserved

3-47

z
S»
3
<D

I

OJ s·
a. s·
cc
-c
a g
z
OJ
.:g

CHAPTER 3

Name-Binding Protocol (NBP)

PLookupName Parameter Variant

26 csCode word command code; always lookupName
28 interval byte retry interval
29 count byte retry count
30 entityPtr long pointer to entity name
34 retBuffPtr long pointer to return data buffer
38 retBuffSize word size in bytes of return buffer
40 maxToGet word maximum number of .matches to get
42 numGotten word number of matches returned

PConfirmName Parameter Variant

26
28
29
30
34
38
39

csCode
interval
count
entityPtr
confirmAddr
newSocket
filler

word
byte
byte
long
long
byte
byte

command code; always con£ irmName
retry interval
retry count
pointer to entity name
address of names table entry to confirm
socket number, if different from specified one
reserved

PRemoveName Parameter Variant

26
28
30

csCode
filler
entityPtr

word
word
long

command code; always removeName
reserved
pointer to entity name

PKillNBP Parameter Variant

26 csCode word command code; always killNBP
pointer to queue element to remove 28 nKillQEl long

Result Codes
noErr
nbpNoConfirm
nbpConfDiff
nbpDuplicate
nbpNotFound
tooManyReqs

cbNotFound
reqAborted
extractErr

0
-1025
-1026
-1027
-1028
-1097

-1102
-1105
-3104

3-48 Summary of NBP

No error
Name not confirmed
Name confirmed for different socket
Name already exists
Name not found
Too many concurrent requests; wait a few minutes, then try the
request again
NBP queue element not found
Request canceled
Can't find tuple in buffer

CHAPTER 4

Zone Information Protocol
{ZIP)

Contents

About ZIP 4-3
Using ZIP 4-4

Getting the Name of Your Application's Zone 4-6
Getting a List of Zone Names for Your Local Network or
Its Internet 4-7

ZIP Reference 4-10
Data Structures 4-10

The XPP Parameter Block for ZIP 4-10
Routines 4-11

Obtaining Zone Information 4-12
Summary of ZIP 4-19

PascalSummary 4-19
Constants 4-19
Data Types 4-19
Routines 4-20

C Summary 4-20
Constants 4-20
Data Types 4-21
Routines 4-21

Assembly-Language Summary 4-22
Constants 4-22
Data Structures 4-22

Result Codes 4-23

Contents

•

4-1

CHAPTER 4

Zone Information Protocol (ZIP)

This chapter describes the Zone Information Protocol (ZIP) that maintains mappings of
zone names to network numbers on internet routers. ZIP is primarily implemented by
routers. A small portion of ZIP is implemented on nodes that are not touters to allow
you to obtain zone information from a router node. This chapter describes only the
portion of ZIP that is implemented on a node that is not a router.

You should read this chapter if you want to obtain

• the name of the zone to which the node belongs that is running your application

• the names of the zones for the local network to which your application's node
is connected

• the names of all the zones that exist throughout the Apple Talk internet to which your
local network belongs

The portion of ZIP that is implemented on nodes that are not routers uses the AppleTalk
Transaction Protocol (ATP) to send requests for zone information to a router node. To
better understand how ZIP handles your requests for information and returns to you
responses to those requests, you should read the chapter u Apple Talk Transaction
Protocol (ATP)" in this book.

For an overview of the Zone Information Protocol and how it fits within the Apple Talk
protocol stack, read the chapter "Introduction to AppleTalk" in this book, which also
introduces and defines some of the terminology used in this chapter. For a description of
the Zone Information Protocol specification, see Inside AppleTalk, second edition.

About ZIP

The Zone Information Protocol (ZIP) provides applications and processes with access to
zone names. A zone is a logical grouping of nodes in an Apple Talk internet, and each
zone is -identified by a name. A zone name is typically used to identify an affiliation
between a group of nodes, such as a group of nodes belonging to a particular department
within an organization.

ZIP maintains the mapping of networks and the zones they include for all networks
belonging to an Apple Talk internet:

• Every node on a network belongs to a zone; a node can belong to only one zone at
a time.

• A nonextended network contains only one zone, and all nodes in that network belong
to the same zone.

• A single extended network can contain nodes that belong to up to 255 different zones.
A single zone can include nodes that belong to different extended networks. Each
Apple Talk extended network has associated with it a list of the zones to which its
nodes can belong. A node joining the network can select its zone from this list.

On each router node in the internet, ZIP builds a zone information table that includes
each network's number (extended networks have network number ranges) in association
with the network's list of zones. Nodes that are not routers, such as end-user systems, do
not contain a zone information table. However, a portion of ZIP is implemented on each

About ZIP 4-3

CHAPTER 4

Zone lnfonnation Protocol (ZIP)

nonrouter node so that applications and processes can gain access to their own node's
zone name, names of all the zones on their local network, or names of all the zones
throughout the internet. The .XPP driver implements the part of ZIP that is on nonrouter
nodes, and it provides an interface that allows an application or process to request zone
name information in a transaction-based dialog. ZIP uses the transaction-based services
of ATP to transport requests from workstation nodes to router nodes. Figure 4-1 shows
ZIP and its underlying protocols. The portion of ZIP that is implemented on nonrouter
nodes, such as workstations, uses the services of ATP.

Flgure4-1 The Zone Information Protocol (ZIP) and the underlying Apple Talk protocols

~
§
ZIP

§
ATP

§
DDP

§
LAP Manager I

§
: I Port

Using ZIP

The Zone Information Protocol provides three functions that you can use to obtain the
names of registered zones. You can use these functions to obtain

• the name of the zone to which your application and its node belong

• the names of the zones in your local network or the names of all the zones that exist
throughout the Apple Talk internet to which your local network belongs

Using ZIP

CHAPTER 4

Zone lnfonnation Protocol (ZIP)

Applications running on nodes connected to both extended and nonextended networks
can use ZIP to get the name of their node's zone. An application running on a node that
belongs to an extended network can call ZIP to get a list of all the zone names associated
with that network. For example, a network administration application might use ZIP to
provide an administrator with a list of the zones for a particular network so that the
administrator can select the correct zone for a node when adding nodes to a network.

You can use ZIP in conjunction with NBP. For example, you can use ZIP to look up zones
on the network, then use NBP to look up names in each zone.

ZIP sends the GetMyZone, GetLocalZones, and GetzoneList functions as AppleTalk
Transaction Protocol (ATP) requests. These requests always ask for a single response.
For example, when you call ZIP to request zone name information, the portion of ZIP
implemented on the node running your application sends a request using the transaction­
based services of ATP to the portion of ZIP implemented on a local router that contains
the zone information table; using ATP, ZIP on the router node transmits a response to
your request.

When you call GetMyZone to get the name of your node's zone, ZIP returns the
complete zone name in a single ATP response and writes that zone name to the buffer
you provide. However, when you want to retrieve a list of zone names belonging
either to your local network or to all of the networks forming the internet, ZIP may not
always be able to return the complete list of names in a single ATP response. In this
case, you need to call the ZIP function repeatedly in a loop in order to retrieve all of the
zone names.

The GetMyZone, GetLocalZones, and GetzoneList functions each use a parameter
block of type XPPParamBlock to contain input and output values for the call. You use
the xCallParam variant record to the XPP parameter block for the ZIP functions. This
parameter block contains an ioRefNum field, which the MPW interface sets to the .XPP
driver reference number.

The parameter block for each of the three ZIP functions includes a csCode field and an
xppSubCode field. You do not need to set these field values before you call the function;
the MPW interface fills in the value for each of these fields. The value for the csCode
field is always xCall. The xppSubCode field value i<;ientifies the specific ZIP function,
and it differs for each of the three functions.

For the three ZIP functions, you specify timeout and retry values that determine the
behavior of the ATP transaction that the ZIP call relies on. You need to set values for
these fields before you call the ZIP function. You use the parameter block's xppTimeout
field to set the timeout value and the xppRetry field to set the retry value. The timeout
tells ATP how long in seconds to wait between each attempt, and the retry value tells it
how may retries it should attempt. For information on how ATP uses these values, see
the chapter "Apple Talk Transaction Protocol (ATP)" in this book.

For each function, you supply a buffer to hold the returned zone name data and a buffer
that ZIP requires for its own use. These two buffers and the XPPParamBlock parameter
block that you allocate for the function belong to ZIP for the life of the call; you must not

Using ZIP 4-5

CHAPTER 4

Zone Information Protocol (ZIP)

manipulate them or alter their contents during the operation. The memory for these
buffers and the parameter block belongs to the function until the function completes
execution.

If you set the function's a sync Boolean parameter to TRUE, either you must provide a
completion routine or your application must poll the parameter block's ioResul t field
to determine when the function completes the operation. See the chapter "Introduction
to AppleTalk" in this book for a discussion of synchronous and asynchronous execution
as it applies to the Boolean parameter.

Getting the Name of Your Application's Zone
Your application can get the name of the zone for the node on which it is running by
calling the GetMyZone function. The zone name is a data structure of type Str32,
and the GetMyZone function writes the zone name to a buffer that you supply. You
set the parameter block's zipBuffPtr field to a pointer for a buffer that must be at
least 33 bytes in size.

You also supply a buffer that is 70 bytes in size as the value of the zipinfoField. You
must set the first word of this buffer to 0 before you call the function. This buffer is for
ZIP to use.

Listing 4-1 shows the application-defined DoGetMyZone function, which illustrates the
use of the GetMyZone function. The DoGetMyZone function declares the parameter block
and the return buffer. Then it assigns values to the some of parameter block fields and
initializes to 0 the first word of the zipinfoField parameter before it calls GetMyZone.
The MPW interface fills in the XPP parameter block ioRefNum, csCode, and
xppSubCode fields, so the DoGetMyZone function doesn't need to assign these values.

Listing 4-1 Using the GetMyZone function

FUNCTION DoGetMyZone(VAR myZoneName: Str32): OSErr;
VAR

xppPB: XPPParamBlock;
myzoneName: ARRAY£1 •• 33] OF Char;

BEGIN
WITH xppPB DO

BEGIN
xppTimeout :; 3; {timeout interval}
xppRetry := 4; {retry count for ZIP requests}
zipBuffPtr :; @myZoneName; {buffer for returned zone name}
zipinfoField[l] .- 0; {initialize first word to 0}

zipinfoField[2] := 0;
END;

DoGetMyZone := GetMyZone(@xppPB, FALSE);
END;

4-6 Using ZIP

CHAPTER 4

Zone lnfonnation Protocol (ZIP)

If there is no router present in the network, the function returns a function result of
noBr idgeErr. If the retry count is exceeded before the ATP transaction that ZIP relies
on receives a valid response, the function returns a function result of reqFailed. The
function returns a function result of tooManyReq when too many concurrent ATP
requests have been made. If you receive a function result of tooManyReq, wait a minute
or so, and then try again; some transactions can take up to 30 seconds to complete. For
the complete list of function results, see the description of the function GetMyZone
beginning on page 4-12.

Getting a List of Zone Names for Your Lopal Network
or Its Internet
If your application is running on a node that belongs to an extended network, the
application can use the GetLocalZones function to obtain a list of the names of the
zones in its node's local network. An application running on a node that belongs to an
extended network can also use the GetZoneList function to obtain a list of the names
of the zones throughout the AppleTalk internet to which its node's local network
belongs. These functions behave similarly.

ZIP returns a single ATP response per request. Because the complete list of zone
names may not fit in a single ATP response, you need to make repeated calls to either
GetLocalZones or GetZoneList until you receive all of the zone names. You must
allocate a buffer to hold the zone names data that the ZIP function returns and point
to that buffer from the function's zipBuffPtr parameter block field. This buffer must
be 578 bytes in size, large enough to hold an entire ATP response. ZIP returns the zone
names into this buffer as a packed array of packed Pascal strings.

The zipNumZones field returns the actual number of zone names that ZIP placed in the
buffer. You must set the zipLastFlag field to 0 before you execute the GetZoneList
or GetLocalZones function. If the zipLastFlag parameter is still 0 when the
command has completed execution, then ZIP is waiting to return more zone names. In
this case you must empty the buffer, or allocate a new one, and call the GetZoneList or
GetLocalZones function again immediately. When there are no more zone names to
return, ZIP sets the zipLastFlag field to a nonzero value. The zipinfoField field is
a 70-byte data buffer that you must allocate for use by ZIP. The first time you call any of
these functions, you must set the first word of this field to 0. You must not change any
values in this field subsequently.

Listing 4-2 shows the application-defined DoGetZoneList function, which illustrates
how to use the GetzoneList function. The GetLocalzones function operates in
exactly the same fashion.

This DoGetzoneList function allocates a buffer for zone names and repeatedly calls
the GetzoneList function to get a list of zone names. If GetzoneList returns a
function result of noErr, then the DoGetZoneList code calls the application-defined
MyZIPExtract function, shown in Listing 4-3, to remove a zone name from the
GetZoneList buffer and place it in the application's buffer. The DoGetZoneList code
in Listing 4-2 does not show the application-defined MyAddToZoneList that writes the
zone name to the application's buffer.

Using ZIP 4-7

•

CHAPTER 4

Zone Information Protocol (ZIP)

Listing 4-2 Using GetzoneList to retrieve names of zones throughout the Apple Talk internet

FUNCTION DoGetZoneList: OSErr;
CONST

kZoneBufferSize = 578;
VAR

{required size of zone list buffer}

xppPB: XPPParamBlock;
result: OSErr;
zoneBuffer: Ptr;
index: Integer;
zoneName: Str32;

BEGIN
{Allocate buffer for returned zone names.}

zoneBuffer := NewPtr(kZoneBufferSize);
IF zoneBuffer = NIL THEN

result := MemError
ELSE
BEGIN

WITH xppPB DO
BEGIN

xppTimeout := 3;
xppRetry := 4;
zipBuffPtr := zoneBuffer;
zipLastFlag := 0;
zipinfoField[l] := 0;
zipinfoField[2] := 0;

{timeout interval}
{retry count}
{zone names returned here}
{set to 0 first time through}
{first word of zipinfoField must be }
{ initialized to 0 the first time}

END;

{Loop to get all of the zone names.}
REPEAT

result := GetZoneList(@xppPB, FALSE);
IF (result = noErr) THEN

FOR index := 1 TO xppPB.zipNumZones DO
IF MyZIPExtract(zoneBuffer, xppPB.zipNumZones, index,

zoneName) = noErr THEN
MyAddToZoneList(zoneName);

UNTIL (xppPB.zipLastFlag <> 0) OR (result<> noErr);
DisposPtr(zoneBuffer); {release memory}

END;
DoGetZoneList := result;

END;

4-8

When you call the GetZoneList function or the GetLocalZones function to obtain a
list of zone names, ZIP returns the zone names as a packed array of packed Pascal
strings. Your application must include a routine to extract the zone names that you want
from the buffer.

Using ZIP

CHAPTER 4

Zone lnfonnation Protocol (ZIP)

Listing 4-3 shows an application-defined function called MyZipExtract that extracts
a particular zone name from the buffer of packed zone names returned by either
GetZoneList or GetLocalZones.

The MyZipExtract function takes a numinBuf input parameter that specifies the
number of zone names in the buffer pointed to by the theBuffer parameter. For the
numinBuf parameter, you specify the value that ZIP returned in the zipNumZones field
of the XPP parameter block used for the GetZoneList or GetLocalZones function.

You use the whichOne input parameter to identify the zone name to extract. The
MyZIPExtract function returns the zone name in the zoneName string parameter.

The MyZIPExtract function returns a result of paramErr if whichOne is 0 or
whichone is greater than the number of zones in the buffer. Otherwise, the function
returns a function result of noErr.

Listing 4-3 Extracting a zone name from the list of zone names returned in the buffer

FUNCTION MyZIPExtract (theBuffer: Ptr; numinBuf: Integer; whichOne: Integer;
VAR zoneName: Str32): OSErr;

VAR
result: OSErr;
zonePtr: Ptr;

BEGIN
{preflight the input parameters}
IF (whichOne = 0) OR (whichOne > numinBuf) THEN

result := paramErr
ELSE
BEGIN

zonePtr := theBuffer;
{Look for whichOne}
REPEAT

whichOne := whichOne 1;
IF whichOne <> 0 THEN

{move pointer to next zone name}
zonePtr := Ptr(ORD4(zonePtr) +

Length(StringPtr(zonePtr)A) + 1);
UNTIL whichOne = 0;

{return the zone name}
BlockMove(zonePtr, @zoneName,

Length(StringPtr(zonePtr)A) + 1);
result := noErr;

END;
MyZIPExtract := result;

END;

Using ZIP 4-9

CHAPTER 4

Zone Information Protocol (ZIP)

ZIP Reference

This section describes the data structure and the functions that are specific to the
Zone Information Protocol (ZIP). The "Data Structures" section shows the Pascal
data structure for the XPP parameter block. The "Routines" section describes the
ZIP functions.

Data Structures
This section describes the XPP parameter block that you use to provide information to
and receive it from ZIP.

The XPP Parameter Block for ZIP

TYPE

4-10

The Zone Information Protocol's GetMyZone, GetLocalZones, and GetZoneList
functions implemented by the .XPP driver use the xCallParam variant record to the
XPP parameter block defined by the XPPParamBlock data type. Your application uses
this parameter block to specify input values to and receive output values from a ZIP
function. This section defines the parameter block fields that are common to all of the
ZIP functions and that are fiJled in by the MPW interface or returned by the function;
your application does not need to fill in these fields. This section does not define
reserved fields, which are used either internally by the .XPP driver or not at all. The
fields for the xCallParam variant record are defined in the function descriptions.

XPPParalilBlock =
PACKED RECORD

qLink: QElemPtr; {reserved}
qType: Integer; {reserved}
ioTrap: Integer; {reserved}
ioCmdAddr: Ptr; {reserved}
ioCompletion: ProcPtr; {completion routine}
ioResult: OSErr; {result code}
cmdResult: Long!nt; {reserved}
ioVRefNum: Integer; {reserved}
ioRefNum: Integer; {driver reference number}
csCode: Integer; {primary command code}
CASE XPPPrmBlkType OF

xCallParam
xppSubCode: Integer; {secondary command code}
xppTimeout: Byte; {.XPP timeout period}
xppRetry: Byte; {retry count}
fillerl: Integer; {reserved}

ZIP Reference

END;

CHAPTER 4

Zone lnfonnation Protocol (ZIP)

zipBuffPtr:
zipNumZones:
zipLastFlag:

Ptr;
Integer;
Byte;

{returned zone names}
{number of zones returned}
{nonzero when all zone names }
{ have been returned}

filler2: Byte; {reserved}
zipinfoField: PACKED ARRAY[l •. 70] OF Byte;

{reserved}

XPPPar.mBlkPtr = AXPPParamBlock;

Routines

Field descriptions
ioCompletion

ioResult

ioRefNum

csCode

A pointer to a completion routine that you can provide. When you
execute a function asynchronously, the J<PP driver calls your
completion routine when it completes execution of the function if
you specify a pointer to the routine as the value of this field. Specify
NIL for this field if you do not wish to provide a completion
routine. If you execute a function synchronously, the J<PP driver
ignores the ioCompletion field. For information about completion
routines, see the chapter ~~Introduction to Apple Talk" in this book.

The result of the function. When you execute the function asynchro­
nously, the function sets this field to 1 and returns a function result
of noErr as soon as the function begins execution. When the
function completes execution, it sets the ioResult field to the
actual result code.

The .XPP driver reference number. The MPW interface fills in
this field.

The command code of the XPP command to be executed. The MPW
interface fills in this field.

This section describes the ZIP functions. The ZIP functions allow you to

• obtain the name of the zone to which the node belongs that is running your
application

• obtain a list of all the zones for the local network of the node that is running your
application

• obtain a list of all the zones associated with the internet that the node running your
application belongs to

An arrow preceding a parameter indicates whether the parameter is an input parameter,
an output parameter, or both:

Arrow Meaning

~ Input

~ Output

H Both

ZIP Reference 4-11

•

CHAPTER 4

Zone lnfonnation Protocol (ZIP)

Obtaining Zone Information

This section describes the Zone Information Protocol (ZIP) functions: GetMyZone,
GetLocalZones, and GetZoneList. The GetMyZone function returns the name of the
zone that your application's node belongs to. The GetLocalZones function returns a
list of zone names on the local network that your application's node belongs to. The
GetZoneList function returns a complete list of zones on the internet that your
application's node belongs to.

Assembly-language note

The J(PP driver functions all use the same value (xCall, which is equal
to 246) for the csCode parameter to the XPP parameter block. The
xCall routine uses the value of the xppSubCode parameter to
distinguish between the functions, as follows:

Function xppSubCode Value

GetMyZone zipGetMyZone 7

GetLocalZones zipGetLocalZones 5

GetZoneList zipGetzoneList 6 •

GetMyZone

4-12

The GetMyZone function returns the zone name of the node on which your application
is running.

FUNCTION GetMyZone (thePBptr: XPPParmBlkPtr;
async: Boolean): OSErr;

thePBptr

a sync

A pointer to an XPP parameter block.

A Boolean that indicates whether the function should be executed
asynchronously or synchronously. Specify TRUE for asynchronous
execution.

Parameter block

---? ioCompletion ProcPtr A pointer to a completion routine.
~ ioResult OS Err The function result.
---? csCode Integer Always xCall for this function.
---? xppSubCode Integer AlwayszipGetMyZonefor

this function.
---? xppTimeout Byte The retry interval in seconds.
---? xppRetry Byte The retry count.
---? zipBuffPtr Ptr A pointer to data buffer.
---? zipinfoField PACKED ARRAY A data buffer for use by ZIP; first

word set to 0.

Zl P Reference

DESCRIPTION

CHAPTER 4

Zone lnfonnation Protocol (ZIP)

Field descriptions
xppSubCode

xppTimeout

xppRetry

zipBuffPtr

zipinfoField

A routine selector. This field is automatically set by the MPW
interface to zipGetMyZone for this function.

The amount of time, in seconds, that the .ATP driver should wait
between attempts to obtain the data. A value of 3 or 4 seconds for
the xppTimeout field is usually sufficient.

The number of times the .ATP driver should attempt to obtain the
data before returning the request failed (reqFailed) result code.
A value of 3 or 4 is usually sufficient.

A pointer to a 33-byte data buffer that you must allocate. ZIP
returns the zone name into this buffer as a Pascal string.

A 70-byte data buffer that you must allocate and initialize for use by
ZIP. You must set the first word of this buffer to 0 before you call the
GetMyZone function.

Before you call GetMyZone, you must allocate a buffer that is 33 bytes in size and set the
zipBuffPtr par~eter block field to point to this buffer. ZIP writes the zone name that
it retrieves to this buffer that you supply. You must also supply a buffer that is 70 bytes
in size as the value of the zipinfoField field. This buffer is for ZIP to use. An applica­
tion running on a node on either an extended or a nonextended network can use this
function to retrieve the node's zone name.

SPECIAL CONSIDERATIONS

The memory that you allocate for the parameter block and the two buffers required
by the GetMyZone function belongs to the JCPP driver until the function completes
execution. You can reuse the memory or dispose of it after the operation completes.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

To execute the GetMyZone function from assembly language, call the_ Control
trap macro with a value of xCall in the csCode field of the parameter block and
a value of zipGetMyZone in the xppSubCode field of the parameter block. To
execute this function from assembly language, you must also specify the JCPP driver
reference number.

noErr
noBridgeErr
reqFailed
tooManyReqs
noDataArea

ZIP Reference

0
-93

-1096
-1097
-1104

No error
No router is available
Request to contact router failed; retry count exceeded
Too many concurrent requests
Too many outstanding ATP calls

4-13

•

SEE ALSO

CHAPTER 4

Zone Information Protocol (ZIP)

For the XPPParamBlock data type, see "The XPP Parameter Block for ZIP" beginning
on page 4-10.

To get the correct reference number for the .XPP driver, you can use the Device
Manager's OpenDriver function, which returns the driver reference number. For
information about the OpenDriver function, see the chapter "Device Manager" in
Inside Macintosh: Devices.

GetLocalZones

The GetLocalZones function returns a list of all the zone names on the local network­
that is, the network that includes the node on which your application is running.

FUNCTION GetLocalZones (thePBptr: XPPParmBlkPtr;
async: Boolean): OSErr;

thePBptr

a sync

A pointer to an XPP parameter block.

A Boolean that indicates whether the function should be executed
asynchronously or synchronously. Specify TRUE for asynchronous
execution.

Parameter block

~ ioCompletion ProcPtr A pointer to a completion routine.
f- ioResult OSErr The function result code.
~ csCode Integer Always xCall for this function.
~ xppSubCode Integer Always zipGetLocalZones.
~ xppTimeout Byte The retry interval in seconds.
~ xppRetry Byte The retry count.
~ zipBuffPtr Ptr A pointer to data buffer.
f- zipNumZones Integer The number of names returned.
f- zipLastFlag Byte A flag that is nonzero if there are no

more names.
~ zipinfoField PACKED ARRAY A data buffer for use by ZIP; first word

Field descriptions

xppSubCode

xppTimeout

xppRetry

4-14 ZIP Reference

set to 0.

A routine selector. This field is automatically set by the MPW
interface to zipGetLocalZones for this function.

The amount of time, in seconds, that the .ATP driver should wait
between attempts to obtain the data. A value of 3 or 4 seconds for
the xppTimeout field is usually sufficient.

The number of times the .ATP driver should attempt to obtain the
data before returning the request failed (reqFailed) result code. A
value of 3 or 4 is usually sufficient.

DESCRIPTION

CHAPTER 4

Zone Information Protocol {ZIP)

zipBuffPtr

zipNumZones

zipLastFlag

zipinfoField

A pointer to a 578-byte data buffer that you must allocate. ZIP
returns the zone names into this buffer as a packed array of
Pascal strings.

The number of zone names that ZIP placed in the data buffer.

A value that indicates if there are more zone names for your
network beyond those that ZIP returned in the zipBuffPtr field.
The J(PP driver sets this field to 1 if there are no more zone names
for your network.

A 70-byte data buffer that you must allocate for use by ZIP. You
must set the first word of this buffer to 0 before you call the
GetLocalZones function the first time through the loop, and
you must not change the contents of this field thereafter.

A single extended network can have more than one zone associated with it. Your
application can use the GetLocalZones function to retrieve the list of zones for its
node's local network. The GetLocalZones function uses ATP to retrieve the zone
information. The buffer that you allocate to hold the returned zone names is the size
of a single ATP response. You must call the GetLocalZones function repeatedly until
all of the zones for the local network have been returned.

Your application must check the zipLastFlag field to determine if there are more zone
names for your network. If the value of this field is 1, there are no more zone names for
your local network. If the value of this field is still 0 when the GetLocalZones function
completes execution, you must empty the data buffer pointed to by the zipBuffPtr
parameter and immediately call the GetLocalZones function again without changing
the value in the zipinfoField parameter.

If you receive a GetLocalZones function result of tooManyReqs, wait a minute or so,
and then try again; some transactions can take up to 30 seconds to complete.

This function works for extended networks only. If the node that is running your
application is on a nonextended network and you want the name of that node's zone,
use the GetMyZone function.

SPECIAL CONSIDERATIONS

The memory that you allocate for the parameter block and the two buffers required by
the GetLocalZones function belongs to the .XPP driver until the function completes
execution. You can reuse the memory or dispose of it after the operation completes.

ASSEMBLY-LANGUAGE INFORMATION

To execute the GetLocalZones function from assembly language, call the_ Control
trap macro with a value of xCall in the csCode field of the parameter block and a
value of zipGetLocalZones in the xppSubCode field of the parameter block. To
execute this function from assembly language, you must also specify the .XPP driver
reference number.

Zl P Reference 4-15

RESULT CODES

SEE ALSO

CHAPTER 4

Zone Information Protocol (ZIP)

noErr
noBridgeErr
reqFailed
tooManyReqs
noDataArea

0
-93

-1096
-1097
-1104

No error
No router is available
Request to contact router failed; retry count exceeded
Too many concurrent requests
Too many outstanding ATP calls

For the XPPParamBlock data type, see 11The XPP Parameter Block for ZIP" beginning
on page 4-10.

To get the correct reference number for the .XPP driver, you can use the Device
Manager's OpenDriver function, which returns the driver reference number. For
information about the OpenDriver function, see the chapter "Device Manager" in
Inside Macintosh: Devices.

GetZoneList

4-16

The GetzoneList function returns a complete list of all the zone names on the internet.

FUNCTION GetZoneList (thePBptr: XPPParmBlkPtr;
async: Boolean): OSErr;

thePBptr

a sync

A pointer to an XPP parameter block.

A Boolean that indicates whether the function should be executed
asynchronously or synchronously. Specify TRUE for asynchronous
execution.

Parameter block

-+ ioCompletion ProcPtr A pointer to a completion routine.
~ ioResult OSErr The function result.
-+ esC ode Integer Always xCall for this function.
-+ xppSubCode Integer Always zipGetZoneList for this

function.
-+ xppTimeout Byte The retry interval in seconds.
-+ xppRetry Byte The retry count.
-+ zipBuffPtr Ptr A pointer to data buffer.
~ zipNumZones Integer The number of names returned.
~ zipLastFlag Byte A flag that is nonzero if there are no

more names.
-+ zipinfoField PACKED ARRAY A data buffer for use by ZIP; first word

set to 0.

ZIP Reference

DESCRIPTION

CHAPTER 4

Zone Information Protocol (ZIP)

Field descriptions
xppSubCode

xppTimeout

xppRetry

zipBuffPtr

zipNumZones

zipLastFlag

zipinfoField

A routine selector. This field is automatically set by the MPW
interface to zipGetZoneList for this function.

The amount of time, in seconds, that the .ATP driver should wait
between attempts to obtain the data. A value of 3 or 4 seconds for
the xppTimeout field generally gives good results.

The number of times the .ATP driver should attempt to obtain the
data before returning the request failed (reqFailed) result code.
A value of 3 or 4 is usually sufficient.

A pointer to a 578-byte data buffer that you must allocate. ZIP
returns the zone names into this buffer as a packed array of
Pascal strings.

The number of zone names that ZIP placed in the data buffer.

A value that indicates if there are more zone names for your
network beyond those that ZIP returned in the zipBuffPtr field.
The .XPP driver sets this field to 1 if there are no more zone names
for your network.

A 70-byte data buffer that you must allocate for use by ZIP.
Typically, you call GetZoneList repeatedly from within a loop.
You must set the first word of this buffer to 0 before you call the
GetzoneList function the first time through the loop, and you
must not change the contents of this field thereafter.

The GetzoneList function returns a complete list of all the zone names on the internet
to which the local network of the node running your application belongs. The
GetzoneList function uses ATP to retrieve the zone information. The buffer that you
allocate to hold the returned zone names is the size of a single ATP response. You must
call the GetZoneList function repeatedly until all of the zones for the local network
have been returned.

Your application must check the zipLastFlag field to determine if there are more zone
names for your network. If the value of this field is 1, there are no more zone names for
your local network. If the value of this field is still 0 when the GetZoneList function
completes execution, you must empty the data buffer pointed to by the zipBuffPtr
parameter and immediately call the GetzoneList function again without changing the
value in th~ zipinfoField parameter.

If you receive a GetzoneList function result of tooManyReqs, wait a minute or so,
and then try again; some transactions can take up to 30 seconds to complete.

To obtain a list of only the zone names on the local network, use the GetLocalzones
function instead. If you use the GetZoneList function on a nonextended network, the
function returns the reqFailed result code.

ZIP Reference 4-17

•

CHAPTER 4

Zone Information Protocol (ZIP)

SPECIAL CONSIDERATIONS

The memory that you allocate for the parameter block and the two buffers required by
the GetZoneList function belongs to the J<PP driver until the function completes
execution. You can reuse the memory or dispose of it after the operation completes.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

4-18

To execute the GetzoneList function from assembly language, call the_ Control trap
macro with a value of xCall in the csCode field of the parameter block and a value of
zipGetZoneList in the xppSubCode field of the parameter block. To execute this
function from assembly language, you must also specify the J<PP driver reference
number.

noErr
noBridgeErr
reqFailed
tooManyReqs
noDataArea

0
-93

-1096
-1097
-1104

No error
No router is available
Request to contact router failed; retry count exceeded
Too many concurrent requests
Too many outstanding ATP calls

For the XPPParamBlock data type, see "The XPP Parameter Block for ZIP" beginning
on page4-10.

To get the correct reference number for the .XPP driver, you can use the Device
Manager's Ope nor i ver function, which returns the driver reference number. For
information about the Open Driver function, see the chapter "Device Manager" in
Inside Macintosh: Devices.

ZIP Reference

CHAPTER 4

Zone Information Protocol (ZIP)

Summary of ZIP

Pascal Summary

Constants

CONST
{csCode for .XPP extended calls}
xCall 246;

{.XPP driver unit and reference number}
xppUnitNum
xppRefNum

=

=

{rputine selectors}

40;
-41;

zipGetLocalZones 5; {routine selector for local zone names}
zipGetzoneList
zipGetMyZone =

Data Types

The XPP Parameter Block for ZIP

TYPE XPPParamBlock =
PACKED RECORD

qLink:
qType:
ioTrap:
ioCmdAddr:
:LoCompletion:
ioResult:
cmdResult:
ioVRefNum:
ioRefNum:
csCode:

Summary of ZIP

6;
7;

{routi:pe selector for internet zone list}
{routine selector for node's zone name}

QElemPtr;
Integer;
Integer;
Ptr;
ProcPtr;
OSErr;
Longint;
~nteger;

Integer;
Integer;

{reserved}
{reserved}
{reserved}
{reserved}
{completion routine}
{result code}
{reserved}
{reserved}
{driver reference number}
{primary command code}

4-19

•

CHAPTER 4

Zone Information Protocol (ZIP)

CASE XPPPrmBlkType OF
xCallParam

xppSubCode:
xppTimeout:
xppRetry:
filler!:
zipBuffPtr:
zipNumZones:
zipLastFlag:

Integer;
Byte;
Byte;
Integer;
Ptr;
Integer;
Byte;

{secondary command code}
{timeout period for .XPP}
{retry count}
{reserved}
{returned zone names}
{number of zones returned}
{nonzero when all zone }
{ names have been returned}

filler2: Byte; {reserved}
zipinfoField: PACKED ARRAY[l •• 70] OF Byte;

{reserved for use by .XPP}
END;
XPPParmBlkPtr "XPPParamBlock;

Routines

Obtaining Zone Information

FUNCTION GetMyZone

FUNCTION GetLocalZones

FUNCTION GetZoneList

C Summary

Constants

/*MPP parameter constants*/

(thePBptr: XPPParmBlkPtr; async: Boolean): OSErr;

(thePBptr: XPPParmBlkPtr; async: Boolean): OSErr;

(thePBptr: XPPParmBlkPtr; async: Boolean): OSErr;

#define MPPioCompletion MPP.ioCompletion
#define MPPioResult MPP.ioResult
#define MPPioRefNum MPP.ioRefNum
#define MPPcsCode MPP.csCode

enum {
xCall

enum {

xppUnitNum
xppRefNum

4-20 Summary of ZIP

246};

40,

-41};

/*.XPP csCode*/
/*csCode for .XPP extended calls*/

/*.XPP driver unit and reference *I
I* numbers*/
/*XPP unit number *I
/*XPP reference number */

CHAPTER 4

Zone lnfonnation Protocol (ZIP)

enum {
zipGetLocalZones
zipGetZoneList
zipGetMyZone

/*XPP routine selectors*/
5,

= 6,
; 7};

/*routine selector for local zone names*/
/*routine selector for internet zone list*/
/*routine selector for node's zone name*/

Data Types

The XPP Parameter Block for ZIP

#define XPPPBHeader
QElem *qLink;
short qType;
short ioTrap;
Ptr ioCmdAddr;
ProcPtr
OS Err
long
short
short
short

typedef struct {
XPPPBHeader

short
char
char
short
Ptr
short
char
char
char

}XCallParam;

Routines

ioCompletion;
ioResult;
cmdResult;
ioVRefNum;
ioRefNum;
csCode;

xppSubCode;
xppTimeout;
xppRetry;
fillerl;
zipBuffPtr;
zipNumZones;
zipLastFlag;
filler2;
zipinfoField[70];

Obtaining Zone Information

/*reserved*/\
/*reserved*/\
/*reserved *I\
/*reserved*/\
/*completion routine*/\
/*result code*/\
/*reserved*/\
/*reserved*/\
/*driver reference number*/
/*primary command code*/

/*secondary command code*/
/*retry interval in seconds*/
/*retry count*/

/*pointer to buffer of 578 bytes*/
/*number of zone names in response*/
/*nonzero if no more zones*/
/*filler*/
/*initial call, set first word to 0*/

pascal OSErr GetMyZone (XPPParmBlkPtr thePBptr, Boolean async);

pascal OSErr GetLocalZones (XPPParmBlkPtr thePBptr, Boolean async);

pascal OSErr GetZoneList (XPPParmBlkPtr thePBptr, Boolean async);

Summary of ZIP 4-21

CHAPTER 4

Zone Information Protocol (ZIP)

Assembly-Language Summary

Constants

XPPcsCode

xCall EQU 246 ;csCode for XPP extended calls

XPP Driver Unit Reference Number

xppUnitNum EQU 9 ;XPP unit number

XPP xCall Subcodes for ZIP Commands

ZGetMyZone EQU 7 ;selector for GetMyZone command
ZGetZoneList EQU 8 ;selector for GetZoneList command
ZGetLocalZones EQU 9 ;selector for GetLocalZones command

Data Structures

XPP Parameter Block Common Fields for ZIP Routines

0 qLink long reserved
4 qType word reserved
6 ioTrap word reserved
8 ioCmdAddr long reserved

12 ioCompletion long address of completion routine
16 ioResult word result code
18 cmdResult long reserved
22 ioVRefNum word reserved
24 ioRefNum word driver reference number

GetMyZone

28 xppSubCode word always zipGetZoneList for this function
30 xppTimeout byte retry interval in seconds
31 xppRetry byte retry count
34 zipBuffPtr long pointer to data buffer
42 zipinfoField 70bytes data buffer for use by ZIP; first word set to 0

4-22 Summary of ZIP

CHAPTER 4

Zone lnfonnation Protocol (ZIP)

GetLocalZones

28 xppSubCode
30 xppTimeout
31 xppRetry
34 zipBuffPtr
38 zipNumZones
40 zipLastFlag
42 zipinfoField

GetZoneList

28 xppSubCode
30 xppTimeout
31 xppRetry
34 zipBuffPtr
38 zipNumZones
40 zipLastFlag
42 zipinfoField

Result Codes

0 noErr
noBridgeErr
reqFailed
tooManyReqs
nooataArea

-93
-1096
-1097
-1104

word always zipGetLocalZones for this function
byte retry interval in seconds
byte retry count
long pointer to data buffer
word number of names returned
byte nonzero if no more names
70bytes data buffer for use by ZIP; first word set to 0

word always zipGetzoneList for this function
byte retry interval in seconds
byte retry count
long pointer to data buffer
word number of names returned
byte nonzero if no more names
70bytes data buffer for use by ZIP; first word set to 0

No error
No router is available
Request to contact router failed; retry count exceeded
Too many concurrent requests
Too many outstanding ATP calls

Summary of ZIP 4-23

CHAPTER 5

Apple Talk Data Stream
Protocol (ADSP)

Contents

About ADSP 5-3
Connections, Connection Ends, and Connection States 5-6
Connection Listeners 5-7
Reliable Delivery of Data 5-8
Unsolicited ADSP Events 5-8

About ASDSP 5-9
The Authentication Process 5-10
The Data Encryption Feature 5-11

UsingADSP 5-11 •
Allocating Memory for ADSP 5-12
Creating and Using a Connection Control Block 5-12
Opening and Maintaining an ADSP Connection 5-13
Creating and Using a Connection Listener 5-22
Writing a User Routine for Connection Events 5-26

Using ASDSP 5-29
Opening a Secure Connection 5-30

From the Initiator's End 5-30
From the Recipient End 5-32
Sending Encrypted Data Across a Secure Connection 5-34

ADSP Reference 5-35
Data Structures 5-35

The ADSP Connection Control Block Record 5-35
The Address Block Record 5-38
The DSP Parameter Block 5-38
The ASDSP Parameter Block 5-41
The TRSecureParams Record 5-42

Contents 5-1

CHAPTER 5

Routines 5-43
Establishing and Terminating an ADSP Connection 5-44
Establishing and Terminating an ADSP Connection Listener 5-63
Maintaining an ADSP Connection and Using It to Exchange Data 5-69

Summary of ADSP 5-77
Pascal Summary 5-77

Constants 5-77
Data Types 5-78

C Summary 5-82
Constants 5-82
Data Types 5-84

Assembly-Language Summary 5-90
Constants 5-90
Data Structures 5-92

Result Codes 5-94

5-2 Contents

CHAPTER 5

Apple Talk Data Stream Protocol (ADSP)

This chapter describes the Apple Talk Data Stream Protocol (ADSP) that you use to
establish a session to exchange data between two network processes or applications in
which both parties have equal control over the communication. You should read this
chapter if you want to write an application that supports the exchange of more than a
small amount of data between two parties who each can both send and receive streams
of data.

This chapter also describes the AppleTalk Secure Data Stream Protocol (ASDSf), a secure
version of ADSP, that allows users of your application to communicate over an ADSP
session after the users' identities have been authenticated. Users can then exchange
encrypted data over the session. For your application to use ASDSP, the system on which
it runs must have the Apple Talk Open Collaboration Environment (AOCE) software
installed and must have access to an AOCE server. To use ASDSP, you must also use the
Authentication Manager, which is a component of the AOCE software. For information
on the Authe11tication Manager, refer to Inside Macintosh: AOCE Application Programming
Interfaces.

ASDSP enhances ADSP with authentication and encryption features. When this chapter
discusses components of ADSP, such as connection ends and connection listeners, you
can assume that the information also applies to ASDSP. The sections in this chapter that
discuss ASDSP describe any specific differences between it and the standard version of
ADSP. To use ASDSP, you should be familiar with ADSP.

For an overview of ADSP and how it fits within the AppleTalk protocol stack, read the
chapter "Introduction to Apple Talk" in this book, which also introduces and defines
some of the terminology used in this chapter. For a complete explanation of the ADSP
specification, see Inside AppleTalk, second edition.

AboutADSP

ADSP includes both session and transport services, and it is the most commonly used of
the Apple Talk transport protocols. The .DSP driver implements ADSP. ADSP allows you
to establish and maintain a connection between two Apple Talk network entities and
transfer data across this connection as a continuous stream. Because ADSP is a client
of DDP, data that you transmit using ADSP is actually sent and received over the
Apple Talk internet in packets. However, ADSP builds a session connection on top of
the packet transfer services that DDP provides so that applications using ADSP can
exchange data as a continuous stream. Figure 5-1 on page 5-4 shows ADSP and the
und~rlying protocols that it uses; ADSP is a client of DDP, just as your application is a
client of ADSP.

AboutADSP 5-3

5-4

CHAPTER 5

Apple Talk Data Stream Protocol (ADSP)

Figure 5·1 ADSP and its underlying protocols

ADSP

DDP

LAP Manager I
§
Port

Communication between two applications using ADSP occurs over a connection that is
made between the two sockets that these network entities use; ADSP assigns a socket to
be used when you initialize each end of the connection, and your application becomes
a client of that socket. Because this connection exists for the duration of the exchange,
ADSP is called a connection-oriented protocol. ADSP manages and controls the data flow
between the two sockets throughout the session to ensure that

• the data is delivered and received in the order in which it was sent

• duplicate data is not sent

• the application or process at the receiving end of the connection has the buffer
capacity to accept the data

In an ADSP session, both ends of the connection have equal control over the communica­
tion in a peer-to-peer relationship. For the two ends of an ADSP connection to function
properly, each must maintain information to control the connection and determine the
connection state. To accommodate these requirements, the socket at either end of the
connection has associated with it information that defines the state of the connection
and information that the application and ADSP use to. control the connection and
communicate over it. The combination of a socket and the ADSP information maintained
by the socket client is referred to as a connection end. To create a connection, two
connection ends must be set up and initialized. Each connection end views itself as the
local end and the other as the remote end.

AboutADSP

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

Your application can use ADSP to

• create a connection end

• request a connection with a remote connection end

• create a connection listener to wait passively for connection requests from remote
connection ends (see "Connection Listeners" on page 5-7 for more information)

• read data from and write it to an open connection

• close a connection without removing it

• remove a connection end

Figure 5-2 shows the order in which applications commonly call the ADSP routines to
perform these functions for a connection end. (Figure 5-4 on page 5-8 shows this for a
connection listener.)

Figure 5-2 Steps for creating an ADSP connection end

.----~---~-----

Create connection end

Open connection

Use connection
(read bytes, write bytes,
send attention message,
get status, forward reset)

D
Close connection

D
Remove connection end

ADSP provides for a full-duplex data stream between the two ends of the connection
that allows for a full-duplex dialog; this means that either end of the connection can
call routines to send data at any time. (However, full-duplex does not mean that both
connection ends actually send electrical signals at the same time; ADSP controls this
process.) See the chapter "Introduction to AppleTalk" in this book for more information
on full-duplex communication.

AboutADSP s-s

5-6

CHAPTER 5

Apple Talk Data Stream Protocol (ADSP)

In addition to the full-duplex data stream that an ADSP session maintains, ADSP allows
either end of a connection to send an attention message to the other end without
interrupting the primary flow of data.

Among the features that ADSP provides are

• an end-of-message feature that lets you break streams of data into logical messages

• an attention-message feature that lets you and your partner application signal to each
other outside the normal exchange of data

• a forward-reset feature that lets you cancel the delivery of any data that is in your
connection end's send queue and any data that you have sent that is in transit and
that the remote connection end has not received

• a built-in flow control feature that ensures that your application sends data only if its
remote partner has the buffer capacity to receive it

Connections, Connection Ends, and Connection States
A connection is an association between two sockets that supports the flow of data
between the clients of those sockets in a reliable way. Each socket can maintain
concurrent ADSP connections with several other sockets, but there can be only one
ADSP connection between any two sockets at one time. For example, a single socket on
node A can have multiple concurrent sessions consisting of one connection to a socket on
node B, one connection to a socket on node C, and one connection to a socket on node D.

When you establish an ADSP connection end, you allocate a nonrelocatable block of
memory called a connection control block (CCB) in which ADSP stores state informa­
tion about the connection end. When you initialize the connection end, ADSP uses the
CCB to set up control information that it maintains and uses for synchronizing communi­
cation with the other socket client and for error checking.

You can read the CCB fields to gain information about the current state of the connection
end. In addition to the unique AppleTalk internet address associated with a socket, each
instance of a connection end has associated with it a connection ID that identifies it. You
can open a connection for a socket and close that connection without actually removing
the connection end, and then open another connection for the same socket. When you
close a connection, the socket number remains associated with the connection, as do the
data structures whose memory you allocated. ADSP uses this to ensure that any data
meant for the old connection end is not delivered to the new connection end using the
same socket number and data structures.

ADSP cannot deliver packets to a connection end based on the AppleTalk internet socket
address alone. The connection ID ensures that a packet is delivered to the specific
connection end for which it was intended. You call the new connection ID (dspNewCID)
routine to cause ADSP to assign a connection ID to the connection end before you open a
connection. ADSP assigns a connection ID number, which it includes in every packet that
it delivers from your connection end to a remote connection end.

AboutADSP

Application

CHAPTER 5

Apple Talk Data Stream Protocol (ADSP)

Figure 5-3 ADSP connection ends and their components

Connection end

~ Connection 10

Socket llntemet address

Connection control and
state information

Session

Connection end

Connection 10

Socket !Internet address

Connection control and
state information

Application

Figure 5-3 shows two connection ends and the client applications that use them to
participate in a session with each other over an ADSP connection. This figure shows
the components that constitute a connection end.

At any time, either end of a potential ADSP connection can initiate a session. Also, either
end of the connection can tear down the connection when it is no longer needed.

• When two connection ends establish communication, the connection is considered an
open connection.

• When both connection ends terminate the connection and dispose of the connection
information each maintains, the connection is considered a closed connection.

• If one connection end is established but the other connection end is unreachable or
has disposed of its connection information, the connection is considered a half-open
connection.

No communication can occur over a half-open or closed connection.

To prevent a half-open connection from tying up resources, ADSP automatically closes
any half-open connection that cannot reestablish communication within two minutes
and informs its client that the connection is closed. Under these circumstances, ADSP
will call the application-supplied completion routine for any pending asynchronous
ADSP routine, if one was provided. Otherwise, the pending ADSP routine will return to
the calling program with an err State error message. If you attempt to call an ADSP
routine on a half-open connection, ADSP also returns the errState error message.

Connection Listeners
A connection listener or a connection-listening socket is a socket that accepts open­
connection requests and passes them along to its client, a connection server process,
for further processing. The server then selects a socket and requests ADSP to open a
connection using that socket. The connection listener can also deny an open-connection
request. By specifying filtering values for the network address of the requester, you can
control which requests are accepted or denied. The use of a connection listener is typical
of a server environment in which a server, such as a file server, is registered with NBP

AboutADSP 5-7

5-8

CHAPTER 5

Apple Talk Data Stream Protocol (ADSP)

using a single name. Various connection ends throughout the network contact the
server's connection listener with open-connection requests. The connection server can
honor the requests, or it can deny them. It might deny a request, for example, when its
resources are exhausted. Figure 5-4 shows the tasks for an ADSP connection listener in
the order that applications commonly perform them.

Figure 5-4 Standard tasks for an ADSP connection listener

Create connection
listener

Create
connection end

D
Go to steps for creating an ASDP connection end.

Reliable Delivery of Data
ADSP guarantees that data bytes are delivered in the same order as they were sent and
that they are free of duplicates. It ensures that all data sent is delivered to the remote
connection end's receive buffer. To accomplish this, ADSP associates a sequence number
with each byte that it sends. ADSP discards any out-of-sequence data or any duplicates
that are delivered. ADSP uses the sequence numbers to ensure that all of the data that
one end sends is received by the other end. If. data is lost, ADSP retransmits it. ADSP
can send the data again because the data remains in the sending connection end's send
queue until the remote end actually receives a copy of it. For more information about
how ADSP delivers data, see Inside AppleTalk, second edition.

Unsolicited ADSP Events
After you open a connection, you can receive events that are not generated in response to
any of the ADSP calls that your application makes. ~e other connection end or ADSP
initiates these events. For example, the remote connection end can send you an attention
message or a forward reset.

AboutADSP

CHAPTER 5

Apple Talk Data Stream Protocol (ADSP)

You receive a forward reset event when the remote connection end cancels delivery of all
outstanding data to your connection end. A forward reset causes ADSP to discard all
data in the send queue, all data in transit to the remote connection end, and all data in
the remote connection end's receive queue that the client has not yet read.

The remote connection end can close the connection, and this, too, will generate an event
notification for your connection end. You also receive event notification when ADSP
tears down a connection because the remote end has become unreachable.

ADSP sets the bits of your connection end's connection control block user flags field to
identify the type of event. For more information about this field, see "Creating and Using
a Connection Control Block" on page 5-12. You can provide a user routine that ADSP is
to call whenever you receive one of these events. This user routine is similar in concept
and use to an ioCompletion routine that many of the other Apple Talk protocols use.
See "Writing a User Routine for Connection Events" on page 5-26 for information on
how to write a user routine.

AboutASDSP

This section describes the secure version of ADSP referred to as AppleTalk Secure
Data Stream Protocol (ASDSP). ASDSP is a superset of ADSP that includes authentica­
tion and encryption features. To use ASDSP, you should be familiar with both ADSP
andASDSP.

ASDSP features allow you to provide users of your application with the ability to
exchange encrypted data across a secure session that is established after the users'
identities are proven through what is known as the authentication process. Before
transmitting the data that a user sends, ASDSP encrypts it and then decrypts the data
before delivering it to the application at the remote connection end. Users might want
to identify one another, for example, to verify that a piece of electronic mail came from
the sender who claimed to be its author, and they might want to encrypt data that
traverses a network if that data is considered confidential or private and they do not
want others to intercept and read the data.

To verify the identities of two ends of a connection, an ASDSP application relies on
information that is provided by an Apple Open Collaboration Environment (AOCE)
authentication server. Your ASDSP client application at the connection end that initiates
the session calls the AOCE Authentication Manager to acquire the information necessary
for the authentication process from the authentication server, and then it passes this
information on to ASDSP.

Note
Because ASDSP is dependent on information from the authentication
server, your ASDSP application can only run on systems that also run
AOCE and that have access to an AOCE authentication server. If
the AOCE software is installed on the system that runs your application
and if the system has access to an AOCE authentication server, your
application can use ASDSP. •

AboutASDSP 5-9

5-10

CHAPTER 5

Apple Talk Data Stream Protocol (ADSP)

You perform the first part of the authentication process by requesting information from
the authentication server and giving that information to ASDSP to transmit to the other
end of the connection. The authentication process culminates in a challenge-and-reply
handshake that the ASDSP code performs on behalf of your ASDSP client application
at each end of the connection to ensure that the application users are who they claim to
be. The ASDSP client application of the connection end that retrieves the information
from the authentication server and makes the request to open the session is called the
initiator; the ASDSP client application of the connection end that receives the request
and the information from the server is called the recipient.

The Authentication Process
This section describes the general strategy of the authentication process. Understanding
what this process entails can be helpful in understanding the meaning and use of the
parameters that you get from the authentication server and pass to ASDSP.

The initiator and the recipient each have a private key. The private key, also called a user
key or client key, is a number that is derived from a password; the number is used by an
encryption algorithm.

The initiator calls the authentication server to request information and credentials
to be used by ASDSP in establishing an authenticated session. The credentials contain
information that is required in order to prove that the users of both ends of the
connection are who they claim to be. The user of the initiator ASDSP client application
gives the authentication server his own name or identity and that of the user of the
recipient ASDSP client application.

The authentication server returns to the initiator a unique session key that the server
generates exclusively for use by the authentication process for this session; the session
key is valid for a limited time only. The authentication server also returns to the initiator
a set of credentials that are encrypted in the recipient's private key. The credentials
contain the session key also and the initiator's identity, as well as the identity of an
inte:rmediary or proxy, if one was used to obtain the credentials from the authentica­
tion server.

The initiator passes a block of data containing the credentials to ASDSP, and ASDSP
on the initiator's end sends the credentials to ASDSP on the recipient's end. The latter
decrypts the entire credentials block, obtaining the session key from the credentials
block ASDSP on the recipient's end then uses the session key in the authentication
process that it performs on behalf of the recipient. ASDSP has the recipient's private
key, which it uses to decrypt the credentials. If the authentication process succeeds,
ASDSP returns all of the credentials to the recipient.

Because the initiator and ASDSP on behalf of the recipient must each decrypt the session
key using their own private key, they can each be convinced that the other is who they
claim to be if they can conclude that the other knows the session key. The need for this
conviction begins the challenge-and-reply authentication process that enables each end
to confirm that the other end also knows the unique session key.

AboutASDSP

CHAPTER 5

Apple Talk Data Stream Protocol (ADSP)

ASDSP performs the challenge-and-reply process on behalf of the client applications in
a manner that is transparent to the applications. If the authentication process completes
successfully, ASDSP opens a secure connection; if the authentication process fails,
ASDSP returns an error code to both the initiator and the recipient and tears down the
connection that was established to perform the authentication process. To learn more
about the challenge-and-reply process, see the chapter ~~Authentication Manager" in
Inside Macintosh: AOCE Application Programming Interfaces.

The Data Encryption Feature
After ASDSP successfully completes the authentication process, the two ends of the
connection whose identities have been verified can exchange data and they can also
encrypt that data. The ASDSP encryption feature allows each party to send data that can
be trusted to be securely transmitted in a manner that is unreadable by anyone other
than the intended recipient until that data is decrypted by ASDSP and delivered to the
recipient at the other end of the ASDSP session connection. ASDSP encrypts only data
in the main data stream; it does not encrypt data in attention messages or ASDSP
packet headers.

UsingADSP

This section describes how to use ADSP to

• open and maintain an ADSP connection, including how to

o initialize the connection end (dspinit)

o set options that control the behavior of the connection end (dspOptions)

o open the connection (dspOpen)

o read (dspRead) and write (dspWrite) data over the connection

o send an attention code and an attention message to the remote connection end
(dspAttention)

o close the connection (dspClose) and remove it (dspRemove)

• create and use a connection listener, including how to

o initialize a connection listener (dspCLinit)

o activate the connection listener, causing it to listen for an open-connection request
(dspCLListen), filtering requests that you will accept by restricting network
addresses

o initialize (dspinit) and open (dspOpen) a connection end in response to an open
request that you want to accept

o read (dspRead) and write (dspWrite) data over the connection and close the
connection (dspClose)

o remove the connection listener when you are finished with it (dspCLRemove)

• handle unsolicited connection events using your own user routine

UsingADSP 5-11

CHAPTER 5

Apple Talk Data Stream Protocol (ADSP)

You execute ADSP routines by calling the Device Manager's PBControl function. When
you call the PBControl function for an ADSP routine, you provide a pointer to a
parameter block of type DSPParamBlock.

You use the parameter block fields to specify the input parameters that ADSP requires to
execute the command. The parameter block also includes fields whose values ADSP
returns. For a complete description of the DSP parameter block and its fields, see "The
DSP Parameter Block" beginning on page 5-38.

Allocating Memory for ADSP
To open and maintain an ADSP session, you must allocate memory required for the
session. Depending on the ADSP routine that you call, you must allocate the following:

• storage of the state information that ADSP maintains at either end of a connection (see
the discussion of the connection control block in "Connections, Connection Ends, and
Connection States" on page 5-6)

• a parameter block that you use to pass parameters when you execute an ADSP routine

• a send queue and a receive queue

• an attention message buffer

This memory belongs to ADSP until you explicitly remove the connection end.

Creating and Using a Connection Control Block
When you establish an ADSP connection end, you must allocate a nonrelocatable block
of memory for (and provide a pointer to) a connection control block (CCB) data
structure, which ADSP uses to store state information about the connection end. This
memory belongs to ADSP until you explicitly remove the connection end using the
dspRemove routine (see "dspRemove" on page 5-62). Only then can you release or reuse
the memory that you allocated for the CCB.

Most of the fields of the CCB are for ADSP's internal use. Although you must not alter
any of the CCB fields except one, the userFlags field, you may poll them to gain
information about the current state of the connection end.

When your connection end receives an unsolicited event, such as an attention message
or a forward reset, ADSP' s interrupt handler sets a bit corresponding to the event type in
the userFlags field and calls your user routine, if you provided one. If you did not
provide a user routine, you can test these bits to determine when an unsolicited event
occurs on the connection end.

After you read them, you must clear the bits either through your user routine or directly
before you handle the event.

The CCB is a record of type TRCCB that must consist of 242 bytes. See "The ADSP
Connection Control Block Record" beginning on page 5-35 for a description of the
CCB and the fields that comprise it.

5-12 Using ADSP

CHAPTER 5

Apple Talk Data Stream Protocol {ADSP)

Opening and Maintaining an ADSP Connection
To use ADSP to establish and maintain a connection between a socket on your local node
and a remote socket, use the following procedure:

1. Use the Device Manager's OpenDriver function to open the .MPP driver, and then
use it again to open the .DSP driver. The .MPP driver must be open before you open
the .DSP driver. The OpenDri ver function call for the .DSP driver returns the driver
reference number. You must supply this reference number each time you call the
Device Manager's PBControl function to execute an ADSP routine.

2. Allocate nonrelocatable memory for a CCB, send and receive queues, and an attention­
message buffer. If you need to allocate the memory dynamically while the program
is running, use the NewPtr routine. Otherwise, the way in which you allocate the
memory depends on the compiler you are using. (Listing 5-1 on page 5-17 shows how
to do this in Pascal.) The memory that you allocate becomes the property of ADSP
when you call the dspini t routine to establish a connection end. You cannot write
any data to this memory except by calling ADSP, and you must ensure that the
memory remains locked until you call the dspRemove routine to eliminate the
connection end.

The CCB is 242 bytes. The attention-message buffer must be 570 bytes. When you
send bytes to a remote connection end, ADSP stores the bytes in a buffer called the
send queue. Until the remote connection end acknowledges their receipt, ADSP keeps
the bytes you sent in the send queue so that they are available to be retransmitted if
necessary. When the local connection end receives bytes, it stores them in a buffer,
called the receive queue, until you read them. The sizes you need for the send and
receive queues depend on the lengths of the messages being sent.

ADSP does not transmit data from the remote connection end until there is room for
it in your receive queue. If your send or receive queues are too small, they limit the
speed with which you can transmit and receive data. A queue size of 600 bytes should
work well for most applications. If you are using ADSP to send a continuous flow
of data, a larger data buffer improves performance. If your application is sending or
receiving the user's keystrokes, a smaller buffer should be adequate. The constant
minDSPQueueSize, which is defined in the MPW interface file for ADSP, indicates
the minimum queue size that you can use. ·

If you are using a version of the .DSP driver prior to version 1.5, you must allocate
send and receive queues that are 12 percent larger than the actual buffer sizes you
need. You must do this in order to provide some extra space for use by the .DSP
driver. Version 1.5 and later versions of the .DSP driver use a much smaller, and
variable, portion of buffer space for overhead. The .DSP driver version number is
stored in the low byte of the qFlags field, which is the first field in the dCtlQHdr
field in the driver's device control entry (DCE) data structure. Version 1.5 of the
.DSP driver has a version number of 4 in the DCE. See the chapter "Device Manager"
in Inside Macintosh: Devices for information on the DCE.

3. Use the dspini t routine to establish a connection end. You must provide pointers
to the CCB, send queue, receive queue, and attention-message buffer. You may also
provide a pointer to a user routine that ADSP calls when your connection end
receives an unsolicited connection event. See the section"Writing a User Routine for
Connection Events" on page 5-26 for information on providing a user routine.

UsingADSP 5-13

5-14

CHAPTER 5

Apple Talk Data Stream Protocol (ADSP)

If there is a specific socket that you want to use for the connection end, you can
specify the socket number in the local Socket parameter. If you want ADSP to
assign the socket for you, specify 0 for the local Socket parameter; in this case,
ADSP returns the socket number when the dspini t routine completes execution.

4. If you wish, you can use the Name-Binding Protocol (NBP) routines to add the name
and address of your connection end to the node's names table. See the chapter
"Name-Binding Protocol (NBP)" in this book for information on NBP.

5. You can use the dspOptions routine to set several parameters that control the
behavior of the connection end. Because every parameter has a default value, the use
of the dspOptions routine is optional. You can specify values for the following
parameters:

o The sendBlocking parameter, which sets the maximum number of bytes that
may accumulate in the send queue before ADSP sends a packet to the remote
connection end. You can experiment with different values of the sendBlocking
parameter to determine which provides the best performance. Under most
circumstances, the default value of 16 bytes gives good performance.

o The badSeqMax parameter, which sets the maximum number of out-of-sequence
data packets that the local connection end can receive before requesting the remote
connection end to retransmit the missing data. Under most circumstances, the
default value of 3 provides good performance.

o The useCheckSum parameter, which determines whether the Datagram Delivery
Protocol (DDP) should compute a checksum and include it in each packet that it
sends to the remote connection end. Using checksums slows communications
slightly. Normally ADSP and DDP perform enough error checking to ensure safe
delivery of all data. Set the useCheckSum parameter to 1 only if you feel that the
network is highly unreliable.

6. Call the dspOpen routine to open the connection. The dspOpen routine has four
possible modes of operation: ocAccept, ocEstablish, ocRequest, and
ocPassive. Normally you use either the ocRequest or ocPassive mode. You
must specify one of these four modes for the ocMode parameter when you call
the dspOpen routine.

The ocAccept mode is used only by connection servers. The ocEstablish mode
is used by routines that determine their connection-opening parameters and establish
a connection independently of ADSP, but use ADSP to transmit and receive data.

Use the ocRequest mode when you want to establish communications with a
specific socket on the AppleTalk internet. When you execute the dspOpen routine
in the ocRequest mode, ADSP sends an open-connection request to the address
you specify.

If the socket to which you send the open-connection request is a connection listener,
the connection server that operates that connection listener can select any socket
on the internet to be the connection end that responds to the open-connection request.
To restrict the socket from which you will accept a response to your open-connection
request, specify a value for the filterAddress parameter to the dspOpen routine.
When your connection end receives a response from a socket that meets the
restrictions of the filterAddress parameter, it acknowledges the response and
ADSP completes the connection.

UsingADSP

CHAPTER 5

Apple Talk Data Stream Protocol (ADSP)

To use the ocRequest mode, you must know the complete internet address of the
remote socket, and the ADSP client at that address must either be a connection listener
or have executed the dspOpen routine in the ocPassive mode. You can tise the NBP
routines to obtain a list of names of objects on the internet and to determine the
internet address of a socket when you know its name. See the chapter "Name-Binding
Protocol (NBP)" in this book for information on the NBP routines.

Use the ocPassive mode when you expect to receive an open-connection request
from a remote socket. You can specify a value for the filterAddress parameter to
restrict the network number, node 10, or socket number from which you will accept
an open-connection request. When your connection end receives an open-connection
request that meets the restrictions of the filterAddress parameter, it acknowledges
the request and ADSP completes the connection.

You can poll the state field in the CCB to determine when the connection end is
waiting to receive an open-connection request, when the connection end is waiting to
receive an acknowledgment of an open-connection request, and when the connection
is open. See the section "The ADSP Connection Control Block Record" beginning on
page 5-35 for a description of the CCB fields. Alternatively, you can check the result
code for the dspOpen routine when the routine completes execution. If the routine
returns the noErr result code, then the connection is open.

7. Use the dspRead routine to read data that your connection end has received from
the remote connection end. Use the dspWrite routine to send data to the remote
connection end. Use the dspAttention routine to send attention messages to the
remote connection end.
The dspWri te routine places data in the send queue. ADSP is a full-duplex, symmetric
communications protocol: You can send data at any time, and your connection end can
receive data at any time, even at the same time as you are sending data. ADSP
transmits the data in the send queue when one of the following conditions occurs:

o You call the dspWrite routine with the flush parameter set to a nonzero number.

o The number of bytes in the send queue equals or exceeds the blocking factor that
you set with the dspOptions routine.

o The send timer expires. The send timer sets the maximum amount of time that can
pass before ADSP sends all unsent data in the send queue to the remote connection
end. ADSP calculates the best value to use for this timer and sets it automatically.

o A connection event requires that the local connection end send an acknowledgment
packet to the remote connection end.

If you send more data to the send queue than it can hold, the dspWrite routine does
not complete execution until it has written all the data to the send queue. If you
execute the dspWrite routine asynchronously, ADSP returns control to your program
and writes the data to the send queue as quickly as it can. This technique provides the
most efficient use of the send queue by your program and by ADSP. Because ADSP
does not remove data from the send queue until that data has been not only sent but
also acknowledged by the remote connection end, using the f 1 ush parameter to the
dspWrite routine does not guarantee that the send queue is empty. You can use
the dspStatus routine to determine how much free buffer space is available in the
send queue.

UsingADSP 5-15

5-16

CHAPTER 5

Apple Talk Data Stream Protocol (ADSP)

The dspRead routine reads data from the receive queue into your application's
private data buffer. ADSP does not transmit data until there is space available in
the other end's receive queue to accept it. Because a full receive queue slows the
communications rate, you should read data from the receive queue as often as
necessary to keep sufficient buffer space available for new data. You can use either
of two techniques to do this:
o Allocate a small receive queue (about 600 bytes) and call the dspRead routine

asynchronously. Your completion routine for the dspRead routine should then
call the dspRead routine again.

o Allocate a large receive queue and call the dspRead routine less frequently.

If there is less data in the receive queue than the amount you specify with the
reqcount parameter to the dspRead command, the command does not complete
execution until there is enough data available to satisfy the request. There are three
exceptions to this rule:

o If the end-of-message bit in the ADSP packet header is set, the dspRead command
reads the data in the receive queue, returns the actual amount of data read in the
actcount parameter, and returns the eom parameter set to 1.

o If you have closed the connection end before calling the dspRead routine (that is,
the connection is half open), the command reads whatever data is available and
returns the actual amount of data read in the actCount parameter.

o If ADSP has closed the connection before you call the dspRead routine and there is
no data in the receive queue, the routine returns the noErr result code with the
actcount parameter set to 0 and the eom parameter set to 0.

In addition to the byte-stream data format implemented by the dspRead and
dspWr i te routines, ADSP provides a mechanism for sending and receiving control
signals or information separate from the byte stream. You use the dspAttention
routine to send an attention code and an attention message to the remote connection
end. When your connection end receives an attention message, ADSP' s interrupt
handler sets the eAttention flag in the userFlags field of the CCB and calls your
user routine. Your user routine must first clear the userFlags field. Then your
routine can read the attention code and attention message and take whatever action
you deem appropriate.

Because ADSP is often used by terminal emulation programs and other applications
that pass the data they receive on to the user without processing it, attention messages
provide a mechanism for the applications that are clients of the connection ends to
communicate with each other. For example, you could use attention messages to
implement a handshaking and data-checking protocol for a program that transfers
disk files between two applications, neither one of which is a file server. Or a database
server on a mainframe computer that uses ADSP to communicate with Macintosh
computer workstations could use the attention mechanism to inform the workstations
when the database is about to be closed down for maintenance.

8. When you are ready to close the ADSP connection, you can use the dspClose or
dspRemove routine to close the connection end. Use the dspClose routine if you
intend to use that connection end to open another connection and do not want
to release the memory you allocated for the connection end. Use the dspRemove
routine if you are completely finished with the connection end and want to release
the memory.

UsingADSP

CHAPTER 5

Apple Talk Data Stream Protocol (ADSP)

You can continue to read data from the receive queue after you have called the
dspClose routine, but not after you have called the dspRemove routine. You can
use the dspStatus routine to determine whether any data is remaining in the receive
queue, or you can read data from the receive queue until both the actCount and
eom fields of the dspRead parameter block return 0.

If you set the abort parameter for the dspClose or dspRemove routine to 0, then
ADSP does not close the connection or the connection end until it has sent-and
received acknowledgment for-all data in the send queue and any pending attention
messages. If you set the abort parameter to 1, then ADSP discards any data in the
send queue and any attention messages that have not already been sent.

After you have executed the dspRemove routine, you can release the memory you
allocated for the CCB and data buffers.

Listing 5-1 illustrates the use of ADSP. This routine opens the .MPP and .DSP drivers and
allocates memory for its internal data buffers, for the CCB, and for the send, receive, and
attention-message buffers. Then the routine uses the dspini t routine to establish a
connection end and uses NBP to register the name of the connection end on the internet.
(The user routine specified by the userRoutine parameter to the dspini t function is
shown in Listing 5-3 on page 5-28.) Next, Listing 5-1 uses the dspOptions routine to
set the blocking factor to 24 bytes. This routine then uses NBP to determine the address
of a socket whose name was selected by the user and sends an open-connection request
(dspOpen) to that socket. When the dspOpen routine completes execution, it sends data
and an attention message to the remote connection end and reads data from its receive
queue. Finally, the routine closes the connection end with the dspRemove routine and
releases the memory it allocated.

Listing 5-1 Using ADSP to establish and use a connection

PROCEDURE MyADSP;

CONST
qSize 600;

myDataSize = 128;

blockFact = 24;

TYPE

{queue space}
{size of internal read/write buffers}
{blocking factor}

{Modify the connection control block to add storage for AS.}
myTRCCB

RECORD
myAS: Longint;
u: TRCCB;

END;

VAR

dspSendQPtr: Ptr;
dspRecvQPtr: Ptr;

Using ADSP 5-17

•

CHAPTER 5

Apple Talk Data Stream Protocol (ADSP)

dspAttnBufPtr:
myData2ReadPtr:
myData2WritePtr:
myAttnMsgPtr:
dspCCB:
myDSPPBPtr:
myMPPPBPtr:
myNTEName:
myAddrBlk:
drvrRefNum:
mppRefNum:
connRefNum:

Ptr;
Ptr;
Ptr;
Ptr;
myTRCCB;
DSPPBPtr;
MPPPBPtr;
NamesTableEntry;
AddrBlock;
Integer;
Integer;
Integer;

gReceivedAnEvent: Boolean;
myAttnCode: Integer;
tempFlag: Byte;
tempCFlag: Integer;
myErr: OSErr;

BEGIN
myErr := OpenDriver(I .MPP I, mppRefNum);
IF myErr <> noErr THEN DoErr(myErr);
myErr := OpenDriver(1 .DSP 1

, drvrRefNum);
IF myErr <> noErr THEN DoErr(myErr);

{Allocate memory for data buffers.}
dspSendQPtr :; NewPtr(qSize);
dspRecvQPtr := NewPtr(qSize);
dspAttnBufPtr := NewPtr(attnBufSize);
myData2ReadPtr := NewPtr(myDataSize);
myData2WritePtr := NewPtr(myDataSize);
myAttnMsgPtr := NewPtr(myDataSize);

{open .MPP driver}
{check and handle error}
{open .DSP driver}
{check and handle error}

{ADSP use only}
{ADSP use only}
{ADSP use only}

myDSPPBPtr .- DSPPBPtr(NewPtr(SizeOf(DSPParamBlock)));
myMPPPBPtr := MPPPBPtr(NewPtr(SizeOf(MPPParamBlock)));

WITH myDSPPBPtrA DO
BEGIN

ioCRefNum := drvrRefNum;
csCode := dspinit;
ccbPtr := @dspCCB;

{set up dspinit parameters}

{ADSP driver ref num}

{pointer to CCB}
userRoutine := @myConnectionEvtUserRoutine;

5-18

sendQSize := qSize;
sendQueue .- dspSendQPtr;
recvQSize .- qSize;

UsingADSP

{see Listing 5-3}
{size of send queue}
{send-queue buffer}
{size of receive queue}

CHAPTER 5

Apple Talk Data Stream Protocol (ADSP)

recvQueue := dspRecvQPtr;
attnPtr := dspAttnBufPtr;
localSocket := 0;

END;

gReceivedAnEvent := FALSE;
dspCCB.myAS :; SetCurrentAS;
{Establish a connection end.}

{receive-queue buffer}
{receive-attention buffer} .
{let ADSP assign socket}

{save AS for the user routine}

myErr := PBControl(ParmBlkPtr(myDSPPBPtr), FALSE);
IF myErr <> noErr THEN DoErr(myErr);

{check and handle error}
connRefNum := myDSPPBPtrA.ccbRefNum;

{save CCB ref num for later}

NBPSetNTE(@myNTEName, 'The Object', 'The Type',
'*', myDSPPBPtrA.localSocket);

WITH myMPPPBPtrA DO

BEGIN
interval := 7;
count := 3;
entityPtr := @myNTEName;
verifyFlag := 1;

END;
{Register this socket.}
myErr := PRegisterName(myMPPPBPtr, FALSE);

IF myErr <> noErr THEN Do~rr(myErr);

WITH myDSPPBPtrA DO
BEGIN

ioCRefNum .- drvrRefNum;
csCode := dspOptions;
ccbRefNum .- connRefNum;
sendBlocking := blockFact;
badSeqMax := 0;
useCheckSum := 0;

END;

{set up NBP names table entry}
{set up PRegisterName }
{ parameters}

{retransmit every 7*8=56 ticks}
{retry 3 times}
{name to register}
{verify this name}

{register this socket}

{check and handle error}

{set up dspOptions parameters}

{ADSP driver ref num}

{connection ref num}
{quantum for data packet}
{use default}
{don't calculate checksum}

myErr := PBControl(ParmBlkPtr(myDSPPBPtr), FALSE);
{set options}

IF myErr <> noErr THEN DoErr(myErr);
{check and handle error}

UsingADSP 5-19

CHAPTER 5

Apple Talk Data Stream Protocol (ADSP)

PickASocket(myAddrBlk); {routine using the PLookupName }
{ function to pick a socket }
{ for the connection}

{Open a connection with the selected socket.}
WITH myDSPPBPtrA DO {set up dspOpen parameters}

5-20

BEGIN
ioCRefNum := drvrRefNum; {ADSP driver ref num}
csCode := dspOpen;
ccbRefNum := connRefNum; {connection ref num}
remoteAddress ·- myAddrBlk; {address of remote socket }

{ from PLookupName function}
filterAddress := myAddrBlk;

ocMode := ocRequest;
ocinterval := 0;

{address filter,specified }
{ socket address only}
{open connection mode}
{use default retry interval}

ocMaximum := 0; {use default retry maximum}
END;
myErr := PBControl(ParmBlkPtr(myDSPPBPtr), FALSE);

{open a connection}
IF myErr <> noErr THEN DoErr(myErr); {check and handle error}

{The connection with the selected socket is open, so now send }
{ to the send queue exactly myDataSize number of bytes.}
WITH myDSPPBPtrA DO {set up dspWrite parameters}
BEGIN

ioCRefNum := drvrRefNum;
csCode := dspWrite;
ccbRefNum := connRefNum;
reqCount := myDataSize;

dataPtr := myData2WritePtr;
eom := 1;

flush := 1;
END;

{ADSP driver ref num}

{connection ref num}
{write this number of bytes}

{pointer to send queue}
{1 means last byte is }
{ logical end-of-message}
{1 means send data now}

myErr := PBControl(ParmBlkPtr(myDSPPBPtr), FALSE);

IF myErr <> noErr THEN DoErr(myErr);

UsingADSP

{send data to the remote }
{ connection}

{check and handle error}

CHAPTER 5

Apple Talk Data Stream Protocol (ADSP)

{Now send an attention message to the remote connection end.}
WITH myDSPPBPtrA DO {set up dspAttention parameters}
BEGIN

ioCRefNum := drvrRefNum;
csCode := dspAttention;
ccbRefNum := connRefNum;
attnCode := 0;
attnSize := myDataSize;
attnData := myAttnMsgPtr;

END;

{ADSP driver ref num}

{connection ref num}
{user-defined attention code}
{length of attention message}
{attention message}

myErr := PBControl(ParmBlkPtr(myDSPPBPtr), FALSE);
IF myErr <> noErr THEN DoErr(myErr);

{check and handle error}

{Now read from the receive queue exactly myDataSize number }
{ of bytes.}
WITH myDSPPBPtrA DO
BEGIN

ioCRefNum := drvrRefNum;
csCode := dspRead;
ccbRefNum := connRefNum;
reqCount := myDataSize;
dataPtr := myData2ReadPtr;

END;

{set up dspRead parameters}

{ADSP driver ref num}

{connection ref num}
{read this number of bytes}
{pointer to read buffer}

myErr := PBControl(ParmBlkPtr(myDSPPBPtr), FALSE);

IF myErr <> noErr THEN DoErr(myErr);

{read data from the remote }
{ connection}
{check and handle error}

{We're finished with the connection, so remove it.}
WITH myDSPPBPtrA DO {set up dspRemove parameters}
BEGIN

ioCRefNum := drvrRefNum;
csCode := dspRemove;

ccbRefNum : = connRefNum;
abort := 0;

END;

{ADSP driver ref num}

{connection ref num}
{don't close until }
{ everything is sent and }
{ received}

myErr := PBControl(ParmBlkPtr(myDSPPBPtr), FALSE);

IF myErr <> noErr THEN DOErr(myErr);

UsingADSP

{close and remove the }
{ connection}

{check and handle error}

5-21

CHAPTER 5

Apple Talk Data Stream Protocol (ADSP)

{You're finished with this connection, so release the memory.}
DisposPtr(dspSendQPtr);
DisposPtr(dspRecvQPtr);
DisposPtr(dspAttnBufPtr);
DisposPtr(myData2ReadPtr);
DisposPtr(myData2WritePtr);
DisposPtr(myAttnMsgPtr);
DisposPtr(Ptr(myDSPPBPtr));
DisposPtr(Ptr(myMPPPBPtr));

END;

5-22

{MyADSP}

Creating and Using a Connection Listener
A connection listener is a special sort of ADSP connection end that cannot receive or
transmit data streams or attention messages. The sole function of a connection listener
is to wait passively to receive an open-connection request and to inform its client, the
connection server, when it receives one. The connection server can then accept or deny
the open-connection request. If it accepts the request, the connection server selects a
socket to use as a connection end, establishes a connection end on that socket, and sends
an acknowledgment and connection request back to the requesting connection end. The
connection server can use the same socket as it used for the connection listener, or it
can select a different socket as the connection end.

Use the following procedure to establish a connection listener and to use that connection
listener to open a connection with a remote connection end:

1. Use the Device Manager's OpenDriver function to open the .MPP driver and then
use the OpenDr i ver function to open the .DSP driver. The OpenDr i ver function
returns the reference number for the .DSP driver. You must supply this reference
number each time you call the .DSP driver.

2. Allocate nonrelocatable memory for a connection control block, which is described
in "Connections, Connection Ends, and Connection States" on page 5-6. The CCB
is 242 bytes. A connection listener does not need send and receive queues or an
attention-message buffer. The memory that you allocate becomes the property of
ADSP when you call the dspCLini t routine to establish a connection listener. You
cannot write any data to this memory except by calling ADSP, and you must ensure
that the memory remains locked until you call the dspRemove routine to eliminate
the connection end.

3. Call the dspCLini t routine to establish a connection listener. You must provide a
pointer to the CCB.

If there is a specific socket that you want to use for the connection listener, you can
specify the socket number in the local Socket parameter. If you want ADSP to
assign the socket for you, specify 0 for the local Socket parameter. ADSP returns
the socket number when the dspCLini t routine completes execution.

UsingADSP

CHAPTER 5

Apple Talk Data Stream Protocol (ADSP)

4. H you wish, you can use the NBP routines to add the name and address of your
connection listener to the node's names table. See the chapter "Name-Binding
Protocol (NBP)" in this book for information on NBP.

5. Use the dspCLListen routine to cause the connection listener to wait for an open­
connection request. Because the dspCLListen routine does not complete execution
until it receives a connection request, you should call this routine asynchronously.
You can specify a value for the filterAddress parameter to restrict the network
number, node ID, or socket number from which you will accept an open-connection
request.

When the dspCLListen routine receives an open-connection request that meets
the restrictions of the filterAddress parameter, it returns a noErr result code
(if you executed the routine asynchronously, it places a noErr result code in the
ioResul t parameter) and places values in the parameter block for the remoteCID,
remoteAddress, sendSeq, sendWindow, and attnSendSeq parameters.

6. H you want to open the connection, call the dspini t routine to establish a connection
end. You can use any available socket on the node for the connection end, including
the socket that you used for the connection listener. Because a single socket can have
more than one CCB connected with it, the socket can function simultaneously as a
connection end and a connection listener.

You can check the address of the remote socket to determine if it meets your criteria for
a connection end. Although the filterAddress parameter to the dspCLListen
routine provides some screening of socket addresses, it cannot check for network
number ranges, for example, or for a specific set of socket numbers. H for some reason
you want to deny the connection request, call the dspDeny routine, specifying the CCB
of the connection listener in the ccbRefNum parameter. Because the dspCLListen
routine completes execution when it receives an open-connection request, you must
return to step 5 to wait for another connection request.

7. Call the dspOpen routine to open the connection. Specify the value ocAccept for the
ocMode parameter and specify in the ccbRefNum parameter the reference number
of the CCB for the connection end that you want to use. When you call the dspOpen
routine, you must provide the values returned by the dspCLListen routine for
the remoteCID, remoteAddress, sendSeq, sendWindow, and attnSendSeq
parameters.

You can poll the state field in the CCB to determine when the connection is open.
Alternatively, you can check the result code for the dspOpen routine when the routine
completes execution. If the routine returns the noErr result code, then the connection
is open.

8. You can now send and receive data and attention messages over the connection, as
described in 110pening and Maintaining an ADSP Connection" beginning on page 5-13.
When you are ready to close the connection, you can use the dspClose or dspRemove
routine, both of which are also described in the section 11Creating and Using a
Connection Control Block."

9. When you are finished using the connection listener, you can use the dspCLRemove
routine to eliminate it. Once you have called the dspCLRemove routine, you can
release the memory you allocated for the connection listener's CCB.

UsingADSP 5-23

5-24

CHAPTER 5

Apple Talk Data Stream Protocol (ADSP)

Listing 5-2 illustrates the use of ADSP to establish and use a connection listener. It opens
the .MPP and .DSP drivers and allocates memory for the CCB. Then it uses the
dspCLini t routine to establish a connection listener, uses NBP to register the name of
the connection end on the internet, and uses the dspCLListen routine to wait for a
connection request. When the routine receives a connection request, it calls the dspOpen
routine to complete the connection.

Listing 5-2 Using ADSP to establish and use a connection listener

VAR

dspCCBPtr:
myDSPPBPtr:
myMPPPBPtr:
myNTEName:
drvrRefNum:
mppRefNum:
connRefNum:
myErr:

BEGIN

TPCCB;
DSPPBPtr;
MPPPBPtr;
NamesTableEntry;
Integer;
Integer;
Integer;
OSErr;

myErr : = Opener i ver (I • MPP I , mppRefNum) ;
{open .MPP driver}

IF myErr <> noErr THEN DoErr(myErr);
{check and handle error}

myErr := OpenDriver(1 .DSP 1
, drvrRefNum);

{open .DSP driver}
IF myErr <> noErr THEN DoErr(myErr);

{check and handle error}
{Allocate memory for data buffers.}
dspCCBPtr := TPCCB(NewPtr(SizeOf(TRCCB)));
myDSPPBPtr := DSPPBPtr(NewPtr(SizeOf(DSPParamBlock)));
myMPPPBPtr := MPPPBPtr(NewPtr(SizeOf(MPPParamBlock)));
WITH myDSPPBPtrA DO {set up dspCLinit parameters}
BEGIN

ioCRefNum := drvrRefNum;
csCode := dspCLinit;
ccbPtr := dspCCBPtr;
localSocket := 0;

END;

{ADSP driver ref num}

{pointer to CCB}
{local socket number}

myErr := PBControl(ParmBlkPtr(myDSPPBPtr), FALSE);
{establish a connection listener}

IF myErr <> noErr THEN DoErr(myErr);
{check and handle error}

connRefNum := myDSPPBPtrA.ccbRefNum;
{save CCB ref num for later}

UsingADSP

CHAPTER 5

Apple Talk Data Stream Protocol (ADSP)

NBPSetNTE(@myNTEName, 'The Object', 'The Type',
'*', myDSPPBPtrA.localSocket);

{set up NBP names table entry}
WITH myMPPPBPtrA DO
BEGIN

{set up PRegisterName parameters}

interval := 7;
count := 3;

{retransmit every 7*8=56 ticks }
{ and retry 3 times}

entityPtr := @myNTEname;
verifyFlag : = 1;

END;

{name to register}
{verify this name}

myErr := PRegisterName(myMPPPBPtr, FALSE);
{register this name}

IF myErr <> noErr THEN DoErr(myErr);
{check and handle error}

WITH myDSPPBPtrA DO
BEGIN

{set up dspCLListen parameters}

ioCRefNum := drvrRefNum; {ADSP driver ref num}
csCode := dspCLListen;
ccbRefNum := connRefNum; {connection ref num}
filterAddress .- AddrBlock(O);

{connect with anybody}
END;
myErr := PBControl(Par.mBlkPtr(myDSPPBPtr), TRUE);

WHILE myDSPPBPtrA.ioResult
{listen for connection requests}

1 DO
BEGIN
{Return control to user while waiting for a connection }
{ request.}

GoDoSomething;
END;
IF myErr <> noErr THEN DoErr(myErr);

WITH myDSPPBPtrA DO
BEGIN

ioCRefNum := drvrRefNum;
csCode := dspinit;
ccbPtr := @dspCCB;

{check and handle error}

{set up dspinit parameters}

{ADSP driver ref num}

{pointer to CCB}
userRoutine := @myconnectionEvtUserRoutine;
sendQSize := qSize; {size of send queue}
sendQueue ·- dspSendQPtr; {send-queue buffer}
recvQSize := qSize;
recvQueue := dspRecvQPtr;

UsingADSP

{size of receive queue}
{receive-queue buffer}

5-25

5-26

CHAPTER 5

Apple Talk Data Stream Protocol (ADSP)

attnPtr := dspAttnBufPtr;
localSocket := 0;

END;

{receive-attention buffer}
{let ADSP assign socket}

dspCCB.myAS := SetCurrentAS; {save AS for the user routine}

{Establish a connection end.}
myErr := PBControl(ParmBlkPtr(myDSPPBPtr), FALSE);
IF myErr <> noErr THEN DoErr(myErr);

{check and handle error}
connRefNum := myDSPPBPtrA.ccbRefNum;

{save CCB ref num for later}

{You received a connection request: now open a connection. }
{ The dspCLListen call has returned values into the }
{ remoteCID, remoteAddress, sendSeq, sendWindow, }
{ and attnSendSeq fields of the parameter block.}

WITH myDSPPBPtrA DO
BEGIN

ioCRefNum := drvrRefNum;
csCode := dspOpen;
ccbRefNum := connRefNum;
ocMode := ocAccept;
ocinterval := 0;

{set up dspOpen parameters}

{ADSP driver ref num}

{connection ref num}
{open connection mode}
{use default retry interval}

ocMaximum := 0; {use default retry maximum}
END;
myErr := PBControl(ParmBlkPtr(myDSPPBPtr), FALSE);

{open a connection}
IF myErr <> noErr THEN DoErr(myErr)

{check and handle error}
END; {MyCLADSP}

Writing a User Routine for Connection Events

When you execute the dspini t routine, you can specify a pointer to a routine that
you provide (referred to as the user routine). Whenever an unsolicited connection event
occurs, ADSP sets a flag in the CCB and calls the user routine. The user routine must
clear the flag to acknowledge that it has read the flag field, and then it can respond to the
event in any manner you deem appropriate. The CCB flags are described in"The ADSP
Connection Control Block Record" beginning on page 5-35. The four following types
of unsolicited connection events set flags in the CCB:

• ADSP has been informed by the remote connection end that the remote connection
end is about to close the connection. An appropriate response might be to store a flag

UsingADSP

CHAPTER 5

Apple Talk Data Stream Protocol (ADSP)

indicating that the connection end is about to close. When your application regains
control, it can then display a dialog box informing the user of this event and asking
whether the application should attempt to reconnect later.

• ADSP has determined that the remote connection end is not responding and so has
closed the connection. Your user routine can attempt to open a new connection
immediately. Alternatively, you can store a flag indicating that the connection has
closed, and when your application regains control, it can display a dialog box asking
the user whether to attempt to reconnect.

• ADSP has received an attention message from the remote connection end. Depending
on what you are using the attention-message mechanism for, you might want to read
the attention code in the attnCode field of the CCB and the attention message
pointed to by the attnPtr field of the CCB.

• ADSP has received a forward reset command from the remote client end. It has then
discarded all ADSP data not yet delivered, including the data in the receive queue of
the local client end, and has resynchronized the connection. Your response to this
event depends on the purpose for which you are using the forward reset mechanism.
You might want to resend the last data you have sent or inform the user of the event.

When ADSP calls your user routine, the CPU is in interrupt-processing mode and
register Al contains a pointer to the CCB of the connection end that generated the event.
You can examine the userFlags field of the CCB to determine what event caused the
interrupt, and you can examine the state field of the CCB to determine the current state
of the connection.

Because the CPU is set to interrupt-processing mode, your user routine must preserve
all registers other than AO, Al, DO, Dl, and D2. Your routine must not make any direct
or indirect calls to the Memory Manager, and it cannot depend on handles to unlocked
blocks being valid. If you want to use any of your application's global variables, you must
save the contents of the AS register before using the variables, and you must restore the
AS register before your routine terminates. Listing 5-1 and Listing 5-3 illustrate the use of
the CCB to store the pointer to your application's global variables.

If you want to execute a routine each time an unsolicited connection event occurs but the
interrupt environment is too restrictive, you can specify a NIL pointer to the user routine
and periodically poll the userFlags field of the CCB.

A WARNING

When an unsolicited connection event occurs, you must clear the bit in
the userFlags field by setting it to 0 or the connection will hang. To
ensure that you do not lose any attention messages, you must read any
attention messages into an internal buffer before you clear the bit in the
userFlags field . .&.

Listing 5-3 on page 5-28 shows the user routine called by Listing 5-1 on page 5-17. When
this routine is called, it first checks the CCB to determine the source of the interrupt
and then clears the pit in the userFlags field of the CCB. If the routine has received
an attention message, the user routine reads the message into an internal buffer before
it clears the flag bit. The definitions of procedures PushAS, GetMyTRCCBAS, and
PapAS are shown in Listing 5-3 for your convenience. In a complete application these
procedures would be defined in the calling routine (see Listing 5-1 for an example).

UsingADSP 5-27

CHAPTER 5

Apple Talk Data Stream Protocol (ADSP)

Listing 5-3 An ADSP user routine

PROCEDURE PushAS;
INLINE $2FOD;

{moves current value of AS onto stack}
{MOVE.L AS,-(SP)}

PROCEDURE GetMyTRCCBAS; {retrieves AS from the head of the TRCCB }

INLINE $2A69, $FFFC;
{ (pointed to by Al) and puts it in AS register}
{MOVE.L -4(Al), AS}

PROCEDURE PopAS;
INLINE $2ASF;

{restores AS from stack}
{MOVE.L (SP)+, AS}

PROCEDURE MyConnectionEvtUserRoutine;

BEGIN
{The connection received an unexpected connection event. Find }
{ out what kind and process accordingly.}

PushAS;
GetMyTRCCBAS;

{save the current AS}
{set up AS to point to your }
{ application's ·global variables}

WITH dspCCB.u DO
BEGIN

IF BAND(userFlags, eClosed) <> 0 THEN TellUseritsClosed;
IF BAND(userFlags, eTearDown) <> 0 THEN TellUseritsBroken;
IF BAND(userFlags, eFwdReset) <> 0 THEN TellUseritsReset;
IF BAND(userFlags, eAttention) <> 0 THEN
BEGIN {the event is an attention message}

myAttnCode := AttnCode;
{get the attention code}

CopyAttnMsg(AttnPtr, AttnSize, @myAttnData);
{copy the attention message into your buffer}

tempFlag := userFlags;
tempCFlag := eAttention;
BClr(Longint(tempFlag), tempCFlag);

{clear the flag}
userFlags := tempFlag;
{Do something with the message.}

END;
gReceivedAnEvent .- TRUE

END;
PopAS {restore the current AS}

END;

5-28 UsingADSP

CHAPTER 5

Apple Talk Data Stream Protocol {ADSP)

UsingASDSP

You can write an application that uses the Apple Talk Secure Data Stream Protocol
(ASDSP) to

• open a secure ASDSP connection (sdspOpen)

• transmit encrypted data across a secure session {dspWrite using the encrypt flag)

• read data decrypted by ASDSP that was sent as encrypted across a secure session
{dspRead)

The initiator end of your ASDSP client application must call the AOCE Authentication
Manager to obtain credentials to pass on to ASDSP. ASDSP passes these credentials to
the recipient end of the client application and uses them to establish a secure session in
which the users of the client applications at both ends of the connection are positively
identified. See 11 About ASDSP" beginning on page 5-9 for more information about this
process. ASDSP client applications at either end of a connection can send data to each
other that ASDSP encrypts for transmission and then decrypts before delivering it to the
client at the receiving end.

An application that currently uses ADSP needs little modification to use ASDSP. To open
an ASDSP connection, the client application at each end must issue the secure data stream
protocol open routine {sdspOpen) instead of the standard open routine {dspOpen).
The sdspOpen routine uses a parameter block that, in addition to the standard ADSP
parameters required to open a connection, contains the identity and credentials used in
the challenge process; only the initiator end of the connection passes the credentials to
ASDSP as input parameter values. The initiator and the recipient ends of a session each
open the connection in a different manner:

• The initiator end of a session calls the sdspOpen routine using the request mode to
direct ASDSP to open a connection with a specific socket.

• The recipient end of a session calls the sdspOpen routine in either passive mode or
accept mode. A recipient end of a connection can be either of the following:

o a specific socket that waits passively to receive an ASDSP connection request (the
connection end associated with the socket calls the sdspOpen routine with a value
of ocPassive for the ocMode parameter)

o a connection listener that listens for connection requests and passes them on to a
connection server {the connection listener calls the sdspOpen routine with a value
of ocAccept for the ocMode parameter, and the connection server accepts and
acknowledges receipt of a connection request)

You issue the sdspOpen routine by calling the Device Manager's PBControl function
and passing it a pointer to the DSP parameter block for ASDSP that holds all of the input
and output parameters for the call. The parameters that the sdspOpen call requires
differ for the initiator and recipient ends of a connection. The next section describes how
to open an ASDSP connection and how to send encrypted data across it.

UsingASDSP 5-29

•

CHAPTER 5

Apple Talk Data Stream Protocol (ADSP)

Opening a Secure Connection
To open a secure ASDSP connection, both the initiator and the recipient must call the
sdspOpen routine after calling the dspini t routine and, optionally, the dspOptions
routine. First this section describes how the initiator part of an application opens a
secure connection. Then it describes how the recipient end of an application opens
a secure connection.

From the Initiator's End

An initiator can send a request to open a secure session to

• a specific socket whose client application has opened a connection end to wait
passively for a connection request

• a connection listener whose function is to accept requests for secure connections and
pass those requests on to a connection server

The initiator makes either an AOCE AuthTradeProxyForCredentials call or an
AOCE AuthGetCredentials call to the authentication server. It passes to the authenti­
cation server its own name and the name of the recipient and gets back the session key
and the credentials for the session. For an explanation of the calls that the initiator must
make to the Authentication Manager, see the chapter 11 Authentication Manager" in Inside
Macintosh: AOCE Application Programming Interfaces.

Through the sdspOpen call, the initiator passes the credentials to ASDSP to send to the
recipient. ASDSP decrypts the credentials and passes the decrypted credential informa­
tion to the recipient.

To open a secure ASDSP connection, the initiator performs the following procedure:

1. Determine if the Apple Open Collaboration Environment (AOCE) software is installed
by calling the Gestalt function. See the chapter 111ntroduction to AOCE" in Inside
Macintosh: AOCE Application Programming Interfaces for a description of the selector
values that you use.

2. Allocate memory for the required data structures identified in this step. The memory
belongs to ASDSP until the routine completes execution, after which you can either
release or reuse the memory. You must either allocate nonrelocatable memory or lock
the memory until the routine completes. See the chapter II Authentication Manager" in
Inside Macintosh: AOCE Application Programming Interfaces for a description of the
memory that you need to allocate for calls that you make to that interface. The data
structures that you need to allocate memory for are listed here:

o An ASDSP parameter block of type SDSPParamBlock. You pass a pointer to this
parameter block as the value of the paramBlock parameter to the PBControl
function. (See 11The ASDSP Parameter Block" on page 5-41.)

o A workspace buffer that the sdspOpen routine uses internally whose size is equal to
sdspWorkSize. The memory for this buffer must be aligned on an even boundary.
You pass a pointer to this buffer as the value of the workspace parameter.

o A buffer for the credentials retrieved from the authentication server and passed
toASDSP.

o A buffer for the session key retrieved from the authentication server and passed to
\ ASDSP. This is a data structure of type AuthKey.

5-30 Using ASDSP

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

3. Call the Authentication Manager's AuthGetUTCTime function to get the universal
coordinated time (UTC). You base the credentials expiration time that you specify
as input to the AuthGetCredentials function on the UTC. See the chapter
"Authentication Manager" for a description of the AuthGetUTCTime function.

4. Obtain your (the initiator's) identity and the recipient's record ID. (You can use the
local identity or get a specific identity for the initiator.) You need to pass these values
to the authentication server to get the session key and credential block from the server.
See the chapter "Authentication Manager" for a discussion of identities and complete
instruction on how to get these values.

5. Call the Authentication Manager's AuthGetCredentials function or
AuthTradeProxyForCredentials function to get the credentials and the session
key. You use these values as input to the sdspOpen routine. See the chapter
"Authentication Manager" for information on the AuthGetCredentials and
AuthTradeProxyForCredentials functions.

You pass the AuthGetCredentials function or AuthTradeProxyForCredentials
function the following values returned from the functions that you called in the
previous steps:

o The initiator's identity.

o A pointer to a buffer containing the record ID for the recipient.

o The desired expiration time of the credentials. You use the expiry parameter to
specify for how long you want the credentials to be valid. Credentials are valid for
at most eight hours after they are returned to the initiator by the server. You base
the expiration time on the UTC time returned by the AuthGetUTCTime function.

o The expected length of the credentials. A buffer three times the size of a packed
record ID is usually sufficient for credentials. The AOCE constant
kPackedRecordiDMaxBytes specifies the size of a single packed record ID.

6. Call the sdspOpen routine to open a secure connection. To call the sdspOpen routine,
you call the Device Manager's PBControl function and specify sdspOpen as the
value of the csCode parameter. The parameter block for the sdspOpen routine
includes fields also used for the standard dspOpen routine. In addition to these
parameters, you specify parameters used in the authentication process to establish
the secure connection.

The initiator application calls the sdspOpen routine with a value of ocRequest for
the ocMode parameter to direct ASDSP to open a connection with a specific socket on
the Apple Talk internet. When you execute the sdspOpen routine in the ocRequest
mode, ASDSP sends an open-connection request to the address you specify.

If the socket to which you send the open-connection request is a connection listener,
the connection server that operates that connection listener can select any socket on
the internet to be the connection end that responds to the open-connection request. To
restrict the socket from which you will accept a response to your open-connection
request, specify a value for the filterAddress parameter to the sdspOpen routine.

To use the ocRequest mode, you must know the complete internet address of the
remote socket, and the ASDSP client at that address must either be a connection
listener or have executed the sdspOpen routine in the ocPassive mode. You can use
the NBP routines to obtain a list of the names of objects on the internet and to
determine the internet address of a socket when you know its name. See the chapter
"Name-Binding Protocol (NBP)" in this book for information on the NBP routines.

UsingASDSP 5-31

5-32

CHAPTER 5

Apple Talk Data Stream Protocol (ADSP)

In addition to the standard ADSP parameters required for a dspOpen call, the
initiator supplies the following input values to the sdspOpen call:

Parameter

secure

sessionKey

credentialsSize

credentials

workspace

Value

To open a secure authenticated connection, pass a value
of TRUE. To open a normal, unauthenticated connection,
pass a value of FALSE.

A pointer to the encryption key returned from
the AuthGetCredentials or
AuthTradeProxyForCredentials function.

The value that the AuthGetCredentials function or
the AuthTradeProxyForCredentials function returned
that specifies the length of the credentials.

A pointer to the credentials that the AuthGetCredentials
function or the AuthTradeProxyForCredentials
function returned.

A pointer to the workspace buffer that you allocated, which
is for ASDSP's internal use.

From the Recipient End

To open a secure ASDSP connection, the recipient performs the following procedure:

1. Allocate memory for the following data structures. The memory belongs to ASDSP
until the routine completes execution, after which you can either release or reuse the
memory. You must either allocate nonrelocatable memory or lock the memory until
the routine completes.
o An ASDSP secure parameter block of type SDSPParamBlock. You pass a pointer to

this parameter block as the value of the paramBlock parameter to the PBControl
function. (See "The ASDSP Parameter Block" beginning on page 5-41.)

o A workspace buffer that the sdspOpen routine uses internally whose size is equal
to sdspWorkSize. The memory for this buffer must be aligned on an even
boundary. You must pass a pointer to the buffer as the value of the workspace
parameter. ·

o A data structure of type AuthKey for the session key retrieved from the authentica­
tion server and passed to ASDSP. ASDSP breaks out from the credentials block the
session key encrypted in the recipient's private key and returns the session key to
the recipient in the sessionKey buffer.

o A buffer for the record ID of the initiator that ASDSP returns to the recipient in
response to the recipient's sdspOpen routine. You pass a pointer to this buffer as
the value of the initiator parameter. ASDSPbreaks out the initiator's record ID
from the credential block that the initiator passes to ASDSP and returns it to the
recipient. See the chapter "Authentication Manager" in Inside Macintosh: AOCE
Application Programming Interfaces for a description of how to create a maximum­
size record ID structure that is large enough to hold any record ID.

o A buffer for the record ID of the intermediary that ASDSP returns to the recipient if
an intermediary is found in the credentials. You pass a pointer to this buffer as the
value of the intermediary parameter. An intermediary is a proxy that has used
the AuthTradeProxyForCredentials function to obtain the credentials used in

UsingASDSP

CHAPTER 5

Apple Talk Data Stream Protocol (ADSP)

the authentication process. See the chapter "Authentication Manager" in Inside
Macintosh: AOCE Application Programming Interfaces for a discussion of the use of an
intermediary and the AuthTradeProxyForCredentials function and for a
description of how to create a maximum-size record ID structure that is large
enough to hold any record ID.

2. Call the sdspOpen routine to open a secure connection. To call the sdspOpen routine,
you call the Device Manager's PBControl function and specify sdspOpen as the
value of the csCode parameter. The parameter block for the sdspOpen routine
includes fields also used for the standard dspOpen routine. In addition to these
parameters, you specify parameters used in the authentication process to establish
the secure connection.

A recipient end of a connection can be either a connection listener that listens for
connection requests and passes them on to a connection server or a socket that waits
passively to receive a connection request.

If the recipient is a connection listener, it calls the sdspOpen routine with a
value of ocAccept for the ocMode parameter. The connection server accepts
and acknowledges receipt of a connection request. When you call the sdspOpen
routine, you must provide the values returned by the dspCLListen routine
for the remoteCID, remoteAddress, sendSeq, sendWindow, and attnSendSeq
parameters. You can poll the state field in the CCB to determine when the
connection is open. Alternatively, you can check the result code for the sdspOpen
routine when the routine completes execution. H the routine returns the noErr
result code, then the connection is open.

If the recipient is a connection end associated with a passive socket that calls the
sdspOpen routine with a value of ocPassive for the ocMode parameter, use the
ocPassive mode when you expect to receive an open-connection request from a
remote socket. You can specify a value for the filterAddress parameter to restrict
the network number, node ID, or socket number from which you will accept an
open-connection request.
You can poll the state field in the CCB to determine when the connection end is
waiting to receive an open-connection request, when the connection end is waiting to
receive an acknowledgment of an open-connection request, and when the connection
is open. See the section "The ADSP Connection Control Block Record" beginning on
page 5-35 for a description of the CCB fields. Alternatively, you can check the result
code for the dspOpen routine when the routine completes execution. H the routine
returns the noErr result code, then the connection is open.
In addition to the standard ADSP parameters required for a dspOpen call, the
recipient supplies the following input values to the sdspOpen call:

Parameter

sessionKey

workspace

recipient

UsingASDSP

Value

A pointer to a data structure of type AuthKey, which you
allocated. ASDSP copies the session key into this buffer if
an authenticated connection was successfully opened.

A pointer to the workspace buffer that you allocated, which is
for ASDSP's internal use.

The identity of the recipient.
continued

5-33

5-34

CHAPTER 5

Apple Talk Data Stream Protocol (ADSP)

Parameter

initiator

intermediary

Value

A pointer to a maximum-size record ID. ASDSP copies the
initiator's record ID into this structure if an authenticated
connection was successfully opened.

A pointer to a maximum-size record ID. ASDSP copies the
intermediary's record ID into this structure if an authenticated
connection was successfully opened and an intermediary was
used to obtain the credentials used to authenticate the call.

If a secure connection was successfully opened, ASDSP returns the following values:

Parameter

issueTime

expiry

sessionKey

initiator

has Intermediary

intermediary

Value

The time when the credentials were issued. ASDSP copies
this value from the credentials.

The time when the credentials expire. ASDSP copies this
value from the credentials.

The encryption key for the session. ASDSP copies this value
from the credentials.

A pointer to a maximum-size record ID structure. If an
authenticated connection was successfully opened, this
structure holds the initiator's record ID.

A flag that is set to TRUE if an intermediary was used to
obtain the credentials.

A pointer to a maxi.Jrtum-size record 10. If an authentication
connection was successfully opened and an intermediary
was used to obtain the credentials, this structure holds the
intermediary's record ID.

Sending Encrypted Data Across a Secure Connection

Mter a secure connection is established, both ends can send encrypted data over the
session. ASDSP client applications use the dspWrite routine to send data, encrypted
or not, over a secure connection. You can tum the encryption feature on or off on a
message-by-message basis by setting one flag to direct ASDSP to encrypt the data and
setting another flag to terminate the message.

To set these flags, you use the bits of the end-of-message (eom) field; this field is part of
the ioParams variant record of the DSP parameter block that you pass to the dspWrite
routine. For secure connections, the eom field comprises these two single-bit flags instead
of a zero-nonzero byte. You can use the dspEncryptMask and dspEOMMask masks to
set these flags, or you can use the dspEncryptBit or dspEOMBit constant.

Note

Apart from the dspWrite routine's eom parameter, the interface to
ADSP remains unchanged in regard to encryption. •

The encryption process is transparent to the client application that receives the data;
ASDSP determines if the received information is encrypted, and, if so, it decrypts the
byte stream before copying the data to the read buffer specified by the dspRead routine.

UsingASDSP

CHAPTER S

Apple Talk Data Stream Protocol (ADSP)

To write data that ASDSP encrypts and then transmits or to terminate data encryption,
you call the dspWrite routine using the Device Manager's PBControl function.

• Set the encrypt bit of the eom field (bit 1) of the DSP parameter block. To set the
encrypt bit, you use the dspEncryptMask mask or the dspEncryptBi t constant.
Note that ASDSP checks this flag on the first write of the connection or the first write
following a write for which the end-of-message flag (bit 0 of the eom field) is set.

• Set the end-of-message bit .(bit 0) of the eom field to terminate the encrypted message.
To set the end-of-message bit, you use the dspEOMMask mask or the dspEOMBit
constant.

If you want to encrypt all messages, you can simply set the encrypt bit on all
dspWr i te calls.

ADSP Reference

This section describes the data structures and routines that are specific to ADSP and
to its secure version, ASDSP. The "Data Structures" section shows the Pascal data
structures for

• the ADSP connection control block

• the address block record

• the DSP parameter block

• the ASDSP version of the DSP parameter block

• the TRSecureParams record

The "Routines" section describes routines for setting up and tearing down an ADSP
or an ASDSP (secure) connection, setting up and tearing down an ADSP connection
listener, and maintaining an ADSP connection over which to send and receive data
and enable encryption of the data to be sent.

Data Structures
This section describes the connection control block that you allocate for use by ADSP in
maintaining the state of a connection end and the DSP parameter block that you use to
specify input parameters for and receive output parameters from an ADSP routine. It
also describes the address block record that you use to specify the remote connection
end's AppleTalk internet address.

The ADSP Connection Control Block Record

The connection control block (CCB) data structure is a record of type TRCCB that consists
of 242 bytes. ADSP uses the CCB to store state information about the connection end.
You allocate a nonrelocatable block of memory for this data structure when you create a

ADSP Reference 5-35

•

5-36

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

connection end. You may read the fields in the CCB to obtain information about the
connection end, but you are not allowed to write to any of the fields except one, the
userFlags field.

TYPE TRCCB =

PACKED RECORD
ccbLink:
refNum:

TPCCB;
Integer;

{link to next CCB}
{reference number}

state: Integer; {state of the connection end}
{user flags for connection}
{local socket number}

userFlags: Byte;
localSocket: Byte;
remoteAddress: AddrBlock; {remote end internet address}

{attention code received}
{size of attention data}

attnCode: Integer;
attnSize:
attnPtr:
reserved:

END;

Field descriptions

ccbLink
refNum

state

ADSP Reference

Integer;
Ptr; {pointer to attention data}
PACKED ARRAY[l .• 220] OF Byte;

{reserved for use by ADSP}

A pointer to the next CCB. This field is for use by ADSP only.

The reference number of the CCB. This number is assigned by
ADSP when you establish the connection end.

The state of the connection end, as follows:

State

sListening

sPassive

sOpening

sOpen

Value

1

2

3

4

Meaning

The socket is a connection listener­
that is, a socket that accepts ADSP
requests to open connections and
passes them on to a socket client. A
connection listening socket passes
the open-connection request on to a
routine that can establish the connec­
tion on any socket. The connection
listening state is ordinarily used only
by connection servers.

The socket client is inactive but capable
of accepting an ADSP request to open
a connection. Unlike a connection
listening socket, a socket client in the
sPassive state can accept an open­
connection request only to establish
itself as a connection end.

The socket client has sent an
open-connection request and is waiting
for acknowledgment.

The connection is open.

CHAPTER 5

Apple Talk Data Stream Protocol (ADSP)

userFlags

localSocket

State

sClosing

sClosed

Value

5

6

Meaning

The socket client has requested that
ADSP close the connection, and ADSP
is sending data or waiting for acknowl­
edgment of data it has sent before
closing the connection.

The connection is closed.

Flags that indicate an unsolicited connection event has occurred. An
unsolicited connection event is an event initiated by ADSP or the
remote connection end that is not in response to any ADSP routine
that you executed.

Each time an unsolicited connection event occurs, ADSP sets a flag
in the userFlags field of the CCB and calls the routine you
specified in the userRoutine parameter to the dspini t routine
(if any). The user routine must read the userFlags field and then
clear the flag to 0. ADSP cannot notify your routine of future events
unless you clear the flag after each event.

ADSP recognizes four types of unsolicited connection events, one
corresponding to each of the flags in this field. The events and flags
are defined as follows, where bit 7 is the most significant bit:

Event

eClosed

eTearDown

eAt tent ion

eFwdReset

None

Flag
bit

7

6

5

4

3-0

Meaning

ADSP has been informed by the
remote connection end that the remote
connection end has closed the
connection.

ADSP has determined that the remote
connection end is not responding and
so has closed the connection.

ADSP has received an attention
message from the remote connection
end.

ADSP has received a forward reset
command from the remote connection
end, has discarded all ADSP data not
yet delivered-including the data in
the local client end's receive queue­
and has resynchronized the
connection.

Reserved.

The socket number through which DDP transmits and receives the
ADSP packets.

remoteAddress The Apple Talk internet address of the socket used by the remote
connection end.

ADSP Reference 5-37

CHAPTER 5

Apple Talk Data Stream Protocol (ADSP)

attnCode

attnSize

attnPtr

reserved

The Address Block Record

The attention code received by ADSP when the remote connection
end sends an attention message.

The size of the attention message received by ADSP when the
remote connection end sends an attention message.

A pointer to a buffer containing the attention message received by
ADSP from the remote connection end.

A data buffer reserved for use by ADSP.

The address block record defines a data structure of AddrBlock type. ADSP routines
use this data type to specify the Apple Talk internet socket address of the remote
connection end in the CCB. You can use NBP to get the address of an application that
is registered with NBP. See the chapter "Name-Binding Protocol (NBP)" in this book for
more information. ATP functions also use this data type to specify AppleTalk internet
socket addresses.

TYPE AddrBlock
PACKED RECORD

aNet:
aNode:
aSocket:

END:

Field descriptions

aNet

aNode

aSocket

The DSP Parameter Block

Integer:
Byte:
Byte:

{network number}
{node ID}
{socket number}

The network number to which the node belongs that is running the
ADSP or ATP client application whose address you are specifying.

The node ID of the machine running the ADSP or ATP client
application whose address you are specifying.

The number of the socket used for the ADSP or ATP client
application.

The ADSP routines, which you execute by calling the Device Manager's PBControl
function, require a pointer to a DSP parameter block that holds all of the input and
output values associated with the routine. The DSP parameter block contains variant
records used by particular routines. The DSPParamBlock data type defines the DSP
parameter block.

This section defines the fields that are common to all ADSP routines that use the DSP
parameter block. The fields that are used for specific routines only are defined in the
descriptions of the routines to which they apply. The reserved fields, which are used
internally by the .DSP driver or not at all, are not defined.

5-38 ADSP Reference

CHAPTER 5

Apple Talk Data Stream Protocol (ADSP)

TYPE DSPParamBlock
PACKED RECORD

qLink:
qType:
ioTrap:
ioCmdAddr:
ioCompletion:
ioResult:
ioNamePtr:
ioVRefNum:
ioCRefNum:
csCode:
qStatus:
ccbRefNum:

CASE Integer OF

QElemPtr;
Integer;
Integer;
Ptr;
ProcPtr;
OSErr;
StringPtr;
Integer;
Integer;
Integer;
Longint;
Integer;

dspinit, dspCLinit:
(ccbPtr:
userRoutine:
sendQSize:
sendQueue:
recvQSize:
recvQueue:
attnPtr:

localSocket:
fillerl:

TPCCB;
ProcPtr;
Integer;
Ptr;
Integer;
Ptr;
Ptr;

Byte;
Byte);

dspOpen, dspCLListen, dspCLDeny:

{reserved}
{reserved}
{reserved}
{reserved}
{completion routine}
{result code}
{reserved}
{reserved}
{driver reference number}
{primary command code}
{reserved}
{CCB reference number}

{pointer to CCB}
{pointer to user routine}
{size of send queue}
{pointer to send queue}
{size of receive queue}
{pointer to receive queue}
{pointer to attention-message
{ buffer}
{local socket number}
{filler for proper alignment}

(localCID: Integer; {local connection ID}
remoteCID: Integer;
remoteAddress: AddrBlock;
filterAddress: AddrBlock;
sendSeq:
sendWindow:
recvSeq:
attnSendSeq:
attnRecvSeq:
ocMode:
ocinterval:
ocMaximum:
filler2:

Longint;
Integer;
Longint;
Longint;
Longint;
Byte;
Byte;
Byte;
Byte);

dspClose, dspRemove:
(abort: Byte;
filler3: Byte);

ADSP Reference

{remote connection ID}
{remote int~rnet address}
{address filter}
{send sequence number}
{size of remote buffer}
{receive sequence number}
{attention send seq number}
{attention receive seq num}
{connection-opening mode}
{interval bet. open requests}
{retries of open-conn req}
{filler for proper alignment}

{abort send requests}
{filler for proper alignment}

}

5-39

5-40

CHAPTER 5

Apple Talk Data Stream Protocol (ADSP)

dspStatus:
(statusCCB: TPCCB; {pointer to CCB}
sendQPending: Integer; {bytes waiting in send queue}

{available send-queue buffer}
{bytes in receive queue}
{avail receive-queue buffer}

sendQFree: Integer;
recvQPending: Integer;
recvQFree: Integer);

dspRead, dspWrite:
(reqCount:
actCount:
dataPtr:
eom:
flush:

dspAttention:
(attnCode:
attnSize:
attnData:

Integer;
Integer;
Ptr;
Byte;
Byte);

Integer;
Integer;
Ptr;

{requested number of bytes}
{actual number of bytes}
{pointer to data buffer}
{1 if end of message}
{1 to send data now}

attninterval: Byte;

{client attention code}
{size of attention data}
{pointer to attention data}
{reserved}

filler4: Byte); {filler for proper alignment}
dspOptions:

(sendBlocking: Integer; {send-blocking threshold}
{reserved} sendTimer:

rtmtTimer:
badSeqMax:
useCheckSum:

dspNewCID:
(newCID:

END;

Field descriptions
ioCompletion

ioResult

ADSP Reference

Byte;
Byte;
Byte;
Byte);

Integer);

{reserved}
{retransmit advice threshold}
{DDP checksum for packets}

{new connection ID}

A pointer to a completion routine that you can provide; the Device
Manager calls your completion routine when it completes execution
of the PBControl function, if you execute PBControl asynchro­
nously and you specify a pointer to the routine as the value of this
field. Specify NIL for this field if you do not wish to provide a
completion routine. If you execute a function synchronously,
AppleTalk ignores the ioCompletion field. For information about
completion routines, see the chapter "Introduction to Apple Talk" in
this book.
The result of the function. If you call the routine asynchronously,
the Device Manager sets this field to 1 as soon as you call the
routine and it changes the field to the actual result code when the
routine completes execution.

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

io.CRefNum

csCode

qStatus

ccbRefNum

The ASDSP Parameter Block

The driver reference number that is returned by the OpenDr i ver
function. You must specify this number every time you call the
.DSP driver.

The command code for the ADSP routine to be executed. You must
fill in this field before calling the PBControl function. You use the
following constants as values for this field:

csCode command

dspinit

dspRemove

dspOpen

dspClose

dspCLinit

dspCLRemove

dspCLListen

dspCLDeny

dspStatus

dspRead

dspWrite

dspAttention

dspOptions

dspReset

dspNewCID

Action

Create a new connection end

Remove a connection end

Open a connection

Close a connection

Create a connection listener

Remove a connection listener

Post a listener request

Deny an open-connection request

Get status of connection end

Read data from the connection

Write data on the connection

Send an attention message

Set connection end options

Forward reset the connection

Generate a CID for a colinection end

This field is reserved for use by ADSP.

The reference number of the connection control block (CCB). ADSP
returns the CCB reference number in response to the dspinit
routine. You must specify this number as a parameter to every .DSP
driver routine you call subsequently.

To open an ASDSP connection, the client application at each end must call the Device
Manager's PBControl function with a command code that specifies the ASDSP open
routine {sdspOpen). This section describes the ASDSP parameter block whose pointer
you pass to PBControl to execute the sdspOpen routine. The ASDSP parameter block
contains fields that carry the input and output parameters associated with the function.
The SDSPParamBlock data type defines the ASDSP parameter block.

For a description of the fields that are common to both the DSP and ASDSP parameter
blocks and that are used in exactly the same way, see 11The DSP Parameter Block"
beginning on page 5-38. For a description of the fields that are particular to the
sdspOpen routine, see "sdspOpen" beginning on page 5-54.

ADSP Reference 5-41

CHAPTER 5

Apple Talk Data Stream Protocol (ADSP)

SDSPParamBlock =
PACKED RECORD
CASE INTEGER OF

1: (dspParamBlock: DSPParamBlock);
2: (qLink: QElemPtr; {reserved}

qType: Integer; {reserved}
ioTrap: Integer; {reserved}
ioCmdAddr: Ptr; {reserved}
ioCompletion: ProcPtr; {pointer to completion routine}
ioResult: OSErr; {routine result}
ioNamePtr: StringPtr; {reserved}
ioVRefNum: Integer; {reserved}
ioCRefNum: Integer; {ASDSP driver refNum}
csCode: Integer; {ASDSP driver control code}
qStatus: Longint; {reserved}
ccbRefNum: Integer; {connection end refNum}
secureParams: TRSecureParams); {dspOpenSecure}

END;

SDSPPBPtr = ASDSPParamBlock;

Field descriptions
csCode The command code for the ASDSP routine to be executed. You must

fill in this field before calling the PBControl function. To call the
sdspOpen routine to open a secure connection, you specify the
constant sdspOpen as the value of this parameter.

secureParams A record of type TRSecureParams that contains the additional
parameters required to open a secure ASDSP session.

The TRSecureParams Record

The ASDSP parameter block is a variant parameter block that includes a field that is a
record of type TRSecureParams, which defines the additional parameters required for
an ASDSP session. This section shows the declaration for the TRSecureParams record.
The routine description "sdspOpen" beginning on page 5-54 includes the field definitions
for the TRSecureParams record. ·

The TRSecureParams record is defined as follows:

TYPE TRSecureParams
PACKED RECORD

localCID:
remoteCID:
remoteAddress:
filterAddress:
sendSeq:

5-42 ADSP Reference

Integer;
Integer;
AddrBlock;
AddrBlock;
Longint;

{local connection ID}
{remote connection ID}
{address of remote end}
{address filter}
{local send sequence number}

CHAPTER 5

Apple Talk Data Stream Protocol (ADSP)

sendWindow:
recvSeq:
attnSendSeq:
attnRecvSeq:
ocMode:
ocinterval:

ocMaximum:

secure:

sessionKey:
credentialsSize:
credentials:
workspace:

recipient:

issueTime:
expiry:
initiator:

has Intermediary:

intermediary:

END;

Routines

Integer;
Longint;
Longint;
Longint;
Byte;
Byte;

Byte;

Boolean;

AuthKeyPtr;
Longint;
Ptr;
Ptr;

Authidentity;

UTCTime;
UTCTime;
RecordiDPtr;

Boolean;

RecordiDPtr;

{send window size}
{receive sequence number}
{attention send sequence number}
{attention receive sequence number}
{open connection mode}
{open connection request retry }

{ interval}
{open connection request retry }

{ maximum}
{for initiator, TRUE if session is
{ authenticated }

{for recipient, TRUE if session was }
{ authenticated}
{encryption key for session}
{length of credentials}
{pointer to credentials}
{pointer to workspace for }
{ connection. Align on even boundary }
{ and length = sdspWorkSize}
{identity of recipient or initiator }

{ if active mode}
{time when credentials were issued}
{time when credentials expire}
{RecordiD of initiator returned in }

{ buffer pointed to by this field}
{set if credentials has an }
{ intermediary}
{RecordiD of intermediary returned }

{ here}

This section describes the ADSP and ASDSP routines that you use to

• establish and terminate an ADSP connection

• establish a secure (ASDSP) connection

• establish and terminate an ADSP connection listener

• maintain an ADSP connection, including sending and receiving data across an ADSP
or ASDSP connection and enabling encryption of the data to be sent

ADSP Reference

•

DESCRIPTION

CHAPTER 5

Apple Talk Data Stream Protocol (ADSP)

You use the Device Manager's PBControl function for all of the ADSP and ASDSP
routine calls.

FUNCTION PBControl (paramBlock: ParmBlkPtr;
async: Boolean): OSErr;

paramBlock

a sync

A pointer to the DSP parameter block that the PBControl function uses
for DSP routines.

A Boolean that specifies whether the function is to execute synchronously
or asynchronously. Set the async parameter to TRUE to execute the
function asynchronously.

All of the ADSP routines are implemented through a call to the PBControl function.
The PBControl function takes a pointer to a parameter block and a Boolean value that
specifies the mode in which the function is to be executed. You use the DSP parameter
block for all ADSP calls.

The parameter block includes a field, csCode, in which you specify the routine selector
for the particular routine to be executed; you must specify a value for this field. Each
ADSP routine may use different fields of the DSP parameter block for parameters
specific to that routine. The description of a function in this section includes the specific
parameters used for that function. See the section "The DSP Parameter Block" beginning
on page 5-38 for the complete DSP parameter block data structure.

An arrow preceding a parameter indicates whether the parameter is an input parameter,
an output parameter, or both:

Arrow Meaning

~ Input

~ Output

H Both

Establishing and Terminating an ADSP Connection

You can use the routines described in this section to

• establish and initialize a connection end

• set the values for parameters that control the behavior of a connection end

• open an ADSP or ASDSP connection

• assign an identification number to a connection end

• close a connection end

• eliminate a connection end

5-44 ADSP Reference

dsplnit

CHAPTER S

Apple Talk Data Stream Protocol (ADSP)

The dspinit routine establishes a connection end, that is, it assigns a specific socket for
the ADSP connection end to use and initializes the variables that ADSP uses to maintain
the connection. You use the PBControl function to call the dspinit routine. See
"Routines" beginning on page 5-43 for a description of the PBControl function.

Parameter block

--+ ioCompletion ProcPtr A pointer to a completion routine.
~ ioResult OSErr The function result.
--+ ioCRefNum Integer The driver reference number.
--+ csCode Integer Always dspini t for this function.
~ ccbRefNum Integer The CCB reference number.
--+ ccbPtr TPCCB A pointer to the CCB.
--+ userRoutine ProcPtr A pointer to a routine to call on

connection events.
--+ sendQSize Integer The size in bytes of the send queue.
--+ sendQueue Ptr A pointer to the send queue.
--+ recvQSize Ptr The size in bytes of the receive queue.
--+ recvQueue Ptr A pointer to the receive queue.
--+ attnPtr Ptr A pointer to the buffer for incoming

attention messages.
H localSocket Byte The DDP socket number for this

Field descriptions
csCode
ccbRefNum

ccbPtr

userRoutine

sendQSize

sendQueue

ADSP Reference

connection end.

The routine selector, always equal to dspinit for this routine.

The connection control block (CCB) reference number. The dspini t
routine returns the CCB reference number for this connection end
as the value of the ccbRefNum parameter. You must provide this
number in all subsequent calls to this connection end.

A pointer to the CCB that you allocated to be used by this connection
end. The CCB is 242 bytes in size and is described in "The ADSP
Connection Control Block Record" beginning on page 5-35. See also
"Creating and Using a Connection Control Block" on page 5-12.

A pointer to a routine that ADSP is to call each time the connection
end receives an unsolicited connection event. Specify NIL for this
parameter if you do not want to supply a user routine. Connection
events and user routines are discussed in "Writing a User Routine
for Connection Events" beginning on page 5-26.

The size in bytes of the send queue. A queue size of 600 bytes should
work well for most applications. If you are using ADSP to send a
continuous flow of data, a larger data buffer improves performance.
If your application is sending the user's keystrokes, a smaller buffer
should be adequate. The constant minDSPQueueSize indicates the
minimum queue size that you can use.

A pointer to the send queue that you allocated.

5-45

DESCRIPTION

CHAPTER 5

Apple Talk Data Stream Protocol (ADSP)

recvQSize

recvQueue

attnPtr

local Socket

The size in bytes of the receive queue. A queue size of 600 bytes
should work well for most applications. If you are using ADSP to
receive a continuous flow of data, a larger data buffer improves
performance. If your application is receiving a user's keystrokes, a
smaller buffer should be adequate. The constant minDSPQueueSize
indicates the minimum queue size that you can use.

A pointer to the receive queue that you allocated.
A pointer to the attention-message buffer that you allocated. The
attention-message buffer must be the size of the constant
attnBufSize.

The DDP socket number of the socket that you want ADSP to use
for this connection end. Specify 0 for this parameter to cause ADSP
to assign the socket; in this case, ADSP returns the socket number
when the dspinit routine completes execution.

The dspini t routine creates and initializes a connection end. The dspini t routine
does not open the connection end or establish a connection with a remote connection
end; you must follow the dspini t routine with the dspOpen routine to perform
those tasks.

When you send bytes to a remote connection end, ADSP stores the bytes in a buffer
called the send queue. Until the remote connection end acknowledges their receipt, ADSP
keeps the bytes you sent in the send queue so that they are available to be retransmitted
if necessary. When the local connection end receives bytes, it stores them in a buffer
called the receive queue until you read them.

You must allocate memory for the send (sendQueue) and receive (recvQSize) queues
and for a buffer (attnPtr) that holds incoming attention messages. You must also
allocate a nonrelocatable block of memory (ccbPtr) for the CCB for this connection end.

SPECIAL CONSIDERATIONS

You must allocate nonrelocatable memory for the CCB, the send queue, the receive
queue, and the attention-message buffer, and ensure that the memory remains locked
until you explicitly remove the connection end by calling the dspRemove routine. Do
not write any data to this memory except by calling ADSP routines.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

5-46

To execute the dspinit routine from assembly language, call the _Control trap macro
with a value of dspini t in the csCode field of the parameter block.

noErr
ddpSktErr
errDSPQueueSize

ADSP Reference

0
-91

-1274

No error
Error opening DDP socket
Send or receive queue is too small

dspOptions

CHAPTER 5

Apple Talk Data Stream Protocol (ADSP)

The dspOptions routine allows you to set values for several parameters that affect
the behavior of the local connection end. You use the PBControl function to call the
dspOptions routine. See "Routines" on page 5-43 for a description of the PBControl
function.

Parameter block

~ ioCompletion ProcPtr A pointer to a completion routine.
f- ioResult OS Err The function result.
~ ioCRefNwn Integer The driver reference number.
~ csCode Integer Always dspOptions for this function.
~ ccbRefNwn Integer The CCB reference number.
~ sendBlocking Integer The send-blocking threshold.
~ badSeqMax Byte The threshold to send retransmit advice.
~ useCheckSum Byte A DDP checksum flag.

Field descriptions
csCode

ccbRefNum

sendBlocking

badSeqMax

ADSP Reference

The routine selector, always equal to dspOptions for this routine.

The connection control block (CCB) reference number that the
dspini t routine returned.

The maximum number of bytes that may accumulate in the send
queue before ADSP sends a packet to the remote connection end.
ADSP sends a packet before the maximum number of bytes
accumulates if the period specified by the send timer expires, if
you execute the dspWrite routine with the flush parameter set
to 1, or if a connection event requires that the local connection end
send an acknowledgment packet to the remote connection end.

You can set the sendBlocking parameter to any value from
1 byte to the maximum size of a packet (572 bytes). If you set the
sendBlocking parameter to 0, the current value for this parameter
is not changed. The default value for the sendBlocking parameter
is 16 bytes.

The maximum number of out-of-sequence data packets that the
local connection end can receive before requesting the remote
connection end to retransmit the missing data. Because a connection
end does not acknowledge the receipt of a data packet received out
of sequence, the retransmit timer of the remote connection end will
expire eventually and the connection end will retransmit the data.
The badSeqMax parameter allows you to cause the data to be
retransmitted before the retransmit timer of the remote connection
end has expired.

You can set the badSeqMax parameter to any value from 1 to 255.
If you set the badSeqMax parameter to 0, the current value for
this parameter is not changed. The default value for the badSeqMax
parameter is 3.

5-47

•

DESCRIPTION

CHAPTER 5

Apple Talk Data Stream Protocol (ADSP)

useCheckSum A flag specifying whether DDP should compute a checksum and
include it in each packet that it sends to the remote connection end.
Set this parameter to 1 if you want DDP to use checksums or to 0
if you do not want DDP to use checksums. The default value for
useCheckSum is 0.

ADSP cannot include a checksum in a packet that has a short DDP
header-that is, a packet being sent over LocalTalk to a remote
socket that is on the same cable as the local socket. Note that the
useCheckSum parameter affects only whether ADSP includes a
checksum in a packet that it is sending. If ADSP receives a packet
that includes a checksum, it validates the checksum regardless of
the setting of the useCheckSum parameter.

The dspOptions routine lets you set values that determine the behavior of a connection
end, such as the blocking factor, which is maximum number of bytes that should
accumulate in the connection end's send queue before ADSP sends a packet to the
remote connection end, the maximum number of out-of-sequence packets received by
the connection end before ADSP sends a request for the missing packets, and whether or
not DDP should use checksums for all the packets that it transmits. You can set the
options for any established connection end, whether or not the connection end is open.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

dspOpen

5-48

To execute the dspOptions routine from assembly language, call the_ Control trap
macro with a value of dspOptions in the csCode field of the parameter block.

noErr
errRefNum

0
-1280

No error
Bad connection reference number

Use the dspinit routine, described on page 5-45, to return the connection control block
(CCB) reference number.

The dspOpen routine opens a connection end. You can open a connection end in request
mode, passive mode, accept mode, or establish mode. You use the PBControl function
to call the dspOpen routine. See "Routines" on page 5-43 for a description of the
PBControl function.

ADSP Reference

CHAPTER 5

Apple Talk Data Stream Protocol (ADSP)

Parameter block

---+ ioCompletion ProcPtr A pointer to completion routine.
~ ioResult OSErr The function result.
---+ ioCRefNum Integer The driver reference number.
---+ csCode Integer Always dspOpen for this function.
---+ ccbRefNum Integer The CCB reference number.
~ localCID Integer The ID of this connection end.
H remoteCID Integer The ID of remote connection end.
H remoteAddress AddrBlock A remote internet address.
---+ filterAddress AddrBlock A filter for open-connection requests.
H sendSeq Longint The initial send sequence number.
H sendWindow Integer The initial size of remote receive queue.
---+ recvSeq Longint The initial receive sequence number.
H attnSendSeq Longint The attention send sequence number.
---+ attnRecvSeq Longint The attention receive sequence number.
---+ ocMode Byte The connection-opening mode.
---+ ocinterval Byte The interval between open requests.
---+ ocMaximum Byte The number of open-connection

request retries.

The use of parameters by the dspOpen routine depends on the mode in which the
routine is executed, as follows:

ocRequest ocPassive ocAccept ocEstablish

---+ ioCompletion ---+ ioCompletion ---+ ioCompletion ---+ ioCompletion

~ ioResult ~ ioResult ~ ioResult ~ ioResult

---+ ioCRefNum ---+ ioCRefNum ---+ ioCRefNum ---+ ioCRefNum

---+ csCode ---+ csCode ---+ csCode ---+ esC ode

---+ ccbRefNum ---+ ccbRefNum ---+ ccbRefNum ---+ ccbRefNum

~ localCID ~ localCID ~ localCID localCID

~ remoteCID ~ remoteCID ---+ remoteCID ---+ remoteCID

~ remoteAddress ~ remoteAddress ~ remoteAddress ---+ remoteAddress

---+ filterAddress ~ filterAddress filterAddress filterAddress

~ sendSeq ~ sendSeq ~ sendSeq ---+ sendSeq

~ sendWindow ~ sendWindow ~ sendWindow ~ sendWindow

recvSeq recvseq recvSeq ---+ recvSeq

~ attnSendSeq ~ attnSendSeq ---+ attnSendSeq ---+ attnSendSeq

attnRecvSeq attnRecvSeq attnRecvSeq ~ attnRecvSeq

~ ocMode ~ ocMode ---+ ocMode ---+ ocMode

---+ ocinterval ---+ ocinterval ---+ ocinterval ocinterval

~ ocMaximum ~ ocMaximum ~ ocMaximum ocMaximum

Key: ~input ~output H input and output -not used

ADSP Reference 5-49

•)>
"C
"0
ar
;I
;;;:
0
a
D)

g}
ca
D)

3
"'0 a
6'
(')

Q..

> 0 en
.3!

5-50

CHAPTER 5

Apple Talk Data Stream Protocol (ADSP)

Field descriptions
csCode The routine selector, always equal to dspOpen for this routine.

ccbRefNum The connection control block (CCB) reference number that was
returned by the dspini t routine for the connection end that you
want to use.

localCID The identification number of the local connection end. This number
is assigned by ADSP when you open the connection. ADSP includes
this number in every packet sent to a remote connection end. Before
you call the dspOpen routine in ocEstablish mode, you must
call the dspNewCID routine to cause ADSP to assign this value.

remoteCID The identification number of the remote connection end. This
parameter is returned by the dspOpen routine in the ocRequest
and ocPassive modes. A connection server must provide this
number to the dspOpen routine when the server executes the
routine in ocAccept mode; in this case, the connection server
obtains the remoteCID value from the dspCLListen routine. You
must provide the remoteCID value to the dspOpen routine when
you use the routine in ocEstablish mode.

remoteAddres s The internet address of the remote socket with which you wish to
establish communications. This address consists of a 2-byte network
number, a 1-byte node 10, and a 1-byte socket number. You must
provide this parameter when you call the dspOpen routine in the
ocRequest or ocEstablish mode. This parameter is returned by
the dspOpen routine when you call the routine in the ocPassive
mode. \Vhen you call the dspOpen routine in the ocAccept mode,
you must use the value for the remoteAddress parameter that
was returned by the dspCLListen routine.

filterAddress The internet address of the socket from which you will accept a
connection request. The address consists of three fields: a 2-byte
network number, a 1-byte node ID, and a 1-byte socket number.
Specify 0 for any of these fields for which you wish to impose no
restrictions. If you specify a filter address of $00082500, for example,
the connection end accepts a connection request from any socket at
node $25 of network $0008. Set the filterAddress parameter
equal to the remoteAddres s parameter to accept a connection

ADSP Reference

only with the socket to which you sent a connection request.

When you execute the dspOpen routine in the ocPassive mode,
you can receive a connection request from any ADSP connection
end on the internet. When you execute the dspOpen routine in the
ocRequest mode, your connection end can receive a connection
request acknowledgment from an address different from the one
you specified in the remoteAddress parameter only if the remote
address you specified was that of a connection listener. In either
case, you can use the f il terAddres s parameter to avoid acknowl­
edging unwanted connection requests.

When you execute the dspOpen routine in the ocAccept mode,
your connection listener has already received and decided to accept
the connection request. You can specify a filter address for a

CHAPTER 5

Apple Talk Data Stream Protocol (ADSP}

sendSeq

sendWindow

recvSeq

attnSendSeq

attnRecvSeq

ADSP Reference

connection listener with the dspCLListen routine. A connection
server can use the dspCLDeny routine to deny a connection request
that was accepted by its connection listener.

You cannot use the filter address when you execute the dspOpen
routine in ocEstablish mode.

The sequence number of the first byte that the local connection end
will send to the remote connection end. ADSP uses this number to
coordinate communications and to check for errors. ADSP returns a
value for the sendSeq parameter when you execute the dspOpen
routine in the ocRequest or ocPassive mode. When you execute
the dspOpen routine in the ocAccept mode, you must specify
the value for the sendSeq parameter that was returned by the
dspCLListen routine. You must provide the value for this
parameter when you execute the dspOpen routine in the
ocEstablish mode.

The sequence number of the last byte that the remote connection
end has buffer space to receive. ADSP uses this number to
coordinate communications and to check for errors. ADSP returns
a value for the sendWindow parameter when you execute the
dspOpen routine in the ocRequest or ocPassive mode. When
you execute the dspOpen routine in the ocAccept mode, you must
specify the value for the sendwindow parameter that was returned
by the dspCLListen routine. You must provide the value for this
parameter when you execute the dspOpen routine in the
ocEstablish mode.

The sequence number of the next byte that the local connection
end expects to receive. ADSP uses this number to coordinate
communications and to check for errors. You must provide the
value for this parameter when you execute the dspOpen routine
in the ocEstablish mode. The dspOpen routine does not use
this parameter when you execute it in any other mode.

The sequence number of the next attention packet that the local
connection end will transmit. ADSP uses this number to coordinate
communications and to check for errors. ADSP returns a value
for the attnSendSeq parameter when you execute the dspOpen
routine in the ocRequest or ocPassive mode. When you execute
the dspOpen routine in the ocAccept mode, you must specify
the value for the attnSendSeq parameter that was returned
by the dspCLListen routine. You must provide the value for
this parameter when you execute the dspOpen routine in the
ocEstablish mode.

The sequence number of the next attention packet that the local
connection end expects to receive. ADSP uses this number to ensure
that packets are delivered in the correct order and to check for
errors. You must provide a value for this parameter when you
execute the dspOpen routine in the ocEstablish mode. The
dspOpen routine does not use this parameter when you execute it
in any other mode.

5-51

•

DESCRIPTION

CHAPTER 5

Apple Talk Data Stream Protocol (ADSP)

ocMode

ocinterval

ocMaximum

The mode in which the dspOpen routine is to operate, as follows:

Mode Value

ocRequest 1

ocPassive 2

ocAccept 3

ocEstablish 4

Meaning

ADSP attempts to open a connection
with the socket you specify.

The connection end waits to receive a
connection request.

The connection server accepts and
acknowledges receipt of a connection
request.

ADSP considers the connection
established and open; you are
responsible for setting up and
synchronizing both connection ends.

The period between transmissions of open-connection requests.
If the remote connection end does not acknowledge or deny an
open-connection request, ADSP retransmits the request after a
time period specified by this parameter. The time period used by
ADSP is (ocinterval x 10) ticks, or (ocinterval/6) seconds.
For example, if you set the ocinterval parameter to 3, the time
period between retransmissions is 30 ticks (1/2 second). You can set
the ocinterval parameter to any value from 1 (1/6 second) to
180 (30 seconds). If you specify 0 for the ocinterval parameter,
ADSP uses the default value of 6 (1 second).

You must provide a value for the ocinterval parameter when
you execute the dspOpen routine in the ocRequest, ocPassive,
or ocAccept mode. The dspOpen routine does not use this
parameter when you execute it in the ocEstablish mode.

The maximum number of times to retransmit an open-connection
request before ADSP terminates execution of the dspOpen routine.
If you specify 0 for the ocMaximum parameter, ADSP uses the
default value of 3. If you specify 255 for the ocMaximum parameter,
ADSP retransmits the open-connection request indefinitely until the
remote connection end either acknowledges or denies the request.

You must provide a value for the ocMaximum parameter when you
execute the dspOpen routine in the ocRequest, ocPassive, or
ocAccept mode. The dspOpen routine does not use this parameter
when you execute it in the ocEstablish mode.

The dspOpen routine opens a connection end. You set the ocMode field of the parameter
block to specify the opening mode that the dspOpen routine is to use. The dspOpen
routine puts a connection end into one of the four following opening modes:

• The ocRequest mode, in which ADSP attempts to open a connection with the socket
at the internet address you specify as the remoteAddress parameter. If the socket
you specify as a remote address is a connection listener, it is possible that your
application will receive a connection acknowledgment and request from a different

5-52 ADSP Reference

CHAPTER 5

Apple Talk Data Stream Protocol (ADSP)

address than the one to which you sent the open-connection request. You can use
the f il terAddress parameter to restrict the addresses with which you will accept
a connection.

The dspOpen routine completes execution in the ocRequest mode when one of the
following occurs: ADSP establishes a connection, your connection end receives
a connection denial from the remote connection end, your connection end denies the
connection request returned by a connection listener, or ADSP cannot complete
the connection within the maximum number of retries that you specified with the
ocMaximum parameter.

• The ocPassive mode, in which the connection end waits to receive an open­
connection request from a remote connection end. You can use the filterAddress
parameter to restrict the addresses from which you will accept a connection request.

The dspOpen routine completes execution in the ocPassive mode when ADSP
establishes a connection or when either connection end receives a connection denial.

• The ocAccept mode, used by connection servers to complete an open-connection
dialog. When a connection server is informed by its connection listener that the
connection listener has received an open-connection request, the connection server
calls the dspinit routine to establish a connection end and then calls the dspOpen
routine in ocAccept mode to complete the connection. You must obtain the following
parameters from the dspCLListen routine and provide them to the dspOpen
routine: remoteAddress, remoteCID, sendSeq, sendWindow, and attnSendSeq.
Connection listeners and connection servers are described in "Creating and Using a
Connection Listener" beginning on page 5-22 and in "Establishing and Terminating an
ADSP Connection" beginning on page 5-44. See "Connection Listeners" on page 5-7
for a brief introduction to connection listeners.

The dspOpen routine completes execution in the ocAccept mode when ADSP
establishes a connection or when either connection end receives a connection denial.

• The ocEstablish mode, in whichADSP considers the connection end established
and the connection state open. This mode is for use by clients that determine their
connection-opening parameters without using ADSP or the .DSP driver to do so.

You must first use the dspini t routine to establish a connection end and then
execute the dspNewCID routine to obtain an identification number (ID) for the
local connection end. You must then communicate with the remote connection end
to send it the local connection ID and to determine the values of the following
parameters: remoteAddress, remoteCID, sendSeq, sendWindow, recvSeq,
attnSendSeq, and attnRecvSeq. Only then can you execute the dspOpen routine
in the ocEstablish mode.
The dspOpen routine completes execution in the ocEstablish mode immediately.

ASSEMBLY-LANGUAGE INFORMATION

To execute the dspOpen routine from assembly language, call the_ Control trap macro
with a value of dspOpen in the csCode field of the parameter block.

ADSP Reference 5-53

RESULT CODES

sdspOpen

5-54

CHAPTER 5

Apple Talk Data Stream Protocol (ADSP)

noErr
errOpenDenied
errOpening
errS tate
err Aborted
errRefNum

0
-1273
-1277
-1278
-1279
-1280

No error
Open request denied by recipient
Attempt to open connection failed
Connection end must be closed
Request aborted by dspRemove or dspClose routine
Bad connection reference number

The sdspOpen routine opens a secure (ASDSP) connection and causes ASDSP to
perform the challenge-and-reply process that authenticates the ASDSP clients at either
end of the connection. You use the PBControl function to call the sdspOpen routine.
See "Routines" on page 5-43 for a description of the PBControl function.

Parameter block

ioCompletion ProcPtr A pointer to completion routine.
ioResult OSErr A result code.
ioCRefNum Integer The ADSP driver reference number.
csCode Integer Always sdspOpen for this function.
ccbRefNum Integer The CCB reference number for

connection end.
localCID Integer The ID of this connection end.
remoteCID Integer The ID of remote connection end.
remoteAddress AddrBlock A remote internet address.
filterAddress AddrBlock A filter for open connection end.
sendSeq Longint The initial send sequence number.
sendWindow Integer The initial size of remote receive queue.
recvSeq Longint Not used for ASDSP.
attnSendSeq Longint The attention send sequence number.
attnRecvSeq Longint Not used for ASDSP.
ocMode Byte The connection-opening mode.
ocinterval Byte The interval between open requests.
ocMaximum Byte The maximum number of retries of the

open-connection request.
secure Boolean A flag that determines if ASDSP

authenticates the connection.
sessionKey AuthKeyPtr A pointer to the session encryption key.
credentialsSize Longint The length of credentials.
credentials Ptr A pointer to credentials.
workspace Ptr A pointer to workspace for connection.
recipient Authidentity The identity of recipient.
issueTime UTCTime The time when credentials were issued.
expiry UTCTime The time when credentials expire.
initiator RecordiDPtr A pointer to record ID of initiator.
has Intermediary Boolean TRUE if credentials has an intermediary.
intermediary RecordiDPtr A pointer to record ID of intermediary.

ADSP Reference

CHAPTER 5

Apple Talk Data Stream Protocol (ADSP)

The use of parameters by the sdspOpen routine depends on the mode in which the
routine is executed, as follows:

ocRequest ocPassive ocAccept

~ ioCompletion ~ ioCompletion ~ ioCompletion

~ ioResult ~ ioResult ~ ioResult

~ ioCRefNum ~ ioCRefNum ~ ioCRefNum

~ csCode ~ csCode ~ csCode

~ ccbRefNum ~ ccbRefNum ~ ccbRefNum

~ localCID ~ localCID ~ localCID

~ remoteCID ~ remoteCID ~ remoteCID

~ remoteAddress ~ remoteAddress ~ remoteAddress

~ filterAddress ~ filterAddress filterAddress

~ sendSeq ~ sendSeq ~ sendSeq

~ sendWindow ~ sendWindow ~ sendWindow

recvSeq recvSeq recvSeq

~ attnSendSeq ~ attnSendSeq ~ attnSendSeq

attnRecvSeq attnRecvSeq attnRecvSeq

~ ocMode ~ ocMode ~ ocMode

~ ocinterval ~ ocinterval ~ ocinterval

~ ocMaximum ~ ocMaximum ~ ocMaximum

~ secure ~ secure ~ secure

~ sessionKey ~ sessionKey ~ sessionKey

~ credentials Size credentialsSize credentialsSize

• ~ credentials credentials credentials

~ workspace ~ workspace ~ workspace
)>

recipient ~ recipient ~ recipient -o
-o
(i)

issueTime ~ issueTime ~ issueTime ;I
~

expiry ~ expiry ~ expiry c a
initiator H initiator H initiator D>

en -has Intermediary ~ has Intermediary ~ has Intermediary <D
D>

intermediary H intermediary H intermediary 3
-o

Key: ~input ~output H input and output -not used a
0
0
Q.

Field descriptions)>

csCode The routine selector, always equal to sdspOpen for this routine. c
en

ccbRefNum This field is used in the same way that it is used for ADSP. See the
.:g

description of this field under "dspOpen" beginning on page 5-48.
localCID This field is used in the same way that it is used for ADSP. See the

description of this field under 11 dspOpen" beginning on page 5-48.

ADSP Reference 5-55

5-56

CHAPTER 5

Apple Talk Data Stream Protocol (ADSP)

remoteCID

remoteAddress

filterAddress

sendSeq

sendWindow

recvSeq

attnSendSeq

attnRecvSeq

ADSP Reference

The identification number of the remote connection end. This
parameter is returned by the sdspOpen routine in the ocRequest
and ocPassi ve modes. A connection server must provide this
number to the sdspOpen routine when the server executes the
routine in ocAccept mode; in this case, the connection server
obtains the remoteCID value from the dspCLListen routine.

The internet address of the remote socket with which you wish to
establish communications. This address consists of a 2-byte network
number, a 1-byte node ID, and a 1-byte socket number. You must
provide this parameter when you call the sdspOpen routine in
the ocRequest or ocAccept mode. When you call the sdspOpen
routine in the ocAccept mode, you must use the value for the
remoteAddress parameter that was returned by the dspCLListen
routine. This parameter is returned by the sdspOpen routine when
you call the routine in the ocPassive mode.

This field is used in the same way that it is used for ADSP. See the
description of this field under 11 dspOpen" beginning on page 5-48.

The sequence number of the first byte that the local connection end
will send to the remote connection end. ASDSP uses this number
to coordinate communications and to check for errors. ASDSP
returns a value for the sendSeq parameter when you execute
the sdspOpen routine in the ocRequest or ocPassive mode.
When you execute the sdspOpen routine in the ocAccept mode,
you must specify the value for the sendSeq parameter that was
returned by the dspCLListen routine.

The sequence number of the last byte that the remote connection
end has buffer space to receive. ASDSP uses this number to
coordinate communications and to check for errors. ASDSP returns
a value for the sendWindow parameter when you execute the
sdspOpen routine in the ocRequest or ocPassive mode. When
you execute the sdspOpen routine in the ocAccept mode, you
must specify the value for the sendWindow parameter that was
returned by the dspCLListen routine.

This field is not used by ASDSP.

The sequence number of the next attention packet that the local
connection end will transmit. ASDSP uses this number to
coordinate communications and to check for errors. ASDSP returns
a value for the attnSendSeq parameter when you execute the
sdspOpen routine in the ocRequest or ocPassive mode. When
you execute the sdspOpen routine in the ocAccept mode, you
must specify the value for the attnSendSeq parameter that was
returned by the dspCLListen routine.

This field is not used by ASDSP.

CHAPTER 5

Apple Talk Data Stream Protocol (ADSP)

ocMode

ocinterval

ocMaximum

secure

sessionkey

credentialsSize

The mode in which the sdspOpen routine is to operate, as follows:

Mode

ocRequest

ocPassive

Value

1

2

Meaning

ADSP attempts to open a connection
with the remote socket you specify.

The connection end waits to receive
a connection request.

ocAccept 3 The connection server accepts and
acknowledges receipt of a connec­
tion request.

This field is used in the same way that it is used for ADSP. See the
description of this field under "dspOpen" beginning on page 5-48.
This field is used in the same way that it is used for ADSP. See the
description of this field under "dspOpen" beginning on page 5-48.
A flag that determines whether ASDSP authenticates the connection.
On input for the initiator end, you must set this value to TRUE if you
want ASDSP to authenticate the connection. You must provide a
value for the secure parameter when you execute the sdspOpen
routine in the ocRequest mode. ASDSP returns a value of TRUE for
this parameter to the recipient for all modes if the session was
authenticated.
A pointer to a buffer containing the session key returned by
the Authentication Manager's AuthGetCredentials or
AuthTradeProxyForCredentials function. The initiator
connection end must provide an input value for this parameter.
For the recipient connection end, ASDSP breaks out the session
key from the credentials block and returns a copy of the session key
as the value of this parameter. Se~ the description of the data
structures that you need to allocate for ASDSP in the section
"Opening a Secure Connection" beginning on page 5-30 for more
information about the buffer.

The size in bytes of credentials returned by the Authentica-
tion Manager's AuthTradeProxyForCredentials or
AuthGetCredentials function. You must provide a value for the
credentials Size parameter when you execute the sdspOpen
routine in the ocRequest mode. This parameter is not used for the
recipient end of the connection when you call the sdspOpen
routine in ocAccept mode or ocPassi ve mode.

credentials A pointer to the credentials for this session that the Authentica­
tion Manager's AuthTradeProxyForCredentials or
AuthGetcredentials function returned when you called it.
Specify the size in bytes of the credential block pointed to by this
parameter as the value of the credentialsSize parameter when
you call the sdspOpen routine in the ocRequest mode. This
parameter is not used for the recipient end of the connection when
you call the sdspOpen routine in ocAccept mode or ocPassive
mode. See the chapter "Authentication Manager" in Inside
Macintosh: AOCE Application Programming Interfaces.

ADSP Reference S-57

DESCRIPTION

5-58

CHAPTER 5

Apple Talk Data Stream Protocol (ADSP)

workspace

recipient

issueTime

expiry

initiator

has Intermediary

A pointer to a buffer that you allocate as workspace for the
sdspOpen routine's internal use. The memory for the buffer that
you allocate must be aligned on an even boundary and must be
equal in size to the sdspWorkSize constant, which is 2048 bytes.

When the value of the ocMode parameter is ocAccept, you specify
the identity of the connection server as the value of the
recipient parameter. When the value of the ocMode ·parameter
is ocPassive, you specify the identity of the socket that is the
recipient of the request call as the value of the recipient
parameter. This field is not used when the ocMode parameter
value is ocRequest.

The time when the authentication credentials were issued. Together
with the expiry parameter value, the issueTime parameter
specifies the period of time for which the credentials are valid.
ASDSP extracts the value for the issueTime parameter from the
decrypted credentials. ASDSP returns this value when the mode is
ocPassive or ocAccept. The issueTime field is not used when
the ocMode parameter value is ocRequest.

The time when the authentication credentials expire. Together with
the issueTime parameter value, the expiry parameter specifies
the duration for which the credentials are valid. ASDSP extracts the
value for the expiry parameter from the decrypted credentials. This
field is not used when the ocMode parameter value is ocRequest.

A pointer to the record ID of the initiator that ASDSP returns when
the value of the ocMode parameter is ocAccept or ocPassive.
ASDSP extracts this value from the encrypted credentials. This field
is not used when the ocMode parameter value is ocRequest.

A flag that ASDSP sets if the credentials have an intermediary.
When this flag is set, a proxy was used; an intermediary used
the AuthTradeProxyForCredentials function to obtain the
credentials used in the authentication process. The sdspOpen
routine returns this value when the ocMode parameter value is
ocPassive or ocAccept.

intermediary A pointer to a buffer that is used to store the record ID of the inter­
mediary, if ASDSP finds an intermediary in the credentials. The
sdspOpen routine returns this value when the ocMode parameter
value is ocPassive or ocAccept.

The sdspOpen routine opens a secure connection end if the identities of both the
initiator and the recipient connection ends can be proven in the authentication process.
You set the ocMode field of the parameter block to specify the opening mode that the
sdspOpen routine is to use. The sdspOpen routine puts a connection end into one of the
three following opening modes:

• In the ocRequest mode, ASDSP attempts to open a connection with the socket at the
internet address you specify as the remoteAddress parameter.

ADSP Reference

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

• In the ocPassive mode, the connection end waits to receive an open-connection
request from a remote connection end. You can use the filterAddress parameter
to restrict the addresses from which you will accept a connection request.

• In the ocAccept mode, connection servers complete open-connection dialogs. When a
connection server is informed by its connection listener that the connection listener has
received an open-connection request, the connection server calls the dspinit routine
to establish a connection end and then calls the sdspOpen routine in ocAccept mode
to complete the connection. Connection listeners and connection servers are described
in "Creating and Using a Connection Listener" beginning on page 5-22 and in
"Establishing and Terminating an ADSP Connection" beginning on page 5-44. See
//Connection Listeners" on page 5-7 for a brief introduction to connection listeners.

Except for the authentication process, these three modes are used by ASDSP and
ADSP in the same way and their behavior is the same. See the description of how
these modes are used in "dspOpen" beginning on page 5-48.

If ASDSP cannot successfully complete the authentication process, ASDSP tears down
the connection and the sdspOpen calls made by both the initiator and the recipient
return a result code reporting the reason why the authentication process failed. For
the conditions that can cause the authentication process to fail, see the list of result
codes that follows.

ASSEMBLY-LANGUAGE INFORMATION

To execute the sdspOpen routine from assembly language, call the_ Control trap
macro with a value of sdspOpen in the csCode field of the parameter block.

RESULT CODES

noErr 0 No error
errOpenDenied -1273 Open request denied by recipient
errFwdReset -1276 A forward reset caused ASDSP to terminate

the requesf
errOpening -1277 Attempt to open connection failed
errstate -1278 Connection end is not open
err Aborted -1279 Request aborted by dspRemove or

dspClose routine
errRefNum -1280 Bad connection reference number
kOCEUnsupportedCredentialsVersion -1543 Credentials version not supported
kOCEBadEncryptionMethod -1559 During the authentication process, the

ASDSP implementations could not agree on
an encryption method to be used (ASDSP
can support multiple stream encryption
methods. In Release 1, only RC4 and "no
encryption" are supported.)

kOCENoASDSPWorkSpace -1570 You passed NIL for the workspace
parameter

kOCEAuthenticationTrouble -1571 Authentication process failed

ADSP Reference 5-59

•)>
"0
"0 ro
;f
~
Cl a
S»

ro
(D
S»
3
""0

~
(')

Q.

> 0 en
.:g

CHAPTER 5

Apple Talk Data Stream Protocol (ADSP)

dspNewCID

DESCRIPTION

The dspNewCID routine creates a connection ID to be used in setting up a connection.
You use the PBControl function to call the dspNeWCID routine. See "Routines" on
page 5-43 for a description of the PBControl function.

Parameter block

~ ioCompletion ProcPtr A pointer to a completion routine.
~ ioResult
~ ioCRefNum
~ csCode
~ ccbRefNum
~ neWCID

Field descriptions

esC ode

ccbRefNum

neWCID

OS Err The function result.
Integer The driver reference number.
Integer Always dspNewCID for this function.
Integer The CCB reference number.
Integer The ID of new connection.

The routine selector, always equal to dspNewCID for this routine.

The connection control block (CCB) reference number that was
returned by the dspNeWCID routine for the connection end that
you want to use.

The connection-end ID that this routine returns. You must provide
this number to the client of the remote connection end so that
it can use it for the remoteCID parameter when it calls the
dspOpen routine.

The dspNewCID routine causesADSP to assign an ID to a connection end without
opening the connection end or attempting to establish a connection with a remote
connection end. Use this routine only if you implement your own protocol to establish
communication with a remote connection end. You must first use the dspini t routine
to establish a connection end. Next, you must call the dspNewCID routine to obtain a
connection-end ID. Then you must establish communication with a remote connection
end and pass the ID to the remote connection end. Finally, you must call the dspOpen
routine in ocEstablish mode to cause ADSP to open the connection.

ASSEMBLY-LANGUAGE INFORMATION

5-60

To execute the dspNewCID routine from assembly language, call the _control trap
macro with a value of dspNewCID in the csCode field of the parameter block.

ADSP Reference

RESULT CODES

SEE ALSO

dspClose

CHAPTER 5

Apple Talk Data Stream Protocol (ADSP)

noErr
errState
errRefNum

0
-1278
-1280

No error
Connection is not closed
Bad connection reference number

To establish a connection, use the dspini t routine, described on page 5-45.

To obtain a connection-end ID, use the sdspOpen routine, described on page 5-54.

To open a connection in ocEstablish mode, use the dspOpen routine, described on
see page 5-48.

The dspClose routine closes a connection end. You use the PBControl function
to call the dspClose routine. See "Routines" on page 5-43 for a description of the
PBControl function.

Parameter block

ioCompletion
ioResult
ioCRefNum
csCode
ccbRefNum
abort

ProcPtr
OS Err
Integer
Integer
Integer
Byte

A pointer to a completion routine.
The function result.
The driver reference number.
Always dspClose for this function.
The CCB reference number.
A value specifying to abort send requests
if not 0.

Field descriptions

csCode

ccbRefNum

The routine selector, always equal to dspClose for this routine.

The connection control block (CCB) reference number that was
returned by the dspNewCID routine for the connection end that
you want to close.

abort A value that specifies whether or not to send all of the data in the
send queue and all outstanding messages before closing the
connection end. If the abort parameter is nonzero, ADSP cancels
any outstanding requests to send data packets (such as the
dspAttention routine) and discards all data in the send queue.
If the abort parameter is 0, ADSP does not close the connection
end until all of the data in the send queue and all outstanding
attention messages have been sent and acknowledged.

ADSP Reference 5-61

•

DESCRIPTION

CHAPTER 5

Apple Talk Data Stream Protocol (ADSP)

The dspClose routine closes the connection end. The connection end is still established;
that is, ADSP retains ownership of the CCB, send queue, receive queue, and attention­
message buffer. You can continue to read bytes from the receive queue after you have
called the dspClose routine. Use the dspRemove routine instead of the dspClose
routine if you are finished with reading bytes from the receive queue and want to release
the memory associated with the connection end.

SPECIAL CONSIDERATIONS

The dspClose routine does not return an error if you call it for a connection end that is
already closed.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

dspRemove

5-62

To execute the dspClose routine from assembly language, call the_ Control trap
macro with a value of dspClose in the csCode field of the parameter block.

no Err
errRefNum

0
-1280

No error
Bad connection reference number

For information on how to remove a connection end and release the memory associated
with it, see the description of the dspRemove routine that follows.

The dspRemove routine closes any open connection and eliminates the connection
end, releasing all memory associated with it. You use the PBControl function to
call the dspRemove routine. See "Routines" on page 5-43 for a description of the
PBControl function.

Parameter block

---+ ioCompletion
~ ioResult
---+ ioCRefNum
---+ csCode
---+ ccbRefNum
---+ abort

ADSP Reference

ProcPtr
OS Err
Integer
Integer
Integer
Byte

A pointer to a completion routine.
The function result.
The driver reference number.
Always dspRemove for this function.
The CCB reference number.
A value specifying to abort connection
if not 0.

D-ESCRIPTION

CHAPTER 5

Apple Talk Data Stream Protocol (ADSP)

Field descriptions
csCode

ccbRefNum

abort

The routine selector, always equal to dspRemove for this routine.

The connection control block (CCB) reference number that was
returned by the dspNewCID routine for the connection end that
you want to remove.

A value that specifies whether or not to send all of the data in
the send queue and all outstanding messages before closing the
connection end. H the abort parameter is nonzero, ADSP cancels
any outstanding requests to send data packets (such as the
dspAttention routine) and discards all data in the send queue.
If the abort parameter is 0, ADSP does not close the connection
end until all of the data in the send queue and all outstanding
attention messages have been sent and acknowledged.

The dspRemove routine closes the connection end whose connection control block
(CCB) you specify, and it eliminates that connection end; that is, ADSP no longer retains
control of the CCB, send queue, receive queue, and attention-message buffer. You cannot
continue to read bytes from the receive queue after you have called the dspRemove
routine. After you call the dspRemove routine, you can release all of the memory you
allocated for the connection end if you do not intend to reopen the connection end.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

To execute the dspRemove routine from assembly language, call the_ Control trap
macro with a value of dspRemove in the csCode field of the parameter block.

noErr
errRefNum

0
-1280

No error
Bad connection reference number

Establishing and Terminating an ADSP Connection Listener

A connection listener is a special kind of connection end that listens for open-connection
requests from remote connection ends. Connection listeners are used by connection
servers-that is, programs that assign a socket for the local connection end only after
they receive a connection request from a remote connection end. A single connection
listener can receive connection requests from any number of remote connection ends.

You can use the routines in this section to

• establish a connection listener

• cause the connection listener to listen for a connection request

• deny a connection request

• close and eliminate a connection listener

ADSP Reference 5-63

dspCLinit

DESCRIPTION

CHAPTER 5

Apple Talk Data Stream Protocol (ADSP)

The dspCLinit routine establishes and initializes a connection listener. You use the
PBControl function to call the dspCLinit routine. See 11Routines" on page 5-43 for a
description of the PBControl function.

Parameter block

~ ioCompletion ProcPtr A pointer to a completion routine.
+--- ioResult OS Err The function result.
~ ioCRefNum Integer The driver reference number.
~ csCode Integer Always dspCLini t for this function.
+--- ccbRefNum Integer The CCB reference number.
~ ccbPtr TPCCB A pointer to CCB.
H local Socket Byte The local DDP socket number.

Field descriptions

esC ode

ccbRefNum

ccbPtr

local Socket

The routine selector, always equal to dspCLinit for this routine.

The connection control block (CCB) reference number. The
dspCLini t routine returns this value. You must provide this
number in all subsequent dspCLListen and dspCLRemove
calls to this connection listener.

A pointer to the CCB that you allocated. The CCB is 242 bytes
in size.

The number of the DDP socket that you want ADSP to use for this
connection end. Specify 0 for this parameter to cause ADSP to
assign the socket; in this case, ADSP returns the socket number
when the dspCLinit routine completes execution.

The dspCLinit routine establishes a connection listener; that is, it assigns a specific
socket for use by ADSP and initializes the variables that ADSP uses to maintain a
connection listener. The dspCLini t routine does not cause the connection listener
to listen for connection requests; you must follow the dspCLinit routine with the
dspCLListen routine to activate the connection listener.

You must allocate a block of nonrelocatable memory for a CCB before you call the
dspCLini t routine and pass a pointer to that CCB as the value of the ccbPtr
parameter. See the section 11Creating and Using a Connection Control Block" on
page 5-12 and the section 11The ADSP Connection Control Block Record" on page 5-35
for more information.

SPECIAL CONSIDERATIONS

5-64

The connection control block for which you allocate memory belongs to ADSP until you
explicitly remove the connection listener. You cannot release the memory for the CCB
until after you eliminate the connection listener.

ADSP Reference

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

To execute the dspCLinit routine from assembly language, call the _control trap
macro with a value of dspCLini t in the csCode field of the parameter block.

noErr
ddpSktErr

0
-91

No error
Error opening socket

To establish a connection end that is not a connection listener, use the dspini t routine
described on page 5-45.

To eliminate a connection listener, use the dspCLRemove routine, described on page 5-68.

dspCLListen

The dspCLListen routine causes a connection listener to listen for connection requests.
You use the PBControl function to call the dspCLListen routine. See "Routines" on
page 5-43 for a description of the PBControl function.

Parameter block

~ ioCompletion ProcPtr A pointer to a completion routine.
f- ioResult OSErr The function result.
~ ioCRefNum Integer The driver reference number.
~ esC ode Integer Always dspCLListen for this function.
~ ccbRefNum Integer The CCB reference number.
f- remoteCID Integer The ID of the remote connection end.
f- remoteAddress AddrBlock The remote internet address.
~ filterAddress AddrBlock A filter for open-connection requests.
f- sendSeq Longint The initial send sequence number.
f- sendWindow Integer The initial size of the remote

receive queue.
f- attnSendSeq Longint The attention send sequence number.

Field descriptions

csCode ·The routine selector, always dspCLListen for this routine.

ccbRefNum The CCB reference number that the dspCLini t routine returned.

remoteCID The identification number of the remote connection end. You must
pass this value to the dspOpen routine when you open the connec­
tion or to the dspCLDeny routine when you deny the connection
request. The dspCLListen routine returns this number.

remoteAddress The internet address of the remote socket that sent a request to open
a connection. This address consists of a 2-byte network number, a
1-byte node ID, and a 1-byte socket number. You must pass this
value to the dspOpen routine when you open the connection or to
the dspCLDeny routine when you deny the connection request.

ADSP Reference 5-65

•

DESCRIPTION

CHAPTER 5

Apple Talk Data Stream Protocol (ADSP)

filterAddress The internet address of the socket from which you will accept a
connection request. The address consists of three fields: a 2-byte
network number, a 1-byte node ID, and a 1-byte socket number.
Specify 0 for any of these fields for which you wish to impose no
restrictions. If you specify a filter address of $00082500, for example,
the connection listener accepts a connection request from any socket
at node $25 of network $0008.

sendSeq The sequence number of the first byte that the local connection end
will send to the remote connection end. ADSP uses this number to
coordinate communications and to check for errors. You must pass
this value to the dspOpen routine when you open the connection.

sendWindow The sequence number of the last byte that the remote connection
end has buffer space to receive. ADSP uses this number to
coordinate communications and to check for errors. You must pass
this value to the dspOpen routine when you open the connection.

attnSendSeq The sequence number of the next attention packet that the local
connection end will transmit. ADSP uses this number to ensure that
attention packets are delivered in the correct order and to check for
errors. You must pass this value to the dspOpen routine when you
open the connection.

The dspCLListen routine initiates the connection.listener. You must have already used
the dspCLini t routine to establish a connection listener before using the dspCLListen
routine. The dspCLListen routine is used only by connection servers.

When ADSP receives an open-connection request from a socket that satisfies the address
requirements of the filterAddress parameter, it returns values for the remoteCID,
remoteAddress, sendSeq, sendWindow, and attnSendSeq parameters and
completes execution of the dspCLListen routine. You must then either accept the
open-connection request by calling the dspOpen routine in the ocAccept mode or
deny the request by calling the dspCLDeny routine.

You can call the dspCLListen routine several times, specifying the same connection
listener. For example, if you wanted to accept connections from any or all of three
different addresses, you could call the dspCLListen routine three times with a different
value for the filterAddress parameter each time. Note that you must execute the
dspCLListen routine asynchronously to take advantage of this feature.

ASSEMBLY-LANGUAGE INFORMATION

5-66

To execute the dspCLListen routine from assembly language, call the_ Control trap
macro with a value of dspCLListen in the csCode field of the parameter block.

ADSP Reference

RESULT CODES

CHAPTER 5

Apple Talk Data Stream Protocol (ADSP)

noErr
errState
err Aborted
errRefNum

0
-1278
-1279
-1280

No error
Not a connection listener
Request aborted by the dspRemove routine
Bad connection reference number

dspCLDeny

DESCRIPTION

The dspCLDeny routine denies a connection request from a remote connection end. You
use the PBControl function to call the dspCLDeny routine. See ~~Routines" on
page 5-43 for a description of the PBControl function.

Parameter block.

~ ioCompletion ProcPtr A pointer to a completion routine.
~ ioResult OsErr The function result.
~ ioCRefNum Integer The driver reference number.
~ csCode Integer Always dspCLDeny for this function.
~ ccbRefNum I;nteger The CCB reference number.
~ remoteCID Integer The ID of the remote connection end.
~ remoteAddress Addr:Block The remote internet address.

Field descriptions

csCode

ccbRefNum

remoteCID

The routine selector, always dspCLDeny for this routine.

The CCB reference number for the connection listener that received
the requ~st. This is the CBB number that the dspCLinit routine
returned for the connection listener when you established a
connection listener.

1Jle ID of the remote connection end. The dspCLListen routine
returns this value.

remoteAddress The internet address of the remote connection end. The
dspCLList~n routine returns this valu~.

A connection server uses the dspCLDeny routine to inform a remote connection end that
its request to open a connection cannot be honored. If you want your connection listener
to continue to listen for further connection requests, you must call the dst>CLListen
request again after you call dspCLDeny.

ASSEMBLY-LANGUAGE INFORMATION

To execute the dspCLDeny routine from assembly language, call the_ Control trap
macro with a value of dspCLDeny in the csCode field of the parameter block.

ADSP Reference 5-67

RESULT CODES

CHAPTER 5

Apple Talk Data Stream Protocol (ADSP)

noErr
errState
err Aborted
errRefNum

0
-1278
-1279
-1280

No error
Not a connection listener
Request aborted by the dspRemove routine
Bad connection reference number

dspCLRemove

DESCRIPTION

The dspCLRemove routine closes a connection end used as a connection listener. You use
the PBControl function to call the dspCLRemove routine. See "Routines" on page 5-43
for a description of the PBControl function.

Parameter block

ioCompletion
ioResult
ioCRefNum
csCode
ccbRefNum
abort

ProcPtr
OS Err
Integer
Integer
Integer
Byte

A pointer to a completion routine.
The function result.
The driver reference number.
Always dspCLRemove for this function.
The CCB reference number.
A value specifying to abort outstanding
requests if not 0.

Field descriptions

csCode

ccbRefNum

The routine selector, always dspCLRemove for this routine.

The connection control block (CCB) reference number that the
dspCLini t routine returned.

abort A value directing ADSP whether or not to cancel any outstanding
listen and deny requests. If this value is nonzero, ADSP cancels
outstanding dspCLListen and dspCLDeny requests. If this value
is 0, ADSP does not cancel these requests.

The dspCLRemove routine closes a connection end used as a connection listener. After
you call the dspCLRemove routine, you can release the memory that you allocated for
the CCB if you do not intend to reopen the connection end.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

5-68

To execute the dspCLRemove routine from assembly language, call the _control trap
macro with a value of dspCLRemove in the csCode field of the parameter block.

noErr
errRefNum

ADSP Reference

0
-1280

No error
Bad connection reference number

CHAPTER 5

Apple Talk Data Stream Protocol (ADSP)

Maintaining an ADSP Connection and Using It to Exchange Data

dspStatus

Once you have established a connection end and opened a connection, you can send and
receive data over the connection. You can use the routines in this section to

• determine the status of a connection

• read bytes from the connection end's receive queue

• write bytes to the connection end's send queue and transmit them to the remote
connection end

• send an attention message to the remote connection end

• discard all data that has been sent but not yet delivered, and reset the connection

The dspStatus routine returns the number of bytes waiting to be read and sent and the
amount of space available in the send and receive queues. You use the PBControl
function to call the dspStatus routine. See "Routines" on page 5-43 for a description of
the PBControl function.

Parameter block

~ ioCompletion ProcPtr A pointer to a completion routine.
t- ioResult OS Err The function result.
~ ioCRefNum Integer The driver reference number.
~ esC ode Integer Always dspStatus for this function.
~ ccbRefNum Integer The CCB reference number.
t- statusCCB TPCCB A pointer to the CCB.
t- sendQPending Integer Bytes waiting to be sent or acknowledged.
t- sendQFree Integer Available send queue in bytes.
t- recvQPending Integer Bytes waiting to be read from queue.
t- recvQFree Integer Available receive queue in bytes.

Field descriptions

csCode The routine selector, always dspStatus for this routine.

ccbRefNum The connection control block (CCB) reference number that the
dspinit routine returned.

statusCCB A pointer to the CCB of the connection specified by the ccbRefNum
parameter value.

sendQPending The number of bytes of data that are in the send queue waiting to be
sent, including 1 byte for each logical end-of-message (EOM)
indicator in the send queue. (ADSP counts 1 byte for each EOM,.
even though no actual data corresponds to the EOM indicator.) The
send queue contains all data that has been sent to ADSP for
transmission and that has not yet been acknowledged. Some of the
data in the send queue might have already been transmitted, but
ADSP retains it in the send queue until the remote connection end
acknowledges its receipt in case the data has to be retransmitted.

ADSP Reference 5-69

DESCRIPTION

CHAPTER 5

Apple Talk Data Stream Protocol (ADSP)

sendQFree

recvQPending

recvQFree

The number of bytes available in the send queue for additional data.

The number of bytes in the receive queue, including 1 byte for each
EOM if the EOM bit is set in an ADSP packet header. The receive
queue contains all of the data that has been received by the
connection end but not yet read by the connection end's client.

The number of bytes available in the receive queue for
additional data.

The dspStatus routine provides information about an open connection. In addition to
returning the number of bytes waiting to be read and sent and the space available in the
send and receive queues, this routine also returns a pointer to the CCB, which contains
information about the state of the connection end and about connection events received
by the connection end. For more information about the CCB, see "Creating and Using a
Connection Control Block" on page 5-12 and 11The ADSP Connection Control Block
Record" beginning on page 5-35.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

dspRead

5-70

To execute the dspStatus routine from assembly language, call the_ Control trap
macro with a value of dspStatus in the csCode field of the parameter block.

no Err
errRefNum

0
-1280

No error
Bad connection reference number

The dspRead routine reads data from a connection end's receive queue and writes the
data to a buffer that you specify. You use the PBControl function to call the dspRead
routine. See 11Routines" on page 5-43 for a description of the PBControl function.

Parameter block

~ ioCompletion ProcPtr A pointer to a completion routine.
~ ioResult OSErr The function result.
~ ioCRefNum Integer The driver reference number.
~ esC ode Integer Always dspRead for this function.
~ ccbRefNum Integer The CCB reference number.
~ reqCount Integer The requested number of bytes.
~ actCount Integer The actual number of bytes read.
~ dataPtr Ptr A pointer to the data buffer.
~ eom Byte A flag indicating the end of message.

ADSP Reference

DESCRIPTION

CHAPTER 5

Apple Talk Data Stream Protocol (ADSP)

Field descriptions

esC ode

ccbRefNum

reqCount

actCount

dataPtr

eom

The routine selector, always dspRead for this routine.

The connection control block (CCB) reference number that the
dspini t routine returned.

The number of bytes that ADSP is to read.

The actual number of bytes that ADSP read.

A pointer to the buffer into which ADSP is to place the data.

A flag indicating if the last byte that ADSP read was a logical
end-of-message indicator. If the last byte constitutes an EOM,
ADSP sets this parameter to 1. If not, it sets this parameter to 0.

The dspRead routine reads data from an ADSP connection. You can continue to read
bytes as long as data is in the receive queue, even after you have called the dspClose
routine or after the remote connection end has called the dspClose or dspRemove
routine. The dspRead routine completes execution when it has read the number of
bytes you specify or when it encounters an end of message (that is, the last byte
of data in an ADSP packet that has the EOM bit set in the packet header).

You can call the dspStatus routine to determine the number of bytes remaining to be
read from the read queue, or you can continue to call the dspRead routine until the
actCount and eom parameters both return 0.

If either end closes the connection before you call the dspRead routine, the command
reads whatever data is available and returns the actual amount of data read in the
actCount parameter. If the connection is closed and there is no data in the receive
queue, the dspRead routine returns the noErr result code with the actcount
parameter set to 0 and the eom parameter set to 0.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

To execute the dspRead routine from assembly language, call the_ Control trap macro
with a value of dspRead in the csCode field of the parameter block.

noErr
errFwdReset
errS tate
errAborted
errRefNum

ADSP Reference

0
-1275
-1278
-1279
-1280

No error
Read terminated by forward reset
State isn't open, closing, or closed
Request aborted by dspRemove or dspClose routine
Bad connection reference number

5-71

dspWrite

5-72

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

The dspWrite routine writes bytes into a connection end's send queue for ADSP or
ASDSP to transmit across a connection. When ASDSP is used and the encrypt bit is
set, ASDSP encrypts the data before sending it. You use the PBControl function to
call the dspWr i te routine. See "Routines" on page 5-43 for a description of the
PBCon trol function.

Parameter block

~ ioCompletion ProcPtr A pointer to a completion routine.
The function result. f- ioResult

~ ioCRefNum
~ csCode
~ ccbRefNum
~ reqCount
f- actCount
~ dataPtr
~ eom

flush

Field descriptions

csCode

ccbRefNum

reqCount

actCount

dataPtr

eom

flush

ADSP Reference

OS Err
Integer
Integer
Integer
Integer
Integer
Ptr
Byte

Byte

The driver reference number.
Always ds pWr i te for this function.
The CCB reference number.
The requested number of bytes.
The actual number of bytes written.
A pointer to the data buffer.
For ADSP: a flag indicating end of message.
For ASDSP: a flag indicating end of
message or encryption.
A flag indicating whether to send
buffered data.

The routine selector, always dspWrite for this routine.
The connection control block (CCB) reference number that the
dspini t routine returned.

The number of bytes to write.

The actual number of bytes written to the send queue.

A pointer to the buffer from which ADSP or ASDSP should read the
data that is to be sent.

For ADSP, a flag indicating if the last byte written to the send queue
was a logical end-of-message indicator. If the last byte constitutes
an EOM, you set this parameter to 1. If not, you set this parameter
to 0. The high-order bits of the eom parameter are reserved for use
by ADSP; you must leave these bits equal to 0.

For ASDSP, if this is a secure connection, this field constitutes two
single-bit flags instead of a zero I nonzero byte. If set to 1, bit 0
indicates the end of message; if set to 1, bit 1 turns on encryption.
Note that ASDSP checks this flag on the first write of the connection
and the first write following a write for which the end-of-message
flag (bit 0 of the eom field) is set.

A flag indicting whether or not ADSP or ASDSP should immediately
send the data in the send queue to the remote connection. Set flush
to 1 to cause ADSP or ASDSP to immediately transmit any data in the
send queue that has not already been transmitted. Set flush to 0 to

DESCRIPTION

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

allow data to accumulate in the send queue until another condition
occurs that causes data to be transmitted. The high-order bits of the
f 1 ush parameter are reserved for use by ADSP or ASDSP; you must
leave these bits equal to 0.

The dspWrite routine sends data across anADSP or ASDSP connection. The send
queue contains all data that has been sent to ADSP or ASDSP for transmission and that
has not yet been acknowledged. Some of the data in the send queue might have already
been transmitted, but ADSP or ASDSP retains it in the send queue until the remote
connection end acknowledges its receipt in case the data has to be retransmitted. The
dspWrite routine completes execution when it has copied all of the data from the data
buffer into the send queue.

ADSP or ASDSP transmits the data in the send queue when the remote connection end
has room to accept the data and one of the following conditions occurs:

• You call the dspWr i te routine with the flush parameter set to a nonzero number.

• The number of bytes in the send queue equals or exceeds the blocking factor. (You use
the sendBlocking parameter to the dspOptions routine to set the blocking factor.)

• The send timer expires.

• A connection event requires that the local connection end send an acknowledgment
packet to the remote connection end.

For an ADSP dspWri te call, you can set the reqCount parameter to 0 and the eom
parameter to 1 to indicate that the last byte you sent the previous time you called the
dspWrite routine was the end of the message. You can set the reqCount parameter to
a value larger than the size of the send queue. If you do so, the dspWrite routine writes
as much data as it can into the send queue, sends the data and waits for acknowledg­
ment, and then writes more data into the send queue until it has written the amount of
data you requested. In this case, the routine does not complete execution until it has
finished writing all of the data into the send queue.

For an ASDSP dspWri te call, you can set the encrypt bit of the eom field (bit 1) of the
DSP parameter block. Note that ASDSP checks this flag on the first write of the connec­
tion or the first write following a write for which the end-of-message flag (bit 0 of the
eom field) is set. You can set the end-of-message bit (bit 0) of the eom field to indicate the
end of the message.

• To set the encrypt bit, you use the dspEncryptMask mask or the
dspEncryptBi t constant.

• To set the end-of-message bit, you use the dspEOMMask mask or the
dspEOMBi t constant.

Set the flush parameter to 1 to cause ADSP to immediately transmit any data in the
send queue that has not already been transmitted. Set the flush parameter to 0 to allow
data to accumulate in the send queue until another condition occurs that causes data to
be transmitted.

ADSP Reference 5-73

CHAPTER 5

Apple Talk Data Stream Protocol (ADSP)

If you want to encrypt all messages, you can simply set the encrypt bit on all calls to the
dspWr i te function.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

To execute the dspWrite routine from assembly language, call the _control trap
macro with a value of dspWrite in the csCode field of the parameter block.

noErr
errS tate
err Aborted
errRefNum

0
-1278
-1279
-1280

No error
Connection is not open
Request aborted by dspRemove or dspClose routine
Bad connection reference number

dspAttention

5-74

The dspAttention routine sends an attention code and an attention message to the
remote connection end. You use the PBControl function to call the dspAttention
routine. See ~~Routines" on page 5-43 for a description of the PBControl function.

Parameter block

---? ioCompletion ProcPtr A pointer to a completion routine.
r ioResult
---? ioCRefNum
---? csCode
---? ccbRefNum
---? attnCode
---? attnSize
---? attnData

Field descriptions

csCode

ccbRefNum

attnCode

attnSize
attnData

ADSP Reference

OSErr The function result.
Integer The driver reference number.
Integer Always dspAttention for this function.
Integer The CCB reference number.
Integer The client attention code.
Integer The size of attention data in bytes.
Ptr A pointer to attention data.

The routine selector, always dspAttention for this routine.

The connection control block (CCB) reference number that the
dspini t routine returned.

The 2-byte attention code that you wish to send to the remote
connection end. You can use any value from $0000 through $EFFF
for the attention code. The values $FOOO through $FFFF are reserved
for use by ADSP.

The size in bytes of the attention message you wish to send.

A pointer to the attention message. The a~ention message can be
any size from 0 through 570 bytes. There are no restrictions on the
content of the attention message.

DESCRimON

CHAPTER 5

AppleTalk Data Stream Protocol (ADSP)

The dspAttention routine sends an attention code and message. Attention codes and
attention messages can have any meaning that your application and the application at
the remote connection end both recognize. The purpose of attention codes and messages
is to allow clients of ADSP to send messages outside the normal data stream.

For example, if a connection end on a mainframe computer is connected to several
connection ends in Macintosh computers being used as remote terminals, the mainframe
computer might wish to inform the remote terminals that all connections will be
terminated in ten minutes. The mainframe application could send an attention message
to each of the remote terminals informing them of this fact, and the terminal emulation
programs in the Macintosh computers could then display an alert message on the screen
so that the users could prepare to shut down.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

dspReset

To execute the dspAttention routine from assembly language, call the_ Control trap
macro with a value of dspAttention in the csCode field of the parameter block.

noErr
errAttention
errState
err Aborted
errRefNum

0
-1276
-1278
-1279
-1280

No error
Attention message too long
Connection is not open
Request aborted by dspRemove or dspClose routine
Bad connection reference number

The dspReset routine clears all the data associated with the connection that the remote
connection client has not already read and resynchronizes the connection. You use the
PBControl function to call the dspReset routine. See ~~Routines" on page 5-43 for a
description of the PBControl function.

Parameter block

ioCompletion
ioResult
ioCRefNum
esC ode
ccbRefNum

Field descriptions

ProcPtr
OSErr
Integer
Integer
Integer

A pointer to a completion routine.
The function result.
The driver reference number.
Always dspReset for this routine.
The CCB reference number.

csCode The routine selector, always dspReset for this routine.

ccbRefNum The connection control block (CCB) reference number that the
dspinit routine returned.

ADSP Reference 5-75

•

DESCRIPTION

CHAPTER 5

Apple Talk Data Stream Protocol (ADSP)

The dspReset routine causes ADSP to discard all data in the send queue, all data in
transit to the remote connection end, and all data in the remote connection end's receive
queue that the client has not yet read. This process is known as a forward reset. ADSP
then resynchronizes the connection. You can determine that your connection end has
received a forward reset and has discarded all data in the receive queue by checking the
eFwdReset flag in the userFlags field of the CCB. For information on the CCB, see
"Connections, Connection Ends, and Connection States" beginning on page 5-6.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

5-76

To execute the dspReset routine from assembly language, call the_ Control trap
macro with a value of dspReset in the csCode field of the parameter block.

noErr
errS tate
err Aborted
errRefNum

ADSP Reference

0
-1278
-1279
-1280

No error
Connection is not open
Request aborted by dspRemove or dspClose routine
Bad connection reference number

CHAPTER 5

Apple Talk Data Stream Protocol (ADSP)

Summary of ADSP

Pascal Summary

Constants

CONST
{ADSP routine selectors}
dspinit
dspRemove
dspOpen
dspClose
dspCLinit
dspCLRemove
dspCLListen
dspCLDeny
dspStatus
dspRead
dspWrite
dspAttention
dspOptions
dspReset
dspNewCID

sdspOpen

255;

254;

= 253;

252;

= 251;

= 250;

249;

= 248;

= 247;

= 246;

245;

= 244;

= 243;

= 242;

= 241;

= 229;

{ADSP connection-opening modes}
ocRequest ::::: 1;

ocPassive = 2;

ocAccept 3;

ocEstablish = 4;

{ADSP connection end states}
sListening
sPassive

Summary of ADSP

= 1;

= 2;

{create a new connection end}
{remove a connection end}
{open a connection}
{close a connection}
{create a connection listener}
{remove a connection listener}
{post a listener request}
{deny an open-connection request}
{get status of connection end}
{read data from the connection}
{write data on the connection}
{send an attention message}
{set connection end options}
{forward reset the connection}
{generate a CID for a }
{ connection end}
{open a secure connection}

{request a connection with a }
{ remote connection end}
{wait for a connection request }
{ from remote connection end}
{accept request as delivered by }

{ listener}
{consider connection to be open}

{for connection listeners}
{waiting for a connection }
{ request from remote }
{ connection end}

5-77

CHAPTER 5

Apple Talk Data Stream Protocol (ADSP)

sOpening = 3;

sOpen 4;
sClosing = 5;
sClosed = 6;

{ASDSP end-of-message and encrypt
dspEncryptBit = 1;
dspEOMBit 0;
dspEOMMask = $1;
dspEncryptMask $2;

{ADSP client event flags}
eClosed = $80;
eTearDown $40;
eAttention = $20;
eFwdReset $10;

{miscellaneous ADSP constants}
attnBufSize 570;
minDSPQueueSize = 100;

{driver control ioResults}
errRefNum = -1280;
err Aborted = -1279;
errS tate = -1278;

errOpening = -1277;
errAttention -1276;
errFwdReset -1275;
errDSPQueueSize = -1274;
errOpenDenied = -1273;

Data Types

{requesting a connection }
{ with remote connection end}
{connection is open}
{connection is being torn down}
{connection end state is closed}

flags and masks}
{set to encrypt message}
{set if EOM at end of write}
{mask for setting the EOM bit}
{mask for setting the encrypt bit}

{received connection-closed event}
{closed due to broken connection}
{received attention message}
{received forward reset event}

{size of client attention buffer}
{minimum size of receive or }
{ send queue}

{bad connection refNum}
{control call was aborted}
{bad connection state for this }

{ operation}
{open connection request failed}
{attention message too long}
{read terminated by forward reset}
{DSP read/write queue too small}
{open connection request denied}

The ADSP Connection Control Block Record

TYPE TRCCB =

5-78

PACKED RECORD
ccbLink:
refNum:
state:

Summary of ADSP

TPCCB;
Integer;
Integer;

{link to next CCB}
{reference number}
{state of the connection end}

CHAPTER 5

Apple Talk Data Stream Protocol (ADSP)

userFlags:
localSocket:
remoteAddress:
attnCode:
attnSize:
attnPtr:
reserved:

END;

The Address Block Record

TYPE AddrBlock =
PACKED RECORD

aNet:
aNode:
aSocket:

END;

The DSP Parameter Block

TYPE DSPParamBlock
PACKED RECORD

qLink:
qType:
ioTrap:
ioCmdAddr:
ioCompletion:
ioResult:
ioNamePtr:
ioVRefNum:
ioCRefNum:
csCode:
qStatus:
ccbRefNum:

CASE Integer OF
dspinit, dspCLinit:

(ccbPtr:
userRoutine:
sendQSize:
sendQueue:
recvQSize:
recvQueue:
attnPtr:

Summary of ADSP

Byte;
Byte;
AddrBlock;
Integer;
Integer;

{user flags for connection}
{local socket number}
{remote end internet address}
{attention code received}
{size of attention data}

Ptr; {pointer to attention data}
PACKED ARRAY[l .• 220] OF Byte;

Integer;
Byte;
Byte;

QElemPtr;
Integer;
Integer;
Ptr;
ProcPtr;
OSErr;
StringPtr;
Integer;
Integer;
Integer;
Longint;
Integer;

TPCCB;
ProcPtr;
Integer;
Ptr;
Integer;
Ptr;
Ptr;

{reserved for use by ADSP}

{network number}
{node ID}
{socket number}

{reserved}
{reserved}
{reserved}
{reserved}
{completion routine}
{result code}
{reserved}
{reserved}
{driver reference number}
{primary command code}
{reserved}
{CCB reference number}

{pointer to CCB}
{pointer to user routine}
{size of send queue}
{pointer to send queue}
{size of receive queue}
{pointer to receive queue}
{pointer to attention-message buffer}

5-79

CHAPTER 5

Apple Talk Data Stream Protocol (ADSP)

localSocket:
filler!:

Byte;
Byte);

dspOpen, dspCLListen, dspCLDeny:

{local socket number}
{filler for proper alignment}

(localCID: Integer; {local connection ID}
remoteCID:
remoteAddress:
filterAddress:
sendSeq:
sendWindow:
recvSeq:
attnSendSeq:
attnRecvSeq:
ocMode:
ocinterval:
ocMaximum:
filler2:

dspClose, dspRemove:
(abort:
filler3:

dspStatus:
(statusCCB:
sendQPending:
sendQFree:
recvQPending:
recvQFree:

dspRead, dspWrite:
(reqCount:
actCount:
dataPtr:
eom:
flush:

dspAttention:
(attnCode:
attnSize:
attnData:
attninterval:
filler4:

dspOptions:
(sendBlocking:
sendTimer:
rtmtTimer:
badSeqMax:
useCheckSum:

5-80 Summary of ADSP

Integer;
AddrBlock;
AddrBlock;
Longint;
Integer;
Longint;
Longint;
Longint;
Byte;
Byte;
Byte;
Byte);

Byte;
Byte);

TPCCB;
Integer;
Integer;
Integer;
Integer);

Integer;
Integer;
Ptr;
Byte;
Byte);

Integer;
Integer;
Ptr;
Byte;
Byte);

Integer;
Byte;
Byte;
Byte;
Byte);

{remote connection ID}
{remote internet address}
{address filter}
{send sequence number}
{size of remote buffer}
{receive sequence number}
{attention send seq number}
{attention receive seq num}
{connection-opening mode}
{interval bet. open reques~s}
{retries of open-conn req}
{filler for proper alignment}

{abort send requests}
{filler for proper alignment}

{pointer to CCB}
{bytes waiting in send queue}
{available send-queue buffer}
{bytes in receive queue}
{avail receive-queue buffer}

{requested number of bytes}
{actual number of bytes}
{pointer to.data buffer}
{1 if end of message}
{1 to send data now}

{client attention code}
{size of attention data}
{pointer to attention data}
{reserved}
{filler for proper alignment}

{send-blocking threshold}
{reserved}
{reserved}
{retransmit advice threshold}
{DDP checksum for packets}

CHAPTER 5

Apple Talk Data Stream Protocol (ADSP)

dspNewCID:
(newCID:

END;
Integer);

DSPPBPtr = ~DSPParamBlock;

The ASDSP Parameter Block

TYPE SDSPParamBlock
PACKED RECORD
CASE INTEGER OF

{new connection ID}

1: (dspParamBlock: DSPParamBlock);
2: (qLink:

qType:
ioTrap:
ioCmclAddr:
ioCompletion:
ioResult:
ioNaniePtr:
ioVRefNum:
ioCRefNum:
csCode:
qStatus:
ccbRefNum:

QElemPtr;
Integer;
Integer;
Ptr;
ProcPtr;
OSErr;
StringPtr;
Integer;
Integer;
Integer;
Longint;
Integer;

{reserved}
{reserved}
{reserved}
{reserved}
{completion routine}
{result code}
{reserved}
{reserved}
{adsp driver refNum}
{asdsp driver control code}
{reserved}
{connection end refNum}

secureParams: TRSecureParams);

END;

SDSPPBPtr = ASDSPParamBlock;

The TRSecureParams Record

TYPE TRSecureParams =
PACKED RECORD

localCID:
remoteCID:
remoteAddress:
filterAddress:
sendSeq:
sendWindow:
recvSeq:
attnSendSeq:
attnRecvSeq:
ocMode:

Summary of ADSP

Integer;
Integer;
AddrBlock;
AddrBlock;
Longint;
Integer;
Longint;
Longint;
Longint;
Byte;

{parameters for dspOpenSecure}

{local connection ID}
{remote connection ID}
{address of remote end}
{address filter}
{local send sequence number}
{send window size}
{receive sequence number}
{attention send sequence number}
{attention receive sequence number}
{open connection mode}

•

5-81

CHAPTER 5

Apple Talk Data Stream Protocol (ADSP)

ocinterval: Byte;

ocMaximum: Byte;

secure: Boolean;

sessionKey: AuthKeyPtr;

credentialsSize: Longint;

credentials: Ptr;

workspace: Ptr;

recipient: Authidentity;

issueTime: UTCTime;

expiry: UTCTime;

initiator: RecordiDPtr;

hasintermediary: Boolean;

intermediary: RecordiDPtr;

END;

C Summary

Constants

{open connection request }

{ retry interval}

{open connection request }

{ retry maximum}

{for initiator, TRUE if session

{ authenticated}

{for recipient, TRUE if session

{ authenticated}

{encryption key for session}

{length of credentials}

{pointer to credentials}

{pointer to workspace for }

{ connection. Align on }

{ even boundary and }

{ length = sdspWorkSize}

{identity of recipient }

{ or initiator if active mode}

is }

was

{time when credentials were issued}

{time when credentials expire}

{RecordiD of initiator returned in }

}

{ the buffer pointed to by this field}

{set if credentials has an }

{ intermediary}

{Record ID of intermediary returned}

/*workspace used internally by ASDSP for the sdspOpen call*/

#define sdspWorkSize 2048 /*size of ASDSP workspace*/

enum{ /*ADSP routine selectors*/
dspinit = 255, /*create a new connection end*/
dspRemove = 254, /*remove a connection end*/
dspOpen = 253, /*open a connection*/
dspClose 252, /*close a connection*/
dspCLinit 251, /*create a connection listener*/
dspCLRemove 250, /*remove a connection listener*/
dspCLListen = 249, /*post a listener request*/

5-82 Summary of ADSP

CHAPTER 5

Apple Talk Data Stream Protocol (ADSP)

dspCLDeny
dspStatus
dspRead
dspWrite
dspAttention
dspOptions
dspReset
dspNewCID

sdspOpen

enum {
ocRequest

ocPassive

ocAccept

ocEstablish

enum {
sListening
sPassive

sOpening

sOpen
sClosing
sClosed

248,

247,

= 246,

= 245,

244,

= 243,
= 242,

= 241,

229;

= 1,

2,

3,

= 4};

= 1,

= 2,

= 3,

= 4,
5,

= 6};

/*an open-connection request*/
/*get status of connection end*/
/*read data from the connection*/
/*write data on the connection*/
/*send an attention message*/
/*Set connection end options*/
/*forward reset the connection*/
/*generate a CID for a */
I* connection end*/
/*open a secure connection*/

/*ADSP connection-opening modes*/
/*request a connection with a */
I* remote connection end*/
/*wait for a connection request *I
I* from remote connection end*/
/*accept request as delivered by */
I* listener*/
/*consider connection to be */
I* open*/

/*ADSP connection end states*/
/*for connection listeners*/
/*waiting for a connection */
I* request from remote *I
I* connection end*/
/*requesting a connection */
I* with remote connection end*/
/*connection is open*/
/*connection is being torn down*/
/*connection end state */
I* is closed*/

/*ASDSP end-of-message and encrypt flags and masks*/
enum {

dspEOMBit
dspEncryptBit

enum {

} ;

dspEOMMask
dspEncryptMask

Summary of ADSP

0,

= 1};

= l<<dspEOMBit,

/*set if EOM at end of write*/
/*set to encrypt message*/

= l<<dspEncryptBit

5-83

CHAPTER S

Apple Talk Data Stream Protocol (ADSP)

enum {
eClosed

eTearDown

eAttention
eFwdReset

enum {
attnBufSize

minDSPQueueSize

enum {
errRefNum
err Aborted
errS tate

errOpening

err Attention
errFwdReset

errDSPQueueSize

errOpenDenied

Data Types

$80,

$40,

= $20,

$10};

570,

100};

-1280,

-1279,

-1278,

-1277,

-1276,

-1275,

-1274,

-1273};

The ADSP Connection Control Block Record

struct TRCCB {

unsigned char *ccbLink;
unsigned short refNum;
unsigned short state;
unsigned char userFlags;
unsigned char localSocket;
AddrBlock remoteAddress;
unsigned short attnCode;
unsigned short attnSize;

5-84 Summary of ADSP

/*ADSP client event flags*/
/*received connection-closed *I
I* event*/
/*closed due to broken *I
I* connection*/
/*received attention message*/
/*received forward reset event*/

/*miscellaneous ADSP constants*/
/*size of client attention */
I* buffer*/
/*minimum size of receive or *I
I* send queue*/

/*driver control ioResults*/
/*bad connection refNum*/
/*control call was aborted*/
/*bad connection state for this */
I* operation*/
/*open connection request */
I* failed*/
/*attention message too long*/
/*read terminated */
I* by forward reset*/
/*DSP read/write queue *I
I* too small*/
/*open connection request */
I* denied*/

/*link to next CCB*/
/*reference number*/
/*state of the connection end*/
/*user flags for connection*/
/*local socket number*/
/*remote end internet address*/
/*attention code received*/
/*size of attention data*/

CHAPTER 5

Apple Talk Data Stream Protocol (ADSP)

};

unsigned char
unsigned char

*attnPtr;
reserved[220];

typedef struct TRCCB TRCCB;
typedef TRCCB *TPCCB;

The Address Block Record

struct AddrBlock {
short

};

unsigned char
unsigned char

aNet;
aNode;
aSocket;

typedef struct AddrBlock AddrBlock;

Parameter Block for dsplnit and dspCLinit

struct TRinitParams {

};

TPCCB
ProcPtr
unsigned short
unsigned char
unsigned short

unsigned char
unsigned char

unsigned char

ccbPtr;
userRoutine;
sendQSize;
*sendQueue;
recvQSize;

*recvQueue;
*attnPtr;

localSocket;

/*pointer to attention data*/
/*reserved*/

/*network number*/
/*node ID*/
/*socket number*/

/*pointer to connection control block*/
/*client routine to call on event*/
/*size of send queue (0 •• 64K bytes)*/
/*client passed send queue buffer*/
/*size of receive queue *I
I* (0 •• 64K bytes)*/
/*client passed receive queue buffer*/
/*client passed receive attention *I
I* buffer*/
/*local socket number*/

typedef struct TRinitParams TRinitParams;

Parameter Block for dspOpen, dspCLListen, and dspCLDeny

struct TRopenParams {
unsigned short
unsigned short
AddrBlock
AddrBlock
unsigned long
unsigned short
unsigned long

localCID;
remoteCID;
remoteAddress;
filterAddress;
sendSeq;
sendWindow;
recvSeq;

Summary of ADSP

/*local connection ID*/
/*remote connection ID*/
/*address of remote end*/
/*address filter*/
/*local send sequence number*/
/*send window size*/
/*receive sequence number*/

5-85

CHAPTER 5

Apple Talk Data Stream Protocol (ADSP)

unsigned long
unsigned long

attnSendSeq;
attnRecvSeq;

/*attention send sequence number*/
/*attention receive sequence *I
I* number*/

unsigned char ocMode; /*open connection mode*/
unsigned char ocinterval; /*open connection request retry *I

I* interval*/
unsigned char ocMaximum; /*open connection request retry *I

} ; I* maximum*/

typedef struct TRopenParams TRopenParams;

Parameter Block for dspClose and dspRemove

struct TRcloseParams {
unsigned char abort; /*abort connection immediately if nonzero*/

};

typedef struct TRcloseParams TRcloseParams;

Parameter Block for dspStatus

struct TRstatusParams {
TPCCB

};

unsigned short
unsigned short

unsigned short
unsigned short

ccbPtr; /*pointer to ccb*/
sendQPending; /*pending bytes in send queue*/
sendQFree; /*available buffer space in send *I

I* queue*/
recvQPending; /*pending bytes in receive queue*/
recvQFree; /*available buffer space in */

I* receive queue*/

typedef struct TRstatusParams TRstatusParams;

Parameter Block for dspRead and dspWrite

struct TRioParams {

unsigned short reqCount;
unsigned short actcount;
unsigned char *dataPtr;
unsigned char eom;
unsigned char flush;

} ;

typedef struct TRioParams TRioParams;

5-86 Summary of ADSP

/*requested number of bytes*/
/*actual number of bytes*/
/*pointer to data buffer*/
/*indicates logical end of message*/
/*send data now*/

CHAPTER 5

Apple Talk Data Stream Protocol (ADSP)

Parameter Block for dspAttention

struct TRattnParams {
unsigned short
unsigned short
unsigned char
unsigned char

};

attnCode;
attnSize;
*attnData;
attninterval;

/*client attention code*/
/*size of attention data*/
/*pointer to attention data*/
/*retransmit timer in 10-tick *I
I* intervals*/

typedef struct TRattnParams TRattnParams;

Parameter Block for dspOptions

struct TRoptionParams {
unsigned short sendBlocking;
unsigned char sendTimer;
unsigned char rtmtTimer;

/*quantum for data packets*/
/*send timer in 10-tick intervals*/
/*retransmit timer in 10-tick */
I* intervals*/

unsigned char badSeqMax; /*threshold for sending retransmit */
I* advice*/

unsigned char useCheckSum; /*use ddp packet checksum*/
};

typedef struct TRoptionParams TRoptionParams;

Parameter Block for dspNewCID

struct TRnewcidParams {
unsigned short

} ;

newcid; /*new connection ID returned*/

typedef struct TRnewcidParams TRnewcidParams;

The DSP Parameter Block

struct DSPParamBlock {
struct QElem *qLink;
short qType;
short
Ptr
ProcPtr
OS Err
char
short

ioTrap;
ioCmdAddr;
ioCompletion;
ioResult;
*ioNamePtr;
ioVRefNum;

Summary of ADSP

/*reserved*/
/*reserved*/
/*reserved*/
/*reserved*/
/*pointer to completion routine*/
/*routine result*/
/*reserved*/
/*reserved*/

5-87

CHAPTER 5

Apple Talk Data Stream Protocol (ADSP)

short ioCRefNum;
short csCode;
long qStatus;
short ccbRefNum;

union{
TRinitParams initParams;
TRopenParams openParams;
TRcloseParams closeParams;
TRioParams ioParams;
TRattnParams attnParams;
TRstatusParams statusParams;
TRoptionParams optionParams;
TRnewcidParams newCIDParams;
} u;

} ;

/*ADSP driver refNum*/
/*ADSP driver control code*/
/*reserved*/

/*dspinit, dspCLinit*/
/*dspOpen, dspCLListen, dspCLDeny*/
/*dspClose, dspRemove*/
/*dspRead, dspWrite*/
/*dspAttention*/
/*dspStatus*/
/*dspOptions*/
/*dspNewCID*/

typedef struct DSPParamBlock DSPParamBlock;
typedef DSPParamBlock *DSPPBPtr;

The ASDSP Parameter Block

struct TRSecureParams {
unsigned short localCID;
unsigned short
AddrBlock
AddrBlock
unsigned long
unsigned short
unsigned long
unsigned long
unsigned long

unsigned char
unsigned char

unsigned char

Boolean

remoteCID;
remoteAddress;
filterAddress;
sendSeq;
sendWindow;
recvSeq;
attnSendSeq;
attnRecvSeq;

ocMode;
ocinterval;

ocMaximum;

secure;

/*local connection ID*/
/*remote connection ID*/
/*address of remote end*/
/*address filter*/
/*local send sequence number*/
/*send window size*/
/*receive sequence number*/
/*attention send sequence number*/
/*attention receive sequence *I
I* number*/
/*open connection mode*/
/*open connection request retry */
I* interval*/
/*open connection request retry *I
I* maximum* I
/*TRUE if session was */
I* authenticated*/

AuthKeyPtr
unsigned

sessionKey; /*encryption key for session*/
longcredentialsSize;

/*length of credentials*/
Ptr credentials; /*pointer to credentials*/

5-88 Summary of ADSP

CHAPTER 5

Apple Talk Data Stream Protocol (ADSP)

Ptr

Authidentity

UTCTime
UTCTime
RecordiDPtr

workspace;

recipient;

issueTime;
expiry;
initiator;

/*pointer to workspace for *I
I* connection. align on even *I
I* boundary and length equals */
I* sdspWorkSize*/
/*identity of recipient *I
I* (or initiator if active mode)*/
/*when credentials were issued*/
/*when credentials expire*/
/*pointer to RecordiD of */

Boolean
I* initiator returned*/

hasintermediaryJ /*is set if credentials */
I* have an intermediary*/

RecordiDPtr intermediaryJ /*pointer to RecordiD of */
I* intermediary returned*/

} ;

The TRSecureParams Record

typedef struct TRSecureParams TRSecureParams;

struct SDSPParamBlock {
struct QElem
short
short
Ptr
ProcPtr

OSErr
char
short
short
short
long
short

union {
TRinitParams
TRopenParams
TRcloseParams
TRioParams
TRattnParams
TRstatusParams
TRoptionParams

Summary of ADSP

*qLinkJ
qType;
ioTrap;
ioCmdAddr;
ioCompletion;

ioResultJ
*ioNamePtr;
ioVRefNum;
ioCRefNum;
csCode;
qStatus;
ccbRefNum;

initParams;
openParams;
closeParams;
ioParams;
attnParams;

/*reserved*/
/*reserved*/
/*reserved*/
/*reserved*/

/*pointer to completion routine*/
/*routine result*/
/*reserved*/
/*reserved*/
/*ADSP driver refNum*/
/*ADSP driver control code*/
/*ADSP internal use*/
/*connection end refNum*/

/*dsplnit, dspCLinit*/
/*dspOpen, dspCLListen, dspCLDeny*/
/*dspClose, dspRemove*/
/*dspRead, dspWrite*/
/*dspAttention*/

statusParams; /*dspStatus*/
optionParams; /*dspOptions*/

5-89

CHAPTER 5

Apple Talk Data Stream Protocol (ADSP)

TRnewcidParams
TRSecureParams

} u;

neWCIDParams; /*dspNewCID*/
secureParams; /*dspOpenSecure*/

} ;

typedef struct SDSPParamBlock SDSPParamBlock;
typedef SDSPParamBlock *SDSPPBPtr;

Assembly-Language Summary

Constants

ADSP Queue Element Equates and Sizes

csQStatus
csCCBRef

Command Codes

dspinit
dspRemove
dspOpen
dspClose
dspCLinit
dspCLRemove
dspCLListen
dspCLDeny
dspStatus
dspRead
dspWrite
dspAttention
dspOptions
dspReset
dspNewCID
sdspOpen

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

5-90 Summary of ADSP

CSParam
csQStatus+4

255
254
253
252
251
250
249
248
247
246
245
244
243
242
241
229

;ADSP internal use
;refnum of ccb

;create a new connection
;remove a connection end
;open a connection
;close a connection

end

;create a connection listener
;remove a connection listener
;post a listener request
;deny an open connection request
;get status of connection end
;read data from the connection
;write data on the connection
;send an attention message
;set connection end options
;forward reset the connection
;generate a cid for a connection
;open a secure connection

end

CHAPTER 5

Apple Talk Data Stream Protocol (ADSP)

Open Connection Modes

ocRequest EQU 1

ocPassive EQU 2

ocAccept EQU 3

ocEstablish EQU 4

Connection States

sListening EQU 1

sPassive EQU 2

sOpening EQU 3

sOpen EQU 4

sClosing EQU 5

sClosed EQU 6

Client Event Flags (Bit-Mask)

eClosed EQU
eTearDown EQU
eAttention EQU
eFwdReset EQU

Miscellaneous Equates

attnBufSize EQU
minDSPQueueSize

EQU

sdspWorkSize EQU

$80

$40

$20

$10

~70

100

2048

;request a connection with remote
;wait for a connection request from
; remote
;accept request as delivered by
; listener
;consider connection to be open

;for connection listeners
;waiting for a connection request
; from remote
;r~questing a connection with remote
;connection is open
;connection is being torn down
;connection end state is closed

;received connection closed advice
;closed due to broken connection
;received attention message
;received forward reset advice

;size of client attention message

;minimum size for both receive and
; send queues
;size of ASDSP workspace

ASDSP Encrypt and End-of-Message Flags and Masks

dspEOMBit EQU 0 ;set if EOM at end of write
dspEncryptBit EQU 1 ;set to encrypt message
dspEncryptMask EQU $1 ;mask for setting the encrypt bit
dspEOMMask EQU $2 ;mask for setting the EOM bit

Summary of ADSP 5-91

CHAPTER 5

Apple Talk Data Stream Protocol (ADSP)

Data Structures

ADSP Connection Control Block Data Structure

0 ccbLink long link to next CCB
4 refNum word reference number
6 state word state of the connection end
8 userFlags byte user flags for connection
9 local Socket byte local socket number

10 remoteAddress long internet address of remote end
14 attn Code word attention code received
16 attnSize word size of received attention data
18 attnPtr long pointer to received attention data
22 reserved 220bytes reserved

DPS Parameter Block Common Fields for ADSP and ASDSP

0 qLink long reserved
4 qType word reserved
6 ioTrap word reserved
8 ioCmdAddr long reserved

12 ioCompletion long address of completion routine
16 ioResult word result code
18 ioNamePtr long reserved
22 ioVRefNum word reserved
24 ioCRefNum word driver reference number
28 qStatus long reserved
32 ccbRefNum word reference number of CCB

dsplnit and dspCLinit Parameter Variant

26 csCode word dspinit or dspCLinit
34 ccbPtr long pointer to CCB
38 userRoutine long pointer to routine to call on connection events
42 sendQSize word size in bytes of the send queue
44 sendQueue long pointer to send queue
48 recvQSize word size in bytes of the receive queue
50 recvQueue long pointer to receive queue
54 attnPtr long pointer to buffer for incoming attention messages
58 localSocket byte DDP socket number for this connection end

dspOptions Parameter Variant

16 ioResul t word
24 ioCRefNum word
26 csCode word
34 sendBlocking word
38 badSeqMax byte
39 useCheckSum byte

5-92 Summary of ADSP

result code
driver reference number
always dspOptions
send-blocking threshold
threshold to send retransmit advice
DDP checksum flag

CHAPTER 5

Apple Talk Data Stream Protocol (ADSP)

dspOpen, dspCLListen, and dspCLDeny Parameter Variant
26 csCode word dspOpen,dspCLListen,ordspCLDeny
34 localCID word ID of this connection end
36 remoteCID word ID of remote connection end
38 remoteAddress long remote internet address
42 filterAddress long filter for open-connection requests
46 sendSeq long initial send sequence number
50 sendWindow word initial size of remote receive queue
52 recvSeq long initial receive sequence number
56 attnSendSeq long attention send sequence number
60 attnRecvSeq long attention receive sequence number
64 ocMode byte connection-opening mode
65 ocinterval byte interval between open requests
66 ocMaximum byte retries of open-connection request

sdspOpen Parameter Variant
26 csCode word sdspOpen
34 localCID word ID of this connection end
36 remoteCID word ID of remote connection end
38 remoteAddress long remote internet address
42 filterAddress long filter for open-connection requests
46 sendSeq long initial send sequence number
50 sendWindow word initial size of remote receive queue
52 recvSeq long not used for ASPSP
56 attnSendSeq long attention send sequence number
60 attnRecvSeq long not used for ASDSP
64 ocMode byte connection-opening mode
65 ocinterval byte interval between open requests
66 ocMaximum byte retries of open-connection request
68 secure word flag that determines if ASDSP authenticates

the connection
70 sessionKey long pointer to the encryption key for the session
74 credentialsSize long length of credentials)>

"0
78 credentials long pointer to credentials "0

ar
82 workspace long pointer to workspace for connection ~
86 recipient long identity of recipient ;i;=

90 issueTime long time when credentials were issued 0
llJ

94 expiry long time when credentials expire S'
S!.?

98 initiator long pointer to record ID of initiator a;
102 has Intermediary word TRUE if credentials have an intermediary g)

3
104 intermediary long pointer to record ID of intermediary "'0

~
0

dspNewCID Parameter Variant
n
Q.

26 csCode word always dspNewCID > 0
34 newCID word ID of new connection (})

.3!

dspClose, dspRemove, and dspCLRemove Parameter Variant
26 csCode word dspClose,dspRemove,ordspCLRemove
34 abort byte abort send requests or connection listener if not 0

Summary of ADSP 5-93

CHAPTER 5

Apple Talk Data Stream Protocol (ADSP)

dspStatus Parameter Variant

26 csCode word
34 statusCCB pointer

always dspStatus
pointer to CCB

38 sendQPending word
40 sendQFree word

bytes waiting to be sent or acknowledged
available send queue in bytes

42 recvQPending word
44 recvQFree word

bytes waiting to be read from queue
available receive queue in bytes

dspRead and dspWrite Parameter Variant

26 csCode word dspRead or dspWrite
34 reqCount word requested number of bytes
36 actCount word actual number of bytes read or written
38 dataPtr pointer pointer to data buffer
42 eom byte for ADSP: 1 if end of message; 0 otherwise

for ASDSP: bit 0 = end of message; bit 1 turns on
encryption, if set

43 flush byte 1 to send data now; 0 otherwise

dspAttention and dspReset Parameter Variant

26 csCode word dspAttention or dspReset
34 attnCode word client attention code
36 attnSize word size of attention data in bytes
38 attnData pointer pointer to attention data

Result Codes

no Err
ddpSktErr
errOpenDenied
errDSPQueueSize
errFwdReset
errAttention
errOpening
errState
err Aborted

errRefNum
kOCEUnsupportedCredentialsVersion
kOCEBadEncryptionMethod

kOCENoASDSPWorkSpace

kOCEAuthenticationTrouble

5-94 Summary of ADSP

0
-91

-1273
-1274
-1275
-1276
-1277
-1278
-1279

-1280
-1543
-1559

-1570

-1571

No error or unrecognized event code
Error opening socket
Open request denied by recipient
Send or receive queue is too small
Read terminated by forward reset
Attention message too long
Attempt to open connection failed
Bad connection state for this operation
Request aborted by dspRemove or
dspClose routine
Bad connection reference number
Credentials version not supported
During the authentication process, the
ASDSP implementations could not agree
on an encryption method to be used
(ASDSP can support multiple stream
encryption methods. In Release 1, only
RC4 and 11no encryption" are supported.)
You passed NIL for the workspace
parameter
Authentication process failed

CHAPTER 6

Apple Talk Transaction
Protocol (ATP)

Contents

About ATP 6-3
The ATP Packet Format 6-5
At-Least-Once and Exactly-Once Transactions 6-7
The Buffer Data Structure 6-8
ATP Flags 6-8

Using ATP 6-9
Writing a Requester ATP Application 6-9

Creating a Buffer Data Structure 6-12
Specifying the Parameters for the Send Request Function 6-12

Writing a Responder ATP Application 6-14
Opening and Setting Up a Socket to Receive Requests 6-14
Responding to Requests 6-16

Canceling an ATP Function 6-19
ATP Reference 6-20

Data Structures 6-20
The Buffer Data Structure 6-20
The ATP Parameter Block 6-21
The Address Block Record 6-23

Routines 6-23
Sending an ATP Request 6-24
Opening and Closing an ATP Socket 6-30
Setting Up a Socket to Listen for Requests 6-32
Responding to Requests 6-34
Canceling Pending ATP Functions 6-38
Building a Buffer Data Structure 6-44

Contents 6-1

CHAPTER 6

Summary of ATP 6-46
Pascal Summary 6-46

Constants 6-46
Data Types 6-46
Routines 6-48

C Summary 6-49
Constants 6-49
Data Types 6-50
Routines 6-53

Assembly-Language Summary 6-54
Constants 6-54
Data Structures 6-55

Result Codes 6-58

6-2 Contents

CHAPTER 6

Apple Talk Transaction Protocol (ATP)

This chapter describes the Apple Talk Transaction Protocol (ATP) that you use to send
a request from one application or process to another that can satisfy the request and
respond to it. Because ATP is transaction-based-that is, the response data is bound to
the request data and the exchange of information is limited to the transaction-you do
not incur the overhead entailed in establishing, maintaining, and breaking a connection
that is associated with connection-oriented protocols, such as ADSP. However, you can
transfer only a limited amount of data using ATP.

You should read this chapter if you want to write an application that requires reliable
delivery of data while allowing one side of the communication to ask the other side to
perform a service and return a small amount of data.

For an overview of ATP and how it fits within the Apple Talk protocol stack, read the
chapter "Introduction to Apple Talk" in this book, which also introduces and defines
some of the terminology used in this chapter. For complete explanation of the ATP
specification, see Inside AppleTalk, second edition.

AboutATP

The Apple Talk Transaction Protocol offers a simple, efficient means of transferring
small amounts of data across a network; it lets one network entity request information
of another entity that possesses only the ability to respond to the request. ATP ensures
that data is delivered with~ut error or packet loss.

ATP communication is based on the concept of a transaction: one party, the requester,
makes a request of another party, the responder, to perform a service and return a
response. This discussion uses the term requester to refer to an application that uses ATP
to make a request and responder to refer to an application that uses ATP to respond to
a request.

When it receives a request, the responder application performs the necessary processing
to service it and sends a response message back to the requester, completing the
transaction. The response message can be data that reports the result of the trans-
action or information produced as a result of the processing. Here is how a basic
transaction occurs:

• The requester application calls the .ATP interface, and the .ATP driver on the
requester side sends the request to the .ATP driver on the responder side.

• The .ATP driver on the responder side passes the request to the responder application,
which is listening for incoming .ATP requests.

• The responder application satisfies the request and prepares a response, then calls
the ATP interface to transmit the response via the .ATP driver back to the requester
application.

Figure 6-1 shows this interaction.

AboutATP 6-3

CHAPTER 6

Apple Talk Transaction Protocol (ATP)

Figure 6-1 An ATP transaction
------=---

6-4

ATP transaction
requester

§
ATP

requesting
end

ATP transaction
responder

ATPdialog

§
ATP

responding
end

The amount of data that a requester application can send is limited to 578 bytes; the
amount of data that a responder application can return is limited to 4624 bytes. The ATP
programming interface includes a function that lets you add one or more single packets
to follow the initial response, up to a totaJ of eight packets including the initial number
of packets sent, if you do not send eight packets in the initial response.

Note
Although you can use the ATP add-response function to extend the
amount of response data, if you intend for your application to transfer
large amounts of data, you should choose a transport protocol other
than ATP. For example, you can use ADSP, w~ch allows you to send
and receive continuous streams of data. •

You can ~plement applications that use ATP to perform network-based transactions in
the following two ways:

• You can write a single application that handles both the responder and requester
actio~ of an ATP transaction and run that application on two networked nodes. This
method allows each application to act as either the requester or the responder. The
interaction remains asymmetric; only one side can control the communication during
a single transaction. However, each side has the capacity to initiate a transaction by
sending a request to the other side.

• You can write two distinct applications, one application that implements only the
requester part of a transaction and another application that implements only the
responder side. This scenario lends itself to a client-server model in which many
nodes on a network run the requester application (client), while one or more nodes
run the responder application (server); one server can respond to transaction requests
from various clients.

AboutATP

CHAPTER 6

Apple Talk Transaction Protocol (ATP)

ATP is a direct client of DDP, and it adds reliable delivery of data to the transport
delivery services that DDP provides. Figure 6-2 shows ATP and the underlying
protocol stack.

Figure 6-2 ATP and its underlying protocols

ATP

DDP

LAP Manager I

&
Port

The ATP Packet Format
An ATP packet includes an 8-byte header followed by up to 578 bytes of data. An ATP
packet is preceded by the DDP header that, in tum, is preceded by the data-link header,
referred to as the frame header.

The ATP header contains the following information:

• The first byte consists of control information. Bits within this byte are set to identify
aspects qf a request or a response function.

• The second byte contains a bitmap/sequence number. This field is 8 bits wide, and
its use and significance depend on whether the ATP packet is a request packet or a
response packet. For request packets, this field is referred to as the transaction
bitmap, and it identifies the number of buffers that a requester application has
reserved for the response data. For response packets, this field is referred to as the
ATP sequence ntJ.mber, and it is used to identify the sequential position of the
response packet in the complete response message; ATP uses the sequence number
to manage and handle lost or out-of-sequence response packets.

AboutATP 6-5

6-6

CHAPTER 6

Apple Talk Transaction Protocol {ATP)

• The third and fourth bytes carry the transaction ID assigned to a request and used by
the response to that request.

• The fifth through eighth bytes carry user data; an application can use these bytes for
its own purposes, for example, to transfer command information.

The ATP data follows the header. It can consist of from 0 to 578 bytes. An ATP packet is
enclosed in a DDP datagram that is enclosed in a data-link frame. Figure 6-3 shows a
close-up view of the first byte of the ATP header, the control information byte.

Figure 6-3 The ATP packet header control information byte

,-------·~~---·· ---

Supplied
by interface

h
I

7
I a I s I

4
I

3
I

2
I

1
I o I

1 111 I
XO STS Chksum

EOM TIDvalid
Reserved XCall

The Control Information Byte

ATP applications call response and request functions that generate request and
response packets. {ATP uses the release packet internally.) When set, the bits have
the following meanings:

Bit Meaning

0 Use the DDP checksum feature for this packet.

1 ATP has assigned the request transaction ID; the TID field value is now valid.

2 This request uses an extended parameter block.

3 To the requester: retransmit the request immediately (send-transmission status).

4 This is the last packet of the response message (end of message).

5 This request is an exactly-once transaction.

The Bitmap/Sequence Number

ATP ensures reliable delivery of data. This means that ATP retransmits all lost or
dropped packets, and if it is unable to complete a transaction properly, ATP returns an
error as the function result. To receive all the packets that make up a response message,
a requester application must provide enough buffer space to hold the data. A request
message consists of a single packet, while each response message can contain up to eight
response packets.

AboutATP

CHAPTER 6

Apple Talk Transaction Protocol (ATP)

Response packets are numbered from 0 to 7. ATP uses the sequence number to manage
the transmission and receipt of response packets; the packet header ATP sequence
number field contains 8 bits, 1 for each response packet.

ATP sets the sequence number in the request header to tell the .ATP driver code on the
responder side which response packets the requester has not received. When a requester
does not receive a complete response message, the .ATP driver code on the responder
side can then send again only the packets that the requester side has not received, based
on the bit settings of the transaction sequence number. ATP handles the retransmission
of data internally without requiring any action on the part of your application. For
information about the buffer records, see "The Buffer Data Structure" on page 6-20.

The Transaction ID

The third and fourth bytes of the ATP header carry a 16-bit transaction ID. The .ATP
driver code on the requester side of a transaction assigns a unique transaction ID to each
request that a requester application makes. The responder application that services the
request includes this number as a parameter to the response call that it issues to send
its response back to the requester. The transaction ID ties together the request and its
response, ensuring that ATP delivers the correct data in response to each request. An
application can issue and have pending multiple concurrent asynchronous requests; ATP
uses the transaction ID to keep track of them.

User Bytes

ATP does not concern itself with the last 4 bytes of the ATP header. They are reserved for
your use. You can use these bytes for any purpose prearranged by the requester and
responder applications. The ATP functions include a parameter that you use to specify
this data.

At-Least-Once and Exactly-Once Transactions
ATP supports two types of transactions: at-least-once transactions and exactly-once
transactions. An at-least-once transaction ensures that the responder application
receives every request directed to it at least once. However, this mode allows for the
possibility of a responder application receiving duplicate requests.

For example, when you send a request that the .ATP driver code on the responder side
receives, it passes the request on to the responder application. Your responder applica­
tion then processes the request and creates a response to it. The ATP responder driver
sends that response to your requester application. If the response is lost during the
transmission, ATP retransmits the request after a period of time passes; you can set
a value to control this timeout period. The ATP responder driver code receives the
duplicate request and repeats the cycle of passing it on to your responder application for
processing. At-least-once transactions ensure that the data is delivered at least once, and
possibly more than once. You can use this transaction mode if it does not have adverse
affects on the responder application.

AboutATP 6-7

•

6-8

CHAPTER 6

Apple Talk Transaction Protocol (ATP)

An exactly-once transaction ensures that the responder application receives a specific
request only once. These are also referred to as XO, as in exactly-once transactions.
To create this result, the ATP responder code saves the response packets until the
transaction is complete. This means that ATP itself can retransmit packets without
requiring that your responder application reprocess the request.

The ATP responder code saves the response packets until the ATP code on the requester
side indicates that it has received all of the packets. The ATP code on the requester side
sends a transaction release packet to the ATP code on the responder side to signal that
the requester application has received all of the response packets, so that ATP can now
release them.

Because the transaction release packet could also be lost during transmission, ATP backs
up this process with a transaction release timer. ATP marks packets saved for retrans­
mission with a timestamp. When a packet ages beyond the amount of time that you set
for the responder's release timer, ATP discards the packet.

You can set the release timer value that the ATP code on the responder end uses from
your requester application; the send request functions include a release timer parameter
for this purpose. For more information about this parameter, see "PSendRequest" on
page 6-24 or "PNSendRequest" on page 6-27.

The Buffer Data Structure
The responder application needs to provide space to store the data to be sent to the
requester until the requester application has received all of the data. The requester
application needs to provide space to receive the data that it expects to receive as a result
of the transaction. Each response can include up to eight packets. To handle the storage
of these packets, the ATP client application at each end of the transaction provides a
buffer data structure. The buffer data structure is designed to allow ATP to easily
manage reliable transfer of multiple packets belonging to a single response message. A
buffer data structure consists of an array of eight elements, each of which contains a
pointer to a record of type BDSElement.

Each record contains a field for the size of the buffer created to hold the data and a
pointer to that buffer. It also contains fields for the size of the data in the response packet
and the user bytes that were passed in the packet header, if these bytes were used to
communicate additional information. You can create your own buffer data structures,
or you can use the ATP utility provided for this purpose. For a description of the BDS
data type, see "The Buffer Data Structure" on page 6-20. For a description of the utility
that you can use to build the buffer data structure, see "BuildBDS" on page 6-44.

ATP Flags
Many of the functions that you use for an ATP transaction pass control information in an
ATP parameter block field called atpFlags. This field comprises a single byte whose
bits you can set to signal control information, if appropriate. In some cases, ATP sets
these flag bits for its own use. The discussion of each function that uses these flags
includes the control information about the bits specific to that function. Table 6-1 shows
the Pascal and assembly constants defined for these bits.

AboutATP

CHAPTER 6

Apple Talk Transaction Protocol (ATP)

Table 6-1 Constants for ATP flag bits

Pascal Assembly
Bit constant constant Meaning

0 atpSendChkvalue sendChk Use DDP' s checksum feature when sending a
packet.

1 atpTIDValidvalue tidValid The transaction ID value that ATP assigns is set;
you can check the reqTID field now.

2 None atpXcall This exactly-once transaction request uses an
extended parameter block, the last field of which
(TRelTime) is set to the release timer value for
the ATP responder side.

3 atpSTSvalue atpSTSBit The ATP requester must retransmit a request
immediately. (ATP sets the send-transmission-
status bit, which it uses internally.)

4 atpEOMvalue atpEOMBit The last packet in this response is the end
of the message.

5 atpJtOvalue atpXOBit This request is an exactly-once transaction.

UsingATP

This section describes how to use ATP to

• send a transaction request to a responder application that is an ATP socket client

• receive a request from an ATP requester application and respond to it

• cancel pending ATP requests and responses

You can write a single ATP application that includes both the responder and requester
code or two ATP applications that separately provide the responder and the requester
services. This section describes how to write a requester application, and then it describes
how to write a responder application.

Writing a Requester ATP Application
You use the PSendRequest function or the PNSendRequest function to send an ATP
request to another socket.

Before you can use ATP, you must first open the .MPP driver, which in tum opens the
.ATP driver. Use the Device Manager's OpenDriver function to open the .MPP driver.
Even if you suspect that the .MPP and the .ATP drivers are open, you should call
the OpenDriver function for the .MPP driver to ensure that this is the case. Calling
OpenDr i ver for a driver that is already open will not produce harmful repercussions.
See the chapter "Device Manager" in Inside Macintosh: Devices for information on
the OpenDr i ver function. Do not close the .MPP driver when you are finished using

UsingATP 6-9

CHAPTER 6

Apple Talk Transaction Protocol (ATP)

ATP because other applications dependent on it or on the .ATP driver require that it
remain open.

To send an ATP request, follow these steps:

1. Create a buffer data structure (BDS) to hold the data that you expect to receive in
response to your request. For information on how to do this, see "Creating a Buffer
Data Structure" on page 6-12.

2. To allow ATP to assign the socket to be used to send the request, use the
PSendRequest function. To specify a particular socket to be used to send the request,
use the PNSendRequest function; in this case, you must call POpenATPSocket to
first open the socket (see "POpenATPSkt" on page 6-30 for information about this
function). For information on the parameters required for these functions, see
"Specifying the Parameters for the Send Request Function" on page 6-12.

3. You can get the transaction ID that ATP assigns to a request from the reqTID
parameter; you need this ID to cancel a request. However, before you check this
field, make sure that the valid transaction ID (atpTIDValidvalue) bit (bit 1) of
the atpFlags parameter is set. ATP sets this bit to inform you that it has assigned
a transaction ID and that the reqTID field is now valid.

4. If you opened a socket to be used for the PNSendRequest call, close the socket using
PCloseATPSkt. See"PCloseATPSkt" on page 6-31 for information on how to use this
function. If you use the PSendRequest function, ATP allocates a socket and opens
and closes it for you.

The code in Listing 6-1 shows how to open a socket and issue a call to the PSendRequest
function. The code uses the BuildBDS function to create a buffer data structure to
hold the response data it expects in response. This segment of code assumes that the
application has already called the OpenDriver function to open the .MPP and
.ATP drivers.

Listing 6-1 Opening a socket and sending an ATP request

CONST

VAR

kMaxPacketSize = 578;
kNRespBuffs = 8;

{maximum packet size we can receive}
{you allow eight response buffers}

kOurRespBufSize = kMaxPacketSize * kNRespBuffs;
{response buffer size}

err: OSErr;
reqLength: Integer;
nBufs: Integer;
ref: Integer;
targetAddr: AddrBlock;
gAtpPBPtr: ATPPBPtr;
gReqBufPtr: Ptr;
gRespBufPtr: Ptr;
gSRespBdsPtr: BDSPtr;

6-10 UsingATP

CHAPTER 6

Apple Talk Transaction Protocol (ATP}

BEGIN
gAtpPBPtr := ATPPBPtr(NewPtr(SizeOf(ATPParamBlock)));
gReqBufPtr := NewPtr(kMaxPacketSize);
gRespBufPtr := NewPtr(kOurRespBufSize);
gSRespBdsPtr := BDSPtr(NewPtr(SizeOf (BDSType)));
err:= OpenDriver('MPP',ref);
if err<> noErr THEN DoErr(err);
WITH gAtpPBPtrA DO

BEGIN.
atpSocket := 0;
addrBlock.aNet := 0;
addrBlock.aNode := 0;
addrBlock.aSocket := 0;

END;

{dynamically allocate a socket}
{accept requests from anyone}

err := POpenATPSkt(gAtpPBPtr,false);{socket is returned in }
{ gAtpPBPtrA.atpSocket}

IF err<> noErr THEN DoErr(err);
IF gAtpPBPtrA.ioResult <> noErr THEN DoErr(err);

MyPrepareRequestData(gReqBufPtr,@reqLength);

MyLocateTargetAddress(@targetAddr);

{Set up your BDS structure.}

{user routine that prepares the }
{ request data to be sent}

{user routine that locates the }
{ target machine}

nBufs := BuildBDS(gRespBufPtr,Ptr(gSRespBdsPtr),kOurRespBufSize);

WITH gAtpPBPtrA DO
BEGIN

atpFlags := atpXOvalue; {issue an exactly-once transaction}
addrBlock.aNet := targetAddr.aNet;

{set up the target machine}
addrBlock.aNode := targetAddr.aNode;
addrBlock.aSocket := targetAddr.aSocket;

reqLength := reqLength; {size of your request data}
reqPointer
numOfBuffs

.- gReqBufPtr; {pointer to actual request data}
:= nBufs; {number of responses expected}
:= Ptr(gSRespBdsPtr); {your BDS pointer} bdsPointer

timeOutVal := 3;
retryCount

END;
:= 5;

{timeout interval}
{number of retries}

err := PSendRequest(gAtpPBPtr,false);

UsingATP 6-11

CHAPTER 6

Apple Talk Transaction Protocol (ATP)

IF err<> noErr THEN DoErr(err);

MyProcessResponses(gAtpPBPtrA.bdsPointer,gAtpPBPtrA.numOfResps);
{user routine to process the }
{ response data returned}

{Clean up after you are done.}
DisposePtr(Ptr(gAtpPBPtr));
DisposePtr(gReqBufPtr);
DisposePtr(gRespBufPtr);
DisposePtr(Ptr(gSRespBdsPtr));

END.

6-12

Creating a Buffer Data Structure

Response data can comprise up to eight packets. ATP uses the organization of the buffer
data structure (BDS) to manage these packets and ensure their complete delivery. The BDS
must be an array of up to eight elements. You can create the buffer data structure yourself,
or you can use the BuildBDS function for this purpose. You pass BuildBDS a pointer to a
buffer and the length of the buffer, and it creates up to eight elements, one for each packet,
depending on the size of the buffer that you supply. BuildBDS returns as its function
result the number of elements that it creates; you pass this number and a pointer to the
buffer data structure to the PSendRequest or PNSendRequest function that you call to
issue the request. The memory that you allocate for the buffer must be nonrelocatable
until the PSendResponse call completes execution. After PSendResponse returns, you
should release this memory if you do not intend to reuse it.

Specifying the Parameters for the Send Request Function

When you call either the PSendRequest function or the PNSendRequest function to
send an ATP request, you must do these tasks:

• Specify as the value of the addrBlock parameter the Apple Talk internet address of
the socket whose client responder application you are sending the request to.

• Specify in the reqLength field the size in bytes of the request and in the reqPointer
field a pointer to the request data. The buffer that you use to store the request belongs
to ATP until the PSendRequest (or PNSendRequest) function completes execution,
after which you can either reuse the memory or release it.

• Set the timeOut Val and retryCount parameters appropriately for your network.
See the following section, "Setting the Timeout and Retry Count Parameters." If this is
an exactly-once request, set bit 5 (atpXOvalue) of the atpFlags parameter to ensure
that the responder application receives a specific request only once. For additional
information about exactly-once transactions, see "At-Least-Once and Exactly-Once
Transactions" on page 6-7.

UsingATP

CHAPTER 6

Apple Talk Transaction Protocol (ATP)

You can send up to 4 bytes of additional information in the userData parameter,
and ATP will pass this to the responder application in the userData parameter of its
PGetRequest call. To make this parameter meaningful, both the requester and the
responder applications should agree on the use of these additional data bytes that are
separate from the request or response data sent in an ATP transaction.

Setting the Timeout and Retry Count Parameters

When a transaction does not complete on the first transmission, ATP retries it a number
of times. You can control ATP's retry behavior by setting these two parameters: the
timeOut Val field and the retrycount field. The timeOut Val value determines
in seconds how long ATP waits before resending the original request packet; the
retryCount value determines how many times ATP retries to send the request.

ATP optimizes how it performs retries based on the response bitmap; ATP on the
requester side resends the request with the header bitmap indicating to the ATP driver
on the responder side which packets it should resend. (See the ''The Bitmap /Sequence
Number" on page 6-6 for more information.) ATP makes this request to resend until it
receives all of the packets or it exhausts the number of retry attempts that you specify. If
ATP exhausts all of the retry attempts before the requester side receives all of the
packets, ATP returns an error.

To choose the correct timeout value and retry count combination, you should consider
the speed and complexity of your network-for example, take into account the degree of
traffic congestion and whether your network contains multiple routers. You can use the
Apple Talk Echo Protocol (AEP) echo socket to test the network performance and adjust
the values accordingly. For more information about using the AEP echo socket to test
network performance, see the chapter "Datagram Delivery Protocol (DDP)" in this book.
You can store various pairs of values in a preferences resource file so that you can easily
change them to adapt to the speed of the network.

If you want ATP to retry indefinitely to send the request, you can set the retrycount
parameter to 255. In this case, ATP will send the request repeatedly until either the ATP
responder end satisfies the request and sends back a response or you cancel the request.
To cancel a PSendRequest call, you can use either the PKillSendReq function or the
PRelTCB function. To cancel a PNSendRequest call, you can use the PKillSendReq
function only.

Setting the Release Timer Value

For exactly-once transactions, the ATP responder code saves the response packets until
the ATP code on the requester side indicates that it has received all of them. When this is
the case, the ATP code on the requester side sends a transaction release packet to tell the
ATP code on the responder side to release the response packets. Because this packet
could be dropped or lost during transmission, ATP uses a release timer to discard the
retained packets after a specified amount of time and to release the memory used to
store them.

UsingATP 6-13

CHAPTER 6

Apple Talk Transaction Protocol (ATP)

If the nodes at both ends of the ATP connection are running Apple Talk Phase 2
drivers, you can control the release timer value that determines when ATP releases
the response packets by setting the 3lower bits of the TRelTime parameter to one
of the following values:

Setting of
TReiTime release timer

000 30 seconds

001 1 minute

010 4 minutes

100 8 minutes

Writing a Responder ATP Application
A responder application receives incoming ATP requests, processes them, and sends a
response to the requester application. To write a responder application, you open a
socket that you set up to listen for requests. When you receive a request, you process it
and send a response back to the requester application. The response can consist of a
message reporting the outcome of the processing you performed or data resulting from
the processing.

Before you can use ATP, you must first open the .MPP driver, which in turn opens the
.ATP driver. Use the Device Manager's OpenDriver function to open the .MPP driver.
Even if you suspect that the .MPP and the .ATP drivers are open, you should call the
Ope nor i ver function for the .MPP driver to ensure that this is the case. Calling
OpenDr i ver for a driver that is already open will not produce harmful repercussions.
See the chapter ~~Device Manager" in Inside Macintosh: Devices for information on the
Ope nor i ver function. Do not close the .MPP driver when you are finished using ATP
because other applications dependent on it or the .ATP driver require that it remain open.

Opening and Setting Up a Socket to Receive Requests

To open a socket to receive incoming requests, you use the following procedure:

1. To open the socket, call the POpenATPSkt function, providing it with values as
follows:

o To direct ATP to open a specific socket, provide the number of that socket as the
value of the atpSocket parameter; to allow ATP to dynamically assign a socket,
specify 0 as the value of this field.

o To filter the sockets from which you will accept requests, set the internet socket
address fields of the addrBlock parameter; to accept requests from any socket,
set all three fields to 0. You can filter requests based on network, socket, or node
numbers. For example, to accept requests from all sockets on the node whose ID
is 112, you set the network and socket number fields of the address block record to
0 and the node ID field to 112.

6-14 Using ATP

CHAPTER 6

Apple Talk Transaction Protocol (ATP)

2. To set up the socket to receive requests, call the PGetRequest function, which listens
for an incoming request on the socket you specify. You provide it with the parameter
values as follows:

o Allocate a buffer to store the incoming request; you pass PGetRequest a pointer
to this buffer and the length of the buffer. Unless you know the exact size of the
incoming request, allocate at least 578 bytes of nonrelocatable memory for this
buffer to accommodate the maximum request packet size. Set the reqPointer
parameter to point to the buffer, and set the reqLength parameter to the size in
bytes of the buffer.

o Set the atpSocket parameter to the number of the socket to be used to listen for
the request; this is the socket you opened through the POpenATPSkt call.

o Set the ioCompletion parameter. In most cases, you should issue the
PGetRequest call asynchronously so that your application can continue execution
while PGetRequest listens for an incoming call; the PGetRequest function
returns after it receives an incoming request or encounters an error condition. If
you issue this call asynchronously, you must either specify a completion routine or
set the ioCompletion parameter to NIL. If you use a completion routine, before it
exits, your completion routine can call the PGetRequest function again to listen
for the next incoming request. If you do not use a completion routine, you must
poll the ioResul t field for indication of an incoming request to determine when
the function completes execution and whether an error condition or an incoming
request caused the function to complete. For more information on calling a routine
asynchronously, see the chapter "Introduction to Apple Talk" in this book.

3. Process the values that PGetRequest returns. The PGetRequest function returns
the following values that may be of use to your application:
o The request transaction ID reqTID that ATP assigns to this request. If you intend

to respond to the request, save this value because you will need to pass it to the
PSendResponse function and the PAddResponse function to identify the request
for which the response message is intended. For more information on the trans­
action ID, see the discussion in the section "The ATP Packet Format" beginning on
page 6-5.

o The userData parameter, which contains any additional information that the
requester application has sent. To make this parameter meaningful, both the
requester and the responder applications should agree on the use of these
additional data bytes that are separate from the request or response data sent
in an ATP transaction.

o The exactly-once bit (bit 5) of the atpFlags parameter, which is set if the request
received is part of an exactly-once transaction. ATP uses this information internally
to ensure that your responder application receives this request only once.

Listing 6-2 on page 6-17 shows how to open a socket and issue a call to the PGetRequest
function to receive requests.

UsingATP 6-15

CHAPTER 6

Apple Talk Transaction Protocol (ATP)

Responding to Requests

After you process a request and create a response message, you call the PSendResponse
function to send the response. ATP assembles the response packets into a message and
returns them to the requester application. You can send the request through the same
socket that you use to receive incoming requests, or you can specify a different socket to
be used for this purpose. To use a different socket, you must first open the socket by
calling POpenATPSocket. The code in Listing 6-2 opens a new socket that it uses to
send the response.

1. Create a buffer data structure to hold the response data that you want to send.

The buffer data structure (BDS) must be an array of up to eight elements. You can use
the BuildBDS function to create the BDS. You pass BuildBDS a pointer to a buffer
and the length of the buffer, and it creates up to eight elements depending on the size
of the buffer that you supply. BuildBDS returns as its function result the number of
elements that it creates; you pass this number and a pointer to the buffer data
structure to the PSendResponse call. The memory that you allocate for the buffer
must be nonrelocatable until the PSendResponse call completes execution. After
PSendResponse returns, you should release this memory.

2. To send the response, call the PSendResponse function. The response data cannot
exceed 4624 bytes. If you need to send more information, you can follow the
PSendResponse function with one or more calls to the PAddResponse function
until you have sent a total of eight packets, including the packets that you sent
when you called the PSendResponse function; each time you call the PAddResponse
function, you can send one additional packet consisting of 578 bytes of data.

o For the input address block (addrBlock) and transaction ID (transiD)
parameters to PSendResponse, use the address block (addrBlock) and
request transaction ID (reqTID) parameter values that the PGetRequest
function returned.

o Set the numOfBuffs field to the number of response packets that you are sending.
If you are sending fewer packets than the requester expects to receive, you must set
the end-of-message (atpEOMvalue) bit (bit 4) in the atpFlags field to indicate
that the last packet is the final one in the response message. The bitmap returned
by the PGetRequest function indicates the number of packets that the requester
expects in response.

o Set the atpSocket field to the number of the socket that you are using to send
the response.

3. Call the CloseATPSkt function to close the socket that you opened to receive
requests and respond to them after you are finished with this socket. You can use
the socket to continue to listen for requests until your application completes
execution, but you should explicitly close the socket before exiting the program.

The code in Listing 6-2 first shows how to open a socket and issue a call to the
PGetRequest function to receive requests. Then it shows how to prepare the
response data and send it.

6-16 Using ATP

CHAPTER 6

Apple Talk Transaction Protocol (ATP)

Listing 6-2 Opening a socket to receive a request and sending response data

CONST
kMaxPacketSize = 578; {maximum packet size you can receive}
kMaxResponses = 8; {maximum number of responses to expect}
kRespBufSize = kMaxPacketSize * kMaxResponses;

{your response buffer}
VAR

err: OSErr;
NumOfBufs: Integer;
ref: Integer;
nBufs: Integer;
ReqBitMap: BitMapType;
thisBit: Longint;
gAtpPBPtr: ATPPBPtr;
gSendRespPBPtr: ATPPBPtr;
gGetReqBufPtr: Ptr;
gSRespBuf: Ptr;
gSRespBdsPtr: BDSPtr;

BEGIN
gAtpPBPtr := ATPPBPtr(NewPtr(SizeOf(ATPParamBlock)));
gSendRespPBPtr := ATPPBPtr(N~wPtr(SizeOf(ATPParamBlock)));
gGetReqBufPtr := NewPtr(kMaxPacketSize);
gSRespBdsPtr := BDSPtr(NewPtr(SizeOf(BDSType)));
gSRespBuf := NewPtr(kRespBufSize);

err:= OpenDriver('MPP' ,ref);
if err<> noErr THEN DoErr(err);

WITH gAtpPBPtrA DO
BEGIN

atpSocket := 0;
addrBlock.aNet := 0;
addrBlock.aNode := 0;
addrBlock.aSocket := 0;

END;

{dynamically allocate a socket}
{accept requests from anyone}

err := POpenATPSkt(gAtpPBPtr,false);{socket is returned in}
{ gAtpPBPtrA.atpSocket}

IF err<> noErr THEN DoErr(err);
IF gAtpPBPtrA.ioResult <> noErr THEN DoErr(err);

UsingATP 6-17

CHAPTER 6

Apple Talk Transaction Protocol (ATP)

WITH gAtpPBPtrA DO
BEGIN

reqLength ::;; 0;

reqPointer ::;; gGetReqBufPtr;

END;

{request data length will be returned }
{ to you here}
{pointer to buffer for incoming request }
{ data}

err .- PGetRequest(gAtpPBPtr,TRUE);{asynchronous PGetRequest}

IF err<> noErr THEN DoErr(err);

{Poll ioResult until the call completes.}
WHILE gAtpPBPtrA.ioResult > noErr DO
BEGIN

GoDoSomething;

END;

{return control to user while you wait }
{ for PGetRequest to complete}

IF gAtpPBPtrA.ioResult <> noErr THEN DoErr(err);

MyProcessRequestReceived(gAtpPBPtrA.reqPointer,gAtpPBPtrA.reqLength)
{user routine that looks at the request }
{ data received}

{Walk through the bitmap and see how many response buffers you need.}
NumOfBufs ::;; 0;

FOR thisBit ::;; 0 to 7 DO
BEGIN

{Each bit that is set corresponds to a buffer.}
if BitTst(@gAtpPBPtrA.bitMap,thisBit) =TRUE THEN

BEGIN

END
END;

{Your routine to fill in the appropriate response data.}
SetUpResponseData(gSRespBuf,thisBit);
NumOfBufs := NumOfBufs + 1;

{Put your response data into the BDS structure.}
nBufs := BuildBDS(gSRespBuf,Ptr(gSRespBdsPtr),(NumOfBufs * kMaxPacketSize));

6-18 UsingATP

CHAPTER 6

Apple Talk Transaction Protocol {ATP)

WITH gSendRespPBPtrA DO
BEGIN

atpSocket := gAtpPBPtrA.atpSocket;
atpFlags := atpEOMvalue; {indicate end of message}

{Send response to the machine that sent you the request.}
addrBlock.aNet := gAtpPBPtrA.addrBlock.aNet;
addrBlock.aNode := gAtpPBPtrA.addrBlock.aNode;
addrBlock.aSocket := gAtpPBPtrA.addrBlock.aSocket;
bdsPointer := Ptr(gSRespBdsPtr);
numOfBuffs := NumOfBufs; {send all of the responses back now}
bdsSize .- nBufs;

transiD .- gAtpPBPtrA.transiD;

END;

{indicate how many responses you are }
{ sending}
{use transiD returned from the }
{ PGetRequest function}

err := PSendResponse(gSendRespPBPtr,FALSE);

IF err<> noErr THEN DoErr(err);

{Clean up after you are done.}
DisposePtr(Ptr(gAtpPBPtr));
DisposePtr(Ptr(gSendRespPBPtr));
DisposePtr(gGetReqBufPtr);
DisposePtr(Ptr(gSRespBdsPtr));
DisposePtr(gSRespBuf);
END.

Canceling an ATP Function
You can cancel all pending ATP function calls made on a specific socket by closing the
socket. However, ATP provides functions that allow you to cancel individual function
calls or all function calls of a particular kind. If you want to close a socket for which there
are still pending requests that you don't want executed, you should first explicitly cancel
those requests by using the ATP function provided for this purpose, instead of simply
closing the socket.

You can use the following functions to cancel specific requests:

• To cancel a PGetRequest function, use the PKillGetReq function, which is
described on page 6-41. You identify the request to be canceled by specifying
the pointer to the parameter block that you passed to the PGetRequest function
when you called it.

UsingATP 6-19

•

CHAPTER 6

Apple Talk Transaction Protocol (ATP)

• To cancel all pending PGetRequest functions on a certain socket, use the
ATPKillAllGetReq function described on page 6-42; you specify the socket number,
whose pending get requests you want to cancel, as the value of the atpSocket
parameter.

• To cancel a PSendRequest or a PNSendRequest function, use the PKillSendReq
function described beginning on page 6-38. You identify the request to be canceled
by specifying the pointer to the parameter block that you passed to the function
when you issued it. To cancel a PSendRequest function, use the PRelTCB function
described beginning on page 6-40. You identify the request to be canceled by
specifying the request transaction ID as the transiD parameter and the destination
socket of the request as the addrBlock parameter.

• To cancel an exactly-once PSendResponse function, use the PRelRspCB function,
described beginning on page 6-43. You identify the request to be canceled by
specifying the transaction ID of the associated request as the transiD parameter and
the PSendResponse destination socket number as the atpSocket parameter.

ATP Reference

This section describes the data structures and routines that are specific to ATP.

• The "Data Structures" section shows the Pascal data structures for the buffer data
structure (BDS) array, the ATP parameter block, and the address block record.

• The "Routines" section describes the ATP routines for making a transaction request,
receiving and responding to a transaction request, canceling a call to an ATP function,
and building a buffer data structure to be used to hold response data to be sent
and received.

l)ataSbnlcbures

This section describes the data structures that are specific to ATP. These data structures
include the buffer data structure that is used to hold the response data packets to be sent
from one application and received by another, the ATP parameter block that is used to
hold input and output values for ATP functions, and the address block record data
structure that ATP functions use to specify an Apple Talk internet socket address.

The Buffer Data Structure

6-20

The buffer data structure (BDS) is an array of type BDSElement containing up to eight
records, each of which is used to hold a response packet. You create a BDS to hold
the response data that you send using the PSendResponse function. You also create
a BDS to receive the response packets that you request through a PSendRequest or
PNSendRequest function. You can use the BuildBDS function to create this data
structure, or you can create the data structure in Pascal.

ATP Reference

CHAPTER 6

Apple Talk Transaction Protocol (ATP)

TYPE BDSElement =
RECORD

buffSize: Integer;
buffPtr: Ptr;
dataSize: Integer;
userBytes: Longint;

END;
BDSType = ARRAY[0 •• 7] OF BDSElement;
BDSPtr = ABDSType;
BitMapType =PACKED ARRAY[0 •• 7] OF Boolean;

Field descriptions

buff Size

buffPtr

datasize
userBytes

The size in bytes of the buffer.

A pointer to the buffer.

The size of the data received.

Up to 4 bytes of additional data separate from the response data.

The ATP Parameter Block

The ATP functions require a pointer to an ATP parameter block that is used to pass the
input and output parameters associated with the function. The ATPParamBlock data
type defines the ATP parameter block. The ATP parameter block includes variant records
for the fields that are particular to an ATP routine.

This section defines the fields that are common to all ATP functions that use the ATP
parameter block. (The BuildBDS function does not use the ATP parameter block.) These
common fields are either filled in by the MPW interface or returned by the function; your
application does not need to provide values for these fields. This section does not define
reserved fields, which are used internally by the .ATP driver or not at all. The fields that
are used for specific functions only are defined in the descriptions of the functions to
which they apply.

TYPE ATPParamBlock =
PACKED RECORD

qLink: QElemPtr;
qType: Integer;
ioTrap: Integer;
ioCmdAddr: Ptr;
ioCompletion: ProcPtr;
ioResult: OSErr;
userData: Longint;
reqTID: Integer;
ioRefNum: Integer;
csCode: Integer;
atpSocket: Byte;

ATP Reference

{reserved}
{reserved}
{reserved}
{reserved}
{completion routine}
{result code}
{ATP user bytes}
{request transaction ID}
{driver reference number}
{call command code}
{currBitMap or socket number}

6-21

•

CHAPTER 6

Apple Talk Transaction Protocol (ATP)

CASE MPPParmType OF
SendRequestPar.m,
SendResponseParm,
GetRequestParm,
AddResponseParm,
KillSendReqParm:

(atpFlags:
addrBlock:

reqLength:
reqPointer:
bdsPointer:

CASE MPPPar.mType OF

Byte; {control information}
AddrBlock;

{source/dest. socket address}
Integer; {request/response length}
Ptr; {ptr to request/response data}
Ptr; {ptr to response BDS}

SendRequestParm:
(numOfBuffs: Byte; {number of responses expected}

{timeout interval} timeOutVal: Byte;
numOfResps: Byte; {number of responses }

{ actually received}
Byte; {number of retries} retryCount:

intBuff: Integer; {used internally for }
{ PNSendRequest}

TRelTime: Byte);

SendResponseParm:
(fillerO: Byte;

{TRelease time for extended }
{ send request}

{bitmap}
bdsSize:
transiD:

Byte; {number of BDS elements}

GetRequestParm:
(bitmap:
fillerl:

AddResponsePar.m:
(rspNum:
filler2:

KillSendReqPar.m
(aKillQEl:

Integer);{transaction ID}

Byte;
Byte);

Byte;
Byte);

Ptr));

{bitmap}
{reserved}

{sequence number}
{reserved}

{ptr to (queue element) function to }
{ cancel}

END;

ATPPBPtr = ~ATPParamBlock;

6-22

Field descriptions
ioCompletion

ATP Reference

A pointer to a completion routine that you can provide. When you
execute a function asynchronously, the .ATP driver calls your
completion routine when it completes execution of the function if

CHAPTER 6

Apple Talk Transaction Protocol (ATP)

ioResult

ioRefNum

esC ode

you specify a pointer to the routine as the value of this field. Specify
NIL for this field if you do not wish to provide a completion routine.
If you execute a function synchronously, the .ATP driver ignores the
ioCompletion field. For information about completion routines,
see the chapter "Introduction to AppleTalk" in this book.

The result of the function. If you call the function asynchronously,
the .ATP driver sets this field to 1 as soon as you call the function,
and it changes the field to the actual result code when the function
completes execution.

The .ATP driver reference number. The MPW interface fills in
this field.

The command code for the ATP function to be executed. The MPW
interface fills in this value for you.

The Address Block Record

Routines

The address block record defines a data structure of AddrBlock type. The following
ATP functions use this data type to specify AppleTalk internet socket addresses:
PSendRequest,PSendResponse,PNSendResponse,POpenATPSkt,PGetRequest,
PSendResponse,PAddResponse,PRelTCB,PRelRspCB.

TYPE AddrBlock =
PACKED RECORD

aNet:
aNode:
aSocket:

END;

Integer;
Byte;
Byte;

{network number}
{node ID}
{socket number}

Field descriptions
aNet The network number to which the node belongs that is running the

ATP client application whose address you are specifying.

aNode

aSocket

The node ID of the machine running the ATP client application
whose address you are specifying.

The number of the socket used for the ATP client application.

This section describes the ATP routines that you use to

• send a request to a responder socket client

• open and close an ATP socket

• set up a socket to listen for a request

• send a response to a requester socket client

• cancel a response or a request function

• build a buffer data structure to store the response data

ATP Reference 6-23

CHAPTER 6

Apple Talk Transaction Protocol (ATP)

All of the ATP functions except the BuildBDS function use the ATP parameter block to
pass input and output parameters. Each function description shows the parameter block
for that function. An arrow preceding a parameter indicates whether the parameter is an
input parameter, an output parameter, or both:

Arrow Meaning

~ Input

f- Output

H Both

Sending an ATP Request

This section describes the PSendRequest function that you use to send a request to
another socket's client application, allowing ATP to dynamically allocate the socket to be
used to send the request; in this case, ATP opens the socket when you issue the function
and closes it after the call completes execution. It also describes the PNSendRequest
function that you can use to send a request to another socket while specifying the socket
to be used to send the request; you must open the socket to be used and close it when
you're finished with it.

PSendRequest

6-24

The PSendRequest function sends a request to another socket whose client application
is to respond to the request. PSendRequest then waits for a response before completing
execution.

FUNCTION PSendRequest (thePBPtr: ATPPBPt; async: Boolean): OSErr;

thePBPtr A pointer to an ATP parameter block.

a sync A Boolean that indicates whether the function should be executed
asynchronously or synchronously. Specify TRUE for asynchronous
execution.

Parameter block

~ iocompletion ProcPtr A pointer to a completion routine.
f- ioResult OS Err The function result.
~ userData Longint Four bytes of user data.
f- reqTID Integer The transaction ID for this request.
~ csCode Integer Always sendRequest for this function.
f- currBitMap Byte A bitmap.
H atpFlags Byte The control information.
~ addrBlock AddrBlock The destination socket address.
~ reqLength Integer The size in bytes of the request.

ATP Reference

CHAPTER 6

Apple Talk Transaction Protocol (ATP)

reqPointer
bdsPointer
numOfBuffs
timeOut Val
numOfResps
retryCount
TRelTime

Field descriptions

userData

reqTID

currBitMap

atpFlags

addrBlock

reqLength

reqPointer

bdsPointer

numOfBuffs

timeOutVal

numOfResps

retrycount

ATP Reference

Ptr
Ptr
Byte
Byte
Byte
Byte
Byte

A pointer to request data.
A pointer to response data.
The number of responses expected.
The timeout interval.
The number of responses received.
The number of retries.
The release timer setting.

Four bytes of user data that are sent in the header of the message.
You can use these bytes for any purpose that you wish.

A number that identifies this transaction request. If you want to use
the PRel TCB function to cancel the transaction, you must pass it
this number.

A bitmap showing which packets of the transaction were received.

A control information field whose bits, numbered 0-7, are used
as flags.

You set bit 5 (atpXOvalue) to specify an exactly-once transaction.
To specify an at-least-once transaction, you clear the bit.

To set the other connection end's release timer, set bit 2 of this flag,
and use the TRelTime field to indicate the amount of time. Bit 2
(atpXcall value) indicates that the parameter block is extended to
include the release timer field.

ATP sets the atpTIDValidvalue bit (bit 1) of this field to indicate
that the transaction ID field (reqTID) now contains valid data; you
should determine if this bit is set before you check the request
transaction ID.

To direct ATP to use DDP' s checksum feature, set the send
checksum (atpSendChkvalue) bit (bit 0) of this flag.

The Apple Talk internet address of the socket to which the request is
to be sent.

The size of the request to be sent.

A pointer to the request data to be sent.

A pointer to a buffer data structure (BDS) that is to be used to hold
the responses.

On input, the number of response packets that you expect from the
responder application. If this field contains a nonzero number on
return, you can examine the currBi tMap field to determine which
packets of the transaction were actually received.

The number of seconds that ATP should wait for a response before
resending the request.
The number of responses actually received.

The maximum number of times ATP should retry to send the
request. This field is used to monitor the number of retries; for
each retry, ATP decrements it by 1.

6-25

DESCRIFI'ION

6-26

CHAPTER 6

Apple Talk Transaction Protocol (ATP)

TRelTime The release timer setting. Set the 3 lower bits of this field value to
indicate the time to which the release timer should be set for the
other end of the connection:

Setting of
TRelTime release timer

000 30 seconds

001 1 minute

010 4minutes

100 Sminutes

The PSendRequest function sends your request data to the destination ATP socket that
you specify, and then it waits for that socket's client to return a response message. ATP
dynamically assigns and opens the socket to be used to send the request, and it closes
the socket when the function completes execution. Before you call the PSendRequest
function, you must build a buffer data structure to hold the response data. You can use
the BuildBDS function to do this. See "The Buffer Data Structure" on page 6-8 and
"BuildBDS" on page 6-44 for a discussion of this function.

If you want to include additional information along with the request message, you can
use the user bytes to include it; for example, you can use these bytes for command
information.

The PSendRequest function completes execution when it receives an entire response or
when the retry count is exceeded. The timeout value (timeOut val) determines how
many seconds PSendRequest waits before resending the original request packet. The
retry count (retryCount) value determines the maximum number of times that ATP is
to resend the request. Together the timeout value and the retry count determine the total
retry time in seconds (timeOutVal x retryCount =total retry time). ATP modifies the
retry count field value during execution of the PSendRequest function if it resends the
request; ATP decrements the field by 1 for each retry. See "Writing a Requester ATP
Application" beginning on page 6-9 for information on how to select these values.

The .ATP driver maintains a timer, called the release timer, for each call to the
PSendResponse function that is part of an exactly-once (XO) transaction. If the timer
expires before the transaction is complete (that is, before the socket receives the
transaction release packet), the driver completes the PSendResponse function. Before
Apple Talk Phase 2, the release timer was always set to 30 seconds. You can set the
responding socket's release timer to a value other than 30 seconds. To do this, set
the extended call bit (bit 2) of the atpFlags field in the parameter block for the
PSendRequest function and specify the release timer parameter as the value of the

ATP Reference

CHAPTER 6

Apple Talk Transaction Protocol (ATP)

TRel Time field. The nodes at both ends of the ATP connection must be running
AppleTalk Phase 2 drivers for this feature to work. For a discussion of exactly-once
transactions and use of the release timer, see "At-Least-Once and Exactly-Once
Transactions" on page 6-7. You should set the exactly-once flag (bit 5) if you want the
request to be part of an exactly-once transaction.

You can use the PKillSendReq function or the PRelTCB function to cancel a
PSendRequest call. For the PRel TCB function, you need the request transaction ID that
ATP returns in the request transaction ID (reqTID) field of the PSendRequest call's
parameter block. You can examine the request transaction ID field before the completion
of the call, but its contents are valid only after the tidValid bit (bit 1) of the atpFlags
field has been set. You should determine if this bit is set before you check the request
transaction ID.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

To execute the PSendRequest function from assembly language, call the_ Control
trap macro with a value of sendRequest in the csCode field of the parameter block. To
execute this function from assembly language, you must also specify the .ATP driver
reference number.

noErr
reqFailed
tooManyReqs
noDataArea
reqAborted

0
-1096
-1097
-1104
-1105

No error
Retry count exceeded
Too many concurrent requests
Too many outstanding ATP calls
Request canceled

PNSendRequest

The PNSendRequest function sends a request to another socket's client. It uses the
socket that you specify to send the request.

FUNCTION PNSendRequest (thePBPtr: ATPPBPtr; async: Boolean): OSErr;

thePBPtr

a sync

ATP Reference

A pointer to an ATP parameter block.

A Boolean that indicates whether the function should be executed
asynchronously or synchronously. Specify TRUE for asynchronous
execution.

6-27

•

6-28

CHAPTER 6

Apple Talk Transaction Protocol {ATP)

Parameter block

~ iocompletion ProcPtr A pointer to a completion routine.
~ ioResult
~ userData
~ reqTID
~ csCode
~ atpSocket
H atpFlags
~ addrBlock
~ reqLength
~ reqPointer
~ bdsPointer
~ numOfBuffs
~ timeOutVal
~ numOfResps
H retryCount
~ intBuff
~ TRelTime

Field descriptions

userData

reqTID
atpSocket

atpFlags

addrBlock

reqLength
reqPointer
bdsPointer

numOfBuffs

ATP Reference

OS Err The function result.
Longint Four bytes of user data.
Integer The transaction ID for this request.
Integer Always nSendRequest for this function.
Byte The socket number to send the request.
Byte The control information.
AddrBlock The destination socket address.
Integer The size in bytes of the request.
Ptr A pointer to the request data.
Pointer A pointer to the BDS.
Byte The number of responses expected.
Byte The timeout interval.
Byte The number of responses received.
Byte The number of retries.
Integer A buffer that ATP uses internally.
Byte The release timer setting.

Four bytes of user data that are sent in the header of the message.
You can use these bytes for any purpose that you wish.

A number that identifies this transaction request.

The socket to be used to send the request. You must have previously
opened this socket by calling the POpenATPSkt function.

A control information field whose bits, numbered 0-7, are used
as flags.
You set bit 5 (atpXOvalue) to specify an exactly-once transaction.
To specify an at-least-once transaction, you clear the bit.

To set the other connection end's release timer, set bit 2 of this flag
(atpXcallvalue) to signal that this is an extended call and that
the parameter block includes an additional field. Then you use the
TRelTime field to indicate the amount of time.

ATP sets the atpTIDidValidvalue bit (bit 1) of this field to
indicate that the transaction ID field (reqTID) now contains
valid data; you should determine if this bit is set before you
check the request transaction ID.

To direct ATP to use DDP' s checksum feature, set the
atpSendChkvalue bit (bit 0) of this flag.

The AppleTalk internet socket address of the application to which
the request is being sent.

The size in bytes of the request data to be sent.

A pointer to the request data to be sent.

A pointer to the buffer data structure (BDS) that is to hold the data
returned in response to the request.

The number of response packets requested and expected from the
responder application.

DESCRIPTION

CHAPTER 6

Apple Talk Transaction Protocol (ATP)

timeOut Val

numOfResps

retryCount

intBuff

TRelTime

The number of seconds that ATP should wait for a response before
resending the request.

The number of response packets actually received.

The maximum number of times ATP should retry to send the
request. This field value is used to monitor the number of retries;
for each retry, ATP decrements the value by 1.

Two bytes that are used internally by ATP.

The release timer setting. The 3 lower bits of this field value indicate
the time to which the release timer is to be set, as follows:

Setting of
TRelTime release timer

000 30 seconds

001 1 minute

010 4minutes

100 8minutes

The PNSendRequest function is similar to the PSendRequest function except that
rather than relying on ATP to dynamically allocate a socket to use for the transaction,
PNSendRequest lets you specify the socket to be used to send the request. You set the
atpSocket field of the parameter block to the number of the socket to be used for the
request; you must have previously opened the socket by calling the POpenATPSkt
function. POpenATPSkt lets you send more than one asynchronous request using the
same socket. The number of concurrent requests that you send using PNSendRequest
is machine dependent. If you exceed this limit, ATP returns an error message
(tooManyReqs) indicating this. Note that if you call the PNSendRequest function
without having previously opened the socket that you specify for the send request, ATP
returns a bad ATP socket (badATPSkt) error.

The .ATP driver maintains a timer, called the release timer, for each call to the
PSendResponse function that is part of an exactly-once (XO) transaction. If the timer
expires before the transaction is complete (that is, before the socket receives the
transaction release packet), the driver completes the PSendResponse function. Before
Apple Talk Phase 2, the release timer was always set to 30 seconds. To set the other
connection end's release timer to another value, set bit 2 of the atpFlags field in the
parameter block for the PNSendRequest function to indicate that this is an extended
call, then set the TRelTime field to the new value. The nodes at both ends of the ATP
connection must be running Apple Talk Phase 2 drivers for this feature to work. For a
discussion of exactly-once transactions and use of the release tiJner, see II At-Least-Once
and Exactly-Once Transactions" on page 6-7. You should set the exactly-once flag if
you want the request to be part of an exactly-once transaction.

You can use the PKillSendReq function to cancel a pending PNSendRe~uest·call.
Unlike PSendRequest, you cannot use the PRelTCB function to kill this request call.

ATP Reference 6-29

•

CHAPTER 6

Apple Talk Transaction Protocol (ATP)

SPECIAL CONSIDERATIONS

The parameter block for the PNSendRequest function requires 2 additional bytes,
intBuff, for ATP's internal use. You must not modify these bytes.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

To execute the PNSendRequest function from assembly language, call the_ Control
trap macro with a value of nSendRequest in the csCode field of the parameter block.
To execute this function from assembly language, you must also specify the .ATP driver
reference number.

noErr
reqFailed
tooManyReqs
badATPSkt
noDataArea
reqAborted

0
-1096
-1097
-1099
-1104
-1105

No error
Retry count exceeded
Too many concurrent requests
Specified socket is not opened
Too many outstanding ATP calls
Request canceled

Opening and Closing an ATP Socket

This section describes the POpenATPSkt function that you use to open a socket for
receiving ATP requests from another socket's client application. It also describes the
PCloseATPSkt function that you use to close a socket used for receiving requests after
you are finished with that socket. You also use the POpenATPSkt and PCloseATPSkt
functions to open and close a socket that you want to use to send requests through a
specific socket by calling the PNSendRequest function.

POpenATPSkt

The POpenATPSkt function opens a socket to be used to receive ATP requests or to be
used to send ATP requests through the PNSendRequest function.

FUNCTION POpenATPSkt (thePBptr: ATPPBPtr; async: Boolean): OSErr;

thePBptr

a sync

A pointer to an ATP parameter block.

A Boolean that indicates whether the function should be executed
asynchronously or synchronously. Specify TRUE for asynchronous
execution.

Parameter block

ioCompletion
ioResult
csCode
atpSocket
addrBlock

6-30 ATP Reference

ProcPtr
OS Err
Integer
Byte
AddrBlock

A pointer to a completion routine.
The function result.
Always openATPSkt for this function.
The socket number to be used.
The socket request specification.

DESCRIPTION

CHAPTER 6

Apple Talk Transaction Protocol (ATP)

Field descriptions

atpSocket

addrBlock

The number of the socket that ATP is to open. To direct ATP to
dynamically assign a socket number, which it returns as the value
of this field, specify 0.

A value that specifies the Apple Talk internet socket addresses
that the atpSocket field will receive requests from; specify 0 for
the network number, the node ID, or the socket number to accept
all requests based on the value of that part of the Apple Talk internet
socket address.

The POpenATPSkt routine serves two purposes: you use it to open a socket to be used
for incoming requests, and you use it to open a socket to send requests using a specific
socket. (The PNSendRequest function lets you send a request using a specific socket,
but you must first open that socket using POpenATPSkt.) You can use the addrBlock
field to filter requests that you will accept by restricting network addresses.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

To execute the POpenATPSkt function from assembly language, call the _control trap
macro with a value of openATPSkt in the csCode field of the parameter block. To
execute this function from assembly language, you must also specify the .ATP driver
reference number.

.noErr
tooManySkts
noDataArea

0
-1098
-1104

No error
Too many responding sockets
Too many outstanding ATP calls

The PNSendRequest function is described on page 6-27.

PCloseATPSkt

The PCloseATPSkt function closes a socket that was opened to receive ATP requests or
to send requests over a specific socket.

FUNCTION PCloseATPSkt (thePBPtr: ATPPBPtr; async: Boolean): OSErr;

thePBPtr A pointer to an ATP parameter block.

async A Boolean that indicates whether the function should be executed
asynchronously or synchronously. Specify TRUE for asynchronous
execution.

ATP Reference 6-31

DESCRIPTION

CHAPTER 6

Apple Talk Transaction Protocol (ATP)

Parameter block

ioCompletion
ioResult
csCode
atpSocket

ProcPtr
OS Err
Integer
Byte

A pointer to a completion routine.
The function result.
Always closeATPSkt for this function.
The socket number.

Field descriptions

atpSocket The number of the socket to be closed.

The PCloseATPSkt function closes the socket that you opened to receive ATP requests
or to send them over a specific socket.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

To execute the PCloseATPSkt function from assembly language, call the_ Control
trap macro with a value of closeATPSkt in the csCode field of the parameter block.
To execute this function from assembly language, you must also specify the .ATP driver
reference number.

noErr
noDataArea

0
-1104

No error
Too many outstanding ATP calls

Setting Up a Socket to Listen for Requests

After you open a socket to be used to response to requests, you need to set up that socket
to receive requests. You use the PGetRequest function for this purpose.

PGetRequest

The PGetRequest function sets up a socket to listen for a request from another socket.

FUNCTION PGetRequest (thePBPtr: ATPPBPtr; async: Boolean): OSErr;

thePBPtr

a sync

6-32 ATP Reference

A pointer to an ATP parameter block.

A Boolean that indicates whether the function should be executed
asynchronously or synchronously. Specify TRUE for asynchronous
execution.

DESCRIPTION

CHAPTER 6

Apple Talk Transaction Protocol (ATP)

Parameter block

~ ioCompletion ProcPtr A pointer to a completion routine.
~ ioResult
~ userData
~ reqTID
~ csCode
~ atpSocket
~ atpFlags
~ addrBlock
H reqLength

~ reqPointer
~ bitMap

Field descriptions

userData

reqTID

atpSocket

atpFlags

addrBlock

reqLength

reqPointer

bitMap

OSErr The function result.
Longint Four bytes of user data.
Word The transaction ID.
Integer Always getRequest for this function.
Byte The socket number.
Byte The control information.
Longint The destination socket address.
Word On input, the request buffer size. On return,

the actual of the request received.
Ptr A pointer to the request buffer.
Byte A bitmap.

The 4 user bytes from the request.

The transaction ID of the request that PGetRequest has received.
ATP supplies this value.

The number of the socket that is to be used to listen for requests.
This is the number of a socket you opened using the POpenATPSkt
function call.

A control information field whose bits, numbered 0-7, are used
as flags.

ATP sets bit 5, the exactly-once flag (atpXOvalue), if the request
received is part of an exactly-once transaction.

The AppleTalk internet address of the socket from which the
request was sent. ATP returns this value.

On input, the size in bytes of the buffer to be used to store the
incoming request. On return, the actual number of bytes of the
request received.

A pointer to the location of the buffer to be used to store the
incoming request.

A bitmap of the transaction that ATP returns.

To receive an ATP request, you must set up a socket to listen for incoming requests; you
use the PGetRequest function to do this. In almost all cases, you should call the
PGetRequest function asynchronously to avoid delaying execution of your program
until after an ATP request comes in. The PGetRequest function completes execution
after it receives an ATP request.

The PGetRequest function returns the transaction ID of the request that it receives in the
reqTID field. You should save this value if you intend to respond to the request; this
transaction ID is used as an input parameter to the PSendResponse and PAddResponse
functions. To determine that the request transaction ID specified in the reqTID field is
valid, first check the atpTIDValidvalue bit (bit 1) of the atpFlags field. If this bit is
set, the reqTID field value is valid.

ATP Reference 6-33

CHAPTER 6

Apple Talk Transaction Protocol (ATP)

You must allocate nonrelocatable memory to be used as the buffer to hold an incoming
request. Make sure that you allocate enough memory to hold the entire request; ATP
will not deliver more data than will fit in the amount of buffer space that you specified
as the value of the reqLength field. The buffer should be 578 bytes long, which is the
maximum size of a request packet, unless you know the exact size of the request.

SPECIAL CONSIDERATIONS

Memory used for the incoming request buffer belongs to ATP for the life of the call.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

To execute the PGetRequest function from assembly language, call the _control trap
macro with a value of getRequest in the csCode field of the parameter block. To
execute this function from assembly language, you must also specify the .ATP driver
reference number.

noErr
badATPSkt

0
-1099

No error
Bad responding socket

For information on opening a socket that you can set up to receive requests, use the
POpenATPSkt function, described on page 6-30.

Responding to Requests

After you receive and process a request, you can call the PSendResponse function to
send the response data to the requesting socket. If you need to send additional data, you
can call the PAddResponse function after you call PSendResponse. This section
discusses the PSendResponse and PAddResponse functions.

PSendResponse

The PSendResponse function sends the response message to the requester.

FUNCTION PSendResponse (thePBPtr: ATPPBPtr; async: Boolean): OSErr;

thePBPtr

a sync

6-34 ATP Reference

A pointer to an ATP parameter block.

A Boolean that indicates whether the function should be executed
asynchronously or synchronously. Specify TRUE for asynchronous
execution.

DESCRIPTION

CHAPTER 6

Apple Talk Transaction Protocol (ATP)

Parameter block

---+ ioCompletion ProcPtr A pointer to a completion routine.
f- ioResult
---+ userData
---+ csCode
---+ atpsocket
---+ atpFlags
---+ addrBlock
---+ bdsPointer
---+ numOfBuffs
---+ bdsSize
---+ transiD

Field descriptions

userData

atpSocket

atpFlags

addrBlock

bdsPointer

numOfBuffs

bdsSize

transiD

OS Err The function result.
Longint Four bytes of user data.
Integer Always sendResponse for this function.
Byte The socket number.
Byte The control information.
AddrBlock The destination socket address.
Ptr A pointer to the response BDS.
Byte The number of response packets to be sent.
Byte The BDS size in elements.
Integer The transaction ID.

Four bytes of user data that are sent in the header of the message. If
the response was part of an exactly-once transaction, this field
contains the user bytes from the TRel packet.

The number of the socket that is sending the response.

A control information field whose bits, numbered 0-7, are used
as flags.

To signal that this packet is the last packet in the transaction's
response message when the number of responses is less than
expected, set the end-of-message (atpEOMvalue) bit (bit 4).

ATP sets the send-transmission-status (atpSTSvalue) bit (bit 3) to
force the requester to retransmit a request immediately, when this
is necessary.

To direct ATP to use DDP's checksum feature, set the send checksum
(atpSendChkvalue) bit (bit 0) of this flag.

The Apple Talk internet socket address of the socket to which the
response is to be sent.

A pointer to the response buffer data structure (BDS) that contains
the response data.

The number of response packets to be sent.

The number of elements in the buffer data structure (BDS).

The transaction ID of the request for which this response is meant.

You call PSendResponse when you receive a request, and after you have created a
response message. The PSendResponse function sends the data to the socket whose
address you specify; this is the address of the requester socket. If you cannot or do not
want to send the entire response at one time, you can call PSendResponse to send the
first part of it, then call PAddResponse later to send the remainder of the response.

To signal the requester socket that you are sending fewer response packets than it
expe~ts to receive, you must set the end-of-message flag (bit 4) of the atpFlags
parameter.

ATP Reference 6-35

CHAPTER 6

Apple Talk Transaction Protocol (ATP)

For each call to the PSendResponse function that is part of an exactly-once (XO)
transaction, ATP maintains a timer, called the release timer. If the timer expires before
the transaction is completed, that is, before the socket receives the transaction release
packet, ATP completes the PSendResponse function. Before Apple Talk Phase 2, the
release timer was always set to 30 seconds. The PSendRequest or the PNSendRequest
function can set the release timer for the responder to a different value. For more
information about sending a response, see "Responding to Requests" beginning on
page 6-16.

SPECIAL CONSIDERATIONS

During exactly-once transactions, PSendResponse doesn't complete until either a TRel
packet is received from the socket that made the request or the retry count is exceeded.

ASSEMBLY-LANGUN;iE INFORMATION

RESULT CODES

SEE ALSO

To execute the PSendResponse function from assembly language, call the_ Control
trap macro with a value of sendResponse in the csCode field of the parameter block.
To execute this function from assembly language, you must also specify the .ATP driver
reference number.

noErr
badATPSkt
badBuffNum
noRelErr
noDataArea

0
-1099
-1100
-1101
-1104

No error
Bad responding socket
Sequence number out of range
No release received
Too many outstanding ATP calls

See the chapter "Introduction to Apple Talk" in this book for a description of the
Apple Talk internet socket address structure.

For a description of the possible release timer values that PSendRequest or
PNSenqRequest can set, see either the PSendRequest function on page 6-24
or the PNSendRequest function on page 6-27.

PAddResponse

6-36

The PAddResponse function sends an additional response packet to a socket that
has already been sent the first part of the response message through the
PSendResponse function.

FUNCTION PAddResponse (thePBPtr: ATPPBPtr; async: Boolean): OSErr;

ATP Reference

DESCRIPTION

CHAPTER 6

Apple Talk Transaction Protocol (ATP)

thePBPtr A pointer to an ATP parameter block.

a sync A Boolean that indicates whether the function should be executed
asynchronously or synchronously. Specify TRUE for asynchronous
execution.

Parameter block

~ ioCompletion ProcPtr A pointer to a completion routine.
~ ioResult
~ userData
~ csCode
~ atpSocket
~ atpFlags
~ addrBlock
~ reqLength
~ reqPointer
~ rspNum
~ transiD

Field descriptions

userData

atpSocket

atpFlags

addrBlock

reqLength

reqPointer

rspNum
reqTID

OSErr The function result.
Longint Four bytes of user data.
Integer Always addResponse for this function.
Byte The source socket number.
Byte Theconrrolinfonnation.
AddrBlock The destination socket address.
Integer The size in bytes of the response data.
Ptr A pointer to the response data.
Byte The sequence number.
Integer The rransaction ID.

Four bytes of user data that are sent in the header of the message.
You can use these bytes for any purpose that you wish.

The number of the socket that is used to send the additional
response.

A conrrol information field whose bits, numbered 0-7, are used
as flags. ·

To signal that this packet is the last packet in the rransaction' s
response message when the number of responses is less than
expected, set the end-of-message (atpEOMvalue) bit (bit4).

ATP sets the send-rransmission-status (atpSTSvalue) bit (bit 3) to
force the requester to rerransmit a request immediately, when this
is necessary.

To direct ATP to use DDP's checksum feature, set the send
checksum (atpSendChkvalue) bit (bit 0) of $is flag.

The number of the socket to which the additional response packet is
to be sent.

The size in bytes of the response data to be sent.

A pointer to the response data to be sent.

The sequence number of the response, ii1 the range of 0 to 7.
The rransac~on ID of the request for which this response is meant.

The PAddResponse function sends an additional response packet, following the initial
response sent in return to a PSendResponse request message. You can send multiple
additional response packets, one at a time, up to a total of eight packets including the
initial response packets sent in the PSendResponse function.

ATP Reference 6-37

CHAPTER 6

Apple Talk Transaction Protocol (ATP)

You cannot issue a PAddResponse call without having first called PSendResponse.
You must provide a pointer to the buffer containing the data to be sent and specify the
amount of data. Each packet can contain up to 578 bytes of data. You also must specify
the sequence number of the response.

SPECIAL CONSIDERATIONS

If the transaction is part of an exactly-once transaction, you must allocate nonrelocatable
memory for the buffer that you use for the response data, and you must not alter the
contents of this buffer until the corresponding PSendRequest function has completed
execution.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

To execute the PAddResponse function from assembly language, call the _control
trap macro with a value of addResponse in the csCode field of the parameter block.
To execute this function from assembly language, you must also specify the .ATP driver
reference number.

noErr
badATPSkt
badBuffNum
noSendResp
noDataArea

0
-1099
-1100
-1103
-1104

No error
Bad responding socket
Sequence number out of range
PAddResponse issued before PSendResponse
Too many outstanding ATP calls

Canceling Pending ATP FWlctions

This section describes the functions that you use to cancel pending ATP functions.
It describes the PKillSendReq function that you use to cancel a PSendRequest
or PNSendRequest function, the PRelTCB function that you use to cancel a
PSendRequest function, the PKillGetReq function that you use to cancel a
PGetRequest function, the ATPKillAllGetReq function that you use to cancel
all pending PGetRequest functions, and the PRelRspCB function that you use to
cancel a PSendResponse call that specifies an exactly-once transaction.

PKillSendReq

6-38

The PKillSendReq function cancels the pending PSendRequest or PNSendRequest
functions whose queue element pointer you specify.

FUNCTION PKillSendReq (thePBPtr: ATPPBPtr; async: Boolean): OSErr;

ATP Reference

DESCRIPTION

CHAPTER 6

Apple Talk Transaction Protocol (ATP)

thePBPtr A pointer to an ATP parameter block.

a sync A Boolean that indicates whether the function should be executed
asynchronously or synchronously. Specify TRUE for asynchronous
execution.

Parameter block

ioCompletion
ioResult
csCode
aKillQEl

ProcPtr
OSErr
Integer
Ptr

A pointer to the completion routine.
The function result.
Always killSendReq for this function.
A pointer to queue element of function
to be removed.

Field descriptions

aKillQEl A pointer to the queue element of the pending function that is to be
canceled. This is the pointer to the parameter block that you passed
to the send request function when you issued the function.

To cancel a specific pending PSendRequest or PNSendRequest function, you specify
the pointer to the queue element for the function in the aKillQEl field of the parameter
block for the PKillSendReq function, then call the function. If the function has
already completed execution or if it is not in the ATP queue for any other reason,
PKillSendReq returns a message (cbNotFound} indicating that it could not find the
parameter block.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

To execute the PKillSendReq function from assembly language, call the _Control
trap macro with a value of killSendReq in the csCode field of the parameter block. To
execute this function from assembly language, you must also specify the .ATP driver
reference number.

noErr
cbNotFound

0
-1102

No error
The aKillQEl parameter does not point to a
PSendRequest or PNSendRequest queue element

To send requests, use the PSendRequest function, described on page 6-24, and the
PNSendRequest function, described on page 6-27.

ATP Reference 6-39

PRelTCB

DESCRIPTION

CHAPTER 6

Apple Talk Transaction Protocol (ATP)

The PRelTCB function cancels the pending PSendRequest function that you specify.

FUNCTION PRelTCB (thePBPtr: ATPPBPtr: async: Boolean): OSErr;

thePBPtr A pointer to an ATP parameter block.

async A Boolean that indicates whether the function should be executed
asynchronously or synchronously. Specify TRUE for asynchronous
execution.

Parameter block

ioCompletion
ioResult
csCode
addrBlock
transiD

ProcPtr
OSErr
Integer
AddrBlock
Integer

A pointer to a completion routine.
The function result.
Always rel TCB for this function.
The destination socket address.
The transaction ID of the request
to be canceled.

Field descriptions

addrBlock The Apple Talk internet address of the destination socket for which
the PSendRequest function that is to be canceled was meant.

transiD The transaction ID of the PSendRequest function to be canceled.
You can get the transaction ID from the reqTID field of the
PSendRequest parameter block queue entry.

The PRelTCB function releases the queued parameter block for the PSendRequest
function whose transaction ID you specify. The PRelTCB function returns a function
result of reqAborted for the canceled PSendRequest function.

SPECIAL CONSIDERATIONS

You cannot use this function to cancel a send request that you made using the
PNSendRequest function.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

To execute the PRel TCB function from assembly language, call the_ Control trap
macro with a value of rel TCB in the csCode field of the parameter block. To
execute this function from assembly language, you must also specify the .ATP
driver reference number.

noErr
cbNotFound
noDataArea

0
-1102
-1104

No error
The ATP control block was not found
Too many outstanding ATP functions

6-40 ATP Reference

CHAPTER 6

Apple Talk Transaction Protocol (ATP)

PKillGetReq

DESCRIPTION

The PKillGetReq function cancels the pending PGetRequest function that
you specify.

FUNCTION PKillGetReq (thePBPtr: ATPPBPtr; async: Boolean): OSErr;

thePBPtr A pointer to an ATP parameter block.

a sync A Boolean that indicates whether the function should be executed
asynchronously or synchronously. Specify TRUE for asynchronous
execution.

Parameter block

ioCompletion
ioResult
csCode
aKillQEl

ProcPtr
OSErr
Integer
Pointer

A pointer to a completion routine.
The function result.
Always killGetReq for this function.
A pointer to the queue element

Field descriptions
aKillQEl A pointer to the queue element of the pending call that is to

be canceled.

The PKillGetReq function lets you cancel a specific outstanding PGetRequest
function without having to cancel all pending get requests or having to close the
socket to do this; closing the socket cancels all outstanding functions on that socket.

To cancel a specific pending PGetRequest function, you specify the pointer to the
queue element for the function in the aKillQEl field of the parameter block for the
PKillGetReq function. The queue element pointer is the pointer to the parameter block
of the PGetRequest function to be canceled. H the function has already completed
execution or if it is not in the ATP queue for any other reason, PKillGetReq returns a
message (cbNotFound) indicating that it could not find the parameter block.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

To execute the PKillGetReq function from assembly language, call the _control trap
macro with a value of killGetReq in the csCode field of the parameter block.
To execute this function from assembly language, you must also specify the .ATP driver
reference number.

noErr
cbNotFound

ATP Reference

0
-1102

No error
The aKilllQEl parameter does not point to a
PGetReques t queue element

6-41

CHAPTER 6

Apple Talk Transaction Protocol (ATP)

ATPKillAllGetReq

DESCRIPTION

The ATPKillAllGetReq function cancels all pending calls to the PGetRequest
function for a specific socket.

FUNCTION ATPKillAllGetReq (thePBPtr: ATPPBPtr;
async: Boolean): OSErr;

thePBPtr A pointer to an ATP parameter block.

a sync A Boolean that indicates whether the function should be executed
asynchronously or synchronously. Specify TRUE for asynchronous
execution.

Parameter block

ioCompletion
ioResult
csCode
atpSocket

ProcPtr
OS Err
Integer
Byte

A pointer to the completion routine.
The function result.
Always killAllGetReq for this function.
The socket number whose pending
PGetRequest functions are to be canceled.

Field descriptions

atpSocket The socket whose pending PGetRequest functions are to
be canceled.

The ATPKillAllGetReq function cancels all pending PGetRequest functions issued
on a specific socket without closing the socket. For each function executed asynchro­
nously, ATPKillAllGetReq also calls the completion routine with the value
reqAborted (-1105) in the DO register. You should call the ATPKillAllGetReq
function before closing a socket.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

To execute the ATPKillAllGetReq function from assembly language, call the
_Control trap macro with a value of killAllGetReq in the csCode field of the
parameter block. To execute this function from assembly language, you must also
specify the .ATP driver reference number.

noErr
cbNotFound

0
-1102

No error
Control block not found; no pending asynchronous calls

6-42 ATP Reference

PRelRspCB

DESCRIPTION

CHAPTER 6

Apple Talk Transaction Protocol (ATP)

The PRelRspCB function cancels a PSendResponse function that is an exactly-once
transaction.

FUNCTION PRelRspCB (thePBPtr: ATPPBPtr; async: Boolean): OSErr;

thePBPtr A pointer to an ATP parameter block.

a sync A Boolean that indicates whether the function should be executed
asynchronously or synchronously. Specify TRUE for asynchronous
execution.

Parameter block

ioCompletion
ioResult
csCode
atpSocket

ProcPtr
OS Err
Integer
Byte

A pointer to the completion routine.
The function result.
Always relRspCB for this function.
The number of the socket on which the
request was received.

addrBlock AddrBlock The internet socket address of the source
of the request.

transiD

Field descriptions

atpSocket

addrBlock

transiD

Byte The transaction ID of the request with
which the PSendResponse function to
be canceled is associated.

The number of the socket on which the request was received and
from which the PSendResponse function that is to be canceled
was sent.

The internet socket address of the application that issued
the request.

The transaction ID of the PSendResponse call to be canceled.
You can get the transaction ID from the reqTID field of the
PSendResponse parameter block queue entry.

The PRelRspCB function releases the queued parameter block for the exactly-once
transaction PSendResponse function without waiting for the release timer to expire
or for a TRel packet to be received; PRelRspCB returns a function result of noErr
for the canceled PSendResponse call.

If you call PRelRspCB to cancel a transaction that is not an exactly-once service,
RelRspCB returns a function result of cbNotFound for the PSendResponse call.

ATP Reference 6-43

CHAPTER 6

Apple Talk Transaction Protocol (ATP)

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

To execute the PRelRspCB function from assembly language, call the_ Control trap
macro with a value of relRspCB in the csCode field of the parameter block. To
execute this function from assembly language, you must also specify the .ATP driver
reference number.

no Err
cbNotFound

0
-1102

No error
Control block not found; no pending asynchronous calls

Building a Buffer Data Structure

BuildBDS

DESCRIPTION

You need to provide a buffer data structure (BDS) to hold data that comprises multiple
response packets whether you are sending the response data or receiving it. This section
describes a utility, BuildBDS, that ATP provides that allows you to create a BDS to be
used for this purpose.

From the buffer that you supply, the BuildBDS function creates a buffer data structure
(BDS) to be used to ho~d data for ATP functions that send and receive response data.

FUNCTION BuildBDS (buffPtr: Ptr; bdsPtr: Ptr;

buffSize: Integer): Integer;

buffPtr

buff Size

A pointer to a data buffer.

The length in bytes of the buffer qata structure.

The PSendResponse, PSendRequest, and PNSendRequest functions require a buffer
data structure of a specific format to be used to hold the response data. You can use the
BuildBDS function to create this data structure, or you can build it yourself from Pascal.

The BuildBDS function creates a buffer data structure consisting of an array of
elements-one for each response packet-to be used to hold response data. You pass
this function a pointer to the memory to be used for this buffer and the size in bytes
Qf the memory. You should allocate enough memory to hold the response data that
you are either sending or receiving. '!3ecause an entire response message cannot exceed
4624 bytes, the amount of Q.lemory that you allocate for this data structure should not
exceed this size.

6-44 ATP Reference

RESULT CODES

SEE ALSO

CHAPTER 6

Apple Talk Transaction Protocol (ATP)

BuildBDS creates up to eight elements for a buffer data structure. If you provide the
maximum space of 4624 bytes, BuildBDS returns eight elements; if the response
message is shorter and you specify fewer bytes, BuildBDS returns the equivalent
number of elements. BuildBDS returns as a function result the number of buffer data
structure elements that it creates. For more information about the BDS data structure,
see "The Buffer Data Structtire" on page 6-20.

noErr
paramErr

0
-50

No error
Version number is too high

See "PSendResponse" on page 6-34, "PSendRequest" on page 6-24, and
"PNSendRequest" on page 6-27 for more information about the functions that
require a buffer data structure.

ATP Reference 6-45

CHAPTER 6

Apple Talk Transaction Protocol (ATP)

Summary of ATP

Pascal Summary

Constants

CONST
{csCodes}
nSendRequest
relRspCB
closeATPSkt
addResponse
sendResponse
getRequest
openATPSkt
sendRequest
relTCB
killGetReq
killSendReq
killAllGetReq

{ATP flags}
atpXOvalue
atpEOMvalue
atpSTSvalue
atpTIDValidvalue
atpSendChkvalue

Data Types

The Buffer Data Structure

TYPE BDSElement =
RECORD

248;

249;

= 250;

= 251;

= 252;

= 253;

254;

= 255;

= 256;

= 257;

= 258;

= 259;

32;

= 16;

= 8;

= 2;
1;

buffSize:
buffPtr:
dataSize:
userBytes:

Integer;
Ptr;
Integer;
Longint;

END;

6-46 Summary of ATP

{send request using a specific socket}
{release RspCB}
{close ATP socket}
{add response}
{send response}
{get request}
{open ATP socket}
{send request}
{release TCB}
{kill getRequest}
{kill sendRequest}
{kill all getRequests for a socket}

{ATP exactly-once bit}
{ATP end-of-message bit}
{ATP send-transmission-status bit}
{ATP trans. ID valid bit}
{ATP send checksum bit}

CHAPTER 6

Apple Talk Transaction Protocol (ATP)

BDSType = ARRAY[0 •• 7] OF BDSElement;
BDSPtr = ABDSType;
BitMapType =PACKED ARRAY[0 •• 7] OF Boolean;

The Address Block Record

TYPE AddrBlock =
PACKED RECORD

aNet:
aNode:
aSocket:

END;

Integer;
Byte;
Byte;

The ATP Parameter Block

TYPE ATPParamBlock =
PACKED RECORD

qLink:
qType:
ioTrap:
ioCmdAddr:
ioCompletion:
ioResult:
userData:
reqTID:
ioRefNum:
csCode:

QElemPtr;
Integer;
Integer;
Ptr;
ProcPtr;
OSErr;
Longint;
Integer;
Integer;
Integer;

atpSocket: Byte;
CASE MPPParmType OF

SendRequestParm,
SendResponseParm,
GetRequestParm,
AddResponseParm,
KillSendReqParm:

(atpFlags:
addrBlock:

reqLength:
reqPointer:
bdsPointer:

CASE MPPParmType OF
SendRequestParm:

(numOfBuffs:

Summary of ATP

{network number}
{node ID}
{socket number}

{next queue entry}
{queue type}
{routine trap}
{routine address}
{completion routine}
{result code}
{ATP user bytes}
{request transaction ID}
{driver reference number}
{call command code }
{ automatically set}
{currBitMap or socket number}

Byte; {control information}
AddrBlock;

{source/dest. socket address}
Integer; {request/response length}
Ptr; {ptr to request/response data}
Ptr; {ptr to response BDS}

Byte; {number of responses expected}

6-47

CHAPTER 6

Apple Talk Transaction Protocol (ATP)

timeOutVal:
numOfResps:

retryCount:
intBuff:
TRelTime:

SendResponseParm:

Byte;
Byte;

Byte;

{timeout interval}
{number of responses }
{ actually received}
{number of retries}

Integer; {used internally for PNSendRequest}
Byte); {TRelease time for extended}

{ send request}

(fillerO: Byte; {numOfBuffs}

END;

ATPPBPtr

Routines

bdsSize:
transiD:

GetRequestParm:
(bitMap:
fillerl:

AddResponseParm:
(rspNum:
filler2:

KillSendReqParm:
(aKillQEl:

"ATPParamBlock;

Sending an ATP Request

FUNCTION PSendRequest

FUNCTION PNSendRequest

Byte; {number of BDS elements}
Integer);{transaction ID}

Byte;
Byte);

Byte;
Byte);

Ptr));

{bitmap}

{sequence number}

{pointer to queue element to cancel}

(thePBPtr: ATPPBPt; async: Boolean): OSErr;

(thePBPtr: ATPPBPtr; async: Boolean): OSErr;

Opening and Closing an ATP Socket

FUNCTION POpenATPSkt

FUNCTION PCloseATPSkt

(thePBptr: ATPPBPtr; async: Boolean): OSErr;

(thePBPtr: ATPPBPtr; async: Boolean): OSErr;

Setting Up a Socket to Listen for Requests

FUNCTION PGetRequest

Responding to Requests

FUNCTION PSendResponse

FUNCTION PAddResponse

6-48 Summary of ATP

(thePBPtr: ATPPBPtr; async: Boolean): OSErr;

(thePBPtr: ATPPBPtr; async: Boolean): OSErr;

(thePBPtr: ATPPBPtr; async: Boolean): OSErr;

CHAPTER 6

Apple Talk Transaction Protocol (ATP)

Canceling Pending ATP Functions

FUNCTION PKillSendReq (thePBPtr: ATPPBPtr; async: Boolean): OSErr;

FUNCTION PRelTCB (thePBPtr: ATPPBPtr; async: Boolean): OSErr;

FUNCTION PKillGetReq (thePBPtr: ATPPBPtr; async: Boolean): OSErr;

FUNCTION ATPKillAllGetReq (thePBPtr: ATPPBPtr; async: Boolean): OSErr;

FUNCTION PRelRspCB (thePBPtr: ATPPBPtr; async: Boolean): OSErr;

Building a Buffer Data Structure

FUNCTION BuildBDS (buffPtr: Ptr; bdsPtr: Ptr; buffSize: Integer):
Integer;

C Summary

Constants

/*ATP parameter constants*/
#define ATPioCompletion ATP.ioCompletion
#define ATPioResult ATP.ioResult
#define ATPuserData ATP.userData
#define ATPreqTID ATP.reqTID
#define ATPioRefNum ATP.ioRefNum
#define ATPcsCode ATP.csCode
#define ATPatpSocket ATP.atpSocket
#define ATPatpFlags ATP.atpFlags
#define ATPaddrBlock ATP.addrBlock
#define ATPreqLength ATP.reqLength
#define ATPreqPointer ATP.reqPointer
#define ATPbdsPointer ATP.bdsPointer
#define ATPtimeOutVal SREQ.timeOutVal
#define ATPnumOfResps SREQ.numOfResps
#define ATPretryCount SREQ.retryCount
#define ATPnumOfBuffs OTHl.uO.numOfBuffs
#define ATPbitMap OTHl.uO.bitMap
#define ATPrspNum OTHl.uO.rspNum
#define ATPbdsSize OTH2.bdsSize
#define ATPtransiD OTH2.transiD
#define ATPaKillQEl KILL.aKillQEl

Summary of ATP 6-49

•

CHAPTER 6

Apple Talk Transaction Protocol (ATP)

/*csCodes*/
enum {

nSendRequest

relRspCB
closeATPSkt
addResponse
sendResponse
getRequest
openATPSkt
sendRequest
relTCB
killGetReq
killSendReq
killAllGetReq

/*ATP flags*/
enum {

atpXOvalue
atpEOMvalue
atpSTSvalue

atpTIDValidvalue
atpSendChkvalue

Data Types

The Buffer Data Structure

=

=

=

=

=

=

=

=

=

=

=

=

struct
short
Ptr
short
long

BDSElement {
buffSize;
buffPtr;
dataSize;
userBytes;

};

248,

249,
250,
251,
252,
253,
254,
255,
256,
257,
258,
259};

= 32,
= 16,

8,

= 2,
= 1};

typedef struct BDSElement BDSElement;

typedef BDSElement BDSType[8];
typedef BDSElement *BDSPtr;
typedef char BitMapType;

6-50 Summary of ATP

/*csCodes*/
/*send request using a specific */
I* socket*/
/*release RspCB*/
/*close ATP socket*/
/*add response*/
/*send response*/
/*get request*/
/*open ATP socket*/
/*send request*/
/*release TCB*/
/*kill getRequest*/
/*kill sendRequest*/
/*kill all getRequests for */
I* a socket*/

/*ATP exactly-once bit*/
/*ATP end-of-message bit*/
/*ATP send-transmission-status *I
I* bit*/
/*ATP trans. ID valid bit*/
/*ATP send checksum bit*/

CHAPTER 6

Apple Talk Transaction Protocol (ATP)

The Address Block Record

struct AddrBlock {
short aNet; ·

aNode;
aSocket;

};

unsigned char
unsigned char

typedef struct AddrBlock AddrBlock;

The ATP Parameter Block

#define MPPATPHeader \
QElem *qLink;
short qType;
short
Ptr
ProcPtr
OSErr
long
short
short
short

ioTrap;
ioCmdAddr;
ioCompletion;
ioResult;
userData;
reqTID;
ioRefNum;
csCode;

typedef struct {
MPPATPHeader

}MPPparms;

#define MOREATPHeader \
char

char
AddrBlock
short
Ptr
Ptr

atpSocket;

atpFlags;
addrBlock;
reqLength;
reqPointer;
bdsPointer;

typedef struct {
MPPATPHeader
MOREATPHeader

}ATPparms;

Summary of ATP

/*next queue entry*/\
/*queue type*/\
/*routine trap*/\
/*routine address*/\
/*completion routine*/\
/*result code*/\
/*command result (ATP user bytes)*/\
/*request transaction ID*/\
/*driver reference number*/\
/*call command code*/

/*currbitmap for requests or ATP */\
I* socket number*/\
/*control information*/\
/*source/dest. socket address*/\
/*request/response length*/\
/*pointer to request/response data*/\
/*pointer to response BDS*/

6-51

CHAPTER 6

Apple Talk Transaction Protocol (ATP)

typedef struct {
MPPATPHeader
MOREATPHeader
char filler;
char timeOutVal;
char numOfResps;

char retryCount;
short intBuff;
char TRelTime;

}SendReqparms;

typedef struct {
MPPATPHeader
MOREATPHeader

union {
char
char
char

bitMap;
numOfBuffs;
rspNum;

} uO;
}ATPmiscl;

typedef struct {
MPPA'l'PHeader
MOREATPHeader
char
char
short

}ATPmisc2;

typedef struct {
MPPATPHeader
MOREATPHeader
Ptr

}Killparms;

filler;
bdsSize;
transiD;

aKillQEl;

union ATPParamBlock {

} ;

ATPparms ATP;
SendReqparms SREQ;
ATPmiscl
ATPmisc2
Killparms

OTHl;
OTH2;
KILL;

6-52 Summary of ATP

/*numOfBuffs*/
/*timeout interval*/
/*number of responses actually */
I* received*/
/*number of retries*/
/*used internally for NSendRequest*/
/*TRelease time for extended send */
I* request*/

/*bitmap received*/
/*number of responses being sent*/
/*sequence number*/

/*number of BDS elements*/
/*transaction ID*/

/*pointer to i/o queue element to */
I* cancel*/

/*general ATP parms*/
/*send request parms*/
/*miscellaneous parms*/
/*miscellaneous parms*/
/*kill request parms*/

CHAPTER 6

Apple Talk Transaction Protocol (ATP)

typedef union ATPParamBlock ATPParamBlock;
typedef ATPParamBlock *ATPPBPtr;

Routines

Sending an ATP Request

pascal OSErr PSendRequest (ATPPBPtr thePBPtr,Boolean async);

pascal OSErr PNSendRequest (ATPPBPtr thePBPtr;Boolean async);

Opening and Closing an ATP Socket

pascal OS~rr POpenATPSkt

pascal OSErr PCloseATPSkt

(ATPPBPtr thePBptr,Boolean async);
' (ATPPBPtr thePBPtr,Boolean async);

SeHing Up a Socket to Listen for Requests

pascal OSErr PGetRequest

Responding to Requests

pascal OSErr PSendResponse

pascal OSErr PAddResponse

(ATPPBPtr thePBPtr,Boolean async);

(ATPPBPtr theP~Ptr,Boolean async);

(ATPPBPtr thePBPtr,Boolean async);

Canceling Pending ATP Functions

pascal OS Err PKillSendReq (ATPPBPtr thePBPtr,Boolean async);

pascal OS Err PRelTCB (ATPPBPtr thePBPtr,Boolean async);

pascal OS Err PKillGetReq (ATPPBPtr thePBPtr,Boolean async);

pascal OS Err ATPKillAllGetReq
(ATPPBPtr thePBPtr,Boolean async);

pascal OSErr PRelRspCB (ATPPBPtr thePBPtr,Boolean async);

Building a Buffer Data Structure

pascal short BuildBDS (Ptr buffPtr,Ptr bdsPtr,short buffSize);

Summary of ATP

•

6-53

CHAPTER 6

Apple Talk Transaction Protocol (ATP)

Assembly-Language Summary

Constants

ATPHeader

atpControl EQU 0
atpBitmap EQU 1
atpRespNo EQU 1
atpTransiD EQU 2
atpUserData EQU 4
atpHdSz EQU 8

ATP Control Field

atpReqCode EQU $40
atpRspCode EQU $80
atpRelCode EQU $CO
atpXOBit EQU 5
atpEOMBit EQU 4
atpSTSBit EQU 3
flagMask EQU $3F
controlMask EQU $F8

ATP Type Code

atp EQU $3

ATPLimits

atpMaxNum EQU 8
atpMaxData EQU $242

ATP Command Codes

nSendRequest EQU 248
relRspCB EQU 249
closeATPSkt EQU 250
addResponse EQU 251
sendResponse EQU 252
getRequest EQU 253

6-54 Summary of ATP

;control field (byte)
;bitmap (requests only) (byte)
;response number (responses only) (byte)
;transaction ID (word)
;start of user data (long)
;size of ATP header

;request code after masking
;response code after masking
;release code after masking
;bit number of exactly-once bit
;bit number of end-of-message bit
;send transmission status bit number
;mask for just flags
;mask for good control bits

;ATP type code (in DDP header)

;maximum number of responses per request
;maximum data size in ATP packet

;PNSendRequest code
;release RspCB
;close ATP socket
;add response code
;send response code
;get request code

CHAPTER 6

Apple Talk Transaction Protocol (ATP)

openATPSkt EQU 254 ;open ATP socket
sendRequest EQU 255 ;send request code
relTCB EQU 256 ;release TCB
killGetReq EQU 257 ;kill GetRequest
killSendReq EQU 258 ;kill SendRequest
killAllGetReq EQU 259 ;kill all getRequests for a socket

ATPQueue Element Standard Structure

;arguments passed in the CSParam area

atpSocket
atpFlags
addrBlock
reqLength
reqPointer
bdsPointer
guArea
userData

ATPBits

sendCHK
tidValid

Data Structures

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

EQU
EQU

$1C
$10
$1E
$22
$24
$28
$2C
$12

0

1

Buffer Data Structure (BDS)

bdsBuffSz EQU 0

bdsBuffAdr EQU 2

bdsDataSz EQU 6

bdsUserData EQU 8

bdsEntrySz EQU 12

Summary of ATP

;socket number is first parameter [byte)
;flag [byte)
;start of address block
;size of request buffer [word]
;pointer to request buffer or data
;pointer to buffer data structure (BDS)
;start of general-use area
;user bytes

;bit number of send-checksum bit in flags
;bit set when TID valid in SendRequest

;send: data length
; receive: buffer length
;send: data address
; receive: buffer address
;send: used internally
; receive: data length
;send: 4 user bytes
; receive: 4 user bytes
;size of a BDS entry

6-SS

CHAPTER 6

Apple Talk Transaction Protocol (ATP)

ATP Parameter Block Common Fields

0 qLink long reserved
4 qType word reserved
6 ioTrap word reserved
8 ioCmdAddr long reserved

12 ioCompletion long address of completion routine
16 ioResult word result code
18 userData long user bytes
22 reqTID word request transaction ID
24 ioRefNum word driver reference number
26 esC ode word command code
28 atpSocket byte current bitmap or socket number

SendRequest Parameter Variant

26 csCode word command code; always sendRequest
28 currBitMap byte current bitmap
29 atpFlags byte control information
30 addrBlock long destination socket address
34 reqLength word request size in bytes
36 reqPointer long pointer to request data
40 bdsPointer long pointer to response BDS
44 numOfBuffs byte number of responses expected
45 timeOutVal byte timeout interval
46 numOfResps byte number of responses received
47 retryCount byte number of retries
50 TrelTime byte release time for extended send request

NSendRequest Parameter Variant

22 reqTID word request transaction ID
26 csCode word command code; always nSendRequest
29 atpFlags byte control information
30 addrBlock long destination socket address
34 reqLength word request size in bytes
36 reqPointer long pointer to request data
40 bdsPointer long pointer to response BDS
44 numOfBuffs byte number of responses expected
45 timeOut Val byte timeout interval
46 numOfResps byte number of responses received
47 retryCount byte number of retries
50 TrelTime byte release time for extended send request

OpenATPSkt Parameter Variant

26 csCode word command code; always openATPSkt
30 addrBlock long socket request specification

6-56 Summary of ATP

CHAPTER 6

Apple Talk Transaction Protocol (ATP)

CloseATPSkt Parameter Variant

26 csCode word

GetRequest Parameter Variant

22 reqTID word
26 csCode word
29 atpFlags byte
30 addrBlock long
34 reqLength word
36 reqPointer long
44 bitMap byte

command code; always closeATPSkt

request transaction ID
command code; always getRequest
control information
destination socket address
request size in bytes
pointer to request data
current bitmap

SendResponse Parameter Variant

26 csCode word command code; always sendResponse
29 atpFlags byte control information
30 addrBlock long destination socket address
40 bdsPointer long pointer to response BDS
44 numOfBuffs byte number of responses expected
45 bdsSize byte BDS size in elements
46 transiD word transaction ID

AddResponse Parameter Variant

26 csCode word command code; always addResponse
29 atpFlags byte control information
30 addrBlock long destination socket address
34 reqLength word response size in bytes
36 reqPointer long pointer to response data
44 rspNum byte sequence number
46 transiD word transaction ID

KillSendReq Parameter Variant

26 cscode word
44 aKillQEl long

RelTCB Parameter Variant

26
30
46

csCode
addrBlock
transiD

word
long
word

KillGetReq Parameter Variant

26 csCode word
44 aKillQEl long

Summary of ATP

command code; always killSendReq
pointer to queue element of function to be removed

command code; always relTCB
destination socket address of request
transaction ID of request to be canceled

command code; always killGetReq
pointer to queue element of function to be removed

6-57

CHAPTER 6

Apple Talk Transaction Protocol (ATP)

KillAllGetReq Parameter Variant

26 csCode word command code; always killAllGetReq

RelRspCB Parameter Variant

26 csCode word command code; always relRspCB
30 addrBlock long
46 transiD word

internet socket address of the source of the request
transaction ID of request with which the PSendResponse
function to be canceled is associated

Result Codes

noErr
paramErr
reqFailed
tooManyReqs
tooManySkts
badATPSkt
badBuffNum
noRelErr
cbNotFound

noSendResp
noDataArea
reqAborted

0
-50

-1096
-1097
-1098
-1099
-1100
-1101
-1102

-1103
-1104
-1105

No error
Version number is too high
Retry count exceeded
Too many concurrent requests
Too many responding sockets
Bad responding socket
Sequence number out of range
No release received
The aKillQEl parameter does not point to a PSendRequest or
PNSendRequest queue element
PAddResponse issued before PSendResponse
Too many outstanding ATP calls
Request canceled

6-58 Summary of ATP

CHAPTER 7

Datagram Delivery Protocol
(DDP)

Contents

AboutDDP 7-3
About Sockets and Socket Listeners 7-4
Assigning Socket Numbers 7-6
DDP Client Protocol Types 7-7
Obtaining Data From the Network 7-8

Using DDP 7-8
Sending and Receiving Data: An Overview 7-9

Opening a Socket 7-9
Sending Data 7-10
Receiving Data 7-10

Creating a DDP Write-Data Structure 7-12
Using Registers and Packet Headers 7-13

How the .MPP Driver Calls Your Socket Listener 7-13
The DDP Packet and Frame Headers 7-14
The MPW Equates 7-16
Reading an Incoming Packet 7-17
Using Checksums 7-19

A Sample Socket Listener 7-20
Socket Listener Queues and Buffers 7-20
Setting Up the Socket Listener 7-22
Initializing the Socket Listener 7-24
Processing a Packet 7-25
Testing for Available Packets 7-31

Measuring Packet-Delivery Performance 7-32

Contents 7-1

7-2

CHAPTER 7

DDP Reference
DataSbnJcbures

7-34
7-34

The Write-Data Structure 7-35
The Address Block Record 7-35
MPP Parameter Block 7-36

Routines 7-37
Opening and Closing DDP Sockets 7-37
Sending DDP Datagrams 7-40

Summary of DDP 7-44
PascalSur.nrnary 7-44

Constants 7-44
Data Types 7-44
Routines 7-45

C Summary 7-46
Constants 7-46
Data Types 7-46
Routines 7-47

Assembly-Language Sur.nrnary 7-48
Constants 7-48
Data SbnJcbures 7-49

Result Codes 7-50

Contents

CHAPTER 7

Datagram Delivery Protocol (DDP)

This chapter describes how you can use the Datagram Delivery Protocol (DDP) to send
data to and receive it from another socket across an Apple Talk internet. To use DDP, you
send and receive data as discrete packets, each packet carrying its own addressing
information. DDP does not allow you to set up a connection between two sockets, nor
does DDP ensure that data is delivered error free as do some of the Apple Talk protocols
that are built on top of it.

You should use DDP if your application does not require reliable delivery of data and
you do not want to incur the additional processing associated with the use of a protocol
that entails setting up and breaking down a connection. Because it is connectionless
and does not include reliability services, DDP offers faster performance than do the
higher-level protocols that add these services. Applications such as diagnostic tools that
retransmit packets at regular intervals to estimate averages or games that can tolerate
packet loss are good candidates for the use of DDP.

A series of DDP packets transmitted over an Apple Talk internet from one node to
another may traverse a single high-speed EtherTalk network or they may wind across
multiple intermediate data links such as LocalTalk or Token Talk, which are connected
by routers. During the course of this process, some packet loss can occur, for example,
as a result of collisions. If you do not plan on implementing recovery from packet loss
in your application, but your application requires it, you should consider using an
AppleTalk transport protocol, such as the AppleTalk Data Stream Protocol (ADSP) or
the Apple Talk Transaction Protocol (ATP); these protocols protect against packet loss
and ensure reliability by using positive acknowledgment with packet retransmission
mechanisms.

This chapter describes how to

• open and close sockets for sending and receiving DDP packets

• prepare the data and addressing information for each packet that you want to send

• write a socket listener that receives packets addressed to the DDP socket associated
with your application

• measure packet-delivery performance

This chapter includes a sample socket listener that you can 4se as a model for your own
socket listener or modify to fit your application's requirements.

For an overview of PDP ~d how it fits within the Apple Talk protocol stack, read the
chapter ~~Introduction to Apple Talk" in this book, which also introduces and defines
some of the terminology used in this chapter.

For an explanation of the DDP specification, see Inside AppleTalk, second eqition.

AboutDDP

The protocol implementations at the physical and data-link layers of the Apple Talk
protocol stack provide node-to-node delivery of data on the internet. DDP is a client
of the link-access protocol-whether LLAP, ELAP, TLAP, or FDDILAP-and it uses the
node-to-node delivery services provided by the data link to send and receive data. DDP
is responsible for delivering data from socket to socket over an Apple Talk internet.

About DDP 7-3

7-4

CHAPTER 7

Datagram Delivery Protocol (DDP)

DDP is central to the process of sending and receiving data across an Apple Talk internet.
Regardless of which data link is being used and which (if any) higher-level protocols are
processing data, all Apple Talk data is carried in the form of DDP packets known as
datagrams. (This chapter uses the terms datagram and DDP packet interchangeably.) A
datagram consists of a header followed by data.

DDP lets you send and receive data a packet at a time. If you use DDP, you must address
each data packet to the socket for which it is intended. A socket is a piece of software
that serves as an addressable entity in a networked node. Sockets are numbered, and
each application that uses DDP to transfer data is associated with a unique socket. You
cannot open and maintain a session between two sockets using DDP, and for this reason,
DDP is called a connectionless protocol.

To use DDP, you must provide a socket listener and a routine that reads packets from
the socket listener code after it receives them. A socket listener is a process that receives
packets addressed to the DDP socket associated with your application. Because the
driver that implements DDP, the .MPP driver, uses registers not accessible from higher­
level languages such as Pascal to pass information to your socket listener, you must
write the socket listener code in assembly language.

DDP is said to provide a best-effort socket-to-socket delivery of datagrams over
the internet.

• Socket-to-socket delivery means that when the data link delivers a packet to a node,
the DDP implementation in that node determines the socket for which the packet
is intended and calls the socket listener for that socket.

• Best-effort delivery means that DDP attempts to deliver any datagram that has a valid
address to an open socket~ as long as the length of the datagram received is the same
as the length indicated by the header, the data is not longer than 586 bytes, and the
datagram does not include an invalid checksum. DDP has no provision for requesting
the sender to retransmit a lost or damaged datagram.

Note
You can send DDP packets to another socket in your own node if you
have enabled the intranode delivery feature of Apple Talk. By default,
intranode delivery is disabled; to turn it on, you use the PSetSelfSend
function, which is described in the chapter "Apple Talk Utilities" in
this book. •

About Sockets and Socket Listeners
Every application that uses DDP to transfer data must send or receive that data through
a socket. The use of sockets allows DDP to determine for which application a packet
~s intended. Each node supports up. to 254 sockets, and each socket is identified by an
8-bit number that combines with the network number and the node ID to form the
internet socket address of the application. When an application or process calls DDP to
open a socket, DDP associates the number of that socket with the application, making
the application distinct from other applications on the same node. An application
that is associated with a specific socket through DDP is the client of that socket, or a
socket client.

About DDP

CHAPTER 7

Datagram Delivery Protocol (DDP)

The use of sockets allows multiple processes or applications that run on a single node
connected toAppleTalk to be open at the same time. In Figure 7-1, a printer server client
application and a file server client application are open on the same node at the same
time. Each application is associated with a unique socket, and packets for that applica­
tion are addressed to that socket number.

Figure7-1

D -
User

computer

Two applications running on the same node, each with its own socket

./~S~et ~9.1
. .·

.·File server
.:· •• ·client application

: .
~

.___.
@ Socket202

I

Printer server
client application

> D -
y "'

I
I

>(I
r...=l,.

r-

Applications exchange data with each other through their sockets. A socket client can
send and receive datagrams only through its associated socket. Moreover, every
socket-client application that uses DDP directly to transfer data must have associated
with it a socket listener that receives datagrams addressed to the socket on behalf of
that socket's client application.

A socket listener is a process that you provide as part of your client application. You must
write your socket listener in assembly language and adhere to specific requirements in
regard to the use of registers and the routines that you call to receive packets. Beyond
meeting these Apple Talk requirements, your socket listener can perform any other
functions that your socket-client application requires. See II A Sample Socket Listener"
beginning on page 7-20 for more details.

When you call DDP to open a socket, you provide a pointer to your socket listener for
that socket. DDP maintains a socket table that includes an entry for every open socket
and its socket listener. When the .MPP driver receives a packet, it does not read and
process the packet. Instead, it reads the socket number portion of the internet socket
address and then checks the socket table to determine if that socket is open. H so, the
.MPP driver calls the socket listener associated with the socket to handle reception of
the packet for the client application. The use of socket listeners helps to maximize
throughput between DDP and the link-access protocol layer by eliminating unnecessary
buffer copying.

About DDP 7-S

7-6

CHAPTER 7

Datagram Delivery Protocol (DDP)

Figure 7-2 shows a socket-client application that calls DDP to send data to another
socket. The socket-client application includes code that comprises its socket listener.
When DDP receives a packet addressed to this socket, it checks the socket table for the
entry that contains the socket number and the address of the socket listener belonging to
the application that owns the socket; then DDP calls the socket listener to receive the
packet for the application.

Figure 7·2 Sending and receiving data using DDP

DDP

Assigning Socket Numbers

Dialog with
¢:::> remote end

ofDDP

DDP maintains two classes of sockets: sockets that are assigned statically and sockets
that are assigned dynamically. There are some restrictions on which socket numbers
they use:

• Statically assigned sockets have numbers in the range of 1-127.
o Socket numbers 1-63 are reserved for use by Apple Computer, Inc.
o Socket numbers 64-127 are available for program development.

• Dynamically assigned sockets have numbers within the range of 128-254.

To use a statically assigned socket, an application must request a specific socket number.
In most cases, you should not use statically assigned sockets.

IMPORTANT

Although you can use statically assigned sockets whose numbers fall
within the range of 64-127 for program development, you must not
use a statically assigned socket number for a released product. To do
so creates the possibility of conflicts arising, for example, when two
applications that both use the same statically assigned socket are open
on the same node at the same time. Data intended for one application
could be delivered to the other application, and vice versa. A.

DDP maintains a pool of available sockets from which it selects a socket number to
assign dynamically for your use when you call DDP to open a socket and you do not
specify a number within the range of statically assigned sockets.

Figure 7-3 illustrates conceptually what happens when an application calls DDP to open
and assign a socket dynamically. In this example, DDP assigns socket number 130
to the application that requests a socket. (Socket number 129 is already assigned to
an application.)

About DDP

CHAPTER 7

Datagram Delivery Protocol (DDP)

Figure 7-3 Assigning sockets

-··· .. -·-·-·-------------~ __ _

0~nsocke;

Socket client
application

DDP
~ocke~t.a~te~ .. : · ,

[@] Socket 129

[@] Socket 130

[@]Socket 131

[@]Socket n

~Socket130____ __ >V1
Socket client
application

To let DDP choose a socket number from the pool of available sockets within the range of
dynamically assigned sockets, you specify 0 for the socket number. However, you can
choose a specific socket within that range and pass the number of that socket to DDP
to open. H that socket is available, DDP opens it, assigns it to your application, and
associates your socket listener with it. H the socket number you specify is not available,
DDP returns an error result.

DDP Client Protocol Types
Apple Talk allows for the implementation of up to 254 parallel protocols that are clients
of DDP. The DDP protocol type field, which is the last field of the DDP packet header,
specifies the type of protocol that the packet is intended for. Figure 7-6 on page 7-15
shows the 1-byte DDP protocol type field of the DDP packet header.

The socket listener for a single socket can receive packets whose protocol type fields
contain different values. It is the responsibility of your socket-client _application to define
its own protocol types. Your socket-client application can define more than one DDP
protocol type and receive packets for any of the protocol types it handles, sorting them
by reading the value of the DDP protocol type field.

For example, if you are implementing a server, you might define one protocol type
for data and another for attention messages, and have separate routines to handle
the different packet types. You fill in the DDP protocol type field when you build the
contents of a DDP packet to be sent to another socket.

For more information on how to specify a protocol type for a DDP client application
and the range of valid values for the DDP protocol type field, see Appendix C in Inside
AppleTalk, second edition. ·

About DDP 7-7

•

CHAPTER 7

Datagram Delivery Protocol (DDP)

Obtaining Data From the Network
DDP supports a number of client protocols that are built on top of it, and. DDP itself is a
client protocol of the underlying data-link protocol. DDP has its own protocol handler
that the link-access protocol calls when it receives a DDP packet. A protocol handler
is a process that receives packets for a specific protocol type much like a socket listener
receives packets for a specific socket; A DDP packet or datagram is sent from its source
socket through one or more Apple Talk networks to its destination network.

A datagram is sent across the network enclosed in a frame. The frame contains addi­
tional information that the link-access protocol requires, such as addressing information
that identifies the node and the socket number for which the frame is meant. The frame
addressing information is contained in the frame's header, which is followed by the
datagram. The frame header also identifies the protocol type of the enclosed packet. In
addition to a header, a frame also contains a trailer that follows the datagram. The frame
trailer contains a frame check sequence number that the Apple Talk hardware generates
and uses to detect transmission errors.

The link-access protocol in the destination network delivers the frame to the node
containing the destination socket. When a frame addressed to a particular node arrives
at that node, the node's CPU is interrupted and the .MPP driver's interrupt handler gets
control to service the interrupt. As the frame's first 3 bytes are read into the first-in
first-out (FIFO) buffer, the .MPP driver's interrupt handler moves these bytes into its
own internal buffer.

If the frame is a data frame containing a packet intended for a higher-level protocol, the
.MPP driver's interrupt handler passes control to the protocol handler for the protocol
type specified in the frame's header. For example, when a frame whose header specifies
the DDP protocol type is delivered to a node, the link-access protocol passes control to
the .MPP driver. The .MPP driver then calls the DDP protocol handler. DDP, which is
implemented by the .MPP driver, determines for which socket the packet is meant and
calls the socket listener that is associated with the socket. The socket listener, in turn,
actually reads in the packet.

UsingDDP

7-8

This section describes how to send data packets to a socket and how to receive them
from another socket over an Apple Talk network or internet using DDP. It also describes
how to use the AEP Echoer to measure packet-delivery performance and to determine if
a node is on the network.

Note

You do not need to use the AEP Echoer to send and receive data using
DDP. This chapter describes the AEP Echoer because you must use
the programming interface to DDP in order to use the AEP Echoer.
Applications that use higher-level Apple Talk protocols, such as ATP
or ADSP, can also use the AEP Echoer to measure packet-delivery
performance. •

Using DDP

CHAPTER 7

Datagram Delivery Protocol (DDP)

Sending and Receiving Data: An Overview
To send data, you must address each packet to the socket for which it is intended
because you cannot open and maintain a connection between two sockets using DDP. To
receive a data packet using DDP, you must provide a socket listener process that DDP
associates with the socket that your application uses. When you open the socket for your
application to use, you must provide a pointer to the socket listener. DDP associates the
address of the socket listener with your application's socket so that the .MPP driver can
call your socket listener when it receives a packet that is addressed to your socket-client
application. DDP maintains a separate entry in its socket table for each socket and socket
listener pair.

Applications developers commonly write a single socket-client application that both
sends and receives data and that includes a socket listener process to receive data.
To clarify the steps involved in sending and receiving data, this section gives you an
overview of these tasks as separate sequences after it explains how to open a socket.
The steps for sending and receiving data refer to sections that are provided later in
this chapter that describe how to

• create a write-data structure, which you need to send data

• use the registers that the .MPP driver uses to pass parameters to your socket listener

• write a socket listener, with sample code illustrating this

If you want to provide features in addition to the DDP checksum feature to check data
and correct errors, you can include them in your application, you can define your own
Apple Talk protocol, or you can use a higher-level Apple Talk protocol such as ATP or
ADSP instead of calling DDP directly. (For information about DDP checksums, see
"Using Checksums" beginning on page 7 -19.)

To make your application available to other users of Apple Talk, you must use the NBP
PRegisterName function to register the name that represents your socket-client applica­
tion. When you are finished using the socket, you must use the NBP PRemoveName
function to remove this name from the NBP names table. See the chapter "Name-Binding
Protocol (NBP)" in this book for more information about these functions.

Opening a Socket

To send and receive data using DDP, your application must first open a socket. Opening
a socket makes your application a client of that socket. You open a socket with the
POpenSkt function. When you open a socket, you must provide a pointer to your socket
listener and you must specify 0 for the socket number if you want DDP to dynamically
assign a socket.

The POpenSkt function assigns a socket number to your application and enters the
number in the socket table along with the pointer to the socket listener that you provide.
The POJ?enSkt function returns the socket number to you in the socket field of the
parameter block.

Using DDP 7-9

•

CHAPTER 7

Datagram Delivery Protocol (DDP)

Associating a single socket listener with more than one socket

If your application includes processes that each have their own sockets,
you can assign a single socket listener to more than one socket, but each
socket should have its own buffer or set of buffers for receiving data. •

If you do not want DDP to randomly assign a socket number to your application, you
can specify the number of a particular socket for DDP to open. For information on the
range of socket numbers from which you can select, see "Assigning Socket Numbers" on
page 7-6.

IMPORTANT

You cannot specify a NIL pointer to the socket listener. If you do,
the system on which your application is running will crash. .&

When your application is finished using a socket, you must use the PCloseSkt function
to close the socket.

Sending Data

To send data, you must create a write-data structure that contains the data in a specific
format and then call a DDP function to send the data. After you have opened a socket
using the POpenSkt function, here are the steps that you follow to send data using DDP:

1. Create a write-data structure.

2. Use the DDP function PWriteDDP to send the data.

See "Creating a DDP Write-Data Structure" beginning on page 7-12 for information
about how to create a write-data structure using the DDP procedure BuildDDPwds
or your own code.

Packets with long headers can include a checksum that can be used to verify the
integrity of the packet data. For information on how to direct DDP to calculate a
checksum for data that you want to send, see "Using Checksums" beginning on
page 7-19. For details of the contents of a long header, see "The DDP Packet and
Frame Headers" beginning on page 7-14.

Receiving Data

To receive data using DDP, you must provide a socket listener that is part of your socket­
client application. The socket listener code must

• be written in assembly language because it must read from and write to the
CPU's registers

• include buffers to hold the data that it reads

• use the register values that the .MPP driver passes to your socket listener

• determine the type of packet, if you have defined more ~an one protocol type that
your application handles

• if the packet includes a long header, calculate the checksum value, if one is used

7-10 Using DDP

CHAPTER 7

Datagram Delivery Protocol (DDP)

There are many ways to design and write a socket-client application and socket listener .
This chapter offers one possibility. For details of this sample socket listener and for its
code, see "A Sample Socket Listener" beginning on page 7-20.

Note

Your socket-client application should test to find out when the socket
listener finishes processing a packet so that the socket-client application
can begin its own packet reading and processing. •

To receive data, your application must have already opened a socket using the
POpenSkt function and have passed the POpenSkt function a pointer to your
socket listener.

Here are the tasks involved in receiving data using DDP:

1. The .MPP driver calls your socket listener when it receives a packet addressed to your
socket-client application. The .MPP driver passes values to you in the CPU's registers.
You need to know how the .MPP driver uses these registers and how you can use
them. For information about these registers, see "How the .MPP Driver Calls Your
Socket Listener" beginning on page 7-13. One of the values that the .MPP driver
passes to you is a pointer to the buffer that holds the DDP packet header. You need
to know how the DDP packet header and the frame header are structured. For
information about these headers, see "The DDP Packet and Frame Headers"
beginning on page 7-14.

2. To hold the data that it reads, your socket listener must allocate memory for buffers.
In addition to allocating data buffers, either your socket-client application or the
socket listener (if you write the socket listener code to carry out this function) must
perform some initialization tasks. For information about these tasks and how the
sample socket listener han~es them, see "Socket Listener Queues and Buffers"
beginning on page 7-20, "Setting Up the Socket Listener" beginning on page 7-22,
and "Initializing the Socket Listener" beginning on page 7-24.

3. When the .MPP driver calls your socket listener, the socket listener must read the
incoming packet into one or more data buffers. To do this, the socket listener uses two
processes, ReadPacket and ReadRest, which are implemented as a single routine
in the hardware driver. The .MPP driver passes you the address of this routine in one
of the CPU's registers. For more i.nformation, see "Reading an Incoming Packet"
beginning on page 7-17.

4. If you have defined more than one DDP protocol type that your application handles,
check the DDP protocol type field of the datagram header (see Figure 7-6 on
page 7 -15) to determine the protocol type of the packet you have just received.

The Apple Talk internet address (network number, node ID, and socket number) is
insufficient to distinguish between packets intended for different processes that are
using the same socket. Your socket listener must use some other information (such as
the DDP protocol type or a higher-level protocol header imbedded in the DDP packet
data) to make this distinction.

5. If the packet contains a long header, the socket listener needs to find out if the header
contains a checksum. If it does, the socket listener needs to calculate the checksum to
determine if the packet's data has been corrupted. For more information, see "Using
Checksums" beginning on page 7-19.

Using DDP 7-11

•

CHAPTER 7

Datagram Delivery Protocol (DDP)

6. The socket listener can now process the packet or pass it to the client application for
processing. The sample socket listener provided here writes the packet buffer to a
queue that it uses for successfully processed packets and removes the packet from the
queue for incoming packets. For a description of how the sample socket listener does
this, see "Processing a Packet" beginning on page 7-25.

7. The client application can now read in the packet for its own purposes. The client
application should include code that periodically checks to determine whether the
socket listener has finished processing an incoming packet. For a description of how
the sample socket listener's client application performs this task and some sample
code, see "Testing for Available Packets" beginning on page 7-31.

Creating a DDP Write-Data Structure
When you use the PWr i teDDP function to send a DDP packet to another socket, you
provide a pointer to a write-data structure that you have already created. A write-data
structure contains a series of pairs of length words and pointers and ends with a 0 word.
Each pair indicates the length and location of a portion of the data that constitutes the
packet to be sent over the network. The first entry in the write-data structure consists of
only a pointer. It does not include a length word, because the length is always the same.

The first pointer indicates a 16-byte header block, which must start at an odd address.
You fill in the destination network number, destination node ID, destination socket
number, and DDP protocol type, and the .MPP driver fills in the other fields of the
packet header. DDP protocol types 1 through 15 are reserved for use by Apple. A DDP
packet may have a maximum of 586 bytes of data. Figure 7-4 shows the write-data
structure and the header block.

Because the first pointer in the write-data structure must point to an odd address, it is
difficult to use Pascal to create a write-data structure. If you are programming in Pascal,
you can use the BuildDDPwds procedure to create a write-data structure. You must
provide a 17-byte buffer for the header block, a 14-byte buffer to hold the write-data
structure, and a pointer to the data you want to send. The header block is only 16 bytes,
but because it begins on an odd address, the first byte is not used. The write-data
structure created by the BuildDDPwds procedure is 14 bytes long, consisting of only a
pointer to the header, a length-pointer pair for the data block, and the terminating 0
word. Although a write-data structure allows you to divide the data into as many blocks
as you wish, the BuildDDPwds procedure assumes that the data is in a single block.

In most cases, if you are using DDP directly to send data across a network, a single block
of data should be adequate. However, if you are implementing a protocol on top of DDP
and you want to send blocks of data that are stored separately as parts of the same
datagram, you will have to build your own write-data structure that includes multiple
pairs of pointers and lengths. For a description of the write-data structure that you need
to build in this case, see "The Write-Data Structure" on page 7-35. Notice that the pointer
to the first entry indicates an odd address and that there is no length word for the
first entry.

7-12 Using DDP

CHAPTER 7

Datagram Delivery Protocol (DDP)

Figure7-4 DDP write-data structure

r·------·----·-·---·-·-·---·-··-·-·----·····-·······-·-····--------·----------······----·----····----------------·---··-··-·------·-.. --.. -·----................. ·-·-·----··--------.............. ________ _ .. _____ , __ , _____ , ______ _

'?

Reserved

Pointer to first entry

Length of second entry

Pointer to second entry

1
J.

Length of nth entry

Pointer to nth entry

0

Bytes

2

4 ----'

2

4

riable Va
length

2

Odd address }

"

{

Reserved

Destination network number

Reserved

Destination node ID
Reserved

Destination socket number
Reserved

DDP protocol type

Data

J.

Bytes

7

2

2

}Variable
length

{ }Variable
4------------~r------------------------~

Data
length 2

Using Registers and Packet Headers
To receive data at the DDP level, you need to include as part of your socket-client
application a socket listener that reads packets addressed to your application and passes
them to the application for further processing. DDP maintains a table with an entry
for each socket and socket listener pair.

When the .MPP driver receives a packet addressed to your socket-client application, it
calls your socket listener, using the CPU's registers to pass pointers to the internal buffer
where it has stored the packet's headers and to some data values that your socket
listener uses during its processing.

The CPU's registers that the .MPP driver uses to pass parameters to your socket listener
are not directly accessible from Pascal. Because a DDP socket listener must read from
and write to the CPU's registers, you must write a socket listener in assembly language;
you cannot use Pascal. However, you can write the remainder of the client application
that includes the socket listener in a high-level language such as Pascal. The client
application sample code that this chapter shows is written in the Pascal language.

How the .MPP Driver Calls Your Socket Listener

When a frame addressed to a particular node arrives at that node and the frame contains
a DDP packet, the node's CPU is interrupted and the link-access protocol calls the .MPP
driver to receive the packet. When the .MPP driver receives a DDP packet, it reads the

Using DDP 7-13

•

CHAPTER 7

Datagram Delivery Protocol (DDP)

first 3 bytes of the frame header into an internal buffer called the read-header area
(RHA). After the frame header is read into the RHA, 8 bytes of the RHA are still
available for your use.

Next, the .MPP driver reads the socket address and calls the socket listener for that
socket. The .MPP driver uses the CPU's registers to pass parameters to your socket
listener as follows:

Registers on call to DDP socket listener

AO Reserved for internal use by the .MPP driver. You must preserve this register
until after the ReadRest routine has completed execution.

Al Reserved for internal use by the .MPP driver. You must preserve this register
un~ after the ReadRest routine has completed execution.

A2 Pointer to the .MPP driver's local variables. The value at the offset toRHAfrom
the value in the A2 register points to the start of the RHA.

A3 Pointer to the first byte in the RHA past the DDP header bytes (the first byte
after the DDP protocol type field).

A4 Pointer to the ReadPacket routine. The ReadRest routine starts 2 bytes after
the start of the ReadPacket routine.

AS Free for your use before and until your socket listener calls
the ReadRest routine.

DO Lower byte is the destination socket number of the packet.

Dl Word indicating the number of bytes in the DDP packet left to be read (that is,
the number of bytes following the DDP header).

02 Free for your use.

03 Free for your use.

When the .MPP driver calls your socket listener, you can read the destination socket
number that is in the DO register and the frame header that is in the RHA. You should
assume that only 8 bytes are still available in the RHA for your use. Figure 7-5 shows the
beginning of the RHA where the frame header begins; the frame header is followed by
either a short or a long DDP header.

The DDP Packet and Frame Headers

A DDP packet includes a packet header followed by data. The DDP packet header is
preceded by the frame header. Figure 7-6 shows both headers; they do not include the
data portion. The DDP packet header can be long or short; if the destination and source
network numbers are different, DDP uses a long header, which includes some additional
fields.

The frame header includes

• the source and destination node IDs

• the DDP header type (1 = short, 2 = long)

7-14 Using DDP

CHAPTER 7

Datagram Delivery Protocol (DDP)

Figure7-5 The AHA for both long and short DDP headers

--··-··-···-------·----··------·-·-·····-··-·--··--·---------··----···-··-·-------·--·-·-····----·. ·-

DDP short header Bytes
toRHA (A2) -----...-------------..

DDP long header Bytes
toRHA (A2)~~-------~

Frame header 3 Frame header

DDP short header 5

Register A3 _..__ ________ _,

DDP long header

Register A3 ___.,.__ ________ _.

Figure 7-6 Data-link frame header and DDP packet header

I DDP short_,

Frame{
header

Destination node ID
Source node ID

DDP header type, value 1

DDP{ packet
header

Unused I
Datagram length (10 bits)
Destination socket number

Source socket number
DDP protocol type

Bytes

1
Frame{
header

DDP
packet
header

DDP long header

Destination node ID
Source user node ID

DDP header type, value 2
Unused I Hop count 1

Datagram length (10 bits)

DDP checksum

Destination network number

Source network number

Destination node ID
Source node ID

Destination socket number
Source socket number

DDP protocol type

The DDP long and short packet headers have these fields in common:

• the datagram length (10 bits)

• the destination socket number

• the source socket number

• the DDP protocol type

Using DDP

3

13

Bytes

1
1

1

2

2

2

7-15

7-16

CHAPTER 7

Datagram Delivery Protocol (DDP)

A long DDP packet header also includes

• ahopcount

• a checksum value, if one was calculated

• the source network number and node ID

• the destination network number and node ID

The MPW Equates

You can use the following equates from the MPW interface files in writing your socket
listener process and the client application that includes it:

;frame header

lapDstAdr EQU 0
lapSrcAdr EQU 1
lapType EQU 2
lapHdSz EQU 3

;DDP packet header

ddpHopCnt EQU 0

ddpLength EQU 0

ddpChecksum EQU 2
ddpDstNet EQU 4

ddpSrcNet EQU 6

ddpDstNode EQU 8

ddpSrcNode EQU 9

ddpDstSkt EQU 10
ddpSrcSkt EQU 11
ddpType EQU 12
sddpDstSkt EQU 2

sddpSrcSkt EQU 3

sddpType EQU 4

ddphSzLong EQU 13
ddphSzShort EQU 5

shortDDP EQU $01
longDDP EQU $02

Using DDP

;destination node address [byte]
;source node address [byte]
;LAP type field [byte]
;size of LAP header

;hop count (only used in long
; header) [byte]
;packet length (from this word
; onward) [word]
;checksum [word]
;destination network no. [word]
;network of origin [word]
;destination node address [byte]
;node of origin [byte]
;destination socket number [byte]
;source socket number [byte]
;DDP protocol type field [byte]
;destination socket number (short
; header) [byte]
;source socket number (short
; header) [byte]
;DDP protocol type field (short header)
; [byte]

;size of extended DDP header
;size of short DDP header

;LAP type code for DDP (short header)
;LAP type code for DDP (long header)

CHAPTER 7

Datagram Delivery Protocol (DDP)

Reading an Incoming Packet

Your socket listener calls the ReadPacket and ReadRest processes to read the incoming
data packet. You can call ReadPacket as many times as you like to read the data piece by
piece into one or more data buffers, but you must always use ReadRest to read the final
piece of the data packet. Alternatively, you can read all of the data using only ReadRest.
The ReadRest routine restores the machine state (the stack pointers, status register, and
so forth) and checks for error conditions.

Note

You can ignore any remaining data instead of reading it
by setting the D3 register to 0 and calling ReadRest. •

Before you call the ReadPacket routine, you must allocate memory for a data buffer
and place a pointer to the buffer in the A3 register. You must also place the number of
bytes you want to read in the D3 register. You must not request more bytes than remain
in the data packet.

The buffer that you allocate must be large enough to hold all of the data and-if your
socket listener places the packet header in the buffer-the header as well. The maximum
amount of data in a DDP data packet is 586 bytes. A long DDP packet header is 13 bytes
long; a short header is 5 bytes. The frame header is 3 bytes. Therefore, the maximum
amount of data from the packet that the socket listener can return is 602 bytes. You can
use the buffer as a data structure to hold other information as well, such as the number
of bytes of data actually read by the socket listener, a flag that indicates when the data
has been returned, and result codes.

After you have called the ReadRest routine, you can use registers AO through A3 and
DO through D3 for your own use, but you must preserve all other registers. You cannot
depend on having access to your application's global variables.

To call the ReadPacket routine, execute a JSR instruction to the address in the A4
register. The ReadPacket routine uses the registers as follows:

Registers on entry to the ReadPacket routine

A3 Pointer to a buffer to hold the data you want to read

D3 Number of bytes to read; must be nonzero

Registers on exit from the ReadPacket routine

AO Unchanged

Al Unchanged

A2 Unchanged

A3 Address of the first byte after the last byte read into buffer

A4 Unchanged

DO Changed

Dl Number of bytes left to be read

D2 Unchanged

D3 Equals 0 if requested number of bytes were read, nonzero if error

Using DDP 7-17

7-18

CHAPTER 7

Datagram Delivery Protocol (DDP)

After every time you call ReadPacket or ReadRest, you must check the zero (z) flag
in the status register for errors because the ReadPacket routine indicates an error
by clearing it to 0. If the ReadPacket routine returns an error, you must terminate
execution of your socket listener with an RTS instruction without calling ReadPacket

again or calling ReadRest at all.

Call the ReadRest routine to read the last portion of the data packet, or call it after
you have read all the data with ReadPacket routines and before you do any other
processing or terminate execution. After you call the ReadRest routine, you must
terminate execution of your socket listener with an RTS instruction whether or not the
ReadRest routine returns an error.

When you call the ReadRest routine, you must provide in the A3 register a pointer to
a data buffer and must indicate in the 03 register the size of the data buffer. If you
have already read all of the data with calls to the ReadPacket routine, specify a buffer
of size 0 .

.A. WARNING

If you do not call the ReadRest routine after the last time you call the
ReadPacket routine successfully, the system will crash. You do not
need to call the ReadPacket routine; you can call only the ReadRest
routine to read in the entire packet. However, you must call the
ReadRest routine. A.

To call the ReadRest routine, execute a JSR instruction to an address 2 bytes past the
address in the A4 register. The ReadRest routine uses the registers as follows:

Registers on entry to the ReadRest routine

A3 Pointer to a buffer to hold the data you want to read

03 Size of the buffer (word length); may be 0

Registers on exit from the ReadRest routine

AO Unchanged

Al Unchanged

A2 Unchanged

A3 Pointer to first byte after the last byte read into buffer

DO Changed

01 Changed

02 Unchanged

03 Equals 0 if requested number of bytes exactly equaled the size of the buffer;
less than 0 if more data was left than would fit in buffer (extra data equals -03
bytes); greater than 0 if less data was left than the size of the buffer (extra buffer
space equals 03 bytes)

Using DDP

CHAPTER 7

Datagram Delivery Protocol (DDP)

Calling ReadPacket and ReadRest when LocaiTalk is the data link

If LocalTalk is the data link that is being used, your socket listener
has less than 95 microseconds (best case) to read more data with a
ReadPacket or ReadRest call. If you need more time, you can read
another 3 bytes into the RHA, which will allow you an additional
95 microseconds. +

In implementing your socket listener, you can use the registers as follows:

• You can use registers DO, 02, and 03 freely throughout the socket listener code.

• You must preserve the contents of registers A6 and 04 to D7.

• From entry to your socket listener until you call ReadRest

o you can use AS register

o you must preserve registers AO to A2, A4, and 01

• From ReadRest until your application exits from the socket listener

o you must preserve register AS

o you can use registers AO to A3 and DO to D3

Using Checksums

For packets that include a long header, DDP includes a checksum feature that you can
use to verify that the packet data has not been corrupted by memory or data bus errors
within routers on the internet.

When you use the PWr i teDDP function to send a DDP packet across an Apple Talk
internet, you can set a flag (checksumFlag) to direct DDP to calculate a checksum
for the packet.

If the checksum flag is set and the socket to which you are sending the packet (the
destination socket) has a network number that is different from that of the socket from
which you are sending the packet (the source socket), then the PWr i teDDP function
calculates a checksum for the datagram and includes it in the datagram packet header. In
this case, DDP uses a long header for the packet; Figure 7-6 on page 7-15 shows both the
long and short DDP headers.

When your socket listener receives a packet that has a long header, the socket listener
must determine whether DDP calculated a checksum for the packet, and if so, use the
checksum to verify that the data was delivered intact. You can use the equates from the
MPW interface files in calculating checksums: see "The MPW Equates" on page 7-16.

To determine this, your socket listener code should take the following steps:

1. Check the DDP header type field. This is set to 2 for a packet with a long header and 1
for a packet with a short header.

2. Check the checksum field (checksumFlag). This is set to a nonzero value if the
sender specified that DDP should calculate a checksum for the packet; a short header
does not include a checksum field.

Using DDP 7-19

CHAPTER 7

Datagram Delivery Protocol (DDP)

3. Calculate the checksum using the following algorithm to calculate the checksum,
starting with the byte immediately following the checksum field in the header and
ending with the last data byte:

checksum :=checksum+ next byte; {unsigned addition}
Rotate the most significant bit to the least significant bit
Repeat

4. Compare the calculated checksum against the value set in the checksum field of the
DDP packet header.

You can use the equates from the MPW interface files in calculating checksums: see
"The MPW Equates" on page 7-16.

A Sample Socket Listener
There are many ways to implement a socket listener that follow the requirements
described previously for using and preserving registers and reading packets. This
section uses a sample socket listener that shows one way to implement the process
within a DDP socket-client application that reads in the packet contents. The sample
code also shows those segments of the sample client application that set up the socket
listener and check to determine when a packet that the socket listener has read is
available for processing by the client application.

Some of the tasks that your socket listener can do that this sample socket listener does
not illustrate are how to

• route packets to different sockets based on the socket number in register DO when
more than one socket uses your socket listener

• check the DDP protocol type field and ignore any packets that do not match the
desired packet types that your socket listener is set up to receive

• check the source node ID and ignore any packets that don't come from a desired node

• implement a completion routine to be executed after a packet is processed

The sample socket listener does, however, show you how to

• buffer multiple packets

• retrieve the frame and DDP packet header information that DDP has already read into
theRHA

• calculate and compare the packet checksum when a packet uses a long DDP header
that includes the checksum value

Socket Listener Queues and Buffers

The sample socket listener uses two standard operating-system queues to manage the
contents of the packets that it receives and makes available to the socket-client
application. It calls these linked lists a free queue and a used queue. The use of two queues
allows the socket listener to receive and process packets while the client application is
reading the data from those packets that the socket listener has already processed.

7-20 Using DDP

CHAPTER 7

Datagram Delivery Protocol (DDP)

The free queue is used to manage available buffers that consist of data structures
declared as PacketBuffer records. The sample socket listener uses the buffers in the
free queue one at a time to hold the contents of an incoming packet as it processes
the packet header and data fields. The socket listener's initialization module,
SL_InitSktListener, shown in Listing 7-5 on page 7-24, releases the first element
or buffer of the free queue and points to it from the current queue element
(current_qelem) variable; it is this buffer that the socket listener uses when the .MPP
driver calls the socket listener with a packet for it to process.

After the socket listener fills in the fields of the record pointed to by current_qelem
with the processed contents of the packet, it moves the buffer into the used queue,
pointed to by used_ queue, for the client application to read. Then the socket listener
releases the next record buffer from the free queue and points to it using the
current_ qelem variable. The sample code in Listing 7-7 on page 7-31 shows that when
the client application has finished reading the contents of a used queue buffer element, it
returns the buffer to the free queue pointed to by free_queue to make the buffer
available again to the socket listener.

The socket listener uses the variables declared in Listing 7-1 to point to

• the free queue's queue header

• the used queue's queue header

• the current buffer queue element

Listing 7-1 Declarations for pointers to the sample socket listener's queues and packet buffer

SL Locals PROC
ENTRY free_queue,used_queue,current_qelem

free_queue DC.L 0 ;pointer to freeQ QHdr ;

used_queue DC.L

current_qelem DC.L

ENDP;

0

0

; initialized by InitSktListener
;pointer to usedQ QHdr ;
; initialized by InitSktListener
;pointer to current
; PacketBuffer record

Listing 7-4 on page 7-23 shows the Pascal-language client application
SetUpSocketListener procedure. This procedure calls the SL_InitSktListener
function to pass to the socket listener pointers to these two operating-system queues.

When the .MPP driver calls the socket listener, if there is an available buffer, the socket
listener processes the packet and returns in the fields of the packet buffer record the DDP
type, the destination node ID, the source address in AddrBlock format, the hop count,
the size of the packet, a flag to indicate whether a checksum error occurred, and the data
delivered in the packet. If you use the sample record data structure as a model, you can
extend it to include fields to hold additional values, such as the tick count at the time
when the .MPP driver called your socket listener. Listing 7-2 shows the assembly­
language declaration for the PacketBuffer record.

Using DDP 7-21

CHAPTER 7

Datagram Delivery Protocol (DDP)

Listing 7-2 Declaration for the sample socket listener's packet buffer record

PacketBuffer
qLink

RECORD
DS.L
DS.W
DS.W
DS.W
DS.L
DS.W
DS.W
DS.W

0

1

1

1

1

1

qType
buffer_Type
buffer NodeiD
buffer_Address
buffer_Hops
buffer ActCount
buffer CheckSum

;DDP protocol type
;destination node
;source address in AddrBlock format

1 ;hop count
1 ;length of DDP datagram
1 ;chksum error returned here

buffer Data DS.B

ENDR

; (cksumErr or noErr)
ddpMaxData

;the DDP datagram

Listing 7-3 shows the socket listener's declaration for the queue header record, which is
defined and used to make the code easier to read.

Listing 7-3

QHdr
qFlags
qHead
qTail

Declaration for the sample socket listener's queue header record

RECORD
DS.W
DS.L
DS.L
ENDR

0

1

1

1

Setting Up the Socket Listener

The client application that includes the sample socket listener uses a Pascal procedure,
SetUpSocketListener, to set up the socket listener's initialization routine.
The SetUpSocketListener procedure defines

• the free and used queue variables of type QHdr

• a packet buffer record of type PacketBuffer to match the data structure defined
in the socket listener code (The sample Pascal code declares an array of 10 packet
buffer records.)

If you base your own code on the sample code, you can add new fields to the record
declaration, if you need them. If you do this, you must modify the packet buffer data
structure defined in the socket listener code to match the high-level language record
declaration.

Listing 7-4 shows the client-application's Pascal code that initializes the packet buffer
records and then adds them to the free queue using the _Enqueue trap. The code calls
the SL_Ini tSktListener routine and passes to it pointers to the queue header for the
free queue and the queue header for the used queue.

7-22 Using DDP

CHAPTER 7

Datagram Delivery Protocol (DDP)

Listing 7-4 Setting up the socket listener from the client application

CONST
ddpMaxData ; 586;

TYPE
PacketBuffer ; RECORD

qLink: QElemPtr;
qType: Integer;
buffer_Type: Integer;
buffer_NodeiD: Integer;
buffer_Address: AddrBlock;
buffer_Hops: Integer;
buffer_ActCount: Integer;
buffer_CheckSum: OSErr;
buffer_Data: ARRAY[l •• ddpMaxData] OF SignedByte;

END;

VAR
freeQ, usedQ: QHdr;
Buffers: ARRAY[l •• lO] OF PacketBuffer;

PROCEDURE SL_TheListener;
External;

FUNCTION SL_InitSktListener (freeQ, usedQ: QHdrPtr): OSErr;
External;

PROCEDURE SetUpSocketListener;
VAR

err: OSErr;
i: Integer;

BEGIN
freeQ.QHead .- NIL;
freeQ.QTail := NIL;
usedQ.QHead := NIL;
usedQ.QTail := NIL;

{initialize to
{initialize to
{initialize to
{initialize to

nil to indicate
nil to indicate
nil to indicate
nil to indicate

empty queue}
end of queue}
empty queue}
end of queue}

FOR i := 1 TO 10 DO {add all buffers to the free queue}
Enqueue(@Buffers[i], @freeQ);

err .- SL_InitSktListener(@freeQ, @usedQ);
{initialize the socket listener code}

Using DDP

•

7-23

CHAPTER 7

Datagram Delivery Protocol (DDP)

IF err <> noErr THEN
BEGIN

{Perform error processing here}
END;

{You can now call POpenSkt because the socket listener is ready to }
{ process packets.}

END;

Initializing the Socket Listener

The sample socket-client application procedure SetUpSocketListener (shown in the
preceding listing) calls the socket listener SL_InitSktListener initialization routine
provided in Listing 7-5 to pass it pointers to the two operating-system queues (used and
free) that the socket listener uses after the SetUpSocketListener procedure initializes
these queues.

The SL_InitSktListener routine sets up its local variables used_queue and
free_queue to point to the queue headers for the two queues. Then the routine releases
from the free queue the first buffer and sets the current_qelem variable to point to it.
This is the buffer that the socket listener uses when it next reads a packet.

Listing 7-5 Initializing the socket listener

;Function SL_InitSktListener(freeQ, usedQ: QHdrPtr): OSErr;

SL_InitSktListener PROC EXPORT

StackFrame
Result1
ParamBegin
freeQ
usedQ
ParamSize
RetAddr
A6Link
Local Size

WITH
LINK

RECORD {A6Link},DECR
DS.W 1
EQU *
DS.L 1
DS.L 1
EQU ParamBegin-*
DS.L 1
DS.L 1
EQU *
ENDR

StackFrame,QHdr;
A6,#Loca1Size

;build a stack frame record
;function's result returned to caller
;start parameters after this point
;freeQ parameter
;usedQ parameter
;size of all the passed parameters
;placeholder for return address
;placeholder for A6 link
;size of all the local variables

;use these record types
;allocate your local stack frame

;Copy the queue header pointers into our local storage for use in the
; listener

7-24 Using DDP

LEA
MOVE.L

LEA
MOVE.L

CHAPTER 7

Datagram Delivery Protocol (DDP)

used_queue,AO
usedQ(A6),(AO)

free_queue,AO
freeQ(A6),(AO)

;copy usedQ into used_queue

;copy freeQ into free_queue

;Release the first buffer record from freeQ and set current_qelem to it

@1

MOVEA.L freeQ(A6) ,Al ; Al = "freeQ
LEA current_qelem,AO ;copy freeQ.qBead into current_qelem
MOVE.L qBead(Al),(AO)
MOVEA.L qBead(Al) ,AO ;AO = freeQ.qBead
_Dequeue
MOVE.W

UNLK
MOVEA.L
ADDA.L
JMP

ENDP
END

DO,Resultl(A6)

A6
(SP)+,AO
#ParamSize,SP
(AO)

Processing a Packet

;return status

;destroy the link
;pull off the return address
;strip all of the caller's parameters
;return to the caller

When the .MPP driver calls the sample socket listener, the socket listener's main module,
the SL_TheListener procedure, reads and processes a packet addressed to the socket­
client application. However, the socket listener can only process a packet if there is a
packet buffer record available to hold the processed packet.

The code shown in Listing 7-6 determines if the current_qelem variable is NIL or not.
If it is not NIL, the code gets a buffer, if one is available.

• If there is no buffer available, the code ignores the packet and calls the ReadRest
routine with a buffer size value of 0. Before returning to the calling program, the code
calls its GetNextBuffer routine to set up the current_qelem variable to point to
the next available buffer, if there is one.

• If there is a buffer available, the code reads in the packet data and processes it.

If the socket listener reads the packet successfully, it processes the header information
that the hardware driver has stored in the .MPP driver's local variable space pointed to
by the value in register A2. To do this, the socket listener

• fills in a value for the hop count field of the packet buffer record and determines the
packet length

• determines whether the DDP header is short or long and fills in the remaining fields
of the packet buffer

Using DDP 7-25

CHAPTER 7

Datagram Delivery Protocol (DDP)

• tests the checksum field of long DDP headers to determine if they are nonzero,
indicating that the packet contains a checksum, and, if so, calculates the checksum

• adds the packet buffer to the used queue and then gets the next free buffer from the
free queue and points to it with current_ qelem

The socket listener then returns control to the calling program and waits until the .MPP
driver calls it again when the .MPP driver next receives a packet addressed to a socket
that is associated with the socket listener. Listing 7-6 shows the SL_TheListener
procedure.

Listing 7-6 Receiving and processing a DDP packet

;SL_TheListener
;Input:

DO (byte)
Dl (word)
AO points
Al points
A2 points
A3 points
A4 points

= packet's destination socket number
= number of bytes left to read in packet
to the bytes to checksum
to the bytes to checksum
to MPP's local variables
to next free byte in read-header area
to ReadPacket and ReadRest jump table

;Return:
DO is modified
D3 (word) = accumulated checksum

SL_TheListener PROC EXPORT
WITH PacketBuffer

;Get pointer
GetBuffer:

to current PacketBuffer.

LEA
MOVE.L
MOVE.L
BEQ.S

current_qelem,A3
(A3) ,A3
A3,DO
NoBuffer

;get the pointer to PacketBuffer

;if no PacketBuffer
; then ignore packet

;Read rest of packet into PacketBuffer.datagramData.
MOVE.L 01,03 ;read rest of packet
LEA buffer_data(A3),A3 ;A3 = AbufferData
JSR 2(A4) ;call ReadRest
BEQ.S ProcessPacket ;if no error, continue
BRA RcvRTS ;if error, ignore the packet

;No buffer; ignore the packet.
NoBuffer CLR D3 ;set to ignore packet (buffer size = 0)

7-26 Using DDP

CHAPTER 7

Datagram Delivery Protocol (DDP)

;call ReadRest JSR
BRA

2(A4)
GetNextBuffer ;no buffer available, so read next packet;

maybe there will be a buffer
; for the next packet

;Process the packet you just read in.

; ReadRest has been called so registers AO-A3 and DO-D3 are free
; to use. Use registers this way:
PktBuff EQU AO ;current PacketBuffer
MPPLocals EQU A2 ;pointer to MPP's local variables

; (still set up from entry to
; socket listener)

Hopcount EQU DO ;gets the hop count
DatagramLength EQU Dl ;determines the datagram length
SourceNetAddr EQU D2 ;builds the source network address
ProcessPacket:

LEA current_qelem,PktBuff
;PktBuff current_qelem

MOVE.L (PktBuff),PktBuff

;Do everything that's common to both long and short DDP headers
first, clear buffer_Type and buffer_NodeiD to ensure their high
bytes are 0.

CLR.W buffer_Type(PktBuff)
;clear buffer_Type

CLR.W buffer_NodeiD(PktBuff)
;clear buffer NodeiD

;Clear SourceNetAddr to prepare to build network address.
MOVEQ #O,SourceNetAddr ;build the network address in

; SourceNetAddr

;Get the hop count
MOVE.W toRHA+lapHdSz+ddpLength(MPPLocals),HopCount

ANDI.W

LSR.W

LSR.W
MOVE.W

;get hop/length field
#DDPHopsMask,HopCount

#2,HopCount
;mask off the hop count bits
;shift hop count into low bits
; of high byte

#8,HopCount ;shift hop count into low byte
HopCount,buffer_Hops(PktBuff)

Using DDP

and move it into the
; PacketBuffer

7-27

•

CHAPTER 7

Datagram Delivery Protocol (DDP)

;Get the packet length (including the DDP header).
MOVE.W toRHA+lapHdSz+ddpLength(MPPLocals),DatagramLength

;get length field
ANDI.W #ddpLenMask,DatagramLength

;mask off the hop count bits

;Now, find out if the DDP header is long or short.
MOVE.B toRHA+lapType(MPPLocals),D3

CMPI.B #shortDDP,D3

BEQ.S IsShortHdr

;get LAP type
;is this a long or short DDP
; header?
;skip if short DDP header

;It's a long DDP header.
MOVE.B toRHA+lapHdSz+ddpType(MPPLocals),buffer_Type+l(PktBuff)

;get DDP type
MOVE.B

toRHA+lapHdSz+ddpDstNode(MPPLocals),buffer_NodeiD+l(PktBuff)

MOVE.L

LSL.W

MOVE.B
SUB.W

BRA.S

;get destination node from frame header
toRHA+lapHdSz+ddpSrcNet(MPPLocals),SourceNetAddr

#S,SourceNetAddr

;source network in high word,
; source node in low byte
;shift source node up to high byte
; of low word; get source socket
; from DDP header

toRHA+lapHdSz+ddpSrcSkt(MPPLocals),SourceNetAddr
#ddpType+l,DatagramLength

MoveToBuffer

;DatagramLength = number of
; bytes in datagram

;Determine if there is a checksum.
TST.W toRHA+lapHdSz+ddpChecksum(MPPLocals)

;does packet have checksum?
BEQ.S noChecksum

;Calculate checksum for the DDP header.
MOVE.L DatagramLength,-(SP);save DatagramLength (Dl)
CLR 03 ;set checksum to 0
MOVEQ #ddphSzLong-ddpDstNet,Dl

7-28 Using DDP

;Dl = length of header part to
checksum pointer to destination

; network number in DDP header

CHAPTER 7

Datagram Delivery Protocol (DDP)

LEA toRHA+lapHdSz+ddpOstNet(MPPLocals),Al
JSR SL_OoChksum ;checksum of OOP header part

(03 holds accumulated
; checksum)

;Calculate checksum for the data portion of the packet (if any).
MOVE.L buffer_Oata(PktBuff),A1

MOVE.L

MOVE.L

BEQ.S

JSR

TestChecksum:

;pointer to datagram
(SP)+,oatagramLength

;restore OatagramLength (01)
OatagramLength,-(SP)

TestChecksum

SL_DoChksum

;save DatagramLength (D1)
; before calling SL_OoChksum
;don't checksum datagram if
; its length = 0
;checksum of DDP datagram part
; (03 holds accumulated checksum)

MOVE.L (SP)+,OatagramLength
;restore OatagramLength (01)

;Now make sure the checksum is OK.
TST.W 03 ;is the calculated value 0?
BNE.S Notzero ;if nonzero, go and use it
SUBQ.W #1,03 ;if 0, make it -1

Notzero:
CMP.W
BNE.S
MOVE.W

toRHA+lapHdSz+ddpChecksum(MPPLocals),03
ChecksumErr ; bad checksum
#O,buffer_CheckSum(AO)

;no errors
BRA.S noChecksum

ChecksumErr:
MOVE.W #ckSumErr,buffer_CheckSum(PktBuff)

;checksum error

noChecksum:
BRA.S MoveToBuffer

Using DDP 7-29

CHAPTER 7

Datagram Delivery Protocol (DDP)

;It's a short DDP header.
IsShortHdr:

MOVE.B toRHA+lapHdSz+sddpType(MPPLocals),buffer_Type+l(PktBuff)

MOVE.B

MOVE.B

LSL.W
MOVE.B

SUB.W

MoveToBuffer:

;get DDP type
toRHA+lapDstAdr(MPPLocals),buffer_NodeiD+l(PktBuff)

;get destination node from LAP header
toRHA+lapSrcAdr(MPPLocals),SourceNetAddr

;get source node from LAP header
#S,SourceNetAddr ;shift src node up to high byte of low word
toRHA+lapHdSz+sddpSrcSkt(MPPLocals),SourceNetAddr

;get source socket from short DDP header
#sddpType+l,DatagramLength

;DatagramLength = number of bytes in
datagram

MOVE.L SourceNetAddr,buffer_Address(PktBuff)

MOVE.W

;move source network address into
; PacketBufffer

DatagramLength,buffer_ActCount(PktBuff)
;move datagram length into PacketBuffer

;Write the packet into the used queue and
get another buffer from the free queue for the next packet.

LEA used_queue,Al ;Al = ~used_queue
MOVE.L (Al),Al ;Al = used_queue (pointer to usedQ)
_Enqueue ;put the PacketBuffer in the used queue

GetNextBuffer:
LEA
MOVE.L
LEA
MOVE.L
MOVEA.L
_Dequeue

RcvRTS:
RTS
ENDP

7-30

free_queue,Al
(Al) ,Al
current_qelem,AO
qHead(Al),(AO)
qHead(Al) ,AO

Using DDP

;Al = ~free_queue
;Al = free_queue (pointer to freeQ)
;copy freeQ.qHead into current_qelem

;AO = freeQ.qHead

;return to caller

TYPE

CHAPTER 7

Datagram Delivery Protocol (DDP)

Testing for Available Packets

Your client application must include a routine that determines if the socket listener has
processed a packet for a socket associated with your client application. If it has, your
client application routine must itself read and process the packet's contents, which are
made available by the socket listener.

If your client application includes several processes each with its own socket that use the
same socket listener, your client application routine must include a mechanism to scan
for packets addressed to specific sockets.

If you expect to receive multiple packets for a specific socket, you should anticipate the
possibility that the client application might handle the first packet for a socket before
the socket listener processes the second packet for that socket. For example, to prepare
for reception of multiple related packets addressed to the same socket, the sample client
application's routine could check the socket listener's used queue QHead field for addi­
tional packets periodically after it read the first packet.

If you design your socket listener based on the sample one, your client's application
should define a sufficient number of packet buffers so that as the client application
releases a buffer from the used queue, processes its contents, and then moves that buffer
back into the free queue for the socket listener to use, there are always buffers available
in the free queue.

Listing 7-7 shows the code that the sample client application uses for this purpose. It
periodically checks the QHead element of the socket listener's used queue. When QHead
is not NIL, the client application knows that a packet is available for processing.

Listing 7-7 Determining if the socket listener has processed a packet

PacketBuffer = RECORD
qLink: QElemPtr;
qType: Integer;
buffer_Type: Integer;
buffer_NodeiD: Integer;
buffer_Address: AddrBlock;
buffer_Hops: Integer;
buffer_Actcount: Integer;
buffer_CheckSum: OSErr;
buffer_Data: ARRAY[l •• ddpMaxData] OF SignedByte;

END;
PacketPtr = APacketBuffer;

VAR

freeQ, usedQ: QHdr;
bufPtr : PacketPtr;

Using DDP 7-31

0

~ co
;
3
c
<D

~
-<
""[J

a
[
0
0
.:g

CHAPTER 7

Datagram Delivery Protocol (DDP)

WHILE (usedQ.QHead <> nil) DO
BEGIN

bufPtr := PacketPtr(usedQ.QHead); {get the packet ptr}
IF (Dequeue(QElemPtr(bufPtr), @usedQ) <> noErr) THEN

BEGIN
{process the packet information}

Enqueue(QElemPtr(bufPtr), @freeQ);
{requeue the packet buffer for use}

END

END;
END;

ELSE
BEGIN

{Error occurred dequeueing packet - perform error }
{ processing here. However, because this is the only }
{ place in the code where buffers are dequeued, your error }
{ code should never be called. You can include a debugging }
{ statement here.}

Measuring Packet-Delivery Performance
You use the Apple Talk Echo Protocol (AEP) to measure the performance of an Apple Talk
network. Knowing the approximate speed at which an Apple Talk internet delivers
packets is helpful in tuning the behavior of an application that uses one of the
higher-level Apple Talk protocols, such as ATP and ADSP. You can also use AEP to test
whether a node is on the network.

To tune an application, you need to know the round-trip time of a packet between two
nodes on an Apple Talk internet. This is dependent on such factors as the network
configuration, the number of routers and bridges that a packet must traverse, and the
amount of traffic on the network; as these change, so does the packet transmission time.
Routines belonging to the interfaces of both ATP and ADSP let you specify retry count
and interval numbers whose optimum values you can better assess if you know the
average round-trip time of a packet on your application's network.

AEP is implemented in each node as a DDP client process referred to as the AEP Echoer.
The AEP Echoer uses a statically assigned socket, socket number 4, known as the echoer
socket. The AEP Echoer listens for packets received through this socket.

7-32 Using DDP

CHAPTER 7

Datagram Delivery Protocol (DDP)

Whenever it receives a packet, the AEP Echoer examines the packet's protocol type field
to determine if the packet is an AEP packet, indicated by a value of 4. If it is, the first byte
of the data portion of the packet serves as a function field. AEP uses two function codes:

• A value of 1 identifies the packet as an Echo Request packet.

• A value of 2 identifies the packet as an Echo Reply packet.

The AEP Echoer sets this field to a value of 2 to indicate that the packet is now a reply
packet, then it calls DDP to send a copy of the packet back to the socket from which it
originated. The AEP packet that you send is referred to as an Echo Request packet; the
modified AEP packet that the AEP Echoer sends back to you is referred to as an Echo
Reply packet.

Here are some general guidelines that you should follow in using the AEP Echoer:

• Use the maximum packet size that you plan on using in your application.

• To test if a node is on the network, send several packets to that node because DDP can
sometimes drop a packet.

• To test packet-delivery performance, send more than one packet and calculate the
average round-trip time.

Typically, you should receive an Echo Reply packet within a few milliseconds. If you
do not get a response after about 10 seconds, you can assume that DDP dropped or
lost your Echo Request packet, and you should resend the packet.

The Echo Reply packet contains the same data that you sent in the Echo Request
packet. If you send multiple packets to determine an average tumaro~d time and
to compensate for the possibility of lost or dropped packets, you should include
different data in the data portion of each packet; this will allow you to distinguish
between replies to different request packets in the event that some replies are not
delivered in the same order that you sent them or that some packets are dropped.

• To test packet-delivery performance time, your socket listener can include a field in its
packet buffer record that saves the time in ticks when you sent the packet to compare
against the response time.

• Accept only packets from the target node. Use your socket listener to filter out packets
from nodes other than the target node to which you sent the Echo Request packet.

Follow these steps to send a packet to a target node and have AEP echo that packet back
to your socket listener:

1. Write a socket listener to be used to receive an Echo Reply packet back from the target
node to which you are sending the Echo Request packet.

The AEP Echoer will send the Echo Reply packet to the socket from which you send
the Echo Request packet. Follow the general instructions described earlier in this
chapter that explain how to write a socket listener.

2. Call the POpenSkt function to open a socket from which to send an Echo Request
packet, and assign your socket listener to that socket.

Using DDP 7-33

•

CHAPTER 7

Datagram Delivery Protocol (DDP)

3. Determine the internet address of the target node to which you want to send an Echo
Request packet.
You can use the Name-Binding Protocol (NBP) to get the address of the destination
application for which you want to measure round-trip packet delivery, and substitute
the socket ID of the AEP Echoer; the socket number of the AEP Echoer is always 4
on every node. NBP routines are described in the chapter "Name-Binding Protocol
(NBP)" in this book.

4. Prepare the datagram to be sent to the AEP Echoer on the target node by building
a write-data structure with specific values for certain fields. You can use the
BuildDDPwds procedure for this purpose.
Set the destination socket number equal to 4 to indicate that it's the Echoer socket; set
the DDP protocol type field also equal to 4 to indicate that the packet belongs to the
AEP implementation on the target node; set the first byte of the data portion equal to
1 to indicate that this is an Echo Request packet. Fill in the destination network
number and node ID for the target system; these are the numbers that NBP returned
to you (see the preceding step).

5. Call the PWr i teDDP function to send the Echo Request to the target node. As the
value of the wdsPointer parameter, specify the pointer to the write data structure
that you created.

DDP Reference

This section describes the data structures and routines that are specific to DDP. The
"Data Structures" section shows the Pascal data structures for the records and parameter
block that functions use for the protocol interface. The "Routines" section describes the
DDP routines.

Data Structures

This section describes the data structures that you use to provide information to and
receive it from DDP. It includes

• the write-data structure

• the address block record

• the MPP parameter block

7-34 DDP Reference

~
I

CHAPTER 7

Datagram Delivery Protocol (DDP)

The Write-Data Structure

A write-data structure is of type WDSElement and contains a series of pairs of length
words and pointers. Each pair indicates the length and location of a portiqn of the data,
including the header information, that constitutes the packet to be sent.over the network.

You pass the PWritepDP function a pointer to a write-data structure to send a DDP
packet to another socket. You can use the BuildDDPwds procedure described on
page 7-42 to create a write-data structure. ·

TYPE WDSElement
RECORD

entryLength:
entryPtr:

END;

Field descriptions

Integer;
Ptr;

entryLength The length of the data pointed to by entryPtr.

entryPtr A pointer to the DDP packet data to be sent using the PWriteDDP
function.

The Address Block Record

The address block record defines a data structure of AddrBlock type. The destAddress
parameter of the BuildDDPwds procedure takes an AppleTalk internet address value
specified in this format.

You use NBP routines to get the address of an application that is registered with NBP.
For more information about these routines, see the chapter uName-Binding Protocol
(NBP)" in this book.

TYPE AddrBlock
PACKED RECORD

aNet:
aNode:
aSocket:

END;

Field descriptions
aNet

aNode

aSocket

DDP Reference

Integer;
Byte;
Byte;

{network number}
{node ID}
{socket number}

The number of the network to which the node belongs that
is running the DDP client application whose address you
are specifying.
The node ID of the machine running ~e DDP client application
whose ~ddress you are specifying.
The nuq1ber of the socket used for the DDP client application.

7-35

CHAPTER 7

Datagram Delivery Protocol (DDP)

MPP Parameter Block

The DDP POpenSkt, PCloseSkt, and PWri teDDP functions use the following variant
record of the MPP parameter block, defined by the MPPParamBlock data type, to pass
information to and receive it from the .MPP driver.

This section defines the fields that are common to all of the DDP functions that use the
MPP parameter block. (The BuildDDPwds procedure does not use the MPP parameter
block.) The fields that are used for specific functions only are defined in the descriptions
of the functions to which they apply. This section does not define reserved fields, which
are used either internally by the .MPP driver or not at all.

TYPE MPPParamBlock =
PACKED RECORD

7-36

qLink:
qType:
ioTrap:
ioCmdAddr:
ioCompletion:
ioResult:
ioNamePtr:
ioVRefNum:
ioRefNum:
csCode:
CASE MPPParmType OF

OpenSktParm,
CloseSktParm,
WriteDDPParm:

QElemPtr;
Integer;
Integer;
Ptr;
ProcPtr;
OSErr;
StringPtr;
Integer;
Integer;
Integer;

{reserved}
{reserved}
{reserved}
{reserved}
{completion routine}
{result code}
{reserved}
{reserved}
{driver reference number}
{primary command code}

socket: Byte;
checksumFlag: Byte;

{socket number}
{checksum flag}

listener: Ptr; {For POpenSkt, pointer to socket }

Field descriptions
ioCompletion

ioResult

DDP Reference

{ listener routine. For PWriteDDP, }
{ pointer to write-data structure.}

A pointer to a completion routine that you can provide. When you
execute the POpenSkt function asynchronously, DDP calls your
completion routine when it completes execution of the function.
Specify NIL for this field if you do not wish to provide a completion
routine. If you execute the POpenSkt function synchronously, it
ignores the ioCompletion field.

The result of the function. When you execute the function asynchro­
nously, the function sets this field to 1 and returns a function result
of noErr as soon as the function begins execution. When the
function completes execution, it sets the ioResult field to the
actual result code.

Routines

CHAPTER 7

Datagram Delivery Protocol (DDP)

ioRefNum

csCode

socket

The .MPP driver reference number. The MPW interface fills in
this field.

The command code of the MPP command to be executed. The MPW
interface fills in this field.

The number of the socket to be opened, closed, or from which to
send data.

This section describes these DDP interface routines:

• the POpenSkt function that you use to open a DDP socket

• the PCloseSkt function that you use to close a socket that you opened with the
, POpenSkt function

• the PWr i teDDP function that you use to send a datagram to another socket

• the BuildDDPwds procedure that you use to create a data structure to hold the
header and data information that you want DDP to send

You pass parameters to and receive them from DDP in the fields of the parameter block
whose pointer you pass directly to the routine that you call. An arrow preceding each
parameter indicates whether it is an input parameter, an output parameter, or both:

Arrow Meaning

~ Input

~ Output

H Both

Opening and Closing DDP Sockets

DDP delivers datagrams from socket to socket. You must open a socket before you
use DDP to send or receive a DDP datagram.

• You use the POpenSkt function to open a DDP socket and associate your socket
listener with it.

• You use the PCloseSkt function to close a socket that you opened with the
POpenSkt function.

To receive a DDP datagram from another socket, you must provide a socket listener to
receive packets and your own routine to read the data. When you open a socket, you
specify a pointer to the socket listener for that socket.

DDP Reference 7-37

POpenSkt

DESCRIPTION

CHAPTER 7

Datagram Delivery Protocol (DDP)

The POpenSkt function opens a socket for your application to use, and it adds that
socket to the socket table along with a pointer to the socket listener that you provide.

FUNCTION POpenSkt (thePBptr: MPPPBPtr; async: Boolean): OSErr;

thePBptr

a sync

A pointer to an MPP parameter block.

A Boolean that specifies whether or not the function should be executed
asynchronously. Specify TRUE for asynchronous execution.

Parameter block

~ ioCompletion ProcPtr A pointer to completion routine.
~ ioResult
~ csCode
H socket
~ listener

Field descriptions
socket

listener

OS Err The result code.
Integer Always openSkt for this function.
Byte The socket number.
Ptr A pointer to socket listener.

The number of the socket you wish to open. Specify 0 for this field
to have DDP assign a socket number in the range 128 through 254
and return it in this field. Socket numbers 1 through 63 are reserved
for use by Apple Computer, Inc. You can use socket numbers 64
through 127 for this field during program development; however, it
is recommended that you not use these numbers in a commercial
product as there is no mechanism for resolving conflicts in the case
that someone else uses the same socket number.

Pointer to a socket listener that you provide. You cannot specify
NIL for this field. See "A Sample Socket Listener" beginning on
page 7-20 for information on writing a socket listener.

The POpenSkt function opens a DDP socket and associates that socket with the
socket listener whose pointer you specify. If you specify 0 for the socket field, DDP
dynamically assigns a socket, which it opens, and DDP returns the number of that
socket to you.

Alternatively, you can specify a socket number as the value of the socket field. The
POpenSkt function returns a result code of ddpSktErr if any of the following conditions
is true:

• You specify the number of an already open socket.

• You pass a socket number greater than 127.

• The socket table is full.

The POpenSkt function is equivalent to calling the PBControl function with a value of
openSkt in the csCode field of the parameter block.

7-38 DDP Reference

CHAPTER 7

Datagram Delivery Protocol (DDP)

You must provide a socket listener when you call the POpenSkt function. If you do not
intend to listen for DDP datagrams through the socket you open with this function, you
can provide a socket listener that does nothing but immediately return control to DDP.

DDP reads the destination socket address and delivers datagrams to the socket listener
associated with the socket. The socket listener can be part of a DDP client application or
a higher-level Apple Talk protocol that is also a client of DDP.

If you want a process using a socket to be visible to other processes using the Apple Talk
network, use the NBP PRegisterName function to register the name that is associated
with the socket and address of the process. See the chapter "Name-Binding Protocol
(NBP)" in this book for more information about NBP.

SPECIAL CONSIDERATIONS

You cannot specify NIL for the listener parameter; if you do so, your application will
crash and the computer on which it is running will hang.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

PCloseSkt

To execute the POpenSkt function from assembly language, call the_ Control trap
macro with a value of openSkt in the csCode field of the parameter block. You must
also specify the .MPP driver reference number. To execute the_ Control trap
asynchronously, include the value , ASYNC in the operand field.

noErr
ddpSktErr

0
-91

No error
Bad socket number or socket table is full

For information about how to use the POpenSkt function in sequence with other
routines to send and receive data over an Apple Talk network, see "Sending and
Receiving Data: An Overview" beginning on page 7-9.

The PCloseSkt function removes the entry for a specific socket from the socket table.

FUNCTION PCloseSkt (thePBptr: MPPPBPtr; async: Boolean): OSErr;

thePBptr A pointer to an MPP parameter block.

async A Boolean that specifies whether or not the function should be executed
asynchronously. Specify TRUE for asynchronous execution.

DDP Reference 7-39

DESCRIPTION

CHAPTER 7

Datagram Delivery Protocol (DDP}

Parameter block

ioCompletion
ioResult
csCode
socket

ProcPtr
OSErr
Integer
Byte

A completion routine.
The result code.
Always closeSkt for this function.
The number of the socket to close.

Field descriptions

socket The number of the socket you wish to close. You cannot use 0 for
this field.

Use the PCloseSkt function to close a socket that you opened with the POpenSkt
function. The PCloseSkt function returns a result code of ddpSktErr if you specify a
sock~t number of 0 or if there is no open socket with the socket number you specify.

The PCloseSkt function is equivalent to calling the PBControl function with a value
of closeSkt in the csCode field of the parameter block.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

To execute the PCloseSkt function from assembly language, call the_ Control trap
macro with a value of closeSkt in the csCode field of the parameter block. You must
also specify the .MPP driver reference number. To execute the_ Control trap
asynchronously, include the value , ASYNC in the operand field.

noErr
ddpSktErr

0
-91

No error
Bad socket number

For information on the assignment of socket numbers, see "POpenSkt" beginning on
page 7-38.

Sending DDP Datagrams

To send a DDP datagram to another socket, you must first open a socket with the
POpenSkt function, prepare a write-data structure, and finally send the packet using the
PWriteDDP function described in this section. You can use the BuildDDPwds procedure
described in this section to create the write-data structure.

7-40 DDP Reference

CHAPTER 7

Datagram Delivery Protocol (DDP)

PWriteDDP

DESCRIPTION

The PWri teDDP function sends a DDP datagram to another socket.

FUNCTION PWriteDDP (thePBptr: MPPPBPtr; async: Boolean): OSErr;

thePBptr A pointer to an MPP parameter block.

async A Boolean that specifies whether the function should be executed
asynchronously. Specify TRUE for asynchronous execution.

Parameter block

~ ioCompletion ProcPtr A completion routine.
~ ioResult OS Err The result code.
~ csCode Integer Always wr i teDDP for this function.
~ socket Byte The number of socket to send data from.
~ checksumFlag Byte The checksum flag; nonzero to

compute checksum.
~ wdsPointer Ptr A pointer to write-data structure.

Field descriptions

socket The number of the socket from which you want to send data. See
the description of the POpenSkt function for information on the
assignment of socket numbers.

checksumFlag

wdsPointer

The checksum flag. If you set this field to a nonzero value and if
DDP uses a long header for the datagram (that is, if the destination
socket has a network number different from that of the source
socket), then the PWriteDDP function calculates a checksum for the
datagram and includes it in the datagram header. Set this field to 0
if you do not want the PWri teDDP function to calculate a checksum.
A pointer to a write-data structure. The write-data structure
provides the destination address and the data for the datagram.
The DDP write-data structure is described in "Creating a DDP
Write;.Data Structur~" on page 7-12.

Before you call the PWr i teDDP function, you must prepare a write-data structure.
The write-data structure, shown in Figure 7-4 on page 7-13, includes a pointer to the
destination address and pointers to buffers containing the data you wish to send.
You can use the BuildDDPwds procedure to build a write-data structure. ·

Set the checksum flag field when you call the PWri teDDP function to have the function
calculate the checksum and include it in the packet header. Note, however, that only
long packet headers include a checksum field, and that whether the checksum is used
for error checking depends on how th~ socket listener code at the destination socket is
implemented.

The PWriteDDP function is equivalent to calling the PBControl function with a value
of wri teDDP in the csCode field of the parameter block.

DDP Reference 7-41

•

CHAPTER 7

Datagram Delivery Protocol {DDP)

SPECIAL CONSIDERATIONS

Memory used for the write-data structure belongs to DDP and must be nonrelocatable
until the PWr i teDDP function completes execution, after which you can either reuse the
memory or release it.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

To execute the PWri teDDP function from assembly language, call the_ Control trap
macro with a value of wri teDDP in the csCode field of the parameter block. You must
also specify the .MPP driver reference number. To execute the_ Control trap asynchro­
nously, include the value , ASYNC in the operand field.

noErr
ddpSktErr
ddpLenErr
noBridgeErr

0
-91
-92
-93

No error
Bad socket number
Datagram data exceeds 586 bytes
Could not find router to forward packet

For a description of the DDP write-data structure, see ~~creating a DDP Write-Data
Structure" on page 7-12.

If you are programming in Pascal or C, se~ the description of the BuildDDPwds
procedure that follows for help in creating a write-data structure.

BuildDDPwds

The BuildDDPwds procedure creates a write-data structure that you can use to send a
DDP pac~et to a remote socket.

PROCEDURE BuildDDPwds (wdsPtr,headerPtr,dataPtr: Ptr;
destAddress: AddrBlock; DDPType: Integer;
dataLen: Integer);

wdsPtr A pointer to a buffer that you provide that will contain the write­
data structure. The write-data structure created by BuildDDPwds is
14 bytes long.

headerPtr A pointer to a buffer that you provide that will contain the packet header.
This buffer must be at least 17 bytes long.

dataPtr A pointer to the data that you want to send. The maximum amount of
data that you can include in a DDP data packet is 586 bytes.

7-42 DDP Reference

DESCRIPTION

CHAPTER 7

Datagram Delivery Protocol (DDP)

destAddress

DDPType

dataLen

The address of the socket to which you want to send the data. The
address consists of the network number, the node ID, and the socket
number in AddrBlock format; see "The Address Block Record" on
page 7-35.

A node ID of 255 is the broadcast address; that is, the datagram is
broadcast to all nodes in the network. Note, however, that broadcast
datagrams are not forwarded by routers and so are not sent to nodes
on other networks in the internet.

The DDP protocol type of the packet you are sending. DDP protocol types
1 through 15 are reserved for use by Apple Computer, Inc. You can use
other protocol types as you see fit.

The length of the data pointed to by the dataPtr parameter.

The BuildDDPwds procedure creates a write-data structure that consists of a pointer for
the header, a length word cp1d pointer for the data, and a terminating 0 word. Because
the first pointer in the write-data structure must point to an odd address, it is difficult
to use Pascal to create a write-data structure. In this case, using the BuildDDPwds
procedure simplifies the process. However, the BuildDDPwds procedure assumes that
the data that you are sending is in a single block. In most cases, if you are using DDP
directly to send data across a network, a single block of data should be adequate.

You must provide a 17-byte buffer for the header block, a 14-byte buffer to hold the
write-data structure, and a pointer to the data you want to send. (The header block
is only 16 bytes, but because it begins on an odd address, the first byte is not used.)

SPECIAL CONSIDERATIONS

Memory that you allocate for the write-data structure buffers belongs to DDP and must
be nonrelocatable until the PWri teDDP function completes execution, after which you
can either reuse the memory or release it.

ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

The BuildDDPwds procedure is implemented entirely in the MPW interface files. There
is no assembly-language equivalent to this procedure.

The write-data structure is defined in "Creating a DDP Write-Data Structure" on
page 7-12.

To send the data pointed to by your write-data structure, use the PWri teDDP function
described on page 7-41.

DDP Reference 7-43

CHAPTER 7

Datagram Delivery Protocol (DDP)

Summary of DDP

Pascal Summary

Constants

CONST
{.MPP driver unit and reference numbers}
mppUnitNum ; 9; {MPP unit number}
mppRefNum

{csCodes}
writeDDP
closeSkt
openSkt

Data Types

;

=
=
=

-10;

246;
247;
248;

The Write-Data Structure

TYPE WDSElement =
RECORD

entryLength:
entryPtr:

END;

Integer;
Ptr;

The Address Block Record

TYPE AddrBlock =
PACKED RECORD

aNet:
aNode:
aSocket:

END;

Integer;
Byte;
Byte;

7-44 Summary of DDP

{MPP reference number}

{write out DDP packet, csCode}
{close DDP socket, csCode}
{open DDP socket, csCode}

{network number}
{node ID}
{socket number}

CHAPTER 7

Datagram Delivery Protocol (DDP)

MPP Parameter Block

MPPParmType = (••• OpenSktParm,CloseSktParm,WriteDDPParm •••)

TYPE MPPParamBlock
PACKED RECORD

qLink:
qType:
ioTrap:
ioCmdAddr:
ioCompletion:
ioResult:
ioNamePtr:
ioVRefNum:
ioRefNum:
csCode:
CASE MPPParmType OF

OpenSktParm,
CloseSktParm,
WriteDDPParm:

QElemPtr;
Integer;
Integer;
Ptr;
ProcPtr;
OSErr;
StringPtr;
Integer;
Integer;
Integer;

socket: Byte;
checksumFlag: Byte;
listener: Ptr;

{reserved}
{reserved}
{reserved}
{reserved}
{completion routine}
{result code}
{reserved}
{reserved}
{driver reference number}
{command code}

{socket number}
{checksum flag}
{For POpenSkt, pointer to socket }
{ listener routine. For PWriteDDP, }
{ pointer to write-data structure.}

END;

MPPPBPtr "MPPParamBlock;

Routines

Opening and Closing DDP Sockets

FUNCTION POpenSkt

FUNCTION PCloseSkt

Sending DDP Datagrams

FUNCTION PWriteDDP

PROCEDURE BuildDDPwds

Summary of DDP

(thePBptr: MPPPBPtr; async: Boolean): OSErr;

(thePBptr: MPPPBPtr; async: Boolean): OSErr;

(thePBptr: MPPPBPtr; async: Boolean): OSErr;

(wdsPtr,headerPtr,dataPtr: Ptr;
destAddress: AddrBlock; DDPType: Integer;
dataLen: Integer);

7-45

I

CHAPTER 7

Datagram Delivery Protocol (DDP)

C Summary

Constants

/*DDP parameter constants*/
#define MPPioCompletion MPP.ioCompletion
#define MPPioResult MPP.ioResult
#define MPPioRefNum MPP.ioRefNum
#define MPPcsCode MPP.csCode
#define DDPsocket DDP.socket
#define DDPchecksumFlag DDP.checksumFlag
#define DDPwdsPointer DDP.DDPptrs.wdsPointer
#define DDPlistener DDP.DDPptrs.listener

/*.MPP driver unit and reference number*/
enum {

mppUnitNum
mppRefNum =

9,
-10

/*MPP unit number*/
/*MPP reference number*/

};

/*DDP csCodes*/
enum {

};

writeDDP
closeSkt
openSkt

Data Types

=

=
=

The Write-Data Structure

struct WDSElement {
short entryLength;
Ptr entryPtr;

} WDSElement;

The Address Block Record

struct AddrBlock {
short
unsigned char
unsigned char

};

246,
247,
248

aNet;
aNode;
aSocket;

typedef struct AddrBlock AddrBlock;

7-46 Summary of DDP

/*send DDP packet*/
/*close DDP socket*/
/*open DDP socket*/

/*network number*/
/*node ID*/
/*socket number*/

CHAPTER 7

Datagram Delivery Protocol (DDP)

MPP Parameter Block

#define MPPATPHeader\
QElem
short
short
Ptr
ProcPtr
OS Err
long
short
short
short

typedef struct {
MPPATPHeader

}MPPparms;

*qLink;
qType;
ioTrap;
ioCmdAddr;
ioCompletion;
ioResult;
ioNameptr;
ioVRefNum;
ioRefNum;
csCode;

union ParamBlockRec {
MPPparms MPP;
DDPparms DDP;

};

typedef MPPParamBlock

typedef struct {
MPPATPHeader

char socket;
char checksumFlag;
union {
Ptr wdsPointer;
Ptr listener;

} DDPptrs;
}DDPparms;

Routines

*MPPPBtr;

Opening and Closing DDP Sockets

/*reserved*/\
/*reserved*/\
/*reserved */\
/*reserved*/\
/*completion routine*/\
/*result code*/\
/*command result (ATP user bytes)*/\
/*request transaction ID*/\
/*driver reference number*/\
/*command code*/

/*general MPP parms*/
/*DDP calls*/

/*socket number*/
/*checksum flag*/

/*pointer to write-data structure*/
/*point~r to write-data structure or *I
I* pointer to socket listener*/

pascal OSErr POpenSkt

pascal OSErr PCloseSkt

(MPPPBPtr the PBptr, Boolean async);

(MPPPBPtr thePBptr, Boolean async);

Summary of DDP 7-47

CHAPTER 7

Datagram Delivery Protocol (DDP)

Sending DDP Datagrams

pascal OSErr PWriteDDP

pascal void BuildDDPwds

(MPPPBPtr the PBptr, Boolean async);

(Ptr wdsPtr, header Ptr, Ptr dataPtr,
const AddrBlock netAddr, short ddpType,
short dataLen);

Assembly-Language Summary

Constants

mppUnitNum EQU

;csCodes for DDP
writeDDP EQU
closeSkt EQU
openSkt EQU

;long DDP packet header
ddpHopCnt EQU
ddpLength EQU
ddpChecksum EQU
ddpDstNet EQU
ddpSrcNet EQU
ddpDstNode EQU
ddpSrcNode EQU
ddpDstSkt EQU
ddpSrcSkt EQU
ddpType EQU

;short DDP packet header
sddpDstSkt EQU
sddpSrcSkt EQU
sddpType EQU

;DDP long header size
ddphSzLong EQU

DDP short header size
ddphSzShort EQU

shortDDP
longDDP

EQU
EQU

7-48 Summary of DDP

9

246

247

248

0

0

2

4

6

8

9

10

11

12

2

3

4

13

5

$01

$02

;MPP unit number

;write out DDP packet
;close DDP socket
;open DDP socket

;hop count (byte)
;packet length (word)
;checksum (word)
;destination network number (word)
;source network number (word)
;destination node address (byte)
;source node address (byte)
;destination socket number (byte)
;source socket number (byte)
;DDP protocol type field (byte)

;destination socket number (byte)
;source socket number (byte)
;DDP protocol type field (byte)

;size of extended DDP header

;size of short DDP header

;LAP type code for DDP (short header)
;LAP type code for DDP (long header)

CHAPTER 7

Datagram Delivery Protocol (DDP)

~DDP miscellaneous
ddpMaxWKS EQU $7F ;highest valid well-known socket
ddpMaxData EQU 586 ;maximum DDP data size
ddpLenMask EQU $03FF ~mask for DDP length
rhaSize EQU $18 ;size of read-header area
toRHA EQU 1 ;top of the read-header area

wdsEntrySz EQU 6 ;size of a write-data structure
DDPHopsMask EQU $3COO ~mask hop count bits from field

~command

writeDDP
closeSkt
openSkt

codes (csCodes)
EQU 246
EQU 247
EQU 248

Data Structures

~ header

;write out DDP packet
;close DDP socket
;open DDP socket

MPP Parameter Block Common Fields for DDP Routines

0 qLink long reserved
4 qType word reserved
6 ioTrap word reserved
8 ioCmdAddr long reserved

12 ioCompletion long address of completion routine
16 ioResult word result code
18 ioNamePtr long reserved
22 ioVRefNum word reserved
24 ioRefNum word driver reference number

OpenSkt Parameter Variant

26 csCode word command code; always openSkt
28 socket byte socket number
30 listener long pointer to socket listener

CloseSkt Parameter Variant

26 csCode word command code; always closeSkt
28 socket byte number of socket to be closed

WriteDDP Parameter Variant

26 csCode word command code; always wr i teDDP
28 socket byte number of socket to write from
30 listener long pointer to write-data structure

Summary of DDP

entry
in DDP

7-49

CHAPTER 7

Datagram Delivery Protocol (DDP)

Result Codes
noErr
ddpSktErr
ddpLenErr
noBridgeErr

0
-91
-92
-93

No error
Bad socket number or socket table is full
Datagram data exceeds 586 bytes
Could not find router to forward packet

7-50 Summary of DDP

CHAPTER 8

Apple Talk Session Protocol
(ASP)

Contents

About ASP 8-3
ASP Reference 8-6

Data Structures 8-6
XPP Parameter Block for ASP 8-6

Routines 8-8
Opening and Closing ASP Sessions 8-9
Sending Commands and Writing Data From the Workstation
to the Server 8-15
Obtaining Information About ASP's Maximum Capacities and the
Status of the Server 8-21
Canceling an ASP Request to Open a Session 8-25

Summary of ASP 8-27
Pascal Summary 8-27

Constants 8-27
Data Types 8-27
Routines 8-29

C Summary 8-29
Constants 8-29
Data Types 8-30
Routines 8-31

Assembly-Language Summary 8-32
Constants 8-32
Data Structures 8-33

Result Codes 8-35

Contents 8-1

CHAPTER 8

Apple Talk Session Protocol (ASP)

This chapter describes the Apple Talk Session Protocol (ASP) that you can use to establish
a session between an ASP workstation application or process and an ASP server
application. An ASP session is asymmetrical: all communication is initiated by the ASP
workstation and responded to by the ASP server.

ASP provides an application programming interface for the workstation side only. ASP is
not commonly used by application program developers. The primary use of ASP is to
provi~e services for the Apple Talk Filing Protocol (AFP) that, in tum, provides all of the
services necessary to access an Apple Talk AppleShare server. Most developers who want
to write an Apple Talk application that establishes a session use the Apple Talk Data
Stream Protocol (ADSP) because it provides peer-to-peer services. For these reasons, this
chapter includes II About" and "Reference" sections only; it does not include a ~~using"
section, as do most of the other chapters in this book. This chapter is included to
complete the coverage of the Apple Talk protocol stack in this book.

However, if you want to use ASP to write an application that runs on a workstation
and initiates a session with an ASP server, you should read this chapter and the chapter
in Inside AppleTalk, second edition, that describes the Apple Talk Session Protocol
specification.

You can use ASP to open and close a session with an ASP server; you can also send
commands and data across the session to the server and receive replies in response.
The commands that you send to the ASP server must adhere to the syntax of a higher­
level protocol that is built on top of the ASP server. ASP transfers the commands; it
does not interpret or execute them.

This chapter does not describe how to implement an ASP server. If you want to
implement an ASP server, you must use the programming interface to the Apple Talk
Transaction Protocol (ATP) and follow the Apple Talk Session Protocol specification
as defined in Inside AppleTalk, second edition.

If you want to write an application that supports a peer-to-peer session in which each
end of the session can send and receive data at any time, you should use the AppleTalk
Data Stream Protocol (ADSP) instead of ASP. The chapter 11 Apple Talk Data Stream
Protocol (ADSP)" in this book describes ADSP.

For an overview of ASP and how it fits within the Apple Talk protocol stack, read the
chapter "Introduction to Apple Talk" in this book. "Introduction to Apple Talk" also
introduces and defines some of the terminology used in this chapter. Because ASP is
built on top of ATP, possessing an understanding of ATP will help you to understand
ASP. The chapter "Apple Talk Transaction Protocol (ATP}" in this book describes ATP.

About ASP

The AppleTalk Session Protocol (ASP) allows one or more ASP workstation applications
or processes to establish a session with the same server at the same time. To track
communication from various sessions, ASP assigns a unique session identifier that is
referred to as a session reference number to each session. ASP is an asymmetrical protocol
that provides one set of services to the workstation and a different set of services to

About ASP 8-3

8-4

CHAPTER 8

Apple Talk Session Protocol (ASP)

the server. The ASP workstation application always initiates the process of setting
up a session and the communication across a session, and the ASP server replies to
commands that it receives. (ASP is built on top of ATP, and it follows the transaction
model of ATP while adding session-connection services.) The only case in which an ASP
server can initiate communication is through the ASP attention mechanism. Figure 8-1
shows ASP and its underlying protocols.

Figure 8-1 ASP and its underlying protocols

ASP

ATP

DDP

LAP Manager I

Dl
Port

Note
To open a session with an ASP server, you must know the server's
internet socket address; you can use the Name-Binding Protocol (NBP)
to obtain the internet socket address of any ASP server that advertises its
services on the network. •

You can open an ASP session and send commands to the ASP server for a higher-level
protocol, such as AFP, to interpret and execute. The commands that you send to an
ASP server must follow the syntax prescribed by the higher-level protocol that is a client
of the ASP server. ASP simply transfers the commands, and the ASP server returns
a response.

For example, the AppleShare server is Apple Talk's ASP server implementation. AFP uses
the services of ASP to allow a user to manipulate files on an AppleShare server. (AFP is

About ASP

CHAPTER 8

Apple Talk Session Protocol (ASP)

an example of an ASP workstation application.) As long as the ASP session is open,
the workstation can send AFP commands to request directory information, change
filenames, and so forth.

ASP ensures that commands from a workstation are delivered to the ASP server without
duplication in the same order in which they were sent. This feature is useful for imple­
menting applications that are state dependent, that is, applications in which the response
to a request is dependent on a previous request. A workstation application connecting to
a file server to read a file is an example of a state-dependent application: before the
application can read the file, it must have first issued a request to open the file.

ASP also provides an attention mechanism that allows the server to send a message to
the workstation. For example, a file server can use this messaging system to notify all of
the workstations that are using the file server that it is shutting down. ASP is responsible
for closing down the session if one end fails or becomes unreachable, and it will inform
the workstation applications of its action. The J(PP driver implements ASP.

Once again, if your application requires a session-oriented protocol, you should consider
whether to use ADSP instead of ASP. ASP and ADSP have in common the salient feature
that they are both session-oriented protocols. However, they each provide a different
type of session-oriented service. Although the differences between them are not parallel,
in contrasting the two protocols it is helpful to recognize that ASP is limited by the
structure of a transaction because it is built on top of ATP and that ADSP entails more
flexibility because it is built directly on top of DDP. Figure 8-2 illustrates the different
behavior and functions of the two protocols.

Figure 8-2 Differences between ASP and ADSP

ASP asymmetrical protocol

~ '"""""::;:::-? ASP server
software

~< I
ASP workstation ._ ___ _.

application

ADSP symmetrical protocol

~<~;;E~v~
ADSP workstation ADSP workstation

application application

About ASP 8-5

CHAPTER 8

Apple Talk Session Protocol (ASP)

Please read this note before you continue
ASP provides an application programming interface for the workstation
side only. The primary use of ASP is to provide services for the
AppleTalk Filing Protocol (AFP). In most cases, you will not need to use
ASP. Because very few application program developers use ASP, this

. chapter does not include a "Using" section. It includes only an overview
of ASP and an ASP reference section. •

ASP Reference

This section describes the data structures and routines that are specific to the Apple Talk
Session Protocol (ASP).

The "Data Structures" section shows the Pascal data structure for the XPP parameter
block for ASP. The "Routines" section describes the routines for opening an ASP session,
closing a specific ASP session or all ASP sessions on your node, sending commands and
data across a session to a server, obtaining information about ASP sessions on your node
or about a server, and canceling a request to open a session.

Data Structures
This section describes the XPP parameter block that ASP functions use to pass
information to and receive it from the .XPP driver.

XPP Parameter Block for ASP

The ASP functions use the XPP parameter block defined by the XPPParamBlock data
type to pass input and receive output parameters. In addition to the standard XPP
parameter block fields, the ASP functions use variant records. The ASPOpenSession

function uses the ASPOpenPrm variant record. The ASPAbortOS function uses the
ASPAbortPrm variant record. The ASPGetParms function uses the ASPSizeBlk variant
record. The ASPUserCommand and ASPUserWrite functions uses the ASPSubPrm

variant record. The ASPUserWri te, ASPUserCommand, and ASPGetStatus functions
use the ASPEndPrm variant record.

This section defines the parameter block fields that are common to all ASP functions. It
does not define reserved fields, which are used either internally by the .XPP driver or not
at all. The fields that are used by a particular function are defined in the section that
describes the function.

XPPPrmBlkType = (••• XPPPrmBlk,ASPAbortPrm,ASPSizeBlk •••);

XPPSubPrmType = (ASPOpenPrm,ASPSubPrm);

XPPEndPrmType = (... ASPEndPrm);

8-6 ASP Reference

CHAPTER 8

Apple Talk Session Protocol (ASP)

XPPParamBlock
qLink:
qType:
ioTrap:
ioCmdAddr:
ioCompletion:
ioResult:
cmdResult:
ioVRefNum:
ioRefNum:

PACKED RECORD
QElemPtr;
Integer;
Integer;
Ptr;
ProcPtr;
OSErr;
Longint;
Integer;
Integer;

csCode: Integer;
CASE XPPPrmBlkType OF
ASPAbortPrm:

(abortSCBPtr: Ptr);
ASPSizeBlk:

(aspMaxCmdSize: Integer;
aspQuantumSize: Integer;
numSesss: Integer);

XPPPrmBlk:
(sessRefnum: Integer;
aspTimeout: Byte;

aspRetry: Byte;
CASE XPPSubPrmType OF
ASPOpenPrm:

(serverAddr: AddrBlock;
scbPointer: Ptr;
attnRoutine: Ptr);

ASPSubPrm:
(cbSize: Integer;
cbPtr: Ptr;
rbSize: Integer;
rbPtr: Ptr;

CASE XPPEndPrmType OF
ASPEndPrm:

(wdSize: Integer;

{reserved}
{reserved}
{reserved}
{reserved}
{completion routine}
{result code}
{command result (ATP user bytes)}
{reserved}
{driver reference number}
{call command code}

{SCB pointer for AbortOS}

{for ASPGetParms}
{for ASPGetParms}
{for SPGetParms}

{offset to session refnum}
{timeout for ATP}
{retry count for ATP}

{server address block}
{SCB pointer}
{attention routine pointer}

{command block size}
{command block pointer}
{reply buffer size}
{reply buffer pointer}

{write data size}
wdPtr: Ptr; {write data pointer}
ccbStart: ARRAY£0 •• 295] OF Byte))); {beginning of command control }

{ block}
END;
XPPParmBlkPtr 1\XPPParamBlock;

ASP Reference 8-7

Routines

8-8

CHAPTER 8

Apple Talk Session Protocol (ASP)

Field descriptions

ioCompletion

ioResult

ioRefNum

esC ode

A pointer to a completion routine that you can provide. When you
execute a function asynchronously, Apple Talk calls your completion
routine when it completes execution of the function if you specify
a pointer to the routine as the value of this field. Specify NIL for
this field if you do not wish to provide a completion routine.
If you execute a function synchronously, Apple Talk ignores the
ioCompletion field. For information about completion routines,
see the chapter "Introduction to Apple Talk" in this book.

The result of the function. When you execute the function asynchro­
n~usly, the function sets this field to 1 and returns a function result
of noErr as soon as the function begins execution. When the
function completes execution, it sets the ioResult field to the
actual result code.
The driver reference number for the J<PP driver. The Device
Manager's OpenDriver function that you use to open the J<PP
driver returns the driver reference number in the refnum field. You
must supply this value. You can call this function to obtain the J<PP
driver's reference number even if the J<PP driver is already open.
The MPW interface does not fill in this value. For information on
opening the .XPP driver, see the chapter "AppleTc~.lk Utilities" in
this book. For information on the OpenDr i ver function, see the
chapter "Device Manager" in Inside Macintosh: Devices.
The command code of the XPP command to be executed. The MPW
interface fins in this field.

This section describes the ASP functions that you use to

• open an ASP session from an ASP workstation application or process

• close one or all ASP sessions for a workstation from your ASP workstation application
or process

• send commands and data across the session from the workstation to the server

• obtain information about the maximum capacities of the ASP implementation on
your node, such as the number of concurrent ASP sessions and the amount of data
that you can send

• obtain status information about a server without establishing a session with
that server

Before you can open an ASP session or call any of the ASP functions, you must open the
.XPP driver. You use the Device Manager's OpenDriver function to open the .XPP
driver. The .MPP and .ATP drivers must be open before you open the .XPP driver. For
information on opening the .XPP driver, see the chapter "Apple Talk Utilities" in this
book. For information on the Open Driver function, see the chapter "Device Manager"
in Inside Macintosh: Devices.

ASP Reference

CHAPTER 8

Apple Talk Session Protocol (ASP)

The chapter "AppleTalk Utilities" also describes how to close the .XPP driver. However,
in most circumstances, you should not close the .XPP driver because other applications
and processes could be using the protocols implemented by the .XPP driver.

You must pass the .XPP driver reference number as a parameter to each of the ASP
functions; the MPW interface does not fill in this value. The Ope nor i ver function that
you use to open the .XPP driver returns the driver reference number in the refnwn field.
You can call this function to obtain the .XPP driver's reference ntimber even if the .XPP
driver is already open.

An arrow preceding a parameter indicates whether the parameter is an input parameter,
an output parameter, or both:

Arrow

~

~

H

Meaning

Input

Output

Both

Opening and Closing ASP Sessions

This section describes how to open and close an ASP session from your workstation
application or process. It includes

• the ASPOpenSes s ion function that you use to open a session with a server

• the ASPCloseSession function that you use to close a single session when you are
finished using the connection

• the ASPCloseAll function that you use to close all of the ASP sessions running on
your node

ASPOpenSession

The ASPOpenSession function opens an ASP session between an ASP workstation
application and an ASP server application.

FUNCTION ASPOpenSession (thePBptr: XPPParmBlkPtr;

async: Boolean): OSErr;

thePBptr A pointer to an XPP parameter block.

async A Boolean that specifies whether the function should be executed
asynchronously or synchronously. Specify TRUE for asynchronous
execution.

ASP Reference 8-9

DESCRIPTION

8-10

CHAPTER 8

Apple Talk Session Protocol (ASP)

Parameter block

~ ioCompletion ProcPtr A pointer to a completion routine.
+--- ioResult OS Err The function result.
~ ioRefNum Integer The .XPP driver reference number.
~ csCode Integer Always openSess for this function.
+--- sessRefnum Integer The session reference number.
~ aspTimeout Byte The retry interval in seconds.
~ aspRetry Byte The number of retries.
~ serverAddr AddrBlock The server socket address.
~ scbPointer Ptr A pointer to the session control block.
~ attnRoutine Ptr A pointer to an attention routine.

Field descriptions

sessRefnum

aspTimeout
as pRe try
serverAddr

scbPointer

attnRoutine

A unique number that the .XPP driver assigns to the session that it
opens if the function completes successfully.

The interval in seconds between retries of the open session request.

The number of times that ASP will retry to open a session.

The internet socket address of the socket that the server is using to
listen for requests to open a session.

A pointer to a session control block (SCB) that the .XPP driver
requires to maintain an open session. The scbMemSize constant
defines the size of the session control block. The memory that you
allocate for the SCB must be nonrelocatable or locked because it
belongs to the .XPP driver for the life of the session.

A pointer to a routine that ASP calls if the workstation component
of ASP receives an attention request from the server or if the session
is closed. If you do not want to specify an attention routine to be
called, set this pointer to NIL.

To gain access to an ASP server, you must call the ASPOpenSession function to open
a session. Before calling the ASPOpenSession function, you must obtain the internet
socket address of the socket that the ASP server uses to listen for incoming session
requests. The server uses a session listening socket (SLS) for this purpose. You can use
the Name-Binding Protocol (NBP) to get the internet socket address of an SLS. You pass
the internet socket address of the SLS as the value of the serverAddr parameter.

You also pass the ASPOpenSession function a pointer to a session control block (SCB)
in the scbPointer parameter. The .XPP driver uses the SCB internally to manage the
session. Each session requires its own SCB. You must either allocate nonrelocatable
memory for the session control block or lock the memory and not modify it for the
duration of the session. The SCB size is defined by the constant scbMemSize. The
memory belongs to the .XPP driver for the life of the session. You can reuse an SCB after
either of the following events occurs:

• You have called the ASPCloseSession function to close the session and it has
completed successfully.

ASP Reference

CHAPTER 8

Apple Talk Session Protocol (ASP)

• The server end of the ASP session has closed the session or the .XPP driver has closed
the session. In both cases, the .XPP driver returns an aspParamErr result code as the
result of a call for that session.

You can also pass the ASPOpenSession function a pointer to an attention routine that
the .XPP driver calls when it receives an attention request from the server and when the
session is closing. ASP provides an attention mechanism that allows the ASP server to
notify the ASP workstation application of some event or critical piece of information. As
the value of the attnRoutine parameter, you can specify a pointer to your attention
routine, and the .XPP driver will call this routine when it receives an attention request
from the server or when the server, the workstation,· or ASP closes the session; ASP, as
implemented in the .XPP driver, will close a session if it cannot successfully open the
session before it exhausts the number of retries.

Because the .XPP driver calls your attention routine at interrupt level, you must observe
the following interrupt conventions in writing the attention routine:

• An attention routine can change registers AO through A3 and DO through D3.

• The routine must not call any Memory Manager routines.

The .XPP driver calls your attention routine with

• DO (word) equal to the session reference number (sessRefnwn) for that session. This
is the number that ASP returns on completion of the ASPOpenSession function.

• Dl (word) equal to the attention bytes passed by the server or 0 if the session
is closing.

To resume normal execution, your attention routine must return with an RTS (return
from subroutine) instruction.

If you code your program in a high-level language such as Pascal, you might not want to
provide an attention routine written in assembly language. If you do not want to provide
an attention routine, you can poll the attention bytes to determine if your ASP work­
station application has received an attention request from the server. The attention bytes
are the first 2 bytes of the session control block. When the .XPP driver receives an
ASPOpenSession function call, it sets these 2 bytes to 0. When the server sends an
attention request to the workstation, the .XPP driver receives the request and sets the
first 2 bytes of the SCB to the attention bytes from the packet. (A higher-level protocol
that uses the services of ASP defines the attention code that the 2 attention bytes in the
packet carry.) If the first 2 bytes of the SCB are nonzero when your Pascal program polls
them, the program will know that it has received an attention request from the server.
Your program can handle the request, based on the conventions defined by the
higher-level protocol, and reset the SCB' s attention bytes to 0. However, using this
method to determine if the workstation has received an attention request from the server
has limitations: two or more attention requests could be received between successive
polls and only the last one would be preserved.

When the .XPP driver receives an ASPOpenSession function, it sends a special open
session (OpenSession) packet as an ATP request to the SLS; this packet carries the
address of the socket that the ASP workstation application or process is using for the
session. The open session packet also carries a version number so that both ends can
verify that they are using the same version of ASP.

ASP Reference 8-11

CHAPTER 8

Apple Talk Session Protocol (ASP)

Once you open a session, you can send commands and data to the server and receive
command replies from the server. However, before you open an ASP session, you should
call the ASPGetParms function to determine the maximum sizes of commands and
replies that ASP supports on your node.

SPEOAL CONSIDERATIONS

Note that you must provide the .XPP driver reference number as an input parameter
to this function. You can obtain the driver reference number by calling the Device
Manager's OpenDriver function.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

8-12

To execute the ASPOpenSession function from assembly language, call the _control
trap macro with a value of openSess in the csCode field of the parameter block. You
must also specify the .XPP driver reference number. To execute the _Control trap
asynchronously, include the value ,ASYNC in the operand field.

aspBadVersNum
aspNoMoreSess

aspNoServers

aspParamErr

aspServerBusy
reqAborted

-1066
-1068

-1069

-1070

-1071
-1105

The server cannot support the ASP version number
The .XPP driver cannot support another ASP session
(the number of sessions that the driver is capable of
supporting is dependent on the machine type)
There is no server at the specified serverAddr
address, or the server did not respond to the request
You specified an invalid session reference number, or
the session has been closed
The server cannot open another session
The ASPOpenSession function call was aborted by an
ASPAbortOS function call

For information on how to use NBP, see the chapter "Name-Binding Protocol (NBP)" in
this book. ·

You can use the ASPAbortOS function described on page 8-25 to cancel an outstanding
ASPOpensession function request before it completes execution.

For the maximum sizes of commands and replies that ASP supports on your node, use
the ASPGetParms function, described on page 8-22.

ASP Reference

CHAPTER 8

Apple Talk Session Protocol (ASP)

ASPCloseSession

DESCRIPriON

The ASPCloseSession function closes the session that you identify.

FUNCTION ASPCloseSession (thePBptr: XPPPar.mBlkPtr;
async: Boolean): OSErr;

thePBptr

a sync

A pointer to an XPP parameter block.

A Boolean that specifies whether the function should be executed
asynchronously or synchronously. Specify TRUE for asynchronous
execution. ·

Parameter block

ioCompletion
ioResult
ioRefNum
csCode
sessRefnum

Field descriptions

ProcPtr
OS Err
Integer
Integer
Integer

A pointer to a completion routine.
The function result.
The .XPP driver reference number.
Always closeSess for this function.
The session reference number.

sessRefnum A unique number that the .XPP driver assigned to this session when
you called the ASPOpenSession function to open the session.

To close a single session, you pass the session's reference number to the
ASPCloseSession function in the sessRefnum field. The session reference number
is the number that the .XPP driver assigns to the session and returns to you in the
sessRefnum field when you open a session using the ASPOpenSession function. The
ASPCloseSession function cancels any function calls that are pending for the session,
closes the session, and calls the attention routine for the session, if there is one, with
an attention code of 0 to indicate that the session is dosed.

Note that there are other ways in which a session can be closed: for example, ASP doses
a session when one end of the session fails. A session remains open until it is explicitly
terminated by either the ASP workstation application or the ASP server or until one of
the session's ends fails or becomes unreachable.

SPECIAL CONSIDERATIONS

Note that you must provide the .XPP driver reference number as an input parameter
to this function. You can obtain the driver reference number by calling the Device
Manager's OpenDri ver function.

ASP Reference 8-13

CHAPTER 8

Apple Talk Session Protocol (ASP)

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

To execute the ASPCloseSession function from assembly language, call the _control
trap macro with a value of closeSess in the csCode field of the parameter block. You
must also specify the J<PP driver reference number. To execute the_ Control trap
asynchronously, include the value , ASYNC in the operand field.

aspParamErr

aspSessClosed

-1070

-1072

You specified an invalid session reference number,
or the session has been closed
The J(PP driver is in the process of closing down
the session

You can call the ASPCloseAll function, described next, to cancel all active ASP sessions
on your node. Note that you should use the ASPCloseAll function cautiously as
applications and processes other than your own that are running on the same node could
be using ASP sessions.

ASPCloseAll

DESCRIPTION

8-14

The ASPCloseAll function closes all of the active ASP sessions on the node.

FUNCTION ASPCloseAll (thePBptr: XPPParmBlkPtr;
async: Boolean): OSErr;

thePBptr A pointer to an XPP parameter block.

async A Boolean that specifies whether the function should be executed
asynchronously or synchronously. Specify TRUE for asynchronous
execution.

Parameter block

ioCompletion
ioResult
ioRefNum
csCode

ProcPtr
OS Err
Integer
Integer

A pointer to a completion routine.
The function result.
The .XPP driver reference number.
Always closeAll for this function.

To close all of the ASP sessions that are active and maintained by the J(PP driver on
the node, you call the ASPCloseAll function. This function cancels all active requests,
and it invokes the attention routines for any active sessions, if attention routines were
provided. A good use of this function is as a system-level function call to ensure that all
ASP sessions are closed before you close the .XPP driver.

ASP Reference

CHAPTER 8

Apple Talk Session Protocol (ASP)

SPECIAL CONSIDERATIONS

Note that you must provide the .XPP driver reference number as an input parameter
to this function. You can obtain the driver reference number by calling the Device
Manager's OpenDr i ver function.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

To execute the ASPCloseAll function from assembly language, call the_ Control trap
macro with a value of closeAll in the csCode field of the parameter block. You must
also specify the J(PP driver reference number. To execute the_ Control trap asynchro­
nously, include the value , ASYNC in the operand field.

aspParamErr -1070

aspSessClosed -1072

You specified an invalid session reference number,
or the session has been closed
The .XPP driver is in the process of closing
down the session

Sending Commands and Writing Data From the Workstation to the Server

After you open a session, you can send a sequence of commands or a variable-size block
of data across the session to the server. ASP returns to your ASP workstation application
replies to the commands from the server end of the session. This section describes the
ASPUserCommand function that you use to send commands to the server and the
ASPUserWri te function that you use to send data.

ASPUserCommand

The ASPUserCommand function sends a command that you define from the workstation
to the server across a session between them. ASP does not interpret the command syntax
or execute the command; it simply transfers the command to the ASP server.

FUNCTION ASPUserCommand (thePBptr: XPPParmBlkPtr;
async: Boolean): OSErr;

thePBptr A pointer to an XPP parameter block.

async A Boolean that specifies whether the function should be executed
asynchronously or synchronously. Specify TRUE for asynchronous
execution.

ASP Reference 8-15

DESCRIPTION

8-16

CHAPTER 8

Apple Talk Session Protocol (ASP)

Parameter block

~ ioCompletion ProcPtr A pointer to a completion routine.
~ ioResult
~ cmdResult
~ ioRefNum
~ csCode
~ sessRefnum
~ aspTimeout
~ cbSize
~ cbPtr
H rbSize
~ rbPointer
~ ccbStart

Field descriptions

cmdResult

sessRefnum

aspTimeout

cbSize

cbPtr

rbSize

rbPointer
ccbStart

OSErr The function result.
Longint The ASP command result.
Integer The .XPP driver reference number.
Integer Always usercommand for this function.
Integer The session reference number.
:Byte The retry interval in seconds.
Integer The command block size.
Ptr A pointer to the command block.
Integer The reply buffer and reply size.
Ptr A pointer to the reply buffer.
Array The beginning of memory for the CCB.

The ASP command result, consisting of 4 bytes of data returned by
the server. The ASP client application defines the contents of the
command result field. For example, AFP defines this field to specify
the result of the AFP command. This field is valid if no system-level
error is returned in the ioResult field.

The reference number assigned to this session that the
ASPOpenSession function returned when you called it to open
the session.

The time in seconds after which ASP is to retry to send the command
across the session. You cannot specify the number of retries, just the
time between them. ASP will retry to transmit the command until
either it succeeds or the session is closed.

The size in bytes of the buffer that contains the command that
ASP is to send to the sever. The command buffer size must not
exceed the value of aspMaxCmdSize, which the ASPGetParms
function returns.

A pointer to a buffer containing the command that ASP is to send
to the server.

On input, the size in bytes of the buffer that you allocated to contain
the command reply that you expect to receive from the server. On
return, the size in bytes of the reply data that was actually returned.

A pointer to the buffer for the command reply.

The beginning of the memory for the command control block (CCB)
that the .XPP driver is to use. The memory allocated for the CCB
must not exceed the maximum of 150 bytes for this function. The
CCB is an array that is part of the .XPP parameter block.

You use the ASPUserCommand function to send a user command across an ASP session.
You pass to the ASPUserCommand function a pointer to a variable-size command block
that contains the command data to be sent to the ASP server. The command data must
adhere to a format defined by a higher-level protocol that is built on top of the ASP

ASP Reference

CHAPTER 8

Apple Talk Session Protocol (ASP)

server, such as the Apple Talk Filing Protocol (AFP). The command data requests the
server to perform a particular function and return a reply consisting of a variable-size
block of data and a command result. Some examples of the types of commands that you
can send are

• a request to open a particular file on a file server (The server would return a small
amount of data for this request.)

• a request to read a range of bytes from a device (The server might send a multiple-
packet reply to this request.)

ASP delivers the commands in the same sequence that you send them. ASP does not
interpret the command data or in any way participate in executing the command's
function. It simply conveys the command data, included in a higher-level format, to
the server end of the session and returns the command reply to your ASP workstation
application. The command reply consists of a 4-byte command result returned in the
cmdResul t field and a variable-size command reply returned in the reply buffer that
you supply. The higher-level protocol that is the client of ASP defines the content and
use of the command result. A command result error is returned in the cmdResul t field.
All other types of errors are returned in the function's parameter block ioResul t field.
These error codes report the following error conditions:

• system-level errors returned by the JCPP driver indicating, for example, that the
driver is not open or that a particular system call is not supported

• .XPP driver errors indicating, for example, that the session is not open

• Apple Talk errors returned from the underlying Apple Talk protocols

• an ASP-specific error returned from an ASP server, for example, in response to a failed
ASPOpenSession function

Figure 8-3 on page 8-18 shows how these errors are reported.

The .XPP driver uses the memory at the end of the XPP parameter block defined as a
CCBStart array as an internal command control block (CCB). To ensure that the
function executes successfully, you can specify the maximum size for this array as
indicated in particular for the function that uses it.

You can minimize the amount of memory that is used for the CCB in the queue element.
To do this, you should understand how ASP uses this memory. ASP uses the CCB to
build data structures, including parameter blocks and buffer dat~ structures (BDS), that
it needs in order to make function calls to the .ATP driver. (See the chapter "Apple Talk
Transaction Protocol [ATP]" in this book for information on ATP and buffer data
structures.) The exact size of the memory that ASP needs for the CCB depends on the
size of the replies that you expect from the server, and in the case of the ASPUserWrite
function, the size of the data to be written. For the ASPUserCommand, ASPUserWrite,
and ASPGetSt~tus functions, ASP must set up a 'f3DS to hold the reply information.
The number of entries in the BDS that ASP creates is equal to the size of the reply buffer
divided by 578 (the maximum number of data bytes per ATP response packet), rounded
up. A BDS cannot exceed eight elements. In addition to a BDS, ASP uses the CCB
memory for the queue element to call the .ATP driver.

ASP Reference 8-17

CHAPTER 8

Apple Talk Session Protocol (ASP)

Figure 8-3 Error reporting in ASP

ASP workstation

ASP server

ASP server
error

ASP client
command result

System error

XPP error

Apple Talk error

AppleTalk error

cmdResul t field

ASP client
command result

You can use the following equations to determine the minimum size of a CCB for a
function that includes a reply buffer (rbSize):

bdsSize
ccbSize

MIN (((rbSize DIV 578) + 1) , 8) * bdsEntrySz
ioQEl Size + 4 + bdsSize

For functions, such as ASPUserWr ite, ASP must create an additional BDS and queue
element to use in sending the write data to the server. You can use the following equa­
tions to determine the minimum size of a CCB for an ASPUserWrite function; these
equations take into account the reply buffer (rbSi ze) and write data size (wdSi ze):

wrBDSSize = MIN (((wdSize DIV 578) + 1) ,8) * bdsEntrySz
wrCCBSz = (2 * ioQElSize) + 4 + bdsSize + wrBDSSize

Note that bdsEntrySz is equal to 12 and i oQelSize is equal to 50.

SPECIAL CONSIDERATIONS

Note that you must provide the .XPP driver reference number as an input parameter
to this function. You can obtain the driver reference number by calling the Device
Manager's OpenDriver function.

ASSEMBLY-LANGUAGE INFORMATION

8-18

To execute the ASPUserCommand function from assembly language, call the _Control
trap macro with a value of userCommand in the csCode field of the parameter block.
You must also specify the .XPP driver reference number. To execute the _Control trap
asynchronously, include the value , ASYNC in the operand field.

ASP Reference

CHAPTER 8

Apple Talk Session Protocol (ASP)

RESULT CODES

aspBufTooSmall -1067

aspParamErr -1070

aspSessClosed -1072

aspSizeErr -1073

The reply data exceeds the size of the reply buffer; the
J(PP driver will fill the buffer and truncate the data
You specified an invalid session reference number, or
the session has been closed
The J(PP driver is in the process of closing down
the session
The size of the command block exceeds the maximum
sizeofaspMaxCmdSize

ASPUserWrite

The ASPUserWrite function transfers data from the workstation to the server across a
specific session.

FUNCTION ASPUserWrite (thePBptr: XPPParmBlkPtr;
async: Boolean): OSErr;

thePBptr

a sync

A pointer to an XPP parameter block.

A Boolean that specifies whether the function should be executed
asynchronously or synchronously. Specify TRUE for asynchronous
execution.

Parameter block

~ iocompletion ProcPtr A pointer to a completion routine.
~ ioResult OSErr The function result.
~ cmdResult Longint The ASP command result.
~ ioRefNum Integer The J<PP driver reference number.
~ csCode Integer Always userwr i te for this function.
~ sessRefnum Integer The session reference number.
~ aspTimeout Byte The retry interval in seconds.
~ cbSize Integer The command block size.
~ cbPtr Ptr A pointer to command blocks.
H rbSize Integer The reply buffer size and reply size.
~ rbPointer Ptr A pointer to the reply buffer.
H wdSize Integer The write data size.
~ wdPtr Ptr The write data pointer.
~ ccbStart Array The beginning of memory for the CCB.

Field descriptions

cmdResult The ASP command result consisting of 4 bytes of data returned by
the server. The ASP client application defines the contents of the
command result field. For example, AFP defines this field to specify
the result of the AFP command. This field is valid if no system-level
error is returned in the ioResul t field. ·

ASP Reference 8-19

•

DESCRIPTION

CHAPTER 8

Apple Talk Session Protocol (ASP)

sessRefnum

aspTimeout

cbSize

cbPtr

rbSize

rbPointer

wdSize

wdPtr

ccbStart

The reference number of the session that you want to use to transfer
data. The session reference number is the unique number that the
.XPP driver assigned to this session when you opened the session
by calling the ASPOpenSes s ion function.

The time in seconds after which ASP is to retry to send data across
the session.
The size in bytes of the command data that ASP is to transfer across
the session.
A pointer to the buffer containing the command data to be
transferred.

On input, the size in bytes of the buffer that you allocated to contain
the command reply that you expect to receive from the server. On
return, the size in bytes of the reply data that was actually returned.

A pointer to the buffer for the reply data.

On input, the size in bytes of the of the write data that the
command is to send. On return, the size in bytes of the write data
that was actually sent.

A pointer to the buffer containing the data to be written.

The beginning of the memory for the command control block (CCB)
that the .XPP driver is to use. The maximum size of this block
is 296 bytes. The CCB is an array that is part of the .XPP
parameter block.

The ASPUserwrite function allows you to transfer a variable-size block of data to the
server end of the ASP session and receive a reply. If you have previously called the
ASPUserCommand function to send a command that directs the ASP server to open a
file, you can call the ASPUserWri te function to write data to the file.

The .XPP driver uses the memory at the end of the XPP parameter block defined as
a CCBStart array as an internal command control block (CCB). To ensure that the
function executes successfully, you can specify the maximum size for this array as
indicated in particular for the function that uses it. If you want to limit the amount
of memory used for the CCB, you can specify the minimum amount of memory
required for this array.

A command result error is returned in the cmdResul t field. All other types of errors
are returned in the function's parameter block ioResul t field. Error reporting for
the ASPUserwrite function is the same as for the ASPUserCommand.

8-20 ASP Reference

CHAPTER 8

Apple Talk Session Protocol (ASP)

SPECIAL CONSIDERATIONS

Note that you must provide the .XPP driver reference number as an input parameter
to this function. You can obtain the driver reference number by calling the Device
Manager's OpenDriver function.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

To execute the ASPUserWrite function from assembly language, call the _control
trap macro with a value of userWrite in the csCode field of the parameter block. You
must also specify the .XPP driver reference number. To execute the_ Control trap
asynchronously, include the value , ASYNC in the operand field.

aspBufTooSmall -1067

aspParamErr -1070

aspSessClosed -1072

aspSizeErr -1073

The reply data exceeds the size of the reply buffer;
the .XPP driver will fill the buffer and truncate
the data
You specified an invalid session reference number,
or the session has been closed
The .XPP driver is in the process of c~osing
the session
The size of the command block exceeds the
maximum size of 296 bytes

To send a command to the server to direct it to perform a prerequisite action before you
use the ASPUserwrite command to write data,. use the ASPUserConunand function,
described on page 8-15. To determine the minimum amount of memory required for the
CCB or to find out more about the possible types of error conditions for which errors are
returned and how these error results are reported, see the description of the
ASPUserConunand function.

Obtaining Information About ASP's Maximum Capacities and the Status of the Server

This section describes the ASPGetParms function that you can use to determine how
many concurrent ASP sessions can run on your node and the maximum amount of data
that you can send and receive across a session. Before you open an ASP session, you
should call the ASPGetParms function to determine the maximum sizes of commands
and replies that ASP supports on your node.

This section also describes the ASPGetStatus function that you can use to obtain server
status information without opening a session with the server.

ASP Reference 8-21

CHAPTER 8

Apple Talk Session Protocol (ASP)

ASPGetParms

DESCRIPTION

The ASPGetParms function returns the maximum size of the data that you can send and
receive across an ASP session and the maximum number of concurrent ASP sessions that
the .XPP driver running on your node supports.

FUNCTION ASPGetParms (thePBptr: XPPParmBl.kPtr;
async: Boolean): OSErr;

thePBptr

a sync

A pointer to an XPP parameter block.

A Boolean that specifies whether the function should be executed
asynchronously or synchronously. Specify TRUE for asynchronous
execution.

Parameter block

~ ioCompletion ProcPtr A pointer to a completion routine.
~ ioResult OS Err The function result.
~ ioRefNum Integer The .XPP driver reference number.
~ csCode Integer Always getParms for this function.
~ aspMaxCmdSize Integer The maximum size of command data.
~ aspQuantumSize Integer The maximum data size.
~ numSesss Integer The number of sessions.

Field descriptions

aspMaxCmdSize The maximum size in bytes of a command that you can send to
the server.

aspQuantumSize The maximum size in bytes of the data that you can either request
ASP to transfer to the server in an ASPUserWri te function call or
receive from the server in a command reply.

numSesss The number of concurrent ASP sessions that the .XPP driver
supports on your node.

The ASPGetParms function returns information about the data capacity of an ASP
session that you need to know to send commands using the ASPUserCommand and
ASPUserWri te functions and write data using the ASPUserwr i te function. It also
tells you how many concurrent ASP sessions your node supports. You do not need to
establish a session before you call the ASPGetParms function.

SPECIAL CONSIDERATIONS

8-22

Note that you must provide the .XPP driver reference number as an input parameter
to this function. You can obtain the driver reference number by calling the Device
Manager's OpenDriver function.

ASP Reference

CHAPTER 8

Apple Talk Session Protocol (ASP)

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

To execute the ASPGetParms function from assembly language, call the_ Control trap
macro with a value of getParms in the csCode field of the parameter block. You must
also specify the .XPP driver reference number. To execute the_ Control trap asynchro­
nously, include the value , ASYNC in the operand field.

noErr 0 No error

ASPGetStatus

The ASPGetStatus function returns status information about the server whose internet
socket address you provide.

FUNCTION ASPGetStatus (thePBptr: XPPParmBlkPtr;
async: Boolean): OSErr;

thePBptr

a sync

A pointer to an XPP parameter block.

A Boolean that specifies whether the function should be executed
asynchronously or synchronously. Specify TRUE for asynchronous
execution.

Parameter block

--+ ioCompletion ProcPtr A pointer to a completion routine.
t- ioResult
--+ ioRefNum
--+ csCode
--+ aspTimeout
--+ aspRetry
--+ serverAddr
H rbSize
--+ rbPtr
t- ccbStart

Field descriptions
aspTimeout

aspRetry

serverAddr

OSErr The function result.
Integer The .XPP driver reference number.
Integer Always getStatus for this function.
Byte The retry interval in seconds.
Byte The number of retries.
AddrBlock The server socket address.
Integer The reply buffer and reply size.
Ptr A pointer to the reply buffer.
Array The beginning of memory for the CCB.

The time in seconds after which ASP is to retry to obtain
information about the status of the server whose address
you provide.
The number of times ASP is to retry to obtain the server status
information.
The internet socket address of the server about which you want
status information.

rbSize On input, the size in bytes of the buffer that you allocated to contain
the reply that you expect to receive from the server. On return, the
size in bytes of the reply (status) data that was actually returned.

ASP Reference 8-23

DESCRIPTION

CHAPTER 8

Apple Talk Session Protocol (ASP)

rbPtr

ccbStart

A pointer to the buffer for the reply data.

The beginning of the memory for the command control block (CCB)
that the J(PP driver is to use. The memory allocated for the CCB
must not exceed the maximum of 150 bytes.

You can use the ASPGetStatus function to obtain service status information about a
server without opening a session between your application and that server. ASP does not
impose any structure on the status block. The protocol above ASP defines the structure.
The .XPP driver uses the memory at the end of the XPP parameter block defined as
a CCBStart array as an int~mal command control block (CCB). To ensure that the
function executes successfully, you can specify the maximum size for this array as
indicated in particular for the function that uses it. If you want to limit the amount of
memory used for the CCB, you can specify the minimum amount of memory required
for ¥s array.

SPECIAL CONSIDERATIONS

Note that you must provide the .XPP driver reference number as an input parameter
to this function. You can obtain the driver reference numl:Jer by calling the Device
Manager's OpenDriver function.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

8-24

To execute the ASPGetStatus function from assembly language, call the _control
trap macro with a value of getStatus in the csCode field of the parameter block.
You must also specify the .XPP driver reference number. To execute the_ Control
trap asynchronously, include the value , ASYNC in the operand field.

aspBufTooSmall

aspNoServer

-1067

-1069

The reply data exceeds the size of the reply buffer; the
.XPP driver will fill the buffer and truncate the data
There was no response from the server whose address
you specified as the value of serverAddr

To determine the minimum amount of memory required for the CCB, refer to the
description of the ASPUserCommand function on page 8-15.

ASP Reference

CHAPTER 8

Apple Talk Session Protocol (ASP)

Canceling an ASP Request to Open a Session

This section describes the ASPAbortOS function that you can use to cancel a pending
request to open a session.

ASPAbortO~

DESCRIPTION

The ASPAbortOS function cancels a specific pending request to open an ASP session
function.

FUNCTION ASPAbortOS (thePBptr: XPPParmBlkPtr;
async: Boolean): OSErr;

thePBptr

a sync

A pointer to an XPP parameter block.

A Boolean that specifies whether the function should be executed
asynchronously or synchronously. Specify TRUE for asynchronous
execution.

Parameter block

ioCompletion
ioResult
ioRefNum
csCode
abortSCBPointer

Field descriptions
abortSCBPointer

ProcPtr
OSE+r
Integer
Integer
Ptr

A pointer to a completion routine.
The function result.
The .XPP driver reference number.
Always abortOS for this function.
A pointer to the session control block.

A pointer to the session control block (SCB) that you passed to the
ASPOpenSession function that you want to cancel.

The ASPAbortOS function cancels a single call to the ASPOpenSession function if that
function has not yet completed execution. You identify the request to be canceled by
passing the ASPAbortOS function the pointer to the original session control block that
you specified to open the session.

SPECIAL CONSIDERATIONS

Note that you must provide the .XPP driver reference number as an input parameter to
this function. You can obtain the qnver reference number by calling the Device
Manager's OpenDri ver function.

ASP Reference 8-25

CHAPTER 8

Apple Talk Session Protocol (ASP)

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

To execute the ASPAbortOS function from assembly language, call the _Control trap
macro with a value of abortos in the csCode field of the parameter block. You must
also specify the .XPP driver reference number. To execute the_ Control trap asynchro­
nously, include the value , ASYNC in the operand field.

cbNotFound -1102 Specified SCB was not found (there is no outstanding
open session function call with this SCB)

For information on the session control block, see the description of the
ASPOpenSession function on page 8-9.

8-26 ASP Reference

CHAPTER 8

Apple Talk Session Protocol (ASP)

Summary of ASP

Pascal Summary

Constants

CONST
{.XPP driver
xppUnitNum
xppRefNum

unit and reference number}
= 40; {XPP unit number}
= -41;

{command codes for ASP}
opensess 255;

closeSess = 254;

usercommand = 253;

userWrite 252;

getStatus 251;

getParms = 249;

abort OS = 248;

closeAll = 247;

{miscellaneous}
xppLoadedBit = 5;

scbMemSize = 192;

Data Types

Address Block Record

TYPE AddrBlock =
PACKED RECORD

aNet: Integer;
aNode: Byte;
aSocket: Byte;

END;

Summary of ASP

{XPP reference number}

{open session}
{close session}
{user command}
{user write}
{get server status}
{get parameters for session}
{cancel open session request}
{close all open sessions}

{XPP bit in PortBUse}
{size of memory for SCB}

{network number}
{node ID}
{socket number}

8-27

CHAPTER 8

Apple Talk Session Protocol (ASP)

XPP Parameter Block for ASP

XPPPrmBlkType; (••• XPPPrmBlk,ASPAbortPr.m,ASPSizeBlk •••);
XPPSubPrmType = (ASPOpenPrm,ASPSubPrm);
XPPEndPrmType (••• ASPEndPrm);

TYPE XPPParamBlock =

PACKED RECORD
qLink: QElemPtr;

Integer;
Integer;
Ptr;
ProcPtr;
OSErr;
Longint;
Integer;
Integer;

}

8-28

qType:
ioTrap:
ioCmdAddr:
ioCompletion:
ioResult:
cmdResult:
ioVRefNum:
ioRefNum:
csCode: Integer;
CASE XPPPrmBlkType OF
ASPAbortPrm:

(abortSCBPtr: Ptr);
ASPSizeBlk:

(aspMaxCmdSize: Integer;
aspQuantumSize:Integer;

numSesss: Integer);

XPPPrmBlk:
(sessRefnum: Integer;
aspTimeout: Byte;
aspRetry: Byte;
CASE XPPSubPrmType OF
ASPOpenPrm:
(serverAddr: AddrBlock;
scbPointer: Ptr;
attnRoutine: Ptr);
ASPSubPrm:
(cbSize: Integer;
cbPtr: Ptr;
rbSize: Integer;
rbPtr: Ptr;

Summary of ASP

{reserved}
{reserved}
{reserved}
{reserved}
{completion routine}
{result code}
{command result (ATP user bytes)}
{reserved}
{driver reference number}
{call command code}

{SCB pointer for AbortOS}

{maximum size of data for commands}
{maximum size of data for request }
{ commands and receive replies}
{number of concurrent sessions }
{ for your node}

{offset to session refnum}
{timeout for ATP}
{retry count for ATP}

{server address block}
{SCB pointer}
{attention routine pointer}

{command block size}
{command block pointer}
{reply buffer size}
{reply buffer pointer}

CHAPTER 8

Apple Talk Session Protocol (ASP)

CASE XPPEndPr.mType OF
ASPEndPr.m:
(wdSize: Integer; {write data size}
wdPtr: Ptr; {write data pointer}
ccbStart: ARRAY£0 •• 295] OF Byte))); {beginning of command control}

{ block}
END;

XPPParmBlkPtr = AXPPParamBlock;

Routines

Opening and Closing ASP Sessions

FUNCTION ASPOpenSession

FUNCTION ASPCloseSession

FUNCTION ASPCloseAll

(thePBptr: XPPPar.mBlkPtr; async: Boolean): OSErr;

(thePBptr: XPPPar.mBlkPtr; async: Boolean): OSErr;

(thePBptr: XPPParmBlkPtr; async: Boolean): OSErr;

Sending Commands and Writing Data From the Workstation to the Server

FUNCTION ASPUserCommand

FUNCTION ASPUserWrite

(thePBptr: XPPParmBlkPtr; async: Boolean): OSErr;

(thePBptr: XPPParmBlkPtr; async: Boolean): OSErr;

Obtaining Information About ASP's Maximum Capacities and the Status of the Server

FUNCTION ASPGetPar.ms

FUNCTION ASPGetStatus

(thePBptr: XPPParmBlkPtr; async: Boolean): OSErr;

(thePBptr: XPPParmBlkPtr; async: Boolean): OSErr;

Canceling an ASP Request to Open a Session

FUNCTION ASPAbortOS

C Summary

Constants

enum {

xppUnitNum
xppRefNum

Summary of ASP

(thePBptr: XPPPar.mBlkPtr; async: Boolean): OSErr;

40,

-41};

/*.XPP driver unit and reference */
I* number*/
/*XPP unit number*/
/*XPP reference number*/

8-29

CHAPTER 8

Apple Talk Session Protocol (ASP)

enum {
openSess 255,

closeSess ;;:: 254,

userCommand ;;:: 253,

userwrite 252,

getStatus ;;:: 251,

getParms ;;:: 249,

abort OS ;;:: 248,

closeAll ;;:: 247};

enum {
xppLoadedBit ;;:: 5,

scbMemSize 192};

Data Types

Address Block Record

struct AddrBlock {
short

} ;

unsigned char
unsigned char

aNet;
aNode;
aSocket;

XPP Parameter Block for ASP

#define XPPPBHeader\
QElem
short
short
Ptr
ProcPtr
OSErr
long
short
short
short

typedef struct {
XPPPBHeader

short
char
char

*qLink;
qType;
ioTrap;
ioCmdAddr;
iocompletion;
ioResult;
cmdResult;
ioVRefNum;
ioRefNum;
csCode;

sessRefnum;
aspTimeout;
aspRetry;

8-30 Summary of ASP

/*command codes for ASP*/
/*open session*/
/*close session*/
/*user command*/
/*user write*/
/*get status*/
/*get parameters*/
/*cancel open session request*/
/*close all open sessions*/

/*miscellaneous*/
/*XPP bit in PortBUse*/
/*size of memory for SCB*/

/*network name*/
/*node name*/
/*socket number*/

/*reserved*/\
/*reserved*/\
/*reserved*/\
/*reserved*/\
/*completion routine*/\
/*result code*/\
/*command result (ATP user bytes)*/\
/*reserved*/\
/*driver reference number*/\
/*command code*/

/*offset to session refnum*/
/*timeout for ATP*/
/*retry count for ATP*/

CHAPTER 8

Apple Talk Session Protocol (ASP)

short
Ptr
short
Ptr
short
Ptr
char

}XPPPrmBlk;

typedef struct {
XPPPBBeader
short
char
char
AddrBlock
Ptr
Ptr

}ASPOpenPrm;

cbSize;
cbPtr;
rbSize;
rbPtr;
wdSize;
wdPtr;
ccbStart[296];

sessRefnum;
aspTimeout;
aspRetry;
serverAddr;
scbPointer;
attnRoutine;

typedef ASPOpenPrm *ASPOpenPrmPtr;

typedef struct {

XPPPBBeader
Ptr abortSCBPtr;

}ASPAbortPrm;

typedef struct {

XPPPBBeader
short aspMaxCmdSize;
short aspQuantumSize;

short nwnSesss;

}ASPGetparmsBlk;

Routines

Opening and Closing ASP Sessions

/*command block size*/
/*command block pointer*/
/*reply buffer size*/
/*reply buffer pointer*/
/*write data size*/
/*write data pointer*/
I*CCB memory allocated for */
I* beginning of command control *I
I* block*/

/*offset to session refnum*/
/*timeout for ATP*/
/*retry count for ATP*/
/*server address block*/
/*SCB pointer*/
/*attention routine pointer*/

/*SCB pointer for ASPAbortOS*/

/*maximum size of data for commands*/
/*maximum size of data for request */
I* commands and receive replies*/
/*number of concurrent sessions *I
I* for your node*/

pascal OSErr ASPOpenSession (ASPOpenPrmPtr thePBptr, Boolean async);

pascal OSErr ASPCloseSession(XPPParmBlkPtr thePBptr, Boolean async);

pascal OSErr ASPCloseAll (XPPParmBlkPtr thePBptr, Boolean async);

Summary of ASP 8-31

CHAPTER 8

Apple Talk Session Protocol (ASP)

Sending Commands and Writing Data From the Workstation to the Server

pascal OSErr ASPUserCommand (XPPParmBlkPtr thePBptr, Boolean async);

pascal OSErr ASPUserwrite (XPPParmBlkPtr thePBptr, Boo+ean async);

Obtaining Information About ASP's Maximum Capacities and the Status of the Server

pascal OSErr ASPGetParms

pascal OSErr ASPGetStatus

(XPPParmBlkPtr thePBptr, Boolean async);

(XPPParmBlkPtr thePBptr, Boolean async);

Canceling an ASP Request to Open a Session

pascal OSErr ASPAbortOS (XPPParmBlkPtr thePBptr, Boolean async);

Assembly-Language Summary

Constants

Offsets in User Bytes

aspCmdCode EQU
aspWSSNum EQU
aspVersNwn EQU

aspSSSNwn EQU
aspSessiD EQU
aspOpenErr EQU

aspSeqNwn EQU
aspAttnCode EQU

Offsets in ATP Data Part

aspWrBSize EQU

aspWrHdrSz EQU

Command Codes (csCodes)

openSess EQU
closesess EQU
userCommand EQU
userWrite EQU

8-32 Summary of ASP

0

1

2

0

1

2

2

2

0

2

255

254

253

252

;offset to command field
;WSS number in OpenSessions
;ASP version number in Opensessions

;SSS number in OpenSessReplies
; s.ession ID (requests & OpenSessReply)
;OpenSessReply error code

;sequence number in requests
;attention bytes in attentions

;offset to write buffer size
; (Wri teData)
;size of data part

;open session
;close session
;user command
;user write

CHAPTER 8

Apple Talk Session Protocol (ASP)

getStatus EQU 251 ;get status
afpCall EQU 250 ;AFP command
getParms EQU 249 ;get parameters
abort OS EQU 248 ;abort open session request
closeAll EQU 247 ;close all open sessions

ASP Commands

aspCloseSess EQU 1 ;close session
aspCommand EQU 2 ;user command)>

"0
aspGetStat EQU 3 ;get status "0

(i)

aspOpenSess EQU 4 ;open session ;I
;;;:

aspTickle EQU 5 ;tickle en
CD

aspWrite EQU 6 ;write UJ
UJ c:r

aspDataWrite EQU 7 ;writeData (from server) :::::5

""0
aspAttention EQU 8 ;attention (from server) a

0
(')
Q.

Miscellaneous > en ..:g
aspVersion EQU $0100 ;ASP version number
maxCmdSize EQU atpMaxData ;maximum command block size
quantumSize EQU atpMaxData*atpMaxNum ;maximum reply size
tickleint EQU 30 ;tickle interval (sees)
tickleTime EQU tickleint*60*4 ;tickle timeout (ticks)
xppLoadedBit EQU atpLoadedBit+1 ;XPP loaded bit number in . PortBUse

'

Data Structures

XPP Parameter Block Common Fields for ASP Routines

0 qLink long reserved
4 qType word reserved
6 ioTrap word reserved
8 ioCmdAddr long reserved

12 ioCompletion long address of completion routine
16 ioResult word result code
18 cmdResult long pointer to attention routine
22 ioVRefNum word reserved
24 ioRefNum word driver reference number

Summary of ASP 8-33

CHAPTER 8

Apple Talk Session Protocol (ASP)

ASPOpenSession Parameter Block

26 csCode word
28 sessRefnum word
30 aspTimeout byte
31 aspRetry byte
32 serverAddr long
36 scbPointer pointer
40 attnRoutine long

ASPCloseSession Parameter Block

26
28

csCode
sessRefnum

word
word

ASPOoseAll Parameter Block

26 esC ode word

ASPUserCommand Parameter Block

18 cmdResult long
26 csCode word
28 sessRefnum word
30 aspTimeout byte
32 cbSize word
34 cbPtr pointer
38 rbSize word
40 rbPtr pointer
50 ccbStart record

ASPUserWrite Parameter Block

18 cmdResult long
26 csCode word
28 sessRefnum word
30 aspTimeout byte
32 cbSize word
34 cbPtr pointer
38 rbSize word
40 rbPtr pointer
44 wdSize word
46 wdPtr pointer
50 ccbStart record

ASPGetParms Parameter Block

26
28
30
32

8-34

csCode
aspMaxCmdSize
aspQuantumSize
numSesss

Summary of ASP

word
word
word
word

command code; always openSess
session reference number
retry interval in seconds
number of retries
server internet socket address
pointer to session control block
pointer to attention routine

command code; always closesess
session reference number

command code; always closeAll

ASP command result
command code; always userCommand
session reference number
retry interval in seconds
command block size
command block pointer
reply buffer and reply size
pointer to reply buffer
start of memory for CCB

ASP command result
command code; always userWri te
session reference number
retry interval in seconds
size of command block
pointer to command block
reply buffer size and reply size
pointer to reply buffer
size of write data
pointer to write data
start of memory for CCB

command code; always getParms
maximum size of command block
maximum data size
maximum number of sessions

CHAPTER 8

Apple Talk Session Protocol (ASP)

ASPGetStatus Parameter Block

26 csCode word
30 aspTimeout byte
31 aspRetry byte
32 serverAddr long
38 rbSize word
40 rbPtr pointer
50 ccbStart record

ASPAbortOS Parameter Block

26 csCode word
28 abortSCBPtr pointer

Result Codes

noErr 0
aspBadVersNum -1066
aspBufTooSmall -1067

aspNoMoreSess -1068

aspNoServers -1069

aspParamErr -1070

aspServerBusy -1071
aspSessClosed -1072
aspSizeErr -1073

cbNotFound -1102

reqAborted -1105

Summary of ASP

command code; always getStatus
retry interval in seconds
number of retries
server internet socket address
reply buffer and reply size
pointer to reply buffer
start of memory for CCB

command code; always abortOS
pointer to session control block

No error
The server cannot support the ASP version number
The reply data exceeds the size of the reply buffer; the
J(PP driver will fill the buffer and truncate the data
The J(PP driver cannot support another ASP session
(the number of sessions that the driver is capable of
supporting is dependent on the machine type)
There is no server at the specified serverAddr address,
or the server did not respond to the request
You specified an invalid session reference number, or the
session has been closed
The server cannot open another session
The .XPP driver is in the process of closing down the session
The size of the command block exceeds the maximum size
ofaspMaxCmdSize
Specified SCB was not found (there is no outstanding open
session function call with this SCB)
The ASPOpenSession function call was aborted by an
ASPAbortOS function call

8-35

CHAPTER 9

Apple Talk Filing Protocol
(AFP)

Contents

AboutAFP 9-3
AFP Reference 9-5

Data Structures 9-5
AFP Command Block Record 9-5
XPP Parameter Block 9-6

Routines 9-8
Summary of AFP 9-26

Pascal Summary 9-26
Constants 9-26
Data Types 9-27
Routines 9-29

CSummary 9-29
Constants 9-29
Data Types 9-31
Routines 9-32

Assembly-Language Summary 9-33
Constants 9-33
Data Structures 9-34

Result Codes 9-36

Contents 9-1

CHAPTER 9

AppleTalk Filing Protocol (AFP)

This chapter describes the Apple Talk Filing Protocol (AFP) that allows a workstation on
an Apple Talk network to access and manipulate files on an AFP file server, such as an
AppleShare server.

Because you can use the native file system to access an AFP server from a workstation,
in most cases you should not need to use AFP directly. For example, few application
developers use AFP to access an AppleShare file server because the existing File
Manager commands perform most of the functions needed to access and manipulate
files on an AppleShare server.

However, if you want to provide functions that are not implemented by the native file
system commands or you want to manipulate files on an AFP server other than an
AppleShare server, your application can use the AFP programming interface to directly
access AFP to send commands to the server. For example, you can use AFP to list the
contents of a directory when you need to obtain ProDOS information. You can also use
AFP to retrieve or set parameters for a specific file when ProDOS is used.

This chapter describes the programming interface to the workstation portion of AFP
only. It does not describe how to implement an AFP server. For information on how to
implement an AFP server, see Inside AppleTalk, second edition.

Because AFP is not widely used by application program developers, this chapter
provides only the AFP basics. This chapter includes II About" and 11Reference" sections. It
does not include a "Using" section, as do most of the other chapters in this book. This
chapter is included in this book to complete the coverage of the Apple Talk protocol stack.

H you decide to use AFP, it is important to note that to implement an AFP command,
you need information in addition to the information that this chapter provides.
Inside AppleTalk, second edition, and the AppleShare 3.0 Developer's Kit version 3.0,
provide information describing the AFP commands and the command block data
structure required for each command. The AppleShare 3.0 Developer's Kit includes
extensions to AFP not described in Inside AppleTalk.

AFP is built on top of the Apple Talk Session Protocol (ASP) and uses the services of ASP.
To use AFP, you should also be familiar with ASP, which is described in the chapter
"Apple Talk Session Protocol (ASP)" in this book. For an overview of AFP and how it fits
within the Apple Talk protocol stack, read the chapter "Introduction to Apple Talk,"
which is also in this book.

AboutAFP

AFP is a remote filing system protocol that provides a workstation on an Apple Talk
network with access to a server that is implemented according to the AFP file system
structure. AFP also includes user authentication support and an access control
mechanism that supports volume-level and folder-level access rights. AppleShare is the
AFP file server that is implemented on Macintosh computers.

AboutAFP 9-3

•)>
"C
"C

~ D)
;;;::
~
:r
cc
"'0 a
0
n
Q.

> .,
.3!

9-4

CHAPTER 9

Apple Talk Filing Protocol (AFP)

Through the native file system and AFP, your application running on one node can
manipulate files on another node using the same file system commands on the remote
node that it uses to manipulate files on its own node. You can use AFP commands to

• obtain and modify information about the file server and other parts of the file
system structure

• create and delete files and directories

• read files or write to them

• retrieve and store information within individual files

AFP is implemented by the .XPP driver. The .XPP driver maps an AFP function call from
the client workstation into one or more ASP function calls. Figure 9-1 shows AFP and its
underlying protocols.

Figure 9-1 AFP and its underlying protocols

~
&
AFP

§
ASP

§
I I ATP

§
DDP

§
LAP Manager I

§
Port

AboutAFP

CHAPTER 9

AppleTalk Filing Protocol (AFP)

The Pascal programming interface to AFP on the workstation consists of a single
function. You use this function to pass to the .XPP driver the command code and
parameters for an AFP command. There are four categories of A:f:P commands: general,
login, read, and write. Each of these categories requires a specific format of the XPP
parameter block that is used for the AFP function. The next section describes these
categories, the commands they include, and the XPP parameter block formats for
each category.

Please read this note before you continue

Because the native file system commands implement most of the
functions that you need to access an AFP server, in most cases you will
not need to use AFP directly. For this reason, this chapter does not
include a "Using" section, as do most of the other chapters in this book.
If the native file system implements the function that you need, you
should use the file system command. If you want to implement a
function that is not part of the native file system, you can use AFP
directly. In this case, you should continue to read this chapter. •

AFP Reference

This section describes the data structures and the function that are specific to the
AppleTalk Filing Protocol (AFP).

The "Data Structures" section shows the Pascal data structures for the AFP command
block record and the XPP parameter block.

The AFP programming interface consists of a single function, AFPCommand, which
allows you to call AFP and specify from within a command block a particular command
and its parameters to send across the session to the server.

Data Structures
This section describes the data structures that you use to provide information to the
AppleTalk Filing Protocol (AFP).

You use an AFP command block record for the AFP read or AFP write format of the
AFPCommand function.

You use the XPP parameter block as a parameter to the AFPCommand function.

AFP Command Block Record

An AFP command block record of type AFPCommandBlock defines the structure of
the command block that you use to send either a read (afpRead) or write (afpWri te)
command to the server. A command block is a data structure that is used to specify an
AFP command and its parameters, which the .XPP driver sends to an AFP server to be
executed. The XPP parameter block for the AFPCommand function contains a pointer to

AFP Reference 9-5

•

CHAPTER 9

AppleTalk Filing Protocol (AFP)

the command block. The read and write commands use different fields of this record.
You pass a pointer to the AFP command block record as a field value of the XPP
parameter block. The command block record fields are defined in the section describing
the command that uses them.

AFPCommandBlock
PACKED RECORD

cmdByte:
startEndFlag:

forkRefNum:
rwOffset:

reqCount:

newLineFlag:
newLineChar:

END;

Byte;
Byte;

{AFP command code}
{start/end flag; for the read }
{ command, identifies offset }
{ relative to fork}

Integer; {fork reference number}
Longint; {offset within fork to begin }

{ reading or writing}
Longint; {on input, requested size of }

Byte;
Char;

{ data; on return, size of data }
{ actually read or written}
{new line flag}
{new line character}

XPP Parameter Block

9-6

The AFPCommand function, which has four formats, requires a pointer to an XPP param­
eter block of type XPPParamBlock. Because the .XPP driver maps the AFP commands
that you specify to ASP commands, the various AFPCommand function formats use some
of the XPP parameter block fields defined within variant records for ASP functions.

The first four fields of the XPP parameter block, qLink, qType, ioTrap, and ioCmdAddr,
which are the same for all four formats of the AFPCommand, are used internally by the
Device Manager.

You must specify the J(PP driver reference number as the input value of the ioRefNum
field; AFP does not fill in this value. You can use the Device Manager's OpenDriver
function to obtain the .XPP driver reference number.

The XPP parameter block that follows is defined as the maximum size required for any
format of the AFPCommand function. Various formats use different size parameter blocks.
You can abbreviate the parameter block appropriately for any AFPCommand format.

This section defines the parameter block fields that are common to all AFP functions. It
does not define reserved fields, which are used either internally by the .XPP driver or not
at all. The fields that are used by a particular format are defined in the section that
describes that format.

AFP Reference

CHAPTER 9

Apple Talk Filing Protocol (AFP)

XPPPrmBlkType = (XPPPrmBlk •••);
XPPSubPrmType = (ASPOpenPr.m,ASPSubPrm);
XPPEndPrmType (AFPLoginPrm,ASPEndPrm);
XPPParmBlkPtr "'XPPParamBlock;
XPPParamBlock
PACKED RECORD

qLink:
qType:
ioTrap:
ioCmdAddr:
ioCompletion:
ioResult:
cmdResult:
ioVRefNum:
ioRefNum:
csCode:

CASE XPPPrmBlkType OF
XPPPrmBlk:

(sessRefnum:
aspTimeout:
aspRetry:

CASE XPPSubPrmType OF
ASPOpenPrm:

QElemPtr;
Integer;
Integer;
Ptr;
ProcPtr;
OSErr;
Longint;
Integer;
Integer;
Integer;

Integer;
Byte;
Byte;

(serverAddr:
scbPointer:
attnRoutine:

AddrBlock;

ASPSubPrm:
(cbSize:
cbPtr:
rbSize:
rbPtr:

CASE XPPEndPrmType OF
AFPLoginPrm:

Ptr;
Ptr);

Integer;
Ptr;
Integer;
Ptr;

(afpAddrBlock: AddrBlock;
afPSCBPtr: Ptr;

{reserved}
{reserved}
{reserved}
{reserved}
{completion routine}
{result code}
{command result (ATP user
{reserved}
{driver reference number}
{call command code}

{offset to session refnum}
{timeout for ATP}
{retry count for ATP}

{server address block}
{SCB pointer}

bytes)}

{attention routine pointer}

{command block size}
{command block pointer}
{reply buffer size}
{reply buffer pointer}

{address block in AFP login}
{SCB pointer in AFP login}

afpAttnRoutine:Ptr);
ASPEndPrm:

{attn routine pointer in AFP login}

(wdSize:
wdPtr:
ccbStart:

END;
XPPParmBlkPtr

Integer; {write data size}
Ptr; {write data pointer}
ARRAY£0 •• 295] OF Byte)));

"'XPPParamBlock;

{beginning of command control }
{ block}

AFP Reference 9-7

Routines

9-8

CHAPTER 9

AppleTalk Filing Protocol (AFP)

Field descriptions

ioCompletion

ioResult

ioRefNum

csCode

A pointer to a completion routine that you can provide. When you
execute a function asynchronously, the .XPP driver calls your
completion routine when it completes execution of the function if
you specify a pointer to the routine as the value of this field. Specify
NIL for this field if you do not wish to provide a completion
routine. If you execute a function synchronously, the .XPP driver
ignores the ioCompletion field. For information about completion
routines, see the chapter "Introduction to AppleTalk" in this book.

The result of the function. When you execute the function asynchro­
nously, the function sets this field to 1 and returns a function result
of noErr as soon as the function begins execution. When the
function completes execution, it sets the ioResult field to the
actual result code.

The driver reference number for the .XPP driver. The Device
Manager's OpenDriver function that you use to open the .XPP
driver returns the driver reference number in the refnum field. You
must supply this value. You can call this function to obtain the .XPP
driver's reference number even if the .XPP driver is already open.
The MPW interface does not fill in this value. For information on
opening the .XPP driver, see the chapter "Apple Talk Utilities" in
this book. For information on the Open Driver function, see the
chapter "Device Manager" in Inside Macintosh: Devices.
The .XPP driver command code for the function. For the
AFPCommand function, the value of this field is always afpCall.
The MPW interface fills in this field.

The programming interface to AFP is different in form from the programming interfaces
to the other AppleTalk protocols described in this book. For AFP, the programming
interface consists of a single function, the AFPCommand function, which allows you to
call AFP and pass it the command code for a particular AFP command. There are four
categories or types of commands that you can send to a server: general, login, write, and
read. To use the commands that form these categories, in addition to this chapter, you
must also refer to the books Inside AppleTalk, second edition, and AppleShare 3.0
Developer's Kit version 3.0.

The AFPCommand function requires as a parameter a pointer to an XPP parameter block.
This function uses a different parameter block format for each category. You do not
specify the command code as a parameter block field value, as you might expect. Instead,
as the value of a parameter block field you specify a pointer to a command buffer. You use
the command buffer to specify the command code of the AFP command to be sent to
the server.

AFP Reference

CHAPTER 9

Apple Talk Filing Protocol (AFP)

Although the AFPCommand function syntax is the same for all four formats, the fields of
the XPP parameter block that are used for each format differ. The AFPCommand function
is defined as follows:

FUNCTION AFPCommand (thePBptr: XPPParmBlkPtr;
async: Boolean): OSErr;

thePBptr A pointer to the XPP parameter block format for a particular group of
AFP commands.

async A Boolean that specifies whether the function is to execute synchronously
or asynchronously. Set the async parameter to TRUE to execute the
function asynchronously.

This section describes the XPP parameter block format for each category of commands.
An arrow preceding a parameter block field indicates whether the field's value is an
input parameter, an output parameter, or both:

Arrow Meaning

~ Input

~ Output

H Both

Within the parameter block, you specify a pointer to a command block, the first byte of
which contains the command code of the command to be sent to the server. The range
of command codes is 0 through 255, inclusive, although AppleTalk does not currently
implement all command codes and some command codes are invalid. Table 9-1 shows
the AFP command codes that are implemented in Apple Talk. This table shows the AFP
·command code constant, the numeric value, and a description of the command.

Note
The following six constants may not be defined in the header files:
afpGetSrvrMsg,afpCreateiD,afpDeleteiD,afpResolveiD,
afpExchangeFiles, and afpCatSearch. If you use the commands
that these constants identify, you must either specify the numeric values
for the commands or declare the constants in your application. •

Table9-1 AFP command codes

AFP
command constant

afpByteRangeLock

afpVolClose

Command
code

1

2

Action

Locks or unlocks a specified range of bytes
within an open fork.

Informs the server that the workstation no
longer needs the volume.

afpDirClose 3 Closes a directory and invalidates its directory
identifier.

continued

AFP Reference 9-9

9-10

CHAPTER 9

Apple Talk Filing Protocol (AFP)

Table 9-1 AFP command codes (continued)

AFP Command
command constant code

afpForkClose 4

afpCopyFile 5

afpDirCreate 6

afpFileCreate 7

afpDelete 8

afpEnumerate 9

afpFlush 10

afpForkFlush 11

afpGetForkParms 14

afpGetSinfo 15

afpGetSParms 16

afpGetVolParms 17

afpLogin 18

afpContLogin 19

afpLogout 20

afpMapiD 21

afpMapName 22

afpMove 23

afpOpenVol 24

afpOpenDir 25

AFP Reference

Action

Closes a fork that was open~d
by afpOpenFork.

Copies a file from one location to
another on the same file server.

Creates a new directory.

Creates a new file.

Deletes a file or directory.

Lists the contents of a directory.

Writes to a disk any volume data that has been
modified.

Writes to a disk any data buffered from
previous afpWr i te calls.

Retrieves parameters for a file associated with
a particular open fork.

Obtains a block of descriptive information
from the server, without requiring an
open session.

Use the ASPGetStatus function instead
of this command code. See the chapter
"Apple Talk Session Protocol (ASP)" in this
book for information on ASPGetStatus.
Making an afpGetSinfo call using the
AFPCommand results in an error.

Retrieves server parameters.

Retrieves parameters for a particular volume.

Establishes an AFP session with a server.

Continues the login and user authentication
process started by the afpLogin command.

Terminates a session with a server.

Maps a user ID to a user name, or a
group ID to a group name.

Maps a user name to a user ID, or a group
name to a group ID.

Moves a directory or file to another location on
the same volume.

Makes a volume available to the workstation.

Opens a directory on a variable directory ID
volume and returns its directory ID.

continued

CHAPTER 9

AppleTalk Filing Protocol (AFP)

Table9-1 AFP command codes (continued)

AFP
command constant

afpOpenFork

afpRead

afpRename

afpSetDirParms

afpSetFileParms

afpSetForkParms

afpSetVolParms

afpWrite

afpGetFlDrParms

afpSetFlDrParms

afpGetSrvrMsg *

afpCreateio*

afpDeleteiD*

afpResolveiD*

a·fpExchangeF iles *

afpCatSearch*

afpDTOpen

afpDTClose

afpGeticon

afpGticninfo

afpAddAPPL

afpRmvAPPL

AFP Reference

Command
code

26

27

28

29

30

31

32

33

34

35

38

39

40

41

42

43

48

49

51

52

53

54

Action

Opens the· data or resource fork of an existing
file to read from it or write to it.

Reads a block of data from an open fork.

Renames a directory or file.

Sets parameters for a specified directory.

Sets parameters for a specified file.

Sets the fork length for a specified open fork.

Sets the backup date for a specified volume.

Writes a block of data to an open fork.

Retrieves parameters for either a
file or a directory.

Sets parameters for a file or directory.

Gets a string message from the server, such
as shutdown, user, and login messages.

Creates a unique file ID for a specified file.

Invalidates all instances of a specified file ID.

Returns parameters for the file referred to
by the specified file ID.

Preserves an existing file ID when an
application performs a "Save" or
"Save As" operation.

Allows an application to efficiently search
an entire volume for files that match
specified criteria.

Opens the Desktop database on a
particular volume.

Informs the server that the workstation no
longer needs the volume's Desktop database.

Retrieves an icon from the volume's
Desktop database.

Retrieves icon information from the volume's
Desktop database.

Adds an APPL mapping to the
Desktop database.

Removes an APPL mapping from the volume's
Desktop database.

continued

9-11

•

9-12

CHAPTER 9

AppleTalk Filing Protocol (AFP)

Table 9-1 AFP command codes (continued)

AFP
command constant

afpGetAPPL

afpAddCmt

afpRmvCmt

afpGetCmt

afpAddicon

Command
code Action

55 Retrieves an APPL mapping from the
volume's Desktop database.

56 Adds a comment for a file or directory
to the volume's Desktop database.

57 Removes a comment from the volume's
. Desktop database.

58 Retrieves a comment associated with a
specified file or directory from the volume's
Desktop database.

192 Adds an icon bitmap to the volume's
Desktop database.

• An asterisk (*) marks the constants that may not be defined in the header files. If you use them,
you must first declare the constants in your application.

The command block buffer that you provide for each AFPCommand function contains the
conu.nand code and the command parameters. The format for the command block differs
for each command.

For a description of the commands and their required command block formats and
parameters, see Inside AppleTalk, second edition, and the AppleShare 3.0 Developer's Kit
version 3.0 as follows:

• For command codes 38 through 43, inclusive, see the AppleShare 3.0 Developer's Kit
version 3.0.

IIi For all other AFP command codes, see Inside AppleTalk, second edition.

The .XPP driver implements most AFP commands by mapping the AFP command to an
ASP function, without interpreting or verifying the data. The .XPP driver maps AFP
commands to ASP functions according to the following conventions:

AFP commahds are mapped to ASP functions, which use the services of ATP to transport
data. The following two AFP command codes can send or receive more data than a
single eight-packet ATP transaction will support.

• The afpRead command (27) can cause the server to return more data than fits in
eight ATP response packets. (The aspQuantumSize parameter of the ASPGetParms
function returns the maximum amount ~f data that you can receive from the server.) The
afpRead command can return up to the number of bytes indicated in the command
block's requested count (reqCount) field. The .XPP driver may issue multiple calls to
ASP for this command mapping.

• The afpWrite command (33) can pass more data than fits in eight ATP response
packets. The afpWri te command can pass up to the number of bytes indicated in
the command block's requested count (reqCount) field. The .XPP driver may issue
multiple calls to ASP for this command mapping.

Table 9-2 summarizes the mapping of AFP commands to ASP functions.

AFP Reference

CHAPTER 9

AppleTalk Filing Protocol (AFP)

Table9·2 Mapping of AFP commands to ASP functions

AFP
command code

0

1-14, 16, 17,
21-32,34-190

15

18

19

20

33

191

192-253

254

255

ASP function mapping

Invalid AFP command.

Mapped to ASPUserCommand.

Mapped to ASPGetStatus.

Use ASPGetStatus instead of this command code. Making an
afpGetSinfo call using the AFPCommand function results in
an error.

Mapped to appropriate login dialog including ASPOpenSession.

Mapped to appropriate login dialog.

Mapped to ASPCloseSession.

Mapped to ASPUserWrite.

Mapp~d to ASPUserCommand. Reserved for developers;
Apple Computer, Inc., will not use this command code.

Mapped to ASPUserwr i te.

Mapped to ASPUserwr i te. Reserved for developers;
Apple Computer, Inc., will not use this command code.

Invalid AFP command.

)>
"C
"C
ar
~
:;;::
;g
::r
<0
"'0
a
0
g_
> "'T1

Before you can call the AFPCommand function, you must open the .XPP driver. You can .3!
use the Device Manager's OpenDriver function to open the .XPP driver. You should not
close the .XPP driver because other applications and processes mqy be using it. For more
information on opening the .XPP driver, see the chapter "AppleTalk. Utilities" in this
book. The .MPP and .ATP drivers must be open before you open the .XPP driver.

The chapter "AppleTa~ Utilities" also describes how to close the .XPP driver. However,
in most circumstances, you should not close the .XPP driver because other applications
and processes could be using the protocols implemented by the J(PP driver.

You must pass the .XPP driver reference number as a parameter to the AFPCommand
function; the MPW interface does not fill in this value. The OpenXPP function that you
use to open the .XPP driver returns the driver reference number in the refnum field. You
can call this function to obtain the .XPP driver's r~ference number even if the .XPP driver
is already open.

For all AFPCommand formats, the XPP parameter block includes a CCBStart field.
The .XPP driver uses the memory at the end of the XPP parameter block defined as
a CCBStart array as an internal command control block (CCB). To ensure that the
function executes successfully, you can specify the maximum size for this array as
indicated for the particular function that uses it.

AFP Reference 9-13

CHAPTER 9

AppleTalk Filing Protocol (AFP)

AFP General Command Format

9-14

You use the general command format for the AFPCommand function to pass any of the
AFP commands to the .XPP driver to be sent to the server except afpLogin, afpRead,
and afpWrite.

FUNCTION AFPCommand (thePBptr: XPPParmBlkPtr;
async: Boolean): OSErr;

thePBptr A pointer to the XPP parameter block format for the AFP commands that
use the AFP general command format.

a sync A Boolean that specifies whether the function is to be executed synchro­
nously or asynchronously. Set the async parameter to TRUE to execute
the function asynchronously.

Parameter block

~ ioCompletion ProcPtr A pointer to a completion routine.
f- ioResult
f- cmdResult
~ ioRefNum
~ csCode
~ sessRefnum
~ aspTimeout
~ cbSize
~ cbPtr
H rbSize
~ rbPtr
H wdSize
~ wdPtr

Field descriptions

cmdResult

sessRefnum

aspTimeout

cbSize

cbPtr

AFP Reference

OS Err The function result.
Longint The AFP command result.
Integer The .XPP driver reference number.
Integer Always afpCall for this function.
Integer The session reference number.
Byte The retry interval in seconds.
Integer The command buffer size.
Ptr The command buffer.
Integer The reply buffer size and reply size.
Ptr A pointer to the reply buffer.
Integer The write data size.
Ptr A pointer to the write data.

Four bytes of data returned from the server indicating the result of
the AFP command.

The session reference number, which is a unique number that the
.XPP driver assigns to the session and returns in response to an
afpLogin command.

The interval in seconds that the .XPP driver waits between retries of
the AFP command.

The size in bytes of the block of data that contains the command
and its parameters to be sent to the server across the session.
The size of the command block must not exceed the value of
aspMaxCmdSize that the ASPGetParms function returns. For
information on the ASPGetParms function, see the chapter
"Apple Talk Session Protocol (ASP)" in this book.

A pointer to the beginning of the command block that contains the
AFP command to be sent across the session to the server. (The
cbSize field value specifies the command block size.) The first byte
of the command block must contain the AFP command. The

DESCRIPTION

CHAPTER 9

AppleTalk Filing Protocol (AFP)

rbSize

rbPtr

wdSize

wdPtr

following bytes contain the parameters for the command. See
Inside AppleTalk, second edition, and the AppleShare 3.0 Developer's
Kit version 3.0 for the definitions of the AFP commands and their
command codes and parameters.

On input, the size in bytes of the reply buffer that is to hold the
expected response to the AFP command. On return, the actual size
of the reply to the AFP command that the .XPP driver returned in
the buffer.

A pointer to the reply buffer.

The size of the write data buffer that contains the data to be written
to the server. This field's value is used only if the AFP command is
one that the .XPP driver maps to the ASPUserWrite function.

A pointer to the write-data buffer. This field's value is used only
if the AFP command is one that the .XPP driver maps to the
ASPUserwr i te function.

The general format of the AFPCommand function provides a way to pass an AFP command
to the server end of an open session and receive a reply. After you open a session with
an AFP file server using the login format of the AFPCommand function, you can send a
sequence of AFP commands across the session to the server. You use the general format
for the AFPCommand function to send all of the AFP commands to the server, except for
af_pLogin, afpRead, and afpWri te, which have their own AFPCommand formats. AFP
delivers the commands in the same order in which you send them and returns replies to
the commands in the reply buffer that you provide. The cmdResul t field indicates the
result of the command that was delivered to the server, not the function result.

SPEOAL CONSIDERATIONS

Note that you must provide the .XPP driver reference number as an input parameter
to this function. You can obtain the driver reference number by calling the Device
Manager's OpenDriver function. For information on the OpenDriver function, see
Inside Macintosh: Devices.

Any memory that you allocate for the parameter block, buffers, and command block
belongs to the JCPP driver until the function completes execution, after which you can
reuse or release the memory.

ASSEMBLY-LANGUAGE INFORMATION

To execute the AFPCommand function from assembly language, call the_ Control trap
macro with a value of afpCall in the csCode field of the parameter block.

AFP Reference 9-15

RESULT CODES

SEE ALSO

CHAPTER 9

Apple Talk Filing Protocol (AFP)

aspBufTooSmall -1067

aspParamErr -1070

aspSessClosed -1072

aspSizeErr -1073

afpParmError -5019

The command reply from the server is larger than
the response buffer; ASP will fill the buffer and
truncate the reply data
You specified an invalid session reference number, or
the session has been closed
The .XPP driver is in the process of closing
the session
The size of the command block exceeds the
maximum size of aspMaxCmdSize
The AFP command block size is equal to 0 (this error
is also returned when the command block is equal to
0 or $FF [255] or GetSrvrStatus [15])

For a list of the AFP commands and their command code numeric values and constants,
see Table 9-1 on page 9-9. To determine which AFP commands take the general
AFPCommand format, see Table 9-2 on page 9-13. For a description of the AFP commands
that you can send to a server and their required command block formats, see Inside
AppleTalk, second edition, and the AppleShilre 3.0 Developer's Kit version 3.0.

AFP Login Command Format

You use the login command format for the AFPCommand function to pass the afpLogin
command to the .XPP driver to open a session with an AFP file server.

FUNCTION AFPCommand (thePBptr: XPPParmBlkPtr;
async: Boolean): OSErr;

thePBptr

a sync

A pointer to the XPP parameter block format for the afpLogin command.

A Boolean that specifies whether the function is to execute synchronously
or asynchronously. Set the async parameter to TRUE to execute the
function asynchronously.

Parameter block

~ ioCompletion ProcPtr A pointer to a completion routine.
f- ioResult OSErr The function result.
~ ioRefNum Integer The .XPP driver reference number.
f- cmdResult Longint The AFP command result.
~ csCode Integer Always afpCall for this function.
f- sessRefnum Integer The ~ession reference number.
~ aspTimeout Byte The· retry interval in seconds.
~ aspRetry Byte The number of retries.
~ cbSize Integer The command buffer size.
~ cbPtr Integer A pointer to the command buffer.

9-16 AFP Reference

CHAPTER 9

AppleTalk Filing Protocol (AFP)

H rbSize Integer On input, the reply buffer size. On
return, the actual reply size.

~ rbPtr Ptr A pointer to the reply buffer.
~ afpAddrBlock AddrBlock The internet socket address of the server.
H afpSCBPtr Ptr A pointer to the SCB.
H afpAttnRoutine Ptr A pointer to an attention routine.

Field descriptions

cmdResult

sessRefnum

aspTimeout

aspRetry

cbSize

cbPtr

rbSize

rbPtr
afpAddrBlock

Four bytes of data returned from the server indicating the result of
the AFP command.

The session reference number, which is a unique number that the
J<PP driver assigns to the session and returns.

The interval in seconds that the J<PP driver waits between retries of
the AFP command call.

The number of times that the J<PP driver is to retry to execute the
AFP command.

The size in bytes of the block of data that contains the command and
its parameters to be sent to the server across the session. The size of
the command block must not exceed the value of aspMaxCmdSize
that the ASPGetParms function returns. For information on
the ASPGetParms function, see the chapter ''Apple Talk Session
Protocol (ASP)."

A pointer to the beginning of the command block that contains the
AFP login command to be sent across the session to the server. The
cbSize field value specifies the command block size. The first byte
of the command block must contain ·the AFP login command. The
following command block bytes contain the parameters for the
command. For the definitions of the AFP commands and their
command codes and parameters, see Inside AppleTalk, second
edition, and the AppleShare 3.0 Developer's Kit version 3.0.

On input, the size in bytes of the reply buffer that is to hold the
expected response to the AFP login command. On return, the actual
size of the reply to the AFP command that the J<PP driver returned
in the buffer.

A pointer to the reply buffer.

The internet socket address of the server to which the command is
to be sent.

afpSCBPtr A pointer to a session control block (SCB) that the .XPP driver
requires to maintain an open session. The scbMemSize constant
defines the size of the session control block. The memory that you
allocate for the SCB must be nonrelocatable or locked because it
belongs to the .XPP driver for the life of the session. Each session
requires its own SCB.

afpAttnRoutine A pointer to a routine that the J<PP driver calls when it receives an
attention request from the server. If you do not want the .XPP driver
to call an attention routine, set this field to 0.

AFP Reference 9-17

DESCRIPTION

9-18

CHAPTER 9

Apple Talk Filing Protocol (AFP)

To open a session with an AFP file server, you call the AFPCommand function and
pass it the afpLogin command in the command block that you provide. You point
to the command block from the XPP parameter block's cbPtr field. You specify the
internet socket address of the server that you want to access as the value of the
afpAddrBlock field.

In addition to allocating memory for the parameter block and the command block, you
must provide a session control block (SCB) and pass the AFPCommand function a pointer
to the SCB in the afpSCBPtr field. The .XPP driver uses the SCB internally to manage
the session. Each session requires its own SCB. You must either allocate nonrelocatable
memory for the session control block or lock the memory and not modify it for the
duration of the session. The SCB size is defined by the constant scbMemSize. The
memory belongs to the .XPP driver for the life of the session. You can reuse an SCB after
either of the following events occurs:

• You have called an AFPCommand function using the general command format to
specify an afpLogout command to close the session and the AFPCommand function
has successfully completed execution.

• The server end of the session has closed the session or the .XPP driver has closed
the session.

AFP includes an attention mechanism that allows the server to send an attention request
to the workstation. For example, a file server can use this messaging system to notify all
of the workstations that are using the file server that it is shutting down. The XPP
parameter block for the login format includes a pointer to an attention routine.

When the .XPP driver receives an attention request, it sets the first 2 bytes of the SCB to
the attention bytes from the packet. H you have provided an attention routine, the .XPP
driver calls it. The .XPP driver also calls the attention routine when the session is closed
by either the workstation or the server or AFP itself, for example, because the .XPP
driver could not open a session before it exhausted the number of retries.

You code the attention routine in assembly language. Because the .XPP driver calls your
attention routine at interrupt level, you must observe the following interrupt conven-
tions in writing the attention routine: ·

• An attention routine can change registers AO through A3 and DO through D3.

• The routine must not call any Memory Manager routines.

The .XPP driver calls your attention routine with

• DO (word) equal to the session reference number (sessRefnum) for that session. This
is the number that AFP returns on completion of the AFPCommand function for the
afpLogincommand.

• Dl (word) equal to the attention bytes passed by the server or 0 if the session
is closing.

To resume normal execution, your attention routine must return with an RTS (return
from subroutine) instruction.

AFP Reference

CHAPTER 9

Apple Talk Filing Protocol (AFP)

If you code your program in a high-level language, such as Pascal, you might not want to
provide an attention routine written in assembly language. If you do not want to provide
an attention routine, you can poll the attention bytes to determine if your application has
received an attention request from the server. The attention bytes are the first 2 bytes of
the session control block. When the server sends an attention request to the workstation,
the .XPP driver receives the request and it sets the first 2 bytes of the SCB to the attention
bytes from the packet. (When the session was opened, the J(PP driver set these bytes
to 0.) If the first 2 bytes of the SCB are nonzero when your Pascal program polls them,
the program will know that it has received an attention request from the server. Your
program can handle the request and reset the SCB's attention bytes to 0. However, using
this method to determine if the workstation has received an attention request from
the server has limitations; two or more attention requests could be received between
successive polls and only the last one would be preserved.

SPECIAL CONSIDERATIONS

Note that you must provide the .XPP driver reference number as an input parameter
to this function. You can obtain the driver reference number by calling the Device
Manager's Ope nor i ver function. For more information on the Ope nor i ver function,
see Inside Macintosh: Devices.

In the XPP parameter block for the AFPCommand function login format, the
afpSCBPointer and afpAttnRoutine fields overlap with the beginning of the
CCB and are modified by AFPCommand function.

The memory that you allocate for the XPP parameter block, command block, and reply
buffer belongs to AFP until the function completes execution, after which you can reuse
the memory or release it. However, the memory that you allocate for the SCB belongs to
AFP for the life of the session. You must either allocate nonrelocatable memory for the
SCB or lock the memory and not modify it for the duration of the session.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

To execute the AFPCommand function from assembly language, call the_ Control trap
macro with a value of afpCall in the csCode field of the parameter block.

aspBadVersNum
aspBufTooSmall

aspNoMoreSess
aspNoServers

aspParamErr

aspServerBusy
aspSizeErr

AFP Reference

-1066
-1067

-1068
-1069

-1070

-1071
-1073

The server cannot support the ASP version number
The command reply from the server is larger than
the response buffer; ASP will fill the buffer and
truncate the reply data
The .XPP driver cannot support another ASP session
There is no server at the specified server address,
or the server did not respond to the request
You specified an invalid session reference number,
or the session has been closed
The server cannot open another session
The size of the command block exceeds the
maximum size of aspMaxCmdSize

9-19

SEE ALSO

CHAPTER 9

AppleTalk Filing Protocol (AFP)

For information on how to obtain the internet socket address of a server, see the chapter
"Name-Binding Protocol (NBP)" in this book.

I

AFP Write Command Format

9-20

You use the write command format for the AFPCommand function to pass the afpWri te
command to the .XPP driver to send a data block to the server.

FUNCTION AFPCommand (thePBptr: XPPParmBlkPtr;
async: Boolean): OSErr;

thePBptr

a sync

A pointer to the XPP parameter block format for the afpWr i te command.

A Boolean that specifies whether the function is to execute synchronously
or asypchronously. Set the async parameter to TRUE to execute the
function asynchronously.

parameter block

~ ioCompletion ProcPtr A pointer to a completion routine.
~ ioResult
~ cmdResult
~ ioRefNum
~ csCode
~ sessRefnum
~ aspTimeout
~ cbSize
~ cbPtr
H rbSize

~ rbPtr
H wdPtr

Field descriptions
cmdResult

sessRefnum

aspTimeout

cbSize

AFP Reference

OS Err The function result.
Longint The AFP command result.
Integer The .XPP driver reference number.
Integer Always afpCall for this function.
Integer The session reference number.
Byte The retry interval in seconds.
Integer The command buffer size.
Ptr The command buffer.
Integer On input, the reply buffer size. On return,

the actual reply size.
Ptr A pointer to the reply buffer.
Ptr A pointer to the write data.

Four bytes of data returned from the server indicating the result of
the AFP command.

The session reference number, which is a unique number that the
.XPP driver assigns to the session and returns in response to an
afpLogincommand.

The interval in seconds that the .XPP driver waits between retries of
the AFP command call.
The size in bytes of the block of data that contains the command and
its parameters to be sent to the server across the session. The size of
the command block must not exceed the value of aspMaxCmdSize
that the ASPGetParms function returns. For information on
the ASPGetParms function, see the chapter "Apple Talk Session
Proto~ol (ASP)."

DESCRIPTION

CHAPTER 9

AppleTalk Filing Protocol (AFP)

cbPtr

rbSize

rbPtr
wpPtr

A pointer to the beginning of the command block buffer that
contains the afpWr i te command to be sent across the session to
the server. The cbSize field value specifies the command block
buffer size. The first byte of the command block must contain the
AFP command. The following command block bytes contain the
parameters for the command. The ~~Description" section that
follows explains the command block structure that you use for
the afpWrite command to be sent to the server.

On input, the size in bytes of the reply buffer that is to hold the
expected response to the AFP command. On return, the actual size
of the reply that the .XPP driver retumecl in the buffer.

A pointer to the reply buffer.

A pointer to ~e write data buffer. The .XPP driver updates this field
as it proceeds so that the field always points to the section of data
that the .XPP driver is currently writing.

After you open a session, you can use the afpWrite command to send a block of data to
the server. The AFPCommand function format for the write command allows you to send
more data than a single call to an ASPUserWri te function can send. Instead of using a
write-data structure to specify the data to be sent, you specify the beginning of the data
to be written and the size in bytes of the data as values within the command block. (You
do not specify the size of the write data in the parameter block.)

The command block for the afpWr i te command consists of the following fields. The
byte offsets for these fields are relative to the location indicated by the command block
pointer {cbPtr).

Command block

cmdByte
startEndFlag
rwOffset
reqCount

Byte
Byte
Longint
Longint

The AFP command code.
A flag identifying offset relative to fork.
The offset within fork to begin writing.
On input, requested size of data; on return,
size of data actually written.

Field descriptions
cmdByte

startEndFlag

rwOffset

AFP Reference

The AFP command code, which is always afpWri te for
this command.
A 1-bit flag (th~ high bit of the byte) indicating whether the offset
specified in the rwOffset field is relative to the beginning or the
end of the fork: set the high bit to 0 to specify that the offset is
relative to the beginning of the fork; set the high bit to 1 to specify
that the offset is relative to the end of the fork. Set all other bits of
this byte to 0.

The byte offset within the fork at which the write is to begin. The
.XPP driver modifies the value of this field as it proceeds; the field
always reflects the current value.

9-21

•

CHAPTER 9

AppleTalk Filing Protocol (AFP)

reqCount On input, the size in bytes of the data to be written. On return, the
actual size of the data that was written. The .XPP driver modifies
the value of this field as it proceeds; the field always reflects the
current value.

SPECIAL CONSIDERATIONS

Note that you must provide the .XPP driver reference number as an input parameter
to this function. You can obtain the driver reference number by calling the Device
Manager's OpenDri ver function. For more information on the OpenDri ver function,
see Inside Macintosh: Devices.

The memory that you allocate for the XPP parameter block, command block, and reply
buffer belongs to AFP until the function completes execution, after which you can reuse
the memory or release it.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

To execute the AFPCommand function from assembly language, call the _control trap
macro with a value of afpCall in the csCode field of the parameter block.

aspBufTooSmall -1067

aspParamErr -1070

aspSessClosed -1072

aspSizeErr -1073

The command reply from the server is larger than the
response buffer (ASP will fill the buffer and truncate
the reply data)
You specified an invalid session reference number, or
the session has been closed
The session reference number is valid, but the .XPP
driver is in the process of closing the session
The size of the command block exceeds the maximum
sizeofaspMaxCmdSize

See "AFP Command Block Record" on page 9-5 for the Pascal structure of the command
block for an afpWr i te command.

AFP Read Command Format

9-22

To read a block of data on an AFP file server, you use the read command format for the
AFPCommand function, which passes the afpRead command to the .XPP driver.

FUNCTION AFPCommand (thePBptr: XPPParmBlkPtr;
async: Boolean): OSErr;

AFP Reference

DESCRIPTION

CHAPTER 9

Apple Talk Filing Protocol (AFP)

thePBptr A pointer to the XPP parameter block format for a particular group of
AFP commands.

a sync A Boolean that specifies whether the function is to execute synchronously
or asynchronously. Set the async parameter to TRUE to execute the
function asynchronously.

Parameter block

~ iocompletion ProcPtr A pointer to a completion routine.
~ ioResult OSErr The function result.
~ cmdResult Longint The AFP command result.
~ ioRefNum Integer The J(PP driver reference number.
~ esC ode Integer Always afpCall for this function.
~ sessRefnum Integer The session reference number.
~ aspTimeout Byte The retry interval in seconds.
~ cbSize Integer The command buffer size.
~ cbPtr Ptr A pointer to the command buffer.
H rbPtr Ptr A pointe~ to the reply buffer.

Field descriptions

cmdResul t Four bytes of data returned from the server indicating the result of
the AFP command.

sessRefnum The session reference number, which is a unique number that the
.XPP driver assigns to the session and returns in response to an
afpLogin command.

aspTimeout The interval in seconds that the .XPP driver waits between retries of
the AFP command call.

cbSize The size in bytes of the block of data that contains the command
and its parameters to be sent to the server across the session.
The size of the command block must not exceed the value of
aspMaxCmdSize that the ASPGetParms function returns. The
"Description" section that follows explains the command block
structure that you use for the afpRead command. See the chapter
"Apple Talk Session Protocol (ASP)" for information on the
ASPGetParms function.

cbPtr A pointer to the beginning of the command block that contains
the afpRead command. The cbSize field value specifies the
command block size. The first byte of the command block must
contain the AFP command. The following command block
bytes contain the parameters for the command.

rbPtr A pointer to the reply buffer. The .XPP driver updates this field as it
proceeds; the value of this field points to the section of the buffer
into which the . XPP driver is currently reading data.

After you open a session, you can use the afpRead command to read a block of data
from the server. The AFPCommand function format for the read command allows you to
read more data than you can through a single call to an ASPUserCommand function.

AFP Reference 9-23

CHAPTER 9

AppleTalk Filing Protocol (AFP)

You use the command block buffer to pass the read command and its parameters to the
J(PP driver. (You pass the size of the read data buffer in the command block, not in the
parameter block.) The command block for the afpRead command consists of the
following fields. The byte offsets for these fields are relative to the location indicated by
the command block pointer (cbPtr).

Command block

~ cmdByte Byte The AFP command code.
H rwOffset Longint The offset within fork to begin reading
H reqCount Longint On input, size of the read data buffer; on

return, size of data actually read into the buffer.
~ newLineFlag Byte A flag indicating whether the read is to be

terminated at a specified character.
~ newLineChar Byte The character used to determine where the read

Field descriptions
cmdByte

rwOffset

reqCount

newLineFlag

newLineChar

SPECIAL CONSIDERATIONS

should be terminated.

The AFP command code, which is always afpRead for
this command.

The byte offset within the fork at which the read is to begin. The
.XPP driver modifies the value of this field as it proceeds; the field
always reflects the current value.

On input, the requested size of the read data buffer. On return, the
actual size of the data that was read. The .XPP driver modifies
the value of this field as it proceeds; the field always reflects the
current value.

A 1-bit flag (the high bit of the byte) indicating whether the read is
to be terminated at a specified character: set the high bit to 0 to
indicate that you are not specifying a new-line character in the
newLineChar field; set the high bit to 1 to indicate that you are
specifying a new-line character in the newLineChar field. Set all
other bits to 0.

A character from $00 to $FF inclusive that, when encountered in
reading the fork, causes the read operation to terminate.

Note that you must provide the .XPP driver reference number as an input parameter
to this function. You can obtain the driver reference number by calling the Device
Manager's OpenDr i ver function. For more information on the OpenDr i ver function,
see Inside Macintosh: Devices.

The memory that you allocate for the XPP parameter block, command block, and reply
buffer belongs to AFP until the function completes execution, after which you can reuse
the memory or release it.

9-24 AFP Reference

CHAPTER 9

Apple Talk Filing Protocol (AFP)

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

To execute the AFPCommand function from assembly language, call the_ Control trap
macro with a value of afpCall in the csCode field of the parameter block.

aspBufTooSmall

aspParamErr

aspSessClosed
aspSizeErr

-1067

-1070

-1072
-1073

The command reply from the server is larger than the
response buffer (ASP will fill the buffer and truncate
the reply data)
You specified an invalid session reference number, or
the session has been closed
The .XPP driver is in the process of closing the session
The size of the command block exceeds the maximum
sizeofaspMaxCmdSize

See "AFP Command Block Record" on page 9-5 for the Pascal structure of the command
block for an afpRead command.

AFP Reference 9-25

CHAPTER 9

AppteTatk Filing Protocol (AFP)

Summary of AFP

Pascal Summary

Constants

CONST
{.XPP Driver
xppUn~tNum

xppRefNum
afpCall

unit and reference numbers}
40; {XPP unit number}
-41; {XPP reference number}
250; {AFP call command. Command buffer }

{ contains code for the command to be }
{ executed}

{AFP command codes}
afpByteRangeLock 1;

afpVolClose = 2;
afpDirClose 3;
afpForkClose 4;
afpCopyFile 5;
afpDirCreate 6;
afpFileCreate 7;
afpDelete 8;
afpEnumerate 9;
afpFlush 10;
afpForkFlush 11;
afpGetDirParms 12;
afpGetFileParms 13;
afpGetForkParms 14;
afpGetSinfo = 15;
afpGetSParms 16;
afpGetVolParms 17;
afpLogin 18;
afpContLogin 19;
afpLogout 20;
afpMapiD 21;
afpMapName 22;
afpMove 23;
afpOpenVol 24;

9-26 Summary of AFP

CHAPTER 9

Apple Talk Filing Protocol (AFP)

afpOpenDir = 25;
afpOpenFork 26:
afpRead = 27;
afpRename = 28;
afpSetDirParms = 29;
afpSetFileParms = 30;
afpSetForkParms = 31;
afpSetVolParms = 32;
afpWrite = 33;
afpGetFlDrParms = 34;
afpSetFlDrParms 35;
afpDTOpen 48;
afpDTClose = 49;
afpGeticon = 51;
afpGticninfo = 52;
afpAddAPPL = 53;
afpRmvAPPL = 54;
afpGetAPPL = 55:
afpAddCmt = 56;
afpRmvCmt = 57;
afpGetCmt = 58;
afpAddicon = 192: {special code for ASP write commands}

{miscellaneous}
xppLoadedBit = 5; {XPP bit in PortBUse}
scbMemSize = 192; {size of memory for SCB}

{constants for AFP command block startEndFlag & newLineFlag fields}
xppFlagClr = 0;
xppFlagSet = 128;

Data Types

Command Block for AFP Read and AFP Write Commands

TYPE AFPCommandBlock =
PACKED RECORD

cmdByte:
startEndFlag:

forkRefNum:
rwOffset:

Summary of AFP

Byte:
Byte;

Integer;
Longint;

{AFP command}
{flag identifying offset relative }
{ to fork}
{reserved}
{offset within fork to begin }
{ reading or writing}

9-27

CHAPTER 9

AppleTalk Filing Protocol (AFP)

reqCount: Longint;

newLineFlag: Byte;

newLineChar: Char;

END;

XPP Parameter Block for AFP

{on input, size of the data buffer; }
{ on return, size of the data actually }
{ written or read}
{for read, a flag indicating whether }
{ the read is to be terminated at }
{ a specific character; not used by }
{ write}
{character used to determine where }
{ the read is to be terminated; not }
{ used by write}

XPPPrmBlkType
XPPSubPrmType
XPPEndPrmType

(XPPPrmBlk •••);
(ASPOpenPrm,ASPSubPrm);
(AFPLoginPrm,ASPEndPrm);

TYPE XPPParamBlock
PACKED RECORD

qLink:
qType:
ioTrap:
ioCmdAddr:
ioCompletion:
ioResult:
cmdResult:
ioVRefNum:
ioRefNum:
csCode:

CASE XPPPrmBlkType OF
XPPPrmBlk:

(sessRefnum:
aspTimeout:
aspRetry:

CASE XPPSubPrmType OF

9-28

ASPOpenPrm:
(serverAddr:
scbPointer:
attnRoutine:

ASPSubPrm:
(cbSize:
cbPtr:
rbSize:
rbPtr:

Summary of AFP

QElemPtr;
Integer;
Integer;
Ptr;
ProcPtr;
OSErr;
Longint;
Integer;
Integer;
Integer;

Integer;
Byte;
Byte;

AddrBlock;
Ptr;
Ptr);

Integer;
Ptr;
Integer;
Ptr;

{reserved}
{reserved}
{reserved}
{reserved}
{completion routine}
{result code}
{command result (ATP user
{reserved}
{driver reference number}
{command code}

{offset to session refnum}
{timeout for ATP}
{retry count for ATP}

{server address block}
{SCB pointer}

bytes)}

{attention routine pointer}

{command block size}
{command block pointer}
{reply buffer size}
{reply buffer pointer}

CHAPTER 9

AppleTalk Filing Protocol (AFP)

CASE XPPEndPrmType OF

AddrBlock;
Ptr;

{address block in AFP login}
{SCB pointer in AFP login}

AFPLoginPrm:
(afpAddrBlock:
afPSCBPtr:
afpAttnRoutine: Ptr); {attn routine pointer in AFP login}

Integer; {write data size}
ASPEndPrm:

(wdSize:
wdPtr:
ccbStart:

Ptr; {write data pointer}
ARRAY[0 •• 295] OF Byte)));

END;

XPPParmBlkPtr "'XPPParamBlock;

XPPPrmBlkType = (XPPPrmBlk •••);
XPPSubPrmType = (ASPOpenPrm,ASPSubPrm);
XPPEndPrmType (AFPLoginPrm,ASPEndPrm);

Routines

{command control block}

FUNCTION AFPCommand (thePBptr: XPPParmBlkPtr; async: Boolean): OSErr;

C Summary

Constants

enum {
afpCall 250

};

enum {
afpFlush
afpForkFlush
afpGetDirParms
afpGetFileParms
afpGetForkParms
afpGetSinfo
afpGetSParms
afpGetVolParms
afpLogin
afpContLogin

=

=

=

=

Summary of AFP

/*AFP command (buffer has command code)*/

/*AFPCall command codes*/
10,

11,

12,

13,

14,

15,

16,

17,

18,

19,

9-29

•

CHAPTER 9

Apple Talk Filing Protocol (AFP)

afpLogout = 20,

afpMapiD = 21,

afpMapName = 22,

afpMove 23,

afpOpenVol = 24,

afpOpenDir = 25,

afpOpenFork 26,

afpRead = 27,

afpRename = 28,

afpSetDirParms = 29
};

enum { /*AFPCall command codes*/
afpSetFileParms 30,

afpSetForkParms = 31,

afpSetVolParms 32,
afpWrite = 33,
afpGetFlDrParms 34,

afpSetFlDrParms 35,
afpDTOpen = 48,

afpDTClose = 49,
afpGeticon = 51,

afpGticninfo = 52,
afpAddAPPL 53,
afpRmvAPPL 54,

afpGetAPPL = 55,
afpAddCmt = 56,
afpRmvCmt = 57,
afpGetCmt 58,
afpAddicon 192 /*special code for ASP write commands*/

} ;

enum {

xppLoadedBit 5, /*XPP bit in PortBUse*/
scbMemSize 192, /*size of memory for SCB*/
xppFlagClr = 0 /*cs for AFPCommandBlock*/

};

enum {

xppFlagSet 128} /*startEndFlag & NewLineFlag fields*/
} ;

9-30 Summary of AFP

CHAPTER 9

Apple Talk Filing Protocol (AFP)

Data Types

Command Block for AFP Read and AFP Write Commands

typedef struct {
char cmdByte;
char startEndFlag;
short forkRefNum;
long rwOffset;

long reqCount;

char newLineFlag;

char newLineChar;

} AFPCommandBlock;

XPP Parameter Block for AFP

#define XPPPBHeader\
QElem *qLink;
short qType;
short ioTrap;
Ptr ioCmdAddr;
ProcPtr ioCompletion;
OS Err ioResult;
long cmdResult;
short ioVRefNum;
short ioRefNum;
short csCode-;

typedef struct {
XPPPBHeader
short sessRefnum;
char aspTimeout;
char aspRetry;
short cbSize;
Ptr cbPtr;
short rbSize;
Ptr rbPtr;

Summary of AFP

/*AFP command*/
/*flag identifying offset relative to fork*/
/*reserved*/
/*offset within fork to begin reading */
I* or writing*/
/*on input, size of the data buffer; */
I* on return, size of the data actually */
I* written or read*/
/*for read, a flag indicating whether the */
I* read is to be terminated at a specific *I
I* character; not used by write*/
/*character used to determine where the read */
I* is to be terminated; not used by write*/

/*reserved*/\
/*reserved*/\
/*reserved*/\
/*reserved*/\
/*completion routine*/\
/*result code*/\
/*command result*/\
/*reserved*/\
/*.XPP driver reference number*/\
/*function code*/

/*offset to session refnum*/
/*timeout for ATP*/
/*retry count for ATP*/
/*command block size*/
/*command block pointer*/
/*reply buffer size*/
/*reply buffer pointer*/

9-31

CHAPTER 9

AppleTalk Filing Protocol (AFP)

short
Ptr
char

}XPPPrmBlk;

wdSize;
wdPtr;
ccbStart[296];

typedef struct {
XPPPBHeader
short
char
char
short
Ptr
short
Ptr
AddrBlock
Ptr
Ptr
char

}AFPLoginPrm;

sessRefnum;
aspTimeout;
aspRetry;
cbSize;
cbPtr;
rbSize;
rbPtr;
afpAddrBlock;
afpSCBPtr;
afpAttnRoutine;
ccbFill[l44];

typedef struct {
XPPPBHeader
short
char
char
AddrBlock
Ptr
Ptr

} ASPOpenPrm;

sessRefnum;
aspTimeout;
aspRetry;
serverAddr;
scbPointer;
attnRoutine;

/*write data size*/
/*write data pointer*/
/*beginning of command control block */
I* (CCB) *I

/*offset to session refnum*/
/*timeout for ATP*/
/*retry count for ATP*/
/*command block size*/
/*command block pointer*/
/*reply buffer size*/
/*reply buffer pointer*/
/*block in AFP login*/
/*SCB pointer in AFP login*/
/*attn routine pointer in AFP login*/
/*beginning of command control block*/

/*offset to session refnum*/
/*timeout for ATP*/
/*retry count for ATP*/
/*server address block*/
/*SCB pointer*/
/*attention routine pointer*/

typedef ASPOpenPrm *ASPOpenPrmPtr;

Routines

pascal OSErr AFPCommand (XPPParmBlkPtr thePBptr, Boolean async);

9-32 Summary of AFP

CHAPTER 9

Apple Talk Filing Protocol (AFP)

Assembly-Language Summary

Constants

XPP Driver Unit Number

xppUnitNum
xppLoadedBit

AFP Control Code

afpCall

AFP Command Codes

afpByteRangeLock
afpVolClose
afpDirClose
afpForkClose
afpCopyFile
afpDirCreate
afpFileCreate
afpDelete
afpEnumerate
afpFlush
afpForkFlush
afpGetDirParms
afpGetFileParms
afpGetForkParms
afpGetSinfo
afpGetSParms
afpGetVolParms
afpLogin
afpContLogin
afpLogout
afpMapiD
afpMapName
afpMove
afpOpenVol
afpOpenDir
afpOpenFork

EQU
EQU

EQU

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

Summary of AFP

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

40
atpLoadedBit+1

250

;XPP unit number
;XPP loaded bit number in
; PortBUse

;AFP csCode

9-33

•

CHAPTER 9

AppleTalk Filing Protocol (AFP)

afpRead
afpRename
afpSetDirParms
afpSetFileParms
afpSetForkParms
afpSetVolParms
afpWrite
afpGetFlDrParms
afpSetFlDrParms

afpDTOpen
afpDTClose
afpGeticon
afpGticninfo
afpAddAPPL
afpRmvAPPL
afpGetAPPL
afpAddCmt
afpRmvCmt
afpGetCmt

afpAddicon

Miscellaneous

afpUseWrite EQU

Data Structures

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

EQU 192

$CO

27

28

29

30

31

32

33

34

35

48

49

51

52

53

54

55

56

57

58

;special code for ASP write commands

;first call in range that maps to an
; ASPWrite

Parameter Block for General Command Format

18 cmdResult long AFP command result
26 csCode word command code; always afpCall
28 sessRefnum word session reference number
30 aspTimeout byte retry interval in seconds
32 cbSize word command buffer size
34 cbPtr pointer command buffer
38 rbSize word reply buffer size and actual reply size
40 rbPtr pointer reply buffer pointer
44 wdSize word write data size
46 wdPtr pointer write data pointer
50 ccbStart record beginning of memory for CCB

9-34 Summary of AFP

CHAPTER 9

AppleTalk Filing Protocol (AFP)

Parameter Block for Login Command Format

18 cmdResult long AFP command result
26 csCode word command code; alwaysafpCall
28 sessRefnum word session reference number
30 aspTimeout byte retry interval in seconds
31 aspRetry byte number of retries
32 cbSize word command buffer size
34 cbPtr pointer command buffer
38 rbSize word reply buffer size and actual reply size
40 rbPtr pointer reply buffer pointer
44 afpAddrBlock long server address block
48 afpSCBPtr pointer SCB pointer
52 afpAttnRoutine pointer attention routine pointer
50 ccbStart record beginning of memory for CCB

Parameter Block for AFP Write Command Format

18 cmdResult long AFP command result • 26 csCode word command code; always afpCall
28 sessRefnum word session reference number
30 aspTimeout byte. retry interval in seconds
32 cbSize word command buffer size
34 cbPtr pointer command buffer
38 rbSize word reply buffer size and actual reply size
40 rbPtr pointer reply buffer pointer
44 wdSize word used internally
46 wdPtr pointer write data pointer, updated
50 ccbStart record beginning of memory for CCB

Command Block for the AFP Write Command

0 cmdByte byte AFP command code
1 startEndFlag byte start/ end flag
4 rwOffset long offset within fork to begin writing
8 reqcount long on input, requested size of data; on return,

size of data actually written
12 newLineFlag byte new liil.e flag
13 newLineChar byte new line character

Parameter Block for AFP Read Command Format

18 cmdResult long AFP command result
26 csCode word command code; always afpCall
28 sessRefnum word session reference number
30 aspTimeout byte retry interval in seconds
32 cbSize word command buffer size
34 cbPtr pointer command buffer
38 rbSize word used internally
40 rbPtr pointer reply buffer pointer (updated)
50 ccbStart record beginning of memory for CCB

Summary of AFP 9-35

CHAPTER 9

AppleTalk Filing Protocol (AFP)

Command Block for the AFP Read Command

0
1
4
8

cmdByte
startEndFlag
rwOffset
reqCount

Result Codes

aspBadVersNum
aspBufTooSmall

aspNoMoreSess
aspNoServers

aspParamErr

aspServerBusy
aspSessClosed
aspSizeErr

afpParmError

byte
byte
long
long

-1066
-1067

-1068
-1069

-1070

-1071
-1072
-1073

-5019

9-36 Summary of AFP

AFP command code
flag identifying offset relative to fork
offset within fork to begin reading
on input, requested size of data; on return, size of data actually
read into the buffer

The server cannot support the ASP version number
The command reply from the server is larger than the response buffer
(ASP will fill the buffer and truncate the reply data)
The J<PP driver cannot support another ASP session
There is not a server at the specified server address, or the server
did not respond to the request
You specified an invalid session reference number, or the session
has been closed
The server cannot open another session
The J<PP driver is in the process of closing the session
The size of the command block exceeds the maximum size
ofaspMaxCmdSize
The AFP command block size is equal to 0 (this error is also
returned when the command block is equal to 0 or $FF [255] or
GetSrvrStatus[15])

CHAPTER 10

Link-Access Protocol (LAP)
Manager

Contents

About the LAP Manager 10-3
Using the LAP Manager 10-5

Determining if the LAP Manager Is Installed 10-5
Adding an Entry to the Apple Talk Transition Queue 10-7
How the LAP Manager Calls Your Transition Event
Handler Routine 10-9

Writing a Transition Event Handler Routine Using Pascal 10-11
Open Transition 10-13
Prepare-to-Close Transition 10-14
Permission-to-Close Transition 10-15
Cancel-Close Transition 10-17
Network-Connection-Change Transition 10-17
Flagship-Name-Change Transition 10-21
Permission-to-Change-Flagship-Name Transition 10-22
Cancel-Flagship-Name-Change Transition 10-23
Cable-Range-Change Transition 10-24
CPU-Speed-Change Transition 10-25
Developer-Defined Transitions 10-26

Defining Your Own Apple Talk Transition 10-27
The LAP Manager and 802.2 Protocol Packets 10-27

Attaching and Detacruug 802.2 Protocol Handlers 10-30
LAP Manager Reference 10-32

Data Structures 10-33
The Apple Talk Transition Queue Entry 10-33

Routines 10-33
Adding and Removing Apple Talk Transition Queue Entries 10-34
Notifying Routines When Your Application-Defined
Transition Occurs 10-37
Attaching and Detaching 802.2 Protocol Handlers 10-39

Contents i0-1

CHAPTER 10

Summary of the LAP Manager 10-43
Pascal Summary 10-43

Constants 10-43
Data Types 10-43
Routines 10-44

C Summary 10-44
Constants 10-44
Data Types 10-45
Routines 10-45

Assembly-Language Summary 10-45
Constants 10-45
Data Structures 10-46

Result Codes 10-46

10-2 Contents

CHAPTER 10

Link-Access Protocol (LAP) Manager

The Link-Access Protocol (LAP) Manager is a set of operating-system utilities that
provide a standard interface between the higher-level Apple Talk protocols and the
various link-access protocols, such as LocalTalk (LLAP), EtherTalk (ELAP), TokenTalk
(TLAP}, and FDDITalk (FLAP). This chapter describes the LAP Manager programming
interfaces to the AppleTalk Transition Queue and the 802.2 packet protocol handlers
only. This chapter does not discuss the LAP Manager interface to Apple Talk connection
files of type 1 adev 1 that comprise the data links. Apple Computer, Inc. recommends
that you not write your own 1 adev' files. However, for a description of the LAP
Manager that includes the interface to Apple Talk connection files for EtherTalk and other
AppleTalk connections, see the Macintosh AppleTalk Connections Programmer's Guide.

You should read this chapter if you want the LAP Manager to notify you when a
transition occurs or is about to occur. An Apple Talk transition is an event, such as an
AppleTalk driver being opened or closed, that can affect your Apple Talk application.
This chapter also describes how you can define a transition to notify other applications
of a transition event that your application effects.

You should also read this chapter if your application processes 802.2 Type 1 packets. In
this case, you must write a protocol handler that reads 802.2 Type 1 data packets and
install your protocol handler as a client of the LAP Manager.

For an overview of the LAP Manager and how it fits within the Apple Talk protocol
stack, read the chapter "Introduction to Apple Talk" in this book, which also introduces
and defines some of the terminology used in this chapter. For additional information on
the IEEE 802.2 standard, see Inside AppleTalk, second edition.

About the LAP Manager

A Macintosh computer on an Apple Talk network can include one or more Apple Talk
connection files. An Apple Talk connection file is a file of type I adev 1 that contains a
link-access protocol implementation for a data link (ELAP for EtherTalk, for example).
One important function of an AppleTalk connection file is to implement the AppleTalk
Address Resolution Protocol (AARP) that maps hardware layer addresses to Apple Talk
node addresses. The LAP Manager makes it possible for the user to select among
Apple Talk connection files by using the Network control panel to specify which network
is to be used for the node's Apple Talk connection. When the user selects a connection
from the Network control panel, the LAP Manager routes Apple Talk communications
through the selected link-access protocol and hence through the selected hardware. The
LAP Manager acts as a switching mechanism, interceding between the higher-level
Apple Talk protocols and the data links so that when a user selects or changes the type of
data link to be used, the process is transparent to the higher-level Apple Talk protocols
and has no effect on applications that are clients of these protocols. Figure 10-1 shows
this service that the LAP Manager provides. This figure does not show an Apple Talk
connection file for LLAP because AARP is not used for LLAP and address mapping is
not necessary.

About the LAP Manager 10-3

•

CHAPTER 10

Link-Access Protocol (LAP) Manager

Figure 1o-1 LAP Manager connecting the higher-level Apple Talk protocols with the
selected data link

In addition to providing an interface to Apple Talk connection files, the LAP Manager
also maintains the Apple Talk Transition Queue, which is an operating-system queue
that can notify your application each time an Apple Talk transition occurs. An Apple Talk
transition is an event, such as an Apple Talk driver being opened or closed or a network
connection being broken, that can affect your Apple Talk application.

At any given time there might be two or more applications running that use Apple Talk.
If one of these applications opens the .MPP driver, the other AppleTalk applications that
use the driver are affected. If the operating system closes the Apple Talk .MPP driver, all
Apple Talk applications using the driver are affected. To ensure that your application
is not adversely affected by such an event, your application can place an entry in the
Apple Talk Transition Queue. The LAP Manager sends a message to each entry each time
the operating system or any routine performs any of these operations:

• opens the .MPP driver

• closes the .MPP driver

• indicates that it intends to close the .MPP driver

• cancels its intention to close the .MPP driver

• reports that it is changing the flagship name (This is a personalized name that a user
can enter to identify the system when it is connected to an AppleTalk network.)

• indicates that it intends to change the flagship name

• cancels its intention to change the flagship name

• reports that the network connectivity has changed (for example, that a previously
interconnected network is no longer available)

• reports that the cable range for the current network has been changed

• changes the speed of the CPU

• defines its own Apple Talk event and calls the Apple Talk Transition Queue to inform it
that such an event occurred

10-4 About the LAP Manager

CHAPTER 10

Link-Access Protocol (LAP) Manager

Each of these events is referred to as an AppleTalk transition.

The LAP Manager also includes a protocol handler that reads 802.2 packets and provides
an interface that allows you to attach your own protocol handler to receive 802.2 Type 1
packets. An 802.2 protocol handler is an application or process that receives, reads, and
processes these 802.2 data packets. An 802.2 packet conforms to the 802.2 data-link
standard called Logical Link Control (LLC) defined by the Institute of Electrical and
Electronics Engineers (IEEE) for use on Ethernet, token ring, FDDI, and certain other
data links. The 802.2 'JYpe 1 protocol specifies a connectionless or datagram service. (The
AppleTalk ELAP, TLAP, and FLAP implementations process 802.2 Type 1 packets.)

Using the LAP Manager

This section describes how you can use the LAP Manager's AppleTalk Transition Queue.
Then it describes how to attach and detach protocol handlers for 802.2 Type 1 data
packets using the L802Attach and L802Detach routines.

To use the Apple Talk Transition Queue, you add an entry for your application that
contains a pointer to a transition event handler routine that you must provide to receive
notification of transitions and to perform any additional processing that you want to
perform in reaction to the transition.

After you add your entry, the LAP Manager will call your transition event handler
routine to notify you that an Apple Talk transition either is about to occur or has
occurred. The description of how to use the Apple Talk Transition Queue includes

• how to determine if the LAP Manager is installed on the node running your application

• how to add an entry to the Apple Talk Transition Queue

• how to write the routine that you must provide that the LAP Manager calls to notify
you of the transition

• how to handle each of the standard Apple Talk transitions that can occur and about
which your routine will be notified

• how to handle developer-defined transitions

• how to define your own transition events

Determining if the LAP Manager Is Installed
Before you issue any calls to the LAP Manager, you should check to determine if the
LAP Manager is installed on the node that is running your application. The LAP
Manager is implemented beginning with Apple Talk version 53. To determine if the
LAP Manager is installed, you can check the low-memory global variable LAPMgrPtr.

However, Apple Co~puter, Inc. recommends that you use a higher-level method to
perform this check, such as the one that the code in Listing 10-1 shows.

Using the LAP Manager 10-5

• c:
::::s

I
"tJ
a
[

10-6

CHAPTER 10

Link-Access Protocol (LAP) Manager

Listing 10-1 Checking to determine if the LAP Manager is installed

FUNCTION GestaltAvailable: Boolean;
CONST

_Gestalt = $A1AD;
BEGIN

GestaltAvailable := TrapAvailable(_Gestalt);
END;

FUNCTION AppleTalkVersion: Integer;
CONST

versionRequested = 1;
VAR

{version of SysEnvRec}

refNum: Integer;
world: SysEnvRec;
attrib: Longint;

BEGIN
AppleTalkVersion := 0; {default to no AppleTalk}
IF OpenDriver('.MPP', refNum) = noErr THEN

END;

{open the AppleTalk driver}
IF GestaltAvailable THEN
BEGIN

END

IF (Gestalt(gestaltAppleTalkVersion, attrib) = noErr)
THEN
AppleTalkVersion := BAND(attrib, $000000FF);

ELSE {Gestalt or gestaltAppleTalkVersion selector isn't }
{ available.}

IF SysEnvirons(versionRequested, world) = noErr THEN
AppleTalkVersion := world.atDrvrVersNum;

FUNCTION LAPMgrExists: Boolean;
BEGIN

{AppleTalk Phase 2 is AppleTalk version 53 and later}
LAPMgrExists := (AppleTalkVersion >=53);

END;

Using the LAP Manager

CHAPTER 10

Unk-Access Protocol (LAP) Manager

Here is the declaration for the TrapAvailable function that the code in
Listing 10-1 calls:

FUNCTION TrapAvailable (theTrap: Integer): Boolean~
VAR

tType: TrapType;
BEGIN

tType := GetTrapType(theTrap);
IF tType = ToolTrap THEN
BEGIN

END;

theTrap .- BAND(theTrap, $07FF);
IF theTrap >= NumToolboxTraps THEN

theTrap := _unimplemented, ToolTrap;

Adding an Entry to the Apple Talk Transition Queue
To ensure that your application is not adversely affected by a transition event, your
application places an entry in the Apple Talk Transition Queue.

To c:Io this, you must create an AppleTalk Transition Queue entry record of type
ATQentry and give the LAP Manager a pointer to it. See 11The AppleTalk Transition
Queue Entry" on page 10-33 for a description of the Apple Talk Transition Queue entry
record. This record includes a CallAddr field that holds a pointer to a transition event
handler routine that you provide, which is described in the following section 11How the
LAP Manager Calls Your Transition Event Handler Routine."

Because you provide the memory for the queue entry, you can add as many fields to the
end of the entry as you wish for your own purposes. Whenever the LAP Manager calls
your transition event handler routine, it provides you with a pointer to the queue entry
so that you can have access to the information you stored at the end of your queue entry.

After you have created the AppleTalk Transition Queue entry record, you use the
LAPAddATQ function to add the entry to the Apple Talk Transition Queue. You pass a
pointer to the entry record as the value of the function's theATQEntry parameter.
Listing 10-2 shows how to do this using assembly language: you place a routine selector
in the DO register, place a pointer to your Apple Talk Transition Queue entry in the AO
register, and execute a JSR instruction to an offset past the start of the LAP Manager. The
start of the LAP Manager is contained in the global variable LAPMgrPtr ($B18). The
offset to the LAP Manager routines is given by the constant LAPMgrCall (2).

Using the LAP Manager to-7

•

10-8

CHAPTER 10

Link-Access Protocol (LAP) Manager

Listing 10-2 Adding an Apple Talk Transition Queue entry

LAPMgrPtr EQU
LAPMgrCall EQU

ATQEntry EQU

MOVEQ

MOVE.L
MOVE.L
JSR

$B18
2

*

#23,DO

;entry point for LAP Manager
;offset to LAP Manager
; routines
;pointer to ATQ entry

;place routine selector
; in DO

LAPMgrPtr,An ;put pointer to LAP Mgr in An

ATQEntry,AO ;put ATQ entry in AO
LAPMgrCall(An) ;jump to start of LAP Mgr

; routines

When you no longer want to be notified of transition events or before your program
exits, you use the LAPRmvATQ function to remove your Apple Talk Transition Queue
entry from the queue. Listing 10-3 shows how to do this from assembiy language; you
place the routine selector in the DO register, place a pointer to your AppleTalk Transition
Queue entry in the AO register, and execute a JSR instruction to an offset past the start
of the LAP Manager. The start of the LAP Manager is contained in the global variable
LAPMgrPtr ($Bl8). The offset to the LAP Manager routines is given by the constant
LAPMgrCall (2).

Listing 1 o-3 Removing an Apple Talk Transition Queue entry

LAPMgrPtr EQU $B18 ;entry point for LAP Manager
LAPMgrCall EQU 2 ;offset to LAP Manager

; routines
ATQEntry EQU * ;pointer to ATQ entry

MOVEQ #24,DO ;place routine selector . in DO (24 to remove an
'
; entry)

MOVE.L LAPMgrPtr,An ;put pointer to LAP Mgr in An
MOVE.L ATQEntry,AO ;put ATQ entry in AO
JSR LAPMgrCall(An) ; jump to start of LAP Mgr

; routines

Using the LAP Manager

CHAPTER 10

Unk-Access Protocol (LAP) Manager

How the LAP Manager Calls Your Transition Event
Handler Routine
This section describes how to wqte a transition event handler routine that responds to
notification of AppleT~lk transitions. Because the LAP Manager calls your transition
event routine using C conventions, a transition event handler routine written in Pascal
requires glue code to function correctly. To help solve this problem, this section includes
a discussion of how to write a transition event routine using Pascal, and it also
includes glue code that you will need. This section also d~s·cribes the standard Apple Talk
transitions and how your routine can respond to a particular transition.

When you have used the LAPAddATQ function to add an entry to the Apple Talk Transition
Queue, the LAP Manager calls the transition event handler routine, whose pointer you
pass to the LAP Jylanager in the Apple Talk Transition Queue entry record, whenever an
AppleTalk transition occurs.

Table 10-1 shows the standard Apple Talk transftions (each of which is discussed later in
this section) and their constants and routine selectors.

Table 10·1 Apple Talk transitions and t~eir constants and routine selectors

AppleTalk transition Constant

Open ATTransOpen

Prepare-to-dose ATTransClose

Permission-to-dose ATTransClosePrep

Cancel~close ATTransCancelCATTransCancelClose

Network-connection- ATTransNetworkTransition *
change

Flagship-name-change ATTransNameCpangeTellTask*

Permission-to-change- ATTransNameChangeAskTask*
flagship-name

Cancel-flagship-name- ATTransCancelNameChange *
change

Cable-range-change ATTransCableChange *

CPU-speed-change ATTransSpeedChange *

• The constants marked with an asterisk are not included in the header files; you can use the
routine selectors for these transitions, or you can define the constants in your application.

Using the LAP Manager

Routine
selector

0

2

3

4

5

6

7

8

'rnge'

'sped'

10-9

• r-
3'
'f
)>

a
<D
~
""D
0
0
0
2.

~
J!
s::
~
~
~ co
<D ..,

CHAPTER 10

Link-Access Protocol (LAP) Manager

From assembly language, when the LAP Manager calls your routine, the stack looks
like this:

.i.

Stack pointer ~

Return address

Routine selector

Pointer to
Apple Talk Transition Queue entry

Routine-dependent parameter

'1 Previous contents 1

The first item on the stack (after the 4-byte-long return address) is a routine selector.
There is one routine selector for each type of transition. Some transition events have a
single-digit routine selector. Other transition events are four-character codes. Codes
starting with an uppercase letter (A through Z) are reserved for use by developers. All
other codes are reserved for use by Apple Computer, Inc.

The second item passed to your routine on the stack is a pointer to your routine's entry
in the AppleTalk Transition Queue. You can use this pointer to gain access to any fields at
the end of the queue entry that you allocated for your own use. The last item passed to
your routine on the stack is a 4-byte-long parameter whose meaning depends on the
type of transition.

With the exception of the open transition, the prepare-to-dose transition, the flagship­
name-change transition, the permission-to-change-flagship-name transition, and the
cancel-flagship-name transition, the interface between the Apple Talk Transition Queue
and your routine must follow these conventions:

• Your routine must preserve all registers except DO, Dl, 02, AO, and Al.

• All parameters are passed on the stack as long words.

• Because your routine might be called at interrupt time, your routine must not make
any direct or indirect calls to the Memory Manager, and it cannot depend on handles
to unlocked blocks being valid, unless otherwise noted in the description of the
transition event.

10-10 Using the l-AP Manager

CHAPTER 10

Link-Access Protocol (LAP) Manager

• If you want to use any of your application's global variables, you must save the
contents of the AS register before using the variables and you must restore the
AS register before your routine terminates.

Again, these restrictions do not apply to the open transition, the prepare-to-dose
transition, and the three flagship-name transitions.

IMPORTANT

It is important that you return a 0 in the DO register whenever you
receive a transition event routine selector that you do not recognize or
do not choose to handle. Returning a nonzero value in the DO register
might cause the system to cancel an attempt to close Apple Talk, for
example, or it might be misinterpreted in some other way. You should
only return a nonzero result to known transition events. .&

Writing a Transition Event Handler Routine Using Pascal

The LAP Manager assumes that you will use the CallAddr field of your event record to
pass it a pointer to a transition event handler routine that is written in the C program­
ming language. The LAP Manager use C calling conventions when it calls your routine.

If you write your transition event handler routine in Pascal, you must include a glue
code wrapper routine. You can use either the sample glue code provided in this section
or your own method. To use this glue code, you must modify the AppleTalk Transition
Queue entry record to include a field to hold a pointer to your Pascal transition event
handler routine. You must add this field directly after the CallAddr field. You use the
CallAddr field to pass the address of the assembly-language glue code routine. Here is
the type declaration for an Apple Talk Transition Queue entry record that includes the
additional field that is required if you use the glue code:

TYPE myATQEntry =
RECORD

qlink:
qType:
CallAddr:
PATQProcPtr:

globs:
END;

Ptr;
Integer;
ProcPtr;
ProcPtr;

TransEventPtr;

myATQEntryPtr AmyATQEntry;
myATQEntryBdl AmyATQEntryPtr;

{ptr to next queue entry}
{reserved}
{ptr to the glue code}
{ptr to Pascal ATQ }
{ routine; this field must }
{ follow the CallAddr field. }
{ Do not change the order of }
{ these fields.}
{ptr to user defined globals}

Using the LAP Manager 10-11

•

CHAPTER 10

Unk-Access Protocol (LAP} Manager

The following segment of code shows how to add an Apple Talk Transition Queue entry
to the queue. In this example, the actual transition event handler routine is called
ATQueueProc. The glue code routine is called CallTransQueue. The LAPAddATQ
function passes the glue code routine to the LAP Manager in the CallAddr field of
the Apple Talk Transition Queue entry myATQEntry.

VAR

gATQEntry: myATQEntry;
OSErr: err;

BEGIN
gATQEntry.CallAddr := ProcPtr(@CallTransQueue);
gATQEntry.PATQProcPtr := ProcPtr(@ATQueueProc);
err := LAPAddATQ(ATQEntryPtr(@gATQEntry));

Listing 10-4 shows the sample assembly-language glue code routine Call Trans Queue
that you can use if you write your transition event handler routine in Pascal. The glue
routine takes the parameters from the stack and sets up a Pascal stack, then calls the
function pointed to by the PATQProcPtr field of the AppleTalk Transition Queue entry
record. On return, the glue code pulls the result from the stack and puts it into the DO
register, where the LAP Manager expects to find it.

Listing 1 o-4 Glue code for a Pascal transition event handler routine

;FUNCTION CallTransQueue (selector: Longint; q: ATQEntryPtr;
p: Ptr): Longint;

;EXTERNAL;

CallTransQueue PROCEXPORT
LINK A6,#$0000
CLR.L -(A7)
MOVE.L $0008(A6),-(A7)
MOVE.L $000C(A6),-(A7)
MOVEA.L (A7) ,AO
MOVEA.L $000A(AO) ,AO
MOVE.L $0010(A6),-(A7)

JSR (AO)
MOVE.L (A7)+,DO
UNLK A6
RTS
ENDP
END

10-12 Using the LAP Manager

;set up a local stack frame
;set space for return result
;move selector to stack
;move ATQPtr to stack
;put copy ATQPtr in AO
;put pointer to real ATQ in AO
;move last parameter:
; pointer to stack
;call the Pascal ATQ function
;move result into DO
;tear down local stack frame
;return

CHAPTER 10

Link-Access Protocol (LAP) Manager

Open Transition

When an application calls the MPPOpen function or the Device Manager's OpenDriver
function, Apple Talk attempts to open the .MPP driver. If the .MPP driver is already
open, the LAP Manager does not call the Apple Talk Transition Queue transition event
handler routines. If AppleTalk successfully opens the .MPP driver, the LAP Manager
then calls every routine listed in the AppleTalk Transition Queue with an open transition
(ATTransOpen).

When the LAP Manager calls your transition event handler routine, the stack looks
like this:

-·------------..

" J.

Stack pointer --1~

Address of caller

0 (ATTransOpen)

Pointer to
Apple Talk Transition Queue entry

Pointer to MPP parameter block

7 Previous contents '1

The last item on the stack for an open transition is a pointer to the start of the Device
Manager extended parameter block used by the routine that opened the .MPP driver.
This pointer is provided for your information only; you must not change any of the
fields in this parameter block.

Your transition event handler routine can perform any tasks you wish in response to the
notification that the .MPP driver has been opened, such as using the Name-Binding
Protocol (NBP) to register a name on the internet. Return 0 in the DO register to indicate
that your routine executed with no error.

Note
The open transition event occurs at system task time, during which you
can allocate memory. •

Using the LAP Manager lQ-13

CHAPTER 10

Link-Access Protocol (LAP) Manager

Prepare-to-Close Transition

When any routine calls the MPPClose function or the Device Manager's CloseDriver
function to close the .MPP driver, the LAP Manager calls every routine listed in the
AppleTalk Transition Queue before the .MPP driver closes with an ATTransClose
transition; if the .MPP driver is already closed when a routine calls either MPPClose or
CloseDriver, the LAP Manager does not call the transition event handler routines in
the AppleTalk Transition Queue.

When the system closes the .MPP driver

Whereas it is unlikely that opening the .MPP driver will adversely affect
another program, an application should never close the .MPP driver
because another program might be using it. Under certain circum­
stances, however, the system might close the .MPP driver, for example,
when the user changes the network connection. In this case, the system
will send a permission-to-dose transition to each routine in the
Apple Talk Transition Queue. This transition indicates that the system
intends to close the .MPP driver, and in this way, each transition event
handler routine in the queue has the opportunity to deny it permission
to do so. When the system sends the permission-to-dose transition, any
routine in the Apple Talk Transition Queue that wishes to deny
permission to close the .MPP driver can return a pointer to a Pascal
string that gives the name of the application that placed the entry in the
queue. If any routine denies permission to close the .MPP driver, the
LAP Manager sends a cancel-close transition to every routine in the
Apple Talk Transition Queue that previously received the permission-to­
dose transition. The application that caused the system to send a
permission-to-dose transition application may display a dialog box
informing the user that another application is using the .MPP driver and
showing the name (if any) returned by the transition event handler
routine. The dialog box gives the user the option of canceling the request
to close Apple Talk or of closing Apple Talk anyway. If the user chooses to
close AppleTalk despite the fact that an application is using it, the
system calls the MPPClose function. The LAP Manager then sends a
prepare-to-dose transition to each application in the Apple Talk
Transition Queue, informing each one that Apple Talk is about to close.
In this case, your transition event handler routine must prepare for the
imminent closing of AppleTalk; it cannot deny permission to the
MPPClose function. •

10-14 Using the LAP Manager

CHAPTER 10

Link-Access Protocol (LAP) Manager

When the LAP Manager calls your transition event handler routine, the stack looks
like this:

t. .4

Stack pointer -----.

Address of caller

2 (ATTransClose)

Pointer to
Apple Talk Transition Queue entry

Not used

'1
Previous contents 1

Your routine can perform any tasks you wish to prepare for the imminent closing of
Apple Talk, such as ending a session with a remote terminal and informing the user that
the connection is being closed. You must return control to the LAP Manager as quickly as
possible. Return 0 in the DO register to indicate that your routine executed with no error.

Note
When the LAP Manager calls your routine with a prepare-to-dose
transition (that is, a routine selector of ATTransClose), you cannot
prevent the .MPP driver from closing. +

Permission-to-Close Transition

When a routine calls Apple Talk to inform Apple Talk that it wants to close the .MPP
driver, the LAP Manager calls every transition event handler routine to request
permission to close the .MPP driver with an ATTransClosePrep transition.

Using the LAP Manager 10-15

•

CHAPTER 10

Unk-Access Protocol (LAP) Manager

When the LAP Manager calls your transition event handler routine, the stack looks
like this:

,---····~~~---~~---·----·-·-··---··--·-·····-·--·----~.

I
J.

Stack pointer ..

Address of caller

3 (ATTransClosePrep)

Pointer to
Apple Talk Transition Queue entry

Pointer to 4-byte buffer

7
Previous contents 1

The last parameter on the stack is a pointer to a 4-byte buffer. If you intend to deny the
request to close the .MPP driver, you place in the buffer a pointer to a Pascal string
containing the name of your application. This string belongs to the LAP Manager until
the LAP Manager finishes processing the cancel-close transition. The routine that issued
the request to close the .MPP driver can then display a dialog box telling the user the
name of the application that is currently using Apple Talk.

Your routine can return either a function result of 0 in the DO register, indicating that it
accepts the request to close, or a 1 in the DO register, indicating that it denies the request
to close. Note that the operating system might elect to close the .MPP driver anyway; for
example, if the user grants permission to close in response to a dialog box.

Because ti:te LAP Manager calls your routine again (with the routine selector set to
ATTransClose) before the .MPP driver actually closes, it is not necessary for your
routine to do anything other th~ grant or deny permission in response to being called
for a permission-to-dose tr~sition. However, you might want to prohibit users from
opening new sessions or establishing new connections while you are waiting for the
.MPP driver to close.

Note
Earlier versions of Inside Macintosh referred to the PATalkClosePrep
function as a means of requesting permission to close the .MPP driver.
The PATalkClosePrep function is now only used internally by the
.MPP driver. •

10-16 Using the LAP Manager

CHAPTER 10

Unk-Access Protocol (LAP) Manager

Cancel-Close Transition

When any routine in the Apple Talk Transition Queue denies permission for the .MPP
driver to close, the LAP Manager calls each routine that has already received the
permission-to-close transition with an ATTransCancelClose transition to inform it
that the request to close the .MPP driver has been canceled.

When the LAP Manager calls your transition event handler routine, the stack looks
like this:

" J.

Stack pointer ...

Address of caller

4 (ATTransCancelClose}

Pointer to
Apple Talk Transition Queue entry

Not used

.,
Previous contents 1

If your routine performed any tasks to prepare for the closing of Apple Talk, it
should reverse their effects when it is called with the routine selector set to
ATTransCancelClose. Return 0 in the DO register to indicate that your routine
executed with no errors.

Network-Connection-Change Transition

To receive notification of network connection changes or transitions, your application
shou~d process ATTransNetworkTransi tion transitions. All applications running on
an Apple Talk network should handle this event, but especially those applications that
use multinode IDs.

For example, Apple Remote Access (_AM), which uses multinode architecture, allows
a user to establish a connection between two Macintosh computers over standard
telephone lines. If the Macintosh that the user dials into is on an Apple Talk network,
such as LocalTalk or EtherTalk, the Macintosh effectively becomes a node on that
network, and all of the services on that network become available to the user. Because
of~ relationship, any application that establishes an ARA connection needs to be
notified when new Apple Talk connections are established or broken.

Using the LAP Manager 10-17

•

10-18

CHAPTER 10

Unk-Access Protocol (LAP) Manager

Note

Both the Apple Talk Session Protocol (ASP) and the AppleTalk Data
Stream Protocol (ADSP) have been modified to respond to network­
connection-change transitions. When the AppleTalk drivers that
implement these protocols receive notification of a network
disconnect transition, they close down sessions on the remote side
of the connection. •

When the LAP Manager calls your transition event handler routine, the stack looks
like this:

" J.

Stack pointer ..

Address of caller

5 (ATTransNetworkTransition)

Pointer to
Apple Talk Transition Queue entry

Pointer to a record containing
network transition information

7 Previous contents 1

Note

If you want to use the constant ATTransNetworkTransi tion for this
transition event, you must first declare it in your application because it
is not defined in the MPW interface files. •

When the LAP Manager calls your routine, the last parameter on the stack contains a
pointer to a record that contains a pointer to a network validation procedure. The
process that sends notification of the network connection change uses this record to pass
to the transition event handler routines a pointer to the network validation procedure;
the transition event handler routines can then use this procedure to determine which
networks are no longer connected, which networks remain connected, and which new

Using the LAP Manager

CHAPTER 10

Link-Access Protocol (LAP) Manager

networks have been added. To read the data in the record that this field points to, you
must declare the following record type in your application:

TNetworkTransition
RECORD

private:
netValidProc:

Ptr; {pointer used internally by ARA}
ProcPtr; {pointer to the network }

{ validation procedure}
neWConnectivity: Boolean; {TRUE = new connectivity, }

{ FALSE = loss of connectivity}
END;

You cannot access a ProcPtr directly from Pascal. Therefore, if you write your
application in Pascal and you want to handle the ATTransNetworkTransi tion
event, you need to include the following glue code so that you can access the
netWork validation procedure pointed to by the netValidProc field. Listing 10-5
shows the CallNetValidProc function glue code that you can use to call the
netValidProc validation procedure pass~d in the TNetworkTransi tion record.

Listing 1 o-s Glue code to handle the network-connection-change transition from Pascal

FUNCTION CallNetValidProc (netTrans: TNetworkTransitionPtr;
theNet: Longint; p: ProcPtr): Longint;

INLINE
$205F, { MOVEA.L (SP)+,AO ;get ProcPtr into AO, and make stack

; right for call }
$4E90; { JSR (AO) ;call ProcPtr, and return to caller}

The code in Listing 10-6 demonstrates the calling sequence of events for the
CallNetValidProc glue code.

Listing 1 0-6 Using the glue code for the network validation procedure

CASE selector OF
ATTransNetworkTransition:
BEGIN

myTNetworkTransitionPtr := TNetworkTransitionPtr(p);
if (myTNetworkTransitionPtrA.newConnectivity) THEN
BEGIN
{

}

END

/*Determine if there is a new connection.*/

Using the LAP Manager 10-19

• r
:r

i
(/)
(/)

"'0
a
[

CHAPTER 10

Unk-Access Protocol (LAP) Manager

ELSE
BEGIN
{

}

/*If there is a new connection, determine which network */
I* address needs to be validated and assign the value to */
I* checkThisNet.*/

checkThisNet = $1234FDOO;
/*network $1234, node $FD, socket not used*/

if (CallNetValidProc(myTNetworkTransitionPtr, checkThisNet
myTNetworkTransitionPtr~.netValidProc) <> 0) THEN

/*Take the appropriate action depending on result.*/

Apple Remote Access (ARA) is an example of a process that generates network­
connection-change transitions to inform transition event handler routines and resident
processes that network connectivity has changed. ARA uses the TNetworkTransi tion
record to inform the routines about the changes. The neWConnectivity field of the
TNetworkTransition record identifies the type of change that has occurred:

• If this flag is TRUE, the network that your node is connected to through ARA has
connected to a new internet. In this case, the LAP Manager will return all network
addresses identifying them as reachable.

• If this flag is FALSE, specific networks are no longer reachable.

Because ARA is connection oriented, it can identify the location of a specific network and
inform transition event handler routines that a network is no longer reachable. You can
use this information to identify the loss of connections immediately instead of waiting to
discover that the other end of the connection is no longer responding.

The netValidProc field of the TNetWorkTransi tion record contains a network
validation hook for a function that you can use to query ARA about a specific network to
determine if that network is still reachable. If the network is reachable, the validation
function returns TRUE. You can call this function repeatedly to determine the status of
each network that you are interested in. If you use the Pascal language to write your
transition event handler routine, you must implement glue code to use the network
validation procedure.

The information that the validation function returns is valid only for those routines that
use the function in response to a network-connection-change transition.

Note
A network-connection-change transition can be sent at interrupt time.
Because of this, you should follow the conventions that apply when a
routine is called during an interrupt. For example, your routine should
not call routines that move memory and you should not call AppleTalk
functions synchronously. •

10.20 Using the LAP Manager

CHAPTER 10

Link-Access Protocol (LAP) Manager

Flagship-Name-Change Transition

System 7 allows a user to enter a personalized name that identifies the system when
it is connected to an Apple Talk network. This is called the flagship name. An application
that provides network services for a workstation should use the flagship name so
that the user can personalize the name that identifies the workstation to the network
while reserving the use of the Chooser name for server connection identification.
If your application utilizes flagship names, your routine should process
ATTransNameChangeTellTask transitions. When the LAP Manager calls your
routine with an ATTransNameChangeTellTask transition, you cannot prevent the
flagship name from being changed.

When a routine calls the ATEvent procedure to change the flagship name, the LAP
Manager calls every routine listed in the Apple Talk Transition Queue with an
ATTransNameChangeTellTask transition. When the LAP Manager calls your
transition event handler routine, the stack looks like this:

t. J.

Stack pointer __ .,..

Address of caller

6 (ATTransNameChangeTellTask)

Pointer to
Apple Talk Transition Queue entry

Pointer to buffer containing
new flagship name

'1
Previous contents '1

The last item on the stack is a pointer to a Pascal string that is the new flagship name to
be registered. Your routine should remove the NBP registrations of entities under the old
flagship name. You can make synchronous calls to NBP to remove a registered entity.
Return a result of 0 in the DO register to indicate that your routine executed with no error.

Note
Your application should only respond to flagship name changes
about which it receives notification. Do not attempt to change
the flagship name. •

Using the LAP Manager 10-21

CHAPTER 10

Link-Access Protocol (LAP) Manager

Permission-to-Change-Flagship-Name Transition

If your application utilizes flagship names, your transition event handler routine should
process ATTransChangeNameAskTask transitions. When a process makes a request to
change the flagship name, the LAP Manager calls every routine listed in the AppleTalk
Transition Queue with an ATTransChangeNameAsk transition to request permission to
change the name. When the LAP Manager calls your transition event handler routine,
the stack looks like this:

" ~

Stack pointer _ ____,~

Address of caller

7 (ATTransNameChangeAskTask)

Pointer to
AppleTalk Transition Queue entry

Pointer to a record containing the new
flagship name and a pointer to a Pascal string

'1 Previous contents 7

The last item on the stack contains a pointer to a record that holds the new flagship
name. The NameChangeinfo record also includes a field that you use to identify your
application if you deny the name-change request. To read from and write to the record,
you must declare the following record type in your application:

NameChangeinfo =

RECORD

neWObjStr: Str32; {new flagship name}

name: StringPtr; {pointer to }

END; { application's name}

The newObj Str field contains the proposed flagship name change. Your routine can
inspect the newObj Str field. If your routine denies the name-change request, you
must provide as the value of the name field a pointer to a buffer containing a Pascal

10-22 Using the LAP Manager

CHAPTER 10

Link-Access Protocol (LAP) Manager

string that names your application. The LAP Manager returns this pointer to the process
that requested the flagship name change so that the process can then display a dialog
box telling the user the name of the application that refused the name change.

If your application does not deny the request, you can make synchronous calls to NBP to
attempt to register your application under the new flagship name while your transaction
event handler routine is processing the request. Apple Computer, Inc. recommends that
you register your application with NBP under the new flagship name while you handle
the ATTransChangeNameAskTask transition. However, you should not remove the old
NBP registration until you are certain that other applications have not denied the request
to change the flagship name. If another application denies the name-change request, the
LAP Manager will send an ATTransCancelNameChange transition to cancel the name­
change request.

Return 0 in the DO register to indicate that you accept the request to change the flagship
name. To deny the request, return a nonzero number in the DO register.

Cancel-Flagship-Name-Change Transition

When any routine in the Apple Talk Transition Queue refuses a request to change
the flagship name, the LAP Manager will send an ATTransCancelNameChange
transition to any transition event handler routines that acknowledged the
ATTransNameChangeAskTask transition.

When the LAP Manager calls your transition event handler routine, the stack looks
like this:

-~------·~----------- ---------------~---·-- ---·

" J.

Stack pointer --•

Address of caller

8 (ATTransCancelNameChange)

Pointer to
Apple Talk Transition Queue entry

Not used

.,
Previous contents

;

Using the LAP Manager 10-23

•

CHAPTER 10

Link-Access Protocol (LAP) Manager

If your routine registered any entities with NBP under the new flagship name while it
processed the ATTransNameChangeAskTask, it should remove those entries now. You
can make synchronous calls to NBP to remove registration of the entities.

Return a result of 0 in the DO register to indicate that your routine executed with
no errors.

Cable-Range-Change Transition

A cable range is a range of network numbers beginning with the lowest network number
and ending with the highest network number defined by a seed router for a network. All
node addresses, including multinode addresses, that a system on a network acquires
must have a network number within the defined cable range. (For information on
multinodes, see the chapter "Multinode Architecture" in this book.)

Note
For nonextended networks, the lowest and the highest
numbers are the same. •

When the cable range of a network changes because, for example, a router on the
network shuts down, the LAP Manager will call your transition event handler routine
with an ATTransCableChange transition. This transition notifies you that the cable
range has changed for the network to which your node is connected.

Applications that use multinodes are examples of processes that should handle this
transition. For multinode applications, after receiving notification of the cable range
change, you should check the new cable range and determine if all the multinode IDs
that the application acquired before the transition event occurred are still valid. If you
discover multinode IDs that are no longer valid, you should call the RemoveNode
function to remove them. Then you can call the AddNode function to obtain new
multinode IDs that are within the valid cable range. See the chapter "Multinode
Architecture" for information on RemoveNode and AddNode.

The LAP Manager sends you notice of a change in the cable range when the following
events occur: AppleTalk first identifies the network router, the last router ages out, or
AppleTalk first receives a Routing Table Maintenance Protocol (RTMP) broadcast packet
that is different from the current range. The ATTransCableChange transition is
implemented beginning with Apple Talk version 57. This transition event is issued at
system task time only.

10-24 Using the LAP Manager

CHAPTER 10

Link-Access Protocol (LAP) Manager

When the LAP Manager calls your transition event handler routine, the stack looks
like this:

J.

Stack pointer .,

Address of caller

1 rngel (ATTransCableChange)

Pointer to
Apple Talk Transition Queue entry

Pointer to a record containing
new cable range information

7 Previous contents '1

The last item on the stack contains a pointer to a record that holds the new high and low
cable numbers that identify the cable range. To access this information, you must declare
a record of type TNewCRTrans. Here is the TNewCRTrans record type declaration:

TNewCRTrans ::::

RECORD
newCableLo: Integer; {new low cable in the range, }

{ received from RTMP}
newCableHigh: Integer; {new high cable in the range, }

{ received from RTMP}
END;

CPU-Speed-Change Transition

Some applications change the CPU speed without rebooting the system. For example, an
application may alter the cache states on the 68030 or 68040 CPUs or a third-party
accelerator card may support dynamic speed changes made through a control panel
I cdev I file. Tune-dependent processes need to be notified of changes to the CPU speed
when these changes occur. If your application changes the CPU speed, you should use
the ATEvent procedure to send notification of an ATTransSpeedChange transition to

Using the LAP Manager 10-25

•

CHAPTER 10

Unk-Access Protocol (LAP) Manager

time-dependent processes. You must issue this transition event at system task time only.
When you call the ATEvent procedure, pass ATTransSpeedChange as the value of the
event parameter.

You must always notify LocalTalk when a CPU speed change occurs. LocalTalk includes
a module that is time-dependent; the low-level timer values used in this code must be
recalculated when the CPU speed changes. Altering the cache state on the 68030 does not
affect LocalTalk, whereas altering the cache state on the 68040 does affect the LocalTalk
timers. Therefore, an application that dynamically toggles caching on the 68040 should
send notification of an ATTransSpeedChange transition. If the application does not do
this and LocalTalk is the current network connection, the connection will be broken.
LocalTalk implemented in Apple Talk version 57 or later recognizes the CPU-speed­
change transition event notification.

The transition event handler routine of any time-dependent process should handle the
ATTransSpeedChange transition notification. When the LAP Manager calls your
transition event handler routine, the stack looks like this:

r-------------------·--·----«-

" J.

Stack pointer __.

Address of caller

'sped' (ATTransSpeedChange)

Pointer to
Apple Talk Transition Queue entry

Not used

'? Previous contents 1

Developer-Defined Transitions

Any Apple Talk transition event code that begins with an uppercase letter (that is, any
value in the range $41 00 00 00 through $SA FF FF FF) indicates a developer-defined
event. Because you cannot tell how the originator of such an event might interpret a
nonzero function result, you must always return 0 in the DO register for any AppleTalk
transition event code that you do not recognize.

When you return a nonzero result code for certain developer-defined transitions, the
LAP Manager may call your transition event handler routine a second time with a cancel
transition analogous to the cancel-close transition.

10-26 Using the LAP Manager

CHAPTER 10

Unk-Access Protocol (LAP) Manager

Defining Your Own Apple Talk Transition
You can define Apple Talk transitions and use such events to send messages to your own
entries in the Apple Talk Transition Queue, or you can define events and make them
public for others to use.

You can define your own Apple Talk transition to have any meaning you choose. For
example, you might want to call every routine in the Apple Talk Transition Queue each
time you open or close a custom protocol stack.

You can use either the ATEvent procedure or the ATPreFlightEvent function to
notify all of the routines in the AppleTalk Transition Queue that your Apple Talk
transition has occur.red. Whereas the ATEvent procedure only calls the routines in
the queue with a transition event, the ATPreFlightEvent function also allows each
routine in the Apple Talk Transition Queue to return a result code and other information
to your calling routine.

A developer-defined event, as with any event, always begins with an uppercase letter
(that is, any value in the range $41 00 00 00 through $SA FF FF FF).

Note

You can call the ATEvent and ATPreFlightEvent routines only at
virtual-memory safe time. See Inside Macintosh: Memory for information
on virtual memory. •

The LAP Manager and 802.2 Protocol Packets
The Institute of Electrical and Electronics Engineers (IEEE) has defined a series of
communications protocols for use on a variety of networks. At the physical level, these
protocols include the 802.3 CSMA/CD protocol, the 802.4 token bus protocol, and the
802.5 token ring protocol. At the data-link level, you access these protocols through the
IEEE 802.2 Logical Link Control (LLC) protocol. If you write an application that handles
802.2 Type 1 data packets, you must include a protocol handler to read the data. You can
install your application as a client of the LAP Manager to receive 802.2 packets from an
Ethernet, token ring, or FDDI driver.

The LAP Manager includes two routines that allow you to attach and detach protocol
handlers for 802.2 Type 1 data packets: the L802Attach and L802Detach routines. The
LAP Manager contains a generic protocol handler that receives data from the hardware
device drivers and determines for which application the 802.2 packet is meant based
on the protocol type. The LAP Manager's protocol handler then calls the destination
application's protocol handler to read in the data. This section uses Ethernet to
illustrate how this process works; however, the same process applies to token ring and
FDDI packets.

The ANSI/IEEE standards for the 802 protocols are published by the IEEE. The first
14 bytes of a packet sent or received by the .ENET driver constitute the header. The first
12 bytes consist of the destination and source data-link addresses, such as the Ethernet
hardware addresses. If the value of the last 2 bytes in the header is greater than 1500,
then the .ENET driver treats that field as an Ethernet protocol type discriminator; this

Using the LAP Manager 10-27

r s·

i en
""0 a
~

CHAPTER 10

Link-Access Protocol (LAP) Manager

indicates that the packet is an Ethernet Phase 1 packet. If the value of the last 2 bytes in
the header is less than or equal to 1500, then the field contains the length of the 802.2
packet, not including the 14-byte header, and this indicates that the packet is an Ethernet
Phase 2 packet. The .ENET driver passes all Phase 2 packets to the LAP Manager.

The IEEE LLC standard defines the concept of a Service Access Point (SAP). A SAP is a
1-byte value that is used to distinguish the different protocols using 802.2 in a single
node. Most SAPs are reserved for use by IEEE standard protocols. IEEE has reserved one
SAP, whose value is $AA, for use by protocols other than the standard IEEE protocols.
Apple Talk and many other protocol families use SAP $AA. Because other protocol
families can also use this SAP, the value of another field that contains the subnetwork
access protocol (SNAP) type is used to discriminate for which protocol family a packet
with a destination subnetwork access protocol value of $AA is intended.

At the physical level, a packet contains the 802.3 header, the data field of which contains
either an Ethernet protocol type discriminator (for Phase 1 packets) or the 802.2 packet
length (for Phase 2 packets). For all Phase 2 packets, the LAP Manager receives the entire
802.3 packet from the .ENET driver. The first 14 bytes of the 802.3 data constitute the
frame header, and they are followed by the 802.2 protocol header.

The first byte of the 802.2 header is the destination service access point (DSAP). If the
DSAP value is equal to $AA, then the first 5 bytes of the 802.2 data constitute a SNAP
protocol type discriminator. If the SNAP type value is $00000080F3, indicating the
Apple Talk Address Resolution Protocol (AARP), then the next 4 bytes of the 802.2 data
constitute the AARP packet type field. AARP is not discussed at length in this book; for
complete information about AARP, see Inside AppleTalk, second edition.

Figure 10-2 shows an Ethernet packet containing AppleTalk Phase 1 data. Phase 1
packets are the original version of Ethernet packets. The last 2 bytes in the header
contain a value greater than 1500, indicating that this field is to be treated as a
protocol type discriminator.

Figure 10-2 Ethernet Phase 1 packet formats

~------·----··--· ·-··· ·-----~----~--

Ethernet Phase 1
data frame

Bytes

Ethernet hardware
destination 6
address

Ethernet hardware
source 6
address

$80 L ~: Ethernet protocol 2 $98 type discriminator

Apple Talk Variable
Phase 1 data length

10-28 Using the LAP Manager

CHAPTER 10

Link-Access Protocol (LAP) Manager

Figure 10-3 shows two Phase 2 packets. For Phase 2 packets, the last 2 bytes of the
802.3 header contain the 802.2 packet length, not including the 14-byte header; the
802.2 packet length is a value from 0 through 1500.

The data frame on the left shows an Ethernet 802.3 packet containing an 802.2 packet
that holds Apple Talk Phase 2 data. The Ethernet driver would deliver this entire packet
to the LAP Manager; the 802.2 packet is enclosed in the 802.3 packet, which is also
referred to as a frame. The data frame on the right shows an Ethernet 802.3 packet
containing an 802.2 packet to be delivered to the Phase 2 Ethernet AARP handler;
the SNAP type value is $00000080F3, indicating the Apple Talk Address Resolution
Protocol (AARP).

Figure 1o-3 Ethernet Phase 2 packet formats

Ethernet Phase 2
data frame

802.3 destination
address

AARP Ethernet Phase 2
AARP data frame

802.3 destination
address

(Less than or
802.3 source

address (Less than or
802.3 source

address
equal to 1500) equal to 1500)

$AA
$AA
$03

$08
$00
$07
$80
$98

Data length

802.2 header

SNAP type

Apple Talk
Phase 2 data

802.2
packet

$AA
$AA
$03

$00
$00
$00
$80
$F3

$00
$01
$80
$98

Data length

802.2 header

SNAP type

AARP packet type 4

802.2
packet

AARPdata
Variable
length

._ ___ ___._)

When you call the L802Attach routine, you provide a pointer to your protocol handler,
the reference number of the .ENET driver, and a pointer to a string containing one or
more type fields. The type fields indicate the DSAP value and any other protocol type
fields (such as the SNAP type and the AARP type). The LAP Manager delivers to your
protocol handler any 802.2 data packets that have the protocol type you specify.

Using the LAP Manager 10-29

•

CHAPTER 10

Link-Access Protocol (LAP) Manager

Attaching and Detaching 802.2 Protocol Handlers

You must use the LAP Manager to attach your protocol handler for 802.2 protocols to
receive Ethernet Phase 2 packets and all token ring and FDDI packets.

The LAP Manager is designed to install a generic protocol handler that receives packets
from the hardware device drivers for 802.2 protocols and that also serves as a dispatcher.
The LAP Manager's protocol handler maintains an index of registered protocol types
and pointers to their protocol handlers. When an application calls the LAP Manager to
attach a protocol handler, the LAP Manager adds an entry for the application's protocol
type and protocol handler to its protocol handler index.

The LAP Manager's protocol handler determines for which application data is meant.
When processing a packet, the LAP Manager reads the destination SAP; if the SAP value
is $AA, the LAP Manager then checks the SNAP header for the protocol type, and then it
searches for a protocol type match in its protocol handler index. If the LAP Manager
finds a protocol type match, it calls the destination application's protocol handler to read
in the data. You cannot replace or override the permanent LAP Manager protocol handler.

The first time that a process or application calls the LAP Manager to attach a protocol
handler for 802.2 packets, the LAP Manager calls the specified hardware device driver
directly to install its own generic protocol handler. The LAP Manager then registers in its
index the protocol handler and the protocol type for the process that initially called it.
When a process or application subsequently calls the LAP Manager to attach a protocol
handler to receive 802.2 packets from the same type of hardware device driver, the LAP
Manager simply adds the protocol handler and protocol type information for that
process to its index.

The LAP Manager allows for the concurrent use of hardware device drivers by more
than one application. For example, Figure 10-4 shows three scenarios. In the first instance
at the top of the figure, only Apple Talk is using the Ethernet driver to receive data;
Apple Talk always uses the LAP Manager, which provides for its link independence.

In the second instance in the middle of the figure, both AppleTalk and a developer­
written application have attached their protocol handlers to the LAP Manager.
AppleTalk is configured to use the Ethernet driver; when the LAP Manager's protocol
handler reads a packet, it determines if the data is meant for Apple Talk, and if so, the
LAP Manager calls the DDP protocol handler to receive the data. If the data is meant
for the other application, the LAP Manager calls that application's protocol handler.

In the third instance at the bottom of the figure, both Apple Talk and the developer­
written application have attached their protocol handlers to the LAP Manager to receive
data from the token ring driver. The LAP Manager receives the data, determines the
destination, then calls the appropriate protocol handler, either the DDP protocol handler
or the developer-written application's protocol handler to receive the data.

to-30 Using the LAP Manager

CHAPTER 10

Link-Access Protocol (LAP) Manager

Figure 10-4 Using the LAP Manager to receive data for 802.2 protocols

LAP
Manager
protocol
handler

LAP
Manager
protocol
handler

Developer­
written

protocol

Developer­
written

protocol

There are no high-level interfaces for the LAP Manager 802.2 protocol routines. You call
these routines from assembly language by placing a routine selector in the DO register
and executing a JSR instruction to an offset 2 bytes past the start of the LAP Manager.
The start of the LAP Manager is contained in the global variable LAPMgrPtr ($B18).

Before you call these routines, you must place the reference number of the .ENET driver
in the D2 register and a pointer to the protocol type specification in the Al register.
Before you call the L802Attach routine, you must also place a pointer to your protocol
handler in the AO register. Both routines return a nonzero value in the DO register if there
is an error.

Using the LAP Manager 10-31

•

CHAPTER 10

Link-Access Protocol (LAP) Manager

Listing 10-7 shows how to call either the LAP Manager's L802Attach or L802Detach
routine from assembly language. To specify either of these routines, you place the
routine selector in register DO, as indicated in the sample code.

Listing 10.7 Calling a LAP Manager 802.2 routine from assembly language

LAPMgrPtr EQU
LAPMgrCall EQU

L802Entry EQU

MOVEQ

MOVEQ

MOVE.L

MOVE.L

MOVE~L

JSR

$B18

2

*

#RSel,DO

#refNum,D2

PHndlrPtr,AO

PSpecPtr,Al

;entry point for LAP Manager
;offset to LAP Manager
; routines
;802 routine entry

;place the routine selector
; in DO
;place the driver reference
; number in 02
;put pointer to protocol
; handler in AO (L802Attach
; only)
;put pointer to protocol
; specification in Al

LAPMgrPtr,An ;put pointer to LAP Mgr in An
LAPMgrCall(An) ;jump to start of LAP Mgr

; routines

For information on the protocol type specification whose pointer you place in register A1,
see "L802Attach" beginning on page 10-40.

LAP Manager Reference

This section describes the data structures and routines that are specific to the
LAP Manager.

The "Data Structures" section shows the Pascal data structure for the Apple Talk
Transition Queue entry record.

The "Routines" section describes routines for adding and removing an Apple Talk
Transition Queue entry, requesting permission to close the .MPP driver, notifying the
routines specified by Apple Talk Transition Queue entries when a transition occurs that
your application has defined, and attaching and detaching your own 802.2 protocol
handler for Type 1 packets.

10-32 LAP Manager Reference

CHAPTER 10

Unk-Access Protocol (LAP) Manager

Data Structures

This section describes the ATQEntry record that you use to specify your AppleTalk
Transition Queue entry routine to be called when a transition event occurs. You pass a
pointer to this record as a parameter to the LAPAddATQ function, which you call to place
your entry in the Apple Talk Transition Queue.

The Apple Talk Transition Queue Entry

Routines

You use the Apple Talk Transition Queue entry record to specify an entry to be added
to the transition queue. The ATQEntry data type defines an AppleTalk. Transition
Queue entry.

TYPE ATQEntry =
RECORD

qLink:
qType:
CallAddr:

END;

Field descriptions
qLink

qType

ATQEntryPtr;
Integer;
ProcPtr~

{next queue entry}
{reserved}
{pointer to your routine}

A pointer to the next queue entry. Set this field to NIL; the LAP
Manager fills it in when an application adds another entry to
the queue.

Reserved.

CallAddr A pointer to a transition event handler routine that you provide.
The LAP Manager calls your routine when an Apple Talk transition
event occurs.

Because you provide the memory for the Apple Talk Transition Queue entry, you can add
as many fields to the end of the entry as you wish for your own purposes. Whenever
your routine is called, the caller provides you with a pointer to the queue entry so that
you can have access to the information you stored at the end of your queue entry.

This section describes the LAP Manager's Pascal interface to the AppleTalk. Transition
Queue that allows you to place an entry for your application in the queue so that you
will be notified when an Apple Talk transition occurs.

The Pascal interface to the AppleTalk Transition Queue consists of four routines:

• The LAPAddATQ function adds an entry to the AppleTalk Transition Queue.

• The LAPRmvATQ function removes an entry from the Apple Talk Transition Queue.

• The ATEvent procedure calls all the entries in the Apple Talk Transition Queue with
an Apple Talk transition event code that you specify.

LAP Manager Reference 10-33

• r
5'

~
""0 a
[

CHAPTER 10

Unk-Access Protocol (LAP) Manager

• The ATPreFlightEvent function calls all the entries in the Apple Talk Transition
Queue with an Apple Talk transition event code that you specify in the event
parameter. If any routine returns a nonzero function result, the LAP Manager calls all
of the entries with the transition event code that you specify in ATPreFlightEvent
function's cancel parameter.

This section also describes the LAP Manager's assembly-language interface that allows
you to install and remove your own protocol handler for a specific IEEE 802.2 protocol
type. You can write a protocol handler application that reads 802.2 Type 1 data packets,
and you can install your application as a client of the LAP Manager.

The assembly-language routines that allow you to attach and detach protocol handlers
for 802.2 Type 1 data packets are

• the L802Attach routine, which installs your protocol handler for a specific IEEE
802.2 protocol type

• the L802Detach routine, which detaches from the LAP Manager your protocol
handler for a specific IEEE 802.2 protocol type

Note
The ANSI/IEEE standards for the 802 protocols
are published by the IEEE. +

Adding and Removing Apple Talk Transition Queue Entries

This section describes the LAPAddATQ function that you use to add an entry to the
Apple Talk Transition Queue and the LAPRmvATQ function that you use to remove an
entry from the queue.

LAPAddATQ

DESCRIPTION

The LAPAddATQ function adds an entry to the Apple Talk Transition Queue.

FUNCTION LAPAddATQ (theATQEntry: ATQEntryPtr): OSErr;

theATQEntry
A pointer to a record of type ATQEntry to be added to the Apple Talk
Transition Queue.

You use the LAPAddATQ function to add an entry for your application to the AppleTalk
Transition Queue. Before you call the LAPAddATQ function, you must create an
AppleTalk Transition Queue entry record of type ATQEntry that defines your entry.
"The AppleTalk Transition Queue Entry" on page 10-33 describes the ATQEntry record.
You provide a pointer to this record as the value of the theATQEntry parameter when
you call the LAPAddATQ function.

10-34 LAP Manager Reference

CHAPTER 10

Link-Access Protocol (LAP) Manager

In the CallAddr field of the AppleTalk Transition Queue entry record, you provide a
pointer to a routine that the LAP Manager is to call when an Apple Talk transition event
occurs. The LAP Manager calls your routine to notify you when any of the following
events occurs:

• A process opens the .MPP driver.

• A process requests permission to close Apple Talk.

• A process closes the .MPP driver.

• A request to close Apple Talk is canceled. One of the routines pointed to by an entry in
the Apple Talk Transition Queue denies permission to close Apple Talk, and so the
request to do so is canceled.

• A process calls the ATEvent procedure or the ATPreFlightEvent function to send
its own Apple Talk transition event to the entries in the Apple Talk Transition Queue.

• A process reports that it is changing the flagship name.

• A process makes a request to change the flagship name.

• A request to change the flagship name is canceled. One process denies another's
request to change the flagship name, and so the request is canceled.

• The network connectivity has changed. This transition event is sent if a node is
connected to an Apple Talk network and, for some reason, a particular interconnected
Apple Talk network is longer be reachable.

• The cable range for the current network has been changed.

• The speed of the CPU has been changed.

SPECIAL CONSIDERATIONS

You must allocate nonrelocatable memory for the ATQEntry record and not alter or
manipulate this memory until you remove the Apple Talk Transition Queue entry from
the transition queue using the LAPRmvATQ function.

When LAP Manager calls your transition event handler routine, the LAP Manager
passes parameters to your routine using the C stack calling conventions, and expects
your routine to return a result in register DO. If you write your transition event handler
routine in Pascal, you must use an assembly glue code routine. For a sample glue code
routine, see "Writing a Transition Event Handler Routine Using Pascal" beginning on
page 10-11.

ASSEMBLY-LANGUAGE INFORMATION

From assembly language, you add an Apple Talk Transition Queue entry by placing a
routine selector in the DO register, placing a pointer to your AppleTalk Transition Queue
entry in the AO register, and executing a JSR instruction to an offset past the start of the
LAP Manager. The start of the LAP Manager is contained in the global variable
LAPMgrPtr ($B18). The offset to the LAP Manager routines is given by the constant
LAPMgrCall {2).

LAP Manager Reference 10-35

•

RESULT CODES

SEE ALSO

CHAPTER 10

Link-Access Protocol (LAP) Manager

Registers on entry

DO 23

AO Pointer to Apple Talk Transition Queue entry

Registers on exit

DO Result code

noErr 0 No error

"Adding an Entry to the AppleTalk Transition Queue" on page 10-7 describes the process
of creating an Apple Talk Transition Queue entry and adding it to the queue.

For the details of each transition, see "How the LAP Manager Calls Your Transition
Event Handler Routine" beginning on page 10-9.

LAPRmvATQ

DESCRIPTION

The LAPRmvATQ function removes an entry from the AppleTalk Transition Queue.

FUNCTION LAPRmvATQ (theATQEntry: ATQEntryPtr): OSErr;

theATQEntry
A pointer to the ATQEntry record to be removed from the Apple Talk
Transition Queue.

You use the LAPRmvATQ function to remove your application's entry from the AppleTalk
Transition Queue. To identify the entry to be removed, you pass the LAPRmvATQ
function the same pointer to the Apple Talk Transition Queue entry record that you
provided as the value of the theATQEntry parameter when you called the LAPAddATQ
function to place the entry in the queue.

SPECIAL CONSIDERATIONS

You must not call the LAPRmvATQ function at interrupt time or through a callback
routine. This restriction is to prevent any routine from removing an entry from the
Apple Talk Transition Queue while another routine is in the process of adding or
removing an entry.

10-36 LAP Manager Reference

CHAPTER 10

Link-Access Protocol (LAP) Manager

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

From assembly language, you remove an Apple Talk Transition Queue entry by placing a
routine selector in the DO register, placing a pointer to your AppleTalk Transition Queue
entry in the AO register, and executing a JSR instruction to an offset past the start of the
LAP Manager. The start of the LAP Manager is contained in the global variable
LAPMgrPtr ($B18). The offset to the LAP Manager routines is given by the constant
LAPMgrCall (2).

Registers on entry

DO 24

AO Pointer to Apple Talk Transition Queue entry

Registers on exit

DO Result code

noErr
qErr

0
-1

No error
Queue element not found

Notifying Routines When Your Application-Defined Transition Occurs

ATEvent

This section describes the ATEvent and ATPreFlightEvent routines that you can use
to notify all of the entries in the Apple Talk Transition Queue that an Apple Talk transition
that you have defined has occurred.

You can define your own Apple Talk transition to have any meaning you choose. For
example, you might want to call every routine in the Apple Talk Transition Queue each
time you open an Apple Talk Data Stream Protocol (ADSP) connection.

The ATEvent procedure calls the routines specified by each of the entries in the
Apple Talk Transition Queue with notification of a transition event that you have defined.

PROCEDURE ATEvent (event: Longint; infoPtr: Ptr);

event

infoPtr

The Apple Talk transition event code for your application-defined
transition. This can be any four-character string that starts with an
uppercase letter-that is, any value in the range $41 00 00 00 through
$5AFFFFFF.

A pointer to information that you make available to the Apple Talk
Transition Queue entry routines. If you do not want to pass any
information to these routines, set the infoPtr parameter to NIL.

LAP Manager Reference 10-37

•

DESCRIFI'ION

CHAPTER 10

Unk-Access Protocol (LAP) Manager

The ATEvent procedure calls the routines in the queue with the Apple Talk transition
event code you specify in the event parameter. You can use the infoPtr parameter to
point to any information that you want to make available to the transition event handler
routines; for an ADSP-open transition, for example, you might pass a pointer to the
parameter block used by the dspOpen routine.

You use the ATEvent procedure to send notification of an ATTransSpeedChange
transition to time-dependent processes. You must send this transition event notification
if your application changes the CPU speed. Note that you must issue this transition
event at system task time only.

For transition events ~at you define, you can issue the ATEvent procedure at interrupt
time provided that the transition event handler routines follow the standard rules for
interrupt operation.

SPECIAL CONSIDERATIONS

RESULT CODES

SEE ALSO

You can call the ATEvent procedure only at virtual-memory safe time.

AppleTalk transitions defined by developers might return other result codes.

noErr 0 No error, or unrecognized event code

For more information about the ATTransSpeedChange event, see "CPU-Speed-Change
Transition" on page 10-25.

For more information about developer-defined transition events, see
"Developer-Defined Transitions" on page 10-26 and "Defining Your Own Apple Talk
Transition" on page 10-27.

For information on virtual memory, see Inside Macintosh: Memory.

ATPreFlightEvent

The ATPreFlightEvent function calls the routines specified by each of the entries in ·
the AppleTalk Transition Queue with notification of a transition event that you have
defined and allows each routine in the AppleTalk Transition Queue to return a result
code and other information to your calling routine.

FUNCTION ATPreFlightEvent (event,cancel: Longint;

infoPtr: Ptr): OSErr;

to-38 LAP Manager Reference

DESCRIPriON

CHAPTER 10

Link-Access Protocol (LAP) Manager

event

cancel

infoPtr

The Apple Talk transition event code for the initial transition about which
you want to notify the Apple Talk Transition Queue event routines. This
code can be any four-character string that starts with an uppercase letter­
that is, any value in the range $41 00 00 00 through $SA FF FF FF.

The Apple Talk transition event code for the transition that notifies
the Apple Talk Transition Queue event routines that your original
transition notification is canceled. This code can be any four-character
string that starts with an uppercase letter-that is, any value in the
range $41 00 00 00 through $SA FF FF FF.

A pointer to information that you make available to the AppleTalk
Transition Queue entry routines. If you do not want to pass any
information to these routines, set the infoPtr parameter to NIL.

The ATPreFlightEvent function calls all of the routines in the AppleTalk Transition
Queue with the AppleTalk transition event code you specify in the event parameter. If
any routine in the AppleTalk Transition Queue returns a nonzero function result, the
ATPreFlightEvent function calls each of the routines that it has already called, this
time with the Apple Talk transition event code you specify in the cancel parameter .

SPECIAL CONSIDERATIONS

RESULT CODES

SEE ALSO

You can call the ATPreFlightEvent function only at virtual-memory safe time.

AppleTalk transitions defined by developers might return other result codes.

noErr 0 No error, or unrecognized event code

See Inside Macintosh: Memory for information on virtual memory.

For information about developer-defined transition events, see "Developer-Defined
Transitions" on page 10-26 and "Defining Your OwnAppleTalk Transition" on page 10-27.

Attaching and Detaching 802.2 Protocol Handlers

You can attach to the LAP Manager your own protocol handler for 802.2 protocols. The
LAP Manager has a generic protocol handler that it attaches at the hardware device
driver level for all802.2 packets; you must not replace or override this protocol handler.
You can also detach from the LAP Manager any 802.2 protocol handler that you have
provided and attached.

LAP Manager Reference 10-39

•

L802Attach

DESCRIPTION

CHAPTER 10

Link-Access Protocol (LAP) Manager

You use the L802Attach routine to attach your protocol handler and the L802Detach
routine to detach your protocol handler. There are no high-level interfaces for the LAP
Manager 802.2 protocol routines. You must call these routines from assembly language.

The L802Attach routine attaches to the LAP Manager a protocol handler for a specific
IEEE 802.2 protocol type.

You call the L802Attach routine from assembly language by placing the routine selector
of 21 in the DO register and the reference number of the Ethernet, token ring, or FDDI
driver in the D2 register that the OpenSlot or OpenDriver function returns. Then, you
execute a JSR instruction to an offset 2 bytes past the start of the LAP Manager. The start
of the LAP Manager is contained in the global variable LAPMgrPtr ($B18).

Here are the register contents that you supply on entry and the value that is returned
to you.

Registers on entry

DO 21

02 Reference number of hardware device driver

AO Pointer to your protocol handler

A1 Pointer to protocol-type specification

Registers on exit

DO Nonzero if error

You must put a pointer to your protocol handler in the AO register and a pointer to the
protocol-type specification for this protocol handler in the A1 register. The protocol-type
specification consists of one or more protocol-type fields, each preceded by a length byte.
The LAP Manager reads the fields in the 802.2 data packet header to determine to which
protocol handler (if any) to deliver the packet. The first type field in your protocol
specification is the 1-byte DSAP. If the DSAP type field is equal to $AA, then the packet is
a SNAP packet. In this case, the protocol-type specification must contain a second type
field, the 5-byte SNAP type. If the SNAP type field is $OOOOOOBOF3, indicating the
Apple Talk Address Resolution Protocol (AARP), then the protocol-type specification
must contain a third type field, the 4-byte AARP protocol type. Terminate the list of
protocol-type fields with a byte of zeros.

10-40 LAP Manager Reference

CHAPTER 10

Link-Access Protocol (LAP) Manager

The following protocol-type specification, for example, is for the permanent LAP
Manager protocol handler fpr an 802.3 packet containing Apple Talk data. The .ENET
driver would deliver this packet to the LAP Manager. The first byte, $01, is the length
byte for the first protocol-type field (the DSAP type field), $AA, contained in the second
byte. The DSAP value of $AA is reserved for use with protocol-type spec~fications that
include a SNAP field. The third byte, $05, is the length byte for the next protocol-type
field, the SNAP type field, $0800078098. The SNAP value of $08 00 07 8Q 9B is
reserved for AppleTalk data. The final byte ($00) terminates the type specification.

01 AA 05 08 00 07 80 9B 00

The following protocol-type specification is for the permanent LAP Manager protocol
handler for an 802.3 packet to be delivered to the EtherTalk AARP handler. Notice that
the SNAP field is followed by an additional type field, the AARP protocol type.

01 AA 05 00 00 00 80 F3 04 00 01 80 9B 00

The SNAP value of $00 00 00 80 F3 is reserved for AARP data. The AARPprotocol
type value of $0 0 0 1 8 0 9B is reserved for Ethernet AARP packets.

SPECIAL CONSIDERATIONS

For token ring, the Apple Computer, Inc. specification for the device driver that
the hardware vendor thust implement requires that the driver process only SNAP
packets, that is, packets with a SAP value of $AA. For Ethernet and FDDI, your

. protocol can receive pa1=kets with a SAP value of $AA or any other SAP value.

RESULT CODES

SEE ALSO

You can only use the L802Attach routine if the hardware device driver interface
confor~s to the Apple specification for that driver type.

The L802Attach routine returns a nonzero value in the DO register if there is an error.

See the "The LAP Manager and 802.2 Protocol Packets" on page 10-27 and the ANSI/
IEEE standard 802.2 for more information about 802.2 protocols, and see Inside AppleTalk,
second edition, for more information about AARP.

See Inside Macintosh: Devices for information on the OpenS lot function.

LAP Manager Reference 10-41

•

L802Detach

DESCRIPTION

RESULT CODES

SEE ALSO

CHAPTER 10

Link-Access Protocol (LAP) Manager

The L802Detach routine detaches from the LAP Manager a protocol handler for a
specific IEEE 802.2 protocol type.

You use the L802Detach routine to remove a protocol handler that you have written
and attached using the L802Attach routine. You call the L802Detach routine from
assembly language by placing the routine selector of 22 in the DO register and the
reference number of the Ethernet, token ring, or FDDI driver in the 02 register that the
OpenS lot or Ope nor i ver function returns. Then, you execute a JSR instruction to an
offset 2 bytes past the start of the LAP Manager. The start of the LAP Manager is
contained in the global variable LAPMgrPtr ($B18).

Here are the register contents that you supply on entry and the value that is returned
to you.

Registers on entry

DO 22

02 Reference number of the hardware device driver

Al Pointer to protocol specification

Registers on exit

DO Nonzero if error

You must put a pointer to the protocol-type specification for this protocol handler in the
Al register. You must specify exactly the same protocol type as you specified for the
L802Attach routine when you attached the protocol handler.

L802Detach routine returns a nonzero value in the DO register if there is an error.

See Inside Macintosh: Devices for information on the OpenS lot and
OpenDr i ver functions.

10-42 LAP Manager Reference

CHAPTER 10

Link-Access Protocol (LAP) Manager

Summary of the LAP Manager

Pascal Summary

Constants

CONST
{Transition Queue transition types}
ATTransOpen
ATTransClose
ATTransClosePrep
ATTransCancelClose

=

=

0;

2;

3;

4;

{AppleTalk has been opened}
{AppleTalk is about to close}
{permission to close AppleTalk}
{cancel the ClosePrep transition}

{To use the following six constants, you must first declare them in your }
{ application. They are not included in the MPW interface files.}

ATTransNetworkTransition = 5; {change in network connection for }
{ Apple Remote Access (ARA)}

{flagship name change} ATTransNameChangeTellTask = 6;

ATTransNameChangeAskTask

ATTransCancelNameChange
ATTransCableChange
ATTransSpeedChange

Data Types

AppleTalk Transition Queue Entry

TYPE ATQEntry
RECORD

qLink:
qType:
CallAddr:

END;

ATQEntryPtr;
Integer;
ProcPtr;

ATQEntryPtr = AATQEntry;

Summary of the LAP Manager

7; {permission to change flagship }
{ name}

8; {cancel flagship name change}
'rnge'; {change in cable range}
'sped'; {change in CPU speed}

{next queue entry}
{reserved}
{pointer to your routine}

10-43

•

CHAPTER 10

Link-Access Protocol (LAP) Manager

Routines

Adding and Removing Apple Talk Transition Queue Entries

FUNCTION LAPAddATQ

FUNCTION LAPRmvATQ

(theATQEntry: ATQEntryPtr): OSErr;

(theATQEntry: ATQEntryPtr): OSErr;

Notifying Routines When Your Application-Defined Transition Occurs

PROCEDURE ATEvent

FUNCTION ATPreFlightEvent

(event: Longlnt; infoPtr: Ptr);

(event: Longint; cancel: Longint; infoPtr: Ptr):
OSErr;

C Summary

Constants

/*LAP Manager parameter constants*/
#define LAPprotType LAP.protType
#define LAPwdsPointer LAP.LAPptrs.wdsPointer
#define LAPhandler LAP.LAPptrs.handler

enum {

ATTransOpen
ATTransClose
ATTransClosePrep
ATTransCancelClose =

0,

2,

3,
4,

/*AppleTalk Transition Queue *I
I* transition types*/
/*AppleTalk has opened*/
/*AppleTalk is about to close*/
/*permission to close AppleTalk*/
/*cancel ClosePrep transition*/

/*To use the following six constants, you must first define them in */
I* your application. They are not defined in the MPW interface files.*/
ATTransNetworkTransition

ATTransNameChangeTellTask
ATTransNameChangeAskTask

ATTransCancelNameChange
ATTransCableChange
ATTransSpeedChange
};

10-44 Summary of the LAP Manager

5,

6,

7,

8,
'rnge',
1 sped 1 ,

/*change in network connection *I
I* for ARA*/
/*flagship name change*/
/*permission to change */
I* flagship name*/
/*cancel flagship name change*/
/*change in cable range*/
/*change in CPU speed*/

CHAPTER 10

Link-Access Protocol (LAP) Manager

Data Types

AppleTalk Transition Queue Entry

struct ATQEntry {
struct ATQEntry *qLink;
short qType;
ProcPtr CallAddr;

} ;

typedef struct ATQEntry ATQEntry;
typedef ATQEntry *ATQEntryPtr;

Routines

/*reserved*/
/*reserved*/
/*pointer to your routine*/

Adding and Removing AppleTalk Transition Queue Entries

pascal OSErr

pascal OSErr

LAPAddATQ(ATQEntryPtr theATQEntry);

LAPRmvATQ(ATQEntryPtr theATQEntry);

Notifying Routines When Your Application-Defin~d Transition Occurs

pascal void

pascal OSErr

ATEvent(long event, Ptr infoPtr);

ATPreFlightEvent(long event, long cancel, Ptr
infoPtr);

Assembly-Language Summary

Constants

;routine selectors to attach and
L802Attach EQU 21
L802Detach EQU 22

;miscellaneous LAP Manager values
LAPMgrPtr EQU $B18
LAPMgrCall EQU 2
LAddAEQ EQU 23
LRmvAEQ EQU 24

Summary of the LAP Manager

detach an 802.2 protocol handler
;attach an 802.2 protocol handler
;detach an 802.2 protocol handler

;entry point for LAP Manager
;offset to LAP routines
;LAPAddATQ routine selector
;LAPRmvATQ routine selector

1()-45

CHAPTER 10

Unk-Access Protocol (LAP) Manager

Data Structures

AppleTalk Transition Queue Entry Data Structure

0 AeQQLink long next queue entry
4 AeQQType word reserved
6 AeQCallAddr long pointer to your transition event handler routine

Result Codes

no Err
qErr

0
-1

No error, or unrecognized event code
Queue element not found

10-46 Summary of the LAP Manager

CHAPTER 11

Ethernet, Token Ring, and
Fiber Distributed Data
Interface

Contents

About Ethernet, Token Ring, and FDDI Support 11-3
About Multivendor Network Interface Controller (NIC) Support 11-5
About Multicast Addressing 11-7

Using Ethernet, Token Ring, and FDDI Drivers 11-7
Using the Ethernet Driver 11-7

Opening the Ethernet Driver 11-8
Using a Write-Data Structure to Transmit Ethernet Data 11-10
Using the Default Ethernet Protocol Handler to Read Data 11-13
Using Your Own Ethernet Protocol Handler to Read Data 11-17
Changing the Ethernet Hardware Address 11-19

Using the Token Ring Driver 11-20
Applying Ethernet Functions 11-20
Sending and Receiving Data 11-21

Using the FDDI Driver 11-23
Applying Ethernet Functions 11-23
Sending and Receiving Data 11-24

Ethernet, Token Ring, and FDDI Reference 11-25
Data Structures 11-26

The Write-Data Structure 11-26
The Parameter Block for Ethernet, Token Ring, and
FDDI Driver Functions 11-26

Routines 11-28
Attaching and Detaching an Ethernet Protocol Handler 11-28
Writing and Reading Ethernet Packets 11-32

Contents 11-1

CHAPTER 11

Obtaining Information About the Ethernet Driver and
Switching Its Mode 11-36
Adding and Removing Ethernet Multicast Addresses 11-40

Summary of Ethernet, Token Ring, and FDDI 11-43
Pascal Summary 11-43

Constants 11-43
Data Structures 11-43
Routines 11-44

C Summary 1l-45
Constants 11-45
Data Types 11-45
Routines 11-46

Assembly-Language Summary 11-47
Constants 11-47
Data Structures 11-47

Result Codes 11-48

11-2 Contents

CHAPTER ll

Ethernet, Token Ring, and Fiber Distributed Data Interface

This chapter describes how to write data directly to an Ethernet, token ring, or Fiber
Distributed Data Interface (FDDI) driver. For Ethernet Phase 1 packets, that is, the
original version of Ethernet packets, this chapter also describes how to read data
directly from an Ethernet driver using either the default protocol handler that Apple
provides or your own protocol handler.

For Phase 2 packets, that is, IEEE 802.2 packets, you must use the interface to the
Link-Access Protocol (LAP) Manager to attach your protocol handler to read data
from an Ethernet, token ring, or FDDI driver.

For a description of how to attach a protocol ~andler to read 802.2 packets, see the
chapter "Link-Access Protocol (LAP) Manager" in this book, which also explains
Ethernet Phase 1 packets and Phase 2 packets for Ethernet, token ring, and FDDI.

For an introduction to the hardware and software of an entire AppleTalk network,
see Understanding Computer Networks and the AppleTalk Network System Overview. For
information on designing circuit cards and device drivers for Macintosh computers,
see Designing Cards and Drivers for the Macintosh Family, second edition.

To use this chapter, you should be familiar with the information on Ethernet and token
ring provided in Inside AppleTalk, seconq edition. (Inside AppleTalk does not address
FDDI.) To gain an understanding of the relationship between the Apple Talk data links
and the physical device drivers, see the chapter "Introduction to Apple Talk" in this
book, which also introduces some of the terminology used in this chapter.

About Ethernet, Token Ring, and FDDI Support

You can write an application that processes packets for a protocol other than Apple Talk
and run your application on Macintosh computers that also run the Apple Talk protocol
stack. To send data from your application, you need to communicate directly with a
network hardware device driver. To read data, you either use the LAP Manager or
directly communicate with the hardware device driver, depending on the type of packet
that your application processes. To read data from the network hardware device driver,
you must use a protocol handler, which is code that the driver calls, in this case, to
process an incoming packet for a specific protocol type.

Ethernet Phase 1 packets are IEEE 802.3 protocol packets. If your application processes
Ethernet Phase 1 packets, you can lli!e the default protocol handler that Apple Computer,
Inc. provides to read data addressed to the protocol type that your application handles,
or you can create and attach your o~ protocol handler to read that data. The chapter
"Link-Access Protocol (LAP) Manager" in this book provides more information about
Phase 1 and Phase 2 packets, including figures that show the two packet formats.

For Ethernet Phase 1 packets, the Apple Ethernet implementation supports multiple
protocol types, and more than one protoco~ handler can be attached to the Ethernet
driver at the same time. For example, you can write an application implementing a
protocol stac~ that uses the default Apple Ethernet protocol handler. Another developer
can write an application implementing a different protocol stack, and it, too, can use the

About Ethernet, Token Ring, and FDDI Support 11-3

•

11-4

CHAPTER 11

Ethernet, Token Ring, and Fiber Distributed Data Interface

default Apple Ethernet protocol handler. A third developer can write an application
implementing yet another protocol stack that supplies and attaches its own protocol
handler to the Ethernet driver. All of these applications can run concurrently on the same
machine. Figure 11-1 shows three developer-provided applications that implement
protocol stacks, all using the Ethernet driver at the same time.

Figure 11-1 Using protocol handlers to read data directly from the Ethernet driver

Protocol handlers Protocol stacks

Apple
)

Developer
default

I~
provided

Ethernet

Ethernet ~~ Developer

driver provided

Card J -
Developer Developer
provided provided

The Ethernet driver maintains a list that identifies the protocol handler for each protocol
type. When you attach your protocol handler to the Ethernet driver, it adds an entry to
its list for the type of protocol that your application supports along with the pointer to
your protocol handler. When a packet arrives for your application, the driver reads the
protocol type, locates the pointer to the protocol handler, and calls the protocol handler
to read the data.

For all 802.2 packets, which includes Ethernet Phase 2 packets and all token ring and
FDDI packets, Apple Computer, Inc. recommends that you attach your protocol handler
using the LAP Manager interface. All Apple Talk packets are 802.2 packets. (For more
information about using the LAP Manager to attach protocol handlers, see the chapter
"Link-Access Protocol [LAP] Manager" in this book.)

At the hardware device driver level, only one protocol handler can be attached to receive
802.2 packets. Although you can a ttach more than one protocol handler at this level, if
you do so, you will cause problems for AppleTalk. The Apple Talk protocol stack uses the
LAP Manager's protocol handler for 802.2 packets to connect to a hardware device driver.
(All AppleTalk packets are 802.2 packets.) If you attach your own protocol handler for
802.2 packets, the LAP Manager will be unable to attach its protocol handler, and you will
have excluded AppleTalk from using the hardware device driver simultaneously.

About Ethernet, Token Ring, and FDDI Support

CHAPTER 11

Ethemet, Token Ring, and Fiber Distributed Data Interface

For example, suppose a user is running your application with its own protocol handler
over token ring and Apple Talk over Ethernet. If the user decides to change the Apple Talk
network type to token ring, the attempted connection switch will fail because the LAP
Manager will not be able to attach its protocol handler to the token ring device driver. To
avoid proble~,such as these, Apple recommends that you attach your protocol handler
to read Ethernet Phase 2, token ring, or FDDI 802.2 packets through the LAP Manager.

The LAP Manager installs a protocol handler at the hardware device driver level that
receives 802.2 packets and that also serves as a dispatcher. This protocol handler
maintains an index of registered protocol types and pointers to their protocol handlers,
which allows the LAP Manager to act as a dispatcher, thereby permitting the concurrent
use of a token ring or FDDI hardware device driver by more than one application,
including Apple Talk.

Notes for applications that handle token ring and FDDI 802.2 packets

Apple provides specifications for both token ring and FDDI drivers
that result in these implications for network applications:

• Only one protocol handler can be attached at the hardware device
driver level.

• Only one protocol type is supported: the IEEE 802.2 Type 1 protocol
that provides for a connectionless, or datagram, service.

• Apple does not provide a default protocol handler for token ring
orFDDI.

These limitations do not restrict you from attaching your own protocol
handler directly to a token ring or an FDDI hardware device driver, but
doing so results in the consequences stated previously. •

About Multivendor Network Interface Controller (NIC) Support

Before Apple Talk version 56, a networked Macintosh computer could support only
one Ethernet or token ring connection at a time. This posed a limitation for many
developers who wanted multiple concurrent Ethernet or token ring connections: The
original architecture also lacked support for the concurrent use of a NuBus slot device
and a non-NuBus device, such as a SCSI Ethernet connection or the processor-direct
slot (PDS) device.

To solve this problem, Apple implemented multi vendor architecture to provide support
that allows you to use different brands of Ethernet, token ring, or FDDI NuBus hardware
in the same machine at the same time. For example, multivendor architecture allows a
single machine to run Apple Talk over one Ethernet card (or through an Ethernet net­
work connector that uses the SCSI port) and to run another application that implements
a different protocol, such as TCP /IP, over another Ethernet card at the same time.

The user can select the network type to be used depending on the NuBus cards and
slotless devices that are installed in the Macintosh computer. In addition to supporting
various types of network hardware, multivendor architecture allows Apple Talk users to
also select which brand of card to use. Your application can also provide support that
allows a user to select a particular brand of card for a particular type of network
connection.

About Ethernet, Token Ring, and FDDI Support 11-5

CHAPTER 11

Ethernet Token Ring, and Fiber Distributed Data Interface

Figure 11-2 shows three different brands of Ethernet cards installed in a single machine
and indicates the path that data follows from the LAP Manager through the driver of the
selected Ethernet card and out to the network when Apple Talk is used. The user can
choose which Ethernet card is used as the network connector.

0

Figure 11-2 How Apple Talk uses multivendor support

-------- -

LAP
Manager

Ethemet cards

To make possible the use of multiple brands of network cards, Apple provides a driver
shell for each of the following types of networks:

• For Ethernet, the name of the driver shell is .ENET.

• For token ring, the name of the driver shell is . TOKN.

• For FDDI, the name of the driver shell is .FDDI.

These driver shells consist of commands that locate and load the driver software for a
particular card of that network type.

Note
For configurations that are not NuBus based, such as PDS-based and
SCSI-based hardware solutions, you must open and use the following
drivers, not the driver shells: .ENETO for Ethernet, .TOKNO for token
ring, .FDDIO for FDDI. +

The EGetinfo function returns information about the .ENET driver. If the Ethernet
card that you are using has a SONIC chip, you can use the EGetinfo function to
obtain information pertaining to the SONIC-based network interface controller (NIC).
Beginning with version 58 of AppleTalk, the EGetinfo function returns this additional
information. For the details regarding Ethernet cards with SONIC chips, see "EGetlnfo"
beginning on page 11-36.

11-6 About Ethernet, Token Ring, and FOOl Support

CHAPTER 11

Ethernet, Token Ring, and Fiber Distributed Data Interface

About Multicast Addressing
At the hardware device driver level, Apple supports multicast addressing. A multicast
address is a hardware address that is shared by a subset of nodes on a particular data
link. This is similar in concept to a broadcast hardware address, but a multicast address
is used to send directed broadcasts to the subset group of nodes only, and not to all
nodes on the data link. A broadcast address is shared by all nodes on a particular type of
network. Packets sent to the Ethernet broadcast address are sent to all nodes on the
Ethernet data link. Ethernet and FDDI networks use multicast addresses; the token ring
equivalent of a multicast address is a functional address.

A network type, such as an Ethernet data link, can also have associated with it one or
more multicast addresses. Each data link is identified by a unique hardware address to
which packets for that network hardware are sent. In addition to this unique hardware
address, a data link can receive packets that contain the broadcast address for its own
network type---Ethernet, for example.

When a node on a data link transmits a packet that has a multicast hardware address as
its destination hardware address, then only a specific subset of the nodes on the link will
receive the packet. Each node can have any number of multicast addresses, and any
number of nodes can have the same multicast address. Some nodes on the link may not
have a multicast address; other nodes may have more than one multicast addresses. (For
more information on multicast and functional addresses, see Inside AppleTalk, second
edition. See also uEAddMulti" on page 11-40.)

Using Ethernet, Token Ring, and FDDI Drivers

This section describes how to write an application that implements a protocol other than
Apple Talk and that reads data from and writes it to the hardware device driver for a
particular network interface controller.

For Ethernet, this section describes how to locate the installed Ethernet cards and open
the Ethernet driver for a particular card or a slotless device. Then it describes how to
write data to the driver. Next it describes how to attach either the Apple default protocol
handler or your own protocol handler to the Ethernet driver to read data for Ethernet
Phase 1 packets.

For token ring and FDDI, this section describes the differences between using the
Ethernet driver and the token ring or FDDI driver, including the steps to follow to
read data from and write it to this driver.

Using the Ethernet Driver
You can write your own protocol stack or application that uses the Ethernet driver
directly rather than going through the LAP Manager. Apple provides an .ENET driver
shell that locates and loads the driver for the selected Ethernet NuBus card. The driver

Using Ethernet, Token Ring, and FDDI Drivers 11-7

CHAPTER 11

Ethernet, Token Ring, and Fiber Distributed Data Interface

shell searches the following locations for existing Ethernet driver resources, and it uses
the most current one:

• the system resource file

• the card's declaration ROM

• the motherboard's ROM

See Designing Cards and Drivers for the Macintosh Family, second edition, for discussions of
NuBus board IDs and slot resources.

Opening the Ethernet Driver

Before you use the Device Manager's OpenS lot function to open the .ENET driver, you
use the SGetTypeSRsrc function described in the Slot Manager chapter of Inside
Macintosh: Devices to determine which NuBus slots contain Ethernet cards. To find
Ethernet NuBus cards, use the value catNetwork in the field spCategory of the
GetTypeSRsrc function parameter block, and use the value typeEthernet in the field
spCType. If you cannot find any Ethernet NuBus cards, you should also attempt to open
the .ENETO driver in case non-NuBus Ethernet hardware is attached to the system.
You should provide a user interface that allows the user to select a specific Ethernet card
in the case that more than one is present. (The chapter "Device Manager" in Inside
Macintosh: Devices describes the OpenS lot function.)

Note

This section refers to the .ENET driver shell, which facilitates
multivendor support, as the .ENET driver. When you open the
.ENET driver shell, it loads and opens the particular card's driver. •

Listing 11-1 illustrates how to identify and open an Ethernet driver.

Listing 11-1 Finding an Ethernet card and opening the .ENET driver

FUNCTION Get_And_Open_ENET_Driver: Integer;
VAR

BEGIN

mySBlk:
myPBRec:
myErr:

SpBlock;
ParamBlockRec;
OSErr;

Found: Integer;
ENETRefNum: Integer;
EnetStr: StrlS;
EnetOStr: StrlS;

Found := 0;
ENETRefNum := 0;

{assume no sResource found}
{indicate no driver found}

11-8 Using Ethernet, Token Ring, and FOOl Drivers

CHAPTER 11

Ethernet, Token Ring, and Fiber Distributed Data Interface

WITH mySBlk DO
BEGIN

spParamData := 1;

{set up the SpBlock}

{include search of disabled resources }
{ starting searching from spSlot and }
{ the slots above it}

spCategory := catNetwork;
spCType := typeEthernet;
spDrvrSW
spDrvrHW
spTBMask

·-·-
·-·-
·-·-

0;

0;

3;

spSlot := 0;
spiD := 0;
spExtDev := 0;

END;

{REPEAT}

{match only Category and }
{ CType fields}
{start search from here}
{start search from here}
{ID of the external device}

{At this point you could implement a repeat loop to check }
{ for multiple Ethernet cards. This sample uses the first card.}

myErr := SGetTypeSRsrc(@mySBlk);
IF myErr = noErr THEN

BEGIN
Found := Found + 1;
(SaveSinfo(@mySBlk);

END;

{found an sResource match; }
{ save it for later}

{save slot info for later use}

{until myErr = smNoMoresRsrcs;}

IF Found > 1 THEN
BEGIN

{If you find more than one sResource, put up a dialog box }
{ to let the user select one. If any of the sResources }
{ that you found were disabled, let the user know that they }
{ are not available.}
{This code sample assumes that the selected slot is }
{ returned in mySBlk.spSlot, that the corresponding }
{ sResource ID is returned in mySBlk.spiD, and that Found }
{ remains > 1 to indicate that it is okay to open the }
{ driver.}

END;

Using Ethernet, Token Ring, and FDDI Drivers

•

11-9

CHAPTER 11

Ethernet, Token Ring, and Fiber Distributed Data Interface

IF found <> 0 THEN
BEGIN

EnetStr := • .ENET';
WITH myPBRec DO

BEGIN
ioCompletion := NIL;
ioNamePtr := @EnetStr;
ioPermssn := fsCurPerm;
ioFlags := 0;
ioSlot := mySBlk.spSlot;
ioiD := mySBlk.spiD;

END;
myErr := OpenSlot(@myPBRec, FALSE);
IF myErr = noErr THEN
ENETRefNum := myPBRec.ioRefNum;

{call made synchronously}

{reserved for driver use}
{slot of Ethernet card to open}
{sResource ID for slot}

END
ELSE

BEGIN
EnetOStr := '.ENETO';
myErr := OpenDriver(EnetOStr, ENETRefNum);

END;
IF myErr <> noErr THEN

DoError(myErr); {handle the error}
Get_And_Open_ENET_Driver := ENETRefNum; {return the refNum or }

{ 0 if unsuccessful}
END;

Using a Write-Data Structure to Transmit Ethernet Data

You use the EWrite function to send data to the .ENET driver for transmission over the
Ethernet network. When you do this, you provide a pointer to a write-data structure
containing one or more pairs of length words and pointers. (Figure 11-3 shows multiple
pairs.) Each pair indicates the length and location of a portion of the data packet to be
sent over the network. The first length-pointer pair points to a header block that is at
least 14 bytes long and that starts with the destination node hardware address. Note that
this is not the Apple Talk address, but is the hardware address of the destination node.
(Note that this address can also be a multicast address or the broadcast address for the
link type.)

The next 6 bytes of the header block are reserved for use by the .ENET driver. These
pytes are followed by the 2-byte Ethernet protocol type field (Ethernet Phase 2 packets
use this field to indicate the amount of data in the packet). Data may follow the header
block; all other length-pointer pairs point to data. The write-data structure terminates
with a 0 word.

11-10 Using Ethernet, Token Ring, and FDDI Drivers

.,

CHAPTER 11

Ethernet, Token Ring, and Fiber Distributed Data Interface

Note

Instead of using multiple buffers and length-pointer pairs, you can
create a write-data structure that consists of a single buffer that specifies
the header block followed directly by the data. For more information
about write-data structures, see the chapter "Datagram Delivery
Protocol (DDP)" in this book. •

When you first open the .ENET driver, it allocates a 768-byte buffer that it uses for
transmitting data packets. This buffer is large enough to hold the largest EtherTalk
packet, which is 621 bytes in size. If you want to transmit data packets larger than 768
bytes, call the ESetGeneral function; the .ENET driver can then allocate a data buffer
large enough to send packets up to 1514 bytes in size. Figure 11-3 shows the write-data
structure that you use to send data to the .ENET driver.

Figure 11·3 An Ethernet write-data structure

Bytes

Length of first entry 2

Bytes
Pointer to first entry 4 ; .-...

Destination node ID J. 6
Length of second entry 2

Pointer to second entry 4
'1

Reserved for use by driver 16 :----Header

" J. block

'1 Protocol type 2
J.

_.,

Length of last entry 2 { fvartable Data

Pointer to last entry 4

length

l .{ 0 2 {Variable Data
length

The sample code in Listing 11-2 uses a multicast address instead of a local hardware
address. The multicast address is a packet array that is defined as follows:

VAR
qMultiCastAddr: PACKED ARRAY[O •• S] OF Byte;

Using Ethernet, Token Ring, and FDDI Drivers 11-11

•

CHAPTER 11

Ethernet, Token Ring, and Fiber Distributed Data Interface

The following procedure initializes the gMultiCastAddr global variable:

PROCEDURE Init_Multicast_Address;
BEGIN

gMultiCastAddr[1] ·- $09; ·-
gMultiCastAddr[2] ·- $00; ·-
gMultiCastAddr[3] ·- $2B;
gMultiCastAddr[4] ·- $00; ·-
gMultiCastAddr[S] ·- $00;
gMultiCastAddr[6] ·- $04;

END;

The code in Listing 11-2 defines an Ethernet write-data structure, and then it calls the
EWrite function to send a data packet over Ethernet.

Listing 11-2 Sending a data packet over Ethernet

FUNCTION Send_Sample_ENET_Packet (ENETRefNum: Integer): OSErr;
CONST

kSIZE1 = 100;
kSIZE2 = 333;

TYPE
WDS = RECORD
length: Integer;
aptr: Ptr;

{write-data structure}
{length of nth entry}
{pointer to nth entry}

END;

VAR
myWDS: ARRAY[1 •• 4] OF WDS;
myPB: EParamBlock; {.ENET parameter block}
wheader: PACKED ARRAY[0 •• 13]. OF Byte;
stuf£1: ARRAY [1 •• kSIZE1] OF Byte;
stuff2: ARRAY[1 •• kSIZE2] OF Byte;
myErr: OSErr;

BEGIN
BlockMove(@gMultiCastAddr, @wheader, 6);
wheader[12] := $90;
wheader[13] := $90;
myWDS[1].length := 14;
myWDS[1].aptr := @wheader;
myWDS[2].length := kSIZE1;
myWDS[2].aptr := @stuf£1;
myWDS[3].length := kSIZE2;

11-12 Using Ethernet, Token Ring, and FDDI Drivers

{multicast address}
{protocol type}
{must match kProtocol value}

CHAPTER 11

Ethernet, Token Ring, and Fiber Distributed Data Interface

myWDS[3).aptr :; @stuf£2;
myWDS[4].length := 0;
myPB.ePointer := @myWDS;
myPB.ioRefNum := ENETRefNum;

{Send something.}
myErr :; EWrite(@myPB, FALSE);
IF myErr <> noErr THEN

DoError(myErr);
Send_Sample_ENET_Packet .- myErr;

END;

Using the Default Ethernet Protocol Handler to Read Data

This section describes how to write an application that uses the Apple default protocol
handler for Ethernet Phase 1 packets. For Ethernet Phase 2 packets, the process is largely
the same, except that you must code and provide your own protocol handler and use the
LAP Manager to attach it.

When the Ethernet NuBus card or other Ethernet hardware receives a data packet, it
generates an interrupt to the CPU. The interrupt handler in ROM determines the source
of the interrupt and calls the .ENET driver. The .ENET driver reads the packet header
to determine the protocol type of the data packet and checks to see if any client has
specified that protocol type in a call to the EAttachPH function. H so, the client either
specified a NIL pointer to a protocol handler or provided its own protocol handler. H the
client specified a NIL pointer, the .ENET driver uses its default protocol handler to read
the data. H no one has specified the protocol type that the packet header contains in a
call to the EAttachPH function, the .ENET driver discards the data. (For more informa­
tion about the EAttachPH function, see "EAttachPH" on page 11-28.)

The Ethernet driver looks for a pending ERe ad function with a protocol type that matches
the packet protocol type. (When you call the ERead function, you pass it a protocol type.)
The Ethernet driver places the entire packet-including the packet header-into the
buffer specified by that function. The function returns the number of bytes actually read.
H the packet is larger than the data buffer, the ERe ad function places as much of the
packet as will fit into the buffer and returns the buf2Smal1Err result code.

You must call the ERe ad function asynchronously to await the next data packet. When the
.ENET driver receives the data packet, it completes execution of the ERead function and
calls your completion routine. Your completion routine should call the ERead function
again so that an ERead function is always pending execution. H the .ENET driver receives
a data packet with a protocol type for which you specified the default protocol handler
while no ERead function is pending, the .ENET driver discards the packet.

You can have several asynchronous calls to the ERe ad function pending execution
simultaneously as long as you use different buffers and a different parameter block
for each call.

Using Ethernet, Token Ring, and FDDI Drivers 11-13

CHAPTER 11

Ethernet, Token Ring, and Fiber Distributed Data Interface

Alternatively, after the ERead function completes execution, you can call the function
again from your completion routine, and reuse the same parameter block. This is the
approach the code in Listing 11-3 takes.

The code in Listing 11-3 calls the EAttachPH function to specify that the .ENET driver
should use the default protocol handler to process packets for the protocol type defined
by the following constant:

CONST
kMyProtocol = $9090; {must be > $5DC}

In practice, you should call the EAttachPH function very early, during your program
initialization sequence, if possible. As soon as the connection is established and you
are expecting data, you should call the ERead function asynchronously. The code in
Listing 11-3 shows how to attach a protocol handler and read a packet for an Ethernet
Phase 1 packet.

Listing 11-3 Attaching a protocol handler and reading a packet

FUNCTION Sample_AttachPH_And_Read_Packet (ENETRefNum: Integer): OSErr;
CONST

kBigBytes = 8888;

VAR
myPB:
myEPBPtr:
aptr:
myErr:

BEGIN

MyEParamBlock;
MyEParamBlkPtr;
Ptr;
OSErr;

myEPBPtr := @myPB;
WITH myPB.pb DO

BEGIN
eProtType := kMyProtocol;
ePointer := NIL;
ioRefNum := ENETRefNum;

END;

{set up EAttachPH parameters}

{protocol type}
{use default protocol handler}
{.ENET driver reference number}

myErr := EAttachPH(EParamBlkPtr(myEPBPtr), FALSE);

IF myErr <> noErr THEN
DoError(myErr)

ELSE
BEGIN

aptr := NewPtr(kBigBytes);
myPB.myAS := SetCurrentAS;

11-14 Using Ethernet, Token Ring, and FDDI Drivers

{check if error occurred while }
{ attaching protocol handler}

{store the current AS world}

CHAPTER 11

Ethernet, Token Ring, and Fiber Distributed Data Interface

WITH myPB.pb DO
BEGIN

ioCompletion := @MyCompRoutine;
{ptr to completion routine}

eProtType := kMyProtocol; {protocol type to respond to}
ePointer := aptr;
eBuffSize := kBigBytes;
ioRefNum := ENETRefNum;

END;

{pointer to read-data buffer}
{size of read-data buffer}
{.ENET driver refNum}

myErr := ERead(EParamBlkPtr(myEPBPtr), TRUE);

IF myErr <> noErr THEN

END;

{check if error occurred queueing read request}
BEGIN

DoError(myErr);
Detach_SamplePH(ENETRefNum);

END;

{process error result}
{detach protocol handler)

Sample_AttachPH_And_Read_Packet := myErr;
END;

When the .ENET driver receives a packet, it then calls your completion routine if you
called the ERead function asynchronously and the ioCompletion routine field is not
NIL. Your completion routine should process the packet, after which it can then queue
another asynchronous call to the ERead function to await the next packet.

The sample completion routine that Listing 11-4 shows uses the following inline function
that gets the pointer to the parameter block from register AO.

FUNCTION GetParamBlockPtr: Ptr;
INLINE

$2E88; {MOVE.L AO,(SP)}

Because register AO is a utility register that compilers often use for their own purposes,
the sample code uses the following stub completion routine technique to minimize the
possibility that a compiler will overwrite the value in register AO. The stub completion
routine calls GetParamBlockPtr and then calls the actual completion routine.

PROCEDURE MyStubCompRoutine;

VAR

myEPBPtr: MyEParamBlkPtr;

BEGIN
myEPBPtr := MyEParamBlkPtr(GetParamBlockPtr);

{get parameter block pointer from register AO}
mycompRoutine(myEPBPtr);

{now call the actual completion routine}
END;

Using Ethernet, Token Ring, and FOOl Drivers 11-15

•

CHAPTER 11

Ethernet, Token Ring, and Fiber Distributed Data Interface

Listing 11-4 shows the actual completion routine that the stub completion routine calls.
This completion routine reuses the original parameter block when it calls the ERead
function again. The code also shows how to access global variables from within the
completion routine. Note that if you call the ERead function from within the completion
routine, you must call the function asynchronously. You must not call the ERead
function synchronously at interrupt time.

Listing 11-4 Completion routine to process received packet and await the next packet

PROCEDURE MyCompRoutine (myEPBPtr: MyEParamBlkPtr);
VAR

myErr: OSErr;
saveAS: Longint;
aptr: Ptr;

BEGIN
saveAS := SetAS(myEPBPtrA.myAS); {set AS to our world}
IF (myEPBPtrA.pb.ioResult < noErr) THEN

{was ERead successful?}
BEGIN

IF (myEPBPtrA.pb.ioResult <> reqAborted) THEN

DoError(myEPBPtrA.pb.ioResult)
END

ELSE
BEGIN

aptr := myEPBPtrA.pb.EPointer;
ProcessData(aptr);

END;

IF NOT gDone THEN

{was request aborted?}

{process the packet}

{use the data}

{check if we have been called}
BEGIN {if not, call ERead again}

myErr := ERead(EParamBlkPtr(myEPBPtr), TRUE);
IF myErr <> noErr THEN

DoError(myErr); {check if error occurred while }
{ queueing call to ERead}

END;
saveAS := SetAS(saveAS);

END; {of MyCompletion routine}
{restore the AS world}

11-16 Using Ethernet, Token Ring, and FDDI Drivers

CHAPTER 11

Ethernet, Token Ring, and Fiber Distributed Data Interface

Using Your Own Ethernet Protocol Handler to Read Data

If a client of the .ENET driver has used the EAttachPH function to provide a pointer to
its own protocol handler, the .ENET driver calls that protocol handler, which must in
tum call the .ENET driver's ReadPacket and ReadRest routines to read the data. Your
protocol handler calls these routines in essentially the same way as you called these
routines to implement a DDP socket listener. (The chapter "Datagram Delivery Protocol
[DDP]" describes how you use these routines to implement a DDP socket listener.)

The following sections describe how the .ENET driver calls a custom protocol handler
and the ReadPacket and ReadRest routines.

Note

Because an Ethernet protocol handler must read from and write to
the CPU's registers, you must write the protocol handler in assembly
language; you cannot write a protocol handler in Pascal. •

How the .ENET Driver Calls Your Protocol Handler

You can provide an Ethernet protocol handler for a particular protocol type and use the
EAttachPH function to attach it to the .ENET driver. When the driver receives an
Ethernet packet, it reads the packet header into an internal buffer, reads the protocol
type, and calls the protocol handler for that protocol type. The CPU is in interrupt mode,
and the registers are used as follows:

Registers on call to Ethernet protocol handler

AO Reserved for internal use by the .ENET driver (You must preserve this register
until after the ReadRest routine has completed execution.)

Al Reserved for internal use by the .ENET driver (You must preserve this register
until after the ReadRest routine has completed execution.)

A2

A3

A4

AS

DO
Dl

D2

D3

Free for your use

Pointer to first byte past data-link header bytes (the first byte after the 2-byte
protocol-type field)

Pointer to the ReadPacket routine (The ReadRest routine starts 2 bytes
after the start of the ReadPacket routine.)

Free for your use until after the ReadRest routine has completed execution

Free for your use

Number of bytes in the Ethernet packet left to be read (that is, the number of
bytes following the Ethernet header)

Free for your use

Free for your use

If your protocol handler processes more than one protocol type, you can read the
protocol type field in the frame header to determine the protocol type of the packet.
The protocol-type field starts 2 bytes before the address pointed to by the A3 register.

Using Ethernet, Token Ring, and FOOl Drivers 11-17

CHAPTER 11

Ethernet, Token Ring, and Fiber Distributed Data Interface

Note
The source address starts 8 bytes before the address pointed to by
the A3 register, and the destination address starts 14 bytes before
the address pointed to by the A3 register. •

After you have called the ReadRest routine, you can use registers AO through A3 and
DO through D3 for your own use, but you must preserve all other registers. You cannot
depend on having access to your application global variables.

How Your Protocol Handler Calls the .ENET Driver Routines

Your protocol handler must call the .ENET driver routines ReadPacket and ReadRest

to read the incoming data packet.

Note
Before the Ethernet driver calls your protocol handler at interrupt time,
you must have already allocated memory for one or more data buffers
to hold the incoming data. +

You may call the ReadPacket routine as many times as you like to read the data piece
by piece into one or more data buffers, but you must always use the ReadRest routine
to read the final piece of the data packet. The ReadRest routine restores the machine
state (the stack pointers, status register, and so forth) and checks for error conditions.

Before you call the ReadPacket routine, you must place a pointer to the data buffer in
the A3 register. You place the number of bytes you want to read in the 03 register. You
must not request more bytes than remain in the data packet.

To call the ReadPacket routine, execute a JSR instruction to the address in the A4
register. The ReadPacket routine uses the registers as follows:

Registers on entry to the ReadPacket routine

A3 Pointer to a buffer to hold the data you want to read

03 Number of bytes to read; must be nonzero

Registers on exit from the ReadPacket routine

AO Unchanged

Al Unchanged

A2 Unchanged

A3 First byte after the last byte read into buffer

DO Changed

01 Number of bytes left to be read

02 Unchanged

03 Equals 0 if requested number of bytes were read, nonzero if error

11-18 Using Ethernet, Token Ring, and FDDI Drivers

CHAPTER 11

Ethernet, Token Ring, and Fiber Distributed Data Interface

The ReadPacket routine indicates an errot by clearing to 0 the zero (z) flag in the status
register. If the ReadPacket routine returns an error, you must terminate execution of
your protocol handler with an RTS instruction without calling ReadPacket again or
calling ReadRest at all.

Call the ReadRest routine to read the last portion of the data packet, or call it after you
have read all the data with ReadPacket routines and before you do any other
processing or terminate execution. You must provide in the A3 register a pointer to a
data buffer and must indicate in the 03 register the size of the data buffer. If you have
already read all of the data with calls to the ReadPacket routine, you can specify a
buffer of size 0 .

.A. WARNING

If you do not call the ReadRes t routine after your last call to the
ReadPacket routine, the system will crash . .&

To call the ReadRest routine, execute a JSR instruction to an address 2 bytes past the
address in the A4 register. The ReadRest routine uses the registers as follows:

Registers on entry to the ReadRest routine

A3 Pointer to a buffer to hold the data you want to read

03 Size of the quffer (word length); may be 0

Registers on exit from the ReadRest routine

AO Unchanged

Al Unchanged

A2 Unchanged

A3 Pointer to first byte after the last byte read into buffer

DO Changed

Dl Changed

02 Unchanged

03 Equals 0 if requested number of bytes were read; less than 0 if more data was
left than would fit in buffer (extra data equals -03 bytes); greater than 0 if less
data was left than the size of the buffer (extra buffer space equals 03 bytes)

The ReadRest routine indicates an error by clearing to 0 the zero (z) flag in the status
register. You must terminate execution of your protocol handler with an RTS instruction
whether or not the ReadRest routine returns an error.

Changing the Ethernet Hardware Address

Each Ethernet NuBus card or other Ethernet hardware interface device contains a unique
6-byte hardware address assigned by the manufacturer of the device. The .ENET driver
normally uses this address to determine whether to receive a packet. To change the
hardware address for your node, place in the System file a resource of type ' eadr ' with
a resource ID equal to the slot number of the Ethernet NuBus card.

Using Ethernet, Token Ring, and FDDI Drivers 11-19

•

CHAPTER 11

Ethernet, Token Ring, and Fiber Distributed Data Interface

The I eadr 1 resource consists only of a 6-byte number. Do not use the broadcast address
or a multicast address for this number. (Refer to Inside AppleTalk, second edition, for the
broadcast and multicast address formats.)

When you open the .ENET driver, it looks for an 1 eadr I resource with the resource ID
that matches the slot number of the card. If it finds one, the driver substitutes the
number in this resource for the Ethernet hardware address and uses it until the driver is
closed or reset.

Note

To avoid address collisions, you should never arbitrarily change the
Ethernet hardware address. This feature should be used only by a
system administrator who can keep track of all the Ethernet addresses
in the system. •

Using the Token Ring Driver
You can write an application implementing a protocol other than Apple Talk that reads
data from and writes it to the token ring driver defined by Apple.

To write data to the token ring driver and to perform other functions such as adding a
functional address for the token ring hardware, you use the Ethernet functions described
earlier, with the modifications noted later in this section. To read 802.2 packets from the
token ring driver, you need to attach your protocol handler to the LAP Manager.

The Apple token ring driver implementation supports only the IEEE 802.2 Type 1
protocol and allows for the attachment of only one protocol handler that reads
802.2 packets that contain an SAP value of $AA.

Although it is possible to attach your own protocol handler at the hardware device
driver level, Apple recommends that you not do this because it excludes AppleTalk from
using the token ring driver. So that more than one protocol can receive packets from the
token ring driver concurrently, Apple recommends that you attach your protocol handler
to the LAP Manager. The LAP Manager attaches its own protocol handler to the token
ring driver, and when it receives a packet for your protocol, the LAP Manager calls your
protocol handler. When it receives a packet for another protocol, such as Apple Talk, the
LAP Manager calls that application's protocol handler.

For a description of how to attach and detach your protocol handler for token ring, see
the chapter "Link-Access Protocol (LAP) Manager" included in this book and the
discussion of token ring and FDDI in "About Ethernet, Token Ring, and FDDI Support"
beginning on page 11-3 in this chapter. The chapter "Link-Access Protocol (LAP)
Manager" also gives more information on the SAP field value for 802.2 Type 1 packets.

Applying Ethernet Functions

The Apple token ring driver implements many but not all of the functions that the Apple
Ethernet driver implements.

For those Ethernet functions that do apply to token ring, you use the function for token
ring in the same way that you do for Ethernet: you pass parameters in a parameter block

11-20 Using Ethernet, Token Ring, and FOOl Drivers

CHAPTER 11

Ethernet, Token Ring, and Fiber Distributed Data Interface

and you use the Ethernet control code in the csCode field to call the function. The only
difference is that instead of specifying the Ethernet driver reference number in the
parameter block's ioRefNum field, you specify the token ring driver reference number.
Here are the Ethernet functions that apply to token ring:

• You use the EAddMul ti function to add a functional address for token ring and the
EDelMul ti function to remove one. Be careful not to specify the broadcast address
as a functional address. See Inside AppleTalk, second edition, for a description and the
format of functional and broadcast addresses for token ring.

• You use the EWr i te function to send data to the token ring driver for transmission
over the network.

Here are the Ethernet functions that do not apply to token ring:

• The ERead and ERdCancel functions are not valid for token ring because Apple does
not specify a default protocol handler for the token ring driver. These two functions
are used exclusively by applications that use the default Ethernet protocol handler. If
an application calls these functions for token ring, the driver will return an error.

• The ESetGeneral function switches to a mode that allows the .ENET driver to
transmit a larger Ethernet data packet than the standard size. Because token ring is
not normally restricted to the limited packet size, this function does not apply.
However, the token ring driver will return a result of noErr if you call this function.

There are some other differences between Ethernet and token ring:

• The token ring packet size is determined by the token ring hardware developer.
However, for Logical Link Control (LLC) type packets, the packet length cannot
exceed 1500 bytes.

• The token ring interface uses functional addresses instead of multicast addresses. Be
careful not to use the broadcast address for a functional address. For information
about both kinds of token ring addresses, see Inside AppleTalk, second edition .

• For token ring, the vendor who supplies the hardware device driver provides a
control panel that allows you to specify an alternative hardware address. (For general
information about alternative hardware addresses, see "Changing the Ethernet
Hardw:are Address" on page 11-19.)

Note
Although you can use the EAttachPH function to attach a protocol
handler to the token ring driver and the EDetachPH function to
remove one, Apple recommends that you not use these functions.
Instead, you should use the LAP Manager's L802Attach and
L802Detach routines. +

Sending and Receiving Data

The tasks involved in sending data to and receiving it from a token ring driver are
similar to those that you use for Ethernet. The primary difference is that you use the LAP
Manager to attach your protocol handler. Any vendor implementing a token ring driver
to run on a Macintosh computer must follow rules that direct them to return packet
information in the same manner as does the Ethernet driver for 802.2 packets. From the

Using Ethernet, Token Ring, and FDDI Drivers 11-21

•

CHAPTER 11

Ethernet, Token Ring, and Fiber Distributed Data Interface

perspective of an application that uses the token ring driver, this means that when the
LAP Manager calls your protocol handler, you can expect the token ring hardware
addresses that you reference from register A3 to follow the same format that is used for
Ethernet addresses, regardless of how the token ring address might appear at the
hardware level.

Here are the steps that you follow to send data to and receive it from a token ring driver:

1. Locate the token ring cards that are installed in the system. Use the Slot Manager to
identify installed token ring cards. Use the SGetTypeSRsrc function described in the
Slot Manager chapter of Inside Macintosh: Devices to determine which NuBus slots
contain token ring cards. To find token ring cards, use the value catNetwork (Ox4)
in the spCategory field and the value typeTokenRing (Ox2) in the spCType field.
You should provide a user interface that allows the user to select a specific token ring
card in the case that more than one is present.

2. Use the OpenS lot function to open the token ring driver. Set the ioNamePtr field to
.TOKN. If you did not locate any NuBus token ring cards in step 1, you should also
attempt to open the .TOKNO driver in case non-NuBus token ring hardware is
attached to the system. Use the Device Manager's OpenDriver function to open the
.TOKNO driver. (For information on the OpenSlot and OpenDriver functions, see
the chapter "Device Manager" in Inside Macintosh: Devices.)

Note that this section refers to the .TOKN driver shell, which facilitates multi­
vendor support, as the .TOKN driver. Opening the .TOKN driver shell, which
loads and opens the card's driver, is effectively the same as directly opening the
token ring driver.

3. If your application requires a functional address, use the EAddMul ti function to
register one. Functional addresses are the token ring equivalent of Ethernet and FDDI
multicast addresses. (For information on functional addresses, see Inside AppleTalk,
second edition. For a description of multicast addresses, see "About Multicast
Addressing" on page 11-7.)

4. Use the LAP Manager's L802Attach routine to install your protocol handler. (See
the chapter "Link-Access Protocol [LAP] Manager" in this book for more information.)

5. Use the EWrite function to send packets to the token ring driver for transmission
across the network. To use the EWr i te function, you provide a pointer to a write-data
structure. The first buffer in the write-data structure must be at least 14 bytes long: the
first 6 bytes of that buffer must contain the destination address. Bytes 13 and 14 must
contain the packet length, which must not exceed 1500 bytes. The token ring driver
fills in bytes 7-12 with the source address. (For more information on the write-data
structure, see "Using a Write-Data Structure to Transmit Ethernet Data" on
page 11-10.)

6. When you are finished using the token ring driver, use the LAP Manager's
L802Detach routine to remove your protocol handler.

7. When you are finished using a functional address, use the EDelMul ti function to
remove it.

11-22 Using Ethernet, Token Ring, and FOOl Drivers

CHAPTER 11

Ethernet, Token Ring, and Fiber Distributed Data Interface

Using the FDDI Driver
You can write an application implementing a protocol other than Apple Talk that processes
802.2 packets and that sends and receives data over. a Fiber Distributed Data Interface
(FDDI) network. To do this, you read data from and write it to the FDDI driver defined by
Apple. Your application can run on a node that is also running AppleTalk.

To write data to the FDDI driver and to perform other functions such as adding a
multicast address for the FDDI hardware, you use the Ethernet functions described
earlier in this chapter. To receive 802.2 packets from the FDDI driver, you attach your
protocol handler to the LAP Manager using the interface to the LAP Manager.

The Apple FDDI driver implementation support allows for the attachment of only one
protocol handler. The Apple FDDI driver specification requires that an FDDI driver
handle 802.2 packets to service access points (SAP) other than SAP $AA.

Although it is possible to attach your own protocol handler at the hardware device
driver level, Apple Computer, Inc. recommends that you not do this because it excludes
AppleTalk from using the FDDI driver. So that more than one protocol can receive
packets from the FDDI driver concurrently, Apple recommends that you attach your
protocol handler to the LAP Manager. The LAP Manager attaches its own protocol
handler to the FDDI driver, and when it receives a packet for your protocol, the LAP
Manager calls your protocol handler. When it receives a packet for another protocol,
such as AppleTalk, the LAP Manager calls that application's protocol handler.

For a description of how to attach and detach your protocol handler for FDDI, see the
chapter "Link-Access Protocol (LAP) Manager" included in this book and the discussion
of token ring and FDDI in "About Ethernet, Token Ring, and FDDI Support" beginning
on page 11-3 in this chapter. The chapter "Link-Access Protocol (LAP) Manager" also
explains the concept and use of the SAP field value for 802.2 Type 1 packets.

Applying Ethernet Functions

The Apple FDDI driver implements many but not all of the functions that the Apple
Ethernet driver implements.

For those Ethernet functions that do apply to FDDI, you use the function for FDDI in the
same way that you do for Ethernet: you pass parameters in a parameter block and you
use the Ethernet control code in the csCode field to call the function. The only difference
is that instead of specifying the Ethernet driver reference number in the parameter
block's ioRefNum field, you specify the FDDI driver reference number. Here are the
Ethernet functions that apply to FDDI: ·

• You use the EAddMul ti function to add a multicast address for FDDI and the
EDelMul ti function to remove one. Be careful not to use the broadcast address as
a multicast address. The broadcast and multicast addresses are the same for FDDI
and Ethernet. For information about these addresses and their formats, see the
discussion of them for Ethernet in Inside AppleTalk, second edition.

• You use the EWr i te function to send data to the FDDI driver for transmission over
the network.

Using Ethernet, Token Ring, and FDDI Drivers 11-23

•

CHAPTER 11

Ethernet, Token Ring, and Fiber Distributed Data Interface

Here are the Ethernet functions that do not apply to FDDI:

• The ERead and ERdCancel functions are not valid for FDDI because Apple does not
specify a default protocol handler for the FDDI driver. These two functions are used
exclusively by applications that use the default Ethernet protocol handler. If an
application calls these functions for FOOl, the driver will return an error.

• The ESetGeneral function switches to a mode that allows the .ENET driver to
transmit a larger Ethernet data packet than the standard size. Because FDDI is not
normally restriCted to the limited packet size, this function does not apply. However,
the FDDI driver will return a result of noErr if you call this function.

There are some other differences between Ethernet and FDDI:

• The FDDI packet size is determined by the FDDI hardware developer. However, for
Logical Link Control (LLC) type packets, the packet length cannot exceed 1500 bytes.

• The FDDI driver searches for a resource of type 1 fadr I instead of 1 eadr' in the
System file for an alternative hardware address. (For general information about
alternative hardware addresses, see "Changing the Ethernet Hardware Address" on
page 11-19.)

Note
Although you can use the EAttachPH function to attach a protocol
handler to the FDDI driver and the EDetachPH function to remove
one, Apple recommends that you not use these functions. Instead,
you should use the LAP Manager's L802Attach and L802Detach
routines. •

Sending and Receiving Data

The tasks involved in sending data to and receiving it from an FDDI driver are similar to
those that you use for Ethernet. The primary difference is that you use the LAP Manager
to attach your protocol handler. Any vendor implementing an FDDI driver to run on a
Macintosh computer must follow rules that direct them to return packet information in
the same manner as does the Ethernet driver for 802.2 packets. From the perspective of
an application that uses the FDDI driver, this means that when the LAP Manager calls
your protocol handler, you can expect the FDDI hardware addresses that you reference
from register A3 to follow the same format that is used for Ethernet addresses, regardless
of how the FDDI address might appear in the packet. The chapter "Link-Access Protocol
(LAP) Manager" in this book explains this in detail.

Here are the steps that you follow to send data to and receive it from an FDDI driver:

1. Locate the FDDI cards that are installed in the system. Use the Slot Manager to identify
installed FDDI cards. Use the SGetTypeSRsrc function described in the Slot Manager
chapter of Inside Macintosh: Devices to determine which NuBus slots contain FDDI
cards. To find FDDI cards, use the value catNetwork (Ox4) in the spCategory field
and the value typeFDDI (Oxll) in the spCType field. You should provide a user
interface that allows the user to select a specific FDDI card in the case that more than
one is present.

2. Use the OpenS lot function to open the FDDI driver. Set the ioNamePtr field to
.FDDI. If you did not locate any NuBus FDDI cards in step 1, you should also attempt
to open the .FDDIO driver in case non-NuBus FDDI hardware is attached to the

11-24 Using Ethernet, Token Ring, and FDDI Drivers

CHAPTER 11

Ethernet, Token Ring, and Fiber Distributed Data Interface

system. Use the Device Manager's OpenDriver function to open the .FDDIO driver.
(For information on the OpenSlot and OpenDriver functions, see the chapter
"Device Manager" in Inside Macintosh: Devices.)

Note that this section refers to the .FDDI driver shell, which facilitates multivendor
support, as the .FDDI driver. Opening the .FDDI driver shell, which loads and opens
the card's driver, is effectively the same as directly opening the FDDI driver.

3. If your application requires a multicast address, use the EAddMul ti function to
register a multicast address. (For information on multicast addresses, see Inside
AppleTalk, second edition. For a description of multicast addresses, see 11 About
Multicast Addressing" on page 11-7.)

4. Use the LAP Manager's L802Attach routine to install your protocol handler. (See
the chapter "Link-Access Protocol [LAP] Manager" in this book for more information.)

5. Use the EWr i te function to send packets to the FDDI driver for transmission across
the network. To use the EWrite function, you provide a pointer to a write-data
structure. The first buffer in the write-data structure must be at least 14 bytes long: the
first 6 bytes of that buffer must contain the destination address. Bytes 13 and 14 must
contain the packet length, which must not exceed 1500 bytes. The FDDI driver fills in
bytes 7-12 with the source address. (For more information on the write-data structure,
see "Using a Write-Data Structure to Transmit Ethernet Data" on page 11-10.)

6. When you are finished using the FDDI driver, use the LAP Manager's L802Detach
routine to remove your protocol handler.

7. When you are finished using a multicast address, use the EDelMul ti function to
remove it.

Ethernet, Token Ring, and FDDI Reference

This section describes the Ethernet data structures and functions. You use these data
structures and functions to communicate directly with the Ethernet, token ring, and
FDDI drivers. The functions were originally designed to read data from and write it
to the Ethernet driver. However, by specifying the appropriate driver reference number,
you can also use many of these functions for the token ring and FDDI drivers.

Some of the Ethernet functions do not apply to token ring and FDDI. Each of the
functions includes a section called Token Ring and FDDI Considerations that identifies
whether the function is valid for these drivers.

The "Data Structures" section shows the Pascal data structures for the write-data
structure and the ENET parameter block of type EParamBlock.

The "Routines" section describes how to

• attach and detach a protocol handler to receive data from an Ethernet driver

• write data to the Ethernet, token ring, or FDDI driver

• read data from the Ethernet driver and cancel a function request to read data from the
driver when you use the default Ethernet protocol handler

Ethernet, Token Ring, and FOOl Reference 11-25

•

CHAPTER 11

Ethernet, Token Ring, and Fiber Distributed Data Interface

• obtain information about the Ethernet driver and switch its mode to handle
larger packets

• add and remove a multicast address for an application that uses the Ethernet or FDDI
driver and a functional address for an application that uses the token ring driver

I)ataS~cbures

This section describes the data structures that you use to provide information to the
Ethernet, token ring, and FDDI drivers. You use the write-data ~tructure to provide the
addressing iriformation and data to send to another node over the network. You use the
ENET parameter block of type EParamBlock to pass information to and receive it from
the functions for Ethernet, token ring, and FDDI drivers.

The Write-Data Structure

To send data directly from the Ethernet, token ring, or FDDI driver, you must provide a
write-data structure and pass the EWrite function.a pointer to it. A write-data structure
contains a series of pairs of length words and pointers. Each pair indicates the length
and location of a portion of the data that constitutes the packet to be sent over the
network. The interface files for the driver do not include a type declaration for the
write-data structure. Here is an example type declaration that you can include in your
application.

TYPE WDSElement =
RECO~D

entryLength:
entryPtr:

END;

Field descriptions
entryLength

entryPtr

Integer;
Ptr;

The length of the data pointer to by entryPtr.

A pointer to the data that is part of the packet to be sent using the
EWr i te function.

For more information about the write-data structure, see "Using a Write-Data Structure
to Transmit Ethernet Data" beginning on page 11-10.

The Parameter Block for Ethernet, Tokert Ring, and FDDI Driver Functions

All of the driver functions-EAttachPH, EDetachPH, EWri te, ERe ad, ERdCancel,
EGetinfo, ESetGeneral, EAddMul ti, EDelMul ti-require a pointer to an ENET
parameter block of type EParamBlock.

11-26 Ethernet, Token Ring, and FDDI Reference

CHAPTER 11

Ethernet, Token Ring, and Fiber Distributed Data Interface

This section defines the fields that are common to all of the driver functions that use the
ENET parameter bloc}<. The ENET parameter block contains reserved fields that are used
internally by the .ENET driver; these fields are not described. The fields that are used
for specific functions 'only are defined in the descriptions of the 'functions to which
they apply.

TYPE EParamBlock ;
PACKED RECORD

qLink:
qType:
ioTrap:
ioCmdAddr:
ioCom~letion:

ioResult:
ioNamePtr:
ioVRefNum:
ioRefNum:

QElemPtr;
Integer;
Integer;
Ptr;
ProcPtr;
OSErr;
StringPtr;
Integer;
Integer;

csCode: Integer;
CASE Integer OF

{reserved}
{reserved}
{re~~rved}

{reserv~d}

{completi9n routine}
{result code}
{re~erved}

{reserved}
{qriver reference number}
{primary command code}

ENetWrite, ENetAttachPH, ENetDetachPH, ENetRead,
ENetRdCancel,ENetGetinfo,ENetSetG~neral:

(eProtType: Integer; {Ethernet protocol type}
ePointer: Ptr;
eBuffSize: Integer;

{pointer; use depends on function}
{buffer size}

eDataSize: Integer); {number of bytes read}
ENetAddMulti,ENetDelMulti:

END;
(eMultiAddr: ARRAY[O •• S] OF Char;) {multicast address}

Field descriptions
ioCompletion A pointer to a completion routine that you can provide. When you

execute a function asynchronously, the system calls your completion
routine when it completes execution of the function. Specify NIL for
this field if you do not wish to provide a completion routine.

ioResul t The result of the function. If you call the function /asynchronously,
the function sets this field to 1 as soon as it begins execution,
and it changes the field to the actual result code when it
completes execution.

ioRefNum The driver reference number that the OpenDriver function or the
OpenS lot function returns.

csCode A routine selector for the function to be executed. Each function has
a unique routine selector. The IYIPW interface automatically sets this
value for you.

Ethernet, Token Ring, and FDDI Reference 11-27

•

Routines

CHAPTER 11

Ethernet, Token Ring, and Fiber Distributed Data Interface

An application that uses Apple Talk Manager routines for network communication can
communicate with whatever Apple Talk network the user has selected through the
Network control panel. However, you can choose to write an application that talks only
to the hardware device driver for a particular type of network, such as Ethernet; in this
case, your application has to address the hardware driver directly. This section describes
the functions that you use to

• attach a protocol handler to the .ENET driver

• detach a protocol handler that you previously attached

• send data directly to a hardware device driver

• read data from the .ENET driver

• cancel a pending call to read data from the .ENET driver

• obtain information about the .ENET driver

• switch the .ENET driver mode

• add a multicast or functional address

• remove a multicast or functional address

Attaching and Detaching an Ethernet Protocol Handler

EAHachPH

You can use the functions that this section describes to attach a protocol handler to the
.ENET driver, to specify which protocol handler the .ENET driver is to use for each
protocol type, and to detach a protocol handler that you previously attached.

Note

Apple Computer, Inc. recommends that you attach a
protocol handler for a token ring or an FDDI driver
using the interface to the LAP Manager. •

The EAttachPH function attaches a protocol handler to the .ENET driver to receive
packets of a particular protocol type. You can provide and attach your own protocol
handler or use the default protocol handler provided by Apple.

FUNCTION EAttachPH (thePBptr: EParamBlkPtr;
async: Boolean): OSErr;

thePBptr

a sync

A pointer to a parameter block of type EParamBlock.

A Boolean value that specifies whether the function is to be
executed asynchronously or synchronously. Specify TRUE for
asynchronous execution.

11-28 Ethernet, Token Ring, and FDDI Reference

DESCRIPTION

CHAPTER 11

Ethernet, Token Ring, and Fiber Distributed Data Interface

Parameter block

ioCompletion
ioResult
ioRefNum
csCode
eProtType
ePointer

ProcPtr
OS Err
Integer
Integer
Integer
Ptr

A pointer to completion routine.
The result code.
The driver reference number.
Always ENetAttachPH for this function.
The Ethernet protocol type.
A pointer to protocol handler.

Field descriptions
eProtType The protocol type for which you are attaching a protocol handler. To

attach a protocol handler for Ethernet Phase 1 packets, specify 0 as
the value of this field. (Ethernet Phase 1 packets are IEEE 802.3
protocol packets.)

ePointer A pointer to your protocol handler application. To use the default
protocol handler that Apple provides, set this field value to NIL.

The EAttachPH function serves two purposes: you can use it to attach to the .ENET
driver your own protocol handler for a specific protocol type, or you can use it to specify
that the .ENET driver should call the default protocol handler for your protocol type. If
you attach your own protocol handler, the .ENET driver calls that protocol handler each
time it receives a packet with the protocol type you specified. If you specify that the
.ENET driver should use the default protocol handler, then you use the ERe ad command
to read packets with that protocol type. In practice, you should call the EAttachPH
function very early, during your program initialization sequence, if possible.

You specify the protocol type in the eProtType parameter and provide a pointer to the
protocol handler in the ePointer parameter. If you specify NIL for the ePointer
parameter, then the .ENET driver uses the default protocol handler for that protocol type .

SPECIAL CONSIDERATIONS

Instead of using the EAttachPH function to install a protocol handler for an Ethernet
Phase 2 packet, you should use the LAP Manager's L802Attach routine. In the case of
an 802.3 protocol packet, the .ENET driver passes the packet to the LAP Manager 802.2
protocol handler. If the packet has the protocol type you specified with the L802Attach
routine, the LAP Manager passes the packet on to your protocol handler. For information
about the L802Attach routine, see the chapter "Link-Access Protocol (LAP) Manager"
in this book.

TOKEN RING AND FDDI CONSIDERATIONS

This function is available for token ring and FDDI also. However, Apple Computer, Inc.
recommends that you use the LAP Manager's L802Attach routine instead to attach
your protocol handlers for token ring and FDDI. For information about the L802Attach
routine, see the chapter "Link-Access Protocol (LAP) Manager" in this book.

Ethernet, Token Ring, and FDDI Reference 11-29

•

CHAPTER 11

Ethernet, Token Ring, and Fiber Distributed Data Interface

Note that if you use this function for token ring or FDDI, you exclude other processes,
such as Apple Talk, from attaching their protocol handlers to the driver at the same time.
If you use the LAP Manager interface, other applications can also attach their protocol
handlers and use the driver concurrently.

If you use this function for token ring, you can only install a protocol handler for protocol
type 0. To use this function for either token ring or FDDI, you must set the ioRefNum field
to the driver reference number that the OpenSlot or the OpenDriver function returns.

Apple does not provide a default protocol handler for token ring or FDDI.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

EDetachPH

To execute the EAttachPH function from assembly language, call the _control trap
macro with a value of ENetAttachPH in the csCode field of the parameter block.
To execute the _control trap asynchronously, include the value ,ASYNC in the
operand field.

noErr
LAPProtErr

0
-94

No error
Protocol handler is already attached or node's protocol
table is full

For more information on how to use the EAttachPH function, see "Using the Default
Ethernet Protocol Handler to Read Data" beginning on page 11-13.

For information on the IEEE 802.2 and 802.3 protocols, see the chapter "Link-Access
Protocol (LAP) Manager" in this book.

The EDetachPH function detaches a protocol handler from the .ENET driver.

FUNCTION EDetachPH (thePBptr: EParamBlkPtr;

async: Boolean): OSErr;

thePBptr

a sync

A pointer to a parameter block of type EParamBlock.

A Boolean value that specifies whether the function should be
executed asynchronously or synchronously. Specify TRUE for
asynchronous execution.

11-30 Ethernet, Token Ring, and FOOt Reference

DESCRIPTION

CHAPTER 11

Ethernet, Token Ring, and Fiber Distributed Data Interface

Parameter block

ioCompletion
ioResult
ioRefNum
csCode
eProtType

ProcPtr
OSErr
Integer
Integer
Integer

A pointer to completion routine.
The result code.
The driver reference number.
Always ENetDetachPH for this function.
The Ethernet protocol typ.

Field descriptions
eProtType The protocol type whose protocol handler you want to remove.

You use the EDetachPH function to remove from the .ENET driver a protocol handler
that you attached using the EAttachPH function. When you call the EDetachPH

function to remove the protocol handler, EDetachPH removes the protocol type from the
node's protocol table. Once the protocol type is removed from the node's table, the
.ENET driver no longer delivers packets with that protocol type. You specify the protocol
type in the eProtType parameter.

If you specified your protocol type and attached the default protocol handler,
EDetachPH removes the entry from the node's protocol table. When you call
the EDetachPH function, any pending calls to the ERead function terminate with
the reqAborted result code.

TOKEN RING AND FDDI CONSIDERATIONS

This function is available for token ring and FDDI also. However, Apple Computer, Inc.
recommends that you use the LAP Manager interface to attach and detach a protocol
handler for token ring and FDDI. To detach a protocol handler, you use the LAP
Manager's L802Detach routine. For information about the L802Detach routine, see
the chapter "Link-Access Protocol (LAP) Manager" in this book.

Note that if you use this function for token ring or FDDI, you must set the ioRefNum

field to the driver reference number that the OpenSlot or OpenDriver function
returns. For token ring, you can only detach a protocol handler for protocol type 0.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

To execute the EDetachPH function from assembly language, call the_ Control trap
macro with a value of ENetDetachPH in the csCode field of the parameter block.
To execute the_ Control trap asynchronously, include the value , ASYNC in the
operand field.

noErr
LAPProtErr

0
-94

No error
No protocol handler is attached

Ethernet, Token Ring, and FDDI Reference 11-31

•

CHAPTER 11

Ethernet, Token Ring, and Fiber Distributed Data Interface

Writing and Reading Ethernet Packets

EWrite

DESCRIPTION

You can use the functions in this section to send data to an Ethernet, token ring, or FDDI
driver to be transmitted over the network. When you use the default Ethernet protocol
handler, you can use the ERead and ERdCancel functions to read Ethernet packets and
cancel execution of a read operation.

The EWr i te function allows you to send data directly to a hardware device driver for a
particular network type for transmission across the network.

FUNCTION EWrite (thePBptr: EParamBlkPtr; async: Boolean): OSErr;

thePBptr

a sync

A pointer to a parameter block of type EParamBlock.

A Boolean value that specifies whether the function should be executed
asynchronously or synchronously. Specify TRUE for asynchronous
execution.

Parameter block

ioCompletion
ioResult
ioRefNum
csCode
ePointer

ProcPtr
OSErr
Integer
Integer
Ptr

A pointer to completion routine.
The result code.
The driver reference number.
Always ENetWr i te for this function.
A pointer to write-data structure.

Field descriptions

ePointer A pointer to the write-data structure that contains the data that you
want to send.

You use the EWrite function to send a data packet over an Ethernet, a token ring, or an
FDDI network by communicating directly with the hardware device driver for that
network type. You must first prepare a write-data structure that specifies the destination
address and the protocol type and contains the data that you want to send. You place a
pointer to the write-data structure in the ePointer parameter.

For Ethernet, if you want to send a packet larger than 768 bytes, you must first call
the ESetGeneral function to put the .ENET driver in general-transmission mode.
If the size of the packet you provide is less than 60 bytes, the driver adds pad bytes to
the packet.

11-32 Ethernet, Token Ring, and FDDI Reference

CHAPTER 11

Ethernet, Token Ring, and Fiber Distributed Data Interface

TOKEN RING AND FDDI CONSIDERATIONS

You can use this function to send data to a token ring or FDDI driver. Note that the
packet size for token ring and FDDI is hardware dependent. However, for Logical Link
Control (LLC) type packets, the packet length cannot exceed 1500 bytes.

To use this function for token ring or FDDI, you must set the ioRefNum field to the
driver reference number that the OpenSlot or OpenDriver function returns.

You must also provide a pointer to a write-data structure. The first buffer in the write­
data structure must be at least 14 bytes long: the first 6 bytes of that buffer must contain
the destination address. Bytes 13 and 14 must contain the packet length, which must not
exceed 1500 bytes. The token ring driver fills in bytes 7-12 with the source address.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

ERead

To execute the EWrite function from assembly language, call the _control trap macro
with a value of ENetWri te in the csCode field of the parameter block. To execute the
_Control trap asynchronously, include the value , ASYNC in the operand field.

No error noErr
eLenErr

0
-92 Packet too large or first entry of the write-data structure

did not contain the full14-byte header
excessCollsns -95 Hardware error

For information on how to use the EWr i te function and how to create a write-data
structure, see "Using a Write-Data Structure to Transmit Ethernet Data" beginning on
page 11-10.

When you use the default protocol handler for Ethernet that Apple provides, you must
use the ERead function to read a data packet and place it in a data buffer.

FUNCTION ERead (thePBptr: EParamBlkPtr; async: Boolean): OSErr;

thePBptr

a sync

A pointer to a parameter block of type EParamBlock.

A Boolean value that specifies whether the function should be
executed asynchronously or synchronously. Specify TRUE for
asynchronous execution.

Ethernet, Token Ring, and FDDI Reference 11-33

•

DESCRIPTION

CHAPTER 11

Ethernet, Token Ring, and Fiber Distributed Data Interface

Parameter block

---? ioCompletion ProcPtr A pointer to completion routine.
r ioResult
---? ioRefNum
---? csCode
---? eProtType
---? ePointer
---? eBuffSize
r eDataSize

Field descriptions

eProtType

ePointer

eB~ffSize

eDataSize

OSErr The result code.
Integer The driver reference number.
Integer Always ENetRead for this function.
Integer The Ethernet protocol type.
Ptr A pointer to a data buffer.
Integer The size of the data buffer.
Integer The number of bytes read.

The protocol type of the packet you want to read.

A pointer to the data buffer into which you want to read data.

The size of the data buffer. If you are expecting Ethernet data
packets, the buffer should be at least 621 bytes in size; if you are
expecting general Ethernet data packets, the buffer should be at
least 1514 bytes in size.

The number of bytes of data actually read.

You can use the ERead function to read packets of a particular protocol type only after
you have used the EAttachPH function to specify a NIL pointer to the protocol handler
to indicate that you want to use the default protocol handler. In practice, you should call
the EAttachPH function very early, during your program initialization sequence, if
possible. As soon as the connection is established and you are expecting data, you
should call the ERead function asynchronously.

The ERead function places the entire packet, including the packet header, into your
buffer. The function returns in the eDataSize parameter the number of bytes actually
read. If the packet is larger than the data buffer, the ERead function places as much of
the packet as will fit into the buffer and returns the buf2Sma11Err result code.

Call the ERead function asynchronously to await the next data packet. When the .ENET
driver receives the data packet, it completes execution of the ERead function and calls
your completion routine. If the .ENET driver receives a data packet with a protocol type
for which you specified the default protocol handler while no ERead command is
pending, the driver discards the data packet.

You can have several asynchronous calls to the ERead function pending execution
simultaneously as long as you use a different parameter block for each call.

SPEOAL CONSIDERATIONS

You must not use the ERead function to read packets if you supply and attach your own
protocol handler. In this case, you use the driver's ReadPacket and ReadRest routines
from within your protocol handler.

11-34 Ethernet, Token Ring, and FDDI Reference

CHAPTER 11

Ethernet, Token Ring, and Fiber Distributed Data Interface

TOKEN RING AND FDDI CONSIDERATIONS

This function does not apply to token ring and FDDI.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

ERdCancel

To execute the ERead function from assembly language, call the_ Control trap macro
with a value of ENetRead in the csCode field of the parameter block. To execute the
_control trap asynchronously, include the value ,ASYNC in the operand field.

noErr
LAPProtErr

reqAborted
buf2Smal1Err

0
-94

-1105
-3101

No error
No protocol is attached or protocol handler pointer
wasnotO
ERdCancel or EDetachPH function called
Packet too large for buffer; partial data returned

See "Using the Default Ethernet Protocol Handler to Read Data" beginning on
page 11-13 for more information on using the ERead function.

The ERdCancel function cancels execution of a specific call to the ERead function.

FUNCTION ER~Cancel (thePBptr: EParamBlkPtr;
async: Boolean): OSErr;

thePBptr

a sync

A pointer to a parameter block of type EParamBlock.

A Boolean value that specifies whether the function should be
executed asynchronously or synchronously. Specify TRUE for
asynchronous execution.

Parameter block

~ ioCompletion
~ ioResult
~ ioRefNum
~ csCode
~ ePointer

ProcPtr
OS Err
Integer
Integer
Ptr

A pointer to completion routine.
The result code.
The driver reference number.
Always ENetRdCancel for this function.
A pointer to ERe ad parameter block.

Field descriptions
ePointer A pointer to the .ENET parameter block that you specified when

you called the ERead function that you want to cancel.

Ethernet, Token Ring, and FDDI Reference 11-35

•

DESCRIPTION

CHAPTER 11

Ethemet, Token Ring, and Fiber Distributed Data Interface

To cancel an ERead function request using the ERdCancel function, you must have
called the ERead function asynchronously. You specify in the ePointer parameter a
pointer to the parameter block that you used when you called the ERe ad function.

When you call the ERdCancel function, the pending ERead function that you cancel
receives the reqAborted result code.

TOKEN RING AND FDDI CONSIDERATIONS

This function is not valid for token ring and FDDI.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

To execute the ERdCancel function from assembly language, call the_ Control

trap macro with a value of ENetRdCancel in the csCode field of the parameter
block. To execute the_ Control trap asynchronously, include the value , ASYNC in
the operand field.

noErr
cbNotFound

0
-1102

No error
ERe ad not active

Obtaining Information About the Ethernet Driver and Switching Its Mode

EGetlnfo

The functions in this section return information about the .ENET driver and switch the
.ENET driver from limited-transmission mode to general-transmission mode.

The EGetinfo function returns information about the .ENET driver.

FUNCTION EGetinfo (thePBptr: EParamBlkPtr;

async: Boolean): OSErr;

thePBptr

async

A pointer to a parameter block of type EParamBlock.

A Boolean value that specifies whether the function should be
executed asynchronously or synchronously. Specify TRUE for
asynchronous execution.

11-36 Ethernet, Token Ring, and FDDI Reference

DESCRimON

CHAPTER 11

Ethernet, Token Ring, and Fiber Distributed Data Interface

Parameter block

~ ioCompletion ProcPtr A pointer to completion routine.
f- ioResult
~ ioRefNum
~ csCode
~ ePointer
~ eBuffSize
f- eDataSize

Field descriptions

ePointer

eBuffSize
eDataSize

OS Err The result code.
Integer The driver reference number.
Integer Always ENetGetinfo for this function.
Ptr A pointer to a buffer.
Integer The size of the buffer.
Integer The number of bytes returned.

A pointer to a buffer that is at least 18 bytes in size. The
EGetinfo function returns the information about the
.ENET driver in this buffer.

The size of the buffer pointed to by ePointer.
The number of bytes of information that EGetinfo returns in
the buffer pointed to by ePointer.

The EGetinfo function returns information about the .ENET driver. Beginning with
version 58 of Apple Talk, the EGetinfo function returns additional information for
SONIC-based network interface controllers (NICs). For these cards, EGetinfo can
return up to 78 bytes of information. The eDataSize field returns the number of bytes
of information that EGetinfo has placed in the data buffer that you provide. You can
use the value returned in this field to determine whether or not the Ethernet card uses a
SONIC chip. For all cards that are not SONIC based, this field will contain a value of 18.

If you do not know whether the Ethernet card that you are using has a SONIC chip, you
should provide a data buffer that is at least 78 bytes in length. If you are certain that the
Ethernet card that you are using is not SONIC based, you must provide a data buffer
that is at least 18 bytes. Put a pointer to the buffer in the ePointer parameter and the
size of the buffer in the eBuffSize parameter.

For Ethernet cards that are not SONIC based, the EGetinfo function places the
following information in the data buffer:

Bytes Information

1-6 Ethernet address of the node on which the driver is installed

7-10 Number of times the receive queue has overflowed

11-14 Number of data transmission operations that have timed out

15-18 Number of packets received that contain an incorrect address

An incorrect Ethernet address is one that is neither the broadcast address, a multicast
address for which this node is registered, nor the node's data-link address. A node could
receive an incorrect Ethernet address due to a hardware or software error.

Ethernet, Token Ring, and FDDI Reference 11-37

•

CHAPTER 11

Ethernet, Token Ring, and Fiber Distributed Data Interface

For SONIC-based Ethernet cards, the last 60 bytes in the buffer return information from
the SONIC chip network statistic counters. The EGetinfo function places the following
information in the data buffer:

Bytes

1-6

7-10

11-14

15-18
19-22

23-26

27-30

31-34

35-38

39-42

43-46

47-50

51-54

55-58

59-62

63-66

67-70

71-74

75-78

Information

Ethernet address of the node on which the driver is installed

No information returned (zero-filled)

No information returned (zero-filled)

No information returned (zero-filled)

Frames transmitted without error

Single collision frames

Multiple collision frames

Collision frames

Frames with deferred transmission

Late collision

Excessive collisions

Excessive deferrals

Internal MAC transmit error

Frames received without error

Multicast frames received without error

Broadcast frames received without error

Frame check sequence errors

Alignment errors

Frames lost due to internal MAC receive errors

TOKEN RING AND FDDI CONSIDERATIONS

This function does not apply to token ring and FDDI.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

To execute the EGetinfo function from assembly language, call the_ Control trap
macro with a value of ENetGetinfo in the cscode field of the parameter block.
To execute the _control trap asynchronously, include the value ,ASYNC in the
operand field.

noErr 0 No error

11-38 Ethernet, Token Ring, and FOOl Reference

CHAPTER 11

Ethernet, Token Ring, and Fiber Distributed Data Interface

ESetGeneral

DESCRIPTION

The ESetGeneral function switches the .ENET driver from limited-transmission mode
to general-transmission mode, allowing it to transmit a larger data packet.

FUNCTION ESetGeneral (thePBptr: EParamBlkPtr;
async: Boolean): OSErr;

thePBptr

a sync

A pointer to a parameter block of type EParamBlock.

A Boolean value that specifies whether the function should be
executed asynchronously or synchronously. Specify TRUE for
asynchronous execution.

Parameter block

ioCompletion
ioResult
ioRefNum
csCode

ProcPtr
OS Err
Integer
Integer

A pointer to completion routine.
The result code.
The driver reference number.
Always ENetSetGeneral for this function.

The ESetGeneral function switches the .ENET driver from limited-transmission mode
to general-transmission mode, which enables the .ENET driver to transmit an Ethernet
data packet of up to 1514 bytes. In limited-transmission mode, the .ENET driver allocates
a write-data buffer of 768 bytes. This buffer size is more than sufficient to hold an
Ethernet data packet, which can be no larger than 621 bytes. However, if you want to
send a packet that is larger than the Ethernet data packet, you must use the
general-transmission mode.

SPECIAL CONSIDERATIONS

There is no command to switch the .ENET driver from general-transmission mode to
limited-transmission mode. To switch back to limited-transmission mode, you have
to reset the driver by restarting the computer.

TOKEN RING AND FDDI CONSIDERATIONS

This function does not apply to token ring and FDDI. However, if an application calls this
function for token ring or FDDI, the driver will return a value of noErr in register DO.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

To execute the ESetGeneral function from assembly language, call the_ Control
trap macro with a value of ENetSetGeneral in the csCode field of the parameter
block. To execute the _control trap asynchronously, include the value ,ASYNC in the
operand field.

noErr
memFullErr

0
-108

No error
Insufficient memory in heap

Ethernet, Token Ring, and FDDI Reference 11-39

CHAPTER 11

Ethernet, Token Ring, and Fiber Distributed Data Interface

Adding and Removing Ethernet Multicast Addresses

EAddMulti

DESCRIPTION

The functions in this section add or delete multicast addresses for Ethernet or FDDI for a
particular node and functional addresses for token ring for a particular node.

The EAddMul ti function adds a multicast address or a functional address to the node
that is running your application.

FUNCTION EAddMulti (thePBptr: EParamBlkPtr;
async: Boolean): OSErr;

thePBptr

async

A pointer to a parameter block of type EParamBlock.

A Boolean value that specifies whether the function should be
executed asynchronously or synchronously. Specify TRUE for
asynchronous execution.

Parameter block

~ ioCompletion ProcPtr A pointer to completion routine.
~ ioResult OSErr Result code.
~ ioRefNum Integer Driver reference number.
~ csCode Integer Always ENetAddMul ti for

this function.
~ eMultiAddr 6-byte array Multicast address.

Field descriptions

eMultiAddr The multicast address that you want to add and use.

You use the EAddMul ti function to add a multicast address for Ethernet or FDDI to
the node that is running your application so that the hardware device driver for that
network type will accept packets delivered to that address. You can also use this function
to add a functional address that serves the same purpose for token ring.

Each time a client of a hardware device driver calls the EAddMul ti function for a
particular multicast address, the driver increments a counter for that multicast address.
Each time a client of the hardware device driver calls the EDelMul ti function, the
driver decrements the counter for that address. As long as the count for a multicast
address is equal to or greater than 1, the hardware device driver accepts packets directed
to that multicast address. Therefore, if any client of the hardware device driver in the
node has called the EAddMul ti function for a particular multicast address, the driver
receives packets delivered to that address. This process also applies to token ring for
functional addresses. For information on how to specify multicast and functional
addresses, see Inside AppleTalk, second edition. Be careful not to use the broadcast
address, which is also described in Inside AppleTalk, as a functional address.

11-40 Ethernet, Token Ring, and FDDI Reference

CHAPTER 11

Ethernet, Token Ring, and Fiber Distributed Data Interface

TOKEN RING AND FDDI CONSIDERATIONS

If your token ring application requires a functional address, use the EAddMul ti function
to register a functional address. Functional addresses are the token ring equivalent of
Ethernet and FDDI multicast addresses. If your FDDI application requires a multicast
address, use the EAddMul ti function to register a multicast address.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

EDelMulti

To execute the EAddMul ti function from assembly language, call the_ Control
trap macro with a value of ENetAddMul ti in the csCode field of the parameter
block. To execute the_ Control trap asynchronously, include the value , ASYNC in
the operand field.

noErr
eMultiErr

0
-91

No error
Invalid address or table is full

The EDelMul ti function decrements the counter kept by the hardware device driver for
a particular multicast address for Ethernet or FDDI or a particular functional address for
token ring.

FUNCTION EDelMulti (thePBptr: EParamBlkPtr;
async: Boolean): OSErr;

thePBptr · A pointer to a parameter block of type EParamBlock.

async A Boolean value that specifies whether the function should be
executed asynchronously or synchronously. Specify TRUE for
asynchronous execution.

Parameter block

~ ioCompletion ProcPtr A pointer to completion routine.
~ ioResult OS Err The result code.
~ ioRefNum Integer The driver reference number.
~ csCode Integer Always ENetDelMul ti for

this function.
~ eMultiAddr 6-byte array A multicast address.

Field descriptions
eMul tiAddr The multicast address that you no longer want to use.

Ethernet, Token Ring, and FOOl Reference 11-41

•

DESCRIPTION

CHAPTER 11

Ethernet, Token Ring, and Fiber Distributed Data Interface

Each time a client of either the Ethernet or FDDI hardware device driver calls the
EAddMul ti function, the driver increments a counter for the multicast address specified
by the eMultiAddr parameter. Each time a client of either the Ethernet or FDDI
hardware device driver calls the EDelMul ti function, the driver decrements the counter
for the address specified by the eMul tiAddr parameter.

As long as the count for a multicast address is equal to or greater than 1, the hardware
device driver accepts packets directed to that multicast address. When the count for an
address equals 0, the driver removes that address from the list of multicast addresses
that it accepts. For token ring, the same process applies to functional addresses.

SPECIAL CONSIDERATIONS

Because more than one client of the .ENET driver might be using a particular multicast
address, you should call the EDelMul ti function only once for each time you called the
EAddMul ti function.

TOKEN RING AND FDDI CONSIDERATIONS

If your application added a multicast address for FDDI, you use this function to delete
the address when you no longer need it. If your application added a functional address
for token ring, use this function to delete the address when you no longer need it.
Functional addresses are the token ring equivalent of Ethernet and FDDI multicast
addresses. Be careful not to use the broadcast address as either a multicast or a
functional address. (For information on all three types of addresses, see Inside AppleTalk,
second edition.)

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

To execute the EDelMul ti function from assembly language, call the_ Control
trap macro with a value of ENetDelMul ti in the csCode field of the parameter
block. To execute the_ Control trap asynchronously, include the value , ASYNC in
the operand field.

noErr
eMultiErr

0
-91

No error
Address not found

11-42 Ethernet, Token Ring, and FDDI Reference

CHAPTER 11

Ethernet, Token Ring, and Fiber Distributed Data Interface

Summary of Ethernet, Token Ring, and FDDI

Pascal Summary

Constants

CONST
{.ENET, .TOKN, and .FDDI driver values}

catNetwork
typeEtherNet
typeTokenRing
typeFDDI

{.ENET driver routine
ENetSetGeneral
ENetGetinfo
ENetRdCancel
ENetRead
ENetWrite
ENetOetachPH
ENetAttachPH
ENetAddMulti
ENetDelMulti

Data Structures

TYPE EParamBlock =

PACKED RECORD
qLink:
qType:
ioTrap:
ioCmdAddr:
ioCompletion:
ioResult:
ioNamePtr:
ioVRefNum:
ioRefNum:
csCode:

4· I

= 1;

2;

= 11;

selectors}
253;

'= 252;

251;

= 250;

= 249;

= 248;

= 247;

246;

245;

QElemPtr;
Integer;
Integer;
Ptr;
ProcPtr;
OSErr;
StringPtr;
Integer;
Integer;
Integer;

Summary of Ethernet, Token Ring, and FOOl

{spCategory for Ethernet NB card}
{spCType for Ethernet NB card}
{spCType for token ring NB card}
{spCType for FDDI NB card}

{set to general transmission mode}
{get info}
{cancel read}
{read}
{write}
{detach protocol handler}
{attach protocol handler}
{add a multicast address}
{delete a multicast address}

{reserved}
{reserved}
{reserved}
{reserved}
{completion routine}
{result code}
{reserved}
{reserved}
{driver reference number}
{primary command code}

11-43

•

CHAPTER 11

Ethernet, Token Ring, and Fiber Distributed Data Interface

CASE Integer OF
ENetWrite, ENetAttachPH, ENetDetachPH, ENetRead, ENetRdCancel,

ENetGetinfo, ENetSetGeneral:

eProtType: Integer;
ePointer: Ptr;

eBuffSize: Integer;
eDataSize: Integer;
) ;

ENetAddMulti,ENetDelMulti:
(

{Ethernet protocol type}
{pointer; use depends on }

{ function}
{buffer size}
{number of bytes read}

eMultiAddr: ARRAY[O •• S] OF Char; {multicast address}

END;

EParamBlkPtr = AEParamBlock;

Routines

Attaching and Detaching an Ethernet Protocol Handler

FUNCTION EAttachPH (thePBptr: EParamBlkPtr; async: Boolean):

FUNCTION EDetachPH (thePBptr: EParamBlkPtr; async: Boolean):

Writing and Reading Ethernet Packets

OSErr;

OSErr;

FUNCTION EWrite (thePBptr: EParamBlkPtr; async: Boolean) : OS Err;

FUNCTION ERe ad (thePBptr: EParamBlkPtr; async: Boolean):OSErr;

FUNCTION ERdCancel (thePBptr: EParamBlkPtr; async: Boolean): OSErr;

Obtaining Information About the Ethernet Driver and Switching Its Mode

FUNCTION EGetinfo (thePBptr: EParamBlkPtr; async: Boolean): OSErr;

FUNCTION ESetGeneral (thePBptr: EParamBlkPtr; async: Boolean): OSErr;

Adding and Removing Ethernet Multicast Addresses

FUNCTION EAddMulti (thePBptr: EParamBlkPtr; async: Boolean): OSErr;

FUNCTION EDelMulti (thePBptr: EParamBlkPtr; async: Boolean): OSErr;

11-44 Summary of Ethernet, Token Ring, and FOOl

CHAPTER 11

Ethernet, Token Ring, and Fiber Distributed Data Interface

C Summary

Constants

enum {

} ;

ENetSetGeneral
ENetGetinfo
ENetRdCancel
ENetRead
ENetWrite
ENetDetachPH
ENetAttachPH
ENetAddMulti
ENetDelMulti

=

=

=

253,

252,

251,

250,

249,

248,

247,

246,

245,

Data Types

#define EParamHeader \
QElem *qLink;
short qType;
short
Ptr
ProcPtr
OS Err
StringPtr
short
short
short

ioTrap;
ioCmdAddr;
ioCompletion;
ioResult;
ioNamePtr;
ioVRefNum;
ioRefNum;
csCode;

struct EParamMiscl {
EParamHeader

};

short
Ptr
short
short

eProtType;
ePointer;
eBuffSize;
eDataSize;

/*set "general" mode*/
/*get info*/
/*cancel read*/
/*read*/
/*write*/
/*detach protocol handler*/
/*attach protocol handler*/
/*add a multicast address*/
/*delete a multicast address*/

/*reserved*/\
/*reserved*/\
/*reserved*/\
/*reserved*/\
/*completion routine*/\
/*result code*/\
/*reserved*/\
/*reserved*/\
/*driver reference number*/\
/*call command code*/

/*g~neral EParams*/
/*Ethernet protocol type*/

/*buffer size*/
/*number of bytes read*/

Summary of Ethernet, Token Ring, and FDDI 11-45

CHAPTER 11

Ethernet, Token Ring, and Fiber Distributed Data Interface

Note
The C interface file contains the following structure type definition,
which is incorrect. A corrected version follows it. •

typedef struct EParamMiscl EParamMiscl;

struct EParamMisc2 {
EParamMiscl EParmsl;
char eMultiAddr[6]; /*multicast address*/

} ;

Note
The following structure type definition is a correction to the
preceding structure that may exist in the interface file. You should
declare the following struct in your application instead of relying
on the interface file. •

typedef struct {
EParamHeader
char eMultiAddr[S];

}EParamMisc2;
/*multicast address*/

typedef struct EParamMisc2 EParamMisc2;

union EParamBlock {
EParamMiscl EParmsl;
EParamMisc2 EParms2;

} ;

typedef union EParamBlock EParamBlock;

typedef EParamBlock *EParamBlkPtr;

Routines

Attaching and Detaching an Ethernet Protocol Handler

pascal OS Err EAttachPH (EParamBlkPtr thePBptr,

pascal OSErr EDetachPH (EParamBlkPtr thePBptr,

Writing and Reading Ethernet Packets

pascal OS Err EWrite (EParamBlkPtr thePBptr,

pascal OS Err ERe ad (EParamBlkPtr thePBptr,

pascal OSErr ERdCancel (EParamBlkPtr thePBptr,

11-46 Summary of Ethernet, Token Ring, and FOOl

Boolean

Boolean

Boolean

Boolean

Boolean

async);

async);

async);

async);

async);

CHAPTER 11

Ethernet, Token Ring, and Fiber Distributed Data Interface

Obtaining Information About the Ethernet Driver and Switching Its Mode

pascal OSErr EGetinfo

pascal OSErr ESetGeneral

(EParamBlkPtr thePBp~r, Boolean async);

(EParamBlkPtr thePBptr, Boolean async);

Adding and Removing Ethernet Multicast Addresses

pascal OSErr EAddMulti

pascal OSErr EDelMulti

(EParamBlkPtr thePBptr, Boolean async);

(EParamBlkPtr thePBptr, Boolean async);

Assembly-Language Summary

Constants

ENetSetGeneral EQU
ENetGetinfo EQU
ENetRdCancel EQU
ENetRead EQU
ENetWrite EQU
ENetDetachPB EQU
ENetAttachPB EQU
ENetAddMulti EQU
ENetDelMulti EQU

Data Structures

EParamBlock Parameter Block

16
26
28
28
30
34
36

ioResult
csCode
eMultiAddr
eProtType
ePointer
eBuffSize
eDataSize

word
word
6 bytes
word
long
word
word

253

252

251

250

249

248

247

246

245

result code

;set to general transmission mode
;get info
;cancel read
;read
;write
;detach protocol handler
;attach protocol handler
;add a multicast address
;delete a multicast address

routine selected
multicast address
E~ernetprotocol~e
pointer
size of buffer
number of bytes read

Summary of Ethernet, Token Ring, and FDDI

•

11-47

CHAPTER 11

Ethernet, Token Ring, and Fiber Distributed Data Interface

Result Codes

noErr
eMultiErr
eLenErr

LAPProtErr
excessCollsns
memFullErr
cbNotFound
reqAborted
buf2Smal1Err

0
-91
-92

-94
-95

-108
-1102
-1105
-3101

No error
Address not found
Packet too large or first entry of the write-data structure did not
contain the full14-byte header
No protocol handler is attached
Hardware error
Insufficient memory in heap
ERead not active
ERdCancel or EDetachPH function called
Packet too large for buffer; partial data returned

11-48 Summary of Ethernet, Token Ring, and FDDI

CHAPTER 12

Multinode Architecture

Contents

About Multinode Architecture 12-4
Using Multinode Architecture 12-8

Acquiring and Removing Multinodes 12-8
Handling anAppleTalk Cable-Range-Change Transition Event 12-10
Receiving Packets Addressed to Your Multinode 12-10

Calling ReadPacket to Read in the Packet Contents 12-12
Calling ReadRest to Complete Reading in the Packet Contents 12-13

Sending Packets Using a Multinode 12-14
Preparing a Write-Data Structure 12-14
Using a Checksum 12-16

Multinode Architecture Reference 12-17
Data Structures 12-18

The Write-Data Structure
The Address Block Record

12-18
12-18

The Multinode Parameter Block 12-19
Routines 12-20

Adding and Removing Multinode Addresses 12-21
Sending Datagrams Through Multinodes 12-25

Summary of Multinode Architecture 12-28
Pascal Summary 12-28

Constants 12-28
Data Types 12-28

C Summary 12-30
Constants 12-30
Data Types 12-30

Assembly-Language Summary 12-31
Result Codes 12-32

Contents 12-1

CHAPTER 12

Multinode Architecture

This chapter describes how you can use Apple Talk's multinode architecture to acquire
one or more node IDs, called multinodes, in addition to the standard user node 10.
Multinode architecture is an Apple Talk feature that is provided to meet the needs of
special-purpose applications that receive and process Apple Talk packets in a custom
manner instead of passing them directly on to a higher-level Apple Talk protocol for
processing. A multinode ID allows the system that is running your application to appear
as multiple nodes on the network. The prime example of a multinode application is
Apple Remote Access (ARA).

A multinode ID is distinct from the user node ID. Apple Talk separates packets addressed
to a multinode from those addressed to the user node sockets on the same machine,
and it passes the multinode packets on to a receive routine that you must supply for
the multinode.

Multinode architecture is implemented in the .MPP driver and exists at the same level of
the Apple Talk protocol stack as does the Datagram Delivery Protocol (DDP), but unlike
DDP, multinode does not use DDP sockets, nor is it connected to the Apple Talk protocol
stack above the data-link level.

This chapter describes the fundamental tasks that you perform to

• add a multinode for your application's use

• write a required routine that receives packets addressed to the multinode

• prepare and send data from the multinode

• remove a multinode when you are finished with it

Because multinode is not connected to the Apple Talk protocol stack above the data-link
level, if you want your multinode application to be compatible with Apple Talk, you must
implement the higher-level Apple Talk protocols. Multinode also requires that you code
a receive routine in assembly language. For these reasons, you should consider using
multinode only if your application requires that you process Apple Talk packets in a
custom manner. You do not need to use the multinode architecture for other application
requirements.

The receive routine that you must provide to handle packets addressed to your multinode
ID is similar to the DDP socket-listener code that an application must include to receive
packets addressed to its DDP socket. The chapter "Datagram Delivery Protocol (DDP)"
in this book describes how to write a socket listener, which provides useful background
information on how to write a multinode receive routine.

At the data-link level, multinode architecture relies on the AppleTalk connection file
of type ' adev' that is implemented for a particular link type. For tnore informa­
tion about Apple Talk connection files, see the Macintosh AppleTalk Connections
Programmer's Guide.

For information describing how to implement the higher-level AppleTalk protocols, see
Inside AppleTalk, second edition.

12-3

• s::
~ s·
0
a.
CD
)>

0
;:r

I
m

CHAPTER 12

Multinode Architecture

About Multinode Architecture

Apple Talk multinode architecture lets you acquire multiple node addresses for a single
machine, allowing that machine to act and appear as several nodes on a network. You
can think of a multinode as a virtual node and the user node as the physical node. A
single machine or physical node can have associated with it one or more multinodes.
You can obtain a multinode 10 after a node that is running your application connects to
the Apple Talk network and AppleTalk assigns the standard user node 10 to that system.
The use of multinode addresses does not affect the functions of the standard user node
address, which uniquely identifies the physical node on the network and forms part of
the internet socket address of a DDP socket-client application.

Multinode architecture communicates similarly to DDP in that you send data from a
multinode as discrete packets, with each packet carrying the full addressing information
required to deliver the data to its destination.

Multinode architecture is a client of the data-link layer and all of the supported data-link
types. It is connected to the AppleTalk protocol stack from the data-link layer down
through the hardware. It is not connected to the Apple Talk protocols above it, and there
are no hooks that a multinode application can use to pass a packet up through the
Apple Talk protocol stack for processing by a higher-level protocol.

Therefore, a multinode application that receives DDP packets for higher-level Apple Talk
protocols must process these packets itself, in its own way. For example, if a multinode
application receives an Apple Talk AEP Echoer request packet, it must determine how
to handle the request packet, that is, whether or not to respond to the packet as the
Apple Talk Echo Protocol (AEP) implementation does. (For more information on AEP, see
the discussion in the chapter "Datagram Delivery Protocol [DDP]" in this book and the
AEP protocol specification in Inside AppleTalk, second edition.)

After a packet is delivered to the node, the .MPP driver checks the DDP packet header
and passes packets addressed to a user node socket on to the appropriate socket listener,
while passing packets addressed to a multinode on to the receive routine that you
provide as part of your multinode application. Your receive routine must receive both
packets addressed to the multinode and broadcast packets. A receive routine is similar
to a socket listener. You must code the receive routine in assembly language because
the .MPP driver passes values to your routine in registers when it calls the routine.

Multinode architecture does not provide for the establishing of sessions-that is, the
ability to set up a connection and send streams of data over it, nor does it include
support for error recovery. If you want these features, you need to provide them in your
multinode application.

Apple Talk delivers all packets to the physical node based on the user node 10 assigned
to the node, which is carried in the frame header as the destination node 10. Multinode
architecture always uses a long DDP packet header; Figure 12-1 shows the structure of
the long DDP packet header. It also shows the frame header.

12-4 About Multinode Architecture

CHAPTER 12

Multinode Architecture

Figure 12·1 The long DDP packet header used for multi node

r----------------·-------,

,{ Frame
heade

-DDP
packe
heade

t
r

,--

'-

Destination node ID
Source user node ID

DDP header type
Unused I Hop count I

Datagram length (1 0 bits)

Checksum

Destination network number

Source network number
for multinode

Destination node ID
Source multinode ID

Destination socket number
Source socket number

DDP protocol type

When you send a packet from a multinode:

Bytes

1

1

2

2

2

1

• The frame header always contains the source user node ID, which identifies the
physical node on the network from which the packet was transmitted.

• The DDP packet header always contains the source multinode ID, which identifies
the virtual multinode from which you are sending the packet.

A packet is always transmitted from the physical node's network hardware, and the
frame header contains the user node ID of the physical node that transmitted the packet.
Your multinode application uses a multinode ID, which you can think of as a virtual
node from which you are sending data. The DDP header identifies this multinode. Your
application sends data, but the networking hardware and its device driver actually
transmit the packet containing the data across the network to its destination.

A single networked machine may have associated with it one or more multinode IDs.
Packets sent from several multinode applications running on the same machine include
different source multinode IDs, but because they are all transmitted from the same
physical node, the packets all have the same source user node ID.

Because the source multinode ID is associated with the application that sent the packet
and the source user node ID is associated with the machine that transmitted the packet,
the source user node ID in the frame header and the source multinode ID in the DDP
packet header are always different values.

Note
Even if the destination node of a packet is on the same Local Talk
network as the source user node, a packet sent from a multinode always
contains a long DDP header to allow for the inclusion of the two
separate source node IDs: the user node ID and the multinode ID. •

About Multinode Architecture 12-5

CHAPTER 12

Multinode Architecture

To acquire a multinode, you call the AddNode routine. You can obtain only one multinode
at a time. The number of multinodes that a single machine can support is limited by the
maximum number of multinodes supported by the underlying Apple Talk connection file
of type 1 adev 1 for the data link that is being used:

• For Local Talk, the maximum is 254 node addresses ($0 and $FF are not valid
addresses).

• For EtherTalk, Token Talk, or FDDITalk, the maximum is 253 node addresses ($0, $FF,
and $FE are not valid addresses).

Because the multinode is considered another unique node ID, the number of multi­
nodes that can be acquired is further limited by the number of nodes already active
on the network.

As an example of one use of multinodes, consider how a multinode application that
includes server and client components might handle a broadcast NBP lookup packet.
The following events occur on the user node that runs the client component of the
multinode application:

1. A DDP socket-client application on the user node calls an NBP function that generates
a broadcast NBP lookup packet.

2. The .MPP driver sends the packet out to the network. Because it is a broadcast packet,
the .MPP driver also sends the NBP lookup packet to the multinode on the same
machine.

3. The multinode client application's receive routine receives the packet.

4. The multinode client application processes the packet's contents and repackages them
in its own multinode packet, which it sends out through the serial port over the
modem and telephone line to the multinode application on the server node.

The following events occur on the node that is running the server component of the
multinode application.

1. The server multinode application receives the multinode packet through the system's
serial port.

2. This application uses the NetWrite routine to decode the multinode packet and uses
the packet contents as the data for a DDP packet. It builds the required data structure
to contain the data for a standard DDP packet.

3. The server multinode application then sends the broadcast packet down through
the Apple Talk protocol stack from the link-access layer, through the hardware, and
out to the network for a response. It also sends the packet to the user node on the
same machine.

Figure 12-2 illustrates this process.

12-6 About Multinode Architecture

NBP
looku
packe

p
t

CHAP T E R 12

Multinode Architecture

Figure 12-2 How a server-client multinode application might send a broadcast NBP
lookup packet

Client node Server node

Apple Talk stack Multinode application Multinode application Apple Talk stack

I (Process packet) " (Decode packet

L)j NBP Telephone
line

NetWrite) Fl

~DDP jo ~I ' .. MN

LAP "- Serial
ports

) MN I or=) DDP

LAP LAP

Hardware Hardware 1- Hardware

Network Network

The primary use of the multinode architecture for an application is to provide router-like
services as part of the application. One of the advantages of multinode is that your
application receives all Name-Binding Protocol (NBP) request packets because they are
broadcast packets. In fact, the first packets that your application is likely to receive are
NBP lookup packets. These include NBP register requests that generate an NBP lookup
request if the sender specified that NBP should verify the uniqueness of the entity name
to be registered. (For an explanation of NBP and its components, see the chapter "Name­
Binding Protocol [NBP]" in this book.)

How you handle the NBP lookup packets is application-specific. However, if you want
your application to be visible throughout the network, you need to meet certain
Apple Talk compatibility requirements. In this case, your application needs to implement
the NBP protocol. You can implement your own NBP names table for the multinode to
determine if your application handles the services requested in the lookup packet. For
example, your application can check to determine if an NBP lookup packet's entity name
object and type fields match the object and type fields of any of the entity name entries in
your NBP names table. Any response that you return to the requester must conform to
the AppleTalk packet format. You may also want to implement the Apple Talk Echo
Protocol (AEP), and in this case, too, any responses that you return to the sender must
meet the specifications for an AEP AppleTalk packet. (For a description of AEP, see the
chapter "Datagram Delivery Protocol [DDP]" in this book.) Inside AppleTalk, second
edition, describes how to implement NBP and AEP.

About Multinode Architecture 12-7

CHAPTER 12

Multinode Architecture

Using Multinode Architecture

This section describes how to

• acquire a multinode (AddNode)

• receive data addressed to the multinode

• prepare to send data and then send it from the multinode (NetWrite)

• remove a multinode when you are finished with it (RemoveNode)

It also _mentions the cable-range-change Apple Talk transition event that you must handle
and directs you to the chapter "Link-Access Protocol (LAP) Manager" for information
describing what you must do.

The routines that you use to add and remove a multinode and send data from your
multinode application are not defined in the MPW interface files. To use these routines
from a high-level language, you must call the Device Manager directly and specify
the routine's cscode in the parameter block. For the AddNode routine, you must issue
the function as an immediate control call and define a function for this purpose. (For
an example of how to do this, see Listing 12-1 on page 12-9.) For the NetWrite and
RemoveNode routines, you call the Device Manager's PBControl function. (For infor­
mation about how to do this, see "Routines" beginning on page 12-20.)

Note
Apple Talk version 57 or later must be installed on the system that is
running your application if you use the multinode feature. Apple Talk
version 57 is compatible with system software version 6.0.5 and later.
You should include Apple Talk version 57 with any product that uses
multinodes. Contact Apple's Software Licensing department for
information on licensing Apple Talk. •

Acquiring and Removing Multinodes
You can add an Apple Talk multinode once the physical node that runs your application
has connected to the Apple Talk network and Apple Talk has assigned to it a user node
ID. After you are finished using the multinode, your application must remove it. This
section describes how to do these tasks.

To acquire a multinode address, perform the following steps:

1. Use the Device Manager's OpenDriver function to open the .MPP driver.

o The .MPP driver must be opened before you call the multinode routines. The
OpenDri ver function call returns the .MPP driver's reference number.

o Save the returned value because you must supply this reference number as an
input parameter in the ioRefNum field of the multinode parameter block when
you call the multinode routines.

12-8 Using MultiQode Architecture

CHAPTER 12

Multinode Architecture

2. Create a receive routine to receive broadcast messages and packets addressed to your
multinode. See "Receiving Packets Addressed to Your Multinode" beginning on
page 12-10 for details.

o You pass the address of the receive routine to the .MPP driver when you call the
AddNode routine to acquire a multinode.

o When the .MPP driver receives a packet addressed to your multinode or a
broadcast message, it calls your receive routine for that multinode to handle
the packet reception.

3. Allocate storage and set parameter block fields as needed.

o Define a multinode parameter block of type MNParamBlock. Allocate storage for
a multinode parameter block that includes the fields required for the AddNode
routine. See "The Multinode Parameter Block" on page 12-19.

o You must set the csCode parameter block field to the numeric value of 262 for the
AddNode routine. For the other required parameter block fields, see "Add.Node"
beginning on page 12-22.

4. Call the AddNode routine once for each multinode that you need.

o You can acquire only one multinode through each request. You can request a
specific multinode address, and if that multinode is available, the .MPP driver will
assign it to you. Otherwise, the .MPP driver will return a multinode address that
it selects randomly.

o Because the AddNode routine is not defined in the MPW interface files, you must
call the Device Manager directly and execute the AddNode routine as an immediate
synchronous control call.

From assembly language, you can directly make an immed _Control trap macro call. To
issue the AddNode routine as an immediate synchronous control call from a high-level
language such as Pascal or C, you must define a function as part of your application.
Listing 12-1 shows how to do this in the Pascal language.

Listing 12-1 Defining a Pascal function that makes an immediate AddNode call

FUNCTION PBControlimmedSync(paramBlock: ParmBlkPtr): OSErr;

INLINE $205F,$A204,$3E80;

FUNCTION AddNode(thePBptr: MNParmBlkPtr): OSErr;
CONST

tryAddNodeAgainErr
VAR

err: OSErr;

BEGIN

= -1021;

thePBptrA.csCode := 262; {addNode}
thePBptrA.ioRefNum := mppUnitNum;

{If the call returns tryAddNodeAgainErr, make the call repeatedly
until it no longer returns this error.}

Using Multinode Architecture 12-9

s::
§:
:r
0 c.
CD
)>

a
~ a
c:
<a

CHAPtER 12

Multinode Architecture

REPEAT

END;

err := PBControlimmedSync(ParmBlkPtr(thePBptr));

UNTIL (err<> tryAddNodeAgainErr);

AddNode := err;

You must issue the AddNode call synchronously because you need to call AddNode

repeatedly if the call returns an error of -1021, which indicates that the .MPP driver could
not satisfy the AddNode request and that you should try the request again immediately.

The .MPP driver internally associates the address of your receive routine with the
multinode address that it returns to you. See 11 AddNode" beginning on page 12-22
for a complete description of this routine and the parameters that you must pass it.

When you are finished using the multinode, you call the RemoveNode routine to remove
the multinode.

1. Ailocate nonrelocatable memory for a multinode parameter block that includes the
fields required for the RemoveNode routine. See ''The Multinode Parameter Block"
beginning on page 12-19. The multinode parameter block belongs to the .MPP driver
for the life of the :RemoveNode call.

2. You issue the RemoveNode routine as a Device Manager's PBControl call. See
11RemoveNode" beginning on page 12-24 for details on this routine and the
parameters it requires. You must specify the csCode numeric value 263 for the
RemoveNode routine.

Handling an Apple Talk Cable-Range-Change Transition Event
A cable range is a range of network numbers beginning with the lowest network number
and ending with the highest network number defined by a seed router for a network. All
node addresses, including multinode addresses, that a system on a network acquires
must have a network number within the defined cable range.

An Apple Talk cable-range-change transition event occurs when the current cable range
for a network changes. Your muitinode application needs to be able to receive notifica­
tion of a cable-range-change transition and respond to that event by checking the new
cable range to determine if all the miiltinode IDs that the application acquired before the
transition event occurred are still valid. If you discover multinode IDs that are no longer
valid, you must remove them with the RemoveNode function. You can obtain new
multinodes to replace them with the AddNode function.

Receiving Packets Addressed to Your Multi node
Your application must provide a routine that receives packets addressed to the multinode
and broa:dcast packets. Because the .MPP driver passes values to your multinode receive
routine in registers when it calls the routine, you must code the receive routine in
assembly language.

12-10 Using Multinode Architecture

CHAPTER 12

Multinode Architecture

You pass the address of your receive routine to the .MPP driver when you call the
AddNode routine to open a multinode. The .MPP driver internally associates your
receive routine with the multinode address that it assigns, and it calls your receive
routine to handle a packet addressed to the multinode or a broadcast packet.

If your application acquires more than one multinode, you can use the same receive
routine for each of these multinodes. If you use the same receive routine to receive and
process packets for more than one multinode, the .MPP driver will call that receive
routine only once for each broadcast packet that it receives.

A multinode receive routine is similar in concept to a socket listener that receives packets
addressed to a specific socket. The chapter "Datagram Depvery Protocol (DDP)" in
this book includes a sample socket listener. To create a receive routine, perform the
following steps:

1. Allocate a buffer to hold the data that you expect to receive.

o The maximum amount of data in a PDP packet is 586 bytes. All packets addressed
to multinodes use .a long header, which is 13 bytes long. If your receive routine
places the packet header as well as the data portion in the buffer, make the buffer
large enough to hold both parts of the packet contents.

o If you use the same receive routine to receive and process packets for more than
one multinode, you should provide a separate buffer to store the data for each
multinode. You can define a single buffer for each multinode to hold the contents of
both the header and data portions of a packet, or you can define a pair of buffers
for each multinode to separate the packet's contents.

2. Determine the number of bytes that have already been read into the .MPP driver's
internal buffer, called the RHA.

o To do this, subtract the beginning address of the read-header area (RHA) from the
value in register A3, which points past the last byte read into the RHA. To locate
the offset at the beginning of the RHA, you can use the toRHA equate.

When a frame that contains either a DDP packet that is addressed to your multinode
or a broadcast packet is delivered to the node that is running your multinode applica­
tion, the node's CPU is interrupted and the .MPP driver's interrupt handler gets
control to service the interrupt. As the frame's first 3 bytes are read into a FIFO buffer,
the .MPP 4river' s interrupt handler moves these bytes into the RHA.

3. Use the ReadPacket and ReadRest routines to read the rest of the incoming data
that constitutes the packet.

How you handle a packet after you read it is particu~ar to your application. For
example, if your application implements NBP, you can check the packet's entity name
object and type fields against entries in your names table to determine whether to
process the packet and respond to ~e sender. If you respond, the packet you send
must adhere to the structure of a standard Apple Talk packet. (See Inside AppleTalk,
second edition, for the Apple Talk packet structure.) For a brief description of how
ARA uses multinode, see the discussion on page 12-6.

o You can call the ReadPacket routine as many times as you like to read the data
piece by piece into one or more data buffers that you have defined, but you must
always use the ReadRest routine to read the final piece of t,he data packet. The
ReadRest routine restores the machine state (the stack pointers, status register,
and so forth) and checks for error conditions.

Using Multi node Architecture 12-11

CHAPTER 12

Multinode Architecture

o Before you call the ReadPacket routine, you must place a pointer to the data
buffer for which you allocated memory in the A3 register. You must also place the
number of bytes you want to read in the D3 register. You must not request more
bytes than remain in the data packet.

o After you have called the ReadRest routine, you can use registers AO through A3
and DO through D3 for your own use, but you must preserve all other registers.
You cannot depend on having access to your application's global variables.

Calling ReadPacket and ReadRest when LocaiTalk is the data link

If LocalTalk is the data link that is being used, your receive routine
has less than 95 microseconds (best case) to read more data with a
ReadPacket or ReadRest routine. If you need more time, you
can read another 3 bytes into the RHA, which will allow you an
additional 95 microseconds. Note that the RHA may only have 8 bytes
still available. •

4. If the packet header contains a checksum, you can calculate a checksum for both the
header and data portions of the packet and then verify the sum of these two values
against the value in the checksum field of the packet header. If the checksum you
calculate does not match the one in the header, the data has been corrupted in
some way. (Figure 12-1 on page 12-5 shows the DDP packet header, including the
checksum field.)

The chapter "Datagram Delivery Protocol (DDP)" in this book contains a sample
checksum routine to be used for a socket listener; this routine is equally applicable to
a multinode receive routine.

Calling Read Packet to Read in the Packet Contents

To call the ReadPacket routine, execute a JSR instruction to the address in the A4
register. The ReadPacket routine uses the registers as follows:

Registers on entry to the ReadPacket routine

A3 Pointer to a buffer to hold the data you want to read

D3 Size in of bytes to be read; must be nonzero

Registers on exit from the ReadPacket routine

AO Unchanged

A1 Unchanged

A2 Unchanged

A3 Pointer to the first byte after the last byte read into buffer

A4 Unchanged

DO Changed

D1 Number of bytes left to be read

D2 Unchanged

D3 Equals 0 if the requested number of bytes were read, nonzero if error

12-12 Using Multinode Architecture

CHAPTER 12

Multinode Architecture

After every time that you call ReadPacket, you must check the zero (z) flag in the
status register for errors because the ReadPacket routine indicates an error by clearing
it to 0. If the ReadPacket routine returns an error, you must terminate execution of your
receive routine with an RTS instruction without calling ReadPacket again or calling
ReadRest at all.

Calling Read Rest to Complete Reading in the Packet Contents

Call the ReadRest routine to read the last portion of the data packet, or call it after
you have read ill the data with ReadPacket routines and before you do any other
processing or terminate execution. After you call ReadRest, you must check the zero (z)
flag in the status register fer errors.

After you call the ReadRest routine, you must terminate execution of your receive
routine with an RTS instruction whether or not the ReadRest routine returns an error.

When you call the ReadRest routine, you must provide in the A3 register a pointer to
a data buffer and you must indicate in the 03 register the size of the data buffer. If
you have already read all of the data using the ReadPacket routine, specify a buffer
of size 0 .

.A. WARNING

If you do not call the ReadRest routine after the last time you call the
ReadPacket routine successfully, the system will crash. .&

To call the ReadRest routine, execute a JSR instruction to an address 2 bytes past the
address in the A4 register:

JSR 2 (A4)

The ReadRest routine uses the registers as follows:

Registers on entry to the ReadRest routine

A3 Pointer to a buffer to hold the data you want to read

03 Size of the buffer (word length); may be 0

Registers on exit from the ReadRest routine

AO Unchanged

Al Unchanged

A2

A3

DO
01

02

D3

Unchanged

Pointer to first byte after the last byte read into buffer

Changed

Changed: number of bytes left to be read

Unchanged

Equals 0 if the requested number of bytes were read, is less than 0 if the
packet data was too large to fit in the buffer and the data was truncated, and
is greater than 0 to indicate the number of bytes that were not read

Using Multi node Architecture 12-13

•

CHAPTER 12

Multinode Architecture

For more information on how your receive routine can use the registers, see the
discussion of the socket listener routine in the chapter "Datagram Delivery Protocol
(DDP)" in this book.

Sending Packets Using a Multinode

You can use a multinode to send packets that contain data that you have already
received; in this case you forward the data from the multinode using the Netwr i te call.
You can also use the multinode to send original data using the NetWri te call. In both
cases, you must use a structure called the write-data structure to indicate to the .MPP
driver where the DDP packet header portion and the data portion to be sent are stored.
Why you send data is particular to your application. For example, if your application
implements AEP, it would send an Echo Reply packet in response to the Echo Request
packet that the application receives. For a brief description of using multinode, see the
discussion on page 12-6.

To send data from the multinode, you perform the following steps:

1. Create a write-data structure, as described in the next section, "Preparing a Write­
Data Structure."

2. Allocate nonrelocatable memory for a multinode parameter block that includes the
fields required for the NetWrite routine. See "The Multinode Parameter Block"
beginning on page 12-19. The multinode parameter block belongs to the .MPP driver
for the life of the Netwr i te call.

3. Call the Netwrite routine to send the data. You issue the NetWrite routine as a
Device Manager's PBControl call. See "NetWrite" beginning on page 12-25 for
details on this routine and the parameters it requires.
o Set the parameter block field values belonging to the NetWr i te call, including

the checksum flag (checkSumFlag) parameter. See "Using a Checksum" on
page 12-16.

o You must set the csCode parameter block field to the numeric value of 261 for the
NetWr i te routine.

Preparing a Write-Data Structure

The .MPP driver uses a write-data structure that you create to locate the header and data
portions of the packet to be transmitted. When you call the NetWrite routine to send
data from a multinode, you pass it a pointer to the write-data structure that you have
already prepared. A write-data structure contains a series of pairs of length words and
pointers, and each pair indicates the length and location of a portion of the data. The first
pair must indicate the DDP header of the packet to be transmitted. It ends with a 0 word.

The .MPP driver constructs the packet to be transmitted, building the packet contents
from the header and data information that you provide.

The write-data structure that you use for a multinode is similar to the write-data
structure that you use to send a packet from a DDP socket except that for a multinode
write-data structure, you must also include the source network number and the source
multinode ID. This is because the source user node ID of the physical node, which is
carried in the frame header, is different from the source multinode ID, which is carried in

12-14 Using Multinode Architecture

~

CHAPTER 12

Multinode Architecture

the DDP packet header. The source address information that you provide identifies the
multinode from which you are sending the data. The multinode write-data structure also
contains a checksum field that you can set to 0 if you do not want a checksum calculated
for this packet. Figure 12-3 shows the write-data structure; it also shows how you must
define the header information in the storage that you allocate for it.

You create a write-data structure in one of three different forms:

• You can provide a single length-pointer pair that identifies one storage block that
contains both the header and data information. In this case, the header information
must come first, and it must begin at an odd address.

• You can use two length-pointer pairs, one for the header portion and one for the
data portion.

• You could also use more than two length-pointer pairs, one for the header, and one for
each separate block of data.

In many cases, the header and data components of a packet are not stored contiguously,
which requires that the write-data structure contain at least two length-pointer pairs.
Typically, the data portion is stored as a single block. However, some implementations
send blocks of data that are stored separately as parts of the same datagram; if the
complete data portion is stored as several separate blocks, then the write-data structure
needs to contain a length-pointer pair for each block of data.

Figure 12-3 The write-data structure for a multi node

Reserved

Pointer to first entry

Length of second entry

Pointer to second entry

'1
J.

Length of last entry

Pointer to last entry

0

Bytes

2

4 -

2

4

ariable v
le ngth

2

4

2

Using Multinode Architecture

Odd address -z
Reserved

DDP checksum

Destination network number

Source network number
for multinode

Destination node ID
Source multinode ID

Destination socket number
Source socket number

DDP protocol type

{ Data

~{ Data

)
Bytes

5

2

2

2

}Variable
length

}Variable
length

12-15

s::
·~:::

2
~
0 a.
CD
)>
a
~ ;:
a
I: a

CHAPTER 12

Multinode Architecture

Note
The header block that the write-data structure points to consists of
16 bytes. The first pointer in the write-data structure must point to an
odd address, so if you create the write-data structure in Pascal, the
first byte is not used. •

For the header, you must fill in the following:

• the destination network number

• the source network number of the multinode

• the destination node ID

• the source multinode ID

• the destination socket number

• the source socket number (if you are forwarding from the multinode a DDP packet
that contains an existing value for the source socket number, you can pass that value
on in this field)

• DDP protocol type (DDP protocol types 1 through 15 are reserved for use by Apple)

Note
A multinode is not associated with a DDP socket. If the source socket
field contains a value, it must adhere to the conventions that the
Apple Talk DDP protocol specification describes for the use of sockets.
For example, this field must not specify socket number 0 ($00); rather
the value should be constrained to socket number values belonging to
the user-defined range stated in the DDP protocol specification; see
Inside AppleTalk, second edition, for this information. •

Using a Checksum

The long DDP packet header that you create for a multinode can include a checksum
value that is used to verify that the packet data has not been corrupted by memory or
data bus errors within routers on the internet. When you call the NetWrite routine to
send data from a multinode, you specify a value for the checkSumFlag parameter of
the multinode parameter block. You use the checkSumFlag parameter differently to
send data from a multinode than how you would use it to send data from a DDP socket,
even though in both cases the flag's value controls the use of the long DDP packet
header's checksum field.

Any application that uses a multinode can receive packets through that multinode. The
application can then repackage and forward the packet through the serial port and
modem to its multinode-application counterpart on a remote system. The multinode
application at the remote end can then decode the package and send the packet on
through a NetWrite call to a node on the network or a user-node process on the same
machine. An existing packet that is to be forwarded could already contain a checksum

12-16 Using Multinode Architecture

CHAPTER 12

Multinode Architecture

value. When you issue the Netwri te call, you can preserve that checksum value and
pass it on as part of the header in the packet. You use the checkSumFlag parameter of
the NetWrite routine for this purpose.

• If you do not want the current value in the packet header's checksum field to be
altered, you set checkSumFlag to 0, and the existing checksum value in the DDP
header will not be changed. (If a checksum has already been calculated, it will be
passed along unmodified.)

• If you want the checksum for the datagram to be calculated and placed in the DDP
packet header's checksum field before the .MPP driver transmits the packet, set
checkSumFlag to a nonzero number.

Note that if you want to send a packet that does not include a checksum, you must
hardcode the value by setting to 0 the checksum field of the data structure that contains
the packet header that you point to from the write-data structure.

How the Apple Remote Access program uses the checksum flag

The Apple Remote Access (ARA) program is an example of an applica­
tion that sets the checkSumFlag flag to 0 in order to preserve a packet's
original checksum value. The ARA client multinode can receive a DDP
packet addressed to that multinode or a broadcast packet, such as an
NBP lookup packet. In either case, the packet is a standard DDP packet
that could contain a checksum value. The client ARA software passes
the packet on to the ARA software on the server through the serial port
and modem. The ARA software on the server node sets checkSumF lag
to 0 when it calls the NetWrite routine to send the packet down from
the multinode through the Apple Talk stack and out to a node on the
network. •

Multinode Architecture Reference

This section describes the data structures and routines that are specific to the multinode
architecture.

The uoata Structures" section shows the Pascal data structures for the write-data
structure, the address block record, and the multinode parameter block to the
.MPP driver.

The uRoutines" section describes the routines that you use to add a multinode address,
remove a multinode address, and send data from the multinode to be transmitted over
the network. Unlike most of the routines comprising the protocol implementations
described in this book, the multinode routines are not defined in the MPW interface files.
To call these routines from a high-level language, you must use the Device Manager's
interface. The uRoutines" section describes how to do this.

Multinode Architecture Reference 12-17

s:::
c::::
;::;:' s·
0 c.
CD
)>
a :::r
;:
n
c:
a;

CHAPTER 12

Multinode Architecture

Data Structures
This section describes the data structures that you use to provide information to the
multinode architecture implementation in the .MPP driver.

• You use the write-data structure to pass information to the NetWrite routine that
identifies the length and location of the header and data portions of a packet to be
sent from the multinode.

• You use the address block record to pass to the AddNode routine the address of the
multinode that you wish to acquire and to receive from the routine the actual multi­
node address that the .MPP driver assigns.

• You use the multinode parameter block to pass and receive the input and output
parameters for each multinode call.

The Write-Data Structure

A write-data structure contains a series of pairs of length words and pointers. Each pair
indicates the length and location of a portion of the data, including the header informa­
tion, that constitutes the packet to be sent over the network.

You create a write-data structure, then pass its pointer to the NetWri te routine to send a
packet from a multinode.

TYPE WDSElement =
RECORD

entryLength:
entryPtr:

END;

Field descriptions

entryLength

entryPtr

The Address Block Record

Integer;
Ptr;

The length of the data pointed to by entryPtr.

A pointer to the data that is part of the packet to be sent using the
Netwr i te routine. The data storage area pointed to can contain the
header information, the data to be transmitted, or both.

The adqress block record defines a data structure of AddrBlock type. You use this
record type for

• the reqNodeAddr field value of the multinode parameter block to specify the
preferred network number and multinode ID of the multinode that you wish to
acquire when you execute the AddNode routine

• the actNodeAddr parameter block field for the AddNode routine for the .MPP driver
to return the ~ultinode address that it assigns to you

• the nodeAddr parameter block field for the RemoveNode routine to specify the
address of the multinode to be removed

12-18 Multi node Architecture Reference

.....

CHAPTER 12

Multinode Architecture

TYPE AddrBlock =
PACKED RECORD

aNet: Integer;
Byte;
Byte;

{network number}
{node ID}
{socket number}

aNode:
aSocket:

END;

Field descriptions
aNet

aNode
aSocket

The number of the desired network to which the multinode node
that you are requesting or assigned belongs.

The node ID of the multinode that you request or that MPP assigns.

The value of this field should always be 0.

The Multinode Parameter Block

The multinode routines that you use to add and remove a node and send a packet from a
multinode require a pointer to a multinode parameter block. The multinode parameter
block holds all of the input and output values associated with the routine. The multinode
parameter block is a variant record parameter block, defined by the MNParamBlock
data type.

IMPORTANT

For the multinode parameter block, you must define the
MNParamBlock type in your application because it is not
included in the MPW interface files. .a.

This section defines the fields that are common to the three multinode routines that use
the multinode parameter block. It does not define reserved fields, which are used either
internally by the .MPP driver or not at all. The fields that are used for specific routines
only are defined in the description of the routines to which they apply.

TYPE
MNParmType = (AddNodeParm,RemoveNodeParm);
MNParamBlock
PACKED RECORD

qLink: QElemPtr; {reserved}
qType: Integer; {reserved}
ioTrap: Integer; {reserved}
ioCmdAddr: Ptr; {reserved}
ioCompletion: ProcPtr; {completion routine}
ioResult: OSErr; {result code}
ioNamePtr: StringPtr; {reserved}
ioVRefNum: Integer; {reserved}
ioRefNum: Integer; {driver reference number}
csCode: Integer; {command code}
filler!: Byte;

Multinode Architecture Reference 12-19

CHAPTER 12

Multinode Architecture

checkSumFlag: Byte; {perform checksum on datagram}
{pointer to write-data structure} wdsPointer: Ptr;

filler2: Integer;
CASE MNParmType of

AddNodeParm:
(reqNodeAddr: AddrBlock; {preferred address requested}
actNodeAddr: AddrBlock; {actual node address acquired}
recvRoutine: ProcPtr; {address of packet receive routine}
reqCableLo: Integer; {preferred network range for the }
reqCableHi: Integer; { node being acquired}
reserved: PACKED ARRAY[l •• 70] OF Byte);

RemoveNodeParm:
(nodeAddr: AddrBlock); {node address to be deleted}

END;

Routines

Field descriptions
ioResult

ioRefNum

csCode

The result of the function. When you execute the function asynchro­
nously, the function sets this field to 1 and returns a function result
of noErr as soon as the function begins execution. When the
function completes execution, it sets the ioResul t field to the
actual result code.

The .MPP driver reference number. You must fill in this value.

The command code of the multinode command to be executed. You
must fill in a n~eric value for this field.

This section describes the multinode routines that you use to

• acquire a multinode address

• remove a multinode address once you are finished with it

• send packets from a specific multinode

The multinode architecture is implemented in the .MPP driver. To pass parameters
required for a multinode routine, you use the multinode parameter block of type
MNParamBlock. You must define this parameter block type in your application. (See
"The Multinode Parameter Block" on page 12-19.) An arrow preceding a parameter
indicates whether the parameter is an input or an output parameter:

Arrow Meaning

~ Input

~ Output

The AddNode, RemoveNode, and NetWr i te routines use different fields of the multi­
node parameter block for parameters specific to the routine. The description of each
routine identifies the parameter block values that the routine requires.

12-20 Multinode Architecture Reference

DESCRIPTION

CHAPTER 12

Multinode Architecture

Assembly-language note

You call the multinode commands from assembly language by putting a
routine selector in the csCode field of the parameter block and calling
the_ Control trap. To execute the_ Control trap asynchronously,
include the value , ASYNC in the operand field. Note, however, that
you must execute the AddNode routine as an immediate (immed)
synchronous routine. •

Because the MPW interface files do not define an interface for the multinode architecture,
you must use the Device Manager's interface to call the multinode routines from a
high-level language.

To acquire a multinode address, you execute the AddNode routine specifying a routine
selector of 262 in the csCode field. You must issue the AddNode routine as an immediate
control call to the Device Manager. See Listing 12-1 on page 12-9 for an example of how
to make an immediate control call from the Pascal language.

To issue the RemoveNode (csCode equals 263) and NetWrite (csCode equals 261)
routines, you use the Device Manager's PBControl function. The PBControl function
is defined as follows:

FUNCTION PBControl (paramBlock: ParmBlkPtr; async: Boolean): OSErr;

paramBlock A pointer to the multinode parameter block of type MNParamBlock that
contains the parameters required by the multinode routine to be executed.

async A Boolean value that specifies whether the function is to be executed
synchronously or asynchronously. Set the async parameter to TRUE to
execute the function asynchronously.

You can execute the PBControl function synchronously or asynchronously by setting
the async flag. The PBControl function takes a pointer to a multinode parameter block
that contains a c sCode field in which you specify the routine selector for the particular
routine to be executed; you must specify a numeric value for this field. You must also
specify the .MPP driver reference number as the yalue of the multinode parameter
block's ioRefNum field. The Device Manager's OpenDri ver function returns the .MPP
driver reference number when you call it to open the .MPP driver.

Adding and Removing Multinode Addresses

This section describes the multinode routines that you call to add or remove a multinode
address for your application or process to use. You use the AddNode routine to add a
multinode ID after you open the .MPP driver. You use the RemoveNode routine to
remove the multinode ID when you no longer require the additional node address.

Multinode Architecture Reference 12-21

3:
c::
:;:::;' s·
0 a.
CD
)>
0
::r
;:
Sl
c::
i

AddNode

CHAPTER 12

Multinode Architecture

You use the AddNode routine to acquire a multinode ID that is separate from and in
addition to the standard user node ID assigned to the system. You call the AddNode
routine once for each additional multinode that you require. You use the PBControl
function to call the AddNode routine. See "Routines" on page 12-20 for a description of
the PBControl function. You use a synchronous immediate control call to issue the
AddNode routine.

Parameter block

~ ioResult OSErr The result code.
~ ioRefNum Integer The .MPP driver reference number. You

must fill in this value.
~ csCode Integer The routine selector. Always equal to 262 for

this routine. You must fill in this value.
~ reqNodeAddr AddrBlock The requested multinode address.
~ actNodeAddr AddrBlock The actual multinode address assigned and

returned by the .MPP driver.
~ recvRoutine Longint The address of the application's

~ reqCableLo

~ reqCableHi

~ reserved

Field descriptions

reqNodeAddr

actNodeAddr

recvRoutine

reqCableLo

receive routine.
Integer The start of requested network number

range for the multinode.
Integer The end of the requested network number

range for the multinode.
char 70 reserved bytes required by the

.MPP driver.

The desired ne~ork address of the multinode to be acquired. You
specify a value for this field in AddrBlock format. (See "The
Address Block Record" on page 12-18.) The value of the aSocket
field of the AddrBlock record must always be 0. Set the aNet and
aNode fields to the desired network number and multinode ID. If
the address that you specify is in use or is invalid, the .MPP driver
will assign a different multinode address. To allow the .MPP driver
to randomly generate the multinode address to be assigned, specify
0 for all three fields of the AddrBlock record. The .MPP driver
returns in the actNodeAddr field of the parameter block either the
multinode address that you request or the one that it selects.
The actual network address of the multinode that the .MPP driver
assigned and returned to you.
The address of the routine that you provide as part of your
application to receive packets addressed to this multinode. The
.MPP driver calls this routine when it receives either a packet
addressed to the multinode or a broadcast packet.
The network number that defines the low end of the range of
network numbers from which you would like the .MPP driver to
select a multinode ID for your use. The reqCableHi field contains
the network number that defines the high end of this range. The

12-22 Multi node Architecture Reference

DESCRIPI10N

CHAPTER 12

Multinode Architecture

reqCableHi

reserved

.MPP driver uses the values that you specify for the cable range if all
of the following conditions are true: the .MPP driver could not assign
the multinode number that you specified in the reqNodeAddr field
(if you specified one), there is no router on the network, and all the
multinode addresses belonging to the network whose number is
specified in the NetHint field are being used. The NetHint field
contains the last used network number stored in RAM.

The network range for the system on which your application is
running is defined by the seed router on a network.

If your application does not require that the multinode ID that the
.MPP driver assigns to it belong to a specific network cable range,
you can set the reqCableLo and reqCableHi fields to 0.

The network number that defines the high end of the range of
network numbers from which you would like the .MPP driver to
select a multinode ID for your use. The reqCableLo field value
delimits the low end of the range.

70 bytes that are reserved for internal use by the .MPP driver.

The AddNode routine acquires the multinode address that you specify as the value of the
reqNodeAddr parameter if that multinode ID is available and the .MPP driver is able to
service the call.

If the requested node is already in use or is invalid, or if you do not request a specific
multinode ID, the .MPP driver will randomly select a multinode ID and return it as the
value of the actNodeAddr parameter.

If the .MPP driver is unable to service the call, it will return a result code of -1021, which
indicates that you should try the AddNode routine again. If you receive this result code,
you can retry the AddNode routine call repeatedly until either the .MPP driver assigns
and returns a multinode ID to you or you receive a different error message. Because of
this need to be able to retry this call repeatedly, you cannot issue the AddNode call
asynchronously.

Your application must provide the address of a receive routine that it uses to receive both
packets addressed to the multinode and broadcast packets. You pass the address of this
routine to the .MPP driver in the recvRoutine parameter. For more information about
the receive routine, see "Receiving Packets Addressed to Your Multinode" beginning on
page 12-10.

SPECIAL CONSIDERATIONS

You must issue the AddNode routine as a synchronous immediate control call at system
task time.

ASSEMBLY-LANGUAGE INFORMATION

To execute the AddNode routine from assembly language, call the_ Control trap macro
with a value of 262 in the csCode field of the parameter block. You must issue the
routine request as an immediate call.

Multinode Architecture Reference 12-23

RESULT CODES

SEE ALSO

CHAPTER 12

Multinode Architecture

noErr
tryAddNodeAgainErr

mnNotSupported

noMoreMultiNodes

0
-1021

-1022

-1023

No error
The .MPP driver was not able to add the
multinode; try again
Multinode is not supported by the current
Apple Talk connection file of type 1 adev 1

No multinode addresses are available on
the network

For an example of how to issue the AddNode routine as a synchronous immediate
control call from the Pascal language, see Listing 12-1 on page 12-9.

RemoveNode

You use the RemoveNode routine to remove a multinode address that you acquired
through the AddNode routine. You use the PBControl function to call the RemoveNode
routine. See "Routines" on page 12-20 for a description of the PBControl function.

Parameter block

~ ioCompletion ProcPtr A pointer to a completion routine.
~ ioResult
~ ioRefNum

~ csCode

~ nodeAddr

Field descriptions
ioCompletion

nodeAddr

OSErr The result code.
Integer The .MPP driver reference number. You

must fill in this value.
Integer A routine selector. Always equal to 263 for

this routine. You must fill in this value.
AddrBlock An address of the multinode to be removed.

A pointer to a completion routine that you can provide. When you
execute a function asynchronously, Apple Talk calls your completion
routine when it completes execution of the function if you specify
a pointer to the routine as the value of this field. Specify NIL for
this field if you do not wish to provide a completion routine.
If you execute a function synchronously, Apple Talk ignores the
ioCompletion field. For information about completion routines,
see the chapter "Introduction to Apple Talk" in this book.

The address of the multinode to be removed. You specify a value for
this field in AddrBlock format. (See "The Address Block Record"
on page 12-18.) The value of the asocket field of the AddrBlock
record must always be 0. Set the aNet and aNode fields to the
network number and multinode ID values of the multinode to
be deleted.

12-24 Multinode Architecture Reference

DESCRIPTION

CHAPTER 12

Multinode Architecture

The RemoveNode routine removes the multinode address that you specify. You should
remove only a multinode address using this routine; you must not attempt to remove the
user node address.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

To execute the RemoveNode routine from assembly language, call the_ Control trap
macro with a value of 263 in the csCode field of the parameter block.

noErr
paramErr

0
-50

No error
Bad parameter value

Sending Datagrams Through Multinodes

Net Write

This section describes the NetWri te routine that you use to send a packet from a
multinode. You can use a multinode to send a packet down through the Apple Talk
protocol stack and across the Apple Talk network to another multinode or to a socket
client application or process, or you can send the packet from the multinode to a
socket-client application of the user node on the same system.

You use the Netwr i te routine to send a packet from a multinode to another multinode
or socket-client application. You use the PBControl function to call the NetWrite
routine. See "Routines" on page 12-20 for a description of the PBControl call.

Parameter block

~ ioCompletion ProcPtr A pointer to a completion routine.
~ ioResult OSErr The result code.
~ ioRefNum Integer The .MPP driver reference number. You

must fill in this value.
-4 csCode Integer A routine selector. Always equal to 261 for

this routine. You must fill in this value.
~ checkSumFlag Byte A flag indicating whether the checksum

should be calculated or the existing
checksum left unmodified.

~ wdsPointer Ptr A pointer to the write-data structure
for the function.

Multinode Architecture Reference 12-25

DESCRIPTION

CHAPTER 12

Multinode Architecture

Field descriptions

ioCompletion

.checkSumFlag

wdsPointer

A pointer to a completion routine that you can provide. When you
execute a function asynchronously, AppleTalk calls your completion
routine when it completes execution of the function if you specify
a pointer to the routine as the value of this field. Specify NIL for
this field if you do not wish to provide a completion routine.
If you execute a function synchronously, Apple Talk ignores the
ioCompletion field. For information about completion routines,
see the chapter 111ntroduction to AppleTalk" in this book.

A flag whose value you set to a nonzero number if you want the
checksum for the datagram to be calculated and placed in the DDP
header of the packet. If you do not want the current value in the
packet header's checksum field to be altered, you set this field to 0.

A pointer to the write-data structure that contains a series of length
words and pointers that indicate the length and location of a portion
of the data, including the header information, that constitutes the
packet to be sent over the network.

To send a packet over an Apple Talk network from a multinode, you must first prepare
a write-data structure, and then call the NetWrite routine, passing it a pointer to the
write-data structure.

The write-data structure that you create for multinodes differs slightly from the standard
write-data structure that you create to send a DDP packet using the PWr i teDDP
function. For a multinode, you must specify both the source multinode address and the
destination address in the packet header information data areas that you point to from
the write-data structure. You can also set the checksum field of the write-data structure
to 0 to direct Apple Talk to not calculate a checksum for this packet.

You specify the source network number and the source multinode ID of the multinode;
the .MPP driver does not set these values for you in the header area of a packet sent from
a multinode as it does for a standard DDP packet, although both packets are transmitted
as DDP datagrams.

If you are sending the contents of an existing DDP packet through the Netwr i te call,
you can leave the value of the source socket field unchanged. The value in the source
socket field should adhere to the conventions that the Apple Talk DDP protocol speci­
fication describes for the use of sockets. The socket number value must fall within the
defined user range as stated in the DDP protocol specification. (See Inside AppleTalk,
second edition, for this information.)

The checkSumFlag parameter block field of the NetWri te routine relates to the
standard DDP header checksum field. However, the multinode architecture uses this
flag differently than the DDP interface uses it.

• If you want the checksum for the datagram to be calculated and placed in the
DDP header before the .MPP driver transmits the packet, you set this field to a
nonzero number.

12-26 Multinode Architecture Reference

CHAPTER 12

Muftinode Arohitecture

• If you want the checksum field of the DDP packet header not to be modified, you
set this field to 0, and the existing checksum value in the DDP header will not
be changed.

Note that if you want to send a packet that does not include a checksum, you must
hardcode the value by setting to 0 the checksum field of the data structure that contains
the packet header that you point to from the write-data structure.

All packets that you send using the NetWrite routine are built with the long DDP
packet header to allow for inclusion of the source multinode address. The DDP packet
header includes the source multinode address even when the destination and source
nodes are on the same LocalTalk network.

Because the source multinode ID is associated with the application that sent the packet
and the source user node ID is associated with the machine that transmitted the packet,
the source user node ID in the frame header and the source multinode ID in the DDP
packet header are always different values.

IMPORTANT

Do not set the socket number to 0 ($00) for the source socket number
that .you specify in the data area pointed to by the write-data structure.
You do this in the address block record socket field for the AddNode
routine because the socket number does not apply when you are
acquiring a multinode, but you must not do it for the NetWri te
call because NetWri te causes the .MPP driver to build a DDP packet,
and socket number 0 has special meaning to DDP that is outside the
valid user socket range. .A

SPEOAL CONSIDERATIONS

Memory used for the write-data structure belongs to the multinode implementation in
the .MPP driver for the life of the NetWri te call and must be nonrelocatable. Mter the
NetWri te call completes execution, you must release the memory that you used for
the write-data structure.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

To execute the NetWrite routine from assembly language, call the _Control trap
macro with a value of 261 in the csCode field of the parameter block.

noErr
ddpLenErr
noBridqeErr
excessCollsns

0
-92
-93
-95

No error
Datagram is too long
No router found
Excessive collisions on write

See the section "Preparing a Write-Data Structure" on page 12-14 for information on how
to create the write-data structure.

Multinode Architecture Reference 12-27

CHAPTER 12

Multinode Architecture

Summary of Multinode Architecture

The multinode architecture MPP parameter block data structure and symbolic constants
for routines and result codes are not defined in the MPW interface files. (The write-data
structure and the address block record are defined in the MPW interface files for use
with other protocols, but you can use them for multinode also.)

You must declare the MPP parameter block for multinode in your application. If you
want to use the symbolic constants for the routines and result codes, you need to declare
them also.

You use the Device Manager's PBControl function to call the RemoveNode and
NetWrite routines from the Pascal and C languages. You must issue the AddNode
routine as an immediate synchronous control call from the Pascal and C languages. You
must define a function as part of your application. (See Listing 12-1 on page 12-9 for an
example of how to do this in Pascal.) From assembly language, you can directly make an
immed _Control trap macro call.

Pascal Summary

Constants

(Declare the following constants in your application.)

CONST
{csCodes}
netWrite
addNode
removeNode

Data Types

261;

= 262;
:;;: 263;

The Write-Data Structure

TYPE WDSElement =
RECORD

entryLength:
entryPtr:

END;

Integer;
Ptr;

12-28 Summary of Multi node Architecture

{send packet through multinode}
{request a multinode}
{remove multinode}

CHAPTER 12

Multinode Architecture

The Address Block Record

TYPE AddrBlock =
PACKED RECORD

aNet:
aNode:
aSocket:

END;

Integer;
Byte;
Byte;

The Multinode Parameter Block

(Declare this data type in your application.)

{network number for multinode}
{multinode ID}
{socket number; always 0}

TYPEMNParmType = (AddNodeParm,RemoveNodeParm);
TYPE MNParamBlock =

PACKED RECORD
qLink: QElemPtr;
qType: Integer;
ioTrap: Integer;
ioCmdAddr: Ptr;
ioCompletion: ProcPtr;
ioResult: OSErr;
ioNamePtr: StringPtr;
ioVRefNum: Integer;
ioRefNum: Integer;
csCode: Integer;

filler!: ~yte;

checkSumFlag: Byte;
wdsPointer: Ptr;
filler2: Integer;
CASE MNParmType OF

AddNodeParm:
(reqNodeAddr: AddrBlock;
actNodeAddr: AddrBlock;

{reserved}
{reserved}
{reserved}
{reserved}
{completion routine}
{result code}
{reserved}
{reserved}
{driver reference number}
{call command code}
{reserved}
{perform checksum on datagram}
{pointer to write-data structure}
{reserved}

{preferred address requested}
{actual node address returned}

recvRoutine:
reqCableLo:
reqCableHi:
reserved:

ProcPtr; {pointer to packet receive routine}
Integer; {preferred network range for the }
Integer; { node being acquired}
PACKED ARRAY£1 •• 70] OF Byte);

RemoveNodeParm:
(nodeAddr: AddrBlock); {node address to be deleted}

END;

MNParmBlkPtr "MNParamBlock;

Summary of Multinode Architecture 12-29

•

CHAPTER 12

Multinode Architecture

C Summary

Constants

(Declare the following constants in your application.)

/*csCodes*/
enum {

netWrite
addNode
remove Node

} ;

Data Types

261,

= 262,

= 263

The Write-Data Structure

struct WDSElement {
short entryLength;
Ptr entryPtr;

} WDSElement;

The Address Block Record

struct AddrBlock {
short
unsigned char
unsigned char

} ;

aNet;
aNode;
aSocket;

typedef struct AddrBlock AddrBlock;

The MPP Parameter Block for Multinode

(Declare this data type in your application.)

typedef struct {

/*send packet through multinode*/
/*request a multinode*/
/*remove multinode*/

/*network number for multinode*/
/*multinode ID*/
/*socket number; always 0*/

MPPATPHeader
char
unsigned char
Ptr

fillerl; /*reserved*/
checkSumFlag; /*perform checksum on datagram*/
wdsPointer; /*pointer to write-data structure*/

char filler2[2]; /*reserved*/
union {

12-30 Summary of Multinode Architecture

CHAPTER 12

Multinode Architecture

AddrBlock
AddrBlock

reqNodeAddr;
nodeAddr;

/*preferred address requested*/
/*node address to be deleted*/

AddrBlock
Ptr
short
short
char

} MNaddrs;
actNodeAddr;
recvRoutine;
reqCableLo;
reqCableHi;
reserved[70];

/*actual node address acquired*/
/*address of packet receive routine*/
/*preferred network range for the */
I* node being acquired*/

} MNParamBlock;

typedef MNParamBlock*MNParmBlkPtr;

Assembly-Language Summary

MPP Parameter Block Common Fields for Multinode Routines

0 qLink long reserved
4 qType word reserved
6 ioTrap word reserved
8 ioCmdAddr long reserved

12 ioCompletion long address of completion routine
16 ioResult word result code
18 ioNamePtr long reserved
22 ioVRefNum word reserved
24 ioRefNum word driver reference number

AddNode Parameter Variant

26 csCode word routine selector; always 262 for this routine
36 reqNodeAddr long requested multinode address
40 actNodeAddr long actual multinode address assigned
44 recvRoutine long address of the application's receive routine
48 reqCableLo word beginning of requested network number range

for the multinode
50 reqCableHi word end of the requested network number range for the multinode
52 reserved array 70 reserved bytes required by the .MPP driver

(Note that to execute the AddNode routine from assembly language, you call the
_control trap macro and issue the routine request as an immediate call.)

RemoveNode Parameter Variant

26
36

csCode
nodeAddr

word
long

routine selector; always 263 for this routine
actual multinode address assigned

Summary of Multinode Architecture 12-31

CHAPTER 12

Multinode Architecture

NetWrite Parameter Variant

26
29

30

csCode
checkSwnFlag

wdsPointer

Result Codes
noErr
paramErr
ddpLenErr
noBridgeErr
excessCol~sns

tryAddNodeAgainErr
mnNotSupported

noMoreMultiNodes

word
byte

long

0
-50
-92
-93
-95

-1021
-1022

-1023

-

routine selector; always 261 for this routine
a flag indicating whether the checksum should be calculated or
the existing checksum left unmodified
a pointer to the write-data structure for this routine

No error
Bad parameter value
Datagram is too long
No router found
Excessive collisions on write
The .MPP driver was not able to add node; try again
Multinode is not supported by the current Apple Talk
connection file of type 1 adev I
No node address is available on the network

12-32 Summary of Multinode Architecture

-

Glossary

' adev ' file See Apple Talk connection file.

ADSP See AppleTalk Data Stream Protocol.

AEP See AppleTalk Echo Protocol.

AEP Echoer The implementation of the
Apple Talk Echo Protocol (AEP) on each node
that uses the AEP Echoer or echoer socket; the
AEP Echoer listens for packets received through
this socket and sends a copy of them back to
the sender. Applications use the AEP Echoer to
measure the round-trip packet delivery time in
analyzing network performance.

AFP See AppleTalk Filing Protocol.

alternate interface The first version of the
AppleTalk Pascal interfaces. The alternate
interface was replaced with the current version of
Apple Talk Pascal interfaces, which was originally
referred to as the preferred interface.

Apple Talk connection file A file of type
1 adev I that contains a link-access protocol
implementation for a data link (ELAP for
EtherTalk, for example).

AppleTalk Data Stream Protocol (ADSP) A
connection-oriented protocol that provides a
reliable, full-duplex, byte-stream service between
any two sockets in an Apple Talk internet. This
protocol appears to its clients to maintain an
open pipeline between two entities on an
AppleTalk internet. Either entity can write a
stream of bytes to the pipeline or read data
bytes from the pipeline. ADSP is a symmetrical
protocol.

Apple Talk Echo Protocol (AEP) A simple
protocol that allows a node to send a packet
to the echoer socket of any other node in an
AppleTalk internet and receive an echoed copy
of that packet in return. AEP is implemented
in each node as a DDP client process that is
referred to in this book as the AEP Echoer.

Apple Talk Filing Protocol (AFP) A protocol
that allows users to share data files and applica­
tion programs that reside in a shared file server.

AppleTalk internet A type of network in which
more than one Apple Talk network are intercon­
nected through routers. An Apple Talk internet
can consist of a mix of LocalTalk, Token Talk,
Ether Talk, and FDDITalk networks, or it can
consist of more than one network of a single
type, such as several Local Talk networks.

Apple Talk Manager A collection of the
application programming interfaces to the
Apple Talk protocols.

Apple Talk multivendor architecture See
multi vendor architecture.

Apple Talk protocol stack The Apple Talk
networking system, which consists of a number
of protocols arranged in layers.

AppleTalk Secure Data Stream Protocol
(ASDSP) A superset of ADSP that includes
authentication and encryption features.

AppleTalk Session Protocol (ASP) A protocol
that provides asymmetric session support. It uses
the services of ATP to establish, maintain, and
break down the session.

AppleTalk Transaction Protocol (ATP) A
transport protocol that provides a loss-free
transaction service between sockets. ATP allows
for the exchange of a limited amount of data
in which a client requester application sends a
request to a client responder application that
can satisfy the request and respond to it. Because
it is transaction-based, ATP does not incur the
overhead entailed in establishing, maintaining,
and breaking a connection that is associated
with connection-oriented protocols, such as
ADSP. ATP provides reliable delivery of data.

GL-1

GLOSSARY

Apple Talk transition A change in AppleTalk's
current state or function,· such as an Apple Talk
driver being opened or dosed or a network
connection or link being dropped, that can affect
active Apple Talk applications.

AppleTalk Transition Queue (ATQ) An
operating-system queue that the LAP Manager
maintains that can notify an application each
time an Apple Talk driver is opened or dosed or
each time certain other network-related
transitions occur.

ASDSP See AppleTalk Secure Data Stream
Protocol.

ASP See AppleTalk Session Protocol.

asymmetrical session A session in which only
one end of the connection can control the commu­
nication. One end of the connection makes a
request to which the other end can only respond.

asynchronous execution A mode of executing a
routine in which the system returns control to the
calling program directly after the program calls
the routine so that the calling program can
continue with other processing while the routine
is either queued for execution or completes
execution.

at-least-once transaction A type of ATP trans­
action that ensures that the responder application
receives every request directed to it at least once.
This type of ATP transaction allows for the
possibility of a responder application receiving
duplicate requests. Compare with exactly-once
(XO) transaction.

ATP See AppleTalk Transaction Protocol.

ATP sequence number The bitmap I sequence
number field of the header, when the ATP packet
is a response packet. The ATP sequence number
is used to identify the sequential position of
the response packet in the complete response
message; ATP uses the sequence number to
manage and handle lost or out-of-sequence
response packets.

authentication process A process that ASDSP
performs to positively identify two parties who
want to communicate over a secure ADSP
connection. The process, which is a kind of
handshake, involves the use of a session key.

GL-2

best-effort delivery The level of reliability for
the data delivery services that a connectionless
protocol offers. The network attempts to deliver
packets that meet certain requirements, such as
containing a valid destination address, but it
does not inform the sender when it is unable to
deliver the packet; nor does it attempt to recover
from error conditions and packet loss.

bitmap/sequence number An ATP header field
that is 8 bits long, the use and significance
of which depend on whether the ATP packet
is a request packet or a response packet. For
request packets, this is the transaction bitmap;
for response packets, this is the ATP sequence
number.

CCB See connection control block, command
control block.

checksum A calculated value based on the
contents of a packet's header and data informa­
tion. A checksum is used to verify that the packet
contents have not been corrupted by memory or
data bus errors within routers on the internet.

client In Apple Talk, a protocol that uses the
services of another protocol in order to carry out
some functions. An application or process that
uses the services of a protocol is also considered a
client of the protocol.

closed connection A connection state in which
both connection ends have terminated the
connection and disposed of the connection
information that each maintains. Compare
half-open connection, open connection.

command block A data structure specifying an
AFP command and its parameters that the .XPP
driver sends to an AFP server to be executed.
The XPP parameter block for the AFPCommand
function contains a pointer to the command block.

command control block (CCB) An array at the
end of the XPP parameter block that the .XPP
driver uses internally to build the data structures,
parameter blocks, and buffer data structures
(BDS) that it needs to make function calls to the
.ATP driver.

connection control block (CCB) A data
structure that is used by ADSP to store state
information about the connection end.

GLOSSARY

connection end The combination of a socket
and the ADSP information maintained by a
socket client for establishing and maintaining a
session. The client applications associated with
either end of a connection can communicate with
each other over the session connection.

connectionless network A network over which
an application or process can directly send and
receive data one packet at a time without having
to first set up a session or connection. A
connectionless network is also referred to as a
packet-oriented network or datagram network. A
protocol can also be connectionless.

connection listener A socket that accepts
open-connection requests and passes them along
to its client, a connection server process, for
further processing. A connection listener can also
deny an open request.

connection-oriented protocol A protocol that
requires that a path or session be established over
which the two communicating parties at either
end of the connection can send and receive data.
The process of establishing a session often
requires that the two parties identify themselves
in a handshake.

connection server A routine that accepts an
open-connection request passed to it by a
connection listener and selects a socket to
respond to the request.

connection state One of three conditions that
define the association between two connection
ends: open connection, closed connection, and
half-open connection.

connectivity The ability to connect to one or
another type of data link or network. The connec­
tivity infrastructure includes the communication
hardware and the associated link-access proto­
cols for controlling access to the hardware links.

credentials Information that is required to
prove that the potential users of both ends of an
ASDSP connection are who they claim to be
before ASDSP can establish an authenticated
session between the two ends. This information
includes the session key, the initiator's identity,
and an intermediary, if one is used.

datagram See packet.

Datagram Delivery Protocol (DDP) A connec­
tionless Apple Talk protocol that provides best­
effort delivery. DDP, which is implemented at
the network level, transfers datagrams between
sockets over an Apple Talk internet with each
packet carrying its destination internet socket
address. See also packet.

datagram network See connectionless network.

DDP See Datagram Delivery Protocol.

destination service access point (DSAP) An
802.2 packet header field that is used to differen­
tiate between different protocols using the 802.2
interface in a single node. One service access
point, $AA, is reserved for use by protocols that
are not standard IEEE protocols.

DSAP See destination service access point.

dynamically assigned socket One of two
classes of sockets that DDP maintai.its. When an
application opens a socket without specifying a
number within the range of statically assigned
sockets, DDP dynamically assigns the application
a socket from a pool of available sockets. See also
statically assigned socket.

echoer socket On every node, the statically
assigned DDP socket, socket number 4, that
AEP uses to receive packets sent from other
nodes over DDP and echo those packets back
to the sending node. See also AEP Echoer,
AppleTalk Echo Protocol.

Echo Reply packet A packet sent from the AEP
Echoer to the originator of the Echo Request
packet. Whenever the AEP Echoer receives an
Echo Request packet, it modifies the function
field, which is the first byte in the packet's data
portion, setting it to a value of 2 to indicate that
the packet is now a reply packet, then it calls
DDP to send a copy of the packet back to the
socket from which it originated. See also Echo
Request Packet.

Echo Request packet A packet send to the AEP
Echoer from a DDP client. The first byte of the
data portion of the packet serves as a function
field. When this byte is set to 1, the packet is an
Echo Request packet. When the AEP Echoer
receives an Echo Request packet, it modifies the
function field to now identify the packet as an
Echo Reply packet. Then the AEP Echoer calls

GL-3

GLOSSARY

DDP to send a copy of the packet back to the
socket from which it originated. See also Echo
Reply packet.

ELAP See EtherTalk Link-Access Protocol.

encryption The process of encoding data based
on an algorithm that makes the data unreadable
by anyone other than the intended recipient.

entity name A name that is associated with a
network entity to register that entity with NBP.
An entity name consists of three fields: object,
type, and zone.

Ethernet Phase 1 packets The original style of
Ethernet packet as defined by the IEEE 802.3
protocol. If the value of the last 2 bytes in the
packet header is greater than 1500, the packet is
an Ethernet Phase 1 packet.

Ethernet P.hase 2 packets The style of Ethernet
packet defined by the IEEE 802.2 protocol. If the
value of the last 2 bytes in the header is less
than or equal to 1500, the packet is an Ethernet
Phase 2 packet.

EtherTalk The data link that allows an
AppleTalk network to be connected by
Ethernet cables.

EtherTalk Link-Access Protocol (ELAP) The
AppleTalk link-access protocol used in an
EtherTalk network. ELAP is built on top of the
standard Ethernet data-link layer.

exactly-once (XO) transaction A type of ATP
transaction that ensures that the responder
application receives a specific request only once.

extended addressing A method of addressing
that allows an extended network to use a range
of network numbers. In principle, extended
addressing allows an extended network to have
over 16 million (224) nodes. In any specific
implementation, the hardware or software might
limit the network to fewer nodes.

extended DDP header See long DDP header.

extended network An Apple Talk network that
allows addressing of more than 254 nodes. An
extended network can support multiple zones.

FDDITalk The data link that allows an
Apple Talk network to be connected by FDDI
fiber-optic cables.

GL-4

FDDITalk Link-Access Protocol (FLAP) The
AppleTalk link-access protocol used in an
FDDITalk network. FLAP is built on top of the
standard FDDI data-link layer.

fiber optics The thin transparent fibers of glass
or plastic in which data is transmitted through
light pulses.

flagship name A personalized name that users
can enter to identify their nodes when they are
connected to an Apple Talk network. The flagship
name is different from the Chooser name that a
node uses for server-connection identification.

Flagship Naming Service A feature that allows
users to specify a flagship name to identify
their nodes when the node is connected to an
Apple Talk network.

FLAP See FDDITalk Link-Access Protocol.

forward reset The event that occurs when
one connection end cancels delivery of all
outstanding data to the other connection end,
causing ADSP to discard all data in the send
queue, all data in transit to the remote connection
end, and all data in the other connection end's
receive queue that the client has not yet read.

frame A group of bits that form a discrete
transmission unit that is sent between data-link
protocol implementations across an Apple Talk
mternet. Each frame includes its own addressing
and control information in the header. The first
several bits in a frame form the header, followed
by the message data, and ending with a check
sequence for error detection. A DDP datagram or
packet is enclosed within a frame to transmit the
packet at the data-link layer. Whether the data­
link type is LocalTalk, TokenTalk, EtherTalk, or
FDDITalk, all data-link frames are constructed as
LLAP (LocalTalk Link-Access Protocol) frames
becaus~ that is the frame format that Apple Talk
recogruzes and expects to receive.

full-duplex dialog A transmission method that
permits simultaneous two-way communication.

functional address A token ring hardware
address that is shared by a subset of nodes on
a particular data link.

GLOSSARY

function field The first byte of the data portion
of a packet sent to or from the AEP Echoer that
indicates whether the packet is an Echo Request
packet (1) or an Echo Reply packet (2).

half-duplex dialog A transmission method that
permits communication in either direction, but in
only one direction at a time.

half-open connection A connection state in
which one connection end is established but the
other connection end is unreachable or has
disposed of its connection information. Compare
closed connection, open connection.

handshake The exchange of predetermined
signals between two processes engaged in
establishing a connection.

header The information that comes at the
beginning of a frame or a packet before the
message text. It often includes control and
addressing information.

hop count The number of internet routers
that a datagram passes through in transit to
its destination; each internet router counts as
one hop.

initiator The ASDSP client application of a
connection end that retrieves information from
an authentication server and makes a request
to open a session.

intermediary A proxy that has used the
AuthTradeProxyForCredentialshrnctionto
obtain from the AOCE server the credentials
used in the authentication process that is
required to establish an ASDSP session.

internet address See internet socket address.

internet socket address The combination of the
socket number, the node 10, and the network
number associated with an application or process.
An internet socket address provides a unique
identifier for any socket in the Apple Talk internet.

intranode delivery An Apple Talk feature that
allows two programs running on the same node to
communicate with each other through Apple Talk
protocols. The Apple Talk PSetSelfSend
hrnction enables or disables intranode delivery.

LAP Manager See Link-Access Protocol
Manager.

link A data transmission medium shared by
nodes and used for communication among these
nodes. A link forms the basis for networking
these nodes.

Link-Access Protocol (LAP) Manager A set of
operating-system utilities that makes it possible
for the user to select among Apple Talk connec­
tion files by using the Network control panel to
specify which network is to be used for the
node's Apple Talk connection. The LAP Manager
provides for AppleTalk's data-link independence.

link independence The ability to connect to
various types of data links that are installed on
a node and to switch among those data links.

Logical Link Control (LLC) A data-link
standard defined by the Institute of Electrical and
Electronics Engineers (IEEE) for use on Ethernet,
token ring, FDDI, and certain other data links.
At the physical level, these protocols include the
802.3 CSMA/CD protocol, the 802.4 token bus
protocol, and the 802.5 token ring protocol. At
the data-link level, you access these protocols
through the IEEE 802.2 Logical Link Control
(LLC) protocol.

long DDP header A DDP packet header that
includes the source node ID as well as the
destination node ID.

multicast address A hardware address that is
shared by a subset of nodes on a particular data
link-an Ethernet network, a token ring network,
or an FDDI network. A multicast address is used
to send directed broadcasts to this group of
nodes rather than to all nodes on the data link.

multinode A node ID that an application or
process can acquire that is in addition to the
standard user-node ID that is assigned to a system
when it connects to an Apple Talk network. Multi­
nodes are used by special-purpose applications
that receive and process Apple Talk packets in a
custom manner instead of passing them directly
on to a higher-level Apple Talk protocol for
processing.

multinode application An application that uses
a multinode to receive DDP packets from and
send them to another multinode or socket on an
Apple Talk network. A multinode application
typically implements custom processing of an

GL-5

GLOSSARY

Apple Talk packet. A multinode application
cannot pass a packet on to a higher-level
AppleTalk protocol for processing because a
multinode is not connected to the Apple Talk
protocol stack above the data-link layer.
Multinode applications must include a receive
routine to read in a packet's contents.

multinode architecture A part of the Apple Talk
protocol stack that implements a feature that
allows an application or process to acquire
multinode IDs. Multinodes allow a single system
to appear and act as multiple nodes on an
Apple Talk network. The multinode architecture
is not connected to the Apple Talk protocol stack
above the data-link level, and applications that
use it cannot access the higher-level Apple Talk
protocols, such as ADSP, from a multinode.

multivendor architecture An Apple Talk feature
that allows for multiple brands of Ethernet, token
ring, and FDDI network interface controllers to
be installed and used on a single node at the
same time.

Name-Binding Protocol (NBP) An Apple Talk
protocol that provides a way to map user­
friendly names associated with applications and
processes to their machine-readable addresses.
Users can choose an application based on its
NBP name, and applications and processes can
contact another application or process based on
its address.

names table A table that NBP builds on each
node; the table contains the name and internet
address of each entity in that node that is
registered with NBP.

NBP See Name-Binding Protocol.

NBP names directory The collection of NBP
names tables on all the nodes in an internet.

network architecture The design or
assemblage of the various components of
a network into a unified structure.

network number A 16-bit number used to
indicate the Apple Talk network that a node is
connected to.

GL-6

network number range For an extended
network, the range of network numbers that
are valid for use by nodes on a particular
AppleTalk network.

network-visible entity A network entity that is
registered with NBP. After the entity is registered,
it is made visible and is available to other entities
throughout the network.

node A data-link addressable entity on an
AppleTalk network. All physical devices on
an Apple Talk network, such as personal
computer workstations, printers, and Macintosh
computers acting as file servers, print servers,
and routers, are nodes.

node ID An 8-bit number assigned to a node
on an Apple Talk network that is used to identify
that node in conjunction with the network
number. A node ID is part of the addressing
information used to deliver packets across a
network or internet.

nonextended network An Apple Talk network
that is assigned only one network number and
supports only one zone. LocalTalk is an example
of a nonextended network.

object The field of an NBP entity name that
identifies the user of the system or the system
itself, in the case of a server.

open connection An association or connection
set up between two sockets in which both ends
have been established so that data can flow
between them.

packet A unit of data that is sent as a unit
within a frame from one node to another across a
network or internet. A packet includes a header
portion that contains addressing and control
information and a data portion that contains the
message text. The terms packet and datagram are
synonymous.

packet-oriented network See connectionless
network.

peer-to-peer communication A connection in
which both ends have equal control over the
exchange of data and either end can begin or end
the session.

GLOSSARY

peer-to-peer session See symmetrical session.

preferred interface The Apple Talk interface
standard designed to be similar to that of the
Device Manager and the File Manager. Its routines
use parameter blocks to pass input and output
values. The interface glue code converts the
parameter block values into a Device Manager
control call to the appropriate Apple Talk
device driver.

private key A number that is derived from a
password and used by an encryption algorithm.
The ASDSP initiator and recipient each have a
private key, which is used in the authentication
process. The private key is also called a user key
or client key.

protocol A formalized set of rules that net­
worked computers use to communicate. Network
software developers implement these rules in
programs that carry out the functions specified
by the protocol. AppleTalk consists of a number
of protocols, many of which are implemented
in drivers.

protocol discriminators A series of hierarchical
type fields in a packet header that incrementally
distinguish for which protocol handler a packet
is intended. The value of a higher field can affect
the possible values of a field that follows it.

protocol handler A piece of assembly-language
code that controls the reception of packets of a
given protocol type that are delivered to a node.
A protocol handler receives packets for a specific
protocol type much like a socket listener receives
packets for a specific socket. The data link
determines the type of the packet and passes it
on to the appropriate protocol handler.

read-header area (RHA) A buffer that is
internal to the .MPP driver. When the .MPP
driver receives a frame containing a DDP packet,
the .MPP driver's interrupt handler moves the
frame's first 3 bytes (the frame header) into the
read-header area (RHA). Eight bytes of the RHA
are then available for the application's use.

receive queue An ADSP buffer in which the
local connection end receives and stores bytes
of data from the remote connection end until
the local connection end's client application
reads them.

receive routine A software process that a
multinode application must include in order to
read in the contents of packets delivered to that
multinode. Because the .MPP driver passes
values in registers to a multinode application's
receive routine when the .MPP driver calls the
routine, receive routines must be written in
assembly language.

recipient The ASDSP client application of the
connection end that receives the request and the
information from the server.

reliable delivery of data The services a
protocol provides that include error checking and
recovery from error or packet loss.

requester An ATP application that transmits a
request for some action to be performed to an
ATP responder application that carries out the
action and transmits a response reporting
the outcome.

responder An ATP application that carries
out a request sent to it from an ATP requester
application, and then transmits a response to
the requester returning the resulting data or
reporting the outcome.

response message A message comprising up to
eight packets that the responder client applica­
tion can send to the requester client application.
ATP maintains and manages the correct sequence
of these packets.

router Software that interconnects Apple Talk
networks to create a single, large, dispersed
AppleTalk internet.

Routing Table Maintenance Protocol
(RTMP) An Apple Talk protocol that provides
routers with a means of managing routing tables
used to determine how to forward a packet from
one socket to another across an internet based on
the packet's destination network number.

RTMP See Routing Table Maintenance
Protocol.

secure session An ADSP session that uses
ASDSP to perform an authentication process in
which the identities of the users at both ends of the
connection are verified. Users can exchange data
over a secure session, and direct ASDSP to encrypt
the data before transmitting it and decrypt the
data before delivering to the recipient.

GL-7

GLOSSARY

send queue A buffer in which ADSP stores the
bytes of data being sent until the remote
connection end acknowledges their receipt.

server node ID A node 10 that falls within
the numeric range of 128-254 ($80-$FE). An
application or process must explicitly request a
node 10 within the server range by making an
extended Open call and setting to 1 the high bit
(bit 31) of the extension ioMix field.

session A logical (as opposed to physical)
connection between two entities on an internet.

session control block (SCB) A block of
memory that an ASP workstation client
application must allocate for the .XPP driver
to use internally to manage a session.

session establishment The process of setting
up a connection over which a dialog between
two applications or processes can occur. Session­
oriented protocols provide this service.

session key A unique key that the AOCE
authentication server generates and returns to
the ASDSP initiator in a secure manner. The
authentication server generates the session key
exclusively for use by the authentication process
for the session that the initiator attempts to open.
The session key is valid for a limited time only.

session listening socket (SLS) A socket that the
ASP server uses to listen for incoming session
requests.

session reference number A unique session
identifier that ASP assigns to a session that it
opens successfully. The ASP server uses this
number to distinguish between communication
from various concurrent sessions.

SNAP See subnetwork access protocol.

socket A piece of software that serves as an
addressable entity on a node. Applications and
processes send and receive data through sockets.
See also statically assigned socket, dynamically
assigned socket.

socket client An application or process that is
associated with a socket and that sends and
receives data through the socket.

GL-8

socket listener A piece of assembly-language
code that a socket client application provides
that receives datagrams that are addressed to
that socket.

socket number An 8-bit number that identifies
a socket. A socket number is one of the three
parts that together constitute an Apple Talk
internet address.

socket table A table that DDP builds and
maintains that contains entries for open sockets;
each entry identifies the socket number and the
socket listener that are associated with it.

state dependence A condition in which a
response to a request is dependent on a
previous request.

statically assigned socket One of the two
classes of sockets that DDP maintains. To use a
statically assigned socket, an application must
request a specific socket number. Statically
assigned sockets have numbers in the range of
1-127. See also dynamically assigned socket.

subnetwork access protocol (SNAP) An 802.2
packet header field that is used to discriminate
for which protocol family a packet with a DSAP
of $AA is intended.

symmetrical session A session in which both
ends of the connection have equal control over
the communication. Both ends can send and
receive data at the same time and initiate or
terminate the session. A symmetrical session is
also referred to as a peer-to-peer session.

synchronous execution A mode of executing a
routine in which the routine is executed as soon
as possible and the calling program is prevented
from doing any other processing until the routine
completes execution.

TLAP See TokenTalk Link-Access Protocol.

Token Talk The data link that allows an
Apple Talk network to be connected by token
ring cables.

TokenTalk Link-Access Protocol (TLAP) The
Apple Talk link-access protocol used in a
Token Talk network. TLAP is built on top of the
standard token ring data-link layer.

GLOSSARY

transaction The exchange of data between
two ATP client applications in which the requester
application sends a request to the responder
application to perform. The exchange of data is
limited to the request-response interaction, and
the response data is bound to the request data by
a transaction ID.

transaction-based protocol A communications
protocol in which one socket client transmits a
request for some action and the other socket
client carries out the action and transmits a
response.

transaction bibnap The bitmap I sequence
number field of the header, when the ATP packet
is a request packet. The transaction bitmap
identifies the number of buffers that a requester
application has reserved for the response data.

transition An Apple Talk event, such as an
AppleTalk driver being opened or closed, that
can affect an Apple Talk application.

transition event handler routine A developer­
supplied routine that the LAP Manager calls
to handle a transition event. Entries in the
AppleTalk Transition Queue contain a field that
holds a pointer to the transition event handler
routine.

transport protocol A protocol that includes
services that determine how data is to be
transferred across an Apple Talk internet.

tuple The NBP name and internet socket
address pair that an entity provides to register
itself with NBP. NBP adds the tuple as a names
table entry to its names table.

type The field of an NBP entity name that is
used to identify the type of service that the entity
provides. Entities of the same type can find
potential partners by looking up addresses of
other entities that are registered with NBP based
on the type portion of the name.

user node ID A node ID that falls within the
numeric range of 1-127 ($01-$7F). Unless a
program explicitly requests assignment of a
node ID within the server range, Apple Talk
dynamically assigns a user node ID to a system
when an application or process on that system
opens Apple Talk.

write-data structure A data structure that
contains a series of pairs of length words and
pointers. Each pair indicates the length and
location of a portion of the data that constitutes
the packet to be sent over the network.

ZIP table A zone information table that
contains a complete mapping of network numbers
to zone names for an Apple Talk internet. Each
Apple Talk internet router maintains a ZIP table.

zone A logical grouping of nodes in an
Apple Talk internet. A zone is typically used
to identify an affiliation between a group of
nodes, such as a group of nodes belonging to a
particular department within an organization.

Zone Information Protocol (ZIP) An Apple Talk
protocol that maintains the mapping between
zone names and network numbers and provides
applications and processes with access to
zone names.

zone name hint The name of the parameter
stored in RAM that is the last zone to which
the node belonged.

GL-9

Index

Numerals

802.2 protocol 10-27 to 10-42
802.2 protocol handlers 10-27 to 10-32, 10-39 to 10-42
802.2 protocol packets

defined 1-29, 11-3
and LAP Manager 10-27 to 10-32, 10-39 to 10-42

802.3 protocol 10-28, 10-41
802.3 protocol packets 10-27

A

AARP. See Apple Talk Address Resolution Protocol
AARP packet type 10-28, 10-41
AddNode routine 12-9,12-22 to 12-24
AddrBlock record. See address block records
address block records 3-20

for ADSP 5-38
forATP 6-23
forDDP 7-35
for multinodes 12-18 to 12-19
forNBP 3-20

1 adev I file. See Apple Talk connection files
ADSP. See Apple Talk Data Stream Protocol
AEP. See AppleTalk Echo Protocol
AEP Echoer 1-14, 1-26, 7-8,7-32 to 7-34
AFP. See AppleTalk Filing Protocol
AFP command block 9-5 to 9-6
AFPCommandBlock record 9-5
AFP command constants 9-9 to 9-12
AFPConunand function 9-5, 9-8
alternate interface 1-29
Apple Remote Access (ARA) 2-17

and Apple Talk transitions 10-17
and multinode 12-17

AppleShare 1-27
Apple Talk Address Resolution Protocol (AARP) 10-28,

10-40
Apple Talk connection files

and LAP Manager 1-15 to 1-17,10-3
and multinodes 12-3,12-6

Apple Talk Data Stream Protocol (ADSP) 5-3 to 5-94
ASDSP parameter block for 5-42 to 5-43
buffers for 5-13, 5-30, 5-46
built-in flow control feature 5-6
connection control blocks 5-35, 5-36
data structures for 5-35 to 5-43

driver for 1-17,5-4
DSP parameter block for 5-38 to 5-41
introduced 1-13, 1-21,5-3
memory allocation for 5-12
reading data 5-15 to 5-16,5-71
routines for 5-43 to 5-76
user flags 5-12, 5-37
ilses of 1-24, 5-4 to 5-6
writing data 5-15, 5-72 to 5-73

Apple Talk Echo Protocol (AEP)
introduced 1-14, 1-21
measuring packet-delivery performance 7-33 to 7-34
and multinode 12-4
uses of 1-26

Apple Talk Filing Protocol (AFP) 1-13, 9-3 to 9-36
AFP general command format 9-14 to 9-16
AFP login command format 9-16 to 9-20
AFP read command format 9-22 to 9-25
AFP write command format 9-20 to 9-22
and ASP functions 9-12
command categories 9-5
data structures for 9-5 to 9-8
driver for 1-16,9-4
introduced 1-12, 1-19
routines for 9-8 to 9-24
uses of 1-27,9-3
XPP parameter block for 9-7 to 9-8

AppleTalk internet 1-7,4-7,4-17
Apple Talk Manager 1-4, 1-18
Apple Talk Phase 1 1-11
AppleTalk Phase 2 1-10,6-27

determining if installed 2-4
AppleTalk protocol stack 1-3, 1-11 to 1-17
Apple Talk Secure Data Stream Protocol (ASDSP) 1-24,

5-9 to 5-11,5-29 to 5-35,5-41 to 5-43,5-54 to 5-60
and AOCE software 5-9
ASDSP parameter block for 5-42 to 5-43
authentication process 5-9,5-10 to 5-11
buffers for 5-30, 5-32
data structures for 5-42 to 5-43
encrypting data 5-9 to 5-10,5-34 to 5-35
introduced 1-24, 5-9
masks, using 5-35
opening secure connections 5-30 to 5-35, 5-57 to 5-58
routines for 5-54 to 5-60

Apple Talk Session Protocol (ASP) 8-3 to 8-35
and AFP commands 9-13
canceling an open session request 8-25
closing sessions 8-13 to 8-15

IN-1

INDEX

AppleTalk Session Protocol (ASP) (continued)
data structures for 8-6 to 8-8
driver for 1-17,8-4
and higher-level protocols 8-4
introduced 1-13, 1-21
maximum capacities 8-22
opening sessions 8-9 to 8-12
optimizing memory for CCBs 8-17
routines for 8-8 to 8-26
sending commands to the server 8-4,8-15 to 8-18
sending data to the server 8-19 to 8-21
uses of 1-25, 8-4
XPP parameter block for 8-6 to 8-8

Apple Talk Transaction Protocol (ATP) 6-3 to 6-58
ATP parameter block for 6-21 to 6-23
bitmap I sequence numbers 6-7
buffer data structures (BDS). See buffer data

structures
cancelingATP functions 6-19,6-38 to 6-44
data structures for 6-20 to 6-23
driver for 1-17,6-3
filtering addresses 6-14,6-31
flags 6-8 to 6-9
getting requests 6-15, 6-32 to 6-34
introduced 1-13, 1-21
packet format 6-5 to 6-7
responding to ATP requests 6-14 to 6-19,6-34 to 6-36
retry count to send a request 6-13
routines for 6-23 to 6-45
sending ATP requests 6-9 to 6-14, 6-24 to 6-30
sequence numbers 6-5
timeout period for retransmission 6-7, 6-13
transaction types 6-7 to 6-8
uses of 1-25

Apple Talk Transition Queue (ATQ)
adding entries to 10-4, 10-7 to 10-14, 10-33 to 10-36
defined 1-27
removing entries from 10-34 to 10-36
transitions, cable-range-change 12-10

AppleTalk Transition Queue entry records 10-7
Apple Talk Utilities 2-3 to 2-28

data structures for 2-9 to 2-11
MPP parameter block 2-9 to 2-11
routines for 2-11 to 2-22

ARA. See Apple Remote Access
ASDSP. See Apple Talk Secure Data Stream Protocol
ASP. See Apple Talk Session Protocol
ASPAbortOS function 8-25 to 8-26
ASPCloseAll function 8-14 to 8-15
ASPCloseSession function 8-13 to 8-14
ASPGetParms function 8-22 to 8-23
ASPGetStatus function 8-23 to 8-24
ASPOpenSession function 8-9 to 8-12

IN-2

ASPUserCommand function 8-15 to 8-19
ASPUserWrite function 8-19 to 8-21
asymmetrical sessions 1-6, 1-13, 1-24
asynchronous execution 1-29,1-30,4-11,6-22,9-8
ATEvent procedure 10-27, 10-37 to 10-38
at-least-once transactions 6-7
ATP. See Apple Talk Transaction Protocol
.ATP driver 1-17, 2-21,6-3
ATPKillAllGetReq function 6-20,6-42
ATPParamBlock data type 6-21 to 6-23
ATP parameter block 6-21 to 6-22
ATPreFlightEvent function 10-27, 10-38 to 10-39
ATQ. See Apple Talk Transition Queue
ATQentry record 10-7, 10-33
attention messages

andADSP 5-6
and AFP 9-17 to 9-19
and ASP 8-4, 8-11
and attention codes 5-38
buffers for 5-13,5-16,5-46
handling 5-74 to 5-75,8-11 to 8-12
as unsolicited ADSP connection events 5-8, 5-26 to

5-28,5-38
and user routines 5-27 to 5-28

ATTransCancelClose transition 10-17
ATTransClosePrep transition 10-15
ATTransClose transition 10-14
ATTransOpen transition 10-13
authentication process 5-10 to 5-11

initiator 5-10
authentication servers 5-10
AuthGetCredentials function 5-30
AuthGetUTCTime function 5-31
AuthKey data structure 5-30, 5-32
AuthTradeProxyForCredentials function 5-30

B

BDS. See buffer data structures
best-effort delivery 1-5, 1-15, 7-4
bitmap I sequence numbers 6-5
broadcast addresses, Ethernet 11-20
buffer data structures

andASP 8-17
for ASP reply data 8-17 to 8-19
building 6-12,6-16,6-44 to 6-45
defined 6-8, 6-20 to 6-21

buffers, Ethernet driver data packets 11-39
BuildBDS function 6-12, 6-44
BuildDDPwds procedure 7-35, 7-42 to 7-43

INDEX

c
cable-range-change transition 10-24
CallAddr field 10-7
cancel-close transition 10-17
cancel-flagship-name-change transition 10-23
cards, NuBus. See NuBus cards
CCB. See command control blocks; connection control

blocks
challenge-and-reply process 5-10 to 5-11
checksums

and ATP packets 6-6, 6-9
and DDP long headers 7-9,7-19 to 7-20
and multinodes 12-12, 12-16 to 12-17

clients 1-3
CloseATPSkt function 6-16
CloseDriver function 2-22
command blocks

for afpRead 9-24
for afpWrite 9-21

command control blocks (CCB) 8-16, 9-13
completion routines 1-29, 1-31,4-11, 12-26
connection control blocks (CCB) 5-6,5-12,5-35,5-36 to

5-38
connection ends

closing 5-61 to 5-62
configuring 5-14, 5-47 to 5-48
defined 5-4
establishing 5-45 to 5-46
removing 5-62, 5-63
resetting 5-76
state of 5-36

connection events, unsolicited
defined 5-8
types of 5-27, 5-37
user routines for 5-26 to 5-28

connection files. See AppleTalk connection files
connection IDs 5-6
connectionless networks 1-5
connectionless protocols 1-6, 1-15
connection listeners 5-22 to 5-26,5-63 to 5-68

activating 5-65 to 5-67
and ASDSP 5-33
defined 5-5,5-7 to 5-8
sample code 5-24 to 5-26

connection-listening sockets 5-7,5-36
connection-oriented networks 1-4
connection-oriented protocols 1-5, 5-4
·connections

closing 5-62
defined 5-6 to 5-7
denying an open request 5-67
determining the status of 5-69 to 5-70
maintaining 5-17 to 5-22

modes 5-14,5-53,5-58
opening 5-13 to 5-22, 5-48 to 5-56
secure. See Apple Talk Secure Data Stream Protocol

connection servers 5-14, 5-65 to 5-66
connection states 5-37
connectivity 1-9
control information byte, in ATP headers 6-6
CPU speed changes 10-26
credentials, ASDSP 5-10

D

data encryption. See encrypting data
Datagram Delivery Protocol (DDP) 7-3 to 7-49

checksum. See checksums
data structures for 7-34 to 7-37
driver for 1-17, 7-4
introduced 1-7, 1-15, 1-21
MPP parameter block for 7-36 to 7-37
protocol types 7-7,7-11
receiving data 7-10 to 7-12
routines for 7-37 to 7-43
sending data 7-10
uses of 1-26, 7-3

datagram network. See connectionless networks
datagrams. See packets
data-link addresses 2-5, 2-14
data-link independence. See link independence
data-link layer protocols, and DDP 7-3
data links 1-9, 1-22
data streams 1-5
DCE. See device control entries
DDP. See Datagram Delivery Protocol
DDP packets. See packets
destination service access point (DSAP) 10-28, 10-40
developer-defined transitions 10-26
device control entries (DCEs) 2-12
device drivers 1-16 to 1-18. See also .ATP driver; .DSP

driver; .MPP driver; .XPP driver
implementing protocols 1-16
.MPP driver 10-15

driver shells ·
.ENET 11-7, 11-8 to 11-11
.FDDI 11-25
.TOKN 11-22

DSAP. See destination service access point
dspAttention routine 5-15,5-74 to 5-75
dspCLDeny routine 5-67
dspCLini t routine 5-64 to 5-65
dspCLListen routine 5-33,5-65 to 5-67
dspClose routine 5-16, 5-61 to 5-62
dspCLRemove routine 5-68

IN-3

INDEX

.DSPdriver
different version numbers 5-13
implementing protocols 1-17
opening 5-13,5-24

dspini t routine 5-45 to 5-46
dspNewCID routine 5-60
dspOpen routine 5-14 to 5-15,5-48 to 5-54
dspOptions routine 5-47 to 5-48
DSPParamBlock data type 5-12,5-39 to 5-41
DSP parameter block 5-38 to 5-42
dspRead routine 5-15 to 5-16,5-70 to 5-71
dspRemove routine 5-12, 5-62 to 5-63
dspReset routine 5-75 to 5-76
dspStatus routine 5-69 to 5-70
dspWrite routine 5-15 to 5-16,5-72 to 5-74

E

EAddMulti function 11-40 to 11-41
1 eadr I resource type 11-20
EAttachPH function 11-17, 11-28 to 11-30
echoer sockets 7-32
Echo Reply packets 7-32
Echo Request packets 7-33
EDelMulti function 11-41 to 11-42
EDetachPH function 11-30 to 11-31
EGetinfo function 11-36 to 11-38
ELAP. See EtherTalk Link-Access Protocol
encrypting data, ASDSP 5-9,5-11,5-34 to 5-35,5-72 to

5-74
end-of-message feature 5-6
.ENET driver

getting information about 11-36 to 11-38
and LAP Manager 10-27 to 10-29, 10-41
and protocol handlers 11-17 to 11-19
transmission modes 11-39

ENET parameter block 11-26
.ENETO driver 11-8, 11-22, 11-24
entities 3-3
EntityName record 3-12,3-21
entity name records 3-12,3-21
entity names

confirming 3-17 to 3-18,3-34 to 3-36
extracting 3-16 to 3-17, 3-33
fields in 3-8
looking up with NBP 3-13, 3-30 to 3-33
preparing 3-12 to 3-13,3-29
registering with NBP 3-7 to 3-12,3-26 to 3-28
uses of 3-4
verifying uniqueness of 3-10,3-26

EParamBlock data type 11-27
ERdCancel function 11-35 to 11-36
ERead function 11-33 to 11-35

IN-4

ESetGeneral function 11-39
Ethernet

and broadcast addresses 11-20
data structures for 11-26 to 11-27
driver for 11-6

getting information about 11-36 to 11-38
opening 11-8 to 11-10

ENET parameter block for 11-27
introduced 1-10
modes, switching 11-39
and multicast addresses 11-7, 11-20, 11-40 to 11-42
packet headers 10-27
Phase 1 packets 1-28, 10-28, 11-3
Phase 2 packets 1-29, 10-28, 11-3
protocol handlers

attaching 10-39 to 10-41, 11-28 to 11-30
detaching 10-42, 11-30 to 11-31
using default 11-7, 11-13 to 11-16
using your own 11-17 to 11-19

routines 11-28 to 11-42
EtherTalk 11-11

introduced 1-7, 1-28
EtherTalk Link-Access Protocol (ELAP) 1-10
EWr i te function 11-32 to 11-33
exactly-once transactions 6-6, 6-7 to 6-8, 6-9, 6-13, 6-36
extended addressing 1-8, 1-10
extended networks 1-8,2-5,2-13,2-14

F

and ZIP 4-5,4-7,4-15
and zones 4-3

FDDI. See Fiber Distributed Data Interface
.FDDIO driver 11-25
Fiber Distributed Data Interface (FDDI) 1-10, 11-23 to

11-25
data structures for 11-26 to 11-27
driver for 11-6
and 802.2 packets 11-4 to 11-5
ENET parameter block for 11-26
introduced 1-10
routines for 11-28 to 11-42

Fiber Distributed Data Interface Link-Access Protocol
(FLAP) 1-10

fiber optics 1-9
filter address 5-50, 5-56, 5-66
filtering addresses

and ADSP 5-15,5-50,5-56,5-66
and ATP 6-14, 6-31

flagship-name-change transition 10-21
flagship names 1-28, 10-9, 10-21
Flagship Naming Service 1-28

INDEX

FLAP. See Fiber Distributed Data Interface Link-Access
Protocol

forward reset event 5-9
frames 7-8. See also long DDP packet headers

for ATP packets 6-5 to 6-6
for DDPpackets 7-8,7-11,7-14 to 7-16

full-duplex dialogs 1-6, 1-20,5-5
functional addresses for token ring 11-7, 11-22, 11-40 to

11-42

G

gestal tAppleTalkVersion selector 2-4
GetAppleTalkinfoParm variant record 2-9 to 2-11
GetBridgeAddress function 2-6,2-18
GetLocalZones function 4-5,4-7 to 4-9,4-14 to 4-16
GetMyZone function 4-5,4-6,4-12 to 4-14
GetNodeAddress function 2-3,2-6,2-17
GetZoneList function 2-6,4-5,4-7 to 4-9,4-16 to 4-18
glue code for handling transitions 10-11 to 10-12

H

half-duplex dialogs 1-6, 1-20
half-open connections 5-7
handshaking 5-10
hardware, communications 1-4, 1-8, 1-22
hardware device drivers 10-27 to 10-29
headerPtr field 7-42
headers, packet. See frames
hop count 7-16,7-25

I, J, K

IEEE. See Institute of Electrical and Electronics
Engineers

initiator
ADSP 5-10
ASDSP 5-10, 5-29, 5-30

Institute of Electrical and Electronics Engineers
(IEEE) 10-5, 10-27

intermediary, ASDSP 5-10
internet 1-7,4-7,4-16
internet routers 2-6, 2-13, 2-15, 2-17 to 2-18
internet socket addresses

andDDP 7-4
defined 1-7, 3-5

internetworking 1-21

intranode delivery 2-6, 2-15 to 2-16,7-4
ioCompletion field

in ENET parameter block 11-27
in MPP parameter block 7-36

ioRefNum field, in MPP parameter block 7-37
ioResul t field, in MPP parameter block 7-36
IsATPOpen function 2-21
IsMPPOpen function 2-20 to 2-21

L

L802Attach routine 10-27, 10-29, 10-40 to 10-41, 11-29
L802Detach routine 10-27, 10-42, 11-31
LAPAddATQ function 10-34 to 10-35
LAP Manager. See Link-Access Protocol (LAP) Manager
LAPMgrPtr global variable 10-5,10-35,10-37
LAPRmvATQ function 10-36 to 10-37
layered architecture 1-4, 1-19
Link-Access Protocol (LAP) Manager 10-3 to 10-42

data structures for 10-33
defined 10-3
determining if installed 10-5
802.2 protocol packets 10-27 to 10-29
802.3 protocol packets 11-29
introduced 1-10, 1-15 to 1-16
Phase 1 packets 1-29, 10-27, 11-3
Phase 2 packets 1-29,11-3
routines for 10-33 to 10-42
and transitions 10-7 to 10-27, 10-33
uses of 1-27 to 1-28, 10-3

link-access protocols 1-10, 1-22
link independence 1-10, 1-15,1-28
links 1-22
LLAP. See LocalTalk Link-Access Protocol
LLC. See Logical Link Control
localSocket field 5-14
LocalTalk 1-7 to 1-11

and multinodes 12-5
and receive routines 12-12
and socket listeners 7-19

LocalTalk Link-Access Protocol (LLAP) 1-10
Logical Link Control (LLC) 10-5, 10-27, 11-33
long DDP packet headers 7-10, 7-19, 12-4. See also

frames

M

masks, in ASDSP 5-35
measuring performance. See AEP Echoer ..,.
MPPClose function 2-20,10-14 to 10-15

IN-5

INDEX

.MPPdriver
closing 2-20, 10-14, 10-16
configuration flags 2-12 to 2-13
denying permission to close 10-14,10-17
getting information about 2-5, 2-11 to 2-15
implementing protocols 1-17
maximum capacities of 2-5,2-14
opening 2-19,2-20, 10-13
port number of 2-12
and registers for DDP 7-13 to 7-14
status changes 10-7. See also Apple Talk Transition

Queue
MPPOpen function 2-19
MPP parameter blocks

for Apple Talk Utilities 2-9 to 2-11
for DDP 7-36 to 7-37
forNBP 3-22

MPW equates, for socket listeners 7-16
multicast addresses 11-7

for Ethernet 11-20,11-40 to 11-42
for FDDI 11-7,11-23

multinode application 12-3
multinode architecture 2-16

defined 1-16, 12-3
requirements for using 12-3, 12-8

multinode parameter blocks 12-9,12-19 to 12-20
multinodes 1-16, 1-27

adding one 12-8 to 12-10, 12-22 to 12-24
addresses 12-4
and cable-range-change transition 10-24, 12-10
defined 1-27
and intranode delivery 2-7,2-15
limit per machine 12-6
removing one 12-10,12-24 to 12-25
sending data from 12-14,12-25 to 12-27

multivendor architecture 1-16, 11-5 to 11-7

N

Name-Binding Protocol (NBP) 3-3 to 3-48
buffers for 3-8,3-12, 3-13,3-16
data structures for 3-20 to 3-23
driver for 1-17,3-3
introduced 1-7, 1-14, 1-21
requests, number of 2-14
routines for 3-23 to 3-39
uses of 1-23,3-3 to 3-6

names table entries 3-5,3-21
NamesTableEntry record 3-8, 3-21
names table entry records 3-8, 3-21
names tables

adding entries to 3-8 to 3-11,3-24 to 3-28
defined 3-5
removing entries from 3-18 to 3-19,3-36 to 3-37

IN-6

NBP. See Name-Binding Protocol
NBP entity names. See entity names
NBPExtract function 3-16 to 3-17,3-33
NBP names directory 3-6
NBP requests, maximum number of 3-7
NBPSetEnti ty procedure 3-12, 3-28
NBPSetNTE procedure 3-7, 3-24 to 3-25
network addresses 2-3, 2-13
network architecture 1-19
network-connection-change transition 10-17
network interface controllers (NIC) 11-5 to 11-7
network numbers 2-17,4-3,12-22

defined 1-6
determining range of 2-5, 2-13
value of 2-13

network-visible entities 1-23,3-5,3-27
NetWrite routine 12-14,12-25 to 12-27
NICs. See network interface controllers
node IDs 2-5 to 2-7,2-17

assignment 3-4, 3-5
defined 1-6
of the user node 2-3, 2-17

nodes 1-4
nonextended networks 1-8

andZIP 4-5
and zones 4-3

NuBuscards
Ethernet 11-8 to 11-10, 11-19
FDDI 11-24
finding 11-8
hardware addresses, changing 11-19
and multivendor architecture 11-5 to 11-7
token ring 11-22

0

open-connection modes 5-14, 5-52, 5-57
open connections 5-7
OpenDriver function 2-21,12-8
Open Systems Interconnection (051) model 1-19 to 1-22
open transition 10-13
OpenXPP function 2-22
out-of-band signaling 1-13

p

packet-priented networks 1-5
packets. See also Datagram Delivery Protocol; frames

DDPheader 7-7,7-11 to 7-15
defined 1-5
for 802.2 protocols 10-27 to 10-32, 10-39 to 10-42

INDEX

for 802.3 protocols 10-28, 10-41
for 803.2 protocols 11-29

PAddResponse function 6-4, 6-16, 6-36 to 6-38
Pascal interface 1-30 to 1-31
PATalkClosePrep function 10-16
PBControl function

and ADSP routines 5-12, 5-44, 5-45
and ASDSP routines 5-31
and multinode routines 12-21

PCloseATPSkt function 6-31 to 6-32
PCloseSkt function 7-39
PConfirmName function 3-34
peer-to-peer relationships 5-4
performance measuring. See AEP Echoer
permission-to-change-flagship-name transition 10-22
permission-to-close transition 10-15
PGetAppleTalkinfo function 2-3 to 2-6,2-9,2-11 to

2-15
PGetRequest function 6-32 to 6-34
Phase 1 Ethernet packets 1-28,10-27,11-3
Phase 2 packets 1-29, 10-27,11-3
PKillGetReq function 6-19,6-41
PKillNBP function 3-38 to 3-39
PKillSendReq function 6-20, 6-38 to 6-39
PLookupName function 3-13 to 3-16, 3-30 to 3-32
PNSendRequest function 6-9,6-27 to 6-30
POpenATPSkt function 6-14,6-30 to 6-31
POpenSkt function 7-9,7-38 to 7-39
preferred interface 1-29
PRegisterName function 3-7,3-9 to 3-11,3-25 to 3-28,

7-9
PRelRspCB function 6-20, 6-43 to 6-44
PRel TCB function 6-40
PRemoveName function 3-18 to 3-19,3-36,7-9
prepare-to-close transition 10-14
private keys 5-10
ProDOS 9-3
protocol handlers 11-3

defined 10-5
802.2 10-27 to 10-30, 10-39 to 10-41, 10-42
Ethernet 11-13 to 11-19

attaching 11-14, 11-29, 11-34
default 11-3, 11-13 to 11-17
using your own 11-17 to 11-19

for the .MPP driver 2-14
protocols 1-4

AppleTalk 1-11 to 1-22
protocol stack 1-3, 1-11 to 1-18
PSendRequest function 6-9, 6-24 to 6-27
PSendResponse function 6-16, 6-34 to 6-36
PSetSelfSend function 2-6,2-9,2-15 to 2-16, 7-4
PWriteDDP function 7-12, 7-19,7-41 to 7-42

a
queue element pointers 6-39
queues. See Apple Talk Transition Queue

R

read-header area (RHA)
and DDP 7-8, 7-14
and multinode receive routines 12-11

ReadPacket routine 11-17
and DDP 7-17 to 7-19
and Ethernet 11-17 to 11-19
and multinode 12-11 to 12-12

ReadRest routine 11-17
and DDP 7-17 to 7-19
and Ethernet 11-17 to 11-19
and multinode 12-11 to 12-13

receive buffers. See receive queues
receive queues

defined 5-13
dspini t routine 5-46
dspRead routine 5-16

receive routines 12-3, 12-9, 12-10 to 12-14
recipient, ASDSP 5-10,5-29
registering NBP entity names 3-7 to 3-11,3-25 to 3-28
release timers. See timeout value for ATP ·
reliable delivery of data 1-5, 1-21, 6-6

ADSP 5-8
RemoveNode routine 12-10, 12-24 to 12-25
reqCableLo routine 12-22
reqNodeAddr field 12-18
requester ATP client applications 1-26, 6-3 to 6-4, 6-9 to

6-14, 6-24 to 6-30 •
resource type 1 eadr 1 11-20
responder ATP client applications 1-25, 6-3 to 6-4,6-14

to 6-19, 6-34 to 6-38
response messages 6-6
retry count for ATP 6-13, 6-26
RHA. See read-header area
routers 1-7
routing table 1-15
Routing Table Maintenance Protocol (RTMP) 1-15, 1-21
RTMP. See Routing Table Maintenance Protocol
RTMP stub 1-15

IN-7

INDEX

s
sample code

connection listeners 5-24 to 5-26
glue code for handling transitions 10-11 to 10-12
user routine 5-28
using ADSP to establish a connection 5-17 to 5-22

SCB. See session control blocks
scbMemSize constant 9-17
sdspOpen routine 5-54 to 5-59

using 5-33
SDSPParamBlock data type 5-30, 5-41
secure session 5-9
send queues

and dspini t routine 5-46
and dspWrite routine 5-15,5-13
flushing 5-73

send-transmission status 6-6
server node IDs 2-7
servers, connection. See connection listeners
servers, status 8-23 to 8-24
session connections 5-3
session control blocks (SCB) 8-10,9-17
session establishment 5-4
session keys 5-10,5-32
session listening sockets (SLS) 8-10
session protocols 1-20

ADSP 1-13
ATP 1-25

session reference numbers 1-25, 8-3, 8-13
sessions

asymmetrical 1-6, 1-13, 1-24
defined 1-5
maximum number of 8-22
opening 8-9 to 8-12
symmetrical 1-6, 1-13, 1!24

SLS. See session listening sockets
SNAP. See subnetwork access protocol
socket clients 1-7,3-5, 7-4 to 7-6
socket listeners 7-4, 7-5 to 7-6

using for more than one socket 7-10
using registers 7-20
writing socket listeners 7-20 to 7-32

socket numbers 7-4
defined 1-6, 1-7

sockets
assigning numbers to 7-6 to 7-7,7-10
connection listening 5-8, 5-36
defined 1-7,7-3, 7-5 to 7-6
.MPP driver capacities for 2-14
opening 6-14,6-30 to 6-31, 7-9, 7-38 to 7-39

socket tables 7-5, 7-9
socket-to-socket delivery 7-4
SONIC-based network interface cards 11-37

IN-8

spCategory field 11-8, 11-22, 11-24
spCType field 11-8, 11-22, 11-24
state dependence 1-25, 8-5
streams 1-5
subnetwork access protocol (SNAP) 10-28, 10-40
symmetrical sessions 1-6, 1-13, 1-24
synchronous execution 1-30
SysEnvirons function 2-4

T

timeout value for ATP 6-7, 6-13, 6-26, 6-36
TLAP. See Token Talk Link-Access Protocol
token ring 1-10,11-5, 11-20 to 11-22

data structures for 11-26 to 11-27
driver for 11-6
and 802.2 packets 11-3 to 11-5
ENET parameter block for 11-27
introduced 1-10
routines for 11-28 to 11-42

TokenTalk 10-3
TokenTalk Link-Access Protocol (TLAP) 1-10
.TOKNO driver 11-22
transaction-based protocols 6-3
transaction bitmaps 6-5
transaction IDs in ATP header 6-7,6-9,6-10,6-15,6-40
transactions 6-3
transaction sequence numbers 6-7
transition event handler routines 10-5, 10-7 to 10-12
transitions 10-7 to 10-27. See also Apple Talk Transition

Queue
defining your own 10-27
list of 10-5
and multinodes 10-24,12-10
notification of 10-37 to 10-39

transport protocols 7-3
TRCCB record. See connection control blocks
TRSecureParams record 5-42 to 5-43
tuples 3-5, 3-21

U,V

universal coordinated time 5-31
unsolicited connection events. See connection events,

unsolicited
user data in ATP packets 6-6, 6-7, 6-13, 6-15
user keys. See private keys
user node IDs 2-7
user routines, ADSP 5-26, 5-28

INDEX

w
wildcards, with NBP entity names 3-14, 3-31
write-data structures 11-22, 11-25

for DDP 7-12 to 7-13, 7-35, 7-41 to 7-42
for Ethernet 11-10 to 11-13, 11-26, 11-33
for FDDI 11-25, 11-26, 11-33
for token ring 11-22,11-25, 11-33
for multinodes 12-14 to 12-15, 12-18, 12-26

X,Y

xCallParam variant record 4-5
.XPPdriver

implementing protocols 1-17,4-3,8-5
opening 2-22, 9-13

XPPParamBlock data type 4-10 to 4-11, 8-6 to 8-8, 9-6
to9-8

XPP parameter blocks
for AFP 9-6 to 9-8
for ASP 8-6 to 8-8
for ZIP 4-10 to 4-11

z
ZIP. See Zone Information Protocol
ZIP tables 4-3
Zone Information Protocol (ZIP) 4-3 to 4-23

andATP 4-5
buffers for 4-5,4-13,4-15,4-17
data structures for 4-10,4-11
driver for 1-17,4-4
introduced 1-12, 1-21
routines for 4-11 to 4-18
uses of 1-23,4-3
and the .XPP driver 4-4
XPP parameter block for 4-10 to 4-11

zone information tables. See ZIP tables
zone name hint 2-13
zone names 2-5,2-14
zones 1-10,3-3

defined 1-7, 4-3
getting lists of 4-7 to 4-9, 4-i4 to 4-18
getting names of 2-14,4-6,4-12,4-13
identifying 1-23
in NBP entity names 3-8

IN-9

THE APPLE PUBLISHING SYSTEM

This Apple manual was written, edited,
and composed on a desktop publishing
system using Apple Macintosh
computers and FrameMaker software.
Proof pages were created on an Apple
LaserWriter Pro printer. Final page
negatives were output directly from text
files on an Optrotech SPrint 220
imagesetter. Line art was created
using Adobe TM Illustrator and
Adobe Photoshop. PostScriptTM, the
page-description language for the
LaserWriter, was developed by Adobe
Systems Incorporated.

Text type is Palatino® and display type is
Helvetica®. Bullets are lTC Zapf
Dingbats®. Some elements, such as
program listings, are set in Apple Courier.

LEAD WRITER
Paul Black

WRITER
Judy Melanson

DEVELOPMENTAL EDITOR
Sanborn Hodgkins

ILLUSTRATORS
Barbara Carey, Peggy Kunz, Bruce Lee,
Shawn Morningstar

PRODUCTION EDITOR
Rex Wolf

PROJECT MANAGER
Trish Eastman

TECHNICAL ADVISORS
Rich Kubota, Scott Kuechle,
Jim Luther

Special thanks to Rick Andrews,
Tun Monroe, David Schlesinger, and
Beverly Zegarski

About Inside Macintosh
Inside Macintosh is a collection of books, organized by topic, that describe the system software of
Macintosh computers. Together, these books provide the essential reference for programmers,
designers, and engineers creating applications for the Macintosh family of computers.

Inside Macintosh: Overview
This book provides a general introduction to the Macintosh Operating System, the Macintosh
Toolbox, and other system software services. It illustrates how to write a Macintosh application by
gradually dissecting the source code of a sample application. The book also provides guidelines for
writing software that is compatible with all supported Macintosh computers.

272 pages, ISBN 0-201-63247-0

Inside Macintosh: Macintosh Toolbox Essentials
This book describes how to implement essential user interface components in a Macintosh applica­
tion. The Macintosh Toolbox is at the heart of the Macintosh, and every programmer creating a
Macintosh application needs to be familiar with the material in this book. This book explains how to
create menus; create windows, dialog boxes, and alerts boxes; create controls such as buttons and
scroll bars; and create icons for an application and its documents. This book provides a complete
technical reference for the Event Manager, Menu Manager, Window Manager, Control Manager, and
Dialog Manager.

928 pages, ISBN 0-201-63243-8

Inside Macintosh: More Macintosh Toolbox
A companion to Inside Macintosh: Macintosh Toolbox Essentials, this book describes important features
such as how to support copy and paste, provide Balloon Help, and create control panels. This book
provides a complete technical reference to the Resource Manager, Scrap Manager, Help Manager,
List Manager, Component Manager, Translation Manager, and Desktop Manager.

928 pages, ISBN 0-201-63299-3

Inside Macintosh: Imaging With QuickDraw
This book describes QuickDraw, the part of the Macintosh Toolbox that performs graphics opera­
tions, and the Printing Manager, which allows applications to print the images created with
QuickDraw. This book explains how to create images, display them in black and white or color, and
print them.

832 pages (tentative), ISBN 0-201-63242-X

Inside Macintosh: Text
This book describes how to create applications that can perform all kinds of text handling-from
simple character display to complex, multi-language text processing. It provides a brief introduction
to the unique Macintosh approach to text handling and shows how to draw characters, strings, and
lines of text; how to work with fonts in any size, style, and language; how to use utility routines to
format numbers, dates, and times; and how to use the WorldScript technology to design an applica­
tion that handles text in any language.

1120 pages, ISBN 0-201-63298-5

Inside Macintosh: Files
This book describes the parts of the Macintosh Operating System that allow you to manage files and
other objects in the file system. It describes how to create an application that can handle the com­
mands typically found in the File menu. This books also provides a complete technical reference for
the File Manager, the Standard File Package, the Alias Manager, the Disk Initialization Manager, and
other file-related services provided by the system software.

544 pages, ISBN 0-201-63244-6

Inside Macintosh: Memory
This book describes the parts of the Macintosh Operating System that allow you to directly allocate,
release, or otherwise manipulate memory. It shows how an application can manage the memory
partition that it is allocated and perform other memory-related operations. This book also provides a
complete technical reference for the Memory Manager, the Virtual Memory Manager, and other
memory-related utilities provided by the system software.

312 pages, ISBN 0-201-63240-3

Inside Macintosh: Processes
This book describes the parts of the Macintosh Operating System that allow you to manage process­
es and tasks. It shows in detail how an application can manage processes and tasks and provides a
complete technical reference for the Process Manager, the Notification Manager, the Time Manager,
the Deferred Task Manager, and other task-related services provided by the system software.

208 pages, ISBN 0-201-63241-1

Inside Macintosh: Operating System Utilities
This book describes the parts of the Macintosh Operating System that allow you to manage low­
level aspects of the Operating System. It describes how you can get information about the available
software features, how to manage operating-system queues, get information about parameter RAM
settings, and manipulate the trap dispatch tables. It also describes other utilities, such as mathemati­
cal and logical utilities; date, time, and measurement utilities; and the System Error Handler. This
book provides a complete technical reference to the Gestalt Manager, Trap Manager, Start Manager,
and Package Manager.

400 pages (tentative), ISBN 0-201-62270-X

Inside Macintosh: Devices
This book is a companion volume to both Guide to Macintosh Family Hardware and Designing Cards
and Drivers for the Macintosh Family. It is written for anyone writing software that interacts with built­
in and peripheral hardware devices and covers critical hardware and device programming topics
including the Device Manager, SCSI Manager, Power Manager, ADB Manager, Serial Driver, and
Slot Manager.

560 pages (tentative), ISBN 0-201-62271-8

Inside Macintosh: Interapplication Communication
This book explains how to create applications that work with other applications to give users even
greater power and flexibility in accomplishing their tasks. It provides an introduction to how appli­
cations work together in a cooperative environment and discusses how they can share data with
other applications, request information or services from other applications, and respond to scripts
written in a scripting language. This book provides a complete technical reference to the Apple
Event Manager, the AppleScript component, the Program-to-Program Communications Toolbox,
and the Data Access Manager.

1 008 pages, ISBN 0-201-62200-9
-- ~--- ---- ---'------

Inside Macintosh: Networking
This book describes key concepts of networking the Macintosh with other computers. It describes in
detail the components and organization of AppleTalk, how to select an AppleTalk protocol, and
how to write software that uses Apple Talk networking protocols.

592 pages, ISBN 0-201-62269-6

Inside Macintosh: QuickTime
This book describes how to create applications that can use QuickTime, Apple's system software
extension that supports time-based data in the Macintosh desktop environment. Time-based data is
any information that changes over time, such as sound, video, or animation. Inside Macintosh:
QuickTime discusses how to manipulate time-based data in the same way that you work with text
and graphic elements, and it describes how to use the Movie Toolbox to load, play, create, edit, and
store objects that contain time-based data. It also explains how to use image compression and
decompression to enhance the performance of QuickTime movies in an application.

736 pages, ISBN 0-201-62201-7

Inside Macintosh: QuickTime Components
This book is a companion to Inside Macintosh: QuickTime. It describes how you can use or develop
QuickTime components such as clock components, image compressors, movie controllers, sequence
grabbers, and video digitizers.

848 pages, ISBN 0-201-62202-5

Inside Macintosh: Sound
This book describes the parts of the Macintosh Toolbox that allow you to manipulate sound and
speech. It shows how to use the Sound Manager, the Sound Input Manager, and the Speech
Manager to create and record sounds, and to convert written text to speech.

432 pages (tentative), ISBN 0-201-62272-6

Inside Macintosh: AOCE Application Interfaces
This book describes the application interfaces to the Apple Open Collaboration Environment
(AOCE), the technology behind the PowerTalk system software. This book is intended for anyone
who wants to add mail services, messaging services, catalog services, digital signatures, or authen­
tication services to their application. It also shows how to write templates that extend the Finder
ability of display information in PowerTalk catalogs.

Inside Macintosh: AOCE Service Access Modules
A companion book to Inside Macintosh: AOCE Application Interfaces, this book is required reading for
anyone developing software modules that give users and PowerTalk-enabled applications access to
a new or existing mail and messaging service or catalog service. It also describes how to provide an
interface that lets a user install and set up the service.

Inside Macintosh: PowerPC System Software
This book describes the new process execution environment and system software services provided
with the first release of PowerPC processor-based Macintosh computers. It describes the 68LC040
Emulator, which allows existing 680x0 applications to execute unchanged on PowerPC processor­
based Macintosh computers, as well as the Mixed Mode Manager, which handles switching between
the PowerPC and 680x0 environments. It also documents the Code Fragment Manager and the
Exception Manager.

224 pages (tentative), ISBN 0-201-40727-2

Inside Macintosh: PowerPC Numerics
This book describes the floating-point numerics provided with the first release of PowerPC proces­
sor-based Macintosh computers. It provides a description of the IEEE Standard 754 for floating-point
arithmetic and shows how Power PC Numerics complies with it. This book also shows how to create
floating-point values and how to perform operations on floating-point values in high-level lan­
guages such as C and in PowerPC assembly language.

336 pages (tentative), ISBN 0-201-40728-0

Inside Macintosh QuickDraw GX Library
QuickDraw GX is the powerful new graphics architecture for the Macintosh that provides a uni­
fied approach to graphics and typography, and that gives programmers unprecedented flexibility
and power in drawing and printing all kinds of shapes, images, and text. This extension to
Macintosh system software is documented in a suite of books that are themselves an extension to
the Inside Macintosh series. The Inside Macintosh QuickDraw GX Library contains volumes that
are clear, concise, and organized by topic. They contain detailed explanations and abundant pro­
gramming examples.

Inside Macintosh: Getting Started With QuickDraw GX
This book provides an introduction to the QuickDraw GX development environment. It begins with
an overview of QuickDraw GX and the key elements of QuickDraw GX programs and then moves
on to illustrate these features using practical programming examples.

------------- -------------·- - -

Inside Macintosh: QuickDraw GX Objects
This book gets you started in understanding how to work with QuickDraw GX and how to create the
objects that underlie all of its capabilities. It focuses on the object architecture as a whole, and how to
use the objects that make up a QuickDraw GX shape: the shape object, the style object, the ink object,
and the transform object.

640 pages (tentative), ISBN 0-201-40675-6

Inside Macintosh: QuickDraw GX Graphics
This book shows you how to create and manipulate the fundamental geometric shapes of
QuickDraw GX to generate a vast range of graphic entities. It also shows you how to work with
bitmaps and pictures, specialized QuickDraw GX graphic shapes.

655 pages (tentative), ISBN 0-201-40673-X

Inside Macintosh: QuickDraw GX Typography
This books shows you how to create and manipulate the three different types of text shapes support­
ed by QuickDraw GX, and how to support sophisticated text layout, including text with mixed direc­
tions and multiple language text.

672 pages (tentative), ISBN 0-201-40679-9

Inside Macintosh: QuickDraw GX Printing
This book shows you how to support basic printing features including desktop printers, and how
to use QuickDraw GX printing objects to customize printing and perform advanced printing-relat­
ed tasks.

480 pages (tentative), ISBN 0-201-40677-2

Inside Macintosh: QuickDraw GX Printing Extensions and Drivers
This book shows you how to extend the printing capabilities of QuickDraw GX by creating a printing
extension that can work with any application and any kind of printer. It also shows how to create a
QuickDraw GX printer driver.

512 pages (tentative), ISBN 0-201-40678-0

Inside Macintosh: QuickDraw GX Environment and Utilities
This book shows you how to set up your program to use QuickDraw GX, how QuickDraw GX
relates to the rest of the Macintosh environment, and how to handle errors and debug your code. It
also describes a public data format for objects, and documents several managers that extend the
object architecture and provide utility functions.

640 pages (tentative), ISBN 0-201-40676-4

Inside Macintosh

Book title Information on

Inside Macintosh: Macintosh Toolbox Essentials Control Manager; Dialog Manager; Event Manager; Finder Interface;
Menu Manager; Window Manager

Inside Macintosh: More Macintosh Toolbox Component Manager; Control Panels; Desktop Manager; Help Manager;
Icon Utilities; List Manager; Resource Manager; Scrap Manager;
Translation Manager

Inside Macintosh: Imaging With QuickDraw Color QuickDraw; Cursor Utilities; Graphics Devices;
Offscreen Graphics Worlds; Printing Manager; QuickDraw

Inside Macintosh: Text Dictionary Manager; Font Manager; International Resources;
Keyboard Resources; QuickDraw Text; Script Manager; TextEdit;
Text Services Manager; Text Utilities; WorldScript Extensions

Inside Macintosh: Files Alias Manager; Disk Initialization Manager; File Manager;
Standard File Package

Inside Macintosh: Memory Memory Management Utilities; Memory Manager; Virtual Memory Manager

Inside Macintosh: Processes Deferred Task Manager; Notification Manager; Process Manager;
Segment Manager; Shutdown Manager; Tune rylanager;
Vertical Retrace Manager

Inside Macintosh: Operating System Utilities Control Panel Extensions; Date, Tune, and Measurement Utilities;
Gestalt Manager; Mathematical and Logical Utilities; Package Manager;
PRAM Utilities; Queue Utilities; Start Manager; System Error Handler;
Trap Manager

Inside Macintosh: Devices Apple Desktop Bus Manager; Device Manager; Disk Driver; Power Manager;
SCSI Manager; Serial Driver; Slot Manager

Inside Macintosh: Intera pplication Communication Apple Event Manager; AppleScript Component; Data Access Manager;
Edition Manager; Program-to-Program Communications Toolbox

Inside Macintosh: Networking AppleTalk Data Stream Protocol (ADSP); AppleTalk Filing Protocol {AFP);
AppleTalk Session Protocol (ASP); AppleTalk Transaction Protocol (ATP);
AppleTalk Utilities; Datagram Delivery Protocol (DDP);
Ethernet, Token Ring, and FDDI Drivers;
Link-Access Protocol (LAP) Manager; Name-Binding Protocol (NBP);
Zone Information Protocol (ZIP)

Inside Macintosh (continued)

~

Book title Information on
•

Inside Macintosh: QuickTime Image Compression Manager; Movie Toolbox

Inside Macintosh: QuickTime Components Clock Components; Derived Media Handler Components;
Image Compressor Components; Movie Controller Components;
Movie Data Exchange Components; Preview Components;
Sequence Grabber Components;
Standard Image-Compressor Dialog Components;
Video Digitizer Components

Inside Macintosh: Sound Sound Input Manager; Sound Manager; Speech Manager

Inside Macintosh: AOCE Application Interfaces AOCE Utilities; Authentication Manager; Catalog Manager;
Digital Signature Manager; Interprogram Messaging Manager;
Standard Catalog Package; Standard Mail Package

Inside Macintosh: AOCE Service Access Modules Catalog Service Access Modules; Messaging Service Access Modules

Inside Macintosh: QuickDraw GX Objects Color Objects; Ink Objects; Shape Objects; Style Objects; Tag Objects;
Transform Objects; View Objects

Inside Macintosh: QuickDraw GX Graphics Bitmap Shapes; Geometric Operations; Geometric Shapes; Geometric Styles;
Picture Shapes

Inside Macintosh: QuickDraw GX Typography Fonts; Glyph Shapes; Layout Shapes; Text Shapes; Typographic Shapes;
Typographic Styles

Inside Macintosh: QuickDraw GX Printing Dialog Box Customization; Page Formatting; Printing

Inside Macintosh: QuickDraw GX Printing Extensions Printer Drivers; Printing Extensions; Printing Functions; Printing Messages;
and Drivers Printing Resources

Inside Macintosh: QuickDraw GX Environment Collection Manager; Debugging; Mathematical Functions;
and Utilities Memory Management; Message Manager; Stream Format

Inside Macintosh: Power PC System Sofhvare Code Fragment Manager; Exception Manager; Mixed Mode Manager

Inside Macintosh: Power PC Numerics Conversions; Environmental Controls; Numeric Operations and Functions

Please keep me informed about future volumes in
New Inside Macintosh.

Name

Company

Address

City

State

Zip

APDA

Please tear out card, put in an envelope, and mail to:
Chris Platt
Addison-Wesley Publishing Company
One Jacob Way
Reading, MA 01867

Your main source for Apple development products
Get easy access to New Inside Macintosh and over 300 other programming
products through APDA, Apple's worldwide source for Apple and third-party
development products. Ordering is easy. APDA offers convenient payment and
shipping options.

Call today for your FREE APDA Tools Catalog

1-800-282-2732 U.S.
1-800-63 7-0029 Canada
(716) 871-6555 International

Site licensing is available for many of the
development tools. For information, contact
Apple Software Licensing at (408) 974-4667.

C> 1992 Apple Compu1cr, Inc. Apple, 1he Apple logo, APDA, and Madmosh
are regislered trademarks of Apple Computer, Inc.

THE INSIDE MACINTOSH FAMILY

Overview

0······

Macintosh
Toolbox
Essentials

0
Macintosh Human
Interface Guidelines

Guide to Macintosh
Software Localization

Quicklime

Quick Time
Components

0
Macintosh
Communications
Toolbox

0 Book• of related interest

QuickDraw GX
Objects

QuickDraw GX
Typography

lnterapplication
Communication

More
Macintosh
Toolbox

AOCE Application
Interfaces

Operating
System
Utilities

Memory

Processes

Networking

······0
Inside AppleTalk

by Apple Computer, Inc.

Networking

Inside Macintosb: Networking describes how to write software that uses any of the AppleTalk
networking prorocols. You need this book if you want to w1ite an application specifically designed to
use AppleTalk, an Apple'lalk network server, or a new networking protocol that is a client of any of
the AppleTalk protocols. This book will also el)hance your understanding of Macintosh
communications and collaborative computing products such as the Communications Toolbox and
the PPC Toolbox.

Inside Macintosh: Networking covers the following topics in detail:

• the components and organization of AppleTalk
• how ro select an AppleTalk protocol
• application interfaces ro all AppleTalk protocols, including Name-Binding Protocol (NBP),

Datagram Delivery Protocol (DDP), AppleTalk TransaClion Protocol (ATP), Zone
Information Protocol (ZIP), AppleTalk Session Protocol (ASP), AppleTalk Fil ing
Protocol (AFP), and Apple'lalk Data Stream Protocol (ADSP)

• the Link Access Prorocol (LAP) Manager
• the .ENET driver and Ethernet protocol handlers

Because all Applelalk protocols are implemented as device drivers, to use
this book you should be familiar with the Device Manager, which is
described in Inside Macintosb: Devices. If you wanr to design your own
protocol to work with the Apple1alk protocols or if you want to
implement an Applefalk protocol on a non-Madnrosh platform, you
should also consult Inside AppleTalk.

Inside Macinlosb is a collection of books, organized by topic, that
describes the system software of Macintosh computers. Together,
these books provide a definitive guide and an essential reference
for anyone writing software for Macintosh computers. A graphic
overview of Inside Macintosb appears on the inside back cover
of this book.

Apple Computer, Inc.
20525 Mariani Avenue
Cupertino, CA 95014
408-996-1010
TLX 171-576

9 780201 622690 I
ISBN 0-201 -62269-6

$29.95 us
$38.95 CANADA

Addison-Wesley Publishing Company

