
Addison-Wesley Publishing Company

Reading, Massachusetts Menlo Park, California New York

Don Mills, Ontario Wokingham, England Amsterdam Bonn

Sydney Singapore Tokyo Madrid San Juan

Paris Seoul Milan Mexico City Taipei

I N S I D E M A C I N T O S H

PowerPC System Software

Apple Computer, Inc.

© 1994 Apple Computer, Inc.
All rights reserved.

No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form or
by any means, mechanical, electronic,
photocopying, recording, or otherwise,
without prior written permission of
Apple Computer, Inc. Printed in the
United States of America.

No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual property
rights associated with the technology
described in this book. This book is
intended to assist application
developers to develop applications only
for Apple Macintosh computers.

Every effort has been made to ensure
that the information in this manual is
accurate. Apple is not responsible for
printing or clerical errors.

Apple Computer, Inc.
20525 Mariani Avenue
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, APDA,
AppleLink, AppleShare, A/UX,
HyperCard, LaserWriter, Macintosh,
Macintosh Quadra, MPW, PowerBook,
and SANE are trademarks of Apple
Computer, Inc., registered in the United
States and other countries.

Finder, Macintosh Centris, QuickDraw,
and QuickTime are trademarks of
Apple Computer, Inc.

Adobe Illustrator and PostScript are
trademarks of Adobe Systems
Incorporated, which may be registered
in certain jurisdictions.

America Online is a service mark of
Quantum Computer Services, Inc.

Classic is a registered trademark
licensed to Apple Computer, Inc.

CompuServe is a registered service
mark of CompuServe, Inc.

FrameMaker is a registered trademark
of Frame Technology Corporation.

Helvetica and Palatino are registered
trademarks of Linotype Company.

Internet is a trademark of Digital
Equipment Corporation.

ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.

Motorola is a registered trademark of
Motorola Corporation.

Optrotech is a trademark of Orbotech
Corporation.

PowerPC is a trademark of
International Business Machines
Corporation.

THINK C is a trademark of Symantec
Corporation.

UNIX is a registered trademark of
UNIX System Laboratories, Inc.

Simultaneously published in the United
States and Canada.

LIMITED WARRANTY ON MEDIA AND
REPLACEMENT

ALL IMPLIED WARRANTIES ON THIS
MANUAL, INCLUDING IMPLIED
WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR
PURPOSE, ARE LIMITED IN DURATION
TO NINETY (90) DAYS FROM THE DATE
OF THE ORIGINAL RETAIL PURCHASE
OF THIS PRODUCT.

Even though Apple has reviewed this
manual, APPLE MAKES NO WARRANTY
OR REPRESENTATION, EITHER EXPRESS
OR IMPLIED, WITH RESPECT TO THIS
MANUAL, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. AS A RESULT,
THIS MANUAL IS SOLD “AS IS,” AND
YOU, THE PURCHASER, ARE ASSUMING
THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the possibility
of such damages.

THE WARRANTY AND REMEDIES SET
FORTH ABOVE ARE EXCLUSIVE AND
IN LIEU OF ALL OTHERS, ORAL OR
WRITTEN, EXPRESS OR IMPLIED. No
Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or liability
for incidental or consequential damages,
so the above limitation or exclusion may
not apply to you. This warranty gives you
specific legal rights, and you may also have
other rights which vary from state to state.

ISBN 0-201-40727-2
1 2 3 4 5 6 7 8 9-CRW-9897969594
First Printing, February 1994

Library of Congress Cataloging-in-Publication Data

Inside Macintosh. PowerPC system software / Apple Computer, Inc.
p. cm.

Includes index.
ISBN 0-201-40727-2
1. Macintosh (Computer) 2. PowerPC (Microprocessor) 3. Systems

software. I. Title: PowerPC system software.
QA76.8.M3I528 1994
005.4'469—dc20 93-50182

CIP

iii

Contents

Figures, Tables, and Listings vii

Preface About This Book ix

Related Documentation xi

Format of a Typical Chapter xi

Conventions Used in This Book xii

Special Fonts xii

Types of Notes xii

Bit Numbering and Word Size xii

Assembly-Language Information xiv

Development Environment xiv

For More Information xv

Chapter 1 Introduction to PowerPC System Software 1-1

Overview of the PowerPC System Software 1-4

The 68LC040 Emulator 1-6

Emulator Operation 1-7

Emulator Limitations 1-8

Coprocessors 1-9

Instruction Timings 1-9

Deleted Instructions 1-9

Unsupported Instruction Features 1-10

Instruction Caches 1-10

Address Error Exceptions 1-10

Bus Error Exceptions 1-11

Memory-Mapped I/O Locations 1-11

Mixed Mode 1-13

Cross-Mode Calls 1-14

Routine Descriptors 1-15

Memory Considerations 1-19

The PowerPC Native Environment 1-19

Fragments 1-20

The Structure of Fragments 1-22

Imports and Exports 1-23

The Table of Contents 1-26

Special Routines 1-29

Fragment Storage 1-30

Executable Resources 1-34

iv

Calling Conventions 1-41

The 680x0 Calling Conventions 1-42

The PowerPC Calling Conventions 1-43

Parameter Passing 1-47

Import Libraries 1-50

The Organization of Memory 1-52

File Mapping 1-53

The System Partition 1-56

Application Partitions 1-57

Data Alignment 1-63

Compatibility and Performance 1-65

Patches 1-66

The Memory Manager 1-68

Performance Tuning 1-70

Mode Switches 1-71

Routine Parameters 1-72

Chapter 2 Mixed Mode Manager 2-1

About the Mixed Mode Manager 2-4

External Code 2-4

Procedure Pointers 2-5

Mode Switches 2-7

Calling PowerPC Code From 680x0 Code 2-8

Calling 680x0 Code From PowerPC Code 2-12

Using the Mixed Mode Manager 2-14

Specifying Procedure Information 2-14

Using Universal Procedure Pointers 2-21

Using Static Routine Descriptors 2-22

Executing Resource-Based Code 2-24

Mixed Mode Manager Reference 2-26

Constants 2-27

Routine Descriptor Flags 2-27

Procedure Information 2-27

Routine Flags 2-34

Instruction Set Architectures 2-35

Data Structures 2-36

Routine Records 2-36

Routine Descriptors 2-37

Mixed Mode Manager Routines 2-38

Creating and Disposing of Routine Descriptors 2-39

Calling Routines via Universal Procedure Pointers 2-42

Determining Instruction Set Architectures 2-44

v

Summary of the Mixed Mode Manager 2-45

C Summary 2-45

Constants 2-45

Data Types 2-48

Mixed Mode Manager Routines 2-49

Chapter 3 Code Fragment Manager 3-1

About the Code Fragment Manager 3-3

Fragments 3-4

Import Library Searching 3-5

Version Checking 3-7

Using the Code Fragment Manager 3-10

Loading Code Fragments 3-10

Creating a Code Fragment Resource 3-12

Getting Information About Exported Symbols 3-14

Code Fragment Manager Reference 3-15

Data Structures 3-15

Fragment Initialization Block 3-15

Fragment Location Record 3-16

Memory Location Record 3-17

Disk Location Record 3-17

Segment Location Record 3-18

Code Fragment Manager Routines 3-18

Loading Fragments 3-19

Unloading Fragments 3-23

Finding Symbols 3-24

Fragment-Defined Routines 3-26

Resources 3-28

The Code Fragment Resource 3-28

Summary of the Code Fragment Manager 3-32

C Summary 3-32

Constants 3-32

Data Types 3-33

Code Fragment Manager Routines 3-34

Fragment-Defined Routines 3-35

Result Codes 3-35

Chapter 4 Exception Manager 4-1

About the Exception Manager 4-3

Exception Contexts 4-4

Types of Exceptions 4-5

vi

Using the Exception Manager 4-6

Installing an Exception Handler 4-6

Writing an Exception Handler 4-7

Exception Manager Reference 4-9

Constants 4-9

Exception Kinds 4-9

Memory Reference Kinds 4-11

Data Structures 4-12

Machine Information Records 4-12

Register Information Records 4-12

Floating-Point Information Records 4-14

Memory Exception Records 4-15

Exception Information Records 4-16

Exception Manager Routines 4-17

Application-Defined Routines 4-17

Summary of the Exception Manager 4-19

C Summary 4-19

Constants 4-19

Data Types 4-19

Exception Manager Routines 4-22

Application-Defined Routines 4-22

Glossary GL-1

Index IN-1

vii

Figures, Tables, and Listings

Preface About This Book ix

Figure P-1 680x0 bit numbering xiii
Figure P-2 PowerPC bit numbering xiii

Table P-1 Sizes of memory operands xiii

Chapter 1 Introduction to PowerPC System Software 1-1

Figure 1-1 The system software for PowerPC processor-based Macintosh
computers 1-5

Figure 1-2 Creating imports in a fragment 1-24
Figure 1-3 A transition vector 1-27
Figure 1-4 The structure of a PowerPC application 1-31
Figure 1-5 The structure of a 680x0 application 1-32
Figure 1-6 The structure of a fat application 1-33
Figure 1-7 The structure of an accelerated resource 1-35
Figure 1-8 The structure of a private resource 1-36
Figure 1-9 A 680x0 stack frame 1-42
Figure 1-10 The PowerPC stack 1-44
Figure 1-11 The structure of a stack frame’s linkage area 1-45
Figure 1-12 The Red Zone 1-46
Figure 1-13 The organization of the parameter area on the stack 1-49
Figure 1-14 Organization of memory when virtual memory is enabled 1-54
Figure 1-15 Organization of memory when virtual memory is not

enabled 1-56
Figure 1-16 The structure of a PowerPC application partition 1-60
Figure 1-17 The Memory control panel for PowerPC processor-based

Macintosh computers 1-69

Listing 1-1 Creating a routine descriptor 1-17
Listing 1-2 The definition of the NewControlActionProc routine 1-18
Listing 1-3 Creating a routine descriptor for a control action procedure 1-19
Listing 1-4 Testing for unresolved soft imports 1-25
Listing 1-5 The Rez input for a sample 'cfrg' resource 1-32
Listing 1-6 Rez input for a list definition procedure stub 1-35
Listing 1-7 Using an accelerated resource 1-37
Listing 1-8 Some acceptable global declarations in an accelerated

resource 1-39
Listing 1-9 Some unacceptable global declarations and code in an

accelerated resource 1-39
Listing 1-10 Using a private resource 1-40
Listing 1-11 Declaring an application’s QuickDraw global variables 1-59
Listing 1-12 A sample 680x0 VBL task definition 1-61
Listing 1-13 A conditionalized VBL task definition 1-62
Listing 1-14 Patching an Operating System trap 1-67
Listing 1-15 Waiting to call the WaitNextEvent function 1-72

viii

Chapter 2 Mixed Mode Manager 2-1

Figure 2-1 680x0 and PowerPC procedure pointers 2-5
Figure 2-2 Calling PowerPC code from a 680x0 application 2-9
Figure 2-3 The stack before a mode switch 2-10
Figure 2-4 A 680x0-to-PowerPC switch frame 2-11
Figure 2-5 A PowerPC-to-680x0 switch frame 2-13
Figure 2-6 Procedure information for a stack-based routine 2-17
Figure 2-7 Procedure information for a register-based routine 2-19
Figure 2-8 General structure of an executable code resource 2-25
Figure 2-9 General structure of a fat resource 2-26

Table 2-1 Limits on the number of specifiable parameters in a procedure
information 2-20

Listing 2-1 Sample glue code for a 680x0 routine 2-12
Listing 2-2 Creating global routine descriptors 2-21
Listing 2-3 Creating local routine descriptors 2-22
Listing 2-4 Creating static routine descriptors 2-23
Listing 2-5 Building a static routine descriptor 2-23

Chapter 3 Code Fragment Manager 3-1

Figure 3-1 Structure of a compiled code fragment ('cfrg') resource 3-29
Figure 3-2 The format of a code fragment information record 3-30

Listing 3-1 Pseudocode for the version-checking algorithm 3-9
Listing 3-2 Loading a resource-based fragment 3-11
Listing 3-3 Loading a disk-based fragment 3-11
Listing 3-4 The Rez input for a typical application’s 'cfrg' resource 3-12
Listing 3-5 The Rez input for a typical import library’s 'cfrg'

resource 3-13
Listing 3-6 Finding symbol names 3-14

Chapter 4 Exception Manager 4-1

Listing 4-1 Installing an exception handler 4-6
Listing 4-2 A native exception handler 4-8

ix

P R E F A C E

About This Book

This book, Inside Macintosh: PowerPC System Software, describes the new

process execution environment and system software services provided with

the first version of the system software for Macintosh on PowerPC computers.

It contains information you need to know to write applications and other

software that can run on PowerPC processor-based Macintosh computers.

The first release of the system software for Macintosh on PowerPC computers

provides a mixed or hybrid environment: the system software provides the

ability to execute both applications that use the native instruction set of the

PowerPC microprocessor and applications that use the 680x0 instruction set.

It accomplishes this by providing a very efficient 68LC040 Emulator that

emulates 680x0 instructions with PowerPC instructions. As a result, virtually

all existing 680x0-based Macintosh applications and other software modules

that conform to the programming interfaces and techniques documented in

the Inside Macintosh suite of books will execute without modification on

PowerPC processor-based Macintosh computers.

To take maximum advantage of the much greater processing speed of the

PowerPC microprocessor, however, you’ll need to recompile your application’s

source code into a PowerPC application. Apple Computer, Inc., provides

MPW-based C and C++ compilers and other tools that you can use to create

native PowerPC applications. In general, if your source code is already

compliant with ANSI C standards or the de facto ANSI C++ standards, you

should be able, with moderately little effort, to rework your source code so that

it can be compiled and built using the Apple-supplied tools into a PowerPC

application. This book is intended to provide much of the information you

need to port your existing 680x0 application (or other software) to the

PowerPC platform.

Note

There will also be third-party compilers and development
environments capable of generating PowerPC code. ◆

Although the native run-time execution environment of the first version of the

system software for PowerPC processor-based Macintosh computers is

significantly different from the execution environment of current 680x0-based

Macintosh computers, you won’t need to worry about those differences

unless your existing code relies on specific information about the 680x0

execution environment. For example, if for some reason you directly access

information in your application’s A5 world, you’ll need to rewrite those

parts of code when porting your application to the PowerPC environment.

Similarly, you’ll need to rewrite any parts of your code that depend on

data being passed in certain 680x0 registers. VBL tasks, for instance, very

x

P R E F A C E

often depend on the fact that a pointer to the VBL task record is passed in

register A0.

The first chapter in this book, “Introduction to PowerPC System Software,”

provides a general overview of the system software that runs on PowerPC

processor-based Macintosh computers. It also describes in detail the mixed

environment provided by the 68LC040 Emulator and the Mixed Mode

Manager, as well as the new run-time environment used for native PowerPC

applications. You should read this chapter for general information about

porting your existing software to the PowerPC environment. Even if you do

not intend to port your existing 680x0 software, you might still want to read

this chapter for information about running under the 68LC040 Emulator.

The remaining chapters in this book provide reference material for the three

new system software managers introduced in the first version of the system

software for PowerPC processor-based Macintosh computers. You should

read these chapters for specific information on using the services provided by

those managers. The new system software managers are

■ the Mixed Mode Manager, which manages the mixed environment of
PowerPC processor-based Macintosh computers running 680x0-based code

■ the Code Fragment Manager, which loads fragments (blocks of executable
PowerPC code and their associated data) into memory and prepares them
for execution

■ the Exception Manager, which handles exceptions that occur during the
execution of PowerPC applications or other software

IMPORTANT

Some of the system software services introduced in the first version of
the system software for PowerPC processor-based Macintosh computers
might in the future be available on Macintosh computers that are not
based on the PowerPC microprocessor. For example, it’s possible that
the Code Fragment Manager (and the entire run-time environment
based on fragments) will be included in future versions of the system
software for 680x0-based Macintosh computers. As a result, some of the
information in this book might eventually be more generally applicable
than the title of this book might suggest. ▲

If you are new to programming for Macintosh computers, you should read the

book Inside Macintosh: Overview for an introduction to general concepts

of Macintosh programming. You should also read other books in the Inside
Macintosh series for specific information about other aspects of the Macintosh

Toolbox and the Macintosh Operating System. In particular, to benefit most

from this book, you should already be familiar with the run-time environment

of 680x0 applications, as described in the two books Inside Macintosh: Processes
and Inside Macintosh: Memory.

xi

P R E F A C E

Related Documentation

This book is part of a larger suite of books that contain information essential

for developing PowerPC applications and other software.

■ For information about the PPCC compiler that you can use to compile your
source code into a PowerPC application, see the book C/C++ Compiler for
Macintosh With PowerPC.

■ For information about the PPCAsm assembler, see the book Assembler for
Macintosh With PowerPC.

■ For information about debugging and measuring the performance of
PowerPC applications, see the book Macintosh Debugger Reference.

■ For information about performing floating-point calculations in PowerPC
applications, see the book Inside Macintosh: PowerPC Numerics.

■ For information about building PowerPC applications and other kinds of
PowerPC software for Macintosh computers, see Building Programs for
Macintosh With PowerPC.

Format of a Typical Chapter

Almost all chapters in this book follow a standard structure. For example, the

chapter “Mixed Mode Manager” contains these sections:

■ “About the Mixed Mode Manager.” This section describes the Mixed Mode
Manager. You should read this section for a general understanding of
what the Mixed Mode Manager does and when you might need to call
it explicitly.

■ “Using the Mixed Mode Manager.” This section provides detailed instruc-
tions on using the Mixed Mode Manager. You should read this section if
you need to use the services provided by the Mixed Mode Manager.

■ “Mixed Mode Manager Reference.” This section provides a complete
reference to the constants, data structures, and routines provided by the
Mixed Mode Manager. Each routine description also follows a standard
format, which presents the routine declaration followed by a description
of every parameter of the routine. Some routine descriptions also give
additional descriptive information, such as circumstances under which you
cannot call the routine or result codes.

■ “Summary of the Mixed Mode Manager.” This section provides the C
interfaces for the constants, data structures, routines, and result codes
associated with the Mixed Mode Manager.

xii

P R E F A C E

Conventions Used in This Book

Inside Macintosh uses various conventions to present information. Words that

require special treatment appear in specific fonts or font styles. Certain

information, such as parameter blocks, appears in special formats so that you

can scan it quickly.

Special Fonts
All code listings, reserved words, and the names of actual data structures,

constants, fields, parameters, and routines are shown in Courier (this is
Courier).

Words that appear in boldface are key terms or concepts and are defined in

the glossary at the end of this book. Note that numerical entries (for example,

32-bit clean) are sorted before all alphabetical entries in the glossary and in

the index.

Types of Notes
There are several types of notes used in Inside Macintosh.

Note

A note like this contains information that is interesting but possibly not
essential to an understanding of the main text. (An example appears on
page 1-6.) ◆

IMPORTANT

A note like this contains information that is essential for an
understanding of the main text. (An example appears on page 1-19.) ▲

▲ W A R N I N G

Warnings like this indicate potential problems that you should be aware
of as you design your application. Failure to heed these warnings
could result in system crashes or loss of data. (An example appears on
page 1-8.) ▲

Bit Numbering and Word Size
This book departs from the conventions followed in previous Inside Macintosh

books in regard to the numbering of bits within a range of data. Previously,

for example, the bits in a 32-bit data type were numbered 0 to 31, from right to

left, as shown in Figure P-1 on the following page. The least significant bit of a

32-bit data type was addressed as bit 0, and the most significant bit was

addressed as bit 31. This convention was in accordance with that used by

xiii

P R E F A C E

Motorola in the books documenting their 680x0 family of microprocessors (for

example, the MC68040 32-Bit Microprocessor User’s Manual).

Figure P-1 680x0 bit numbering

In this book, the bits in a 32-bit data type are numbered 0 to 31, from left to

right. The most significant bit of a 32-bit data type is addressed as bit 0, and

the least significant bit is addressed as bit 31. This convention, illustrated in

Figure P-2, is in accordance with the bit-numbering conventions used by

Motorola in the books documenting the PowerPC family of microprocessors

(for example, the PowerPC 601 RISC Microprocessor User’s Manual).

Figure P-2 PowerPC bit numbering

In addition, there are differences between 680x0 and the PowerPC terminology

to describe the sizes of certain memory operands, as shown in Table P-1.

To avoid confusion, however, this book generally uses bytes to give the sizes

of objects in memory.

Table P-1 Sizes of memory operands

Size 680x0 terminology PowerPC terminology

8 bits Byte Byte

2 bytes Word Half word

4 bytes Long word Word

8 bytes N/A Double word

16 bytes N/A Quad word

xiv

P R E F A C E

Assembly-Language Information
Inside Macintosh presents information about the fields of a parameter block in

this format:

Parameter block

The arrow in the far-left column indicates whether the field is an input

parameter, output parameter, or both. You must supply values for all input

parameters and input/output parameters. The routine returns values in

output parameters and input/output parameters.

The second column shows the field name as defined in the MPW C interface

files; the third column indicates the C data type of that field. The fourth

column provides a brief description of the use of the field. For a complete

description of each field, see the discussion that follows the parameter

block or the description of the parameter block in the reference section of

the chapter.

Development Environment

The system software routines described in this book are available using C

or assembly-language interfaces. How you access these routines depends

on the development environment you are using. This book shows system

software routines in their C interface using the Macintosh Programmer’s

Workshop (MPW).

All code listings in this book are shown in C (except for listings that describe

resources, which are shown in Rez-input format). They show methods of using

various routines and illustrate techniques for accomplishing particular tasks.

All code listings have been compiled and, in most cases, tested. However,

Apple Computer does not intend that you use these code samples in your

application. You can find the location of this book’s code listings in the list of

figures, tables, and listings.

To make the code listings in this book more readable, only limited error

handling is shown. You need to develop your own techniques for detecting

and handling errors.

This book occasionally illustrates concepts by reference to a sample applica-

tion called SurfWriter and a sample import library called SurfTools; these are

not actual products of Apple Computer, Inc.

↔ inAndOut Handle Input/output parameter.

← output1 Ptr Output parameter.

→ input1 Ptr Input parameter.

xv

P R E F A C E

For More Information

APDA is Apple’s worldwide source for over three hundred development

tools, technical resources, training products, and information for anyone

interested in developing applications on Apple platforms. Customers receive

the quarterly APDA Tools Catalog featuring all current versions of Apple

development tools and the most popular third-party development tools.

Ordering is easy; there are no membership fees, and application forms are not

required for most of our products. APDA offers convenient payment and

shipping options, including site licensing.

To order products or to request a complimentary copy of the APDA Tools
Catalog, contact

APDA

Apple Computer, Inc.

P.O. Box 319

Buffalo, NY 14207-0319

If you provide commercial products and services, call 408-974-4897 for

information on the developer support programs available from Apple.

For information on registering signatures, file types, Apple events, and other

technical information, contact

Macintosh Developer Technical Support

Apple Computer, Inc.

20525 Mariani Avenue, M/S 303-2T

Cupertino, CA 95014-6299

Telephone 800-282-2732 (United States)
800-637-0029 (Canada)
716-871-6555 (International)

Fax 716-871-6511

AppleLink APDA

America Online APDA

CompuServe 76666,2405

Internet APDA@applelink.apple.com

Contents 1-1

C H A P T E R 1

Introduction to PowerPC

Contents

System Software

Overview of the PowerPC System Software 1-4

The 68LC040 Emulator 1-6

Emulator Operation 1-7

Emulator Limitations 1-8

Coprocessors 1-9
Instruction Timings 1-9

Deleted Instructions 1-9

Unsupported Instruction Features 1-10

Instruction Caches 1-10
Address Error Exceptions 1-10

Bus Error Exceptions 1-11

Memory-Mapped I/O Locations 1-11

Mixed Mode 1-13

Cross-Mode Calls 1-14

Routine Descriptors 1-15

Memory Considerations 1-19

The PowerPC Native Environment 1-19

Fragments 1-20

The Structure of Fragments 1-22
Imports and Exports 1-23

The Table of Contents 1-26

Special Routines 1-29

Fragment Storage 1-30
Executable Resources 1-34

Calling Conventions 1-41

The 680x0 Calling Conventions 1-42

The PowerPC Calling Conventions 1-43

Parameter Passing 1-47

C H A P T E R 1

1-2 Contents

Import Libraries 1-50

The Organization of Memory 1-52

File Mapping 1-53

The System Partition 1-56

Application Partitions 1-57

Data Alignment 1-63

Compatibility and Performance 1-65

Patches 1-66

The Memory Manager 1-68

Performance Tuning 1-70

Mode Switches 1-71

Routine Parameters 1-72

C H A P T E R 1

1-3

Introduction to PowerPC System Software

This chapter is a general introduction to the system software provided on PowerPC

processor-based Macintosh computers. It describes the mixed environment provided by

the 68LC040 Emulator and the Mixed Mode Manager. These two new system software

services work together to allow existing 680x0 applications, extensions, drivers, and

other software to execute without modification on PowerPC processor-based Macintosh

computers. The 68LC040 Emulator and the Mixed Mode Manager also make it possible

for parts of the system software to remain as 680x0 code, while other parts of the system

software are reimplemented (primarily for reasons of speed) as native PowerPC code.

This chapter also describes the native PowerPC execution environment. Although the

process-scheduling mechanism used for both native and emulated applications has not

changed, the run-time environment for PowerPC applications is significantly different

from the run-time environment used for 680x0-based Macintosh applications. In cases

where your application (or other software) relies on features of the 680x0 run-time

environment, you’ll need to modify your application before recompiling it as a PowerPC

application. For example, if your application directly accesses information stored in low

memory (such as system global variables) or in its A5 world, you might need to rewrite

parts of your application to remove the dependence on that information. See “The

PowerPC Native Environment” beginning on page 1-19 for complete instructions on

doing this.

You should read this chapter if you want your application to run on PowerPC processor-

based Macintosh computers, either under the 68LC040 Emulator or in the PowerPC

native environment. If you choose not to rebuild your application for the PowerPC

environment, you should at least make certain that it doesn’t violate any of the known

restrictions on the emulator. See “Emulator Limitations” on page 1-8 for specific informa-

tion about the known operational differences between the 68LC040 Emulator and a

680x0 microprocessor.

You should also read this chapter for information about the PowerPC execution environ-

ment. Although the existing software development tools build your source code into

executable PowerPC code that conforms to the requirements of this new environment,

you might need to know about the native run-time environment for debugging purposes

or if your application uses external code modules. Otherwise, the new execution environ-

ment should be completely transparent to your application.

You should be able to accomplish much of the work involved in porting your application

from the 680x0 platform to the PowerPC platform using the information in this chapter.

If your application installs callback routines with nonstandard calling conventions,

however, you might need to read the chapter “Mixed Mode Manager” in this book. In

addition, if your application explicitly loads external code modules (such as file trans-

lators or custom definition procedures), you might need to read the chapter “Code

Fragment Manager” in this book. Read the chapter “Exception Manager” if you want

your native application to handle any exceptions that arise while it is executing.

To use this chapter, you should already be generally familiar with the Macintosh

Operating System. See the books Inside Macintosh: Processes and Inside Macintosh: Memory

for information about the run-time environment of 680x0-based Macintosh computers.

C H A P T E R 1

Introduction to PowerPC System Software

1-4 Overview of the PowerPC System Software

This chapter begins with a description of the mixed environment provided by the

PowerPC system software. Then it gives information about the native PowerPC run-time

environment. This chapter ends by explaining how to perform a number of specific

tasks in the PowerPC environment, such as patching system software traps.

Note

For ease of exposition, this book occasionally focuses on porting
applications from the 680x0 environment to the PowerPC environment.
In general, however, any changes required for applications are required
also for all other kinds of software. ◆

Overview of the PowerPC System Software

The system software for PowerPC processor-based Macintosh computers is System 7.1,

with suitable changes made to support the mixed environment that allows both 680x0

software and PowerPC software to execute on a computer. The mixed environment

provides virtually complete compatibility for existing 680x0 software, as well as vastly

increased performance for applications and other software that are built to use the native

instruction set of the PowerPC microprocessor.

Because the system software for PowerPC processor-based Macintosh computers is

derived from System 7.1 for 680x0-based Macintosh computers, your application—

whether 680x0 or PowerPC—must conform to the basic requirements imposed by

system software versions 7.0 and later. In particular, your application (or other software)

must be

■ 32-bit clean

■ compatible with the operations of the Virtual Memory Manager

■ able to operate smoothly in the cooperative multitasking environment maintained by
the Process Manager

If your 680x0 software conforms to these specific requirements and to the general

requirements for Macintosh software documented throughout Inside Macintosh, it is

highly probable that it will execute without problems on PowerPC processor-based

Macintosh computers. This is because the system software for PowerPC processor-based

Macintosh computers includes a very efficient 68LC040 Emulator that emulates 680x0

instructions with PowerPC instructions. In addition, the system software includes the

Mixed Mode Manager, which is responsible for handling any necessary mode switches

between the native PowerPC environment and the 680x0 environment.

Figure 1-1 shows a general overview of the system software for PowerPC processor-

based Macintosh computers. A small kernel, called the nanokernel, communicates

directly with the PowerPC processor and provides very low-level services (such as

interrupt handling and memory management).

C H A P T E R 1

Introduction to PowerPC System Software

Overview of the PowerPC System Software 1-5

Figure 1-1 The system software for PowerPC processor-based Macintosh computers

Even applications written entirely in 680x0 code might cause mode switches while they

are executing, because some portions of the Macintosh Operating System have been

rewritten in PowerPC code for increased performance. For example, the Memory

Manager has been rewritten in C and recompiled into PowerPC code. In general,

however, mode switches occur completely transparently to 680x0 software. Only native

PowerPC software needs to worry about mode switches. See “Mixed Mode” beginning

on page 1-13 for details.

As you would expect, the emulation environment provided by the 68LC040 Emulator

uses the standard 680x0 run-time model. The organization of an application partition

and the run-time behavior of emulated software are identical to what is provided on

680x0-based Macintosh computers. However, the execution environment for native

PowerPC software is significantly different from the standard 680x0 run-time environ-

ment. The PowerPC environment provides a much simpler and easier-to-use run-time

model based on fragments. A fragment is any block of executable PowerPC code and its

associated data. Fragments are created by your development system’s linker.

C H A P T E R 1

Introduction to PowerPC System Software

1-6 The 68LC040 Emulator

Note
The term fragment is not intended to suggest that the block of code and
data is in any way either small, detached, or incomplete. Fragments can
be of virtually any size, and they are complete, executable entities. The
term fragment was chosen to avoid confusion with the terms already
used in Inside Macintosh to describe executable code (such as component
and module). ◆

Fragments use a method of addressing the data they contain that is different and more

general than the A5-relative method that 680x0 applications use to address their global

data. One important consequence is that any PowerPC software packaged as a fragment

has easy access to global data. In the 680x0-based system software, it was sometimes

difficult to use global data within types of software other than applications.

In addition, it was often complicated for a routine installed by some code to gain

access to the code’s global variables. For example, you cannot—in the current 680x0

environment—write a VBL task that uses your application’s global variables without

somehow passing your application’s A5 value to the VBL task. (A VBL task is a task that

executes during a vertical blanking interrupt.) In the PowerPC environment, any routine

contained in an application has automatic access to the application’s global variables.

You do not need to devise special ways to pass the address of your application’s A5

world to the installed routine. More generally, any routine executing in the PowerPC

environment has access to the global data of the fragment it’s contained in.

The new run-time model used for native PowerPC software incorporates other

important simplifications as well. In native applications, there is no segmentation of

the executable code. The existing compilers that produce PowerPC code ignore any

segmentation directives you include in your source code. In addition, any calls you make

to the Segment Manager’s UnloadSeg procedure are simply ignored by the PowerPC

system software. The task of keeping required code in memory is handled completely by

the Virtual Memory Manager or the Process Manager, not by your application.

The remaining sections in this chapter describe in greater detail the mixed environment

of PowerPC processor-based Macintosh computers and the new native run-time

environment. If you’re interested mainly in rebuilding your application as native

PowerPC code, you can skip to the section “Mixed Mode” beginning on page 1-13,

which describes the ways in which you might need to use the Mixed Mode Manager

to make your native application compatible with the mixed environment.

The 68LC040 Emulator

The 68LC040 Emulator is the part of the PowerPC system software that allows 680x0

applications and other software to execute on PowerPC processor-based Macintosh

computers. This emulator provides an execution environment that is virtually identical

to the execution environment found on 680x0-based Macintosh computers. The emulator

converts 680x0 instructions into PowerPC instructions, issues those instructions to the

PowerPC microprocessor, and updates the emulated environment (such as the emulated

680x0 registers) in response to the operations of the PowerPC microprocessor.

C H A P T E R 1

Introduction to PowerPC System Software

The 68LC040 Emulator 1-7

In general, the 680x0 emulation environment supports all existing 680x0 applications

that already work correctly on all Macintosh computers containing a Motorola 68020,

68030, or 68040 microprocessor. There are, however, some differences between the

operation of the 68LC040 Emulator and an actual 68040 microprocessor. The following

two sections provide some information on the general operation and limitations of the

68LC040 Emulator.

Note

Unless you are programming in assembly language or doing very
low-level debugging, you’re not likely to need the information in
the following two sections. ◆

Emulator Operation
The 68LC040 Emulator implements the basic Motorola 68040 user mode instruction set.

It does not, however, support any of the instructions from the optional 68881 or 68882

floating-point coprocessors. Moreover, although the emulator supports the operations of

the Virtual Memory Manager, it does not support instructions from the 68851 Paged

Memory Management Unit (PMMU). The 680x0-based Macintosh computer whose

hardware configuration most closely resembles the software configuration of the

68LC040 Emulator is the Macintosh Centris 610, which contains the Motorola 68LC040

microprocessor. (The 68LC040 microprocessor is identical to the 68040 microprocessor

except that it has no floating-point unit.) As a result, if your application or other software

runs without problems on the Macintosh Centris 610, it is very likely to run without

problems under the 68LC040 Emulator.

Note

For the complete specification of how you can expect both a
real 68040 and the 68LC040 Emulator to behave, see the
MC68040 32-Bit Microprocessor User’s Manual. ◆

The Gestalt function returns the value gestalt68020 when you pass it the selector

gestaltProcessorType and the calling software is executing under the emulator.

This return value is intended to highlight the two ways in which the 68LC040 Emulator

more closely resembles a 68020 processor than a 68040 processor:

■ The emulated environment does not support either the FPU or the MMU contained in
an actual 68040 processor.

■ The emulated environment creates exception stack frames in accordance with the
68020 exception frame model.

The 68LC040 Emulator consists of two main parts, a main dispatch table and a block of

additional code called by entries in the main dispatch table. The main dispatch table

contains two native PowerPC instructions for each recognized 680x0 operation code (or

opcode). In cases where a 680x0 opcode can be handled by a single PowerPC instruction,

the first native instruction in the dispatch table is enough to complete the requested

operation. In most cases, however, the handling of a 680x0 opcode requires more than

one PowerPC instruction. In that case, the first native instruction in the main dispatch

table simply begins the emulation process.

C H A P T E R 1

Introduction to PowerPC System Software

1-8 The 68LC040 Emulator

The second native instruction in the emulator’s main dispatch table is usually a

PC-relative branch into the block of additional code. The additional code continues

the emulation of the 680x0 opcode begun by the first instruction.

The emulator’s main dispatch table also includes entries that support private opcodes

reserved for use by the system software, including both A-line and F-line instructions.

For example, the Mixed Mode Manager communicates with the 68LC040 Emulator using

A-line instructions embedded in routine descriptors. (See “Routine Descriptors”

beginning on page 1-15 for details.) Other system software services, including the Virtual

Memory Manager, also issue reserved opcodes to the emulator.

When the emulator is active, it maps all 680x0 registers to the registers on the PowerPC

microprocessor, including the 680x0 program counter (PC) and Status Register (SR). The

general-purpose register GPR1 serves as both the 680x0 and native stack pointer. The

emulator also dedicates a native register to point to the 680x0 context block, a block

of data containing information that needs to be preserved across mode switches. The

context block contains all the 680x0 registers, the addresses of the main dispatch table

and the block of additional code, and other information used internally by the emulator.

The emulator saves information into the context block when it is about to exit (for

example, when a 680x0 application calls a piece of native code) and restores the

information from the block when it is subsequently activated.

▲ W A R N I N G

You should not rely on any specific information about the 68LC040
Emulator’s private data structures or opcodes. ▲

Emulator Limitations
Largely because it is a purely software implementation of a hardware microprocessor,

the 68LC040 Emulator sometimes exhibits behavior that differs from that of an actual

680x0 microprocessor. These operational differences can lead to problems, ranging from

the obvious (for example, using the floating-point coprocessor instruction set, which is

not supported by the 68LC040 Emulator) to the subtle (for example, depending upon a

value in an undefined condition code bit). If your application or other software depends

on 680x0 behavior that is not reproduced exactly by the 68LC040 Emulator, your product

might have problems when executing under the emulator. The known exceptions to the

documented 680x0 specifications concern

■ coprocessors and instruction sets

■ instruction timings

■ deleted instructions

■ unsupported instruction features

■ instruction caches

■ address error exceptions

■ bus error exceptions

■ memory-mapped I/O locations

C H A P T E R 1

Introduction to PowerPC System Software

The 68LC040 Emulator 1-9

The following sections describe these limitations in greater detail.

Coprocessors

As previously indicated, the 68LC040 Emulator does not support the instruction sets of

either the 68881 or the 68882 floating-point coprocessor or of the 68851 PMMU. Any

software that uses floating-point instructions is therefore not compatible with the

68LC040 Emulator. Because there are several 680x0-based Macintosh computers that

do not contain floating-point coprocessors, this restriction is not likely to cause new

compatibility problems for your software. It’s possible that you have used SANE to

perform hardware-independent floating-point arithmetic. If so, you’ll probably notice

that floating-point calculations are performed even faster under the 68LC040 Emulator

than on a real 680x0-based Macintosh computer. This is because PowerPC processor-

based Macintosh computers include an accelerated version of SANE written in native

PowerPC code.

The 68LC040 Emulator does not support the 68851 PMMU instruction set (which also

includes the 68030 and 68040 internal PMMUs). The Virtual Memory Manager is still

supported, but using a different mechanism. Very few applications address the PMMU

directly, so this restriction is not likely to affect many developers. Those applications that

do address the PMMU directly are very likely already incompatible with A/UX and with

the Virtual Memory Manager.

More generally, the 68LC040 Emulator does not support the coprocessor bus interface.

As a result, the emulator does not support any externally connected hardware

coprocessors.

Instruction Timings

The 68LC040 Emulator executes 680x0 instructions as fast as possible, making no

attempt to maintain the same number of clock counts as on a real 68040 microprocessor.

There are classes of instructions that execute in the same number of cycles whether

on a real 68040 or under the 68LC040 Emulator, but you should not depend on this.

In general, of course, your 680x0 application is most likely already independent of

instruction timing, because it should run without problem on a wide range of 680x0

microprocessors having quite different clock rates.

Deleted Instructions

Several instructions included in the instruction set of the 68020 microprocessor were

removed from the instruction sets of the 68030 and 68040 microprocessors. The deleted

instructions are the CALLM and RTM instructions, which were intended for use in module

calls. These instructions are not supported by the 68LC040 Emulator, and any attempt

to execute them will result in an illegal instruction exception. However, because these

instructions are not present in any 680x0 microprocessor either before or after the 68020,

this restriction is not likely to present compatibility problems for your software.

C H A P T E R 1

Introduction to PowerPC System Software

1-10 The 68LC040 Emulator

Unsupported Instruction Features

Several instruction or addressing mode fields and encodings are documented by

Motorola as reserved. In addition, many instructions are documented as producing

undefined condition code result bits or undefined register results. Accordingly, the

behavior of these reserved fields and undefined results differs across the various

members of the 680x0 family of microprocessors and under the 68LC040 Emulator. It is

unlikely that any existing software intentionally depends on either reserved fields or

undefined results. It is, however, remotely possible that through a programming error

some software might be depending on these results and hence might behave differently

under the emulator than on an actual 680x0.

Instruction Caches

The operation of the instruction cache in the 68040 microprocessor is not supported by

the 68LC040 Emulator, although all of the bits in the Cache Control Register (CACR) and

Cache Address Register (CAAR) related to the instruction cache are supported. In

general, of course, your code should not address the cache registers directly.

Because both emulated code and data reside in the PowerPC data cache, the performance

benefits associated with caching are still present. Indeed, the caching scheme used

transparently by the 68LC040 Emulator results in a higher level of software compatibility

than is found on actual 680x0 microprocessors. Some older versions of software that

are incompatible with the 68040 cache mechanism can run without problem under

the emulator.

Requests to invalidate the 68040 instruction cache are ignored by the 68LC040 Emulator.

However, you should continue to issue those calls in order to remain compatible with

680x0-based Macintosh computers. Moreover, all cache flushing required for PowerPC

code fragments is performed automatically by the Code Fragment Manager.

Note

For details on invalidating the 680x0 instruction cache, see the chapter
“Memory Management Utilities” in Inside Macintosh: Memory. ◆

It is possible, although unlikely, that an application depends on the ability of the 68040

instruction cache to retain a stale copy of instructions after the RAM copy of them has

been changed. Such applications do not work correctly with 68000-based Macintosh

computers (for example, the Macintosh Plus, SE, Classic®, or PowerBook 100) and any

68040-based computers (for example, the Macintosh Quadra 950) when the Cache CDEV

is used to disable caching. As a result, this nonemulated behavior should not present any

new compatibility problems.

Address Error Exceptions

To improve the performance of branch instructions, the 68LC040 Emulator is not

completely compatible with an actual 68040 microprocessor when detecting and

reporting address error exceptions. A 680x0 microprocessor checks for address errors

before completing the execution of a branch instruction; if it finds an address error, the

microprocessor reports (in an address error exception frame that it creates on the stack)

C H A P T E R 1

Introduction to PowerPC System Software

The 68LC040 Emulator 1-11

the PC at the beginning of the branch instruction. By contrast, the 68LC040 Emulator

checks for address errors after executing a branch instruction; as a result, it reports the

odd branch address as the PC in the exception frame. Because the PC of the instruction

that caused the branch is not reported, you might find it more difficult to debug an

application that commits address errors. You might also have compatibility problems if

you install an address error exception handler.

Bus Error Exceptions

The 68LC040 Emulator handles bus error exceptions slightly differently than does a real

680x0 microprocessor. If you install a bus error handler, you might need to be aware of

these differences. You also need to be aware of these differences when debugging your

software, because most debuggers need to handle bus error exceptions.

The 68LC040 Emulator creates format $B exception frames when generating and

handling bus errors. However, several fields within the exception frame are documented

by Motorola as internal fields, and the contents of those fields are very likely to differ

between the 68LC040 Emulator exception stack frame and the exception stack frame

created by a 680x0 microprocessor. You should not rely on these reserved fields. To avoid

any possible confusion that the internal state information in the emulated exception

frame is compatible with the internal state information created by the 680x0 micro-

processors, the exception frame created by the emulator intentionally uses a value in the

Version Number field of the exception frame that is different from the value put there by

any 680x0 microprocessor.

In addition, there are several documented fields of the bus error exception frame that

have slightly different values in the emulator than on a 680x0-based Macintosh

computer. As long as bus error exception handlers do not modify these fields, it is still

possible to use the RTE instruction to continue execution of the instruction that caused

the exception. In particular, the PC field of the exception frame might not point to the

exact beginning of the instruction that generated the exception. Instead, it might point to

some location near the beginning of that instruction. Also, the Stage B address field and

the Stage B and Stage C instruction pipe fields might not contain valid information.

Finally, the Special Status Word (SSW) differs under the 68LC040 Emulator. The 68LC040

Emulator does not distinguish between instruction space and data space accesses;

instead, it converts instruction fetches to data space reads. As a result, the FC2–FC0 field

always indicates either a supervisor or a user data space reference. In addition, the

emulator never sets the FC, FB, or RM bits, and it ignores the RC and RB bits. The DF bit

is fully supported, however, allowing both program completion of bus cycles and

rerunning of bus cycles with the RTE instruction. The 68LC040 Emulator also puts valid

values in the RM and SIZ bits.

Memory-Mapped I/O Locations

In general, most applications do not directly access memory-mapped I/O locations.

Instead, they call device drivers or other system software routines to perform the

requested I/O operations. For code (such as a device driver) that does directly access

memory-mapped I/O locations, there are a number of compatibility issues. In some

C H A P T E R 1

Introduction to PowerPC System Software

1-12 The 68LC040 Emulator

cases, the 680x0 emulation environment might not perform some write operations that a

real 680x0 performs:

■ The BSET and BCLR instructions might not write back an operand if none of the bits
were changed as a result of the operation.

■ Some memory-to-memory MOVE instructions might not write to memory if the source
and destination addresses are the same.

You might need to modify your application to use different sequences of instructions to

perform the operations if an I/O device was expecting these write bus cycles.

The TAS, CAS, and CAS2 instructions in the 68040 instruction set perform indivisible read,

modify, and write memory operations. The 68040 bus architecture provides a special

locked bus cycle for a read-and-write operation without allowing any other devices to

request the bus between them. These indivisible bus cycles cannot be emulated. As a

result, an alternate bus master type of I/O device might be allowed to modify a memory

location between the read and the write operations.

The 68020 and 68030 bus interface supports a feature called dynamic bus sizing that

allows 8- or 16-bit-wide I/O devices to work with the 32-bit-wide data bus. If the

processor has a memory request for a data width that was larger than the data width of

the device connected to the bus, the memory interface breaks the request into multiple

requests that are the width of the device. For example, if a 32-bit read request is made to

an 8-bit device, the memory interface actually performs four separate 8-bit reads to

assemble the 32-bit data. This feature cannot be emulated. Any application or other

software that depends upon this feature must to be modified to use separate instructions

to access and assemble each piece of data.

The 68020 and 68030 bus interface also supports a feature called byte smearing that

allows 8- or 16-bit data to be duplicated on a write operation across all 32 bits of the

data bus. The 68040 processor does not support this feature. This feature cannot be

emulated, but solutions that were used for the 68040 should be compatible with the

68LC040 Emulator.

The 68020, 68030, and 68040 microprocessors define the NOP instruction as having the

effect of synchronizing the pipeline and waiting for all prior bus operations to complete.

The 68020 and 68030 have a very small pipeline, and bus operations normally finish

soon after they are issued. However, the 68040 and the PowerPC architecture let memory

operations be queued and issued out of order. Because of this, the NOP instruction

might be needed to ensure that accesses to memory-mapped I/O devices occur in the

proper order. The 68LC040 Emulator supports the features of the NOP instruction.

Any application that includes NOP instructions should be compatible with all Macintosh

computers.

If an I/O device causes a bus timeout that results in a bus error exception, it might not

be possible for the PowerPC microprocessor—and therefore the 68LC040 Emulator—

to determine the memory address that was accessed. If all locations within a 4 KB

I/O page consistently time out, this problem might not occur, but if accesses to some

locations within a page sometimes succeed, it is possible for this situation to occur.

A bus error exception is generated in that case, but the Data Fault Address field in

the exception frame will not be accurate and the DF bit in the SSW will not be set.

C H A P T E R 1

Introduction to PowerPC System Software

Mixed Mode 1-13

Mixed Mode

An instruction set architecture is the set of instructions recognized by a particular

processor or family of processors. The Mixed Mode Manager is the part of the

Macintosh system software that manages mode switches between code in different

instruction set architectures, switching the execution context between the CPU’s native

PowerPC context and the 68LC040 Emulator. The 68LC040 Emulator is responsible for

handling all code in the 680x0 instruction set. This includes existing 680x0 applications,

device drivers, system extensions, and even parts of the system software itself that have

not yet been rewritten to use the PowerPC instruction set.

Mode switches are required not only when the user switches from an emulated to a

native application (or vice versa), but also when any application calls a system software

routine or any other code that exists in a different instruction set. For example, the

Memory Manager has been reimplemented in the first version of system software for

PowerPC processor-based Macintosh computers as native PowerPC code. When an

existing 680x0 application running under the 68LC040 Emulator calls a Memory

Manager routine such as NewHandle, a mode switch is required to move out of the

emulator and into the native PowerPC environment. Then, once the Memory Manager

routine completes, another mode switch is required to return to the 68LC040 Emulator

and to allow the 680x0 application to continue executing.

Similarly, PowerPC applications cause mode switches whenever they invoke routines

that exist only as 680x0 code. For example, if a PowerPC application calls a part of

the Macintosh Toolbox or Operating System that has not been ported native, a mode

switch is required to move from the native environment to the environment of the

68LC040 Emulator.

The Mixed Mode Manager exists solely to manage these kinds of mode switches. It

makes it possible for the execution environment of PowerPC processor-based Macintosh

computers to accommodate a mixture of 680x0 applications, PowerPC applications,

680x0 system software, PowerPC system software, 680x0 executable resources, PowerPC

executable resources, 680x0 device drivers, PowerPC device drivers, and so forth. The

68LC040 Emulator and the Mixed Mode Manager together allow both 680x0 code and

PowerPC code to execute on the PowerPC microprocessor.

The Mixed Mode Manager is designed to hide, as much as possible, the hybrid nature of

the mixed environment supported on PowerPC processor-based Macintosh computers.

Occasionally, however, some executable code needs to interact directly with the Mixed

Mode Manager to ensure that a mode switch occurs at the correct time. Because the

68LC040 Emulator is designed to allow existing 680x0 applications and system software

to execute without modification, it’s always the responsibility of native applications

and system software to implement any changes necessary to interact with the Mixed

Mode Manager.

This section describes the basic operation of the Mixed Mode Manager. It shows you

how, if you’re writing a native application, you might need to modify your application to

C H A P T E R 1

Introduction to PowerPC System Software

1-14 Mixed Mode

make it compatible with the mixed environment of the system software for PowerPC

processor-based Macintosh computers. If you use fairly simple techniques for calling

code external to your application and use only the standard types of callback routines,

the information in this section might be sufficient for your needs. If not, see the chapter

“Mixed Mode Manager” in this book for complete information about the Mixed

Mode Manager.

Cross-Mode Calls
The Mixed Mode Manager is intended to operate transparently to most applications and
other kinds of software. This means, in particular, that most cross-mode calls (calls

to code in a different instruction set from the caller’s instruction set) are detected

automatically by the Mixed Mode Manager and handled without explicit intervention by

the calling software. For instance, when a 680x0 application calls a Memory Manager
routine—which, as you have already learned, exists as PowerPC code in the system

software for PowerPC processor-based Macintosh computers—the Trap Manager

dispatches to the code pointed to by the appropriate entry in the trap dispatch table. For

routines that are implemented as native code, the entry in the trap dispatch table is a
pointer to a routine descriptor, a data structure used by the Mixed Mode Manager to

encapsulate information about a routine. The first field in a routine descriptor is an

executable 680x0 instruction that invokes the Mixed Mode Manager. The Mixed Mode

Manager handles all the details of switching to the native mode, calling the native code,
and then returning to the 68LC040 Emulator. The calling application is completely

unaware that any mode switches have occurred.

The operation of the Mixed Mode Manager is also completely transparent when a

PowerPC application calls a system software routine that exists as 680x0 code, although

the exact details are slightly different. When a native application calls a system soft-

ware routine, the Operating System executes some glue code in an import library of

executable code. The glue code inspects the trap dispatch table for the address of the

called routine. If the called routine exists only as 680x0 code, the Mixed Mode Manager

switches modes and calls the 680x0 routine. When the 680x0 code returns, the Mixed

Mode Manager switches back to the native PowerPC environment and the execution of

the PowerPC application continues.

Note
See “The PowerPC Native Environment” beginning on page 1-19
for information about the native execution environment, including
import libraries. ◆

When writing PowerPC code, you need to explicitly intervene in the mode-switching

process only when you execute code (or have code executed on your behalf) whose

instruction set architecture might be different from that of the calling code. For example,

whenever you pass the address of a callback routine to the Operating System or Toolbox,

it’s possible that the instruction set architecture of the code whose address you are

passing is different from the instruction set architecture of the routine you’re passing

it to. In such cases, you need to explicitly signal the type of code you’re passing and its

calling conventions. Otherwise, the Mixed Mode Manager might not be called to make a

required mode switch.

C H A P T E R 1

Introduction to PowerPC System Software

Mixed Mode 1-15

To see this a bit more clearly, suppose that you are writing a native PowerPC application

that calls the Control Manager procedure TrackControl. TrackControl accepts as

one of its parameters the address of an action procedure that is called repeatedly while

the user holds down the mouse button in a control. TrackControl has no way of

determining in advance the instruction set architecture of the code whose address you

will pass it. Moreover, you have no way of determining in advance the instruction set

architecture of the TrackControl procedure, so you cannot know whether your action

procedure and the TrackControl procedure are of the same instruction set architecture.

As a result, you must explicitly indicate the instruction set architecture of any callback

routines whose addresses you pass to the system software.

Routine Descriptors
You indicate the instruction set architecture of a particular routine by creating a routine
descriptor for that routine. Here is the structure of a routine descriptor.

struct RoutineDescriptor {
unsigned short goMixedModeTrap; /*mixed-mode A-trap*/
char version; /*routine descriptor version*/
RDFlagsType routineDescriptorFlags;

/*routine descriptor flags*/
unsigned long reserved1; /*reserved*/
unsigned char reserved2; /*reserved*/
unsigned char selectorInfo; /*selector information*/
short routineCount; /*index of last RR in this RD*/
RoutineRecord routineRecords[1];/*the individual routines*/

};
typedef struct RoutineDescriptor RoutineDescriptor;

As you can see, the first field of a routine descriptor is an executable 680x0 instruction that

invokes the Mixed Mode Manager. When the Mixed Mode Manager is called, it inspects

the remaining fields of the routine descriptor—in particular the routineRecords

field—to determine whether a mode switch is required. The routineRecords field is

an array of routine records, each element of which describes a single routine. In the

simplest case, the array of routine records contains a single element. Here is the structure

of a routine record.

struct RoutineRecord {
ProcInfoType procInfo; /*calling conventions*/
unsigned char reserved1; /*reserved*/
ISAType ISA; /*instruction set architecture*/
RoutineFlagsType routineFlags; /*flags for each routine*/
ProcPtr procDescriptor; /*the thing we're calling*/
unsigned long reserved2; /*reserved*/
unsigned long selector; /*selector for dispatched calls*/

};
typedef struct RoutineRecord RoutineRecord;
typedef RoutineRecord *RoutineRecordPtr, **RoutineRecordHandle;

C H A P T E R 1

Introduction to PowerPC System Software

1-16 Mixed Mode

The most important fields in a routine record are the procInfo field and the ISA field.

The ISA field encodes the instruction set architecture of the routine being described. It

must always contain one of these two constants:

enum {

kM68kISA = (ISAType)0, /*MC680x0 architecture*/

kPowerPCISA = (ISAType)1 /*PowerPC architecture*/

};

The procInfo field contains the routine’s procedure information, which encodes

the routine’s calling conventions and information about the number and location of

the routine’s parameters. For the standard kinds of callback procedures and other

types of “detached” code, the universal interface files include definitions of procedure

information. For example, the C language interface file Controls.h includes

this definition:

enum {

uppControlActionProcInfo = kPascalStackBased

 | STACK_ROUTINE_PARAMETER(1, SIZE_CODE(sizeof(ControlHandle)))

 | STACK_ROUTINE_PARAMETER(2, SIZE_CODE(sizeof(short)))

};

This procedure information specification indicates that a control action procedure

follows standard Pascal calling conventions and takes two stack-based parameters,

a control handle and a part code; the action procedure returns no result. Similarly, the

file Controls.h defines the procedure information for a control definition function

as follows:

enum {

uppControlDefProcInfo = kPascalStackBased

 | RESULT_SIZE(SIZE_CODE(sizeof(long)))

 | STACK_ROUTINE_PARAMETER(1, SIZE_CODE(sizeof(short)))

 | STACK_ROUTINE_PARAMETER(2, SIZE_CODE(sizeof(ControlHandle)))

 | STACK_ROUTINE_PARAMETER(3, SIZE_CODE(sizeof(short)))

 | STACK_ROUTINE_PARAMETER(4, SIZE_CODE(sizeof(long)))

};

C H A P T E R 1

Introduction to PowerPC System Software

Mixed Mode 1-17

You can create a routine descriptor by calling the Mixed Mode Manager function

NewRoutineDescriptor, as shown in Listing 1-1.

Listing 1-1 Creating a routine descriptor

UniversalProcPtr myActionProc;

myActionProc = NewRoutineDescriptor((ProcPtr)MyAction,

uppControlActionProcInfo,

GetCurrentISA());

Here, MyAction is the address of your control action procedure and GetCurrentISA

is a C language macro that returns the current instruction set architecture. When

executed in the PowerPC environment, the NewRoutineDescriptor function creates

a routine descriptor in your application heap and returns the address of that routine

descriptor. When executed in the 680x0 environment, the NewRoutineDescriptor

function simply returns its first parameter. Notice that the result returned by

the NewRoutineDescriptor function is of type UniversalProcPtr. A universal
procedure pointer is defined to be either a 680x0 procedure pointer or a pointer to a

routine descriptor, essentially as follows:

#if !USESROUTINEDESCRIPTORS

typedef ProcPtr UniversalProcPtr, *UniversalProcHandle;

#else

typedef RoutineDescriptor *UniversalProcPtr, **UniversalProcHandle;

#endif

Once you’ve executed the code in Listing 1-1 (probably at application launch time), you

can later call TrackControl like this:

TrackControl(myControl, myPoint, myActionProc);

If your application is a PowerPC application, the value passed in the gActionProc

parameter is not the address of your action procedure itself, but the address of the

routine descriptor created in Listing 1-1. When a 680x0 version of TrackControl

executes your action procedure, it begins by executing the instruction contained in the

first field of the routine descriptor. That instruction invokes the Mixed Mode Manager,

which inspects the instruction set architecture of the action routine (contained in the ISA

C H A P T E R 1

Introduction to PowerPC System Software

1-18 Mixed Mode

field of the routine record contained in the routine descriptor). If that instruction set

architecture differs from the instruction set architecture of the TrackControl routine,

the Mixed Mode Manager causes a mode switch. Otherwise, if the two instruction set

architectures are identical, the Mixed Mode Manager simply executes the action

procedure without switching modes.

In short, you solve the general problem of indicating a routine’s instruction set archi-

tecture by creating routine descriptors and by using the addresses of those routine

descriptors where you would have used procedure pointers in the 680x0 programming

environment. You have to do this, however, only when you need to pass the address of a

routine to some external piece of code (such as the Toolbox or Operating System or some

other application) that might be in a different instruction set architecture from that of the

routine. There are quite a number of cases in which you pass procedure pointers to the

system software and which therefore require you to use the techniques illustrated above

for Control Manager action procedures. Some of the typical routines you need to create

routine descriptors for include

■ grow-zone functions

■ control action procedures

■ event filter functions

■ VBL tasks

■ Time Manager tasks

■ trap patches

■ completion routines

The interface files for the PowerPC system software have been revised to change

all references to parameters or fields of type ProcPtr to references of type

UniversalProcPtr. In addition, these new universal interface files contain procedure

information definitions for all the standard kinds of callback routines. Moreover, the

universal interface files define new routines that you can use in place of the more general

code shown in Listing 1-1 on page 1-17. For example, the interface file Controls.h

contains the definition shown in Listing 1-2 for the NewControlActionProc function.

Listing 1-2 The definition of the NewControlActionProc routine

typedef UniversalProcPtr ControlActionUPP;

#define NewControlActionProc(userRoutine) \

(ControlActionUPP) NewRoutineDescriptor((ProcPtr)userRoutine, \

uppControlActionProcInfo, GetCurrentISA())

Because this routine is defined in the universal header files, you can replace the code in

Listing 1-1 with the simpler code shown in Listing 1-3.

C H A P T E R 1

Introduction to PowerPC System Software

The PowerPC Native Environment 1-19

Listing 1-3 Creating a routine descriptor for a control action procedure

ControlActionUPP myActionProc;

myActionProc = NewControlActionProc((ProcPtr)MyAction);

In general, you should use the specific routines defined throughout the universal header

files instead of the general technique illustrated in Listing 1-1.

IMPORTANT

You do not need to create routine descriptors for routines that are called
only by your application. More generally, if you know for certain that a
routine is always called by code of the same instruction set architecture,
you can and should continue to use procedure pointers instead of
universal procedure pointers. If, however, the address of one of your
application’s routines might be passed to a Toolbox or Operating System
routine, you should make sure to use a routine descriptor. ▲

Memory Considerations
The technique described in the previous section for using routine descriptors is by far the

simplest and easiest to implement: any routine descriptors needed by an application are

allocated in the application heap at application launch time. The descriptors remain

allocated until the application terminates, at which time the entire application heap is

reclaimed by the Process Manager. As a result, you don’t have to dispose of any routine

descriptors created in this way.

If, in some case, you know that you won’t be needing a routine descriptor any more

during the execution of your application, you can explicitly dispose of it by calling

the DisposeRoutineDescriptor function. This is most useful when you allocate a

routine descriptor for temporary use only. For example, you might call some code that

uses a callback procedure only very infrequently. In that case you can allocate the routine

descriptor when the code is called and then release it when the code is done.

Finally, you can create a routine descriptor on the stack if you intend to use it only within

a single procedure. The Mixed Mode Manager interface file MixedMode.h defines the C

language macro BUILD_ROUTINE_DESCRIPTOR that you can use for this purpose, as

well as for initializing static routine descriptors. For details, see “Using Static Routine

Descriptors” on page 2-22 in the chapter “Mixed Mode Manager” in this book.

The PowerPC Native Environment

A run-time environment is a set of conventions that determine how code is loaded into

memory, where data is stored and how it is addressed, and how functions call other

functions and system software routines. The run-time environment available on a

specific Macintosh computer is determined jointly by the Macintosh system software

(which manages the loading and scheduling of executable code) and your software

C H A P T E R 1

Introduction to PowerPC System Software

1-20 The PowerPC Native Environment

development system (which generates code to conform to the documented run-time

conventions).

The run-time environment for native PowerPC code is significantly different from the

run-time environment for 680x0 code with which you are probably already familiar.

In general, however, the PowerPC run-time environment is both simpler and more

powerful than the 680x0 run-time environment. This increased simplicity and power

are due primarily to the use of fragments as the standard way of organizing executable

code and data in memory. In the native PowerPC run-time environment, all discrete

collections of executable code—including applications, code resources, extensions, and

even the system software itself—are organized as fragments when loaded into memory.

Accordingly, all executable code shares the benefits that derive from the organization of

fragments, including

■ a uniform set of calling conventions

■ the ability to store code called by many applications or other software in
import libraries

■ a simplified means of addressing global data

■ the ability to execute special initialization and termination routines when the
fragment is loaded into and unloaded from memory

This section describes the run-time environment for applications and other software

executing on PowerPC processor-based Macintosh computers. It describes in detail

■ the structure of fragments

■ how to address global code and data

■ subroutine invocation

■ PowerPC stack frames

■ import libraries

■ the organization of memory

IMPORTANT

Keep in mind that the run-time environment defined by the use of
fragments might in the future be available on 680x0-based Macintosh
computers (and not solely on PowerPC processor-based Macintosh
computers). The new run-time environment based on fragments is
intended to be as processor independent as possible. ▲

Fragments
In the run-time environment introduced in the first version of the system software for

PowerPC processor-based Macintosh computers, the basic unit of executable code and

its associated data is a fragment. All fragments share a number of fundamental

properties, such as their basic structure and their method of accessing code or data

contained in themselves or in other fragments. There are, however, different uses for

fragments, just as there are different uses for executable code in the 680x0 environment.

C H A P T E R 1

Introduction to PowerPC System Software

The PowerPC Native Environment 1-21

Fragments can be loosely differentiated into three categories, based on how they

are used.

■ An application is a fragment that can be launched by the user from the Finder (which
calls the Process Manager to do the actual launching), typically to process documents
or other collections of information. An application almost always has a user interface
and uses standard event-driven programming techniques to control its execution.

■ An import library is a fragment that contains code and data accessed by some other
fragment or fragments. The Macintosh system software, for instance, is an import
library that contains the code (and data) implementing the Macintosh Toolbox and
Operating System routines. When you link an import library with your application,
the import library’s code is not copied into your application. Instead, your application
contains symbols known as imports that refer to some code or data in the import
library. When your application is launched, the system software automatically
resolves any imports your application contains and creates a connection to the
appropriate import libraries.

■ An extension is a fragment that extends the capabilities of some other fragment. For
example, your application might use external code modules like menu definition
functions, control definition functions, or data-conversion filters. Unlike import
libraries, extensions must be explicitly connected to your application during its
execution. There are two types of extensions: application extensions and system
extensions. An application extension is an extension that is used by a single
application. A system extension is an extension that is used by the Operating System
or by multiple applications; it is usually installed at system startup time from a
resource of type 'INIT', 'DRVR', or 'CDEV'.

Import libraries and system extensions are sometimes called shared libraries, because

the code and data they contain can be shared by multiple clients. Import libraries and

system extensions are also called dynamically linked libraries, because the link between

your application and the external code or data it references occurs dynamically at

application launch time.

The physical storage for a fragment is a container, which can be any kind of object

accessible by the Operating System. The system software import library, for example, is

stored in the ROM of a Macintosh computer. Other import libraries are typically stored

in files of type 'shlb'. The fragment containing an application’s executable code is

stored in the application’s data fork, which is a file of type 'APPL'. An extension can

be stored in a data file or in a resource in some file’s resource fork.

IMPORTANT

In general, it’s best to put an application extension into the data fork of
some file (possibly even the application’s data fork itself), not into a
resource. There is, however, one notable exception to this rule, namely
when the extension is PowerPC code that is intended to operate in the
same way as a 680x0 stand-alone code module. See “Executable
Resources” on page 1-34 for more information. ▲

Before the code or data in a fragment can be used, it must be loaded into memory from

its container and prepared for execution. This process is usually handled automatically

by the Code Fragment Manager, the part of the Macintosh Operating System responsible

C H A P T E R 1

Introduction to PowerPC System Software

1-22 The PowerPC Native Environment

for loading and preparing fragments. Fragment preparation consists mainly in resolving

any imports in the fragment; the Code Fragment Manager searches for another fragment

(an import library) that exports the symbols imported by the fragment being loaded. Of

course, the import library containing the code or data imported by the first fragment

might itself contain imported symbols from yet a third fragment. If so, the Code

Fragment Manager needs to load and prepare the third fragment, then the second

fragment, and finally the first fragment.

IMPORTANT

In general, the Code Fragment Manager is called by the Operating
System in response to a request to load some specific fragment (for
example, when the user launches an application). The import libraries
used by that fragment are loaded automatically, if the Code Fragment
Manager can find them. The Code Fragment Manager usually operates
completely transparently, just like the 680x0-based Segment Manager.
You need to use the Code Fragment Manager only if your application
uses custom application extensions. See the beginning of the chapter
“Code Fragment Manager” in this book for details. ▲

To load fragments into memory from the containers they are stored in, the Code

Fragment Manager uses the Code Fragment Loader, a set of low-level services called

mainly by the Code Fragment Manager. The Code Fragment Loader is responsible for

knowing about container formats, such as PEF and XCOFF. Unless you need to design a

new container format, you do not need to use the Code Fragment Loader. Currently,

however, the application programming interface to the Code Fragment Loader is private.

The following sections describe the organization and operation of fragments in

greater detail.

The Structure of Fragments

Once a fragment has been loaded into memory and prepared for execution, the code and

data it contains are available to itself and to any fragments that import parts of that code

and data. The code and data of a particular fragment are loaded into separate sections

or regions of memory. In general, the code and data sections of a loaded fragment are

not contiguous with one another in memory. Instead, the data section of a fragment is

loaded either into your application’s heap or into the system heap. The code section of a

fragment is usually loaded elsewhere in memory. (See “File Mapping” beginning on

page 1-53 for details on the location of the code sections of a fragment.) Regardless of

where it is loaded, there is no segmentation within a code section of a fragment.

Because every fragment contains both code and data sections, it follows that any code

executing in a fragment-based run-time environment—not just application code—can

have global variables. (In the 680x0 run-time environment, it’s difficult for some kinds of

code to have global variables.) In addition, there is no practical limit on the size of a

fragment’s data section. By contrast, the total size of an application’s global variables

in the 680x0 environment is 32 KB, unless your development system provides special

capabilities to exceed that limit.

C H A P T E R 1

Introduction to PowerPC System Software

The PowerPC Native Environment 1-23

Fragments created by the currently available linkers contain one section of code and one

section of static data (although it’s theoretically possible to have more than one of each

type of section). A fragment’s code section must contain pure executable code, that is,

code that is independent of the location in memory where it is loaded. Pure code can be

loaded anywhere in memory. As a result, it cannot contain any absolute branches. In

addition, any references to the fragment’s data must be position-independent: there can

be no absolute data addresses in the code. Because the code contained in a fragment’s

code section must be pure and position-independent, and because a code section is

always read-only, a fragment can be put into ROM or paged directly from an application

file. In addition, it’s much easier to share pure code than it is to share impure code. This

makes it very easy to implement import libraries as fragments.

A fragment’s data section contains the static data defined by the fragment. An applica-

tion’s data section is typically loaded into the application’s heap. An import library’s

data section can be loaded into the system heap or into the heap of any application that

uses the import library. Indeed, it’s possible for an import library’s data section to be

loaded into memory at multiple locations, thereby creating more than one copy of the

data. This is especially useful for providing different applications with their own copy of

a library’s data. See “Import Libraries” beginning on page 1-50 for more details on this.

Even though a fragment’s code and data sections can be loaded anywhere in memory,

those sections cannot be moved within memory once they’ve been loaded. Part of the

process of loading a fragment into memory is to resolve any dependencies it might have

upon other fragments. This preparation involves inserting into part of the fragment’s

data section a number of pointers to data and code imported by the fragment from

other fragments, as described in the following section. To avoid having to perform

this fragment preparation more than once, the Operating System requires that a loaded

fragment remain stationary in memory for as long as it is loaded.

Note

In the 680x0 environment, an application’s code can be unloaded (by the
Memory Manager) and later reloaded into a different place in memory.
This difference in run-time behavior leads to some important restrictions
on stand-alone PowerPC code resources (called accelerated resources)
that mimic the behavior of existing kinds of 680x0 code resources. See
“Executable Resources” beginning on page 1-34 for details. ◆

Imports and Exports

As you’ve seen, a fragment (for example, an application) can access the code and data

contained in some other fragment (typically an import library) by importing that code

and data. Conversely, an import library can export code and data for use by other

fragments (applications, extensions, or even other import libraries). It’s the responsibility

of the linker to resolve any imports in your application (or other code fragment) to

exports in some import library. The linker generates symbols that contain the name of

the exporting library and the name of the exported symbol and inserts those symbols

into your linked application.

C H A P T E R 1

Introduction to PowerPC System Software

1-24 The PowerPC Native Environment

Figure 1-2 illustrates how the linker resolves imports in an application. The SurfWriter

object module contains a number of unresolved symbols. Some of the symbols reference

code that is part of the system software contained in the InterfaceLib import library.

Other unresolved symbols reference code in the SurfTool import library. The linker

resolves those symbols and creates the SurfWriter application, which contains the names

of the appropriate import library and function.

Figure 1-2 Creating imports in a fragment

When your application is launched, the Code Fragment Manager searches for the

linker-generated import symbols and replaces them with the addresses of the imported

code or data. To do this successfully, the Code Fragment Manager needs to find the

appropriate import library and load it into memory if it isn’t already in memory. Then, it

C H A P T E R 1

Introduction to PowerPC System Software

The PowerPC Native Environment 1-25

needs to bind the imported symbols in your application to the actual addresses, in the

import library, of the imported code or data. Once the loading and binding of import

libraries are complete, your application can execute.

Note

When binding imported symbols to external code and data, the Code
Fragment Manager ensures that the version of the import library
used at link time to resolve external symbols is compatible with the
version used at fragment loading time. See the chapter “Code Fragment
Manager” in this book for a description of this version-checking
capability. In general, this all happens transparently to your application
or other code. ◆

It’s possible to designate some of the imports in your application (or other software) as

soft. A soft import is an imported symbol whose corresponding code or data might not

be available in any import library on the host machine and which is therefore undefined

at run time. For example, a particular system software component such as QuickTime

might not be available on all Macintosh computers. As a result, if you call QuickTime

routines, you should mark all those imports as soft. When the Code Fragment Manager

loads and prepares your application, it resolves the soft imports if the QuickTime code

and data are available. If the QuickTime code and data aren’t available, the Code

Fragment Manager inserts an invalid address (namely, kUnresolvedSymbolAddress)

into your fragment’s table of contents entry for any QuickTime routines or data items.

▲ W A R N I N G

You should always check to see that any imports declared as soft by
your software were successfully resolved at load time. Trying to access
code or data referenced by an unresolved soft import will cause your
software to crash. ▲

For most system software services, you can use the Gestalt function to determine if the

necessary code or data is available in the current operating environment. Note that this

is not a new requirement and should not cause you to change your existing source

code; existing 680x0 software should also call Gestalt to ensure that needed system

software services are available. When no Gestalt selector exists to test for the existence

of a particular routine or data item, you can check for unresolved soft imports by

comparing the address of the import to kUnresolvedSymbolAddress. Listing 1-4

illustrates this technique.

Listing 1-4 Testing for unresolved soft imports

extern int printf (char *, ...);

...

if (printf == kUnresolvedSymbolAddress)

DebugStr("\printf is not available.");

else

printf("Hello, world!\n");

C H A P T E R 1

Introduction to PowerPC System Software

1-26 The PowerPC Native Environment

See the description of the MakePEF tool in the book Building Programs for Macintosh With
PowerPC for exact details on how to specify imports as soft.

The Table of Contents

The imported symbols in a fragment are contained in a special area in the fragment’s

data section known as the table of contents (TOC). Prior to preparation by the Code

Fragment Manager, a table of contents contains unresolved references to code and data

in some other fragment. After preparation, the table of contents contains a pointer to

each routine or data item that is imported from some other fragment. This provides a

means of global addressing whereby a fragment can locate the code or data it has

imported from other fragments.

Note

As you can see, the phrase “table of contents” is a slight misnomer,
because a fragment’s table of contents does not supply a list of the
addresses of routines or data in the fragment itself. Rather, a fragment’s
table of contents consists (in part) of the addresses of code and data that
the fragment imports, which reside in some other fragment. The table of
contents is more akin to a personal address book. A fragment’s table of
contents is private to the fragment itself and exists solely to provide
external linkage for the code in the fragment. ◆

A fragment’s table of contents also contains pointers to the fragment’s own static data.

Because the code and data sections of a fragment are usually loaded into different

locations in memory, and because they must both be position-independent, the code

section needs a method of finding its own data, such as data addressed by global

variables. Global variables are addressed through the fragment’s table of contents.

Within the compiled code of your application, references to global variables appear as

indirect references via offsets into the table of contents.

Of course, for this scheme to work, the code section of a fragment needs to know where in

memory its TOC begins. The address of the TOC cannot be compiled into the fragment;

instead, the address of the TOC of the currently executing fragment is maintained in a

register on the microprocessor. Currently, the general-purpose register GPR2 is dedicated

to serve as the Table of Contents Register (RTOC). It contains the address in memory of

the beginning of the TOC of the currently executing fragment.

It’s easy to see how a code fragment can find its own global data. It simply adds the

compiled-in offset of a global variable within the TOC to the address of the TOC

contained in the RTOC. The result is the address of a pointer to the desired data.

It’s slightly more complicated to see how a code fragment can execute an external piece

of code. As it does with global data, the linker accesses external code via an offset into

the TOC. The corresponding address in the TOC, however, is not the address of the piece

of external code itself. Instead, the TOC of the calling fragment contains the address—in

the static data section of the called fragment—of a transition vector, a data structure that

contains two pointers: the address of the routine being called and the address of the

called fragment’s TOC. The basic structure of a transition vector is shown in Figure 1-3.

C H A P T E R 1

Introduction to PowerPC System Software

The PowerPC Native Environment 1-27

Figure 1-3 A transition vector

Note
Strictly speaking, a transition vector can contain any number of pointers,
as long as there are at least two. The first pointer is always the address of
the routine being called, and the second pointer is always a value to be
loaded into GPR2 prior to the execution of that routine. The second
pointer in a transition vector can serve any purpose appropriate to the
called routine. In the PowerPC environment for Macintosh computers,
the second pointer is almost always the TOC address of the fragment
containing the called routine. However, the callee is free to use the
second pointer in other ways, if this is deemed useful. Your development
system’s compiler ultimately determines the size and contents of a
transition vector. ◆

A TOC entry for an external routine points to a transition vector largely so that the

calling routine can set up an RTOC with the called fragment’s TOC value. Then, when

the called routine exits, the caller restores the RTOC to its original value, pointing to the

TOC of the calling fragment. This kind of function call is known as a cross-TOC call.
During a cross-TOC call, GPR12 is assumed to point to the transition vector itself; this

convention allows the called routine to access any additional fields in the transition

vector beyond the first two.

C H A P T E R 1

Introduction to PowerPC System Software

1-28 The PowerPC Native Environment

To access data stored in another fragment, there is no need for the caller to install the

TOC address of the other fragment in the RTOC. Instead, the TOC entry of the calling

fragment contains a pointer to the external data, in exactly the same way that a TOC

entry for global data in the same fragment contains a pointer to that data.

In short, a fragment’s table of contents contains

■ one pointer for each imported routine called by the fragment; this pointer is the
address of a transition vector in the data section of the import library.

■ one pointer for each external data item used by the fragment; this pointer is the
address of the data in the data section of the import library.

■ one pointer for each global variable.

■ one pointer for each pool of C static data internal to the fragment.

Note

Compilers and assembly-language programmers may place additional
items in a fragment’s table of contents. ◆

The size of a fragment’s TOC is determined at the time your source code is compiled

and linked, but the actual values in the TOC cannot be determined until the fragment

is loaded and prepared for execution. When the Code Fragment Manager loads a

fragment, it also loads any fragments that contain exports used by that fragment; at that

time, the addresses of those exports can be determined and placed into the original

fragment’s TOC.

The TOC provides the means whereby a routine in a given fragment can find its own

static data and any external routines it calls. In providing access to a fragment’s own

data, the TOC is analogous to the A5 world in applications created for the 680x0 run-

time environment. The TOC is more general than the A5 world, however, at least insofar

as it allows stand-alone code to have global data; in the 680x0 environment, only

applications have an A5 world and its resulting easy access to global data.

The Code Fragment Manager is responsible for dynamically resolving symbols in an

unprepared TOC by binding them with their referents. This process involves finding

unresolved imported symbols in the TOC, searching for the code or data they refer to,

and replacing the symbols with the relevant addresses. This indirection through the TOC

gives rise to a number of useful features.

■ Routines external to a fragment can be specified by name, not by address. This allows
routines to be grouped into import libraries.

■ Data can be specified by name, not by address.

■ Callback routines can be specified by name, not by address.

■ Initialization and termination routines can be included in a fragment and are executed
automatically by the Code Fragment Manager when the fragment is connected and
disconnected, respectively.

■ A fragment’s data can be either shared among multiple applications or instantiated
separately for each application that uses the fragment. This feature is especially useful
for fragments that are import libraries.

C H A P T E R 1

Introduction to PowerPC System Software

The PowerPC Native Environment 1-29

■ The Code Fragment Manager can treat two import libraries as a single import library
for the purposes of symbol resolution. This feature is especially useful for creating an
update library—an import library that contains enhancements or bug fixes for an
existing import library.

■ A fragment’s code and data can be loaded anywhere in memory, because the address
of a routine or a piece of data is always relative to the address contained in the RTOC.

Notice that TOC entries that point into another fragment always point into the data

section of that fragment. This is a consequence of the fact that code is exported only

through a transition vector in the fragment’s data section. Code symbols are never

exported directly, but only via data symbols.

Because entries in a TOC are addressed using a register value plus an offset, and because

offsets are signed 16-bit quantities, a table of contents can be at most 64 KB in size, with

at most 16,384 entries. As already noted, current compilers and linkers create only one

TOC per fragment. If you need to work with more than 16,384 pointers, you can create

one or more import libraries, each of which can itself contain up to 16,384 pointers. As a

practical matter, this is not a serious limitation.

Note

Future development tools might not create a TOC at all. The method
of collecting a fragment’s imported symbols and global data references
into a table of contents is independent of the method of packaging code
and data into a fragment. A fragment doesn’t need to have a table of
contents, but all current development systems that create fragments do
in fact create a single table of contents in each fragment. ◆

Although transition vectors are used primarily for cross-TOC calls (as described above),

they are also used for pointer-based function calls. Whenever your application takes the

address of a function (even one inside the same fragment), a transition vector is allocated

to point to that function. Indeed, all function pointers in PowerPC code are actually

pointers to transition vectors. If you are writing in assembly language, you need to be

sure to export pointers to transition vectors instead of to actual code.

Special Routines

A fragment can define three special symbols that are separate from the list of symbols

exported by the fragment. These symbols define an initialization routine, a termination

routine, and a main routine (or block of data). These routines, if present, are called at

specific times during the loading, unloading, or normal execution of a fragment. A

fragment that is an application must define a main symbol that is the application’s entry

point. Import libraries and extensions may or may not define any of these symbols.

A fragment’s initialization routine is called as part of the process of loading and

preparing the fragment. You can use the initialization routine to perform any actions that

should be performed before any of the fragment’s other code or static data is accessed.

When a fragment’s initialization routine is executed, it is passed a pointer to a fragment

initialization block, a data structure that contains information about the fragment. In

particular, the initialization block contains information about the location of the

C H A P T E R 1

Introduction to PowerPC System Software

1-30 The PowerPC Native Environment

fragment’s container. (For example, if an import library’s code fragment is contained in

some file’s data fork, you can use that information to find the file’s resource fork.)

It’s important to know when the initialization routine for a fragment is executed. If the

loading and preparation of a fragment cause a (currently unloaded) import library to be

loaded in order to resolve imports in the first fragment, the initialization routine of the

import library is executed before that of the first fragment. This is obviously what you

would expect to happen, because the initialization routine of the first fragment might

need to use code or data in the import library. In case there are two import libraries that

depend upon each other, their developer may specify which should be initialized first.

A fragment’s termination routine is executed as part of the process of unloading a

fragment. You can use the termination routine to undo the actions of the initialization

routine or, more generally, to release any resources or memory allocated by the fragment.

Note

See “Fragment-Defined Routines” beginning on page 3-26 in the chapter
“Code Fragment Manager” in this book for more information about a
fragment’s initialization and termination routines. ◆

The use of a fragment’s main symbol depends upon the type of fragment containing it.

For applications, the main symbol refers to the main routine, which is simply the usual

entry point. The main routine typically performs any necessary application initialization

not already performed by the initialization routine and then jumps into the application’s

main event loop. For import libraries, the main symbol (if it exists) is ignored. For

extensions having a single entry point, a main routine can be used instead of an exported

symbol to avoid having to standardize on a particular name.

IMPORTANT

In fact, the main symbol exported by a fragment does not have to refer
to a routine at all; it can refer instead to a block of data. You can use this
fact to good effect with application extensions, where the block of data
referenced by the main symbol can contain essential information about
the extension. For instance, a loadable tool contained in a fragment
might store its name, icon, and other information in that block. The
Code Fragment Manager returns the address of the main symbol when
you programmatically load and prepare a fragment. ▲

Fragment Storage

As you’ve learned, the physical storage for a fragment is a container. A container can be

any logically contiguous piece of storage, such as the data fork of a file (or some portion

thereof), the Macintosh ROM, or a resource. In the first version of the system software

for PowerPC processor-based Macintosh computers, the Code Fragment Loader can

recognize two kinds of container formats, the Extended Common Object File Format
(XCOFF) and the Preferred Executable Format (PEF).

XCOFF is a refinement of the Common Object File Format (COFF), the standard

executable file format on many UNIX®-based computers. XCOFF is supported on

C H A P T E R 1

Introduction to PowerPC System Software

The PowerPC Native Environment 1-31

Macintosh computers primarily because the early development tools produce executable

code in the XCOFF format.

IMPORTANT

Not all object code in the XCOFF format will execute on Macintosh
computers. Any XCOFF code that uses UNIX-style memory services or
that otherwise depends on UNIX features will not execute correctly on
Macintosh computers. ▲

PEF is an object file format defined by Apple Computer. A container in the PEF format is

dramatically smaller than the corresponding container in the XCOFF format. This

smaller size reduces both the disk space occupied by the container and the time needed

to load the container’s code and data into memory. More importantly, PEF provides

support for a fragment’s optional initialization and termination routines and for the

version checking performed by the Code Fragment Manager when an import library is

connected to a fragment.

As you know, the mixed environment provided by the first version of the system

software for PowerPC processor-based Macintosh computers allows the user to run

both 680x0 and PowerPC applications. The Process Manager needs some method of

determining, at the time the user launches an application, what kind of application it is.

Because the mixed environment is intended to support existing 680x0 applications

unmodified, the Process Manager assumes that an application is a 680x0 application,

unless you specifically indicate otherwise. You do this by including, in the resource fork

of your PowerPC application, a code fragment resource. This resource (of type 'cfrg'

and ID 0) indicates the instruction set architecture of your application’s executable code,

as well as the location of the code’s container. Typically, the code and data for a PowerPC

application are contained in your application’s data fork, as shown in Figure 1-4.

Figure 1-4 The structure of a PowerPC application

C H A P T E R 1

Introduction to PowerPC System Software

1-32 The PowerPC Native Environment

If your application contains a code fragment resource, the Process Manager calls the

Code Fragment Manager to load and prepare your application’s code and data. If, on the

other hand, your application does not contain a code fragment resource, the Process

Manager assumes that your application is a 680x0 application; in this case, the Process

Manager calls the Segment Manager to load your application’s executable code from

resources of type 'CODE' in your application’s resource fork, as illustrated in Figure 1-5.

Figure 1-5 The structure of a 680x0 application

Listing 1-5 shows the Rez input for a sample code fragment resource.

Listing 1-5 The Rez input for a sample 'cfrg' resource

#include "CodeFragmentTypes.r"

resource 'cfrg' (0) {

{

kPowerPC, /*instruction set architecture*/

kFullLib, /*no update level for apps*/

kNoVersionNum, /*no implementation version number*/

kNoVersionNum, /*no definition version number*/

kDefaultStackSize, /*use default stack size*/

kNoAppSubFolder, /*no library directory*/

kIsApp, /*fragment is an application*/

kOnDiskFlat, /*fragment is on disk*/

kZeroOffset, /*fragment starts at fork start*/

kWholeFork, /*fragment occupies entire fork*/

C H A P T E R 1

Introduction to PowerPC System Software

The PowerPC Native Environment 1-33

"SurfWriter" /*name of the application*/

}

};

The 'cfrg' resource specification in Listing 1-5 indicates, among other things, that the

application consists of PowerPC code, that the code is contained in the application’s data

fork, and that the code container occupies the entire data fork. It’s possible to have the

container occupy only part of the data fork, if you need to put other information in

the data fork as well. (Some applications, for instance, put copyright or serial number

information in their data fork.) You do this by specifying a nonzero offset for the begin-

ning of the code fragment. Alternatively, you can move the information previously

contained in the data fork into one or more resources in your application’s resource fork,

thereby reserving the entire data fork for the PowerPC code fragment.

Note

For information about the other fields in a code fragment resource,
see the chapter “Code Fragment Manager” in this book. ◆

This recommended placement of an application’s PowerPC code in the data fork makes

it easy to create fat applications that contain both PowerPC and 680x0 executable code.

A fat application contains 680x0 code in 'CODE' resources in the resource fork and

PowerPC code in the data fork, as shown in Figure 1-6.

Figure 1-6 The structure of a fat application

The advantage of a fat application is that it can be executed on either 680x0-based or

PowerPC processor-based Macintosh computers. The Process Manager on 680x0-based

Macintosh computers knows nothing about 'cfrg' resources. As a result, it ignores the

C H A P T E R 1

Introduction to PowerPC System Software

1-34 The PowerPC Native Environment

code contained in the data fork and uses the code contained in the application’s 'CODE'

resources. The Process Manager on PowerPC processor-based Macintosh computers,

however, reads the 'cfrg' resource and uses the code in the specified location (usually,

the data fork); the 680x0 'CODE' resources in the resource fork are ignored.

Ideally, you should package your application as a fat application, to give your users

maximum flexibility in how they manage their working environment. For example, a

user might move a storage device (such as a hard disk) containing your application from

a 680x0-based Macintosh computer to a PowerPC processor-based Macintosh computer.

If your application is fat, it can be launched successfully in either environment.

For various reasons, however, you might decide not to package your application as a

fat application. If so, you should at the very least include an executable 680x0 'CODE'

resource that displays an alert box informing the user that your application runs only on

PowerPC processor-based Macintosh computers.

Note

Import libraries also need a code fragment resource, to indicate the
location of the container and the appropriate version information.
See the chapter “Code Fragment Manager” in this book for information
about creating a 'cfrg' resource for an import library. ◆

Executable Resources

The Code Fragment Manager is extremely flexible in where it allows fragments to be

stored. As you’ve seen, an application’s executable code and global data are typically

stored in a container in the application’s data fork. Import libraries supplied as part of

the Macintosh system software are often stored in ROM, while import libraries created

by third-party developers are usually stored in the data forks of files on disk. It’s also

possible to use resources as containers for executable PowerPC code. This section

describes how to work with executable resources in the PowerPC environment.

There are two kinds of executable resources you can create that contain PowerPC code:

resources whose behavior is defined by the system software (or by some other software)

and those whose behavior is defined by your application alone. For present purposes,

these two kinds of resources are called accelerated and private resources, respectively.

Note

The terms accelerated and private are used here simply to help distinguish
these two kinds of executable resources containing PowerPC code. They
are not used elsewhere in this book or in Inside Macintosh. ◆

First, you can put an executable PowerPC code fragment into a resource to obtain

a PowerPC version of a 680x0 stand-alone code module. For example, you might

recompile an existing menu definition procedure (which is stored in a resource of type

'MDEF') into PowerPC code. Because the Menu Manager code that calls your menu

definition procedure might be 680x0 code, a mode switch to the PowerPC environment

might be required before your definition procedure can be executed. As a result, you

need to prepend a routine descriptor onto the beginning of the resource, as shown in

Figure 1-7. These kinds of resources are called accelerated resources because they are

C H A P T E R 1

Introduction to PowerPC System Software

The PowerPC Native Environment 1-35

faster implementations of existing kinds of resources. You can transparently replace

680x0 code resources by accelerated PowerPC code resources without having to change

the software (for example, the application) that uses them.

Figure 1-7 The structure of an accelerated resource

Sometimes it’s useful to keep the executable code of a definition function in some

location other than a resource. To do this, you need to create a stub definition resource

that is of the type expected by the system software and that simply jumps to your code.

For example, Listing 1-6 shows the Rez input for a stub list definition resource.

Listing 1-6 Rez input for a list definition procedure stub

data 'LDEF' (128, "MyCustomLDEF", preload, locked) {

/*need to fill in destination address before using this stub*/

$"41FA 0006" /*LEA PC+8, A0 ;A0 <- ptr to destination address*/

$"2050" /*MOVEA.L (A0), A0 ;AO <- destination address*/

$"4ED0" /*JMP (A0) ;jump to destination address*/

$"00000000" /*destination address*/

};

Your application (or other software) is responsible for filling in the destination address

before the list definition procedure is called by the List Manager. For 680x0 code, the

destination address should be the address of the list definition procedure itself. For

C H A P T E R 1

Introduction to PowerPC System Software

1-36 The PowerPC Native Environment

PowerPC code, the destination address should be a universal procedure pointer (that is,

the address of a routine descriptor for the list definition procedure).

By contrast, you can create a resource containing executable PowerPC code solely for the

purposes of your application (perhaps on analogy with the standard kinds of code-

bearing resources used by the system software). Because these kinds of executable

resources do not conform to a calling interface defined by the system software (or by some

other widely available software, such as HyperCard), they are called private resources.
The code in private resources is called only by your application, not by any other external

code. As a result, there is no need to put a routine descriptor onto the beginning of the

executable code. Figure 1-8 shows the general structure of a private resource.

Figure 1-8 The structure of a private resource

It’s important to understand the distinction between accelerated and private resources,

so that you know when to create them and how to load and execute the code they

contain. An accelerated resource is any resource containing PowerPC code that has a

single entry point at the top (the routine descriptor) and that models the traditional

behavior of a 680x0 stand-alone code resource. There are many examples, including menu

definition procedures (stored in resources of type 'MDEF'), control definition functions

(stored in resources of type 'CDEF'), window definition functions (stored in resources of

type 'WDEF'), list definition procedures (stored in resources of type 'LDEF'), HyperCard

extensions (stored in resources of type 'XCMD'), and so forth. A private resource is any

other kind of executable resource whose code is called directly by your application.

C H A P T E R 1

Introduction to PowerPC System Software

The PowerPC Native Environment 1-37

IMPORTANT

For several reasons, it’s generally best to avoid using private resources
unless you absolutely must put some code into a resource. As you’ll see
later (in “File Mapping” on page 1-53), the executable code of a private
resource is loaded into your application’s heap and is not eligible for
file mapping. Whenever possible, you should put executable PowerPC
code into your application’s data fork or create your own application-
specific files. ▲

In most cases, you don’t need to do anything special to get the system software to

recognize your accelerated resource and to call it at the appropriate time. For

example, the Menu Manager automatically loads a custom menu definition procedure

into memory when you call GetMenu for a menu whose 'MENU' resource specifies

that menu definition procedure. Similarly, HyperCard calls code like that shown in

Listing 1-7 to load a resource of type 'XCMD' into memory and execute the code

it contains.

Listing 1-7 Using an accelerated resource

Handle myHandle;

XCmdBlock myParamBlock;

myHandle = Get1NamedResource('XCMD', '\pMyXCMD');

HLock(myHandle);

/*Fill in the fields of myParamBlock here.*/

CallXCMD(&myParamBlock, myHandle);

HUnlock(myHandle);

The caller of an accelerated resource executes the code either by jumping to the code (if

the caller is 680x0 code) or by calling the Mixed Mode Manager CallUniversalProc

function (if the caller is PowerPC code). In either case, the Mixed Mode Manager calls

the Code Fragment Manager to prepare the fragment, which is already loaded into

memory. With accelerated resources, you don’t need to call the Code Fragment Manager

yourself. In fact, you don’t need to do anything special at all for the system software

to recognize and use your accelerated resource, if you’ve built it correctly. This is

because the system software is designed to look for, load, and execute those resources

in the appropriate circumstances. In many cases, your application passes to the system

software just a resource type and resource ID. The resource must begin with a routine

descriptor, so that the dereferenced handle to the resource is a universal procedure

pointer.

C H A P T E R 1

Introduction to PowerPC System Software

1-38 The PowerPC Native Environment

IMPORTANT

The MPW interface file MixedMode.r contains Rez templates that you
can use to create the routine descriptor that appears at the beginning
of an accelerated resource. If you want to build the routine descriptor
yourself or if you want to build a fat accelerated resource (which
contains both PowerPC and 680x0 code), see the section “Executing
Resource-Based Code” beginning on page 2-24 in the chapter “Mixed
Mode Manager” in this book. ▲

The code shown in Listing 1-7—or similar code for any other accelerated resource—can

be executed multiple times with no appreciable performance loss. If the code resource

remains in memory, the only overhead incurred by Listing 1-7 is to lock the code, fill in

the parameter block, jump to the code, and then unlock it. However, because of the way

in which the system software manages your accelerated resources, there are several key

restrictions on their operation:

■ An accelerated resource cannot contain a termination routine, largely because the
Operating System doesn’t know when the resource is no longer needed and hence
when the resource can be unloaded. The Code Fragment Manager effectively forgets
about the connection to your resource as soon as it has prepared the resource for
execution.

■ An accelerated resource must contain a main symbol, which must be a procedure. For
example, in an accelerated 'MDEF' resource, the main procedure should be the menu
definition procedure itself (which typically dispatches to other routines contained in
the resource).

■ You cannot call the Code Fragment Manager routine FindSymbol to get information
about the exported symbols in an accelerated resource. More generally, you cannot
call any Code Fragment Manager routine that requires a connection ID as a parameter.
The connection ID is maintained internally by the Operating System and is not
available to your application.

■ The fragment’s data section is instantiated in place (that is, within the block of
memory into which the resource itself is loaded). For in-place instantiation, you
need to build an accelerated resource using an option that specifies that the data
section of the fragment not be compressed. See the documentation for your soft-
ware development system for instructions on doing this.

Note

If you use the MakePEF tool to help build an accelerated resource, you
should specify the -b option to suppress data section compression. ◆

You might have noticed that the code shown in Listing 1-7 unlocks the 'XCMD' resource

after executing it. By unlocking the resource, the caller is allowing it to be moved around

in memory or purged from memory altogether. This behavior—which is perfectly

acceptable in the 680x0 environment—contradicts the general rule that fragments are not

allowed to move in memory after they’ve been loaded and prepared (see page 1-23). To

allow accelerated PowerPC resources to be manipulated just like 680x0 code resources,

the Mixed Mode Manager and the Code Fragment Manager cooperate to make sure that

the code is ready to be executed when it is called. If the resource code hasn’t been moved

since it was prepared for execution, then no further action is necessary. If, however, the

C H A P T E R 1

Introduction to PowerPC System Software

The PowerPC Native Environment 1-39

code resource has moved or been reloaded elsewhere in memory, some of the global data

in the resource might have become invalid. For example, a global pointer might become

dangling if the code or data it points to has moved. To help avoid dangling pointers, the

Code Fragment Manager updates any pointers in the fragment’s data section that are

initialized at compile time and not modified at run time. However, the Code Fragment

Manager cannot update all global data references in an accelerated resource that has

moved in memory. There is, therefore, an important restriction on using global data in

accelerated resources:

■ An accelerated resource must not use global pointers (in C code, pointers declared as
extern or static) that are either initialized at run time or contained in dynamically
allocated data structures to point to code or data contained in the resource itself. An
accelerated resource can use uninitialized global data to point to objects in the heap.
In addition, an accelerated resource can use global pointers that are initialized at
compile time to point to functions, other global data, and literal strings, but these
pointers cannot be modified at run time.

Listing 1-8 shows some declarations that can be used in an accelerated resource,

provided that the resource code does not change the values of the initialized variables.

Listing 1-8 Some acceptable global declarations in an accelerated resource

int a; /*uninitialized; not modified if resource moves*/

Ptr myPtr; /*uninitialized; not modified if resource moves; */

/* can be assigned at run time to point to heap object*/

Handle *h; /*uninitialized; not modified if resource moves; */

/* can be assigned at run time to point to heap object*/

int *b = &a; /*updated each time resource moves*/

char *myStr = "Hello, world!"; /*updated each time resource moves*/

extern int myProcA(), myProcB();

struct {

int (*one)();

int (*two)();

char *str;

} myRec = {myProcA, myProcB, "Hello again!"};

/*all three pointers are updated each time resource moves*/

Listing 1-9 shows some data declarations and code that will not work in an accelerated

resource that is moved or purged.

Listing 1-9 Some unacceptable global declarations and code in an accelerated resource

int a;

int *b;

int *c = &a;

Ptr (*myPtr) (long) = NewPtr;

C H A P T E R 1

Introduction to PowerPC System Software

1-40 The PowerPC Native Environment

static Ptr MyNewPtr();

struct myHeapStruct {

int *b;

Ptr (myPtr) (long);

} *hs;

b = &a; /*b does not contain &a after resource is moved*/

c = NULL; /*c does not contain NULL after resource is moved*/

c = (int *) NewPtr(4); /*dangling pointer after resource is moved*/

myPtr = MyNewPtr; /*dangling pointer after resource is moved*/

hs = NewPtr(sizeof(myHeapStruct));

/*hs still points to nonrelocatable heap block after move*/

hs->b = &a; /*hs->b will not point to global a after move*/

hs->myPtr = MyNewPtr;

/*hs->myPtr will not point to MyNewPtr after move*/

Note that a code fragment stored as an accelerated resource can import both code and

data from an import library. The code and data in the import library do not move in

memory. As a result, you can sidestep the restrictions on global data in an accelerated

resource by putting the global data used by the accelerated resource into an import

library. The import library is unloaded only when your application terminates, not when

the accelerated resource is purged.

To load and prepare a private resource, you need to call the Resource Manager, Memory

Manager, and Code Fragment Manager explicitly, as shown in Listing 1-10.

Listing 1-10 Using a private resource

Handle myHandle;

OSErr myErr;

ConnectionID myConnID;

Ptr myMainAddr;

Str255 myErrName;

myHandle = Get1NamedResource('RULE', '\pDeM');

HLock(myHandle);

myErr = GetMemFragment(*myHandle, GetHandleSize(myHandle),

'\pDeM', kLoadNewCopy, &myConnID, (Ptr*)&myMainAddr,

myErrName);

/*Call the code in here.*/

myErr = CloseConnection(myConnID);

HUnlock(myHandle);

C H A P T E R 1

Introduction to PowerPC System Software

The PowerPC Native Environment 1-41

None of the restrictions on accelerated resources listed above applies to your own

private code-bearing resources. For instance, you do have access to the connection ID

to the resource-based fragment (as you can see in Listing 1-10), so you can call Code

Fragment Manager routines like CloseConnection and FindSymbol. However, the

overhead involved in loading the code fragment and later unloading it is nontrivial,

so you should avoid closing the connection to a private resource (that is, calling

CloseConnection) until you’re done using it.

Because a private resource is just a fragment stored in a resource, it’s preferable to

avoid using private resources, whenever possible, by putting that code and data into

some file. By doing this, you gain the benefits afforded by the system software to file-

based fragments (such as file mapping directly from the file’s data fork). You should use

private executable resources only in cases where your code absolutely must be packaged

in a resource.

Calling Conventions
The software development tools and the system software for PowerPC processor-based

Macintosh computers dictate a set of calling conventions that are significantly different

from those you might be used to in the 680x0 execution environment. The new calling

conventions are designed to reduce the amount of time required to call another piece of

code and to simplify the entire code-calling process. In the 680x0 environment, there are

many ways for one routine to call another, depending on whether the called routine

conforms to Pascal, C, Operating System, or other calling conventions. In the PowerPC

environment, there is only one standard calling convention, having these features:

■ Most parameters are passed in registers dedicated for that purpose. The large number
of general-purpose and floating-point registers makes this goal quite easy to achieve.
Parameters are passed on the stack only when they cannot be put into registers.

■ The size of a stack frame is determined at compile time, not dynamically at run time.

■ Stack frames are subject to a strict set of rules governing their structure. The new
run-time architecture reserves specific areas of a stack frame for saved registers, local
variables, parameters, and stack frame linkage information (such as the return
address and the beginning of the previous stack frame).

The following sections describe these differences in greater detail. They begin by

reviewing the procedure calling conventions that exist on 680x0-based Macintosh

computers. Then they describe the calling conventions adopted for PowerPC

processor-based Macintosh computers and show how those conventions affect the

organization of the stack.

IMPORTANT

The information in the following sections is provided primarily for
debugging purposes or for compiler writers and assembly-language
programmers, who need to conform to the new calling conventions.
Because generating code conforming to these conventions is handled
automatically by your compiler, you might not need this information
for writing applications in a high-level language. ▲

C H A P T E R 1

Introduction to PowerPC System Software

1-42 The PowerPC Native Environment

The 680x0 Calling Conventions

To appreciate how different the PowerPC calling conventions are from the 680x0 calling

conventions, it’s useful to review the model used on 680x0-based Macintosh computers.

On 680x0-based computers, there is a conventional grow-down stack whose parts are

delimited by two pointers: a stack pointer and a frame pointer. Figure 1-9 illustrates a

typical 680x0 stack frame.

Figure 1-9 A 680x0 stack frame

Note
By convention, the stack grows from high memory addresses toward
low memory addresses. The end of the stack that grows or shrinks is
usually referred to as the “top” of the stack, even though it’s actually at
the lower end of memory occupied by the stack. ◆

The stack pointer (SP) points to the top of the stack and defines its current downward

limit. All operations that push data onto the stack or pop data off it do so by reading and

then modifying the stack pointer. The Operating System uses the 680x0 register A7 as the

stack pointer.

The frame pointer (FP) points to the base in memory of the current stack frame, the area

of the stack used by a routine for its parameters, return address, local variables, and

temporary storage. Because the Operating System maintains the frame pointer, it can

easily find the beginning of the stack frame when it’s time to pop it off the stack. The

Operating System uses the 680x0 register A6 as the frame pointer.

A routine’s parameters are always placed on the stack above the frame pointer, and its

local variables are always placed below the frame pointer. The 680x0 hardware enforces

C H A P T E R 1

Introduction to PowerPC System Software

The PowerPC Native Environment 1-43

16-bit alignment for parameters on the stack. So, for example, if you push a single byte

onto the stack, the stack pointer is decremented by 2 bytes rather than 1.

The order of the parameters on the stack differs according to the language type of the

called routine. When you call a C routine on a 680x0-based Macintosh computer, the

parameters are pushed onto the stack in order from right to left. This order is dictated by

the fact that the C language allows routines with a variable number of parameters. The

first parameter (which often indicates how many parameters are being passed) must

always be pushed onto the stack last, so that it resides at a fixed offset from the frame

pointer. Moreover, because only the caller knows how many parameters it pushed onto

the stack, it is always the caller’s responsibility to pop the parameters off the stack.

Finally, with C routines, a function result is returned in register D0 (or, for floating-point

results, in register FPR0). However, structures and other large values are handled

differently: the caller allocates space for the result and passes a pointer to that storage as

the first (that is, leftmost) parameter.

The calling conventions for Pascal routines are different from those for C routines. For

Pascal routines, the caller pushes space for the return result onto the stack before

pushing the parameters. The caller pushes parameters onto the stack from left to right.

Because Pascal does not allow routines with a variable number of parameters, the size of

a stack frame can be determined at compile time. It is therefore the responsibility of the

called routine to remove the parameters from the stack before returning.

Note

These differences between C and Pascal are due entirely to
historical factors, not to any requirements of the 680x0
environment. It would have been possible for Pascal routines
to follow the C calling conventions. ◆

There are still other calling conventions followed on 680x0-based Macintosh computers.

Macintosh Toolbox managers generally follow Pascal conventions, although some of the

most recent additions to the Toolbox follow C conventions. More importantly, the

Macintosh Operating System typically ignores the stack altogether. Instead, Operating

System calls generally pass parameters and return results in registers.

The PowerPC Calling Conventions

The native run-time environment on PowerPC processor-based Macintosh computers

uses a set of uniform calling conventions:

■ Parameters are processed from left to right and are placed into general-purpose
registers GPR3 through GPR10 and (when necessary) floating-point registers FPR1
through FPR13.

■ Function results are returned in GPR3, FPR1, or by passing a pointer to a structure as
the implicit leftmost parameter (as in the 680x0 C implementation).

■ Any parameters that do not fit into the designated registers are passed on the stack. In
addition, enough space is allocated on the stack to hold all parameters, whether they
are passed in registers or not.

C H A P T E R 1

Introduction to PowerPC System Software

1-44 The PowerPC Native Environment

Like the 680x0 run-time environment, the PowerPC run-time environment uses a grow-

down stack that contains areas for a routine’s parameters, for linkage information, and

for local variables. However, the organization of the stack in the PowerPC environment

is significantly different from that in the 680x0 environment. The PowerPC run-time

environment uses a single stack pointer and no frame pointer. To achieve this simplifica-

tion, the PowerPC stack has a much more rigidly defined structure than does the stack in

the 680x0 environment. Figure 1-10 illustrates the general structure of the stack in the

PowerPC environment.

Figure 1-10 The PowerPC stack

The caller’s stack frame includes a parameter area and some linkage information. The

parameter area in each stack frame is used by the caller to hold the parameters of any

routines the caller calls (not the parameters of the caller itself). Of course, a given routine

might in turn call several other routines; if so, the parameter area in the caller’s stack

frame is made large enough to accommodate the largest parameter list of all routines the

caller calls. It is the caller’s responsibility to set up the parameter area before each call to

some other routine, and the callee’s responsibility to access its parameters from that

parameter area. See the following section, “Parameter Passing” on page 1-47, for details

on the structure of a routine’s parameter area.

Once the caller has set up the parameters for a call to some other routine, it then stores

its own RTOC value in its linkage area, an area of the caller’s stack frame that holds the

C H A P T E R 1

Introduction to PowerPC System Software

The PowerPC Native Environment 1-45

saved stack pointer, Condition Register (CR), Link Register (LR), and RTOC values. It is

necessary to save the caller’s RTOC value because the callee might reside in another

fragment, a situation that would require that the callee’s RTOC value be installed in the

RTOC. The caller always restores its RTOC value immediately upon return from the

callee. The callee’s prolog writes the saved Condition Register and Link Register into the

caller’s linkage area. The structure of a linkage area is illustrated in Figure 1-11.

IMPORTANT

The RTOC value is saved and restored only for two kinds of subroutine
calls: cross-TOC calls and pointer-based calls. In all other cases, the
RTOC field of the caller’s linkage area is ignored. ▲

Figure 1-11 The structure of a stack frame’s linkage area

Notice that the linkage area always appears at the “top” of the stack, adjacent to the

stack pointer. This positioning is necessary to allow the caller to find and restore the

values saved there, and to allow the callee to find the caller’s parameter area. One

consequence of this requirement, however, is that a routine cannot push and pop

arbitrary values on the stack after a stack frame is set up.

A PowerPC stack frame also includes space for the callee’s local variables. In general, the

general-purpose registers GPR13 through GPR31 and the floating-point registers FPR14

through FPR31 are reserved for a routine’s local variables. If a particular routine has

more local variables than fit entirely into the registers reserved for them, it uses addi-

tional space on the stack. The size of the area used for local variables is determined at

compile time; once a stack frame is allocated, the area for local variables cannot grow

or shrink.

The callee is responsible for allocating its own stack frame, making sure to preserve

8-byte alignment on the stack. The callee allocates its stack frame by decrementing the

stack pointer, then writes the previous stack pointer into its own linkage area and saves

all nonvolatile general-purpose and floating-point registers into the saved registers area

of its stack frame. All of these actions are performed by a standard piece of

compiler-generated code called the prolog.

C H A P T E R 1

Introduction to PowerPC System Software

1-46 The PowerPC Native Environment

Note
The order in which the callee’s prolog performs these actions is
determined by convention, not by any requirements of the PowerPC
run-time architecture. Also, the callee saves only those nonvolatile
registers it uses; if the callee doesn’t change a particular nonvolatile
register, it doesn’t bother to save and restore it. ◆

When the callee exits, its epilog code restores the nonvolatile registers that its prolog

previously saved. The Link Register and Condition Register are restored from the

linkage area in the caller’s stack frame. The nonvolatile general-purpose registers

(namely, GPR13 through GPR31) and floating-point registers (namely, FPR14 through

FPR31) are restored from the saved register area in the callee’s stack frame. The RTOC

value of the caller is, however, restored by the caller immediately upon return from the

called routine.

There is one special case in which a callee’s stack usage does not conform to the structure

shown in Figure 1-10—namely, when the callee is a leaf procedure. A leaf procedure

is a procedure that calls no other procedures. Because it doesn’t call any procedures,

it doesn’t need to allocate a parameter area on the stack. If, in addition, a leaf procedure

doesn’t need to use the stack for any local variables, it needs to save and restore only

those nonvolatile registers that it uses for local parameters.

Leaf procedures, due to their limited stack requirements, can use a special area on the

stack called the Red Zone. The Red Zone is the area just below the stack pointer, in the

area where a new stack frame normally would be allocated (see Figure 1-12). Because by

definition only one leaf procedure can be active at any time, there is no possibility of

multiple leaf procedures competing for the same Red Zone space.

Figure 1-12 The Red Zone

It’s important to realize that a leaf procedure doesn’t actually allocate a stack frame for

itself and that it doesn’t decrement the stack pointer. Instead, it stores its LR and CR

values in the linkage area of the routine that calls it (if necessary) and stores the values

of any nonvolatile registers it uses in the Red Zone. As a result, the epilog of a leaf

procedure doesn’t need to tear down a stack frame. Instead, the epilog needs at most to

C H A P T E R 1

Introduction to PowerPC System Software

The PowerPC Native Environment 1-47

restore the calling routine’s LR and CR values. This allows leaf procedures to execute

faster than they would if they had to set up and later tear down a complete stack frame.

Note

A leaf procedure uses the Red Zone in place of a stack frame only when
your code is compiled with speed optimization enabled. ◆

Using the Red Zone in this way can, however, cause problems for native exception

handlers, because an exception handler cannot know in advance if a leaf procedure is

executing at the time the exception occurs (and hence cannot know if the Red Zone

contains information that should be preserved). A native exception handler must

therefore decrement the stack pointer by 224 bytes (the largest possible register save

area) before using the stack, to skip over any Red Zone that might currently be in use.

Note

The value 224 is the space occupied by nineteen 32-bit general-purpose
registers plus eighteen 64-bit floating-point registers, rounded up to the
nearest 8-byte boundary. If a leaf procedure’s Red Zone usage would
exceed 224 bytes, then the leaf procedure is forced to use a stack frame,
like any other procedure. ◆

In general, you should use the new Exception Manager to install any native exception

handlers your application or other software defines. The Exception Manager automati-

cally adjusts the stack pointer before calling your exception handler and then restores it

after your handler exits. See the chapter “Exception Manager” in this book for complete

details on writing and installing a native exception handler.

IMPORTANT

The calling conventions and stack usage described in this section are
those of the PPCC compiler and the Macintosh Operating System. Other
compilers may employ different calling conventions. ▲

Parameter Passing

In the PowerPC run-time environment, as you’ve already learned, parameters are

usually passed from a caller to a callee in registers. The fact that there are many general-

purpose and floating-point registers dedicated for parameter passing makes it extremely

likely that all of a subroutine’s parameters can be passed in registers. Passing parameters

in registers reduces the number of memory accesses required (namely, to read the stack

frame) and thereby increases the performance of your software.

Any parameters that cannot be passed in registers are instead passed in the parameter

area of the caller’s stack frame. This section describes the way in which a caller prepares

the registers and the parameter area for the callee.

IMPORTANT

You need the information in this section only for machine-level
debugging purposes, to understand the contents of the general-purpose
and floating-point registers and the structure of the parameter area in a
caller’s stack frame. ▲

C H A P T E R 1

Introduction to PowerPC System Software

1-48 The PowerPC Native Environment

The compiler assigns parameters to registers and to the parameter area in the caller’s

stack frame according to this algorithm:

■ The parameters are arranged in order as if they were fields of a record.

■ The leftmost parameter is the first field.

■ Each field is aligned on a 32-bit word boundary.

■ Integer parameters occupying less than 32 bits are extended to 32 bits.

■ Some parameter values are passed in registers.

■ The first 8 words are passed in GPR3 through GPR10.

■ However, the first 13 floating-point parameters are passed in FPR1 through FPR13.

■ Simple function results are returned in GPR3 or FPR1.

■ Composite data (that is, custom data structures such as Pascal records or C structures)
are passed intact, without expanding the fields to achieve word alignment. When
composite data is returned, the caller leaves enough room to hold the result on the
stack, puts the address of the result into GPR3, and starts the parameters in GPR4.

■ Any parameters that do not fit into the available registers are passed in the parameter
area of the caller’s stack frame.

The compiler generates a parameter area in the caller’s stack frame that is large enough

to hold all parameters passed to the callee, regardless of how many of the parameters are

actually passed in registers. There are several reasons for this scheme. First of all, it

provides the callee with space to store a register-based parameter if it wants to use one of

the parameter registers for some other purpose (for instance, to pass parameters to a

subroutine). In addition, routines with variable-length parameter lists must access their

parameters from RAM, not from registers. Finally, code that is built to allow debugging

automatically writes parameters from the parameter registers into the parameter area in

the stack frame; this allows you to see all the parameters by looking only at that

parameter area.

Consider, for example, a function MyFunction with this declaration:

void MyFunction (int i1, float f1, double d1, short s1, double d2,

unsigned char c1, unsigned short s2, float f2, int i2);

Note

On the PowerPC processor, integers and long integers are both 32 bits
long and short integers are 16 bits long. Variables of type float are
32 bits long; variables of type double are 64 bits long. ◆

To see how the parameters of MyFunction are arranged in the parameter area on the

stack, first convert the parameter list into a structure, as follows:

struct params {

int pi1;

float pf1;

double pd1;

short ps1;

C H A P T E R 1

Introduction to PowerPC System Software

The PowerPC Native Environment 1-49

double pd2;

unsigned char pc1;

unsigned short ps2;

float pf2;

int pi2;

};

This structure serves as a template for constructing the parameter area on the stack.

(Remember that, in actual practice, many of these variables are passed in registers;

nonetheless, the compiler still allocates space for all of them on the stack, for the reasons

just mentioned.)

The “top” position on the stack is for the field pi1 (the structure field corresponding to

parameter i1). The floating-point field pf1 is assigned to the next word in the parameter

area. The 64-bit double field pd1 is assigned to the next two words in the parameter

area. Next, the short integer field ps1 is placed into the following 32-bit word; the

original value of ps1 is in the lower half of the word, and the padding is in the upper

half. The remaining fields of the param structure are assigned space on the stack in

exactly the same way, with unsigned values being extended to fill each field to a 32-bit

word. The final arrangement of the stack is illustrated in Figure 1-13. (Because the stack

grows down, it looks as though the fields of the params structure are upside down.)

Figure 1-13 The organization of the parameter area on the stack

C H A P T E R 1

Introduction to PowerPC System Software

1-50 The PowerPC Native Environment

To see which parameters are passed in registers and which are passed on the stack, you

need to map the stack, as illustrated in Figure 1-13, to the available general-purpose and

floating-point registers. Registers GPR0 through GPR2, and register FPR0, are reserved

for other uses. Therefore, the parameter i1 is passed in GPR3, the first available

general-purpose register. The floating-point parameter f1 is passed in FPR1, the first

available floating-point register.

Placing a floating-point parameter into a floating-point register also reserves one or two

general-purpose registers, depending on whether the parameter is 32 or 64 bits long.

This behavior is dictated in order to support the ability of a C function to call another

function without knowing the number or types of the callee’s parameters—that is,

without knowing the callee’s prototype. When no function prototype for the callee is

available to the caller, the compiler cannot know whether to pass a given parameter

in the general-purpose (that is, fixed-point) registers or in the floating-point registers.

As a result, the compiler passes the parameter in both the floating-point and the general-

purpose registers.

Even when the caller knows the function prototype of the callee, it still reserves one or

two general-purpose registers for each floating-point register it fills. The only difference

between cases in which the prototype is available and cases in which the prototype isn’t

available is that the floating-point parameters are copied into the general-purpose

register(s) in the latter cases but not in the former.

The parameter d1 is placed into FPR2 and the corresponding general-purpose registers

GPR5 and GPR6 are masked out. The parameter s1 is placed into the next available

general-purpose register, GPR7. Parameter d2 is placed into FPR3, with GPR8 and GPR9

masked out. Parameter c1 is placed into GPR10, thereby exhausting all available general-

purpose registers. However, parameter f2 is passed in FPR4, which is still available.

Notice that there are no general-purpose registers that can be masked out for FPR4; as a

result, the parameter f2 is passed both in FPR4 and on the stack. Finally, parameters s2

and i2 must be passed on the stack, because there are no more general-purpose registers

to hold them.

Note

It would have been possible to pass all the fixed-point values in registers
if the floating-point parameters had been grouped at the end of the
parameter list. ◆

There is a special case that applies to routines that take a variable number of parameters

(for example, the C language function printf). The callee doesn’t know how many

parameters are being passed to it on any given call. As a result, the callee saves registers

GPR3 through GPR10 into the parameter area and then walks through the parameter

area to access its parameters. This means that the parameter area must contain at least

8 words.

Import Libraries
You’ve already learned (in “Fragments” beginning on page 1-20) how a fragment can

import code and data from some other fragment, which is always an import library.

C H A P T E R 1

Introduction to PowerPC System Software

The PowerPC Native Environment 1-51

Because the code or data that your application references from an import library is not

actually contained in your application—but is only linked to it dynamically at application

launch time—the executable code of your application is generally much smaller than it

otherwise would be. This is one of the main advantages of using import libraries.

Of course, there’s no particular advantage simply to moving code out of your application

and into an import library, because the code in the import library, unless contained in

ROM, must be loaded into RAM before it can be used. The real advantages accrue only

when two or more applications use the same import library. The library’s code is loaded

into RAM only once, and all those applications reference that single code base. If you are

developing several PowerPC applications that have parts of their source code in common,

you should consider packaging all the shared code into an import library.

Another important advantage of using import libraries is that it’s easy to update code

contained in an import library. You can issue an updated version of your import library

and have the changes propagate to all the applications that use that library. You don’t

need to update each individual application that uses the import library.

You can use shared libraries in other useful ways. You can, for instance, create a shared

library that holds optional or infrequently executed code. For example, if you’re writing

a word-processing application, you might package its spell-checking module as a

separate shared library. Because the Code Fragment Manager doesn’t load the library at

application launch time, your application uses less RAM and launches more quickly.

When the user wants to execute the spelling checker, your application must explicitly

load and prepare the shared library by calling Code Fragment Manager routines.

You can also use shared libraries as a way to allow other developers to add capabilities,

such as optional tools, to your application. If you document the format of the parameters

passed to an external routine and any other data that you expect to find in an optional

tool, other developers can create shared libraries that conform to those specifications.

As you know, the principal advantage of using import libraries is that the code in the

import library is loaded only once in memory, whence it is addressed by all applications

(or other fragments) that import that code. The handling of an import library’s data,

however, is more complicated. The Code Fragment Manager supports two methods of

allocating and using the static data (that is, global variables) in an import library:

■ Global instantiation. The Code Fragment Manager allocates a single copy of the
library’s global data, no matter how many clients use that data.

■ Per-context instantiation. The Code Fragment Manager allocates one copy of the
library’s global data for each separate application (and all other fragments in the
application’s context) that uses that data. Each application can access only its own
copy of the data. The Operating System automatically keeps track of which copy of
the library’s global data is in use by which context. If a given application attempts to
load the same import library more than once, it always accesses the same copy of the
library’s global data.

The method of allocating and handling a library’s global data is determined at link time.

The library developer can indicate either global or per-context data instantiation for each

C H A P T E R 1

Introduction to PowerPC System Software

1-52 The PowerPC Native Environment

separate data section in a library. The method selected by the library developer for a

particular data section is recorded by the linker in the library itself. In general, it’s best to

use one copy of the global data per application.

It’s also possible to allocate one copy of an extension’s global data for each request to

load the extension, even if the same application issues multiple load requests. This type

of data instantiation, called per-load instantiation, is available only when you explicitly

load a shared library by calling a Code Fragment Manager routine (for example, the

GetSharedLibrary function). For example, a communications application might use a

shared library to implement a tool for connecting to a serial port. By requesting per-load

data instantiation, you can ensure that your tool can connect to two or more serial ports

simultaneously by maintaining separate copies of the tool’s data. The tool itself can then

be ignorant of how many connections it’s handling.

The Code Fragment Manager honors the data allocation method recorded in the library

for all import libraries that it loads automatically. This method must be either global or

per context. To achieve a per-load instantiation of a library’s data or to override the

instantiation method recorded in the library, you must load and prepare the library

programmatically by calling Code Fragment Manager routines.

The Organization of Memory
The organization of memory in the PowerPC run-time environment is reasonably similar

to the organization of memory in the 680x0 run-time environment. The system partition

occupies the lowest memory addresses, with most of the remaining space allocated to

the Process Manager, which creates a partition for each opened application. Moreover,

the organization of an application partition in the PowerPC run-time environment is

reasonably similar to the organization of an application partition in the 680x0 run-time

environment. In each application partition, there are a stack and a heap, as well as space

for the application’s global variables.

There are, however, a number of important differences between the PowerPC and 680x0

environments in regard to how memory is organized, both globally and in each applica-

tion’s partition. This section describes these differences. It also describes the different

data alignment conventions used in each environment and the steps you might need to

take to align data so that it can be exchanged between the two environments.

IMPORTANT

In general, you need the information in this section only for debugging
purposes (for example, to understand where in memory your
application’s code section is loaded). You might also need this
information to help you determine how large to make your application
partition (as specified in your application’s 'SIZE' resource). ▲

The two main differences between the 680x0 memory organization and the PowerPC

memory organization concern the location of an application’s code section and the

location of an application’s global variables. In addition, you need to pay attention to

the differing data alignment rules in each environment.

C H A P T E R 1

Introduction to PowerPC System Software

The PowerPC Native Environment 1-53

File Mapping

As you know, a PowerPC application’s executable code and global data are typically

stored in a fragment container in the application’s data fork. When the application is

launched, the code and data sections of that fragment are loaded into memory. The data

section is loaded into the application’s heap, as described more fully in the following

section. The location of the application’s code section varies, depending on whether or

not virtual memory is enabled.

If virtual memory is enabled, the Virtual Memory Manager uses a scheme called file
mapping to map your application’s fragment into memory: the Virtual Memory

Manager uses the data fork of your application as the paging file for your application’s

code section. In the 680x0 environment, all unused pages of memory are written into a

single systemwide backing-store file and reread from there when needed. This often

results in a prolonged application launch, because an application’s code is loaded into

memory and then sometimes immediately written out to the backing-store file. In the

PowerPC environment, this “thrashing” at application launch time is avoided; although

the entire code fragment is mapped into the logical address space, only the needed

portions of code are actually loaded into physical memory.

File mapping has additional benefits as well. The Operating System assumes that your

application’s code section is always read-only. This means that, when it’s time to remove

some of your application’s code from memory (to page other code or data in), the Virtual

Memory Manager doesn’t need to write the pages back to the paging file. Instead, it

simply purges the code from the needed pages, because it can always read the file-

mapped code back from the paging file (your application’s data fork).

IMPORTANT

Because your application’s code section is marked read-only when
virtual memory is enabled, it’s not possible to write self-modifying code
that will work on all PowerPC processor-based Macintosh computers. ▲

The virtual addresses occupied by the file-mapped pages of an application’s (or an

import library’s) code are located outside both the system heap and the Process

Manager’s heap. As a result, an application’s file-mapped code is never located in

the application heap itself.

Figure 1-14 illustrates the general organization of memory when virtual memory is

enabled. Application partitions (including the application’s stack, heap, and global

variables) are loaded into the Process Manager heap, which is paged to and from the

systemwide backing-store file. Code sections of applications and import libraries are

paged directly from the data fork of the application or import library file. Data sections

of import libraries are put into an application’s heap for any per-context instantiations

and into the system heap for any global instantiations.

C H A P T E R 1

Introduction to PowerPC System Software

1-54 The PowerPC Native Environment

Figure 1-14 Organization of memory when virtual memory is enabled

C H A P T E R 1

Introduction to PowerPC System Software

The PowerPC Native Environment 1-55

Sometimes, however, parts of your application’s executable code are loaded into your

application partition, not into the file-mapped space. This happens, for example, when

you store an application extension (like a filter or a tool) as a resource in your applica-

tion’s resource fork. To make the code in that extension available, you need to call the

Resource Manager to load it into your application heap. Then you need to call the Code

Fragment Manager to prepare the extension for execution. (See the chapter “Code

Fragment Manager” in this book for a more detailed description of this way of executing

resource-based code.) Because that code is loaded into your application heap, it isn’t

eligible for file mapping (although it is still eligible for normal paging).

If virtual memory is not enabled, the code section of an application is loaded into the

application heap. The Finder and Process Manager automatically expand your applica-

tion partition as necessary to hold that code section. The code sections of other fragments

are put into part of the Process Manager’s heap known as temporary memory. If no

temporary memory is available, code sections are loaded into the system heap.

IMPORTANT

It’s possible for a fragment’s code section to be loaded into the Process
Manager’s heap even when virtual memory is enabled. This happens
whenever the fragment resides on a device that cannot be used as a
paging device. For example, applications that are located on floppy
disks, AppleShare servers, and compact discs cannot be file mapped. ▲

Figure 1-15 illustrates the general organization of memory when virtual memory is not

enabled. Application partitions (including the application’s stack, heap, and global

variables) are loaded into the Process Manager heap. Code sections of applications and

import libraries are loaded either into the Process Manager partition or (less commonly)

into the system heap. No paging occurs.

C H A P T E R 1

Introduction to PowerPC System Software

1-56 The PowerPC Native Environment

Figure 1-15 Organization of memory when virtual memory is not enabled

The System Partition

The system partition in PowerPC processor-based Macintosh computers is organized

in essentially the same way as that in system software version 7.1 for 680x0-based

computers. To support existing 680x0 applications and other software modules that

access documented system global variables, the structure of much of the system partition

remains unchanged. Both emulated 680x0 and native PowerPC system software compo-

C H A P T E R 1

Introduction to PowerPC System Software

The PowerPC Native Environment 1-57

nents use and maintain the system global variables. However, some undocumented

system global variables have moved, and some have been eliminated altogether.

The universal header files contain declarations for routines that you can use to access

virtually all of the documented system global variables. For example, you can use the

routines LMGetCurDirStore and LMSetCurDirStore to get and set the value of the

system global variable CurDirStore (which contains the directory ID of the current

directory). LMGetCurDirStore is declared essentially as follows:

#if USESCODEFRAGMENTS

extern long LMGetCurDirStore(void);

#else

#define LMGetCurDirStore() (* (long *) 0x0398)

#endif

In any environment that uses code fragments, the function LMGetCurDirStore is

defined in the system software import library that is contained in ROM. In all other

environments, the function LMGetCurDirStore is defined as a macro that reads the

value of the appropriate low-memory address.

By using the routines provided by the system software, you can insulate your application

or other software module from any future changes in the arrangement of low memory.

Note

See the MPW interface files for a complete listing of the routines you can
use to access the system global variables. You should not use the
compiler flag USESCODEFRAGMENTS in your source code; if you need to
know whether the Code Fragment Manager is available, you can call the
Gestalt function with the selector gestaltCFMAttr. ◆

The only other case in which your application might be affected by changes to the

system partition concerns the method you use to install exception handlers. In the 680x0

environment, there is no programmatic way to install an exception handler; instead,

you simply write the address of your exception handler into the appropriate location

in memory (as determined jointly by the kind of exception you want to handle and

the value in the microprocessor’s vector base register). A PowerPC application cannot

employ this method of installing exception handlers. Instead, the system software for

PowerPC processor-based Macintosh computers includes the new Exception Manager,

which you should use to install native PowerPC exception handlers. See the chapter

“Exception Manager” in this book for details.

Application Partitions

The organization of an application partition in the PowerPC environment is substantially

simpler than in the 680x0 environment. In particular, the application partition for a

PowerPC application consists only of a stack and a heap. The A5 world that occupies

part of a 680x0 application partition largely is absent from the PowerPC environment.

The information that is maintained in the A5 world for 680x0 applications is either no

C H A P T E R 1

Introduction to PowerPC System Software

1-58 The PowerPC Native Environment

longer needed by PowerPC applications or is maintained elsewhere (usually in the

application heap).

IMPORTANT

Any software that makes assumptions about the organization of an
application’s A5 world will not work with PowerPC applications. For
example, any 680x0 system extensions that modify an application’s jump
table will need to be rewritten to work with PowerPC applications. ▲

This section describes the new locations for the information in a 680x0 A5 world.

Although in general the arrangement of your PowerPC application partition is trans-

parent to your application, there are some instances (for example, while debugging)

in which you might need to know where in your partition information is located. In

addition, if your application previously depended on some information being in its

A5 world (that is, accessed through the address in the A5 register), you will need to

revise it to remove that dependence if you want to recompile your source code into

a PowerPC application. More generally, you might need to rewrite any parts of your

source code that depend on information being in any of the 680x0 registers.

Note

For a more complete explanation of a 680x0 application’s A5 world,
see Inside Macintosh: Memory. ◆

The A5 world of a 680x0 application contains four kinds of data:

■ application global variables

■ application QuickDraw global variables

■ application parameters

■ the application’s jump table

Your 680x0 application’s jump table contains an entry for each of the application’s

routines that is called by code in another segment. Because the executable code of a

PowerPC application is not segmented, there is no need for a jump table in a PowerPC

application partition.

IMPORTANT

The available PowerPC compilers ignore any segmentation directives
in your source code. In addition, the Segment Manager treats the
UnloadSeg procedure as nonoperative. ▲

In PowerPC applications, the application global variables are part of the fragment’s data

section, which the Code Fragment Manager loads into the application’s heap. The

application global variables are always allocated in a single nonrelocatable block and are

addressed through a pointer in the fragment’s table of contents.

The application parameters are 32 bytes of memory located above the application global

variables that are reserved for use by the Operating System. The first 4 bytes of those

parameters are a pointer to the application’s QuickDraw global variables, which

contain information about the application’s drawing environment. For PowerPC

C H A P T E R 1

Introduction to PowerPC System Software

The PowerPC Native Environment 1-59

applications, the application parameters are maintained privately by the Operating

System. In addition, an application’s QuickDraw global variables are stored as part of

the application’s global variables (in a nonrelocatable block in the application’s heap).

Because the PowerPC run-time libraries don’t implicitly define the QuickDraw global

variable qd for native applications (as they do in the 680x0 environment), you’ll need to

reserve space for them globally in your application and then pass the address of that

memory to the InitGraf routine. You can do this by using the code shown in Listing

1-11. The data type QDGlobals is defined in the QuickDraw header files.

Listing 1-11 Declaring an application’s QuickDraw global variables

#ifndef MAC68K

define MAC68K 0 /*for PowerPC code*/

#else

define MAC68K 1 /*for 680x0 code*/

#endif

#if !MAC68K

QDGlobals qd;

#endif

void DoInitManagers() /*initialize Toolbox managers*/

{

InitGraf(&qd.thePort);

InitFonts();

InitWindows();

InitMenus();

TEInit();

InitDialogs(nil);

InitCursor();

}

QuickDraw is one of the system software services that has been ported to native

PowerPC code. It accesses the QuickDraw global variables of a 680x0 application by

reading the application’s A5 value that is stored in the 680x0 context block. That value

points to the boundary between the application’s global variables and the application

parameters. As you’ve seen, the address of the QuickDraw global variables is the first

4 bytes of the application parameters.

Even for applications that have themselves been ported to native PowerPC code, there

must be a minimal A5 world to support some nonported system software—as well as

some system software patches that exist as 680x0 code—that accesses the QuickDraw

global variables relative to the application’s A5 value. This mini-A5 world contains only

a pointer to the application’s QuickDraw global variables, which reside in the applica-

tion’s global data section (in the application heap). The Process Manager creates a

mini-A5 world for each native application at application launch time and installs its

C H A P T E R 1

Introduction to PowerPC System Software

1-60 The PowerPC Native Environment

address in the 680x0 context block. As a result, the native QuickDraw can access the

QuickDraw global variables of a native application in precisely the same way that it

accesses the QuickDraw global variables of a 680x0 application (namely, by reading the

value of the A5 register in the 680x0 context block and then finding the address of the

QuickDraw global variables relative to the address of the A5 world).

The general structure of a PowerPC application partition is illustrated in Figure 1-16.

Figure 1-16 The structure of a PowerPC application partition

IMPORTANT

There is no guarantee that future versions of the run-time environment
for PowerPC processor-based Macintosh computers will maintain
this arrangement of the application partition. To modify the size of
your application’s stack, for example, you should use the techniques
(described in the book Inside Macintosh: Memory) that use the
GetApplLimit and SetApplLimit routines. You should not directly
modify system global variables (for instance, ApplLimit). Note,
however, that you can specify a minimum stack size in your PowerPC
application’s 'cfrg' resource. The GetApplLimit and SetApplLimit
techniques are still useful if you need to adjust that minimum size
dynamically. A reasonable minimum stack size for PowerPC applications
is 48 KB. ▲

Because a PowerPC application has no A5 world (apart from the mini-A5 world main-

tained privately by the Process Manager), you don’t ever need to explicitly set up and

restore your application’s A5 world. In the 680x0 environment, there are two times when

you need to manage your A5 value explicitly: (1) to gain access to your application’s

C H A P T E R 1

Introduction to PowerPC System Software

The PowerPC Native Environment 1-61

global variables or QuickDraw global variables from within some piece of “detached”

code installed by your application (such as a Time Manager task or a VBL task) and (2) to

create a 680x0 context for some other piece of code (such as a HyperCard XCMD).

In the first case, when you need to set up the A5 register for some piece of 680x0 code

whose address you passed to the system software, there is no need for ported PowerPC

code to set and restore the A5 register. The RTOC always points to the table of contents

for the currently executing code, through which the application’s global variables can be

addressed. As a result, your application’s global variables are transparently available to

any code compiled into your application. To maintain a single source code base for both

the 680x0 and the PowerPC environment, you can use conditional compilation. Consider

the simple 680x0 VBL task defined in Listing 1-12.

Note

See the chapter “Vertical Retrace Manager” in Inside Macintosh: Processes
for a complete explanation of the techniques used in Listing 1-12. ◆

Listing 1-12 A sample 680x0 VBL task definition

VBLRecPtr GetVBLRec (void)

= 0x2008; /*MOVE.L A0,D0*/

void DoVBL (VBLRecPtr recPtr)

{

gCounter++; /*modify a global variable*/

/*Reset vblCount so that this procedure executes again.*/

recPtr->myVBLTask.vblCount = kInterval;

}

void StartVBL (void)

{

long curA5; /*stored value of A5*/

VBLRecPtr recPtr; /*pointer to task record*/

recPtr = GetVBLRec(); /*get address of task record*/

/*Set our application's A5 and store old A5 in curA5.*/

curA5 = SetA5(recPtr->vblA5);

DoVBL(recPtr);

recPtr->myVBLTask.vblCount = kInterval;

(void) SetA5(curA5); /*restore the old A5 value*/

}

C H A P T E R 1

Introduction to PowerPC System Software

1-62 The PowerPC Native Environment

The procedure StartVBL defined in Listing 1-12 installs the A5 value of the application

by calling SetA5, passing in a value that it retrieves from an expanded VBL task record.

In addition, StartVBL restores the previous A5 value immediately before exiting. For

VBL tasks written as PowerPC code, both of these steps are unnecessary. You can rewrite

the procedure DoVBL to include those steps only conditionally, as shown in Listing 1-13.

Moreover, in the 680x0 environment, the address of the VBL task record is passed in

register A0. If you need that address in a high-level language, you need to retrieve it

immediately upon entry to your VBL task (as is done using the GetVBLRec function in

Listing 1-12). In the PowerPC environment, however, the address of the VBL task record

is passed to the task as an explicit parameter. Listing 1-13 illustrates how to conditionally

select the appropriate task declaration.

Listing 1-13 A conditionalized VBL task definition

#if MAC68K

VBLRecPtr GetVBLRec (void) = 0x2008; /*MOVE.L A0,D0*/

#endif

void DoVBL (VBLRecPtr recPtr)

{

gCounter++; /*modify a global variable*/

/*Reset vblCount so that this procedure executes again.*/

recPtr->myVBLTask.vblCount = kInterval;

}

#if MAC68K

void StartVBL (void)

#else

void StartVBL (VBLTaskPtr recPtr)

#endif

{

#if MAC68K

long curA5; /*stored value of A5*/

VBLRecPtr recPtr; /*pointer to task record*/

recPtr = GetVBLRec(); /*get address of task record*/

/*Set our application's A5 and store old A5 in curA5.*/

curA5 = SetA5(recPtr->vblA5);

#endif

DoVBL(recPtr);

#if MAC68K

(void) SetA5(curA5); /*restore the old A5 value*/

#endif

}

C H A P T E R 1

Introduction to PowerPC System Software

The PowerPC Native Environment 1-63

Listing 1-13 also removes the dependence on the inline assembly-language code that

retrieves a pointer to the VBL task record from register A0. In the PowerPC environment,

information is passed to interrupt tasks as explicit parameters.

The second main case in which you need to set up and restore the A5 register is to create

a 680x0 context for some existing 680x0 code (such as a stand-alone code module). To do

this, you can call the SetA5 and SetCurrentA5 routines.

Note

See the book Inside Macintosh: Memory for more information on calling
SetA5 and SetCurrentA5. ◆

Data Alignment

The PowerPC and 680x0 compilers follow different conventions concerning the alignment

of data in memory. Unless told to do otherwise, a compiler arranges a data structure

in memory so as to minimize the amount of time required to access the fields of the

structure. In general, this is what you’d like to have happen. In some cases, however, the

processor’s preferred method of aligning data might lead to problems. Suppose, for

example, that a PowerPC version of your application writes some data from memory into

a file. The data is arranged in the file in exactly the same order that it was arranged

in memory, including any pad bytes that were required to achieve the desired data

alignment in memory. It’s likely, however, that the resulting file will not be readable by

a 680x0 version of your application. That’s because the data will be read from the file

into a structure whose fields are very likely laid out slightly differently in memory. This

section describes how this can happen, and provides some easy remedies for this kind

of problem.

A 680x0 processor places very few restrictions on the alignment of data in memory. The

processor can read or write a byte, word, or long word value at any even address in

memory. In addition, the processor can read byte values at any address in memory. As a

result, the only padding required might be a single byte to align 2-byte or larger fields to

even boundaries or to make the size of an entire data structure an even number of bytes.

Note

Remember that a word on 680x0 processors is 2 bytes;
on PowerPC processors, a word is 4 bytes. ◆

By contrast, the PowerPC processor prefers to access data in memory according to its

natural alignment, which depends on the size of the data. A 1-byte value is always

aligned in memory. A 2-byte value is aligned on any even address. A 4-byte value is

aligned on any address that is divisible by 4, and so on. A PowerPC processor can access

data that is not aligned on its natural boundary, but it performs aligned memory accesses

more efficiently. As a result, PowerPC compilers usually insert pad bytes into data

structures to enforce the preferred data alignment.

C H A P T E R 1

Introduction to PowerPC System Software

1-64 The PowerPC Native Environment

For example, consider the following data structure:

struct SampleStruct {

short version;

long address;

short count;

}

This structure occupies 8 bytes of memory in the 680x0 environment. To achieve the

desired alignment of the address field in the PowerPC environment onto a 4-byte

boundary, however, 2 bytes of padding are inserted after the version field. In addition,

the structure itself is padded to a word boundary. As a result, the structure occupies

12 bytes of memory in the PowerPC environment.

In general, the different data alignment conventions of the 680x0 and PowerPC

environments should be transparent to your application. You need to worry about the

differences only when you need to transfer data between the two environments. This can

happen in a number of ways:

■ Your application creates files containing data structures and the user copies those files
from a PowerPC processor-based Macintosh computer to a 680x0-based Macintosh
computer (or vice versa).

■ Your PowerPC application creates a data structure and passes it to some code running
under the 68LC040 Emulator.

■ Your application—running in either environment—customizes a Toolbox or Operating
System data structure and passes it to the system software.

■ Your PowerPC application sends data across a network connection to a 680x0-based
Macintosh computer.

To ensure that data can be transferred successfully in all of these cases, it’s sufficient

simply to instruct the PowerPC compiler to use the 680x0 data alignment conventions.

You can do this by using a compiler pragma statement, as follows:

#pragma option align=mac68k

struct SampleStruct {

short version;

long address;

short count;

}

#pragma option align=reset

You should make sure, however, that you use 680x0 alignment only when absolutely

necessary. The PowerPC processor is less efficient when accessing misaligned data than

when accessing aligned data.

Alternatively, instead of forcing the compiler to use 680x0 alignment in the PowerPC

environment, you can try to rearrange your data structures to promote natural

C H A P T E R 1

Introduction to PowerPC System Software

Compatibility and Performance 1-65

alignment in both environments. For example, you can change the declaration of the

SampleStruct structure to be as follows:

struct SampleStruct {
long address;
short count;
short version;

}

A PowerPC compiler does not insert any pad bytes into the SampleStruct structure

in this new arrangement, because the fields are already aligned along the desired

memory boundaries.

Note

Your PowerPC compiler may use slightly different alignment methods
than those described here. Consult your development system’s
documentation for complete information. For more details on specifying
alignment methods with the PPCC compiler, see the book Macintosh on
PowerPC C Compiler. ◆

You also need to be careful when passing floating-point data between the 680x0 and

PowerPC environments. The most efficient floating-point data type in the 680x0 environ-

ment is the 80-bit (or 96-bit) extended data type. The most efficient data types in the

PowerPC environment are single, double, and long double, which are 32, 64, and

128 bits, respectively. The PowerPC Numerics library includes routines you can use to

convert among these various data types. See Inside Macintosh: PowerPC Numerics for

complete details.

Compatibility and Performance

In general, it’s relatively easy to modify existing ANSI-compliant C or C++ source code

that successfully compiles and runs on 680x0-based Macintosh computers so that it can

be compiled and run on PowerPC processor-based Macintosh computers. Most of the

intricate work required to make your application compatible with the new PowerPC

run-time environment is performed automatically by your development system’s

compiler and linker and by the Code Fragment Manager. As you’ve seen, the changes

you need to make in your application’s source code are fairly straightforward. You need

to make these changes:

■ Create routine descriptors for any routines whose addresses you pass to code of an
unknown type.

■ Minimize any dependencies on system global variables by using the new set of
accessor routines defined in the MPW interface files.

■ Isolate and conditionalize any dependencies on specific features of the 680x0 A5
world or the 680x0 run-time environment.

■ Isolate and conditionalize any dependencies on information being passed in specific
680x0 registers.

C H A P T E R 1

Introduction to PowerPC System Software

1-66 Compatibility and Performance

■ Use 680x0 alignment for any data that is passed between environments, or declare
your data structures so that their fields are aligned identically in both the 680x0 and
PowerPC environments.

This section discusses several additional topics that relate more generally to the

compatibility and performance of your PowerPC application.

Patches
Some applications or other kinds of software patch the Operating System’s trap dispatch

tables to augment or replace the capabilities of certain system software routines. In

general, however, there is much less need to patch the system software now than there

previously was, and you should avoid doing so if at all possible. One very good reason

to avoid unnecessary patching is that you can incur a substantial performance reduction

if your patch causes a mode switch. For example, when a PowerPC application calls

a system software routine that is implemented as PowerPC code, the dispatching to

the PowerPC code occurs fairly quickly. However, if you patch the PowerPC code

with 680x0 code, the Mixed Mode Manager needs to intervene to switch the execution

environments both when entering and when exiting your patch code. This switching

results in a considerable overhead (approximately 15 microseconds on a 60 MHz

PowerPC processor per round-trip mode switch, the equivalent of about fifty 680x0

instructions).

Note

The precise number of instructions or microseconds of overhead
required to switch from one environment to the other and back is subject
to change in future system software versions and on different hardware
configurations. The important point to keep in mind is that switching
modes is a reasonably expensive activity and you should avoid it
whenever possible. ◆

The same situation occurs if you use PowerPC code to patch a system software routine

that is implemented as 680x0 code. Once again, a mode switch is required before

entering your patch code and after exiting it.

The ideal solution is simply to avoid patching the system software entirely. In the few

cases in which you absolutely cannot avoid patching some system software routine, you

can avoid the kind of mode switching just described by making sure to patch PowerPC

code with a PowerPC patch and 680x0 code with a 680x0 patch. Because you cannot in

general know what kind of code implements a particular system software routine, you

should install a fat patch, which addresses both PowerPC and 680x0 versions of your

code. To install a fat patch, you need to create a routine descriptor with two embedded

routine records, one record describing the PowerPC routine and one record describing

the 680x0 routine. Then you pass the address of that routine descriptor—that is, a

universal procedure pointer—to an appropriate Trap Manager routine, which installs

that universal procedure pointer into the trap dispatch table. When the patched routine

is called, the Mixed Mode Manager inspects the routine descriptor addressed by the

universal procedure pointer and selects the patch code that has the smallest impact on

performance.

C H A P T E R 1

Introduction to PowerPC System Software

Compatibility and Performance 1-67

IMPORTANT

To install patches, you can use one of the Trap Manager routines
SetToolTrapAddress, SetOSTrapAddress, and
NSetTrapAddress. You should not use the obsolete routine
SetTrapAddress. See the chapter “Trap Manager” in Inside Macintosh:
Operating System Utilities for a more complete description of the
recommended way to patch system software routines. You should never
manipulate the trap dispatch tables directly. ▲

Your patch code should, of course, make sure to call through to the code originally

addressed by the entry in the trap dispatch table. You can retrieve that address by calling

GetToolTrapAddress, GetOSTrapAddress, or NGetTrapAddress before you install

your patch. In the 680x0 patch code, you can simply jump to that address. In the

PowerPC patch code, you execute the original code by calling the Mixed Mode Manager

routine CallUniversalProc (for Toolbox traps) or CallOSTrapUniversalProc (for

Operating System traps).

The CallOSTrapUniversalProc function behaves just like the CallUniversalProc

function except that it preserves additional 680x0 registers around the execution of

the called procedure. In addition, you need to pass it a value specifying the trap word.

Operating System traps expect a 2-byte parameter in register D1; this parameter

represents the actual A-trap word used to call the routine. (Some traps use bits in the

trap word to dispatch to different code.) Any Operating System trap patches you install

should accept that parameter in register D1 and pass it through when calling the original

trap code. Listing 1-14 shows how to patch the NewPtr function using PowerPC code.

Listing 1-14 Patching an Operating System trap

enum { /*procedure information for NewPtr function*/

kNewPtrProcInfo = kRegisterBased |

RESULT_SIZE(kFourByteCode) |

REGISTER_RESULT_LOCATION(kRegisterA0) |

REGISTER_ROUTINE_PARAMETER(1, kRegisterD1, kTwoByteCode) |

REGISTER_ROUTINE_PARAMETER(2, kRegisterD0, kFourByteCode)

};

pascal Ptr MyNewPtrPatch(unsigned short trapWord, Size byteCount)

{

/*Your patch code goes here.*/

return (long) CallOSTrapUniversalProc(gOriginalNewPtr,

kNewPtrProcInfo, trapWord, byteCount);

}

Because CallUniversalProc and CallOSTrapUniversalProc are called as

subroutines and return control to the calling code, all PowerPC patches are both

C H A P T E R 1

Introduction to PowerPC System Software

1-68 Compatibility and Performance

head patches and tail patches (that is, your patch has control both before and after

the code originally pointed to by the trap dispatch table).

Notice that the address you call through to might be the address of someone else’s patch.

As a result, it’s still possible for mode switches to occur, if at least one link in the patch

daisy chain is not a fat patch. These mode switches are unavoidable.

Note also that the system software includes a small number of split traps, system

software routines that are implemented with 680x0 code (usually in ROM) and as

PowerPC code in an import library. Because the PowerPC code is contained directly

in the import library, you cannot patch the PowerPC portion of a split trap. In general,

however, only those routines are implemented as split traps that are not likely candi-

dates for patching. For example, a number of very small utility routines like AddPt and

SetRect are implemented as split traps.

The biggest restriction on patching is that you cannot patch any selector-based traps

(system software routines that are dispatched through a selector code) with either pure

PowerPC or fat patches. In the 680x0 environment, you can patch one or more selectors

belonging to a dispatched trap and pass all others through to the original code. In the

PowerPC environment, however, this is not possible. As a result, when patching with

PowerPC code, you must patch all the routines selected by a single trap if you patch any

of them. However, you cannot in general determine how many selectors are supported

by a given selector-based trap. You cannot therefore safely patch selector-based traps in a

way that is likely to remain compatible with future system software versions. For now,

you should use 680x0 code if you need to patch selector-based traps.

The Memory Manager
As you’ve already learned, the Memory Manager has been rewritten for PowerPC

processor-based Macintosh computers. The new Memory Manager, written in C and

compiled into native PowerPC code, offers much better performance than the previous

680x0 assembly-language version, both because it runs in the native PowerPC environ-

ment and because it uses substantially improved algorithms to manage heaps. In

general, however, the application programming interface has not changed. As a result,

you’ll benefit from the new version completely transparently, whether your application

runs under the 68LC040 Emulator or in the native PowerPC environment.

The Memory control panel (shown in Figure 1-17) includes controls that allow the user

to select whether applications and other software use the new Memory Manager or the

original Memory Manager. By default, the new (or “Modern”) Memory Manager is used.

C H A P T E R 1

Introduction to PowerPC System Software

Compatibility and Performance 1-69

Figure 1-17 The Memory control panel for PowerPC processor-based Macintosh computers

There are, however, several restrictions imposed by the new Memory Manager that

might cause compatibility problems for your application. If you’ve followed the advice

and warnings in the book Inside Macintosh: Memory, your application should run without

problems. However, the new Memory Manager is generally much less forgiving toward

code that fails to heed those warnings. Here are some areas to watch out for.

■ Don’t dispose of blocks more than once. When you dispose of a block, whether
relocatable or nonrelocatable, the Memory Manager immediately takes control of that
block. Any future attempt to operate on the block (even simply to dispose of it) is
likely to cause problems. Note that it’s possible to dispose of a block twice in rather
subtle ways. For example, you might call GetPicture to display a picture stored in a
resource and then inadvertently call KillPicture or DisposeHandle to remove it.
This way of disposing of the block of memory leaves the 'PICT' resource in the
resource map. When your application quits, the resource is disposed of once again.
(The proper way to dispose of a picture loaded from a resource is to call
ReleaseResource.)

■ Don’t manipulate the Memory Manager’s private data structures, including block
headers for both relocatable and nonrelocatable blocks, zone headers, and any unused
master pointers. The sizes and formats of some of these structures have changed.

■ Don’t access any system global variables maintained by the Memory Manager.
Whenever possible, use the documented application programming interface (such
as the SetApplLimit and SetGrowZone procedures) to avoid manipulating
those variables.

C H A P T E R 1

Introduction to PowerPC System Software

1-70 Compatibility and Performance

■ Don’t modify free blocks of data or rely on the integrity of any data in free blocks. The
new Memory Manager assumes control of all unallocated memory in your heap and
may overwrite any information in free blocks.

■ Don’t close a resource file without first detaching any resources in that file that you
want to continue using. To detach a resource, call the DetachResource procedure.

■ Don’t use fake handles or pointers. You should call Memory Manager routines
only on blocks that were created by the Memory Manager itself. Remember that
the Memory Manager is fundamentally a heap managing tool. You should not,
for example, call DisposePtr on data in your stack or in your application global
variable space.

■ Don’t call Memory Manager routines at interrupt time. Except for the BlockMove
procedure, all Memory Manager routines either move memory or manipulate system
global variables. These operations must not occur at interrupt time.

■ Make sure to flush the instruction cache whenever necessary. Because it’s much
harder to treat data as executable code in the PowerPC environment, the new Memory
Manager flushes the instruction cache only when it moves blocks around in memory.

■ Don’t make assumptions about the relative positions of the stack and heap in your
application partition. You should adjust the size of the stack, if necessary, by calling
GetApplLimit and SetApplLimit.

To repeat, you shouldn’t encounter any of these problems if you’ve used the routines

and programming techniques documented in Inside Macintosh: Memory.

Performance Tuning
Once you’ve gotten your application or other software to execute correctly on a

PowerPC processor-based Macintosh computer, you’ll want to spend some time

tuning it for maximum performance. Many factors affect the speed at which code

executes, including

■ how often you cause mode switches from one environment to another

■ how you pass parameters to subroutines

■ whether you use compiler-specific optimizations

The easiest way to increase the performance of your application is to use the compiler’s

optimization capabilities. It’s not uncommon for compiler speed optimizations to

improve your code’s execution by as much as 50 percent. See the book Macintosh on
PowerPC C Compiler for more information on compiler optimizations.

This section provides some preliminary discussion of the overhead associated with

mode switches and parameter passing. In general, you’ll need to combine the informa-

tion presented here with empirical observations you obtain when using a performance-

measurement tool, such as the Adaptive Sampling Profiler (ASP) built into the debugger.

See the book Macintosh Debugger Reference for complete information about using the ASP.

C H A P T E R 1

Introduction to PowerPC System Software

Compatibility and Performance 1-71

Mode Switches

You’ve already learned (in “Patches” on page 1-66) that it’s important to avoid mode

switches whenever possible. The Mixed Mode Manager requires the equivalent of

approximately fifty 680x0 instructions to switch from one environment to another.

As a result, you might want to minimize the number of times your code invokes a

mode switch.

Some mode switches are entirely avoidable. For example, if you need to patch a system

software routine, you can avoid at least some mode switching by installing a fat patch

(a patch that includes both 680x0 and PowerPC versions of the patching code). Similarly,

if your application calls any resource-based code (for example, dynamically loadable

filters), you can create fat resources: code resources that include both 680x0 and

PowerPC versions of the executable code. Once again, the Mixed Mode Manager will

select the code that minimizes mode switching.

Some mode switches, however, are entirely unavoidable. Any time your PowerPC

application calls a system software routine that has not yet been ported to use the native

PowerPC instruction set, the Mixed Mode Manager must switch to the 680x0 environ-

ment to execute the routine and then switch back to the PowerPC environment to allow

your application to continue. This sometimes means that parts of your application might

execute more slowly on a PowerPC processor-based Macintosh computer than on a

680x0-based Macintosh computer.

A good example of this behavior concerns calling Event Manager routines, which remain

as 680x0 code in the first release of the system software for PowerPC processor-based

Macintosh computers. Suppose that during a lengthy calculation your application calls

WaitNextEvent or EventAvail to scan the event queue for a Command-period event

(which typically indicates that the user wants to cancel the lengthy operation) and to

give time to other applications. Each time you call the Event Manager, two mode

switches occur (from your code to the emulated code and back). Moreover, because your

code is native PowerPC code, it executes more quickly between Event Manager calls

than it did in the 680x0 environment. The result is that your application is switching

modes more often than it absolutely has to.

Although you cannot avoid the mode switches entirely when calling the Event Manager,

you can lessen the overall impact of those switches on your application’s performance by

doing more work between successive Event Manager calls. One simple way to do this is

to perform more than one iteration of a loop between calls to WaitNextEvent. Another

simple way is to call WaitNextEvent only after a certain amount of time has elapsed.

Listing 1-15 shows how you can rewrite a part of your main event loop to incorporate

this feature.

C H A P T E R 1

Introduction to PowerPC System Software

1-72 Compatibility and Performance

Listing 1-15 Waiting to call the WaitNextEvent function

static unsigned long gWNEDelay = 5; /*adjust this value as needed*/

void MainEventLoop(void)

{

EventRecord myEvent;

unsigned long nextTimeToCheckForEvents = 0;

while (!gDone) {

if ((gWNEDelay == 0) || (TickCount() > nextTimeToCheckForEvents)) {

nextTimeToCheckForEvents = TickCount() + gWNEDelay;

if (WaitNextEvent(everyEvent, &myEvent,

MyGetSleep(), (RgnHandle) nil))

HandleEvent(&myEvent);

}

DoIdle();

}

}

As you can see, this code continues in the event loop only when a certain amount of time

has elapsed. This method of adjusting the frequency of calls to WaitNextEvent works

on any available Macintosh computer and doesn’t require any conditional compilation.

Routine Parameters

You’ve already learned (in “Parameter Passing” beginning on page 1-47) that PowerPC

compilers attempt to pass as many parameters as possible in the processor’s registers,

thereby minimizing the number of memory accesses that are required for a routine call.

You can, however, help the compiler minimize memory accesses by following a few

simple guidelines:

■ Use function prototypes. A compiler can generate more efficient code if you include
prototypes for any functions that accept floating-point parameters. The compiler then
knows to use the floating-point registers to store those parameters. If no function
prototype is available for a function taking floating-point parameters, the compiler
needs to pass the same information in both general-purpose and floating-point
parameters. (For more information, see the description of PowerPC calling conventions
beginning on page 1-47.)

■ Put floating-point parameters at the end of the parameter list. A PowerPC compiler
reserves space for floating-point parameters not only in the floating-point registers
but also either in the general-purpose registers or in a stack frame. (This is necessary
to support passing floating-point parameters to a function for which no prototype
is available.) It’s best to let any non-floating-point parameters use the available
general-purpose register, so you should move floating-point parameters to the end of
the routine’s parameter list.

C H A P T E R 1

Introduction to PowerPC System Software

Compatibility and Performance 1-73

■ Minimize the use of variable parameter lists. For many reasons, it’s inefficient to
use variable parameter lists in the PowerPC environment. Use them only when
absolutely necessary.

IMPORTANT

These floating-point parameter-passing optimizations are highly
dependent on specific features of the PowerPC run-time environment.
You should implement these guidelines only in those parts of your code
where maximum efficiency is necessary. ▲

Contents 2-1

C H A P T E R 2

Contents

Mixed Mode Manager

About the Mixed Mode Manager 2-4

External Code 2-4

Procedure Pointers 2-5

Mode Switches 2-7

Calling PowerPC Code From 680x0 Code 2-8

Calling 680x0 Code From PowerPC Code 2-12

Using the Mixed Mode Manager 2-14

Specifying Procedure Information 2-14

Using Universal Procedure Pointers 2-21

Using Static Routine Descriptors 2-22

Executing Resource-Based Code 2-24

Mixed Mode Manager Reference 2-26

Constants 2-27

Routine Descriptor Flags 2-27

Procedure Information 2-27

Routine Flags 2-34

Instruction Set Architectures 2-35

Data Structures 2-36

Routine Records 2-36

Routine Descriptors 2-37

Mixed Mode Manager Routines 2-38

Creating and Disposing of Routine Descriptors 2-39

Calling Routines via Universal Procedure Pointers 2-42

Determining Instruction Set Architectures 2-44

Summary of the Mixed Mode Manager 2-45

C Summary 2-45

Constants 2-45

Data Types 2-48

Mixed Mode Manager Routines 2-49

C H A P T E R 2

2-3

Mixed Mode Manager

This chapter describes the Mixed Mode Manager, the part of the Macintosh system

software that manages the mixed-mode architecture of PowerPC processor-based

computers running 680x0-based code (including system software, applications, and

stand-alone code modules). The Mixed Mode Manager cooperates with the 68LC040

Emulator to provide a fast, efficient, and virtually transparent method for code in

one instruction set architecture to call code in another architecture. The Mixed Mode

Manager handles all the details of switching between architectures.

The Mixed Mode Manager is intended to operate transparently to most applications and

other software. You need the information in this chapter only if

■ you want to recompile your application into PowerPC code and your application
passes the address of some routine to the system software using a reference of
type ProcPtr

■ your application—written in either PowerPC or 680x0 code—supports installable
code modules that might be written in a different architecture

■ you are writing stand-alone code (for example, a VBL task or a component) that could
be called from either the PowerPC native environment or the 680x0 emulated
environment

■ you are writing a debugger or other software that needs to know about the structure
of the stack at any time (for example, during a mode switch)

You do not need to read this chapter if you’re simply writing 680x0 code that doesn’t call

external code modules of unknown type, or if you are writing PowerPC code that calls

other PowerPC code using a procedure pointer. In these cases, any environment switching

that might occur is handled completely transparently by the Mixed Mode Manager.

IMPORTANT

This chapter describes the operation and features of the Mixed
Mode Manager and the 68LC040 Emulator as they exist in the
first version of the system software for PowerPC processor-based
Macintosh computers. ▲

To use this chapter, you should already be generally familiar with the Macintosh

Operating System. See the books Inside Macintosh: Processes and Inside Macintosh: Memory

for information about the run-time architecture of the 680x0 environment. You also need

to be familiar with the run-time architecture of PowerPC processor-based Macintosh

computers, as explained in the chapter “Introduction to PowerPC System Software.”

This chapter begins by describing the mixed-mode architecture of PowerPC processor-

based Macintosh computers and the operations of the Mixed Mode Manager. Then it

shows how to use the Mixed Mode Manager to call external code.

C H A P T E R 2

Mixed Mode Manager

2-4 About the Mixed Mode Manager

About the Mixed Mode Manager

The Mixed Mode Manager is the part of the Macintosh Operating System that allows

PowerPC processor-based Macintosh computers to cooperatively run 680x0 applications,

PowerPC applications, 680x0 system software, and PowerPC system software. It

provides a number of capabilities, including

■ transparent access to 680x0-based system software from PowerPC applications

■ transparent access to PowerPC processor-based system software from 680x0
applications

■ a method—independent of the instruction set architecture—of calling an external
piece of code. This includes

■ transparent access to PowerPC code by 680x0 applications

■ system support for calling 680x0 code from PowerPC code

■ system support for calling PowerPC code from 680x0 code

■ support for patching PowerPC or 680x0 code with PowerPC or 680x0 code

■ support for stand-alone code resources containing either 680x0 or PowerPC code

In short, the Mixed Mode Manager is intended to provide both PowerPC processor-

based and 680x0-based code transparent access to code written in another instruction set

(or in an instruction set whose type is unknown). It does this by keeping track of what

kind of code is currently executing and, when necessary, switching modes. For example,

if some PowerPC code calls a Macintosh Operating System routine that exists only in

680x0 form, the Mixed Mode Manager translates the routine’s parameters from their

PowerPC arrangement (for example, stored in registers GPR3 and GPR4) into the

appropriate 680x0 arrangement (for example, stored in registers D0 and D1, with the

result placed into register A0).

The Mixed Mode Manager is an integral part of the system software for PowerPC

processor-based Macintosh computers. It is designed to hide, as much as possible, the

dual nature of the operating environment supported on PowerPC processor-based

Macintosh computers running the 68LC040 Emulator. Except in specific cases described

later, your application or other software should not need to call the routines provided by

the Mixed Mode Manager.

External Code
To appreciate when and why you might need to use the routines provided by the Mixed

Mode Manager, you need to understand the circumstances in which you might directly

or indirectly call code in an instruction set architecture different from that of the calling

code. There are several ways to execute external code (code that is not directly contained

in your application or software), including

■ calling a trap

■ calling a device driver (for example, by calling the driver’s Open, Status, or
Control routines)

C H A P T E R 2

Mixed Mode Manager

About the Mixed Mode Manager 2-5

■ loading and then executing code contained in a resource

■ using the address of a procedure or function obtained from an unknown source

In any of these four cases, the external code that you call might be in an instruction set

architecture that is different from the instruction set architecture of the calling code. (For

example, an application that uses the PowerPC instruction set might call a ROM-based

Toolbox trap that uses the 680x0 instruction set.) As a result, in all these cases, the Mixed

Mode Manager might have to switch environments to allow the called routine to execute

and then switch back to allow your application or other software to continue execution.

In the first two of the four cases, the Mixed Mode Manager is able to handle all required

mode switching virtually transparently to the calling software. In the two last cases,

however, you might need to intervene in the otherwise automatic operations of the

Mixed Mode Manager. This is because the Mixed Mode Manager cannot tell, from a

given pointer to some executable code, what kind of code the pointer references.

The following section describes in greater detail the extent of this problem and the way

you need to solve it, using universal procedure pointers in place of procedure pointers.

See “Using the Mixed Mode Manager” beginning on page 2-14 for code samples that

illustrate how to create and use universal procedure pointers.

Procedure Pointers
For present purposes, a procedure pointer is any reference generated by a compiler

when taking the address of a routine. On 680x0-based Macintosh computers, a procedure

pointer is simply the address of the routine’s executable code (and is defined by the

ProcPtr data type). On PowerPC processor-based Macintosh computers, a procedure

pointer is the address of the routine’s transition vector. Figure 2-1 illustrates the structure

of procedure pointers in each environment.

Figure 2-1 680x0 and PowerPC procedure pointers

A transition vector is a set of two addresses: the address of the routine’s executable code

and the address of the fragment’s table of contents (TOC).

C H A P T E R 2

Mixed Mode Manager

2-6 About the Mixed Mode Manager

The Macintosh programming interfaces allow you to use procedure pointers in several

ways. A procedure pointer can be

■ passed as a parameter to a system software routine (for example, the growZone
parameter to the SetGrowZone routine)

■ passed in a field of a parameter block or other data structure (for example, the
gzProc field of a Zone parameter block)

■ stored in an application-specific global data structure (for example, the addresses
stored in a grafProcs field of a graphics port)

■ installed into a vector accessed through system global variables (for example, the
jGNEFilter global variable)

■ installed into the trap dispatch table or into a patch daisy chain using the
SetToolTrapAddress or SetOSTrapAddress routine

As indicated previously, the Mixed Mode Manager cannot tell, from a given procedure

pointer, what kind of code the pointer references (either directly through a pointer of

type ProcPtr or indirectly through a transition vector). The Mixed Mode Manager

solves this problem by requiring you to use generalized procedure pointers, known as

universal procedure pointers, whenever you would previously have used a procedure

pointer. A universal procedure pointer is either a normal 680x0 procedure pointer

(that is, the address of a routine) or the address of a routine descriptor, a data structure

that the Mixed Mode Manager uses to encapsulate information about an externally

referenced routine. A routine descriptor describes the address of the routine, its

parameters, and its calling conventions.

typedef RoutineDescriptor *UniversalProcPtr;

Note

See “Routine Descriptors” on page 2-37 for a description
of the fields of a routine descriptor. ◆

The Macintosh application programming interfaces have been revised for the PowerPC

platform to change all references to procedure pointers to references to universal

procedure pointers. (The new interfaces are called the universal interface files.) For

example, the SetGrowZone function was previously declared in the interface file

Memory.h like this:

typedef ProcPtr GrowZoneProcPtr;

pascal void SetGrowZone (GrowZoneProcPtr growZone);

In the updated interface file Memory.h, SetGrowZone is declared like this:

typedef UniversalProcPtr GrowZoneUPP;

extern pascal void SetGrowZone (GrowZoneUPP growZone);

This redefinition of all procedure pointers as universal procedure pointers ensures that at

the time a procedure is to be executed, the Operating System has enough information

to determine the routine’s instruction set architecture and hence to determine whether

C H A P T E R 2

Mixed Mode Manager

About the Mixed Mode Manager 2-7

a mode switch is necessary. In addition, if a mode switch is necessary, the universal

procedure pointer (if it is a pointer to a routine descriptor) provides information about

the routine’s calling conventions, the number and sizes of its parameters, and so forth.

It’s important to understand exactly when you need to be concerned about routine

descriptors and when you need to use the new programming interfaces when writing

your application. The following cases cover most of the relevant possibilities:

■ If your application uses the 680x0 instruction set (and therefore executes under the
68LC040 Emulator on PowerPC processor-based Macintosh computers) and does not
support external code modules, you do not need to use routine descriptors or the new
programming interfaces.

■ If your application uses the PowerPC instruction set, you must use the new program-
ming interfaces.

■ If your application uses either the 680x0 instruction set or the PowerPC instruction set
and makes calls only to code of the same type, you do not need to create routine
descriptors.

■ If your code uses the PowerPC instruction set and passes a routine’s address to code
that might be in the 680x0 instruction set, then you need instead to pass the address of
a routine descriptor. This applies to all the methods of passing a routine address listed
earlier in this section (as a parameter to a system software routine, in a field of a
parameter block, and so forth).

■ If you create a resource containing PowerPC code that might be called either by 680x0
code or by PowerPC code, that code must be preceded by a routine descriptor. It’s
possible that the calling code simply loads the resource and jumps to its beginning;
if the resource does not begin with a routine descriptor, the Mixed Mode Manager
will not be called to determine whether a mode switch is necessary. See “Executing
Resource-Based Code” on page 2-24 for more details.

IMPORTANT

In short, you need to convert procedure pointers to universal procedure
pointers only if you pass a routine’s address to code that is external to
your application. See “Using Universal Procedure Pointers” beginning
on page 2-21 for details on making the appropriate modifications to
your application. ▲

Mode Switches
This section describes the operations of the Mixed Mode Manager in switching modes

(from PowerPC native mode to 680x0 emulation mode, or vice versa). It describes the

circumstances under which mode switches are performed and the mechanism that the

Mixed Mode Manager uses to switch modes.

IMPORTANT

The information in this section is provided for debugging purposes only.
Your application (or other code) should not rely on the details of mode
switching presented here. ▲

C H A P T E R 2

Mixed Mode Manager

2-8 About the Mixed Mode Manager

Every mode switch occurs as a result of either an explicit or an implicit cross-mode

call. An explicit cross-mode call occurs when the calling software itself calls the

CallUniversalProc function and passes a universal procedure pointer of a routine

that exists in an instruction set architecture other than that of the caller. An implicit
cross-mode call occurs when the calling software executes a routine descriptor for a

routine that exists in an instruction set architecture other than that of the caller.

The mixed-mode architecture of PowerPC processor-based computers running 680x0-

based code gives rise to four possible situations when a piece of code calls a system

software routine:

■ When 680x0 code calls a system software routine that exists as 680x0 code, the
routine is called directly, using the trap dispatch mechanism provided in the
68LC040 Emulator.

■ When 680x0 code calls a system software routine that exists as PowerPC code, the
routine is called indirectly, using the address—contained in the trap dispatch table—
of a routine descriptor, which invokes a mode switch to the PowerPC environment.
When the PowerPC code returns, the executing environment is switched back to the
68LC040 Emulator. See the next section, “Calling PowerPC Code From 680x0 Code,”
for more details.

■ When PowerPC code calls a system software routine that exists as PowerPC code, the
routine is called through glue in the system software import library. The glue code
calls CallUniversalProc, which determines that the routine is PowerPC code and
then calls it directly.

■ When PowerPC code calls a system software routine that exists as 680x0 code, the
routine is called through glue code contained in the system software import library.
The glue code sets up a 680x0 universal procedure pointer (which is simply a 680x0
procedure pointer) and executes the 680x0 code by calling the CallUniversalProc
function. See “Calling 680x0 Code From PowerPC Code” on page 2-12 for more details.

IMPORTANT

Only 680x0 code can make implicit cross-mode calls. Native PowerPC
code must always make explicit cross-mode calls. The Mixed Mode
Manager determines whether a mode switch is necessary. ▲

Calling PowerPC Code From 680x0 Code

This section describes how the Mixed Mode Manager switches modes from the 680x0

emulated environment to the PowerPC native environment. This usually happens

when 680x0 code calls a system software routine that is implemented in the PowerPC

instruction set.

Suppose that a 680x0 application calls some system software routine. The application is

not aware that it is running under the 68LC040 Emulator, so it just pushes the routine’s

parameters onto the stack (or stores them into registers) and then jumps to the routine

or calls a trap that internally jumps to the routine. If the routine exists as 680x0 code,

no mode switch is required and the routine is called as usual. If, however, the routine

C H A P T E R 2

Mixed Mode Manager

About the Mixed Mode Manager 2-9

exists as PowerPC code, the calling application must implicitly invoke the Mixed

Mode Manager.

If the calling application merely jumps to the PowerPC code, the code must begin with

a routine descriptor, as explained in “Executing Resource-Based Code” on page 2-24. If

the calling application calls a trap, the trap dispatch table must contain—instead of the

address of the routine’s executable code—the address of a routine descriptor for that

routine. This routine descriptor is created at system startup time.

Figure 2-2 shows the path followed when a 680x0 application calls a system software

routine implemented as PowerPC code. The trap dispatch table contains the address

of the native routine’s routine descriptor. The routine descriptor contains the address

of the routine’s transition vector, which in turn contains the routine’s entry point and

TOC value.

Figure 2-2 Calling PowerPC code from a 680x0 application

For example, suppose that your application calls the CountResources function,

as follows:

myResCount = CountResources('PROC');

Suppose further that CountResources has been ported to the PowerPC instruction set.

When your application calls CountResources, the stack looks like the one shown in

Figure 2-3.

C H A P T E R 2

Mixed Mode Manager

2-10 About the Mixed Mode Manager

Figure 2-3 The stack before a mode switch

The trap dispatcher executes the CountResources routine descriptor, which begins

with an executable instruction that invokes the Mixed Mode Manager. The Mixed Mode

Manager retrieves the transition vector and creates a switch frame on the stack. A switch
frame is a stack frame that contains information about the routine to be executed, the

state of various registers, and the address of the previous frame. Figure 2-4 shows the

structure of a 680x0-to-PowerPC switch frame.

IMPORTANT

Notice in Figure 2-4 that the low-order bit in the back chain pointer to
the saved A6 value is set. The Mixed Mode Manager uses that bit
internally as a signal that a switch frame is on the stack. The Mixed
Mode Manager will fail if the stack pointer has an odd value. ▲

C H A P T E R 2

Mixed Mode Manager

About the Mixed Mode Manager 2-11

Figure 2-4 A 680x0-to-PowerPC switch frame

In addition to creating a switch frame, the Mixed Mode Manager also sets up several

CPU registers:

■ The Table of Contents Register (RTOC) must be set to the TOC address of the
fragment containing the CountResources routine. This value is obtained from
the transition vector whose address is extracted from the routine descriptor.

■ The Link Register (LR) must be set to point to code that cleans up the stack and
restarts the emulator.

At this point, it’s safe to execute the native CountResources code. When

CountResources completes, the Mixed Mode Manager copies the return value from R3

into its proper location (in a register or on the stack). The RTOC, LR, and CR are restored

to their saved values, and the switch frame is popped off the stack. The Mixed Mode

Manager also pops the return address off the stack, as well as the parameters of routines

C H A P T E R 2

Mixed Mode Manager

2-12 About the Mixed Mode Manager

of type pascal. Finally, the Mixed Mode Manager jumps back into the 68LC040

Emulator and the application continues execution.

Calling 680x0 Code From PowerPC Code

This section describes how the Mixed Mode Manager switches modes from the PowerPC

native environment to the 680x0 emulated environment. This usually happens when

PowerPC code calls a system software routine that is implemented in the 680x0

instruction set.

For example, suppose that a PowerPC application calls a system software routine that

exists only as 680x0 code. In the system software import library must exist a small piece

of glue code that

■ allocates space on the stack for the routine’s result, if any

■ determines the address of the 680x0 routine from the trap dispatch table

■ provides the procedure information for the routine

■ calls the CallUniversalProc function

Listing 2-1 illustrates a sample glue routine for the QuickDraw text-measuring routine

TextWidth.

IMPORTANT

Glue routines like the one illustrated in Listing 2-1 are part of
the system software import library. You do not need to write
glue routines like this. ▲

Listing 2-1 Sample glue code for a 680x0 routine

enum {

uppTextWidthProcInfo = kPascalStackBased

| RESULT_SIZE(kTwoByteCode)

| STACK_ROUTINE_PARAMETER(1, kFourByteCode)

| STACK_ROUTINE_PARAMETER(2, kTwoByteCode)

| STACK_ROUTINE_PARAMETER(3, kTwoByteCode)

};

short TextWidth (Ptr textBuf, short firstByte, short byteCount)

{

ProcPtr textWidth_68K;

textWidth_68K = NGetTrapAddress(_TextWidth, ToolTrap);

return CallUniversalProc((UniversalProcPtr)textWidth_68K,

uppTextWidthProcInfo, textBuf, firstByte, byteCount);

}

C H A P T E R 2

Mixed Mode Manager

About the Mixed Mode Manager 2-13

See “Specifying Procedure Information” beginning on page 2-14 for a description of the

constants and macros used to define the procedure information (that is, the myProcInfo

parameter).

Note

For Operating System traps (that is, traps of type OSTrap), the
trap dispatcher copies the trap number into register D1. As a result,
the glue code illustrated in Listing 2-1 would need to call the
function CallOSTrapUniversalProc. ◆

The call to CallUniversalProc invokes the Mixed Mode Manager, which verifies that

a mode switch is necessary. At that point, the Mixed Mode Manager saves all nonvolatile

registers and other necessary information on the stack in a switch frame. Figure 2-5

shows the structure of a PowerPC-to-680x0 switch frame.

Figure 2-5 A PowerPC-to-680x0 switch frame

C H A P T E R 2

Mixed Mode Manager

2-14 Using the Mixed Mode Manager

Once the switch frame is set up, the Mixed Mode Manager sets up the 68LC040

Emulator’s context block and then jumps into the emulator. When the routine has

finished executing, it attempts to jump to the return address pushed onto the stack. That

return address points to a mode-switching structure contained in the Reserved area in

the switch frame. The emulator encounters the instruction in the goMixedModeTrap

field of the routine descriptor and then saves the current 680x0 state in its context block.

Once this is done, the Mixed Mode Manager restores native registers that were

previously saved and deallocates the switch frame. Control then returns to the caller of

CallUniversalProc.

IMPORTANT

As currently implemented, the instruction that causes a return from the
68LC040 Emulator to the native PowerPC environment clears the
low-order 5 bits of the Condition Code Register (CCR). This prevents
680x0 callback procedures from returning information in the CCR. If you
want to port 680x0 code that calls an external routine that returns results
in the CCR, you must instead call a 680x0 stub that saves that
information in some other place. ▲

Using the Mixed Mode Manager

You can use the Mixed Mode Manager to specify the procedure information for a

routine, create routine descriptors, and execute the code referenced by a universal

procedure pointer. Typically, you’ll call NewRoutineDescriptor to create a routine

descriptor and CallUniversalProc to execute the code described by a routine

descriptor. You can dispose of routine descriptors you no longer need by calling the

DisposeRoutineDescriptor function.

Remember that if you are compiling code for the 680x0 environment, you don’t need to

worry about creating, calling, or disposing of routine descriptors. For 680x0 code, the

compiler variable USESROUTINEDESCRIPTORS is set to false (the default setting). Any

calls in your source code to the NewRoutineDescriptor function are replaced by the

code address passed as a parameter to NewRoutineDescriptor. Similarly, any calls to

DisposeRoutineDescriptor are simply removed.

Note

Your development environment sets the USESROUTINEDESCRIPTOR
variable to the value appropriate for the kind of code you are compiling,
You don’t need to set or reset this variable. ◆

Specifying Procedure Information
The primary task of the Mixed Mode Manager is to convert routine parameters between

the 680x0 and PowerPC environments. The parameter passing conventions in the

PowerPC environment are identical for all routines, so you’ll need to specify the calling

conventions only for 680x0 routines.

C H A P T E R 2

Mixed Mode Manager

Using the Mixed Mode Manager 2-15

In the Macintosh Operating System, there are five basic kinds of calling conventions:

■ Pascal routines with the parameters passed on the stack

■ C routines with the parameters passed on the stack

■ routines with the parameters passed in registers

■ dispatched Pascal or C routines with the selector in a register and the parameters on
the stack

■ dispatched Pascal routines with the selector and the parameters on the stack

In addition to these five basic kinds of calling conventions, there exist a number of cases

that the Mixed Mode Manager treats specially. For example, an ADB service routine is

passed information in registers A0, A1, A2, and D0.

The Mixed Mode Manager uses a long word of type ProcInfoType to encode a

routine’s procedure information, which contains essential information about the calling

conventions and other features of a routine. You need to specify procedure information

when you create a new routine descriptor by calling the NewRoutineDescriptor

function.

typedef unsigned long ProcInfoType;

IMPORTANT

In all likelihood, you do not need to read the remainder of this section,
which explains in detail the structure of the ProcInfoType long word
and shows how to create custom procedure information. The universal
interface files define procedure information for each universal procedure
pointer used by the system. For example, the interfaces define the
constant uppGrowZoneProcInfo for you to use when specifying
the procedure information for a grow-zone function. You need to create
procedure information only for routines not defined in the programming
interfaces. You can probably skip to the section “Using Universal
Procedure Pointers” on page 2-21. ▲

The lower-order 4 bits of the procedure information encode the routine’s calling

conventions. You specify calling conventions using these constants:

enum {

/*calling conventions*/

kPascalStackBased = (CallingConventionType)0,

kCStackBased = (CallingConventionType)1,

kRegisterBased = (CallingConventionType)2,

kThinkCStackBased = (CallingConventionType)5,

kD0DispatchedPascalStackBased = (CallingConventionType)8,

kD0DispatchedCStackBased = (CallingConventionType)9,

kD1DispatchedPascalStackBased = (CallingConventionType)12,

kStackDispatchedPascalStackBased = (CallingConventionType)14,

kSpecialCase = (CallingConventionType)15

};

C H A P T E R 2

Mixed Mode Manager

2-16 Using the Mixed Mode Manager

For example, a routine that passes its parameters on the stack according to normal C

language conventions would have the rightmost 4 bits of the procedure information set

to 0001 (hexadecimal 0x00000001).

Except for routines having calling conventions of type kSpecialCase, the 2 bits to the

left of the calling convention bits encode the size of the result returned by the routine.

You can access those bits using a constant:

#define kResultSizePhase 4

The Mixed Mode Manager provides four constants and a macro that you can use to set a

routine’s result size in its procedure information.

enum {

kNoByteCode = 0,

kOneByteCode = 1,

kTwoByteCode = 2,

kFourByteCode = 3

};

#define RESULT_SIZE(sizeCode) \

((ProcInfoType)(sizeCode) << kResultSizePhase)

Except as already noted, every set of procedure information uses its rightmost 6 bits to

specify the calling conventions and result size information. The calling conventions,

which take up the rightmost 4 bits, determine how the remaining bits of a routine’s

procedure information are interpreted. For example, if the rightmost 4 bits contain

the value kCStackBased or the value kPascalStackBased, then the remaining bits

encode the sizes and number of the parameters passed on the stack. Figure 2-6 shows

how the Mixed Mode Manager interprets the procedure information for a stack-

based routine.

C H A P T E R 2

Mixed Mode Manager

Using the Mixed Mode Manager 2-17

Figure 2-6 Procedure information for a stack-based routine

Once again, the Mixed Mode Manager provides a set of constants and macros that you

can use to specify a stack-based routine’s procedure information.

#define kStackParameterPhase 6

#define kStackParameterWidth 2

#define STACK_ROUTINE_PARAMETER(whichParam, sizeCode) \

((ProcInfoType)(sizeCode) << (kStackParameterPhase + \

(((whichParam) - 1) * kStackParameterWidth)))

As you can see, the maximum number of stack-based parameters whose sizes you can

specify using a variable of type ProcInfoType is 13. The procedure information

encoding used by the Mixed Mode Manager places limits on the number of specifiable

register-based parameters as well. See Table 2-1 at the end of this section (page 2-20) for a

complete list of these limits.

The new application programming interface files described earlier (on page 2-6) include

constants that define procedure information for each type of routine to which you might

need to create a universal procedure pointer. For example, the interface file Memory.h

includes these definitions:

enum {

uppGrowZoneProcInfo = kPascalStackBased

| RESULT_SIZE(SIZE_CODE(sizeof(long)))

| STACK_ROUTINE_PARAMETER(1, SIZE_CODE(sizeof(Size))),

uppPurgeProcProcInfo = kPascalStackBased

| STACK_ROUTINE_PARAMETER(1, SIZE_CODE(sizeof(Handle)))

};

C H A P T E R 2

Mixed Mode Manager

2-18 Using the Mixed Mode Manager

A grow-zone function follows normal Pascal calling conventions, returns a value that is 4

bytes long, and takes a single 4-byte parameter on the stack. A purge-warning procedure

follows normal Pascal calling conventions, returns no value, and takes a single 4-byte

parameter on the stack.

The Mixed Mode Manager provides similar constants and macros for specifying

procedure information for register-based routines.

#define kRegisterResultLocationPhase \

(kCallingConventionWidth + kResultSizeWidth)

#define kRegisterResultLocationWidth 5

#define kRegisterParameterPhase \

(kCallingConventionWidth + kResultSizeWidth + \

kRegisterResultLocationWidth)

#define kRegisterParameterWidth 5

#define kRegisterParameterWhichPhase 2

#define kRegisterParameterSizePhase 0

#define kDispatchedSelectorSizeWidth 2

#define kDispatchedSelectorSizePhase \

(kCallingConventionWidth + kResultSizeWidth)

#define kDispatchedParameterPhase \

(kCallingConventionWidth + kResultSizeWidth + \

kDispatchedSelectorSizeWidth)

#define REGISTER_RESULT_LOCATION(whichReg) \

((ProcInfoType)(whichReg) << kRegisterResultLocationPhase)

#define REGISTER_ROUTINE_PARAMETER(whichParam, whichReg, sizeCode) \

((((ProcInfoType)(sizeCode) << kRegisterParameterSizePhase) | \

((ProcInfoType)(whichReg) << kRegisterParameterWhichPhase)) << \

(kRegisterParameterPhase + (((whichParam)- 1) * kRegisterParameterWidth)))

For example, Figure 2-7 shows the arrangement of the procedure information for a

register-based routine.

C H A P T E R 2

Mixed Mode Manager

Using the Mixed Mode Manager 2-19

Figure 2-7 Procedure information for a register-based routine

The register fields use the following constants to encode 680x0 register information:

enum {

/*680x0 registers*/

kRegisterD0 = 0,

kRegisterD1 = 1,

kRegisterD2 = 2,

kRegisterD3 = 3,

kRegisterD4 = 8,

kRegisterD5 = 9,

kRegisterD6 = 10,

kRegisterD7 = 11,

kRegisterA0 = 4,

kRegisterA1 = 5,

kRegisterA2 = 6,

kRegisterA3 = 7,

kRegisterA4 = 12,

kRegisterA5 = 13,

kRegisterA6 = 14,

kCCRegisterCBit = 16,

kCCRegisterVBit = 17,

kCCRegisterZBit = 18,

C H A P T E R 2

Mixed Mode Manager

2-20 Using the Mixed Mode Manager

kCCRegisterNBit = 19,

kCCRegisterXBit = 20

};

Note

The result size should be specified as 0 for results returned
in any of the CCR registers. ◆

The Mixed Mode Manager also provides constants and macros to specify the procedure

information for stack-based routines that take a register-based selector and for stack-

based routines that take a stack-based selector.

Note

See “Procedure Information” beginning on page 2-27 for a complete
description of the constants you can use to specify a routine’s procedure
information. See “C Language Macros for Defining Procedure
Information” on page 2-50 for a complete list of the Mixed Mode
Manager macros you can use to create procedure information. ◆

As noted earlier, there are limits on the number of parameters that a procedure

information can describe. Table 2-1 lists the available calling conventions and the

maximum number of specifiable parameters and selectors for each convention.

IMPORTANT

The input parameters can be passed in any of the registers D0–D3 and
A0–A3; the output parameter can be returned in any register. ▲

In general, these limitations should not affect you. There are, however, a very few cases

in which the documented behavior of a routine prevents it from being implemented in

native PowerPC code. For example, the low-level .ENET driver routines ReadRest

and ReadPacket return information in several registers. As a result, they cannot be

implemented natively. (Because these routines are typically called only in code where

Table 2-1 Limits on the number of specifiable parameters in a procedure information

Calling convention
Maximum number
of parameters

Number of
selectors

kPascalStackBased 13 0

kCStackBased 13 0

kRegisterBased 4 input, 1 output 0

kThinkCStackBased 13 0

kD0DispatchedPascalStackBased 12 1

kD0DispatchedCStackBased 12 1

kD1DispatchedPascalStackBased 12 1

kStackDispatchedPascalStackBased 12 1

C H A P T E R 2

Mixed Mode Manager

Using the Mixed Mode Manager 2-21

speed of execution is critical, it’s not likely that you would want to incur the overhead of

a mode switch by writing native callbacks to the .ENET driver.)

Using Universal Procedure Pointers
When you call the NewRoutineDescriptor or NewFatRoutineDescriptor

function to create a routine descriptor, the Mixed Mode Manager calls the Memory

Manager to allocate a nonrelocatable block in the current heap in which to store the new

routine descriptor. Eventually, you might want to dispose of the space occupied by the

routine descriptor; you can do this by calling the DisposeRoutineDescriptor

function.

In general, there are two ways you’ll probably handle this allocation and deallocation.

By far the easiest method is to allocate in your application’s heap, at application

initialization time, a routine descriptor for each routine whose address you’ll need to

pass elsewhere. For example, if your application calls TrackControl with a custom

action procedure, you can create a routine descriptor in the application heap when your

application starts up, as shown in Listing 2-2.

Listing 2-2 Creating global routine descriptors

UniversalProcPtr myActionProc;

myActionProc = NewRoutineDescriptor((ProcPtr)MyAction,

uppControlActionProcInfo,

GetCurrentISA());

Later you would call TrackControl like this:

TrackControl(myControl, myPoint, myActionProc);

The routine descriptor pointed to by the global variable myActionProc remains

allocated until your application quits, at which time the Process Manager reclaims

all the memory in your application heap.

Note

If you don’t want TrackControl to call an application-defined action
procedure, you must pass NULL in place of myActionProc. In that case,
you don’t need to call NewRoutineDescriptor. ◆

The other way to handle routine descriptors is to create them as you need them and then

dispose of them as soon as you’re finished with them. This practice would be useful for

routines you don’t call very often. Listing 2-3 shows a way to call the ModalDialog

function to display a rarely used modal dialog box.

C H A P T E R 2

Mixed Mode Manager

2-22 Using the Mixed Mode Manager

Listing 2-3 Creating local routine descriptors

void DoAboutBox (void)

{

short myItem = 0;

DialogPtr myDialog;

UniversalProcPtr myModalProc;

myDialog = GetNewDialog(kAboutBoxID, NULL, (WindowPtr) -1L);

myModalProc = NewRoutineDescriptor((ProcPtr)MyEventFilter,

uppModalFilterProcInfo,

GetCurrentISA());

while (myItem != iOK)

ModalDialog(myModalProc, &myItem);

DisposeDialog(myDialog);

DisposeRoutineDescriptor(myModalProc);

}

If you decide to allocate and dispose of routine descriptors locally, make sure that you

don’t dispose of a routine descriptor before it’s actually used by the Operating System.

(This could happen, for instance, if you pass a universal procedure pointer for a comple-

tion routine and then exit the local procedure before the completion routine is called.)

Note

You should call DisposeRoutineDescriptor only to dispose routine
descriptors that you created using either NewRoutineDescriptor or
NewFatRoutineDescriptor. ◆

Using Static Routine Descriptors
Instead of allocating space for routine descriptors in your application heap (as described

in the previous section), you can also create routine descriptors on the stack or in your

global variable space by using macros supplied by the Mixed Mode Manager. Most

likely, you’ll create a descriptor on the stack when you need to use a routine descriptor

for a very short time. For example, you could use the function defined in Listing 2-4

instead of the one defined in Listing 2-3.

C H A P T E R 2

Mixed Mode Manager

Using the Mixed Mode Manager 2-23

Listing 2-4 Creating static routine descriptors

void DoAboutBox (void)

{

short myItem = 0;

DialogPtr myDialog;

RoutineDescriptor myRD =

BUILD_ROUTINE_DESCRIPTOR(uppModalFilterProcInfo,

(ProcPtr)MyEventFilter);

UniversalProcPtr myModalProc;

myDialog = GetNewDialog(kAboutBoxID, NULL, (WindowPtr) -1L);

myModalProc = @myRD;

while (myItem != iOK)

ModalDialog(myModalProc, &myItem);

DisposeDialog(myDialog);

}

As you can see, the DoAboutBox function defined in Listing 2-4 uses the macro

BUILD_ROUTINE_DESCRIPTOR to create a routine descriptor on the stack and then

passes the address of that routine descriptor to the ModalDialog procedure. Because

the routine descriptor is created on the stack, there is no need to dispose of it before

exiting the DoAboutBox function.

You can create a routine descriptor in your application’s global data area by using the

BUILD_ROUTINE_DESCRIPTOR macro as follows:

static RoutineDescriptor myRD =

BUILD_ROUTINE_DESCRIPTOR(uppModalFilterProcInfo,

(ProcPtr)MyEventFilter);

This line of code creates a routine descriptor as part of the application global variables.

The advantage of this method is that you don’t have to call NewRoutineDescriptor

to allocate a routine descriptor in your heap.

The C language macro BUILD_ROUTINE_DESCRIPTOR is defined in Listing 2-5.

Listing 2-5 Building a static routine descriptor

#define BUILD_ROUTINE_DESCRIPTOR(procInfo, procedure) \

{ \

_MixedModeMagic, /*mixed-mode A-trap*/ \

kRoutineDescriptorVersion, /*version*/ \

kSelectorsAreNotIndexable, /*RD flags: not dispatched*/ \

0, /*reserved1*/ \

0, /*reserved2*/ \

C H A P T E R 2

Mixed Mode Manager

2-24 Using the Mixed Mode Manager

0, /*selector info*/ \

0, /*number of routines*/ \

{ /*it's an array*/ \

{ /*it's a structure*/ \

(procInfo), /*the procedure info*/ \

0, /*reserved*/ \

kPowerPCISA, /*ISA*/ \

kProcDescriptorIsAbsolute | /*flags: absolute address*/ \

kFragmentIsPrepared | /*it's prepared*/ \

kUseNativeISA, /*always use native ISA*/ \

(ProcPtr)(procedure), /*the procedure*/ \

0, /*reserved*/ \

0, /*not dispatched*/ \

}, \

}, \

}

IMPORTANT

You should use the BUILD_ROUTINE_DESCRIPTOR macro only to
create a routine descriptor that describes a nondispatched routine
that exists as PowerPC code. ▲

The Mixed Mode Manager also defines a C language macro that you can use to

create static fat routine descriptors. See the Mixed Mode Manager interface file for

the definition of the BUILD_FAT_ROUTINE_DESCRIPTOR macro.

Executing Resource-Based Code
As you’ve seen earlier in this book (in the section “Executable Resources” on page 1-34),

you can create executable resources that contain PowerPC code to serve as accelerated

versions of 680x0 code resources. The accelerated resource is simply a PowerPC version

of the 680x0 code resource, prefixed with a routine descriptor for the code contained in

the resource. The routine descriptor is necessary for the Mixed Mode Manager to know

whether it needs to change modes in order to execute the code. The routine descriptor

also lets the Mixed Mode Manager know whether it needs to call the Code Fragment

Manager to prepare the fragment. Figure 2-8 shows the structure your code-containing

resources should have.

C H A P T E R 2

Mixed Mode Manager

Using the Mixed Mode Manager 2-25

Figure 2-8 General structure of an executable code resource

The procDescriptor field of the routine record—contained in the routineRecords

field of the routine descriptor—should contain the offset from the beginning of the

resource (that is, the beginning of the routine descriptor) to the beginning of the execut-

able code fragment. In addition, the routine flags for the specified code should have the

kProcDescriptorIsRelative bit set, indicating that the address is relative, not

absolute. If the code contained in the resource is PowerPC code, you should also set the

kFragmentNeedsPreparing bit.

It’s also possible to create “fat” code-bearing resources, that is, resources containing both

680x0 and PowerPC versions of some routine. Figure 2-9 shows the general structure of

such a resource.

C H A P T E R 2

Mixed Mode Manager

2-26 Mixed Mode Manager Reference

Figure 2-9 General structure of a fat resource

In this case, the routine descriptor contains two routine records in its routineRecords

field, one describing the 680x0 code and one describing the PowerPC code. As with any

code-bearing resource, the procDescriptor field of each routine record should contain

the offset from the beginning of the resource to the beginning of the appropriate code.

The flags for both routine records should have the kProcDescriptorIsRelative flag

set, and the routine flags for the PowerPC routine record should have the

kFragmentNeedsPreparing flag set.

The MPW interface file MixedMode.r provides Rez templates that you can use to create

the accelerated resource shown in Figure 2-8 or the fat resource shown in Figure 2-9.

▲ W A R N I N G

Do not call accelerated resources at interrupt time unless you are certain
that the resource has already been loaded into memory, locked, and
prepared for execution. If the resource containing the code hasn’t
been prepared, the Code Fragment Manager will attempt to do so,
and thereby allocate memory. (Memory allocation is not allowed at
interrupt time.) ▲

Mixed Mode Manager Reference

This section describes the constants, data structures, and routines provided by the Mixed

Mode Manager. See “Using the Mixed Mode Manager” beginning on page 2-14 for

detailed instructions on using these routines.

C H A P T E R 2

Mixed Mode Manager

Mixed Mode Manager Reference 2-27

Constants

This section describes the constants provided by the Mixed Mode Manager. You use

these constants to specify routine descriptor flags and a routine’s procedure information.

Because the universal interface files define procedure information for the most common

callback routines, it’s likely that you won’t need to use the procedure information

constants listed here.

Routine Descriptor Flags

The routineDescriptorFlags field of a routine descriptor contains a set of routine

descriptor flags that specify attributes of the described routine. You can use constants

to specify the routine descriptor flags. In general, you should use the constant

kSelectorsAreNotIndexable when constructing your own routine descriptors; the

value kSelectorsAreIndexable is reserved for use by Apple.

enum {

kSelectorsAreNotIndexable = (RDFlagsType)0x00,

kSelectorsAreIndexable = (RDFlagsType)0x01

};

Constant descriptions

kSelectorsAreNotIndexable
For dispatched routines, the recognized routine selectors are
not contiguous.

kSelectorsAreIndexable
For dispatched routines, the recognized routine selectors are
contiguous and therefore indexable.

Procedure Information

The Mixed Mode Manager uses a long word of type ProcInfoType to encode a

routine’s procedure information, which contains essential information about the calling

conventions and other features of a routine. These values specify

■ the routine’s calling conventions

■ the sizes and locations of the routine’s parameters, if any

■ the size and location of the routine’s result, if any

See “Specifying Procedure Information” beginning on page 2-14 for a description of the

general structure of a routine’s procedure information. The Mixed Mode Manager

provides a number of constants that you can use to specify the procedure information.

The following constants are used to specify the size (in bytes) of a value encoded in a

routine’s procedure information.

C H A P T E R 2

Mixed Mode Manager

2-28 Mixed Mode Manager Reference

enum {

/*size codes*/

kNoByteCode = 0,

kOneByteCode = 1,

kTwoByteCode = 2,

kFourByteCode = 3

};

Constant descriptions

kNoByteCode The value occupies no bytes.

kOneByteCode The value occupies 1 byte.

kTwoByteCode The value occupies 2 bytes.

kFourByteCode The value occupies 4 bytes.

The offsets to fields and the widths of the fields within a value of type ProcInfoType

are defined by constants:

/*offsets to and widths of procedure information fields*/

#define kCallingConventionPhase 0

#define kCallingConventionWidth 4

#define kResultSizePhase kCallingConventionWidth

#define kResultSizeWidth 2

#define kResultSizeMask 0x30

#define kStackParameterPhase 6

#define kStackParameterWidth 2

#define kRegisterResultLocationPhase \

(kCallingConventionWidth + kResultSizeWidth)

#define kRegisterResultLocationWidth 5

#define kRegisterParameterPhase \

(kCallingConventionWidth + kResultSizeWidth + \

kRegisterResultLocationWidth)

#define kRegisterParameterWidth 5

#define kRegisterParameterWhichPhase 2

#define kRegisterParameterSizePhase 0

#define kDispatchedSelectorSizeWidth 2

#define kDispatchedSelectorSizePhase \

(kCallingConventionWidth + kResultSizeWidth)

#define kDispatchedParameterPhase \

(kCallingConventionWidth + kResultSizeWidth + \

kDispatchedSelectorSizeWidth)

Constant descriptions

kCallingConventionPhase
The offset from the least significant bit in the procedure information
to the calling convention information.

C H A P T E R 2

Mixed Mode Manager

Mixed Mode Manager Reference 2-29

kCallingConventionWidth
The number of bits in the procedure information that encode the
calling convention information.

kResultSizePhase
The offset from the least significant bit in the procedure information
to the function result size information.

kResultSizeWidth
The number of bits in the procedure information that encode the
function result size information.

kResultSizeMask
A mask for the bits in the procedure information that encode the
function result size information.

kStackParameterPhase
The offset from the least significant bit in the procedure information
to the stack parameter information.

kStackParameterWidth
The number of bits in the procedure information that encode the
size of a stack-based parameter.

kRegisterResultLocationPhase
The offset from the least significant bit in the procedure information
to the result register information.

kRegisterResultLocationWidth
The number of bits in the procedure information that encode which
register the result will be stored in.

kRegisterParameterPhase
The offset from the least significant bit in the procedure information
to the register parameter information.

kRegisterParameterWidth
The number of bits in the procedure information that encode the
information about a register-based parameter.

kRegisterParameterWhichPhase
The offset from the beginning of a register parameter information
field to the encoded register.

kRegisterParameterSizePhase
The offset from the beginning of a register parameter information
field to the encoded size of the parameter.

kDispatchedSelectorSizeWidth
The number of bits in the procedure information that encode the
size of a routine-dispatching selector.

kDispatchedSelectorSizePhase
The offset from the least significant bit in the procedure information
to the selector size information of a routine that is dispatched
though a selector.

kDispatchedParameterPhase
The offset from the least significant bit in the procedure information
to the parameter information of a routine that is dispatched though
a selector.

C H A P T E R 2

Mixed Mode Manager

2-30 Mixed Mode Manager Reference

The following constants are used to specify a routine’s calling conventions:

enum {

/*calling conventions*/

kPascalStackBased = (CallingConventionType)0,

kCStackBased = (CallingConventionType)1,

kRegisterBased = (CallingConventionType)2,

kThinkCStackBased = (CallingConventionType)5,

kD0DispatchedPascalStackBased = (CallingConventionType)8,

kD0DispatchedCStackBased = (CallingConventionType)9,

kD1DispatchedPascalStackBased = (CallingConventionType)12,

kStackDispatchedPascalStackBased = (CallingConventionType)14,

kSpecialCase = (CallingConventionType)15

};

Constant descriptions

kPascalStackBased
The routine follows normal Pascal calling conventions.

kCStackBased The routine follows the C calling conventions employed by the
MPW development environment.

kRegisterBased
The parameters are passed in registers.

kThinkCStackBased
The routine follows the C calling conventions employed by the
THINK C software development environment. Arguments are
passed on the stack from right to left, and a result is returned in
register D0. All arguments occupy an even number of bytes on
the stack. An argument having the size of a char is passed in the
high-order byte. You should always provide function prototypes;
failure to do so may cause THINK C to generate code that is
incompatible with this parameter-passing convention.

kD0DispatchedPascalStackBased
The parameters are passed on the stack according to Pascal
conventions, and the routine selector is passed in register D0.

kD0DispatchedCStackBased
The parameters are passed on the stack according to C conventions,
and the routine selector is passed in register D0.

kD1DispatchedPascalStackBased
The parameters are passed on the stack according to Pascal
conventions, and the routine selector is passed in register D1.

kStackDispatchedPascalStackBased
The routine selector and the parameters are passed on the stack.

kSpecialCase The routine is a special case. You can use the following constants to
specify a special case.

C H A P T E R 2

Mixed Mode Manager

Mixed Mode Manager Reference 2-31

enum {

/*special cases*/

kSpecialCaseHighHook = 0,

kSpecialCaseCaretHook = kSpecialCaseHighHook,

kSpecialCaseEOLHook = 1,

kSpecialCaseWidthHook = 2,

kSpecialCaseNWidthHook = 3,

kSpecialCaseTextWidthHook = kSpecialCaseWidthHook,

kSpecialCaseDrawHook = 4,

kSpecialCaseHitTestHook = 5,

kSpecialCaseTEFindWord = 6,

kSpecialCaseProtocolHandler = 7,

kSpecialCaseSocketListener = 8,

kSpecialCaseTERecalc = 9,

kSpecialCaseTEDoText = 10,

kSpecialCaseGNEFilterProc = 11,

kSpecialCaseMBarHook = 12

};

Constant descriptions

kSpecialCaseHighHook
The routine follows the calling conventions documented in Inside
Macintosh: Text; a rectangle is on the stack and a pointer is in register
A3; no result is returned.

kSpecialCaseCaretHook
The routine follows the calling conventions documented in Inside
Macintosh: Text; a rectangle is on the stack and a pointer is in register
A3; no result is returned.

kSpecialCaseEOLHook
Parameters are passed to the routine in registers A3, A4, and D0,
and output is returned in the Z flag of the Status Register. An
EOLHook routine has these calling conventions.

kSpecialCaseWidthHook
Parameters are passed to the routine in registers A0, A3, A4, D0, and
D1, and output is returned in register D1. A WIDTHHook routine has
these calling conventions.

kSpecialCaseNWidthHook
Parameters are passed to the routine in registers A0, A2, A3, A4, D0,
and D1, and output is returned in register D1. An nWIDTHHook
routine has these calling conventions.

kSpecialCaseTextWidthHook
Parameters are passed to the routine in registers A0, A3, A4, D0, and
D1, and output is returned in register D1. A TextWidthHook
routine has these calling conventions.

kSpecialCaseDrawHook
Parameters are passed to the routine in registers A0, A3, A4, D0, and

C H A P T E R 2

Mixed Mode Manager

2-32 Mixed Mode Manager Reference

D1, and no result is returned. A DRAWHook routine has these calling
conventions.

kSpecialCaseHitTestHook
Parameters are passed to the routine in registers A0, A3, A4, D0, D1,
and D2, and output is returned in registers D0, D1, and D2. A
HITTESTHook routine has these calling conventions.

kSpecialCaseTEFindWord
Parameters are passed to the routine in registers A3, A4, D0, and
D2, and output is returned in registers D0 and D1. A TEFindWord
hook has these calling conventions.

kSpecialCaseProtocolHandler
Parameters are passed to the routine in registers A0, A1, A2, A3, A4,
and in the low-order word of register D1; output is returned in the
Z flag of the Status Register. A protocol handler has these calling
conventions.

kSpecialCaseSocketListener
Parameters are passed to the routine in registers A0, A1, A2, A3, A4,
in the low-order byte of register D0, and in the low-order word of
register D1; output is returned in the Z flag of the Status Register. A
socket listener has these calling conventions.

kSpecialCaseTERecalc
Parameters are passed to the routine in registers A3 and D7, and
output is returned in registers D2, D3, and D4. A TextEdit line-start
recalculation routine has these calling conventions.

kSpecialCaseTEDoText
Parameters are passed to the routine in registers A3, D3, D4, and
D7, and output is returned in registers A0 and D0. A TextEdit
text-display, hit-test, and caret-positioning routine has these calling
conventions.

kSpecialCaseGNEFilterProc
Parameters are passed to the routine in registers A1 and D0 and on
the stack, and output is returned on the stack. A GetNextEvent
filter procedure has these calling conventions.

kSpecialCaseMBarHook
Parameters are passed to the routine on the stack, and output is
returned in register D0. A menu bar hook routine has these calling
conventions.

For register-based routines, the registers are encoded in the routine’s procedure

information using these constants:

enum {

/*680x0 registers*/

kRegisterD0 = 0,

kRegisterD1 = 1,

kRegisterD2 = 2,

kRegisterD3 = 3,

kRegisterD4 = 8,

C H A P T E R 2

Mixed Mode Manager

Mixed Mode Manager Reference 2-33

kRegisterD5 = 9,

kRegisterD6 = 10,

kRegisterD7 = 11,

kRegisterA0 = 4,

kRegisterA1 = 5,

kRegisterA2 = 6,

kRegisterA3 = 7,

kRegisterA4 = 12,

kRegisterA5 = 13,

kRegisterA6 = 14,

kCCRegisterCBit = 16,

kCCRegisterVBit = 17,

kCCRegisterZBit = 18,

kCCRegisterNBit = 19,

kCCRegisterXBit = 20

};

Constant descriptions

kRegisterD0 Register D0.

kRegisterD1 Register D1.

kRegisterD2 Register D2.

kRegisterD3 Register D3.

kRegisterD4 Register D4.

kRegisterD5 Register D5.

kRegisterD6 Register D6.

kRegisterD7 Register D7.

kRegisterA0 Register A0.

kRegisterA1 Register A1.

kRegisterA2 Register A2.

kRegisterA3 Register A3.

kRegisterA4 Register A4.

kRegisterA5 Register A5.

kRegisterA6 Register A6.

kCCRegisterCBit
The C (carry) flag of the Status Register.

kCCRegisterVBit
The V (overflow) flag of the Status Register.

kCCRegisterZBit
The Z (zero) flag of the Status Register.

kCCRegisterNBit
The N (negative) flag of the Status Register.

kCCRegisterXBit
The X (extend) flag of the Status Register.

C H A P T E R 2

Mixed Mode Manager

2-34 Mixed Mode Manager Reference

Routine Flags

The routineFlags field of a routine record contains a set of flags that specify informa-

tion about a routine. You can use constants to specify the desired routine flags. Currently,

only 5 of the 16 bits in a routine flags word are defined. You should set all the other

bits to 0.

enum {

kProcDescriptorIsAbsolute = (RoutineFlagsType)0x00,

kProcDescriptorIsRelative = (RoutineFlagsType)0x01

};

Constant descriptions

kProcDescriptorIsAbsolute
The address of the routine’s entry point specified in the
procDescriptor field of a routine record is an absolute address.

kProcDescriptorIsRelative
The address of the routine’s entry point specified in the
procDescriptor field of a routine record is relative to the
beginning of the routine descriptor. If the code is contained in a
resource and its absolute location is not known until run time, you
should set this flag.

enum {

kFragmentIsPrepared = (RoutineFlagsType)0x00,

kFragmentNeedsPreparing = (RoutineFlagsType)0x02

};

Constant descriptions

kFragmentIsPrepared
The fragment containing the code to be executed is already loaded
into memory and prepared by the Code Fragment Manager.

kFragmentNeedsPreparing
The fragment containing the code to be executed needs to be loaded
into memory and prepared by the Code Fragment Manager. If this
flag is set, the kPowerPCISA and kProcDescriptorIsRelative
flags should also be set.

enum {

kUseCurrentISA = (RoutineFlagsType)0x00,

kUseNativeISA = (RoutineFlagsType)0x04

};

Constant descriptions

kUseCurrentISA If possible, use the current instruction set architecture when
executing a routine.

kUseNativeISA Use the native instruction set architecture when executing a routine.

C H A P T E R 2

Mixed Mode Manager

Mixed Mode Manager Reference 2-35

enum {

kPassSelector = (RoutineFlagsType)0x00,

kDontPassSelector = (RoutineFlagsType)0x08

};

Constant descriptions

kPassSelector Pass the routine selector to the target routine as a parameter.

kDontPassSelector
Do not pass the routine selector to the target routine as a parameter.
You should not use this flag for 680x0 routines.

enum {

kRoutineIsNotDispatchedDefaultRoutine

= (RoutineFlagsType)0x00,

kRoutineIsDispatchedDefaultRoutine

= (RoutineFlagsType)0x10

};

Constant descriptions

kRoutineIsNotDispatchedDefaultRoutine
This routine is not the default routine for a set of routines that is
dispatched using a routine selector.

kRoutineIsDispatchedDefaultRoutine
This routine is the default routine for a set of routines that is
dispatched using a routine selector. If a set of routines is dispatched
using a routine selector and the routine corresponding to a specified
selector cannot be found, this default routine is called. This routine
must be able to accept the same procedure information for all
routines. If possible, it is passed the procedure information passed
in a call to CallUniversalProc.

IMPORTANT

In general, you should use the constants kPassSelector and
kRoutineIsNotDispatchedDefaultRoutine. The constants
kDontPassSelector and kRoutineIsDispatchedDefaultRoutine
are reserved for use with selector-based system software routines. ▲

Instruction Set Architectures

The ISA field of a routine record contains a flag that specifies the instruction set

architecture of a routine. You can use constants to specify the instruction set architecture.

C H A P T E R 2

Mixed Mode Manager

2-36 Mixed Mode Manager Reference

enum {

kM68kISA = (ISAType)0, /*MC680x0 architecture*/

kPowerPCISA = (ISAType)1 /*PowerPC architecture*/

};

Constant descriptions

kM68kISA The routine consists of 680x0 code.

kPowerPCISA The routine consists of PowerPC code.

Data Str uctures

This section describes the two data structures provided by the Mixed Mode Manager:

■ the routine record, which contains information about a routine’s calling conventions,
the sizes and locations of its parameters, and its location in memory

■ the routine descriptor, which provides a generalization of procedure pointers
(variables of type ProcPtr) common in the 680x0 environment

Routine Records

A routine record is a data structure that contains information about a particular routine.

The routine descriptor specifies, among other things, the instruction set architecture

of the routine, the number and size of the routine’s parameters, the routine’s calling

conventions, and the routine’s location in memory. At least one routine record is

contained in the routineRecords field of a routine descriptor. A routine record is

defined by the RoutineRecord data type.

struct RoutineRecord {

ProcInfoType procInfo; /*calling conventions*/

unsigned char reserved1; /*reserved*/

ISAType ISA; /*instruction set architecture*/

RoutineFlagsType routineFlags; /*flags for each routine*/

ProcPtr procDescriptor; /*the thing we're calling*/

unsigned long reserved2; /*reserved*/

unsigned long selector; /*selector for dispatched calls*/

};

typedef struct RoutineRecord RoutineRecord;

typedef RoutineRecord *RoutineRecordPtr, **RoutineRecordHandle;

Field descriptions

procInfo A value of type ProcInfoType that encodes essential information
about the routine’s calling conventions and parameters. See
“Procedure Information” beginning on page 2-27 for a complete list
of the constants you can use to set this field.

reserved1 Reserved. This field must be 0.

C H A P T E R 2

Mixed Mode Manager

Mixed Mode Manager Reference 2-37

ISA The instruction set architecture of the routine. See “Instruction Set
Architectures” beginning on page 2-35 for a complete listing of the
constants you can use to set this field.

routineFlags A value of type RoutineFlagsType that contains a set of flags
describing the routine. See “Routine Flags” beginning on page 2-34
for a complete listing of the constants you can use to set this field.

procDescriptor
A pointer to the routine’s code. If the routine consists of 680x0
code and the kProcDescriptorIsAbsolute flag is set in the
routineFlags field, then this field contains the address of the
routine’s entry point. If the routine consists of 680x0 code and the
kProcDescriptorIsRelative flag is set, then this field contains
the offset from the beginning of the routine descriptor to the
routine’s entry point. If the routine consists of PowerPC code,
the kFragmentIsPrepared flag is set, and the
kProcDescriptorIsAbsolute flag is set, then this field contains
the address of the routine’s transition vector. If the routine consists
of PowerPC code, the kFragmentNeedsPreparing flag is set,
and the kProcDescriptorIsRelative flag is set, then this field
contains the offset from the beginning of the routine descriptor to
the routine’s entry point.

reserved2 Reserved. This field must be 0.

selector Reserved. This field must be 0. For routines that are dispatched, this
field contains the routine selector.

Routine Descriptors

A routine descriptor is a data structure used by the Mixed Mode Manager to execute a

routine. The external interface to a routine descriptor is through a universal procedure

pointer, of type UniversalProcPtr, which is defined as a procedure pointer (if the

code is 680x0 code) or as a pointer to a routine descriptor (if the code is PowerPC code).

A routine descriptor is defined by the RoutineDescriptor data type.

struct RoutineDescriptor {

unsigned short goMixedModeTrap; /*mixed-mode A-trap*/

char version; /*routine descriptor version*/

RDFlagsType routineDescriptorFlags;

/*routine descriptor flags*/

unsigned long reserved1; /*reserved*/

unsigned char reserved2; /*reserved*/

unsigned char selectorInfo; /*selector information*/

short routineCount; /*index of last RR in this RD*/

RoutineRecord routineRecords[1];/*the individual routines*/

};

typedef struct RoutineDescriptor RoutineDescriptor;

C H A P T E R 2

Mixed Mode Manager

2-38 Mixed Mode Manager Reference

Field descriptions

goMixedModeTrap
An A-line instruction that is used privately by the Mixed Mode
Manager. When the emulator encounters this instruction, it
transfers control to the Mixed Mode Manager. This field contains
the value $AAFE.

version The version number of the RoutineDescriptor data type. The
current version number is defined by the constant
kRoutineDescriptorVersion:

enum {kRoutineDescriptorVersion = 7};

routineDescriptorFlags
A set of routine descriptor flags. Currently, all the bits in this field
should be set to 0, unless you are specifying a routine descriptor for
a dispatched routine. See “Routine Descriptor Flags” on page 2-27
for a complete description of these flags.

reserved1 Reserved. This field must initially be 0.

reserved2 Reserved. This field must be 0.

selectorInfo Reserved. This field must be 0.

routineCount The index of the final routine record in the following array,
routineRecords. Because the routineRecords array is zero-
based, this field does not contain an actual count of the routine
records contained in that array. Often, you’ll use a routine
descriptor to describe a single procedure, in which case this field
should contain the value 0. You can, however, construct a routine
descriptor that contains pointers to both 680x0 and PowerPC code
(known as a “fat” routine descriptor). In that case, this field should
contain the value 1.

routineRecords
An array of routine records for the routines described by this
routine descriptor. See “Routine Records” on page 2-36 for the
structure of a routine record. This array is zero-based.

IMPORTANT

Your application (or other software) should never attempt to guide its
execution by inspecting the value in the ISA field of a routine record
and jumping to the address in the procDescriptor field. ▲

Mixed Mode Manager Routines

This section describes the routines provided by the Mixed Mode Manager. You can use

these routines to

■ create and dispose of routine descriptors

■ execute routines described by routine descriptors

C H A P T E R 2

Mixed Mode Manager

Mixed Mode Manager Reference 2-39

In general, you need to call these routines only from PowerPC code. To maintain a single

source code base for your software, however, you can call Mixed Mode Manager

routines from 680x0 code, as long as you set the USESROUTINEDESCRIPTORS compiler

flag to false (its default setting). To compile code for the PowerPC environment, you

should set the USESROUTINEDESCRIPTORS flag to true.

See “Using the Mixed Mode Manager” beginning on page 2-14 for detailed instructions

on using these routines.

Creating and Disposing of Routine Descriptors

The Mixed Mode Manager provides routines that you can use to create and dispose of

routine descriptors. In general, you need to create routine descriptors only for routines

whose addresses are exported to the system software (for example, a completion

procedure). You don’t need to create a routine descriptor for a routine that is called by

code of the same type.

NewRoutineDescriptor

You can call the NewRoutineDescriptor function to create a new routine descriptor.

pascal UniversalProcPtr NewRoutineDescriptor

(ProcPtr theProc, ProcInfoType theProcInfo,

ISAType theISA);

theProc The address of the routine.

theProcInfo
The procedure information to be associated with the routine.

theISA The instruction set architecture of the routine being described.

DESCRIPTION

The NewRoutineDescriptor function creates a new routine descriptor and returns a

pointer (of type UniversalProcPtr) to it. If the value of the theProc parameter is

NULL, NewRoutineDescriptor returns the value NULL.

The memory occupied by the new routine descriptor is allocated in the current heap. If

you want the memory to be allocated in some other heap, you’ll need to set the current

heap to that heap and then restore the current heap before exiting.

SPECIAL CONSIDERATIONS

The NewRoutineDescriptor function allocates memory; you should not call it at

interrupt time or from any code that might be executed when memory is low. In

addition, the block of memory allocated by NewRoutineDescriptor is nonrelocatable.

C H A P T E R 2

Mixed Mode Manager

2-40 Mixed Mode Manager Reference

To help minimize heap fragmentation, you should try to allocate any routine descriptors

you will need early in your application’s execution.

When the USESROUTINEDESCRIPTORS compile flag is false, the

NewRoutineDescriptor function simply returns the address passed in

the theProc parameter and does not allocate memory for a routine descriptor.

SEE ALSO

See “Using Universal Procedure Pointers” beginning on page 2-21 for a more complete

description of when and how to create routine descriptors. See “Specifying Procedure

Information” beginning on page 2-14 for information on creating procedure information.

NewFatRoutineDescriptor

You can call the NewFatRoutineDescriptor function to create a new fat routine

descriptor.

pascal UniversalProcPtr NewFatRoutineDescriptor

(ProcPtr theM68kProc, ProcPtr thePowerPCProc,

ProcInfoType theProcInfo);

theM68kProc
The address of a 680x0 routine.

thePowerPCProc
The address of a PowerPC routine.

theProcInfo
The procedure information to be associated with the routine.

DESCRIPTION

The NewFatRoutineDescriptor function creates a new fat routine descriptor and

returns a pointer (of type UniversalProcPtr) to it. The routine descriptor contains

routine records for both 680x0 and PowerPC versions of a routine. If the value of either

the theM68kProc parameter or the thePowerPCProc parameter is NULL,

NewFatRoutineDescriptor returns the value NULL.

The memory occupied by the new routine descriptor is allocated in the current heap. If

you want the memory to be allocated in some other heap, you’ll need to set the current

heap to that heap and then restore the original heap before exiting.

SPECIAL CONSIDERATIONS

The NewFatRoutineDescriptor function allocates memory; you should not call it at

interrupt time or from any code that might be executed when memory is low. In addition,

the block of memory allocated by NewFatRoutineDescriptor is nonrelocatable. To

C H A P T E R 2

Mixed Mode Manager

Mixed Mode Manager Reference 2-41

help minimize heap fragmentation, you should try to allocate any routine descriptors you

will need early in your application’s execution.

When the USESROUTINEDESCRIPTORS compile flag is false, the

NewFatRoutineDescriptor function is undefined.

SEE ALSO

See “Using Universal Procedure Pointers” beginning on page 2-21 for a more complete

description of when and how to create routine descriptors. See “Specifying Procedure

Information” beginning on page 2-14 for information on creating procedure information.

DisposeRoutineDescriptor

You can call the DisposeRoutineDescriptor function to dispose of a routine

descriptor.

pascal void DisposeRoutineDescriptor

(UniversalProcPtr theProcPtr);

theProcPtr
A universal procedure pointer.

DESCRIPTION

The DisposeRoutineDescriptor function disposes of the routine descriptor pointed

to by the theProcPtr parameter. You should call this function to release any memory

allocated by a previous call to NewRoutineDescriptor.

The Operating System automatically disposes of any remaining routine descriptors held

by your application when ExitToShell is executed on its behalf. As a result, you don’t

need to explicitly dispose of any routine descriptors that you have allocated in your

application heap.

SPECIAL CONSIDERATIONS

Be careful not to dispose of a routine descriptor that is still in use by the Operating

System. Code that installs completion routines or other routines called asynchronously

may complete before the completion routine is actually called.

When the USESROUTINEDESCRIPTORS compile flag is false, the

DisposeRoutineDescriptor function does nothing.

C H A P T E R 2

Mixed Mode Manager

2-42 Mixed Mode Manager Reference

Calling Routines via Universal Procedure Pointers

The Mixed Mode Manager provides a function that allows you to execute the routine

associated with a universal procedure pointer. It also provides a function that allows you

to call the routine associated with a universal procedure pointer, following Operating

System register saving and restoring conventions.

CallUniversalProc

You can use the CallUniversalProc function to call the routine associated with a

universal procedure pointer.

long CallUniversalProc (UniversalProcPtr theProcPtr,

ProcInfoType theProcInfo, ...);

theProcPtr
A universal procedure pointer.

theProcInfo
The procedure information associated with the routine specified by the
theProcPtr parameter.

DESCRIPTION

The CallUniversalProc function executes the routine associated with the specified

universal procedure pointer. You pass CallUniversalProc a universal procedure

pointer (which may be either a 680x0 procedure pointer or the address of the routine

descriptor), a set of procedure information, and a variable number of parameters that are

passed to the routine. CallUniversalProc returns a result of type long that contains

the result (if any) returned by the called routine.

SPECIAL CONSIDERATIONS

If the universal procedure pointer passed to CallUniversalProc is the address

of the routine descriptor, that routine descriptor must already exist before you call

CallUniversalProc. If you pass the address of an invalid routine descriptor to

CallUniversalProc, a system error will occur.

CallOSTrapUniversalProc

You can call the CallOSTrapUniversalProc function to call the routine associated

with a universal procedure pointer, following Operating System register saving and

C H A P T E R 2

Mixed Mode Manager

Mixed Mode Manager Reference 2-43

restoring conventions. You’re likely to need to use this function only if you need to patch

an Operating System trap.

long CallOSTrapUniversalProc (UniversalProcPtr theProcPtr,

ProcInfoType theProcInfo, ...);

theProcPtr
A universal procedure pointer.

theProcInfo
The procedure information associated with the routine specified by the
theProcPtr parameter.

DESCRIPTION

The CallOSTrapUniversalProc function executes the routine associated with the

specified universal procedure pointer, following standard conventions for executing

Operating System traps. Registers A1, A2, D1, and D2 are saved before the routine is

executed and restored after its completion; in addition, register A0 is saved and restored,

depending on the setting of the appropriate flag bit in the trap word. The trap number

is put into register D1; you should make certain to record that fact in any procedure

information you build yourself.

You pass CallOSTrapUniversalProc a universal procedure pointer (which may be

either a 680x0 procedure pointer or the address of a routine descriptor), a set of

procedure information, and a variable number of parameters that are passed to the

routine. CallOSTrapUniversalProc returns a result of type long that contains the

result (if any) returned by the called routine.

SPECIAL CONSIDERATIONS

If the universal procedure pointer passed to CallOSTrapUniversalProc is the address

of the routine descriptor, that routine descriptor must already exist before you call

CallOSTrapUniversalProc. If you pass the address of an invalid routine descriptor

to CallOSTrapUniversalProc, a system error will occur.

The CallOSTrapUniversalProc function is defined only for register-based Operating

System traps. Make sure that the procedure information specified in the theProcInfo

parameter correctly specifies the calling conventions of the trap. In particular, do not

specify either C or Pascal calling conventions.

C H A P T E R 2

Mixed Mode Manager

2-44 Mixed Mode Manager Reference

Determining Instruction Set Architectures

The Mixed Mode Manager contains a function that you can use to determine the current

instruction set architecture.

GetCurrentISA

You can use the GetCurrentISA function to get the current instruction set architecture.

ISAType GetCurrentISA (void);

DESCRIPTION

The GetCurrentISA function returns the current instruction set architecture. See

“Instruction Set Architectures” on page 2-35 for a list of the values GetCurrentISA

can return.

SPECIAL CONSIDERATIONS

Currently, the GetCurrentISA function is defined as a compiler macro.

#if defined(powerc) || defined(__powerc)

#define GetCurrentISA() ((ISAType) kPowerPCISA)

#else

#define GetCurrentISA() ((ISAType) kM68kISA)

#endif

The implementation details are subject to change.

C H A P T E R 2

Mixed Mode Manager

Summary of the Mixed Mode Manager 2-45

Summary of the Mixed Mode Manager

C Summary

Constants

/*Gestalt selector and response bits*/

#define gestaltMixedModeAttr 'mixd' /*Mixed Mode Mgr attributes*/

enum {

gestaltPowerPCAware = 0 /*true if MMMgr supports PowerPC*/

};

enum {

/*current version of RoutineDescriptor data type*/

kRoutineDescriptorVersion = 7

};

Routine Flags

enum {

kProcDescriptorIsAbsolute = (RoutineFlagsType)0x00,

kProcDescriptorIsRelative = (RoutineFlagsType)0x01

};

enum {

kFragmentIsPrepared = (RoutineFlagsType)0x00,

kFragmentNeedsPreparing = (RoutineFlagsType)0x02

};

enum {

kUseCurrentISA = (RoutineFlagsType)0x00,

kUseNativeISA = (RoutineFlagsType)0x04

};

enum {

kPassSelector = (RoutineFlagsType)0x00,

kDontPassSelector = (RoutineFlagsType)0x08

};

C H A P T E R 2

Mixed Mode Manager

2-46 Summary of the Mixed Mode Manager

enum {

kRoutineIsNotDispatchedDefaultRoutine

= (RoutineFlagsType)0x00,

kRoutineIsDispatchedDefaultRoutine

= (RoutineFlagsType)0x10

};

Instruction Set Architectures

enum {

kM68kISA = (ISAType)0, /*MC680x0 architecture*/

kPowerPCISA = (ISAType)1 /*PowerPC architecture*/

};

Routine Descriptor Flags

enum {

kSelectorsAreNotIndexable = (RDFlagsType)0x00,

kSelectorsAreIndexable = (RDFlagsType)0x01

};

Procedure Information

enum {

/*size codes*/

kNoByteCode = 0,

kOneByteCode = 1,

kTwoByteCode = 2,

kFourByteCode = 3

};

/*offsets to and widths of procedure information fields*/

#define kCallingConventionPhase 0

#define kCallingConventionWidth 4

#define kResultSizePhase kCallingConventionWidth

#define kResultSizeWidth 2

#define kResultSizeMask 0x30

#define kStackParameterPhase 6

#define kStackParameterWidth 2

#define kRegisterResultLocationPhase \

(kCallingConventionWidth + kResultSizeWidth)

#define kRegisterResultLocationWidth 5

C H A P T E R 2

Mixed Mode Manager

Summary of the Mixed Mode Manager 2-47

#define kRegisterParameterPhase \

(kCallingConventionWidth + kResultSizeWidth + \

kRegisterResultLocationWidth)

#define kRegisterParameterWidth 5

#define kRegisterParameterWhichPhase 2

#define kRegisterParameterSizePhase 0

#define kDispatchedSelectorSizeWidth 2

#define kDispatchedSelectorSizePhase \

(kCallingConventionWidth + kResultSizeWidth)

#define kDispatchedParameterPhase \

(kCallingConventionWidth + kResultSizeWidth + \

kDispatchedSelectorSizeWidth)

enum {

/*calling conventions*/

kPascalStackBased = (CallingConventionType)0,

kCStackBased = (CallingConventionType)1,

kRegisterBased = (CallingConventionType)2,

kThinkCStackBased = (CallingConventionType)5,

kD0DispatchedPascalStackBased = (CallingConventionType)8,

kD0DispatchedCStackBased = (CallingConventionType)9,

kD1DispatchedPascalStackBased = (CallingConventionType)12,

kStackDispatchedPascalStackBased = (CallingConventionType)14,

kSpecialCase = (CallingConventionType)15

};

enum {

/*special cases*/

kSpecialCaseHighHook = 0,

kSpecialCaseCaretHook = kSpecialCaseHighHook,

kSpecialCaseEOLHook = 1,

kSpecialCaseWidthHook = 2,

kSpecialCaseNWidthHook = 3,

kSpecialCaseTextWidthHook = kSpecialCaseWidthHook,

kSpecialCaseDrawHook = 4,

kSpecialCaseHitTestHook = 5,

kSpecialCaseTEFindWord = 6,

kSpecialCaseProtocolHandler = 7,

kSpecialCaseSocketListener = 8,

kSpecialCaseTERecalc = 9,

kSpecialCaseTEDoText = 10,

kSpecialCaseGNEFilterProc = 11,

kSpecialCaseMBarHook = 12

};

C H A P T E R 2

Mixed Mode Manager

2-48 Summary of the Mixed Mode Manager

enum {

/*680x0 registers*/

kRegisterD0 = 0,

kRegisterD1 = 1,

kRegisterD2 = 2,

kRegisterD3 = 3,

kRegisterD4 = 8,

kRegisterD5 = 9,

kRegisterD6 = 10,

kRegisterD7 = 11,

kRegisterA0 = 4,

kRegisterA1 = 5,

kRegisterA2 = 6,

kRegisterA3 = 7,

kRegisterA4 = 12,

kRegisterA5 = 13,

kRegisterA6 = 14,

kCCRegisterCBit = 16,

kCCRegisterVBit = 17,

kCCRegisterZBit = 18,

kCCRegisterNBit = 19,

kCCRegisterXBit = 20

};

Data Types

typedef unsigned char ISAType; /*instruction set architecture*/

typedef unsigned short CallingConventionType; /*calling convention*/

typedef unsigned long ProcInfoType; /*procedure information*/

typedef unsigned short RegisterSelectorType;

typedef unsigned short RoutineFlagsType;

struct RoutineRecord {

ProcInfoType procInfo; /*calling conventions*/

unsigned char reserved1; /*reserved*/

ISAType ISA; /*instruction set architecture*/

RoutineFlagsType routineFlags; /*flags for each routine*/

ProcPtr procDescriptor; /*the thing we're calling*/

unsigned long reserved2; /*reserved*/

unsigned long selector; /*selector for dispatched calls*/

C H A P T E R 2

Mixed Mode Manager

Summary of the Mixed Mode Manager 2-49

};

typedef struct RoutineRecord RoutineRecord;

typedef RoutineRecord *RoutineRecordPtr, **RoutineRecordHandle;

typedef unsigned char RDFlagsType; /*routine descriptor flags*/

struct RoutineDescriptor {

unsigned short goMixedModeTrap; /*mixed-mode A-trap*/

char version; /*routine descriptor version*/

RDFlagsType routineDescriptorFlags;

/*routine descriptor flags*/

unsigned long reserved1; /*reserved*/

unsigned char reserved2; /*reserved*/

unsigned char selectorInfo; /*selector information*/

short routineCount; /*index of last RR in this RD*/

RoutineRecord routineRecords[1];/*the individual routines*/

};

typedef struct RoutineDescriptor RoutineDescriptor;

typedef RoutineDescriptor *UniversalProcPtr, **UniversalProcHandle;

typedef RoutineDescriptor *RoutineDescriptorPtr, **RoutineDescriptorHandle;

Mixed Mode Manager Routines

Creating and Disposing of Routine Descriptors

pascal UniversalProcPtr NewRoutineDescriptor
(ProcPtr theProc, ProcInfoType theProcInfo,
ISAType theISA);

pascal UniversalProcPtr NewFatRoutineDescriptor
(ProcPtr theM68kProc, ProcPtr thePowerPCProc,
ProcInfoType theProcInfo);

pascal void DisposeRoutineDescriptor
(UniversalProcPtr theProcPtr);

Calling Routines via Universal Procedure Pointers

long CallUniversalProc (UniversalProcPtr theProcPtr,
ProcInfoType theProcInfo, ...);

long CallOSTrapUniversalProc
(UniversalProcPtr theProcPtr,
ProcInfoType theProcInfo, ...);

Determining Instruction Set Architectures

ISAType GetCurrentISA (void);

C H A P T E R 2

Mixed Mode Manager

2-50 Summary of the Mixed Mode Manager

C Language Macros for Defining Procedure Information

#define SIZE_CODE(size) (((size) == 4) ? kFourByteCode : \

(((size) == 2) ? kTwoByteCode : (((size) == 1) ? kOneByteCode : 0)))

#define RESULT_SIZE(sizeCode) ((ProcInfoType)(sizeCode) << kResultSizePhase)

#define STACK_ROUTINE_PARAMETER(whichParam, sizeCode) \

((ProcInfoType)(sizeCode) << (kStackParameterPhase + \

(((whichParam) - 1) * kStackParameterWidth)))

#define DISPATCHED_STACK_ROUTINE_PARAMETER(whichParam, sizeCode) \

((ProcInfoType)(sizeCode) << (kDispatchedParameterPhase + \

(((whichParam) - 1) * kStackParameterWidth)))

#define DISPATCHED_STACK_ROUTINE_SELECTOR_SIZE(sizeCode) \

((ProcInfoType)(sizeCode) << kDispatchedSelectorSizePhase)

#define REGISTER_RESULT_LOCATION(whichReg) \

((ProcInfoType)(whichReg) << kRegisterResultLocationPhase)

#define REGISTER_ROUTINE_PARAMETER(whichParam, whichReg, sizeCode) \

((((ProcInfoType)(sizeCode) << kRegisterParameterSizePhase) | \

((ProcInfoType)(whichReg) << kRegisterParameterWhichPhase)) << \

(kRegisterParameterPhase + (((whichParam)- 1) * kRegisterParameterWidth)))

#define SPECIAL_CASE_PROCINFO(specialCaseCode) \

(kSpecialCase | ((ProcInfoType)(specialCaseCode) << 4))

Contents 3-1

C H A P T E R 3

Contents

Code Fragment Manager

About the Code Fragment Manager 3-3

Fragments 3-4

Import Library Searching 3-5

Version Checking 3-7

Using the Code Fragment Manager 3-10

Loading Code Fragments 3-10

Creating a Code Fragment Resource 3-12

Getting Information About Exported Symbols 3-14

Code Fragment Manager Reference 3-15

Data Structures 3-15

Fragment Initialization Block 3-15

Fragment Location Record 3-16

Memory Location Record 3-17

Disk Location Record 3-17

Segment Location Record 3-18

Code Fragment Manager Routines 3-18

Loading Fragments 3-19

Unloading Fragments 3-23

Finding Symbols 3-24

Fragment-Defined Routines 3-26

Resources 3-28

The Code Fragment Resource 3-28

Summary of the Code Fragment Manager 3-32

C Summary 3-32

Constants 3-32

Data Types 3-33

Code Fragment Manager Routines 3-34

Fragment-Defined Routines 3-35

Result Codes 3-35

C H A P T E R 3

About the Code Fragment Manager 3-3

Code Fragment Manager

This chapter describes the Code Fragment Manager, the part of the Macintosh system

software that loads fragments into memory and prepares them for execution. A fragment

can be an application, an import library, a system extension, or any other block of

executable code and its associated data.

The Code Fragment Manager is intended to operate transparently to most applications

and other software. You need to use the Code Fragment Manager explicitly only if

■ you need to load code modules dynamically during the execution of your application
or other software

■ you want to unload code modules before the termination of your application

■ you want to obtain information about the symbols exported by a fragment

For example, if your application supports dynamic loading of tools, filters, or other

software modules contained in fragments, you’ll need to use the Code Fragment

Manager to load and prepare them for execution.

This chapter also describes the format of the code fragment resource, which defines

information about a fragment. You need to create a code fragment resource (a resource

of type 'cfrg') for each application or import library you create. For information on

doing this, see “Creating a Code Fragment Resource” on page 3-12.

To use this chapter, you should already be generally familiar with the Macintosh

Operating System. See the books Inside Macintosh: Processes and Inside Macintosh: Memory

for information about the run-time architecture of the 680x0 environment. You also need

to be familiar with the run-time architecture of PowerPC processor-based Macintosh

computers, as explained in the chapter “Introduction to PowerPC System Software.”

That chapter describes the general nature and structure of fragments.

This chapter begins by describing the capabilities of the Code Fragment Manager. Then

it describes how the Code Fragment Manager searches for the appropriate versions of

import libraries. In general, you need to know these details about searching and version

checking only if you are creating updated versions of an existing import library. The

section “Using the Code Fragment Manager” beginning on page 3-10 provides code

samples illustrating how to use some of the routines provided by the Code Fragment

Manager. The section “Code Fragment Manager Reference” beginning on page 3-15 is a

complete reference to the Code Fragment Manager.

About the Code Fragment Manager

The Code Fragment Manager is the Operating System loader for executable code and

data that are contained in fragments. Its operations are loosely analogous to those of the

Segment Manager in previous versions of the Macintosh system software. The Code

Fragment Manager, however, provides a much richer set of services than the Segment

Manager, including

■ loading and preparation of fragments for execution

■ automatic resolution of imported symbols by locating and loading import libraries
used by a fragment

C H A P T E R 3

Code Fragment Manager

3-4 About the Code Fragment Manager

■ automatic execution of a fragment’s initialization and termination routines

■ support for updated versions of import libraries

The following sections describe how fragments are structured, how the Code Fragment

Manager searches fragments for unresolved symbols, and how it manages different

versions of import libraries.

Fragments
The Code Fragment Manager operates primarily on fragments. A fragment is a block of

executable code and its associated data. Fragments can be loosely differentiated into

three categories, based on how they are used:

■ applications

■ import libraries

■ extensions

Fragments contain symbols, some or all of which may be referenced by code or data in

other fragments; these kinds of symbols are called exported symbols (or, for brevity,

exports). An import library is a fragment that consists primarily of exported symbols

and their associated code and data. Other kinds of fragments can contain references to

the exported symbols of an import library; these references are called imported symbols

(or, for brevity, imports).

During the linking phase of building a fragment, the linker creates an import for each

external symbol that is resolved to an export from some import library. The code or data

referenced by that import is not copied into the fragment. Instead, as part of the process

of loading the fragment into memory and preparing it for execution, the Code Fragment

Manager replaces the imported symbol with the address of the exported code or data.

Note

Both code and data may be exported by name. However, routines are
usually exported indirectly, via a transition vector to the routine. A
routine’s transition vector is stored in the fragment’s data area. See
“The Table of Contents” on page 1-26 for more details. ◆

A fragment is stored in a container, which can be any logically contiguous object acces-

sible by the Operating System. For example, the executable code and global variables

of a PowerPC application are typically stored in a fragment in the application’s data

fork. The Macintosh ROM is itself a container for the import library that exports

the Macintosh system software and for several other import libraries. Application

extensions, such as dynamically loadable filters or other code modules, can be stored in

resources in the application’s resource fork. It’s better, however, to use the data fork of

some file as the container of an application extension fragment. The extension can be put

into the application’s data fork (either before or after the application’s code fragment) or

into the data fork of some other file.

C H A P T E R 3

Code Fragment Manager

About the Code Fragment Manager 3-5

Note
A single data fork can contain multiple containers. The 'cfrg' resource
in the file’s resource fork allows the Operating System to find each
individual container in a data fork. ◆

The Code Fragment Manager is responsible for loading fragments (by calling the Code

Fragment Loader) and preparing them for execution. It resolves the imported symbols

in a fragment, loading and preparing any additional fragments whose exports are

referenced by that fragment. Loading a given fragment, such as an application, usually

involves loading and preparing additional fragments.

An import library can have its exported symbols imported by any number of other frag-

ments. When the Code Fragment Manager resolves the imports in a particular fragment,

it establishes a connection to each individual fragment whose code or data that fragment

references. In general, the connections are transparent to the importing fragment. If you

call the Code Fragment Manager directly, however, it returns a connection ID to you

that uniquely identifies the connection. You can use the connection ID to perform

various actions on the exporting fragment (for example, to break the connection and

unload the fragment or to get information about its exported symbols).

Note

There is no practical limit on the size of a fragment. ◆

Import Library Searching
When searching for an import library to find code or data that is imported by some other

fragment, the Code Fragment Manager follows a standard search path. It looks in

various files and folders in a specific order until it finds an import library that exports

the code or data imported by the fragment being loaded. Once the Code Fragment

Manager finds a library that it deems compatible with the fragment it’s loading, it stops

searching and resolves imports in the fragment to code or data in that library. In general,

the exact order in which the Code Fragment Manager searches for import libraries is

transparent to your software. However, you might need the information in this section to

ensure that a particular import library is found before some other import library, which

might also be compatible with your fragment.

Note

See the next section, “Version Checking” beginning on page 3-7, for
information on how the Code Fragment Manager determines whether
some import library is compatible with a fragment. ◆

When loading and preparing an application that imports code or data from an import

library, the Code Fragment Manager searches first in the application file itself, by looking

for import libraries indicated in the application’s 'cfrg' resource. Typically, any import

libraries contained in your application are located in your application’s data fork, either

before or after the container that holds your application’s code and data. Less commonly,

C H A P T E R 3

Code Fragment Manager

3-6 About the Code Fragment Manager

you can put an import library into a resource in your application’s resource fork. The

'cfrg' resource specifies the location of any import libraries that you’ve included with

your application, whether in the data or the resource fork.

If an import library used by your application is not found in the application file itself, the

Code Fragment Manager next searches in any directory designated as the application’s

library directory, a directory used by the application to store import libraries or aliases

to import libraries. You specify a library directory by including in the appropriate field of

your 'cfrg' resource the ID of an alias resource that picks out the library directory. See

“The Code Fragment Resource” beginning on page 3-28 for details.

The Code Fragment Manager searches a directory by looking for files of type 'shlb'

that contain a resource of type 'cfrg'. The 'cfrg' resource identifies the logical name

of the import library, which is needed to match the library’s name generated at link time.

There can be more than one logical name listed in a single 'cfrg' resource. This might

happen if there are multiple import libraries contained in the data fork of a single

'shlb' file. This might also happen if a single import library or application is to be

identified by more than one name. Within a directory, the Code Fragment Manager also

looks for aliases to files of type 'shlb' and resolves them to their targets. The alias file

must itself be of type 'shlb'.

If no suitable import library has been found yet, the Code Fragment Manager searches

next in the directory that contains the application. If any import libraries—whether

located in the application’s directory or targeted by an alias in the application’s

directory—are determined to be compatible with the fragment whose imports are being

resolved, the Code Fragment Manager chooses the most compatible library and stops

searching.

IMPORTANT

The Code Fragment Manager looks only in the top level of the
application’s directory, not in any subdirectories contained in it. ▲

If no suitable import library has been found yet, the Code Fragment Manager searches

next in the Extensions folder in the System Folder and in all the subdirectories of the

Extensions folder, including any directories that are targets of directory aliases in

the Extensions folder. Once again, both files of type 'shlb' and targets of aliases of

type 'shlb' are candidates for compatibility checking. This scheme allows you to store

your import libraries in a vendor-specific location in the Extensions folder.

If the Code Fragment Manager still hasn’t found a compatible import library that exports

the imported symbols in the fragment it’s trying to prepare, it continues by looking in a

ROM registry, which keeps track of all import libraries that are stored in the ROM of a

Macintosh computer. The Code Fragment Manager registers all ROM-based import

libraries in this registry at system startup time.

The final stage of the search path is a file and directory registry that it maintains

internally. This registry is a list of files and directories that, for various reasons, cannot be

put into the normal search path followed by the Code Fragment Manager or would not

be recognized as import libraries even if they were in that path. For example, to be

registered automatically by the Component Manager, a component must be stored

in a file of type 'thng'. To inform the Code Fragment Manager that the file also

C H A P T E R 3

Code Fragment Manager

About the Code Fragment Manager 3-7

contains one or more import libraries in its data fork, it can be registered in the file and

directory registry.

Note

The Code Fragment Manager routine to register a file
or directory is currently private. ◆

If your application or other software loads a fragment explicitly from disk by calling the

GetDiskFragment routine, the Code Fragment Manager first looks for any needed

import libraries in the load directory, the directory that contains the fragment being

loaded. (This directory is the one specified in the fileSpec parameter you pass to

GetDiskFragment.) If no suitable import library is found there, the search continues

along the path followed when loading and preparing an application. However, the Code

Fragment Manager looks in the load directory first only if it is different from the

application’s directory. Otherwise, the load directory is searched in its normal sequence,

after the application file itself and the library directory.

In summary, the Code Fragment Manager looks in the following places when searching

for an import library to resolve one or more imports in a fragment being loaded:

1. The load directory (the directory containing the fragment being loaded). The load
directory, however, is searched only when a fragment is loaded in response to a call
to GetDiskFragment or GetSharedLibrary, and only when it’s different from the
application’s directory.

2. The application file, if the application’s 'cfrg' resource indicates that the application
file contains import libraries. The application fragment is implicitly treated here as an
import library.

3. The application’s library directory (as specified in the application’s 'cfrg' resource).

4. The application’s directory. Only the top level of this directory is searched.

5. The Extensions folder in the System Folder. The Extensions folder and all directories
in the Extensions folder are searched.

6. The ROM registry maintained internally by the Code Fragment Manager.

7. The file and directory registry maintained internally by the Code Fragment Manager.

At any stage, the Code Fragment Manager selects the one import library of all those

available to it that best satisfies its compatibility version checking. If an import library

meets the relevant criteria, the library search stops. Otherwise, the search continues to

the next stage. If the final stage (the file and directory registry) is reached and no suitable

library can be found, the Code Fragment Manager gives up and does not load the

original fragment.

Version Checking
One of the principal benefits of import libraries, aside from their ability to reduce the

size of applications and other fragments, is the ease with which a library developer can

make improvements in portions of the import library without requiring developers to

modify or rebuild any applications that use the import library. The library developer

C H A P T E R 3

Code Fragment Manager

3-8 About the Code Fragment Manager

needs only to ensure that the updated version is compatible with the version expected

by the applications using the library. In general, this means that the external program-

ming interface provided by the import library remains unchanged throughout changes

in the underlying implementation.

The Code Fragment Manager provides a simple but powerful version-checking scheme

intended to prevent incompatibilities between import libraries and the fragments that

use them. This checking is always performed automatically as part of the normal

fragment loading and preparation process. In general, your application does not need to

concern itself with checking the version of an import library whose code or data it uses.

To take a simple example, suppose that an application uses a single import library. When

the application is created, it is linked with some version of that library. Unresolved

external symbols in the application are resolved, by the linker, to exported code or data

in the import library. The version of the import library used at link time is called the

definition version of the library (because it supplies the definitions of exported symbols,

not the actual implementation of routines and initialization of variables).

When the application is loaded and prepared for execution, it must be connected to a

version of that import library. The version of the import library used at load time is

called the implementation version of the library (because it supplies the implementa-

tions of routines and initializations of variables exported by the library). The essential

requirement is that the implementation version of an import library used at run time be

compatible with the definition version used at link time. The two versions do not need to

be identical, but they must satisfy the same programming interface. (The implementation

can be a superset of the definition library.)

To allow the Code Fragment Manager to check the implementation version of an import

library against the definition version used when linking the application, the linker copies

version information from the definition library into the application. When the application

is launched, the version information in the application is compared with the version

information stored in the implementation library. If the version of the import library is

identical to that expected by the application, the library and the application are deemed

compatible. If, however, the two versions are not identical, the Code Fragment Manager

inspects additional information in whichever of the two fragments (the application and

the import library) is the newer fragment. The idea is to allow the newer fragment to

decide whether it is compatible with the older fragment.

Every import library contains three version numbers: the current version number, the

oldest supported definition version number, and the oldest supported implementation

version number. The two latter version numbers are included to provide a way for the

Code Fragment Manager to determine whether a given definition version is compatible

with a given implementation version, if the current versions of the library and the

definition version used to link the application are not identical.

IMPORTANT

The current version number must always be greater than or equal to
both the oldest supported definition version number and the oldest
supported implementation version number. ▲

C H A P T E R 3

Code Fragment Manager

About the Code Fragment Manager 3-9

The linker copies into the application both the current version number of the definition

library and the oldest supported implementation version number. When the application

is launched, the Code Fragment Manager checks those numbers with the version

numbers in the implementation libraries according to the algorithm shown in Listing 3-1.

Listing 3-1 Pseudocode for the version-checking algorithm

if (Definition.Current == Implementation.Current)

return(kLibAndAppAreCompatible);

else if (Definition.Current > Implementation.Current)

/*definition version is newer than implementation version*/

if (Definition.OldestImp <= Implementation.Current)

return(kImplAndDefAreCompatible);

else

return(kImplIsTooOld);

else

/*definition version is older than implementation version*/

if (Implementation.OldestDef <= Definition.Current)

return(kImplAndDefAreCompatible);

else

return(kDefIsTooOld);

If the current version number copied into the application from the definition library at

link time is the same as the current version number of the candidate version of the

implementation import library, then the Code Fragment Manager accepts that version of

the implementation import library and continues with the loading and preparation of

the application. Otherwise, the Code Fragment Manager determines which of the two

fragments is newer and then applies a further check.

If the current version number copied into the application from the definition library

at link time is greater than the current version number of the candidate version of

the implementation import library, the Code Fragment Manager compares the oldest

supported implementation version number in the application with the current version

number of the implementation library. If the definition library’s oldest supported

implementation version number is less than or equal to the library’s current version

number, the application and library are deemed compatible. Otherwise, the library is too

old for the application.

If the current version number copied into the application from the definition library at

link time is less than the current version number of the most recent version of the

implementation import library, the Code Fragment Manager compares the oldest

supported definition library version number (stored in the implementation library) with

the current definition library version number (stored in the application). If the oldest

supported definition library version number is less than or equal to the application’s

current version number, the application and library are deemed compatible. Otherwise,

the application is too old for the library.

C H A P T E R 3

Code Fragment Manager

3-10 Using the Code Fragment Manager

Note
In general, of course, the Code Fragment Manager checks the
compatibility of a fragment being loaded and all of the import
libraries from which it imports code and data. ◆

The version numbers in both the definition and implementation versions of an import

library should have the same format as the first 4 bytes of a version resource (that is,

a resource of type 'vers'). See the chapter “Finder Interface” in Inside Macintosh:
Macintosh Toolbox Essentials for complete information on version resources. When

comparing version numbers, however, the Code Fragment Manager treats those 4 bytes

simply as an unsigned long quantity. As a result, the value 0x00000000 is interpreted as

a valid version number.

Using the Code Fragment Manager

The Code Fragment Manager provides routines that you can use to explicitly load code

fragments and to get information about symbols exported by a particular fragment. This

section illustrates how to use those routines.

IMPORTANT

In general, the Code Fragment Manager automatically loads all import
libraries required by your application at the time your application is
launched. You need to use the routines described in this section only if
your application supports dynamically loaded application tools, filters,
or other code modules. ▲

This section also describes how to create a code fragment resource. Every application

and import library must have a code fragment resource to describe basic information

about the application or import library.

Loading Code Fragments
You can use the Code Fragment Manager to load fragments from the containers in which

they are stored. You need to do this only for code fragments that are dynamically added

to your application’s context during execution. This might happen, for instance, if your

application supports dynamically loadable filters or tools.

The executable code you want to bind to your application context can be stored in any

kind of container. If the container is an import library (a file of type 'shlb'), you can

use the Code Fragment Manager’s GetSharedLibrary function. If the container is a

disk file, you call the GetDiskFragment function. If the container is a resource, you

need to load the resource into memory (using normal Resource Manager routines)

and then call the GetMemFragment function. See “Loading Fragments” beginning on

page 3-19 for complete details on each of these functions.

C H A P T E R 3

Code Fragment Manager

Using the Code Fragment Manager 3-11

Listing 3-2 and Listing 3-3 illustrate how to load application-specific tools into

memory using the Code Fragment Manager. Listing 3-2 shows how to load a

resource-based fragment.

Listing 3-2 Loading a resource-based fragment

Handle myHandle;

OSErr myErr;

ConnectionID myConnID;

Ptr myMainAddr;

Str255 myErrName;

myHandle = GetResource('tool', 128);

HLock(myHandle);

myErr = GetMemFragment(*myHandle, GetHandleSize(myHandle),

myToolName, kLoadNewCopy, &myConnID,

(Ptr*)&myMainAddr, myErrName);

if (myErr) {

AlertUser(myErr);

goto noLoad;

}

As you can see, Listing 3-2 loads the resource into memory by calling the Resource

Manager function GetResource and locks it by calling the Memory Manager procedure

HLock. Then it calls GetMemFragment to prepare the fragment. The first parameter

passed to GetMemFragment specifies the address in memory of the fragment. Because

GetResource returns a handle to the resource data, Listing 3-2 dereferences the handle

to obtain a pointer to the resource data. To avoid dangling pointers, you need to lock the

block of memory before calling GetMemFragment. The constant kLoadNewCopy passed

as the fourth parameter requests that the Code Fragment Manager allocate a new copy of

the fragment’s global data section.

Listing 3-3 shows how to load a disk-based fragment.

Listing 3-3 Loading a disk-based fragment

myErr = GetDiskFragment(&myFSSpec, 0, kWholeFork, myToolName,

kLoadNewCopy, &myConnID, (Ptr*)&myMainAddr,

myErrName);

if (myErr) {

AlertUser(myErr);

goto noLoad;

}

C H A P T E R 3

Code Fragment Manager

3-12 Using the Code Fragment Manager

All import libraries and other fragments that are loaded on behalf of your application

(either as part of its normal startup or programmatically by your application) are

unloaded by the Process Manager at application termination; therefore, a library can be

loaded and does not have to be unloaded by the application before it terminates.

Creating a Code Fragment Resource
You need to create a code fragment resource (a resource of type 'cfrg') for each native

application or import library you create. This resource identifies the instruction set

architecture, location, size, and logical name of the application or import library, as well

as version information for import libraries.

In PowerPC or fat applications, the code fragment resource is read by the Process

Manager at application launch time. The Process Manager needs to know whether the

application contains PowerPC code and, if so, where that code is located. If the Process

Manager cannot find a 'cfrg' resource in the application’s resource fork, it assumes

that the application is a 680x0 application, where the executable code is contained within

'CODE' resources in the application’s resource fork.

IMPORTANT

A code fragment resource must have resource ID 0. ▲

For an application, the code fragment resource typically indicates that the application’s

executable code fragment begins at offset 0 within the application’s data fork and

extends for the entire length of the data fork. Listing 3-4 shows the Rez input for a

typical application’s code fragment resource.

Listing 3-4 The Rez input for a typical application’s 'cfrg' resource

#include "CodeFragmentTypes.r"

resource 'cfrg' (0) {

{

kPowerPC, /*instruction set architecture*/

kFullLib, /*no update level for apps*/

kNoVersionNum, /*no current version number*/

kNoVersionNum, /*no oldest def'n version number*/

kDefaultStackSize, /*use default stack size*/

kNoAppSubFolder, /*no library directory*/

kIsApp, /*fragment is an application*/

kOnDiskFlat, /*fragment is on disk*/

kZeroOffset, /*fragment starts at fork start*/

kWholeFork, /*fragment occupies entire fork*/

"SurfWriter" /*name of the application*/

}

};

C H A P T E R 3

Code Fragment Manager

Using the Code Fragment Manager 3-13

Note
See “The Code Fragment Resource” on page 3-28 for complete
information about the structure of a code fragment resource. ◆

For import libraries, the code fragment resource is read by the Code Fragment Manager

as part of the process of searching for symbols imported by some fragment that is

currently being loaded and prepared for execution. (See the section “Import Library

Searching” on page 3-5 for details on how the Code Fragment Manager searches for

import libraries.) The information in the 'cfrg' resource is also used to ensure that the

Code Fragment Manager finds an implementation version of an import library that is

compatible with the definition version used to link the fragment being loaded and

prepared for execution. Listing 3-5 shows the Rez input for a typical code fragment

resource for an import library.

Listing 3-5 The Rez input for a typical import library’s 'cfrg' resource

#define kOldDefVers 0x01008000 /*version 1.0*/

#define kCurrVers 0x02008000 /*version 2.0*/

#include "CodeFragmentTypes.r"

resource 'cfrg' (0) {

{

kPowerPC, /*instruction set architecture*/

kFullLib, /*base library*/

kCurrVers, /*current version number*/

kOldDefVers, /*oldest definition version number*/

kDefaultStackSize, /*ignored for import library*/

kNoAppSubFolder, /*ignored for import library*/

kIsLib, /*fragment is a library*/

kOnDiskFlat, /*fragment is on disk*/

kZeroOffset, /*fragment starts at fork start*/

kWholeFork, /*fragment occupies entire fork*/

"SurfTools" /*name of the library*/

}

};

An import library’s code fragment resource also specifies the logical name of the import

library. This is the name used by the Code Fragment Manager to resolve imports in some

other fragment. The logical name can be different from the name of the file containing

the import library.

Note that code fragment resources are required only for fragments that are either

applications or import libraries. If you need similar version-checking or name-binding

capabilities for fragments that are application extensions, you will need to provide your

own code to do this.

C H A P T E R 3

Code Fragment Manager

3-14 Using the Code Fragment Manager

Getting Information About Exported Symbols
In cases in which you load a fragment programmatically (that is, by calling Code

Fragment Manager routines), you can get information about the symbols exported

by that fragment by calling the CountSymbols and GetIndSymbol functions.

The CountSymbols function returns the total number of symbols exported by a

fragment. CountSymbols takes as one of its parameters a connection ID; accordingly,

you must already have established a connection to a fragment before you can determine

how many symbols it exports.

Given an index ranging from 1 to the total number of symbols in a fragment, the

GetIndSymbol function returns the name, address, and class of a symbol in that

fragment. You can use CountSymbols in combination with GetIndSymbol to get

information about all the symbols in a fragment. For example, the code in Listing 3-6

prints the names of all the symbols in a particular fragment.

Listing 3-6 Finding symbol names

void MyGetSymbolNames (ConnectionID myConnID);

{

long myIndex;

long myCount; /*number of exported symbols in fragment*/

OSErr myErr;

Str255 myName; /*symbol name*/

Ptr myAddr; /*symbol address*/

SymClass myClass; /*symbol class*/

myErr = CountSymbols(myConnID, &myCount);

if (!myErr)

for (myIndex = 1; myIndex <= myCount; myIndex++)

{

myErr = GetIndSymbol(myConnID, myIndex, myName,

&myAddr, &myClass);

if (!myErr)

printf("%P", myName);

}

}

If you already know the name of a particular symbol whose address and class you want

to determine, you can use the FindSymbol function. See page 3-24 for details on calling

FindSymbol.

C H A P T E R 3

Code Fragment Manager

Code Fragment Manager Reference 3-15

Code Fragment Manager Reference

This section describes the data structures and routines provided by the Code Fragment

Manager. See “Using the Code Fragment Manager” beginning on page 3-10 for detailed

instructions on using these routines. This section also describes the format of the

optional initialization and termination routines you can include in a fragment, as well

as the structure of the code fragment resource.

Data Structures

This section describes the data structures that define the format of the data passed to a

fragment’s initialization routine.

IMPORTANT

You need the information in this section only if your fragment
(application, import library, or extension) contains an initialization
routine. In addition, much of the information passed to an initialization
routine is intended for use by language implementors. Most other
developers are likely to need only the pointer to a file specification
record passed to disk-based fragments. (This information allows the
initialization routine to access its own resource fork.) ▲

Fragment Initialization Block

The Code Fragment Manager passes to your fragment’s initialization routine a pointer to

a fragment initialization block, which contains information about the fragment. A

fragment initialization block is defined by the InitBlock data type.

struct InitBlock {

long contextID; /*context ID*/

long closureID; /*closure ID*/

long connectionID; /*connection ID*/

FragmentLocator fragLocator; /*fragment location*/

Ptr libName; /*pointer to fragment name*/

long reserved4a; /*reserved*/

long reserved4b; /*reserved*/

long reserved4c; /*reserved*/

long reserved4d; /*reserved*/

};

typedef struct InitBlock InitBlock, *InitBlockPtr;

C H A P T E R 3

Code Fragment Manager

3-16 Code Fragment Manager Reference

Field descriptions

contextID A context ID.

closureID A closure ID.

connectionID A connection ID.

fragLocator A fragment location record that specifies the location of the
fragment. See the following section for details about the structure
of a fragment location record.

libName A pointer to the name of the fragment being initialized. The name is
a Pascal string (a length byte followed by the name itself).

reserved4a Reserved for use by Apple Computer.

reserved4b Reserved for use by Apple Computer.

reserved4c Reserved for use by Apple Computer.

reserved4d Reserved for use by Apple Computer.

IMPORTANT

The fields of a fragment initialization block are aligned in memory in
accordance with 680x0 alignment conventions. ▲

Fragment Location Record

The fragLocator field of an initialization block contains a fragment location record

that provides information about the location of a fragment. A fragment location record is

defined by the FragmentLocator data type.

struct FragmentLocator {
long where; /*location selector*/

union {
MemFragment inMem; /*memory location record*/

DiskFragment onDisk; /*disk location record*/
SegmentedFragment inSegs; /*segment location record*/

} u;
};

typedef struct FragmentLocator FragmentLocator, *FragmentLocatorPtr;

Field descriptions

where A selector that determines which member of the following union is
relevant. This field can contain one of these constants:

enum {
kInMem, /*container in memory*/
kOnDiskFlat, /*container in a data fork*/
kOnDiskSegmented /*container in a resource*/

};

inMem A memory location record.

onDisk A disk location record.

inSegs A segment location record.

C H A P T E R 3

Code Fragment Manager

Code Fragment Manager Reference 3-17

IMPORTANT

The fields of a fragment location record are aligned in memory in
accordance with 680x0 alignment conventions. ▲

Memory Location Record

For fragments located in memory, the inMem field of a fragment location record contains

a memory location record, which specifies the location of the fragment in memory. A

memory location record is defined by the MemFragment data type.

struct MemFragment {

Ptr address; /*pointer to start of fragment*/

long length; /*length of fragment*/

Boolean inPlace; /*is data section in place?*/

};

typedef struct MemFragment MemFragment;

Field descriptions

address A pointer to the beginning of the fragment in memory.

length The length, in bytes, of the fragment.

inPlace A Boolean value that specifies whether the container’s data section
is instantiated in place (true) or elsewhere (false).

IMPORTANT

The fields of a memory location record are aligned in memory in
accordance with 680x0 alignment conventions. ▲

Disk Location Record

For fragments located in the data fork of a file on disk, the onDisk field of a fragment

location record contains a disk location record, which specifies the location of the

fragment. A disk location record is defined by the DiskFragment data type.

struct DiskFragment {

FSSpecPtr fileSpec; /*pointer to FSSpec*/

long offset; /*offset to start of fragment*/

long length; /*length of fragment*/

};

typedef struct DiskFragment DiskFragment;

Field descriptions

fileSpec A pointer to a file specification record (a data structure of type
FSSpec) for the data fork of a file. This pointer is valid only while
the initialization routine is executing. If you need to access the
information in the file specification record at any later time, you
must make a copy of that record.

C H A P T E R 3

Code Fragment Manager

3-18 Code Fragment Manager Reference

offset The offset, in bytes, from the beginning of the file’s data fork to the
beginning of the fragment.

length The length, in bytes, of the fragment. If this field contains the value
0, the fragment extends to the end-of-file.

IMPORTANT

The fields of a disk location record are aligned in memory in accordance
with 680x0 alignment conventions. ▲

Segment Location Record

For fragments located in the resource fork of a file on disk, the inSegs field of a fragment

location record contains a segment location record, which specifies the location of the

fragment. A segment location record is defined by the SegmentedFragment data type.

struct SegmentedFragment {

FSSpecPtr fileSpec; /*pointer to FSSpec*/

OSType rsrcType; /*resource type*/

short rsrcID; /*resource ID*/

};

typedef struct SegmentedFragment SegmentedFragment;

Field descriptions

fileSpec A pointer to a file specification record (a data structure of type
FSSpec) for the resource fork of a file. This pointer is valid only
while the initialization routine is executing. If you need to access
the information in the file specification record at any later time, you
must make a copy of that record.

rsrcType The resource type of the resource containing the fragment.

rsrcID The resource ID of the resource containing the fragment.

IMPORTANT

The fields of a segment location record are aligned in memory in
accordance with 680x0 alignment conventions. ▲

Code Fragment Manager Routines

You can use the routines provided by the Code Fragment Manager to

■ load a fragment by filename or library name

■ identify an import library that is already loaded

■ unload a fragment

■ find a symbol by name in a fragment

■ find all the symbols in a fragment

C H A P T E R 3

Code Fragment Manager

Code Fragment Manager Reference 3-19

Loading Fragments

The Code Fragment Manager provides three functions that you can use to load various

kinds of fragments: GetDiskFragment, GetMemFragment, and GetSharedLibrary.

Loading involves finding the specified fragment, reading it into memory (if it isn’t

already in memory), and preparing it for execution. The Code Fragment Manager

attempts to resolve all symbols imported by the fragment; to do so may involve loading

import libraries.

If the fragment loading fails, the Code Fragment Manager returns an error code. Note,

however, that the error encountered is not always in the fragment you asked to load.

Rather, the error might have occurred while attempting to load an import library that the

fragment you want to load depends on. For this reason, the Code Fragment Manager

also returns, in the errName parameter, the name of the fragment that caused the load to

fail. Although fragment names are restricted to 63 characters, the errName parameter is

declared as type Str255; doing this allows future versions of the Code Fragment

Manager to return a more informative message in the errName parameter.

GetDiskFragment

You can use the GetDiskFragment function to locate and possibly also load a fragment

contained in a file’s data fork into your application’s context.

OSErr GetDiskFragment (FSSpecPtr fileSpec, long offset,

long length, Str63 fragName,

LoadFlags findFlags, ConnectionID *connID,

Ptr *mainAddr, Str255 errName);

fileSpec A file system specification that identifies the disk-based fragment to load.

offset The number of bytes from the beginning of the file’s data fork at which
the beginning of the fragment is located.

length The length (in bytes) of the fragment. Specify the constant kWholeFork
for this parameter if the fragment extends to the end-of-file of the data
fork. Specify a nonzero value for the exact length of the fragment.

fragName An optional name of the fragment. (This information is used primarily to
allow you to identify the fragment during debugging.)

findFlags A flag that specifies the operation to perform on the fragment. See the
description below for the values you can pass in this parameter.

connID On exit, the connection ID that identifies the connection to the fragment.
You can pass this ID to other Code Fragment Manager routines.

mainAddr On exit, the main address of the fragment. The value returned is specific
to the fragment itself. Your application can use this parameter for its
own purposes.

errName On exit, the name of the fragment that could not successfully be loaded.
This parameter is meaningful only if the call to GetDiskFragment fails.

C H A P T E R 3

Code Fragment Manager

3-20 Code Fragment Manager Reference

DESCRIPTION

The GetDiskFragment function locates and possibly also loads a disk-based fragment

into your application’s context. The actions of GetDiskFragment depend on the action

flag you pass in the findFlags parameter. The Code Fragment Manager recognizes

these constants:

enum {

kLoadLib = 1, /*load fragment*/

kFindLib = 2, /*find fragment*/

kLoadNewCopy = 5 /*load fragment with new copy of data*/

};

The kFindLib constant specifies that the Code Fragment Manager search for the

specified fragment. If the fragment is already prepared and connected to your application,

GetDiskFragment returns fragNoErr as its function result and the existing connection

ID in the connID parameter. If the specified fragment is not found, GetDiskFragment

returns the result code fragLibNotFound. If the specified fragment is found but could

not be connected to your application, GetDiskFragment returns the result code

fragLibConnErr.

The kLoadLib constant specifies that the Code Fragment Manager search for the

specified fragment and, if it finds it, load it into memory. If the fragment has already

been loaded, it’s not loaded again. The Code Fragment Manager uses the data-

instantiation method specified in the fragment’s container (which is either global or

per-connection instantiation).

The kLoadNewCopy constant specifies that the Code Fragment Manager load the

specified fragment, creating a new copy of any writable data maintained by the

fragment. You specify kLoadNewCopy to obtain one instance per load of the fragment’s

data and to override the data-instantiation method specified in the container itself. This

is most useful for application extensions (for example, drop-in tools).

RESULT CODES

fragNoErr 0 No error
paramErr –50 Parameter error
fragLibNotFound –2804 Specified fragment not found
fragHadUnresolveds –2807 Loaded fragment has unacceptable

unresolved symbols
fragNoMem –2809 Not enough memory for internal bookkeeping
fragNoAddrSpace –2810 Not enough memory in user’s address

space for section
fragObjectInitSeqErr –2812 Order error during user initialization function
fragImportTooOld –2813 Import library is too old
fragImportTooNew –2814 Import library is too new
fragInitLoop –2815 Circularity in required initialization order
fragLibConnErr –2817 Error connecting to fragment
fragUserInitProcErr –2821 Initialization procedure did not return noErr

C H A P T E R 3

Code Fragment Manager

Code Fragment Manager Reference 3-21

SEE ALSO

See “Loading Code Fragments” on page 3-10 for more details on the fragment-

loading process.

GetMemFragment

You can use the GetMemFragment function to prepare a memory-based fragment.

OSErr GetMemFragment (Ptr memAddr, long length, Str63 fragName,

LoadFlags findFlags, ConnectionID *connID,

Ptr *mainAddr, Str255 errName);

memAddr The address of the fragment.

length The size, in bytes, of the fragment.

fragName The name of the fragment. (This information is used primarily to allow
you to identify the fragment during debugging.)

findFlags A flag that specifies the operation to perform on the fragment. See the
description of the GetDiskFragment function on page 3-19 for the
values you can pass in this parameter.

connID On exit, the connection ID that identifies the connection to the fragment.
You can pass this ID to other Code Fragment Manager routines (for
example, CloseConnection).

mainAddr On exit, the main address of the fragment. The value returned is specific
to the fragment itself.

errName On exit, the name of the fragment that could not successfully be loaded.
This parameter is meaningful only if the call to GetMemFragment fails.

DESCRIPTION

The GetMemFragment function prepares for subsequent execution a fragment that

is already loaded into memory. This function is most useful for handling code that

is contained in a resource. You can read the resource data into memory using

normal Resource Manager routines (for example, Get1Resource) and then call

GetMemFragment to complete the processing required to prepare it for use (for

example, to resolve any imports and execute the fragment’s initialization routine).

▲ W A R N I N G

You must lock the resource-based fragment into memory (for example,
by calling HLock) before calling GetMemFragment. You must not
unlock the memory until you’ve closed the connection to the fragment
(by calling CloseConnection). ▲

C H A P T E R 3

Code Fragment Manager

3-22 Code Fragment Manager Reference

RESULT CODES

SEE ALSO

See “Loading Code Fragments” on page 3-10 for more details on the fragment-

loading process.

GetSharedLibrary

You can use the GetSharedLibrary function to locate and possibly also load an

import library into your application’s context.

OSErr GetSharedLibrary (Str63 libName, OSType archType,

LoadFlags findFlags,

ConnectionID *connID, Ptr *mainAddr,

Str255 errName);

libName The name of an import library.

archType The instruction set architecture of the import library. For the PowerPC
architecture, use the constant kPowerPCArch. For the 680x0 architecture,
use the constant kMotorola68KArch.

findFlags A flag that specifies the operation to perform on the import library. See
the description of the GetDiskFragment function on page 3-19 for the
values you can pass in this parameter.

connID On exit, the connection ID that identifies the connection to the import
library. You can pass this ID to other Code Fragment Manager routines.

mainAddr On exit, the main address of the import library. The value returned is
specific to the import library itself and is not used by the Code
Fragment Manager.

errName On exit, the name of the fragment that could not successfully be loaded.
This parameter is meaningful only if the call to GetSharedLibrary fails.

fragNoErr 0 No error
paramErr –50 Parameter error
fragLibNotFound –2804 Specified fragment not found
fragHadUnresolveds –2807 Loaded fragment has unacceptable

unresolved symbols
fragNoMem –2809 Not enough memory for internal bookkeeping
fragNoAddrSpace –2810 Not enough memory in user’s address space

for section
fragObjectInitSeqErr –2812 Order error during user initialization function
fragImportTooOld –2813 Import library is too old
fragImportTooNew –2814 Import library is too new
fragInitLoop –2815 Circularity in required initialization order
fragLibConnErr –2817 Error connecting to fragment
fragUserInitProcErr –2821 Initialization procedure did not return noErr

C H A P T E R 3

Code Fragment Manager

Code Fragment Manager Reference 3-23

DESCRIPTION

The GetSharedLibrary function locates the import library named by the libName

parameter and possibly also loads that import library into your application’s context. The

actions of GetSharedLibrary depend on the action flag you pass in the findFlags

parameter; pass kFindLib to get the connection ID of an existing connection to the

specified fragment, kLoadLib to load the specified fragment, or kLoadNewCopy to load

the fragment with a new copy of the fragment’s data section.

The GetSharedLibrary function does not resolve any unresolved imports in your

application. In particular, you cannot use it to resolve any weak imports in your

code fragment.

RESULT CODES

SEE ALSO

See “Loading Code Fragments” on page 3-10 for more details on the fragment-

loading process.

Unloading Fragments

The Code Fragment Manager provides one function that you can use to close an existing

connection to a fragment.

CloseConnection

You can use the CloseConnection function to close a connection to a fragment.

OSErr CloseConnection (ConnectionID *connID);

connID A connection ID.

fragNoErr 0 No error
paramErr –50 Parameter error
fragLibNotFound –2804 Specified fragment not found
fragHadUnresolveds –2807 Loaded fragment has unacceptable

unresolved symbols
fragNoMem –2809 Not enough memory for internal bookkeeping
fragNoAddrSpace –2810 Not enough memory in user’s address space

for section
fragObjectInitSeqErr –2812 Order error during user initialization function
fragImportTooOld –2813 Import library is too old
fragImportTooNew –2814 Import library is too new
fragInitLoop –2815 Circularity in required initialization order
fragLibConnErr –2817 Error connecting to fragment
fragUserInitProcErr –2821 Initialization procedure did not return noErr

C H A P T E R 3

Code Fragment Manager

3-24 Code Fragment Manager Reference

DESCRIPTION

The CloseConnection function closes the connection to a fragment indicated by the

connID parameter. CloseConnection decrements the count of existing connections to

the specified fragment and, if the resulting count is 0, calls the fragment’s termination

routine and releases the memory occupied by the code and data sections of the fragment.

If the resulting count is not 0, any per-connection data is released but the code section

remains in memory.

When a fragment is unloaded as a result of its final connection having been closed, all

libraries that depend on that fragment are also released, provided that their usage counts

are also 0.

The Code Fragment Manager automatically closes any connections that remain

open at the time ExitToShell is called for your application, so you need to call

CloseConnection only for fragments you wish to unload before your application

terminates.

SPECIAL CONSIDERATIONS

You can close a connection only to the root of a loading sequence (that is, the fragment

whose loading triggered the entire load chain).

RESULT CODES

Finding Symbols

The Code Fragment Manager provides three functions that you can use to find the

symbols exported by a fragment and get information about them: FindSymbol,

CountSymbols, and GetIndSymbol.

FindSymbol

You can use the FindSymbol function to search for a specific exported symbol.

OSErr FindSymbol (ConnectionID connID, Str255 symName,

Ptr *symAddr, SymClass *symClass);

connID A connection ID.

symName A symbol name.

symAddr On exit, the address of the symbol whose name is symName.

symClass On exit, the class of the symbol whose name is symName. See the
description below for a list of the recognized symbol classes.

fragNoErr 0 No error
fragConnectionIDNotFound –2801 Connection ID is not valid

C H A P T E R 3

Code Fragment Manager

Code Fragment Manager Reference 3-25

DESCRIPTION

The FindSymbol function searches the code fragment identified by the connID

parameter for the symbol whose name is specified by the symName parameter. If that

symbol is found, FindSymbol returns the address of the symbol in the symAddr

parameter and the class of the symbol in the symClass parameter. The currently

recognized symbol classes are defined by constants.

enum {

kCodeSymbol = 0, /*a code symbol*/

kDataSymbol = 1, /*a data symbol*/

kTVectSymbol = 2 /*a transition vector symbol*/

};

Because a fragment’s code is normally exported through transition vectors to that code,

the value kCodeSymbol is not returned in the PowerPC environment. You can use the

other two constants to distinguish exports that represent code (of class kTVectSymbol)

from those that represent general data (of class kDataSymbol).

RESULT CODES

CountSymbols

You can use the CountSymbols function to determine how many symbols are exported

from a specified fragment.

OSErr CountSymbols (ConnectionID connID, long *symCount);

connID A connection ID.

symCount On exit, the number of exported symbols in the fragment whose
connection ID is connID.

DESCRIPTION

The CountSymbols function returns, in the symCount parameter, the number of

symbols exported by the fragment whose connection ID is connID. You can use the

value returned in symCount to index through all the exported symbols in a particular

fragment (using the GetIndSymbol function).

fragNoErr 0 No error
fragConnectionIDNotFound –2801 Connection ID is not valid
fragSymbolNotFound –2802 Symbol was not found in connection

C H A P T E R 3

Code Fragment Manager

3-26 Code Fragment Manager Reference

RESULT CODES

GetIndSymbol

You can use the GetIndSymbol function to get information about the exported symbols

in a fragment.

OSErr GetIndSymbol (ConnectionID connID, long symIndex,

Str255 symName, Ptr *symAddr,

SymClass *symClass);

connID A connection ID.

symIndex A symbol index. The value of this parameter should be greater than
or equal to 1 and less than or equal to the value returned by the
CountSymbols function.

symName On exit, the name of the indicated symbol.

symAddr On exit, the address of the indicated symbol.

symClass On exit, the class of the indicated symbol.

DESCRIPTION

The GetIndSymbol function returns information about a particular symbol exported by

the fragment whose connection ID is connID. If GetIndSymbol executes successfully, it

returns the symbol’s name, starting address, and class in the symName, symAddr, and

symClass parameters, respectively. See the description of the FindSymbol function

(page 3-24) for a list of the values that can be returned in the symClass parameter.

A fragment’s exported symbols are retrieved in no predetermined order.

RESULT CODES

Fragment-Defined Routines

This section describes the initialization and termination routines that you can define for

a fragment.

fragNoErr 0 No error
fragConnectionIDNotFound –2801 Connection ID is not valid

fragNoErr 0 No error
fragConnectionIDNotFound –2801 Connection ID is not valid
fragSymbolNotFound –2802 Symbol was not found in connection

C H A P T E R 3

Code Fragment Manager

Code Fragment Manager Reference 3-27

ConnectionInitializationRoutine

You can define a fragment initialization routine that is executed by the Code Fragment

Manager when the fragment is first loaded into memory and prepared for execution. An

initialization routine has the following type definition:

typedef OSErr ConnectionInitializationRoutine

(InitBlockPtr initBlkPtr);

initBlkPtr
A pointer to a fragment initialization block specifying information about
the fragment.

Parameter block

DESCRIPTION

A fragment’s initialization routine is executed immediately after the fragment has been

loaded into memory (if necessary) and prepared for execution, and immediately before

the fragment’s main routine (if it has one) is executed. The initialization routine is passed

a pointer to an initialization block, which contains information about the fragment, such

as its location and connection ID. See “Fragment Initialization Block” on page 3-15 for a

description of the fields of the initialization block.

You can use the initialization routine to perform any tasks that need to be performed

before any of the code or data in the fragment is accessed. For example, you might want

to open the fragment’s resource fork (if it has one). You can determine the location of the

fragment’s container from the FragmentLocator field of the fragment initialization

block whose address is passed to your initialization routine.

RESULT CODES

Your initialization routine should return noErr if it executes successfully, and some

other result code if it does not. If your initialization routine returns any result code other

than noErr, the entire load fails and the error fragUserInitProcErr is returned to

the code that requested the root load.

→ contextID long A context ID.
→ closureID long A closure ID.
→ connectionID long A connection ID.
→ fragLocator FragmentLocator A fragment location block.
→ libName Ptr A pointer to fragment’s name.
→ reserved4a long Reserved.
→ reserved4b long Reserved.
→ reserved4c long Reserved.
→ reserved4d long Reserved.

C H A P T E R 3

Code Fragment Manager

3-28 Code Fragment Manager Reference

ConnectionTerminationRoutine

You can define a fragment termination routine that is executed by the Code Fragment

Manager when a fragment is unloaded from memory. A termination routine has the

following type definition:

typedef void ConnectionTerminationRoutine (void);

DESCRIPTION

A fragment’s termination routine is executed immediately before the fragment is

unloaded from memory. You can use the termination routine to perform any necessary

clean-up tasks, such as closing open resource files or disposing of any memory allocated

by the fragment.

Note that a termination routine is not passed any parameters and does not return any

result. You are expected to maintain any information about the fragment (such as file

reference numbers of any open files) in its static data area.

Resources

This section describes the code fragment resource, a resource of type 'cfrg' that is used

by the Code Fragment Manager when loading fragments such as applications and

import libraries.

This section describes the structure of this resource after it is compiled by the Rez

resource compiler, available from APDA. If you are interested in creating the Rez input

file for this resource, see “Creating a Code Fragment Resource” on page 3-12 for detailed

information.

The Code Fragment Resource

You use a code fragment resource to specify some characteristics of a code fragment. For

an application, the code fragment resource indicates to the Process Manager that the

application’s data fork contains an executable code fragment. For an import library, the

code fragment resource specifies the library’s name and version information.

IMPORTANT

A code fragment resource must have resource ID 0. ▲

Figure 3-1 shows the structure of a compiled code fragment resource.

C H A P T E R 3

Code Fragment Manager

Code Fragment Manager Reference 3-29

Figure 3-1 Structure of a compiled code fragment ('cfrg') resource

The compiled version of a code fragment resource contains the following elements:

■ Reserved. The first two long integers are reserved and should be set to 0.

■ Version information. This field specifies the current version of the 'cfrg' resource.
The current version is 0x00000001.

■ Reserved. The next four long integers are reserved and should be set to 0.

■ Number of fragment descriptions. This field specifies the number of code fragment
information records that follow this field in the resource. (The value in this field
should be the actual number of information records that follow, beginning with 1.)

Following the array count is an array of code fragment information records. A single file

can include one or more containers. Similarly, it might occasionally be useful to assign

more than one name to a single import library or application. Typically, however, both

applications and import libraries include just a single code fragment information record

in their 'cfrg' resources. Each record has the format illustrated in Figure 3-2.

C H A P T E R 3

Code Fragment Manager

3-30 Code Fragment Manager Reference

Figure 3-2 The format of a code fragment information record

A code fragment information record contains the following elements:

■ The instruction set architecture. You can use the Rez constant kPowerPC ('pwpc') to
specify the PowerPC instruction set architecture.

■ The update level. For an import library, you can specify either the value kFullLib
(0), to indicate that the library is a base library (not an update of some other library),
or the value kUpdateLib (1), to indicate that the library updates only part of some
other library. Applications should specify the value kFullLib in this field.

■ The current version number. For an import library, this field specifies the implementa-
tion version. This field has the same format as the first 4 bytes of a resource of type
'vers'. See the chapter “Finder Interface” in Inside Macintosh: Macintosh Toolbox
Essentials for details on the structure of a 'vers' resource.

■ The oldest definition version number. For an import library, this field specifies the
oldest version of the definition library with which the implementation import library
is compatible. This field has the same format as the first 4 bytes of a resource of
type 'vers'.

■ The application stack size. For an application, this field specifies the minimum size, in
bytes, of the application stack. You can use the Rez constant kDefaultStackSize
(0) to indicate that the stack should be given the default size for the current software
and hardware configuration. If you determine at run time that your application needs

C H A P T E R 3

Code Fragment Manager

Code Fragment Manager Reference 3-31

a larger or smaller stack, you can use the standard stack-adjusting techniques that call
GetApplLimit and SetApplLimit.

■ The application’s library directory. For an application, this field specifies the resource
ID of an alias resource (a resource of type 'alis') in the application’s resource fork
that describes the application’s load directory. See “Import Library Searching” on
page 3-5 for more information about load directories. For information about alias
resources, see the chapter “Alias Manager” in Inside Macintosh: Files.

■ A usage field. This field specifies the type of fragment that this record describes. The
value kIsLib (0) indicates that the fragment is an import library. The value kIsApp
(1) indicates that the fragment is an application. The value kIsDropIn (2) indicates
that the fragment is an extension. The Code Fragment Manager recognizes only the
values kIsLib and kIsApp. The value kIsDropIn is provided to allow you to put
private application extensions in a file and not have the Code Fragment Manager
recognize them as shared libraries.

■ A location field. This field specifies the location of the fragment’s container. The value
kInMem (0) indicates that the container is in memory (usually in ROM). This value is
intended for use by the Operating System; in general, you should not use it. The value
kOnDiskFlat (1) indicates that the container is in the data fork of some file. The
value kOnDiskSegmented (2) indicates that the container is in a resource in the
resource fork of some file.

■ The offset to the beginning of the fragment. The interpretation of this field depends
on the value specified in the location field immediately preceding this field. If the
location field has the value kInMem, this field is the address in memory of the begin-
ning of the fragment. If the location field has the value kOnDiskFlat, this field is the
number of bytes from the beginning of the data fork to the beginning of the fragment
itself. You can use the Rez constant kZeroOffset (0) to specify an offset of 0 bytes. If
the location field has the value kOnDiskSegmented, this field is the resource type (of
type OSType) of the resource that contains the fragment.

■ The length of the fragment. The interpretation of this field depends on the value
specified in the location field immediately preceding the offset field. If the location field
has the value kInMem, this field is the address in memory of the end of the fragment. If
the location field has the value kOnDiskFlat, this field is the length, in bytes, of the
fragment. You can use the Rez constant kWholeFork (0) to indicate that the fragment
occupies the entire fork. If the location field has the value kOnDiskSegmented, this
field is the sign-extended resource ID of the resource that contains the fragment.

■ Reserved. The next two long integers are reserved and should be set to 0.

■ The total length of the code fragment information record. This field specifies
the length, in bytes, of this code fragment information record, including the
fragment name and any pad bytes added to the name field.

■ The fragment’s name. This field is a Pascal string that indicates the name of the
application or import library. This is the default name used by the debugger for this
fragment. This field is padded with null bytes, if necessary, so that the information
record extends to a 4-byte boundary.

C H A P T E R 3

Code Fragment Manager

3-32 Summary of the Code Fragment Manager

Summary of the Code Fragment Manager

C Summary

Constants

/*Gestalt selector and response bits*/

#define gestaltCFMAttr 'cfrg' /*Code Fragment Manager attributes*/

enum {

gestaltCFMPresent = 0 /*set if Code Fragment Mgr is present*/

};

#define kPowerPCArch 'pwpc' /*PowerPC instruction set architecture*/

#define kMotorola68KArch 'm68k' /*680x0 instruction set architecture*/

#define kNoLibName ((unsigned char *) 0)

#define kNoConnectionID ((ConnectionID) 0)

#define kUnresolvedSymbolAddress ((Ptr) 0x0)

enum {

kLoadLib = 1, /*load fragment*/

kFindLib = 2, /*find fragment*/

kLoadNewCopy = 5 /*load fragment with new copy of data*/

};

enum {

kCodeSymbol = 0, /*a code symbol*/

kDataSymbol = 1, /*a data symbol*/

kTVectSymbol = 2 /*a transition vector symbol*/

};

enum {

/*selectors for fragment location record*/

kInMem, /*container in memory*/

kOnDiskFlat, /*container in a data fork*/

kOnDiskSegmented /*container in a resource*/

};

C H A P T E R 3

Code Fragment Manager

Summary of the Code Fragment Manager 3-33

Data Types

typedef long ConnectionID; /*connection ID number*/

typedef unsigned long LoadFlags; /*a flag long word*/

typedef unsigned char SymClass; /*symbol class*/

Fragment Initialization Block

struct InitBlock {

long contextID; /*context ID*/

long closureID; /*closure ID*/

long connectionID; /*connection ID*/

FragmentLocator fragLocator; /*fragment location*/

Ptr libName; /*pointer to fragment name*/

long reserved4a; /*reserved*/

long reserved4b; /*reserved*/

long reserved4c; /*reserved*/

long reserved4d; /*reserved*/

};

typedef struct InitBlock InitBlock, *InitBlockPtr;

Fragment Location Record

struct FragmentLocator {

long where; /*location selector*/

union {

MemFragment inMem; /*memory location record*/

DiskFragment onDisk; /*disk location record*/

SegmentedFragment inSegs; /*segment location record*/

} u;

};

typedef struct FragmentLocator FragmentLocator, *FragmentLocatorPtr;

Memory Location Record

struct MemFragment {

Ptr address; /*pointer to start of fragment*/

long length; /*length of fragment*/

Boolean inPlace; /*is data section in place?*/

};

typedef struct MemFragment MemFragment;

C H A P T E R 3

Code Fragment Manager

3-34 Summary of the Code Fragment Manager

Disk Location Record

struct DiskFragment {

FSSpecPtr fileSpec; /*pointer to FSSpec*/

long offset; /*offset to start of fragment*/

long length; /*length of fragment*/

};

typedef struct DiskFragment DiskFragment;

Segment Location Record

struct SegmentedFragment {

FSSpecPtr fileSpec; /*pointer to FSSpec*/

OSType rsrcType; /*resource type*/

short rsrcID; /*resource ID*/

};

typedef struct SegmentedFragment SegmentedFragment;

Code Fragment Manager Routines

Loading Fragments

OSErr GetDiskFragment (FSSpecPtr fileSpec, long offset, long length,
Str63 fragName, LoadFlags findFlags,
ConnectionID *connID, Ptr *mainAddr,
Str255 errName);

OSErr GetMemFragment (Ptr memAddr, long length, Str63 fragName,
LoadFlags findFlags, ConnectionID *connID,
Ptr *mainAddr, Str255 errName);

OSErr GetSharedLibrary (Str63 libName, OSType archType,
LoadFlags findFlags, ConnectionID *connID,
Ptr *mainAddr, Str255 errName);

Unloading Fragments

OSErr CloseConnection (ConnectionID *connID);

Finding Symbols

OSErr FindSymbol (ConnectionID connID, Str255 symName,
Ptr *symAddr, SymClass *symClass);

OSErr CountSymbols (ConnectionID connID, long *symCount);

OSErr GetIndSymbol (ConnectionID connID, long symIndex,
Str255 symName, Ptr *symAddr,
SymClass *symClass);

C H A P T E R 3

Code Fragment Manager

Summary of the Code Fragment Manager 3-35

Fragment-Defined Routines

Initializing Fragments

typedef OSErr ConnectionInitializationRoutine
(InitBlockPtr initBlkPtr);

Terminating Fragments

typedef void ConnectionTerminationRoutine
(void);

Result Codes
fragNoErr 0 No error
paramErr –50 Parameter error
fragContextNotFound –2800 Context ID is not valid
fragConnectionIDNotFound –2801 Connection ID is not valid
fragSymbolNotFound –2802 Symbol was not found in connection
fragSectionNotFound –2803 Section was not found
fragLibNotFound –2804 Library name not found in fragment registry
fragDupRegLibName –2805 Registered name already in use
fragFormatUnknown –2806 Fragment container format unknown
fragHadUnresolveds –2807 Loaded fragment has unacceptable unresolved symbols
fragNoMem –2809 Not enough memory for internal bookkeeping
fragNoAddrSpace –2810 Not enough memory in user’s address space for section
fragNoContextIDs –2811 No more context IDs available
fragObjectInitSeqErr –2812 Order error during user initialization function
fragImportTooOld –2813 Import library is too old
fragImportTooNew –2814 Import library is too new
fragInitLoop –2815 Circularity in required initialization order
fragInitRtnUsageErr –2816 Boot library has initialization routine
fragLibConnErr –2817 Error connecting to library
fragMgrInitErr –2818 Error during Code Fragment Manager initialization
fragConstErr –2819 Internal inconsistency discovered
fragCorruptErr –2820 Fragment container is corrupted
fragUserInitProcErr –2821 Initialization procedure did not return noErr
fragAppNotFound –2822 No application found in 'cfrg' resource
fragArchErr –2823 Fragment targeted for unacceptable architecture
fragInvalidFragmentUsage –2824 Fragment is used invalidly

Contents 4-1

C H A P T E R 4

Contents

Exception Manager

About the Exception Manager 4-3

Exception Contexts 4-4

Types of Exceptions 4-5

Using the Exception Manager 4-6

Installing an Exception Handler 4-6

Writing an Exception Handler 4-7

Exception Manager Reference 4-9

Constants 4-9

Exception Kinds 4-9

Memory Reference Kinds 4-11

Data Structures 4-12

Machine Information Records 4-12

Register Information Records 4-12

Floating-Point Information Records 4-14

Memory Exception Records 4-15

Exception Information Records 4-16

Exception Manager Routines 4-17

Application-Defined Routines 4-17

Summary of the Exception Manager 4-19

C Summary 4-19

Constants 4-19

Data Types 4-19

Exception Manager Routines 4-22

Application-Defined Routines 4-22

C H A P T E R 4

About the Exception Manager 4-3

Exception Manager

This chapter describes the Exception Manager, the part of the Macintosh system software

that handles exceptions that occur during the execution of PowerPC applications or

other software. The Exception Manager provides a simple way for your application to

handle exceptions that occur in its context.

You need the information in this chapter if you need to handle exceptions that occur in

native PowerPC code. If your application or other software is written in 680x0 code and

therefore executes under the 68LC040 Emulator on PowerPC processor-based Macintosh

computers, you do not in general need to read this chapter, because the existing 680x0

mechanism for handling exceptions is fully supported by the emulator.

IMPORTANT

The Exception Manager is available only in the system software for
PowerPC processor-based Macintosh computers. In addition, not all
features described here are available in the first version. For example,
the Exception Manager in the first version does not return exceptions
that arise during floating-point calculations. If your application
performs floating-point operations and needs to handle any exceptions
that arise during those operations, you should use the exception-
handling mechanisms provided by the PowerPC Numerics library. See
Inside Macintosh: PowerPC Numerics for complete information. ▲

To use this chapter, you should already be generally familiar with the Macintosh

Operating System. See the books Inside Macintosh: Processes and Inside Macintosh: Memory

for information about the run-time architecture of the 680x0 environment. You also need

to be familiar with the run-time architecture of PowerPC processor-based Macintosh

computers, as explained in the chapter “Introduction to PowerPC System Software.”

This chapter begins with a description of exceptions and their handling in the PowerPC

native environment. Then it shows how to use the Exception Manager to install your

own exception handler.

About the Exception Manager

An exception is an error or other special condition detected by the microprocessor in the

course of program execution. When an exception occurs, the Operating System transfers

control synchronously to the relevant exception handler, which attempts to recover

gracefully from the error or special condition. The kinds of errors or other conditions

that give rise to exceptions differ from one processor to another. On 680x0 processors, for

example, an exception is generated if the currently executing program attempts to divide

by zero. By contrast, the PowerPC processor does not generate an exception under

that condition.

In general, applications or other types of software (including much of the Macintosh

Operating System and the Macintosh Toolbox) cannot tolerate the occurrence of

exceptions. To provide some measure of protection from potentially fatal exceptions, the

Operating System installs its own set of exception handlers. You can, if necessary, use the

C H A P T E R 4

Exception Manager

4-4 About the Exception Manager

Exception Manager to install application-specific exception handlers. Any exception

handlers that you install apply only to your current context and only to exceptions that

are not first intercepted and handled by the Operating System.

IMPORTANT

Not all exceptions that occur in your application’s context are passed to
your exception handler. Certain exceptions (for example, page faults) are
handled completely by the Operating System’s exception handlers. As a
result, those exceptions do not affect the normal execution of your
application or other software. ▲

When your exception handler is called, the Exception Manager passes it a parameter that

contains information about the state of the machine at the time the exception occurred.

On PowerPC processor-based Macintosh computers, this information includes

■ the kind of exception that occurred

■ the contents of the 32 general-purpose registers

■ the contents of the special-purpose registers (such as the Link Register and the
Condition Register)

■ the contents of the 32 floating-point registers

Your exception handler can handle the exception in various ways. For example, it might

modify the machine state and then resume execution. Similarly, your exception handler

might simply transfer control to some other code. In rare instances, however, your

exception handler might not be able to handle the exception; when this happens, the

exception is usually fatal to your application.

Exception Contexts
In the first version of the system software for PowerPC processor-based Macintosh

computers, each application can install its own exception handler, which remains the

active handler as long as that application is the current application. In other words, the

exception handler of the current application is called for all exceptions not intercepted

by the Operating System. In general, this mechanism results in the execution of the

appropriate exception handler. It’s possible, however, for code you install to cause

exceptions that are handled by some other application’s exception handler. For instance,

exceptions that arise during the asynchronous execution of code (such as VBL tasks,

Time Manager tasks, and I/O completion routines) are handled by the exception handler

of whatever application happens to be the current application at the time the exception

occurs. If that application has not installed an exception handler, the exception might not

be handled.

All asynchronous code executed in the first version of the system software for PowerPC

processor-based Macintosh computers is executed under the 68LC040 Emulator, in

which case the exceptions are handled using the existing 680x0 mechanisms. If, however,

a routine executed asynchronously calls some code that is native PowerPC code, and if

that native code causes an exception to occur, then the current application’s exception

handler (if any) is called to handle the exception.

C H A P T E R 4

Exception Manager

About the Exception Manager 4-5

Types of Exceptions
In the first version of the system software for PowerPC processor-based Macintosh

computers, the following conditions can cause exceptions while your application or

other software is executing in native mode:

■ an attempt to write to write-protected memory

■ an attempt to access (that is, read, write, or fetch) data at a logical address that is
not assigned

■ an attempt to execute trap instructions or other instructions that are not part of the
supported application programming interface

■ an attempt to execute invalid instructions or an invalid form of a valid instruction

■ an attempt to execute privileged instructions when the system is not in
privileged mode

■ in appropriate circumstances, reaching a breakpoint

■ in appropriate circumstances, reaching a trace point

The Exception Manager defines a number of exception codes that indicate these and

other conditions. An exception code is a constant that indicates which kind of exception

has occurred.

typedef unsigned long ExceptionKind; /*kind of exception*/

enum {

/*exception codes*/

unknownException = 0, /*unknown exception type*/

illegalInstructionException = 1, /*illegal instruction*/

trapException = 2, /*unknown trap type*/

accessException = 3, /*failed memory access*/

unmappedMemoryException = 4, /*memory is unmapped*/

excludedMemoryException = 5, /*memory is excluded*/

readOnlyMemoryException = 6, /*memory is read-only*/

unresolvablePageFaultException = 7, /*unresolvable page fault*/

privilegeViolationException = 8, /*privilege violation*/

traceException = 9, /*trace*/

instructionBreakpointException = 10, /*instruction breakpoint*/

dataBreakpointException = 11, /*data breakpoint*/

integerException = 12, /*unused*/

floatingPointException = 13, /*floating point*/

stackOverflowException = 14, /*stack overflow*/

terminationException = 15 /*task is being terminated*/

};

C H A P T E R 4

Exception Manager

4-6 Using the Exception Manager

Not all of these exception codes are used in the first version of the system software for

PowerPC processor-based Macintosh computers; see “Exception Kinds” on page 4-9 for

a complete explanation of these constants.

Using the Exception Manager

The Exception Manager provides a routine that you can use to install an exception

handler and remove an exception handler. This section describes how to use this routine

and how to write an exception handler.

Installing an Exception Handler
You can install an exception handler for your application’s context by calling the

InstallExceptionHandler routine. You pass InstallExceptionHandler the

address of your exception handler:

prevHandler = InstallExceptionHandler((ExceptionHandler)myHandler);

The InstallExceptionHandler function replaces any existing exception handler

already installed for the current execution context (that is, for the current application)

and returns the address of that previously installed handler. Listing 4-1 shows a

routine that installs an exception handler as part of a wrapper around the

NewEmptyHandle function.

Listing 4-1 Installing an exception handler

static jump_buf *curJmpBuf;

Handle __NewEmptyHandle (ushort trapWord)

{

Handle returnVal;

OSErr myErr;

jmp_buf localJump, *oldJump;

ExceptionHandler prevHandler;

oldJump = curJmpBuf; /*save current jump address*/

curJmpBuf = &localJump; /*install new jump address*/

prevHandler = InstallExceptionHandler((ExceptionHandler)MyHandler);

if (myErr = setjmp(localJump)) {

LMSetMemErr(theErr); /*set memory error*/

returnVal = 0; /*no bytes allocated*/

}

C H A P T E R 4

Exception Manager

Using the Exception Manager 4-7

else

myErr = c_NewEmptyHandle(&returnVal, trapWord);

InstallExceptionHandler(prevHandler); /*restore previous handler*/

curJmpBuf = oldJump; /*restore original jump address*/

return (returnVal);

}

You can remove the current exception handler from your application’s context by

passing the value nil as the parameter to InstallExceptionHandler, as follows:

prevHandler = InstallExceptionHandler(nil);

Writing an Exception Handler
An exception handler has the following prototype:

typedef OSStatus (*ExceptionHandler) (ExceptionInformation *theException);

When your handler is called, the Exception Manager passes it the address of an exception
information record, which contains information about the exception, such as its type and

the state of the machine at the time the exception occurred. The exception information

record is defined by the ExceptionInformation data type.

struct ExceptionInformation {

ExceptionKind theKind;

MachineInformation *machineState;

RegisterInformation *registerImage;

FPUInformation *FPUImage;

union {

MemoryExceptionInformation *memoryInfo;

} info;

};

typedef struct ExceptionInformation ExceptionInformation;

The theKind field contains an exception code. The fields machineState and

registerImage contain information about the special-purpose and general-purpose

registers, respectively. The values in the special-purpose registers are contained in a

machine information record, defined by the MachineInformation data type.

struct MachineInformation {

UnsignedWide CTR; /*Count Register*/

UnsignedWide LR; /*Link Register*/

UnsignedWide PC; /*Program Counter Register*/

unsigned long CR; /*Condition Register*/

unsigned long XER; /*Fixed-Point Exception Register*/

C H A P T E R 4

Exception Manager

4-8 Using the Exception Manager

unsigned long MSR; /*Machine State Register*/

};

typedef struct MachineInformation MachineInformation;

As you can see, this record contains primarily the values in the special-purpose registers.

The values in the general-purpose registers are encoded using a structure of type

RegisterInformation, which is effectively an array of 32 register values.

Note

For a more detailed description of the exception information record
and its associated data types, see “Data Structures” beginning on
page 4-12. ◆

Your exception handler can perform any actions necessary or useful for handling the

exception. You might attempt to recover from the error or simply terminate your

application gracefully. The specific actions you perform depend, of course, on the type

of exception that has occurred. In general, however, you will probably want to use

one or the other of two basic techniques for recovering from the exception.

■ Your exception handler might simply transfer control away from the point of
execution. For example, you might jump back into your main event loop or into
some error recovery code.

■ Alternatively, your exception handler might attempt to repair the cause of the excep-
tion by suitably modifying the state of the machine (as reported to your exception
handler in an exception information record). You can alter any piece of that machine
state, including the PC register. After you have suitably modified the relevant data,
your handler should return, passing back a result code. The Exception Manager
inspects the result code you return and determines what further actions to take. If you
pass back noErr, then the Exception Manager restores the machine state to the state
contained in the exception information record and resumes execution. If you pass
back any other result code, the Operating System proceeds as if the exception had
occurred but no exception handler was present.

Listing 4-2 shows a simple exception handler MyHandler.

Listing 4-2 A native exception handler

OSStatus MyHandler (ExceptionInformation *theException)

{

if ((theException->theKind >= accessException)

&& (theException ->theKind <= unresolvablePageFaultException))

longjmp(*curJmpBuf, memWZErr);

else

return (-1);

}

As you can see, the MyHandler exception handler looks for memory-related exceptions

and, if it finds any, transfers control by calling the longjmp function.

C H A P T E R 4

Exception Manager

Exception Manager Reference 4-9

▲ W A R N I N G

Returning a value other than noErr from your exception handler is
likely to cause the current application to be terminated. ▲

▲ W A R N I N G

Your exception handler must be reentrant if it might itself cause any
exceptions to be generated. For example, if your exception handler
calls the Debugger or DebugStr routine, the trap exception (of type
trapException) is generated. Normally, a debugger intercepts and
handles those kinds of exceptions. If, however, no debugger is installed
in the system, your exception handler might be called repeatedly.
Eventually, the stack will grow to the lowest memory address,
overwriting essential data and causing a system crash. ▲

Exception Manager Reference

This section describes the constants, data structures, and routine provided by the

Exception Manager. See “Using the Exception Manager” beginning on page 4-6

for detailed instructions on using that routine.

Constants

This section describes the constants provided by the Exception Manager.

Exception Kinds

The Exception Manager indicates to your exception handler the kind of exception

that has occurred by passing it an exception code. The exception kind is indicated by

a constant.

Note

Some kinds of exceptions occur only on specific types of
processors or only in specific system software versions. ◆

enum {

/*exception codes*/

unknownException = 0, /*unknown exception type*/

illegalInstructionException = 1, /*illegal instruction*/

trapException = 2, /*unknown trap type*/

accessException = 3, /*failed memory access*/

unmappedMemoryException = 4, /*memory is unmapped*/

excludedMemoryException = 5, /*memory is excluded*/

readOnlyMemoryException = 6, /*memory is read-only*/

unresolvablePageFaultException = 7, /*unresolvable page fault*/

C H A P T E R 4

Exception Manager

4-10 Exception Manager Reference

privilegeViolationException = 8, /*privilege violation*/

traceException = 9, /*trace*/

instructionBreakpointException = 10, /*instruction breakpoint*/

dataBreakpointException = 11, /*data breakpoint*/

integerException = 12, /*unused*/

floatingPointException = 13, /*floating point*/

stackOverflowException = 14, /*stack overflow*/

terminationException = 15 /*task is being terminated*/

};

Constant descriptions

unknownException
Unknown kind of exception. This exception code is defined for
completeness only; it is never actually passed to an exception
handler.

illegalInstructionException
Illegal instruction exception. The processor attempted to decode an
instruction that is either illegal or unimplemented.

trapException Unknown trap type exception. The processor decoded a trap type
instruction that is not used by the system software.

accessException
Memory access exception. A memory reference resulted in a page
fault because the physical address is not accessible.

unmappedMemoryException
Unmapped memory exception. A memory reference was made to
an address that is unmapped.

excludedMemoryException
Excluded memory exception. A memory reference was made to an
excluded address.

readOnlyMemoryException
Read-only memory exception. A memory reference was made to an
address that cannot be written to.

unresolvablePageFaultException
Unresolvable page fault exception. A memory reference resulted in
a page fault that could not be resolved. The theError field of the
memory exception record contains a status value indicating the
reason for this unresolved page fault.

privilegeViolationException
Privilege violation exception. The processor decoded a privileged
instruction but was not executing in the privileged mode.

traceException
Trace exception. This exception is used by debuggers to support
single-step operations.

instructionBreakpointException
Instruction breakpoint exception. This exception is used by
debuggers to support breakpoint operations.

C H A P T E R 4

Exception Manager

Exception Manager Reference 4-11

dataBreakpointException
Data breakpoint exception. This exception is used by debuggers to
support breakpoint operations.

integerException
Integer exception. This exception is not used by PowerPC
processors.

floatingPointException
Floating-point arithmetic exception. The floating-point processor
has exceptions enabled and an exception has occurred. (This
exception is not used in the first version of the system software
for PowerPC processor-based Macintosh computers.)

stackOverflowException
Stack overflow exception. The stack limits have been exceeded and
the stack cannot be expanded. (This exception is not used in the first
version of the system software for PowerPC processor-based
Macintosh computers.)

terminationException
Termination exception. The task is being terminated. (This exception
is not used in the first version of the system software for PowerPC
processor-based Macintosh computers.)

Memory Reference Kinds

For each memory-related exception, the Exception Manager returns a memory exception

record. The theReference field of that record contains a memory reference code that

indicates the kind of memory operation that caused the exception.

enum {

/*memory reference codes*/

writeReference = 0, /*write operation*/

readReference = 1, /*read operation*/

fetchReference = 2 /*fetch operation*/

};

Constant descriptions

writeReference
The operation was an attempt to write data to memory.

readReference The operation was an attempt to read data from memory.

fetchReference The operation was an attempt to fetch a processor instruction. (Not
all processors are able to distinguish read operations from fetch
operations. As a result, fetch operation failures might instead be
reported as failed read operations.)

C H A P T E R 4

Exception Manager

4-12 Exception Manager Reference

Data Structures

This section describes the data structures provided by the Exception Manager.

Machine Information Records

The Exception Manager uses a machine information record to encode the state of the

special-purpose registers at the time an exception occurs. A machine information record

is defined by the MachineInformation data type.

struct MachineInformation {

UnsignedWide CTR; /*Count Register*/

UnsignedWide LR; /*Link Register*/

UnsignedWide PC; /*Program Counter Register*/

unsigned long CR; /*Condition Register*/

unsigned long XER; /*Fixed-Point Exception Register*/

unsigned long MSR; /*Machine State Register*/

};

typedef struct MachineInformation MachineInformation;

Note

The fields CTR, LR, and PC are declared as the 64-bit type
UnsignedWide to allow compatibility with 64-bit processors.
On 32-bit processors, the register values are returned in the
low-order 32 bits. The high-order 32 bits are undefined. ◆

Field descriptions

CTR The contents of the Count Register (CTR).

LR The contents of the Link Register (LR).

PC The contents of the Program Counter Register (PC).

CR The contents of the Condition Register (CR).

XER The contents of the Fixed-Point Exception Register (XER).

MSR The contents of the Machine State Register (MSR).

IMPORTANT

The fields of a machine information record are aligned in memory in
accordance with 680x0 alignment conventions. ▲

Register Information Records

The Exception Manager uses a register information record to encode the state of the

general-purpose registers at the time an exception occurs. A register information record

is defined by the RegisterInformation data type.

C H A P T E R 4

Exception Manager

Exception Manager Reference 4-13

struct RegisterInformation {

UnsignedWide R0;

UnsignedWide R1;

UnsignedWide R2;

UnsignedWide R3;

UnsignedWide R4;

UnsignedWide R5;

UnsignedWide R6;

UnsignedWide R7;

UnsignedWide R8;

UnsignedWide R9;

UnsignedWide R10;

UnsignedWide R11;

UnsignedWide R12;

UnsignedWide R13;

UnsignedWide R14;

UnsignedWide R15;

UnsignedWide R16;

UnsignedWide R17;

UnsignedWide R18;

UnsignedWide R19;

UnsignedWide R20;

UnsignedWide R21;

UnsignedWide R22;

UnsignedWide R23;

UnsignedWide R24;

UnsignedWide R25;

UnsignedWide R26;

UnsignedWide R27;

UnsignedWide R28;

UnsignedWide R29;

UnsignedWide R30;

UnsignedWide R31;

};

typedef struct RegisterInformation RegisterInformation;

Field descriptions

R0 The contents of general-purpose register GPR0.

R1 The contents of general-purpose register GPR1.

R2 The contents of general-purpose register GPR2.

R3 The contents of general-purpose register GPR3.

R4 The contents of general-purpose register GPR4.

R5 The contents of general-purpose register GPR5.

C H A P T E R 4

Exception Manager

4-14 Exception Manager Reference

R6 The contents of general-purpose register GPR6.

R7 The contents of general-purpose register GPR7.

R8 The contents of general-purpose register GPR8.

R9 The contents of general-purpose register GPR9.

R10 The contents of general-purpose register GPR10.

R11 The contents of general-purpose register GPR11.

R12 The contents of general-purpose register GPR12.

R13 The contents of general-purpose register GPR13.

R14 The contents of general-purpose register GPR14.

R15 The contents of general-purpose register GPR15.

R16 The contents of general-purpose register GPR16.

R17 The contents of general-purpose register GPR17.

R18 The contents of general-purpose register GPR18.

R19 The contents of general-purpose register GPR19.

R20 The contents of general-purpose register GPR20.

R21 The contents of general-purpose register GPR21.

R22 The contents of general-purpose register GPR22.

R23 The contents of general-purpose register GPR23.

R24 The contents of general-purpose register GPR24.

R25 The contents of general-purpose register GPR25.

R26 The contents of general-purpose register GPR26.

R27 The contents of general-purpose register GPR27.

R28 The contents of general-purpose register GPR28.

R29 The contents of general-purpose register GPR29.

R30 The contents of general-purpose register GPR30.

R31 The contents of general-purpose register GPR31.

IMPORTANT

The fields of a register information record are aligned in memory
in accordance with 680x0 alignment conventions. ▲

Floating-Point Information Records

The Exception Manager uses a floating-point information record to encode the state of

the floating-point unit at the time an exception occurs. A floating-point information

record is defined by the FPUInformation data type.

struct FPUInformation {

UnsignedWide Registers[32]; /*FPU registers*/

unsigned long FPSCR; /*status/control reg*/

};

typedef struct FPUInformation FPUInformation;

C H A P T E R 4

Exception Manager

Exception Manager Reference 4-15

Field descriptions

Registers The contents of the 32 floating-point registers. This array is
zero-based; for example, the contents of FPR0 are accessed
as Registers[0].

FPSCR The contents of the Floating-Point Status and Control
Register (FPSCR).

IMPORTANT

The fields of a floating-point information record are aligned in memory
in accordance with 680x0 alignment conventions. ▲

Memory Exception Records

The Exception Manager uses a memory exception record to present additional informa-

tion about an exception that occurs as the result of a failed memory reference. A memory

exception record is defined by the MemoryExceptionInformation data type.

struct MemoryExceptionInformation {

AreaID theArea;

LogicalAddress theAddress;

OSStatus theError;

MemoryReferenceKind theReference;

};

typedef struct MemoryExceptionInformation MemoryExceptionInformation;

Field descriptions

theArea The area containing the logical address of the exception. When the
memory reference that caused the exception is to an unmapped
range of the logical address space, this field contains the value
kNoAreaID.

theAddress The logical address of the exception.

theError A status value. When the exception kind is
unresolvablePageFaultException, this field contains a value
that indicates the reason the page fault could not be resolved.

theReference The type of memory reference that caused the exception. This field
contains one of these constants:

enum {

writeReference = 0, /*write operation*/

readReference = 1, /*read operation*/

fetchReference = 2 /*fetch operation*/

};

See “Memory Reference Kinds” on page 4-11 for a description of
these constants.

C H A P T E R 4

Exception Manager

4-16 Exception Manager Reference

IMPORTANT

The fields of a memory exception record are aligned in memory in
accordance with 680x0 alignment conventions. ▲

Exception Information Records

The Exception Manager passes an exception information record to your exception

handler whenever your handler is called as the result of some exception. The exception

information record indicates the nature of the exception and provides other information

that might be useful to your handler. An exception information record is defined by the

ExceptionInformation data type.

struct ExceptionInformation {

ExceptionKind theKind;

MachineInformation *machineState;

RegisterInformation *registerImage;

FPUInformation *FPUImage;

union {

MemoryExceptionInformation *memoryInfo;

} info;

};

typedef struct ExceptionInformation ExceptionInformation;

Field descriptions

theKind An exception code indicating the kind of exception that occurred.
See “Exception Kinds” on page 4-9 for a list of the available
exception codes.

machineState The state of the machine at the time the exception occurred. See
“Machine Information Records” on page 4-12 for details on the
MachineInformation data type.

registerImage The contents of the general-purpose registers at the time the
exception occurred. See “Register Information Records” on
page 4-12 for details on the RegisterInformation data type.

FPUImage The state of the floating-point processor at the time the exception
occurred. See “Floating-Point Information Records” on page 4-14
for details on the FPUInformation data type.

memoryInfo The logical address of the location in memory that triggered
the exception.

IMPORTANT

The fields of an exception information record are aligned in memory in
accordance with 680x0 alignment conventions. ▲

C H A P T E R 4

Exception Manager

Exception Manager Reference 4-17

Exception Manager Routines

You can use the Exception Manager’s InstallExceptionHandler routine to install

an exception handler or to remove an existing exception handler.

InstallExceptionHandler

You can use the InstallExceptionHandler function to install an exception handler.

extern ExceptionHandler InstallExceptionHandler

(ExceptionHandler theHandler);

theHandler
The address of the exception handler to be installed.

DESCRIPTION

The InstallExceptionHandler function installs the exception handler specified by

the theHandler parameter. That handler replaces any existing exception handler

associated with the current execution context. The newly installed handler remains

active until you install some other handler or until you remove the current handler by

calling InstallExceptionHandler with theHandler set to nil.

IMPORTANT

The theHandler parameter must be the address of a transition vector
for the exception handler, not a universal procedure pointer. ▲

The InstallExceptionHandler function returns the address of any existing

exception handler as its function result. If there is no exception handler in place

for the current execution context, InstallExceptionHandler returns nil.

SPECIAL CONSIDERATIONS

The InstallExceptionHandler function is available to any code executing in the

PowerPC native environment. You do not need to call it if your application or other

software exists as 680x0 code and hence executes under the 68LC040 Emulator on

PowerPC processor-based Macintosh computers.

Application-Defined Routines

This section describes exception handlers, routines that you install using the

InstallExceptionHandler routine to handle specific types of exceptions.

C H A P T E R 4

Exception Manager

4-18 Exception Manager Reference

MyExceptionHandler

An exception handler should have this prototype:

OSStatus MyExceptionHandler (ExceptionInformation *theException);

theException
The address of an exception information block describing the exception
that triggered the exception handler.

DESCRIPTION

You pass the address of your MyExceptionHandler routine to the Exception Manager’s

InstallExceptionHandler function. The Exception Manager subsequently calls your

exception handler for all exceptions that arise in your application’s context that are not

intercepted by the Operating System.

Your exception handler can take whatever steps are necessary to handle the exception or

to correct the error or special condition that caused the exception. If your handler is

successful, it should return the noErr result code. If you pass back noErr, the Exception

Manager restores the machine state to the state contained in the exception information

record pointed to by the theException parameter and resumes execution.

If your handler is not able to handle the exception, it should return some other result

code. However, if your handler returns a nonzero result code, the current application is

likely to be terminated by the Process Manager.

An exception handler uses the same stack that is active at the time an exception occurs.

To ensure that no stack data is destroyed, the Exception Manager advances the stack

pointer prior to calling the exception handler.

SPECIAL CONSIDERATIONS

An exception handler must follow the same general guidelines as other kinds of

asynchronous software. For instance, it cannot cause memory to be purged or

compacted, and it should not use any handles that are not locked. See Inside Macintosh:
Processes for a description of the restrictions applying to interrupt tasks and other

asynchronous software.

An exception handler must be reentrant if it can itself generate exceptions.

SEE ALSO

See “Writing an Exception Handler” on page 4-7 for more information about writing an

exception handler.

C H A P T E R 4

Exception Manager

Summary of the Exception Manager 4-19

Summary of the Exception Manager

C Summary

Constants

enum {

/*exception codes*/

unknownException = 0, /*unknown exception type*/

illegalInstructionException = 1, /*illegal instruction*/

trapException = 2, /*unknown trap type*/

accessException = 3, /*failed memory access*/

unmappedMemoryException = 4, /*memory is unmapped*/

excludedMemoryException = 5, /*memory is excluded*/

readOnlyMemoryException = 6, /*memory is read-only*/

unresolvablePageFaultException = 7, /*unresolvable page fault*/

privilegeViolationException = 8, /*privilege violation*/

traceException = 9, /*trace*/

instructionBreakpointException = 10, /*instruction breakpoint*/

dataBreakpointException = 11, /*data breakpoint*/

integerException = 12, /*unused*/

floatingPointException = 13, /*floating point*/

stackOverflowException = 14, /*stack overflow*/

terminationException = 15 /*task is being terminated*/

};

enum {

/*memory reference codes*/

writeReference = 0, /*write operation*/

readReference = 1, /*read operation*/

fetchReference = 2 /*fetch operation*/

};

Data Types

typedef unsigned long ExceptionKind; /*kind of exception*/

typedef unsigned long MemoryReferenceKind;

C H A P T E R 4

Exception Manager

4-20 Summary of the Exception Manager

typedef void *Ref;

typedef Ref AreaID;

typedef Ref LogicalAddress;

struct UnsignedWide {

unsigned long hi;

unsigned long lo;

};

typedef struct UnsignedWide UnsignedWide;

struct RegisterInformation {

UnsignedWide R0;

UnsignedWide R1;

UnsignedWide R2;

UnsignedWide R3;

UnsignedWide R4;

UnsignedWide R5;

UnsignedWide R6;

UnsignedWide R7;

UnsignedWide R8;

UnsignedWide R9;

UnsignedWide R10;

UnsignedWide R11;

UnsignedWide R12;

UnsignedWide R13;

UnsignedWide R14;

UnsignedWide R15;

UnsignedWide R16;

UnsignedWide R17;

UnsignedWide R18;

UnsignedWide R19;

UnsignedWide R20;

UnsignedWide R21;

UnsignedWide R22;

UnsignedWide R23;

UnsignedWide R24;

UnsignedWide R25;

UnsignedWide R26;

UnsignedWide R27;

UnsignedWide R28;

UnsignedWide R29;

UnsignedWide R30;

C H A P T E R 4

Exception Manager

Summary of the Exception Manager 4-21

UnsignedWide R31;

};

typedef struct RegisterInformation RegisterInformation;

typedef long OSStatus;

typedef OSStatus (*ExceptionHandler) (ExceptionInformation *theException);

struct MachineInformation {

UnsignedWide CTR; /*Count Register*/

UnsignedWide LR; /*Link Register*/

UnsignedWide PC; /*Program Counter Register*/

unsigned long CR; /*Condition Register*/

unsigned long XER; /*Fixed-Point Exception Register*/

unsigned long MSR; /*Machine State Register*/

};

typedef struct MachineInformation MachineInformation;

struct FPUInformation {

UnsignedWide Registers[32]; /*FPU registers*/

unsigned long FPSCR; /*status/control reg*/

};

typedef struct FPUInformation FPUInformation;

struct MemoryExceptionInformation {

AreaID theArea;

LogicalAddress theAddress;

OSStatus theError;

MemoryReferenceKind theReference;

};

typedef struct MemoryExceptionInformation MemoryExceptionInformation;

struct ExceptionInformation {

ExceptionKind theKind;

MachineInformation *machineState;

RegisterInformation *registerImage;

FPUInformation *FPUImage;

union {

MemoryExceptionInformation *memoryInfo;

} info;

};

typedef struct ExceptionInformation ExceptionInformation;

C H A P T E R 4

Exception Manager

4-22 Summary of the Exception Manager

Exception Manager Routines

Installing Exception Handlers

extern ExceptionHandler InstallExceptionHandler
(ExceptionHandler theHandler);

Application-Defined Routines

Exception Handlers

OSStatus MyExceptionHandler
(ExceptionInformation *theException);

GL-1

32-bit clean Said of an application (or other
software) that is able to run in an environment
where all 32 bits of a memory address are used
for addressing.

680x0 See 680x0 microprocessor.

680x0 application An application that contains
code only for a 680x0 microprocessor. See also fat
application and PowerPC application.

680x0-based Macintosh computer Any
computer containing a 680x0 central processing
unit that runs Macintosh system software.
See also PowerPC processor-based
Macintosh computer.

680x0 compiler Any compiler that produces
code that can execute on a 680x0. See also
PowerPC compiler.

680x0 context block A block of data used by the
68LC040 Emulator to maintain information
across mode switches. The structure of this block
of data is private.

680x0 microprocessor Any member of the
Motorola 68000 family of microprocessors.

680x0 software Any software (that is, applica-
tion, extension, driver, or other executable code)
that consists of code only for a 680x0 micro-
processor. See also 680x0 application.

68LC040 Emulator The part of the system
software that allows 680x0 applications and other
680x0 software to execute on PowerPC processor-
based Macintosh computers. See also Mixed
Mode Manager.

A5 world An area of memory in a 680x0
application’s partition that contains the
QuickDraw global variables, the application
global variables, the application parameters,
and the jump table—all of which are accessed
through the A5 register. See also mini-A5 world.

accelerated resource An executable resource
consisting of a routine descriptor and PowerPC
code that specifically models the behavior of a
680x0 stand-alone code resource. Compare
private resource.

accelerated system software routine Any
Toolbox or Operating System routine that has
been rewritten as PowerPC code.

A-line instruction An instruction that is not
recognized by a 680x0 microprocessor and that
the Trap Manager uses to execute Toolbox and
Operating System routines. The first word of an
A-line instruction is binary 1010 (hexadecimal A).

ANSI C language dialect The C programming
language dialect that adheres to the language
defined by the document American National
Standard for Information Systems—Programming
Language—C, ANSI X3.159-1989.

application A file of type 'APPL' that can be
launched by the Process Manager. See also 680x0
application and PowerPC application.

application extension A fragment containing
code and data (such as a data-conversion filter,
tool, and so forth) that extends the capabilities of
an application.

application global variables A set of variables
stored in the application partition that are global
to the application.

application heap An area of memory in the
application heap zone in which memory is
dynamically allocated and released on demand.

application parameters Thirty-two bytes of
memory in the A5 world of a 680x0 application
that are reserved for system use. The first long
word is the address of the first QuickDraw global
variable.

Glossary

G L O S S A R Y

GL-2

application partition A partition of memory
reserved for use by an application. The applica-
tion partition consists of free space, along with
the application’s heap and stack. The application
partition for a 680x0 application also contains an
A5 world.

A-trap See A-line instruction.

backing-store file The file in which the Virtual
Memory Manager stores the contents of unneeded
pages of memory. See also file mapping and
paging file.

backing volume See paging device.

bind To find the referent of an import and place
its address in a fragment’s table of contents.

bus sizing See dynamic bus sizing.

byte smearing The ability of certain members
of the 680x0 family of microprocessors to
duplicate byte- and word-sized data across all
32 bits of the data bus.

cache See data cache or instruction cache.

callback routine A routine that is executed as
part of the operation of some other routine.

callee A routine that is called by some routine.

caller A routine that calls some routine.

calling conventions A set of conventions that
describe the manner in which a particular routine
is executed. A routine’s calling conventions
specify where parameters and function results
are passed. For a stack-based routine, the calling
conventions determine the structure of the
routine’s stack frame.

code fragment See fragment.

code fragment information record A part of a
code fragment resource that provides information
about a specific code fragment. There can be
more than one code fragment information record
in a code fragment resource.

Code Fragment Loader The part of the
Macintosh system software that reads containers
and loads the fragments they contain into
memory. Currently, the application programming
interface to the Code Fragment Loader is private.
See also Code Fragment Manager.

Code Fragment Manager The part of the
Macintosh system software that loads fragments
into memory and prepares them for execution.
See also Code Fragment Loader and fragment.

code fragment resource A resource of type
'cfrg' that identifies the instruction set architec-
ture, location, size, and name of an application or
import library, as well as version information for
import libraries. See also code fragment informa-
tion record.

code patch See patch.

code resource See executable resource.

code section A section of a fragment that
contains executable code. See also data section.

code type See instruction set architecture.

compile-time library See definition version.

Condition Register (CR) A register in the
PowerPC processor that holds the result of
certain integer and floating-point operations.

connection A link between two fragments.

connection ID A reference number that
uniquely identifies a connection. Defined by
the ConnectionID data type.

container The storage for a fragment. A
container is a contiguous chunk of storage that
holds a fragment and information describing the
location of the parts of the fragment and the
format of the container.

context The block of static data (global
variables, static variables, and function pointers)
associated with one loading of an import library.
Each application is loaded into its own context.

context block See 680x0 context block.

CR See Condition Register.

cross-mode call A call to code that is in a
different instruction set architecture from the
caller’s. See also explicit cross-mode call and
implicit cross-mode call.

cross-TOC call A call to code that is in a
different fragment from the caller’s. A cross-TOC
call requires that the Table of Contents Register
be changed to the callee’s TOC value.

G L O S S A R Y

GL-3

dangling pointer A pointer that no longer
points to the correct memory address.

data cache An area of memory internal to some
microprocessors (for example, the MC68030 and
MC68040 microprocessors) that holds recently
accessed data. See also instruction cache.

data section A section of a fragment that
contains its static data, including the fragment’s
table of contents. See also code section.

de facto C++ standard The current C++
language definition described in the working
paper American National Standard for Information
Systems—Programming Language—C++, ANSI
X3J16.

definition function A function that defines the
appearance and behavior of some user interface
element (for example, a control, list, or window).
See also stub definition function.

definition resource A resource that contains a
definition function. See also stub definition
resource.

definition version The version of an import
library used by the linker to resolve imports in
the application (or other fragment) being linked.
The definition version defines the external
programming interface and data format of the
library. Compare implementation version.

disk location record A data structure that
provides information about the location of a
fragment in the data fork of a file on disk.
Defined by the DiskFragment data type.

drop-in See application extension.

dynamically linked library See import library.

dynamic bus sizing The ability of certain
members of the 680x0 family of microprocessors
to allow I/O devices with 8-bit and 16-bit data
paths to work with the processor’s 32-bit data bus.

emulated application An application whose
executable code is not in the instruction set
architecture of the CPU. An emulated application
relies on an emulator to translate its code into
that instruction set. See also 680x0 application.

emulation The process by which a micro-
processor is able to execute code in an instruction
set different from its native instruction set. See
also 68LC040 Emulator.

emulation environment The 680x0-compatible
environment on PowerPC processor-based
Macintosh computers provided by the 68LC040
Emulator and the Mixed Mode Manager.

emulator See 68LC040 Emulator.

epilog A standard piece of code at the end of a
routine that restores any nonvolatile registers
saved by the routine’s prolog, tears down the
routine’s stack frame, and returns to the caller.
See also prolog.

exception An error or other special condition
detected by the microprocessor in the course of
program execution.

exception code A constant that indicates which
kind of exception has occurred.

exception handler Any routine that handles
exceptions.

exception information record A data structure
that contains information about an exception,
such as the exception kind, the machine state at
the time of the exception, and so forth. Defined
by the ExceptionInformation data type.

Exception Manager The part of the Macintosh
system software that handles exceptions that
occur during the execution of PowerPC applica-
tions or other software.

exception stack frame A block of data placed
on the stack automatically by the processor when
an exception occurs.

executable resource Any resource that contains
executable code. See also accelerated resource
and private resource.

explicit cross-mode call A call to code that is in
a different instruction set architecture from the
caller’s, caused by the caller explicitly calling the
CallUniversalProc function.

export To make a symbol externally visible.
Also, a synonym for exported symbol.

G L O S S A R Y

GL-4

exported symbol A symbol in a fragment that
is visible to some other fragments. See also
import library and imported symbol.

Extended Common Object File Format
(XCOFF) A format of executable file generated
by some PowerPC compilers. See also Preferred
Executable Format.

extension See application extension and
system extension.

external code Any block of executable code that
is not directly contained in an application or
other software.

fake definition resource See stub definition
resource.

fake handle A handle that was not created by
the Memory Manager but is passed to some
Memory Manager routine.

fake pointer A pointer that was not created by
the Memory Manager but is passed to some
Memory Manager routine.

fat Containing or describing code of multiple
instruction sets.

fat application An application that contains
code of two or more instruction sets. See also
680x0 application and PowerPC application.

fat binary Any piece of executable code
(application, code resource, trap, or trap patch)
that contains code of multiple instruction sets.
See also fat application, fat patch, fat resource,
and fat trap.

fat patch A trap patch that contains executable
code in two or more instruction sets.

fat resource A code-bearing resource that
contains executable code in two or more
instruction sets. A fat resource begins with a
fat routine descriptor.

fat routine descriptor A routine descriptor that
contains routine records for a routine’s code in
two or more instruction sets.

fat trap A system software routine that is
implemented in two or more instruction sets. In
general, the Operating System selects the trap
implementation that avoids mode switches. See
also split trap.

file and directory registry A list of files and
directories that the Code Fragment Manager
should search when looking for import libraries.
See also ROM registry.

file mapping The process of using a file’s data
fork as the virtual memory paging file.

Floating-Point Status and Control Register
(FPSCR) A 32-bit PowerPC register used to
store the floating-point environment.

FP See frame pointer.

FPSCR See Floating-Point Status and Control
Register.

fragment Any block of executable PowerPC
code and its associated data.

fragment initialization block A parameter
block passed to a fragment’s initialization routine
that contains information about the fragment.
Defined by the InitBlock data type.

fragment location record A data structure that
provides information about the location of a
fragment. Defined by the FragmentLocator
data type.

frame See stack frame or switch frame.

frame pointer (FP) A pointer to the beginning
of a stack frame. See also stack pointer.

function prototype A declaration of the types
of parameters expected by a function and of the
type of the result it returns. ANSI C requires
function prototypes for all functions you define.

global instantiation The method of allocating
an import library’s static data in which only one
copy of that data is created regardless of how
many connections to the library are made. See
also per-context instantiation and per-load
instantiation.

global variables See application global
variables, QuickDraw global variables, and
system global variables.

glue routine A run-time library routine, usually
provided by the development environment, that
provides the subroutine linkage between high-
level language code and a system routine with an
interface protocol different from that of the
high-level language.

G L O S S A R Y

GL-5

hard import An imported symbol that must be
defined at run time and whose corresponding
code or data must therefore be available in an
import library on the host machine. Compare
import and soft import.

head patch A patch that, upon completion,
jumps to the next patch in the patch daisy chain.
Compare tail patch.

heap An area of memory in which space
is dynamically allocated and released on
demand, using the Memory Manager. See also
application heap.

hybrid environment See mixed environment.

implementation version The version of an
import library that is connected at load time to
the application (or other fragment) being loaded.
The implementation version provides the actual
executable code and data exported by the library.
Compare definition version.

implicit cross-mode call A call to code that is
in a different instruction set architecture from
the caller’s, caused by the caller executing a
routine descriptor.

import To refer to a symbol located in some
other fragment. Also, a synonym for
imported symbol.

imported symbol A symbol in a fragment that
references code or data exported by some other
fragment. See also exported symbol and
import library.

import library A shared library that is auto-
matically loaded at run time by the Code
Fragment Manager.

initialization block See fragment initializa-
tion block.

initialization routine A function contained in a
fragment that is executed immediately after the
fragment has been loaded and prepared. See also
termination routine.

input/output (I/O) The parts of a computer
system that transfer data to or from
peripheral devices.

instantiation See global instantiation,
per-context instantiation, and per-load
instantiation.

instruction cache An area of memory internal
to some microprocessors (for example, the
MC68020, MC68030, and MC68040 micro-
processors) that holds recently used instructions.
See also data cache.

instruction set architecture The set of instruc-
tions meaningful to a particular microprocessor
or to a family of microprocessors.

interface files See universal interface files.

interrupt See exception.

I/O See input/output.

jump table An area of memory in a 680x0
application’s A5 world that contains one entry
for every externally referenced routine in every
code segment of the application. The jump table
is the means by which the loading and unloading
of segments are implemented.

KB Abbreviation for kilobyte. A kilobyte is
1024 bytes.

leaf procedure A routine that calls no other
routines.

library See import library.

library directory A directory used by an
application or other fragment to store import
libraries used by that application or fragment.
An application’s library directory is specified
in the application’s code fragment resource.

linkage area The area in a PowerPC stack
frame that holds the caller’s RTOC value and
saved values of the Count Register and Link
Register. See also parameter area.

Link Register (LR) A register in the PowerPC
processor that holds the return address of the
currently executing routine.

load directory The directory that contains a
fragment being loaded into memory and
prepared for execution.

local variable A variable allocated and used
only within the current procedure.

location record See fragment location record.

G L O S S A R Y

GL-6

lock (1) To prevent a relocatable block from
being moved during heap compaction. (2) To
temporarily prevent a range of physical memory
from being paged out or moved by the Virtual
Memory Manager.

low-memory global variables See system
global variables.

LR See Link Register.

machine information record A data structure
that contains information about the state of the
machine at the time an exception occurs. Defined
by the MachineInformation data type.

Macintosh Operating System The part of
Macintosh system software that manages basic
low-level operations such as file reading and
writing, memory allocation and deallocation,
process execution, and interrupt handling.

Macintosh Programmer’s Workshop (MPW)
A software development system for the
Macintosh family of computers provided
by Apple Computer.

Macintosh system software A collection of
routines that you can use to simplify your
development of Macintosh applications. See
also Macintosh Toolbox and Macintosh
Operating System.

Macintosh Toolbox The part of the Macintosh
system software that allows you to implement
the standard Macintosh user interface in your
application or other software.

Macintosh User Interface Toolbox See
Macintosh Toolbox.

main routine A function contained in a
fragment whose use depends on the kind of
fragment it is in. For applications, the main
routine is the usual entry point. See also
main symbol.

main symbol A symbol whose use depends on
the kind of fragment it is in. For applications, the
main symbol refers to the fragment’s main
routine. See also main routine.

MB Abbreviation for megabyte. A megabyte is
1024 kilobytes, or 1,048,576 bytes.

memory location record A data structure
that provides information about the location
of a fragment in memory. Defined by the
MemFragment data type.

memory management unit (MMU) Any
component that performs address mapping in a
Macintosh computer. In Macintosh II computers,
it is either the Address Management Unit (AMU)
or the Paged Memory Management Unit
(PMMU). The MMU function is built into the
MC68030 and MC68040 microprocessors.

Memory Manager The part of the Operating
System that dynamically allocates and releases
memory space in the heap.

mini-A5 world An area of memory created and
maintained by the Process Manager for a native
PowerPC application. A native application’s
mini-A5 world contains a pointer to the applica-
tion’s QuickDraw global variables. See also
A5 world.

mixed environment A process execution
environment that supports applications and
other software written in more than one
instruction set.

Mixed Mode Manager The part of the
Macintosh system software that manages the
mixed-mode architecture of PowerPC processor-
based computers running 680x0-based code
(including system software, applications, and
stand-alone code modules).

MMU See memory management unit.

mode switch The process of switching the
execution context between the CPU’s native
context and an emulator (for example, the
68LC040 Emulator). See also switch frame.

MPW See Macintosh Programmer’s Workshop.

nanokernel The lowest-level part of the system
software for PowerPC processor-based
Macintosh computers.

native application An application whose
executable code is in the instruction set
architecture of the CPU. See also PowerPC
application.

G L O S S A R Y

GL-7

nonvolatile register A register whose contents
must be preserved across subroutine calls. If a
routine changes the value of a nonvolatile
register, it must save the old value on the stack
before changing the register and restore that
value before returning. See also saved registers
area and volatile register.

opcode See operation code.

Operating System See Macintosh Operating
System.

operation code The part of a machine
instruction that encodes the operation to be
performed. Often shortened to opcode.

page The basic unit of memory used in
virtual memory.

paged memory management unit (PMMU) The
Motorola MC68851 chip, used in the Macintosh II
computer to perform logical-to-physical address
translation and paged memory management.

page fault A special kind of bus error caused
by an attempt to access data in a page of memory
that is not currently resident in RAM.

paging The process of moving data between
physical memory and a paging file.

paging device A volume that contains the
backing-store file or a paging file.

paging file A file used to store unneeded pages
of memory. See also backing-store file.

parameter area The area in a PowerPC stack
frame that holds the parameters for any routines
called by a given routine. See also linkage area.

partition A contiguous block of memory
reserved for use by the Operating System or by
an application. See also application partition and
system partition.

patch Any code used to repair or augment an
existing piece of code. In the context of
Macintosh system software, a patch repairs or
augments a trap. See also head patch and tail
patch.

PC See program counter.

PC-relative A form of instruction addressing
in which the destination instruction is some
number of instructions before or after the
current instruction.

PEF See Preferred Executable Format.

per-context instantiation The method of
allocating an import library’s static data in which
one copy of that data is created for each separate
application using the library. Using this method,
a single application may have only one copy of
the static data. See also global instantiation and
per-load instantiation.

per-load instantiation The method of allocating
an extension’s static data in which one copy of
that data is created for each separate connection
to the extension. Using this method, a single
client may have multiple copies of the static data.
See also global instantiation and per-context
instantiation.

PMMU See paged memory management unit.

PowerPC See PowerPC microprocessor.

PowerPC application An application that
contains code only for a PowerPC microprocessor.
See also 680x0 application and fat application.

PowerPC compiler Any compiler that produces
code that can execute on a PowerPC. See also
680x0 compiler.

PowerPC microprocessor Any member of the
family of PowerPC microprocessors. The
MPC601 processor is the first PowerPC CPU.

PowerPC Numerics The floating-point
environment on PowerPC processor-based
Macintosh computers. This environment
provides floating-point data types and arithmetic
operations, plus some advanced numerical
functions (such as logarithmic and trigonometric
functions). See also Standard Apple Numerics
Environment.

PowerPC processor-based Macintosh
computer Any computer containing a PowerPC
central processing unit that runs Macintosh
system software. See also 680x0-based Macintosh
computer.

G L O S S A R Y

GL-8

PowerPC software Any software (that is,
application, extension, driver, or other executable
code) that consists of code only for a PowerPC
microprocessor. See also PowerPC application.

Preferred Executable Format (PEF) The format
of executable files used for PowerPC applications
and other software running on Macintosh
computers. See also Extended Common Object
File Format.

prepare To resolve imports in a fragment to
exports in some import library.

private resource Any executable resource
whose behavior is defined by your application
(or other kind of software) alone. Compare
accelerated resource.

procedure information A long word that
encodes information about a routine’s calling
conventions, the sizes and locations of the
routine’s parameters, and the size and
location of the routine’s result. Defined by the
ProcInfoType data type.

procedure pointer A reference generated by a
compiler when taking the address of a routine.
On 680x0-based Macintosh computers, a
procedure pointer is the address of the routine’s
executable code (and is defined by the ProcPtr
data type). On PowerPC processor-based
Macintosh computers, a procedure pointer is the
address of the routine’s transition vector.

Process Manager The part of the Macintosh
Operating System that provides a cooperative
multitasking environment by controlling access
to shared resources and managing the
scheduling, execution, and termination of
applications.

processor cache See data cache or
instruction cache.

ProcInfoType See procedure information.

ProcPtr See procedure pointer.

program counter (PC) A register in the CPU
that contains a pointer to the memory location of
the next instruction to be executed.

prolog A standard piece of code at the begin-
ning of a routine that sets up the routine’s stack
frame and saves any nonvolatile registers used
by the routine. See also epilog.

prototype See function prototype.

QuickDraw global variables A set of variables
stored in a 680x0 application’s A5 world that
contain information used by QuickDraw.

reduced instruction set computer (RISC) A
microprocessor in which all machine instructions
are uniformly formatted and are processed
through the same steps. See also PowerPC
microprocessor.

Red Zone The area of memory immediately
above the address pointed to by the stack pointer.
The Red Zone is reserved for temporary use by a
function’s prolog and as an area to store a leaf
routine’s nonvolatile registers.

reentrant exception handler An exception
handler that can be interrupted while servicing
an exception, then service a new exception, and
then complete servicing the original exception.

register-based routine A routine that receives
its parameters and returns its results, if any, in
registers. See also stack-based routine.

RISC See reduced instruction set computer.

ROM registry A list of the import libraries that
are stored in the ROM of a Macintosh computer.
See also file and directory registry.

routine descriptor A data structure used by the
Mixed Mode Manager to execute a routine. A
routine descriptor contains one or more routine
records. Defined by the RoutineDescriptor
data type.

routine record A data structure that contains
information about a particular routine. A routine
record specifies, among other things, a routine’s
instruction set architecture, the number and
size of its parameters, its calling conventions,
and its location in memory. Defined by the
RoutineRecord data type.

RTOC See Table of Contents Register.

run-time environment The execution
environment provided by the Process Manager
and other system software services. The run-time
environment dictates how executable code is
loaded into memory, where data is stored, and
how functions call other functions and system
software routines.

run-time library See implementation version.

G L O S S A R Y

GL-9

SANE See Standard Apple Numerics
Environment.

saved registers area The area in a PowerPC
stack frame that holds the saved values of the
nonvolatile general-purpose and floating-
point registers.

section A region of memory occupied by part
of a loaded fragment. When a fragment is loaded,
it is divided into a code section and one or more
copies of the data section. See also code section
and data section.

segment One of several logical divisions of the
code of a 680x0 application. Not all segments
need to be in memory at the same time.

segment location record A data structure that
provides information about the location of a
fragment in the resource fork of a file on disk.
Defined by the SegmentedFragment data type.

Segment Manager The part of the Macintosh
Operating System that loads and unloads the
code segments of a 680x0 application into and
out of memory.

selector-based trap A system software routine
that is called by passing a selector code to a
single trap macro.

shared library A fragment that exports
functions and global variables to other fragments.
A shared library is used to resolve imports
during linking and also during the loading and
preparation of some other fragment. A shared
library can be stored in a file of type 'shlb'. See
also import library.

smearing See byte smearing.

soft import An imported symbol whose corre-
sponding code or data might not be available in
any import library on the host machine and which
is therefore undefined at run time. Compare hard
import and import.

SP See stack pointer.

split trap A system software routine that is
implemented as 680x0 code in ROM and as
PowerPC code in an import library. Because the
PowerPC code is contained directly in the import
library, you cannot patch the PowerPC portion of
a split trap. Compare fat trap.

stack An area of memory in the application
partition that is used for temporary storage of
data during the operation of an application or
other software.

stack-based routine A routine that receives its
parameters and returns its results, if any, on the
stack. See also register-based routine.

stack frame The area of the stack used by a
routine for its parameters, return address, local
variables, and temporary storage.

stack pointer (SP) A pointer to the top of the
stack. See also frame pointer.

stale instruction An instruction in the micro-
processor’s instruction cache whose corre-
sponding values in RAM have changed. You
might need to flush the instruction cache to avoid
using stale instructions.

Standard Apple Numerics Environment (SANE)
The floating-point environment on 680x0-based
Macintosh computers and on Apple II computers.
This environment provides floating-point data
types and arithmetic operations, plus some
advanced numerical functions (such as logarith-
mic and trigonometric functions). See also
PowerPC Numerics.

static data The variables and other data that
persist between calls to a particular function
or fragment.

stub definition function Code that dispatches
to a definition function contained elsewhere. See
also definition function.

stub definition resource An executable
resource that contains a stub definition function.
See also definition resource.

subroutine linkage The mechanism by which
one routine calls another, possibly passing
arguments and receiving a function result.

switch See mode switch.

switch frame A stack frame, created by the
Mixed Mode Manager during a mode switch,
that contains information about the routine to be
executed, the state of various registers, and the
address of the previous frame.

symbol A name for a discrete element of code
or data in a fragment.

G L O S S A R Y

GL-10

system extension A file of type 'INIT' that
contains executable code. System extensions are
loaded into memory at system startup time.

system global variables A collection of global
variables stored in the system partition.

system heap An area of memory in the
system partition reserved for use by the
Operating System.

system partition A partition of memory
reserved for use by the Operating System.

table of contents (TOC) An area of static data
in a fragment that contains a pointer to each
routine or data item that is imported from some
other fragment, as well as pointers to the
fragment’s own static data.

Table of Contents Register (RTOC) A
processor register that points to the table of
contents of the fragment containing the code
currently being executed. On the PowerPC
processor, the general-purpose register 2 is
dedicated to serve as the RTOC.

tail patch A patch that invokes the next patch
in the patch daisy chain as a subroutine,
guaranteeing that the tail patch regains control
after the execution of all subsequent patches.
Compare head patch.

temporary memory Memory allocated outside
an application partition that may be available for
occasional short-term use.

termination routine A function contained in a
fragment that is executed just before the
fragment is unloaded. See also initialization
routine.

TOC See table of contents.

tool See application extension.

transition vector An area of static data in a
fragment that describes the entry point and TOC
address of a routine. See also procedure pointer.

trap Any of a large set of Macintosh system
software routines accessed via A-line instructions.
See also split trap.

trap dispatcher The exception handler that
deals with the occurrence of A-line instructions,
providing the subroutine linkage between the
A-line instruction and Macintosh system code.

trap dispatch table A table of entry points to
Macintosh system routines that are invoked with
A-line instructions.

Trap Manager The part of the Macintosh
Operating System that provides the subroutine
linkage to most Macintosh system soft-
ware routines.

trap patch See patch.

universal interface files A set of interface files
that you can use with both 680x0 compilers and
PowerPC compilers.

universal procedure pointer A 680x0
procedure pointer or the address of a
routine descriptor.

VBL See vertical retrace interrupt.

VBL task A task executed during a vertical
retrace interrupt.

vector See transition vector.

vertical blanking interrupt (VBL) See vertical
retrace interrupt.

vertical retrace interrupt An interrupt
generated by the video circuitry each time the
electron beam of a monitor’s display tube returns
from the lower-right corner of the screen to the
upper-left corner.

virtual memory Addressable memory beyond
the limits of the available physical RAM. The
Operating System extends the logical address
space by allowing unused code and data to be
stored on a secondary storage device instead of
in physical RAM.

Virtual Memory Manager The part of the
Operating System that provides virtual memory.

volatile register A register whose contents
need not be preserved across subroutine calls.
See also nonvolatile register.

weak import See soft import.

XCOFF See Extended Common Object File
Format.

IN-1

Index

Numerals

32-bit clean 1-4
680x0 applications 1-6 to 1-12

porting to PowerPC 1-15 to 1-19, 1-31 to 1-34, 1-57 to
1-65, 1-68 to 1-72, 2-21 to 2-26, 3-12 to 3-13, 4-6 to
4-9

structure of 1-32
680x0 compatibility issues. See 68LC040 Emulator
680x0 context blocks 1-8, 1-59
680x0 registers. See also A0 register; A5 register;

A6 register; A7 register
unsupported results 1-10

680x0 run-time environment 1-57 to 1-59
data alignment 1-63 to 1-65

68851 Paged Memory Management Unit 1-9
68881 floating-point unit 1-9
68882 floating-point unit 1-9
68LC040 Emulator 1-3, 1-6 to 1-12. See also Mixed

Mode Manager
address error exceptions 1-10
bus error exceptions 1-11
byte smearing 1-12
dynamic bus sizing 1-12
floating-point instructions 1-9
instruction cache 1-10
instruction timings 1-9
NOP instruction 1-12
PMMU 1-9
reserved fields 1-10
unavailable instructions 1-9
undefined results 1-10
virtual memory 1-9

A

A0 register, and the Vertical Retrace Manager 1-62
A5 register, setting and restoring 1-60 to 1-63
A5 world 1-57 to 1-63

and table of contents 1-28
A6 register 1-42
A7 register 1-42
accelerated resources 1-23, 1-34 to 1-40

calling at interrupt time 2-26
data section in 1-38
limitations on 1-38 to 1-40

and main symbols 1-38
and termination routines 1-38
using global data in 1-39 to 1-40

action procedures. See control action procedures
address error exceptions, emulator compatibility

issues 1-10
alert boxes, displayed by PowerPC applications 1-34
alias resources 3-31
alignment. See data alignment
A-line instructions 1-8
'alis' resource type 3-31
ANSI-compliant source code ix, 1-65
APDA xv
AppleShare servers 1-55
'APPL' file type 1-21
application extensions. See also fragments

defined 1-21
application global variables 1-58
application parameters 1-58
application partitions, automatic resizing of 1-55
applications 1-21. See also fragments

file type 1-21
length of fragment 3-31
location of fragment 3-31
specifying instruction set architecture 3-30
specifying library directory 3-31
specifying stack size 1-60, 3-31

ApplLimit global variable 1-60
A-traps. See A-line instructions

B

backing-store file 1-53
backing volume. See paging devices
BCLR instruction 1-12
binding 1-25, 1-28
bit numbering conventions xiii
block headers 1-69
BlockMove procedure 1-70
BSET instruction 1-12
BuildFatRoutineDescriptor macro 2-24
BuildRoutineDescriptor macro 2-23 to 2-24
bus error exceptions, emulator compatibility

issues 1-11
bus sizing. See dynamic bus sizing
byte smearing, emulator compatibility issues 1-12

I N D E X

IN-2

C

CAAR. See Cache Address Register
cache, emulator compatibility issues 1-10
Cache Address Register (CAAR), emulator

compatibility issues 1-10
Cache Control Register (CACR), emulator

compatibility issues 1-10
CACR. See Cache Control Register
calling conventions 1-41 to 1-47. See also procedure

information
C routines 1-43, 2-30
Operating System routines 1-43
Pascal routines 1-43, 2-30
PowerPC 1-43 to 1-47
register-based routines 2-30
selector-based C routines 2-30
selector-based Pascal routines 2-30
680x0 1-42 to 1-43
special cases. See special case routines
specifying 2-30 to 2-32
THINK C routines 2-30

CALLM instruction 1-9
CallOSTrapUniversalProc function 1-67, 2-42 to 2-43
CallUniversalProc function 1-37, 1-67, 2-42
CCR. See Condition Code Register
'CDEF' resources 1-36
'cfrg' resource type 1-31 to 1-34, 3-12 to 3-13, 3-28 to

3-31
CloseConnection function 1-41, 3-23 to 3-24
closing resource forks 1-70
code, self-modifying 1-53
code fragment information records 3-29 to 3-31
Code Fragment Loader 1-22
Code Fragment Manager 1-22, 3-3 to 3-35

data structures 3-15 to 3-18
reading code fragment resources 3-13
resources 3-28 to 3-31
routines 3-18 to 3-26

code fragment resources 1-31 to 1-34, 3-12 to 3-13, 3-28
to 3-31

code fragments. See fragments
code patches. See patches
code resources. See executable resources
code sections 1-23
code types. See instruction set architectures
compact discs 1-55
compatibility issues. See 68LC040 Emulator
compile-time libraries. See definition versions
completion routines 1-18
Condition Code Register (CCR)

during mode switches 2-14
specifying in procedure information 2-20

Condition Register (CR) 1-45, 1-46
connection IDs 3-5

connections 3-5
containers

defined 1-21, 3-4
specifying location of 3-31

context blocks. See 680x0 context blocks
contexts 1-51
control action procedures 1-16 to 1-18
control definition functions 1-16, 1-36
control panel, Memory 1-68
cooperative multitasking environment 1-4
coprocessors 1-9
counting symbols 3-14, 3-25 to 3-26
CountSymbols function 3-14, 3-25 to 3-26
CR. See Condition Register
cross-mode call. See explicit cross-mode calls; implicit

cross-mode calls

D

data, exchanging between PowerPC and 680x0
environments 1-64 to 1-65

data, global. See global data
data alignment 1-63 to 1-65
data forks 1-21, 1-30, 1-31 to 1-34
data instantiation

global 1-51
per-context 1-51
per-load 1-52

data sections
and accelerated resources 1-38
defined 1-23

Debugger routine, calling within an exception
handler 4-9

DebugStr routine, calling within an exception
handler 4-9

default stack size 1-60, 3-31
definition procedures. See control definition functions;

list definition procedures; menu definition
procedures; window definition functions

definition versions 3-8, 3-30
detaching resources 1-70
DetachResource procedure 1-70
device drivers, and the 68LC040 Emulator 1-11 to 1-12
DiskFragment data type 3-17
disk location records 3-17 to 3-18
DISPATCHED_STACK_ROUTINE_PARAMETER macro 2-50
DISPATCHED_STACK_ROUTINE_SELECTOR_SIZE

macro 2-50
DisposeHandle procedure 1-69
DisposePtr procedure 1-70
DisposeRoutineDescriptor function 1-19, 2-21, 2-41
disposing of memory blocks 1-69
disposing of pictures 1-69

I N D E X

IN-3

draw hook routines, specifying calling conventions
of 2-32

drop-ins. See application extensions
dynamically linked libraries. See import libraries
dynamic bus sizing, emulator compatibility issues 1-12

E

emulator. See 68LC040 Emulator
epilog code 1-46
event filter functions 1-18
exception codes. See exceptions, types of
exception contexts 4-4
exception frames, created by 68LC040 Emulator 1-11
exception handlers

defined 4-3
installing 1-57, 4-6 to 4-7
limitations on 4-9
and the Red Zone 1-47
removing 4-7
writing 4-7 to 4-9

ExceptionInformation data type 4-7, 4-16
exception information records 4-7, 4-16
Exception Manager 1-47, 4-3 to 4-22

application-defined routines in 4-17 to 4-18
constants in 4-9 to 4-11
data structures in 4-12 to 4-16
routines in 4-17

exceptions
defined 4-3
680x0 bus error 1-11
types of 4-5 to 4-6, 4-9 to 4-11

exchanging data between PowerPC and 680x0
environments 1-64 to 1-65

executable resources 1-34 to 1-41. See also accelerated
resources; private resources

ExitToShell procedure 2-41
explicit cross-mode calls 2-8
exported symbols. See exports
exports 1-23, 3-4

getting information about 3-14
Extended Common Object File Format (XCOFF) 1-22,

1-30
Extensions folder 3-6, 3-7
extensions. See application extensions; system

extensions
external code 2-4 to 2-5

F

fake definition resources. See stub definition resources

fake handles 1-70
fake pointers 1-70
fat applications 1-33 to 1-34
fat patches 1-66 to 1-68, 1-71
fat resources 1-38, 1-71, 2-25
fat routine descriptors 2-24, 2-25
file and directory registry 3-6 to 3-7
file forks. See data forks; resource forks
file mapping 1-53 to 1-55
file types
'APPL' 1-21
'shlb' 1-21, 3-6, 3-10

finding symbols 1-38, 3-14, 3-24 to 3-26
FindSymbol function 1-38, 1-41, 3-24 to 3-25
F-line instructions 1-8
floating-point data types 1-65
floating-point exceptions, handling 4-3
floating-point information records 4-14
floating-point instructions, emulator compatibility

issues 1-9
floating-point parameters 1-72
floating-point registers 1-43, 1-47 to 1-50, 1-72, 4-4, 4-15
Floating-Point Status and Control Register

(FPSCR) 4-14 to 4-15
floppy disks 1-55
flushing caches 1-10, 1-70
forks. See data forks; resource forks
FP. See frame pointer
FPSCR. See Floating-Point Status and Control Register
FPUInformation data type 4-14
fragment initialization blocks 3-15 to 3-16
fragment location records 3-16 to 3-17
FragmentLocator data type 3-16
fragments 1-20 to 1-41, 3-4 to 3-5

defined 1-5, 1-21, 3-4
finding symbols in 3-24 to 3-26
kinds of 1-21
loading 3-10 to 3-12, 3-19 to 3-22
special routines in 1-29 to 1-30, 3-26 to 3-28
specifying names of 3-31
specifying size of 3-31
storing 1-30 to 1-34
structure of 1-22 to 1-23
unloading 3-23 to 3-24

frame pointer 1-42
frames. See stack frames; switch frames
free blocks 1-70
function prototypes 1-72, 2-30

G

general-purpose registers 1-8, 1-26, 1-41, 1-43, 1-45,
1-47 to 1-50, 1-72, 4-4, 4-8, 4-12 to 4-14

I N D E X

IN-4

Gestalt function 1-25, 1-57
Get1Resource function 3-21
GetApplLimit function 1-60, 1-70, 3-31
GetCurrentISA function 2-44
GetDiskFragment function 3-11, 3-19 to 3-21
GetIndSymbol function 3-14, 3-26
GetMemFragment function 3-11, 3-21 to 3-22
GetNextEvent filter procedures, specifying calling

conventions of 2-32
GetPicture function 1-69
GetSharedLibrary function 3-10, 3-22 to 3-23
global data, in accelerated resources 1-39 to 1-40
global instantiation 1-51
global variables. See application global variables;

QuickDraw global variables; system global
variables

grow-zone functions 1-18
specifying procedure information for 2-17 to 2-18

H

handles, fake 1-70
header files. See universal interface files
head patches 1-68
hit test hook routines, specifying calling conventions

of 2-32
hybrid environment. See mixed environment
HyperCard extensions 1-36

I

implementation versions 3-8, 3-30
implicit cross-mode calls 2-8
imported symbols. See imports
import libraries 1-50 to 1-52. See also fragments

advantages of 1-51
checking versions 3-7 to 3-10
data instantiation 1-51 to 1-52
defined 1-21
definition version 3-8
file and directory registry 3-6 to 3-7
file type 1-21, 3-6, 3-10
implementation version 3-8
length of fragment 3-31
load directories 3-7
location of fragment 3-31
ROM registry 3-6
search order 3-5 to 3-7
specifying definition version 3-30
specifying implementation version 3-30
specifying instruction set architecture 3-30

specifying update levels 3-30
imports 1-21, 3-4. See also soft imports
InitBlock data type 3-15
InitGraf procedure 1-59
initialization blocks. See fragment initialization blocks
initialization routines 3-15 to 3-18, 3-27

defined 1-30
in-place data instantiation 1-38
input/output, accessing memory-mapped

locations 1-11 to 1-12
Inside Macintosh

bit numbering conventions xii to xiii
chapter format xi
format conventions xii
format of parameter blocks xiv

InstallExceptionHandler function 4-17
instantiation. See global instantiation; per-context

instantiation; per-load instantiation
instruction cache 1-10, 1-70
instruction set architectures

constants for 2-35 to 2-36
defined 1-13
determining 2-44
specifying for an application 3-30
specifying for an import library 3-30

instruction timings 1-9
interface files. See universal interface files
interrupts. See exceptions
interrupt time

calling accelerated resources 2-26
calling Memory Manager 1-70

I/O. See input/output

J

jump tables 1-58

K

KillPicture procedure 1-69

L

'LDEF' resources 1-36
leaf procedures 1-46
libraries. See import libraries
library directories 3-6, 3-31
line-start recalculation routines, specifying calling

conventions of 2-32

I N D E X

IN-5

linkage area 1-44
Link Register 2-11
list definition procedures 1-35 to 1-36
LMGetCurDirStore function 1-57
load directories 3-7
loading code fragments 3-10 to 3-12, 3-19 to 3-23
location records. See fragment location records
low-memory global variables. See system global

variables
LR. See Link Register

M

MachineInformation data type 4-7, 4-12
machine information records 4-7, 4-12
Macintosh Programmer’s Workshop xiv, 1-32, 1-38,

1-57, 1-65, 2-26, 2-30
main routines 3-27

and accelerated resources 1-38
defined 1-30

main symbols 3-19, 3-21, 3-22
and accelerated resources 1-38
defined 1-30

MakePEF tool 1-26, 1-38
'MDEF' resources 1-36
MemFragment data type 3-17
memory, organization of 1-52 to 1-65
memory blocks, disposing of 1-69
Memory control panel 1-68
MemoryExceptionInformation data type 4-15
memory exception records 4-15
memory location records 3-17
Memory Manager 1-5, 1-68 to 1-70

disposing of blocks 1-69
at interrupt time 1-70
private data structures 1-69

memory operations, types of 4-11
memory reference codes 4-11
menu bar hook routines, specifying calling

conventions of 2-32
menu definition procedures 1-36
mini-A5 world 1-60
mixed environment 1-3, 1-4
Mixed Mode Manager 1-4, 1-13 to 1-19, 2-3 to 2-50. See

also mixed environment; mode switches; routine
descriptors; 68LC040 Emulator

constants in 2-27 to 2-36
data structures in 2-36 to 2-38
defined 1-13, 2-3
introduced 2-4
limitations of 2-21
routines in 2-38 to 2-44

mode switches 2-7 to 2-14

defined 1-13
overhead 1-66
in patches 1-66

MOVE instruction 1-12
MPW. See Macintosh Programmer’s Workshop

N

nanokernel 1-4
NewControlActionProc function 1-18
NewFatRoutineDescriptor function 2-21, 2-40 to 2-41
NewPtr function 1-67
NewRoutineDescriptor function 2-15, 2-21, 2-39 to

2-40
NOP instruction, emulator compatibility issues 1-12
NSetTrapAddress procedure 1-67
null events 1-71 to 1-72

O

opcodes. See operation codes
operation codes 1-8

P

Paged Memory Management Unit, emulator
compatibility issues 1-9

paging devices 1-55
parameter area 1-44
parameter blocks, format of xiv
parameter lists, variable 1-72
parameter passing 1-47 to 1-50
patches 1-18, 1-66 to 1-68

fat 1-66 to 1-68
head 1-68
tail 1-68

patching, selector-based traps 1-68
PC. See program counter
PEF. See Preferred Executable Format
per-context instantiation 1-51
performance 1-70 to 1-73

avoiding mode switches 1-71 to 1-72
passing parameters 1-72 to 1-73
using fat resources 1-71

per-load instantiation 1-52
pictures, disposing of 1-69
PMMU. See Paged Memory Management Unit
pointer-based function calls 1-29
pointers, fake 1-70

I N D E X

IN-6

porting 680x0 applications to PowerPC. See 680x0
applications, porting to PowerPC

PowerPC. See PowerPC microprocessor
PowerPC applications, structure of 1-31 to 1-32
PowerPC microprocessor ix, 1-4

floating-point registers 1-43, 1-47 to 1-50, 1-72, 4-4,
4-15

general-purpose registers 1-8, 1-26, 1-41, 1-43, 1-45,
1-47 to 1-50, 1-72, 4-4, 4-8, 4-12 to 4-14

special-purpose registers 1-41, 1-44 to 1-46, 4-4, 4-8,
4-12

PowerPC run-time environment 1-19 to 1-65
application partitions 1-57 to 1-63
data alignment 1-63 to 1-65
organization of memory in 1-52 to 1-65
system partition 1-56 to 1-57

pragma statements 1-64
Preferred Executable Format (PEF) 1-22, 1-30
prepare 1-22
private resources 1-36, 1-40 to 1-41
procedure information

constants for 2-27 to 2-33
defined 1-16, 2-15
number of specifiable parameters 2-17, 2-20
specifying 2-14 to 2-21

procedure pointers 2-5 to 2-7
Process Manager, reading code fragment

resources 3-12
ProcInfoType. See procedure information
ProcPtr. See procedure pointers
program counter 1-8, 1-11, 4-8, 4-12
prolog code 1-45
protocol handlers, specifying calling conventions

of 2-32
prototypes. See function prototypes

Q

QDGlobals data type 1-59
QuickDraw global variables 1-58 to 1-60

R

Red Zone 1-46 to 1-47
reentrancy, in exception handlers 4-9
REGISTER_RESULT_LOCATION macro 2-18, 2-50
REGISTER_ROUTINE_PARAMETER macro 2-18, 2-50
RegisterInformation data type 4-8, 4-12 to 4-14
register information records 4-12 to 4-14
registers. See PowerPC microprocessor; 680x0 registers
ReleaseResource procedure 1-69

resource-based code. See also fat resources
executing 2-24 to 2-26

resource forks 1-31 to 1-34
closing 1-70

resources
accelerated. See accelerated resources
detaching 1-70
fat 1-71
private. See private resources
stub. See stub definition resources

resource types
'alis' 3-31
'CDEF' 1-36
'cfrg' 1-31 to 1-34, 3-12 to 3-13, 3-28 to 3-31
'LDEF' 1-36
'MDEF' 1-36
'WDEF' 1-36
'XCMD' 1-36

RESULT_SIZE macro 1-16, 2-16, 2-50
Rez 1-32, 1-38, 2-26, 3-12, 3-13, 3-28, 3-30, 3-31
ROM registry 3-6
RoutineDescriptor data type 2-37 to 2-38
routine descriptor flags 2-27
routine descriptors 1-15 to 1-19, 2-6 to 2-7, 2-37 to 2-38.

See also universal procedure pointers
creating 2-39 to 2-41
defined 1-15, 2-6
disposing of 1-19, 2-41
executing code with 2-42 to 2-43
fat 2-24, 2-25
global 2-21
local 2-21 to 2-22
static 2-22 to 2-24

RoutineRecord data type 2-36
routine records 1-15 to 1-16, 2-36 to 2-37
RTE instruction 1-11
RTM instruction 1-9
RTOC. See Table of Contents Register
run-time environment, defined 1-20. See also PowerPC

run-time environment; 680x0 run-time
environment

run-time libraries. See implementation versions

S

SANE. See Standard Apple Numerics Environment
saved registers area 1-45
sections 1-22. See also code sections; data sections
SegmentedFragment data type 3-18
segment location records 3-18
Segment Manager 1-32
selector-based traps 1-68
self-modifying code 1-53

I N D E X

IN-7

SetA5 function 1-62 to 1-63
SetApplLimit procedure 1-60, 1-69, 1-70, 3-31
SetCurrentA5 function 1-63
SetGrowZone procedure 1-69
SetOSTrapAddress procedure 1-67
SetToolTrapAddress procedure 1-67
SetTrapAddress procedure 1-67
shared libraries. See import libraries
'shlb' file type 1-21, 3-6, 3-10
68881 floating-point unit 1-9
68882 floating-point unit 1-9
68851 Paged Memory Management Unit 1-9
680x0 registers. See also A0 register; A5 register;

A6 register; A7 register
unsupported results 1-10

SIZE_CODE macro 1-16, 2-50
smearing. See byte smearing
socket listeners, specifying calling conventions of 2-32
soft imports 1-25 to 1-26
SP. See stack pointer
SPECIAL_CASE_PROCINFO macro 2-50
special case routines 2-30 to 2-32
special-purpose registers 1-41, 1-44 to 1-46, 4-4, 4-8,

4-12
Special Status Word (SSW) 1-11
split traps 1-68
SSW. See Special Status Word
stack, specifying minimum size of 1-60, 3-31
stack frames 1-41, 1-42 to 1-47. See also switch frames

parameter area 1-44
stack pointer 1-8, 1-42, 2-10
STACK_ROUTINE_PARAMETER macro 1-16, 2-50
stale instructions 1-10
Standard Apple Numerics Environment (SANE) 1-9
stub definition resources 1-35
switches. See mode switches
switch frames

PowerPC-to-680x0 2-13 to 2-14
680x0-to-PowerPC 2-10 to 2-12

symbols 3-4
counting 3-14, 3-25 to 3-26
finding 1-38, 3-14, 3-24 to 3-26

System 7.1 1-4
system extensions, defined 1-21
system global variables 1-56 to 1-57, 1-69
system partition 1-56 to 1-57
system software

patching 1-66 to 1-68
for PowerPC processor-based Macintosh

computers 1-4 to 1-6

T

table of contents 1-26 to 1-29
defined 1-26
maximum size of 1-29

Table of Contents Register (RTOC) 1-26, 1-27, 1-29,
1-45, 1-46, 2-11

tail patches 1-68
temporary memory 1-55
termination routines 3-28

and accelerated resources 1-38
defined 1-30

text display routines, specifying calling conventions
of 2-32

text width hook routines, specifying calling
conventions of 2-31

THINK C calling conventions 2-30
32-bit clean 1-4
Time Manager tasks 1-18, 1-60
TOC. See table of contents
tools. See application extensions
TrackControl procedure 1-17, 2-21
transition vectors 1-26 to 1-27

defined 1-26, 2-5
and exception handlers 4-17

trap patches. See patches
traps

selector-based 1-68
split 1-68

U

universal interface files 1-18 to 1-19, 1-57, 1-65, 2-6 to
2-7, 2-15, 2-17

universal procedure pointers 1-17 to 1-19, 2-6 to 2-7,
2-37. See also routine descriptors

and accelerated resources 1-37, 2-24 to 2-26
defined 2-6
executing code with 2-42 to 2-43
and fat patches 1-66
and universal interface files 2-15
used in stub definition functions 1-36
using 2-21 to 2-22

unloading code fragments 3-23 to 3-24
UnloadSeg procedure 1-6
update levels, specifying for an import library 3-30
USESROUTINEDESCRIPTORS compiler variable 2-14,

2-39

I N D E X

IN-8

V

variable parameter lists 1-72
VBL tasks 1-18, 1-60 to 1-63
vectors. See transition vectors
versions

of import libraries 3-7 to 3-10
of routine descriptor 2-38

Vertical Retrace Manager 1-61 to 1-63
virtual memory 1-53 to 1-55

emulator support for 1-9
Virtual Memory Manager 1-4, 1-53

W

WaitNextEvent function 1-71
'WDEF' resources 1-36
weak imports. See soft imports
width hook routines, specifying calling conventions

of 2-31
window definition functions 1-36
word sizes xiii, 1-63

X

'XCMD' resources 1-36
XCOFF. See Extended Common Object File Format

Z

zone headers 1-69

T H E A P P L E P U B L I S H I N G S Y S T E M

This Apple manual was written, edited,
and composed on a desktop publishing
system using Apple Macintosh
computers and FrameMaker software.
Proof pages were created on an Apple
LaserWriter IINTX printer. Final page
negatives were output directly from text
files on an Optrotech SPrint 220
imagesetter. Line art was created using
Adobe™ Illustrator. PostScript™, the
page-description language for the
LaserWriter, was developed by Adobe
Systems Incorporated.

Text type is Palatino® and display type is
Helvetica®. Bullets are ITC Zapf
Dingbats®. Some elements, such as
program listings, are set in Apple Courier.

WRITER

Tim Monroe

DEVELOPMENTAL EDITOR

Jeanne Woodward

ILLUSTRATOR

Shawn Morningstar

ART DIRECTOR

Betty Gee

PROJECT LEADER

Patricia Eastman

COVER DESIGNER

Barbara Smyth

Special thanks to Richard Clark,
Erik Eidt, Dave Falkenburg, Bruce Jones,
Alan Lillich, Mikey McDougall,
Dave Radcliffe, Brian Topping, and
Eric Traut.

Acknowledgments to Eric Anderson,
Scott Boyd, Joanna Bujes, Jeff Crawford,
Gary Davidian, Peri Frantz, Miki Lee,
Wayne Meretsky, Brian Strull,
Beverly Zegarski, and the entire
Inside Macintosh team.

