
GRAPHICS
FOR THE MACINTOSH™

GRl\PHICS FOR

An Idea Book

GRAPHICS FOR

An Idea Book

John P. Grillo
J. Douglas Robertson

Bentley College
and

Generic Computing Company

CBS COMPUTER BOOKS

HOLT, RINEHART AND WINSTON
New York Chicago San Francisco Philadelphia
Montreal Toronto London Sydney Tokyo
Mexico City Rio de Janeiro Madrid

Apple<~>, Macintosh,., MacPaint111 and MacWrite'~'~~ are registered trademarks of the Apple Computer
Corp.
TRS-SQ® is a registered trademark of the Tandy Corp.
MacWorlcr" is a registered trademark of PC World Communications.
Microsoft® is a registered trademark of the Microsoft Corp.
IBM<~> is a registered trademark of International Business Machines Corporation.
Generic Computing,. is a registered trademark of the Generic Computing Co .. Inc.
HP-150 is a registered trademark of Hewlett-Packard Corp.
Star Wars is a registered trademark of Lucas Films
Commodore 64111 is a registered trademark of Commodore Business Machines.

Acquisitions Editor: Deborah L. Moore
Production Manager: Paul Nardi
Composition: The Publisher's Network
Cover Design: Anthony Frizano
Illustrations: Grillo and Robertson

First distributed to the trade in 1985 by Holt, Rinehart and Winston
General Book Division

Copyrigh~ 1985 CBS College Publishing
All rights reserved.
Address correspondence to:
383 Madison Avenue. New York, NY 10017

Library of Congress Cataloging in Publication Data

Grillo, John P.
Graphics for the Macintosh.

(CBS Computer Books)
1. Computer Graphics. 2. Macintosh (Computer) Programming. I. Robertson, J.D.

(James Douglas), 1943- . II. Title. Ill. Series.
T385.G7471985 001.64'43 84-25254

ISBN 0-03-000477-2

Printed in the United States of America.

Published simultaneously in Canada.

5 6 7 039 9 8 7 6 5 4 3 2 1

CBS COLLEGE PUBLISHING
Holt, Rinehart and Winston
The Dryden Press
Saunders College Publishing

Dedicated to
Betsy and Celia

Their patience and encouragement reduce the burden that writing imposes on
our private lives.

Chapter 1

Chapter 2

Chapter3

Table of Contents

PREFACE xiii

INTRODUCTION xv
What are Computer Graphics? xv
Printer Graphics xvi
Character Graphics xvii
Pixel Graphics xvii
Macintosh Graphics xviii
Advanced Graphics xviii
MacPaint xix
Microsoft BASIC and Graphics Programming xix

SKETCHING
The Brush 1
The Spray Can 5
The Brick Wall 7

MORE MACPAINT
Marquee 11
Text 12

Application 1 : Row of Macs 13
Application 2: Business Card 15
Application 3: Annotated Artwork 17

GOODIES
Application 1: Venn Diagram 21
Application 2: H IPO Chart 26

1

11

21

ix

x GRAPHICS FOR THE MACINTOSH

Chapter4

ChapterS

ChapterS

Chapter?

ChapterS

ADVANCED DESIGN
Application 1: Chelmsford, Waltham,
Buenos Aires Fonts 29
Application 2: Icons 31
Application 3: Racing Invitation 33

A MACPAINT RECREATION
Application: Tangrams with MacPaint 38
Using MacPaint to Produce Tangrams 40

PROGRAM PLANNING
Top-down design 46
Steps in Program Planning 47

Structured Programming 52
Menus and Submenus, Main Programs
and Subprograms 57

General Structure 60

MAC, THE USER, AND BASIC
Introduction: In Defense of BASIC 63

Program Development Tools 65
CHAIN 66
COMMON 67
CLEAR to Increase Memory 68
User Interaction with the Mouse 70
Annotated Menu Listing 71

PIXEL GRAPHICS AND ICONS
Application 1: Binomial distribution 79
Notes: 83
Application 2: Mathematically Derived Curves 84
Prolate Cycloid 84
Curtate Cycloid 86
Involute of Circle 86
Cardioid 88
Evolute of Ellipse 90
Hypocycloid of Four Cusps (Astroid) 91
Roses 93
Application 3: Birthdays 95
Application 4: Stars and Motion 97
Shooting Star 98
Enlarge Star program 1 03
Racing Stars program 105
Approaching Star program 1 08
Revolving Stars program 111

29

37

45

63

77

Chapter9

Chapter 10

Chapter 11

TABLE OF CONTENTS xl

CLOCKS
CALLs to Text Management Routines 117

CALL TEXTFONT(n) 118
CALL TEXTFACE(n) 118
CALL TEXTSIZE(n) 119
CALL TEXTMODE(n) 119
Application 1: Wall Clock 119
Application 2: Digital Clock 123
Application 3: Two Clocks 125
Application 4: Mantel Clock 127
Application 5: News Room Clock 129
Application 6: Egg Timer 131
Conclusion 133

117

THE LINE COMMAND 135
LINE Instruction 135

Using Angle and Radius with LINE 136
Advanced Applications of LINE 138

Tessellation 138
ANGLEWALK: Random Tessellation with LINE 138
Square Tessellation: 141
Diamon Tessellation 142
Four-pointed Star Tessellation 143

Complex Tessellation 144
Suggestions: 145
Stars and Circles 146

Sierpinski Patterns 149
List of References on Fractals 152
Centered Sierpinskis 153
Bent Sierpinskis 156

THE DRAW SUBROUTINE
The DRAW Command's Syntax 159

Motion Commands: 160
Options: 162
Modes: 162

DRAW Subroutine 163
Process Move 164
Process Directed Move 164
Process Pick Up Sign, Digits if any 165
Applications of DRAW Subroutine 165

Alphabet Generator 171

159

xll GRAPHICS FOR THE MACINTOSH

Chapter 12 MOUSE TANS 181
Commonly Used Variables 190

Other variables 192

Chapter 13 CHART APPLICATIONS 197
Raw Data Program 197

Application 1 : Piechart 199
Application 2: Icon Chart 204
Application 3: Bar Chart 207

INDEX 213

Preface
As every user knows, the Macintosh is a vastly different machine from the

traditional personal computer. Its ancestry may include the venerable Apple-II, but
it doesn't resemble it in any way.

Never before in the history of computing has a machine's usability been so
dominated by its capacity to produce graphic images. The Macintosh is driven by
its ability to generate excellent graphics. Even when it produces text and numbers
on the screen, it does so by drawing them. It relies on its high resolution and superb
built-in programs to generate every image that the user sees.

When the Macintosh was introduced early in 1984 (who can forget that Superb
owl Sunday?) it had two applications programs that were user-ready- MacWrite,
a friendly word processing program, and MacPaint, an incredibly different pro
gram to produce graphics. Within a month of the hardware's release date, Micro
soft BASIC became available, further expanding the computer's flexibility. It was at
this time that we became involved with Holt, Rinehart, and Winston Publishers to
produce this book.

This book is the first in a series of books to be written for the Macintosh computer.
It is certainly the most enjoyable project we have ever undertaken, given the fact
that the Macintosh is so highly graphics oriented. It is not our first book on graphics
for microcomputers, but it is certainly the most different ofthem. We have spent an
enormous amount of time developing techniques and programs to produce
graphics in the past several years, either for our college courses, or for a book we
were writing. Only when we began this book, however, did we feel utterly comfort
able with this engrossing topic.

Our goal is to stimulate our readers to explore the Macintosh's abilities. We
provide ideas in the form of small sequences of activities for using MacPaint, or
small programs in Microsoft BASIC. These activities must not be confused with the
well-developed applications that we leave up to the reader to produce. Our aim is
to give away some of the tricks that we have learned in our combined three dozen
years of computing experience. We simply seed the territory. lfs up to our readers
to cultivate and harvest the rich rewards of computer-generated graphics applica
tions.

All of the material in this book was prepared on an "as-delivered" Macintosh with
64K of ROM and 128K of RAM. It was delivered in March of 1984 in its standard
configuration with a single 3.5 inch built-in disk drive. With the computer, key
board, and mouse we also got a 9.5 inch carriage lmagewriter printer. The only
software we used was the MacPaint (both the 1.0 and 1.3 versions, the latter
becoming available in May of 1984) and the Microsoft BASIC. With this hardware
and software, we explored the great graphics that the Macintosh can produce.

The book is in three major parts: Part I is an exploration of MacPaint graphics;
Part II introduces good program design techniques; and Part Ill describes by
example some of the possible graphics projects that you can design using Micro
soft BASIC. It is in these last chapters that we pull out all stops and present some

xiii

xiv GRAPHICS FOR THE MACINTOSH

graphics programs that could lead to full-blown commercial programs written by
you, the reader. Our philosophy has always been to let the reader in on our
development ideas. We begin playing around with techniques, and when we have
a working program that uses some of the tricks we've discovered, we move on to
something else. Our hope is that many of our readers will pick up where we've left
off, and will produce well-designed, useful, rewarding commercial products.

What are Computer
Graphics

Simply stated, computer graphics is the most exciting output that a computer can
produce. A computer- every run-of-the-mill computer- can deal with numbers
and words. But it takes a major effort for these machines to generate pictures.

input
data

2 0
I 6

words
3

computer

processing

vulues
3.14159

-47
865112 0

documents

XV

xvl GRAPHICS FOR THE MACINTOSH

Pictorial output from a computer is the third of the three primary forms of
computer output, and it is swiftly becoming the most popular. It is safe to say that
the production of computer pictures is a relatively recent phenomenon. Computer
graphics was too difficult and too expensive for general use until the 1970's. Before
that time, computers were most often used in business to produce reports, and in
science and engineering to calculate.

Printer Graphics
When a computer printer "draws" a picture of a puppy, or a spaceship, or any

other image by printing a series of letters one line at a time, we refer to it as printer
graphics. The sketch of the house below is an example of this kind of computer
generated graphic image.

X

X X

X X

XX X X

XX X

X' X

X X XXX X X

X XXX xxxx X

X XXX xxxx X

X xxxx X

X xxxx X

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

This kind of computer-generated graphic image is simply a different use of the
printer. Calculations don't enter into it, nor do special types of hardware or
software.

INTRODUCTION xvii

Character Graphics
Another form of image that the computer can produce with only slightly more

advanced hardware (and some tedious programming) is that sort produced using
special characters aside from letters, digits, and punctuation. For example, some
printer-computer combinations can make images using special characters like the
ones below:

[] I \ + • A " ~ D ¢

Any image that is produced by printing these characters in straight lines one after
another is simply an alternate form of the primitive printer graphics we mentioned
above.

Pixel Graphics
It's only when the computer works together in concert with the screen and deal

with individual spots of light that we can explore its full image-generating potential.
All computer screen images are made up of individual spots of light or darkness
that are called pixels, or picture elements. Each spot is represented within the
computer as a single small piece of information, and several such pieces of

Jagg1 es with

low resolution Smooth 11 ne with

high resolution

xvlll GRAPHICS FOR THE MACINTOSH

information can work as a group to produce a character. If you look closely at any
character a computer forms when it prints, you can make out the pattern of dots
that make up the whole.

Normally, a computer has a fixed set of patterns for upper and lower case letters,
digits, and special characters. When it produces text or numbers for output, those
patterns are projected onto the screen to make up the words and values. However,
when such a computer works with graphics images, it assumes a different imaging
process, whereby the entire screen is a map or a sketchpad onto which the
graphic image is placed one dot at a time. This form of graphics is measured by the
screen's resolution, or its number of rows and columns of individually addressable
spots. Typically, these computers have a resolution of from 100 to 1000 columns
and from 50 to 1000 rows.

If a computer has a resolution of 1000x1000, it must be capable of storing one
million addresses for each image. This amount of memory is rarely available on
personal computers, so most of these have a resolution of 350 to 500 rows by 200
to 400 columns. With this level of resolution, most images lose their jagged edges,
or jaggies, so that circles look round and lines look straight.

Macintosh Graphics
The Apple Computer Company has made the Macintosh, patterned after its Lisa,

to be a pure graphics machine. By this we mean that not only does it produce
graphics images one small spot, or pixel, at a time, but it also produces its text the
same way. There is no set way to print the letter "a" in the Macintosh, as is the case
with most other computers. It is this feature above all others that distinguishes the
Mac from its brethren. Because of this property, a screen full of text can have
graphics painted onto it, and a graphic image can have words around it.

This ability to mix text and graphics is extremely powerful. It means that your
drawings can be labeled easily. Also, it means that your traditional computer
programs that generate text and values can be embellished with pictures pro
duced by the computer. We explore both approaches in this book, as you will see.

Advanced Graphics
The topic of computer graphics is a highly technical one, and it is governed a

great deal by what the computer in question can and cannot do. For example, the
Macintosh cannot (as yet) produce color on the screen. Therefore we must
consider color graphics images to be beyond the scope of this book.

We also avoid some of the more advanced topics in college-level computer
graphics courses, such as windowing, clipping, animation, and three-dimensional

INTRODUCTION xix

images. This doesn't mean that the Mac can't do these things; rather, the topics are
of a technical nature that is beyond the scope of this particular book. The two topics
we do cover in detail are MacPaint and Microsoft BASIC graphics programming.

Mac Paint

The MacPaint program as supplied by Apple is such a superb piece of software
that we cannot recommend it enough. MacPaint is a program with which the user
can produce pictures immediately, and as an extra bonus can add text to those
pictures. We devote the first five chapters to an exploration of this remarkable
program.

Microsoft BASIC and
Graphics Programming

BASIC is a familiar language to many. Secondary schools are adopting it more
and more as a standard introductory programming language because it is so easy
to learn and because BASIC programs can run on practically all small computers.
Microsoft BASIC has become something of a standard among the varieties of this
language, and the Microsoft BASIC that runs on the Macintosh is extra powerful
because it has good graphics commands and because it takes advantage of the
Macintosh set of pre-programmed graphics software.

The last five chapters of this book dig into the use of BASIC as a method for
producing graphics. This is not to say that Microsoft BASIC on the Macintosh is
limited to graphics. Instead, we are emphasizing the use of g raphics programming
as an enhancement to the large number of programs that produce text and values.
We include several programs that produce business charts in this section of the
book to show how graphics and text can mix and how graphics improves the
computer output.

We have left many programs in their skeletal state for a purpose. We want you to
take them and modify them to suit your needs. We expect you to push here and
pull there, to tweak the programs to your liking. We invite your reactions to them,
and would consider it a high compliment to see a variation of one of our efforts
become a best-selling piece of software.

c A A p T E R 0 N E

SKETCHING ,

This chapter starts the book with some of the elementary tricks you can use with
that phenomenal piece of software, MacPaintT", written by Bill Atkinson of Apple
Computer. If you still haven't invested in this application program, we recommend
that you do so as quickly as you can, because it justifies anyone's purchase of the
hardware. We will start with some primitive techniques. We can't guarantee that
you will turn into an artist overnight. We didn't, as you will see. But we feel
comfortable with the computer, and we have felt more free to "be artistic" as a
result.

When you select and open MacPaint, either through the pulldown menus or by
double-clicking, you are presented with your palette and sketchpad. Around the
border you will find the patterns and techniques you can select; the mouse and
your imagination are all that are necessary to do some pretty fancy sketches.

The Brush
The most direct tool for drawing freehand with the mouse is the brush, which is

highlighted in Illustration 1.1. The squares in the left border show the tools that can
be used. You can select any tool in the left border by clicking the mouse once. If
you select the pencil, (found immediately to the right of the brush) as your tool, the
shape your pencil will use is always a single thin line. As with the pencil, the shape
that your brush will use is not the one shown at the bottom left corner of the palette,
which is reserved for polygons, ovals, and freehand. To change the brush, you
have to click the Edit menu item, (Illustration 1.2) then select the Edit Brush Shape
as shown in Illustration 1.3.

In our initial play sessions with MacPaint, we discovered how forgiving the
program can be when dealing with rank amateur artists. Consider the drawing of a
tree. You have to draw the trunk, some large limbs, some smaller and smaller ones
(more and more of them) until you are faced with all of the thousands of leaves. And
if you want a foreground and horizon, you have those to contend with also.

To draw the trunk, select the fattest brush shape (from Edit Brush Shape), and
make sure the pattern is pure black (the large square at the bottom left is black,

1

2 GRAPHICS FOR THE MACINTOSH

indicating the pattern selected). Then drag the mouse down, roughly in the middle
of the screen as in Illustration 1.4. Select a thinner brush and now draw (with
dragging) several large limbs (Illustration 1.5). You can go back to select an even
thinner brush and draw some smaller limbs, but you don't have to (Illustration 1.6).

Illustration 1.1 The MacPaint palette and sketchpad

Illustration 1.2 Brush selection

SKETCHING 3

·~/ " •' ,•

• • / " .. ··

• • / ' •' ..

Illustration 1.3 Edit Brush Shape display

Illustration 1.4 The tree's trunk

4 GRAPHICS FOR THE MACINTOSH

Illustration 1.5 The tree's major limbs

Illustration 1.6 All of the tree's limbs

SKETCHING 5

The Spray Can
Now, here's what we mean by MacPaint being forgiving. Certainly you can't say

that any one of the sketches is like a tree. The limbs are too uniformly sized, they
end in that funny round shape, and there just doesn't seem to be enough of them.
But now if you spraypaint some leaves, you can hide all of these imperfections, and
those fat limbs are barely visible through the bushiness you've produced (Illustra
tion 1. 7). You spray on the leaves by selecting the spraycan from the tools along the
left side and dragging rather quickly through the branches of the tree. Hint: If you
see that the tree is turning black (you left the spraycan on too long in one place) you
can lighten it by selecting a different pattern - say, the random dots in the top
center, or the pure white pattern at the bottom left- and spray that pattern.

Now, you need to draw your horizon and some background and foreground.

Illustration 1. 7 Tree after spraying leaves

Using a brush of medium thickness and a dark (but not black) pattern (such as the
fourth one in the top row) , drag a line across the screen. That light streak across the
trunk of the tree can be repaired later with a black brush. Then pick up pro
gressively lighter patterns and spray the area below the horizon from top to bottom
(Illustration 1.8).

We will leave you to your own devices in polishing this masterpiece. You need to
take care of that light streak in the trunk, and to shape the bottom of the trunk with
the brush so that it doesn't look so squatty. Also, you can spray some fluffy clouds
in the sky, or a moon, or birds, or a Mack truck if that's your preference (Il lustration
1.9).

6 GRAPHICS FOR THE MACINTOSH

Illustration 1.8 Tree with horizon

Illustration 1.9 Tree with g rass

SKETCHING 7

The Brick Wall

Some of the most enjoyable aspects of MacPaint are the pre-programmed
patterns that you have at the base of your palette. You have fish scales, webbing ,
regular dots, random dots, diamonds, waffle tiling, bricks across and diagonal,
even ceramic roof tiling for those houses in the Provence area of Southern France.
One of our favorite applications of MacPaint is the Graffiti Wall. This sketch is simply
a wall of bricks onto which we spray, or crayon, or paint, our favorite sayings as in
Illustration 1.10.

Try this:

1. Select the empty rectangle from the tools (sixth one down, leftmost column).

2. Place the cursor (mouse arrow) in the upper left area of the sketchpad.

3. Drag the mouse to the lower right corner of the sketchpad, and let go.

4. Fill this rectangle with bricks. Select the horizontal brick pattern.

5. Select the paint bucket to completely fi ll the rectangle with the brick pattern.

6. Click the mouse anywhere within the rectangle. Voila! Your brick wall.

7. Select a brush shape to your liking and write your message.

8. To put a crack in the wall, select a white pattern and brush in the crack .

•
Illustration 1.10 The graffiti wall

8 GRAPHICS FOR THE MACINTOSH

9. To erase a message you've already written, don't use the eraser! You will
erase your bricks as well. Select the brick pattern and the spraycan, and
spray the bricks back on. Or you can paint the bricks back on using the
brush. As you brush or spray, that pattern appears as a replacement of the
old.

We will end this chapter with a few selections from our own ever-growing
scrapbook of art. All of the following sketches (Illustrations 1.11 through 1.14) were
done with brush, bucket, spraycan, rectangle, and circle. We used some of the
existing patterns, and we used the Edit Brush Shapes feature.

: . ·. . ·~- --. ~ . . .
I • I

:- ·-: ····-~··· ·-7·: ... _.: !-'' ;
. '

; ... - ·t-- I , __ .i_,-' ; ; 'i
: ~ L ~ A~ ! !
f -r ~·-· ~~ -·
:. .- -~~--±:;;"'""~~7;jiiii!~'IW
r··· ·t-·t .. -r -·: «# ~ .. ·-~
• • ••. • •. - .: ... =· . ~ .• - •. .

! : I •

• 0 ••• _ ; ____ !, .. . i .. ___ .

Illustration 1.11

-
Illustration 1.12

SKETCHING 9

Illustration 1.13

Illustration 1.14

One last technique that you wi ll want to use often, or until you run out of disk
space, is the save activity. Simply click the file menu entry, drag to the save entry,
and follow the directions.

c H A p T E R T w 0

MORE
r\4ACPAIN I

The first chapter introduced the MacPaint sketching area, and demonstrated a
few of the tools and patterns that you have available to you. This chapter expands
on those features, and puts particular emphasis on the use of two features that
make MacPaint especially powerful- the marquee and the alphabet.

© I
.... Marquee

The marquee is the top tool in the second column, just above the capital A. Notice
that it is made up of dashed lines, unlike either the empty rectangle or the filled
rectangle in the sixth row. This signifies that if you select the symbol and click-drag
a rectangle on the screen, you will draw not the usual solid-line rectangle, but an
area surrounded by a series of short lines. The lines rotate around the area like a
movie marquee, hence the name for this tool.
Once you have selected the marquee and have used it to outline an area on the

screen, you can do several things:

1. MOVE: Place the pointer inside the rectangle and drag the picture to a new
area of the screen.

2. COPY: Hold down the OPTION key and drag the picture to another area. The
original picture stays where it was, and the copy, if it was dragged only partly
off the original, will overlay it.

3. SHRINK: Hold down the COMMAND key and drag . You can stretch or
shrink in either direction, vertically or horizontally. This technique can modify
a text font or change the aspect of a figure.

11

12 GRAPHICS FOR THE MACINTOSH

Text

The Macintosh can mix text and graphics easily. Indeed, this feature alone makes
the Mac a singularly valuable tool on the desk of a marketing manager, an
advertising agent, a student, an author, a software documentation specialist, and
just about anyone who has to place figures in text, or text in figures.
When you have the MacPaint palette on the screen, you have all of the traditional

artists' tools, available such as brush, spray can, pencil, and patterns instead of
colors. But you also have in front of you a wealth of print fonts, types, styles, and
sizes. With these you can annotate your figures with highly personalized mes
sages. To use these powerful tools, you simply select A-alphabet or text gener
ator, choose a font from the Font menu, a font size from the FontSize menu, and a
style of type from the Style menu. The Macintosh even suggests optimum font sizes
after you choose the font by outlining what looks best. For example, Venice font
looks best in 14-point type; Chicago, in 12-point; Monaco, in 9 or 12; and Geneva
and New York looks fine in all sizes: 9, 10, 12, 14, 18, and 24-point. Cairo is one of
our favorites because it's made up of all graphics ideograms satirically suggesting
Egyptian hieroglyphics. It looks best in 18-point, although many other sizes are
available.
Illustration 2.1 shows Cairo font characters with their key assignments in 18-point

size.

~ .9 :~9~: • l a , ~ 1C • w [] ... - ! @ • $ X & * () + -
® f $ ~ & ~ ~ <l '(;{ ~ h

1 2 3 "\ 5 6 7 8 9 0 - a

lH fill . rl!lliJ ~ - l!IDl ,. ~ $ =§ ~ ll ~ i
Q u E R T y u 1 0 p (} I

'*
... ._. .. ~ ~ :g, l ~ 117 ... ~ .R

q D e r t y u I 0 p [] \

J IBI glj) N ~ ~ * .. ~
e<

'35"""88' ..,
A s D F G H J K L : .
(J "1/V'.r AI: t a 1:,1 If ,. t::\ [~
a s d f 9 h j k 1 ;

~ " • f ~ ·- ~ ~)J .•
2 X c u B li n <) ?

~ + ~ <0 60 ~ 0 j - ¥
z X c u b n ll . I

Illustration 2.1 Cairo font characters

MORE MACPAINT 13

Application 1: Row of Macs
We have chosen this application first because it demonstrates both the marquee

and the alphabet, or text generator. The screen image shown in Illustration 2.2,
which we have left untitled, shows a design that is familiar to all Mac users. The
stylized outline of computer, keyboard, mouse, and apple are on the Scrapbook,
so we didn't have to sketch that image. Here's the list of steps you need to perform
in order to produce the image in Illustration 2.3.

1. Select Scrapbook from Apple menu (at top left of screen).

2. Select Edit menu and COPY scrapbook selection to clipboard. You see
nothing to indicate the action, but after this activity, you have the image both
in the scrapbook and on the clipboard. Be careful: do not CUT the image
from the scrapbook, because that will remove it from the scrapbook, and it
will not be available to you for other purposes.

3. CLOSE the scrapbook - cl ick the square at the top left of the scrapbook
window.

4. Select PASTE from the Edit menu. By selecting the activity, you place the
contents of the clipboard into the MacPaint sketch area. Notice that the
image seems to vibrate. It is made up of blinking dashes. And if you move the
mouse, the cursor (pointer) on the screen is no longer an arrow but a lasso.
This is like a marquee, except that its shape conforms to the image's outline,
and not a free-floating rectangle outside the image.

5. Place the lasso inside the vibrating figure until it is a vibrating arrow. Take
care with this operation. You can't operate on this image if the pointer is a

,

2/5 ~

Illustration 2.2 The Scrapbook, source of our design

14 GRAPHICS FOR THE MACINTOSH

Illustration 2.3 Row of Macs

lasso. It must be a vibrating arrow. If you try to click-drag the image else
where on the screen while the pointer is a lasso, the image suddenly gels and
you find your pointer forming a line, the beginning of a new lasso.

6. Click-drag the vibrating image to the bottom left of the screen.

7. Select the Marquee and form a smaller square slightly above and to the right
of the now-solidified image. This step is one of the Mac's fascinating features.
What you have done is to provide the PASTE command in the Edit menu with
a smaller window to use for placement of the Clipboard's image.

8. PASTE the image into this smaller marquee.

9. Repeat Steps 7 and 8 until you are satisfied.

10. Select the Los Angeles font from the Font menu.

11 . Select font size 24 from the Style menu.

12. Select A-text from tools Gust below marquee).

13. Move the cursor (now a bar) to top of screen , and click it into position. If you
don't click the cursor, you cannot type text. When you click the cursor, you
can tell that you are ready to type because the cursor is now a blinking bar.

14. Type "Macintosh".

MORE MACPAINT 15

An alternate procedure is a bit more tricky, but will give you practice in handling
the SHRINK operation with the marquee. Replace Steps 7 and 8 above with the
three steps shown below:

a. Select the marquee and frame the full-size image on the screen. Do this by
clicking at the upper left corner of an imaginary rectangle around the image,
then dragging to the bottom right of that imaginary rectangle. You form a
rectangular marquee around the image.

b. Drag a copy of this image (hold down the Option key while you move it to its
new position, sl ightly higher and to the right of the old image).

c. SHRINK this new image to size. Click the arrow at the bottom right of the
marquee, and drag it slowly toward the upper left corner.

Application 2: Business
Card

The principal reason we have chosen to discuss this application here is to
introduce the concept of constraint, which allows you to sketch straight lines
vertically or horizontally, draw perfect squares or rectangles, and even erase more
neatly. We also use the lasso to select and move areas of design or text (Illustration
2.4).

1111

(617) &91-0000
(617) 256-0000

Generic
Computing
Company

5 Stoveburden
Software Specialist

Illustration 2.4 Business card

16 GRAPHICS FOR THE MACINTOSH

1. Draw the frame of the business card. There are several ways you can do this.
The simplest procedure is to select the thickness of the line from the menu at
the bottom left of the palette, select the rectangle, and click-drag the business
card's outline. You can repeat the procedure inwards for a frame of several
lines.

Or you can have a faricy frame made up of one of the patterns at the palette
by selecting a brush shape, palette pattern, and brush. Then draw the
edges, but hold down the shift key (constrain your motion to a straight vertical
or horizontal while dragging to keep the lines straight. The hard part of this
procedure is the cleaning up afterwards, when you have to erase the extra
overflow at every corner - unless you're lots better than we are at stopping
where you should. Hint: Select the Grid from the Goodies menu to keep your
brush from drawing too long a line.

2. Select line (fifth down in leftmost column) to build the UPC symbol. Use
constraint again to keep your lines vertical, and select your line thickness
from the bottom left menu. Don't worry about the length of the lines, as you
will clean up the top and bottom later.

3. Use the Eraser to clean up the UPC symbol. Use constraint (the shift key) to
keep the eraser moving in a horizontal line.

4. Select New York font, fontsize 18, style bold. To select the style, you can pull
down the menu and click the selection, or you can type command-8 (hold
down the command key and press B).

5. Select the alphabet and click pointer (now a vertical bar) to the right of the
UPC symbol. Type:

Generic
Computing
Company

6. Lasso the letters and drag them into their correct position.

7. Select Fontsize 12, A. Type (in vacant location at bottom left):

(617) 891-0000
(617) 256-0000

8. Lasso and drag phone numbers into position.

MORE MACPAINT 17

9. Click in lower right corner of screen. Select Style =Align Right (Illustration
2.5)and type:

B Stoveburden
Software Specialist

10. Lasso and drag this latest entry to appropriate spot on card.

We encourage you to design your own business card, or greeting card. Imagine
the possibilities. With Cairo font full of little designs and your own artistic skill and
imagination, you can design some pretty fancy documents - whether they are
invitations, greeting cards, business cards, posters, or announcements.

r a File Edit Goodies

(6 17) 39 1-0000
(6 17) 256-0000

B Stoveburden
Software Specialist

Illustration 2.5 Style menu with selections highlighted

Application 3: Annotated
Artwork

Illustration 2.6 is a simple sketch of two heads facing each other, but its production
requires the use of some advanced techniques. You will use constraint to make a
perfect circle, and you will flip an image.

1. Using the filled circle with the standard black pattern , draw the head by
dragging with constraint (shift key) to form a circle.

18 GRAPHICS FOR THE MACINTOSH

Illustration 2.6 Two heads facing each other

2. Select the white pattern and draw a small white circle (drag with constraint) in
an open area of the screen.

3 . Lasso the small white circle and drag it into position as the eye.

4. Select the Line and draw from eye to tip of nose, then toward face, then down
the length of the chin. On this last line, you can use constraint or you can take
care to draw a perfectly vertical line. Then draw a horizontal line toward the
neck, another line down for the neck, another horizontal left, and finally the
vertical line at the back of the head. When you are doing this sketching,
remember that all of these lines will be used as outlines to be painted black,
so it's safe to go too far toward the center.

5. Fill in the blank spaces with the paint bucket and the black pattern.

6. Select Fatbits from the Goodies menu to touch up the chin so that it is more
rounded. Notice that the upper left of the sketchpad has a miniature picture
of the enlarged (fat bits) section on the screen. This little sketch is often helpful
for you to locate where you are on the original drawing. Select the grabber to
move the image around so that the sketchpad is magnifying the chin. Round
the chin by using the Pencil to erase individual pixels. A pixel (from Picture
Element, is the smallest graphic element available on a computer.) Every
click on a black pixel erases it, and every click in a white area draws a black
pixel.

7. Select the Marquee and outline the entire head. Duplicate it by dragging it
with the option key pressed. Be sure to drag it off the original sketch
completely. Then, while the marquee is still around the duplicate, select Flip
horizontal from the Edit menu.

MORE MACPAINT 19

8. Select Alphabet, Fontsize 18, London Font, Style Align middle. Position the
cursor above the head on the left, type "Left", some spaces, and "Right".

This exercise may seem trivial, but it contains the elements of many application~
beyond the simple sketch we have provided. Consider, for example, stretching or
shrinking the head in either direction to change the aspect of the head. Or you
could shrink one or both of the heads to token size so that you can use them as
symbols within text.
The power of the flip horizontal, flip vertical, and rotate in the Edit menu must not

be overlooked. With these commands, for example, you can produce a fancy
frame corner once and position it at all four corners of your sketch.

c A A p T E R T H R E E

GOODIES

When the graphics capabilities of the Macintosh are compared to those of most
other personal computers, two features of the Mac keep surfacing as distinct
advantages. First, the computer is very easy to use; it is, in the popular jargon of the
day, user friendly. We have mentioned this before, and in so doing we pointed out
that this feature came at the cost of high memory overhead. So be it. The ease of
use of a computer is still an exemplary goal, and the compromise of some memory
is worthwhile.

The second advantage of the Macintosh is its seemingly natural graphics. When
a user first gets hooked on MacPaint, which is usually about three minutes after the
diskette is inserted, he or she dispovers feature after feature, tool after tool,
technique on top of technique-all with relative ease and comfort. Bill Atkinson,
Macintosh's programmer, obviously understood the user very well to be able to
make MacPaint this easy to use. The layout of tools, menus, patterns, and key
stroke functions has been planned by a person who obviously relates well to naive
users and experts alike.

Two examples of outstanding graphics features are Fatbits (which you have
already seen) and Grid in the Goodies menu. Here we have two tools that are not
unique to graphics systems, but which have been developed with ease of use in
mind. The two applications that we will show you in this chapter rely heavily on
these Goodies, and we encourage you to rebuild them along with our descriptions.
And as you do so, consider the wide breadth of applications that you can develop
on your own.

Application 1: Venn
Diagram

The Venn diagram (Illustration 3.1) illustrates yet another use of mixed text and
graphics, but in this case the layout seems neater, more uniform. Look at the seven
rectangles in the illustration; they are used as keys to the seven patterns that the
three overlapping circles have enclosed. All are exactly the same size. If you take a
ruler to the circles, you will see that first, they are .indeed circles and not ellipses that
are almost circles, and second, all circles are exactly the same size. These

21

22 GRAPHICS FOR THE MACINTOSH

~ nonoco

~ GeneYc
fili] New York

HE Chlcogo

~ Venice

~ Rthens
II Jl.onbon

Illustration 3.1 Venn diagram

properties were derived with the use of constraint, Grid, and Fatbits.ln order to
construct the Venn diagram:

1. Select Circle from the available tools. Holding the shiftkey down for con
straint, drag diagonally to form a perfect circle.

2. Make a hole in the side of the circle. To show the purpose of the hole, let's go
through a small exercise. You know that you want to have three overlapping
circles, and that you want to see all circles completely. If you make two copies
of the first circle, you can drag them into their approximately correct posi·
tions, but you won't see them in their entirety. Do this:

a. Lasso the circle you have drawn. Holding down the Option key, drag
a copy of the circle to the appropriate place. Notice that you can't see
that part of the original circle which is under the copy.

b. Repeat the step above, making a third circle. This one will seem to
rest on top of the other two. These aren't transparent circles; rather,
they are solid disks! Not what we want at all.

c. Double-click the eraser to get rid of everything, because it will be
much simpler to start fresh .

d. Now let's do it right. With a circle on the screen from Step 1 , double·
click the pencil to get to Fatbits.

The pencil is selected automatically when you get there. Click the
pencil on any dot of the circle so as to leave an opening. Get out of
Fatbits by clicking the miniature picture at the top left of the sketch·
pad.

GOODIES 23

3. Duplicate the circle twice. Do this by using the lasso to make the circle into its
own Marquee. You select the lasso, trace a rope around the circle, and let go.
The circle will seem to vibrate, just as the Macintosh symbol did in the
previous chapter when you pasted it into the sketchpad from the clipboard.
Move the lasso toward the circle until it turns into an arrow, and then drag it to
the location for the new circle. Notice that this time, you see the edges of the
circle below, which are necessary to outline the intersecting areas.

4. Patch the three circles where you had placed the hole to allow the leak. Now
you don't want it. Get into Fatbits by double-clicking the pencil (or select it
from the Goodies menu), and find the three places where you had created
the holes. If you can't see a hole on the portion of the screen that is displayed,
select the Grabber and using a drag operation on the screen with the
Grabber, locate each hole. To patch, pencil in a new dot, or pixel, at each
hole.

5. Select a pattern of your choice.

6. Select the paint bucket from the tools.

7. Click the pattern into one of the seven areas outlined by the three circles. If
your circles have not been closed properly, the paint will leak from one area
to another. In that case, don'tclick. Select UNDO from the Edit menu. This will
remove the last operation to the previous click, in effect removing the paint
where you don't want it.

8. Repeat Steps 6 and 7 six more times, once for each open area of the three
circle pattern.

9. Select Grid from the Goodies menu. This doesn't seem to change anything.
In effect what has happened is that an invisible grid has been placed in the
sketch area that restricts alphabetic characters, lines, and shapes to follow
those lines of the grid.

10. Select the Rectangle tool from the leftmost column. Drag seven rectangles in
a column, one at a time. You will notice how much help the grid is because it
restricts the rectangle's size.

11. Select each of seven patterns one at a time, and using the paint bucket, fill
each of the seven little rectangles with a different pattern to conform to the
seven patterns in the three circles.

12. Selectthe Alphabet as a tool. Then for each of the seven fonts available select
font size 12 and enter the font name next to the rectangle. Again, the invisible
grid helps you to align the text.

This application was a natural tease to a second version (Illustration 3.2). We
selected three classes of people and made them overlap, as does the Venn
diagram on the previous page. We learned a good deal about how to make a full
page-size diagram in the process, so we'd like to share our findings with you.

24 GRAPHICS FOR THE MACINTOSH

r.r.:r.:n
~

[[]

Monoco --Artists

Geneva-- Computer Owners

New York -- Programmers

f!!~ Chicago -- Hardware

~±~;~ Venice-- Oper-ati.f19 Systems

~ Rthens --Software
1111 ~ttbott -- Rlat etnutts

Monaco-- Artists: May or may not have computers

Geneva-- Computer Owners -- In any and all fields

New York -- Programmers: Students~ professional~ all kinds

Chicago -- Hardware: Must be goog for artists and owners

Venice -- Oper-ati.f19 Systems: Owner-s and Pf"O'Jf"ammer-s

R thens -- Software: For Rrtists and Programmers

~ttbott -- Rlatttttosb ®tutttts ba:ut tt all!

Illustration 3.2 Artist's Venn diagram

Follow these steps to duplicate Illustration 3.2:

1. Establish where the original sketch is on the entire page. Select Show page
from the Goodies menu, and you will see where the sketch is by the position
of the dashed rectangle. If you wish to move it elsewhere on the page, drag
this rectangle there. Then return to the sketch itself by clicking Ok on the
screen (Illustration 3.3).

GOODIES 25

Illustration 3.3 Full page Artists Venn diagram

2. Select the Grabber as a tool to shift the picture left. Drag with the Grabber to
shift the picture as far as it will go. Don't worry about the circles moving off
screen. They're still there.

3. Using the appropriate font, enter the text next to the font names al ready
there. When it comes to Athens and London, you must erase the previously
entered font names, select the larger font, and retype the entire entry.

4. Use the Grabber to shift the entire picture up and out of sight.

5. Enter the seven lines of text under the picture.

You can perform several operations on any finished, or partially produced,
MacPaint sketch. All of the actions outlined below can be performed at any time,
and the result is paper output or disk storage of your work.

1. To print the entire picture (page), select Print Draft from the Files Menu.

2. To print the screen only (including the border), press the Caps Lock, Com
mand, Shift, and "4" keys.

3. To print ·the sketch area (or active window), press the Command, Shift, and
"4" keys.

4. To file the entire (page) as a MacPaint document on disk, press the Com
mand, Shift, and "3" keys.

26 GRAPHICS FOR THE MACINTOSH

Illustration 3.4 HI PO chart

Application 2: HIPO Chart
The power of MacPaint as a text management tool becomes evident here. The

HIPO Chart, Hierarchy of Input-Process-Output, (Illustration 3.4) is a commonly
used documentation tool when large, complex programs or systems of programs
are written. Here we show a sample portion of a typical chart, not to describe an
existing system, but to show the process of making the chart.

1. Select the all-black pattern from the palette.

2. Select the filled , rounded rectangle (seventh down, second column) as a tool.
Drag to create an all-black rounded rectangle.

3. Select the all-white pattern from the palette.

4. Position the pointer just above and to the left of the upper left corner of the
drawn black rectangle. Drag a white rectangle across and down, until it
almost covers the old black one. If you go too far and let go of the mouse
button, all is not lost. Simply select UNDO from the Edit menu and try again.

5. Lasso this shape and drag it to the top-center of the screen.

6. Holding down the shift key to constrain movement and the Option key to
leave the original behind, drag a copy of the rectangle straight down to the
center of the screen.

7. Release the mouse, then press it again to select the new copy of the
rectangle. Drag it to the left with Shift and Option keys pressed.

GOODIES 27

8. Release the mouse, then press it again to select the newest copy of the
rectangle. Drag it all the way to the right of the screen with shift and option
keys pressed.

9. Release, select the newest rectangle shape, drag (shift-option again) straight
down to the lower right of the screen.

10. Release, select the new copy, drag (with shift-option) straight left, and posi
tion just right of center below the center rectangle.

11. Release, select the new copy, drag (shift-option) straight left again, to com
plete the placement of the seven identical rectangles.

12. Select Athens= Font, Fontsize 18, Alphabet (A), and type:

HIPO Chart

13. Select Seattle= Font, Fontsize 1 0, Align middle, Bold. Click to middle of each
rounded rectangle and type labels.

14. Select Line as a tool.

15. Draw lines connecting rounded rectangles. Constraint is not necessary,
though it could be useful.

16. Use the eraser to touch up any overdrawn lines.

Consider the possibilities: Program flowcharts, system flowcharts, organization
charts, Gantt charts, PERT charts, ... the list of uses for this simple series of
techniques is endless. We leave you to their exploration and exploitation.

c A A p t E R F 0 0 R

The Macintosh is a singular computer in that it uses screen and printer graphics
as a method for producing all of its text. When you select 12-point Geneva Bold,
you will produce that font on the screen from a description of it in the Macintosh
system files. The design of this font, size, and style are all stored pixel-by-pixel as a
graphic image. This is quite different from the character generators used in most
other computers. When you are using those machines, you are limited to the single
font that the system has described to create its characters on the screen. Some
times, that character generator is limited solely to capital letters, as in the venerable
Apple-11 computer. You will discover in this chapter that the Macintosh not only
provides a wealth of fonts and styles of its own, but that you can exercise MacPaint
to produce original fonts of your own.

This chapter deals with two subjects only-and both relate closely to the use of
Fatbits in the Goodies menu. The two topics are the production of a font and the
production of icons. You are familiar with this term already, because your Macin
tosh uses icons to symbolize files, pictures, applications, and various other types of
operations or software. An icon is simply a graphic image that acts as a symbol.
When that icon is used properly, it becomes associated with a specific action, or
property, or some other characteristic. We will introduce you to the production of
icons that relate to Olympic sports activities, although you could have similar icons
for many other areas of interest.

Application 1: Chelmsford,
Waltham, Buenos Aires

Fonts
Illustrations 4.1, 4.2 and 4.3 show a few of the fonts available on the Macintosh.
The font we show in Illustration 4.3 may seem familiar, sort of like a weird variation

of the Chicago font that the Mac uses in its top-line menu displays. Upon closer
inspection, though, you will spot several differences, which of course make it a font
of its own. For example, the capital letter "S" is quite different, with fat serifs at the
tails, instead of the thin ones Chicago uses.

29

30 GRAPHICS FOR THE MACINTOSH

A b c d E F g h . j K L .l m n [] p
q r 5 T u v W x
L,l z I. 2 3 ... 5

E. 7 aq o
chELmsFcrd

Illustration 4.1 Chelmsford font

1_11_ 1- _I 1: I_ 1: 1_1 I I 1/ I
I I 1_1 J_ 1_1 I_ I J_l I I J _I J' J_

J-1-1 J-1 J-1 1-1 J-1 J-1 ~- -~- I I I I
I I I I I J_l ~- I~ I' :1 I 1_1 I/

I I I'/'/ -7
JJ_I /' J ~-

1 -. -~ 1_1 ~- ~- -~ ~-· ~-· J-1
I 1- -~ I -~ 1-1 I 1-1 -~ 1/1 .-.-. .-.: .-. .-. .-.

Illustration 4.2 Waltham font

ABCOEFGHIJKLM
ttOPQRSTUUWX!:IZ
abcdefghi j kim
nopqrstuuwxyz

- 1234587890
ll-fr Buenos Aires

Illustration 4.3 Buenos Aires font

ADVANCED DESIGN 31

How did these letters get to be formed? There are three ways to produce fonts
easily on the Macintosh using MacPaint:

1. Produce a screen image of all letters (upper and lower case) and digits, and if
you are brave, all special characters as well, of an existing MacPaint
font-such as Geneva, or Chicago, or Venice. Then isolate each letter and
alter its pixel image in Fatbits to suit a particular style of your own. When you
are satisfied with your font, save it as a MacPaint file.

2. Start from scratch, preferably in Fatbits, by designing your own font. This is
especially difficult, as it requires a particular talent in producing images of
letters whose overall style is consistent from one letter to the other, and in
upper and lower case. You should try it once, if only to recognize the
graphics designer's peculiar skills.

3. Go to the library, find the section of Graphics or Graphic Arts or Printing and
thumb through the books and magazines until you find some with blown-up
images of fonts. They exist, and in some libraries they are plentiful. When you
find a font to your liking, transfer the letters dot-by-dot from the source to the
Macintosh in Fatbits. This is tedious and unoriginal, but very effective.

Application 2: Icons
Two types of icons are shown in Illustration 4.4: The square images are symbolic

of several Olympic sports and vehicle types. You can easily identify track, swim
ming, hockey, bicycling, skating, and shooting. You can also spot a car, a van, a
taxi, and a car with key, perhaps indicating a safe or secure parking area. One
square shows a diagonal bar from upper left to lower right. That icon is understand
able in any language as "NO".

Illustration 4.4

§)§]~~
~0~~
~~][IJ[1]

32 GRAPHICS FOR THE MACINTOSH

Illustration 4.5 Bicycle icon covered by "NO" icon.

How would you produce a combination icon, say the bicycle and "NO", for a "NO
BIKING" sign? If you simply lasso the "NO" and drag it over the bicycle icon, the
result is the "NO" only, with the bicycle icon hidden beneath it as in Illustration 4.5.

What you must do is to open the "NO" icon so that its image does not hide the
bicycle icon when you drag it. As you did in the previous chapter, you must provide
a flaw in the icon's outline to allow it to bleed over the image. Also, we recommend
that you proceed carefully, copying the icons when you use them so that you can
always keep the original handy. Do this:

1. Lasso the bicycle icon. Drag with the Option key down, into an open area of
the screen.

2. Lasso the "NO" icon. Drag a copy (Option key down) into the open screen
area.

3. Get into Fatbits to make an opening on both sides of the "NO" icon. You must
open both sides because you have two closed areas. That diagonal in the
center would prevent bleeding from one area to the other-unless you make
a flaw in it, of course.

4. Lasso the "NO" icon and drag it over the "BIKE" icon until the edges coincide
exactly. When you let go of the mouse, the result is a "No Biking" icon as in
Illustration 4.6.

Illustration 4.6 "No Biking" icon properly done

The circular icons also shown in Illustration 4.4 are quite different, but their
production is not any more difficult. Consider them as filled circles of uniform size,
each with their symbolic content in white-a simple exercise in Fatbits.

Text may be placed next to an icon (Illustration 4. 7) by dragging the appropriate
letters from either your own font or from some letters you have produced in a
Macintosh font of your choice. In either case, it's best to use the Grid feature in the

-

II •••• • II
II... • •• •• • L •• • • I 1 •••

.. 1 Ia.. .. ••• I ••
II II •• • •••

Illustration 4. 7 Estadio del Mar icon in Fatbits

ADVANCED DESIGN 33

Goodies menu to position the letters. Be careful about Grid, though , because it
controls vertical as well as horizontal motion. You might prefer to use your own eye
hand coordination to position the letters free-hand.

Application 3: Racing
Invitation

The last application in this chapter is a simple idea, yet could be an excellent
application for the Macintosh. Consider the many public functions that organiza
tions sponsor and want to advertise. The production of posters, flyers, advertising
folders, publicity notices, even the tickets themselves to various events, are all
appropriate products for you and the Macintosh. In Illustration 4.8 we present a
possible invitation to a race. It is made as a folding sheet with five separate pages.
We have illustrated four of its ten surfaces. One contains the title of the event, the
second a pattern of icons symbolizing the road race, and the last two the ticket
number.

The image was produced using several of the tricks you have learned. First, the
track icon can be duplicated and the two positioned next to each other. Then the
pair is duplicated as a set of four, that set doubled, and so on until you have the
desired pattern. The entire page of icons can be cleaned up in Fatbits so that joint
bars between the rows and columns of icons are uniform.

The invitation's text is 14-point Venice.

34 GRAPHICS FOR THE MACINTOSH

100
Chd,msford.

AnnuaL
13,000m

Road Race
and.

T rt:Wtor PuU

Illustration 4.8 Road race invitation

The three pages that lend a three-dimensional aspect to the graphic design by
way of their folded look were produced by using Grid to hold the diagonal and
vertical edges parallel.

The digits 1 and 3 were free-hand designs using Grid and the Line tool to outline
the designs. Then the Paint bucket poured solid black throughout the finished
pattern.

The fifth page, of which we see only a part of the back in shadow, was done by
forming a vertical and horizontal line free-hand, although Grid or constraint would
have helped.

We are increasingly impressed with the Macintosh, not only because it is so rich
in features, but also because it is so rewarding and forgiving in its use. Its ability to
allow you to Undo your mistakes, to Erase the too-long lines, to control every pixel
with Fatbits, to duplicate, copy, and move entire images-these facilities are what
artists dream of, and what amateurs like us must have so that we can approach
free-hand art without reservations.

You have available here a tool to design icons of all kinds. Here's a small list that
we generated with little thought:

1. Traffic signs

2. Types of books (Sci-fi , fiction, biographical , ...)

3. Building types

ADVANCED DESIGN 35

4. Vehicle types

5. Kinds of pets

6. Hobbies

7. Occupations

8. Musical categories

9. Kinds of vegetation (bushes, trees, vegetables, flowers, ...)

10. Foods

11. Tools

12. Toys

13. Types of airplanes, boats, cars, ...

14. Categories of television shows

15. Categories of movies

All of these, and many many more subjects, lend themselves to symbolic repre
sentation by icons. The use of icons as quick recognition symbols can only ·
increase in our age of awareness of graphics, and the production of those icons is
made ever more simple with the Macintosh.

c H A p T E R F v E

Tangrams have provided countless people with a simple recreation that mixes
imagination with topological rigor. What are tangrams? What in the world is
topological rigor?

Tangrams are images made from seven specially shaped tiles. The tiles, or tans,
are really the shards of a larger square tile that has been broken into its seven
components. Illustration 5.1 shows the unbroken square tan while Illustration 5.2
shows the exploded tan tiles and their 45° rotations.

Illustration 5.1 Unbroken
square tan

Illustration 5.2 Exploded tan tiles and their 45° rotations

37

38 GRAPHICS FOR THE MACINTOSH

Legend has it that ages ago a Chinese gentleman had a square tile. For some
reason he dropped it, and it shattered into seven pieces. The Chinese proceeded
to lay out the shards of tile into different patterns, with all tiles touching at some
edge. He is supposed to have amused himself countless hours in this pastime
activity, whereupon other people adopted the seven tans as a recreation. Whether
this tale is in any way grounded in truth is highly debatable. We refer you to our
book, More Color Computer Applications, John Wiley & Sons, 1984, pages 109-128
for a detailed discussion of the apocryphal origins of this activity.

Now, let's get to this business of topological rigor. The phrase implies that there
are rules for laying out the seven broken shards, or tans, of the original square tile.
The rules of the placement of those seven tans are: (1) all pieces touch at least one
other piece along an edge; and (2) no piece may rest on or cover any part of
another. These two simple rules provide a framework, or rigor, for making the final
image; they are based on the topology, or the geometric layout while they are
being positioned.

Consider the parallelogram, tile number 7 in the unexploded view in Illustration
5.1. You may wish to use it in a tangram but notice that its orientation is wrong. If the
original tile had been black on top and white below, this piece would be white while
the other six would be black. In other words, we have flipped over this tan. This is
allowed in traditional tan manipulation. It is interesting to note that the paral
lelogram is the only tan whose orientation would not be reversed in this fashion if
the turn-over process were against the rules. All other tans are symmetrical.

Application: Tangrams with
MacPaint

The following procedures are based on tans that were derived from a square tile,
but whose pieces were duplicated to provide 45-degree rotations so that you can
manipulate them more easily with MacPaint.

The rules for producing tangrams are simple:

1 . Use all seven tans of the original square tile.

2. Use no single tan more than once. If you use tile # 4 (large triangle with right
angle pointing right) you cannot use the other # 4 (large triangle with right
angle pointing left and down).

3. Do not place one tan over another. Have them meet at the edges only.

4. Do not isolate one or more tans. All must have at least one edge, or part of an
edge, touching another tan.

5. With our version of the game, you may use any of the tan orientations
available in the exploded view above, and their "flipped" images as provided
using the Edit menu's Flip Horizontal or Flip Vertical or both. For example, tan
7 can be used in any one of these orientations as shown in Illustration 5.3.

A MACPAINT RECREATION 39

Consider the two examples in Illustration 5.4. The one at the left, the stork, is a
legal tangram, which follows all of the rules above. The one at the right, which is
also a stork, is not legal.

Using Edit with
,.-,
I I ... _

flip
rotate horizontal

original --- ~ ""~"' ~
original

rotated 45° 8 ~
Illustration 5.3 Tan #7 shown in all possible orientations

Legal
Stork

Illustration 5.4 Legal (left) and illegal (right) storks

%

Illegal
Stork

flip
horizontal

then
rotate

/w-7

~

40 GRAPHICS FOR THE MACINTOSH

Notice that when you manipulate tans with MacPaint using the flipping and
shifting of all images we have provided, you cannot produce any orientations other
than those in the original exploded tan field and their various vertical and horizontal
flips. This keeps you from producing some tangrams that would be considered
legal in the traditional pastime of tan manipulation, such as those produced with
30-degree rotations.

Using MacPaint to produce
tangrams

To produce a tangram with our process of tan manipulation using MacPaint, you
start with the field of 14 tans, (the seven original ones from the broken square, and
their 45-degree rotations).

If you are starting from scratch, you must form the seven tans on your own. Select
the rectangle, and using constraint and Grid draw a square. Then, using constraint
and Grid throughout, divide the square as indicated in Illustration 5.5.

Illustration 5.5 Tan square construction

A MACPAINT RECREATION 41

You can form the exploded image by either forming the tans separate from the
square above, making certain that all formed tans fit exactly onto the original
square tile, or by isolating each tan with the Lasso. If you use the latter method, you
must leave behind the original square, so Lasso with the Option key pressed to
make a duplicate image.

Once you have the exploded tans at the left of the MacPaint sketchpad area, you
use the Lasso to drag a tan to the working area, the Marquee to isolate it for flipping
and rotating, and Lasso again to position the tan exactly as you wish. Consider the
procedure for producing the stork:

1 . Lasso tan # 2 (the # 2 tan that has the original orientation from the square tile,
not the # 2 with the apex down) and drag it to the workspace at the right of the
sketchpad.

2. Select the marquee and enclose this tan. Flip horizontal and position it at the
top right of the workspace.

3. Lasso tan # 7 (original orientation) and drag it over to the previously posi
tioned tan # 2, carefully placing it so that the two edges fit precisely over each
other. If you let go of the mouse and it doesn't look right, use Undo from the
Edit menu.

4. Lasso tan # 3 (original) and drag it to its final position.

5. Lasso tan # 6 (original) and drag it into the open space.

6. Select the Marquee and enclose this tan. Flip vertical.

7. Lasso this tan and drag it into its final position.

8. Lasso tan # 4 (the 45-degree rotated one, the one with only one diagonal, not
the original which has two diagonals) and drag it into the open space.

9. Select Marquee, enclose tan, flip vertical. Lasso and drag to its final position.

10. Lasso tan # 5 (original) and drag it to its final position.

11. Lasso tan # 1 (45-degree orientation, with one diagonal), flip both horizontal
and vertical, and drag it to its final position. If you wish, you can rotate it twice
and achieve the same result.

12. Lasso the entire finished stork, duplicate it (option-drag) in the available open
space.

13. Select the black pattern from the palette.

14. Using the paint bucket, fill in all seven tans to produce the final image of the
stork.

If you were to paint the stork some pattern other than black, you would have to
remember that the various numbers that were in the tans would show through.
There is a feature of MacPaint that washes paint throughout an area, so that the

42 GRAPHICS FOR THE MACINTOSH

Vulture 1

Swa n

Shrimp
Toad

Cot 1

Cat 3

Cot 4 Cot 5

Illustration 5.6 Various Tangrams

A MACPAINTRECREATION 43

paint covers everything within the enclosed area. To do this, use the paint bucket
but hold down the Shift key while pouring the paint (clicking). This is suggested as a
possibility, although we think you will find the pure black tangrams most effective in
representing the image they were intended to depict.

As a last remark on tans and tangrams, we include in Illustration 5.6 a few of the
many tangrams that you can produce on your own. We discovered these images
and hundreds of others in several books that might interest you.

The list of references we include below should get you started on the subject of
tangrams if you wish to pursue this topic.

Elffers, Joost, Tangram: The Ancient Chinese Shapes Game, Translated by R. J.
Hollingdale (Penguin Books, New York, 1978).

Grillo, John, and J.D. Robertson, More Color Computer Applications, pages
109-128 (John Wiley & Sons, New York, 1984).

Johnston, Susan, Tangrams ABC Kit: 122 Puzzles With Two Complete Sets of
Tangram Pieces (Dover Publications, Inc., New York, 1979).

Read, Ronald C., Tangrams: 330 Puzzles (Dover Publications, Inc., 1965).

Van Note, Peter, Tangrams: Picture-Making Puzzle Game (Charles E. Tuttle Com
pany, Vermont, 1966).

We're not through with tangrams yet. Chapter 11 rediscovers the topic, only this
time using the power of Microsoft BASIC and the Macintosh mouse to manipulate
the tans. We think you will find the combination of these two chapters to be an
interesting contrast between a canned application like MacPaint and a more
flexible program that simulates some of MacPaint's fine features.

c H A p T E R s X

PROGRAM
PL!\NNING

During the past decade or so, a quiet revolution has taken place in programming
shops everywhere. Programmers have recognized the value in program planning,
and they have adopted some approaches that were unheard of fifteen years ago.
We are referring to top-down design and modular programming.

Consider for a moment the traditional order of operations in developing a
program:

1. Understand the problem.

2. Develop the algorithm for solving the problem.

3. Draw a program flowchart.

4. Code

5. Debug and test

6. Document

There is no argument with the first step. After all, unless you understand what it is
that the computer must do for you, there is no way that you can successfully write
the program to solve the problem. The real difficulty comes with the second step.
Here you are supposed to describe in some unambiguous, finite, effective way
exactly how the program should be designed. That's some job!
The third step, drawing the flowchart, is supposed to lay out the program's logic so

that the fourth step, coding, isn't so hard. Unfortunately, that flowchart depends
upon your complete understanding, in great detail, of the algorithm or algorithms
developed in the previous phase, and all too often that isn't the case.
Notice that the fifth step includes debugging, which assumes errors on your part.

If there is any value to the new ideas in top-down, structured, modular program
ming and program design, it is the fact that your programs will contain far fewer
errors, and the errors that they do contain will be much easier to detect and
remove.
So what is this plan? How do you develop your program using top-down design

principles? What are the differences in the order of operations, and in the opera
tions themselves?

45

46 GRAPHICS FOR THE MACINTOSH

First, a Grillo-Robertson rule of thumb: Do something on paper first, before even
turning on the machine. The most destructive thing you can do to a program, and
the most wasteful use of your time, is to start coding without a plan. Even if your
plan on paper consists of a set of several simple steps written in English, at least
you have in front of you an ordered plan of action, with a beginning, middle, and
end.

Top-down design
The phrase top-down design implies a stepwise approach to the problem's

design: First you consider it from a distance, or from its most abstract form, then at
the deeper levels involving more and more detail. For example, the goal of a
program might be to display a rectangle on the screen.
No method is described in this statement, only the ultimate goal of the program. A

second step in the top-down design might be a simple list of activities, in English, to
accomplish the goal.

1 . Get length and width from user.

2. Check to see if it fits the screen.

3. Draw the rectangle.

Notice that this second, more detailed step, includes some information about the
method to be employed in solving the problem, and it also includes the order of its
most important steps. Even further detail is present in the third step of the same
program.

1 . Clear the screen.

2. Get length and width Land W.

3. If W + 20 greater than screen width or L + 20 greater than screen length goto
step 2.

4. Clear screen.

5. Draw line down from (1 0,1 0) to (1 0, W + 1 0).

6. Draw line down from (L + 10,1 0) to (L + 10, W + 1 0).

7. Draw line across from (1 0,1 0) to (L + 10,1 0).

8. Draw line across from (10,W + 10) to (L+ 10,W + 10).

Progressing from this plan to BASIC is trivial, and that's the idea behind top-down
design-to turn large, seemingly insoluble problems into several small, easily
designed, coded, and debugged modules. The idea is as old as Plato, and very
effective.

PROGRAM PLANNING 47

Steps in Program Planning
The overall plan for designing any program should include the steps shown in

Illustration 6.1.

@) Understand the problem

~ 2 Design outputs

@ 3 Design inputs

§) 4 Design storage

8 5 Design processes

§) 6 Pseudocode

0 7 Code and test

({) 8 Maintain

Illustration 6.1 Steps in program planning

Let's take each of these steps in turn to point out the advantages of this technique.

1. ® Understand the problem: There's no way to avoid this step in any
scheme for writing programs. What does the user really want from the
computer? You have to understand what is involved in the overall interaction
of computer and user. One of the best ways to understand the problem better
is to try to take the place of the user of your program. Depending on the user's
level of sophistication, you may be able to get by with minimal dialog, or you
may have to do a lot of hand-holding and guide the user in all operations. The
common term for this approach is user friendliness.

48 GRAPHICS FOR THE MACINTOSH

2.

3.

4.

(Pv) Design the outputs: Again, depend on the user of the program to
provide you with the proper answers here. Often, you will be the end-user of
your own program, so the process is made a little simpler. In either case, you
must design all of the program's outputs, both screen and printer. Some
people try to bypass this step, or to minimize it. It is by far the most crucial step
of all in graphics programming, and should be executed with care and detail.
You don't have to go to the detail of calculating answers or even drawing the
pictures, but you should anticipate the size (how many digits accuracy?), the
type (real or integer?) and the format (commas? dollar signs? etc ...) of
numeric output; you should plan a rough layout of your graphic output; and
you should be able to plan verbal requests and responses.

@Design the inputs: In years past, when batch systems using
punched cards were popular, this step would have included the formatting of
the cards to be entered as data into the system. Now, because most of the
computing is done on an interactive basis with both the computer and the
user entering into a dialog, it is important to plan that dialog carefully.

When you design a screen in the step above, you should consider whether
that screen also displays some user inputs, as is often the case. For example,
a data entry module may have a full-screen display with blanks in reverse
video indicating where the user will enter data.

It is important to anticipate user responses, especially whether they are
correct or not. If the user goofs and enters a value for a coordinate that is out
of bounds on the screen, how do you plan to deal with it? Later on, you'll have
to code data entry modules to include some bypasses for all user errors. Now
is the time to start thinking about this problem.

~ ~ Design the storage: In Steps 2 and 3 above, you have been thinking
about responses to requests, whether they are from the computer or from the
user. It may be, at its most rudimentary level, a single digit response by the
user to a request from the computer to select an activity from a menu. In any
case, it is either an entry by the user into a memory location for the computer
to process, or it is the display of a computed or stored result.

The entry is placed into a memory location, and the display is copied out of a
memory location. That memory location must have a name in the program,
and now is an ideal time to begin to select your variable names.

In programs that deal with files, you decide the type of file the program must
use-whether it is sequential, direct access, ISAM, or some combination.
And you need to describe the layout of the records in the file. We recommend
that you get a copy of our book in this series, Data and File Structures on the
Macintosh if you are serious about file storage.

5.

PROGRAM PLANNING 49

(*) Design the processes: As is the case in all of the steps above, you
still haven't touched the computer. This phase of the design of your program
begins to deal with the piecewise outline of all modules, and their interre
lationships.

The most useful tool in this step is the hierarchy chart, which in many ways
resembles an organization chart for a business. Such a chart has several
features that describe the top-down design of your program, or system of
programs. First, it is made up of rectangles that signify program modules.
Second, every program module must be accessible only from a module
above the one in question. Third, the lower module on the hierarchy chart is
subordinate to the one above in its function.

You can develop this chart showing all modules of your program and their
relationships in two or more steps, if the program is complex. For example,
suppose you are writing a system for producing graphics in an architectural
environment. The first hierarchy chart could show only two levels of detail, as
sketched in Illustration 6.2.

Architeotur a 1
Graphics
System

I
I I I I

Picture Picture Picture Picture
Creation Edit Storage Output

Illustration 6.2 Hierarchy chart, architectural system

The second stage in the development of the hierarchy chart could show a
third level of detail, thus indicating the major programming modules. (Illustra
tion 6.3)

Developing this chart even further, you could take one of the third-level
modules and describe it in great detail. Now, you are at the stage of
understanding the interrelationships of all modules, large and small, and you
can begin to visualize the subroutines.

50 GRAPHICS FOR THE MACINTOSH

Arch;tectur a 1
Graph;cs
System

I
I I I I

Picture Picture Picture P;cture
Creation Ed;t Storage Output

I
I I I

Alter Change Mod;fy
s;ze Orientat;on Content

Illustration 6.3 Portion of three-level chart

6. ~O) Pseudocode: With your detailed preparation in all of the steps
above, you now have a firm grasp of the program's variable names, the file
layouts, the computer's printed results, the user's responses to requests, and
even the interrelationships between the main and subordinate modules of
the program. Now you can begin to outline each module in steps small
enough to be translated easily into single statements or small segments of
code. Pseudocode is a step-by-step English language description of the
problem to be solved.

This process of outlining the programs before writing them is critical. It takes
the place of drawing a flowchart in the old-fashioned program planning
process. In most ways it is far simpler, and more effective as a means of
describing code to be written. A good understanding of structured program
ming helps a great deal in this step. We describe the essentials of program
structures in the next section of this chapter.

The easiest, and perhaps the most effective, pseudocode is English as you
use it. You don't have to remember any funny words. All you do is outline your
program segment in small steps, designing loops and tests as you go. For
example, a small program module to draw a sector in a pie chart could be
pseudocoded this way:

a. Convert percentage of whole graph into an angle; call it SECTOR
SIZE.

PROGRAM PLANNING 51

b. Draw line from XCENTER,YCENTER to START ANGLE+
SECTORSIZE.

c. Set INDEX to START ANGLE.

d. While INDEX is less than START ANGLE+ SECTORSIZE do:

Add .05 to INDEX Plot point at {XCENTER + RADIUS*COS(INDEX),
(YCENTER-RADIUS*SIN(INDEX))

e. Select sector pattern.

f. Fill sector with pattern.

g. Set START ANGLE to START ANGLE+ SECTORSIZE.

h. Return.

Not all pseudocode contains variable names, nor does it all have as much math as
the example above. Sometimes it is sufficient to outline the steps in even more
English-like steps, such as the pseudocode below that describes the algorithm for
a simple exchange sort.

a. Start a loop with the first element of the list, going to the second from
last in the list.

b. Start a second loop, with the index going from one more than the first
loop's index to the last element.

c. Compare the two elements that the loop indices point to.

d. If the first is more than the last, swap them.

e. End of second loop

f. End of first loop.

g. Return.

The BASIC code that results from this pseudocode is:

1000 FOR I = 1 TO N -1
1010 FOR J = 1+1 TON
1020 IF X(l)< =X(J) THEN SWAP X(I),X(J)
1030 NEXT J
1040 NEXT I
1050 RETURN

If there is any rule to guide you in the process of pseudocoding an algorithm,
it is this: Keep it sequential and simple.

52 GRAPHICS FOR THE MACINTOSH

7.

8.

0 Code and test: Finally, you can begin to write statements in BASIC,
and to run the modules you have coded. Start at the very top of your
program, and code the main module first. Keep it short and flexible, because
you may have to add or modify its code later. Be sure to provide GOSUBs to
the modules you want to code and test next. If you code each module or
subroutine to be visible in its entirety on one screen, you're on the right track.

([)Maintain: Any program worth writing (unless it is a one-shot test) is
worth maintaining. This may involve nothing more than some occasional
user-proofing so that the program can deal with a wider range of user
responses. It may be an extensive rewrite or the addition of several large
modules, a substantial enhancement to the old program.

r.iTID
~

Structured
Programming

All programs are made up of primitive structures, or small elements, somewhat
corresponding to the nouns, verbs, and adjectives of a spoken or written lan
guage. In the case of a programming language-any programming lan
guage-those elements or structures are:

1. Sequential structures-code that follows one step after another. In a pro
gramming flowchart (Illustration 6.4), a sequential structure is shown as one
or more processes in a line:

2. Decision structures-two-way branches.
The flowchart symbol for a decision structure is the IF test (Illustration 6.5).

Process 1

Process 2

Process 3

Illustration 6.4 Sequential
structure

PROGRAM PLANNING 53

T
Process 1

Process 2

Illustration 6.5 Decision structure

54 GRAPHICS FOR THE MACINTOSH

3. Loop structures-either a DOWHILE or a DOUNTIL
The DOWHILE structure is shown in the program flowchart in Illustration 6.6.

T

Process

Illustration 6.6 DOWHILE structure

PROGRAM PLANNING 55

The DOUNTIL structure is shown in Illustration 6.7. Note that this structure
forces one iteration of the loop regardless of the initial condition of the
element that is tested.

Process

Illustration 6.7 DOUNTIL structure

56 GRAPHICS FOR THE MACINTOSH

4. Case structures-multi-way branches, as provided by the BASIC ON
GOSUB or ON-GOTO statement (Illustration 6.8).

Process 1

Process 2

Process 3

Process N

Illustration 6.8 CASE structure

PROGRAM PLANNING 57

These four simple elements of any program can be used to understand the logic
of a program at its most primitive level. They reduce the programs to the level of
one or several statements tied together into a unified, small increment of logic.

Menus and Submenus,
Main Programs and

Subprograms
To the user, a program is often best represented as a series of menus, each with

its list of activities. When the user starts the program, she sees a list of the major
activities that the program or system of programs can manage. The selection of
one of these main activities often provides the display of a second, subsidiary
menu, or submenu. This form of organization of a program is user-friendly.lt deals
with the subject in the user's terms, in a non-threatening way. Consider Illustration
6.9, for example, which shows a series of menus and submenus for an architec
tural sketching system of programs:

MAIN MENU-HOUSE
PLAN SYSTEM

1. Build new plan

2. Add to existing plan

3. Modify a plan

4. Print house plan

5. Estimate costs

6. Utilities

7. Stop

Illustration 6.9 Main Menu

58 GRAPHICS FOR THE MACINTOSH

SUBMENU 1-Build New
Plan

1 . List names of existing plans on file

2. Name this plan

3. Describe this plan -one or more floors, scale, ...

4. Return to Main Menu

Illustration 6.10 Submenu 1- input

SUBMENU 2-Add to
Existing Plan

1. Retrieve existing plan's description

2. Add detail

3. Return to Main Menu

Illustration 6.11 Submenu 2 - more input

1.

2.

3.

4.

SUBMENU 3-Modify a
Plan

Select plan

List plan details

Select a specification

Modify

a. Change a plan's contents

b. Change plan specifications

5. Delete an area

6. Return to Main Menu

Illustration 6.12 Submenu 3- processing module

SUBMENU 4-Print Plan

1. Print a specific area

2. Scale and print entire plan

6. Return to Main Menu

Illustration 6.13 Submenu 4- output module

SUBMENU 5-Estimate
Costs

1. List presently filed costs

2. Change listed costs

3. Calculate

4. Rank estimated costs

5. Return to Main Menu

Illustration 6.14 Submenu 5- processing module

SUBMENU &-Utilities

1 . Display memory variables, contents

2. Sort files

3. Change scale

4. Dump all fields of a plan

5. Return to Main Menu

Illustration 6.15 Submenu 6- processing (utilities)

PROGRAM PLANNING 59

60 GRAPHICS FOR THE MACINTOSH

The program that you write can be structured in such a fashion as shown in the
sequence of menus in Illustrations 6.9 to 6.15. In fact, it is good practice to structure
your programs this way to keep them modular, so that small segments can be
developed and tested one at a time. We have discussed this practice before, so
let's see what a program could look like if it is subdivided into main and sub
modules.
The central idea in developing program modules is the subroutine. In most

programming languages, the subroutine is compiled separately from the main
program, which further isolates it. In BASIC, however, both the subroutine and the
main program are together, and they use common variables. This somewhat
unconventional approach to subroutines has advantages and hazards. Certainly it
is handy to be able to see both sections of source code at once. But it can become
burdensome to remember all of the variables that the subroutine alters in its
execution, so as not to use those variables in the main program.
We have developed a skeleton program that can serve as a shell for most large

programs. This shell design depends on the program dealing with user menus, so
the two concepts go together nicely. The overall, most generalized, structure is
shown below:

General Structure

1. Main Program

a. Initialize variables

b. GOSUB Main Menu display routine

c. If (user response) then goto 1.b.

d. If (user response) then stop

e. ON (user response) GOSUB Subroutine-1,-2,-3, ...

f. GOTO 1.b.

2. Tool Subroutines-- callable from anywhere

a. Generalized list

b. Error handling

c. Menu display

d.

PROGRAM PLANNING 61

3. Subroutine-1

a. Display sub-menu1

b. If (user response) is <RETURN> then return

c. ON (user response) GOSUB Subroutine-3a,-3b,-3c, ...

d. GOT03.a.

4. Subroutine-2

a. Display sub-menu2

b. If (user response) is <RETURN> then return

c. ON (user response) GOSUB Subroutine-4a,4b,4c, ...

d. GOT04.a.

5.

This highly flexible skeleton for any complex program can be modified or
extended in different ways. For example, instead of going to a main subroutine, the
program can branch to a CHAIN statement that will transfer control to an entirely
different program. In this way, the internal memory limitations of the Macintosh are
no longer bothersome.
In the next chapter, we will explore some of the excellent features of Microsoft

BASIC on the Macintosh that allow very large systems to be developed in a
modular fashion, such as CHAIN, MERGE, COMMON, and mouse-driven menus.

c H A p T E R s E v

MAC, THE USER,
r' r'

Introduction: In Defense
of BASIC

E N

BASIC has received considerable criticism, at least in part because of its historical
roots in educational settings as an elementary language that is simple to learn. In
fact, during the last ten years it has matured into a successful small-business and
personal computer system language. What are these criticisms, and how have
most of them been overcome?

1. (lt) Non-standard subroutines: Most high-level languages have the
built-in capability to separately compile subroutines that calls the main pro
gram (or another subroutine). This has two advantages: first, the subroutine
can be developed, tested, and compiled ·during one phase of the system's
development; second, the subroutine's variable names are totally indepen
dent of the calling program. They are local variables, whose names can be
used in other subroutines, or in the main program. BASIC uses global
variable names in its subroutines, because the subroutine is no more than a
section of code in the program from which control can return to the statement
below the GOSUB. This means that you must take care when writing a
subroutine to invent variable names that are not used in the other programs
that might call the subroutine.

The American National Standards Institute (ANSI) has recently proposed
several changes to BASIC, one of them being the concept of true sub
routines, that can pass variables and return variables, and that can use local
variables with the same names as those found in the calling program with no
effect. Microsoft BASIC has a CALL statement, but it is reserved for calling
subroutines in machine language only. We use a programming standard of
our own, which may be more accurately described as a stylistic habit rather

63

64 GRAPHICS FOR THE MACINTOSH

2.

3.

than a standard. This style names locally used variables in subroutines with a
certain suffix, say the digit 7 or 8. Thus a subroutine's variables could be W8,
T8, and B8, while its calling programs would never use any variable names
ending with the digit 8. This style is effective but crude.

(~)Slow, interpreted code: In many business systems and in most
personal systems, this has little effect, because BASIC is still fast enough for
most purposes. However, when a SORT is executed, or when you are
developing a graphics program that simulates animation, there is a signifi
cant slowdown in execution speed. This slowdown is especially prevalent in
hardware systems that are driven by 8-bit microprocessors, such as the older
personal computers (APPLE-II, Radio Shack TRS-80, Commodore 64, or
IBM PC, for example).

The Macintosh uses the 16-bit MC68000 microprocessor as a CPU, so it is
somewhat faster. However, any 8-bit-based personal computer that runs a
compiled BASIC program will execute its program between 20 and 100
times faster! More and more vendors are supplying BASIC compilers to
overcome this difficulty, and perhaps some day the ANSI standard will
demand compilers as a standard language processor. Until then, there are
enough clever tricks that programmers can use to significantly speed up
execution.

(0)Lack of advanced language features: This criticism often comes
from those programmers whose primary language is Pascal, or COBOL, and
even from some who still write in FORTRAN. Of course, BASIC doesn't have
some of the features of these languages. But neither do they have some of
BASIC's bells and whistles. So much of this type of criticism is based on what
a programmer is used to, that it becomes a sort of chauvinistic trademark.

Some newer languages based on Pascal, but containing improvements
such as Ada and Modula-11, compare favorably with BASIC in terms of
language features. In truth BASIC has almost all of the programming struc
tures (IF-THEN-ELSE, ON-GOTO and ON-GOSUB, integer, real, double
precision, and string variables, and sequential and direct access file manip
ulation ,for example) that are the earmarks of a good language. On top ofthat,
BASIC's excellent string manipulation functions are singularly good, and they
are easy to use.

Microsoft's BASIC as developed for the Macintosh is so much like the BASIC
it has prepared for the IBM PC, the HP-150, the TRS-80, and the many other
micros, that it is in essence the de facto standard for small-business and
personal computers. The Macintosh BASIC has, in addition to this excellent
core of features, access to the Mac's toolbox of machine-language routines

MAC, THE USER, AND BASIC 85

in the Quickdraw section of its ROM. This feature alone gives BASIC an
unusually flexible power. This book will develop many programs that use
these routines.

0 Program Development
Tools

Microsoft BASIC has several useful tricks up its sleeve when it comes to develop
ing large systems of programs in which there are several separate programs
developed as system modules and each of these modules is accessed by either a
single main program or by all other system modules. Consider these two system
designs:

Main Program

Illustration 7.1 Top-down system design chart

Illustration 7.2 Network design chart

66 GRAPHICS FOR THE MACINTOSH

In the top-down design, every time a subroutine is called, it must return to the main
program module in order to access another subroutine. In the network design, any
module can call any other, and the source of the passage of control is not
important. Both system design structures are achievable in Microsoft BASIC, but
we will deal mostly with the first, top-down design.

CHAIN
The CHAIN command in BASIC is used to pass control to another program. We

are not talking about a segment of the same program here, but an entirely different
program saved as a different file. We will summarize the CHAIN command. Refer
to the Microsoft BASIC Interpreter Manual for a more detailed explanation.

Example 1: (Line 210 in the program called MAIN)

210 CHAIN "SUBPROGRAM ONE"

This command transfers control to the first line of the file called SUBPROGRAM
ONE. In addition, it keeps open all files that were open in MAIN. Its effect is identical
to

210 LOAD "SUBPROGRAM ONE", R

Example 2: Suppose some variables have been established in the program
MAIN, and you wish to keep them active in the program called
"SUBPROGRAM TWO".

210 CHAIN "SUBPROGRAM TWO",ALL

These examples transfer control while keeping all variables active as well. Also, it
keeps the files open during the transfer. Again, control resumes at the first line of
"SUBPROGRAM TWO".

Example 3: If you wish to keep the variables active, the files open, and transfer
control to line 700 of the file called "SUBPROGRAM THREE", you
would issue this instruction in the program:

210 CHAIN "SUBPROGRAM THREE", 700,ALL

If you know that the line you want to transfer to in the file "SUB
PROGRAM THREE" is 100 times the value of P, you could write
either of these:

210 CHAIN "SUBPROGRAM THREE",100*P,ALL

MAC, THE USER, AND BASIC 67

Example 4: To bring in a second file as an overlay to the first, that is, to wipe out all
common lines in the first so as to reduce the size of the program in
memory and yet keep some of the original lines in the final version,
you can use the MERGE option. Suppose you want to keep all lines
below #100 in the MAIN program intact, but to replace all lines 1000
and above with those from the file SU BFOU R.

210 CHAIN MERGE "SUBFOUR",1000,ALL,DELETE 1000-9999

This example shows the typical instruction used to create an overlay. First, the
lines 1000-9999 in MAIN are deleted, although if some of them were executed and
assigned values to variables, they are kept active. Then, the file SUBFOUR,
previously saved in ASCII with a command such as

SAVE "SUBFOUR",A

is brought into memory and merged with all of the remaining lines of MAIN.
Execution of the program resumes at line 1000 of this newly created program.

COMMON
There are many times when you might want to CHAIN to another program, but

keep only some of the variables active in memory. This means that you can't use
the ALL option in the CHAIN instruction. Instead, you must use the COMMON
statement within the MAIN, or calling, program. For example, if you want to keep
the simple numeric variables A, B, and C; the string array X$; and the integer array
T% active in the program SUBFIVE, and you want to have execution begin at line
4270 in SUBFIVE, this is what you do:
In the program MAIN, preferably close to the beginning, you place the COMMON

statement:

10 'FILENAME: "MAIN"

50 DIMENSION T%(200), X${30),

80 COMMON A, B, C, X$(), T%()

210 CHAIN "SUBFIVE",1000

68 GRAPHICS FOR THE MACINTOSH

One note of caution: When you CHAIN to another program and you are not using
the MERGE option, you lose the effect of all DEF-type statements. Therefore it is
necessary for you to re-establish variable typing and function definitions immedi
ately after CHAINing. There is a simple way to keep all variables active, to CHAIN
to another program, and yet to keep the program's size in memory smaller. This is
done by maintaining all variables as integers by default, as shown in this example:

10 'FILENAME: "MAIN"
20 DEFINT A-Z
30 DIM X(200), T(50), A$(20), ...

300 CHAIN "SUBPROG1",500,ALL

10 'FILENAME: "SUBPROG1"

500 DEFINT A-Z

The CHAIN instruction with the ALL and MERGE options, and the COMMON
instruction, immensely improve the flexibility of BASIC as a systems development
language. We urge you to begin using these easy-to-use statements so that you
can develop your graphics software applications in modular fashion.

CLEAR to Increase Memory
Because the Macintosh has such a rich supply of support software built in, most of

the 128K of RAM is taken up with APPLE systems programs, leaving you with only
14K of usable space for your BASIC program. There is a way around that, and it is
to use the CLEAR command to steal memory from the Macintosh Heap. This area
of memory manages windows and desk accessories, so you give up something in
order to have more memory for your program. We recommend that you limit your
use of the CLEAR instruction to only the largest programs, and only when neces
sary. Remember that there are other ways to increase memory, such as using
integer variables when possible, instead of allowing the system to default to its
double-precision variable typing.

MAC, THE USER, AND BASIC 69

The CLEAR command in its simplest form does not save you memory, but it does
perform several important actions. If you execute the instruction

50 CLEAR

in your program, BASIC resets everything. All files are closed, all COMMON
variables are cleared, all numeric and array variables are set to zero, all string
variables are set to null, all disk buffers are released to the system, and all stack
space, string space, and DEF-typing is reset to the default values. Because the
CLEAR is so powerful, you must use it with caution. We recommend that you
restrict its use. At first use CLEAR only in the first section of the first program in a
series of programs in your largest systems.
When you want to use the CLEAR to increase memory space, remember that the

instruction will perform all of the above actions as well. The exam pie below shows a
CLEAR instruction that releases 20K bytes from the Macintosh Heap and the desk
accessories.

30 CLEAR, 20000

The usual order of operations, which we recommend because we have found that
it works well, js shown.

10 'FILENAME: "MAIN"
20 CLEAR, 20000
30 DEFINT A-Z
40 DIM B$(20), X(500), T(40), V # (100), ...

300 ON K GOTO 410, 420, 430, 440, ...

410 CHAIN "SUBONE", 500, ALL
420 CHAIN "SUBTWO", 500, ALL
430 CHAIN "SUBTHREE", 500, ALL
440 CHAIN "SUBFOUR", 500,-ALL

10 'FILENAME: "SUBONE"
500 DEFINT A-Z

(continued)

70 GRAPHICS FOR THE MACINTOSH

10 'FILENAME: "SUBTWO"
500 DEFINT A-Z

10 'FILENAME: "SUBTHREE"
500 DEFINT A-Z

User Interaction with the
Mouse

Because the Mouse is such an integral part of the entire Macintosh system, any
software that is developed for this machine should make use of this clever device
for user input. We have written a simple system to be used on the Macintosh. In so
doing we have developed a generalized subroutine that displays a menu of
choices, much like the MAC's pulldown menus, and we allow the user to select
from the menu with the mouse.
We have coded it within our system as a tool subroutine callable from anywhere in

the program. We placed this subroutine that displays the menu and intercepts the
mouse drags and clicks in lines 1000 to 1210 of our simple system. You could
relocate this module anywhere within your program by RENUMbering the code
and saving it as an ASCII file to be MERGEd to its new location.
The listing of the program "MENU" below is the driver program that invokes the

menu display subroutine. The program's overall function is to display a menu titled
"Pfruits". This menu shows three fruits whose names begin with the letter P. When
the user makes a selection, the program CHAINs to the appropriate program to
display a list of peaches, pears, or plums.
The user can return to the main menu by clicking the mouse anywhere on the

screen when within one of these three programs. Notice that line 30 of MENU
places the variable D$ in COMMON for use in all programs in the system. It is
defined in line 40 as the filename for this program, "MENU".

Listing, Menu
10 ' menu driven system
20 DIM M$(10)
30 COMMON OS
40 DS="MENU"
50 X=200:Y=45
60 READ TS,N
70 FOR 1=1 TO N
80 READ MS(I)

90 NEXT I
100 DATA Pfruits,4,Pears,Peaches,Piums,Exit
11 0 GOSUB 1 000

MAC, THE USER, AND BASIC 71

120 IF W>O AND W<N THEN CHAIN MS(W) ELSE STOP
1 3 0 I F I N K E Y $ = '"' T H EN 1 3 0 E L S E S T 0 P
1000 ' menu
1010 CLS: CALL TEXTFONT(O)
1020 CALL MOVETO(X+3,Y-10): PRINT T$
1030 XB=X+7:YB=Y-4
1040 MB=O
1050 FOR 18=1 TO N
1060 YB=Y8+16
1070 CALL MOVETO(XB, VB): PRINT M$(18)
1 0 8 0 I F L EN (M $ (I 8)) >M 8 THEN M 8 = L E N (M $ (I 8))
1090 NEXT 18
1100 LINE(X-5,Y-4)-(X+10*M8+5,Y+16*N+4),33,B
1110 PB=N-1
1120 IF MOUSE(O)>O AND XB >=X AND XB<=X+10*M8 AND

YB>=Y AND YB<=Y+16*N THEN 120 0
1130 LINE(X,Y+P8*16)-(X+MB*10,Y+P8*16+16) .30,8
1140 IF MOUSE(0)<>-1 THEN 1120
1150 XB=MOUSE (5): YB=MOUSE (6)
1160 IF XB<X OR XB>X+lO*MB OR YB<Y OR Y8>Y+16*N

THEN 1120
1170 PB=(YB-Y)/16
1180 LINE(X,Y+PB*16)-(X+MB*10,Y+PB*16+16),33,8
1190 GOTO 1120
1200 W=P8+1
1210 RETURN

Annotated Menu Listing
Lefs take each one of these lines in the subroutine above to see the complexities

of developing a menu driver that interacts with the user with the mouse.

1000 'Show menu. M$ = array of menu entries, N = number of menu entries, T$
= menu title, X & Y = coordinates of upper left corner

1010 CLS: CALL TEXTFONT(O) 'Chicago font
1020 CALL MOVETO(X+3,Y -10): PRINT T$ 'Position cursor and print menu

title
1030 X8 =X+ 7: Y8 = Y- 4 'Indent menu selections. X8 & Y8 are local variables

for cursor position
1040 M8 = 0 'Maximum entry length in characters
1050 FOR 18=1 TON 'Display entries and get maximum entry length M8

72 GRAPHICS FOR THE MACINTOSH

1060 Y8 = Y8 + 16 'Adjust down 16 pixels to next line
1070 CALL MOVETO(X8,Y8): PRINT M$(18) 'Move and print
1080 IF LEN(M$(18)) > M8 THEN M8 = LEN(M$(18)) 'Get max. length MS
1090 NEXT 18
1100 LINE(X-5,Y-4)-(X+10*M8+5,Y+16*N+4),33,B 'Draw box around

entire menu
1110 P8 = N -1 'PS points to menu entry. Initial value is assumed to be last entry
1120 IF MOUSE(O)>O AND X8> =X AND XS< =X+10*M8 AND Y8> =Y

AND Y8 < = Y + 16*N THEN 1200 'Is the mouse within selection area and is
button up after drag? If so, return W, menu number selected.

1130 LINE(X,Y + P8*16) -(X+ M8*10,Y + P8*16 + 16),30,B 'Blank out box
around entry pointed to but not selected

1140 IF MOUSE(O) < > -1 THEN 1120 'If clicked but not a drag, return to check
mouse again

1150 X8 = MOUSE(5): Y8 = MOUSE(6) 'Coordinates of drag end where user
released button

1160 IF X8<X OR X8>X+10*M8 OR Y8<Y OR Y8> Y +16*N THEN 1120 'Not
within menu area

1170 P8=(Y8- Y) \16 'User released in menu entry# PS
1180 LINE(X,Y+P8*16)-(X+M8*10,Y+P8*16+16),33,B 'Place box around

menu selection under dragged pointer
1190 GOTO 1120 'Keep checking mouse
1200 W = PS + 1 'Menu item selected
1210 RETURN

Before we proceed with any further annotation of the code, look at a typical main
program's menu display, shown in Illustration 7.3.

,. • File Edit Control
,

menu

Pfrults

Pears
Peaches
Plums
EHit

~

Q)

Illustration 7.3 Menu of Pfruits

MAC, THE USER, AND BASIC 73

Illustration 7.4 shows the Pfruits menu display again, only this time the user has
stopped the drag on the Plums entry, and a rectangle is drawn around that entry.
Illustration 7.5 shows the output from the Plums program.

"' * File Edit Control

Pfrults

Pears
Peaches

~~
EHit It"""'

Illustration 7.4 Pfruits menu with Plums selected

Plum Uarletles

Damson
Tecumseh

Queen Anne

Stanley
Hortulana

Shropshire

Burbank

Chickasaw
Wild Goose

Pacific

Click to return to MENU

Illustration 7.5 Plums program output

.,

.,

--- --

74 GRAPHICS FOR THE MACINTOSH

The listings that follow show the three programs that complete the Pfruits pro
gram. These are CHAINed to from the main program (MENU). Notice that in each
one, the last two lines are:

150 CALL MOVET0(25,265): PRINT "Click to return to"+ 0$
160 IF MOUSE(O)< >0 THEN CHAIN D$ ELSE 160

Line 150 moves the cursor position to the bottom of the screen so that the
message "Click to return to MENU" doesn't disturb the program's output. The
variable 0$ is the one that was placed in COMMON in the first program. It provides
the link back to the main menu driver whose filename is "MENU".
Line 160 checks the condition of the mouse. If it is clicked, the program CHAINs to

MENU. If not, it continues to check in an infinite loop.

Listing, Pears Program

10 I Pears
20 DIM P$(12),P(12)
30 FOR 1=1 TO 12
40 READ P $ (I)
50 NEXT I
60 DATA "Anjou","Winter Nelis","Hardy","Bartlett"
10 DATA "Bosc","Wilder Early","Ciapp Favorite",

"Comet"
80 DATA "Comice","Kieffer","Seckei","Early

Bartlett"
90 CLS
100 PRINT: PRINT TAB(5);"Pear Varieties": PRINT
110 FOR 1=1 TO 12
120 P(I)=3*1+10
130 PRINT TAB(P(I));P$(I)
140 NEXT I
150 CALL MOVET0(25,265): PRINT "Click to return to

"+D$
160 IF MOUSE(O)<>O THEN CHAIN D$ ELSE 160

Listing, Peaches Program

10 I Peaches
20 DIM P$(12),P(12)
30 FOR 1=1 TO 12
40READPS(I)
50 NEXT I
60 DATA "Carmen","Waddel I","Eiberta","Rochester"
10 DATA "Champion", "Wa I do". "Wi I rna". "Honey"

MAC, THE USER, AND BASIC 75

80 DATA "Greensboro","Cabler","Chai rs","Fitzgerald"
90 CLS
100 PRINT: PRINT TAB(5);"Peach Varieties": PRINT
110 FOR 1=1 TO 12
120 P(I)=35-ABS(13-I-I)
130 PRINT TAB(P(I));P$(1)
140 NEXT I
150 CALL MOVET0(25,265): PRINT "Click to return to

"+D$
160 IF MOUSE(O)<>O THEN CHAIN D$: STOP ELSE 160

Listing, Plums Program

10 ' Plums
20 DIM P$(12)~P(12)
30 FOR 1=1 TO 12
40 READ P$(1)
50 NEXT I
60 DATA "Shropshire" I "Damson" I "Tecumseh" I

"Queen Anne"
70 DATA "Burbank"~"Casselman","Canada","Chickasaw~

80 DATA "Wild Goose","Stanlev"~"Hortulana"~
"Pacific"

90 CLS: RANDOMIZE TIMER
100 PRINT: PRINT TAB(5);"Pium Varieties": PRINT
110 FOR 1=1 TO 12
12 0 P (I) =AND (1) * 2 5+ 1 2
130 PRINT TAB(P(I));P$(I)
140 NEXT I
150 CALL MOVET0(25,265): PRINT "CI ick to return to

"+D$
160 IF MOUSE(O)<>O THEN CHAIN D$ ELSE 160

c H A p T E A E G H T

PIXEL GRAPHICS
AND ICONS

This chapter introduces graphics production with programs written in BASIC.
Because Microsoft BASIC has been adopted by so many microcomputer vendors,
the programs in the rest of the book tend to be adaptable to many other machines.
This is one of the major strengths of Microsoft's version of BASIC. It's graphics
commands are powerful and easily used.

What Microsoft does not provide as tools for graphics programming, the Macin
tosh makes available in its Quickdraw ROM. The 64K Macintosh ROM contains a
whole host of prewritten programs. The cluster of programs which Apple refers to
as its Quickdraw routines is available through Microsoft BASIC by way of the CALL
statement. With the CALL statement, you can write programs that begin to
approach the glorious graphics of MacPaint. Because you are writing them,
however, these programs have great flexibility and can be altered to suit many
more applications.

This chapter contains many small programs, illustrating graphics production with
BASIC. We introduce several concepts whose understanding is essential to the
creation of images on the Macintosh screen.

The simplest and most important component of any graphics image is the pixel,
which, as you may remember, is the smallest element of an image on the screen.
On the Macintosh, the pixel is a square dot. Macintosh's resolution determines how
many pixels can fit on the screen. The screen image is made up of 512 vertical
columns and 342 horizontal rows forming 174,104 pixels.

Each one of the pixels is either black or white (the Mac is not yet a color machine)
and can be represented internally as a single bit, on or off. The entire screen image
is stored, this way, as 10,94416-bit integers. In Chapters 9 and 12, you will see how
the integer representation of the screen image can be manipulated to make
patterns of your choosing.

Each of the pixel positions on the screen is individually addressable by its column
number (X-coordinate) and by its row number (Y-coordinate) as shown in Illustra
tion 8.1. The top left corner's address is (0,0); the top right, (511,0); the bottom left,
(0,341); and the bottom right, (511,341). Notice that the X-coordinate comes first, as
in Cartesian coordinate geometry. Notice also that the X -coordinates start at the left

77

78 GRAPHICS FOR THE MACINTOSH

~---------------------- 512 ----------------------~

"<oJo>

342

(5 11 J34 1)\i

Illustration 8.1 512 x 342 screen grid and coordinate system

edge of the screen at 0 and proceed to the right to 511, whereas theY -coordinates
start at the top of the screen at 0, and go down to 341. This is contrary to the
ordinary Cartesian coordinates you see in Illustration 8.2, and is important to
remember.

Microsoft BASIC uses four commands to manipulate individual pixels. These are
two instructions, PSET and PRESET; and two functions, POINT and PTAB.

The PSET syntax can be in any one of four forms:

1. PSET (x,y) draw a black pixel at screen coordinate position x,y.

2. PSET STEP (dx,dy) move dx columns and dy rows from the present
location and draw pixel.

3. PSET (x,y,c) draw pixel with color cat location x,y. The only two colors
available on the Macintosh (as of this writing) are black (color= 33) and white
(color= 30). Any integer other than these two assumes the color black.

4. PSET STEP (dx,dy ,c) move dx columns and dy rows, draw pixel with color
c.

PIXEL GRAPHICS AND ICONS 79

V-axis
·-

71
2.

(-1,2)
-~

-~
1 . ~ 71

-~ (2, 1) -
I I I I I I I x-axis I I I I I I I I I

--2 -1 2

-1 1\ • (1,-1)
(-2,-2) •I-

-~
~ -2 -~

-~

Illustration 8.2 Cartesian coordinate system

The two functions POINT and PTAB are used as follows:

1. X = POINT(x,y) determine the color of the pixel at x,y and place it in X.
POINT is useful in an IF statement to find out if a specific location has been
painted black.

2. PRINT PTAB(x); v prints the variable v starting at the horizontal position x.
The 512 column positions are all available as starting positions for printing
variables, either numeric or string. PRINT PTAB has an interesting feature. If
the current print position is to the right of the PTAB pixel position, the variable
retreats to the PT AB pixel on the same line. You can write text from right to left
using this feature, if you're careful - or weird - or boustrophedontic (look it
up).

Application 1: Binomial distribution
This program is called Pachinko after the game of that name which resembles a

pinball machine. The program simulates a process that determines the path of a
ball through a maze of pins. Consider a large flat board with nails placed into it in a

80 GRAPHICS FOR THE MACINTOSH

pattern (Illustration 8.3) with a marble positioned carefully on the topmost nail.
When the board is tipped, the marble can take any path around the pins.
Each time the marble lands on a nail, it can go either left or right. As it proceeds

through the maze, it will go left on the average about as many times as it goes right.
Therefore the most frequently traveled paths are those down the center of the
board. The likelihood of a marble always taking a left, or always a right, is very low.

0 Q)

0 Q) 0
Q) Q Q

Q Q) Q Q Q

Q Q Q Q Q

Q Q Q Q Q Q Q

Q Q Q Q Q) Q Q

Illustration 8.3 Pachinko board

If you place vertical traps below the rows of pins to trap the marbles as they fall,
you can actually observe the distribution of the paths taken. The program simu
lates this process, by providing columns to hold the marbles as they fall through.
Illustrations 8.4 and 8.5 show two stages of output from the program.

Q

PIXEL GRAPHICS AND ICONS 81

r li File Edit Control
,

~-

Illustration 8.4 Early output from program "PACHINKO"

Illustration 8.5 Later output from program "PACHINKO"

82 GRAPHICS FOR THE MACINTOSH

Below is a listing of the program.

Listing, PACHINKO
10 ' pachinko
20 CLS
30 RANDOMIZE TIMER
40 DIM N(50)
50 X=250:Y=10:L=1 :H=49:H2=(H+1)/2
60 B=Y+H+H+100
70 FOR 1=1 TO H
80 J=X-l* (1-1)
90 FOR K=1 TO I
100 PSET(J,Y+l*l)
110 J=J+l+l
120 NEXT K
130 NEXT I
140 FOR 1=1 TO H+1
150 N(I)=O
160 NEXT I
170 FOR M=1 TO 10000
180 J=X
190 FOR 1=1 TO H
200 PRESET(J,Y+l*l)
210 FOR Z=1 TO 5: NEXT Z
220 PSET(J,Y+l*l)
230 IF RND>.5 THEN J=J-l ELSE J=J+l
240 NEXT I
250 W=H2-(J-X)/(l+l)
260 N(W)=N(W)+1
270 PSET(J,B-N(W))
280 NEXT M

You can follow the program step by step, outlined here in pseudocode.

1.
2.
3.
4.
5.
6.
7.
8.

9.
10.
11.
12.
13.
14.

20
30
40
50

60

70-130
140-160
170-280
180
190-240
200-210

Clear the screen.
Start the random number generator with a random seed.
Reserve 50 counters- N.
Position top of pyramid at X= 250, Y = 1 0.
Set L, distance between pins in pyramid to 1 .
SetH, height of pyramid, to 49.
Calculate H2, midheight of pyramid.
Set B. base of histogram portion of display, to
Y+H+H+100.
Build pyramid of dots.
Zero all counters N.
Do forever:
Start X at middle of pyramid.
For I = 1 to H (height of pyramid) do:
White out this pixel, pause.

PIXEL GRAPHICS AND ICONS 83

Color this pixel. 15.
16.

220
230 Set direction left or right at random, advance to next row

down.
17.
18.

240
250

Enddo.
Increment appropriate counter.

Notes:
We have generalized this program purposely so that you can alter it to suit your

tastes. Line 50 in particular sets up several important variables. With minor altera
tion these variables produce quite different displays. The screen image in Illustra
tion 8.6, shows the results of changing L from 1 to 2.
You can increase the height of the pyramid, the spacing between pins, the size of

the ball, even the random distribution. You can skew the distribution as if the board
were tilting slightly to the right or left by altering line 230. For example:

r • File Edit Control

Illustration 8.6 Output, more widely spaced pins

IF RND>.3 THEN J = J - L ELSE J = J + L 'Skew left
IF RND >.7 THEN J =J - L ELSE J =J + L 'Skew right

,

This change makes the ball fall to the right or to the left 7 out of 10 times, which
produces a strikingly different distribution.
Instead of the random distribution seen in Illustration 8.6, you can produce others

by altering line 230. It's a visually captivating way to study chance events.

84 GRAPHICS FOR THE MACINTOSH

Application
2: Mathematically Derived

Curves
The following series of small programs is based on a common thread of ideas.

The theory is to use the PSET instruction to trace a series of points as a mathe
matical function advances through a series of iterations. The curves and shapes
formed are familiar territory to graphics programmers, not only because they are
pretty to look at, but because they are useful in many practical applications. Their
derivation was made necessary in order to track physical movements.
The examples that follow are indicative of the way a mathematical expression can

be translated into a BASIC program. We used various sources such as
encyclopedias, dictionaries, and handbooks of mathematical tables. Here are two
sources to get you started: Van Nostrand's Scientific Encyclopedia, 3rd. Edition (D.
Van Nostrand Company, Inc., New Jersey, 1958) and CRC Standard Mathe
matical Tables, 14th. Edition Samuel Selby, Editor (The Chemical Rubber Co.,
Cleveland, 1965).
We tested various values for variables until we were satisfied with the end result.

One of the great rewards of programming these mathematical functions was being
able to see from the book what the end result should look like on the screen. We
were surprised in some cases, and learned much in the process.
In describing each of the following curves, we first provide you with a sketch ofthe

curve as described in the references we mention above. At the bottom of the
sketch we include the mathematical description of the curve, followed by the actual
output that the Macintosh produces. Finally, we show you the listing that produced
the output.

Prolate Cycloid

Illustration 8. 7 Prolate cycloid in
Cartesian coordinates

x = ~- b sinH, y = a- b cosH, a < b

PIXEL GRAPHICS AND ICONS 85

Illustration 8.8 Macintosh output, prolate cycloid

The output (Illustration 8.8) is upside down from Illustration 8.7, which shows the
usual orientation found in the math books. The reason for this is that the Y
coordinate on the Macintosh goes positive down the screen. This is opposite of its
positive direction in the Cartesian system.

To re-orient the computer's output to match the format shown in most math books,
simply change line 90 in the listing of "Prolate Cycloid" to:

90 Y = B * COS(R) - A

Listing, Prolate Cycloid

10 · Prolate cycloid
20 CLS
30 C=50 :0=50:A=30
40 FOURPI=16"ATN(1)
50 PI OVER1 OO=FOURP 1/40 0
60 B=A "1 . 2 5
70 FOR R=O TO FOURPI STEP PIOVER100
80 X=A" R-B"SIN(R)
90 Y=A- B.COS(R)
100 PSET (C+X,O+Y)
110 NEXT R

86 GRAPHICS FOR THE MACINTOSH

Suggestions:

40 FOR D =50 TO 200 STEP SQR(D)
120 NEXT D

60 FOR B=.75*A T02*ASTEP .2
120 NEXT B

Curtate Cycloid
Change the Prolate Cycloid, which has closed loops at every cycle, to the Curtate

Cycloid, which has no loops, (Illustration 8.9) by keeping A> B.

Illustration 8.9 Curtate cycloid,
Cartesian coordinates

x = ~- b sin 0. y = a- b cos .a', a > b

Involute of Circle
Notice that again the curve doesn't go in the same direction as on the sketch, for

the same reason that the cycloids were upside down.

Illustration 8.10 Involute of circle

x = rcos~ + r¢sin0, y = rsin0-r0cos0'

PIXEL GRAPHICS AND ICONS 87

~ • File Edit Control
.,

lnuolute - -
-- --

Illustration 8.11 Macintosh output, Involute of circle

Listing, Involute of circle

10 ' Involute of Circle
20 CLS
30 C=250:0=120:A=16
40 TWOPI=8*ATN(1)
50 PIOVER100=TWOPI/200
60 FOR R=O TO TWOPI STEP PIOVER100
70 X=A*COS(R)+A*R*SIN(R)
80 Y=A*SIN(R)-A*R*COS(R)
90 PSET{C+X,D+Y)
100 NEXT R

Suggestions:

55 FOR A=B TO 24 STEP 2
110 NEXT A

85 Y = -Y lhis reverses the direction of the curve

88 GRAPHICS FOR THE MACINTOSH

··· ... ··.

Illustration 8.12 Macintosh output of multiple involutes

Cardioid

Illustration 8.13 Cardioid

(x2 + y2 + ax)2 = a2(x2 + y2),
p = a(1 - cos) or p = - a(1 + cos 0)

r • File Edit Control

== _- -: -- --- cardioid

/ ······· ···········-·-._\

~
···.... -···/!

··············

Illustration 8.14 Macintosh output, Cardioid

Listing, Cardioid

10' Cardioid
20 CLS
30 C=250:D=150:A=60
40 TWOP I =B. ATN (1)
50 PIOVER100=TWOPI/200
60 FOR R=O TO TWOP I STEP PI OVER1 00
7 0 T =A * (1 - C 0 S (R))
80 X=T*COS(R)
90 Y=T*SIN(R)
100 PSET(C+X,D+Y)
110 NEXT R

Suggestions:

40 FOR A=10 TO 100 STEP 10 'or step sqr(a)
120 NEXT A

Reverse the heart's direction with

100 PSET(C- X, D- Y)
55 FOR C = 200 TO 500 STEP 20
57 D = (C-50)/2
120 NEXTC

PIXEL GRAPHICS AND ICONS 89

.,

90 GRAPHICS FOR THE MACINTOSH

Evolute of Ellipse

Illustration 8.15 Evolute of Ellipse

x = A cos3 k1, y = B sin3 .0

,. • File Edit Control
,

euolute

CJ

Illustration 8.16 Macintosh output, Evolute of ellipse

Listing, Evolute of Ellipse
10 ' Evolute of ElI ipse
20 CLS
30 C=250:0=150:A=30
40 TWOPI=8.ATN(1)
50 PIOVER100=TWOPI/200
60 B=A· .75
70 FOR R=O TO TWOPI STEP PIOVER100
80 X=A.COS(R) 3
90 Y=B.SIN(R) 3
100 PSET(C+X,D+Y)
110 NEXT R

PIXEL GRAPHICS AND ICONS 91

Suggestions: As usual, form a loop changing the angle A. Or play with the
derivations of X andY, such as X =A *COS(R)"2. You can flatten the image by
changing line 60 to 60 8 =A* .4

Hypocycloid of Four Cusps
(Astroid)

Note that the word is Astroid, not Asteroid.

Illustration 8.17 Hypocycloid of
Four Cusps (Astroid)

x = a cos30, y = a sin3 ¢

92 GRAPHICS FOR THE MACINTOSH

r & File Edit Control

Illustration 8.18 Macintosh output, Hypocycloid

This image is closely related to the Evolute of Ellipse shown previously. This one is
based on a circle, while the Evolute is based on an ellipse.

Listing, Hypocycloid of Four Cusps (Astroid)

10 ' Hypo cyc loid of Four Cu sps (Astroid)
20 CLS
30 C=250:0=150 :A=30
40 TWOPI=8'ATN(1)
50 PIOVER100=TWOPI/200
60 FOR R=O TO TWOPI STEP PIOVER100
70 X=A*COS(R) 3
80 Y=A ·S IN (R) 3
90 PSET(C+X. D+Y)
100 NEXT R

PIXEL GRAPHICS AND ICONS 93

Roses

Illustration 8.19 Three-leaved rose Illustration 8.20 Four-leaved rose

p = acos30 p = a sin 2~

r • file

(.. ~
\}

c::/.:_:~

Illustration 8.21 Various Macintosh roses

94 GRAPHICS FOR THE MACINTOSH

Listing, Roses

10 ' Roses
20 CLS
30 C=50:0=150:A=30
40 TWOPI=B*ATN(1)
50 PIOVER100=TWOPI/200
60 S=O
70 FOR 1=3 TO B
B 0 N= I NT ((I+ 1) /2)
90 S=1-S
100 FOR R=O TO TWOPI STEP PIOVER100
110 IF S=O THEN T=A*COS(N*R) ELSE T=A*SIN(N*R)
120 X=T*COS(R)
130 Y=T*SIN(R)
140 PSET(C+X,O+Y)
150 NEXT R
160 C=C+75
170 NEXT I

Notes: This program produces enough roses that you can begin to understand
what's going on. The little table below shows the values of I, N, and S for all six
images.

3
4
5
6
7
8

N
2
2
3
3
4
4

s
1
0
1
0
1
0

T
A sin(nr)
A cos(nr)
A sin(nr)
A cos(nr)
A sin(nr)
A cos(nr)

Illustration 8.22 Table of relationships among roses

To increase the number of lobes, increase N; but note that when N is 2, the two
lobes are duplicated across the center, making it look like four lobes. If you set n to
5, you get five lobes; but if you set N to 6, you get 121obes. To orient the rose with
one lobe vertical, setS to 0.
We can't leave this topic without providing you with a hint at some other curves so

that you can try a few exercises of your own. We have imbedded within phrases the
names of some of our favorite mathematically derived curves for you to program.
Their names prove that some mathematicians are poets at heart. Here we suggest
some jargon you can take to your next party to impress your friends.
"Waiter! I have a Limacon of Pascal in my soup!"
"Why don't you dress up as a Witch of Cassini for the party?"
"Come on over sometime, and I'll show you my Cissoid of Diocles"

PIXEL GRAPHICS AND ICONS 95

"My Strophoid and Ovals of Cassini need work, but what a Bifolium!"
"Your tie resembles Bernoulli's Lemniscate."
"Folium of Descartes leads Conchoid of Nicomedes by a nose, and Spiral of

Archimedes trails the pack."
And so on.

Application 3: Birthdays
The next time you get together with 25 or more people, find out if two people were

born on the same day and month. If you had a gang of 182 people you might think
that the odds of two people having the same birthday would be about fifty-fifty (182
is half of 365). In fact, the odds are much better than that. For a full discussion of this
probability problem, we refer you to Popular Computing, July 1984, p. 190. The
program we include here is an adaptation of the one in that magazine: we even
kept some of the variables.

r a File Edit Control

blrthprob
0 10 20 30 40 50 60 70 80 90 100

..••. ~--
1

.. .9

.8

.7

.6
:

.5

.4

.3

.2

. 1

··•·· 0

Illustration 8.23 Macintosh output, Birthday program

Listing, Birthday

10 ' birthday
20 ' adapted from Popular Compu t ing , July 1984 , p 190.
30 DI M X(100)
40 M= 1 00
50 PB= 1 'initial probability multiplie r
60 FOR G=1 TOM
70 P=(365 - G+1) / 365 : PB=P" PB: X(G)=1-PB
80 NEXT G
90 CLS

.,

1:::1

(continued)

96 GRAPHICS FOR THE MACINTOSH

100 FOR 1=50 TO 350 STEP 30
110 PRINT PTAB(1-18); (1-50)/3;: NEXT I: PRINT
120 FOR J=20 TO 220 STEP 20
130 CAll MOVET0(352,J+4): PRINT (240-J)/200-.1
140NEXTJ
150 CAll TEXTMODE (1)
1 6 0 CAll PENS I Z E (2 , 2)
170 FOR G=1 TOM
180X=G*3+50
190 Y=220 -200*X(G)
200 CAll MOVETO(X, Y): PSET(X, Y)
210NEXTG
999 GOTO 999

Below is an outline of the steps in Pseudocode.

30 Save 100 positions of X, probabilities for up to 1 00 people.
60-80 For each of the 100 populations, calculate the probability.
90 Clear the screen.
100-110 Set horizontal screen positions I from 50 to 350 in steps of 30.

Tab to pixel i-18 and print values 0 to 100 in steps of 10.
120-140 For J = 20 to 220 in steps of 20 do: Move to column 352, row

J + 4 Print probability (1 to 0 in steps of .1)
Enddo.

150 Set Macintosh textmode to OR what is on the screen, so that it
shows through.

160 Set Macintosh pensize to a 2x2 (4-pixel) dot instead of the
standard 1 x1 (single-pixel) dot.

170-210 For G= 1 to 100 do:
Calculate X displacement as 3 * G + 350
Calculate Y displacement as 220 - 200 * X(G)
Move to location X,Y and place the 2x2 dot there.
Enddo.

Notes: This program uses several CALLs to the Macintosh Quickdraw routines,
and they need some attention.

CALL MOVETO(x,y) Lines 130 and 200 use a Toolbox subroutine to move the
cursor position to a screen pixel location. The two variables (x,y) are absolute
screen coordinates.

CALL TEXTMODE(m) In line 150, we reset the usual textmode. This allows us to
write without obliterating what is already on the screen. In the listing shown, this line
is not necessary. However, you could change line 200 to use a PRINT instead of a
PSET if you wanted the chart to be a series of asterisks. Then you would want the
last few PRINT statements to stay clear of the "1" printed in the probability column.
The PRINT statement carries with it a line width of15 pixels and one or more blanks
at the end of the line. This is the result of the default textmode(O), which causes the

PIXEL GRAPHICS AND ICONS 97

text to replace whatever is on the screen. Mode 1 causes the text output to be
superimposed (ORed) on the screen. Here's a summary of the four textmodes you
can use.

CALL TEXTMODE(m)

m = 0 (default)

m=1
m=2
m = 3 (SIC mode)

Effect

Text replaces whatever is on screen;
copy mode.
Text superimposes (ORs) screen image.
Screen inverts if pixel exists in text (XOR).
Screen inverts if pixel is black (Black Is
Changed).

CALL PENSIZE(w,h) redefines the pen's dimensions. Line 160 uses this routine to
change the PSErs output from one pixel to four, for higher clarity. This CALL is
most commonly used when you want to draw thicker lines than the standard
(default) one-pixel width. Here we use it to make fatter points.

Application 4: Stars and
Motion

Our aim is to show you how to design objects and manipulate them on the
screen to simulate motion using the GET and PUT.

The GET and PUT are related graphics instructions that grab (GET) a rectangle
of pixels from the screen and place (PUT) them elsewhere, perhaps in a different
size. You must define the rectangle as an integer array that can contain as many
bits as there are pixels in the image. The BASIC manual's description of how to
compute the size of the array to be DIMensioned is a bit complex, so here's a
simpler rule: Consider your rectangle to be X by Y pixels. The number of integers
you must reserve is 2 + X*Y/16.

For example, suppose you have a screen image that can be enclosed com
pletely by a rectangle that is 40 pixels across and 35 pixels deep. If you want to
GET and PUT the array IMAGE, that array variable must be DIMensioned at least 2
+ 40*35/16 = 90. Therefore the DIM statement would be

20 DIM IMAGE(90)

There is no way to be wrong if your DIM statement allows for a larger array,
such as DIM IMAGE(100) in the above example. However, you must reserve at
least as much space, in integers, as indicated by the formula 2 + X*Y/16.

The syntax of the GET and PUT are explained well in the Microsoft BASIC
manual, so we won't repeat this. We will show you what we did with these
instructions in our programs, and in this way you should discover some good
graphics tricks, as we did.

98 GRAPHICS FOR THE MACINTOSH

Shooting Star

,. • File Edit Control
.,

shootln star - -

•

Illustration 8.24 Shooting star at start of run

.,
-- - -------- --

•
Illustration 8.25 Shooting star halfway through run

Listing, Shooting Star

10 ' shooting star
20 OEFINT A-Z
30 DIM A(65),G(5)
40 CLS:INPUT "enter size of star .. ",S
50 CLS
60 X1=5:Y1=5:X2=X1+S*32-1 :Y2=Y1+S*32-1
7 0 A (0) =3 2: A (1) =3 2
80 A(2)=0:A(3)=0
90 A(4)=0:A(5)=0
100 A(6)=0:A(7)=0
110 A(8)=0:A(9)=&H70
1 2 0 A (1 0) =0: A (11) =&H 1 F 8
130 A(12)=7:A(13)=&HE30C
140 A(14)=&H1F:A(15)=&HFEOC
150 A(16)=&H7F:A(17)=&HFE18
160 A(1B)=&HFF:A(19)=&HFF30
170 A(20)=&H3FF:A(21)=&HFFEO
180 A(22)=&H30F:A(23)=&HFFAO
190 A(24)=&H7FF:A(25)=&HFF60
200 A(26)=&H7FF:A(27)=&HFEEO
210 A(2B)=&HFFF:A(29)=&HFEFO
220 A(30)=&HFFF:A(31)=&HFCFO
230 A(32)=&HFFF:A(33)=&HF9FO
240 A(34)=&HFFF:A(35)=&HF3FO
250 A(36)=&HFFF:A(37)=&H9FFO
260 A(38)=&HFFF:A(39)=&HCFFO
270 A(40)=&H7FE:A(41)=&H3FEO
280 A(42)=&H7FF:A(43)=&HOFEO
290 A(44)=&H1FC:A(45)=&HFFCO
300 A(46)=&H7F9:A(47)=&HFFCO
310 A(4B)=&HCF3:A(49)=&HFFOO
320 A(50)=&H186F:A(51)=&HFCOO
330 A(52)=&H303F:A(53)=&HFBOO
340 A(54)=&H30C7:A(55)=&HEOOO
350 A(56)=&H1F80:A(57)=0
360 A(58)=&HEOO:A(59)=0
370 A(60)=0:A(61)=0
380 A(62)=0:A(63)=0
390 A(64)=0:A(65)=0
400 F=150
410 0=3:E=1
420 FOR 1=1 TO F
430 PUT(X1,Y1)-(X2.Y2),A,PSET
440 X2=X2+0:X1=X1+0
450 Y2=Y2+E:Y1=Y1+E
460 NEXT I
470 IF INKEY$="" THEN 470 ELSE 40

PIXEL GRAPHICS AND ICONS 99

100 GRAPHICS FOR THE MACINTOSH

Below is an outline of the Shooting Star Program.

20
30
40
50
60

70-390

Define all variables integer
Declare Array A for image, reserve 65 integers for it.
Clear screen, get scaleS from user. Scale should be 1-1 0.
Clear screen again to remove dialog.
Define upper left (X1 ,Y1) and lower right (X2,Y2) coordinates for
rectangle to be manipulated in GET and PUT.
Describe the image to be manipulated and transfer it to the array
A. Because A is DIMensioned 65, a total of 66 16-bit integers
must be defined. The first two positions of the array are always
the size of the array in bits, so A(O) contains the width, of the array
in pixels, and A(1) contains the height of the array, in pixels. Line
60 has described a rectangle that is 32 by 32 for a scaleS of 1, 64
by 64 if S = 2, and so on. We need only define 32x32 bits, or 64
16-bit integers. Scaling will be taken care of with the PUT.
Because each pair of array elements defines 32 bits, A(2) and
A(3) define the first row of 32 bits; A(4) and A(5) define the
second row; and so on, until A(64) and A(65) define the bottom
row of the 32x32-bit square. The easiest way to build your image
is to take grid paper, sketch out your image, and place a 1 where
there is black, a 0 where the image is white. The result is then
reduced to a rectangle (try to make that rectangle's width divisi
ble by 16) and translated into hexadecimal from this binary
picture.

For example, suppose you want your image to be a frog, like
the lower-case "c" in Cairo font, and you want that image to be
contained within a rectangle 16 bits wide by 32 bits deep. First,
DIMension the integer array FROG%(33). Define FROG%(0) =
16 and FROG%(1)=32, the design's column and row dimen
sions. Then, lay out your pattern in 1 sand Os on grid paper, as
shown in Illustration 8.26.

1 2 3 4 5 6 1 8 9 1 1 1 1 1 1 1
0 1 2 3 4 5 6

Illustration 8.26 Sketch of 16x32 frog with binary equivalent

PIXEL GRAPHICS AND ICONS 101

102 GRAPHICS FOR THE MACINTOSH

Your next task is to transfer that image line by line into the array FROG%, starting
with FROG% (2) through FROG% (33). The easiest way to transfer the 16-bit groups
is to define them as four hexadecimal digits. For the sake of completeness, we
review those for you here in Illustration 8.27.

Binary Hex Binary

0000 0 1000
0001 1 1001
0010 2 1010
0011 3 1011
0100 4 1100
0101 5 1101
0110 6 1110
0111 7 1111

Illustration 8.27 Bit representation of hexadecimal digits

So the frog's definition is

FROG%(0)=16: FROG%(1)=32: FROG%(2)=&HOOOO
FROG%(3)=&HOOOO: FROG%(4)=&HOOOO
FROG% (5) = &HOOOO: FROG% (6) = &HA005
FROG%(7)=&H7363: FROG%(8)=&H61C7
FROG%(9)=&H63E3: FROG%(10)=&H77F7
FROG% (11) = &H3FFE: FROG% (12) = &H07FO
FROG% (13) = &H03EO: FROG% (14) = &H03EO
FROG% (15) = &H01CO: FROG% (16) = &H07FO
FROG%(17)=&H1FFC: FROG%(18)=&H3F7E
FROG%(19)=&H7C1F: FROG%(20)=&H7007
FROG% (21) = &H6003: FROG% (22) = &H7007
FROG%(23)=&H380E: FROG%(24)=&H1C1C
FROG% (25) = &H0630: FROG% (26) = &H0360
FROG% (27) = &H0360: FROG% (28) = &HOE38
FROG% (29) = &H3C1 E: FROG% (30) = &HOOOO
FROG% (31) = &HOOOO: FROG% (32) = &HOOOO
FROG% (33) = &HOOOO

Hex

8
9
A
B
c
D
E
F

PIXEL GRAPHICS AND ICONS 103

Now let's get back to our program.

400 Define F, number of times through loop to move the object.
410 DE:}fine horizontal displacement 0, and vertical displacement E.
420-460 For I= 1 to F DO:
430 PUT the array A into area defined by (X1 ,Y1) and (X2,Y2). Use

the PSET action verb to place it there.
440-450 Increment coordinates by 0 and E.
460 ENDDO.
470 Wait for a keystroke from user, then return to beginning.

The reason that two PUTs with the XOR option (as suggested in the manual to
simulate motion) aren't needed in this program is because the increments for the
picture's shift D and E cause the picture to move so little that the pixels that are
turned on aren't left on. This automatic erasure is caused by the picture's definition
with a 3-pixel white border surrounding the entire design of the star. If D and E are
defined to be greater than three pixels, then some residue is left behind because
the new image's border doesn't overlap the old image entirely. Play around with the
values of D and E, and you will see what happens.

Enlarge Star program

"' 4i File Edit Control
,

Illustration 8.28 Enlarge Star output when star is small

104 GRAPHICS FOR THE MACINTOSH

Illustration 8.29 Enlarge Star output when star is large

This program is identical to the last, except we have no loop for moving the star
across the screen. What we wanted to show here was the effect of changing the
scaleS. As you enter different values for Sin line 40, the image that is PUT onto the
screen changes. When S = 1, it is at its real size, as defined in the array. When S =
2, the image is twice as large (the area of the square is really four times as much,
but each dimension across and down is only twice as much).

Listing, Enlarge Star

10 · enlarge s tar
20 DEF INT A-Z
30 DIM A(65)
40 CLS: INPUT "enter size of star . . ·.s
50 CLS
60 X1=0:Y1=0 :X2=X1+S"32- 1 :Y2=Y1+S"32-1
70 A(0)=32 :A(1)=32
80 A(2)=0 :A(3)=0
90 A(4)=0 :A(5)=0
100 A(6)=0:A (7)=0
110 A(8)=0:A (9) =&H70
1 2 0 A (1 0) =0: A (11) =&H 1 F 8
130 A(12)=7:A(13)=&HE30C
140 A(14)=&H 1F:A(15) =&HFEOC
15 0 A(16)=&H7 F: A(17)=&HFE18
160 A(18)=&HF F: A(19)=&HFF30
170 A(20)=&H3 FF:A (21)=&HFFEO
180 A(22)=&H30F :A(23) =&HFFAO
190 A(24)=&H7FF:A(25)=&HFF60
200 A(26)=&H7FF:A(27)=&HFEEO

210 A(28)=&HFFF:A(29)=&HFEFO
220 A(30)=&HFFF:A(3 1)=&HF CFO
230 A(32)=&HFFF :A(33)=&HF9FO
24 0 A(34)=& HF FF :A(35)=&HF3FO
25 0 A(36)=& HF FF :A(37)=&H9FFO
260 A(38)=&HFFF:A(39)=&HCFFO
270 A(40)=&H7FE :A (41)=&H3 FE O
280 A(42)=&H7FF :A(43)=&HOFEO
290 A(44)=& H1F C:A(45)=&H FFCO
300 A(46)=&H7F9:A(47)=&H FFCO
310 A(48)=&HCF3 :A(49)=&HFFOO
320 A(50) =&H186F :A(51)=&HFCOO
330 A(52)=&H303F :A(53)=&HF800
340 A(54)=&H30C7 :A(55)=&HEOOO
350 A(56)=&H1F80 :A(57)=0
360 A(58)=&HEOO :A(59)=0
370 A(60) =0:A(6 1)=0
380 A(62)=0:A(63)=0
390 A(64)=0 :A(65) =0
400 PUT (X 1,Y1)-(X2,Y2),A
410 IF INKEYS="" THEN 410 ELSE 40

Racing Stars program

Saturn ~
22 ~

Deeth Star •
14

PIXEL GRAPHICS AND ICONS 105

Illustration 8.30 Racing Stars program at beginning

106 GRAPHICS FOR THE MACINTOSH

' * File Edit Control

racing stars

Set urn ,
260

Deeth Ster
314

Illustration 8.31 Racing Stars, program at end

Listing, Racing Stars

10 ' racing stars
20 RANDOMIZE TIMER
30 OEFINT A-Z
40 DIM A(65).8(65)
50 CLS
60 A(0)=32:A(1)=32:8(0)=32:8(1)=32
70 A(2)=0 :A(3)=0:8(2)=0:8(3) =0
80 A(4)=0 :A(5)=0 : B(4)=0:8(5)=0
90 A(6) =0:A(7) =0: 8(6)=0 :B(7)=0
100 A(8) =0 :A(9)=&H70 : 8(8)=0: 8(9)=0
110 A(10)=0 :A(11)=&H1F8:8(10) =7:8(11)=&H EO OO

•

120 A(12) =7:A(13) =&HE30C :8(12) =&H 1F: 8(13)=& HFCOO
130 A(14) =&H1F:A(15)=&HFEOC:8(14)=&H7F:8(15) =&HFEOO
140 A(16)=&H7F :A(17)=&HFE 18:8(16) =&HFF: 8(17)=&HFFOO
150 A(18)=&HFF:A(19)=&HFF30 : 8(18)=&H1F F: 8(19) =

&HFFBO
1 6 0 A (2 0) =&H 3 F F :A (21) =&H F FE 0 : 8 (2 0) =&H3 F F : B (21) =

&HFFCO
170 A(22) =&H3DF :A(23)=&HFFA0 :8(22)=&H3FF :8(23)=

&HFFCO
180 A(24) =&H7FF:A(25) =&HFF60 :8(24)=&H7FF:8(25) =

&HFFEO
190 A(26) =&H7FF :A(27)=&HFEEO :B(26)=&H76F: 8(27)=

&HF FEO
200 A(28) =& HFFF :A(29) =&HFEFO : B(28)=&HFFF:B(29) =

&HFFFO
210 A(30) =&HFFF :A(31)=&HFCF0 :8(30)=&HFFF :8(31)=

&HFFFO

1:1

220 A(32)=&HFFF:A(33)=&HF9FO:B(32)=&HEFB:B(33)=
&HFFFO

230 A(34)=&HFFF:A(35)=&HF3FO
240 A(36)=&HFFF:A(37)=&H9FFO
250 A(38)=&HFFF:A(39)=&HCFFO
260 A(40)=&H7FE:A(41)=&H3FEO
270 A(42)=&H7FF:A(43)=&HDFEO
280 A(44)=&H1FC:A(45)=&HFFCO
290 A(46)=&H7F9:A(47)=&HFFCO
300 A(48)=&HCF3:A(49)=&HFFOO
310 A(50)=&H186F:A(51)=&HFCOO
320 A(52)=&H303F:A(53)=&HF800
330 A(54)=&H30C7:A(55)=&HEOOO
340 A(56)=&H1FBO:A(57)=0
350 A(58)=&HEOO:A(59)=0
360 A(60)=0:A(61)=0
370 A(62)=0:A(63)=0
380 A(64)=0:A(65)=0
390 FOR 1=34 TO 64 STEP 2
400 B(I)=8(66-1) :B(1+1)=8(67-1)
410 NEXT I
4 2 0 S= 1 : P=S" 3 2
430 CALL MOVET0(2,41):PRINT "Saturn"
440 CALL MOVET0(2,41+P) :PRINT "Death Star"
450 X1=80:Y1=25:X2=X1+S"32-1 :Y2=Y1+S"32-1
460 X3=X1 :X4=X3+P-1 :Y3=Y1+P:Y4=Y3+P-1
470 0=1: F=700/D
480 FOR 1=1 TO F
490 PUT(X1,Y1)-(X2,Y2),A,PSET
500 PUT(X3. Y3)-(X4, Y4) .B. PSET
510 IF RND(1)>.5 THEN X2=X2+D:X1=X1+0 ELSE

X4=X4+D:X3=X3+0
520 CALL MOVET0(12,53):PRINT X1-80
530 CALL MOVET0(12,53+P) :PRINT X3-80
540 NEXT I
550 IF INKEYS="" THEN 550 ELSE 60

PIXEL GRAPHICS AND ICONS 107

This program is a take-off on the previous one. Here we define two stars, the
original ringed one, and the other a simple sphere with several white spots in it as
highlights. The definition of this new object is found in lines 60 through 410 as hex
constants placed into the array 8, DIMensioned 65. The array A remains
unchanged. Notice how the bottom half of the new star, 8(34) through 8(65) are
defined as the upside-down definition of 8(2) through 8(33). You can do this with
any symmetrical object.
After the two objects' definitions, the program prints an identifying name on the

screen, and loops through PUTs of A and B across the screen. The trick is in line
510, where the horizontal displacement of each star is increased by D at random.
This is what makes the race interesting. When the loop in lines 480-540 is through
and the race is over, there is no way to predetermine which star will win.

108 GRAPHICS FOR THE MACINTOSH

Approaching Star program

' a File Edit Control

approaching star

Ill

Ql

Illustration 8.32 Approaching Star from far away

' a File Edit Control

Illustration 8.33 Approaching Star closer

PIXEL GRAPHICS AND ICONS 109

~ • File Edit Control

~
••

.,.; -
~·" .

•

Illustration 8.34 Approaching Star very close

Illustration 8.35 Approaching Star receding

110 GRAPHICS FOR THE MACINTOSH

Listing, Approaching Star program

10 ' approaching star
20 DEFINT A-Z
30 DIM A(65),G(5)
40 CLS
50 A(0)=32:A(1)=32
60 A(2)=0:A(3)=0
70 A(4)=0:A(5)=0
80 A(6)=0:A(7)=0
90 A(8)=0:A(9)=&H70
100 A(10)=0:A(11)=&H1F8
110 A(12)=7:A(13)=&HE30C
120 A(14)=&H1F:A(15)=&HFEOC
130 A(16)=&H7F:A(17)=&HFE18
140 A(18)=&HFF:A(19)=&HFF30
1 50 A (2 0) =&H 3 F F : A (21) =&H F FE 0
160 A(22)=&H3DF:A(23)=&HFFAO
170 A(24)=&H7FF:A(25)=&HFF60
180 A(26)=&H7FF:A(27)=&HFEEO
190 A(28)=&HFFF:A(29)=&HFEFO
200 A(30)=&HFFF:A(31)=&HFCFO
210 A(32)=&HFFF:A(33)=&HF9FO
220 A(34)=&HFFF:A(35)=&HF3FO
230 A(36)=&HFFF:A(37)=&H9FFO
240 A(38)=&HFFF:A(39)=&HCFFO
250 A(40)=&H7FE:A(41)=&H3FEO
260 A(42)=&H7FF:A(43)=&HDFEO
270 A(44)=&H1FC:A(45)=&HFFCO
280 A(46)=&H7F9:A(47)=&HFFCO
290 A(48)=&HCF3:A(49)=&HFFOO
300 A(50)=&H186F:A(51)=&HFCOO
310 A(52)=&H303F:A(53)=&HF800
320 A(54)=&H30C7:A(55)=&HEOOO
330 A(56)=&H1F80:A(57)=0
340 A(58)=&HEOO:A(59)=0
350 A(60)=0:A(61)=0
360 A(62)=0:A(63)=0
370 A(64)=0:A(65)=0
380 S=l
390 X1=100:Y1=0:X2=X1+31 :Y2=Y1+31
400 D=1 :E=O
410 FOR 1=0 TO 500
420 PUT(X1, Y1)-(X2, Y2) ,A, PSET
430 IF 1=260 THEN D=O:E=1
440 IF 1>245 AND 1<255 THEN E=O:D=O
450 X2=X2+D:X1=Xl+E
460 Y2=Y2+D:Y1=Yl+E
470 NEXT I
480 IF I NKEYS="" THEN 480 ELSE 40

PIXEL GRAPHICS AND ICONS 111

This program uses only one image definition, the same one as has existed right
along, the ringed planet. The key difference is within the loop in lines 410-470. Here
the PUT in line 420 will be executed 500 times, but the values for the rectangle's
coordinates not only shift diagonally across the screen, but they redefine the size of
the rectangle.
Look at line 400, where the upper left coordinate's displacement 0 starts as 1, and

the lower right coordinate's displacement E starts as 0 . Until I is greater then 245
(see line 440) the image grows and seems to come toward you from the upper left
because 0 is fixed, while the lower right coordinate moves down and to the right
because E is 1. When I is between 245 and 255, the image pauses because both
displacements are set to zero. Later, when I is 260 or larger, the lower right
coordinate is the one that is fixed, while the upper left one approaches it. This
produces the effect of recession, because the star is shrinking toward the lower
right.

Revolving Stars program

•
•

Illustration 8.36 Revolving stars, first view

112 GRAPHICS FOR THE MACINTOSH

r • File Edit Control

• •
•

Illustration 8.37 Revolving stars, second view

r • File Edit Control

• • •

Illustration 8.38 Revolving stars, third view

Listing, Revolving Stars

10 · revolving s tars
20 OEF I NT A- G
30 DIM A(65). 8 (65)
40 CLS
50 A(0)=32: A(1) =32
60 A(2) =&H7F :A(3) =&HO
70 A(4)=&H1 FF:A(5) =&HCOOO

PIXEL GRAPHICS AND ICONS 113

80 A(6)=&H7FF:A(7)=&HFOOO
90 A(8)=&HFFF:A(9)=&HF800
100 A(0)=32:A(1)=32:B(0)=32:B(1)=32
110 A(2)=0:A(3)=0:B(2)=0:B(3)=0
120 A(4)=0:A(5)=0:B(4)=0:B(5)=0
130 A(6)=0:A(7)=0:B(6)=0:B(7)=0
140 A(8)=0:A(9)=&H70:B(8)=0:B(9)=0
150 A(10)=0:A(11)=&H1F8:B(10)=7:B(11)=&HEOOO
160 A(12)=7:A(13)=&HE30C:B(12)=&H1F:B(13)=&HFCOO
170 A(14)=&H1F:A(15)=&HFEOC:B(14)=&H7F:B(15)=&HFEOO
180 A(16)=&H7F:A{17)=&HFE18:B{16)=&HFF:B(17)=&HFFOO
190 A(18)=&HFF:A(19)=&HFF30:B(18)=&H1FF:B(19)=

&HFF80
200 A{20)=&H3FF:A(21)=&HFFEO:B(20)=&H3FF:B(21)=

&HFFCO
210 A(22)=&H30F:A(23)=&HFFAO:B{22)=&H3FF:B(23)=

&HFFCO
220 A(24)=&H7FF:A(25)=&HFF60:B(24)=&H7FF:B(25)=

&HFFEO
230 A(26)=&H7FF:A(27)=&HFEEO:B(26)=&H76F:B(27)=

&HFFEO
240 A(28)=&HFFF:A(29)=&HFEFO:B(28)=&HFFF:B(29)=

&HFFFO
250 A(30)=&HFFF:A(31)=&HFCFO:B(30)=&HFFF:B(31)=

&HFFFO
260 A(32)=&HFFF:A(33)=&HF9FO:B(32)=&HEFB:B(33)=

&HFFFO
270 A(34)=&HFFF:A(35)=&HF3FO
280 A(36)=&HFFF:A(37)=&H9FFO
290 A(38)=&HFFF:A{39)=&HCFFO
300 A(40)=&H7FE:A(41)=&H3FEO
310 A{42)=&H7FF:A(43)=&HOFEO
320 A(44)=&H1FC:A(45)=&HFFCO
330 A(46)=&H7F9:A(47)=&HFFCO
340 A{48)=&HCF3:A{49)=&HFFOO
350 A(50)=&H186F:A(51)=&HFCOO
360 A(52)=&H303F:A(53)=&HFBOO
370 A{54)=&H30C7:A(55)=&HEOOO
380 A(56)=&H1F80:A(57)=0
390 A(58)=&HEOO:A(59)=0
400 A{60)=0:A(61)=0
410 A(62)=0:A(63)=0
420 A{64)=0:A{65)=0
430 FOR 1=34 TO 64 STEP 2
440 B(I)=8(66-1) :B(1+1)=8(67-1)
450 NEXT I
460 S1=1 :S2=2:S3=1
470 XA=220:YA=120:XB=220:YB=105:XC=220:YC=115
480 PI=4.ATN(1) :PIOEL1=PI/130:PIOEL2=PI/220:PIOEL3=

p 1/90
(continued)

114 GRAPHICS FOR THE MACINTOSH

490 Tl;PI /13:T2;PI/7:T3;T2+PI/4
500 R1=120:R2=10:R3;90
510 Xl=XA+Rl*l. 4 *COS (Tl): Yl=YA+Rl*S IN(Tl): X2;

Xl+S1*32-1 :Y2=Y1+32*S1-1
520 X3=XB+R2*COS(T2) :Y3;YB+R2*SIN(T2) :X4=

X3+S2*32-1: Y4;Y3+32"S2-1
530 X5=XC+R3*COS(T3) :Y5;YC+R3* .9*SIN(T3) :X6=

X5+S3"32-1: Y6=Y5+32*S3-1
540 PUT(Xl, Yl)-(X2, Y2) ,B,PSET
550 PUT(X3,Y3)-(X4,Y4),A,PSET
560 PUT (X5,Y5)-(X6,Y6),B,PSET
570 Tl=T1-PIDEL1 :T2=T2+PIDEL2:T3=T3+PIDEL3
580 GOTO 510

This program uses two planets, as did the racing stars. In this program, though,
one of the planets is used in two different places on the screen, so you have three
objects to follow in their motions. Instead of racing the three planets, we decided to
make them revolve around each other. The largest, ringed, planet traces a small
circle in the center of the screen. The two smaller ones revolve around it in opposite
directions, one closer than the other.
The effect is indeed striking, and it is hard to describe either in words or pictures. If

there is any one program in this book that you must run, it is this one.
The three planets are moved through "space" with the three PUT statements in

lines 540-560. The ringed planet, you remember, is the image stored in array A.
Array B holds the image for both other planets, as they are identical. We have set
up the orbits of these three objects in lines 510-530, in which the X and Y
displacements from the center of rotation are calculated. We will return to these
calculations later. First, consider the overall problem as a list of goals:

• Each object must revolve in a fixed orbit.

• Object A (let's call it Alpha) will be defined within a rectangle with corner
coordinates (X3,Y3)-(X4,Y4), it will revolve around a center at (XB,YB). Its
orbit will be a circle, with radius R2.

• One object 8 (beta) will be in rectangle (X1,Y1)-(X2,Y2), it will revolve
around a center (XA,YA), its orbit will be an ellipse with eccentricity 1.4,
and the orbit's radius will be R1 .

• The other object 8 (we'll call it gamma) will be in rectangle (X5, Y5)-(X6, Y6),
with center (XC,YC), elliptical orbit with eccentricity 0.9, and orbit radius of
R3.

We could calculate the orbital velocity based on eccentricity and radius. If we
were especially ambitious, we could take into account the masses and positions of
the neighboring objects. To keep it simple, we let the three objects take on the
motions described above, with three orbital velocities chosen by programmer
whim.

PIXEL GRAPHICS AND ICONS 115

Now, let's identify the lines that do all this.

460
470
480
490
500
510-580
510
520
530
540-560
570

580

Define scales of the objects.
Define the center coordinates for all three objects.
Choose the incremental angles for rotation speed.
Establish the starting positions for each object.
Set the three centers of rotation.
Loop to revolve the planets.
Calculate the new corner coordinates for Alpha.
Calculate the new corner coordinates for Beta.
Calculate the new corner coordinates for Gamma.
Paint them in.
Increment the angles. Notice that Alpha's angle increment is
negative, so it will revolve in the opposite direction from the other
planets.
Repeat lines 510-570 ad nauseam.

We are continually amazed at the Macintosh's outstanding graphics capabilities.
Even in BASIC, considering all of the statements that must be interpreted into
machine code again and again, the machine operates at a sufficient speed to
simulate motion. The sophistication of the BASIC itself is a great boon to this
computer, because it takes advantage of so many of the Macintosh's superb
Ouickdraw routines.

c A A p f E R N N E

CLOCKS

In this chapter we will explore the instructions LINE and CIRCLE. We will also
work with TEXTFONT, TEXTFACE, TEXTSIZE, TEXTMODE, PENSIZE, PEN
MODE, and PEN NORMAL text management commands which are available in
the Macintosh ROM as CALLs to Quickdraw routines.

We have chosen clock faces as a theme for our graphics designs, because they
allow a wide range of artistic freedom. It is not our intention to suggest that you
convert your Macintosh into a clock. Rather, we recommend these application
programs for your scrutiny as exercises in using some of the computer's more
sophisticated graphics.

CALLs to Text
Management Routines

You should be familiar with the Macintosh top-line menu displays provided when
dealing with text in either MacPaint or MacWrite. The two pull-down menus, Font
and Style provide three sets of facilities. Font allows you to choose among the
available fonts - Chicago, New York, Geneva, Monaco, and other fonts accessi
ble through the Macintosh's Fontfinder. Style provides two menus in one. The first
gives you a choice of textfaces- plain, bold, italic, underline, outline, shadow,
and others; and the second gives you a list of textsizes - 9, 10, 12, 14, 18, and
others. Another variation which affects text as it is positioned on the screen is
textmode, which allows you to AND, OR, XOR or invert text pixels with those
already on the screen.
BASIC, through the use of Quickdraw CALLs, allows you to alter the output fonts

in all ofthese ways. lllustr~tion 9.1, 9.2 and 9.3 will indicate how you can do this.

117

118 GRAPHICS FOR THE MACINTOSH

CALL TEXTFONT(n)
Other fonts besides those in Illustration 9.1 should be available to you on the

BASIC disk. You can discover them by investigating the systems font files.

n Name

0 Chicago

New York

3 Geneva

4 Monacc•

Optimum
sizes

Description

System font used for windows

and menus

eCI~ 4 Default BASIC output font

1=2 4 Systen1 font (icon titles)

®0 Ul Non-proportional foRt

Illustration 9.1 TEXTFONT calls

CALL TEXTFACE (n)
The textfaces in Illustration 9.2 can be added together to provide more stylish

options. For example, Bold-Italic can be specified with CALL TEXTFACE(3);
Underline-Outline would be provided with a CALL TEXTFACE(12) because
12=8+4.

bit#

0
1
2
3
4
5
6

value(n)

1
2
4
8
16
32
64

Illustration 9.2 TEXTFACE calls

Description

Bold
ltolic
Underline
rmWia n ~ oooo
ra!lilf:Jt!ICD\il
Condensed (squeeze characters)
Expanded (stretch characters)

CLOCKS 119

CALL TEXTSIZE(n)
This option is perhaps the most direct and easy to use. Simply use the fontsize you

want - 9, 10, 12, 14, ... (up to 72 on some fonts)- as the argument in the CALL.

CALL TEXTMODE(n)

n Mode Description

0 Copy Deft:~ult mode. Text replaces contents of screen.

OR Text superimposes screen i mt:~ge . Used to keep area
around text from "whit ing out" image t•elow.

2 XOR Text invert s existing i meg e. You can "see through" text.

3 BIC I2lock ls 1:ht:~nged . Text pixels Eire chEJ'nged to 'N ~1ite .

The effect resembles the opposite of the OR mode.

Illustration 9.3 TEXTMODE calls

Application 1: Wall Clock
This program serves as a model for most programs in this chapter. Since it

contains many of the features needed by most of the clock programs, we will
describe it in more detail than the others.

r a fil e Edit Control

Illustration 9.4 Wall Clock program output

120 GRAPHICS FOR THE MACINTOSH

Listing, Wall Clock

1 0 ' wa I I c I o c k d r i v e r
20 CLS
30 X=100:Y=120:F=0
40 GOSUB 1000
50 TS=MIDS(TIME$151 1)
60 IF INKEYS="/" THEN CALL MOVET0(5~300) :STOP
7 0 I F T $ =M I 0 $ (T I ME $ I 5 I 1) T H EN 6 0
80 GOSUB 1000:GOTO 50
90 GOTO 70
1000 ' wall clock
1 01 0 P 8=8 * ATN (1)
1020 F0=1 : FA=8: S I =12: M0=1: GO SUB 2000
1030 FOR J8=80 TO 86 STEP 2
1040 LINE(X~Y-J8)-(X-JB~Y) :LINE(X-JB~Y)-(X~Y+J8)
1050 LINE(X~Y+JB)-(X+JB~Y) :LINE(X+J8~Y)-(X~Y-J8)
1060 NEXT J8
1070 J8=3
1080 FOR 18=0 TO P8 STEP PB/12
1090 X8=48*COS(I8) :Y8=48*SIN(I B)
1100 CALL MOVETO(X+X8-13~Y+Y8+5):PRINT J8
1110 J8=J8+1
1120 IF J8>12 THEN J8=1
1130 NEXT I 8
1140 CIRCLE(X~Y) ~2~33~0~PB
1150 T8S=TIME$
1160 H8=VAL(LEFTS(T8$~2))
1170 M8=VAL(MIO$(T8$1412))
1180 CALL PENSIZE(3~3)

1190 IF F=1 THEN LINE(X~Y)-(X+X7~Y+Y7)~30
1200 IF F=1 THEN LINE(X~Y)-(X+X9~Y+Y9)~30

1210 K8=(H8-3)*P8/12+M8*P8/720
1220 X7=30*COS(K8) :Y7=30*SIN(K8)
1230 LINE(X~Y)-(X+X7~Y+Y7)~33
1240 CALL PENSIZE(2~2)

1250 L8=(M8-15)*P8/60
1260 X9=37*COS(L8) :Y9=37*SIN(L8)
1270 LINE(X~Y)-(X+X9~Y+Y9)~33
1280 CALL PENNORMAL:F=1
1290 F0=1 :FA=O:SI=12:M0=0:GOSUB 2000
1300 RETURN
2000 ' set text values
2010 CALL TEXTFONT(FO) :CALL TEXTFACE(FA)
2020 CALL TEXTSIZE(SI):CALL TEXTMODE(MO)
2030 RETURN

CLOCKS 121

Below is the outline of the program in pseudocode.

20
30

40

50

60
70

80

1000
1010

1020

1030-1060
1070-1130

1140

1150-1170
1180
1190-1200

1210-1230

1240
1250
1260
1270
1280

Clear screen
Define X andY coordinates for clock's center. Set F, first CALL
indicator, to 0.
Perform Wall Clock Routine. This first time around, the clock is
drawn and the time displayed. From then on, because F will not
be zero, the frame and digits of the clock are not drawn.
Isolate in T$ the second digit in the Minutes portion of TIMES. The
system variable TIME$ has the format "HH:MM:SS" so the fifth
character is the digit we want.
If user hits "f' then move cursor to bottom of screen, stop.
If the fifth character in TIMES is still the same, check for user
interrupt (go to line 60).
Time has advanced to next minute. Perform Wall Clock Routine,
and go back to reset T$ in line 50.
Wall Clock Routine
Define PB as 2*pi. The angle whose tangent is 1 is 45°, which is
pi/4 radians. Therefore 2*pi is 8*ATN(1)
Set FO (Font) to 1 (New York); FA (Face) to 8 (outlined); Sl (size) to
12; and MO (Mode) to 1 (Superimposed, ORed text). Then Per
form Set Text Values routine at line 2000.
Draw clock border or frame.
Print the numbers on the clock face. Notice that line 1100
includes a slight shift to attempt to account for different number
widths, because 10, 11, and 12 are twice as wide as the other
numbers.
Draw a small circle at center of clock. The hands will revolve
around this center.
Place in HB the hour and in MB the minutes.
Redefine size of pen for drawing hour hand to a 3x3 pixel point.
If F < > 0 (not first call) then erase old hands. This is done by
drawing old hands in white (color = 30).
Calculate position of hour hand and draw it. K8 is angle of hour
hand. M8*P8/720 is fraction of hour, (needed so that if time is
1 :30, hour hand is halfway between 1 and 2).
Calculate L8, angle of minute hand.
Redefine size of pen to draw a thinner minute hand, 2x2 pixels.
Calculate coordinates for tip of minute hand.
Draw minute hand in black (color = 33).
Reset pen size to normal, set F to 1 indicating hands drawn.

122 GRAPHICS FOR THE MACINTOSH

1290 Reset all TEXT values to system defaults: FO (Font) = 1 (New
York); FA (Face) = 0 (plain); Sl (Size) = 12; and MO (Mode) = 0
(copy mode). Then perform Set Text Values routine at line 2000.

1300 Return.
2000 Set Text Values routine.
2010 Using CALLs to Macintosh ROM, set font, face, size, and mode.
2020 Return.

In this program, the LINE command and the CIRCLE command were used. LINE
is a coordinate-to-coordinate instruction. Therefore, when a line of length R has to
be drawn from point X, Y at an angle A, some transformations must be calculated.
In the program, lines 1220 and 1260 show these calculations. Here's the procedure
for line 1220.

1. Line 1210 calculates KS, the angle of the hour hand, based on the values of
H8 and M8, H8 and M8 are the hour and minute values derived from the
system variable TIMES. The angle is one twelfth of a full circle (P8) for each
hour, plus one ?20th of a full circle for each minute. Note that the hour
corresponding to an angle of 0 is three o'clock, not noon, so we subtract
three in that calculation.

2. Line 1220 calculates X? and Y?, the horizontal and vertical displacements
from the center of the clock. We calculate the endpoints Xy and Y7 using
polar coordinates to draw a line of angle KS and radius length 30 .

I
•.
i

l ,
p ,

•.
\

:,

.

', r''
~ -~
'~~ ~~

~ _ -~ ~-- ... ,.,.

(x+r cos •~ y+r sin 11)

Illustration 9.5 X-distance andY-distance calculations using the length of the
hour hand as 30 and the angle as KS

CLOCKS 123

3. Line 1230 draws the hour hand from the center of the clock X,Y to its proper
position around the face, which is X,Y displaced by X7,Y7.

Other noteworthy aspects of this first clock program are the use of PEN NORMAL
and PENSIZE to change the thickness of lines drawn. We have found a reference
which we recommend highly. The magazine Macworld, published by PC World
Communications, Inc., at 555 De Haro St. , San Francisco, CA 94107, is an
invaluable aid for hints and tricks on the Macintosh. The July/August 1984 issue in
particular has helped us, especially the article, Open Window- An exchange of
Macintosh discoveries, by Tandy Trower, Microsoft's marketing manager for lan
guage products. In this article, the Toolbox Calls to the Macintosh ROM are
discussed in enough detail (far more than in the BASIC manual) to use with
confidence in your own BASIC programs. We urge you to subscribe to this
magazine. and if you can't do that, at least get a copy of this particular issue.

Application 2: Digital Clock

r • File Edit Control

12:05 i(]ffi

00:05

Illustration 9.6 The Macintosh digital clock

Listing, Digital Clock

10 · digital clock driver
20 CLS
30 X=70
40 Y=50:M=O:GOSUB 1000
50 Y = 1 50 : M= 1 : G 0 S U 8 1 0 0 0
60 TS=MIOS(TIME$,5, 1)
70 IF INKEY S="/" TH EN CALL MOVET0(5,300) :STOP
80 IF TS =MIO$(TIMES,5 , 1) THEN 70

(continued)

124 GRAPHICS FOR THE MACINTOSH

90 Y=50:M=O:GOSUB 1000
100 Y=150:M=1 :GOSUB 1000
110 GOTO 60
1000' digital clock
1010 F0=0:FA=8:SI=40:M0=1 :GOSUB 2000
1020 CALL PENSIZE(3.3)
1030 CALL MOVETO(X,Y)
1040 LINE(X,Y)-(X+280,Y+80),33,BF
1050 LINE(X+10,Y+10)-(X+270,Y+70) ,30,8
1060 CALL MOVETO(X+32,Y+54)
1070 T8S=TIMES
1080 H8=VAL(LEFT$(T8$,2))
1 0 9 0 I F M= 1 THEN T 8 $ =" "+ l E F T $ (T 8 $, 5) : G 0 T 0 1 1 4 0
1100 IF HB<12 THEN S8$="am" ELSE S8$="pm"
1110 H8=H8 MOD 12
1120 IF H8=0 THEN H8=12
1130 T8$=RIGHT$(STRS(100+H8),2)+MID$(TB$,3,3)+"

"+S8$
1140 PRINT T8$
1150 CALL PENNORMAL
1160 F0=1:FA=O:SI=12:M0=0:GOSUB 2000
1170 RETURN
2000 ' set text values
2010 CALL TEXTFONT(FO) :CALL TEXTFACE(FA)
2020 CAll TEXTSIZE(SI) :CALL TEXTMODE(MO)
2030 RETURN

The notes on the program below outline the steps involved in the program.

20
30-40

50

60
70
80
90
100
110
1000
1010

1020-1050

1060

Clear screen
Define upper left corner of top display (12-hour clock) and set
M = 0 , indicating 12-hour clock. Then perform Digital Clock
Routine at line 1000.
Define upper left corner of bottom display (24-hour clock) and
set M = 1, indicating 24-hour clock. Then perform Digital Clock
Routine at line 1000.
Get second digit in minutes portion of TIME$.
If user hits''/" then move cursor out of way, stop.
If time hasn't changed, go back to line 70.
Perform Digital Clock routine for 12-hour (top) clock.
Perform Digital Clock routine for 24-hour clock.
Go to line 60 to check time.
Digital Clock Routine.
Set Font= Chicago, Face= Outline, Size= 40, Mode= Overlay
(OR). Perform Set Text Values routine.
Set fat pen size, draw large black rectangle. Then move in 1 0
units, draw white rectangle.
Position cursor for time to be displayed.

1070-1080
1090

1100-1130

1140

1150-1160

1170
2000
2010-2020
2020

CLOCKS 125

Get hours in H8.
If 24-hour clock, simply print out first five characters of TIME$
"HH:MM", so skip lines 1100-1130.
Set "am" or "pm" as appropriate, get 12-hour time, place leading
zero if time is less than 1 0 o'clock.
Print time. Note that the textface is outline and the textsize is 40.
Whatever gets printed produces its own large black rectangle as
a surrounding area.
Reset pen and text attributes to normal so that system messages
and futu re program runs will be standard. Perform Set Text
Values routine to do this.
Return
Set Text Values Routine.
Use Toolbox calls to set fonts
Return.

Application 3: Two Clocks
This application is simply a combination of the two previous programs. The point

of this exercise is to demonstrate the flexibility of these subroutines.

,

Illustration 9. 7 Two Macintosh clocks

126 GRAPHICS FOR THE MACINTOSH

Listing, Two Clocks

10 ' two clocks driver
20 CLS
30 X=10:Y=10:M=O:GOSUB 2000
40 X=350:Y=190:GOSUB 1000
50 TS=MIDS(TIME$,5, 1)
60 IF INKEYS="/" THEN CALL MOVET0(5,300):STOP
70 IF TS=MIDS(TIMES,5, 1) THEN 60
80 X=10:Y=10:M=O:GOSUB 2000
90 X=350:Y=190:GOSUB 1000
100 GOTO 50
1 000 ' wa I I c I o c k
1010 P8=8*ATN(1)
1020 F0=1:FA=8:SI=12:M0=1:GOSUB 3000
1030 FOR J8=80 TO 86 STEP 2
1040 LINE(X,Y-JB)-(X-J8,Y) :LINE(X-J8,Y)-(X,Y+J8)
1050 LINE(X,Y+J8)-(X+J8,Y) :LINE(X+J8,Y)-(X,Y-J8)
1060 NEXT JB
1070 J8=3
1080 FOR 18=0 TO P8 STEP P8/12
1090 X8=48*COS(18) :Y8=48*SIN(18)
1100 CALL MOVETO(X+X8-13,Y+Y8+5) :PRINT J8
1110 JB=J8+1
1120 IF J8>12 THEN JB=1
1130 NEXT 18
1140 CIRCLE(X,Y),2,33,0,P8
1150 T8S=TIME$
1160 H8=VAL(LEFTS(T8$,2))
1170 M8=VAL(MID$(T8$,4,2))
1180 CALL PENSIZE(3,3)
1190 IF F=1 THEN LINE(X,Y)-(X+X7,Y+Y7),30
1200 IF F=1 THEN LINE(X,Y)-(X+X9,Y+Y9),30
1210 K8=(H8-3)*P8/12+M8*P8/720
1220 X7=30*COS(K8) :Y7=30*SIN(K8)
1230 LINE(X,Y}-(X+X7,Y+Y7) ,33
1240 CALL PENSIZE(2,2)
1250 LB=(M8-15)*P8/60
1260 X9=37*COS(L8) :Y9=37*SIN(L8)
1270 LINE(X,Y)-(X+X9,Y+Y9),33
1280 CALL PENNORMAL:F=1
1290 F0=1 :FA=O:SI=12:M0=0:GOSUB 3000
1300 RETURN
2000 ' digital clock
2010 F0=0:FA=8:SI=40:M0=1:GOSUB 3000
2020 CALL PENSIZE(3,3)
2030 CALL MOVETO(X,Y)
2040 LINE(X,Y)-(X+280,Y+80),33,BF
2050 LINE(X+10,Y+10)-(X+270,Y+70),30,B
2060 CALL MOVETO(X+32,Y+54)

2070 T8S=TIME$
2080 H8=VAL(LEFTs(TBs . 2))
2090 IF M=1 THEN TBS=" "+LEFTS(TBS,5):GOTO 2140
2100 IF HB<12 THEN S8S="am" ELSE S8S="pm"
2110 H8=H8 MOD 12
2120 IF H8=0 THEN H8=12
2130 TBS=RIGHTS(STRS(100+HB) .2)+MIOs(TBS,3,3)+"

"+S Bs
2140 PR INT TBS
2150 CALL PENNORMAL
2160 F0=1: FA=D:S I=12 :M0=0:GnSUB 3000
2170 RETURN
3000 ' set text values
3010 CALL TEXTFONT (FO) :C ALL TEXTFACE(FA)
3020 CALL TEXTSIZE (S I) :CALL TEXTMOOE(MO)
3030 RETURN

CLOCKS 127

In this program, lines 1000-1300 are unchanged from the Wall Clock you saw
previously. Lines 2000-2170 are identical to lines 1000-1170 in the Digital Clock
program. Even the checks for 12-hour or 24-hour clocks were left in. The Set Text
Values routine was jogged to lines 3000-3030. again unchanged.

Application 4: Mantel
Clock

Illustration 9.8 Output from Mantel Clock program

128 GRAPHICS FOR THE MACINTOSH

Listing, Mantel Clock

10 ' mantel clock driver
20 ClS
30 X=240:Y=120:F=0
40 GOSUB 1000
50 TS=MIOS(TIME$,5, 1)
60 IF INKEYS="/" THEN CAll MOVET0(5,300):STOP
70 IF TS=MIDS(TIME$,5, 1) THEN GOTO 60
80 GOSUB 1000
90 GOTO 50
1000 ' mantel clock
1010 F0=9:FA=1 :SI=12:M0=1 :GOSUB 2000
1020 P8=8*ATN(1)
1030 FOR J8=58 TO 62 STEP 2
1040 CIRClE(X,Y).J8,33,0,P8
1050 NEXT J8
1060 CIRClE(X,Y).2,33,0,P8
1070 T8S=TIME$
1080 H8=VAL(LEFTS(T8S,2))
1090 M8=VAL(MID$(T8$,4,2))
1100 CAll PENSIZE(3,3)
1110 IF F=1 THEN LINE(X,Y)-(X+X7,Y+Y7),30
1120 IF F=1 THEN LINE(X.Y)-(X+X9,Y+Y9),30
1130 K8=(H8-3)*P8/12+M8*PB/720
1140 X7=30*COS(K8) :Y7=30*SIN(K8)
1150 liNE(X,Y)-(X+X7.Y+Y7),33
1160 CALL PENSIZE(2,2)
1170 L8=(M8-15)*P8/60
1180 X9=40*COS(L8) :Y9=40*SIN(L8)
1190 LINE(X,Y)-(X+X9,Y+Y9),33
1200 CALL PENSIZE(2,2)
1210 CIRCLE(X,Y+80), 160,33,P8/2,P8, 1.4
1220 LINE(X-123,Y+80)-(X+123,Y+92) ,33,8
1230 CALL PENNORMAL
1240 J8=1
1250 FOR 18=0 TO P8 STEP P8/4
1260 X8=48*COS(18) :Y8=48*SIN(18)
1270 CALL MOVETO(X+X8-12,Y+Y8+6) :PRINT MIOS("I I I VI

I XX I I " , 3 * (J 8-1) + 1 , 3)
1280 J8=J8+1
1290 NEXT 18
1300 f=1
1310 F0=1 :FA=O:SI=12:M0=0: :GOSUB 2000
1320 RETURN
2000 ' set text values
2010 CALL TEXTFONT(FO) :CALL TEXTFACE(FA)
2020 CALL TEXTSIZE(SI) :CALL TEXTMODE(MO)
2030 RETURN

CLOCKS 129

Some selected remarks about this program:

1030-1050 Draw three circles with center X,Y, radius J8 (58 , 60, 62),
color= 33 (black), starting at angle 0 and ending at angle P8 (two
pi). The last two arguments in line 1040, start and end angles, are
optional if you are going to draw a full circle. But if you want to
draw only part of a circle, they must be specified.
Much the same as Wall Clock. 1060-1 190

1210-1220

1250-1290

Draw clock frame. Notice that the CIRCLE command uses start
ing and ending angles of P8/2 and P8, and that the aspect of the
circle is 1.4. This is what gives the mantel clock its oval outline.
Draw Roman numerals on clock face by printing them as strings
on the face.

Application 5: News Room
Clock

r a File Edit Control

news clocks

Petolu.a Pocatel lo Peor ia Prov I nee t CMWt

Illustration 9.9 Newsroom clocks ala Macintosh

Listing, Newsroom Clocks

10 · news room c lo ck driver
20 CLS
30 DIM MS(12).NS(4)
40 FOR 1=1 TO 12.
50 READ MS (I)
60 NE XT I
70 DATA " Petaluma" ." Pomona", "Pismo Beach "
80 DATA "Provo","Pueblo ", "Pocate ll o"
90 DATA "Pa sc agou l a" , "Ponchatoula ", "Peoria "

.,

(continued)

130 GRAPHICS FOR THE MACINTOSH

100 DATA "Provincetown"~"Portsmouth"~"Punxsutawney"
110 RANDOMIZE TIMER
120 X=-30:Y=70:F=0
130 FOR 1=1 TO 4
1 4 0 N $ (I) =M $ (3 * I - I NT (3 • R N D))
150 X=X+110
160 GOSUB 1000
170 NEXT I
180 TS=MIDS(TIME$151 1)
190 IF INKEY$="/" THEN CALL MOVET0(5~300):STOP
2 0 0 I F T $ =M I D $ (T I ME$ I 5 I 1) THEN 1 9 0
210 X=-30
220 FOR 1=1 TO 4
230 X=X+110
240 GOSUB 1000
250 NEXT I
260 GOTO 180
1000 I news room clocks
1010 P8=8*ATN(1)
1020 CALL TEXTMODE(1)
1030 FOR J8=44 TO 48 STEP 4
1040 CIRCLE(X~Y}~J8133101P8
1050 NEXT J8
1060 CIRCLE(X~Y)~2~33101P8
1070 T8S=TIME$
1080 H8=VAL(LEFTS(T8$~2))-4+1
1090 MB=VAL(MID$(TB$,4,2))
1100 CALL PENSIZE(3~3)
1110 IF F>3 THEN LINE(X~Y)-(X+X7(I)~Y+Y7(I))~30
1120 IF F>3 THEN LINE(X~Y)-(X+X9(1)~Y+Y9(1)),30
1130 K8=(H8-3)*P8/12+MB*P8/720
1140 X7(I)=30*COS(K8) :Y7(I)=30*SIN(K8)
1150 LINE(XI Y)-(X+X7(I) I Y+Y7(I)) 133
1160 L8=(M8-15)*P8/60
1170 X9(I)=40*COS(LB) :Y9(I)=40*SIN(LB)
1180 CALL PENNORMAL
1190 LINE(X,Y)-(X+X9(1),Y+Y9(1))~33
1200 F0=4:FA=O:SI=9:M0=1 :GOSUB 2000
1210 CALL TEXTFONT(4):CALL TEXTSIZE(9)
1220 J8=3
1230 FOR 18=-P8/100 TO PB-PB/100 STEP P8/12
1240 X8=36*COS(18) :Y8=36*SIN(18)
1250 CALL MOVETO(X+X8-9,Y+Y8+4) :PRINT J8
1260 J8=J8+1
1270 IF J8>12 THEN J8=1
1280 NEXT 18
1290 CALL TEXTMODE(O)
1300 IF F<4 THEN CALL MOVETO(X-3*LEN(N$(I))~Y+68):

PRINTN$(1)

1310
13 20
2000
2010
2020
2030

F=F+1
RETURN

set text val ues
CALL TEXTFONT(FO) : CALL
CALL TEXTSIZE (SI) : CALL
RETURN

TEXTFACE (FA)
TEXTMOOE (MO)

CLOCKS 131

The array MS holds twelve town names. three for each time zone. Lines 130-170
place into array N$ four of these cities - one at random from the first three; another
at random from the second three; a third at random from the third three; and a
fourth at random from the fourth three in MS. This gives variety to the display so that
it is rare that you get two identical sets of four names in a given series of runs.

Lines 220-250
Lines 1230-1280

move each clock over from the preceding one.
draw the numbers on the face of the clock whenever the hands
have been drawn. because in lines 1110 and 1120 the pre-
viously drawn hands must be whited out, and that would leave
a white streak in the numerals.

The displacement in the X andY directions for the hour and minute hands (X7,Y7
for hour hand and X9,Y9 for minute hand) are DIMensioned to hold four different
pairs of numbers (there are four clocks). Notice that lines 1110-1120 use these
subscripted array values so that each clock's hour hand is different. In a newsroom
display like this, where each clock represents the four different time zones, each
clock's hour hand is displaced by one hour from the previous one. Only the hour
hand's angle changes between clocks. Remember that the endpoints of both
hands change between clock faces, so all endpoint coordinates must be kept.

Application 6: Egg Timer
~ • File Edit Control

Illustration 9.10 Output from Egg Timer Program

132 GRAPHICS FOR THE MACINTOSH

Listing, Egg Timer

10 I egg timer driver
20 ClS:F=O
30 INPUT "enter number of seconds .. ";T
40 ClS
50 X=200:Y=100:V=T
60 WHilE V>O
70 IF INKEYS="/" THEN CAll MOVET0(5~300):STOP
80 GOSUB 1000
90 WEND
100 BEEP: BEEP: CAll MOVET0(10~250) :STOP
1000 I egg timer
1010 P8=8*ATN(1)
1020 IF F=1 THEN 1180
1030 F=1
1040 T8=TIMER
1050 F0=7:FA=1 :SI=18:M0=1 :GOSUB 2000
1060 FOR A8=1 TO 3
1070 cIRCLE (X-40, y) I 1 OO+AB I 33 I 0 I P8 I. 7+A8/1 00
1080 NEXT A8
1090 FOR A8=1 TO 2
1100 CIRCLE(X-A8~Y) ,62+A8133101P8
1110 NEXT A8
1120 J 8=0
1130 FOR 18=0 TO P8 STEP P8/10
1140 X8=48 • COS (18): Y8=48 *SIN (18)
115.0 CAll MOVETO(X+X8-18,Y+Y8+10) :PRINT J8
1160 J8=J8+1
1170 NEXT 18
1180 D8=TIMER-T8:V8=T-D8
1190 IF V8=V THEN RETURN ELSE V=V8
1200 M8=1NT(V/60) :S8=V-60*M8
1210 KB=M8*P8/10
1220 CAll PENSIZE(4,4)
1230 liNE(X+X6~Y+Y6)-(X+X7~Y+Y7)~30
1240 X6=32*COS(K8) :Y6=32*SIN(K8)
1250 X7=36*COS(K8) :Y7=36*SIN(K8)
1260 l1NE(X+X6,Y+Y6)-(X+X7~Y+Y7)~33
1270 L8=S8*P8/60
1280 CAll PENSIZE(2~2)
1290 LINE(X~Y)-(X+X9~Y+Y9)~30
1300 X9=37*COS(l8) :Y9=37*SIN(l8)
1310 liNE(X~ Y)-(X+X9, Y+Y9) 133
1320 CAll PENNORMAl
1330 FO=l :FA=O:SI=12:M0=0:GOSUB 2000
1340 RETURN
2000 I set text values
2010 CAll TEXTFONT(FO) :CAll TEXTFACE(FA)
2020 CALL TEXTSIZE(SI) :CAll TEXTMODE(MO)
2030 RETURN

CLOCKS 133

Below are our notes on the Egg Timer Program.

20 Clear screen, set First Time Flag (F) to 0.
30 Get number of seconds T from user.
40 Clear screen of dialog.
50 Define X,Y as center of clock. Set timer V toT. V will go from T to

60-90

100

1000
1010
1020-1170
1050
1060-1080
1090-1110
1130-1170
1180
1190
1200

1210-1260
1270-1310
1320-1340
2000

0, and as long as it is positive, the clock will run.
While there are still some seconds left in V, continue to perform
the Egg Timer routine at line 1000.
When V reaches 0, beep the speaker, move the cursor out of the
way, and stop.
Egg timer routine.
Define 2*pi, a full circle in radians.
IfF= 0 then set it to 1 and draw frame of egg timer.
Set Font= Athens, Face= Bold, Size= 18, Mode= overlay (OR).
Draw egg shape ellipse using CIRCLE.
Draw circles around clock face.
Place digits 0 through 9 at six minute intervals.
Set DB, seconds since last call to egg timer.
VB is seconds left. If V, return else set V = V8.
MB is number of full minutes left. sa is number of seconds left in
partial minutes.
Position minutes left blob on egg timer.
Erase and redraw the second hand.
Restore all font attributes and return.
Set text values routine. No change from all others.

Conclusion
In this chapter you saw how the LINE and CIRCLE commands can help you to

draw figures of many kinds. In particular, you saw how the CIRCLE command is
perhaps a little misnamed, because it really draws ellipses. The circle is, after all, a
special case of ellipse with eccentricity of 0 (what Microsoft's documentation on
CIRCLE calls the aspect of the circle). The CIRCLE command is also flexible
because you can draw a portion of a circle, or an arc. LINE and CIRCLE used
together allowed us to draw that nicely shaped half-oval outline for the mantel
clock.
In Chapter 12, you will see another way to form circle parts with the Toolbox calls

do ARC and do OVAL, where do can be FRAME, PAINT, ERASE, INVERT, and
FILL. We don't use all of the options, only enough to give you a taste of their power.

c H A p T E R T E N

THE LINE
COMMAND

When Microsoft® developed its BASIC interpreter for personal computers, it
recognized the need for commands that would support the ever-growing set of
users that produce graphics in their programs. Microsoft has been supplying
BASIC to many vendors before Apple's interest in it for the Macintosh. Microsoft
developed the venerable Radio Shack TRS-aons Model l's advanced BASIC, for
which owners paid a premium, as well as the IBM PC's BASIC, and the Radio
Shack's Color Computer, and all the rest of the latter company's hardware.

Our introduction to Microsoft's BASIC was in 1977, on a Model I TRS-80. We
discovered the PSET and PRESET instructions, the POINT function, and drew our
lines in the highest resolution possible at that time, 48 rows by 128 columns.
Imagine our pleasure at discovering the enhanced graphics instructions available
on the TAS-SO's Color Computer! Here was high resolution, with 192 rows and 280
columns, color, and commands like LINE and CIRCLE, and even a DRAW. Our
exploration of that system left us jaded. Whenever we ran across a BASIC, we
would check first if it had a LINE and CIRCLE, then if it had a DRAW.

The MAC's graphics instructions are good, and its resolution is marvellous.
However, we miss the DRAW command that Microsoft provided for the TRS-80
Color Computer. Microsoft did provide DRAW in its BASIC version called
GWBASIC (Gee Whiz BASIC), but the DRAW command is not on the MAC. Fear
not, we will give you the DRAW command as a subroutine later in this chapter.

LINE Instruction

Before we discuss the DRAW command in detail, let's review the LINE command,
especially its standard form, which is

LINE (X1,Y1)- (X2,Y2)

This instruction syntax allows you to specify the endpoints of the line in Cartesian
coordinate fashion, so that you can draw the line directly from the first point (X1,Y1)
to the second point (X2,Y2).

135

136 GRAPHICS FOR THE MACINTOSH

Using Angle and Radius
with LINE

Suppose you want your line to start at a point (X1,Y1) and you want it to be R units
long, as in a circle's radius, and to form the angle A with the horizontal line
(Illustration 10.1).

I
I,

i

i
" .
"

I,

\
:.

; . 1"\
I .,

I \

:y\
I -.
I ~
I '
I 1,.
I I ______ J i

X

' /~ _.,
""'·.... , _ ---·-- ... _..,.,

;

I

l
i

i
... ~

Illustration 10.1 Sketch of line in polar coordinates.

X
COS II=-r

x = r cos 11

sin 11 = Y
r

y = r sin 11

In this case, you don't know the X-Y displacement from the original point, so you
can't use the straightforward

LINE (X1,Y1)- (X2,Y2)

because you don't know (X2,Y2). You can calculate these coordinates using
elementary trigonometry. The horizontal distance from (X1,Y1) to the endpoint of
the line is

OX= R*COS(A)

where A is the angle in radians (Illustration 10.2).

DY

DX

Illustration 10.2 Triangle with OX
highlighted

The vertical distance from (X1 ,Y1) to the endpoint of the line is

DY = R*SIN(A)

again with A in radians (Illustration 10.3).

DY

DX

Illustration 10.3 Triangle with DY
highlighted

Now, you can draw your line with the LINE command as

LINE (X1,Y1)- (X1 + DX,Y1 + DY)

If the cursor is already at (X1,Y1), it's even simpler.

LINE STEP (DX,DY)

THE LINE COMMAND 137

The problem with both of these examples is that in either case you have to
calculate the displacements OX and DY using the trigonometric sine and cosine
functions. These are substantially slower to execute than a simple addition, or even
several multiplications.

138 GRAPHICS FOR THE MACINTOSH

Advanced Applications of
LINE

Calculating sines and cosines to determine the endpoint of a line is one of the
several justifications for the DRAW command. With it, we can draw a line of a given
length at any one of the eight angles (0, 45, 90, 135, 180, 225, 270, and 325
degrees) without using BASIC's SIN and COS functions. Before we do so, how
ever, let us explore the LINE command in more detail.

Tessellation
Tessellation is the process of filling in an area with a geometric pattern. You can

think of the hexagonal beehive pattern as one that can completely fill a surface with
no gaps, regardless of the surface's area. Simple tessellation patterns, such as
squares or triangles, don't offer much in visual appeal. More complex patterns,
when chosen to fill an area, can be quite stunning.
We have found that tessellation at random is in many ways, different and more

exciting than regular tessellation. For example, it is a simple task to write a program
that produces squares over the entire surface of the screen. But if the squares are
produced to fill the screen randomly, it becomes a visual "game" to see which area
gets filled next. Consider each of the examples of tessellation that follow, and
explore this intriguing technique.

ANGLEWALK: Random
Tessellation with LINE

The Random Walk Problem is a classic environment in which to explore random
tessellation. This problem involves a drunkard's aimless motions near a lightpost.
Suppose the drunkard is leaning against the lamppost and steps away one pace.
Then he steps off one more pace, but in any one of eight directions, including back
to the post (Illustration 10.4). What path does that drunkard leave in his wander
ings?
Let's code the problem on the Macintosh, using the LINE command as a tracing

mechanism for the drunkard's motions.

THE LINE COMMAND 139

lamppost person

Illustration 10.4 Sketch of lamppost, drunkard, and random walk

r • File Edit Cont r ol
.,

an lewalk

Illustration 10.5 Output of ANGLEWALK, L=10

140 GRAPHICS FOR THE MACINTOSH

The output in Illustration 10.5 shows several key features of a random talk that is
bounded on four sides. When the drunkard hits a wall, he doesn't learn to avoid
that wall , and may hang around in the area for some time, as did ours in the
example we show in Illustration 10.6.

r 4i file Edit Control

Illustration 10.6 Same program, much later

Notice that the lower right corner has been investigated thoroughly by our
inebriant. His walk has left a pattern of squares with diagonals that resembles ti ling.
This is the beginnings of the tessellation of the complete screen.

Listing, ANGLEWALK

10 ' anglewa lk
20 CLS: RANDOMIZE TIMER
30 LFB=10 : RTB=480: UPB=10 : LWB=270: L=10
40 X=250 : Y=140 : CALL MOVETO (X. Y): PSET (X. Y)
50 DX=L" (INT(RN0"3)- 1): DY =L" (INT (RND"3)- 1): GOSUB

1000
60 GOTO 50
1000 ' random I in e rou t i ne
1010 IF X+DX<LFB OR X+DX>RTB TH EN DX=- DX
1020 IF Y+DY <UPB OR Y+DY>LWB THEN DY=- DY
1030 LI NE - STEP(DX,OY)
1040 X=X+DX : Y= Y+DY
1050 RETURN

THE LINE COMMAND 141

Below are notes on the ANGLEWALK program.

20

30

40
50

60
1010-1020

1030
1040
1050

Clear screen and seed random number generator to whatever
the internal clock contains.
Define the bounds of the screen. LFB, RTB, UPB, and LWB are
the left, right, upper, and lower bounds of the screen respec
tively.
Move to the center of the screen and plant a point there.
Calculate random displacements OX and DY in the horizontal
and vertical directions. RND*3 produces a value between
0.0000 ... and 2 .999 INT(RND*3) therefore fetches a 0, 1, or 2.
If we subtract 1 from that result, we end up with a - 1, 0 , or + 1.
Multiply that by L, the length of the pace, and we have defined
both OX and DY as individually random displacements in both
the X and Y directions. Now we call the subroutine to take the
step.
This statement provides an infinite loop for the random walk.
Check if this added displacement OX or DY places the destina
tion outside the bounds of the screen. If so, simply reverse the
direction of that displacement. Consider it the drunkard's reac
tion if he hits a wall, or if he is afraid of the dark beyond the
immediate area around the lamppost. He'll either bounce or
retreat a step.
Draw that step.
Reset X andY, the place where the drunk is standing now.
Return

Square Tessellation:
r j File Edit Con trol

Illustration 10.7 Square tessellation

142 GRAPHICS FOR THE MACINTOSH

The only change we made to the ANGLEWALK program was to add this line in
the subroutine:

1005 IF OX <> 0 AND DY < > 0 THEN RETURN

This forces either OX or DY or both to have a value of zero in order to draw the
pace. This means that the pace will be either vertical or horizontal. You can modify
it further by changing the pace length L from 10 to some other length.

Listing, SQUAREWALK

10 · squa rewalk
20 CLS : RANDOMIZE TIMER
30 LFB=10: RTB =480: UPB=10: LWB=270: L=10
40 X=250 : Y=140 : CA LL MOVETO(X, Y) : PSET(X . Y)
50 DX =L· (IN T(RND.3)-1): DY=L· (INT(RN D. 3) - 1) : GOSUB

1000
60 GOTO 50
1000 ' r andom I ine routine
1005 IF OX<>O AND DY<>O THEN RETURN' modifi cat i on

to ang l ewa lk
1010 IF X+DX<LFB OR X+ DX>RTB THEN OX=-DX
10 20 IF Y+DY<UP B OR Y+OY>LWB THEN OY=-OY
1030 LINE - ST EP (DX, DY)
1040 X=X+DX: Y=Y+DY
1050 RETURN

Diamond Tessellation
r • File Edit Control

Illustration 10.8 Diamond tessellation

THE LINE COMMAND 143

The step size was left at 10 for this pattern, and line 1005 was changed to

1005 IFDX=OOR DY=OTHEN RETURN

which forces the step to stay on a diagonal.

Listing, DIAMONDWALK

10 ' diamondwalk
20 CLS: RANDOMIZE T IM ER
30 LFB=10 : RTB=480 : UPB=10 : LY/8 =27 0 : L=10
40 X=250: Y=140: CALL MOVETO(X , Y): PSE T(X, Y)
50 DX=L"(I NT(RN0"3)-1): DY =L"(INT(RN0"3)-1): GOS UB

1000
60 GOTO 50
1000 ' random I i ne routine
1005 IF DX=O OR OY=O THEN RETURN' modification to

anglewalk
1010 IF X+DX<L FB OR X+DX>RT B TH EN DX=-DX
10 20 I F Y+DY<UPB OR Y+DY>LWB THE N DY=- DY
1030 LINE -STEP(OX,OY)
1040 X=X+DX : Y=Y+DY
10 50 RET URN

Four-pointed Star
Tessellation

r • File Edit Control

Illustration 10.9 Four-pointed stars output from STARWALK

144 GRAPHICS FOR THE MACINTOSH

Here we avoided both the 45-degree diagonals and the horizontal and vertical
orientations. Rather, we forced the program to draw 30-degree and 60-degree
lines. These angles cannot be drawn using the DRAW subroutine you will see later.
We altered the line's angle with a new line 1030:

1030 LINE -STEP (2*DX,DY): LINE - STEP(DX,2*DY)

We kept line 1005 as before, to eliminate the horizontals and the verticals.

Listing , STARWALK

10 ' sta rwa l k
20 CLS: RANDOMIZE T IMER
30 LF B=1 0 : RTB=480 : UPB=1 0 : LWB=270: L=1 0
40 X=250: Y= 140 : CA LL MOVETO(X,Y) : PSET(X,Y)
50 DX=L'(INT(RN0'3)-1) : DY=L '(INT (RN0 . 3)- 1): GOSUB

1000
60 GOTO 50
1000 ' random I ine rou tine
1005 I F DX=O OR DY =O THEN RETURN ' modification to

anglewalk
1010 IF X+DX<LFB OR X+DX>RTB THEN DX=-DX
1020 IF Y+DY<UPB OR Y+DY>LWB THEN DY=-DY
1030 LINE -S TEP (2'0X,OY): LINE -STEP(OX,2'0Y)

modif i cation
1040 X=X+DX+DX: Y=Y+DY+DY 'modification
1050 RETURN

Complex Tessellation
' * File Edit Control

Illustration 10.10 Vinyl flooring tiles output, VINYL FLOORWALK

THE LINE COMMAND 145

Illustration 10.10 shows the output if you remove line 1005 to allow horizontals and
verticals back into the fray. Notice that the last two figures seem to go out of
bounds. That's because the bounds check is on X+ OX and Y + DY rather than
X+2*DX and y+DY. The Macintosh takes it in stride, never complaining about
plotting points outside the bounds of the screen. However, don't try to remove lines
1010 and 1020 to simplify the process, because the plotting may get very busy
outside of the screen's range, and that tends to slow down the action on the screen.

Listing, VINYL FLOORWALK

10 I vinyl floorwalk
20 CLS: RANDOMIZE TIMER
30 LFB=10: RTB=480: UPB=10: LWB=270: l=10
40 X=250: Y=140: CALL MOVETO(X,Y): PSET(X,Y)
50 DX=l * { INT(RN0*3)-1): DY=l * (INT(RN0*3)-1): GOSUB

1000
60 GOTO 50
1000 I random I ine routine
1010 IF X+DX<LFB OR X+DX>RTB THEN DX=-DX
1020 IF Y+DY<UPB OR Y+DY>LWB THEN DY=-DY
1030 LINE -STEP{2*0X,OY): LINE -STEP(DX,2*0Y)
1040 X=X+DX+DX: Y=Y+DY+DY
1050 RETURN

Suggestions:

• 1030 LINE - STEP(3*DXIDY): LINE - STEP(DX,3*DY)

• 1030 LINE - STEP(3*DX,2*DY): LINE - STEP(2*DX,3*DY)

• 1030 LINE - STEP(DX,DY): CIRCLE(X,Y),ABS(DX + DY)/3

• 1030 CIRCLE(X, Y)~ABS(DX + DY)/3

• 25 DEFINT A-Z

We encourage you to explore this simple program further. You will discover a
multitude of rewarding patterns, all different and all imbued with that captivating
combination of randomness and symmetry.

146 GRAPHICS FOR THE MACINTOSH

Stars and Circles
We have modified the program in line 1030 three different ways to show you how

so small a change can cause major changes in output. The first is STARS and
CIRCLES.

~ • File Edit Control

stars&c:lrc:les

Illustration 10.11 Stars & Circles

Listing, STARS&CIRCLES

10 ' stars & circles
20 CLS: RANDOMIZE TIMER
30 LFB=10: RTB=4BO: UPB=10: LWB=270: L=30
40 X=250: Y=140: CALL MOVETO(X, Y): PSET(X, Y)
50 DX=L*(INT(RND*3)-1): DY=L*(INT(RN0*3)-1): GOSUB

1000
60 GOTO 50
1000' random circle routine
1010 IF X+DX<LFB OR X+DX>RTB THEN DX=-DX
1020 IF Y+DY<UPB OR Y+OY>LWB THEN DY=-DY
1030 LINE -STEP(DX,DY): CIRCLE(X,Y) ,ABS((DX+OY)/3)
1040 X=X+DX: Y=Y+DY
1050 RETURN

.,

THE LINE COMMAND 147

r * File Edit Control

circles

(()Do oo
booo
0

Illustration 10.12 Circles

r * File Edit Control

circles~
X..-.. "'Q ..-..

0
"aRPo)Cd§oo

)~
0

o ~ooon~
~..-..r-h .,......,nK

~
r-

~
"-...1

.)

~ '0 ~
J

0 "-../ "-../ "-../ o. D.O "-../ 0
[t;!

Illustration 10.13 Circles later

148 GRAPHICS FOR THE MACINTOSH

Listing, Circles

10 ' circles
20 ClS : RANDOMIZE T I MER
30 lFB=10: RTB=4BO: UPB=10 : lWB=270 : l=30
40 X=250: Y=140: CAl l MOVETO(X,Y): PSET(X,Y)
50 DX=l· (I NT(RND"3)-1) : DY=l" (INT(RND"3)-1) : GOSUB

1000
60 GOTO 50
1000 ' random circle routine
1010 IF X+DX< lFB OR X+DX>RTB THEN DX=-DX
1020 I F Y+DY<UPB OR Y+DY> lWB THEN DY =-DY
1030 CI RClE(X , Y), ABS((DX+DY) / 3)
1040 X=X+DX: Y=Y+DY
1050 RETURN

Illustration 10.14 More Circles

Listing, MORE CIRCLES

10 ' more cir c le s
20 ClS: RANDOMIZE TIMER
30 lFB=10 : RTB=4BO : UPB=10 : lWB=270 : l =30
40 X=250 : Y=140 : CAl l MOVETO(X , Y) : PSET(X , Y)
50 DX=l " (I NT(RND"3) - 1): DY=l· (INT(RND"3)-1) : GOSUB

1000
60 GOTO 50
1000 ' r a ndom c ir c le rout i ne
1010 I F X+DX< lFB OR X+DX>RTB THEN DX=-D X
1020 IF Y+DY <UPB OR Y+DY> l WB THEN DY=-DY
1030 CIRClE(X , Y) ,ABS((DX+DY)/ 3)+5
1040 X=X+DX : Y=Y +DY
1050 RETURN

THE LINE COMMAND 149

Sierpinski Patterns

In the July 1984 issue of Creative Computing, (pages 148-180) was a most
intriguing article by David Ahl on a class of patterns named after their originator,
Sierpinski . We transferred the programs listed in the magazine relatively
unchanged, and ran them on the Macintosh. We were rewarded with an incredible
visual experience. What you see in this chapter is only the stale shadow of the
program's real reward, which is to watch the pattern being generated on the
screen. lfs almost as if there were a live psychotic bug tracing these intriguing
patterns within the computer.

r C File Edit Control

Illustration 10.15 Sierpinski

The program is a model of tight code, and it uses recursion, a feature of Microsoft
BASIC that is not often found in other versions of this language. Recursion is the
process of a routine calling itself until a condition is met, at which time it returns.
The listing of our version of this fine program is shown below. Note that line 230 in

the subroutine starting at line 200 is

230 GOSUB 200: A= H: B = - H: GOSUB 800

This is an example of recursion in which a statement in the subroutine calls the
subroutine itself. Line 210 is the escape from this seemingly infinite loop. If the
condition is met, control is transferred back to the statement in line 230 following
GOSUB 200, which is A = H. Control is returned to line 150 only when line 280 is
executed.

150 GRAPHICS FOR THE MACINTOSH

Listing, Sierpinski

10 I sierpinski
15 I Creative Computing, July 1984 v10, #7. pp.

148-160 David H. Ahl
20 DEFINT A-Z
30 CLS
40 FOR 01=1 TO 7
60 GOSUB 100
80 NEXT Dl
90 GOTO 90
100 H0=512: SP=O: H=H0/4: X=H+H: Y=X+H: 1=0
110 1=1+1: X=X-H: H=H/2: Y=Y+H
120 IF I<DI THEN 110
130 PS=I: GOSUB 600
140 GOSUB 200: A=H: B=-H: GOSUB 800
150 GOSUB 300: A=-H: B=-H: GOSUB 800
160 GOSUB 400: A=-H: B=H: GOSUB 800
170 GOSUB 500: A=H: B=H: GOSUB 800
180 GOSUB 700
190 RETURN
200 I

210 IF TP<=O THEN RETURN
220 PS=TP-1: GOSUB 600
230 GOSUB 200: A=H: B=-H: GOSUB 800
240 GOSUB 300: A=H+H: B=O: GOSUB 800
250 GOSUB 500: A=H: B=H: GOSUB 800
260 GOSUB 200
270 GOSUB 700
280 RETURN
300 I

310 IF TP<=O THEN RETURN
320 PS=TP-1: GOSUB 600
330 GOSUB 300: A=-H: B=-H: GOSUB 800
340 GOSUB 400: A=O: B=-2*H: GOSUB 800
350 GOSUB 200: A=H: B=-H: GOSUB 800
360 GOSUB 300
370 GOSUB 700
380 RETURN
400 I

410 IF TP<=O THEN RETURN
420 PS=TP-1: GOSUB 600
430 GOSUB 400: A=-H: B=H: GOSUB 800
440 GOSUB 500: A=-2*H: B=O: GOSUB 800
450 GOSUB 300: A=-H: B=-H: GOSUB 800
460 GOSUB 400

470 GO SUB 700
480 RE TURN
500
510 IF TP<=O THE N RETUR N
520 PS=TP- 1: GOSUB 600
530 GOSUB 500 : A=H: B=H: GOSUB 800
540 GOSUB 200 : A=O: B=H+H: GOSUB 800
550 GOSUB 400 : A=-H: B=H: GOSUB 800
560 GOS UB 500
570 GO SUB 700
580 RETURN
600
610 SP=SP+1: ST (SP)=PS
620 TP=PS : RET URN
700
710 SP=S P- 1: TP=ST (SP): RETURN
800
810 LI NE(X. Y)-(X+A. Y+B)
820 X=X+A: Y=Y+B: RETURN

THE LINE COMMAND 151

The geometric design shown in Illustration 10.16 has square "points" at each
corner. The next iteration produces a smaller design in the center of the first one;
this smaller design has corners that are made up of images of itself.

,.. a File Edit Control

slerplnskl

Illustration 10.16 Sierpinski in its fi rst stages

152 GRAPHICS FOR THE MACINTOSH

r j File Edit Control

Illustration 10.17 Sierpinski some time later

As the program proceeds, the center design gets smaller and its corners grow not
in size but in detail. This process produces an image called a fractal, which is a
mathematically derived pattern that maintains the same level of detail no matter
what the magnification of the image. We recommend to you the following sources if
you are interested in this topic.

List of
References on

Fractals
McGraw·Hi/1 Yearbook on Science and Technology (McGraw·Hill , Inc .. New York)

1984, p. 191.
Gannes, Stuart, "Lights, Cameras ... Computers", Discover, August 1984 (Time,

Inc., Los Angeles), pp. 76-79.
Mandelbrot, Benoit B., The Fractal Geometry of NatureryJ. H. Freeman & Co., San

Francisco, 1977).
Mandelbrot, Benoit B., Fractals, Form, Chance and Dimension ryJ. H. Freeman &

Co., San Francisco, 1977).
McDermott, Jeanne, "Geometrical Forms Known as Fractals Find Sense in

Chaos", p. 110, Smithsonian Magazine December 1983, p. 110.
Sorensen, Peter R., "Simulating Reality with Computer Graphics", Byte 9 # 3

(McGraw-Hill, Inc., N.H. March 1984) pp. 106-134.
Tucker, Jonathan B., "Computer Graphics Achieve New Realism", High Tech

nology 4 (High Technology Publishing Co., Los Angeles), June 1984, p. 42.
Van Dam, Andries, "Computer Software for Graphics", Scientific American 251 # 3

(Sept. 1984, Scientific American Inc., New York), pp. 146-159.

THEUNECOMMAND 153

Centered Sierpinskis
You may note that the Sierpinski curves above were oriented to the left of the

screen. This is only because the Macintosh screen is roughly twice as wide as it is
high. We can change the program slightly where it defines the width of the screen
in line 100. The variable HO refers to the screen width (or height, as Sierpinskis fill a
square area) so change HO = 256 to HO = 512. With this small change, we can
center the image, and double its size at the expense of not seeing the bottom half.

,. • File Edit Control

Illustration 10.18 Stage one of centered Sierpinski

,. • File Edit Control

Illustration 10.19 Stage two

154 GRAPHICS FOR THE MACINTOSH

r a file Edit Control

Illustration 10.20 Stage three

' a file Edit Control

Illustration 10.21 Stage four

THE LINE COMMAND 155

' * File Edit Control

Illustration 10.22 Stage five

One of the intriguing aspects of these patterns is the different look of the patterns.
The first ones with minimal detail seem somewhat boxy. Then the next set begin to
take on the look of a tiled floor, which of course is the topic here, tessellation. The
last patterns appear to be lace-like, with symmetry of course, but with a touch of
roundedness that is caused by the miniscule squares that are drawn.
One last note about this series of images. Each major iteration in the program

draws the top half on-screen and the bottom half off-screen. So the computer
seems inactive for half of the time. This pause becomes quite long during the latter
part of the program run because of the excruciatingly large number of lines the
program must draw. Consider:

First image: 16 straight lines
Second image: 12 + 4 * 15 = 72 straight lines
Third image: 12 + 4 * 72 = 300 straight lines
Fourth image: 12 + 4 * 300 = 1212 straight lines
Fifth image: 12 + 4 * 1212 = 4860 straight lines
Sixth image: 12 + 4 • 4860 = 19452 straight lines
Seventh image: 12 + 4 * 19452 = 77820 straight lines
Eighth (last) image: 12 + 4 • 77820 = 311292 straight lines

All of this takes time, so you must have patience with this program. You will be
rewarded with these fascinating images.

156 GRAPHICS FOR THE MACINTOSH

Bent Sierpinskis

' li File Edit Control
,

f

Illustration 10.23 Bent Sierpinski centered

Illustration 10.24 Bent Sierpinski shifted right

THE LINE COMMAND 157

The last two screen images you see in Illustrations 10.23 and 10.24 were
produced with a minor modification to the program. Change the program this way:

Listing, Bent Sierpinski

10 ' bent sierpinski
15 · Creative Computing. July 1984 v10. #7, pp.

14B-160 David H. Ahl
20 DEFINT A-Z
30 CLS
40 FOR 01=1 TO 7
60 GOSU8 100
BO NEXT Dl
90 GOTO 90
100 H0=512: SP=O: H=HO /4: X=H+H: Y=X+H: I =0
110 1=1+1: X=X-H: H=H/2: Y=Y+H
115 YP=SOR(Y)*7
116 XP=X*(-Y/(HO+H0)+1)+Y/4
1 2 0 I F I <D I THEN 11 0
130 PS=I: GOSU8 600
140 GOSU8 200: A=H: 8=-H: GOSU8 BOO
150 GOSU8 300: A=-H: 8=-H: GOSU8 BOO
160 GOSU8 400: A=-H: 8=H: GOSU8 BOO
170 GOSUB 500: A=H: 8=H: GOSUB BOO
1BO GOSU8 700
190 RETURN
200 t

210 IF TP<=O THEN RETURN
220 PS=TP-1: GOSU8 600
230 GOSUB 200: A=H: 8=-H: GOSU8 800
240 GOSU8 300: A=H+H: 8=0: GOSU8 BOO
250 GOSU8 500: A=H: 8=H: GOSUB BOO
260 GOSU8 200
270 GOSU8 700
2BO RETURN
300 t

310 IF TP<=O THEN RETURN
320 PS=TP-1: GOSUB 600
330 GOSUB 300: A=-H: 8=-H: GOSU8 BOO
340 GOSU8 400: A=O: 8=-2*H: GOSU8 BOO
350 GOSU8 200: A=H: 8=-H: GOSU8 800
360 GOSU8 300
370 GOSU8 700
3BO RETURN
400 t

410 IF TP<=O THEN RETURN
420 PS=TP-1: GOSU8 600
430 GOSUB 400: A=-H: 8=H: GOSUB 800
440 GOSUB 500: A=-2*H: 8=0: GOSU8 BOO
450 GOSUS 300: A=-H: 8=-H: GOSU8 BOO

(continued)

158 GRAPHICS FOR THE MACINTOSH

460 GOSUB 400
470 GOSUB 700
4BO RETURN
500 '
510 IF TP<=O THEN RETURN
520 PS=TP-1: GOSUB 600
530 GOSUB 500: A=H: B=H: GOSUB BOO
540 GOSUB 200: A=O: B=H+H: GOSUB BOO
550 GOSUB 400: A=-H: B=H: GOSUB BOO
560 GOSUB 500
570 GOSUB 700
5BO RETURN
600 '
610 SP=SP+1: ST(SP)=PS
620 TP=PS: RETURN
700 '
710 SP=SP-1: TP=ST(SP): RETURN
BOO '
B02 X=X+A: Y=Y+B: YO=SOR(Y)*7
B04 XO=X*(-Y/(HO+HO)+l)+Y/4
BOB LINE(XP, YP)-(XQ, YO): XP=XO: YP=YO: RETURN

The effect is to produce images that seem to recede from view.
We now leave these remarkable tessellations to explore the syntax of the

DRAW command and our DRAW subroutine in detail.

c A A p T E R E L

The DRAW Command's
Syntax

E v E N

The DRAW command is different from most that you find in BASIC. It executes
according to the way you want it to. You specify a string that describes the way you
want the computer to draw, and DRAW that string. For example, if you have
defined a string A$ as a set of commands for the computer to execute with the
DRAW command, you would write the line

DRAW A$

We can't rewrite BASIC for you, but we will provide you with a subroutine that will
execute A$ thus:

S$=A$: GOSUB 1000

You place the string into a new variable called S$, branch to the subroutine at line
1000, and EUREKA! the string is drawn.
When you define S$, the string of commands to be drawn, you have available a

wide variety of parameters that will make this a truly powerful subroutine. Illustra
tion 11.1 provides an overview of the DRAW commands.

159

160 GRAPHICS FOR THE MACINTOSH

Motion Commands:
Command Example Action

Mx,y "M250,200" Move the draw position to specified X,Y coordinates
M ±x, ±y "M +20,-10" Move relative to current position. Much like the LINE

Ud

Dd
Ld
Ad
Ed
Fd
Gd
Hd

"U20"

"D30"
"L100"
"R40"
"ESO"
"F20"
"G3"
"H20"

STEP command
Move up a displacement of d pixels from current posi-
tion
Move down a displacement of d pixels
Move left d pixels
Move right d pixels
Move up and right (think of New England)
Move down and right (Florida)
Move down and left (Gila monsters?)
Move up and left (Mount St. Helens?)

Illustration 11.1 Table of motion commands for DRAW

u

H

G F

D

Illustration 11.2 Sketch of 8 directions for motion with DRAW

THE DRAW SUBROUTINE 181

These MOVE commands can be combined into a string of several moves at a
time. This is what makes the DRAW command so powerful, for otherwise you might
as well do a LINE STEP(20,20) instead of a DRAW "F20".
Note: The LINE STEP(20,20) and DRAW "F20" are equivalent, even though you

might think that the DRAW command would draw a line 20 pixels long. It doesn't. It
draws a diagonal line whose horizontal and vertical components are each 20
pixels long. The actual length is

r = V 202 + 202 = 28.28

20

20

Illustration 11.3 Triangle with diagonal measured as the square root of sum of
squares (Pythagorean theorem)

To combine several MOVE instructions within a single string for the DRAW
command to execute, simply enter them one after the other, and separate them (if
you desire, as it is optional) with a semicolon.
Examples:

DRAW "R40;D70;L40;U70"

A rectangle is drawn with the longer side vertical.

DRAW "M250,200;E40;F40;G40;H40"

A diamond is drawn down from the center of the screen.

162 GRAPHICS FOR THE MACINTOSH

DRAW "MO,O;R100D100L100U100"

A square at the top left of the screen.

FOR I =1 TO 100
DRAW "+2,-1"

NEXT I

A 30-degree diagonal up and to the right.

Options:
Command Example Action

B "BMO,O" Blank move. Like a "Lift up pen"
N "R20ND20"

X A$=

No position change. This example draws from
origin right 20, then from origin down 20.
Execute the substring defined in the DRAW.
This example draws left 25, up 25, then
executes the command A$. We did not imple
ment the X option when we wrote the DRAW
subroutine.

"BM250,220"
DRAW
"L25U25;
XA$"

Illustration 11.4 Options of DRAW command

Mode Example

Ax "R20;A1;

Cc

R20;A2;
R20;A3;R20"

"C33;R20"

Modes:

Action

Changes angle of all subsequent draws.
x=O, no change
x = 1, 90 degrees clockwise
x = 2, 180 degrees clockwise
x = 3, 270 degrees clockwise
In the example above, a line is drawn right, then down,
then left, then up - even though the command suggests
all lines go right. We did not implement the A mode.

Color is 33. This command is not used in the DRAW
subroutine as we wrote it, as it is generally useful only on
color systems.

Sx "S2;R20;
S4;R20"

Scale, with x a number from 1 to 62.
x=1, 1/4scale
x =2, 2/4 scale (1/2 scale)
x=3, 3/4 scale
x=4, full scale

x=8, twice scale

THE DRAW SUBROUTINE 163

Illustration 11.5 Modes of the DRAW command

DRAW Subroutine

In order to clarify the next tessellation with the DRAW subroutine, we will describe
the subroutine in pseudocode. The pseudocode listing will be keyed to line
numbers in the subroutine you will find on pages 166 and 167 as part of the
program ANGLEDRAW, so that you can follow the logic of the program as you
trace the instructions.

1010 1.

1020 2.
1030 3.
1040
1050
1060
1070

1080
1090
1100
1110 4.
1120 5.

Initialize flags ifF= 0 (first time called).
8 = 81ankMoveflag.Set8=0(draw).
N = No Position Change flag. Set N = 1 (change).
S = Scale. SetS= 4 (full scale).
Q = scale multiplier. Set Q = 1 (full scale).
F = First time called. Set F = 1 (first time).
Set character (char.) counter 18 to 1.
WHILE 18th. char. in SS is not a"#" DO:

a. Call 18th. char. S8$.
b. IF char. is 8 then set 8=0.
c. IF char. is N then set N =0.
d. IF char. is a directed move (U,D,L,R,E,F,G, or H) then

PERFORM Process Directed Move.
e. IF char. is M then PERFORM Process Move.
f. IF char. isS then PERFORM Process Scale.
g. Add 1 to char. counter 18.

ENDDO.
RETURN

164 GRAPHICS FOR THE MACINTOSH

Process Move
1210 1. PERFORM Pick up digits, sign if any routine at 1900.
1220 2. Save 88$ in X8$

Add 1 to 18
PERFORM Pick up digits, sign if any routine at 1900.

1230 . 3. Save 88$ in Y8$
Set XB to be value of XB$ times Q, the scale
Set Y8 to be value of Y8$ times Q

1240 4. IF first char. in X8$ is"+" or"-"
THEN

a. X= X+ XB
b. Y = Y + Y8

ELSE
a. X= XB
b. Y = YB

1250 9. IF 8 = 1 (not a blank move)
THEN draw line to (X,Y)
ELSE move cursor to (X,Y)

1260 10. RETURN

Process Directed Move
1310 1. Set XB and Y8=0

PERFORM pick up digits, sign if any at 1900.
1320 2. Set 88 to value of 88$

Set P8 to position of char. S8$ in string "LRUDEFGH"
1330 3. IF P8= 1 or P8>6

THEN X8 = - 88 (S8$ is "L", "G", or "H")
1340 4. IF P8=2 or P8=5 or P8=6

THEN X8 = 88 (S8$ is "R", "E", or "F")
1350 5. IF P8=3 or P8=5 or P8=8

THEN Y8 = - 88 (S8$ is "U", "E", or "H")
1360 6. IF P8=4 or P8=6 or P8= 7

THEN Y8= 88 (S8S is"D", "F", or"G')
1370 7. IF X+X8 out of bounds THEN X8=- XB
1380 8. IF Y + Y8 out of bounds THEN Y8 = - Y8
1390 9. Draw line to (X8,Y8)
1400 10. IFN=1

THEN
a. X=X+X8
b. Y=Y+Y8

ELSE
a. Move to (X,Y)
b. Set N=1

1410 11. RETURN

1910
1920
1930

1940
1950

1.
2.

3.
RETURN

Process Pick up Sign,
Digits if any

Set 88S = null.

THE DRAW SUBROUTINE 165

WHILE 18th char. is one of chars. in "0123456789- + " DO:
Add to 88S the character found in SS
Add 1 to 18

ENDDO.

Applications of ORA W
Subroutine

The first program that uses the DRAW is very short. It provides the same output as
the first tessellation program that was demonstrated in this chapter.
Remember that in that program we selected a 10-unit-long line to be drawn in a

random vertical, horizontal, or diagonal direction from where we were. The result
was a trace of a random walk, which when allowed to proceed for some time
ended up as a tessellation of the screen (Illustration 11.6 and 11. 7).

Illustration 11.6 Angle draw

166 GRAPHICS FOR THE MACINTOSH

' • File Edit Control

11n ledr11w

Illustration 11.7 Angle draw, longer segments

Here we do the same thing, only we use the Directed Move portion of the DRAW
subroutine to select the direction of our drunkard's next step. Study the listing.

Listing, ANGLEDRAW Program

10 ° angledraw
20 CLS : RANDOM IZE TIME R: F=O
30 SS="BM200 o120S3#":GOS UB 1000
40 SS=MIDS("UDLREFGH ". 1+8'RND o1)+"1 0# ":GOSUB 1000
50 GOTO 40
1000 ° DRAW subrouti ne
1010 IF F=O THEN B=1:N=1:S=4:0=1 : F=1
1020 18=1
1 0 3 0 WH I L E M I D S (S S 0 I 8 0 1) <>" #"
1040 S8S=M IO S(SSO 18 0 1)
1050 IF S8S =" B" THEN 8=0: GOTO 1100
1060 IF S8S= "N" THEN N=O: GOTO 1100
1070 IF INSTR (" UDLREFGH "o S8S) <>O THEN GOSUB 1300 :

GOTO 1100
1080 IF S8S =" M" THEN GOSUB 1200 : GO TO 1100
1090 IF S8S =" S" THEN GOSUB 1900 : S=VAL(B8S): O=S/ 4 :

GOTO 1100
1100 18=18+1
1110 WEND
1120 RETURN
1200 process M
1210 GOSUB 1900 °»» get d igi tso sign for X

1220 X8S=8BS: 18=18+1: GOSU8 1900 '>>>>bypass
comma , g e t d i g i t s , s i g n f o r Y

1230 Y8S=88S: X8=0*VAl(X8$) :Y8=0*VAl(Y8S)
1240 IF INSTR("+-". lEFTS(X8$, 1))<>0 THEN

X=X+X8:Y=Y+Y8 ElSE X=X8:Y=Y8
1250 IF 8=1 THEN CAll LINETO(X,Y) ElSE CAll

MOVETO(X. Y) :8=1
1260 RETURN
1300 'process directed move
1310 X8=0: Y8=0: GOSU8 1900 '>>>>get digits
1320 88=0*VAL(88$): P8=1NSTR("lRUDEFGH",S8$)
1330 IF P8=1 OR P8>6 THEN X8=-88
1340 IF P8=2 OR P8=5 OR P8=6 THEN X8=88
1350 IF P8=3 OR P8=5 OR P8=8 THEN Y8=-88
1360 IF P8=4 OR P8=6 OR P8=7 THEN Y8=88
1370 IF X+X8<0 OR X+X8>500 THEN X8=-X8
1380 IF Y+Y8<0 OR Y+Y8>280 THEN Y8=-Y8
1390 CALL liNE(XB,YB)
1400 IF N=1 THEN X=X+X8: Y=Y+Y8 ElSE CAll

MOVETO(X,Y): N=l
1410 RETURN
1900 'pick up digits, sign if any
1910 88$=""

THE DRAW SUBROUTINE 167

1920 WHILE I NSTR ("0123456789-+", M IDS (S$, 18+ 1,1))<>0
1 9 3 0 8 8 $ = 8 8 $ +M I D $ (S $, I 8 + 1 , 1) : I 8 = I 8 + 1
1940 WEND
1950 RETURN
9999 END

20 Clears the screen, seeds the random number generator, and sets F, the First
Time Flag that DRAW needs, to 0.

30 Establish the starting point of our tessellation at (200,120), and scale at 3/4.

40 Determine the direction of the drunkard's random step by choosing the Move
direction at random from the string ''UDLREFGH". Then it sets the step size as
10. The DRAW string is terminated with a"#", and the DRAW subroutine is
invoked.

50 Loop back to Line 40 to provide us with an infinite loop.

You can have great fun with this very simple program. We suggest that you start
by altering line 40 in each of several ways:

40 S$= MID$('LLRRUDFH"

40S$=MID$("UUDDLREG"

40S$=MID$("EFGHEFGH"

40S$=MID$("LRUDLRUD"

168 GRAPHICS FOR THE MACINTOSH

You can also tessellate the screen by selecting a random square area on the
screen to fill with patterns of your choice. Subdivide the screen as a grid of squares,
or rectangles, as shown in Illustration 11.8:

~ a File Edit Control

Illustration 11.8 Square tessellation with DRAW

Listing, SQUAREDRAW

10 · squaredraw
20 CLS : RANDOMI ZE TIMER : F=O
30 R1 =1 NT(25'RNO) '20
40 R2 = 1NT(14'RN0)'20
50 R1S=MIOS(STRS (R1) .2) : R2S =MIDS(STRS(R2).2)
60 SS ="BM"+R1S+","+R2S
70 SS=SS+" R1 80 18L18U18# "
80 GOSUB 1000
90 GOTO 30
1000 ' DRAW subr outine
1010 IF F=O THEN B=1 : N=1 :S=4 :0=1 : F=1
1020 18=1
1 0 3 0 WH I L E M I 0 S (S s , I 8 , 1) <>" # "
1 0 4 0 S 8 S =M I D s (S S . I 8 . 1)
1050 IF S8S =" B" THEN B=O: GOTO 11 00
1060 IF S8S =" N" THEN N=O: GOTO 11 00
1070 IF INSTR(" UDLREFGH ",S8S)<>O THEN GO SUB 1300 :

GOTO 1100
1080 IF S8S =" M" THEN GOSUB 1200 : GOTO 1100
1090 IF S8S ="S " THEN GOSUB 1900 : S=VAL(B8 S): O=S/ 4 :

GOTO 1100
11 00 18= 18+ 1

1110 WEND
1120 RETURN
1200 ' process M
1210 GOSU8 1900 '>>>>get digits, sign for X
1220 X8$=88$: 18=18+1: GOSU8 1900 '>>>>bypass

c o mm a , g e t d i g i t s , s i g n f o r Y
1230 Y8$=88$: X8=0*VAL{X8$) :Y8=0*VAL{Y8$)
1240 IF I NSTR { "+-", LEFT$ { X8$, 1))<>0 THEN

X=X+X8:Y=Y+Y8 ELSE X=X8:Y=Y8
1250 IF 8=1 THEN CALL LINETO{X,Y) ELSE CALL

MOVETO{X,Y) :8=1
1260 RETURN
1300 'process directed move
1310 X8=0: YB=O: GOSU8 1900 '>>>>get digits
1320 88=0*VAL{B8$): P8=1NSTR{"LRUDEFGH",S8$)
1330 IF P8=1 OR P8>6 THEN XB=-88
1340 IF PB=2 OR P8=5 OR P8=6 THEN XB=8B
1350 IF P8=3 OR P8=5 OR P8=8 THEN YB=-88
1360 IF PB=4 OR PB=6 OR P8=7 THEN Y8=88
1370 IF X+X8<0 OR X+X8>500 THEN XB=-X8
1380 IF Y+Y8<0 OR Y+Y8>280 THEN Y8=-Y8
1390 CALL LINE(XB,YB)
1400 IF N=1 THEN X=X+X8: Y=Y+Y8 ELSE CALL

MOVETO{X. Y): N=1
1410 RETURN
1900 'pick up digits, sign if any
1910 88$=""

THE DRAW SUBROUTINE 169

1920 WHILE INSTR("0123456789-+",MIO${S$,18+1.1))<>0
1 9 3 0 B B $ = 8 B $ +M I D $ { S $, I 8 + 1 , 1) : I B = I 8 + 1
1940 WEND
1950 RETURN
9999 END

You can do this by selecting the upper left corner of a random grid area this
way:

100 'get random square grid area
110 'horiz. coord. R1 is 0, 20, 40, 60, ... to 500
120 R1 = INT(25*RND)*20
130 'vert. coord. R2 is 0, 20, 40, 60, ... to 280
140 R2 = INT(14 *RND)*20
160 'String representation of R1 and R2 for DRAW:
170 R1S = MID${STRS(R1),2): R2$ = MIDS(STRS(R2),2)

Once you have established the random corner coordinates, you can issue a
DRAW command to place your pattern in that area. For example, suppose you
want to draw a diamond with a vertical and horizontal line within it, as shown in
Illustration 11.9:

170 GRAPHICS FOR THE MACINTOSH

I
I
I
I
I
I
I
I
I
I
I

-----------,
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I

... -- --------- ___________ ..

·oM+10~+0NF10D20NE10H10NR20E10.

Illustration 11.9 Diamond with vertical and horizontal lines

To the code above, you add these lines:

180 S$ = "BM" + R1 $ + n In+ R2$ 'move to random corner
190 S$=S$+"BM +10, +0NF10D20NE10H10NR20E10 #"
200 GOSUB 1000

Line 190 defines the DRAW command as

Blank move right 10 from present position.

Draw down and right 10, go back to top of diamond.

Draw down 20.

Draw up and right 10, go back to bottom of diamond.

Draw up and left 10.

Draw right 20, go back to left point of diamond.

Draw up and right 10, return for next DRAW.

You can define your tile area as a rectangle by modifying line 120 as shown below:

120 R1 = INT(20*RND)*25)

This allows 20 rectangles across the screen, each 25 units wide. Now you can
define a new pattern in this different tile.

THE DRAW SUBROUTINE 171

Alphabet Generator
The last application we have chosen to demonstrate using the DRAW command

is an alphabet generator. What we do in this program is to define 37 different
DRAW commands as DATA strings, representing the motions necessary to trace
the 261etters of the alphabet, the 10 digits, and the space character. When these 37
strings are stored in an array, the program can select them by position and execute
them. The commands to draw the A are stored as a string in the first array position;
those to draw the B in the second consecutively to the Z in the 26th. Thus to draw
an A, place the contents of the first array position into S$, and call the DRAW
subroutine.

position A$

1 Command string to draw "A" 20 Command strin_g to draw "T"
2 Command string to draw "B" 21 Command string to draw "U"
3 Command string to draw "C" 22 Command string to draw "V"
4 Command string to draw "D" 23 Command string to draw "W"
5 Command string to draw "E" 24 Command string to draw "X"
6 Command string to draw "F" 25 Command string to draw "V"
7 Command string to draw "G" 26 Command string to draw "Z"
8 Command string to draw "H" 27 Command string to draw "0"
9 Command string to draw "I" 28 Command string to draw "1"
0 Command string to draw "J" 29 Command string to draw "2"

1 1 Command string to draw "K" 30 Command string to draw "3"
12 Command string to draw "L" 31 Command string to draw "4"
13 Command string to draw "M" 32 Command string to draw "5"
14 Command string to draw "N" 33 Command string to draw "6"
15 Command string to draw "0" 34 Command string to draw "7''
16 Command string to draw "P" 35 Command string to draw "8"
17 Command string to draw "Q" 36 Command string to draw "9"
18 Command string to draw "R" 37 Command string to draw" "
19 Command string to draw "S"

Illustration 11.10 Sketch of array with commands stored

172 GRAPHICS FOR THE MACINTOSH

Here's the listing of the program that allows you to write (to ORA W) words in a new
font.

Listing, ALPHABET DRAW

10 ' alphabet draw
20 DIM A$(37)
30 CLS:CALL MOVET0(10.10) :X=10:Y=10:F=0
40 FOR 1=1 TO 37
50 READ AS(I)
60 NEXT I
70 DATA "BM+0,+20E12DBNL8D4BM+8,-20"
80 DATA "BM+0.+8R12D12l12U12U8BM+20.+0"
90 DATA "BM+12.+20l12U12NR12BM+20,-B"
100 DATA "BM+0.+8R12D12l12U12BM+12.+0U8BM+8.+0)
110 DATA "BM+12.+20l12U12NR12BM+0.+6R12BM+8.-14"
120 DATA "BM+0.+8NR12D12U6R8BM+12,-14"
130 DATA "BM+0.+BR12D12l12U12BM+12,+12D8l6BM+14,-

28"
140 DATA "BM+12,+20U12l12ND12U8BM+20.+0"
150 DATA "BM+6,+BD12BM+6.+0l12BM+6,-18D2BM+14,-4"
160 DATA "BM+12.+8D20l12U8BM+12,-18D2BM+8.-4"
170 DATA "020UBNE12E2F10BM+8,-20"
180 DATA "D20R12BM+8,-20"
190 DATA "BM+12.+20U12l12ND12BM+6,+0D12BM+14,-20"
200 DATA "BM+12.+20U12l12ND12BM+20,-8"
210 DATA "BM+0,+8R12D12l12U12BM+20,-8"
220 DATA "BM+0,+8R12D12L12U12020BM+20,-28"
230 DATA "BM+0.+8R12D12l12U12BM+12,+0D20BM+8,-28"
240 DATA "BM+12.+8l12D12BM+20,-20"
250 DATA "BM+12,+8L12D6R12D6l12BM+20,-20"
260 DATA "BM+0.+8R6ND12R6BM+8,-8"
270 DATA "BM+12,+8D12L12U12BM+20,-8"
280 DATA "BM+0.+8D12E12BM+8,-8"
290 DATA "BM+12,+BD12l12U12BM+6.+0D12BM+14,-20"
300 DATA "BM+6.+14NE6NF6NG6NH6BM+14,-14"
310 DATA "BM+12.+8D12l12U12BM+6,+12D8BM+14,-28"
320 DATA "BM+0.+8R12G12R12BM+8.-20"
330 DATA "D20R12U20~12BM+20,+0"

340 DATA "BM+6.+0NG4D20NR6l6BM+20,-20"
350 DATA "R12D10l12D10R12BM+8,-20"
360 DATA "R12D10NL12D10L12BM+20,-20"
370 DATA "D10R12NU10D10BM+8.-20"
380 DATA "NR12D10R12D10l12BM+20,-20"
390 DATA "NR4D20R12U10l12BM+2D.-10"
400 DATA "R12D20BM+B,-20"
410 DATA "ND20R12D10Nl12D10L12BM+20,-20"
420 DATA "ND10R12D10Nl12D10BM+8.-20"
430 DATA "BM+20,+0"

440 SS=INKEY$: IF S$="" THEN 440
450 IF SS<>CHR$(13) THEN 480
460 X=10:Y=Y+36*0: S$="8M"+STRS(X)+","+STR$(Y)+"#"
470 GOSU8 1000: GOTO 440
480 IF S$="/" THEN STOP
490 J=INSTR("abcdefghijklmnopqrstuvwxyz0123456789

", S$)
500 IF J=O THEN J=37
510 SS=AS(J)
520 SS="S16"+SS+"#"
530 GOSU8 1000
540 GOTO 440
1000 ' DRAW subroutine
1010 IF F=O THEN 8=1:N=1:S=4:0=1:F=1
1020 18=1
1030 WHILE MIDS(S$, 18,1)<>"#"
1 0 4 0 S 8 $ =M I D $ (S $, I 8 , 1)
1050 IF SB$="8" THEN 8=0: GOTO 1100
1060 IF S8S="N" THEN N=O: GOTO 1100
1070 IF INSTR("UDLREFGH",S8$)<>0 THEN GOSU8 1200:

GOTO 1100
1080 IF SBS="M" THEN GOSU8 1130: GOTO 1100

THE DRAW SUBROUTINE 173

1090 IF SBS="S" THEN GOSU8 1320: S=VAL(88$): O=S/4:
GOTO 1100

1100 18=18+1
1110 WEND
1120 RETURN
1130 ' process M
1140 GOSU8 1320 '>>>>get digits, sign for X
1150 X8S=88$: 18=18+1: GOSU8 1320 '>>>>bypass

c o mm a , g e t d i g i t s , s i g n f o r Y
1160 Y8S=88$: X8=0*VAL(X8$):Y8=0*VAL(Y8$)
1170 IF INSTR("+-", LEFT$(X8$,1))<>0 THEN

X=X+X8:Y=Y+Y8 ELSE X=X8:Y=Y8
1180 IF 8=1 THEN CALL LINETO(X,Y) ELSE CALL

MOVETO(X, Y) :8=1
1190 RETURN
1200 'process directed move
1210 X8=0: Y8=0: GOSU8 1320 '>>>>get digits
1220 88=0·VAL(88$): PB=INSTR("LRUDEFGH",S8$)
1230 IF PB=1 OR P8>6 THEN X8=-88
1240 IF P8=2 OR P8=5 OR P8=6 THEN X8=88
1250 IF P8=3 OR P8=5 OR P8=8 THEN Y8=-88
1260 IF PB=4 OR P8=6 OR P8=7 THEN YB=BB
1270 IF X+XB<O OR X+X8>500 THEN X8=-X8
1280 IF Y+Y8<0 OR Y+YB>280 THEN Y8=-YB
1290 CALL LINE(X8,Y8)
1300 IF N=1 THEN X=X+XB: Y=Y+Y8 ELSE CALL

MOVETO(X,Y): N=l

(continued)

174 GRAPHICS FOR THE MACINTOSH

1310 RETURN
1320 'pick up digits, sig~ if any
1330 88$=""
1340 WHILE INSTR("0123456789-+",MID$(S$,18+1,1))<>0
1 3 50 B 8 $ = B 8 $ +M I D $ (s $ I I 8 + 1 , 1) : I 8 = I 8 + 1
1360 WEND
1370 RETURN
9999 END

20
30

40-60
70-430

440
450-480

490
500

510
520
530
540

Define array AS to hold 37 command strings.
Clear screen, more cursor to upper left corner, set X and Y
starting points to that cursor position, set First Time Flag F to 0.
Read command strings into array A$.
Commands themselves. Consider line 70 as a typical example,
defining the letter A. It states:
"Blank Move (relative to current position) 20 down (go to bottom
left of 20-by-20 square), go up and right 12 units" (Illustration
11.11).
"Go down 8 units, left 8 units, return to previous position" (Illustra
tion 11.12).
"Go down 4 units to finish off the A" (Illustration 11.13).
"Blank Move right 8, up 20 to top right of this drawing area, which
is top left of next area."

Pick up a keystroke from user.
IF char. ="/"then STOP
ELSE return cursor to new line, 10 over and 36*0 down.
Place in J position of S$ in array, if it is one of the 37.
Define character as a blank if it is not one of the 37 acceptable
characters.
Place in S$ the appropriate command string from the array AS.
Set scale to 16 and place terminator symbol at end of S$.
Perform DRAW subroutine.
Loop back to pick up another character.

A

THE DRAW SUBROUTINE 175

Start-------.___

-----.,IIDDDDDDDDDDDD
DDDDDDDDDDDDD
DDDDDDDDDDDDD
DDDDDDDDDDDDD
DDDDDDDDDDDDD
DDDDDDDDDDDDD
DDDDDDDDDDDDD
DDDDDDDDDDDDD
DDDDDDDDDDDDII
DDDDDDDDDDDIID
DDDDDDDDDDIIDD
DDDDDDDDDIIDDD
DDDDDDDDIIDDDD
DDDDDDDIIDDDDD
DDDDDDIIDDDDDD
DDDDDIIDDDDDDD
DDDDIIDDDDDDDD
DDDIIDDDDDDDDD
DDIIDDDDDDDDDD
DIIDDDDDDDDDDD
IIDDDDDDDDDDDD
DDDDDDDDDDDDD
DDDDDDDDDDDDD
DDDDDDDDDDDDD
DDDDDDDDDDDDD
DDDDDDDDDDDDD
DDDDDDDDDDDDD
DDDDDDDDDDDDD
DDDDDDDDDDDDD

Illustration 11.11 Diagonal bar of A in rectangle

176 GRAPHICS FOR THE MACINTOSH

A DDDDDDDDDDDDD
DDDDDDDDDDDDD
DDDDDDDDDDDDD
DDDDDDDDDDDDD
DDDDDDDDDDDDD
DDDDDDDDDDDDD /continue DDDDDDDDDDDDD
DDDDDDDDDDDDD
DDDDDDDDDDDD
DDDDDDDDDDDII
DDDDDDDDDD_D_
DDDDDDDDDIIDD
DDDDDDDDIIDDD
DDDDDDDIIDDDD
DDDDDDIIDDDDD
DDDDDIIDDDDDDII
DDDD-11-111111111111
DDDIIDDDDDDDDD
DD-DDDDDDDDDD
DIIDDDDDDDDDDD
IIDDDDDDDDDDDD
DDDDDDDDDDDDD
DDDDDDDDDDDDD
DDDDDDDDDDDDD
DDDDDDDDDDDDD
DDDDDDDDDDDDD
DDDDDDDDDDDDD
DDDDDDDDDDDDD
DDDDDDDDDDDDD

(·······

Illustration 11.12 Letter A later

THE DRAW SUBROUTINE 177

A DDDDDDDDDDDDD
DDDDDDDDDDDDD
DDDDDDDDDDDDD
DDDDDDDDDDDDD
DDDDDDDDDDDDD
DDDDDDDDDDDDD
DDDDDDDDDDDDD
DDDDDDDDDDDDD
DDDDDDDDDDDD•
DDDDDDDDDDD••
DDDDDDDDDD•o•
DDDDDDDDD•oo•
DDDDDDDD.DDD.
DDDDDDD.DDDD.
DDDDDD.DDDDD.
DDDDD.DDDDDD.
oooo••••••••• DDD.DDDDDDDD.

;~ fl

oo•ooooooooo•
o•oooooooooo•
•oDDDDDDDDDD. '~v--~
DDDDDDDDDDDDD
DDDDDDDDDDDDD
DDDDDDDDDDDDD
DDDDDDDDDDDDD
DDDDDDDDDDDDD
DDDDDDDDDDDDD
DDDDDDDDDDDDD
DDDDDDDDDDDDD

Illustration 11.13 Finished letter A

"'F· . h 1n1s

178 GRAPHICS FOR THE MACINTOSH

The screen images below (Illustration 11.14 -11.17) indicate some of the flexibi lity of
this program. Of course you are free to define your own fonts by rewriting the
command strings in lines 70-430. That's half the fun of this program.

~ * File Edit Control

App LEs
19EJY

Illustration 11.14 The Year of the Apple

~ * File Edit Contro~
11lph11bet dr11w

mci nTosh
mAcoun

I yiA VE n5TEj_n
cor-TLAnd

Illustration 11.15 An Apple by any other name

.,

.,

t:l

THE DRAW SUBROUTINE 179

r 6 File Edit Control It
~ - - ~ - -
~ - - - alphabet draw

1 JonAThAn

2 goldEn dELlclous

3 plppln
y rUSSET

5 FAmEUSE

6 norThErn spy

Illustration 11.16 An Apple a day, never on Sunday

,. 6 File Edit Control

alphabet drew

1 rcxbur~ russET 2 grimEs gcLdsn 3 ben dAvls
Y WESTFieLd sssK nc FUrTher 5 pALmsr grssnlng
c T~dEmAns rsd l summsrrsd 8 mlnJcn ~ prlmA
10 msLrcsE 11 spigcLd 12 mcnrcs 13 spArTAn
1Y wA~ne 15 perTer 1c mAlden bLush 1l heLL~
18 summer rAmbc 1~ whlTE ASTrAchAn 20 LAd~
21 whlTe peArmAln 22 smcKehcuss 23 woLF rlvsr
2Y hunT russET 25 ToLmAn swEET 2c chenAngo
2l EArL~ hArvesT 28 regenT 2~ ~sLLcw horse
30 bLAcK glLLlFLcwer 31 norThwesTern gresnlng
32 grAnn~ smiTh 33 esopus splTzEnberg 3Y Klng
35 ~sLLcw beLLFLower 3c red June 3l bALdwin

Illustration 11.17 How 'bout them apples?

.,

.,

This chapter has demonstrated several" features of the Macintosh graphics that
you can create in BASIC. As usual, you are encouraged to play with these ideas,
and to expand on the possibilities.

c H A p f E R t w E L v E

MOUSE
1/\NS

We revisit the topic of tangrams in this chapter, though in a very different guise. In
Chapter Seven the subject was tangrams produced by manipulating figures in
MacPaint. Here we used MacPaint tools such as the lasso, the marquee, and the
Edit menu's powerful Flip vertical and Flip horizontal. We will describe, and discuss
in detail, a program in BASIC that uses the mouse to select and execute com
mands to draw the tangram.

Illustration 12.1 shows how the screen output area of BASIC was subdivided into
four parts, each with its own function. The four area labels, selection square,
command line, tan display, and tangram display are used to provide a reference in
the discussion only.

/
select SQUa re

~
/

command I i ne 2

be9in '
0

~
cursor

" ~

""' "'.
tan display tangram display

Illustration 12.1 The four screen output areas

181

182 GRAPHICS FOR THE MACINTOSH

The procedure for using this application is best described by briefly listing the
operations used to produce a familiar tangram, and by displaying the screen
image of each different step.

1. Upon typing "RUN", the program displays the four areas. The select square
area shows the square tangram formed by the seven tans, each labeled by a
number. The command line area shows, in Los Angeles font, the word
"begin". The other two areas are empty (Illustration 12.2). The purpose of this
display is to give you time to become familiar with the four areas .

,. • File Edit Control
.,

I~-~------=----~------
! =--.-_:-.: __ --------o=----==-~ tan application

begin 0

Illustration 12.2 Screen display after the command "RUN"

2. Position the cursor in the command line area and click the mouse. The
command line changes from "begin" to "select tan" (Illustration 12.3).

3. Move the cursor over any one of the digits identifying the seven tans, and
click. The selected tan is copied into the tan display area and begins to rotate
in 45-degree increments, and the command line changes from "select tan" to
''orient tan".

4. Move the cursor in the command line. When the tan that is rotating assumes
the position you wish it to have in your tangram, click the mouse. The tan
stops rotating and the command line changes from "orient tan" to "grab tan".

5. Move the cursor to the tan display area, to any one of the vertices. The
cursor's hotspot must be within three pixels of the tan's vertex in order to be
activated. When you click the mouse to "grab" the tan and the hotspot is close
enough, an image of the tan vibrates, much as it would had you lassoed it in
MacPaint. However, you do not have to drag the tan to the tangram display

MOUSE TANS 183

Illustration 12.3 Screen during tan selection

area. Moving the mouse is sufficient to move the tan (Illustration 12.4). Our
thought was to simplify the move of the tan for you. You want to be careful
about its placement, and you shouldn't have to worry about the mouse button
being depressed during this careful operation.

Illustration 12.4 Screen with tan moved to display area

184 GRAPHICS FOR THE MACINTOSH

6. To "let go" of the tan when you have it exactly where you want it. Click the
mouse. The command line changes from "position tan" to "do undo". This
choice allows you to change your mind. For example, you might click the
mouse at the wrong time during its rotation, so that its orientation is wrong.
Simply click "undo" here and you go back to the select tan stage of the
program. If you misplaced the tan, even though it was properly oriented, you
can "undo" your mistake. In all cases, clicking the undo command will take
you back to select the same or another tan.

7. As you repeat the steps 2 through 6 above, you develop your picture. When
all seven tans have been selected, oriented, grabbed, and positioned, your
tangram is done and the command line shows "tangram complete". The
three areas to the left of the tangram display area are erased, as shown in
Illustration 12.5.

,. • File Edit Control
.,

ten application
tangram complete

CJ

Illustration 12.5 Screen with completed stork tangram

The listing of the Tangrams program has several noteworthy features, among
them a reliance on structure with many subroutines, and some heavy use of the
Macintosh's Quickdraw ROM routines.

Listing, Tangrams program

10 I tan application
20 DEFINT A-Z
30 DIM C(34)~GP(233)
40 DIM TT(7),0T(7),VT(7),XT(7),YT(7)
50 DIM ST(4,3,2),MT(4,3,2),SQ(2,4,2),PA(4,4,2)
60 M1=7:M2=104:F=0
70 FOR 1=0 TO 3
80 C(I)=O:C(15-1)=0
90 NEXT I
100 C(4)=&H7EO:C(11)=&H7EO
11 0 FOR I =5 TO 1 0
120 C(I)=&H810
130 NEXT I
140 FOR 1=0 TO 15
150 C(I+16)=C(I)
160 NEXT I
170 C(32)=8:C(33)=8
180 CALL SETCURSOR(VARPTR(C(O)))
190 CLS
200 GOSUB 4000 I draw tangram tile
210 FOR 1=1 TO 4
220 FOR J= 1 TO 3
230 FOR K=1 TO 2
240 READ ST (I , J, K)
250 NEXT K
260 NEXT J
270 NEXT I
280 I small triangles -tans 1 & 5
290 I large trianges -tans .4 & 6 are 2x
300 DATA 0,0,19,-19138,0
310 DATA 0,0,27,0,27,27
320 DATA 010,19, 19~0,38
330 DATA 0,0,0,27,-27,27
340 FOR 1=1 TO 4
350 FOR J=1 TO 3
360 FOR K=1 TO 2
370 READ MT(I ,J,K)
380 NEXT K
390 NEXT J
400 NEXT I
410 I medium triangle -tan 2
420 DATA 0,0,38,-38,38,0
430 DATA 0,0,54,0,27,27
440 DATA 0,0,38,38,0,38
450 DATA 0,0,0,54,-27,27
460 FOR 1=1 TO 2
470 FOR J=l TO 4

MOUSE TANS 185

(continued)

118 GRAPHICS FOR THE MACINTOSH

480 FOR K=1 TO 2
490 READ SO(I ,J,K)
500 NEXT K
510 NEXT J
520 N-EXT I
530 ' square -tan 3
540 DATA 0,0, 19,-19,38,0. 19,19
550 DATA 0,0,27,0,27,27,0,27
560 FOR 1=1 TO 4
570 FOR J=1 TO 4
580 FOR K=1 TO 2
590 READ PA(I,J,K)
600 NEXT K
610 NEXT J
620 NEXT I
630 ' parallelogram -tan 7
640 DATA 0,0,0,-38, 19,-57,19,-19
650 DATA 0,0,27,-27,54,-27,27,0
660 DATA 0,0,38,0,57, 19, 19,19
670 DATA 0,0,27,27,27,54,0,27
680 GOSUB 5000:PRINT"begin"
690 IF MOUSE(0)=1 THEN 700 ELSE 690
700 A=MOUSE(1) :8=MOUSE(2)
710 IF 8>90 AND 8<110 AND A<180 THEN 730
720 GOTO 690
730 GOSUB 5000
740 IF F<7 THEN PRINT "select tan":GOTO 770 ELSE

GOSUB 8000
750 CAll MOVET0(5,15):PRINT "tangram complete":CALL

INITCURSOR
760 IF INKEY$="" THEN 760 ELSE STOP
770 LINE(1 I 111)-(179,299) ,30,BF
780 X=5:Y=7:T=O
790 IF (A>X+2 AND A<X+20) AND (B>Y+34 AND B<Y+52)

THEN T=4
800 IF (A>X+6 AND A<X+2~) AND (B>.Y+64 AND B<Y+82)

THEN T=1
810 IF (A>X+25 AND A<X+43) AND (B>Y+9 AND B<Y+27)

THEN T=6
820 IF (A>X+26 AND A<X+44) AND (B>Y+53 AND 8<Y+71)

THEN T=3
830 IF (A>X+37 AND A<X+55) AND (B>Y+34 AND 8<Y+52)

THEN T=5
840 IF (A>X+54 AND A<X+72) AND (B>Y+25 AND 8<Y+43)

THEN T=7
850 IF (A>X+51 AND A<X+69) AND (B>Y+60 AND 8<Y+78)

THEN T=2
860 A=MOUSE(1):B=MOUSE(2)
870 IF MOUSE(0)=0 OR T=O THEN 790
880 X=90:Y=200

890 0=1
900 GOSUB 2000 I set orientation
910 GOSUB 3000 I draw tan
920 GOSUB 5000:PRINT "orient tan"
930 A=MOUSE(1) :B=MOUSE(2)
940 FOR Z=1 TO 1000:NEXT Z
950 IF MUUSE(0)=1 AND 8>90 AND 8<110 AND A<180 THEN

1050
960 0=0+1
970 LINE(1,111)-(179,299) ,30,BF
980 IF T=7 AND 0>16 THEN 0=1
990 IF T=3 AND 0>2 THEN 0=1
1000 IF T<>3 AND T<>7 AND 0>8 THEN 0=1
1010 GOSUB 2000 I set orientation
1020 GOSUB 3000 I draw tan
1030 IF MOUSE(0)=1 THEN 1050
1040 GOTO 930
1050 GOSUB 5000:PRINT "grab tan"
1060 IF T=3 OR T=7 THEN L=4 ELSE L=3
1070 IF MOUSE(0)=1 THEN A=MOUSE(1):B=MOUSE(2) :GOTO

1090
1080 GOTO 1070
1090 FOR 1=1 TO L
1100 IF ABS(A-P(I,1)-X)<3 AND ABS.(B-P(I,2)-Y)<3

THEN 1140
1110 A=MOUSE(1) :B=MOUSE(2)
1120 NEXT I
1130 GOTO 1070
1140 XG=O:YG=O
1150 FOR 1=1 TO L
1160 IF ABS(P(1,1))>ABS(XG) THEN XG=P(I, 1)
1170 IF ABS(P(I,2))>ABS(YG) THEN YG=P(I,2)
1180 NEXT I
1190 GET(X,Y)-(X+XG,Y+YG),GP
1200 IF T=3 AND 0=1 THEN GET(X,Y+YG)-(X+XG.Y-YG),GP
1210 GOSUB 5000:PRINT"position tan"
1220 X=MOUSE(1):Y=MOUSE(2)
1230 IF T=3 AND 0=1 THEN 1270
1240 PUT(X,Y)-(X+XG,Y+YG),GP,XOR
1250 PUT(X,Y)-(X+XG,Y+YG),GP,XOR
1260 GOTO 1290
1270 PUT(X,Y+YG)-(X+XG,Y-YG) ,GP,XOR
1280 PUT(X,Y+YG)-(X+XG,Y-YG) ,GP,XOR
1290 IF MOUSE(0)=1 THEN 1300 ELSE 1220
1300 IF X<180 THEN 1210
1310 GOSUB 3000
1320 GOSUB 5000:PRINT"do"
1330 LINE(90,91)-(90,109) :CALL MOVET0(90+M1 ,M2):

PRINT"undo"

MOUSE TANS 187

(continued)

188 GRAPHICS FOR THE MACINTOSH

1340 IF MOUSE(0)<>1 THEN 1330
1350 A=MOUSE(1):8=MOUSE(2)
1360 IF 8>90 AND 8<110 AND A>90 AND A<180 THEN

GOSU8 7000 ELSE GOSU8 6000
1370 GOTO 730
1380 CALL TEXTMODE(O)
2000' set orientation
2010 IF T=3 THEN 2160
2020 IF T=7 THEN 2220
2030 IF T=2 THEN 2340
2040 IF T=1 THEN 8=0+0:M=1
2050 IF T=5 THEN 8=0+6:M=1
2060 IF T=4 THEN 8=0+2:M=2
2070 IF T=6 THEN 8=0+4:M=2
2080 IF 8>8 THEN 8=8-8
2090 IF 8>4 THEN K=8-4:M=-M ELSE K=8
2100 FOR 1=1 TO 3
2110 FOR J=l TO 2
2120 P(I ~J)=ST(K~ I ~J) *M
2130 NEXT J
2140 NEXT I
2150 RETURN
2160 FOR 1=1 TO 4
2170 FOR J=1 TO 2
2180 P(I ~J)=SO(O~ I ~J)
2190 NEXT J
2200 NEXT I
2210 RETURN
2220 8=(0-1) MOO 8 + 1
2230 IF 8>4 THEN K=8-4:M=-1 ELSE K=8:M=1
2240 FOR 1=1 TO 4
2250 FOR J=1 TO 2
2260 P(I~J)=PA(K~I~J)*M
2270 NEXT J
2280 NEXT I
2290 IF 0<9 THEN RETURN
2300 FOR 1=1 TO 4
2 3 1 0 p (I I 1) =-p (I I 1)
2320 NEXT I
2330 RETURN
2340 IF 0>4 THEN K=0-4:M=-1 ELSE K=O:M=1
2350 FOR 1=1 TO 3
2360 FOR J=1 TO 2
2 3 7 0 p (I I J) =MT (K I I I J) * M
2380 NEXT J
2390 NEXT I
2400 RETURN
3000 ' draw tan
3010 IF T=3 OR T=7 THEN L=3 ELSE L=2
3020 FOR 1=1 TO L

3 0 3 0 ll N E (X+P (I , 1) , Y +P (I , 2)) - (X+P (I+ 1 , 1) , Y +P
(I+ 1 I 2))

3040 NEXT I
3050 L INE(X+P(L+1, 1), Y+P(L+1, 2))-(X+P(1,1), Y+P

(1 , 2))
3060 RETURN
4000 I draw tangram tile
4010 X=O:Y=O
4020 LINE(0,0)-(180,300), ,B
4030 LINE(0,90)-(180, 110), ,B
4040 X=X+5:Y=Y+7
4050 LINE(X,Y)-(X+76,Y+76),,B
4060 LINE(X,Y+76)-(X+76,Y)
4070 LINE(X+38,Y+76)-(X+76,Y+38)
4080 LINE(X,Y)-(X+57,Y+57)
4090 LINE(X+57,Y+57)-(X+57,Y+19)
4100 LINE(X+19,Y+57)-(X+38,Y+76)
4110 CALL TEXTMOOE(1) :CALL TEXTFONT(12)
4120 CALL MOVETO(X+15,Y+73):PRINT "1"
4130 CALL MOVETO(X+60,Y+69) :PRINT "2"
4140 CALL MOVETO(X+35,Y+62) :PRINT "3"
4150 CALL MOVETO(X+11,Y+43):PRINT "4"
4160 CALL MOVETO(X+46,Y+43) :PRINT "5"
4170 CALL MOVETO(X+34,Y+18):PRINT "6"
4180 CALL MOVETO(X+63,Y+34) :PRINT "7"
4190 CALL TEXTMOOE(O)
4200 RETURN
5000 I prompt manager
5010 LINE(1.91)-(179,109),30,BF
5020 CALL MOVETO(M1 ,M2)
5030 CALL TEXTMOOE(l)
5040 RETURN
6000 ' save tan info
6010 F=F+1
6020 TT(F)=T:OT(F)=O:XT(F)=X:YT(F)=Y
6030 RETURN
7000 I undo
7010 LINE(181,1)-(499,299),30,BF
7020 FOR Z=l TO F
7030 T=TT(Z) :O=OT(Z) :X=XT(Z) :Y=YT(Z)
7040 GOSUB 2000:GOSUB 3000
7050 NEXT Z
7060 RETURN
8000 ' wrap up
8010 GOSUB 5000:PRINT "tangram complete"
8020 LINE (0,0)-(500,300),30,BF
8030 X0=100:Y0=100
8040 FOR Z2=1 TO F
8050 T=TT(Z2) :0=0T(Z2) :X=XT(Z2) :Y=YT(Z2)

MOUSE TANS 189

(co11tinued)

190 GRAPHICS FOR THE MACINTOSH

8060 GOSUB 2000
8070 IF Z2=P1 THEN XS=X-XD:YS=Y-YO
8080 X=X-XS:Y=Y-YS
8090 GOSUB 3000
8100 NEXT Z2
8110 RETURN

Commonly Used
Variables

Let's review some of the most commonly used variables.

C- new cursor. "C" is an integer array DIMensioned 34. Cursors in BASIC are
most easily defined in hex images of a binary 16-bit number. The cursor design
begins as a 16x16 grid, with the filled (dark) pixels marked and the "Hot Spot" pixel
pair identified. Illustration 12.6 shows the design for our cursor shaped like a
rounded square with the center dot being the "Hot Spot".

C<O>=&HOOOO DDDDDDDDDDDDDDDD
C < 1 >=&HOOOO DDDDDDDDDDDDDDDD
C(2)=&HOOOO DDDDDDDDDDDDDDDD
C<3>=&HOOOO DDDDDDDDDDDDDDDD
C<4>=&H07EO DDDDD ______ DDDDD
C<S>=&H0810 DDDD-DDDDDD-DDDD
C<6>=&H0810 DDDD-DDDDDD-DDDD
C<7>=&H0810 DDDD-DDDDDD-DDDD
C<S>=&H0810 DDDD-DDDDDD-DDDD
C<9>=&H0810 DDDD-DDDDDD-DDDD

C(10>=&H0810 DDDD-DDDDDD-DDDD
C (11 >=&H07EO DDDDD ______ DDDDD
C(12)=&HOOOO DDDDDDDDDDDDDDDD
C<13>=&HOOOO DDDDDDDDDDDDDDDD
C<14>=&HOOOO DDDDDDDDDDDDDDDD
C(15>=&HOOOO DDDDDDDDDDDDDDDD

Illustration 12.6 Square cursor in 16x16 grid

MOUSE TANS 191

Each grid position is a bit, and each row in the grid is a 16-bit integer. In binary, for
example, the fifth row is "0000011111100000", which is the hex number "?EO". To
define the cursor in BASIC, you define the first 16 positions of the cursor array, C(O)
through C(15), as follows:

1. Define first four rows as hex zeros

2. Define the fifth and twelfth rows as hex ?EO

3. Define rows six through 11 as hex 810

The cursor's "Hot Spot" is defined as X-Y coordinates in C(32) and C(33). It isn't a
single pixel. Rather, it is the intersecting point between four pixels, the one
identified by coordinates, the one to its left, the one above, and the one above and
to the left (Illustration 12. 7).
In our cursor, the "Hot Spot" is defined as

C(32) = 8: C(33) = 8 'vertical and horizontal coordinates

The BASIC command CALL INITCURSOR: restores the system cursor, and the
command.

Hot Spot
C<32)=8
C<33)=8

Illustration 12.7 Hot spot intersection

192 GRAPHICS FOR THE MACINTOSH

CALL SETCURSOR(VARPTR(C(O))): sets our cursor to be the active one.

While we're on the subject of ROM routines that deal with the cursor, we should
mention some others that you may wish to use to embellish your applications.

CALL HIDECURSOR: turns off the cursor so that it becomes invisible, even if the
mouse is dragged.

CALL SHOWCURSOR: is the reverse, making the mouse visible.

CALL OBSCURECURSOR: is an interesting variant of HIDECURSOR.

It hides the mouse cursor until the mouse moves. In the MacWrite program, for
example, the cursor disappears when a character is typed, and appears only
when the mouse is moved. This is especially nice when you want a clean screen
with the cursor out of the way until you need it.

Other variables
GP - contains a picture of the tan piece that was selected, oriented, and

positioned. The largest tan is Tan # 4 or Tan # 6. The picture is stored as an integer
array for GETs and PUTs. Illustration 12.8 indicates the space needed in GP to
store the tans.

(0,0)

\

'(38, 76)

77

39
()

4 + (76-0+1) * 2 * INT((38-0+16)/16) = 466 bytes
= 233 elements

Illustration 12.8 Large triangle with corners marked

MOUSE TANS 193

The array must be DIMensioned to hold 233 integers, according to the formula
from the Microsoft BASIC manual:

4 + (76- 0 + 1) * 2 * INT((38- 0 + 16) /16)
= 466 bytes, or 233 16-bit integers

TT- Contains the tan piece numbers. TT(1) might be 3 if the square were the first
tan piece manipulated.
OT- orientation of the tan piece. For tan pieces 1, 2, 4, 5, 6 there are eight

orientations for each of the pieces: 45° x 8 = 360°.
XT, YT- absolute coordinates of final position for tan n.
ST- Small triangles (tans # 1 and # 5) and large triangles which are twice the size

of the small (tans # 4 and # 6). Because of symmetry, only four orientations need to
be stored, as all others are derived from them. See the Set Orientation subroutine
at lines 1400-1800.
P - relative coordinates of tan's vertices after orientation has been selected.
MT- Medium triangle (tan # 2). The same comments apply here as do above for

the small triangles.
SQ - square (tan # 3). Only has two orientations, but four vertices. 2 x 4 x 2.
PA- parallelogram (tan # 7). Has eight orientations, but has eight more when

flipped. Still, only four orientations need to be stored, because the rest of them can
be derived from those four.
M1 ,M2- X andY coordinates of the beginning of the command line area. F is the

count of tans used. NOTE: Although the number of tans is checked, there is no
check on whether a specific tan is used more than once. Thus, a tangram with
seven squares, or seven parallelograms.

70-180
200

210-670
680

690
700-710

740-760

770
780
790-850

880

Define a circular cursor with hot spot at center.
Subroutine to draw initial screen with tangram tile menu in the
select tan area.
Load tan arrays with orientation information.
Prompt Manager at 5000 to position the cursor for printing in the
command line area.
If mouse button not clicked, cycle.
Check to see if the command line area has been clicked. If so,
store coordinates in A and B. If not, GOSUB 5000 to position
cursor at prompt area.
As long as more tans are available (F < 7), "select tan" and
continue , else we're done. Print "tangram complete" and wait for
keystroke.
Clear the select tan area.
This is X, Y position of upper left corner of select tan area.
IF filter to see which one of the seven tans is being selected
(single-clicked).
This X, Y will be the position of the selected tan when drawn in the
tan orientation area.

194 GRAPHICS FOR THE MACINTOSH

890

900

910-930
940
950-960

970
980-1000
1050
1060
1070-1130
1140-1180

1200
1210
1220-1300

1320-1360

1370
2000

3000

3000

5000
6000

7000

8000

We begin with orientation 0 = 1 and step through orientations at
45° increments until a click occurs with mouse pointing in
prompt area. Each tan selected starts at its original orientation in
the square tangram tile.
GOSUB 3000 to set orientation. Actually defines the vertices of
the selected tan in array P(i,j)
Redraws tan with new orientation, prompts user.
Pause.
If mouse clicked in prompt area, orientation has been selected,
else show its next orientation.
Clear orientation area.
Keep track of wraparound counting of angle.
Prepare to grab tan piece whose orientation has been selected.
Number of vertices.
Need to click on a vertex to "grab" the tan.
Need to find perimeter of tan piece (the smallest rectangle into
which it will fit) in preparation for a GET at line 1200.
Tan # 3, the square, is a special case if orientation is 1.
Prepare to position tan piece in positioning area.
Grab the tan. As mouse moves, tan will follow it. The two PUTs at
1240-1250 or 1270-1280 (tan # 3 is still a special case) XOR it
along without changing the background.
Click the "do" in the prompt area and the tan is in position forever.
Click the "undo" and the tan is erased with any previously posi
tioned tans redrawn.
Get another tan piece?
Set orientation subroutine. Manipulations to establish the relative
vertices of the tan piece selected and oriented.
Draw the tan. Given coordinates X, Y of where the tan is to go, it is
simply a matter of three or four lines being drawn.
Draw tangram tile. Sets up screen with tangram tile menu and
number in place. Los Angeles type font selected with
TEXTMODE (1). Printing on top of background without destroy
ing it.
Prompt manager.
Save tan information. When a tan is finally positioned, we need to
remember which tan T, what orientation Theta, where the tan Tis
with orientation 0 was drawn (X, Y)
Redo (undo) routine. Clear entire tan orientation area. The pic
ture being drawn is erased! Not to worry, however. We've
remembered all important information about the previously posi
tioned tans. Redraws the tans already placed.
Wrap-up. Clear screen and redraw tangram developed by user.
Perhaps this routine could display the saved tan information for
later redrawing of the figure. That's one of the many embellish
ments we leave to you.

MOUSETANS 195

Consider the possibilities! Why tans? Why not some other design primitives that
you can describe to the program by way of the same arrangement of menu,
command, orientation, and sketch areas? What about a scaling routine? Think
how easy it would be to design a house plan with design primitives such as doors,
walls, windows, closets, appliances, what have you. Or what about a flowchart, or
organization chart, or HI PO chart, or PERT chart drawing program?
This is what the Tangrams application is all about- not the simplistic design of

tangrams, although that is a great deal of fun - but the translation of this program
into another application tuned to a specific area or profession. With some imagina
tion, and with this program as a skeletal start, you should be capable of developing
a truly strong application worthy of the marketplace.

C H A P T E R T H R T E E N

CHART
APPLICATIONS

Of all graphics applications of a computer, certainly the most familiar is the
production of business-oriented charts and graphs. True, more computer hard
ware is being used for CAD/CAM (Computer-Aided Design/Computer-Aided
Manufacture) applications. However, for many those engineering uses are less
popular, due chiefly to their sophistication and expense. Business graphics still
remain the most often discussed graphics applications in the popular press.

Business graphics software has become a necessary part of a computer ven
dor's portfolio of goods. The hardware won't sell if it doesn't have good software
with it, and lately that has meant the gamut of business applications -
spreadsheets, word processors, and graphics. These software packages are most
commonly written in a higher level language and compiled to make them execute
faster. Sometimes, they are written in assembly language (often called machine
language) so that the final program runs quickly.

In all cases, the user of such a package must live with what he or she buys. You
can't customize a commercial business graphics application any more than you
can customize MacPaint or MacWrite, even though you might sometimes wish you
could. The programs we supply in this chapter are not written in BASIC to be
compiled, nor are they written in assembly language to run quickly. We wrote them
in BASIC so that you could customize them to suit your application. As of this date,
no software supplier has made a BASIC compiler available, so if you want a
language processor that executes code fast, you must rewrite these programs in
MacPascal or MacForth, both of which are available.

In this chapter, we will discuss their features in some detail, especially their use of
the Macintosh Quickdraw routines.

Raw Data Program
The first program we include in this chapter is not an application at all. Rather, it is

a sample program that generates data for the business graphics applications we
show later. It's a simple program, but the data it generates is typical of most

197

198 GRAPHICS FOR THE MACINTOSH

business graphics applications. The idea is that the data will consist of both
numbers and titles. Therefore our graphing programs must handle the numeric
data indicating the proportion of each component, and they must provide string
labels for each component.
The program includes the names of ten foreign breweries and their associated

annual production for a given hypothetical year, say in zillions of barrels. The
names were chosen to be typical of string data. Tennefs has an apostrophe; Ben
Truman is two names; and the lengths of the names vary from Skol to Ben Truman.
The numeric data also varies, from 426 to 873, a typical range of values in business
charts.
In order to test our chart-making applications thoroughly, we designed this

program to provide any number of breweries' names and production, from two to
all ten. Thus the programs must be able to display just two breweries, or deal with
up to ten breweries; and each display must be appropriately scaled and centered.

~ a File Edit Control

709 Watneys
2 426 Whltbread
3 873 Gulness
4 497 lnd Coope
5 510 Labatt
6 668 rennet's
7 431 Harp
8 774 Helneken
9 358 Ben Truman
10 420 Skol

Illustration 13.1 Typical run of Raw Data program

Listing, RAWDATA program

10 ' ra w data
20 DIM X(10) . T$(10)
30 CLS
40 RANDOMIZ E TIMER
50 CAL L TE XTFONT(O)
60 READ N
70 FOR 1=1 TO N
80 READ X(I) , TS(I)
90 NEXT I
100 DATA 10 . 709."Watneys"

110 DATA 426,"Whitbread",873,"Guiness",497,"1nd
Coope"

1 2 0 DATA 51 0, " Labat t " , 6 6 8 , "Ten n e t ' s" , 4 31 , "H a r p"
130 DATA 774, "Heineken" ,358."Ben Truman",420. "Skol"
140 N=2+1NT((N-1) *RND)
150 PRINT:PRINT
160 FOR 1=1 TO N
170 PRINT I.X(I),T$(1)
180 NEXT I
190 IF MOUSE(O)=l THEN RESTORE: GOTO 30 ELSE 190

20 Define 1 0 numeric values X, 10 string titles T$
30 Clear the screen

CHART APPLICATIONS 199

40 Seed random number generator with random seed
· 50 Set textfont to Chicago
60 Read N, number of breweries
70-90 Read numeric production and brewery names into X and T$.
100-130 Establish all data in DATA statements
140 Define new N as random integer from 2 to 1 0
150-180 Print selected breweries and their production
190 Sense mouse. If clicked, restore and repeat process

Notice that the program will always display Watneys and Whitbread, regardless of
the number of breweries selected, because they are the first two in the list. In order
to select two to 10 breweries at random from the pool in the OAT A statements, you
can modify the program. Alter the program to shuffle the X and T$ arrays before
selecting the random number Nand printing the random breweries.

92 FOR 1=1 TO 20
94 P1 = INT(RND*10+1): P2= INT(RND*10+1)
96 SWAP T$(P1),T$(P2): SWAP X(P1),X(P2)
98 NEXT I

The four lines above effectively shuffle the ten brewery names and numeric
values.

Application 1: Piechart
Before we list and discuss the program and its output, let us describe how you can

establish several patterns for use in any program. Remember that any screen
image is produced by displaying integers in the Macintosh memory. Many of the
Quickdraw routines allow you to paint areas with patterns you have defined,
instead of default system pattern. When you define a pattern to the Macintosh, you
must define an array of four integers, each of which is stored as a 16-bit binary

200 GRAPHICS FOR THE MACINTOSH

value in memory. These 64 bits are rearranged internally to become an 8-by-8-bit
grid, each signifying a pixel.
For example, suppose you want a pattern that looks like little squares, as in

Illustration 13.2.

SQPAT%(0)=~H003E

SQPAT%(1)=~H2424

SQPAT% (2)=~H3EOO

SQPAT%(3)=~HOOOO

Illustration 13.2 Definition of pattern

You define the four 16-bit integers as follows:

20 DIM SQPA T$PC(3) 'really four integers, SOPAT$PC(O) through SOPA T$PC(3)
30 SQPA T$PC(O) = &H003E 'binary 0000000000111100, first 2 rows
40 SOPAT$PC(1) =&H2424 'binary 0010010000100100, second 2 rows
50 SQPAT$PC(2) = &H3EOO 'binary 0011110000000000, third 2 rows
60 SQPAT$PC(3) = &HOOOO 'binary 0000000000000000, fourth 2 rows

You can define more than one pattern in the same array by using a second
subscript as a pattern number. We have done this in these programs, and we
recommend it to you as a common practice when you have more than one pattern
to deal with . Here's how you do it:

1. Define an integer array (let's call it P%) DIMensioned 3 by the number of
patterns you want (let's say 1 0).

2. Place first pattern in P%(0, 1), P%(1, 1),P%(2, 1), and P%(3, 1).

3. Place second pattern in P%(0,2), P%(1 ,2), P%(2,2), and P%(3 ,2).

4. Continue until all ten patterns are defined.

Hint: We recommend that you establish two patterns, grey and black, as a matter
of course whenever you work with multiple patterns.
Black is &HFFFF, &HFFFF, & HFFFF, &HFFFF where you define all dots in the 8-

by-8 grid as 1s. Another way to do this is to define the four pattern integers as -1,
because the integer -1 is a binary 1111111111111111, which is a hex FFFF.

CHART APPLICATIONS 201

Grey is &H55AA, &H55AA, &HSSAA, &H55AA.

When you use patterns with a CALL to the Macintosh Ouickdraw routines, you
must use the VARPTR function. You will always refer to a pattern as. for example,
VARPTR(SQPATSPC(O)) or VARPTR(P%(0,1)) or VARPTR(P %(0,2)). Illustration
13.3 and 13.4 are examples of pie charts using patterns. The two illustrations are
followed by the piechart listing.

r ti File Edit Control

(ill) Watneys

aiwhltbread

- Gulness

-lndCoope

Illustration 13.3 Piechart of a few breweries

r ti File Edit Control

pie chert

~ § § §) Watneys

&whitbreed

-Gulness

-lndCoope

- lllblltt

~rennet's
-HIIrp

Illustration 13.4 Piechart of many breweries

.,

.,

202 GRAPHICS FOR THE MACINTOSH

Listing, Piechart

10 ' pie chart
2 0 DIM X (1 0) , P% (3, 1 2) , R% (3) , L% (3) , T $ (1 0)
30 CLS
40 RANDOMIZE TIMER
50 CALL TEXTFONT(O)
60 READ N
70 FOR 1=1 TO N
8 0 READ X (I) , T $ I I)
90 NEXT I
100 DATA 10,709,"Watneys"
110 DATA 426,"Whitbread",873, 11 Guiness 11 ,497,

"I nd Co ope"
1 2 0 DATA 51 0 , II Lab a t t " , 6 6 8 , "Ten net ' s II , 4 31 , "H a r p II
130 DATA 774, 11 Heineken",358,"8en Truman",420, 11 Skol"
140 N=2+1NT(IN-1) ·AND)
150 GOSUB 1000 '<<<<normalize data
1 60 P% (0, 1) =&H 5 5AA: P% (1 , 1) =&H5 5AA: P% (2, 1) =

&H55AA:P%(3, 1)=&H55AA
1 7 0 P% (0 , 2) =-1 : P% (1 , 2) =- 1 : P% (2 , 2) =- 1 : P% (3 , 2) =- 1
180 P%(0, 3)=&H8040: P%(1, 3)=&H201 0: P%(2, 3)=

&H8040:P%(3,3)=&H2010
190 P%(0, 4)=&HFEDC: P%(1, 4)=&HBA98: P%(2, 4)=

&H7654:P%(3,4)=&H3210
2 0 0 P% (0 , 5) =& H 11 2 2 : P% (1 , 5) =& H 4 4 8 8 : P% (2 , 5) =

&H1122:P%(3,5)=&H4488
210 P%(0, 6)=&H77FF: P%(1, 6)=&HDDFF: P%(2, 6)=

&H77FF:P%(3,6)=&HDDFF
220 P%(0, 7)=&H8844: P%(1, 7)=&H2211: P%(2, 7)=

&H8844:P%(3,7)=&H2211
2 3 0 P% (0 , 8) =-1 : P% (1 , 8) =0 : P% (2 , 8) =-1 : P% (3 , 8) =0
240 P%(0, 9)=&H9966: P%(1, 9)=&H3311: P%(2, 9)=

&H1133:P%(3,9)=&H6699
250 P%(0, 10)=&HCCCC:P%(1, 10)=&H3333:P%(2, 10)=

&HCCCC:P%(3, 10)=&H3333
2 6 0 P% (0 , 11) =&H 3 3 AA : P% (1 , 11) =&H 3 3 AA : P% (2 , 11) =

&H33AA:P%(3, 11)=&H33AA
2 7 0 P% (0 , 1 2) =&H 1111 : P% (1 , 1 2) =&H 1111 : P% (2 , 1 2) =

&H1111 :P%(3,12)=&H1111
280 R%(0)=25:R%(1)=30:R%(2)=225:R%(3)=230
290 CALL FILLOVAL(VARPTR(R%(0)),VARPTR(P%(0, 1)))
300 CAll FRAMEOVAl(VARPTR(R%(0)))
310 FOR J=O TO 3
320 R%(J)=R%(J)-5
330 NEXT J
340 CALL FILLOVAL(VARPTR(R%(0)) ,VARPTR(P%(0,2)))
350 A=O
360 S=10*(10-N)+7
370 E=280

380 FOR 1==1 TO N
390 W==INT(X(I)*360+.5)
400 CALL FILLARC(VARPTR(R%(0)),A,W,VARPTR(P%(0,2)))
410 CALL FILLARC(VARPTR(R%(0)) ,A,W,VARPTR

(P%(0, I +2)))
420 A==A+W
430 D=20*1+S
440 L%(0)=D:L%(1)=E:L%(2)==D+16:L%(3)==E+36
450 CALL FILLROUNDRECT(VARPTR(L%(0)), 15, 15,VARPTR

(P%(0, 1)))
460 FOR J=O TO 3
470 L%(J)==L%(J)-2
480 NEXT J
490 CALL FILLROUNDRECT(VARPTR(L%(0)), 15, 15,VARPTR

(P%(0,1+2)))
500 CALL FRAMEROUNDRECT(VARPTR(L%(0)), 15, 15)
510 CALL MOVET0(320,D+13) :PRINT T$(I)
520 CALL FRAMEOVAL(VARPTR(R%(0)))
530 NEXT I
540 IF MOUSE(0)==1 THEN RESTORE: GOTO 30 ELSE 540
1000 ' data normalization
1010 S8=X(1)
1020 FOR 18==2 TO N
1 030 S8=S8+X (18)
1040 NEXT 18
1050 FOR 18=1 TO N
1 0 6 0 X (I 8) ==X (I 8) IS 8
1070 NEXT 18
1080 RETURN

CHART APPLICATIONS 203

20 Define X and T$ as production and brewery names.
Define P% for 12 patterns.

30-140
150
160
170
180-270

280

290-300
310-340
350
360-370
380-530

Define A% for rectangle coordinates.
Define L% for filled rectangle coordinates.
Establish a random number N of breweries to be graphed.
Perform Normalize Data subroutine (lines 1000-1 080)
Define grey pattern starting at P%(0, 1).
Define black pattern starting at P%(0,2).
Define 10 patterns, one for each different brewery, at P%(0,3)
through P%(0, 12).
Define A% as rectangle with upper-left and lower-right coordi
nates of (15, 1 0) and (215,21 0). It must hold a 200-pixel-diameter
circle.
Fill oval with grey pattern, frame it.
Shift coordinates of oval, draw another.
Start angle accumulator A to zero.
DefineS and E to position text on chart.
For I = 1 to N do:

204 GRAPHICS FOR THE MACINTOSH

390
400-410
420
430

440

450
460-500
510-520
530
540

1000
1010
1020-1040
1050-1070

Set size of wedge W.
Fill wedge with its pattern (#I+ 2).
Accumulate angle A, now starting position for next wedge.
Calculate displacement D used for rounded rectangle containing
appropriate pattern (# I+ 2).
Define upper-left, lower-right coordinates for rounded rectangle
as (D,E) and (D + 16,E +36).
Fill rounded rectangle associating wedge and text.
Shift coordinates, draw again.
Print text next to this rectangle.
Enddo.
Sense mouse. If clicked, restore data and return to show another
chart.
Data normalization subroutine.
Set X8 as first value in array X.
Calculate S8, sum of all N elements of X.
Calculate new X for each position dividing old X by S8. This
makes all X values proportional , but none greater than 1.

Application 2: Icon Chart
This program produces a chart like those you've seen many times in magazines,

in which the value of a variable is shown as a symbol of what it is (Illustration 13.5
and 13.6). For example, car production could be shown as different·sized symbols
of cars, or the population of several countries could be shown as several symbolic
people of varying size. These charts are sometimes called ideograms, but we
prefer to call them icon charts to conform to the Macintosh's terminology.

Watneys

OD"l
~

Illustration 13.5 Icon chart output with few breweries

CHART APPLICATIONS 205

r ti File Edit Control

Icon chart

Wotneys n Whit., ...

0=-- lnd Coope
~ 0 Lobott D Tennet's

{. __ > 0 "~
[I j""T~ "'moo

1 1 Skol

~~o

Illustration 13.6 Icon chart output with many breweries

Listing, Icon Chart

10 · icon chart
20 DIM X(10),P%(3).R%(3) ,L%(3),TS(10)
30 CLS
40 RANDOMIZE TIMER
50 CALL TEXTFONT (O)
60 READ N
70 FOR 1=1 TO N
BO READ X(I).TS(I)
90 NEXT I
100 DATA 10,709, "Watneys"
110 DATA 426,"Whitbread".B73,"Guiness",497," 1nd

Co ope"
120 DATA 510. "Labatt".66B,"Tennet 's" .43 1 ," Harp "
130 DATA 774. "Heineken " .35B,"Ben Truman",420,"Skol"
140 N=2+1NT((N- 1) .RND)
15D GOSUB 1000 ' <«<normalize data
160 P%(0)=&H55AA: P%(1)=&H55AA: P%(2)=

&H55AA:P%(3)=&H55AA
170 X=15+40.(10-N) / 2
180 FOR 1=1 TON
190 S=BO.X(I)
200 Y=20"1+10*(10-N)+4
210 GOSUB 2000
220 D=16*1-15
230 CALL MOVETO(X.Y-4):PR I NT TS{I)
240 X=X+5 0* X(I)+13

ll

(continued)

206 GRAPHICS FOR THE MACINTOSH

250 NEXT I
260 IF MOUSE(0)=1 THEN RESTORE: GOTO 30 ELSE 260
1000 'data normalization
1010 S8=X(1)
1020 FOR 18=2 TO N
1030 IF S8<X(18) THEN S8=X(18)
1040 NEXT 18
1050 FOR 18=1 TO N
1060 X(I8)=X(I8)/SB
1070 NEXT 18
1080 RETURN
2000 ' draw icon
2010 P4%=S:P5%=.6*S
2020 P1%=. 12*S:P2%=.85*S:P3%=. 15*S
2030 R%(0)=Y:R%11)=X:R%(2)=Y+P4%:R%(3)=X+P5%
2040 CALL FRAMEROUNORECT(VARPTR(R%(0)),P1%,P4%)
2050 LINE(X,Y+P3%)-(X,Y+P2%):LINE(X+P5%,Y+P3%)-

(X+P5%,Y+P2%)
2060 R%(0)=Y+P2%:R%(2)=Y+P4%
2070 CALL FRAMEARC(VARPTR(R%(0)),90, 180)
2080 R%(0)=Y:R%(2)=Y+P3%
2090 CALL FILLOVAL(VARPTR(R%(0)),VARPTR(P%(0)))
2100 CALL FRAMEOVAL(VARPTR(R%(0)))
2110 RETURN

20-160

170

180-250
190
200
210
220
230

240
250
1000-1080

2000
2010-2020

See discussion in previous program. All stays the same, except
that only one pattern is defined, a grey, and it is stored in the array
P% in line 160. Line 20 shows that P% is singly dimensioned, as
we deal with only one pattern.
Define X as horizontal starting position, further over if N is small,
because we want to center the icons.
For I = 1 to N DO:
SetS, scale of icon, to max. vertical size= 80.
Set Y, width of icon, to max. = 48.
Perform Draw Icon routine.
Locate position for text, print brewery name.
Adjust X so that next can is over 13 pixels + its proper propor
tional width.
Enddo.
Sense mouse. If clicked, return for another icon chart.
Data normalization routine. Notice that it is different from the last
one. This one divides every value in X by the largest value in X.

Draw Icon Routine
Define P1 % through P6% as dimensions based on scale S.
P1 % = .12S, is oval width for can's bottom.

2030

2040
2060
2070
2080
2090
2100
2110
2120

P2 % = .85S, is height of edge of beer can.
P3 % = .15S, is width of can's top.
P4 % = S, is oval height for can's bottom.
P5% = .6S, is can's width to height ratio.

CHART APPLICATIONS 207

Establish round rectangle's coordinates based on X, Y, P4%,
P5%.
Draw can's outline using FRAMEROUNDRECT.
Outline can with straight lines as well.
Set up bottom of can's arc using P2% and P4 %.
Draw can's bottom using FRAMEARC.
Set up can's top for shading using P3 %.
Shade can's top grey using pattern P% and FILLOVAL.
Draw can's top edge using FRAME OVAL.
return

Application 3: Bar Chart
The bar chart remains one of the most popular graphic displays for showing

relative differences among several variables. It suits our example of the European
breweries well, for that is what we have - from two to 10 numeric values whose
differences are hard to detect. It is also difficult to get a sense of who's big and
who's small in any list of numbers if that list has more than three or four elements.
The bar chart makes this easy by making the larger values stand out above the
crowd, and the smaller values look small because of their short bars (Illustration
13.7 and 13.8).

r • File Edit Control

b11r ch11rt

~ ~ [~) Wotney s

QIDwhltbreod

8Gulness

-lndCoope

Illustration 13.7 Bar chart, few breweries

208 GRAPHICS FOR THE MACINTOSH

~ ~ ~ ~ Wotneys

Wwhitbread

-Gulness

-lndCoope

-lllblltt

9Tennet's

DHarp

-Heineken

Illustration 13.8 Bar chart output, many breweries

Listing, Bar Chart Program

10 ' bar chart
2 0 DIM X (1 0) , P% (3. 1 2) , R% (3) . L% (3) , T S (1 0)
30 CLS
40 RANDOMIZE TIM ER
50 CALL TEXTFONT(O)
60 READ N
70 FOR 1=1 TO N
80 READ X(I),TS(I)
90 NEXT I
100 DATA 10 ,709,"Wa tne ys"
110 DATA 426,"Whitbre ad", 873 , "Guiness",497 ,

" lnd Coope "
120 DATA 510 , "Labatt" , 668 , "Tennet 's " , 431, "Harp"
130 DATA 774 , "H ein eken ", 358 ," Ben Tr uman ", 420 ,"Sk ol "
140 N=2+ 1NT((N- 1) . RND)
150 GOSUB 1000 ' <<<< normalize da ta
160 P% (0 , 1)=&H55AA : P%(1, 1)=&H55AA : P%(2, 1)=&H55AA : P%

(3 , 1)=&H5 5AA
17 0 P% (0 . 2) =- 1 : P% (1 , 2) =-1 : P% (2, 2) =- 1 : P% (3 , 2) =-1
180 P%(0,3) =&H8040 : P%(1 ,3)=&H2010:P%(2 . 3) =

&H8040:P%(3, 3) =&H20 10
190 P%(0,4)=&HF EDC :P%(1 , 4)=&HBA98:P%(2 , 4)=

&H7654 : P%(3 , 4) =&H3 210
200 P%(0,5) =&H1122 : P%(1 ,5)=&H4488 :P%(2. 5) =

&H 11 2 2 : P% (3. 5) =&H4 4 8 8
210 P%(0,6) =&H77FF:P%(1 , 6)=&HDDFF : P%(2,6)=

&H77FF : P%(3 , 6) =&HDDFF

2 2 0 P% (0 I 7) =& H 8 8 4 4 : P% (1 I 7) =&H 2 2 11 : P% (2 I 7) =
&H8844:P%(3~7)=&H2211

2 3 0 P% (0 I 8) =-1 : P% (1 I 8) =0 : P% (2 I 8) =-1 : P% (3 I 8) =0
240 P%(0~9)=&H9966:P%(1~9)=&H3311 :P%(2~9)=

&H1133:P%(3~9)=&H6699
2 50 P% (0 I 1 0) =&H c c c c : P% (1 I 1 0) =&H 3 3 3 3 : P% (2 I 1 0) =

&HCCCC:P%(3~ 10)=&H3333
2 6 0 P% (0 I 11) =&H 3 3 AA : P% (1 I 11) =&H 3 3 AA : P% (2 I 11) =

&H33AA:P%(3~ 11)=&H33AA
2 7 0 P% (0 I 1 2) =&H 1111 : P% (1 I 1 2) =&H 1111 : P% (2 I 1 2) =

&H1111 :P%(3~ 12)=&H1111
280 W=20:H=100
290 S=10*(10-N)
300 X=15+S+S
310 E=X+55+25*N:B=250
320 FOR 1=1 TO N
330 V=X(I) *H
340 R%(0)=B-V:R%(1)=X:R%(2)=B:R%(3)=X+W
350 CAll FILLRECT(VARPTR(R%(0)) ~VARPTR(P%(0~ 1)))
360 FOR J=O TO 3
370 R%(J)=R%(J)-3
380 NEXT J
390 CALL FILLRECT(VARPTR(R%(0))~VARPTR(P%(0~ 1+2)))
400 CALL FRAMERECT(VARPTR(R%(0)))
410 X=X+25
420 0=20*1+S
43 0 L% (0) =0: L% (1) =E: L% (2) =0+ 16: L% (3) =E+3 6
440 CALL FILLROUNORECT(VARPTR(L%(0))~ 151 15~VARPTR

(P%(0 I 1)))
450 FOR J=O TO 3
460 L%(J)=l%(J)-2
470 NEXT J
480 CALL FILLROUNORECT(VARPTR(l%(0))~ 151 15~VARPTR

(P% (0 I I +2)))
490 CALL FRAMEROUNORECT(VARPTR(L%(0)) I 151 15)
500 CALL MOVETO(E+40~D+13) :PRINT T$(I)
510 NEXT I
520 IF MOUSE(0)=1 THEN RESTORE: GOTO 30 ELSE 520
1000 I data normalization
1010 T8=X(1) :88=X(1)
1020 FOR 18=2 TO N
1030 IF T8<X(I8) THEN T8=X(I8)
1040 IF 88>X (18) THEN B8=X (18)
1050 NEXT 18
1060 M8=(T8+B8)/2
1070 FOR 18=1 TO N
1080 X(IB)=X(I8)/M8
1090 NEXT 18
1100 RETURN

CHART APPLICATIONS 209

210 GRAPHICS FOR THE MACINTOSH

Our application uses shadowed bars that have different patterns, and it has a
legend of patterns identifying the breweries. It seems to be missing a vertical scale
to the left of the bars at first glance, but if you reflect a bit on the display, you will see
that this feature is unnecessary if you are interested in relative performance of the
breweries.

10-140

150

160-270
280
290
300
310
320-510
320-380

390-400
400
420-470
480-490
500
510
520
1000

Same as icon chart above, except we reestablish the 12 patterns
that were defined in the pie chart.
Perform data normalization, only this time use mid-range for-
mula.
Pattern definitions.
W = 20 (width), H = 1 00 (height) of high and low.
Sis used to help center legend text from top to bottom.
X is left edge of first bar.
E is position of legend from right edge of bar.
For I = 1 to N, number ob bars, DO:
V is this bar's proportional height, R% defines coordinates of
bar's rectangle for shading with pattern. Bar is filled at line 370,
and bar constraints adjusted.
Draw and fill bar.
Redefine X for next bar.
Establish legend box, shadow it, adjust constraints.
Fill and frame legend box.
Move to appropriate place, print legend.
Enddo.
Sense mouse. If clicked, restore data, return for another chart.
Data normalization routine this time uses yet another form of
adjusting data values. We find the midrange by finding the
lowest and highest values, and averaging those two values.
Then each X is divided by that mean.

We were sorely tempted to add more applications to this book. We enjoy the
simple process of taking an existing program developed on another machine and
making it do its tricks on the Macintosh. Also, we have found that the Macintosh's
outstanding built-in software makes such conversions a joy. The resulting pro
grams are commonly shorter, run faster, and because of better resolution, provide
more accurate graphics. It is enough to introduce these ideas, to discuss them with
only sufficient detail that you feel tempted to play with them.
That has been our goal from the outset. If we have stimulated you to take some of

them and to stretch them here and shrink them there, so that the result is something
you wanted but couldn't quite do, then we have achieved our purpose in writing
this book. Computer graphics on a !Jersonal computer is, more than anything else,
a fun exercise. When it becomes tedium, when it no longer teases you to explore
the "what if of a program's variables, graphics will not have its charm and
excitement.

CHART APPLICATIONS 211

But you're in luck. Graphics will assume its appropriate position in the range of
computer activities, and it will forever stay as the most exciting procedure for
displaying information on a computer's screen, and on its printer's paper.
We await the day when the Macintosh has more memory, a color display, a

compiler BASIC, light pens, and who knows what other goodies to help us interact
with our pictorial program output. The Macintosh hardware and software, as it
exists, is good. Like everything else it will improve, and we will chuckle at some of
the simplistic things we did in this book. Still, we are confident that many of the
exercises we performed here will make it easier for us in the future, and we won't
regret having spent the time to do them. We hope you feel the same way.

ALPHABET DRAW program 172
ANGLEDRAW program 166
ANGLEWALK program 140
ANSI 63
APPROACHING STAR program 110
ASTROID program 92
Active window printing 25
Ada 64
Alphabet generator 171
Alphapet 16,23
American National Standards Institute

(ANSI) 63
Annotated artwork 17
Apple menu 13
Apples with ALPHABET DRAW 178
Architectural system 49
Artisfs Venn 25
Astroid 91
Athens font 25, 27
Atkinson, Bill 1

BAR CHART program 208
BASIC 63
BENT SIERPINSKI program 157
BIRTHDAYprogram 95
Bar charts 207
Beers 198
Bent Sierpinskis 156
Bicycle icon 32
Binomial distribution application 79
Birthdays application 95
Bleeding images 32
Breweries 198
Brickwall 7
Brush selection menu 2

Index

Brush shape display, edit 3
Brush 1
Bucket 7
Buenos Aires font 29
Business card 15

CAD/CAM 197
CALLFILLARC 203
CALL FILLOVAL 202, 206
CALL FILLRECT 209
CALL FILLROUNDRECT 203
CALL FRAMEARC 206
CALL FRAMEOVAL 202, 206
CALL FRAMEROUNDREC 206
CALL HIDECURSOR 192
CALL INITCURSOR 191
CALLMOVETO 96
CALL OBSCURECURSOR 192
CALL PENSIZE 97
CALL SETCURSOR 192
CALL SHOWCURSOR 192
CALL TEXTFONT 205
CALL TEXTMODE 96
CALL statement 63
CALLs to text management routines 117
CARDIOID program 89
CHAIN 61,66
CIRCLE 122
CIRCLES program 148
CLEAR 68
COBOL 64
COMMON 61, 67
CPU 64
Cairo font illustrated 12
Cairo font 17, 100

213

214 GRAPHICS FOR THE MACINTOSH

Cardioid 88
Cartesian coordinates 135
Case structure 56
Centered Sierpinskis 153
Chart applications 197
Charts, bar 207
Charts, icon 204
Charts, pie 201
Charts, various 27
Chelmsford font 29
Chicago font 12
Clocks 117
Command key 11
Compilers 64
Complex tessellation 145
Constraint 22,26
Coordinates, screen 77
Copy 13
Copying a picture 11
Cursor design 190
Curtate cycloid 86
Curves, mathematical 84
Cut 13
Cycloid, curtate 86
Cycloid, prolate 84

DEF-type statements 68
DIAMONDWALK program 143
DIGITAL CLOCK program 123
DOUNTIL structure 55
DOWHILE structure 54
DRAWalphabet 171
DRAW command modes 162
DRAW command options 162
DRAW command syntax 159
DRAW commands, letter A 175
DRAW motion commands 160
DRAW subroutine applications 165
DRAW subroutine pseudocode 163
DRAW 135
Decision structure 53
Design, program 47
Diamond pattern with DRAW 170
Diamond tessellation 142
Directions for DRAW 160
Drunkard's walk 139
Duplicating an image 18

EGG TIMER program 132
ENLARGE STAR program 104
EVOLUTE OF ELLIPSE program 91
Edit brush shape display 3
Edit brush shape 1
Edit brush shapes 8
Egyptian hieroglyphics 12
Eraser 9, 16, 22
Evolute of ellipse 90

FILLARC 203
FILLOVAL 202,206
FILLRECT 209
FILLROUNDRECT 203
FORTRAN 64
FRAMEARC 206
FRAMEOVAL 202,206
FRAMEROUNDREC 206
Fatbits 18, 32
Filemenu 9
Filling patterns 200
Fish scales 7
Flip horizontal 19
Flip vertical 19
Flipping an image 17
Font application 29
Font production 31
Fonts illustrated 30
Fontsize menu 12
Four-pointed star tessellation 143
Fractals 152
Frog icon design 100
Full screen filing 25
Full screen printing 25

GET 97
GWBASIC 135
Gantt charts 27
Geneva font 12
Goodies menu 16
Goodies 21
Grabber 18,23,25
Graffiti wall 7
Grid 16, 23, 33

HIDECURSOR 192
HIPO chart 26, 195

Hierarchy chart 49
Hierarchy of Input-Process-Output (HI PO)

chart 26
Hieroglyphics 12
Hipo chart 26
Hotspot 191
House plan menu system 57
Hypocycloid of four cusps 91

ICON CHART program 205
INITCURSOR 191
INVOLUTE OF CIRCLE program 87
Icon application 31
Icon charts 204
Icon ideas list 34
Icons 29
Ideograms 204
Image resolution 77
Input design 48
Interpreted code 64
Involute of circle 86

LINE STEP 137
LINE, advanced applications 138
LINE 135
Lasso with option key 41
Lasso 17, 22, 32
Letter A DRAW commands 175
Local variables 63
Londonfont 19
Loop structures 54
Los Angeles font 14

MANTEL CLOCK program 128
MC68000 64
MENU program listing 70
MERGE 61,67
MORE CIRCLES program 148
MOVE instruction, DRAW command 161
Maintenance, program 51
Marquee 11, 18
Mathematical curves 84
Menu, brush selection 2
Menus 57
Modes, DRAW command 162
Modula-11 64
Modular programming 45

Modules, program 49
Monaco font 12
Motion commands, DRAW 160
Mouse tans 181
Mouse, user interaction with 70
Moving a picture 11

NEWS ROOM CLOCK program 129
New York font 12
No bicycling icon 32

OBSCURECURSOR 192
Olympic icons 31
Option key 11,15
Options, DRAW command 162
Organization charts 27
Output design 47
Overlapping circles 21
Overlay 67

PACHINKO program 82
PEACHES program 7 4
PEARS program 74
PERT chart 195
PEAT charts 27
PIECHART program 202
PLUMS program 75
POINT 79, 135
PAOLA TE CYCLOID program 85
PSET 78,135
PTAB 79
PUT 97
Pachinko game 79
Paint bucket 18
Palette 1
Pascal 64
Paste 13
Pattern definition 200
Pencil to erase 18
Pencil 1
Pfruits 72
Pie charts 201
Pixel 18
Pixels and resolution 77
Plums 73
Posters and flyers 33
Print Draft 25

INDEX 215

216 GRAPHICS FOR THE MACINTOSH

Probability of same birthdays 95
Processes design, programming 48
Processes, DRAW subroutine 164,165
Program ALPHABET DRAW 172
Program ANGLEDRAW 166
Program ANGLEWALK 140
Program APPROACHING STAR 110
Program ASTROID 92
Program BAR CHART 208
Program BENT SIERPINSKI 157
Program BIRTHDAY 95
Program CARDIOID 89
Program CIRCLES 148
Program DIAMONDWALK 143
Program DIGITAL CLOCK 123
Program EGG TIMER 132
Program ENLARGE STAR 104
Program EVOLUTE OF ELLIPSE 91
Program ICON CHART 205
Program INVOLUTE OF CIRCLE 87
Program MANTEL CLOCK 128
Program MENU 70
Program MORE CIRCLES 148
Program NEWS ROOM CLOCK 129
Program PACHINKO 82
Program PEACHES 7 4
Program PEARS 7 4
Program PIECHART 202
Program PLUMS 75
Program PROLATE CYCLOID 85
Program RACING STARS 106
Program RAW DATA 198
Program REVOLVING STARS 112
Program ROSES 94
Program SHOOTING STAR 99
Program SIERPINSKI 150
Program SQUAREDRAW 168
Program SQUAREWALK 142
Program STARS & CIRCLES 146
Program STARWALK 144
Program TAN APPLICATION 185
Program TWO CLOCKS 126
Program VINYL FLOORWALK 145
Program WALL CLOCK 120
Program coding and testing 51
Program design 45
Program flowcharts 27
Program maintenance 51
Program modules 46, 49
Program planning 45

Programming, structured 50
Programs 57
Prolate cycloid 84
Pseudocode for ALPHABET DRAW 17 4
Pseudocode, DRAW subroutine 163
Pseudocode 49
Pythagorean theorem 161

Quickdraw CALLs 117
Quickdraw routines 65, 197

RACING STARS program 106
RAW DATA program 198
REVOLVING STARS program 112
ROSES program 94
Racing invitation application 33
Random walk problem 138
Random walk with DRAW 165
Recursion 149
References on fractals 152
References on tangrams 43
Resolution 77
Roses 93
Rounded rectangle 26
Row of Macs 13

SETCURSOR 192
SHOOTING STAR program 99
SHOWCURSOR 192
SIERPINSKI program 150
SQUAREDRAW program 168
SQUAREWALK program 142
STARS & CIRCLES program 146
STARWALK program 144
Scrapbook 13
Screen coordinates 77
Screen displays, TAN APPLICATION

program 182
Sequential structure 52
Showpage 24
Shrink 15
Shrinking a picture 11
Sierpinski patterns 149
Sierpinskis, centered 153
Spraycan 5
Square tessellation 141
Stars and circles tessellation 146

Stars and motion application 97
Steps in program planning 47
Storage design 48
Storage, MacPaint documents 29
Stork tangram production 41
Stork with TAN APPLICATION

program 184
Storks, legal and illegal 39
Structure, case 56
Structure, decision 53
Structure, general 60
Structure, sequential 52
Structured programming 50
Structures, loop 54
Style menu 12, 17
Submenus 57
Subprograms 57
Subroutines 60
System flowcharts 27
System modules 65

TAN APPLICATION program 185
TAN APPLICATION variables 190
TEXTFACE 118
TEXTFONT 118,205
TEXTMODE 119
TEXTSIZE 119
TWO CLOCKS program 126
Tan tile production 40
Tangram animals 42
Tangram display screen 181
Tangram history 38
Tangram production rules 38
Tangram reference list 43

Tangrams 37
Tans BASIC program 181
Tans 37
Tessellation with DRAW 168
Tessellation 138
Text management routines 117
Textfaces 117
T extsizes 117
Tiles, broken 37
Toolbox 64
Top-down design 45, 46, 65,66
Topological rigor 37
Tree & grass 6
Tree & leaves 5
Tree&limbs 4
Treetrunk 3
Twoheads 17

UPC symbol 16
Undo 26
User friendliness 47

VINYL FLOORWALK program 145
Variables in TAN APPLICATION 190
Variables,local 63
Venice font 12, 33
Venn diagram 21

WALL CLOCK program 120
Waffle tiling 7
Waltham font 29
Webbing 7

. INDEX 217

FPT >$17. 95

EYE-CATCHING ART
FOR PROFESSIONAL-LOOKING

COMPUTER GRAPHICS!

With ideas to trigger striking displays, this graphics art
guide helps artists and managers new to Macintosh
graphics create eye-catching art on the Macintosh.

Packed with graphics applications for business data
presentations, the book shows you how to use
MacPaint

1
,Mso you can create dazzling designs and . ..

• memorable logos

• unique business cards

• distinctive typefaces

• personal or business letterheads

ISBN 0 - 03 - 000477-2
RET : 038S : 001745:50

