

E D I T O R I A L S T A F F

Editor-in-Cheek Caroline Rose

Technical Buckstopper Dave Johnson

Our Boss Greg Joswiak

His Boss Dennis Matthews

Review Board Pete (“Luke”) Alexander,
C. K. Haun, Jim Reekes, Bryan K. (“Beaker”)
Ressler, Larry Rosenstein, Andy Shebanow,
Gregg Williams

Managing Editor Cynthia Jasper

Contributing Editors Lorraine Anderson, Philip
Borenstein, Robin Cowan, Matt Deatherage,
Toni Haskell, Judy Helfand, Rebecca Pepper

Indexer Marc Savage

Special thanks to Smart Friend Dean Yu for
his help during Dave Johnson’s sabbatical.

A R T & P R O D U C T I O N

Production/Art Director Diane Wilcox

Technical Illustration Dave Olmos, John Ryan

Formatting Forbes Mill Press

Printing Wolfer Printing Company, Inc.

Film Preparation Aptos Post, Inc.

Production PrePress Assembly

Photography Sharon Beals

Online Production Cassi Carpenter

develop, The Apple Technical Journal, a
quarterly publication of Apple Computer’s
Developer Press group, is published in
March, June, September, and December.

The cover. Mark Jenkins of Rucker
Huggins Design created this cover using
Adobe Photoshop, Adobe Illustrator,
Fractal Design Painter, and a Macintosh
Quadra 950. He looks forward to making
the leap himself to Macintosh on PowerPC.

This issue’s CD. The develop Bookmark
CD (or the Developer CD Series disc,
Reference Library edition) for December
1993 or later contains this issue and all
back issues of develop along with the code
that the articles describe. The develop
issues and code are also available on
AppleLink and via anonymous ftp on
ftp.apple.com. Note that some software
and documentation referred to as being on
this issue’s CD may be located on the Tool
Chest edition rather than the Reference
Library edition of the Developer CD Series
disc.

CONTENTS December 1993

1
© 1993 Apple Computer, Inc. All rights reserved.

Apple, the Apple logo, APDA, AppleLink, AppleShare, AppleTalk, ImageWriter, LaserWriter, MacApp, Macintosh,
MPW, MultiFinder, SANE, and StyleWriter are trademarks of Apple Computer, Inc., registered in the U.S. and other
countries. AppleMail, ColorSync, develop, DigiSign, Finder, GrayShare, Macintosh Quadra, Newton, Performa,
PowerBook, PowerShare, PowerTalk, QuickDraw, QuickTime, Sound Manager, System 7, and TrueType are
trademarks of Apple Computer, Inc. MacDraw and MacWrite are registered trademarks of Claris Corporation. Adobe
and PostScript are trademarks of Adobe Systems Incorporated, which may be registered in certain jurisdictions. All
other trademarks are the property of their respective owners.

Riding into the future with PowerPC. 2

Differences of opinion on our new CD and its packaging, plus a dogcow query. 3

Making the Leap to PowerPC by Dave Radcliffe An overview of the
PowerPC platform, and coding strategies for both compatibility and speed. 5

Building PowerTalk-Savvy Applications by Steve Falkenburg How to
incorporate direct mailing and digital signatures into your application. 39

Drag and Drop From the Finder by Dave Evans and Greg Robbins
Taking advantage of the new drag and drop services is easy, and your users will
love it. 66

Color Matching Made Easy With QuickDraw GX by Daniel Lipton
QuickDraw GX integrates ColorSync to make color matching nearly effortless. 81

International Number Formatting by Norbert Lindenberg Some good
methods for handling the different number formats around the world. 97

Somewhere in QuickTime: What’s New With Sound Manager 3.0 by
Jim Reekes Changes (and bug fixes!) in the Sound Manager. Finally, you can
remove all that workaround code. 34

The Veteran Neophyte: Abracadabra by Dave Johnson Hunting for the
source of that old elusive magic, Dave stubs his toes on some obvious truths. 64

Print Hints: LaserWriter 8 for Fun and Profit by Matt Deatherage
How applications can take advantage of the new LaserWriter driver. 76

Graphical Truffles: Remedies for Common QuickDraw Problems by
John Wang Look here first for relief from common QuickDraw problems. 95

View From the Ledge by Tao Jones An office survival guide for the socially
and politically inept. 122

KON & BAL’s Puzzle Page: Sounds Like Trouble by Konstantin Othmer
and Bruce Leak A fresh-faced intern gives the hoary masters a run for their
money. 134

Macintosh Q & A Apple’s Developer Support Center answers your product
development questions — and as usual, we made up some funny ones. 124

138I N D E X

Q & A

C O L U M N S

A R T I C L E S

L E T T E R S

E D I T O R I A L

Dear Readers,

Nearly two years ago I was asked to join a team of Apple developer support people
who would meet monthly to discuss a forthcoming Macintosh model that would be
based on the new PowerPC (RISC) processor. Our goal was to ensure that
developers receive the support they need to get started on this new computer, due to
be introduced in 1994.

It seemed a bit premature to me back then, but the time went faster than anyone
would have imagined. Now I’m happy to finally have something to show for it in
develop: an article to help you make the transition to this new stage in the life of the
Macintosh. We hope to tear the engineers away from their programming long
enough to be able to have a steady stream of articles on this subject in future issues.

The PowerPC processor–based Macintosh will be formally introduced roughly a
decade after the introduction of the first Macintosh computer, which of course
makes me wax nostalgic about what I was doing then at Apple: furiously finishing up
Inside Macintosh on an Apple III, handing off chapters to Louella Pizzuti (later the
founder of develop) to format them on the Macintosh in MacWrite®. But most of all,
I remember looking forward to what I knew would be worldwide acceptance of — no,
excitement about! — our new computer.

The world is different now, as am I (we’ve both changed a lot in ten years), and I’m
shorter on starry-eyed wonder and exclamation points than I was back then. But to
quote an old TV personality (trivia question: who?): “I think you’re gonna like this
one.” Talk about time flying by, this thing is fast. And it’s still a Macintosh (which I’ll
always have a warm spot for in my heart no matter where I roam). It’s a horse of a
different color, but it’s still a horse: a sleek, beautiful racehorse that should make us
all winners. At least that’s what I’m betting.

Caroline Rose
Editor

d e v e l o p Issue 16

CAROLINE ROSE (AppleLink CROSE) got into
technical writing because of a Math degree she
didn’t know what to do with. It landed her a job
at Tymshare, where she wrote her first manual in
pencil on paper, from which someone typed it on
an IBM Selectric typewriter. But enough ancient
history. Caroline’s career at Apple began with
Inside Macintosh and almost ended when she left
to join NeXT, but she was smart enough to come

back after five years and become the editor of
develop. After putting each issue of develop to
bed, Caroline likes to take off to someplace
where she can forget about computers altogether.
After this issue, she’ll fulfill a dream she’s had
since the first time she looked at a globe as a
child: she’ll visit the Caroline islands. She’ll stay
with friends who live on a sailboat in primitive
style (except for their computers!).•

2

CAROLINE ROSE

NEW CD & PACKAGING: GOOD
I just received develop Issue 14 in the
mail (a little late, but worth the wait!).
As usual, the articles are enlightening
and entertaining. The Bookmark CD is
an excellent idea as well (although the
former student in me doesn’t like the
idea of missing out on system software).
I enjoyed opening up the journal to find
my CD in a case that could not be
broken, even by the worst of mailmen!
And, as always, the CD contains a great
wealth of information. I would even go
so far as to say I’d pay more than the
price of a yearly subscription with or
without the CD; it’s really worth it! So,
I’d like to congratulate you and
everyone else on the develop staff (as well
as all the contributors) for creating an
amazing journal for me (and I guess
other developers!) every three months.

Keep up the good work, as I look
forward to future issues. (I just renewed
my subscription.)

—David A. denBoer

Thanks for the good words about develop
and especially about its CD. We’ve received
a number of letters from developers who are
less than thrilled about our recent changes
(see below). It’s wonderful to hear from a
happy subscriber.

—Caroline Rose

NEW CD: BAD
I subscribed to develop after reading the
MacWeek article that pointed out what a
good deal it was, especially with respect
to the Developer CD Series. APDA told
me on the phone that my subscription
would start in a few weeks, and
promptly debited by VISA account.

After a few weeks had gone by, I phoned
ADPA to ask why I hadn’t received
anything. I was told that they had been
swamped with orders as a result of the
MacWeek article.

Now I find out that there’s been a
“change” to develop’s CD. What bothers
me is the apparent motivation behind all
this. You knew that you were swamped
with orders, which were generated by a
specific MacWeek article. What did this
article say? Simply that readers should
subscribe to develop to get the system
software. So what did you do? Take
away the software! Didn’t it occur to
anyone making this decision that loyal
customers might be angered?

I, for one, am not a happy camper.

—Ken Ribet

Regarding the CD change: We basically
took only Inside Macintosh and system
software off the CD. We have since restored
Inside Macintosh; that decision was made a
bit hastily. But I think the decision to
discontinue essentially giving away the
system software was a sound one. We’re
making every effort to give developers the
best support possible, but compromises are
sometimes necessary.

The decision not to supply the system
software on the CD accompanying develop
was made independently of the MacWeek
column and before it appeared. The timing
was unfortunate, but it’s not easy, or
particularly practical, to reverse company
decisions based on what MacWeek chooses to
publish. (I hope you don’t really think the
column motivated us to remove the software
from the CD!) We informed the MacWeek
columnist immediately of what was about to
happen, and he let his readers know. It did
occur to us that developers subscribing in

LETTERS December 1993

3
DO THE WRITE THING
We welcome timely letters to the editors,
especially from readers reacting to articles that
we publish in develop. Letters should be
addressed to Caroline Rose (or, if technical
develop-related questions, to Dave Johnson) at
Apple Computer, Inc., 20525 Mariani Avenue,
M/S 303-4DP, Cupertino, CA 95014 (AppleLink
CROSE or JOHNSON.DK). All letters should

include your name and company name as well
as your address and phone number. Letters may
be excerpted or edited for clarity (or to make
them say what we wish they did).•

LETTERS

d e v e l o p Issue 16

SUBSCRIPTION INFORMATION
Subscriptions to develop are available through
APDA (see inside back cover for APDA
information), or you can use the subscription
card in the back of this issue. Please address all
subscription-related inquiries to develop, Apple
Computer, Inc., P.O. Box 531, Mt. Morris, IL
61054 (or AppleLink DEV.SUBS).•

BACK ISSUES
For information about back issues of develop
and how to obtain them, see the last page of this
issue. Back issues are also on the develop
Bookmark CD, the Developer CD Series disc,
and the Developer Services bulletin board on
AppleLink.•

4

response to that column might be angry.
But most of them turned out to be happy to
receive develop and all it does have on its
CD for $30 a year. The majority of our
subscribers have been understanding about
the CD change, saying it always did seem
like too good a deal to be true.

I’m always sorry to hear from an unhappy
camper. But thanks for writing.

—Caroline Rose

NEW CD PACKAGING: SO-SO
Your new packaging for the Bookmark
CD sent with develop Issue 14 shows an
appreciated effort for environmentally
conscious packaging.

Unfortunately, this packaging is not
U.S. Postal Service–friendly. I was able
to flatten the CD enough so that it’s
working fine. Using a stiffer mailer and
including the words “DO NOT
BEND” clearly visible for the mail
carrier would help prevent the CD from
being damaged.

develop has been a great assistance to my
business. I look forward to each and
every issue.

Thank you for your assistance.

—Edward Salm

Sorry about your delivery problem. We’ve
had a couple of other complaints about this,
though not enough to justify the expense of
implementing a solution like the one you
suggest. We’ll keep your words (and the
unsuspecting mail carrier) in mind as we
continue searching for packaging options
that work without increasing the price of a
develop subscription.

—Diane Wilcox

WHITHER THE DOGCOW?
I can’t fight it anymore; I have to ask. In
the Letters column in develop Issue 10,
you say the story of the dogcow is
hidden in Tech Note #31 on the CD. I
found Tech Note #31; it was funny, but
contains no references to “dog” or
“cow” or “Moof!” What gives? I need to
know the story of the dogcow!!!!

—Gary Robinson

The Tech Note you saw is actually #31A,
“GestaltWaitNextEvent,” which indeed is
not on the subject of dogcattle. The original
Tech Note #31, “The Dogcow,” is no longer
available, but I can give you some clues on
where you might find a copy. It used to be
hidden in the Technical Notes Stack on the
early versions of develop’s CD (most
notably “Phil and Dave’s Excellent CD”),
although no one here seems to be exactly
certain when it stopped. It appeared on
paper only once, as part of the monthly
mailing to Apple Associates and Partners
back in April of 1989. Assuming you’re not
that far behind on reading your mail, you
may want to try trolling the net. Macintosh
programmers are an unusual breed, and
I’m sure you’ll find someone who has a copy.

Why the continued secrecy? The answer has
a little bit to do with history and a lot to do
with tradition, and may or may not have to
do with an exchange of spies during the
Cold War. But there’s good news: your letter
has inspired me to write up how the dogcow
furor and Tech Note originated — Apple
cultural minutiae that may be of interest to
other crazed Macintosh developers. The
editor threatens to publish it in a future
issue, assuming it passes by our censors.

—Mark (“The Red”) Harlan
Author, Tech Note #31

Apple will soon be introducing the first Macintosh CPU architecture
not based on a 68000-family microprocessor. The entirely new
architecture is built around a new RISC CPU — the PowerPC
microprocessor jointly designed by IBM, Motorola, and Apple. Truly
taking advantage of PowerPC technology will require an ongoing effort
by both Apple and developers. Apple is making the first leap to this new
platform; now it’s up to developers to make the next leap and bring the
performance made possible by PowerPC technology to their applications.

In 1984, Apple Computer offered a startling vision of the future of personal
computing by introducing the Macintosh, which radically changed the desktop. Now,
nearly ten years later, the computing world embraces graphical interfaces. Ten years
is a lifetime in computing terms; at that age, many computing architectures are
considered ancient. The Macintosh enters its second decade by looking to the future
while remembering its past — making the transition from the sturdy Motorola 68000
family to the sleek new PowerPC processor–based family without forsaking
developers and users and their investment in the 680x0 architecture.

The PowerPC microprocessor is the most significant change to date in the
Macintosh product line. This article introduces the new PowerPC architecture and
discusses the ramifications for existing applications, as well as opportunities for new
or revised applications to take full advantage of the power of the new chip. It
contrasts the new architecture with the old and explains how this new architecture
both acknowledges the past and prepares for the future.

COMPARING CISC AND RISC
Much has been written about the differences between a CISC (complex instruction
set computer) architecture, used in Motorola’s MC680x0 processors, and a RISC
(reduced instruction set computer) architecture, used in the PowerPC
microprocessor. The relative merits of the two architectures have also been widely

MAKING THE LEAP TO POWERPC December 1993

5
DAVE RADCLIFFE is a five-year veteran of
Apple’s Developer Technical Support group and
for the past year has been excited to be part of
the PowerPC project. When he’s not plumbing
the depths of MacsBug, Dave enjoys relaxing
with a mug of beer from one of the local
microbreweries, watching old movies at the
Stanford Theatre, or just being a couch potato in
front of one of his laser disc videos. For his

sabbatical, Dave is looking forward to a low-tech
adventure river rafting through the Grand
Canyon.•

DAVE RADCLIFFE

MAKING THE

LEAP TO

POWERPC

debated. A detailed discussion of CISC and RISC is beyond the scope of this article,
but some understanding of RISC principles is useful for understanding PowerPC
architecture.

Two logical considerations motivated CISC development. The first was a desire to
simplify assembly-language programming by enriching the functionality of the
instruction set. CISC architectures did this by providing a greater variety of
instructions, as well as a wide array of addressing modes, thereby reducing the
number of steps required to perform a particular operation. Second, as writing
compilers became easier, there was a desire to provide instructions more closely
related to operations performed by high-level languages. CISC architectures were
marvelously successful at satisfying this goal also.

In the early 1980s, hardware designers began to run into the limitations inherent in
CISC architectures, particularly in their ability to streamline the flow of instructions.
At the same time, the software world was deemphasizing assembly-language
programming in favor of high-level languages with sophisticated, optimizing
compilers. This allowed hardware designers to simplify their architecture and shift
much of the performance burden to compiler writers.

The classic equation for execution time is

where ET is the total execution time, N is the number of instructions executed, CPI is
the number of cycles per instruction, and CT is the cycle time. Both CISC and RISC
architectures benefit from reduced cycle time. Faster clock rates translate directly to
smaller cycle times, and hence shorter execution times. Where CISC and RISC
architectures differ is in their approach to N and CPI. CISC tries to shorten execution
times by minimizing N, while RISC tries to minimize CPI.

PIPELINING
The four typical stages in executing an instruction are fetch, decode, execute, and
write. In a simplistic architecture, these stages all happen in sequence, and the next
instruction can’t start until the previous instruction has finished, as shown in
Figure 1. Designers realized that this need not be the case and that each of these
stages can overlap. Once an instruction is fetched and passed to the decode stage,
the next instruction can be fetched without waiting for the first instruction to
complete. This technique, known as pipelining, is shown in Figure 2.

The example in Figure 2 executes the same two instructions, but in only nine cycles,
compared to 12 cycles in the nonpipelined case. There’s a curious thing about this
example, though: the second instruction takes eight cycles to complete when
pipelined, but only five when it’s not. This is because the various stages take different

d e v e l o p Issue 16

6

ET = � CPI * CT
N

i=1

MAKING THE LEAP TO POWERPC December 1993

7

Fetch

Decode

Execute

Write

Clock Cycles

First complete instruction�
(7 cycles)

Second complete instruction�
(5 cycles)

Two instructions�
(12 cycles)

Figure 1
Nonpipelined Stages of Execution

Fetch

Decode

Execute

Write

Clock Cycles

First complete instruction�
(7 cycles)

Second complete instruction�
(8 cycles)

Two instructions�
(9 cycles)

Pipeline stall
Pipeline bubble

Figure 2
Pipelined Stages of Execution

amounts of time to complete. The overall result is better, but unnecessary delays can
occur in instruction execution.

Variable numbers of cycles per stage is a characteristic of CISC architectures.
Complex instructions may occupy multiple words, requiring multiple cycles to fetch.
Multiple operands complicate the process of decoding. More complicated
instructions take longer to execute than simpler instructions. In Figure 2, the execute
stage of the second instruction is delayed two cycles while waiting for the first
instruction to execute. This is known as a pipeline stall. Similarly, the write stage sits
idle for one cycle between the first and second instructions while waiting for the
execute stage of the second instruction to complete. This is known as a pipeline
bubble. Both stalls and bubbles reduce the efficiency of the pipeline and increase the
overall number of cycles per instruction.

INCREASING PIPELINE EFFICIENCY
RISC architectures work very hard to eliminate inefficiencies in the instruction
pipeline and keep the pipeline jammed full. RISC architectures share most or all of
the following common features:

• Instructions are a uniform length. Variable-length instructions in
CISC architectures mean that time must be spent just figuring out
how long the instruction is and how many operands it uses. RISC
architectures don’t have that problem.

• Simplified instructions, instruction formats, and addressing modes
allow for fast instruction decoding and execution.

• Relatively large numbers of registers and large amounts of fast-
cache memory reduce cycles spent for access to slower, main
memory and allow frequently used variables to be kept loaded.

• Load/store architecture is used for access to memory. The only
memory-to-register and register-to-memory operations are load
and store instructions. All other operations are register only.
Register-to-memory and memory-to-memory operations in CISC
architectures require multiple cycles to complete.

• Instructions are simple. In an ideal RISC machine, each stage
requires one cycle to complete.

• For improved performance, instructions can be implemented
directly in hardware instead of being microprogrammed as in
CISC processors.

Figure 3 shows an example of executing instructions on a nonpipelined RISC
machine. When instructions are not pipelined, they complete serially, with two
instructions completing in eight cycles. The optimal case for pipelining instructions is
shown in Figure 4. Now you have the two instructions executing in just five cycles. If

d e v e l o p Issue 16

8

MAKING THE LEAP TO POWERPC December 1993

9

Fetch

Decode

Execute

Write

Clock Cycles

First complete instruction�
(4 cycles)

Second complete instruction�
(4 cycles)

Two instructions�
(8 cycles)

Figure 3
RISC Nonpipelined Stages of Execution

Fetch

Decode

Execute

Write

Clock Cycles

First complete instruction�
(4 cycles)

Second complete instruction�
(4 cycles)

Two instructions�
(5 cycles)

Figure 4
RISC Pipelined Stages of Execution

the pipeline is kept full like this, the number of cycles per instruction drops to just
one. This is the goal of most RISC architectures.

One cycle per instruction is the ideal case for this example, but in reality, stalls and
bubbles occur, even in the best architectures. This is where the compiler comes into
play. The compiler has detailed knowledge of how the program should work. It need
not perform operations in the order specified in the source code; it need only
guarantee that the right result is obtained. If you build into the compiler some
knowledge of how to make best use of the CPU, the compiler can make a huge
difference in program performance.

Consider the following two C instructions:

b = *a + 5;
d = *c + 10;

The variables a, b, c, and d are all long or pointer-to-long variables. The compiler
might generate the following assembly instructions on the PowerPC microprocessor:

lwz r5,0(r3) ; Load value pointed to by r3 into r5
addi r5,r5,0x0005 ; Add 5 to value in r5
lwz r6,0(r4) ; Load value pointed to by r4 into r6
addi r6,r6,0x000a ; Add 10 to value in r6

The lwz instruction (Load Word and Zero) loads a register from a source value. On a
PowerPC processor, words are 32-bit values; 16-bit values are half words. The addi
instruction (Add Immediate) adds the immediate value and stores the result.

Figure 5 shows what happens when these instructions execute. Both addi instructions
stall in the decode stage because they can’t enter the execute stage until the register is
available from the lwz instruction.

The compiler can prevent the stalls. Instead of following the flow of the original
source code, you can rearrange the instructions as follows:

lwz r5,0(r3) ; Load value pointed to by r3 into r5
lwz r6,0(r4) ; Load value pointed to by r4 into r6
addi r5,r5,0x0005 ; Add 5 to value in r5
addi r6,r6,0x000a ; Add 10 to value in r6

Now look at what happens to the instruction pipeline (Figure 6): there are no delays.
By moving the add instructions to later in the instruction stream, you allow the load
instructions they depend on to complete, so the add instructions can execute
immediately.

d e v e l o p Issue 16

10

MAKING THE LEAP TO POWERPC December 1993

11

Fetch

Decode

Execute

Write

Clock Cycles

lwz r5,0(r3)
addi r5,r5,0x0005
lwz r6,0(r4)
addi r6,r6,0x000a

Pipeline stall
Pipeline bubble

Figure 5
Stalled Pipelined Execution

Fetch

Decode

Execute

Write

Clock Cycles

lwz r5,0(r3)
lwz r6,0(r4)

addi r6,r6,0x000a
addi r5,r5,0x0005

Figure 6
No-Delay Pipelined Execution

BRANCHING
All pipelined architectures face the problem of branches. Any time a conditional
branch is encountered, the processor faces a dilemma because now two instruction
streams are possible. It can’t pipeline both possible paths. It can guess which path to
take, but if it guesses wrong, the pipeline is disrupted.

One common approach to this problem is a technique called delayed branching. In
delayed branching, the processor always executes the instruction immediately
following the branch instruction. While starting this instruction, the CPU can be
figuring out the destination of the branch instruction and so can keep the pipeline
flowing. Of course, it’s important that the instruction after the branch not affect the
branch. It’s up to the compiler to find an instruction unrelated to the branch
instruction to fill this delay slot. If it can’t fill the delay slot, the compiler can always
put in a no-op instruction, but this is inefficient. Some architectures allow the
instruction in the delay slot to be ignored if the branch is taken. This avoids the need
to fill the delay slot with a no-op instruction, but undermines the purpose of delayed
branching. PowerPC architecture takes a unique approach to the branching problem,
as discussed later in the section “Branch Processor.”

SUPERSCALAR DESIGN
Another technique RISC designers use to increase performance is superscalar or
multi-issue design. The simpler design of RISC architectures makes it possible to
build in multiple processing units; this is superscalar design. In the same way that the
compiler can juggle instructions to avoid resource constraints, the CPU can now
reduce bottlenecks and achieve higher performance by feeding instructions to
separate processing units operating in parallel. This allows average instruction cycle
times to drop below one cycle per instruction. PowerPC microprocessors use this
technique as discussed later in the section “Functional Units of the PowerPC
Microprocessor.”

RISC ADVANTAGES
One last point needs to be made before leaving a comparison of CISC and RISC.
Many of the techniques used by RISC designers can and are used by CISC designers.
Modern CISC chips such as the MC68040 and Intel 80486 make extensive use of
instruction pipelining, parallel integer and floating-point units, fast cache
architectures, and resource constraint reduction (such as delayed writes) to achieve
the performance they do. But the sheer complexity of the designs means they’re hard
to implement (and implement correctly), which often results in long development
cycles. The simplicity of RISC architecture helps avoid this problem.

Similarly, the compiler can aid CISC machine performance. But the complexity of
CISC design means it’s nearly impossible to determine instruction timing, so it’s
difficult for the compiler to choose the best instruction sequence. Instruction
scheduling is also possible but more difficult. The finer granularity of the RISC

d e v e l o p Issue 16

12

instruction set gives the compiler much more flexibility and control over the
resources provided by the CPU.

Simplified hardware and the influence of the compiler are really the ultimate
advantages of RISC.

POWERPC CPU ARCHITECTURE
PowerPC architecture is a modern 64-bit, RISC architecture adhering to all the
previously discussed design goals. It has 32 general-purpose and 32 floating-point
registers. All instructions have a uniform 32-bit length. The first PowerPC
microprocessor, the PowerPC 601, is a superscalar implementation of the 32-bit
subset of this architecture.

POWERPC VERSUS POWER
The PowerPC microprocessor is a single-chip design descended from an earlier,
multichip IBM RISC implementation known as POWER. It’s worth mentioning the
differences between the two architectures.

• Misaligned data access. Most RISC architectures require all data
access to be word (4-byte) aligned. POWER was ambiguous
regarding data alignment. PowerPC architecture explicitly allows
misaligned data access but with a possible performance penalty.
The advantage is that it allows use of data structures aligned for
680x0 architecture.

• Elimination of the MQ register. POWER has a special-purpose
multiply/quotient (MQ) register for extended-precision integer
arithmetic. But since there’s only one register, it becomes a
bottleneck that hinders superscalar implementations. The MQ
register, and all instructions that depend on it, were eliminated
from the PowerPC architecture.

• Addition of single-precision floating point. POWER supports only
double-precision floating point. PowerPC architecture supports
single precision as well, which may be more appropriate for some
applications. (There’s no hardware support for 80- or 96-bit
extended floating point, which 680x0 developers are familiar with.
The consequences of this for developers are discussed in “Native
PowerPC Numerics.”)

• 64-bit architecture. POWER is a 32-bit architecture. PowerPC
architecture is fully 64 bit; however, the first implementations
feature a 32-bit subset of the architecture. Code written for 32-bit
processors will be fully supported on 64-bit implementations
running in 32-bit mode.

MAKING THE LEAP TO POWERPC December 1993

13

d e v e l o p Issue 16

Thanks to Paul Finlayson and Stuart McDonald
for their review of “Native PowerPC Numerics.”•

14

Developers dependent on floating point who port to the
PowerPC platform will enjoy superior floating-point
performance. However, some special consideration is
needed, because the floating-point implementation on the
PowerPC processor differs from that of the 680x0
processors.

POWERPC ARCHITECTURE FEATURES
The PowerPC microprocessor floating point is an
IEEE 754–compliant single- and double-precision
implementation offering fast, pipelined, nondestructive
floating-point operations. These operations are add,
subtract, multiply, divide, compare, convert to int, and a
new class of multiply-add fused (MAF) instructions of the
form

frT ← (frA * frB) + frC

where fr is a floating-point register. In MAF operations, all
bits of the resultant multiply section are kept (106 bits in
double) and participate in the final rounding, producing
a more exact result. In other words, (A * B) + C is a
single operation with one rounding. The compilers on
the PowerPC platform use MAF instructions wherever
possible, unless expressly prohibited by the user.

The PowerPC microprocessor has a rich set of floating-
point register files: 32 floating-point double-precision data
registers and a combined status and control register
(unlike the MC6888x or MC68040).

C PROGRAMMER’S MODEL
The PowerPC microprocessor shared math library,
MathLib, complies with the emerging Floating-Point C
Extensions (FPCE X3J11.1/93-001) of the Numerical C
Extensions Group (NCEG) specification. FPCE extends C
to provide access to floating-point features generally and
IEEE 754/854 specifically. FPCE provides a superset of
math.h and sane.h functionality. The new required include
files are fp.h and fenv.h.

The FPCE fp.h file is a collection of mathematical
functions. It defines all math.h and nonenvironmental
sane.h functionality plus hyperbolic, inverse hyperbolic,
max, min, positive difference, error, and gamma
functions. Other functions round floating-point numbers to
integral values or integral format. An extensive array of
correctly rounded binary-to-decimal conversion functions
is provided.

The FPCE fenv.h file defines all the functions used to query
or modify the floating-point environment (exception flags
and rounding direction).

The include file math.h is kept for ANSI C compliance, but
developers are encouraged to use fp.h and fenv.h. The
sane.h include file won’t be supported. Be aware of
function name and prototype differences between SANE
and FPCE-NCEG interfaces. For example, the functions
copysign and scalb have reversed arguments in the new
fp.h, and log1 is now called log1p.

FP DATA TYPES
Table 1 lists the available native data types on the
PowerPC microprocessor. There’s no hardware or
compiler support for the 80- or 96-bit IEEE extended
values commonly used by Macintosh programmers.
Developers should use 64-bit double as their native data
type and use rescaling techniques within their algorithms
susceptible to numerical ill-conditioning. The 64-bit comp
type, a floating-point data type available on the 680x0-
based Macintosh, isn’t supported. Use the data type long
double judiciously and only when an algorithm requires
the extra precision. SANE data types, which include
extended and comp, are fully supported in emulation
mode on PowerPC processor–based Macintosh systems.

The transcendental long-double functions are not
supported for the first release of MathLib on PowerPC
processor–based Macintosh systems. A complete long-
double library is planned for a later release.

NATIVE POWERPC NUMERICS
BY ALI SAZEGARI

PowerPC architecture uses big-endian byte order, just like 680x0 and POWER. As
an added feature, it also supports a mode using little-endian byte ordering and
provides instructions to allow access to little-endian data from big-endian mode and
to big-endian data from little-endian mode.

FUNCTIONAL UNITS OF THE POWERPC MICROPROCESSOR
Figure 7 is a block diagram of the PowerPC 601 microprocessor, the first member of
the PowerPC processor family. This microprocessor is a superscalar PowerPC
implementation, with three separate execution units: the fixed-point and floating-
point units and the branch processor. The branch processor initiates instruction
execution by fetching instructions from the instruction cache (which is filled from
memory if there are no instructions in it). The branch processor then feeds integer
and floating-point instructions to the fixed-point and floating-point units
respectively. These units operate on data in registers and in the data cache (which is
filled from memory if there’s no data in it). The fixed-point unit is also involved in
address decode operations.

BRANCH PROCESSOR
The branch processor deserves special attention. As mentioned earlier, PowerPC
architecture takes an original approach to the problem of branch penalties, and the
branch processor is responsible for this. The branch processor contains within it
everything needed to determine how to handle a branch instruction. This includes
three special-purpose registers:

• The condition register (CR) has flags set by certain operations and
is used for conditional branching.

• The link register (LR) can contain a destination address for a
branch instruction and can also hold the return address after
branch and link (subroutine) instructions.

• The count register (CTR) is used for looping and indirect branches.

MAKING THE LEAP TO POWERPC December 1993

15
For divisible integer quantities composed of
separately addressable bytes — for example, a
32-bit integer subdivided into four addressable
bytes — there are numerous ways to arrange the
bytes. Only two arrangements make sense and
are in use on computers today. Big-endian byte
ordering means the most significant byte (the big
end of the number) is assigned the lowest
address. Little-endian byte ordering means the

least significant byte is assigned the lowest
address; it’s used, for example, on Intel 80x86
CPUs. The terms originated in Jonathan Swift’s
Gulliver’s Travels, where the controversy was over
breaking an egg at the big end or the small
end.•

Table 1
Available Native Data Types on the PowerPC Microprocessor

Native Data Type Description
float IEEE single precision (32 bits with fast operations)
double IEEE double precision (64 bits with fast operations)
long double 128-bit structure of two doubles (head and tail), whose value is head + tail. Not

an IEEE double-extended type! Provides additional precision within double range.

Note: The long double data type isn’t supported by the hardware, so operations are relatively slow. It should
be used selectively.

For unconditional branches, the branch processor knows unambiguously which path
to take. For conditional branches, if a branch condition is set far enough before the
actual branch instruction, the branch processor has the information necessary to
determine which path to take.

The design of the condition register uniquely aids the processing of conditional
branches. Instead of a single set of condition codes, it contains eight 4-bit condition
code fields, designated CR0, CR1 . . . CR7. Compare operations allow each field to
be set independently. A compiler using these multiple, independent condition code
fields has more flexibility in scheduling instructions to assist the branch processor. As
an additional performance enhancement, instructions that might set condition codes
(such as add) do so only if a record bit is set in the instruction, so time isn’t spent
setting condition codes that would otherwise be ignored.

The branch processor also has knowledge of the count register, used in looping
operations. This lets the branch processor know in advance when a loop will
finish.

With this design the branch processor can preprocess the instruction stream and, in
most cases, determine in advance the target of the branch operation. This allows it to
“fold” the branch instruction out of the instruction stream, so the fixed-point and

d e v e l o p Issue 16

16

Branch processor

Floating-point unit Fixed-point unit

Data cache

Memory

Instruction cache

Address DataData

Figure 7
Block Diagram of PowerPC 601 Chip

floating-point units see an unbroken stream of instructions and fewer branch
penalties occur.

POWERPC RUNTIME ARCHITECTURE
An important goal in the development of Apple’s PowerPC processor–based
machines was to preserve user and developer investment in the 680x0 architecture.
Another important goal was to port the existing 680x0 Toolbox and operating system
to the new platform quickly. Both goals were met through the ability to emulate
680x0 instructions in software on the PowerPC microprocessor. So the first way to
view a Macintosh on PowerPC, and indeed the way existing applications and system
software view this machine, is as a 680x0-based Macintosh. In this section we
approach this new beast through the 680x0 emulator and then peel away the layers to
reveal the underlying PowerPC runtime architecture.

SOFTWARE EMULATOR
The software emulator understands and executes the instruction set of a Motorola
MC68020 processor. You might wonder why Apple chose to emulate the MC68020
and not the latest and greatest processors such as MC68030 and MC68040.

• The only advantage of the 68030 over the 68020, in terms of
instruction set, is the integrated memory management unit
(MMU). The MMU is really for use by the operating system for
implementing features such as virtual memory. The PowerPC
microprocessor MMU operation is very different from 680x0
MMU operation, and there’s no need for applications to execute
MMU instructions anyway. Applications needing control over
virtual memory can still use the existing virtual memory interface;
just the implementation will be different.

• Similarly, the key advantage of the MC68040 over its predecessors
is the integrated floating-point unit. The PowerPC
microprocessor has its own floating-point implementation. Apple
already provides a standard numeric interface for 680x0
applications, called SANE, and emulating floating-point
instructions using native PowerPC code offers no real advantages
over implementing SANE as native PowerPC code.

As a bonus feature, the emulator also supports certain advanced user-mode
instructions such as the MOVE16 instruction from the MC68040. However, from a
programmer’s point of view, the emulator behaves as an MC68020 (for example,
Gestalt reports an MC68020 is present) and developers are advised not to take
advantage of any features outside the MC68020 architecture.

Once the emulator was up and working, the PowerPC processor–based machine
almost immediately gained an operating system, since all the code in the ROM and

MAKING THE LEAP TO POWERPC December 1993

17

the operating system was now executable. This also gave the machine a high degree
of compatibility with older Macintosh models, because the same code, with all its
idiosyncrasies, is being executed.

Had Apple stopped here, you’d have a machine that works great but is pretty boring.
After all, who wants a machine that pretends to execute 680x0 code, but not
necessarily as fast as the real thing? Why not get a real 680x0 machine instead? The
answer, of course, lies in tapping into the power behind the emulator — the
PowerPC microprocessor itself.

TOOLBOX ACCELERATION
All Macintosh applications spend part of their time calling the Macintosh Toolbox. In
turn, the Toolbox performs the requested service by executing Toolbox code on
behalf of the application. You can think of the Toolbox as an extension of the
application. The advantage of this during development of PowerPC processor–based
machines is that selectively replacing portions of the Toolbox with equivalent
PowerPC code greatly enhances the performance of those portions of the Toolbox.
All applications that use those routines benefit from improved performance. No
modification of the application is required to receive the benefit.

Ideally, of course, it would be best if the entire Toolbox executed as native code. But
that requires a huge amount of work and would delay the first release of Macintosh
on PowerPC. Analysis of application programs revealed that some portions of the
Toolbox are used more heavily than others. All applications, for example, rely heavily
on QuickDraw. Effort spent porting QuickDraw would benefit more applications
than, say, porting the Dialog Manager. So the first release of Macintosh on PowerPC
will target the portions of the Toolbox that will provide the greatest performance
enhancement to the greatest number of applications.

As Apple releases new versions of the system, with more and more of the Toolbox as
native PowerPC code, users will magically get a “faster” machine without adding new
hardware. All they have to do is install the newer, accelerated Toolbox.

At the same time, the goal is not just to enhance the performance of the system, but
to empower application software as well. The accelerated Toolbox is a start, but real
PowerPC application performance comes from having native PowerPC applications,
and the first release of Macintosh on PowerPC will include an entirely new runtime
architecture in support of native applications.

WHY A NEW RUNTIME ARCHITECTURE?
The new runtime architecture addresses many of the following limitations of the
680x0 architecture:

• The first Macintosh models were severely limited in the memory
available to applications, so the runtime architecture was designed

d e v e l o p Issue 16

18

to squeeze the most out of the memory that was available. Today,
the relative availability of cheap RAM removes this limitation.

• Hard disks and memory management units required to support
virtual memory were unavailable, so applications were required to
load discrete blocks of code through the Segment Loader. With
the relative availability of cheap RAM and support for virtual
memory, most reasons for having the Segment Loader disappear.

• The system now supports a wide variety of code types — not just
applications and system software, but standalone code blocks, such
as INITs and MDEFs, and loadable code plug-ins, such as
XCMDs and components. These code blocks strain the runtime
architecture because it’s difficult to manage global data for these
blocks and to import and export functions between blocks.

• There’s a large amount of code duplication in the Macintosh. The
Toolbox provides some code sharing between applications, but in
general, most applications have built into them large amounts of
redundant code. For example, library and glue code gets linked
into every application. Having it built into the application
increases demands on disk and memory resources because each
instance of the application must have the duplicated code.

CODE FRAGMENT MANAGER
The centerpiece of the new architecture is the Code Fragment Manager. Each block
of executable PowerPC code is a code fragment. A code fragment is autonomous,
with its own static data. It can export both code and data references for use by other
fragments and import code and data references from other fragments for its own use.
Because such references are resolved at run time, code fragments are a form of
dynamically linked, shared libraries. (See “Code Fragment Manager or Shared
Library Manager?” for an explanation of the relationship between the two managers.)

From a native PowerPC application’s point of view, access to the Macintosh Toolbox
now occurs through a shared library maintained by the Code Fragment Manager.
Applications no longer have segments — they have one or more code fragments. The
main code fragment is loaded at launch time and any external references to other
shared libraries are resolved. An application neither knows nor cares whether a
reference is internal or external; access is completely transparent.

In some cases applications may want to manage code fragments on their own. For
example, standalone code resources can now be handled as code fragments. This
makes code resources such as XCMDs much easier to develop. Not only does such a
resource have its own static data, but function references within the resource are fully
exportable. Complicated parameter blocks aren’t needed for passing data or jumping
into the beginning of a code resource. Furthermore, because the application code is

MAKING THE LEAP TO POWERPC December 1993

19

itself a code fragment and can export its references, the standalone code has access to
functions and data within the application itself. Complicated callback mechanisms are
no longer necessary.

MIXED MODE MANAGER
There’s one final piece to the PowerPC architecture puzzle. The Macintosh Toolbox
makes wide use of pointers to functions. FilterProcs, I/O completion routines, A-trap
vectors, QuickDraw bottlenecks, definition procedures (such as MDEFs, MBDFs,
and CDEFs), and other types of standalone code (such as INITs and VBL tasks) are
just a few examples of the wide variety of function pointers in use on the Macintosh.

On a 680x0-based Macintosh, life is easy because a function pointer is just the address
of a 680x0 routine that can be called. On a PowerPC processor–based Macintosh, life
is much more complicated; not only is the Toolbox a mixture of 680x0 and PowerPC
code, but a function pointer could be a pointer to 680x0 code or PowerPC code and
the caller should neither know nor care what kind of code it’s calling.

To handle this situation, Apple is introducing the Mixed Mode Manager. One
problem that this manager must solve is the mismatch between calling conventions
for 680x0 and PowerPC code. PowerPC code follows C conventions, with
parameters passed right to left. The 680x0 code uses a variety of calling conventions:
some traps are register based while some are Pascal stack based with parameters
passed left to right. The Mixed Mode Manager must make calls between disparate
functions seamless. Furthermore, it must do it in a way that’s compatible with existing
680x0 applications. Since existing binaries must work unmodified, the existence of the
Mixed Mode Manager must be completely transparent to these applications.

The Mixed Mode Manager’s task is shown in Figure 8. Instead of passing a function
pointer of type ProcPtr to the Toolbox, applications must now pass a function pointer

d e v e l o p Issue 16

20

You may already be familiar with an implementation of
shared libraries for the Macintosh known as the Shared
Library Manager. The advantage of the Shared Library
Manager is that it works with today’s 680x0 runtime
architecture. The Code Fragment Manager, on the other
hand, lays the foundation for a new and more modern
runtime architecture.

The first releases of these two managers will be mutually
exclusive. The Shared Library Manager will be

implemented only for 680x0 and the Code Fragment
Manager will work only on the PowerPC microprocessor.

In the future, though, the Code Fragment Manager will be
available on 680x0-based machines as well, and a future
release of the Shared Library Manager (version 2.0) will
be built on top of the Code Fragment Manager. This will
provide Shared Library Manager support for Macintosh
on PowerPC. Developers should code for whichever
mechanism best suits their needs and target platform.

CODE FRAGMENT MANAGER OR SHARED LIBRARY MANAGER?

of type UniversalProcPtr. UniversalProcPtr is a generic version of ProcPtr that lets
the Mixed Mode Manager know how to route the call. Whenever 680x0 or PowerPC
code calls a function through a UniversalProcPtr, the Mixed Mode Manager looks at
the destination for the call. If a mode switch isn’t necessary — in other words, if both
the caller and the callee are the same code type — the Mixed Mode Manager does
nothing and just passes the call to the caller.

If a mode switch is necessary — in other words, if a 680x0 caller is calling PowerPC
code, or vice versa — the Mixed Mode Manager performs a protocol conversion,
rearranging the parameters, including moving them into or out of registers as
necessary to ensure that the callee sees the parameters correctly. When the callee
returns, the Mixed Mode Manager performs a protocol conversion in the other
direction to ensure that return values are correctly passed back to the caller.

For 680x0 applications, the Mixed Mode Manager is completely transparent and
these applications run without modification. PowerPC applications, however, must
become aware of the Mixed Mode Manager. The basics of using the Mixed Mode
Manager are covered along with UniversalProcPtrs later in the section
“UniversalProcPtrs.”

WRITING PORTABLE C CODE
The preferred development languages for PowerPC code are C and C++. Therefore,
the first step in preparing for the PowerPC platform is to provide portable C and
C++ code. The examples here use C, but the principles apply to C++ as well.

MAKING THE LEAP TO POWERPC December 1993

21

Protocol�
conversion by the�

Mixed Mode Manager

680x0 caller PowerPC caller

Result Result
UniversalProcPtr�
PowerPC parameters

UniversalProcPtr�
680x0 parameters

680x0 callee PowerPC callee

Result Result

ProcPtr�
PowerPC parameters

ProcPtr�
680x0 parameters

Figure 8
Mixed Mode Manager

The compilers for PowerPC C code are stricter than either the MPW or the
THINK C compiler, so the best way to prepare your code for the PowerPC platform
is to be sure it follows the ANSI C standard. You should take full advantage of the
stronger type checking and prototyping features an ANSI C compiler provides.

Consistent use of function prototypes is the best way to ensure portable code. ANSI
C prototypes fully qualify the parameters to a function, as shown in this example:

void DoEvent (EventRecord *event);

It’s usually permissible to mix the new-style function declaration with the old-style
function definition:

void DoEvent (event)
EventRecord *event;
{

. . .
}

However, mixing function declarations in this way typically defeats the purpose of
having a function prototype in the first place. So the first step in writing portable
code is to be sure you consistently use ANSI C function prototypes throughout.

INTEGERS AND BITFIELDS
Variations in the size of integers of type int always cause trouble when you’re trying
to port code. This is more of a problem for THINK C code, which allows 16-bit
integers of type int. C purists may not agree, but my recommendation is never to use
type int. Always use integers of types short and long (or an equivalent type). The
Macintosh Toolbox itself is explicit about data sizes, and experience has shown that
developers dependent on the THINK C 16-bit integers of type int have more
difficulty porting to the PowerPC platform.

A similar caution applies to bitfields. Bitfields are useful for access to machine-
dependent data structures and the like, but are inherently implementation defined
and therefore nonportable.

DATA STRUCTURES
Some compilers allow incomplete arrays as the last member in a data structure:

struct QElem {
struct QElem *qLink;
short qType;
short qData[];

};

d e v e l o p Issue 16

22

This isn’t allowed by the ANSI C standard. Here’s a more portable definition:

struct QElem {
struct QElem *qLink;
short qType;
short qData[1];

};

Similarly, some compilers allow comparison of data structures. Again, this isn’t
allowed by the ANSI C standard, so attempting to do something as simple as
comparing two Rects will fail on the compilers for PowerPC code.

When using data structures, you need to be aware of data alignment. RISC machines
prefer (and often require) that data be aligned on a 4-byte boundary. But on the
680x0, the default is to align data to a 2-byte boundary. PowerPC architecture
specifically allows misaligned data access, but there can be a small performance
penalty if multiple bus cycles are required for access to the data. This creates a
dilemma: portability versus performance.

Because the Macintosh Toolbox relies on 680x0 data structures, data passed to the
Toolbox must have 680x0 alignment. The same applies if you want to share data with
680x0 applications. To solve this, the compiler now allows you, through #pragma
statements and compiler options, to align PowerPC code data structures just like
680x0 code data structures. But if the structure is only internal to your application,
you probably want to use the natural PowerPC code alignment. Although it’s likely to
be painful to modify existing data structures for PowerPC code alignment, if you’re
designing new data structures, you can keep the alignment issue in mind and create
structures that are optimal for both 680x0 and PowerPC processor–based machines.

COMPILER EXTENSIONS
In addition to supporting 680x0 data alignment, compilers for PowerPC code have
been extended in several other ways to make porting easier. This involves supporting
several of the MPW C compiler extensions and features:

• The compiler understands “\p” at the start of a string for the
generation of Pascal strings.

• The pascal function keyword is allowed by the compiler, but
ignored. A subtle consequence of this is discussed in the section
“Pascal Functions.”

• The compiler won’t complain if you use C++ style line-end
comments (//).

• MPW C packs enums into the smallest data type possible and the
compilers for PowerPC code have been extended to support the
feature.

MAKING THE LEAP TO POWERPC December 1993

23

How can you tell if your code is ANSI C compliant? You can eliminate many of the
idiosyncrasies in your code by compiling it with multiple compilers. Code
conditioned in this way is much more portable to the PowerPC platform than code
dependent on a single compiler. So one of the best ways to prepare for the PowerPC
platform is to make sure your code compiles and runs with both MPW C and
THINK C.

WRITING CODE FOR POWERPC
Some changes to the programming model are necessary for the development of
PowerPC code. However, Apple tried to limit changes so as to make the transition to
the PowerPC platform easier for developers (see “Universal Interfaces” to understand
how these changes affect development for 680x0 platforms).

COMPATIBILITY GUIDELINES
Everything ever written about compatibility guidelines for the Macintosh applies to
the Macintosh on PowerPC in spades. Here are some of the key points:

• The code must be 32-bit clean. Most applications now satisfy this
requirement, thanks to System 7, but it deserves reiterating
because 24-bit mode will no longer be an option.

• For the first release of Macintosh on PowerPC, access to low
memory is allowed exactly as before. Direct access to low memory
applies for both 680x0 and native PowerPC applications; however,
a procedural interface is provided as part of the new API, and
developers are strongly urged to begin using it for future
compatibility. For example, CurDirStore is a commonly used low-
memory global, and two new functions are defined to provide
access to it:

long LMGetCurDirStore (void);
void LMSetCurDirStore (long CurDirStoreValue);

• Don’t depend on undocumented data structures. Also, don’t
depend on alignment of data structures.

• Don’t write data into code. In the past, this was often necessary
because of limitations of the runtime architecture. Many of the
reasons for doing it no longer exist with PowerPC architecture, so
avoid it.

• Beware of dependencies on floating-point data types (see “Native
PowerPC Numerics,” earlier in this article).

• Don’t depend on the hardware. Not only is there no longer a
680x0 CPU present, but the I/O architecture can also change. Use
programmatic interfaces to perform I/O.

d e v e l o p Issue 16

24

• Don’t depend on the 680x0 runtime model, which is very
idiosyncratic. Fortunately, many of those idiosyncrasies were
eliminated in the PowerPC runtime architecture, making your life
easier but complicating the move from the 680x0 to this new
architecture.

Some of these points are discussed in the following sections.

REVISITING THE CODE FRAGMENT MANAGER
As previously mentioned, the centerpiece of the PowerPC runtime architecture is the
Code Fragment Manager. Rather than having a collection of code resources, a

MAKING THE LEAP TO POWERPC December 1993

25

As Apple takes the Macintosh experience to a new chip
architecture, it becomes more important than ever to have
portable source code. With that in mind, Apple has
created a set of universal interface files, which are
provided on this issue’s CD. The same interface file — for
example, Windows.h — can be used to compile any
source file for a Macintosh on either a 680x0 or a
PowerPC microprocessor. The main changes you’ll find in
the C universal interface files are described below.

All system software routines declared extern.
On the PowerPC platform, all routines can potentially be
in a shared library, so all routines must be declared extern
in order for the compiler to generate the correct code.
Declaring routines extern is also compatible with MPW C.

Inline code wrapped in macro definitions.
Obviously, 680x0 inline code isn’t very useful on a
PowerPC platform. 680x0 inline code is isolated by
macros such as THREEWORDINLINE, which are defined
in ConditionalMacros.h. These macros expand to inline
initializers when compiling for 680x0 on non–shared
library based platforms, and do nothing when compiling
for PowerPC or shared library–based platforms.

UniversalProcPtrs. As discussed more fully in this
article, the biggest change in the interface files is the
introduction of the UniversalProcPtr data type used by the

Mixed Mode Manager. In support of cross-platform code
generation, the interface files define special “New” and
“Call” macros (such as NewGrowZoneProc and
CallGrowZoneProc) that hide the implementation details
of using UniversalProcPtrs. For example, when you
compile your application as 680x0 code, the Call macros
jump to the routine pointed to by the UniversalProcPtr
directly rather than invoke CallUniversalProc as they
would for PowerPC compilation. Note that 680x0
versions of the Call macros are provided only for stack-
based ProcPtrs.

Low memory access. To isolate dependencies on low
memory, the SysEqu.h file has been removed and
replaced by LowMem.h, which defines accessor functions
for low memory. Previously defined accessor functions,
such as MemError, are still defined but call through to the
new accessor functions when appropriate.

Structure alignment. To maintain data structure
compatibility, structs follow 680x0 word alignments when
being compiled for the PowerPC microprocessor.

Even if you don’t plan on porting your application
immediately to the PowerPC platform, you can begin
using the universal interface files for 680x0 development
and make a crucial step toward future PowerPC
compatibility.

UNIVERSAL INTERFACES
BY DEAN YU

PowerPC application has a code fragment (generally one, but possibly more) that
lives in the data fork of the application. When an application is launched, the Process
Manager determines whether a native PowerPC code fragment is present by looking
for a 'cfrg' resource. This resource provides the necessary information for the Code
Fragment Manager to load the main code fragment and resolve any external code and
data references. The Code Fragment Manager also sets up global data for the code
fragment.

The Code Fragment Manager eliminates the need for a segment loader. If virtual
memory isn’t present, the Code Fragment Manager loads the entire code fragment
into memory; otherwise, it relies on virtual memory to page code directly in from the
application when needed.

A 680x0 application maintains a notion of an A5 world, an integral part of the 680x0
runtime environment. Register A5 provides access to four kinds of data:

• application global data

• application QuickDraw global variables

• application jump table

• application parameters

Of these, only the QuickDraw global variables remain relevant. A wide variety of
system and application code depends on using A5 to locate QuickDraw globals. Even
though a native application has no use for a 680x0 register A5, the system still
maintains an A5 world so that code that does depend on A5 has access to the right
data. This means SetCurrentA5 and SetA5 will do the right thing with QuickDraw
globals if you need to swap A5 worlds.

The 680x0 Macintosh Toolbox uses a wide variety of calling conventions. The two
most common ones are Pascal stack based and register based. Variations include
passing a selector to dispatch to a variety of functions or passing a pointer to a
parameter block in register A0 (for VBL tasks, notification tasks, and I/O completion
routines) or register A1 (for Time Manager tasks). Two of my personal favorites are
the TextEdit highHook and caretHook routines: when called they have a pointer to
the edit record in A3 and, instead of a return address, a pointer to a rectangle on top
of the stack. The point is that it’s nearly impossible to write 680x0 Macintosh
applications entirely in a high-level language. Some assembly-language programming
is required just to move these weird parameters around.

Life gets much easier on the PowerPC platform, which relies on uniform C calling
conventions for everything. In almost all cases, 680x0 inline assembly and assembly
wrapper routines can be rewritten in C for PowerPC code. For example, a 680x0
application can use the following assembly highHook routine to underline a
selection:

d e v e l o p Issue 16

26

HighHookUnderline
MOVE.L (SP),A0 ; Get the address of the rectangle
MOVE bottom(A0),top(A0) ; Make the top coordinate equal to
SUBQ #1,top(A0) ; the bottom coordinate minus 1
_InverRect ; Invert the resulting rectangle
RTS

It’s impossible to write this routine in C because of the weird calling conventions that
supply the pointer to the Rect on top of the stack. For a native PowerPC application,
the two parameters are simply specified as standard C parameters and the following
routine suffices (the TEPtr parameter isn’t used in this example):

void HighHookUnderline (Rect *boundsRect, TEPtr pTE)
{

boundsRect->top = boundsRect->bottom - 1;
InvertRect(boundsRect);
return;

}

PASCAL FUNCTIONS
Although the compilers for PowerPC C code were extended to accept the pascal
keyword for source code compatibility with 680x0 Macintosh code, when the
compiler encounters this keyword, it does absolutely nothing. Unlike MPW C, where
the keyword alters parameter ordering and changes how some parameters are passed,
the compilers for PowerPC code ignore the pascal keyword. In most cases this is not
a problem, but there can be some subtle consequences. For example, consider the
following Apple event handler:

pascal OSErr DoAEAnswer (AppleEvent message, AppleEvent reply,
long refCon);

An Apple event record is larger than four bytes, so in Pascal it’s automatically passed
by reference. Because DoAEAnswer is declared as a pascal function, MPW C
handles the parameter in the same way. But the compilers for PowerPC code treat it
as a standard C data structure and pass it by value. So if DoAEAnswer were called by
the Apple Event Manager, bizarre things would happen.

To be compatible with both types of compilers, you must explicitly make these
parameters pointers, as follows:

pascal OSErr DoAEAnswer (AppleEvent *message, AppleEvent *reply,
long refCon);

When in doubt, check the new interfaces; they now declare special function pointers
of type ProcPtr that specify the correct parameters.

MAKING THE LEAP TO POWERPC December 1993

27

typedef pascal OSErr (*EventHandlerProcPtr)(const AppleEvent
*theAppleEvent, const AppleEvent *reply, long handleRefCon);

Unfortunately, in most cases you’ll now be coercing any special ProcPtrs (such as
EventHandlerProcPtr) into normal ProcPtrs for calls to NewRoutineDescriptor
(described in the next section), which means type checking will be lost. So double-
check all your callback routines.

UNIVERSALPROCPTRS
Because of the introduction of the Mixed Mode Manager, the single biggest change
you’ll have to make to your code is converting function pointers of type ProcPtr to
type UniversalProcPtr. Every place in the interfaces where a type of ProcPtr was
declared, Apple added a similar declaration of type UniversalProcPtr.

UniversalProcPtr is a generic function pointer. For 680x0 code, a UniversalProcPtr is
just a 680x0 ProcPtr. For native PowerPC code, though, a UniversalProcPtr is a
pointer to a data structure called a routine descriptor, which in addition to providing a
function reference, supplies all the information the Mixed Mode Manager needs to
transform parameters back and forth between 680x0 and PowerPC worlds. Because a
UniversalProcPtr is no longer a simple function reference, there are issues of
allocation and scope that make it more complicated to use than a simple ProcPtr.
Fortunately, 680x0 interfaces are being changed to add UniversalProcPtr support, so
changes you make for PowerPC code will also be compatible with 680x0 interfaces
(see “Universal Interfaces” earlier in this article).

Let’s look at a simple example using a UniversalProcPtr. Suppose you have an action
procedure for a vertical scroll bar, called VActionProc. Current code would call
TrackControl with that action procedure as follows:

TrackControl(ctlHit, mouseLoc, VActionProc);

With PowerPC code, you must create a routine descriptor for VActionProc. Because
there’s usually a one-to-one correspondence between function pointers of type
ProcPtr in your code and function pointers of type UniversalProcPtr required by the
Mixed Mode Manager, it’s simplest to allocate one UniversalProcPtr for each ProcPtr
you use. The memory impact of this approach is small because a routine descriptor
data structure typically uses only 32 bytes.

One way to do this is to allocate the routine descriptor statically and have it initialized
by the compiler. Macros are supplied in MixedMode.h for this purpose. For example,
you can create a routine descriptor for VActionProc like this:

RoutineDescriptor gVActionProcRD =
BUILD_ROUTINE_DESCRIPTOR(uppControlActionProcInfo, VActionProc);

d e v e l o p Issue 16

28

Alternatively, you can allocate your routine descriptors on the heap. Again, because
they seldom change, you’ll generally want to allocate them at application startup:

ControlActionUPP gVActionUPP;

gVActionUPP = NewRoutineDescriptor((ProcPtr)VActionProc,
uppControlActionProcInfo, GetCurrentISA());

NewRoutineDescriptor is declared as follows:

UniversalProcPtr NewRoutineDescriptor(ProcPtr theProc,
ProcInfoType theProcInfo, ISAType theISA);

NewRoutineDescriptor allocates nonrelocatable storage for the routine descriptor on
the heap and returns it as a pointer to the routine descriptor in the form of a
UniversalProcPtr. The theProc parameter is just the function pointer for the function
you’re referring to and theProcInfo is a 32-bit value that tells the Mixed Mode
Manager how to convert parameters back and forth. Every UniversalProcPtr type has
defined for it a corresponding ProcInfoType value. So the ProcInfoType value for
ControlActionUPP is uppControlActionProcInfo. The third parameter, theISA,
specifies the current instruction set architecture (ISA) in use. For portable code,
simply call GetCurrentISA to get the appropriate ISA type. If you know you’re
dealing with a specific code type — for example, a 680x0 code resource — you can
call NewRoutineDescriptor and specify the proper instruction set type — for
example, kM68kISA for 680x0 code.

To simplify creation of function pointers of type UniversalProcPtr, the new interfaces
also define macros that call NewRoutineDescriptor for you and automatically specify
the ProcInfoType value:

gVActionUPP = NewControlActionProc((ProcPtr) VActionProc);

If you created the routine descriptor statically, you can pass the address of the
structure to TrackControl:

TrackControl(ctlHit, mouseLoc, (ControlActionUPP) &gVActionProcRD);

If, instead, you created a UniversalProcPtr on the heap, you can use it directly in
TrackControl:

TrackControl(ctlHit, mouseLoc, gVActionUPP);

If you allocate a UniversalProcPtr statically, you don’t have to worry about
deallocating it, because that will happen when the application quits. You could also
allocate it locally, which you might want to do if the routine were unlikely to be

MAKING THE LEAP TO POWERPC December 1993

29

called. In that case, you would have to explicitly deallocate the routine descriptor
before leaving the function, as follows:

DisposeRoutineDescriptor(gVActionUPP);

A potential problem with disposing of routine descriptors is that you could dispose of
them before they’re used. For example, if you have a routine descriptor for an
asynchronous I/O completion routine, disposing of the routine descriptor before the
completion routine is called would be bad.

An alternative for infrequently used routine descriptors is to allocate them globally
but initialize them only when needed, as in this example:

if (!gVActionUPP)
gVActionUPP = NewControlActionProc((ProcPtr) VActionProc);

TrackControl(ctlHit, mouseLoc, gVActionUPP);

In most cases you won’t need to call a UniversalProcPtr yourself; you’ll simply pass it
to the Toolbox. But should you need to call one from PowerPC code, you can’t
simply treat it as a function pointer. You must use CallUniversalProc to have the
Mixed Mode Manager call the function for you. CallUniversalProc is declared as
follows:

long CallUniversalProc(UniversalProcPtr theProcPtr,
ProcInfoType procInfo, ...);

The first two parameters, the UniversalProcPtr and the 32-bit ProcInfoType value,
are followed by all the additional parameters normally passed to the call. To simplify
calling UniversalProcPtrs, special macros have been included in the interfaces for
each UniversalProcPtr data type. For example, gVActionUPP above could be called
using CallControlActionProc:

CallControlActionProc(gVActionUPP, theControl, partCode);

One special case of a UniversalProcPtr deserves mention because it can’t be flagged
by the compiler. A wonderful feature of the Dialog Manager is that for a userItem,
the SetDItem call allows the item’s procedure pointer to be set via the item
parameter. Since you’re explicitly casting a ProcPtr to a handle, the compiler assumes
you know what you’re doing and doesn’t object. Of course, what you really need to
pass is a UniversalProcPtr, but since the compiler doesn’t catch this, strange things
will surely happen if you don’t catch it yourself.

As another example of using function pointers of type UniversalProcPtr, let’s look at a
VBL task. A persistent VBL task (one that works when the application is in the
background) is often implemented by copying the VBL task code into the system

d e v e l o p Issue 16

30

heap, an ugly solution and self-modifying code as well. A simpler solution for
PowerPC code is to create the UniversalProcPtr itself in the system heap since the
Process Manager views the UniversalProcPtr as code. The following code shows how
to install such a VBL task:

#define kVBLInterval 30

OSErr InstallVBL (VBLTaskPtr theVBLTask, VBLProcPtr myVBLProc,
Boolean isPersistent)

{
OSErr theError;
THz savedZone;

/ *
* For a VBL task that operates when the application is in the
* background (i.e., that's persistent) we can simply create the
* UniversalProcPtr in the system heap. This causes the Process
* Manager to treat the code as though it were in the system heap
* and the VBL will always get executed.
* /

if (isPersistent) {
savedZone = GetZone();
SetZone(SystemZone());

}
theVBLTask->vblAddr = NewRoutineDescriptor((ProcPtr) myVBLProc,

uppVBLProcInfo, GetCurrentISA());
theError = MemError();
if (isPersistent)

SetZone(savedZone); /* Restore the application zone. */
if (theVBLTask->vblAddr != nil) {

theVBLTask->qType = vType;
theVBLTask->vblCount = kVBLInterval;
theVBLTask->vblPhase = 0;
theError = VInstall((QElemPtr) theVBLTask);

}
return (theError);

}

The isPersistent Boolean variable controls whether the VBL functions persistently. If
it’s persistent, you can control where the memory is allocated by first setting the zone
to the system zone (because NewRoutineDescriptor calls the Memory Manager to
allocate memory for the routine descriptor).

Here’s the code for the VBL task:

MAKING THE LEAP TO POWERPC December 1993

31

long gCounter = 0;

pascal void MyVBLProc (VBLTaskPtr theVBLTask)
{

theVBLTask->vblCount = kVBLInterval;
gCounter++;
return;

}

This very simple example alters only a global variable, but it illustrates two points.
First, no complicated setup for global variables is required. For a 680x0 VBL task,
messy saving and restoring of register A5 would be necessary for correct access to
global variables. In the example, because the code resides in a code fragment, global
variables are always accessible. Second, the procedure is called with a VBLTaskPtr
parameter. For a 680x0 VBL task, a pointer to the VBLTask record resides in register
A0 and requires special handling to get to the data from a high-level language.
Because PowerPC code uses strict C calling conventions, the required data is passed
as a standard parameter.

Finally, of course, you have to remove the VBL task correctly:

void RemoveVBL (VBLTaskPtr theVBLTask)
{

THz savedZone;

VRemove((QElemPtr) theVBLTask);
if (theVBLTask->vblAddr) {

savedZone = GetZone();
/* Make sure we're in the right zone. */
SetZone(PtrZone((Ptr) theVBLTask->vblAddr));
DisposeRoutineDescriptor(theVBLTask->vblAddr);
SetZone(savedZone);

}
return;

}

Although it may not be necessary to deallocate a VBL task created in the application
heap, this code practices safe memory management by being sure the memory gets
deallocated no matter where it is — in other words, whether it’s persistent or not.

TRAP PATCHING
Trap patching is fully supported on the PowerPC microprocessor; as always, however,
it must be undertaken with due care and consideration. Not only is the compatibility
risk higher (especially if you’re dependent on 680x0 runtime features), but

d e v e l o p Issue 16

32

indiscriminate trap patching can severely affect the performance of the PowerPC
processor–based machine.

Trap patching is possible from both 680x0 code and PowerPC code, and you should
use the NGetTrapAddress and NSetTrapAddress calls in both cases. From
PowerPC code, the address returned by NGetTrapAddress must be treated as a
UniversalProcPtr and you must pass a UniversalProcPtr to NSetTrapAddress as well.

What complicates the issue is that the trap you patch could be written in either 680x0
code or PowerPC code. The Mixed Mode Manager, of course, handles both cases,
but if you’re patching native PowerPC code with 680x0 code, performance-sensitive
code can suddenly run more slowly, not only because of your emulated code but
because of overhead associated with mixed mode transitions. So you must think very
carefully about the performance consequences of your patch.

TAKING A RISC
To ease the transformation of existing applications into native PowerPC applications,
Apple has minimized changes to the API. Most ANSI C compliant code, with the
exception of ProcPtrs, should recompile without modification. Developers can
exploit this opportunity to easily tap into the power of the PowerPC microprocessor.

With PowerPC processor–based machines, Apple is laying the foundation for the
future. The new levels of performance and new features such as the Code Fragment
Manager give developers new worlds to explore and new opportunities for adding
unique features to their applications.

MAKING THE LEAP TO POWERPC December 1993

33
THANKS TO OUR TECHNICAL REVIEWERS
C. K. Haun, Ron Hochsprung, Bruce Jones, Alan
Lillich, Wayne Meretzky, Eric Traut•

RECOMMENDED READING
For more information on CISC and RISC architectures in general and POWER and
PowerPC architectures in particular, consult the following sources:

• Advanced Microprocessors by Daniel Tabak (McGraw-Hill, 1991).

• Computer Architecture and Computer Architecture Case Studies by Robert J. Baron
and Lee Higbie (Addison-Wesley, 1992).

• Computer Architecture: A Quantitative Approach by David A. Patterson and John
L. Hennessy (Morgan Kaufman Publishers, 1990).

• “PowerPC Performs for Less,” by Tom Thompson, Byte, August 1993.

• “RISC Drives PowerPC,” by Bob Ryan, Byte, August 1993.

• PowerPC 601 RISC Microprocessor User’s Manual (Motorola, 1993).

Sound Manager 3.0, a vastly improved call-for-call
replacement for the Sound Manager in System 7,
provides QuickTime and other sound clients with a set
of new and improved features, including higher frame
rates and better quality sound. Sound Manager 3.0 is an
extension that entirely replaces the older Sound
Manager; the extension is included along with a new
Sound control panel on this issue’s CD. We released it
as an extension without changing the API so that you
won’t have to recode your existing applications. With
Sound Manager 3.0 installed in your system, your
applications will transparently take advantage of the
Sound Manager’s greater dependability, speed, and
other new features.

The soon-to-be-available Inside Macintosh: Sound (or
Inside Macintosh Volume VI, Chapter 22) is the main
source of Sound Manager documentation. This column
will discuss some of the new features of Sound
Manager 3.0 and describe how to use them.

OVERVIEW OF MAJOR NEW FEATURES
Sound Manager 3.0 provides four major new features:

• support for 16-bit audio samples

• support for third-party audio hardware

• support for plug-in audio codecs

• better performance and quality

Previous versions of the Sound Manager could only
support stereo 8-bit audio samples with sample rates up
to 22 kHz. Sound Manager 3.0 removes this limitation
by allowing stereo 16-bit audio samples with sample
rates up to 65 kHz, providing CD-quality audio in
QuickTime movies and other audio applications.
Sound Manager 3.0 will also automatically convert
16-bit sounds into 8-bit sounds on Macintosh
computers that don’t have 16-bit audio hardware.

Third-party sound cards can be installed in your
Macintosh to allow playback and recording of CD-
quality audio. Sound Manager 3.0 makes this possible
by providing a driver mechanism and a new Sound
control panel that allows the user to redirect sound to
any available audio device. Audio card developers can
license the Sound Manager 3.0 extension and bundle it
for distribution with their product.

The Sound Manager previously supported only MACE
audio compression at ratios of 3:1 and 6:1. Sound
Manager 3.0 goes beyond MACE to support any
compressed audio format with the use of plug-in audio
compression/decompression software (codecs). These
are simply extension files that the Sound Manager
recognizes and uses when it needs to play a compressed
sound. In this way, applications can play compressed
sounds seamlessly without being aware of the
compressed format.

Sound Manager 3.0 is much faster — in many cases two
to three times more efficient than previous versions.
This means that your application can do more while
sound is playing. Sound Manager 3.0 is also more
robust: many bugs have been fixed and a number of
commonly requested features have been added.

SYSTEM REQUIREMENTS AND INSTALLATION
Sound Manager 3.0 requires the Component Manager,
so you must have either System 7 with QuickTime or
System 7.1. (The Component Manager comes with
QuickTime and is built into System 7.1.) Sound
Manager 3.0 supports all Macintosh models except for
the “classic”-style hardware such as the Macintosh Plus,
SE, and Classic.

d e v e l o p Issue 16

JIM REEKES studied music composition and theory in college,
never taking a single computer science or engineering class
because he knew they would pollute his brain. He taught himself
programming, beginning with the Apple II and then on the
Macintosh 128K in 1984. He began working in Apple’s Developer
Technical Support group in 1988. He took over responsibility for
the Sound Manager during System 7 beta (so you can’t blame that
one on him!) and recently finished Sound Manager 3.0, a
complete rewrite. If there's one thing he has learned while at

Apple, it’s that there’s a fine line between amazing insight and
having a bad attitude. Jim has been collecting progressive rock
and electronic music recordings since the 1970s. He grew up in
Pomona, California, during the 1960s and can remember when
Frank Zappa performed in local bars on Mission Blvd. and
Cucamonga was a vineyard. He wishes programming didn’t burn
out his creative drive so that he could spend more time in his MIDI
studio.•

34

SOMEWHERE IN
QUICKTIME

WHAT’S NEW WITH
SOUND MANAGER 3.0

JIM REEKES

SOMEWHERE IN QUICKTIME: WHAT’S NEW WITH SOUND MANAGER 3.0 December 1993

35

Installing Sound Manager 3.0 consists of dragging the
Sound Manager extension and the new Sound control
panel to your System Folder (where they will be placed
in the appropriate folders) and rebooting. You should
see Sound Manager 3.0’s icon during startup.

WHAT’S NEW AND IMPROVED
Here are some more details about new and improved
features in Sound Manager 3.0.

Speed optimizations. While Sound Manager 3.0 can
play virtually any type of sound, it has been optimized
for maximum playback efficiency with a number of
common sound formats. So if you’re worried about
performance and want to minimize Sound Manager
overhead, use one of these sound formats:

• 8-bit, mono, 22.254 kHz, full volume

• 8-bit, mono, 11.127 kHz, full volume

Increased efficiency is a major improvement in Sound
Manager 3.0. In many cases, the Sound Manager will
be two to three times more efficient, which allows
applications to play more simultaneous sounds and do
other work while sound is playing.

For example, you can now play four channels of sound
on a Macintosh LC, whereas in the past the Sound
Manager would not allow this. QuickTime applications
benefit from Sound Manager 3.0 by gaining an increase
in the movie playback frame rate. The premiere
multimedia platform is now QuickTime 1.6 and Sound
Manager 3.0 on a Macintosh!

Sound quality. Sound Manager 3.0 uses a fast linear
interpolation for 11 kHz to 22 kHz sample rate
conversion, which makes audio sampled at 11 kHz
sound much better. This improves the sound quality of
many QuickTime movies without sacrificing
performance.

16-bit sound. Sound Manager 3.0 includes full
support for 16-bit audio samples, including rate
conversion, mixing, and decompression. It will
automatically convert between 16-bit and 8-bit

samples, so you never have to worry about the
hardware you’re running on. If your system has a 16-bit
sound output device, you’ll notice an increase in sound
quality.

Until now, the value of the sampleSize field of the
extended or compressed sound header has been 8 to
denote the number of bits per sample. To play 16-bit
sounds, specify the value 16 for the sampleSize field in
the header, and the Sound Manager will treat the sound
data as 16 bits per sample. 16-bit sounds are always in
two’s complement (signed) representation while 8-bit
sounds are always in offset binary (unsigned)
representation. For an example of how to fill out the
extended sound header so that you can play 16-bit
sounds, see Play16BitSound on this issue’s CD.

Playing compressed sounds. With Sound Manager
3.0, you can play sounds compressed with any
algorithm when you use the CmpSoundHeader data
structure. The CmpSoundHeader’s old futureUse1
field is now the format field, which you can use to
specify a 4-character OSType that identifies the
compression algorithm. If the compressionID field of
the CmpSoundHeader is set to the constant
fixedCompression, the Sound Manager uses the
OSType in the format field to find a codec that can
decompress this type of audio. The example named
PlayCompressedSound on the CD shows how to fill
out the compressed sound header so that you can play
compressed sounds.

The SndPlayDoubleBuffer call has a similar interface.
It accepts a new SndDoubleBufferHeader data
structure that’s identical to the previous one with the
addition of a format field at the end. If the
dbhCompressionID field is set to the constant
fixedCompression, the format field is used to
determine the codec to use to decompress the sound.
Otherwise it will work as before.

Multiple sound channels. The overall sound volume
(amplitude) has been improved when multiple sound
channels are being mixed. In the past the Sound
Manager would average the amplitudes for all playing

Sound Manager 3.0 was developed by Jim Reekes and Kip
Olson. Kip wants everyone to know that the original design
document describing the Sound Manager back in 1987 was
titled “Software Architecture for a Device-Independent Sound
Manager,” which can be abbreviated as SADISM. This explains
a lot, doesn’t it?•

Sound Manager 3.0 has been made widely available.
The extension, control panel, and related files are not only on this
issue’s CD but are also included in the Sound Manager
Developer’s Kit v. 3.0 available from APDA, in Hardware System
Update 2.0, with sound products from third parties, and on various
electronic bulletin boards (such as CompuServe and America
Online). Sound Manager 3.0 is built into some new Macintosh
systems; you can tell it’s there if Sound Out is listed in the Sound
control panel.•

channels. With Sound Manager 3.0, this averaging
does not occur, which gives you better individual
volume control. One possible disadvantage to this is
that clipping can occur when many sounds of high
amplitude are used.

For those of you trying to synchronize multiple
channels, syncCmd could never synchronize at a fine
enough level. With Sound Manager 3.0, syncCmd
synchronizes multiple channels so that independent
sounds can be triggered at exactly the same time. The
technique to synchronize multiple channels remains
the same as before. See the PlayTwoSoundsSynched
example on the CD.

Finding the sound header in a 'snd ' resource.
The 'snd ' resource is a cumbersome structure to parse.
The old routine SetupSndHeader can be used to create
this resource. A new routine, GetSoundHeaderOffset,
has been created to locate the embedded sound header,
which is used with the soundCmd or bufferCmd. The
resulting offset is the number of bytes into the handle
to the starting point of the sound header. The handle
doesn’t have to be locked to get this offset. See the
PlaySndHandle example on the CD.

Volume control. Two new sound commands,
volumeCmd and getVolumeCmd, allow better control
of a channel’s output volume. You can use volumeCmd
to set the volume. The param2 portion of the
command contains a two-word value (four bytes) that
represents a pair of volume levels; the high word is the
level for the right output signal and the low word is the
level for the left. A value of 0x0100 is full volume and
0x0080 is half volume. For an example of setting the
volume, see ChangeVolume on the CD.

You can overdrive the volume if you want to amplify
low signals. A value of 0x0200 would be twice full
volume. Furthermore, you can independently control
the right and left volumes. The value 0x01000000
would send the output signal to the right, and
0x00000100 would send it left. The value 0x00800100
would play out the right side at half volume and the left
at full volume.

The getVolumeCmd command returns the current
volume. The param2 field should be a pointer to a
long, similar to getAmpCmd.

There are two new routines for controlling the volume
of system beep sounds: GetSysBeepVolume and
SetSysBeepVolume.

pascal OSErr GetSysBeepVolume(long *level)
= {0x203C,0x0224,0x0018,0xA800};
pascal OSErr SetSysBeepVolume(long level)
= {0x203C,0x0228,0x0018,0xA800};

SysBeep will create a sound channel adjusted to the
volume level last set by SetSysBeepVolume. This allows
for system beep sounds to play back at a lower level
than the rest of the machine, so you can hear a
QuickTime movie running at full volume but hear alert
beeps at a softer level.

The older routines GetSoundVol and SetSoundVol
were implemented as a Control call to the Sound
Driver. Although we’ve made every effort to continue
supporting them, they do not have the amount of
accuracy that’s available with two new Sound Manager
routines GetDefaultOutputVolume and
SetDefaultOutputVolume:

pascal OSErr GetDefaultOutputVolume(long *level)
= {0x203C,0x022C,0x0018,0xA800};
pascal OSErr SetDefaultOutputVolume(long level)
= {0x203C,0x0230,0x0018,0xA800};

The older routines used a 0-7 value range whereas the
new Sound Manager has a 0-0x0100 range. These new
routines use the right/left volume pair as described
above for volumeCmd. Each device has its own volume
level. If the user changes the selected default device
from the Sound control panel, that new device will use
its own volume level, originally set by a previous call to
SetDefaultOutputVolume.

Better stereo support. Previous versions of the
Sound Manager would drop the right channel of a
stereo sound when playing on monophonic hardware,

d e v e l o p Issue 16

36

SOMEWHERE IN QUICKTIME: WHAT’S NEW WITH SOUND MANAGER 3.0 December 1993

37

such as a Macintosh LC. Sound Manager 3.0 will
automatically convert stereo sounds to mono on these
machines without dropping the right channel, so you
can hear what you’ve been missing. Certain older
Macintosh models are also mono out of the internal
speaker, but stereo if headphones are plugged in. Sound
Manager 3.0 will automatically sense if a headphone is
plugged in and do the correct conversion so that both
the right and left channels of a stereo sound will always
be heard. The only exception is the Macintosh IIfx,
which requires you to manually select stereo or mono
in the new Sound control panel.

Default output device. Sound Manager 3.0 includes
the concept of a default output device, set by the user
in the new Sound control panel using the Sound Out
panel. All sounds will be sent to this device unless an
optional device was specified with SndNewChannel.
The default device is generally the built-in sound
hardware. The user can choose a new device (such as a
sound card the user installed), and all sounds will then
be routed to the chosen device. Adjusting the volume
with either the control panel or the older call to
SetSoundVol adjusts the volume of the default device.

Integration with QuickTime. QuickTime 1.6 is
aware of Sound Manager 3.0 and will take advantage of
its new features if it’s installed.

• Option-clicking the volume control in QuickTime’s
movie controller allows you to overdrive the volume
of the movie, giving a boost to low signals.

• The track balance of an audio track can now be
proportionally panned left and right, instead of just
full left or full right.

• QuickTime will query Sound Manager 3.0 for
information on new compression types, allowing it
to play compressed audio of any type. It will send
16-bit audio data directly to the Sound Manager, so
QuickTime movies can play CD-quality audio.

• QuickTime will use the Sound Manager to do rate
conversion and mix multiple sound tracks into one
sound for export as an AIFF file or 'snd ' resource.

Sound Driver compatibility. The old Sound Driver,
including the use of SoundBase, still works with Sound
Manager 3.0, but we don’t know how much longer this
will be true. This depends entirely on changes in the
hardware, not on the Sound Manager. If you’re
currently using the Sound Driver, Apple strongly
encourages you to use the Sound Manager instead.
Future changes in the sound architecture will be
transparent to your application if you use the Sound
Manager; they won’t be if you continue to use the
Sound Driver.

CPU loading. The Sound Manager released with
system software versions 6.0.7 and later contained
support for CPU loading. This approach was found not
to be very accurate, and is not supported in Sound
Manager 3.0. Sound Manager 3.0 will return the
constant 7% for any channel, no matter how it was
created and initialized. The number 7% was chosen
because some applications were expecting a nonzero
value, and 7% is about right for a Macintosh LC
playing a single 11 kHz mono sound. Since the Sound
Manager doesn’t have true CPU loading checks, it’s
possible to run out of real time and thus overload the
machine. Sound will then break up or even hang the
system. This problem will be addressed in a future
version of the Sound Manager.

Synth modes. Previously the Sound Manager
enforced a single synthesizer type to be allocated. Even
if a given synthesizer type allowed for multiple
channels, you still couldn’t mix the types. For example,
you couldn’t use the wave table mode while any other
mode was operating. This limitation has been
eliminated. Any and all three types of channels (square,
wave table, and sampled sound) can be opened and
used at the same time.

Square wave sounds. Unknown to most, the square
wave synthesizer never produced true square waves. It
was more like a modified sine wave. This has been
corrected. As a result you’ll notice that the Simple Beep
sounds different. It can now be heard as it was
originally designed to sound.

BUG FIXES AND FEATURE ENHANCEMENTS
The following is a brief summary of bugs that have
been fixed in Sound Manager 3.0. This is not a
complete list. Its intention is to point out major areas of
improvement that might affect a large number of
applications.

Play from disk
• Some asynchronous file I/O problems while

operating under the asynchronous SCSI Manager
have been fixed.

• Incorrect calculation of the audio selection for
anything other than noncompressed 8-bit sounds
has been fixed. This makes MACE and 16-bit data
work with selections.

• SndStartFilePlay can now handle 16-bit sounds and
any compressed format.

Sound Input Manager
• Sample rates greater than 32 kHz, which used to

create overflows of the Fixed type and produce
negative results, are now allowed.

• Record to disk works better with large file system
caches. Previously, during long disk writes to flush
the file system’s cache, incoming sound data would
occasionally be lost.

• When opening a sound input driver, the Sound
Input Manager now checks for errors returned from
the driver.

Sound Output Manager
• Sample rates greater than 32 kHz, which used to

create overflows of the Fixed type and produce
negative results, are now allowed.

• MoveHHi has been patched to avoid stack-into-
heap problems during sound interrupts.

• There are fewer clicks and pops, especially when
opening a sound channel.

• When playing multiple channels of sound using the
bufferCmd, the Sound Manager will no longer mix
in random amounts of silence, which caused sounds
to be discontinuous and get out of sync.

• Stopping a sound or starting a new one sometimes
caused the channel to fail to produce any new
sounds. This has been fixed.

• The ampCmd works for all types of sound channels
(square, wave table, and sampled).

• Loop points now work on any type of sound,
including 16-bit, stereo, and compressed sounds.

• Linear interpolation is now performed across
separate buffers, so you can play a set of sounds
without getting a click between sounds.

• Machines with the Macintosh II ROM (II, IIx, IIcx,
SE/30) could lose sound interrupts after playing for
long periods of time. This has been fixed.

SOUNDING OFF
Sound Manager 3.0 is a vast improvement over the old
Sound Manager and will enhance QuickTime
applications and other applications that use sound. So
check it out; from the system beep to sophisticated
movies, we’re sure you’ll notice the difference.

d e v e l o p Issue 16

Thanks to Ray Chiang and Bryan (“Beaker”) Ressler for reviewing
this column. Special thanks to Kip Olson.•

38

ADVANCED FEATURES
An important feature of Sound Manager 3.0 is the
ability to play through alternate sound output devices
installed in your system. These devices will be
available from third-party developers. The Sound
Manager can take advantage of specialized
hardware features such as sample rate conversion
and audio mixing. If such features are available in
the hardware (such as better sample rate conversion
done by a DSP), the Sound Manager will allow this
support to be passed off to the hardware for better
quality and efficiency.

Support for plug-in audio codecs is another
significant new feature. This allows the Sound
Manager to support new compression methods,
which become desirable now that we’re supporting
16-bit data.

PowerTalk is a new software product based on the Apple Open
Collaboration Environment (AOCE). By adding support for
PowerTalk to your application, you can begin to take advantage of the
wide range of services provided by the emerging world of collaborative
computing. This article touches on two areas of this environment —
electronic mail and digital signatures — and shows how they can be
incorporated into a typical application program.

AOCE consists of a set of human interface elements and programming interfaces that
make collaboration on an electronic document simpler and more secure; PowerTalk
is its client software component (and PowerShare its server software). Two elements
of PowerTalk are the Standard Mail Package’s mailer, which provides application-
level electronic mail support, and the DigiSign digital signature mechanism, which
safeguards documents from electronic tampering. Support for these features of
PowerTalk should not be limited to networking and communications applications.
The real power of PowerTalk lies in its ability to be built into a wide range of
productivity applications, from spreadsheets to presentation packages. Ultimately, the
Send and Sign menu items should be as pervasive as Print is today.

Using a small drawing application called CollaboDraw as our example, we’ll go step
by step through the process of adding support for the PowerTalk Standard Mail
Package and Digital Signature Package.

WHAT EVERY APPLICATION SHOULD KNOW ABOUT
POWERTALK
Before walking through the code, we’ll give a brief overview of the PowerTalk
features we’ll be adding to CollaboDraw. Very basic descriptions of the Standard Mail
Package and Digital Signature Package follow. Additional information on PowerTalk
can be found in the full PowerTalk API documentation.

BUILDING POWERTALK-SAVVY APPLICATIONS December 1993

39
STEVE FALKENBURG has been working in
Apple’s Developer Technical Support group ever
since he finished his last develop article nearly
three years ago. When not supporting PowerTalk
(and Macintosh on PowerPC), Steve can be found
hiking around California everywhere from Mount
Tamalpais to Big Basin. Some people think he’s
just searching for the perfect mountain vista, but

he’s also trying his best to keep pace with his
hiking partner, Nancy.•

STEVE FALKENBURG

BUILDING

POWERTALK-

SAVVY

APPLICATIONS

PUSHING THE STANDARD MAIL ENVELOPE
One of the unique features of PowerTalk is that it allows many individual applications
to add support for mailing documents directly, without going through an
intermediate e-mail application such as QuickMail or AppleLink. The Standard Mail
Package provides a consistent interface for mailing documents from one user to
another within applications, and includes all of the human interface elements needed
to address, send, and receive messages. The major component of the Standard Mail
Package is the mailer. The mailer is a window pane that’s at the top of all documents
that are mailed. The mailer window pane can be contracted to display only a single
line or expanded to allow manipulation of the mailer’s contents. Figure 1 shows a
CollaboDraw window containing an expanded mailer window pane.

The mailer can be thought of as a kind of extended mailing label. It contains not only
the names of the sender and receivers of the letter, but also a subject for the letter and
an area where files and folders can be enclosed.

Making an application mail-aware involves adding several standard menu items. In
CollaboDraw, there’s a separate Mail menu, but if this isn’t a viable option, it’s
acceptable to add these menu items to the File menu. The standard Mail menu is
shown in Figure 2. The items Reply to All, Open Next Letter, and Tag Letter are
optional and not required for minimal mailer support.

d e v e l o p Issue 16

40

Figure 1
CollaboDraw Window With a Mailer

When users want to send a document from CollaboDraw, their favorite PowerTalk-
savvy drawing program, they simply add a mailer to their drawing document,
transforming the document into a letter. They fill out the mailer and choose Send
from the Mail menu. The letter is then sent automatically to the recipient’s mailbox
in the Finder. Recipients of the document would, in turn, double-click the letter they
received in their PowerTalk Finder mailbox, which opens the letter in their copy of
CollaboDraw and displays it with the attached mailer. Once they were done
reviewing the letter, they could keep the mailer attached if they wanted to reply to the
letter, forward the letter, or keep the additional information the mailer provides. Or
they could select Remove Mailer from the Mail menu, which removes the mailer
from the window, transforming the letter back into a document. (The Remove Mailer
menu item replaces Add Mailer when there’s a mailer in the window.)

Much of the power of PowerTalk Standard Mail stems from the fact that all
PowerTalk-aware applications support an additional file type: the letter. In the
Finder, letters can appear in disk windows, in the PowerTalk Finder mailbox window,
and even on the desktop or in the trash. Users can treat these letters like standard
documents, dragging them between folders to copy them, dragging them to the trash
to erase them, and even double-clicking them or dragging them to an application to
open them. When integrating mailer support into an existing application, it’s best to
think of letters in much the same way — simply as an additional document type.
Using this strategy, we’ll see that adding a mailer requires little in the way of
application redesign.

UNLOCKING THE POWER OF DIGITAL SIGNATURES
Another very powerful PowerTalk feature that can be added to document-based
applications with a small amount of effort is digital signatures. PowerTalk’s DigiSign
digital signature technology allows you to apply a personal “signer” to an object or a
file before distribution. Other users can then verify the digital signature, which
guarantees the identity of the person who signed the object as well as ensuring that

BUILDING POWERTALK-SAVVY APPLICATIONS December 1993

41

Figure 2
The Mail Menu

the object has not been altered in any way. If the object is modified after being signed,
the signature verification will fail, which will indicate that either the object has
changed or the signature has been tampered with.

Digital signature support also requires adding several menu items. These items are
normally added to an application’s Edit menu, but because CollaboDraw has plenty
of space in the menu bar, they were separated into a Signatures menu (see Figure 3).

Within CollaboDraw, digital signature support is provided for the individual shapes
and groups of shapes. To sign a shape, the user simply selects the shape (or group)
and then chooses Sign Selected Shapes from the Signatures menu. A dialog box
appears, prompting for the user’s signer identification code. Once the user enters the
password protecting the signer, the selected shape is signed; a dashed rectangle
appears around the shape, with a small icon button (labeled with a pen) in the lower
right corner, indicating that the shape has been signed. (If you were adding digital
signature support to a text-based application, the dashed rectangle would surround
the signed text.) Figure 4 shows a signed shape.

To verify the integrity of the signature, a user could either click the pen button in the
corner of the shape or select the shape and choose Verify Selected Shapes from the

d e v e l o p Issue 16

DigiSign’s digital signature
implementation is based on a public
key/private key standard developed by RSA
Technologies, Inc. The technology underlying
digital signatures is beyond the scope of this
article; interested readers should refer to the
PowerTalk documentation for more information.•

42

Figure 3
The Signatures Menu

Figure 4
A Signed Shape

Signatures menu. If the signature verification is successful, the dialog box in Figure 5
is displayed, showing the identity of the signer.

The DigiSign Digital Signature Manager provides routines to display the dialog
boxes described above, as well as standard icons for use in constructing the pen icon
button. This makes adding digital signature support a relatively painless operation.

LETTER FORMATS
As was mentioned earlier, you can think of letters as another type of document that
your application needs to support. Before describing how to add support for this new
document type, we’ll spend some time discussing the format of PowerTalk letters.

Letters are a special kind of PowerTalk message. A letter is different from a message in
that it is sent from one user to another and is meant to be read by a human, whereas a
standard message is sent from one program to another and is meant to be read by a
program. Both share the same low-level format, consisting of a message header and a
series of message blocks.

The message header describes the message as a whole, including who the message is
from, who the message is to, the subject of the message, the date it was sent, and
whether the message is a letter. The header stores most of the information contained
in the mailer window pane shown in Figure 1, with the exception of enclosures.

Each message also contains message blocks, where the actual message data is stored.
Each block has a type and a creator, as well as message data and a length field.

BUILDING POWERTALK-SAVVY APPLICATIONS December 1993

43

Figure 5
Signature Verification Dialog Box

PowerTalk-defined message blocks store message enclosures, digital signatures, or
message content. In addition, application-specific message blocks can be stored here.

PowerTalk letters have a well-defined content format, which is made up of any
combination of three formats: AppleMail format, Snapshot format, and Native
Application format. Figure 6 shows a letter with all three of these content formats.

AppleMail format is one of the most commonly supported content types. It’s made up
of runs of text, styled text, PICTs, sounds, and QuickTime movies. In Figure 6, the
AppleMail block contains a small amount of styled text, followed by a picture,
followed by a sound in AIFF format. Using Standard Mail routines, applications can
easily get this content out of a letter and display it to the user. AppleMail format is

d e v e l o p Issue 16

44

Letter Header

Subject�
Sender�
Recipients�
Date Sent�
. . .

Letter Content

AppleMail block

Styled text

The quick�
brown fox�
jumped

Picture Sound

Snapshot block

The quick brown�
fox jumped

Native Application block

my document

Figure 6
PowerTalk Letter With Content Blocks

the native format for the AppleMail letter application, which ships with PowerTalk.
This means that if you send a letter from your mail-aware application and the
recipient doesn’t have a copy of that application, the recipient will still be able to read
the letter’s content if you included it in AppleMail format. In addition, PowerTalk
Mail Service Access Modules (MSAMs) will most likely use this format to convert
messages to other external mail systems.

Snapshot format consists simply of PICT snapshots of each page of your letter. It’s
similar to AppleMail format in that other letter applications or MSAMs are likely to
be able to read mail sent in this format. Snapshot format is provided for the
convenience of fax gateways, which can easily use it to image letters to fax machines,
and also to offer a WYSIWYG format that preserves the exact look of the original
document.

For applications that use QuickDraw GX, the graphics content for each page needs
to be translated into standard QuickDraw before it can be added to the Snapshot
content block. QuickDraw GX provides a set of routines for this purpose, contained
in PicturesAndPICTLibrary (and documented within that library’s source code on
the QuickDraw GX CD). These routines allow you to pass in a QuickDraw GX
picture and receive a QuickDraw PICT as a result. On a QuickDraw system, only the
QuickDraw data in this PICT will be drawn. When you pass the PICT into a
QuickDraw GX system and convert it with the GXConvertPICTToShape routine,
the routine will use the QuickDraw GX data rather than the QuickDraw data.

Finally, Native Application format is basically a copy of your original document’s disk
file put into the letter’s content area. This format, meant mostly for the private use of
your application, is useful for sending documents between two users who both have
the same PowerTalk-aware application. For example, if two users had CollaboDraw,
our mail-aware application, and one user sent the other a CollaboDraw letter that
included the document in Native Application format, the receiving application could
simply extract an FSSpec for the document file to interpret the data in that
document. This means you won’t lose information by translating your document into
another format, but can instead preserve your private document format.

BUILDING THE FRAMEWORK
It’s time to look at our sample application. For simplicity, PowerTalk support will be
added to a limited MacDraw®-like application, CollaboDraw, included on this issue’s
CD. In this section I briefly describe the basic application framework. Later sections
will show how I added support for the mailer and digital signatures.

The CollaboDraw application is based on a simplified object-oriented message-
passing framework. It’s simplified in that only windows are treated as objects, and the
code is actually written in C, not C++. The basis for this object scheme is a block
containing the window content, along with functions, called methods, for processing

BUILDING POWERTALK-SAVVY APPLICATIONS December 1993

45

events that occur in that window. The block is a handle that’s allocated dynamically
for each window and is stored in the window’s refCon field. In this way, I can remove
all of the multiwindow complexity from my event loop and simply send a message to
the window receiving the event, letting it take its own action.

I won’t go into the details of what the CollaboDraw framework does, as I want to
concentrate on the PowerTalk aspect of the sample. It’s important to recognize,
however, that CollaboDraw is a fairly typical drawing application. As you’ll see, it’s
certainly not necessary to redesign an application to add PowerTalk support.

ADDING STANDARD MAIL PACKAGE SUPPORT
A large part of the PowerTalk support code in CollaboDraw is for the mailer window
pane and for enabling the mailer to send and receive letters. I’ve outlined the
necessary code below, with samples interspersed showing proper use of the Standard
Mail Package calls.

INITIALIZING STANDARD MAIL
Before using PowerTalk in CollaboDraw, we first need to make sure that PowerTalk
services are available. This is done once when CollaboDraw launches. The following
routine checks whether PowerTalk is installed and available:

Boolean HasStandardMail(void)
{

OSErr err;
long response;

err = Gestalt(gestaltSMPMailerVersion, &response);
if ((err!=noErr) || (response==0))

return false;
return true;

}

The above routine determines whether PowerTalk and the mailer calls are available
by checking the gestaltSMPMailerVersion attribute. Since PowerTalk may not be
installed or may be disabled, quitting when PowerTalk is unavailable is incorrect
behavior. Instead, like CollaboDraw, the application should just disable or hide its
PowerTalk services, letting the user work with the rest of the application normally.

Once it’s known that PowerTalk is available and active, the next step to using
Standard Mail services in CollaboDraw is to initialize the Standard Mail Package.

OSErr InitStandardMail(void)
{

OSErr err;

d e v e l o p Issue 16

46

SetCursor(&gWatchCursor);
err = SMPInitMailer(kSMPVersion);
SetCursor(&qd.arrow);
return err;

}

SMPInitMailer takes the current version number of the Standard Mail Package as
input. Later versions of PowerTalk will continue to support older Standard Mail calls
by identifying the version the application was compiled with and mimicking those
interfaces.

OPENING AND CREATING A LETTER
Now that CollaboDraw has checked for and initialized the Standard Mail Package, it
can continue normally, entering its event loop. The next support code we’ll cover
deals with opening letters and creating new letters from existing drawings.

Typically, a user opens a letter in CollaboDraw, or any other mail-aware application,
by double-clicking a letter in the Finder. This, in turn, generates an Open Document
core Apple event, which we process in the normal way, with one change: instead of
getting the FSSpec out of the event, mail-aware applications need to check the type
of each item in the event, handling both FSSpecs and LetterSpecs. The LetterSpec is
necessary since PowerTalk letters, in addition to residing in the file system, can be
opened from the PowerTalk mailbox, which is not an HFS volume. A LetterSpec
uniquely identifies a letter inside the mailbox and can be passed via an Apple event to
the mail-aware application to open a letter. The following section of the Apple event
handler shows how to process both LetterSpecs and FSSpecs:

AECountItems(&docList, &itemsInList);
for (index=1; index<=itemsInList; index++) {

err = AESizeOfNthItem(&docList, index, &returnedType, &size);
if (err!=noErr)

return err;

if ((returnedType == typeLetterSpec) || (returnedType==typeFSS)) {
diskForm = false;
err = AEGetNthPtr(&docList, index, typeLetterSpec, &keywd,

&returnedType, (Ptr)&myLetterSpec, sizeof(LetterSpec),
&actualSize);

} else if (returnedType == typeAlias) {
diskForm = true;
err = AEGetNthPtr(&docList, index, typeFSS, &keywd, &returnedType,

(Ptr)&myFSS, sizeof(myFSS), &actualSize);
}
if (err!=noErr)

return err;

BUILDING POWERTALK-SAVVY APPLICATIONS December 1993

47

if ((returnedType==typeLetterSpec) || (returnedType==typeAlias) ||
(returnedType==typeFSS)) {

err = HandleOpenDoc(diskForm, &myFSS, &myLetterSpec);
if (err!=noErr)

return err;
}

}

To handle opening either LetterSpecs or FSSpecs as letters, PowerTalk defines a
variant structure called a LetterDescriptor that supports both formats. Once we have
a LetterDescriptor, we can use this information to open the letter. The mailer-
window method CollaboDraw uses to open letters is shown below.

void *DMailerLoadWindow(WindowPtr window, WInfoPtr infoPtr, void *data)
{

OSErr err;
LetterDescriptor *letterDesc;
Point upLeft = {0, 0};
FSSpec enclSpec;
Handle letterDescHndl;

. . .
letterDesc = (LetterDescriptor *)data;
. . .

err = SMPOpenLetter(letterDesc, window, upLeft, true,
gPreferences.expandOnOpen, nil, 0L); // Open the letter.

if (err!=noErr) {
DoError(err);
return nil;

}

err = SMPGetMainEnclosureFSSpec(window, &enclSpec);
if (err!=noErr) {

DoError(err);
return nil;

}
return DrawLoadWindow(window, infoPtr, &enclSpec);

}

After some housekeeping, which has been omitted for clarity, the load method given
above calls SMPOpenLetter to open the letter in an existing window. The window
was created earlier and was passed into the load method as input. SMPOpenLetter
registers this window with the Standard Mail Package and associates it with the letter
identified in the LetterDescriptor. SMPGetMainEnclosureFSSpec is then called to

d e v e l o p Issue 16

48

extract the native CollaboDraw document out of the letter, as described earlier in the
section “Letter Formats.” Finally, the standard CollaboDraw load method is called,
which reads the shapes from the document and draws them in the window.
CollaboDraw supports opening only letters that contain its native application format,
meaning that if the main enclosure block is not present, CollaboDraw doesn’t open
the letter. For an application to support opening letters without native application
content, translation into one of the other content types would be necessary.

In addition to opening existing letters, CollaboDraw allows users to add mailers to
existing documents, transforming these documents into letters. When a user chooses
the menu item Add Mailer, the following routine is called:

void MakeMailerFromDrawing(WindowPtr window)
{

WInfoPtr infoPtr;
char hState;
Point topLeft = {0, 0};
OSErr err;
short mWidth, contHeight, expHeight;

SetWindowKind(window, kDrawMailerWindow);
infoPtr = BeginWindowAccess(window, &hState);
. . .

// Add the mailer.
err = SMPNewMailer(window, topLeft, true, gPreferences.expandOnCreate,

kDefaultIdentity, nil, 0L);
if (err!=noErr)

DoError(err);

// Set the window indent fields.
err = SMPGetDimensions(&mWidth, &contHeight, &expHeight);
if (err!=noErr)

DoError(err);
if (infoPtr->otherFlags[kMailerExpanded])

infoPtr->topIndent = expHeight;
else

infoPtr->topIndent = contHeight;
MoveScrollBars(window);
EndWindowAccess(window, hState);

}

When a user chooses to turn a document into a letter, the MakeMailerFromDrawing
routine first changes the class of the window. This in turn causes the mailer-window
methods, instead of the draw-window methods, to be called in response to events.

BUILDING POWERTALK-SAVVY APPLICATIONS December 1993

49

Next, this routine adds a mailer to the window with an SMPNewMailer call. Like
SMPOpenLetter, this routine associates a particular window with a Standard Mail
letter. The kDefaultIdentity parameter to SMPNewMailer is defined as 0 and
indicates that the Standard Mail Package should track identities for the application.
Finally, the content area of the window is lowered to account for the added height of
the mailer. This height can be obtained with an SMPGetDimensions call, which
returns both the expanded and contracted heights of the mailer.

HANDLING EVENTS IN MAILER WINDOWS
Since letters are a new document type, new methods are needed to handle events in
letter windows. As we’ll see, however, we can leverage off of our window class
structure to minimize additional code.

When a window contains a mailer, PowerTalk handles a subset of events for that
window automatically. This includes mouse-down events, key-down events, update
events for the mailer window pane, activate events, deactivate events, and even null
events. The event-handling method for mailer windows is as follows:

void *DMailerEventWindow(WindowPtr window, WInfoPtr infoPtr, void *data)
{

SMPMailerResult whatHappened;
EventRecord *ev;
OSErr err;

ev = (EventRecord *)data;
err = SMPMailerEvent(ev, &whatHappened, nil, 0L);
if (err!=noErr)

DoError(err);
return (void *)(ProcessPowerTalkWhatHappened(window, infoPtr,

whatHappened));
}

So that PowerTalk will get a first look at the events, CollaboDraw calls
SMPMailerEvent with each event received via WaitNextEvent when the frontmost
window is a mailer window. This routine will return a value in the whatHappened
field indicating what action Standard Mail took and whether you still need to process
the event. Here’s the postprocessing code for these events:

Boolean ProcessPowerTalkWhatHappened(WindowPtr window, WInfoPtr
infoPtr, SMPMailerResult mailResult)

{
OSErr err;
SMPMailerState state;
long *lastChanged;

d e v e l o p Issue 16

50

// See if mailer has changed since we last changed the mailer menus.
err = SMPGetMailerState(window, &state);
if (err != noErr)

DoError(err);
lastChanged = (long *)&infoPtr->otherData[kLastChangedData];
if (*lastChanged != state.changeCount) {

*lastChanged = state.changeCount;
infoPtr->changed = true;
FixMailerMenus(window, infoPtr);

}
if ((mailResult & kSMPContractedMask) != 0)

HandleContract(window, infoPtr);

if ((mailResult & kSMPExpandedMask) != 0)
HandleExpand(window, infoPtr);

if (((mailResult & kSMPMailerBecomesTargetMask) != 0) ||
((mailResult & kSMPAppBecomesTargetMask) != 0))

FixMailerMenus(window, infoPtr);

// Check the menus for *every* event that the mailer handles.
// We may need to update the Undo item in the File menu.
if ((mailResult & kSMPAppShouldIgnoreEventMask) != 0)

FixMailerMenus(window, infoPtr);
if ((mailResult & kSMPAppMustHandleEventMask) != 0)

return false; // App must handle this event.
else return true; // Mailer handled this event completely.

}

Most of the postprocessing involves recalculating the menu items, since the mailer
may have affected which items should be active. In addition to this menu handling, if
the kSMPContracted or kSMPExpanded bit is set as a result of the event,
CollaboDraw calls its own private routine HandleExpand or HandleContract. In
turn, this routine calls SMPExpandOrContract to expand the mailer to its full size or
contract it to a single line.

Besides generic event processing, we need to add some minor modifications to the
mouse-click method for mailer windows. This is reasonably straightforward:

void *DMailerClickWindow(WindowPtr window, WInfoPtr infoPtr, void *data)
{

RgnHandle savedClip;
GrafPtr savePort;
void *returnVal;
OSErr err;
Boolean alreadyChanged;

BUILDING POWERTALK-SAVVY APPLICATIONS December 1993

51

// Make sure we can change the letter.
alreadyChanged = infoPtr->changed;
if (!alreadyChanged && (gCurrentShape!=kSelectShape)) {

err = SMPPrepareToChange(window);
if (err==userCanceledErr)

return nil;
}

// Since we're drawing a shape, clear any mailer undo buffer.
err = SMPClearUndo(window);
if (err!=noErr)

DoError(err);

// Remove mailer from clipping region.
GetPort(&savePort);
SetPort(window);
savedClip = NewRgn();
GetClip(savedClip);
ClipToDrawing(window, infoPtr);

// Call draw-window click method and maybe mark letter changed.
returnVal = DrawClickWindow(window, infoPtr, data);
if (!alreadyChanged && infoPtr->changed) {

err = SMPContentChanged(window);
if (err!=noErr)

DoError(err);
}

// Restore clipping region.
SetClip(savedClip);
DisposeRgn(savedClip);
SetPort(savePort);
return returnVal;

}

Before passing the click up to the draw-window method to draw or select shapes, we
need to notify PowerTalk that the letter content will be changing. To do this, we first
call SMPPrepareToChange. If the letter has been digitally signed as a whole, a dialog
box warning the user will appear. If the user cancels the change in response to the
dialog box (the user may not want to invalidate the signature), the routine exits. Next,
the SMPClearUndo routine clears any undo operations from the mailer undo buffer,
since only one undo can be pending for a single window. Then the draw area is
removed from the window’s clipping region, and the superclass click method is called.
Upon return, SMPContentChanged is called if the letter has changed. Finally, the
clipping region is restored and the method exits.

d e v e l o p Issue 16

52

As you may have noticed from the above discussion, the mailer keeps its own undo
buffer. This is because Standard Mail supports the Clipboard operations of Cut,
Copy, Paste, Clear, Select All, and Undo for the mailer portion of letters. The code
necessary to support the Clipboard is shown in the mailer-window Cut method:

void *DMailerCutWindow(WindowPtr window, WInfoPtr infoPtr, void *data)
{

#pragma unused (data)
OSErr err;
SMPMailerResult whatHappened;

err = SMPMailerEditCommand(window, kSMPCutCommand, &whatHappened);
if (err!=noErr)

DoError(err);

return (void *)(ProcessPowerTalkWhatHappened(window, infoPtr,
whatHappened));

}

As you can see, support for Clipboard operations involves just a single call to
SMPMailerEditCommand followed by a call to the CollaboDraw routine
ProcessPowerTalkWhatHappened. Similar methods are used for Copy, Paste, Clear,
Select All, and Undo.

SENDING A LETTER
Using the code discussed above, CollaboDraw can open and create letters, as well as
address them via the mailer. However, a mail-aware application needs to be able to
send letters as well. This section extracts the relevant pieces of the CollaboDraw
CommSendLetter routine to explain the process of sending a letter step by step.

The first step in sending a letter is to display the send options dialog box. This dialog
is very similar to the standard print dialog, providing the user with options as to how
the letter should be sent. CollaboDraw uses the following code to display this dialog:

GetResString(nativeFormat, kAppNameID, kAppName);
GetWTitle(window, docTitle);
nativeFormatArray[0] = (StringPtr)nativeFormat;
SetCursor(&qd.arrow);
err = SMPSendOptionsDialog(window, docTitle, nativeFormatArray, 1,

kSMPNativeMask | kSMPImageMask | kSMPStandardInterchangeMask,
&gPreferences.sendFormat, nil, 0L, &gPreferences.sendFormat,
&gPreferences.sendOptions);

if (err==userCanceledError)
return;

BUILDING POWERTALK-SAVVY APPLICATIONS December 1993

53

if (err!=noErr) {
DoError(err);
return;

}

The SMPSendOptionsDialog routine is built into the Standard Mail Package and
handles the task of prompting the user for send options. As input, this routine takes
the mailer window, the name of the document being mailed, a list of supported native
formats, a list of which send formats are supported, and several other send option
flags. This routine returns the name of the format that should be used to send the
letter, which is used in the next part of the send process:

SetCursor(&gWatchCursor);

// Use our creator if we have native format, else use AppleMail creator.
if ((gPreferences.sendFormat.whichFormats & kSMPNativeMask)!=0) {

letterCreator = kAppCreator;
letterType = kCDLtrMsgType;

}
else {

letterCreator = 'lap2';
letterType = kMailLtrMsgType;

}
err = SMPBeginSend(window, letterCreator, letterType,

&gPreferences.sendOptions, &mustAddContent);
if (err!=noErr) {

SetCursor(&qd.arrow);
EndWindowAccess(window, hState);
DoError(err);
return;

}
if (mustAddContent) {

if (err==noErr)
err = AddLetterBlocks(window, infoPtr, &gPreferences.sendFormat);

if (err!=noErr)
DoError(err);

}
err = SMPEndSend(window, (err==noErr));
if (err!=noErr)

DoError(err);

The above code first calls SMPBeginSend to start the send process. The send options
are passed as input to this routine, and relevant information is extracted to build the
header for the letter. This call also signals the Standard Mail Package that any
content-adding calls apply to the letter specified in the SMPBeginSend call.

d e v e l o p Issue 16

54

Next, the actual blocks of content are added to the letter with the CollaboDraw
AddLetterBlocks call, described below. Note that the content blocks are added only if
mustAddContent, which is returned from SMPBeginSend, is true. It isn’t necessary
to add content blocks if a letter is being forwarded unchanged.

Finally, the SMPEndSend call completes the send process. The second parameter to
SMPEndSend is true if the letter should be sent, false if it should be aborted.

The AddLetterBlocks routine described above adds the content in any combination
of the three formats described earlier in the section “Letter Formats.” It simply
checks the sendFormat parameter returned from the SMPSendOptions dialog box to
determine which formats to add. Native Application format is specified by
kSMPNativeMask, AppleMail format by kSMPStandardInterchangeMask, and
Snapshot format by kSMPImageMask.

Routines for adding content in the three formats follow.

Native Application format. The AddNativeContent routine adds content in
Native Application format to a letter.

OSErr AddNativeContent(WindowPtr window, WInfoPtr infoPtr,
StringPtr nativeFormatName)

{
OSErr err;
FSSpec fSpec;
OCECreatorType blockType;

// Save file temporarily.
err = SaveFileToTemp(infoPtr, &fSpec);
if (err!=noErr)

return err;
err = SMPAddMainEnclosure(window, &fSpec);
FSpDelete(&fSpec);

// Add native format name string block.
if (err==noErr) {

blockType.msgCreator = kMailAppleMailCreator;
blockType.msgType = kSMPNativeFormatName;
err = SMPAddBlock(window, &blockType, false, &nativeFormatName[1],

nativeFormatName[0], kMailFromStart,0);
}

return err;
}

BUILDING POWERTALK-SAVVY APPLICATIONS December 1993

55

Native content is stored and accessed via file system FSSpecs, so adding content in
this format requires that the document to be included first be saved in a temporary
file. The SaveFileToTemp routine, not shown here, does this. Once an FSSpec to the
document is available, SMPAddMainEnclosure is called and passed the letter window
and the FSSpec. Finally, once this routine completes, a block is added to indicate the
name of the native format used in the letter. Note that the native content for
CollaboDraw is simply a CollaboDraw drawing document. This document is
extracted when a letter is opened to get the list of shapes present in that letter.

AppleMail format. Content in AppleMail format is added with the following
routine:

OSErr AddAppleMailLetterContent(WindowPtr window, WInfoPtr infoPtr)
{

OSErr err;
PicHandle thePicture;

thePicture = DrawImageToPicture(window, infoPtr);
if (thePicture) {

HLock((Handle)thePicture);
err = SMPAddContent(window, kMailPictSegmentType, false,

*thePicture, GetHandleSize((Handle)thePicture), nil,
true, smRoman);

KillPicture(thePicture);
}
else

return kInternalError;

return err;
}

Content in AppleMail format consists of a series of blocks containing text, styled text,
pictures, sound, or movies. For CollaboDraw, we simply add a picture block
containing all of the shapes in the current document. To add this block, we first call
DrawImageToPicture, a CollaboDraw routine to allocate a PicHandle containing the
shapes. We then call SMPAddContent with this picture to add the block.

Snapshot format. The final content format supported by CollaboDraw is Snapshot
format, and the routines below add a Snapshot block to a letter.

OSErr AddLetterImage(WindowPtr window, WInfoPtr infoPtr)
{

return SMPImage(window, DrawImageProc, (long)infoPtr, false);
}

d e v e l o p Issue 16

56

pascal void DrawImageProc(long refCon, Boolean inColor)
{

#pragma unused (inColor)
OpenCPicParams newHeader;
OSErr err;
Point zeroPt = {0, 0};
WInfoPtr infoPtr;
TPrInfo prInfo;

infoPtr = (WInfoPtr)refCon;
prInfo = (**(infoPtr->printRecord)).prInfo;

newHeader.srcRect = prInfo.rPage;
newHeader.hRes = FixRatio(prInfo.iHRes, 1);
newHeader.vRes = FixRatio(prInfo.iVRes, 1);
newHeader.version = -2;
newHeader.reserved1 = 0;
newHeader.reserved2 = 0L;

err = SMPNewPage(&newHeader);
if (err!=noErr)

DoError(err);
DrawAllShapes(infoPtr, zeroPt);

}

The SMPImage call takes care of including these image blocks for a letter. This
routine is given the letter window and a draw-image routine, as well as a generic data
pointer as input. The draw-image routine for CollaboDraw is called DrawImageProc;
it accepts the window info block in the data pointer field. This callback first sets up
the resolution and size of the page by extracting this information from the print
record for the window. Next, SMPNewPage is called to set up the port into which
the shapes will be imaged. Finally, the shapes are drawn into the page with the
CollaboDraw routine DrawAllShapes, adding the final content blocks to the letter.

REPLYING TO OR FORWARDING A LETTER
Once a letter has been opened within CollaboDraw, several options are available. If
additional correspondence is necessary, the letter can be replied to or forwarded. The
mailer can also be removed, which turns the letter back into a document. This
operation is very similar to closing a letter and is described in the next section. The
following code is used to reply to a letter:

replyWindow = MakeWindow(kDrawMailerWindow, &newWindRect, newTitle,
false);

err = SMPMailerReply(window, replyWindow, replyToAll, topLeft, true, true,
kDefaultIdentity, nil, 0L);

BUILDING POWERTALK-SAVVY APPLICATIONS December 1993

57

if (err!=noErr)
DoError(err);

ShowWindow(replyWindow);

The first step in replying to a letter is to make a new window in which the reply letter
will be created. The CollaboDraw routine MakeWindow is called to create a new
window of the mailer class. Once this window has been created, SMPMailerReply can
be called, which takes the existing letter window, the new letter window, and several
other parameters as input. As a result of the call, the reply letter is created and
automatically addressed to the originator of the original message.

The mail forwarding process does not involve the creation of a new letter window.
Instead, another mailer is added to the existing letter, and the mailers can be viewed
by clicking a dog-ear in the corner of the mailer window pane. The code to forward a
letter is as follows:

void CommForward(WindowPtr window)
{

WInfoPtr infoPtr;
char hState;
OSErr err;

infoPtr = BeginWindowAccess(window, &hState);
HandleExpand(window, infoPtr); // Expand window before doing forward.

err = SMPMailerForward(window, kDefaultIdentity);
if (err!=noErr)

DoError(err);

infoPtr->saved = false;
DMailerActivateWindow(window, infoPtr, nil);
EndWindowAccess(window, hState);

}

To forward a letter, the mailer in the window is first expanded. This allows the new
mailer to be fully visible when it’s created. The CollaboDraw routine HandleExpand
calls SMPExpandOrContract to expand the mailer. Next, SMPMailerForward
actually adds the mailer to the letter. Once this is done, the state of the document is
changed to indicate that the letter is now an outgoing letter instead of a received
letter. Finally, the activate-event method is called on the window to readjust the menu
items that relate to sending mail.

CLOSING A LETTER
When it’s time to close a letter window, there’s a short process that must be adhered
to. First, the optional close options dialog box can be displayed. This dialog gives the

d e v e l o p Issue 16

58

user the option of deleting the letter or tagging it before it’s closed. CollaboDraw
uses the following code to display this dialog:

if (gPreferences.closeOptionsDialog) {
SetCursor(&qd.arrow);
err = SMPCloseOptionsDialog(window, &gPreferences.closeOptions);
if (err!=noErr)

returnValue = false;
}

Since the dialog box is optional, CollaboDraw has a preference variable that tracks
whether the dialog should be displayed. If it should be displayed, this is done by
calling SMPCloseOptionsDialog with the letter window and the close options to use
when closing the letter. Note that the close options are also stored in the preferences,
to allow the dialog to default to the close options last used.

The next step in the close process is to make sure that there are no open enclosures
and that there are no Finder copies in progress that would prevent the closure of the
letter. The following code excerpt checks for this:

err = SMPPrepareToClose(window);
if (err==kSMPHasOpenAttachments) {

SetCursor(&qd.arrow);
StopAlert(kHasOpenAttachID, nil);
returnValue = false;

}
else if (err==kSMPCopyInProgress) {

SetCursor(&qd.arrow);
StopAlert(kCopyInProgress, nil);
returnValue = false;

}

SMPPrepareToClose returns kSMPHasOpenAttachments if there are open
enclosures and kSMPCopyInProgress if the user is in the process of copying a
document to or from the enclosures list. In response, CollaboDraw presents an alert
to the user and will not allow the letter to be closed.

The final steps in closing the letter are to remove the mailer from the window and
close the window. Here’s the code to do this removal:

err = SMPDisposeMailer(window, closeOptions);
if (err!=noErr)

DoError(err);
return DrawDestroyWindow(window, infoPtr, data);

BUILDING POWERTALK-SAVVY APPLICATIONS December 1993

59

The PowerTalk routine SMPDisposeMailer removes the mailer pane from the
window passed as input and releases all memory associated with the letter window.
Once this is done, CollaboDraw calls the draw-window method for closing a window,
which takes care of disposing of the rest of the window and document structures.

ADDING DIGITAL SIGNATURE PACKAGE SUPPORT
Digital signature services can also be incorporated into applications, providing a level
of security not previously possible with personal computers. CollaboDraw allows
signing and verifying within documents at a shape level. Individual shapes can be
selected and signed, and the signatures are carried around with the shapes when the
documents are saved or sent to other users. In addition to this shape-level digital
signature support, the Standard Mail Package provides support for signing letters as a
whole. By supporting the mailer, we automatically get this letter-based digital
signature functionality.

SIGNATURE STORAGE FOR DOCUMENTS
Since digital signatures are quite large in size (they can be several kilobytes each),
I elected not to store the signatures in memory with the document shapes. Instead,
I store the signatures in the resource fork of each document file. The signature
storage strategy is not covered in depth in the code below, but you can refer to the
digital signature code within CollaboDraw to see how it’s done.

SIGNING A SHAPE
To sign a shape or set of shapes within CollaboDraw, the user must select the shapes
and choose the Sign Selected Shapes menu item. In response to this, the following
code is called:

void CommSign(WindowPtr window)
{

WInfoPtr infoPtr;
char hState;
ShapeListPtr shapeList;
SIGContextPtr sigContext;
Size sigSize;
OSErr err;

if (!IsAppWindow(window))
return;

err = SIGNewContext(&sigContext);
if (err==noErr) {

infoPtr = BeginWindowAccess(window, &hState);
err = SIGSignPrepare(sigContext, nil, nil, &sigSize);

d e v e l o p Issue 16

This article hasn’t covered a few other
PowerTalk features that CollaboDraw takes
advantage of. Among these are printing, tagging
letters, and opening the next letter from the
mailbox. Refer to the sample code included on
this issue’s CD for implementation details of these
features.•

60

for (shapeList=infoPtr->data; (err==noErr) && (shapeList!=nil);
shapeList=shapeList->next) {

if (shapeList->selected) {
err = SignShape(infoPtr, sigContext, shapeList, sigSize);
InvalShapeArea(window, infoPtr, shapeList); // Redraw shape.

}
}

SIGDisposeContext(sigContext);
DSIGSetupSignMenu(window, infoPtr);
EndWindowAccess(window, hState);

}

if (err!=noErr)
DoError(err);

}

The first important call in the above code is SIGNewContext. This routine creates a
digital signature context, which is required for each signing or verification session.
Creating a context allocates the resources needed to perform signing and verification
of objects.

Next, SIGSignPrepare is called. This routine prompts the user to enter a signer
identification code, allowing the signer to be applied to the selected objects.

Now that the signature has been set up, each shape can be signed individually with a
call to the CollaboDraw routine SignShape. Once each shape has been signed,
SIGDisposeContext can be called to end the signing session.

The SignShape routine carries out the task of producing and storing a signature for
each shape to be signed, as follows:

OSErr SignShape(WInfoPtr infoPtr, SIGContextPtr sigContext,
ShapeListPtr theShape, Size sigSize)

{
OSErr err;
Handle signature;
short resID;
short saveResFile;
DigSigListPtr theSig;

// Allocate storage for the signature.
signature = NewHandleChk(sigSize);
if (MemError()!=noErr)

return MemError();

BUILDING POWERTALK-SAVVY APPLICATIONS December 1993

61

// Process the data for the signature.
err = ProcessShapeData(sigContext, theShape);
if (err!=noErr) {

DisposHandleChk(signature);
return err;

}

// Create the signature.
HLock(signature);
err = SIGSign(sigContext, (SIGSignaturePtr)*signature, nil);
HUnlock(signature);
if (err!=noErr)

return err;

// Add the signature to the shape.
saveResFile = CurResFile();
UseResFile(gDSTempRefNum);
resID = Unique1ID(kSignatureResType);
AddResource(signature, kSignatureResType, resID, "\p");

. . .
}

Before a shape can be signed, memory must first be allocated to hold the signature
for the shape. The size of the block required to hold the signature is returned by
SIGSignPrepare, and this value is passed in as the sigSize parameter to the SignShape
routine.

Once the signature storage has been allocated, all of the data to be signed in the
shape must be handed to the Digital Signature Manager in a byte stream. This
process is required to generate a unique number identifying the contents of the
document. The CollaboDraw routine ProcessShapeData handles this data streaming.
Within ProcessShapeData, the Digital Signature Manager routine SIGProcessData is
called to stream the data.

err = SIGProcessData(sigContext, theShape, kShapeSignLength);

Once the unique number, also known as a digest, has been created, the signer is then
applied to that number to create a signature with the call SIGSign. The signature is
stored in the handle allocated at the start of the routine and is then added to the
resource fork of the document file.

VERIFYING A SHAPE
Once a shape has been signed, it can later be verified from within CollaboDraw. The
high-level CollaboDraw routine CommVerify is called in response to the Verify

d e v e l o p Issue 16

62

Selected Shapes menu item. This routine is almost identical to the CommSign
routine given earlier, so it isn’t included here. It simply calls SIGNewContext and
then repeatedly calls the CollaboDraw routine VerifyShape. Once each shape has
been verified, CommVerify calls SIGDisposeContext.

The VerifyShape routine is analogous to the SignShape routine. Instead of adding a
signature to a shape, this routine retrieves the signature for a shape, verifies the
signature, and displays information about the signer.

signatureSize = SizeResource(sigHandle);
HLock(sigHandle);
err = SIGVerifyPrepare(sigContext, (SIGSignaturePtr)*sigHandle,

signatureSize, nil);
if (err==noErr) {

// Process the data for the signature.
err = ProcessShapeData(sigContext, theShape);
if (err==noErr) {

err = SIGVerify(sigContext);
if (err==noErr)

err = SIGShowSigner(sigContext, nil); // Show signer info.
}

}

The section of VerifyShape shown above comes just after the signature is extracted
from the resource fork of the document. Once the signature is in sigHandle,
SIGVerifyPrepare is called. This routine prepares the Digital Signature Manager to
receive data via the SIGProcessData call. Once this data has been streamed to create
a digest, the digest is compared to the one stored in the signature with the SIGVerify
routine. This routine will return noErr if the two digests match. When this occurs, a
SIGShowSigner call will present a dialog box displaying information about the signer
of the shape.

EXPLORING OTHER POWERTALK FEATURES
This discussion of the PowerTalk Standard Mail and Digital Signature packages
doesn’t even begin to touch on the many features available to developers through
PowerTalk. You can take advantage of InterProgram Messaging for store and forward
application communication, use the Standard Catalog interfaces for picking items out
of catalogs, write custom catalog templates, use PowerTalk authentication services, or
build service access modules to interface to alternate message delivery or directory
catalog services. By adding standard mail and digital signature support to
CollaboDraw, we’ve enhanced the usefulness of our simple drawing program in many
ways. When combined with other applications that support PowerTalk collaborative
services, communication and productivity within a workgroup can be taken to new
levels.

BUILDING POWERTALK-SAVVY APPLICATIONS December 1993

63
THANKS TO OUR TECHNICAL REVIEWERS
Godfrey DiGiorgi, John Evans, Steve Fisher,
Martin Minow•

I’ve just returned from a really long vacation. For six
weeks I didn’t touch a single computer. (Well, that’s not
strictly true; I did stroke many a touch-screen on
information kiosks or ticket machines, but you get the
idea.) The first time after my return that I grabbed the
mouse of a live Macintosh there was a brief instant —
just a single, sharp, fleeting moment — when I felt the
magic again.

Can you remember the first time you got to play with a
working Macintosh? Were you amazed — I mean really
astounded — as I was? Did you: Peek under the mouse
to see what was there? Click and drag all over the place
just to watch things happen? Drag a file into a folder
and then immediately open the folder to see if the file
was really there? Create a nest of new folders deep
enough to get bored, just to see if it would work? Try
every combination of bold, outline, shadow, italic, and
underline?

I’m betting that the fundamental reason you’re
interested in programming the Macintosh is because of
that magic. I know this isn’t true for everyone out there
(some of you — gasp — probably do it for the money!),
but I suspect it’s true for most of you, or at least it was
when you started. Maybe you wanted to make a little of
that magic yourself. Maybe you just wanted to peek
behind the curtain to see how it was done. Or maybe
you wanted (as I did) to find out where the magic came
from, to hunt down its source. One of the problems

with that kind of techno-magic, though, is that the
more you learn about it and the more you use it, the
more it fades away.

So here’s the next question: When was the last time you
felt the magic? If you’re like me, the magic of the
Macintosh interface has been completely subsumed by
everyday familiarity. It’s become a part of everyday life,
like matches, or light bulbs, or TV. I’m sure that when
matches were still new, striking one and making fire
was an amazing thing. I’ll bet people used up whole
boxes of matches, striking them one by one, just to see
it happen. But matches are no longer special; their
magic has become cheap and commonplace and has
therefore ceased to be magic at all. People don’t light
matches for the thrill anymore (pyromaniacs excepted);
they use them to light something else — matches have
become a means, not an end. Similarly, we don’t marvel
anymore at the fact that just by flipping a switch we can
make an entire room as bright as day, banishing forever
the night; we think instead about what we want to do
tonight. We don’t marvel anymore that moving
pictures and sounds can be plucked out of the air (or
out of a cable, these days) and made to show up on a
box in our homes; we think instead about what’s on.

This is probably a necessary and inevitable step in a
culture’s acceptance and assimilation of a new
technology: people stop marveling at the fact that they
have a new ability, and begin simply to use that ability.
That period when new technologies still feel like magic
is also the period when a culture is adjusting itself to
the technology and being transformed by it. By the
time a new technology has been fully integrated into
society, it’s taken for granted, the magic exhausted and
the transformation complete.

So how does this apply to computers? Is the magic
from computers all used up? Have they been fully
assimilated by human society and finished their
transformational work? Are they now taken for granted
and just a part of the background noise of modern life?
In the words of my mom when I asked her (at age 11) if
I could get a tattoo on my chest: Hell, no.

d e v e l o p Issue 16

DAVE JOHNSON wants to know: is he the only one who does
watch-cursor push-ups during time-consuming Macintosh
operations? First you find a horizontal black line (they’re
everywhere: window frames, folder icons, buttons, even the
progress bar itself), then you put the watch cursor just above it, so
that the bottom edge of the watchband overlaps the horizontal line
by one pixel. Now carefully move the cursor up and down by one
pixel, and there you have it — watch-cursor push-ups! You can do
pull-ups too! Amaze your friends!•

Galileo’s finger is preserved in a bottle, just like a holy relic, in
a science museum in Florence, Italy. I saw it myself. Really.•

64

THE VETERAN
NEOPHYTE

ABRACADABRA

DAVE JOHNSON

THE VETERAN NEOPHYTE December 1993

65

Particular manifestations of computers have become a
part of daily life for many people: cash machines, video
games, bar code readers at markets, and so on. These
are computers, but they’re masked — the true nature of
the machine is obscured by a task-specific facade. Even
the relatively small number of people who use “real”
computers in their everyday lives use them for only a
few tasks (word processing, graphics editing, number
crunching, and game playing are common — somehow
recipe filing never caught on). So they’re really just
using two or three specific, task-oriented applications.
And yes, these particular uses of computers have
become mundane to those who use them: writers use
word processors without blinking, accountants use
spreadsheets without a hint of awe.

But I’m not sure whether computers as computers can
ever be fully integrated into society. They’re too
slippery, too prolific, too, well, protean. (Protean: able
to take on new forms easily, after Proteus, a sea god in
Greek mythology who could change his shape at will.)
Just when we get used to them in one guise, they blur
and shift and suddenly they’re something else,
something new, something magical all over again.

And that’s where programmers come in. We’re the ones
who get to cause that shift. We’re the ones who get to
craft new faces for the machine, like mad, happy mask
makers. We’re the ones that get to make the magic. We
get closer than anyone else to tasting the real flavor of
computers — their malleability and chameleon-like
talent for taking on new forms — but it’s still only a
taste, and the price is outrageous. Making magic turns
out to be nothing but hard, grungy work. Being a
wizard looks great from the outside, but there’s a
downside most people don’t see: to create the magic,
you need to spend inordinately huge amounts of time
doing completely unmagical things, and even worse,
you have to give up experiencing the magic for
yourself. It’s like sleight of hand: it looks like magic to
the audience, but to the conjurer it’s not magic at all.
Learning that kind of magic means spending countless

hours alone in front of a mirror, practicing the same
moves over and over and over until they’re automatic
and can be made without even thinking. By that time
any residual magic has been completely wrung out of it.

Like brain researchers who set off to find the source of
human consciousness and end up studying the function
of some enzyme in sea slugs, programmers often set off
to find the source of the magic and end up writing
device drivers. There’s a valuable lesson there, one that
took me years to learn: the magic isn’t part of the
machine at all. You can follow the computer’s workings
right down to the bottom, and what you find is a
boringly predictable mechanism as devoid of magic as a
meat grinder. It’s like trying to find musical beauty by
closely examining a CD: all you can find is a series of
rough pits in a reflective surface, and there’s no
indication whatever that those pits could contain
something sublime.

So where does the magic come from? The answer’s
obvious, once you stop to think about it: it comes from
people. It turns out that computers don’t possess any
magic of their own, they’re just very, very good
containers for human magic. The computer is simply a
shell, albeit one that’s infinitely malleable. The people
who shape the shell, who tell the computer what to be,
are the real source of the magic. I guess I should’ve
known.

Thanks to Jeff Barbose, Michael Greenspon, Bill Guschwan,
Mark (“The Red”) Harlan, Bo3b Johnson, Lisa Jongewaard, and
Ned van Alstyne for their always enlightening review comments.•

Dave welcomes feedback on his musings. He can be reached
at JOHNSON.DK on AppleLink, dkj@apple.com on the Internet, or
75300,715 on CompuServe.•

RECOMMENDED READING
• Man Meets Dog by Konrad Lorenz (Penguin

Books, 1964).

• The Phantom Tollbooth by Norton Juster (Random
House, 1964).

• Let It Rot! by Stu Campbell (Storey Publishing,
1975).

Some users navigate Standard File dialogs with no problem, but many
others find them tedious or even confusing. Users want to find and
organize their files without having to learn the intricacies of the
hierarchical file system and Standard File dialogs. With applications
that use the Drag Manager, users will be able to work with files the
way they expect: by dragging files from the Finder into an application
window. This article and the accompanying sample program show how
easily your application can provide this valuable feature.

The Drag Manager is so new you won’t find it in Inside Macintosh yet, but if your
application works with files, you’ll want to learn more about what it can do for you.
This new Macintosh Toolbox manager lets users drag and drop data (such as text and
pictures) between windows in an application and between different applications. It
also allows users to drag document icons to and from the Finder.

Rather than describing the Drag Manager in depth, this article and its sample
application focus on using the Drag Manager to drag picture files (files of type
'PICT') from the Finder into an application. The techniques used by the sample
application can easily be generalized to cover other cases.

The Drag Manager is currently packaged as a system software extension that you can
license to include with your products. It requires System 7, and to take advantage of
the Finder dragging described in this article you need Finder version 7.1.1 or later.
You can order the full Macintosh Drag and Drop Developer’s Kit from APDA. The
Drag Manager will also be included in future system software releases.

Along with the sample application, called SimpleDrag, this issue’s CD contains the
programmer’s guide for the Drag Manager as well as the Drag and Drop Human
Interface Guidelines. After you’ve read this article and looked at the SimpleDrag code,
you should read these two documents to get a deeper understanding of the Drag
Manager. SimpleDrag not only allows picture files to be dragged from the Finder but

d e v e l o p Issue 16

DAVE EVANS can often be found coding for the
User Experience team of the AppleSoft OS
Platform Group. Although some still think he
moonlights on the set of the TV show “Beverly
Hills 90210,” Dave actually finds entertainment
by throwing himself off cliffs and cornices, plane
struts and buildings (the last much to Apple
Security’s chagrin). Dave does admit, though, to
being deathly afraid of bungee jumps!•

GREG ROBBINS has been insisting for three
years that he doesn’t work for Apple. But he has
worked as a consultant to the Developer Technical
Support and Macintosh System Software groups
since 1991, having given up an earlier passion
for neural networks to hack the Mac. Greg
spends his off hours in the mountains of
California, looking for people even more lost than
he is.•

66

DAVE EVANS AND
GREG ROBBINS

DRAG AND

DROP FROM

THE FINDER

also lets PICT data be dragged from one application window into another; for the
full story on this, look at the code and documentation on the CD.

THE INTERFACE: IT’S NOT SUCH A DRAG
Dragging is a skill that every Macintosh user has mastered. It provides a quick, simple
alternative to commands as a way of performing common operations such as moving
or deleting files. This use of dragging gives users a sense of control because they can
manipulate objects directly with excellent visual feedback. And it’s faster and more
intuitive than commands because it’s not hidden in a menu.

Since all Macintosh users use dragging to arrange and manipulate files in the Finder,
it only makes sense that they should be able to drag files from the Finder into an
application window. But until now, the only way to select and specify files within an
application has been with Standard File dialogs. Now you can use the Drag Manager
to provide an alternate, more intuitive way to work with files: the user can open a file
in your application simply by dragging the file’s icon into an application window.

FIRST, A FEW TERMS
Before we look at the sample code, we need to clarify a few terms that the Drag
manager introduces: drag items, drag flavors, drag handlers, senders, and receivers.

The objects that a user drags are called drag items. For example, a user who selects
and drags three files is dragging three different drag items.

Drag flavors describe the kind of data that a drag item contains. When a user drags an
item to an application window, the receiving application must determine whether it
can accept the data in the drag item. Each item can have more than one flavor,
because data can usually be described in more than one format or data type. For
example, you can describe text data as ASCII data, styled text data, or RTF
interchange format; if a program can’t accept the more elaborate RTF format, it may
be able to use the plain ASCII text. The Drag Manager uses a four-character ResType
to identify a flavor. In our sample application, we use only two drag flavors: one that
identifies files dragged from the Finder, and another that identifies PICT data
dragged from an application window.

The Drag Manager uses an application’s drag handlers to provide dragging feedback
and to complete a drag. There are two types of drag handlers: tracking handlers and
receive handlers. A tracking handler is called while an item is being dragged over an
application’s windows; a receive handler is called when the user releases the mouse
button to drop the item in a window. Each window has a tracking handler and receive
handler installed for it, though several windows may use the same handler. When you
initialize your application or open a new window, you call the Drag Manager to
install your drag handler callback routines.

DRAG AND DROP FROM THE FINDER December 1993

67

Because the Drag Manager provides interapplication drag and drop services, it’s
important to know where the drag starts and where it ends. The application in which
the drag starts is called the sender. Any application that the item is dragged over is a
potential receiver of the drag; the application it’s dropped into is the actual receiver.
The sender and receiver might be the same application — but with interapplication
dragging, another application could be the receiver of the drag.

NOW, ON TO THE CODE
With the lingo out of the way, let’s look at our SimpleDrag application. This
application displays pictures in its windows. One way the user specifies a picture file
to be displayed is by choosing the application’s Open command and then selecting a
file from the Standard File dialog. But since the application uses the Drag Manager,
the user can also drag a picture file from the Finder into a SimpleDrag window.
PICT data displayed in a SimpleDrag window can even be dragged into another
SimpleDrag window.

First let’s consider the code for the Open command case. When the user chooses the
Open command, SimpleDrag calls the Standard File Package to present a dialog that
lists the picture files. Once the user has selected a file, SimpleDrag calls its
SetWindowPictureFromFile routine to read the file and display it.

To support dragging files from the Finder into the application, SimpleDrag installs
two drag handlers for each new window. While the user drags a PICT drag item over
a SimpleDrag window, the tracking handler provides visual feedback. If the user
drops the item in a SimpleDrag window, the Drag Manager calls the receive handler
to read and display the PICT information, which may be not only a picture file but
also PICT data dragged from another window; the receive handler calls its
SetWindowPictureFromFile routine if the drag item is a picture file (just as when the
user chooses Open from the File menu).

The following routine installs the tracking and receive handlers:

OSErr InstallDragHandlers(WindowPtr theWindow)
{

OSErr retCode;

retCode = InstallTrackingHandler(MyTrackingHandler, theWindow, nil);
if (retCode == noErr) {

retCode = InstallReceiveHandler(MyReceiveHandler, theWindow, nil);
if (retCode != noErr)

(void) RemoveTrackingHandler(MyTrackingHandler, theWindow);
}
return retCode;

}

d e v e l o p Issue 16

Before you call any Drag Manager
routines, make sure that the Drag Manager is
available by calling Gestalt with the selector
gestaltDragMgrAttr and checking the
gestaltDragMgrPresent bit of the response.•

68

That’s all you need to do to set up tracking and receive handlers for the given
window. You can also install a default handler, to be used for any window that you
don’t explicitly install a handler for, by passing nil as the window pointer to the install
routine.

TRACKING THE DRAG
Now let’s see what happens while the user drags an item around. Our main objective
is to indicate, with visual feedback, where it’s OK to drop the item. SimpleDrag
provides the standard feedback highlighting for its type of windows and data — a thin
frame highlight within the content region of the window. This highlight signals the
user that the item can be dropped there.

While the user drags an item (or items) over one of the application’s windows, the
mouse movement determines what messages the tracking handler receives, as follows:

• The tracking handler receives an EnterHandler message the first
time it’s called (that is, the first time the drag enters a window that
uses that handler). You can allocate memory or, as in our
application, check whether you can receive the drag.

• The handler receives an EnterWindow message when the drag
enters a window. This message is distinct from EnterHandler
because you may be using the same handler for more than one
window, in which case there might be many EnterWindow
messages between an EnterHandler/LeaveHandler pair.

• While the user drags within a window, the handler receives
multiple InWindow messages.

• When the drag leaves the window, the handler receives a
LeaveWindow message.

• When the user drags to a window that uses a different tracking
handler, the handler receives a LeaveHandler message.

The tracking handler for SimpleDrag is as follows:

pascal OSErr MyTrackingHandler(DragTrackingMessage theMessage,
WindowPtr theWindow, void *handlerRefCon, DragReference theDrag)

{
#pragma unused (handlerRefCon)

RgnHandle tempRgn;
Boolean mouseInContentFlag;
OSErr retCode;

retCode = noErr;

DRAG AND DROP FROM THE FINDER December 1993

69

switch (theMessage) {
case dragTrackingEnterHandler:

// Determine whether the drag item is acceptable and store
// that flag in the globals, plus reset the highlighted global
// flag.
gDragHandlerGlobals.acceptableDragFlag =

DragItemsAreAcceptable(theDrag);
gDragHandlerGlobals.windowIsHilightedFlag = false;
break;

case dragTrackingEnterWindow:
case dragTrackingInWindow:
case dragTrackingLeaveWindow:

// Highlighting of the window during a drag is done here. Do it
// only if we can accept this item and we're not in the source
// window.
if (gDragHandlerGlobals.acceptableDragFlag &&

DragIsNotInSourceWindow(theDrag)) {
if (theMessage == dragTrackingLeaveWindow)

mouseInContentFlag = false;
else

mouseInContentFlag = MouseIsInContentRgn(theDrag,
theWindow);

if (mouseInContentFlag &&
!gDragHandlerGlobals.windowIsHilightedFlag) {

ClipRect(&theWindow->portRect);
tempRgn = NewRgn();
RectRgn(tempRgn, &theWindow->portRect);
if (ShowDragHilite(theDrag, tempRgn, true) == noErr)

gDragHandlerGlobals.windowIsHilightedFlag = true;
DisposeRgn(tempRgn);

}
else if (!mouseInContentFlag &&

gDragHandlerGlobals.windowIsHilightedFlag) {
ClipRect(&theWindow->portRect);
if (HideDragHilite(theDrag) == noErr)

gDragHandlerGlobals.windowIsHilightedFlag = false;
}

}
break;

case dragTrackingLeaveHandler:
// Do nothing for the LeaveHandler message.
break;

d e v e l o p Issue 16

70

default:
// Let the Drag Manager know we didn't recognize the message.
retCode = paramErr;

}
return retCode;

}

To give the user visual feedback, the tracking handler uses the Drag Manager’s
ShowDragHilite routine. This routine takes a region to be highlighted and draws an
inset or outset frame of that region. Here we use it to highlight inside the content
region of the window, but you can also use it to highlight panes within a window or
any arbitrary region that accepts a drag. We later call HideDragHilite when the drag
leaves the content region of our window.

As you can see in the above code, there are several conditions to check for before
calling the highlight routines. The DragItemsAreAcceptable routine, which the
tracking handler calls when it gets an EnterHandler message, checks that only one
item is being dragged (a limitation of our simple example) and that the drag item is
PICT data or a picture file.

Boolean DragItemsAreAcceptable(DragReference theDrag)
{

OSErr retCode;
unsigned short totalItems;
ItemReference itemRef;
Boolean acceptableFlag;
HFSFlavor currHFSFlavor;
Size flavorDataSize;
FlavorFlags currFlavorFlags;

acceptableFlag = false;

// This application can only accept the drag of a single item.
retCode = CountDragItems(theDrag, &totalItems);
if (retCode == noErr && totalItems == 1) {

retCode = GetDragItemReferenceNumber(theDrag, 1, &itemRef);
if (retCode == noErr) {

// Use GetFlavorFlags to see if the drag item is PICT data.
retCode = GetFlavorFlags(theDrag, itemRef, 'PICT',

&currFlavorFlags);
if (retCode == noErr)

acceptableFlag = true;
else {

// Check if the item is a file spec for a picture file.
flavorDataSize = sizeof(HFSFlavor);

DRAG AND DROP FROM THE FINDER December 1993

71
The EnterWindow message is sent when
the drag enters the structure region of a window,
not the content region. The Drag and Drop
Human Interface Guidelines specify that the title
bar of a window, which is outside the content
region, should not be able to receive drags. So
upon receiving an EnterWindow message, the
tracking handler needs to check the mouse
location before calling ShowDragHilite.•

retCode = GetFlavorData(theDrag, itemRef, flavorTypeHFS,
&currHFSFlavor, &flavorDataSize, 0);

if (retCode == noErr && currHFSFlavor.fileType == 'PICT')
acceptableFlag = true;

}
}

}
return acceptableFlag;

}

DragItemsAreAcceptable calls GetFlavorFlags with type 'PICT' to determine
whether the drag item is PICT data. If it isn’t PICT data, GetFlavorFlags returns
cantGetFlavorErr; DragItemsAreAcceptable then checks to see if the drag item is a
picture file, by calling GetFlavorData with flavorTypeHFS. This is a special flavor
that identifies files dragged from the Finder into an application. Data of type
HFSFlavor contains the file’s Finder information and an FSSpec that you can use to
open and read the file.

typedef struct HFSFlavor {
OSType fileType; // file type
OSType fileCreator; // file creator
unsigned short fdFlags; // Finder flags
FSSpec fileSpec; // file system specification

};
typedef struct HFSFlavor HFSFlavor;

Another check made in the tracking handler is to ensure (with the routine
MouseIsInContentRegion) that the drag isn’t over the title bar or over controls in the
application window. To implement drag and drop according to the guidelines, we
accept drags only in the content region of a window. Also, since SimpleDrag doesn’t
support drag and drop within the same window, the tracking handler checks (with its
DragIsNotInSourceWindow routine) to make sure that the user isn’t dragging over
the same window in which the drag originated.

RECEIVING THE DRAG
The receive handler is similar to the tracking handler, but it’s called once, and we
must ask for all the data we want. We also make sure that the drag stopped in the
content region of the window and that the user isn’t dragging back into the source
window.

Below is the code for SimpleDrag’s receive handler. In a receive handler, you first ask
for the data type you prefer, whether picture, text, or some other type, and whether a
file from the Finder or data dragged directly from another window. In SimpleDrag,
we prefer to receive PICT data directly, so we look for it first. If the drag item isn’t
PICT data, we use the HFS flavor to look for files of type 'PICT'.

d e v e l o p Issue 16

72

pascal OSErr MyReceiveHandler(WindowPtr theWindow, void *handlerRefCon,
DragReference theDrag)

{
#pragma unused (handlerRefCon)

ItemReference itemRef;
Size dataSize;
Handle tempHandle;
HFSFlavor theHFSFlavor;
Boolean dataObtainedFlag;
OSErr retCode;

dataObtainedFlag = false;
if (!DragItemsAreAcceptable(theDrag) ||

!MouseIsInContentRgn(theDrag, theWindow) ||
!DragIsNotInSourceWindow(theDrag))

return dragNotAcceptedErr;

// There is only one item, so get its reference number.
retCode = GetDragItemReferenceNumber(theDrag, 1, &itemRef);
if (retCode != noErr)

return retCode;

// PICT data is preferred, so get it if it's available.
retCode = GetFlavorDataSize(theDrag, itemRef, 'PICT', &dataSize);
if (retCode == noErr) {

tempHandle = TempNewHandle(dataSize, &retCode);
if (tempHandle == nil)

tempHandle = NewHandle(dataSize);
if (tempHandle != nil) {

HLock(tempHandle);
retCode = GetFlavorData(theDrag, itemRef, 'PICT', *tempHandle,

&dataSize, 0);
if (retCode == noErr) {

retCode = SetWindowPicture(theWindow, (PicHandle) tempHandle);
if (retCode == noErr)

dataObtainedFlag = true;
}
DisposeHandle(tempHandle);

}
}

if (!dataObtainedFlag) {
// Couldn't get PICT data so try to get HFS-flavor data.
dataSize = sizeof(HFSFlavor);

DRAG AND DROP FROM THE FINDER December 1993

73

retCode = GetFlavorData(theDrag, itemRef, flavorTypeHFS,
&theHFSFlavor, &dataSize, 0);

if (retCode == noErr && theHFSFlavor.fileType == 'PICT') {
retCode = SetWindowPictureFromFile(&theHFSFlavor.fileSpec,

theWindow);
}

}

if (retCode != noErr)
(void) ReportErrorInWindow(nil,

"\pCannot display received picture. ", retCode);
return retCode;

}

If there’s an error, this receive handler just displays a simple string. For commercial
products, you would never code strings inline as shown, for localization reasons.

GOTCHAS
Here we’ll describe a couple of precautions you should take that will make your life
easier when you use the Drag Manager.

FINDER GOTCHAS
The Drag Manager works for documents and other standard files, but what about
folders and hard drive icons? The Finder uses the same HFS flavor to describe these
items. If the user drags them to your application, you’ll see the FSSpec for the folder’s
directory or the disk’s root directory. The file type and creator information isn’t
relevant to the file system, but it’s useful for identifying the items being dragged. For
both folders and disk icons, the creator is set to 'MACS' to show that the system
software created them. For folders, the file type is 'fold', and for disk icons the file
type is 'disk'. In both cases the Finder flags for the folder or disk are set appropriately.
Remember that these file types serve only to quickly identify the items being dragged
and don’t reflect what’s in the catalog information of any volumes.

Some software that extends the functionality of the Finder, such as QuickDraw GX
and PowerTalk (the client server software based on the Apple Open Collaboration
Environment), adds new Finder icons such as desktop printers, letters, and mailboxes.
These items don’t actually represent the state of the file system, but they can be
dragged like any Finder icon. This is a valuable and consistent metaphor for the
Finder interface, but it creates an inconsistency for your receive handler when
receiving drags from the Finder. Since these icons can’t be described as FSSpecs,
don’t expect to receive HFS flavors for them.

Just for completeness, you should know that the Users & Groups control panel also
uses the Drag Manager. The drag flavors that identify those icons make sense only to

d e v e l o p Issue 16

For more on letters and mailboxes, see
the article “Building PowerTalk-Savvy
Applications” in this issue of develop.•

74

the Finder, and don’t have relevant information you could extract. The same is true
for contents of Finder suitcase files like the System file. Finder icons for sounds,
keyboard layouts, and fonts that are in suitcases are representations of resources in
the suitcase file, so they don’t have HFS flavors to describe them. Note, however, that
sound and font files, which are not part of suitcases, use HFS flavors just like any
other file.

WAITNEXTEVENT
Another precaution applies if, in drag handlers, you call WaitNextEvent, EventAvail,
GetNextEvent, or any other routine that would normally cause a process switch or a
background application to receive WaitNextEvent time. In these cases, don’t expect
other applications to receive any background time, because the Drag Manager
disables process switching during a drag. Because process switching is disabled, you
should be careful when interacting with the user in your receive handler. You may not
be the frontmost process, and opening a dialog may hang the Macintosh.

DRAGGING AWAY
The Drag Manager makes it easy to add drag and drop functionality to your
application. It gives users a familiar and intuitive way to manipulate files and data.
This article and the sample application emphasize how to implement dragging files
from the Finder into your application windows, but you can do much more than that
with the Drag Manager. So take a look at the documentation and guidelines on the
CD and give it a go; your users will think it’s anything but a drag!

DRAG AND DROP FROM THE FINDER December 1993

75
THANKS TO OUR TECHNICAL REVIEWERS
Steve Fisher, Rob Johnston, Jim Mensch, Andy
Nicholas•

In May of this year, Apple and Adobe Systems released
version 8.0 of the LaserWriter driver — the biggest
change to PostScript® printing on the Macintosh in
eight years. This new driver was rewritten from the
ground up by engineers at Adobe, working closely with
Apple engineers who provided source code, guidance,
and comprehensive testing. The resulting driver
unleashes the power of PostScript Level 2 printing as
much as possible under the limitations of the
pre–QuickDraw GX printing architecture.

Since the driver has been in general release for quite
some time, we won’t go through feature lists or repeat
things you’ve seen printed elsewhere. Instead we’ll
focus on how your application can compatibly take
advantage of the new driver’s power. We’ll also note
some programming practices that cause problems with
LaserWriter 8 and that will continue to cause grief in
the future with QuickDraw GX.

WHERE TO FIND INFORMATION
The best news for programmers about this driver is
that there’s more information available for this driver
than for any printer driver before it. It follows the
standard Printing Manager API documented in Inside
Macintosh Volumes II and V, which you should stop
reading immediately when you can grab Inside
Macintosh: Imaging With QuickDraw. The new book has
vastly superior organization and information about
printing, including what’s covered in the older

Macintosh Technical Notes, Q&As, and other sources
of information Apple has refined through the years.
Even if you don’t yet have the new book, everything in
the older volumes and in the Technical Notes is still
valid, with few exceptions.

In addition, this issue’s CD contains a 25-page
document called “Developer Information,” located in
the LaserWriter 8 folder, that talks about differences
between the old and new drivers. Since this driver was
in open beta test from October 1992 through May
1993 as “PSWriter,” the changes shouldn’t surprise too
many people. The “Developer Information” document
has been available since October 1992 as well, so all
kinds of great information have been at your fingertips
for quite some time.

THE GROUND RULE
The new driver has several exciting new API calls to
assist with PostScript printing and translation.
However, before getting into them, we must state The
Ground Rule: While you’re encouraged to use new
LaserWriter 8 features where appropriate, your application
should not depend on them. Your handling of printing or key
services should not fail if the features aren’t available.

Some users may not have upgraded to LaserWriter 8,
and some may be running specialized versions of the
older driver and don’t want to give it up. More
important, however, is that the new API features
provided through PrGeneral are not present in
QuickDraw GX. In its initial release, QuickDraw GX
makes it easy for PostScript printer manufacturers to
create their own drivers supporting all their printer-
specific features; under the old architecture this was
about as easy as removing your eyeballs from their
sockets with your toes. This means there’s a chance that
a customer will have software beyond LaserWriter 8 that
doesn’t support the new calls documented on the CD,
so use them only if they’re present.

For example, if you have an application that uses
PostScript printer description (PPD) files to obtain
information about a target printer, you can use the new
driver’s PSPrimaryPPDOp selector to PrGeneral to

d e v e l o p Issue 16

MATT DEATHERAGE (AppleLink DEATHERAGE1) has been doing
technical support for over five years. In addition to serving as the
technical lead for the LaserWriter 8 driver in Apple’s Developer
Technical Support group, he’s worked on several Apple printer
projects when not focusing on fonts or typography or all the other
fun imaging stuff there’s never enough time for. He remains true to
his background by running the Apple II Programmers and
Developers roundtable on GEnie, but you can find him on-line in
lots of other places, usually just where you’re hoping he won’t be.•

While we refer to the driver here as “LaserWriter 8,” Adobe
distributes the same driver as “PSPrinter.” Adobe also licenses the
driver to printer manufacturers who license PostScript language
software from Adobe, and those printer makers may call the driver
by different names as well. Apple’s initial release of the driver is
named “LaserWriter 8.0,” but later releases (which may happen by
the time this is published) will be named “LaserWriter 8.” No
matter what the driver is called or how the icons appear, the
internals are the same and all the information here applies.•

76

PRINT HINTS

LASERWRITER 8 FOR
FUN AND PROFIT

MATT DEATHERAGE

PRINT HINTS: LASERWRITER 8 FOR FUN AND PROFIT December 1993

77

obtain an FSSpec referencing the PPD file the user
chose for the current printer in the Chooser. However,
if the driver isn’t available, the new PrGeneral calls
return the error opNotImpl (opcode not implemented)
or resNotFound (the current driver doesn’t support
PrGeneral). In this case, you should ask the user to
locate the PPD file just as you did before LaserWriter
8 was available. You should not display an alert saying
“You have the wrong printer driver chosen; go fix it.”

Another example is in the powerful new functions that
the driver provides for converting QuickDraw pictures
to encapsulated PostScript (EPS) format. If using these
functions allows you to export EPS data in a cross-
platform document for higher fidelity on another
system, that’s great. If the driver isn’t available, though,
you need to create your own EPS data or provide some
alternate representation of the data (perhaps a bitmap
or a TIFF image).

Remember, these functions are there to use if they’re
available, but you can’t require them. It’s not fair to
remove features from your application based on the
printer driver version. Try to use them if you need to,
but be prepared for when they’re not present.

Sample code that helps explain the new features is also
on the CD, in the same folder as the new driver.

NEW THINGS YOU CAN DO
With that caveat on the table, let’s discuss how some of
the new features might affect your program. There isn’t
room here to cover all the new APIs or their uses, so be
sure to check out the documentation and sample code
on the CD for the comprehensive scoop.

PostScript printer description files. In addition to
using PPD files in applications, some people will need
to create PPD files for custom in-house purposes, or
because they’re developing PostScript-compatible
hardware. There’s a trick that’s undocumented (and
unguaranteed, so don’t write code that depends on
this!) which lets the driver help you debug your PPD
files: Normally, when the driver parses a PPD file
(during Chooser selection), it puts up a simple error

dialog saying “This PPD is invalid” if it finds a
problem with the file. However, the driver has a
resource of type 'PLRT' with ID 1 that contains a
single byte, normally 0. If you change this byte to $01,
the driver will display an alert during PPD parsing
saying exactly what it didn’t like and on what line it
didn’t like it. Since PPD files can get fairly complicated
in short order, this feature can be extremely helpful.

This preference is stored in a PLRT resource only in
versions 8.0 and 8.0.1 (shipping with Adobe Acrobat).
In later releases, it will be combined with some other
useful preferences in a PRFS resource. There’s a
resource editor TMPL template describing the bits in
the PRFS resource. One of these bits tells the driver to
write all Printer Access Protocol (PAP) transactions to
a PAPToDisk file so that you can debug your printing
code’s output. This lets you see what the driver
generates during normal printing (not what it generates
in the special case of creating a PostScript file) and is
quite handy. Have fun with the preferences, but
remember not to ship code that relies on them — don’t
modify them from your code.

Dealing with EPS files. The older LaserWriter driver
had been creating PostScript files as a debugging aid
for several years, and in version 7.0 this feature was
finally added to the print job dialog so that users could
visibly control it. In 8.0, the file creation mechanism
has been further improved: it now provides user
control over PostScript language level, font inclusion,
and ASCII or binary protocol, and can create EPS files
on request. Since so many applications understand EPS
files, this feature gets a lot of exercise, and fosters some
misunderstandings. The encapsulated PostScript file
format version 3.0 is discussed in Appendix H of
Adobe’s PostScript Language Reference Manual, Second
Edition (the “red book”). The red book clearly states
that an EPS file describes an image of a single page.
That’s why printing a range of pages to an EPS file
gives you an image of only the first page — you can’t
have an image of more than one page in an EPS file.

The main problem users are having with EPS files
created by the driver, however, is with the EPS preview.

For more information on PrGeneral, see the article “Meet
PrGeneral, the Trap That Makes the Most of the Printing Manager”
in develop Issue 3.•

Information on PostScript printer description files and
other items related to PostScript language development are
available from the Adobe Systems Developers’ Association, 1585
Charleston Road, P.O. Box 7900, Mountain View, CA, 94039-
7900, telephone (415)961-4111.•

This preview is an optional PICT resource of ID 256
which, if present, contains a QuickDraw picture
resembling what a PostScript interpreter would
produce after executing the EPS code.

LaserWriter 8 does previews in three ways: it creates a
picture that’s one giant bitmap or pixel map (“standard
preview”); it creates a picture containing all the
drawing commands used to draw the page (“enhanced
preview”); or it doesn’t create a preview at all. The
choice is the user’s, or at least it’s supposed to be. Some
applications don’t like the word “optional” very much
and refuse to import EPS files that don’t contain the
“optional” preview. Don’t make the mistake of
considering the preview to be required.

Since the information for the preview picture comes
from the drawing your application does into the
printing grafPort, there’s trouble if your application
doesn’t draw things as the driver expects. For example,
some applications still examine the high byte of the
wDev field in the print record and, if they find the
value 3, assume they’re talking to a PostScript printer.

Such programs send all their data to be printed as
custom PostScript code, not drawing anything into the
printing grafPort. This makes for an extremely boring
preview image — your code didn’t draw anything, so
there’s nothing in there to display.

If you create your own PostScript code, always send
dual QuickDraw and PostScript information when
printing or exporting pictures. Never create PostScript
code without making as faithful a QuickDraw
representation as you can. Not only does this prevent
EPS preview problems with LaserWriter 8, it prevents
problems under QuickDraw GX, where users can
redirect print files after you’ve finished your print loop
but before they’re imaged on a printer. If you sent only
PostScript code and the user redirects the print job to a
StyleWriter II because the PostScript printer is busy,
the result will be a bunch of blank pages.

Some people have asked why EPS files created by the
driver seem to be the size of a printed page when the
real image is only a small part of the page. That
happens when your application doesn’t change the

d e v e l o p Issue 16

Document structuring conventions are discussed in
Appendix G of the PostScript Language Reference Manual, second
edition.•

78

These are new selectors to PrGeneral. Full details and
sample code are located on the CD. Remember, don’t
even think about requiring these calls in your program.

• PSPrimaryPPDOp: Returns an FSSpec record locating
the PPD file chosen for this printer, along with a
Boolean value indicating whether the file is the built-
in “generic” PPD.

• getPSInfoOp: Informs you if the target printer supports
PostScript Level 2 and binary communications. Also
tells you what kind of PostScript file the user chose to
create, if any: EPS with no preview, EPS with
standard preview, EPS with enhanced preview, or
PostScript job file format.

• PSIntentionsOp: Allows your code to tell the driver
that you intend to use PostScript Level 2 or binary

communications features, so that the driver can
generate appropriate DSC (document structuring
conventions) comments and return errors if the target
printer doesn’t support those features.

• PSpict2eps: Converts a QuickDraw picture into an
EPS stream. You can specify most of the parameters
in the style and job dialogs, and you provide a
callback routine that receives the EPS stream as it’s
created.

• PSFontInfo: Provides a PostScript stream to make a
given outline font available on a PostScript
interpreter, including the TrueType scaler and
TrueType conversions of fonts if necessary. You
provide a callback routine to receive the font
information from the driver. Bitmap fonts are not
supported.

SUMMARY OF NEW API FEATURES IN LASERWRITER 8

PRINT HINTS: LASERWRITER 8 FOR FUN AND PROFIT December 1993

79

clipping rectangle for the image it’s printing and when
you send no QuickDraw code, but only PostScript
code. The driver watches all drawing you perform in
the printing grafPort to calculate the bounding
rectangle for the EPS file; it has no way of knowing
what that rectangle would be for any PostScript code
you send, so it relies on the clipping rectangle when
your PostScript code is sent through the printing
grafPort. Use ClipRect to set the clipping rectangle of
the printing grafPort to match the height and width of
your image. The driver will accumulate all your
clipping rectangles and make the bounding rectangle of
the EPS file the smallest rectangle that encloses all of
them plus the bounding rectangles of all QuickDraw
drawing you performed. If you send both QuickDraw
and PostScript code as recommended, you won’t have
this problem.

OLD THINGS THAT ARE DIFFERENT NOW
Some things are bound to change when you rewrite
code from the ground up — mostly implementation
details that were never guaranteed. That doesn’t stop
enterprising programmers from finding such details
and using them, though, and that’s where a lot of
compatibility problems occur. Here are some things
that have changed in the new driver that shouldn’t have
affected your programs, but might have anyway.

Using private PostScript operators. Apple has
advised programmers for a long time not to use “Laser
Prep” or “md” dictionary operators — private
PostScript operators used by the LaserWriter driver to
get its work done. Those operators were never
documented or guaranteed to work, and as the driver
changed over the years so did many of the procedures,
breaking applications that relied on them. It’s no big
surprise that almost every one of those operators is
either gone or changed in the new driver.

There’s been some confusion in the past about just
what Apple was trying to warn against, so I’m pleased
to take this opportunity to make it very clear: If it’s not
in the PostScript Language Reference Manual, including
appropriate supplements for your printer, don’t use it.

Don’t use any PostScript procedures you didn’t define
unless they’re part of the language. If you find a
procedure defined in LaserWriter 8 that does
something you want to do, don’t call it! The PostScript
system in QuickDraw GX is entirely different from the
one in LaserWriter 8; if you just substitute one set of
procedures that you shouldn’t call for another, your
application will break again in the near future.

I would even avoid using printer-specific features,
because with EPS files you’re never sure what the
target printer will be. If you must use these features,
wrap them in PostScript’s “stop” mechanism so that the
job will complete even if the feature creates an error.

Precision Bitmap Alignment. In version 8.0, the
Page Setup option “Precision Bitmap Alignment” still
says “(4% reduction)” at the end of the item in the
Options dialog. That will change in versions after 8.0
because the code will change.

In 8.0 and earlier, the Precision Bitmap Alignment
option simply reduces the coordinate system to 96% of
the former value, turning 300-dpi printers into 288-dpi
printers. Since 288 dpi is an even multiple of 72 dpi,
the screen resolution, this prevents rounding errors in
bitmaps where some bits would be slightly larger than
others. Unfortunately, this only solves the problem on
300-dpi printers. On 400-dpi printers (such as are often
found in Japan), it changes the resolution to 384 dpi,
which doesn’t help.

Sometime after 8.0, “Precision Bitmap Alignment” will
start aligning to the nearest lower multiple of 72 dpi
available on the target printer, calculated by the
PostScript code when printing. On a 400-dpi printer,
that’s 360 dpi for a 10% reduction. On a 600-dpi
printer, it’s 576 dpi and is again a 4% reduction. The
point is to get precisely aligned bitmaps, not to reduce
by exactly 4%, and past 8.0 that’s how it will work.

Font substitution. In the past, turning on fractional
font widths with SetFractEnable(TRUE) disabled font
substitution. With LaserWriter 8, you always get font
substitution when you ask for it.

In LaserWriter 7.1.1 through LaserWriter 7.2, turning
off font substitution would sometimes give you a
TrueType version of a font if you had it — even if the
printer had a Type 1 version available — depending on
whether you’d turned off line layout or enabled
fractional font widths, and on what day of the week it
was. This inconsistent behavior is removed from
LaserWriter 8: once again, Type 1 fonts are always
picked over TrueType fonts if both are available to the
printing system. This is largely for compatibility with
pre-TrueType systems.

Older customization resources. The older drivers
supported mechanisms for adding device-specific items
to non-Apple printers, such as custom page sizes and
code to enable sheet feeders. These resources, if
present, are ignored by LaserWriter 8 — printer
manufacturers can control feeders, custom page sizes,
and other device-specific features through PPD files.
We later discovered that some enterprising developers
were using the 'feed' resource to control things other
than sheet feeders, since the mechanism gave them a
chance to execute code on the Macintosh during the
job dialog. That wasn’t what it was designed for, so no
one made any effort to make sure that would still work.
That mechanism is now gone.

Color QuickDraw pixel patterns. Before
LaserWriter 8, attempting to print with pixel patterns
(as opposed to older black-and-white patterns)
generally produced stunning black blobs on your page.
With LaserWriter 8, printing with pixel patterns works
just as you’d hope it would if the user chooses either
“Color/Grayscale” or “Calibrated Color/Grayscale”
(making the printing grafPort a cGrafPort) and if the
printer supports PostScript Level 2 so the driver can
use the Level 2 PostScript pattern mechanism. On
Level 1 devices, pixel patterns are implemented using
screens (color screens if available, halftone screens
otherwise) and the patterns are clipped to their upper
left eight-by-eight grid, matching the dimensions of a
regular QuickDraw pattern. Even though the
implementation isn’t perfect on Level 1 devices,
something much closer to your desired pattern than a
black blob now appears.

Preferences file. The new driver keeps a preferences
file in the Preferences folder (or in the System Folder
under System 6). It’s in this file that the driver stores
the parsed PPD data, plus the recorded choices of
which printers match which PPDs and some other
driver-specific data that needs to stick around. If you
ever update drivers manually, delete the old preferences
file. Its contents will change from version to version. If
you share one driver file among systems trying to
isolate or reproduce a problem and you want to have
the best chance of seeing the problem again, be sure to
keep the preferences file with the driver as you bop
between systems.

THE REST IS WAITING FOR YOU
If you have comments or bugs to report about the
LaserWriter 8 driver, you can send them on AppleLink
to the read-only address LWDRIVER.BUG. You won’t
get a response or an acknowledgment, but your
feedback will get to the people responsible for making
changes. Don’t forget to look at the information on the
CD for the complete story!

d e v e l o p Issue 16

Thanks to Waymen Askey, Richard Blanchard, and Steve Winters
for reviewing this column.•

80

RECOMMENDED READING
• Inside Macintosh Volume II (Addison-Wesley,

1985), Chapter 5, and Volume V (Addison-
Wesley, 1988), Chapter 22.

• Inside Macintosh: Imaging With QuickDraw
(Addison-Wesley, forthcoming).

• “Meet PrGeneral, the Trap That Makes the Most of
the Printing Manager” by Pete (“Luke”) Alexander,
develop Issue 3.

• “Print Hints: Top 10 Printing Crimes” by Pete
(“Luke”) Alexander, develop Issue 10.

• “Print Hints: Top 10 Printing Misdemeanors” by
Pete (“Luke”) Alexander, develop Issue 12.

• Macintosh Technical Note “Picture Comments —
the Real Deal” (QuickDraw 10).

Accurate color matching used to be out of reach for most programmers
to add to their applications. Then along came ColorSync, a system
extension that provided a platform in QuickDraw for maintaining
consistent color from device to device. Now with the advent of
QuickDraw GX, which integrates ColorSync, color matching has been
made even easier. Read on to find out how color matching works in
QuickDraw GX and how to take full advantage of it, whether you’re
developing an application or a printer driver.

Remember how impossible it used to be to get color images to display faithfully on
any monitor or to print on any printer in colors that matched what the user saw on
the screen? The introduction of ColorSync finally transformed color matching in
QuickDraw from a complicated guessing game into a more-or-less predictable
process. ColorSync provided a standard API that could produce WYSIWYG color
output if used by both the application and the printer driver.

QuickDraw GX goes a step farther, fully integrating ColorSync for color
management. When you create a QuickDraw GX application or printer driver, you
don’t need to worry about making ColorSync calls. You simply use the QuickDraw
GX API and let it call ColorSync as appropriate. ColorSync does the work of
converting a QuickDraw GX color specification into terms understandable to the
output device. The first part of this article, which assumes you’re somewhat familiar
with QuickDraw GX, describes color specification and outlines the conversion
process. What’s left for your application or printer driver to do is the topic of the
second part of this article.

COLOR SPECIFICATION IN QUICKDRAW GX
The starting point for color matching in QuickDraw GX is the exact specification of
color that’s included in every object to be drawn. Recall that the basic building block
of QuickDraw GX graphics is the shape, an object that in turn points to other objects

COLOR MATCHING MADE EASY WITH QUICKDRAW GX December 1993

81
DANIEL LIPTON works on QuickDraw GX and
writes for develop to subsidize his songwriting
career. He was recently overheard singing the
following parody of the Steely Dan song “FM”:

Bury your cubics, mama, quadratic’s fine.
Kick off your PostScript printers, it’s GX time.
The drivers don’t seem to care what’s where,
as long as the profile’s there.

Nothing but greens and blues
and somebody else’s favorite hues.
Give us some pumped-up colors, we’ll sync them nice.
Feed us some hungry halftones, we’ll print them thrice.
The printers don’t seem to care what’s where,
as long as GX is there.

No hassle at all.
GX. No hassle at all.•

DANIEL LIPTON

COLOR

MATCHING

MADE EASY

WITH

QUICKDRAW GX

that tell how it should be rendered. In particular, the ink object contains detailed
information about the color to be used.

The color information for a geometric or typographic shape is contained in the
gxColor data structure, which in abbreviated form looks like this:

typedef struct {
gxColorSpace space; // the color space
gxColorProfile profile; // the color profile
union {

. . .
gxColorValue component[4]; // the color value (one, three,

// or four color components)
} element;

} gxColor;

The color information for a bitmap shape is handled in a slightly different way,
discussed at the end of this section. For any QuickDraw GX object, the color space,
color profile, and color value together constitute a device-independent description of
the color in which the object is to be rendered.

THE COLOR SPACE AND COLOR VALUE
A color space is a system for specifying colors. The color space determines how many
different components are required to specify a color and what those components are.
For example, the RGB color space uses three components to specify a color (red,
green, and blue); the CMYK color space uses four (cyan, magenta, yellow, and black).
The color value is the set of components that together specify a color. In QuickDraw
GX, a color value consists of one, three, or four 16-bit integers, which are interpreted
based on the color space. For instance, for a color specified in the RGB color space,
the color value might be red = 32,768, green = 16,384, blue = 8,192.

In QuickDraw, all color is defined in the RGB color space. Unfortunately, since RGB
is a device-dependent color space (more on this later), the same RGB color can look
different on different devices. ColorSync provides a mechanism to match colors
accurately, but QuickDraw applications are still restricted to RGB. High-end desktop
publishing and photo-editing applications allow their users to work in other color
spaces, but such applications have to include large chunks of code to work around
QuickDraw in order to do this.

QuickDraw GX, on the other hand, provides a wide choice of color spaces. These
color spaces can be grouped into three families: RGB, CMYK, and CIE. Within a
family, one color space can be converted to another relatively simply. Color spaces in
the RGB and CMYK families are device dependent because they’re related to how a
particular device represents color. Color spaces in the CIE family, on the other hand,
are device independent because they’re related to human visual perception.

d e v e l o p Issue 16

For background information about
QuickDraw GX, see these articles in develop
Issue 15: “Getting Started With QuickDraw GX”
by Pete (“Luke”) Alexander; “Developing
QuickDraw GX Printing Extensions” by Sam
Weiss; and “QuickDraw GX for PostScript
Programmers” by yours truly.•

How ColorSync works with QuickDraw is
explained in John Wang’s column “Print Hints:
Syncing Up With ColorSync” in develop Issue
14.•

82

The RGB family of color spaces. Color spaces in the RGB family are based on
controlling the intensities of red, green, and blue light, the three primary colors used
in displays. Most desktop scanners and monitors as well as some printers work in
some form of this color space. The RGB family consists of gxRGBSpace (red, green,
blue), gxHLSSpace (hue, lightness, saturation), gxHSVSpace (hue, saturation, value),
and gxGraySpace (a one-component gray scale).

The CMYK color space. The CMYK color space (the only member of the CMYK
family) is based on controlling the concentrations of cyan, magenta, yellow, and black
inks, the four process colors used in printing. While colors in the RGB color space
are formed by adding light sources, colors in the CMYK color space are formed by
subtracting light from an illuminating source. A component in a CMYK color value
specifies the amount of light one of the inks absorbs. In theory, cyan absorbs red
light, magenta absorbs green light, and yellow absorbs blue light.

Under ideal circumstances, mixing cyan, magenta, and yellow inks together on paper
would produce a true black. However, due to ink impurities and a multitude of other
problems, the result is usually a muddy dark brown. For this reason most ink-based
devices have black ink as well.

The CIE family of color spaces. Color spaces in the CIE family are based on a
three-component system of color specification developed by the Commission
Internationale de l’Eclairage (CIE) in 1931. These color spaces are device
independent because the color components are based not on intensities of light in
a display or concentrations of printer inks but on aspects of how the human eye
responds to light at different wavelengths. The CIE family of color spaces consists of
gxXYZSpace, gxCIESpace, gxLUVSpace, gxLABSpace, and gxYIQSpace.

• The gxXYZSpace (XYZ color specification) and gxCIESpace (xyY
specification) correspond to the 1931 Commission Internationale
de l’Eclairage color description.

• The gxLUVSpace and gxLABSpace are transformations of the
XYZ components that provide a more perceptually uniform color
space. That is, throughout the three-dimensional space defined by
the three components, a given distance moved numerically yields a
constant perceptual change in the color.

• The gxYIQSpace is based on the U.S. standard video broadcast
format defined by the NTSC.

THE COLOR PROFILE
Because of the variations in color representation among individual devices, simply
specifying a color space and a color value doesn’t provide enough information for
color matching. The 50% red produced by an Apple 13-inch monitor’s cathode ray
tube, for example, doesn’t look the same as the 50% red produced by a PowerBook

COLOR MATCHING MADE EASY WITH QUICKDRAW GX December 1993

83
For color theory arcana, see the
indispensable Fundamentals of Interactive
Computer Graphics by J. D. Foley and A. Van
Dam.•

180c’s active matrix color display. Therefore, we also need to provide information in
absolute terms about how colors look on the device on which an object is drawn. The
color profile provides this information.

A color profile is a characterization of a device associated with an object, usually the
device on which the object was created. The exact contents of the color profile
depends on the color matching method to be used, but certain header data required
by Apple’s default color matching method is always present. This header data
includes the device type, manufacturer, model, and, most important, an absolute
description of each of the primary and secondary colors the device can render.

This absolute description consists of a set of response curves and chromaticities. The
response curves are used to convert the color component values into linear values.
The chromaticities are XYZ triplets describing the device’s red, green, blue, cyan,
magenta, yellow, black, and white. Recall that the XYZ color space is device
independent; thus, an XYZ triplet describes a color in absolute terms.

SPECIFYING COLOR FOR BITMAP OBJECTS
While it would be possible to have a full color specification for every pixel in a bit
image, this is neither practical nor necessary. Colors in bitmap objects (whether the
object is a bitmap shape or part of a view device object) are handled slightly
differently from colors in geometric and typographic shapes. The bitmap object
contains a single color space and profile. Each pixel in the bit image contains a packed
form of the color component values.

• For a 16-bit RGB bitmap, the high bit is ignored, followed by five
bits of red, five bits of green, and five bits of blue.

• For a 32-bit RGB bitmap, the high eight bits are ignored, followed
by eight bits of red, eight bits of green, and eight bits of blue.

• For a 32-bit CMYK bitmap, eight bits of cyan are followed by
eight bits of magenta, eight bits of yellow, and eight bits of black.

• For all of the other 32-bit bitmaps (HLS, HSV, XYZ, CIE, LAB,
LUV, YIQ), the high two bits are ignored, followed by ten bits per
component.

Whether a component is expressed with four, five, eight, or ten bits, the bits in the
data are the most significant bits of the standard 16-bits-per-component QuickDraw
GX colors.

WHERE COLORSYNC COMES IN
As stated earlier, QuickDraw GX uses ColorSync for color management. Basically,
QuickDraw GX calls ColorSync to do the necessary conversion from a source color
to a matching destination color based on the color specification for a QuickDraw GX

d e v e l o p Issue 16

84

object (which includes the color profile for the source device) and the color profile
for the output device. Because QuickDraw GX calls ColorSync, your application
doesn’t need to.

ColorSync uses two basic elements to perform color matching: a color profile and a
color matching method (CMM). The color profile, as you know, contains the device
characterization, while the CMM is a component that contains code to perform the
matching. Some CMMs are better than others, and some are more appropriate for
certain kinds of devices (for example, ink jet printers versus dye sublimation printers).

A system will have at least one color profile for each device to be drawn on and at
least one CMM to perform the matching. ColorSync comes with one Apple CMM
(the default) and with color profiles for all Apple monitors currently being
manufactured. A device can have more than one color profile, but only one is selected
for use at any given time. The color profile specifies the CMM to be used. ColorSync
will try to use this CMM, but if it’s not available, will use the default Apple CMM.
ColorSync’s open architecture allows third-party developers to create their own
profiles and CMMs if they want to perform matching beyond the capabilities of the
Apple CMM.

In highly simplified terms, here’s how the conversion process works, assuming the
Apple CMM is used:

1. An application makes a QuickDraw GX call to draw an object.

2. QuickDraw GX calls ColorSync.

3. Using the object’s color specification and the Apple CMM,
ColorSync converts the color to the device-independent XYZ
color space.

4. Using the Apple CMM and the color profile provided by the
driver for the output device, ColorSync converts the color from
the XYZ color space to the output device’s color space.

5. QuickDraw GX draws the object on the output device.

If a CMM other than the Apple CMM is used, steps 3 and 4 may be different, since
the CMM determines exactly how the conversion is done.

Now that you have a basic grasp of the mechanism for color matching, we’ll turn to a
consideration of what applications and printer drivers need to do to take full
advantage of this mechanism.

WHAT AN APPLICATION NEEDS TO DO
If you’re developing a QuickDraw GX application, there’s really not much to worry
about with respect to color matching. If you create your objects with appropriate

COLOR MATCHING MADE EASY WITH QUICKDRAW GX December 1993

85
ColorSync version 1.0.3, along with
documentation and samples, can be found on this
issue’s CD. The documentation describes how to
create a CMM.•

color profiles, the colors will be rendered correctly to the extent that the output
device is capable of rendering the specified colors. You can make life easier for your
users by warning them when a color they choose can’t be rendered on a designated
printer and by enabling them to preview what a color would look like on a designated
printer. And you can turn color matching off to improve performance in certain
situations. We’ll look at these techniques one at a time.

CREATE AND MANIPULATE A COLOR PROFILE
As we’ve seen, the key to color matching is providing an appropriate color profile for
every QuickDraw GX shape object your application creates. If the objects created by
your application are associated with a particular device, that device’s color profile is
the one to reference in the gxColor data structure. So if you’re writing a scanning
application, the bitmap objects you create should reference the color profile of the
scanner used. If you’re writing a painting or drawing application, your objects should
reference the color profile of the monitor on which the objects were created.

It’s appropriate to set the color profile to nil when dynamically creating objects that
aren’t associated with any particular device. When the color profile is set to nil,
QuickDraw GX assumes the profile to be the default color profile. The default color
profile is a color profile for some particular, perhaps imaginary, device. What the
device is doesn’t really matter because when any object is drawn, its color is
automatically converted into the color space of the destination device using the
destination device’s color profile.

Applications can easily find out what a device’s color space and color profile are.
Every QuickDraw GX view device object contains a bitmap structure that contains
color space and color profile fields. Files containing color profiles for particular
monitors or scanners can often be found in the ColorSync Profiles folder, which is in
the Preferences folder in your System Folder. Your code can get the ColorSync
Profiles folder by calling GetColorSyncFolderSpec. The application almost never
needs to know what the color space and profile of a printer are, because objects are
seldom created from a printer, but there is a way to obtain this information, as
described in the next section.

Given a set of ColorSync profile data, your application can create and manipulate a
QuickDraw GX color profile object with the following functions. In all cases, the
data is treated as a ColorSync profile and the ColorSync structures for profiles can be
used.

gxColorProfile GXNewColorProfile(long size, void *data);

Creates a new color profile object with the data passed in. The size parameter is the
size of the data, and the data parameter is a pointer to the data. The function result is
the color profile object. If the size is 0, color matching will be disabled for those
objects associated with this color profile object.

d e v e l o p Issue 16

86

gxColorProfile GXSetColorProfile(gxColorProfile theProfile, long size,
void *data);

Changes the data stored in the color profile object passed in the first argument. The
size parameter is the size of the data, and the data parameter is a pointer to the data.
The function result is the changed color profile object.

long GXGetColorProfile(gxColorProfile theProfile, void *data);

Retrieves the color profile data out of a color profile object. The function result is the
size of the color profile data.

Here’s how to get the ColorSync profile data from a color profile object:

size = GXGetColorProfile(myProfile, nil);
if (size > 0) {

myPtr = NewPtr(size);
GXGetColorProfile(myProfile, myPtr);

} else {
/* Size = 0, indicating color matching should be suppressed. */

}

This function disposes of a color profile object:

void GXDisposeColorProfile(gxColorProfile theProfile);

CHECK TO SEE IF A COLOR IS IN GAMUT
Not all colors can be rendered on all devices. Each device has a set of colors that it’s
capable of reproducing, called a color gamut. When a color can’t be duplicated on a
device, the color is said to be “out of gamut” for that device (see Figure 1). How out-
of-gamut colors are treated depends on the CMM being used: some CMMs may try
to preserve the luminance of the color while others may try to preserve the hue or the
saturation or some other aspect.

Given this state of affairs, you may want your application to warn users when a color
they choose is out of gamut for the printer their document is currently formatted for.
QuickDraw GX provides the following call to check a color against a device’s color
profile to see if it’s in or out of gamut for the device:

Boolean GXCheckColor(gxColor theColor, gxColorSpace theColorSpace,
gxColorSet theColorSet, gxColorProfile theProfile);

This call takes the gxColor (which contains a color profile and a color space) for the
object, and the color space, color set (similar to a QuickDraw CLUT), and color
profile for the device. The function returns true if the specified color can be rendered
on the device and false if it can’t.

COLOR MATCHING MADE EASY WITH QUICKDRAW GX December 1993

87

It’s a simple matter to obtain the color profile and color space for the printer a
document is formatted for. Recall that for each printed document, there’s a
corresponding QuickDraw GX job object. The job object contains global document
properties, such as the device information and the number of pages or copies. The
device information is what we’re after. Here’s the code that gets it for us:

gxColorProfile GetFormattingPrinterProfile(gxJob myDocumentJob,
gxColorSpace *theSpace)

{
gxPrinter frmtPrinter; // the formatting printer object
gxViewDevice printerDevice; // the printer's view device
gxShape devBitmap; // the device bitmap shape
gxBitmap devBits; // the bitmap structure

/* Get the bitmap shape for the printer's device. */
frmtPrinter = GXGetJobFormattingPrinter(myDocumentJob);
/* Pass in 0 as the index to obtain the currently selected view

device from the driver's list of possible view devices. */
printerDevice = GXGetPrinterViewDevice(frmtPrinter, 0);
devBitmap = GXGetViewDeviceBitmap(printerDevice);

d e v e l o p Issue 16

88

magenta magenta
yellow

yellow

red

red

blue
blue

cyan

cyan green
green

magenta yellow

red

blue

cyan

green

magenta yellow

red

blue cyan green

Color gamut for device A Color gamut for device B

Colors that are in gamut for both devices

Colors that are in gamut for device B�
but out of gamut for device A

Colors that are in gamut for device A�
but out of gamut for device B

Figure 1
How the Color Gamuts of Two Different Devices Compare

/* Get the bitmap struct, dispose of the shape, return the
profile. */

GXGetBitmap(devBitmap, &devBits);
GXDisposeShape(devBitmap);
*theSpace = devBits.space;
if (*theSpace == gxIndexedSpace)

GXGetColorSet(devBits.set, theSpace, nil);
return (devBits.profile);

}

To obtain just the color profile (instead of the color profile and the color space,
fetched by the preceding code), you can call GXFindPrinterProfile. The prototype is
as follows:

long GXFindPrinterProfile(gxPrinter, void *searchData, long index,
gxColorProfile *returnProfile)

PREVIEW AN OUT-OF-GAMUT COLOR
Using the printer’s color profile, your application can also enable users to preview
what an out-of-gamut color (or whole picture) would look like on that printer:

Boolean MakePrinterColor(gxJob theJob, gxColor *sourceColor,
gxColor *printedColor)

{
gxColorProfile printerProfile;
gxColorSpace printerSpace;
Boolean inGamut;

/* Get the printer's profile. */
printerProfile = GetFormattingPrinterProfile(theJob, &printerSpace);
/* Copy the source color. */
*printedColor = *sourceColor;
/* Check it and convert it into the device's color space. */
inGamut = GXCheckColor(printedColor, printerSpace, nil,

printerProfile);
GXConvertColor(printedColor, printerSpace, nil, printerProfile);
return (inGamut);

}

The color passed into this routine is converted into the printer’s color space and
profile. The most closely matching color from the printer’s gamut is converted back
to the screen’s color space and profile when the color is associated with a shape and
drawn on the screen. Thus, a simulation of what the printer’s output would look like
is achieved. As a function result, the code returns whether the color is in or out of
gamut for the printer.

COLOR MATCHING MADE EASY WITH QUICKDRAW GX December 1993

89

To preview an entire picture, set up an off-screen bitmap in the printer’s color space
and color profile, set the gxEnableMatchPort attribute (explained in the following
section) of the view port you’re using with the off-screen bitmap, draw the picture
into that off-screen bitmap, and then draw that bitmap on the screen. Make sure also
that the view port you’re using to draw on the screen has gxEnableMatchPort set.

TURN COLOR MATCHING OFF AND ON
Color matching is a computationally intensive process, so it slows down performance.
In some situations, such as during scrolling or updating, you may be willing to
sacrifice accurate color in exchange for faster drawing. QuickDraw GX enables you
to turn off color matching in these situations, either for all objects drawn into a view
port or on an object-by-object basis.

You can control color matching for all objects drawn into a view port with an
attribute of the view port object called gxEnableMatchPort. When this bit in the view
port’s attributes is set (using GXSetPortAttributes), color matching is performed for
all shape objects drawn into that view port. When this bit is cleared, the color
matching process is bypassed. The result is less-than-WYSIWYG output, but the
drawing is faster. Note that the view port’s default is to bypass color matching; your
application has to set the bit to turn color matching on.

You can control color matching on an object-by-object basis by creating a color
profile object of length 0 and associating it with those objects you want to disable
matching for. If an object has the zero-length profile, it isn’t matched, even if the
view port’s gxEnableMatchPort attribute is set.

WHAT A PRINTER DRIVER NEEDS TO DO
If you’re developing or thinking of developing a QuickDraw GX printer driver, you
know that it’s radically easier than developing a QuickDraw driver. Color matching is
easier with a QuickDraw GX driver as well. In the old world of QuickDraw, your
driver had to have special code to call out to ColorSync if it wanted to do color
matching. In a QuickDraw GX driver, you don’t have to call anything to get color
matching for your printer. All you need to do is specify at least one color profile.

If you’re developing a printer driver for a PostScript device, there are some things
you should know to obtain the highest quality color output from your printer,
whether it’s a Level 1 black-and-white or color printer or a Level 2 color printer.
Specifically, with fields in the data structure that gxPostScriptImageDataHdl points
to, you can choose a color space, offload color matching to a Level 2 device, or
generate PostScript code that’s Level 2 savvy but can also run on a Level 1 printer
(color or black and white) while retaining all the color information in the source data.

Incidentally, most things discussed here can be implemented in a printing extension
as well.

d e v e l o p Issue 16

The levels of PostScript and all other details
you could possibly want to know about PostScript
are described in the PostScript Language
Reference Manual, second edition.•

90

PROVIDE AT LEAST ONE COLOR PROFILE
Although only one color profile is used at a time in the color matching process, a
printer can have more than one color profile. Each one can be associated with a
particular format (recall that in QuickDraw GX, a format is an object containing the
properties associated with a particular page, including the paper type, which is an
object describing printing media). For instance, the Apple Color Printer has default
color profiles for coated paper, transparency film, and plain paper; a different color
profile is needed for each because paper type can affect the appearance of color.

If you have only one color profile for your printer, a simple and common case, you
can store the profile data in a 'prfl' resource in your printer driver. QuickDraw GX
will read in the data from the resource (using the default implementation of the
GXFetchTaggedData message), make a color profile object out of it, and
automatically associate it with your printer. If you want to create the color profile
dynamically rather than store it in a resource, just override the GXFetchTaggedData
message, looking for the tag 'prfl' and creating the handle on the fly.

Applications can query your printer driver with a GXFindFormatProfile call to find
out which color profile will be used for a particular page of output. (Within the same
document, different pages can be printed on different paper types. For example, a
business letter document might contain an address that prints on an envelope, a letter
that prints on white paper, and a resumé that prints on blue paper.) To support this
application query, your driver must override two messages:

• GXFindFormatProfile, which is normally sent in response to the
application’s call. Override this message and return to the
application the profile that would be used with the specified
format object.

• GXImagePage, which is normally sent before imaging each page
of the document. Override this message to set the color profile on
a page-by-page basis. Your override will be passed a format object,
which will contain a paper type object from which you can
determine (and create, if necessary) the appropriate color profile to
use. Your override will also be passed an image data handle. One of
the fields in the structure that this handle points to is a color
profile. Simply set this to be the profile you want and forward the
message, and QuickDraw GX does the rest.

CHOOSE A COLOR SPACE
The preceding discussion of color profiles holds true for all three classes of
QuickDraw GX printer drivers: raster, vector, and PostScript. The remaining
discussion applies only to printer drivers for PostScript devices.

PostScript code can describe colors that the output device is to produce in any of
three different device color spaces. In each case, different operators are used. When

COLOR MATCHING MADE EASY WITH QUICKDRAW GX December 1993

91
The messaging scheme for drivers and
extensions is described in Sam Weiss’s article
“Developing QuickDraw GX Printing Extensions”
in develop Issue 15, and in Inside Macintosh:
Printing Extensions and Drivers.•

you set the color space, you tell QuickDraw GX what kind of PostScript operators to
use when specifying color for your printer, based on its color capabilities.

You set the color space in the field devCSpace (of type gxColorSpace) in the
PostScript image data structure. Only three values are allowed:

• gxRGBSpace, which tells QuickDraw GX to use the setrgbcolor
and colorimage operators in the PostScript language

• gxCMYKSpace, which tells it to use the setcmykcolor and
colorimage operators

• gxGraySpace, which tells it to use the setgray and image
operators

QuickDraw GX calls ColorSync to convert all the colors to be printed into the
specified color space using the color profile your driver provides. It’s up to you to
specify values that make sense for your printer, as QuickDraw GX does no sanity
checking. For example, if you specify gxCMYKSpace as your color space but connect
to a printer on which the setcmykcolor operator isn’t available, you’ll get PostScript
errors. The only color space guaranteed to work on all PostScript printers is
gxGraySpace. You can get around this problem by generating portable PostScript
code, discussed later.

OFFLOAD COLOR MATCHING
The PostScript Level 2 interpreter has color matching support built in. This means
that you can offload the expensive work of color matching from the Macintosh to the
PostScript device if it has a Level 2 interpreter. To take advantage of this, set fields in
the PostScript image data structure as follows:

• Set the languagelevel field to 2.

• Set the gxUseLevel2ColorOption bit in the renderoptions field.

With these settings in effect, QuickDraw GX generates PostScript code that’s
optimized for PostScript Level 2 and uses the color management provided by the
Level 2 interpreter instead of calling ColorSync. The color space and color profile
of the objects to be printed are translated into a Level 2 color space dictionary, using
the setcolorspace operator. The colors for objects are then set in the graphics state
using the setcolor operator, and bitmaps are drawn using the dictionary form of the
image operator. The image operator is used at eight bits per component when the
source bitmap’s color space is a 5- or 8-bits-per-component space, and 12 bits per
component when the source bitmap’s color space is a 10-bits-per-component space.

If the gxUseLevel2ColorOption bit isn’t set but the language level is 2, QuickDraw
GX will generate code optimized for Level 2 but will work with color based on the
devCSpace as explained earlier.

d e v e l o p Issue 16

92

Not all QuickDraw GX color spaces can be translated to Level 2. For a color space
that can’t, QuickDraw GX performs a conversion into one that can. For example,
gxCIESpace (the CIE xyY space) can’t be emulated with the setcolorspace operator.
All colors in gxCIESpace are converted into gxXYZSpace — a color space that can be
emulated with the setcolorspace operator.

GENERATE PORTABLE POSTSCRIPT CODE
Sometimes you don’t know what kind of PostScript device your code is going to end
up on. Because all PostScript printers answer to “LaserWriter,” a user can connect to
just about any kind of PostScript printer with your QuickDraw GX printer driver.
But, as mentioned earlier, if your driver specifies a color space that’s not available on
the printer the user connects with, this will generate PostScript errors. To avoid this
situation, QuickDraw GX is capable of generating “portable” PostScript code —
code that can be executed on any printer and will produce the best results that printer
is capable of, although it’s not necessarily optimized for any one printer.

As stated earlier, the only color space guaranteed to work on all PostScript printers is
gxGraySpace. However, using this color space causes output to be grayscale even if
the PostScript code is sent to a color printer. To get QuickDraw GX to produce
PostScript data that contains all color information but will also render on a black-
and-white PostScript device in grayscale, set the gxPortablePostScriptOption bit in
the renderoptions field and set the devCSpace field to gxRGBSpace.

When you do this, QuickDraw GX defines PostScript procedures to emulate the
color operators when they’re not present on the printer that the PostScript file lands
on. Additionally, QuickDraw GX generates PostScript code to set up a Level 2 color
space based on RGB and the color profile specified by the driver. When the
PostScript file lands on a Level 2 color printer, you get color-matched output. The
source colors are converted by ColorSync to the RGB color space using the driver’s
color profile. This color profile is translated into a setcolorspace operator so that
those RGB colors have meaning. The translated color profile is ignored on Level 1
printers and the normal setrgbcolor and colorimage operators are used.

AN ILLUSTRATION: THE LASERWRITER GX DRIVER
Let’s consider how the LaserWriter GX driver sets up the PostScript image data
structure. When the driver is used to print to any of the current line of Apple
PostScript printers, the data structure is set up as follows:

• The devCSpace field is set to gxGraySpace (because all Apple
PostScript printers are black and white).

• The languagelevel field is set to 1 or 2 depending on the
printer.

• The devCProfile field is set to nil.

COLOR MATCHING MADE EASY WITH QUICKDRAW GX December 1993

93

When the LaserWriter GX driver doesn’t recognize the printer it’s talking to, the
data structure is set up like this:

• The devCSpace field is set to gxRGBSpace.

• The gxPortablePostScriptOption bit is set in the renderoptions
field.

This yields portable PostScript code, which is Level 2 savvy but can also run on a
Level 1 color or black-and-white printer while retaining all the color information in
the source data. Thus, using the LaserWriter GX driver (from either QuickDraw GX
applications or QuickDraw applications) gives better and faster output for color
images on Apple black-and-white printers, color printing on non-Apple Level 1 color
printers, and color-matched printing on Level 2 color printers.

COLOR YOUR WORLD
Whether you’re developing an application or a printer driver, color matching has
never been easier than with QuickDraw GX. You can work in whichever color space
you want and move data from device to device without worrying about losing
information or writing special code to handle the conversions. Getting basic color
matching is free (no code is necessary) and getting high-end tuned results is easy
(only small amounts of code are required).

The QuickDraw GX color publishing platform seamlessly integrates high-end text
and graphics with the capabilities offered by ColorSync and the PostScript Level 2
interpreter. And if you have a great color matching algorithm, you can easily
integrate your method with all QuickDraw GX applications and printer drivers
simply by writing a standard ColorSync color matching method and providing color
profiles. Color no longer needs to be a complicated guessing game for the user.

d e v e l o p Issue 16

THANKS TO OUR TECHNICAL REVIEWERS
Pete (“Luke”) Alexander, Tom Dowdy, Dennis
Farnden, Josh Horwich•

Special thanks to duaño, Sean Allen, Chris
Yerga, and Dean Yu.•

94

REFERENCES
• “Getting Started With QuickDraw GX” by Pete (“Luke”) Alexander, “Developing

QuickDraw GX Printing Extensions” by Sam Weiss, and “QuickDraw GX for
PostScript Programmers” by Daniel Lipton, develop Issue 15.

• “Print Hints: Syncing Up With ColorSync” by John Wang, develop Issue 14.

• Fundamentals of Interactive Computer Graphics by J. D. Foley and A. Van Dam
(Addison-Wesley, 1982).

• Inside Macintosh: Printing Extensions and Drivers (Addison-Wesley, 1993).

• PostScript Language Reference Manual, 2nd ed., by Adobe Systems Incorporated
(Addison-Wesley, 1990).

GRAPHICAL TRUFFLES: REMEDIES FOR COMMON QUICKDRAW PROBLEMS December 1993

95

During the past two years alone, the Developer
Support Center has answered more than 1000
QuickDraw-related questions. The answers to most of
these questions are now available in Apple’s plentiful
“one-to-many” sources of support for developers,
including Inside Macintosh, Technical Notes, Q&As,
sample code, and of course develop. But you might
find it helpful to look here first if you’re having a
QuickDraw problem. The symptoms of some common
problems are listed in this column along with Dr. John’s
suggested remedies.

These are the symptoms that we’ll suggest remedies
for:

• CopyBits is too slow.

• You have a palette created with a tolerance of 0, but
the colors in your graphics port don’t match the
palette.

• You’re using palettes stored in 'pltt' resources and
they don’t seem to have any effect.

• Strange colors get drawn when you do a CopyBits
between different graphics ports.

• The pen pattern isn’t being used when PaintRect is
called with hilite penmode.

• NewGWorld doesn’t return an error and the
GWorldPtr it returns is unchanged.

• QuickDraw routines aren’t working on your
GWorld.

• Your complement procedure isn’t being called for
InvertRect.

THE REMEDIES

CopyBits is too slow.

Remedy: There’s little doubt that CopyBits is a complex
piece of code, so there are many factors that can affect
its execution speed. In fact, there’s a long Technical
Note dedicated to this topic, called “Of Time and
Space and _CopyBits” (QuickDraw 21). But here are a
couple of quick hints for possible ways to speed up
CopyBits:

• If your source and destination graphics ports have
matching color tables, set the ctSeed field in the
color tables of the source and destination to be the
same. This removes the overhead of comparing the
entries in the color tables to determine whether
color mapping is necessary.

• Use GWorlds when copying the entire off-screen
buffer to the screen. GWorlds will properly align
your pixel data so that CopyBits calls don’t require
byte and bit shifting. (You must create the GWorld
with a depth of 0 and pass the rectangle in global
coordinates.)

You have a palette created with a tolerance of 0, but
the colors in your graphics port don’t match the
palette.

Remedy: The colors in the graphics port may appear to
be different, but remember that only the high eight bits
of an RGB color component are important. The lower
eight bits aren’t significant because they’re ignored by
the hardware. Consequently, for optimization and
implementation reasons, NewPalette creates a palette
of colors by copying the high byte of each color in the
input color table to both the high byte and the low byte
of the palette. For example, if the color table has the
color ($ff00, $75fe, $0080), the equivalent palette entry
would be ($ffff, $7575, $0000).

JOHN WANG (AppleLink WANG.JY) of Apple’s Developer
Support Center has a new addition to his family, named Pepper.
The four-month-old baby girl weighs in at a healthy nine pounds.
She has big brown eyes, baby teeth, and a generous amount of
hair. She sleeps all day and makes almost no noise at night. And
she’s nearly toilet trained already! Pepper even gets along well
with her older brother Skate; they like to nibble playfully on each
other’s ears. But when it comes to food, they’re fearless; they fight,
kick, and howl — all for just a bone.•

GRAPHICAL
TRUFFLES

REMEDIES FOR
COMMON
QUICKDRAW
PROBLEMS

JOHN WANG

You’re using palettes stored in 'pltt' resources and they
don’t seem to have any effect.

Remedy: You’re having this problem because
GetNewPalette doesn’t work as documented in Inside
Macintosh Volume VI. The description of this routine
in Volume VI states that a palette will be loaded and
attached to the current window, and if the palette
requested isn’t available, the default application palette
is used instead. The actual implementation of
GetNewPalette is much simpler: it only loads the
specified 'pltt' resource with GetResource and detaches
it with DetachResource to make it a handle; if the
specified 'pltt' resource isn’t found, GetNewPalette
doesn’t load the default application palette.

Strange colors get drawn when you do a CopyBits
between different graphics ports.

Remedy: More than likely, your graphics port and device
are incorrectly set. The current port and device must
always be set to the destination port and device. So if
you’re copying from a window to an off-screen
GWorld, you must call SetGWorld to set the GWorld
as the current port and device. When you do a
CopyBits from a GWorld to a window, you must set
the port to the window and the graphics device to the
MainGDevice. This rule actually applies to all
QuickDraw drawing.

The pen pattern isn’t being used when PaintRect is
called with hilite penmode.

Remedy: A bug in QuickDraw causes the pen pattern to
be ignored when used with hilite penmode in the
following calls:

• FrameRect, PaintRect, and FillRect

• LineTo (vertical and horizontal lines only)

• FrameRgn, PaintRgn, and FillRgn (rectangular
regions only)

• FramePoly, PaintPoly, and FillPoly (rectangular
polygons only)

A simple workaround for PaintRect is to call
PaintRoundRect instead; that is, call

PaintRoundRect(&myRect, 0, 0);

rather than

PaintRect(&myRect);

NewGWorld doesn’t return an error and the
GWorldPtr it returns is unchanged.

Remedy: The cause of this problem is typically memory
movement. Many object-oriented languages, such as
MacApp, store data in handles. If the GWorldPtr
pointer variable you pass to NewGWorld is stored in a
relocatable block of memory, and if that block moves
during execution of NewGWorld, NewGWorld will
store the GWorldPtr in the old dereferenced storage
location. Instead, pass a local GWorldPtr to
NewGWorld and copy the local GWorldPtr to the
relocatable memory block afterward.

QuickDraw routines aren’t working on your
GWorld.

Remedy: Although some routines in QuickDraw will
work when LockPixels isn’t called, most routines will
have unexpected results. Always call LockPixels if you
want to access or draw into your GWorld. To prevent
memory fragmentation, the GWorld image should be
unlocked when you’re not accessing the pixel data so
that it can move in memory.

Your complement procedure isn’t being called for
InvertRect.

Remedy: Complement procedures are called from
InvertColor only. All other Invert calls simply invert
bits, as in QuickDraw’s original design.

NEED A REAL DOCTOR?
The next time a QuickDraw problem is giving you a
headache, look here first for help. Dr. John’s list of
remedies may provide just what you need to solve your
problem. If you don’t find a solution here, check as
usual in Inside Macintosh and the many other available
sources of help.

d e v e l o p Issue 16

Thanks to Don Moccia and Brigham Stevens for reviewing this
column.•

96

Have you ever wondered how to get your program to display numbers
in a way that satisfies Macintosh users all around the world? This
article tells you what users expect and shows you how to use the
Macintosh Toolbox to correctly format numbers, taking the needs of
both your program and the user into account. It also shows how to
interpret numbers entered by the user.

When you develop an application, you usually have some opinion about the format in
which numbers should be presented to the user. However, number formatting
standards differ from country to country (and sometimes even within a country), and
users also may have their own ideas on the subject. Macintosh system software
provides support to format numbers in ways that accommodate both the needs of
your application and local standards, and — starting with System 7.1 — also lets the
user control some aspects of number formatting using the Numbers control panel.

This article shows two different ways to format numbers: using a default format for
simple number display, and following the user’s specification for more sophisticated
number display. It also shows how to interpret numeric input correctly. This issue’s
CD contains an application called Numbers Test that lets you try out these two
different methods of formatting numbers and enter numbers for interpretation. The
CD also contains BuildNumbers, an MPW script that builds an MPW tool that’s
functionally equivalent to the application.

WHAT USERS EXPECT
Users expect to see numbers in a format that makes sense to them. This challenges
the programmer to accommodate the variations on number formatting that occur
around the world.

The most common system for writing numbers is the decimal system, where numbers
are formed from ten different numerals, with the position of each digit within a
number defining a multiplier for it: 123 = 1*100 + 2*10 + 3*1. However, there are

INTERNATIONAL NUMBER FORMATTING December 1993

97
NORBERT LINDENBERG is an import from
Germany who still wonders why there are offices
in California that don’t have windows and need
artificial light while the sun is shining outside, and
how Americans can survive on 12 days of
vacation a year instead of the normal six weeks.
While a student at the University of Karlsruhe,
Norbert developed the Literate Programming
Workshop, which he claims is the best

environment for doing literate programming.
(Literate programming is similar to a develop
article in that you combine source code and
documentation in one document, but different
because you compile the source code right out of
this integrated source document.) Now he
actually gets paid for writing literate programs for
Apple’s International Software Support Group.•

NORBERT LINDENBERG

INTERNATIONAL

NUMBER

FORMATTING

many local variations on this scheme, and there are some writing systems that prefer a
different style of writing numbers, in which case decimal numbers may or may not be
an acceptable alternative. Systems besides the decimal system that users may require
include Roman numerals (used in many languages to number topics or title pages)
and hexadecimal numbers (familiar to everybody who’s ever dropped into MacsBug),
as well as the Japanese and Chinese systems. For details on how these number
formatting systems differ from one another, see “Number Formatting Variations.”

Computers may complicate matters even more by providing multiple character codes
for the same digit. For example, the Macintosh Japanese character set provides both
1-byte and 2-byte encodings of the Latin characters (which are called “Romaji” in
Japanese). They can easily be distinguished on the screen: the 1-byte versions are
narrower than the 2-byte versions, which take up the same width as Kanji characters.
For interpretation as numbers, however, these different encodings should be
considered equivalent.

Another example is the Macintosh Arabic character set, which defines a set of Arabic
digits with right-to-left orientation in addition to the ASCII digits, which have left-
to-right orientation and are usually displayed with Arabic glyphs when an Arabic font
has been chosen. The right-to-left digits are intended only for text that doesn’t have a
numeric meaning, such as software version strings and part numbers, and are needed
to obtain proper line layout in these cases. However, users may not be aware of this
intention and may try to enter numbers using these digits. Later we’ll discuss how to
deal with this.

WHAT YOUR APPLICATION NEEDS
Depending on how sophisticated your application is with regard to numbers, you’ll
need to support variations on number formatting in three different situations: simple
number display, number display in a user-specified format, and numeric input.

For simple number display, your application needs to show a given number in a
default format that makes sense to the user. This kind of formatting may suffice for
many applications and is commonly used for dialogs.

For other number-display situations, your application might need to format numbers
according to the user’s specification. The user might specify which representation to
use for the number (for example, decimal or traditional Chinese; Thai, Arabic, or
Latin glyphs), the number of digits after the decimal separator, how to indicate
negative numbers, whether to use thousands separators, which currency symbol to
use, and where to place it. This kind of formatting is needed, for example, for
spreadsheets, databases, and page layout applications.

Numeric input is needed in almost any application — for example, to specify the
width of a page, the number of a page to jump to, or the size of a font. Ideally, your

d e v e l o p Issue 16

For background information on number
formatting, see Chapter 5, “Text Utilities,” in
Inside Macintosh: Text. For definitions of basic
terms used in this article, see Chapter 1,
“Introduction to Text on the Macintosh,” in the
same volume.•

98

INTERNATIONAL NUMBER FORMATTING December 1993

99

Local variations on the decimal system include variations
on the shapes of the digits, representation of negative
numbers, the decimal separator, and the thousands
separator.

• The shapes of the digits: The glyphs used with the Latin
writing system differ from those used with the Arabic
writing system, and several other writing systems come
with their own glyphs.

Latin
Arabic
Thai

• Representation of negative numbers: The minus sign
can be used before or after the number, or the number
can be parenthesized.

• The decimal separator: Either a period or a comma
can be used to mark off the integer part of the number
from the fractional part.

• The thousands separator: A space, a comma, a
period, or some other character can be used to mark
off the thousands place from the hundreds place, the
millions place from the hundred thousands place, and
so on. Sometimes the thousands separator isn’t used
at all.

Many other variations exist, especially for noninteger
numbers. Here’s a sample of local variations on how one
negative number is represented in the decimal system:

Arabic
French –1 234,56
German –1.234,56
Greek (1 234.56)
Japanese (1,234.56)
Swiss French –1'234.56
Thai
U.S. –1,234.56

In the Roman system, numbers are formed from letter
digits representing the numbers shown below.

M 1000
D 500
C 100
L 50
X 10
V 5
I 1

Originally the digits of the number were simply added up
to arrive at the value of the number, and digits were
sorted in decreasing order within the number (so 9 =
VIIII). Later a convention was added that positioning one
of the digits C, X, or I before a higher-valued digit means
that its value is to be subtracted instead of added (so
9 = IX).

The Japanese and Chinese systems represent numbers in
various ways. In horizontal writing, the decimal system
with Latin glyphs is commonly used. Ten thousands
separators were once used instead of thousands
separators and are still used in some very traditional
quarters, but accountants in Japan now use thousands
separators instead. In the traditional vertical writing
preferred by native speakers, however, Chinese
characters are used without separators. A mapping of
decimal numbers to Chinese digits is acceptable;
however, a direct representation of the numbers as they
are spoken is preferred. The number 45000, for example,
is represented in the decimal style on the left and in the
traditional style on the right:

4 4
5 ten thousand
0 5
0 thousand
0

NUMBER FORMATTING VARIATIONS

application should be able to interpret a numeric string in any format that might
make sense to the user, independent of the display formats you use.

WHAT MACINTOSH SYSTEM SOFTWARE PROVIDES
Macintosh system software supports number formatting with international resources,
the Numbers control panel (in System 7.1), and the Text Utilities routines.
Unfortunately, the functionality provided doesn’t cover all the needs just described —
it’s limited to decimal numbers and a maximum of two encodings per script. This
means that, for instance, Chinese vertical numbers aren’t supported; with the advent
of QuickDraw GX, which supports vertical text, this problem is becoming more
urgent. There are some interesting details you’ll have to understand to make the best
use of the functionality provided.

INTERNATIONAL RESOURCES
International resources of two types, 'itl0' and 'itl4', provide data that helps in
formatting numbers.

• Resources of type 'itl0' contain separator symbols (decimal
separator and thousands separator) and information about a simple
default format. These resources allow for 1-byte characters only
and don’t support more sophisticated layout.

• Resources of type 'itl4' contain a number parts table used by the
Text Utilities routines to interpret format specification strings
entered or selected by the user. They also contain a table of
alternate digits that can be used instead of the default ASCII digits
and that may be 2-byte characters. If there are no alternate digits
for the script, the ASCII digits are repeated in this table.

A system file can contain multiple resources of either type. Each regional version of
system software comes with a default resource of each type, as well as the U.S.
versions of the resources; more resources can be added.

If multiple scripts are installed on one machine, each script has at least one resource
of each type and designates one resource of each type as the default for the script.
The default resources for the system script (the script that supports the language your
system is localized for) define the systemwide default. If GetIntlResource (IUGetIntl)
is used to access a resource, the script whose resources are returned depends on the
font in the current graphics port and the settings of the international resources
selection flag. To avoid surprises, it’s usually better to ask for resources of specific
scripts; the InitializeDefaultNumberSeparators routine, discussed later, does this.

All Macintosh scripts support the use of the ASCII digits ($30–$39), and some scripts
provide an additional set of digits in an alternate numeral table. The Japanese 'itl4'
resource contains the 2-byte Romaji digits; the Arabic 'itl4' resource, the right-to-left

d e v e l o p Issue 16

The number in international resource
types isn’t related to functionality. Resources of
type 'itl1' contain long date strings; resources of
type 'itl2' deal with text handling (sorting,
uppercase and lowercase, word boundaries); and
resources of type 'itl5' define rendering and
character encoding. There are no resources of
type 'itl3'.•

GetIntlResource or IUGetIntl? With the new
edition of Inside Macintosh, many Toolbox
routines have been renamed. However, interface
files defining the new names are not yet available
for all Macintosh programming environments.
Therefore, I use the new names in the
documentation, followed by the old names in
parentheses, and I use the old names in the
source code.•

100

digits; and the Thai 'itl4' resource, the Thai digits. Because only one alternate
numeral table is allowed per 'itl4' resource, you won’t find in the Japanese 'itl4'
resource the Chinese numerals used in the Japanese script. Unfortunately, not all
scripts that have multiple sets of digits define them in the 'itl4' resource; for instance,
the Chinese versions of System 7.1 don’t make use of the alternate numeral table but
only support the ASCII digits.

THE NUMBERS CONTROL PANEL
The Numbers control panel (in System 7.1) lets users select the default number
format and define customized decimal and thousands separators, as well as the
currency symbol. In earlier systems, the International control panel (which was
shipped only with certain localized versions of system software) allowed the user to
select the default number format but didn’t provide for customization. (See Figure 1.)

To correctly access the international resources and interpret their contents, it helps to
know how the control panels affect the resources. The behavior of the control panels
has changed significantly from system software versions 7.0 and 7.0.1 to version 7.1.
The International control panel in versions 7.0 and 7.0.1 lets the user select only the
language whose number formatting rules apply; it does not allow modification of the
rules. Selecting a language makes the corresponding region’s 'itl0' resource the
default resource for its script, so that all its features take effect. The 'itl4' resources
are not affected.

The Numbers control panel in System 7.1 lets the user select a predefined regional
version or define a custom version of the number format. The first time the control
panel is opened after installing System 7.1, it creates a new 'itl0' resource in the
System file based on the predefined default 'itl0' resource of this version of system

INTERNATIONAL NUMBER FORMATTING December 1993

101
GetIntlResource (IUGetIntl) is described in
Inside Macintosh: Text, pages 6-90 to 6-91. The
international resources selection flag is described
in Inside Macintosh: Text, pages 6-21 to 6-26.•

Figure 1
The International and Numbers Control Panels

software and makes this new resource the default for the system script. From then on
it keeps the user’s format definition in this personalized 'itl0' resource, whether it’s
selected from predefined formats or defined as a custom format.

When the user selects a different regional version, all items of that region’s 'itl0'
resource that are represented in the control panel are copied into the personalized
'itl0' resource; other features defined in the 'itl0' resource are ignored. This means
that the decision, for example, whether to show negative numbers with a minus sign
or in parentheses is not affected by the selection. The default selection of the 'itl4'
resource isn’t changed; however, the default 'itl4' resource is modified to use the
personalized 'itl0' resource’s decimal and thousands separators in its number parts
table.

There’s one problem with the Numbers control panel that you have to be aware of:
it doesn’t impose any constraints on the selections for the decimal and thousands
separators, other than not allowing the user to enter 2-byte characters. The user can,
for example, select a digit, the minus sign, no character at all, or a character that
conflicts with the inner workings of the Text Utilities routines for interpreting format
specifications. To make sure that your application functions correctly, you have to
check whether the separators make sense before using them.

The sample code discussed in this article assumes that you don’t check for changes of
the resources while your application is running, so it gets all necessary information at
launch time and caches it. This way, changes made with the control panel will not be
immediately reflected in your application, but you also avoid the problem of
inconsistent updates. This problem can arise if you always use the most current
information, and the user changes, say, the decimal separator while your application is
displaying numbers in a window; in this case, it could happen that after redrawing a
part of your window you display one decimal separator in the updated region and
another one in the rest of the window.

THE TEXT UTILITIES ROUTINES
The Text Utilities routines format or interpret numbers according to format
specifications that are given by format strings and that can be quite sophisticated so
that context-dependent variations can be taken into account. Format strings are used
in some spreadsheet and database applications and look like this:

'###.###,##;(###.###,##);0.##'

By default, the Text Utilities routines assume that numbers are encoded by ASCII
digits ($30–$39) and displayed using Latin glyphs. However, we’ll see that there’s a
way to have the routines support the set of digits defined in the alternate numeral
table in the 'itl4' resource, in addition to ASCII digits.

d e v e l o p Issue 16

102

The Text Utilities routines assume a localized format string. There’s only limited
support for automatically adjusting a generic format string to local customs or the
user’s preferences: the routines can replace characters by using a different number
parts table but cannot convert to a different structure of the number format. For
example, the indicator of negative numbers can’t be switched automatically from the
minus sign to parentheses. This is a problem if your application isn’t localized for all
the regions supported by Macintosh system software.

Now you know what users expect, what your application’s needs are, and what
support Macintosh system software offers when it comes to number formatting.
You’ve seen that the Toolbox doesn’t provide a solution for all your needs, so you’ll
have to extend it in some cases. We’ll now look at how you can make the best use of
what is provided to do simple number display using a default format, to display
numbers in a user-specified format, and to interpret numeric input. The sample code
presented here uses the international resources either directly or in combination with
the Text Utilities routines to make up for at least some of the shortcomings of the
Text Utilities routines.

SIMPLE NUMBER DISPLAY
First I’ll show you how to use the 'itl0' resources in conjunction with the Text
Utilities or Standard Apple Numerics Environment (SANE) routines to display
numbers in the default number format. This method provides a simple solution for
cases of simple number display.

The following code takes the localized or user-defined decimal and thousands
separators into account. It assumes that numbers are written as integer or fixed-point
decimal numbers in the ASCII character set and displayed in a font of the system
script. It doesn’t support Roman numerals, full-width Romaji, Chinese numbers,
Thai digits, or the like. Negative numbers are written with a leading minus sign;
parentheses aren’t supported.

In some cases you won’t want to use the default number formatting definition but
instead will want to use the definition for a specific language. This case isn’t taken
into account in this version.

We start by defining the variables used to cache the default decimal and thousands
separators. They must be initialized by calling InitializeDefaultNumberSeparators
when the application is launched.

PROGRAM Numbers;
USES Script, Resources, Memory, Errors, GestaltEqu, Packages, SANE,

UFailure;
VAR gDefaultDecimalSeparator: Char;

gDefaultThousandsSeparator: Char;

INTERNATIONAL NUMBER FORMATTING December 1993

103
SANE is the set of routines for floating-point
calculations in Apple computers. It’s documented
in the Apple Numerics Manual.•

We call the procedure InitializeDefaultNumberSeparators in the application’s
initialization sequence to initialize both gDefaultDecimalSeparator and
gDefaultThousandsSeparator from the default 'itl0' resource of the system script. If
your application tracks changes in the Script Manager state, you can reinitialize the
variables by calling InitializeDefaultNumberSeparators again. Because the Numbers
control panel lets the user select any characters as the separators, we verify that the
selection doesn’t conflict with our use of the separators. If no character was specified
in the control panel, the 'itl0' resource contains Char(0). It’s OK not to have a
thousands separator, but you can’t display floating-point numbers without a decimal
separator. We don’t use GetIntlResource (IUGetIntl), so the outcome of this routine
doesn’t depend on the font in the current graphics port or the international resources
selection flag.

PROCEDURE InitializeDefaultNumberSeparators;
VAR theItl0Handle: Handle;
BEGIN

theItl0Handle := GetResource('itl0', GetScript(smSystemScript,
smScriptNumber));

FailNILResource(theItl0Handle);
WITH Intl0Hndl(theItl0Handle)^^ DO BEGIN

IF (decimalPt IN ['0'..'9', Char(0), '-']) OR (thousSep IN
['0'..'9', '-']) OR (decimalPt = thousSep) THEN

FailOSErr(paramErr);
gDefaultDecimalSeparator := decimalPt;
gDefaultThousandsSeparator := thousSep;
END;

END;

The FailNILResource, FailNIL, FailOSErr, and FailResError routines check for
errors and initiate error handling if necessary; they were originally introduced in
MacApp. In this sample code, I don’t provide complete error handling, but only call
these routines to indicate where a real application would have to be prepared to
handle errors.

The procedure LocalizeNumberString takes a string representing a number as it’s
produced by a nonlocalizable conversion routine and localizes it by adjusting the
decimal separator (if there is one) and inserting thousands separators.

PROCEDURE LocalizeNumberString(VAR theString: Str255);
VAR boundary: Integer;

separatorString: String[1];
minusOffset: Integer;

BEGIN
separatorString := ',';
separatorString[1] := gDefaultThousandsSeparator;

d e v e l o p Issue 16

104

First, we find the boundary between the integer and fractional parts. If there’s a
period, that’s the boundary (and we fix the decimal separator right away); otherwise
it’s the end of the string.

boundary := Pos('.', theString);
IF boundary <> 0 THEN

theString[boundary] := gDefaultDecimalSeparator
ELSE

boundary := Length(theString) + 1;

Second, we insert as many thousands separators as necessary, if the user has specified
one. We take into account that we don’t want to insert a thousands separator right
after a minus sign.

IF gDefaultThousandsSeparator <> Char(0) THEN BEGIN
IF theString[1] = '-' THEN

minusOffset := 1
ELSE

minusOffset := 0;
WHILE boundary > 4 + minusOffset DO BEGIN

theString := Concat(Copy(theString, 1, boundary - 4),
separatorString, Copy(theString, boundary - 3,
Length(theString) - boundary + 4));

boundary := boundary - 3;
END;

END;
END;

And now we finally come to the two routines that an application will call directly to
format numbers into strings. The first one is intended for integer numbers, the
second one for floating-point numbers.

IntegerToLocalString converts the given integer into a string representation using
the thousands separator specified by localization or by the user. It calls NumToString,
a Text Utilities routine.

PROCEDURE IntegerToLocalString(theNumber: LongInt; VAR theString: Str255);
BEGIN

NumToString(theNumber, theString);
LocalizeNumberString(theString);

END;

ExtendedToLocalString converts the number into a fixed-point representation using
the decimal separator specified by localization or by the user. The number of digits to

INTERNATIONAL NUMBER FORMATTING December 1993

105
NumToString is described in Inside Macintosh:
Text, page 5-92.•

be used after the decimal separator is specified in decimalDigits. DecForm and
Num2Str are defined by SANE.

PROCEDURE ExtendedToLocalString(theNumber: Extended; decimalDigits:
Integer; VAR theString: Str255);

VAR theDecForm: DecForm;
BEGIN

WITH theDecForm DO BEGIN
style := fixedDecimal;
digits := decimalDigits;
END;

Num2Str(theDecForm, theNumber, DecStr(theString));
LocalizeNumberString(theString);

END;

That’s all there is to the simple case.

NUMBER DISPLAY IN A USER-SPECIFIED FORMAT
Now I’ll show you how to use the Text Utilities routines and 'itl4' resources to format
numbers according to the user’s specification. The idea is that your application comes
with a range of predefined format strings, from which the user can pick one. The
application might also let users enter their own format strings. Of course, these
strings aren’t exactly the most user-friendly way to define a number format, so if your
application is intended for novice users you should hide them behind a friendlier user
interface. Before we dive into the code, let’s look at a few obstacles that the Text
Utilities routines provide for us and consider how we can work around them.

First of all, the Text Utilities routines expect to work with localized format
specifications. They aren’t able to take, for example, the standard number format
used in the United States and translate it into the standard number format used in
Greece, which uses parentheses to indicate negative numbers. This will be a problem
if your application doesn’t get localized for all regions for which Macintosh system
software is localized and if some versions of your application get used in regions for
which they aren’t localized. To work around this problem, the range of format strings
that a given version of the software offers should include all formats commonly used
in any of the regions in which this version might be used, and your application should
also let users enter their own format strings.

Second, the format strings are interpreted with reference to the characters defined by
the number parts table that you pass into the Text Utilities StringToFormatRec
routine. You have to be sure to use a number parts table whose characters are
compatible with the strings you provide. Currently, only the characters defined by the
U.S. 'itl4' resource are documented. To deal with this situation, we’ll take advantage
of the fact that the U.S. 'itl4' resource is always available and will use its characters as

d e v e l o p Issue 16

DecForm and Num2Str are described in the
Apple Numerics Manual, second edition, pages
26 to 27.•

106

a stable reference point. We’ll define all format strings using the U.S. characters, and
use the number parts table in the U.S. 'itl4' resource to interpret them.

Third, if you match a format string against the number parts table of the default 'itl4'
resource, you’ll have to make sure that your application doesn’t break if the user
defines a custom number format and the Numbers control panel patches the new
decimal and thousands separators into the 'itl4' resource. Therefore, we’ll have to
undo all changes that the user may have made with the control panel before we can
use an 'itl4' resource to interpret our format strings.

Unfortunately, there’s no guarantee that other parts of the number parts table won’t
be modified by the Numbers control panel in the future. This means that a format
string that can be converted under the current mechanism may become unconvertible
in the future, just as a valid 7.0 format string may no longer be recognized by the 7.1
StringToFormatRec routine. There’s not much you can do about this until you know
it’s happened.

An alternative approach that avoids this problem is to store internal representations
of format specifications instead of format strings in the application’s resources. The
internal representations are created by a separate tool that’s run on unmodified U.S.
system software during the development process. This approach, however, makes it
more difficult for localizers to look at the format strings and to create new ones, and
also makes it slightly more difficult to use an additional feature that we’ll discuss later,
in the “Converting Format Strings” section. I therefore prefer to keep format strings
in the application and convert them at run time.

So, to display numbers in a user-specified format, we do the following:

1. Define all format strings using the characters given by the default
U.S. 'itl4' resource and documented in Inside Macintosh: Text, pages
5-39 to 5-43.

2. Set up two separate number parts tables: one “reference” table that
will be used to interpret the predefined format strings and one
“user” table that reflects the user’s formatting needs.

3. Using the reference number parts table, convert the predefined
format strings into the Text Utilities’ internal numeric
representation.

4. Using the user number parts table, convert the internal numeric
representation into format strings that can be displayed to users
(to let them select a preferred format, for example).

5. Using the user number parts table, convert a format string that the
user has entered into an internal numeric representation.

6. Format numbers using the user number parts table.

INTERNATIONAL NUMBER FORMATTING December 1993

107

Inside Macintosh: Text, pages 5-35 to 5-44, goes into great detail about how to format
numbers according to the user’s specifications. The approach I describe here differs
somewhat from that approach. Instead of assuming that all format strings are
localized for the language supported by the default 'itl4' resource, we prepare the
application to support format strings from two different sources, the application
resources and the user, by using separate number parts tables for them. This is shown
in Figure 2, which essentially replaces the upper left portion of the data flow diagram
on page 5-37 of Inside Macintosh: Text. In all other places where the diagram in Inside
Macintosh: Text shows a number parts table, we use the user number parts table.

DEFINING FORMAT STRINGS
Which format strings you provide with your application depends on the countries
you want to target and the specific needs of your users. Here are some sample strings
that you may want to use:

• '###,###.##;-###,###.##;0.##' can be used for floating-point
numbers with an absolute value of less than one million, with a
thousands separator and the minus sign for negative numbers, and
without padding.

• '###,###.##;(###,###.##);0.##' is similar, but with parentheses to
represent negative numbers, as is customary in some countries.

• '+^^^;-^^^;^^^^' can be used for integer numbers with an absolute
value of less than one thousand, with signs for both positive and
negative numbers, and with padding to four places with a space
character as may be necessary for alignment.

d e v e l o p Issue 16

108

Format string�
predefined in resource

Reference number�
parts table

StringToFormatRec

Format string�
entered by user

User number�
parts table

Internal numeric�
representation

Figure 2
Number Formatting Using Two Different Number Parts Tables

When you define the format strings, there are a few things you have to watch out for.
Most important, the predefined format strings shouldn’t include any literal text, as
this text is almost guaranteed to be inappropriate for the regions the application isn’t
localized for. (Note that it may be inappropriate even for the target region; for
example, you shouldn’t embed currency symbols, because many users deal with
foreign currency.)

Also, conversion from U.S. to localized characters really only works for characters
that are listed as separate tokens in Inside Macintosh: Text, page B-56, not for unquoted
characters or other text. For example, parentheses are unquoted characters and don’t
get converted to the special right-to-left parentheses used by the Arabic and Hebrew
script systems. As a result, neither a format string that contains parentheses nor
numbers formatted with it display correctly on Arabic, Persian, or Hebrew system
software. To avoid problems like this, make sure to test your software on the system
software for all countries that you want to target.

Finally, the format string specifies the maximum number of predecimal digits in a
formatted number, and the formatting routine will report an error if the number
doesn’t fit into the format. This means that your program has to ensure that the
format strings have enough predecimal digits to accommodate all numbers that
may need to be formatted. If the predefined strings you need get too long, you
may want to use a simplified version that you can show to users without scaring
them.

SETTING UP THE NUMBER PARTS TABLES
Now we’ll set up the number parts tables that we’ll use. The reference table is based
on the U.S. 'itl4' resource, but we’ll undo all changes that the user may have made
with the control panel. The user table is based on the system’s default number parts
table and the user’s selections in the Numbers or International control panel.

Again, we assume that your application doesn’t check for changes in the Script
Manager state, and therefore we cache the number parts tables that we need at launch
time. The tables are initialized by calling InitializeNumberPartsTables. If the user
number parts table is an unmodified U.S. table, only one table is allocated, and both
pointers reference this table.

VAR gUserNumberPartsTable: NumberPartsPtr;
gReferenceNumberPartsTable: NumberPartsPtr;

VAR gSystemVersion: LongInt;

The function GetUserItl4 gets the 'itl4' resource that matches the user’s selection in
the Numbers or International control panel. This isn’t necessarily the default 'itl4'
resource.

INTERNATIONAL NUMBER FORMATTING December 1993

109
Number parts tables are described in more
detail in Inside Macintosh: Text, pages B-55 to
B-57.•

FUNCTION GetUserItl4: Handle;
VAR theItl4Handle: Handle;

systemScript: ScriptCode;
tableOffset, tableLength: LongInt;
theItl0Handle: Handle;
theResID: Integer;
theResType: ResType;
theResName: Str255;

System 7 provides a new routine, GetIntlResourceTable (IUGetItlTable), that returns
the number parts table of the default 'itl4' resource. However, the effect of the
International control panel on the default 'itl4' resource differs from that of the
Numbers control panel, as explained earlier, and we take some extra steps to achieve
the behavior that best matches the control panel’s behavior. The International control
panel selects an 'itl0' resource but doesn’t affect the 'itl4' resource. If we continued
using the default 'itl4' resource, the user wouldn’t see any effect from the control
panel selection. To make up for this, we’ll try to find an 'itl4' resource that matches
the 'itl0' that the user selected, and use it instead of the default 'itl4'. The Numbers
control panel, on the other hand, updates the decimal and thousands separators in the
'itl4' resource, and changes in the default 'itl0' resource are limited to the features
visible in the control panel. Therefore, the best solution in this case is to use the
default 'itl4' resource.

BEGIN
IF gSystemVersion >= $0710 THEN BEGIN

systemScript := GetEnvirons(smSysScript);
IUGetItlTable(systemScript, iuNumberPartsTable, theItl4Handle,

tableOffset, tableLength);
FailNILResource(theItl4Handle);
END

ELSE BEGIN

The workaround used here is to ask the system for the 'itl0' resource and then try to
find an 'itl4' resource with a matching number. Some countries, however, have
multiple 'itl0' resources and only one 'itl4' resource, or they don’t have any 'itl4'
resource of their own (they use the U.S. version). To cover these cases, we have to go
through an exception table.

theItl0Handle := IUGetIntl(0);
FailNILResource(theItl0Handle);
GetResInfo(theItl0Handle, theResID, theResType, theResName);
theItl4Handle := GetResource('itl4', theResID);
IF ResError = resNotFound THEN BEGIN

The exceptions in system software versions 7.0 and 7.0.1 are as follows:

d e v e l o p Issue 16

GetIntlResourceTable (IUGetItlTable) is
described in Inside Macintosh: Text, pages 6-91
to 6-92.•

110

• the Netherlands: 'itl0' IDs 5 and 6; 'itl4' only ID 5.

• Czechoslovakia: 'itl0' IDs 30776, 30777, 56, 57; 'itl4' only ID
30776.

Note that 'itl0' 56 occurs in both the Czechoslovakian and Polish versions. For all
other cases, we try the U.S. resource.

CASE theResID OF
6: theResID := 5; { Netherlands }
30777, 56, 57: theResID := 30776; { Czechoslovakia }
OTHERWISE theResID := verUS;
END;

theItl4Handle := GetResource('itl4', theResID);
FailNILResource(theItl4Handle);
END

ELSE
FailNILResource(theItl4Handle);

END;
GetUserItl4 := theItl4Handle;

END;

In the procedure InitializeDefaultNumberSeparators we’ve verified that the
characters the user has specified as decimal and thousands separators don’t conflict
with the use of these separators for default formatting. Here, we have to take one
additional step: the Text Utilities routines for user-specified formatting don’t work if
the same character is used for different purposes in the number parts table. For
instance, a character can’t be used both as the decimal separator and to represent
digits in a format string. If the routines find a number parts table they don’t like, they
return the fBadPartsTable result. The procedure CheckDefaultNumberSeparators
uses this to check for problems in the user number parts table (which contains the
default separators) at application initialization time. In real life, your application
should produce a more meaningful message explaining to the user what went wrong
and then should quit.

PROCEDURE CheckDefaultNumberSeparators(userNumberPartsTable:
NumberPartsPtr);

CONST testString = '0';
VAR formatRecord: NumFormatString;

result: FormatStatus;
BEGIN

result := Str2Format(testString, userNumberPartsTable^, formatRecord);
IF FormatResultType(result) <> fFormatOK THEN

FailOSErr(paramErr);
END;

INTERNATIONAL NUMBER FORMATTING December 1993

111

The procedure ExtractNumberPartsTable is used by the InitializeNumberPartsTables
routine to extract a number parts table from an 'itl4' resource.

FUNCTION ExtractNumberPartsTable(theItl4Handle: Handle): NumberPartsPtr;
VAR tableOffset: LongInt;

tableLength: LongInt;
theTable: Ptr;

BEGIN
WITH NItl4Handle(theItl4Handle)^^ DO BEGIN

tableOffset := defPartsOffset;
tableLength := defPartsLength;
END;

theTable := NewPtr(tableLength);
FailNIL(theTable);
LoadResource(theItl4Handle); { Might have been purged since we got

hold of it }
FailResError;
BlockMove(Ptr(LongInt(theItl4Handle^) + tableOffset), theTable,

tableLength);
ExtractNumberPartsTable := NumberPartsPtr(theTable);

END;

The procedure InitializeNumberPartsTables initializes gUserNumberPartsTable and
gReferenceNumberPartsTable by copying the tables from the respective 'itl4'
resources into nonrelocatable blocks in the heap and cleaning the reference table if
necessary.

PROCEDURE InitializeNumberPartsTables;
VAR userItl4, usItl4: Handle;
BEGIN

userItl4 := GetUserItl4;
usItl4 := GetResource('itl4', verUS);
FailNILResource(usItl4);
gUserNumberPartsTable := ExtractNumberPartsTable(userItl4);
CheckDefaultNumberSeparators(gUserNumberPartsTable);

We check whether the user number parts table is an unmodified U.S. table, so we can
use it as the reference table as well.

IF (usItl4 = userItl4) AND ((gSystemVersion < $0710) OR
((gDefaultDecimalSeparator = '.') AND
(gDefaultThousandsSeparator = ','))) THEN

gReferenceNumberPartsTable := gUserNumberPartsTable
ELSE BEGIN

d e v e l o p Issue 16

112

We need to get the U.S. number parts table and undo any changes that the user may
have made with the Numbers control panel.

gReferenceNumberPartsTable := ExtractNumberPartsTable(usItl4);
gReferenceNumberPartsTable^.data[tokDecPoint].a[1] := '.';
gReferenceNumberPartsTable^.data[tokThousands].a[1] := ',';
END;

END;

The procedure DisposeNumberPartsTables disposes of the global number parts
tables.

PROCEDURE DisposeNumberPartsTables;
BEGIN

IF gReferenceNumberPartsTable <> gUserNumberPartsTable THEN
DisposPtr(Ptr(gReferenceNumberPartsTable));

DisposPtr(Ptr(gUserNumberPartsTable));
gReferenceNumberPartsTable := NIL;
gUserNumberPartsTable := NIL;

END;

CONVERTING FORMAT STRINGS
Now that we have the two number parts tables, we’re going to use them to do some
conversions. We’re going to convert our predefined format strings into the Text
Utilities’ internal numeric representation, convert this representation into format
strings that can be displayed to the user, and convert format strings entered by the
user into internal representations.

But first, remember the alternate numerals table mentioned earlier? It’s time now to
reveal a previously undocumented feature: if a number parts table used for converting
a format string to its internal numeric representation contains a character other than
“#” as the no-leader format marker, the resulting internal numeric representation will
specify using the alternate numerals.

We can use this knowledge to write a wrapper around the StringToFormatRec
(Str2Format) routine that temporarily replaces the no-leader format marker, adjusts
the format string to use the replacement character as well, calls StringToFormatRec,
and reverts the number parts table to its original state. A convenient replacement
character is “1,” because digits are very unlikely to be used for any other purpose in
any version of the number parts table. As the character code for “#” is in a range that
isn’t used for the bytes of 2-byte characters, we don’t have to check for 2-byte
characters here.

Here’s what the wrapper routine looks like:

INTERNATIONAL NUMBER FORMATTING December 1993

113
StringToFormatRec (Str2Format) is
described in Inside Macintosh: Text, pages 5-95
to 5-96.•

PROCEDURE StringToFormatRecord(formatString: Str255;
useAlternateNumerals: Boolean;
theNumberPartsTable: NumberPartsPtr;
VAR formatRecord: NumFormatString);

VAR result: FormatStatus;
oldChar: WideChar;
i: Integer;

BEGIN
IF useAlternateNumerals THEN BEGIN

oldChar := theNumberPartsTable^.data[tokNonLeader];
theNumberPartsTable^.data[tokNonLeader].b := Ord('1');
FOR i := 1 TO Length(formatString) DO

IF formatString[i] = '#' THEN
formatString[i] := '1';

END;
result := Str2Format(formatString, theNumberPartsTable^, formatRecord);
IF useAlternateNumerals THEN

theNumberPartsTable^.data[tokNonLeader] := oldChar;
IF FormatResultType(result) <> fFormatOK THEN

FailOSErr(paramErr);
END;

When do you use alternate numerals? First you have to find out whether the user
'itl4' resource you’re using supports alternate numerals. You can use the following
routine to do this. If it returns TRUE, you should let the user make the final decision
whether to use the alternate numerals for output — you can’t take for granted that
they’re always preferred over the ASCII digits. For input, it probably makes sense to
accept them without bothering the user first. An exception is the alternate numerals
in bidirectional scripts, where the internal representation of the number won’t match
what the user sees on the screen. You probably shouldn’t accept these digits.

FUNCTION HasAlternateNumerals(aNumberPartsTable: NumberPartsPtr): Boolean;
BEGIN

HasAlternateNumerals :=
aNumberPartsTable^.altNumTable.data[0].b <> Ord('0');

END;

Obviously, the decision whether to use alternate numerals has to be made at run time.
This is the second reason I recommended storing format strings and not internal
representations in the application: with internal representations, you would have to
store both versions and select the right one at run time; with format strings, you only
store one version and decide at run time how to convert it.

Given this preparation and the two number parts tables, the remaining steps are
straightforward. The following routines do no more than call StringToFormatRecord

d e v e l o p Issue 16

114

and FormatRecToString with the appropriate number parts table and check for errors
that might occur.

PredefinedStringToFormatRecord converts a predefined format string using the
standard U.S. number parts table into an internal numeric representation.

PROCEDURE PredefinedStringToFormatRecord(predefinedFormatString: Str255;
useAlternateNumerals: Boolean;
VAR formatRecord: NumFormatString);

BEGIN
StringToFormatRecord(predefinedFormatString, useAlternateNumerals,

gReferenceNumberPartsTable, formatRecord);
END;

FormatRecordToUserString converts an internal numeric representation into a
format string that can be displayed to the user.

PROCEDURE FormatRecordToUserString(formatRecord: NumFormatString;
VAR userFormatString: Str255);

VAR result: FormatStatus;
positions: TripleInt;

BEGIN
result := Format2Str(formatRecord, gUserNumberPartsTable^,

userFormatString, positions);
IF FormatResultType(result) <> fFormatOK THEN

FailOSErr(paramErr);
END;

UserStringToFormatRecord converts a format string entered by the user into an
internal numeric representation.

PROCEDURE UserStringToFormatRecord(userFormatString: Str255;
useAlternateNumerals: Boolean;
VAR formatRecord: NumFormatString);

BEGIN
StringToFormatRecord(userFormatString, useAlternateNumerals,

gUserNumberPartsTable, formatRecord);
END;

FORMATTING NUMBERS
After all the preparations, the formatting itself is trivial. FormatNumber formats
theNumber into a string, using the internal numeric representation given and the
user number parts table.

INTERNATIONAL NUMBER FORMATTING December 1993

115
FormatRecToString (Format2Str) is
described in Inside Macintosh: Text, pages 5-96
to 5-98.•

PROCEDURE FormatNumber(theNumber: Extended;
theFormatRecord: NumFormatString;
VAR theString: Str255);

VAR result: FormatStatus;
BEGIN

result := FormatX2Str(theNumber, theFormatRecord,
gUserNumberPartsTable^, theString);

IF FormatResultType(result) <> fFormatOK THEN
FailOSErr(paramErr);

END;

NUMERIC INPUT
Now let’s look at conversions in the opposite direction. When the user enters a
number, your application receives a numeric string that it has to convert into a
number. This could be quite a difficult task, given that a user may pick a rather
arbitrary format (and remember, Macintosh users are generally inclined to do things
their own way). Unfortunately, the Toolbox doesn’t provide a routine that simply
converts an arbitrary numeric string to a number; your application always has to
specify the acceptable format.

We can reasonably make some simplifying assumptions: If your application doesn’t
support output in formats other than ASCII digits, it’s probably acceptable to apply
the same restriction to the input formats that can be used. And if your application
uses only the default format for display, you can also get away with allowing input in
this format only, although it would be nicer to accept input in any format the user
prefers. If your application supports user-specified number formats, however, it
should be prepared to accept input in any currently defined format, and probably in
some variations of them, plus the default format.

The Toolbox provides three routines that convert numeric strings into numbers.
StringToNum can parse integer numbers but can’t deal with anything that goes
beyond a sequence of decimal digits that’s possibly preceded by a sign. The SANE
routine Str2Num can parse floating-point numbers and does detect erroneous input,
but it assumes the period as the decimal separator and doesn’t support thousands
separators. Finally, StringToExtended is supposed to support input of numeric strings
in a localized format, but it can deal with only one format at a time and has several
other shortcomings that we’ll look at later.

We’ll take the same approach as with number display and provide separate routines
that can deal with the default number format and with user-specified formats.

INTERPRETING NUMBERS IN THE DEFAULT NUMBER FORMAT
This solution restricts user input to something that’s very close to the default number
format. Then we can simply reverse the “localization” process done for the default

d e v e l o p Issue 16

StringToNum and StringToExtended
(FormatStr2X) are described in Inside
Macintosh: Text. See pages 5-93 to 5-94 for
StringToNum, and pages 5-98 to 5-99 for
StringToExtended.•

Str2Num is described in the Apple Numerics
Manual, second edition, pages 25 to 26.•

116

format — that is, strip thousands separators and modify the decimal separator — and
call the StringToNum routine or SANE directly to interpret the number.

The procedure UnlocalizeNumberString checks whether theString is a legal number
string, strips all thousands separators, and replaces the default decimal separator with
a period. As the default number format consists only of ASCII digits, the minus sign,
and thousands and decimal separators (which are limited to one byte by the 'itl0'
resource), we don’t have to worry about 2-byte characters here if we walk the string
and check each character (we would have to worry if we used a string search routine).

PROCEDURE UnlocalizeNumberString(VAR theString: Str255;
allowDecimal: Boolean);

VAR delta: Integer;
i: Integer;
theChar: Char;

BEGIN
delta := 0;
FOR i := 1 TO Length(theString) DO BEGIN

theChar := theString[i];
IF (theChar >= '0') & (theChar <= '9') THEN

theString[i - delta] := theChar
ELSE IF (theChar = '-') & (i = 1) THEN

theString[i - delta] := theChar
ELSE IF theChar = gDefaultThousandsSeparator THEN

delta := delta + 1
ELSE IF theChar = gDefaultDecimalSeparator THEN BEGIN

IF allowDecimal THEN BEGIN
allowDecimal := FALSE; { one is enough }
theString[i - delta] := '.';
END

ELSE
FailOSErr(paramErr)

END
ELSE

FailOSErr(paramErr);
END;

theString[0] := Char(Length(theString) - delta);
IF Length(theString) = 0 THEN

FailOSErr(paramErr);
END;

And here we finally come to the two routines that your application will call directly to
interpret numeric strings. The first one is intended for integer numbers, the other
one for floating-point numbers.

INTERNATIONAL NUMBER FORMATTING December 1993

117

LocalStringToInteger converts to an integer a numeric string that we’re hoping
represents an integer. The string may contain localized thousands separators.

PROCEDURE LocalStringToInteger(theString: Str255; VAR theNumber: LongInt);
BEGIN

UnlocalizeNumberString(theString, FALSE);
StringToNum(theString, theNumber);

END;

LocalStringToExtended converts to an equivalent floating-point number a numeric
string that we’re hoping represents a fixed-point number. The string may contain
localized thousands and decimal separators.

PROCEDURE LocalStringToExtended(theString: Str255;
VAR theNumber: Extended);

BEGIN
UnlocalizeNumberString(theString, TRUE);
theNumber := Str2Num(theString);

END;

INTERPRETING NUMBERS IN USER-SPECIFIED NUMBER FORMATS
Now we can benefit from some of the work that we did to display a number in a user-
specified number format: we use the same number parts tables and the same format
conversion routines. However, because we can’t really constrain users to any given
format for input, we have to allow them at least to use any currently defined format,
including the default format. To do this, your application should try the default
format and all currently defined format strings until it finds one for which the
conversion is successful.

The core of this conversion is the StringToExtended (FormatStr2X) routine, and it
helps to understand how this routine works. You get the most reliable results from
StringToExtended if users enter numbers exactly in one of the three possible formats
given by a format string (for positive and negative numbers and 0). In this case it
returns fFormatOK. If the input string doesn’t conform to any of the three formats,
StringToExtended tries to guess: it replaces the default decimal separator in the
string with a period, moves the minus sign to the beginning of the string, and strips
some other punctuation. If the resulting string can be interpreted by SANE,
StringToExtended returns fBestGuess and the number found by SANE; otherwise
StringToExtended returns one of several other values that indicate why the string
cannot be interpreted.

You can control how liberal your application is by either allowing fBestGuess as a
result of StringToExtended or treating it as an error. If you don’t allow fBestGuess,
the input string can deviate from the specified format in only the following two ways:

d e v e l o p Issue 16

Result values for StringToExtended are
described in Inside Macintosh: Text, page 5-38.•

118

• If you specify parentheses to indicate negative numbers,
StringToExtended recognizes parenthesized numbers as negative
but still also accepts numbers with a minus sign. This helps in
many countries where negative numbers can be written with either
a minus sign or parentheses.

• If you set useAlternateNumerals to TRUE when you converted
your format string, StringToExtended accepts ASCII digits in
addition to the alternate numerals.

If you allow fBestGuess, the following deviations (and more) are also allowed:

• The minus sign for negative numbers can occur anywhere in the
number. That may be nice for some people who prefer to write the
minus at the end, but interpreting “12–3” as –123 doesn’t make
sense.

• Thousands separators can be missing or in the wrong place.

• A fractional part can be present while the format string doesn’t
provide for it.

• A decimal separator and fractional part specified in the format
string can be missing.

• More predecimal digits than specified by the format can be
present.

Because the guessing process ignores some of the information entered by the user, it
may behave inconsistently with the behavior shown when the format is OK. For
example, if your format string uses parentheses to indicate negative numbers and also
specifies thousands separators, “(123)” will be read as -123 (with fFormatOK), but
“(1234)” will be read as 1234 (with fBestGuess). The missing thousands separator
causes StringToExtended to go into the guessing pass, and there the parentheses are
stripped instead of being interpreted as the indicator for “negative.”

This situation is somewhat unfortunate. On one hand, checking for fFormatOK
alone doesn’t give users much freedom to type numbers in their preferred format —
for instance, where a fractional part is specified, they must at least enter the decimal
separator. On the other hand, allowing fBestGuess may mean that some pretty
bizarre strings are accepted and may lead to inconsistent interpretation of
parentheses. It seems that for integer strings allowing fBestGuess is never a good
solution, while for real values it might be OK as long as you don’t support expressing
negative numbers with parentheses. To play it safe, I don’t allow fBestGuess in the
code that follows.

To provide the appropriate handling and return the desired type of number, here are
two different routines that interpret numeric strings representing floating-point and

INTERNATIONAL NUMBER FORMATTING December 1993

119

integer numbers. They both return Booleans to tell the caller whether theString was
successfully converted.

InterpretExtended interprets a numeric string and converts it to an Extended
number.

FUNCTION InterpretExtended(theString: Str255;
theFormatRecord: NumFormatString;
VAR theNumber: Extended): Boolean;

VAR result: FormatStatus;
BEGIN

result := FormatStr2X(theString, theFormatRecord,
gUserNumberPartsTable^, theNumber);

InterpretExtended := FormatResultType(result) = fFormatOK;
END;

InterpretInteger interprets a numeric string that (we hope) represents an integer and
converts it to the equivalent LongInt.

FUNCTION InterpretInteger(theString: Str255;
theFormatRecord: NumFormatString;
VAR theNumber: LongInt): Boolean;

VAR result: FormatStatus;
theExtended: Extended;

CONST
minLongInt = -2147483648;
maxLongInt = 2147483647;

BEGIN
result := FormatStr2X(theString, theFormatRecord,

gUserNumberPartsTable^, theExtended);
IF (FormatResultType(result) = fFormatOK) & (theExtended >= minLongInt)

& (theExtended <= maxLongint) THEN BEGIN
theNumber := Num2LongInt(theExtended);
InterpretInteger := TRUE;
END

ELSE
InterpretInteger := FALSE;

END;

TESTING THE CODE
The Numbers Test application on this issue’s CD tests all the routines that we’ve seen
so far. It’s a simple, text-based application that spits out a few numbers in the default
format, converts a few format strings and displays them in the localized version, and
then runs a test that reads in numbers and formats them according to format strings.

d e v e l o p Issue 16

Num2LongInt is described in the Apple
Numerics Manual, second edition, page 22.•

120

In a real program, you would of course get the format strings and the messages from
resources. In case you prefer to play with an MPW tool, you can use the
BuildNumbers script on the CD to build a tool that’s equivalent to the application.

One final warning in case you don’t check out the source code: Before using the
routines described in this article, your application has to check that it runs on system
software version 7.0 or higher, because the section “Setting Up the Number Parts
Tables” makes some assumptions about this.

OFF YOU GO
If you compare the user expectations described at the beginning of this article and
what we’ve actually achieved with the Toolbox, you’ll find that we’ve been only
partially successful. The code handles the default number format and some user-
specified customizations, but it’s still limited to decimal numbers expressed in ASCII
digits and to additional characters supported by the 'itl4' resource.

You may consider adding code of your own to make your number handling more
flexible. There’s an obvious need for support for nondecimal numbers. Many
specialized applications already support Roman numerals or hexadecimal numbers;
your application could similarly support traditional Chinese numbers or decimal
numbers using Chinese digits.

When you add your own number support, you should always design it as an extension
to the facilities provided by system software, not as a replacement. The Macintosh is
being localized into ever more languages to reach ever more customers, and you’ll be
more successful if your application is at least as good as system software worldwide.

INTERNATIONAL NUMBER FORMATTING December 1993

121
THANKS TO OUR TECHNICAL REVIEWERS
Jeannette Cheng, Peter Edberg, Bryan K.
(“Beaker”) Ressler, Kenny Tung•

REFERENCES
• Apple Numerics Manual, 2nd ed. (Addison-Wesley, 1988).

• Inside Macintosh: Text (Addison-Wesley, 1993). See Chapter 1, “Introduction to
Text on the Macintosh”; Chapter 5, “Text Utilities”; Chapter 6, “Script Manager”;
and Appendix B, “International Resources.”

Dear Tao,

I’m nearing the end of my rope and have become desperate
enough that I figure even a letter to you couldn’t hurt. Over
the last couple of years I’ve found myself working longer and
longer hours. I pointed this out to my boss and she said that
there’s no way the company could afford to hire more people,
and that I was going to have to learn how to “work
smarter.” Just what the heck is that supposed to mean?

P. O.

Dear P.,

In order to work smarter you have to do two things:
first figure out who is smarter than you, and then copy
their actions and claim them as your own. This is a
problem that’s easily solved if you look at history.

Unless your name is Stephen Hawking, it’s pretty safe
to say that Albert Einstein was smarter than you. Let’s
see how he handled a similar situation.

Early in his career Mr. Einstein was working in a patent
office, but he was having trouble keeping up with the
ever increasing workload. Upon asking his boss for
advice, he too was told to “work smarter.” He was also
advised that he’d be a little more presentable around
the office if he wore a hairnet while he slept.

Very disturbed, he went home and contemplated these
words. The story is told that after several hours of soul
searching and a couple of Fuzzy Navels he was able to
get in touch with his Inner Physicist Self: he quit his
job, came up with the General Theory of Relativity,
and as a result started a career as a professional smart
guy.

Taking the cue from Al, I’d say the answer’s simple: quit
your job and never go back to anything even remotely
related to it. True, it’s not likely that you’ll win the
Nobel Prize for physics, but I’m certain that at the very
least you’ll find it much easier to balance your
checkbook (a task that is quite a bit simpler when you
don’t have to worry about income).

As for wearing the hairnet, I’d say that’s optional. On
the off-chance you do become famous, you won’t look
nearly as cool when they make a poster of you if your
hair is neat and tidy — something always worth
considering in any situation.

Dear Tao,

I keep a pet hamster at work, and the guy across the hall has
a rat. We’re thinking of getting one of those cages that link
together so that our pets can visit each other, but before we do
I have a question: would it be possible for them to have
babies? I think it’d be really cool and break up the monotony
of the day.

Sign me,

Dr. Doverylittle

Dear Doctor,

It sounds like you may have not been paying very close
attention to your biology classes for, say, your last ten
years of school. The short answer is no, you can’t cross-
breed rats and hamsters. However, you’ll get a brief but
downright eye-opening demonstration of what food
chains are all about if you decide to take the leap and
give your pets a formal social introduction.

d e v e l o p Issue 16

TAO JONES, in a high school English class assignment years
ago, was asked to describe his ultimate fantasy. Although the exact
details are now forgotten, it had something to do with huge castles,
large bicycle tracks, and “The Gong Show.” When he discovered
that the rest of the class had described things like “a long weekend
with Farrah Fawcett,” he immediately started working on an all-
encompassing philosophy to explain the rest of humanity. It’s taken
years to perfect, and today this philosophy is commonly referred to
as his “bad attitude.”•

Tao Index: Do not trust those who have their jeans pressed.•
122

VIEW FROM
THE LEDGE

TAO JONES

VIEW FROM THE LEDGE December 1993

123

Speaking of rodents, it’s worth noting that they can be
of tremendous help in your company’s advertising
efforts. Let’s say you have a list of possible slogans to
use but are unsure which is best. Simply tape all the
slogans you’re considering on the side of your rodent
tank and then watch carefully. The one your little beast
walks toward will be the natural winner. Remember,
advertising works on the most primitive portions of the
brain, so a rat is as good as an ad exec for the task, and
you get the added benefit of Purina Rat Chow being
quite a bit cheaper than the cost of a two-martini lunch.

Can’t even come up with a slogan? No problem. You
can use single words just as easily and then string them
together. It might take a few trials until you get
something that makes sense, but keep at it. I tried this
using random words cut out of the newspaper and came
up with the ultra-highbrow “Price last, anybody’s near
Russia.” It’s got everything you need: concern for the
customer and faux concern for other countries. Even
today I’ll bet you could sell a few Lisas using that heady
doublespeak.

Dear Tao,

I had a conversation with my boss the other day in which he
accused me of “gross incompetence” merely because I was
personally responsible for the failure of our company’s last
three products. I could use your advice on how to proceed.

Spud Boy

Dear Spud,

If what you said is true, your boss is right: you are
incompetent. Don’t let that bother you; competency is
only one of several factors related to your job, and in
some ways your future has never looked brighter.
However, you should take action if you’re interested in
staying where you are.

The key here is to slyly change your company’s
employment guidelines. In the 1990s nearly all
businesses of any size have a bylaw that says something

like, “Sproutbud Software has a policy of equal
opportunity hiring and we will not discriminate with
regard to an employee’s ethnic origin, religious beliefs,
age, sex, sexual preference, marital status, or even if
they wear brown shoes with a blue suit.”

Obviously the phrase that you want added is “. . . will
not discriminate with regard to ability,” but that’s going
to be hard to get on the first pass. What you’ll need to
do is get very militant about something that seems
relatively trivial. The next time you have a large
meeting, hint that you have reason to believe that your
company discriminates against people who like sherbet.
Once they deny it (as they undoubtedly will), say “OK,
maybe you’re right, but I won’t be comfortable until
our employment guidelines are changed to reflect this.”

Next, insist there is discrimination against people who
like the color magenta; then, those with a penchant for
keeping more than a dollar’s worth of change in their
pockets. Eventually people will get so sick of you that
they’ll just say “Yeah, whatever! Just fill out whatever
you like. Anything to get you to shut up!”

Be careful. Once you have this power you’ll feel like
flaunting it by saying something like “. . . will not
discriminate against people whose last names end in y.”
It sounds catchy, but it’s a sure tip-off to your plans.

Used chewing gum? Place it here.• Tao needs questions or he may be forced to do his real day
job. Please send your queries regarding the social and political
aspects of office survival to AppleLink DEVELOP. If your question is
published, he’ll reward you with an incredibly cheap, yet
heartwarmingly collectible, gift.•

RECOMMENDED READING AND
LISTENING
• The Airline Passenger’s Guerrilla Handbook by

George Albert Brown. Get the lowest airfares and
learn how to open that bag of peanuts.

• Shakespeare’s Insults compiled by Wayne F. Hill
and Cynthia J. Öttchen. Gives you the weapons
you need in case you’re ever called a “flinty
Tartar.”

• John Lee Hooker, The Ultimate Collection, Rhino
Records. It’s time to get blue, irrespective of your
day-to-day color.

Q I want to write an application that can open incoming PowerTalk letters automatically.
How can my PowerTalk-savvy application access the letters stored in the in-tray?

A Currently, there are only two ways of accessing in-tray letters from your
application. The most common method is to receive an open document ('odoc')
Apple event when a letter is opened from the Finder. In addition, calling
SMPGetNextLetter allows you to open letters from your application. It isn’t
possible, however, for your application to access the in-tray from Standard File
or to automatically open arbitrary letters without user intervention.

Q When I open a letter in my PowerTalk-savvy application, I can obtain FSSpec records
referencing folders or files enclosed in the letter, but the files don’t appear to be copied to
my hard drive. Where do these files reside on my system?

A PowerTalk maintains an external file system for enclosures of letters. If you
closely examine the FSSpec records returned to you, you’ll see that the enclosed
files and folders reside on this external file system, named “Mail Enclosures.”
This is a read-only file system, and the enclosures are available only while the
letter is open. Therefore, these FSSpecs should be used only to copy the
enclosed items to your local disk, and all references to them should be discarded
by the time you call SMPDisposeMailer.

Q When I call FrontWindow from within a VBL task, my system occasionally freezes at
this call. Is there any chance that it moves memory?

A No, but FrontWindow is not reentrant. It’s been patched out since MultiFinder,
and ought to be on the list of routines that shouldn’t be called at interrupt time.
You’ll have to come up with another method of getting the front window from
your VBL task. You may want to keep a shadow copy of your application’s
window list in your application global area where your VBL task can get to it.

Q We want a general extension for all PAP-capable printer drivers, to allow for user
authentication at print time. It would conduct a user authentication dialog with a
spooler on the order of the one described in Chapter 14, “Print Spooling Architecture,”
of Inside AppleTalk, Second Edition. Is it possible to do this in the QuickDraw GX
printing architecture? Would we do anything different for PostScript-savvy print
spoolers to insert the right document-structuring comments?

A For spoolers that are PostScript-savvy, you can override the message
GXPostScriptDoDocumentHeader from a printing extension and insert your
password information in the PostScript header at that point, including
password, user name, and so on. When your spooler receives the job, it can

d e v e l o p Issue 16

These answers are supplied by the
technical gurus in Apple’s Developer Support
Center. Special thanks to Sonya Andreae, Mark
Baumwell, Brian Bechtel, Chris Berarducci, Matt
Deatherage, Tim Dierks, Steve Falkenburg, Nitin
Ganatra, Bill Guschwan, Dave Hersey, Jim Luther,
Joseph Maurer, Kevin Mellander, Martin Minow,
Eric Mueller, Ed Navarrete, Mike Neil, Guillermo
Ortiz, Jeroen Schalk, Brigham Stevens, Dan

Strnad, and John Wang for the material in this
Q & A column. Extra special thanks and a fond
farewell to Rilla Reynolds, who took a thankless
job and made it work for all of us.•

124

MACINTOSH

Q & A

check this data and see if it denotes a valid user. By overriding this message
you’ll work with any PostScript driver, as long as your spooler supports it.
(You’re actually talking only to your spooler, not to the different drivers.)

For the authentication, you’ll need to override GXOpenConnection to get the
user’s name and password, since that’s when you actually try to connect to the
device or spooler. You could use cool alerts (status dialogs) to get the
information from the user at that time. Be sure not to put up a “Type in your
password, please” dialog except at device communication time. At other times,
the user won’t be trying to connect to the device and shouldn’t need to provide
authentication.

Q We plan to convert all our QuickDraw objects to QuickDraw GX objects when we print,
then use a QuickDraw GX printing loop to print our objects. We print bitmaps at the
printer’s maximum resolution, through PrGeneral. How do we print bitmaps at the
printer’s maximum resolution in QuickDraw GX? How do we find the printer’s
maximum resolution?

A To print bitmaps at the printer’s maximum resolution in QuickDraw GX, create
the bitmaps at the desired resolution (like 300 dpi) and then put a transform on
the shape to scale it by 72 divided by the bitmap’s resolution. This method
makes the bitmap show up with the correct dimensions, whether it’s drawn on a
72-dpi screen or a 300-dpi printer. And, on the 300-dpi printer, the bitmap will
not be scaled at all — it will render at 300 dpi. This works because, before
drawing, the shape’s scaling is multiplied by the device’s resolution divided by
72, to convert the shape to device resolution.

To find a printer’s maximum resolution, use the calls to get the information
from the printer’s view device list (get the printer from the job via
GXGetJobPrinter), pick the highest-resolution printing device, and voilà!

Q My application won’t print to a StyleWriter II although it works fine on all other
printers, including the original StyleWriter. Can you give me any suggestions? What’s
different about the StyleWriter II?

A The StyleWriter II driver is a member of the “GrayShare” driver family, with
new features such as support for grayscale printing (if Color QuickDraw is
available) and printer sharing over the network. Its internal architecture is very
different from previous printer drivers. In spite of thorough compatibility
testing, some problems have shown up since the first release. In many cases, the
driver revealed weaknesses in the applications themselves; for some other
problems, a solution will be incorporated in the next release of the driver. Here
are some identified problem areas with GrayShare drivers (note that these don’t

MACINTOSH Q & A December 1993

125

necessarily represent bugs in the drivers, but are differences in the system’s
configuration at print time):

• GrayShare drivers handle memory differently. For example, if an application
has a dereferenced handle to an unlocked block while doing a CopyBits into
the printing port, this may work fine on other printer drivers, but the block
is likely to move with a GrayShare driver and the results are unpredictable.

• GrayShare drivers maintain their own A5 world internally. If an application
installs a growZone proc and forgets to set up its own A5 in the growZone
proc — ignoring the Macintosh Technical Note “Register A5 Within
GrowZone Functions” (Memory 1) — the growZone proc may get called
with a GrayShare driver’s A5, which obviously is bad for the survival of both
the application and the printer driver.

• GrayShare drivers call the pIdleProc (in the job subrecord of the print
record) more often than other printer drivers; in particular, it may be called
during execution of PrOpenDoc. If an application reloads a previously used
print record containing an old (now invalid) pointer to a pIdleProc and
doesn’t update the pIdleProc field before calling PrOpenDoc, disaster is
very likely. Note that Macintosh Technical Note “pIdle Proc (or how to let
users know what’s going on during print time...)” (Printing 22) recommends
installing your pIdleProc before PrOpenDoc.

• Like most other QuickDraw printer drivers, GrayShare drivers use
algorithms built into QuickDraw for rasterizing picture elements like ovals
and arcs, but not necessarily with the same sequence of coordinate
transformations. Because of the 360 dpi resolution, internal computations
with the transformed coordinates may hit the 16-bit integer limitation of
QuickDraw and reveal bugs in the old QuickDraw routines that have
remained hidden until now.

• Some GrayShare drivers (like the StyleWriter II driver, version 1.0) contain
STR# resources with positive ID numbers that may conflict with STR#
resources in an application. This will be fixed in the next release of the
drivers.

• Under certain circumstances, GrayShare drivers seem to have trouble with
the PmForeColor call. This is under investigation and will be fixed.

Q We’ve been manually writing 'PAPA', 'STR ', and 'alis' resources in the System file
and in the LaserWriter driver to change printers without using the Chooser. This
method sometimes causes errors with LaserWriter 8. What do we need to do?

A LaserWriter 8 needs to know more about the printer than its AppleTalk name
— it also has to have a PostScript printer description (PPD) file for that printer,
parsed and ready to be used. Since there’s so little memory available in

d e v e l o p Issue 16

126

applications like the Finder during printing, the parsing is done at Chooser
time, not at print time.

Apple has always said “We can’t guarantee that you can change printers behind
the Chooser’s back,” and with LaserWriter 8 this is true. If the driver has parsed
a PPD file and has it ready, things should work OK, but everything must have
been manually set up by choosing that printer ahead of time. If you set up a
LaserWriter IINTX printer with the correct PPD file, choose a LaserWriter IIf,
and then choose another printer driver, you could probably programmatically
switch back to the LaserWriter IINTX, but the driver will use the LaserWriter
IIf PPD file with it, which might or might not produce the right behavior.
Designing the driver to be switchable by other applications simply wasn’t a
priority of the Adobe/Apple development team.

As long as you try to switch to a printer that uses the same PPD file that the
driver last parsed (meaning the PPD associated with the last printer selected in
the Chooser), there shouldn’t be any more problems than there were before.

Q I want to create a QuickDraw GX font that will calculate check digits as the user types
the numbers in. For example, if you type “123458723” the check digit would be 5; if
you type “098732734” the check digit would be 7; and so on. The formula is check digit
= sum of nine numbers MOD 10; the check digit is appended as the number’s tenth
digit. Is there a way to do this using the glyph modification properties in QuickDraw
GX? I know it can be done by creating an entry in the 'mort' table for all unique
possibilities, but there are 9^9 possibilities, which comes to 387,420,489. Can I enter a
formula instead of creating tables? If so, how?

A It’s a fascinating idea, but it’s not something the 'mort' tables can handle. These
tables are basically state machines; when they detect a particular state, they take
some action based on entries in the table. There’s no way to add a formula or
code in any language to these tables.

All the tables can do is take a series of glyphs and replace them with a different
glyph if a given feature is enabled by line layout. For example, you can change
the two letters “f”and “i” into the corresponding ligature“fi” (one glyph). If you
wanted to do this for check digits, you’d have to have an entry in the 'mort'
table for each glyph combination you wanted substituted. For 300000000, you’d
have to have one entry that substituted 3000000003, and the substitution has to
be one glyph. Since order is significant, that means you’d have to have one
billion entries in the 'mort' table and one billion glyphs representing all the
entries with their check digits added. That’s where we have to stop, because a
font can’t contain more than 65,536 separate glyphs. It’s a really neat idea, but it
won’t work.

MACINTOSH Q & A December 1993

127
For more information on LaserWriter 8,
see this issue’s “Print Hints” column.•

Q I’ve selected AppleShare volumes to mount at system startup by checking the volumes in
the Chooser list. If I’m on a nonextended network and I call an extended network via
AppleTalk Remote Access and log into a remote server via the Chooser and AppleShare,
an error alert will say “The AppleShare Prep file needed some minor repairs. Some
AppleShare startup information may be lost.” All the information about my local
nonextended network will be cleared out of the AppleShare Prep file. So I lose all my
log-in IDs and passwords for my local servers. The same thing happens going back the
other way (extended to nonextended). Why is this happening?

A There are several problems you can run into when you connect two networks
(which is what you’re doing when you use AppleTalk Remote Access when
you’re already connected to a network). The problems are usually the result of
duplicate names or duplicate node numbers.

The “boot mount list” (BML) kept in the AppleShare Prep file stores the
location of volumes that you want mounted at boot time. Part of that location is
the zone name. If you create BML entries when you aren’t on an extended
network — that is, when you have no zones — the zone name stored in the
BML is “*” (AppleTalk’s shorthand for “this zone”); otherwise, the zone name of
the server is stored in the BML.

The boot mounting code checks the validity of the BML when the system starts
up, and the AppleShare Chooser package checks the validity of the BML when
it’s opened. If there are no zones, entries with zone names other than “*” are
cleared and the alert “The AppleShare Prep file needed some minor repairs.
Some AppleShare startup information may be lost” is displayed because those
entries aren’t valid. If there are zones, entries with zone names of “*” are cleared
and the alert is displayed because the “*” zone name isn’t a reliable way to save
the zone location of a server on an extended network. The “*” zone isn’t reliable
for storing the zone name because a workstation can easily be moved from zone
to zone, keeping the same NBP object and NBP type names. This is especially
true with AppleTalk Phase 2, which supports multiple zones on a single network
(for example, multiple zones on the same piece of Ethernet cable).

The workaround for boot-mounting volumes is to create alias files to the file
servers you want to mount at boot time and then drop those alias files into the
Startup Items folder inside your System Folder. The only drawback to this is
that aliases don’t save the user’s password. If you need boot-mounted volumes
without the password dialog, you’ll have to use guest access.

Q What is a Macintosh IIvm? One of the System Enabler files defines the computer in
gestaltMachineType 45. Is this just another name for the Performa 600? The
Macintosh IIvx Developer Note says that the Performa 600 returns type 45.

d e v e l o p Issue 16

128

A Apple had planned to release a model called the Macintosh IIvm but consumer
testing showed that users thought “vm” was an abbreviation for “virtual
memory.” This was about the same time Apple was about to introduce the
Performa line. So, to avoid confusion, the model became the Performa 600.
There are, therefore, three models in the “v” series: the Macintosh IIvi,
Performa 600 (Macintosh IIvm), and Macintosh IIvx. As you can see, using the
nonreleased “Macintosh IIvm” designation confuses people, so try to avoid it.

Q What do those numbers at the end of System Enabler file names mean?

A If you hold down a certain modifier key combination while opening your
System Folder, the System 7.1 Finder will reward you with a special message
from Apple’s Advanced Technology Group — if and only if the current tick
count (as returned by TickCount) divided by the number at the end of the
machine’s enabler file name (in decimal) is exactly equal to the model number of
the Macintosh for which the enabler is intended.

Legal restrictions prevent us from revealing the message itself, but enterprising
techno-nerds may attempt to find it with these instructions.

Q Which variables does the stack sniffer VBL task look at to determine that the stack has
crossed over into the heap? I create stacks for my own subtasks in the heap. Will
modifying those variables affect anything else besides the stack sniffer? What’s the
correct process to defeat the stack sniffer task (leaving it installed) or remove the task?

A Disabling the stack sniffer is reasonably simple — storing four bytes of $00 in
the low-memory global StkLowPt ($110) will turn the sniffer off. However,
when using your own internal stack, be sure not to call any Toolbox routines,
because many of them rely on the stack for temporary storage, which will screw
things up if you’ve played with the value of register A7.

When you’re using your own stack within your heap, you should definitely save
the values in StkLowPt and A7 before changing them, so that you can reset
their values before and after any Toolbox calls.

Q How can I tell whether a picture is QuickTime-compressed?

A The key to your question is “sit in the bottlenecks.” If the picture contains any
QuickTime-compressed images, the images will need to pass through the
StdPix bottleneck. This is a new graphics routine introduced with QuickTime.
Unlike standard QuickDraw images, which only call StdBits, QuickTime-
compressed images need to be decompressed first in the StdPix routine. Then
QuickDraw uses StdBits to render the decompressed image. So swap out the

MACINTOSH Q & A December 1993

129

QuickDraw bottlenecks and put some code in the StdPix routine. If it’s called
when you call DrawPicture, you know you have a compressed picture. To
determine the type of compression, you can access the image description using
GetCompressedPixMapInfo. The cType field of the ImageDescription record
will give you the codec type.

See the CollectPictColors snippet on this issue’s CD and “Inside QuickTime
and Component-Based Managers” in develop Issue 13, specifically pages 46 and
47, for more information on swapping out the bottlenecks.

Q Is there a way to embed a QuickTime movie into a Macintosh file containing non-
QuickTime stuff and get the Movie Toolbox to play the movie back correctly? If so, can
we pass the same movie handle to QuickTime for Windows and get it to play back the
same data from the same file?

A To add QuickTime movie data to non-QuickTime files, just store the movie
data in the file using FlattenMovieData with the flattenAddMovieToDataFork
flag. Since FlattenMovieData will simply append to a data fork of a file, you can
pass it any data file and it will append the movie data to that file. QuickTime
doesn’t care what’s stored before or after the movie data, as long as you don’t
reposition the movie data within the data file. If you do, the movie references
will be incorrect since they aren’t updated when you edit the file. The returned
movie (from FlattenMovieData) will properly resolve to that data file. You can
then save this movie in the data fork with PutMovieIntoDataFork or in the
resource fork with AddMovieResource. If the movie is saved in the data fork, it
can be retrieved by both QuickTime and QuickTime for Windows with
NewMovieFromDataFork.

You can, in fact, store multiple movies simply by calling FlattenMovieData and
PutMovieIntoDataFork several times on the same file. Each FlattenMovieData
call appends new data, assuming the createMovieFileDataCurFile flag isn’t set.

Q Is there a way that the action filter procedure of a QuickTime movie controller
component can have a user reference field so that I can know which movie “object” the
movie controller refers to? There are local variables associated with a particular movie
that I would like to access from the action filter procedure; currently there’s no way to
reference back to the variables in my program except through globals.

A This was a difficult task under QuickTime 1.0, requiring you to stuff some sort
of pointer in the movie user data fields. The good news is that in response to
developer requests, starting with version 1.5, QuickTime includes a new call in
the Movie Controller suite allowing you to pass and receive a long value when
you set up your filter procedure, as follows:

d e v e l o p Issue 16

130

pascal ComponentResult MCSetActionFilterWithRefCon(MovieController
mc, MCActionFilterWithRefCon
myUserPlayerFilter, long refCon) =
{0x2F3C,0x8,0x2D,0x7000,0xA82A};

The procedure is of the form

pascal Boolean userPlayerFilter(MovieController mc, short action,
void *params, long refCon);

The procedure returns true if it handles the action, false if not. The action
parameter identifies the action to be executed; params is the set of potential
parameters that go with the action; and refCon is any long value passed to
MCSetActionFilterWithRefCon.

Q We want to add temporal compression for our long movies with similar sequential
frames. How do I use the Compression Manager routines (CompressionSequenceBegin
and CompressSequenceFrame, for instance) in conjunction with the normal movie-
making routines (such as CompressImage)?

A Sequence compression is useful for temporal compression, with processes like
animation. Sequence compression works by providing one description handle for
a series of frames, whereas CompressImage may use a description handle for
each image. Thus, functions such as CompressImage are normally used
separately from the sequence calls. It’s a bit confusing; the Movie Construction
FD sample on the QuickTime CD should help clarify how to use the calls.

Sequence compression performs similarly to creating a movie with
CompressImage, but the major difference is the specification of key frames.
(Key frames are frames against which all the following frames are differenced.)
CompressSequenceFrame returns a similarity value, which tells you whether
the frame is a key frame (0 means key frame). Based on this value, you can tell
AddMediaSample the type of frame it is. Here’s some pseudo code:

err = CompressSequenceFrame(seqID, ..., similarity, nil);
err = AddMediaSample(gMedia, ..., similarity ? mediaSampleNotSync :

0, &sampTime);

Q When we try to digitize frames (grabbed with QuickTime) into an off-screen pixel map,
our VDGrabOneFrame call crashes. How would you suggest we do this?

A You need to check whether the 'vdig' resource supports digitizing off-screen by
calling the PreflightDestination routine. If the PreflightDestination call with an
off-screen destination fails, you need to digitize to a window on the digitizing

MACINTOSH Q & A December 1993

131

device and then copy the image (using CopyBits or your own algorithm for
speed) from the window to your off-screen pixel map. Some 'vdig' resources
don’t support digitizing directly to off-screen pixel maps because their hardware
does the digitizing asynchronously. You should always preflight your destination
before setting it with SetPlayThruDestination.

Q Why doesn’t the QuickDraw GX LaserWriter driver have a 'pdip' resource? Isn’t it
required?

A A 'pdip' resource isn’t required; if it isn’t present in the driver, the default
(LaserWriter Plus) preferences are used. Those preferences are currently as
listed below. They’re subject to change, so don’t depend on them. If you need a
specific value for any of these preferences, just include your own 'pdip' resource.

language level 1
device color space graySpace
device color profile nil
render options noOptions
path limit 1496
gsave limit 1
operand stack limit 500
font type type1Stream + type3Stream
printer VM 200K

Q Inside Macintosh: Macintosh Toolbox Essentials recommends calling CloseDialog
instead of DisposeDialog when allocating memory for a dialog record manually instead
of letting the Toolbox do it. But doing so causes a memory leak, because GetNewDialog
copies the DITL resource in memory. The DITL copy isn’t released by CloseDialog and
isn’t purgeable, even if the original DITL was purgeable. What’s the official method of
completely getting rid of a dialog whose storage you’ve allocated by hand?

A CloseDialog was intended to mirror NewDialog; it allows you to close a dialog
that you provided the storage for, including the item list. Page 6-119 of Inside
Macintosh: Macintosh Toolbox Essentials states that the item list is specifically not
disposed of by CloseDialog, so it’s acting as documented. It does this so that it
won’t dispose of a dialog item list you might be planning to use again. If you do
want to dispose of the item list, just do so after calling CloseDialog.

Q As a MacApp developer, am I supposed to be using the .h files in the MPW:Interfaces
folder, or the ones in the {MacApp}CPlusIncludes folder?

A As a default, MacApp 3.0 first searches through the {MacApp}CPlusIncludes
folder for header files specified in your source, so we suggest using the

d e v e l o p Issue 16

132

CPlusIncludes headers. The path to these include files is defined in the
{MacApp}Startup Items:Startup folder. MacApp 3.1 uses the universal interfaces
for both 680x0 and PowerPC development. It no longer uses its own custom
headers in the {MacApp}CPlusIncludes folder. MacApp 3.1 searches MPW’s
{CIncludes} folder for its headers.

Q When starting a new MacApp program, I get the message “Couldn’t create new
document because an internal component is missing. Please contact the developer.” How
do I find out which component is missing?

A When building an application, the linker strips out any unused code from the
final application. The problem is that it determines which code is to be stripped
out by finding all objects that are constructed with the new operator. Because
objects derived from TView might instead be instantiated through calls to
TViewServer methods, the linker thinks that calls to your derived TView
objects aren’t used, so those objects are stripped from the build. To circumvent
this, you have to fool the linker into not stripping out this code. MacApp
defines a macro that makes it easy for you to trick the linker. Place this line of
code in your implementation of TSomeApplication::ISomeApplication:

macroDontDeadStrip(TSomeView);

Do this for any subclass of TView defined in your program. Good examples of
the use of this routine can be found throughout the MacApp C++ code.

MacApp takes care of this for you for any TView subclasses defined by MacApp,
provided you call InitUDialogs, InitUTEView, and so on in your main routine.
The exact set of routines you have to call depends on the TView classes you use
in your application. All of these routine names begin with “InitU.”

MacApp uses two alerts to indicate that you’re missing components. The first
one ends with “because an internal component is missing. Please contact the
developer.” The second one is identical except that it’s preceded by the class
name of the missing component. In the former case it’s very likely you forgot
one of the “InitU” calls; in the latter case you’re very likely missing a
macroDontDeadStrip on one of your TView subclasses. If you need to find out
more precisely which components are missing, you can break on the Failure
routine with a debugger.

Q How many new Inside Macintosh books will there be by the time all the new
technologies are documented?

A How much shelf space do you have?

MACINTOSH Q & A December 1993

133
For more information on universal
interfaces, see the article “Making the Leap to
PowerPC” in this issue.•

Have more questions? Need more answers?
Take a look at the Macintosh Q&A Technical
Notes on this issue’s CD and in the Dev Tech
Answers library on AppleLink.•

See if you can solve this programming puzzle, presented in the form of
a dialog between Konstantin Othmer (KON) and Bruce Leak (BAL)
— and a special guest, Apple summer intern Mike Dodd. The dialog
gives clues to help you. Keep guessing until you’re done; your score is the
number to the left of the clue that gave you the correct answer. These
problems are supposed to be tough. If you don’t get a high score, at least
you’ll learn interesting Macintosh trivia.

Mike Hey, guys. I’ve got one for you I bet you can’t get.

KON Well, I haven’t been able to get you over to the poker game; maybe I
can beat you here. Wanna put your summer salary on it, schoolboy?

BAL Careful, Mike. You’re talking to trained professionals here.

Mike OK. We have this true multimedia application that does lots of things:
plays movies and sounds and does some GWorld stuff. After a while it
crashes with a corrupt heap, usually SysError 33, and sometimes with a
bus error. I’m using the latest QuickTime, and I have that snazzy
PowerPC QuickDraw extension that installs PowerPC native
QuickDraw on 68K-class machines.

BAL Sounds like some quality software you’re running there. I doubt it’s
QuickTime’s fault.

KON Yeah, and the PowerPC stuff is pretty awesome. You wouldn’t stick us
with some stupid application bug, so it’s probably a problem with the
Sound Manager. Is this that MoveHHi Sound Manager problem?
MoveHHi snags the whole stack, and when the sound interrupts come
in, the stack overflows into the application space, corrupting the heap.
Since the Sound Manager is at a higher interrupt level than the stack
sniffer VBL, it never detects the problem. Unsolved Mysteries: Solved!

100 Mike I’m using the new Sound Manager, version 3.0.

d e v e l o p Issue 16

KONSTANTIN OTHMER AND BRUCE LEAK
have been awarded a subcontract to debug the
Ada software for the cost-reduced space station
backup project, code named BALKON-4. While
BAL has found that rocket science makes him
nauseous, KON has taken to weightlessness like
a bug to code and is thinking of opening
KONstellation, the first casino in space.•

MIKE DODD is the official QuickTime perpetual
summer hire, just finishing his fourth summer with
Apple. He claims that someday he’ll actually
graduate from the University of Tennessee and
get a full-time job. Mike spends a lot of his time
inside MacsBug trying to make QuickTime crash
less, or at least finding cool bugs to try to stump
KON and BAL with.•

134

KON & BAL’S

PUZZLE PAGE

SOUNDS LIKE
TROUBLE

KONSTANTIN OTHMER
AND BRUCE LEAK

BAL I guess Reekes did a good job with compatibility on the new Sound
Manager. He even maintained all the bugs!

Mike Reekes swears there’s not a line of code the same between the new and
old Sound Managers. Besides, the new Sound Manager patches
MoveHHi to not use as much stack.

KON Does it happen with the old Sound Manager?

90 Mike Yep. Same thing.

BAL Hmmm. So what are the circumstances around the crash? Do you have
a reproducible case?

80 Mike It seems to happen fairly randomly. But it generally occurs when I
push a button that plays a sound. Sometimes it happens the first time I
push the button; other times I push the button over a hundred times
before it crashes.

KON Turn on heap scrambling in the application and system heaps and run
something like the MemHell extension, which forces a worst-case
memory scenario. That should bring the problem out more frequently.
Maybe you can get a reproducible case.

BAL Yeah, and turn on A-trap recording and heap checking so that we can
narrow down the problem area.

70 Mike The application is running really slowly now, but the problem doesn’t
happen any more frequently. Every time you crash, you notice the last
trap that the application called was SndNewChannel.

KON Wait a second. The application calls SndNewChannel every time it
plays a sound? It should just call SndNewChannel once at startup for
each channel it needs and then keep reusing those.

BAL What happens if you fix the application?

65 Mike The problem goes away. But you haven’t found the bug yet. Although
calling SndNewChannel all the time may slow you down, it isn’t illegal
and shouldn’t cause heap corruption.

BAL Is anything else going on while the sound is being played?

60 Mike The problem seems to happen only while a movie is playing. The
application calls SndNewChannel, SndPlay, and SndDisposeChannel
every time it wants to make a sound, but why the crash?

BAL Does the movie have sound? What happens if you turn off the sound
in the movie?

55 Mike The problem goes away.

KON What’s the last trap called inside SndNewChannel before the crash?

KON & BAL’S PUZZLE PAGE December 1993

135
The MemHell extension is on this issue’s
CD.•

50 Mike MoveHHi.

KON What if you don’t play the video?

45 Mike It crashes.

BAL Change the button that’s doing the SndNewChannel, SndPlay, and all
that other stuff; make it so it creates a bunch of handles and calls
MoveHHi on them instead.

40 Mike Now the machine crashes more frequently.

BAL So now we know that MoveHHi and playing the sound in the movie
have something to do with it. Make it so that when you push the
button, the movie starts playing at the beginning; then do
NewHandle, MoveHHi, and DisposeHandle in a loop with a counter,
and keep the loop counter at location 0 so that when you crash you can
see which iteration you’re on. You might have to make the size of the
handles vary in case the failure depends on block size or position, since
that’ll help spread the allocations throughout the heap.

35 Mike It seems to happen consistently on the sixty-ninth iteration of the loop,
reproducibly, if I start from launching the program.

KON Go into MacsBug and put a breakpoint in the loop when the loop
counter is 69.

30 Mike You hit your breakpoint and trace over the call to MoveHHi, and it
works fine. If you say go, you crash a hundred iterations later.

KON Rather than use MacsBug, change the code to break on the sixty-ninth
iteration. Then what happens when you trace over MoveHHi?

25 Mike It works fine.

BAL OK. Change the code to break on the seventieth iteration.

20 Mike You get to the breakpoint at 70 and everything is fine.

KON So somehow this thing is timing sensitive. Have the program compare
with a really big number and see when the heap goes bad. Then
change the number so that it breaks right before the problem code.

15 Mike When you break and trace, it doesn’t happen.

BAL What if I turn off interrupts during my MoveHHi loop?

10 Mike It works fine, but you only hear the first half second of sound from the
movie. Since interrupts are blocked, the Sound Manager can’t call back
to QuickTime to get the next piece, which QuickTime has queued up
in the mean time.

KON Great, so what you’re saying is we can now break right before the
MoveHHi that would cause it to happen if we didn’t break there.

d e v e l o p Issue 16

SCORING
75–100 We’d award you a copy of Debugging Macintosh Software, but obviously you don’t need it.
50–70 We’d award you a copy of Debugging Macintosh Software, but then KON would miss out

on his royalties.
25–45 Only scores from your first reading count.
5–20 Outfoxed by a summer intern. Care to join our poker game?•

136

BAL Right, so go ahead and break there. Dump the state of the heap and
log it to a file. Then do the same thing, this time comparing with a
higher number and letting it trash itself, and dump the heap again.
Compare the heaps and figure out what’s going on.

5 Mike The interesting part of the heap before and after the MoveHHi call is
shown in the figure. Before MoveHHi there was a locked block,
labeled A in the figure, which is marked as relocatable afterward. The
relocatable block just below locked block B is getting overwritten by
the block we’re calling MoveHHi on.

KON MoveHHi works by first saving the contents of the block that you’re
moving, then marking the block as free. Then it calls CompactMem
on the heap, which bubbles all the free space up to any islands and all
relocatable blocks down. Then it copies the block to the free block just
before the island.

BAL And someone is coming in at interrupt time and unlocking the island,
block A in the figure. Instead of remembering the location of the
island, MoveHHi searches for it after the CompactMem call. Since
that block was unlocked by an interrupt after CompactMem, a
different block is found the second time. When MoveHHi backs up to
the previous, presumably free, block and starts copying data, the heap
gets trashed.

Mike Yeah, that interrupt unlocking the block was QuickTime, BAL. It
turns out the Sound Manager does the same thing. Apparently the
“system architects” at the time thought it was OK to call HUnlock on
a locked block during an interrupt. Not! We fixed it by deferring all
HUnlock calls until MoveHHi finishes. This was the cleanest fix; it
keeps us from patching out huge parts of the Memory Manager. But
we were stumped for quite a while.

KON Nasty.

BAL Yeah.

KON & BAL’S PUZZLE PAGE December 1993

137
Thanks to Gary Davidian, Peter Hoddie, and
Jim Reekes for reviewing this column.•

Locked block B
MoveHHi block
Trashed block

Relocatable block A

Free

Locked block B

Relocatable block

Locked block A�
�

MoveHHi block

Free

Before MoveHHi After MoveHHi
• • • • • •

• • • • • •

A
AddLetterBlocks (CollaboDraw),

PowerTalk and 55
AddNativeContent, PowerTalk

and 55
alternate numerals, international

number formatting and
113–115

ANSI C standard, PowerPC and
22, 23

AOCE, PowerTalk and 39–63
AppleMail format, of PowerTalk

letters 44–45, 56
AppleShare Prep file, Macintosh

Q & A 128
AppleTalk Remote Access,

Macintosh Q & A 128

B
big-endian byte order, PowerPC

and 15
bitfields, PowerPC and 22
bitmap objects, specifying color

for (QuickDraw GX) 84
branching, in pipelined

architectures 12
branch processor, of the PowerPC

15–17
bubbles, in pipelining 8, 10
“Building PowerTalk-Savvy

Applications” (Falkenburg)
39–63

BuildNumbers, international
number formatting and 121

C
CallControlActionProc, PowerPC

and 30
CallUniversalProc, and Mixed

Mode Manager 30
CheckDefaultNumberSeparators,

international number
formatting and 111

CIE color spaces, QuickDraw GX
and 82, 83

CISC (complex instruction set
computer) architecture,
compared with RISC 5–13

CloseDialog, Macintosh Q & A
132

CMMs (color matching methods),
ColorSync and 85

CmpSoundHeader, compressed
sounds and 35

CMYK color space, QuickDraw
GX and 82, 83, 92

Code Fragment Manager
of the PowerPC 19–20,

25–27
and the Shared Library

Manager 20
CollaboDraw, PowerTalk and

39–63
color gamuts 88

QuickDraw GX and 87–90
colorimage operator, QuickDraw

GX and 92, 93
“Color Matching Made Easy with

QuickDraw GX” (Lipton)
81–94

color profiles
ColorSync and 85
QuickDraw GX and 83–84,

86–87, 88–89, 91
Color QuickDraw pixel patterns,

LaserWriter 8 and 80
color spaces, QuickDraw GX and

82–83, 88–89, 91–92
ColorSync, QuickDraw GX and

81, 84–85
CommSendLetter (CollaboDraw),

PowerTalk and 53–54
CommVerify (CollaboDraw),

PowerTalk DigiSign and
62–63

CompactMem, KON & BAL
puzzle 137

compiler extensions, for PowerPC
23–24

d e v e l o p Issue 16

For a cumulative index to all issues of
develop, see this issue’s CD.•

138

INDEX

Component Manager, Sound
Manager 3.0 and 34

compressed audio formats, Sound
Manager 3.0 and 34, 35, 37

CompressImage, Macintosh
Q & A 131

Compression Manager routines,
Macintosh Q & A 131

CompressionSequenceBegin,
Macintosh Q & A 131

CompressSequenceFrame,
Macintosh Q & A 131

condition register (CR), of the
PowerPC 15, 16

CopyBits, QuickDraw and 95, 96
count register (CTR), of the

PowerPC 15
CPU loading, Sound Manager 3.0

and 37

D
data alignment, PowerPC and 23
Deatherage, Matt 76
delayed branching, in pipelined

architectures 12
DigiSign Digital Signature

Package (PowerTalk) 39,
41–43, 60–63

digital signatures, PowerTalk and
39, 41–43, 60–63

digitizing frames (QuickTime),
Macintosh Q & A 131–132

DisposeNumberPartsTables,
international number
formatting and 113

Dodd, Mike 134
dogcow 4
“Drag and Drop from the Finder”

(Evans and Robbins) 66–75
drag flavors 67
drag handlers 67
DragIsNotInSourceWindow,

Drag Manager and 72
drag items 67

DragItemsAreAcceptable, Drag
Manager and 71–72

Drag Manager 66–75
DrawAllShapes (CollaboDraw),

PowerTalk and 57
DrawImageProc (CollaboDraw),

PowerTalk and 57
DrawImageToPicture

(CollaboDraw), PowerTalk and
56

E
EnterHandler message, Drag

Manager and 69, 71
EnterWindow message, Drag

Manager and 69
EPS (encapsulated PostScript)

files, LaserWriter 8 and 77–79
Evans, Dave 66
execution time, equation for 6
ExtendToLocalString,

international number
formatting and 105–106

ExtractNumberPartsTables,
international number
formatting and 112

F
FailNIL, international number

formatting and 104
FailNILResource, international

number formatting and 104
FailOSErr, international number

formatting and 104
FailResError, international

number formatting and 104
Falkenburg, Steve 39
fBestGuess, international number

formatting and 118–119
fFormatOK, international number

formatting and 118, 119
Finder 7.1.1, Drag Manager and

66
fixed-point unit, of the PowerPC

15

FlattenMovieData, Macintosh
Q & A 130

floating-point implementation, of
the PowerPC 13, 14–15, 17

floating-point unit
of the 68040 processor 17
of the PowerPC 15

font substitution, LaserWriter 8
and 79–80

FormatNumber, international
number formatting and
115–116

FormatRecordToUserString,
international number
formatting and 115

FormatRecToString, international
number formatting and 115

format strings, for international
number formatting 102–103,
106–109, 113–115

FPCE (Floating-Point C
Extensions), PowerPC and 14

FrontWindow, Macintosh Q & A
124

FSSpecs, PowerTalk and 47–48,
56

G
GetColorSyncFolderSpecs,

QuickDraw GX and 86
GetDefaultOutputVolume, Sound

Manager 3.0 and 36
GetFlavorData, Drag Manager

and 72
GetFlavorFlags, Drag Manager

and 72
GetIntlResource (IUGetIntl),

international number
formatting and 100, 104

GetIntlResourceTable
(IUGetItlTable), international
number formatting and 110

GetNewPalette, QuickDraw and
96

getPSInfoOp (LaserWriter 8) 78

INDEX December 1993

139

GetSoundHeaderOffset, Sound
Manager 3.0 and 36

GetSysBeepVolume, Sound
Manager 3.0 and 36

GetUserItl4, international number
formatting and 109–110

getVolumeCmd, Sound Manager
3.0 and 36

“Graphical Truffles” (Wang)
95–96

GrayShare drivers, Macintosh
Q & A 125–126

GWorlds, QuickDraw and 96
gxCMYKSpace, QuickDraw GX

and 92
gxColor, QuickDraw GX and 82,

86
gxEnableMatchPort, QuickDraw

GX and 90
GXFetchTaggedData message,

QuickDraw GX and 91
GXFindFormatProfile,

QuickDraw GX and 91
GXFindPrinterProfile,

QuickDraw GX and 89
gxGraySpace, QuickDraw GX and

92, 93
GXImagePage, QuickDraw GX

and 91
GXOpenConnection, Macintosh

Q & A 125
GXPostScriptDoDocumentHeader,

Macintosh Q & A 124–125
gxPostScriptImageDataHdl,

QuickDraw GX and 90
gxRGBSpace, QuickDraw GX and

92, 93
GXSetPortAttributes, QuickDraw

GX and 90
gxUseLevel2ColorOption bit,

QuickDraw GX and 92

H
HandleContract (CollaboDraw),

PowerTalk and 51

HandleExpand (CollaboDraw),
PowerTalk and 51, 58

hard drive icons, Drag Manager
and 74

HideDragHilite, Drag Manager
and 71

HUnlock, KON & BAL puzzle
137

I
image operator, QuickDraw GX

and 92
InitializeDefaultNumberSeparators,

international number
formatting and 100, 103–104,
111

InitializeNumberPartsTables,
international number
formatting and 109, 112

IntegerToLocalString,
international number
formatting and 105

International control panel,
international number
formatting and 101

“International Number
Formatting” (Lindenberg)
97–121

InterpretExtended, international
number formatting and 120

InterpretInteger, international
number formatting and 120

InvertRect, QuickDraw and 96
InWindow message, Drag

Manager and 69
isPersistent Boolean variable, and

VBL functions 31
'itl0' resource, international

number formatting and 100,
101–102, 103–106

'itl4' resource, international
number formatting and
100–101, 102, 106–116

J
Johnson, Dave 64
Jones, Tao 122

K
“KON & BAL’s Puzzle Page”

(Othmer and Leak) 134–137
kSMPCopyInProgress, PowerTalk

and 59
kSMPHasOpenAttachments,

PowerTalk and 59
kSMPImageMask, PowerTalk and

55
kSMPNativeMask, PowerTalk and

55
kSMPStandardInterchangeMask,

PowerTalk and 55

L
LaserWriter 8 printer driver

76–80
Macintosh Q & A 126–127

LaserWriter GX printer driver,
QuickDraw GX and 93–94

Leak, Bruce 134
LeaveHandler message, Drag

Manager and 69
LeaveWindow message, Drag

Manager and 69
LetterDescriptor, PowerTalk and

48
LetterSpecs, PowerTalk and

47–48
Lindenberg, Norbert 97
link register (LR), of the PowerPC

15
Lipton, Daniel 81
little-endian byte order, PowerPC

and 15
load/store architecture, in CISC

and RISC 8
LocalizeNumberString,

international number
formatting and 104

d e v e l o p Issue 16

140

LocalStringToExtended,
international number
formatting and 118

LocalStringToInteger,
international number
formatting and 118

low memory access, PowerPC and
25

M
MacApp, Macintosh Q & A 133
Macintosh IIvm, Macintosh

Q & A 128–129
Macintosh Q & A 124–133
MAF (multiply-add fused)

operations, PowerPC and 14
mailer (PowerTalk) 40
Mail menu (CollaboDraw) 40–41
MakeMailerFromDrawing,

PowerTalk and 49
MakeWindow (CollaboDraw),

PowerTalk and 58
“Making the Leap to PowerPC”

(Radcliffe) 5–33
MathLib, PowerPC and 14
misaligned data access, PowerPC

and 13
Mixed Mode Manager 20–21
MMU (memory management

unit), of the 68030 processor
17

'mort' tables, Macintosh Q & A
127

Motorola 680x0 processors, and
PowerPC 17–18

MouseIsInContentRegion, Drag
Manager and 72

MoveHHi, KON & BAL puzzle
135, 136–137

Movie Controller, Macintosh
Q & A 130–131

MQ (multiply/quotient) register,
POWER and 13

N
Native Application format, of

PowerTalk letters 45, 55–56
“Native PowerPC Numerics”

(Sazegari) 14–15
NewGWorld, QuickDraw and 96
NewPalette, QuickDraw and 95
NewRoutineDescriptor, PowerPC

and 29
NGetTrapAddress, and trap

patching 33
NSetTrapAddress, and trap

patching 33
number display, user-specified

formats 106–116, 118–120
number formatting, international

97–121
number formatting variations,

international 99
number parts tables, for

international number
formatting 108, 109–113

Numbers control panel,
international number
formatting and 97, 100,
101–102, 110, 113

Numbers Test application,
international number
formatting and 120

numeric input, international
number formatting and
98–100, 116–120

O
offload color matching,

QuickDraw GX and 92–93
Othmer, Konstantin 134
out-of-gamut colors, QuickDraw

GX and 87–90

P
PaintRect, QuickDraw and 96
PAP-capable printer drivers,

Macintosh Q & A 124–125

PAP (Printer Access Protocol)
transactions, LaserWriter 8 and
77

Pascal functions, PowerPC and
27–28

pascal keyword, and PowerPC
compilers 23, 27

Pascal strings, PowerPC and 23
'pdip' resource, QuickDraw GX

LaserWriter driver and 132
PICT files, Drag Manager and

66, 68–74
pipelining, in CISC and RISC

6–11
portable C code, for PowerPC

21–22
POWER multichip processor,

versus PowerPC 13–15
PowerPC 601 13, 16
PowerPC microprocessor 5–33

and 680x0 processors 17
CPU architecture 13–15
native data types 15
porting data structures to

22–23, 25
runtime architecture 17–21
Toolbox acceleration 18
versus POWER 13–15
writing code for 24–33

PowerShare, PowerTalk and 39
PowerTalk 39–63

Drag Manager and 74
PowerTalk letters, Macintosh

Q & A 124
PowerTalk messages 43
PowerTalk Standard Mail Package

39, 40–41, 46–60
PPD (PostScript printer

description) files, LaserWriter 8
and 77

Precision Bitmap Alignment,
LaserWriter 8 and 79

PredefinedStringToFormatRecord,
international number
formatting and 115

INDEX December 1993

141

preview images, created by
LaserWriter 8 78

PrGeneral, LaserWriter 8 and
76–77, 78

printer drivers, for QuickDraw
GX 90–94

printer resolution, QuickDraw GX
and 125

“Print Hints” (Deatherage) 76–80
private PostScript operators,

LaserWriter 8 and 79
ProcessPowerTalkWhatHappened

(CollaboDraw), PowerTalk and
53

ProcessShapeData (CollaboDraw),
PowerTalk DigiSign and 62

ProcPtr, and UniversalProcPtr 28
PSFontInfo (LaserWriter 8) 78
PSIntentionsOp (LaserWriter 8)

78
PSpict2eps (LaserWriter 8) 78
PSPrimaryPPDOp (LaserWriter

8) 78

Q
QuickDraw global variables,

PowerPC and 26
QuickDraw GX

color matching with 81–94
developing printer drivers

for 90–94
Drag Manager and 74
LaserWriter 8 and 76, 79

QuickDraw GX LaserWriter
driver, Macintosh Q & A 132

QuickDraw problems 95–96
QuickTime 1.6, Sound Manager

3.0 and 37
QuickTime, Macintosh Q & A

129–131

R
Radcliffe, Dave 5
receive handlers 67, 72

for SimpleDrag 72–74

receivers, Drag Manager and 68
Reekes, Jim 34
RGB color spaces, QuickDraw

GX and 82, 83, 92
RISC (reduced instruction set

computer) architecture,
compared with CISC 5–13

Robbins, Greg 66
routine descriptors, PowerPC and

28

S
sampleSize field, and 16-bit sound

35
SANE data types, PowerPC and

14, 17
SANE (Standard Apple Numerics

Environment) routines, 'itl0'
resources and 103–106

Sazegari, Ali 14
senders, Drag Manager and 68
sequence compression, Macintosh

Q & A 131
setcmykcolor operator,

QuickDraw GX and 92
setcolorspace operator,

QuickDraw GX and 93
SetDefaultOutputVolume, Sound

Manager 3.0 and 36
setgray operator, QuickDraw GX

and 92
setrgbcolor operator, QuickDraw

GX and 92, 93
SetSysBeepVolume, Sound

Manager 3.0 and 36
SetWindowPictureFromFile, Drag

Manager and 68
Shared Library Manager, and the

Code Fragment Manager 20
ShowDragHilite, Drag Manager

and 71
SIGDisposeContext, PowerTalk

DigiSign and 61
Signatures menu (CollaboDraw)

42

SIGNewContext, PowerTalk
DigiSign and 61, 63

SignShape (CollaboDraw),
PowerTalk DigiSign and
61–62

SIGProcessData, PowerTalk
DigiSign and 62, 63

SIGShowSigner, PowerTalk
DigiSign and 63

SIGSign, PowerTalk DigiSign and
62

SIGSignPrepare, PowerTalk
DigiSign and 61, 62

SIGVerify, PowerTalk DigiSign
and 63

SIGVerifyPrepare, PowerTalk
DigiSign and 63

SimpleDrag application 66–67,
68–74

single-precision floating point,
PowerPC and 13

16-bit sound, Sound Manager 3.0
and 35

SMPAddContent (CollaboDraw),
PowerTalk and 56

SMPAddMainEnclosure,
PowerTalk and 56

SMPBeginSend, PowerTalk and
54–55

SMPClearUndo, PowerTalk and
52

SMPCloseOptionsDialog,
PowerTalk and 59

SMPContentChanged, PowerTalk
and 52

SMPDisposeMailer, PowerTalk
and 60

SMPEndSend, PowerTalk and 55
SMPExpandOrContract,

PowerTalk and 51, 58
SMPGetDimensions, PowerTalk

and 50
SMPGetMainEnclosureFSSpec,

PowerTalk and 48–49

d e v e l o p Issue 16

142

SMPGetNextLetter, Macintosh
Q & A 124

SMPImage, PowerTalk and 57
SMPInitMailer, PowerTalk and

47
SMPMailerEditCommand,

PowerTalk and 53
SMPMailerEvent, PowerTalk and

50–51
SMPMailerForward, PowerTalk

and 58
SMPMailerReply, PowerTalk and

58
SMPNewMailer, PowerTalk and

50
SMPNewPage, PowerTalk and 57
SMPOpenLetter, PowerTalk and

48
SMPPrepareToChange,

PowerTalk and 52
SMPPrepareToClose, PowerTalk

and 59
SMPSendOptionsDialog,

PowerTalk and 54
Snapshot format, of PowerTalk

letters 45, 56–57
SndNewChannel, KON & BAL

puzzle 135
SndPlayDoubleBuffer, Sound

Manager 3.0 and 35
software emulator, of the

PowerPC 17–18
“Somewhere in QuickTime”

(Reekes) 34–38
Sound Driver, Sound Manager 3.0

and 37
Sound Input Manager, Sound

Manager 3.0 and 38
Sound Manager 3.0, new features

34–38
Sound Output Manager, Sound

Manager 3.0 and 38
square wave sounds, Sound

Manager 3.0 and 37
stack sniffer, Macintosh Q & A

129

stalls, in pipelining 8, 10
Standard File dialogs, Drag

Manager and 66, 67
Standard Mail Package

(PowerTalk) 39, 40–41, 46–60
Str2Num (SANE), international

number formatting and 116
StringToExtended, international

number formatting and 116,
118–119

StringToFormatRecord,
international number
formatting and 106–107,
113–114

StringToNum, international
number formatting and 116,
117

StyleWriter II, Macintosh Q & A
125–126

superscalar design, in RISC 12
syncCmd, Sound Manager 3.0 and

36

T
temporal compression, Macintosh

Q & A 131
Text Utilities routines

international number
formatting and 102–103

'itl0' resources and 103–106
'itl4' resources and 106–116

THINK C code, PowerPC and
22, 24

TrackControl, PowerPC and 29
tracking handlers 67

for SimpleDrag 69–72
trap patching, PowerPC and

32–33
TrueType fonts, LaserWriter 8

and 80

U
universal interface files, for

PowerPC 25
“Universal Interfaces” (Yu) 25

UniversalProcPtrs 28–32
and the Mixed Mode

Manager 20–21, 25
UnlocalizeNumberString,

international number
formatting and 117

Users & Groups control panel,
Drag Manager and 74–75

user-specified number formats,
international number
formatting and 106–116,
118–120

UserStringToFormatRecord,
international number
formatting and 115

V
VBLTaskPtr parameter, and VBL

tasks 32
VBL tasks, PowerPC and 30–32
VDGrabOneFrame, Macintosh

Q & A 131–132
VerifyShape (CollaboDraw),

PowerTalk DigiSign and 63
“Veteran Neophyte, The”

(Johnson) 64–65
“View from the Ledge” (Jones)

122–123
volumeCmd, Sound Manager 3.0

and 36

W
WaitNextEvent, Drag Manager

and 75
Wang, John 95

Y
Yu, Dean 25

INDEX December 1993

143

