

E D I T O R I A L S T A F F

Editor-in-Cheek Caroline Rose

Technical Buckstopper Dave Johnson

Our Boss Greg Joswiak

His Boss Dennis Matthews

Review Board Pete (“Luke”) Alexander, Neil Day,

C. K. Haun, Jim Reekes, Bryan K. (“Beaker”)

Ressler, Larry Rosenstein, Andy Shebanow,

Gregg Williams

Managing Editor Cynthia Jasper

Contributing Editors Lorraine Anderson, Geta

Carlson, Toni Haskell, Judy Helfand, Rebecca

Pepper, Rilla Reynolds

Indexer Ira Kleinberg

A R T & P R O D U C T I O N

Production Manager Hartley Lesser

Art Director Diane Wilcox

Technical Illustration Nurit Arbel, John Ryan

Formatting Forbes Mill Press

Printing Wolfer Printing Company, Inc.

Film Preparation Aptos Post, Inc.

Production PrePress Assembly

Photography Sharon Beals

Online Production Cassi Carpenter

develop, The Apple Technical Journal, is a
quarterly publication of Apple Computer’s
Developer Press group.

Maria Mortati of Rucker Huggins created
this cover to illustrate the international
aspects of writing localizable applications.
She used Adobe Photoshop, Adobe
Illustrator, and a box of colored pencils.

The develop Bookmark CD or the Developer
CD Series disc for June 1993 or later
contains this issue and all back issues of
develop along with the code that the articles
describe. The develop issues and code are
also available on AppleLink and via
anonymous ftp on ftp.apple.com.

CONTENTS June 1993

1
© 1993 Apple Computer, Inc. All rights reserved.

Apple, the Apple logo, APDA, AppleCD SC, AppleLink, AppleShare, AppleTalk, LaserWriter, MacApp, Macintosh,
MPW, and SANE are trademarks of Apple Computer, Inc., registered in the U.S. and other countries. ColorSync,
develop, Finder, Macintosh Quadra, MovieShop, Performa, PowerBook, QuickDraw, QuickTime, Sound Manager,
System 7, TrueType, and WorldScript are trademarks of Apple Computer, Inc. HyperCard is a registered trademark of
Claris Corporation. Adobe and PostScript are trademarks of Adobe Systems Incorporated, which may be registered in
certain jurisdictions. NuBus is a trademark of Texas Instruments. All other trademarks are the property of their
respective owners.

The new develop Bookmark CD. 2

Your missives (and missiles) to us. 4

Writing Localizable Applications by Joseph Ternasky and Bryan K.
(“Beaker”) Ressler Some real-world tips and tricks demonstrating “global-aware”
text-handling techniques that will help you write more localizable applications. 7

3-D Rotation Using a 2-D Input Device by Michael Chen A user interface
technique for intuitive rotation of 3-D objects using a 2-D input device like a mouse
or pen. 40

Video Digitizing Under QuickTime by Casey King and Gary Woodcock
Whether you’re developing a video digitizer, writing an application to control one,
or just curious about how it all works, this will tell you what you need to know. 58

Making Better QuickTime Movies by Kip Olson How to optimize your
QuickTime movies for quality playback from CD-ROM. 93

Print Hints: Syncing Up With ColorSync by John Wang All about
ColorSync, Apple’s color matching technology. 34

Graphical Truffles: Four Common Graphics Answers by Bill Guschwan
Tips on the first few things to try when faced with a question about QuickDraw. 54

Somewhere in QuickTime: Derived Media Handlers by John Wang
How to write derived media handlers, a powerful new ability in QuickTime 1.5. 87

Be Our Guest: System Enablers by C. K. Haun The scoop on these new
chunks of system software. (Hands off!) 107

The Veteran Neophyte: Tiny Futures by Dave Johnson Dave reports on
a bizarre and slightly scary conference on nanotechnology. 122

KON & BAL’s Puzzle Page: Finder++ by Konstantin Othmer and Bruce
Leak Try your luck (or is it skill?) on yet another puzzle from those masters of
Macintosh machinations, KON and BAL. 127

Macintosh Q & A Apple’s Developer Support Center answers your product
development questions. 109

133I N D E X

Q & A

C O L U M N S

A R T I C L E S

L E T T E R S

E D I T O R I A L

Dear Readers,

I’d like to talk about a change that you’ve no doubt already noticed: printed develop is
no longer accompanied by the Developer CD Series disc, but instead comes with its
own CD as in days of old. Yes, we’ve come full circle: develop had its own CD for
Issues 1 through 7; then, starting with Issue 8, it was accompanied by the Developer
CD Series disc, which offered a superset of the contents of develop’s own CD. The
Developer CD is actually a monthly CD that’s mailed to members of Apple’s
developer programs and to subscribers to the Apple Developer Mailing (formerly the
APDA Technical Information Mailing). At the time, it seemed simpler and more
beneficial all around to just take every third Developer CD and make it the CD that
accompanies develop.

So why did we change back? Well, it became increasingly common for Developer
CD contributors to submit valuable software (or documentation) that was considered
appropriate for the “monthly mailing” but not for develop. The bargain low price of
develop simply wasn’t adequate to cover the value of the software. (An example that
some of you noticed is WorldScript, which made it onto the monthly Developer CD
but was pulled at the last minute from the Developer CD accompanying develop; see
the Letters section.) Keeping valuable materials off the Developer CD or raising the
price of a develop subscription would have been far less desirable than the option
finally chosen, to restore develop to having its own disc that’s a subset of the
Developer CD. This new disc, which comes tucked into develop like a bookmark, is
called the develop Bookmark CD.

This is not to say that develop isn’t still a bargain! Even without the CD, it’s a high-
quality journal with articles that have passed rigorous review by engineers at Apple
and are also enjoyable to read. Throw in a CD containing the code described in the
articles, and already you’re getting your money’s worth (IMHO). But develop’s CD
gives you even more than that: it contains all back issues and their code, Tech Notes,
Sample Code from the Developer Support Center, Apple Direct, the Apple
DocViewer application for electronic browsing, and assorted useful tools and
documentation.

On the develop Bookmark CD, you’ll notice some things missing from past CDs you
received with develop, primarily system software and Inside Macintosh (both old and
new). If you still want to get these, consider subscribing to the Apple Developer

d e v e l o p Issue 14

CAROLINE ROSE (AppleLink CROSE) was a
programmer for seven years, until around the time
“goto” went out of fashion. In those days, C was
just the third letter of the alphabet and OOPS a
loud interjection. Caroline’s technical background
came in handy when she was hired by Apple to
work on Inside Macintosh Volumes I–III (may they
rest in peace). What she did next after that turned
out to be merely an interruption in her career at

Apple, where she returned two years ago to edit
develop. Speaking of “Oops,” Caroline betrayed
both her Italian heritage and her intense
perfectionism by misspelling “mozzarella” in her
bio in Issue 13; she received as punishment 30
lashes with a wet strand of spaghetti. Her next
vacation will be spent on the Isle of Spice (trivia
question: where?), and she is already brushing up
on how to spell “callaloo” and “ylang-ylang.”•

2

CAROLINE ROSE

Mailing so that you’ll once again receive the monthly Developer CD Series disc, which
now includes more than ever before. And keep an eye out for other products in the
APDA catalog that may include what you want. (See the inside back cover for
information about APDA.)

For those develop subscribers who receive the Developer CD monthly and don’t care
which disc develop comes with, you’ll continue to have a beautiful printed copy of the
journal that you can curl up with and easily pass along (think of it as “develop
unplugged”). The months that develop is published, the Technical Documentation
edition of the Developer CD will be included in the monthly mailing. (See the
March issue of Apple Direct for details on the new three-edition Developer CD Series.)

To clean the CD slate, so to speak, printed back issues of develop will now be
accompanied by the Bookmark CD corresponding to this issue, rather than the
Developer CDs they were originally paired with. Remember, all develop code is kept
up to date on the CD, and bugs fixed as necessary, so the latest CD is always the best
one to refer to for code.

Since develop readers will have either the develop Bookmark CD or the Developer CD
Series disc, how does develop now refer to the disc containing the code it describes?
After endless debate on this crucial issue, we decided on “this issue’s CD.” Clever,
huh? We’re proud of it.

Speaking of pride, I can’t help but mention that develop won the Excellence award in
the Society for Technical Communication’s 1992 Northern California Technical
Publications and Arts Competition. Please don’t forget to let us know how we can
make develop even better!

Caroline Rose
Editor

EDITORIAL June 1993

3
SUBSCRIPTION INFORMATION
Subscriptions to develop are available through
APDA (see inside back cover for APDA
information), or you can use the subscription card
in the back of this issue. Please address all
subscription-related inquiries to develop, Apple
Computer, Inc., P.O. Box 531, Mt. Morris, IL
61054 (or AppleLink DEV.SUBS).•

BACK ISSUES
For information about back issues of develop and
how to obtain them, see the last page of this
issue. Back issues are also on the develop
Bookmark CD and the Developer CD Series
disc.•

DEBUGGING LESSON
I just finished reading the debugging
article in Issue 13 and I wondered if you
had ever written up anything about this
one:

TYPE
LHdl = ^LPtr;
LPtr = ^LONGINT;

{$S Fill_Seg}
PROCEDURE FillWithData(h:Handle);
BEGIN
h^^ := 23;
END;

{$S Main}

PROCEDURE CanYouSpotTheProblem;

VAR
h :LHdl;

BEGIN
h := LHdl(NewHandleClear(Size));
FillWithData(h);
END.

I call this “Routines That Don't Move
Memory, Most of the Time.” The
problem comes about because of the
hidden trap to LoadSeg. If all the code
resources are preloaded, everything is
OK. But if they aren’t, the call to
FillWithData may cause a memory
move, and h is not locked. This is
especially vile and nasty when, like us,
you run in a very limited heap and
unload your code frequently.

I know that if you read Inside Macintosh
Volume II very carefully this is clear.
But most of the interesting examples are
the ones that are well documented but
hard to catch.

—Bob Tipton

Thanks for the example. You’re right, of
course; calling routines in other, unloaded
segments can indeed move memory. This is
documented in various places, but unless you
understand very clearly how your program
occupies memory and how the Segment
Loader works, it’s easy to overlook. Judicious
use of a good heap scramble/purge will catch
this one before it catches you.

Thanks for writing!

—Dave Johnson

WHERE IN THE WORLD(SCRIPT)?
I was looking for the WorldScript folder
on Issue 12’s Developer CD, “Wayne’s
GWorld” (Dev.CD Nov/Dec 92).
According to the Contents Catalog
stack, the WorldScript folder should be
found in this path: Dev.CD Nov/Dec
92: System Software: WorldScript. But
it’s not there. I talked with a friend of
mine who has the same CD, and he
found the folder where it’s supposed to
be. We checked our CDs and found out
that his says 564.6 MB on disc, 69.7 MB
available, while mine says 555.5 MB on
disc, 78.9 MB available. What’s going
on?

—Toru Kawate

P.S. Thank you for the fine journal and
CD. I really enjoy them.

I received Issue 12 of develop with the
Nov/Dec 1992 Developer CD Series disc.
I enjoy the Developer CD but had the
following trouble: I used the Contents
Catalog on the CD and found the title
“WorldScript.” But I didn't find the
folder at the pathname Dev.CD
Nov/Dec 92: System Software:
WorldScript.

—Hirokazu Yaguchi

d e v e l o p Issue 14

WE WORRY WHEN YOU DON’T WRITE
We welcome timely letters to the editors,
especially from readers reacting to articles that
we publish in develop. Letters should be
addressed to Caroline Rose (or, if technical
develop-related questions, to Dave Johnson) at
Apple Computer, Inc., 20525 Mariani Avenue,
M/S 75-2B, Cupertino, CA 95014 (AppleLink
CROSE or JOHNSON.DK). All letters should

include your name and company name as well
as your address and phone number. Letters may
be excerpted or edited for clarity (or to make
them say what we wish they did).•

4

LETTERS

At the last minute, WorldScript was pulled
from the CD accompanying develop, but
there wasn’t enough time to remove it from
the Contents Catalog. WorldScript did,
however, remain on the Developer CD
Series disc received monthly by members of
Apple’s developer programs.

The reason for this is tied in with why
develop now has its own CD, separate
from the Developer CD Series disc; for
details, see the editorial on page 2.

—Caroline Rose

WHEN TO EXPECT DEVELOP
Sorry to disturb you, but because I’ve
had problems with my subscription (two
copies, no copies) — which I’ve worked
out, I think, with the DEV.SUBS people
— I’m wondering: Is there some sort of
publication schedule available that will
allow me to fret about this without
disturbing anyone? (“Gee, it’s two weeks
past when this should be out . . . what
am I missing out on?!”)

Y’all are doing a fine job. Just be sure to
run your issues through a Quark
SmugCheck to keep the content only
kinda wacky and smug without being
too much that way.

Thanks!

—J. C. Burns

I’m sorry you’ve had subscription problems,
but I’m grateful that you pursued them
with DEV.SUBS rather than sending an
AppleLink to CROSE or DEVELOP;
many developers make the mistake of
contacting develop staff with these
problems, but it’s really out of our realm.
We are, however, doing our best to make the
problems go away.

If you’re located in the U.S., you should
normally receive develop around the first
of March, June, September, and December.
(If you’re outside the U.S., it’s hard to say,
because develop might need to wait for
other materials to be merged into the same
mailing.)

Thanks for the tip on SmugCheck; it’s just
what we need!

—Caroline Rose

M.TN.DESIGNATIONS
I notice you still add the numbers in
references to Tech Notes. If dropping
the numbers were such progress, that
wouldn’t be necessary. And the new
alphanumeric reference codes are not
used.

I’m a technical person who is used to
abbreviations everywhere for
conciseness. Besides, citing with full
titles adds noise and a lot of
repetitiveness.

—Peter Fink

We decided to include the old numbers in
references to Tech Notes to help out those
people who like to use hard copy but still
have the numbered versions. We’ll stop
doing that once enough time has elapsed
that we expect everyone will have the new,
unnumbered versions.

For a variety of reasons, we decided not to
include the new designations, such as
“M.PT.StandAloneCode,” which identify
the category/folder for each Note. We
figured people could find the Notes in the
new file organization easily enough — a
Note on QuickTime is in the QuickTime
folder, right? But we’ve since realized that
the category isn’t always obvious. So

LETTERS June 1993

5

starting with this issue we refer to Notes by
category — for example, “See the
Macintosh (Platforms & Tools) Technical
Note, ‘Stand-Alone Code, ad nauseam.’”

Many developers simply look up specific
notes in the various Tech Note indexes, and
don’t use the special designations at all. For
those who do use them, they’ve been
improved to correlate more closely to the

Notes’ titles; for more on this and other
recent Tech Note improvements, see the box
on this page.

We’re always open to suggestion, but so far
you’re the only one to mention this. If others
reading this reply have similar feedback, I
hope they’ll let us know.

—Caroline Rose

d e v e l o p Issue 14

Send your feedback on Tech Notes or
Sample Code to Neil at AppleLink NMDAY or on
the Internet at nmday@apple.com.•

6

On the August 1992 Developer CD Series disc, the new
organization of Macintosh Technical Notes made its
debut. Since then, we’ve been listening for suggestions for
improvement. The vast majority of the feedback has been
positive, but you did point out a few areas for attention:

• Better name correlation: Filenames, titles, and
designations like “M.PT.StandAloneCode” needed to
be more tightly bound to one another. The latest
release fixes this problem; Tech Notes should be easier
to find across the print and electronic versions.

• Organization: Tech Notes are now organized
alphabetically by title within each section. This was
always the intention, but because filenames and titles
didn’t really match, things were a little haphazard.

• Locating items in print: We’ve added the designation
to the footer of each note, so you can quickly tell
where you are as you flip through the pages.

Many of you have asked how to quickly locate the most
recently written and updated Tech Notes. On the CD,

aliases to the latest Notes can always be found in the
“What’s new on this CD?” folder. Using the Finder’s View
by Date option on the category folders is a handy way to
see the most recent updates.

Also, please note that to group related information more
logically, we’ve integrated Q&As into the Tech Note
library. Q&As appear at the beginning of every section in
the print version, and have the label “Essential” in the
electronic version (or a different label if you’ve changed
that label name on your system).

Many of you noticed that the Tech Note and Q&A stacks
have gone away: the Tech Note library is now available
in Apple DocViewer format (as well as Microsoft Word
files). You should find the searching and viewing in Apple
DocViewer much more usable; please check it out.

These changes should make information much easier to
find. As always, if you have suggestions or ideas for
improving the Tech Note library, please let me know!

TECH NOTES AND Q&AS: STATE OF THE UNION
BY NEIL DAY, TECH NOTE AND SAMPLE CODE POOH-BAH

More and more software companies are finding rich new markets
overseas. Unfortunately, many of these developers have also discovered
that localizing an application involves a lot more than translating a
bunch of STR# resources. In fact, localization often becomes an
unexpectedly long, complex, and expensive development cycle. This
article describes some common problems and gives proactive engineering
advice you can use during initial U.S. development to speed your
localization efforts later on.

Most software localization headaches are associated with text drawing and character
handling, so that’s what this article stresses. Four common areas of difficulty are:

• keyboard input (specifically for two-byte scripts)

• choice of fonts and sizes for screen display

• date, time, number, and currency formats and sorting order

• character encodings

We discuss each of these potential pitfalls in detail and provide data structures and
example code.

PRELIMINARIES
Throughout the discussion, we assume you’re developing primarily for the U.S.
market, but you’re planning to publish internationally eventually (or at least you’re
trying to keep your options open). As you’re developing your strategy, here are a few
points to keep in mind:

• Don’t dismiss any markets out of hand — investigate the potential
rewards for entry into a particular market and the features
required for that market.

WRITING LOCALIZABLE APPLICATIONS June 1993

7
JOSEPH TERNASKY wrote accounting software
for a “Big Eight” firm until a senior partner
recruited him into the Order of the Free Masons.
He showed great promise as an Adept, and the
Order sent him to the Continent to continue his
studies under the notorious Aleister Crowley,
founder of the Temple of the Golden Dawn. After
years of study in the Great Art, Joseph was sent
back to America to accelerate the breakdown

of civil order and the Immanentizing of the
Eschaton. He resumed his former identity and
now spends his remaining years adding
hopelessly complicated international features to
the Macintosh system software and various third-
party applications.•

JOSEPH TERNASKY AND
BRYAN K. (“BEAKER”)
RESSLER

WRITING

LOCALIZABLE

APPLICATIONS

• The amount of effort required to support western Europe is
relatively small. Depending on the type of application you’re
developing, the additional effort required for other countries isn’t
that much more. There’s also a growing market for non-Roman
script systems inside the U.S.

• The labor required to build a truly global program is much less if
you do the work up front, rather than writing quick-and-dirty
code for the U.S. and having to rewrite it later.

• Consider market growth trends. A market that’s small now may be
big later.

This article concentrates on features for western Europe and Japan because those are
the markets we’re most familiar with. We encourage you to investigate other markets
on your own.

LINGO LESSON 101
This international software thing is rife with specialized lingo. For a complete
explanation of all the terms, see the hefty “Worldwide Software Overview,” Chapter
14 of Inside Macintosh Volume VI. But we’re not here to intimidate, so let’s go over a
few basic terms.

Script. A writing system that can be used to represent one or more human languages.
For example, the Roman script is used to represent English, Spanish, Hungarian, and
so on. Scripts fall into several categories, as described in the next section, “Script
Categories.”

Script code. An integer that identifies a script on the Macintosh.

Encoding. A mapping between characters and integers. Each character in the
character set is assigned a unique integer, called its character code. If a character
appears in more than one character set it may have more than one encoding, a
situation discussed later in the section “Dealing With Character Encodings.” Since
each script has a unique encoding, sometimes the terms script and encoding are used
interchangeably.

Character code. An integer that’s associated with a given character in a script.

Glyph. The displayed form of a character. The glyph for a given character code may
not always be the same — in some scripts the codes of the surrounding characters
provide a context for choosing a particular glyph.

Line orientation. The overall direction of text flow within a line. For instance,
English has left-to-right line orientation, while Japanese can use either top-to-
bottom (vertical) or left-to-right (horizontal) line orientation.

d e v e l o p Issue 14

BRYAN K. (“BEAKER”) RESSLER (AppleLink
ADOBE.BEAKER) had his arm twisted by develop
editor Caroline Rose, forcing him to write develop
articles on demand. He resides in a snow cave in
Tibet, where he fields questions ranging from
“Master, what is the meaning of life?” to “Master,
why would anyone want to live in a Tibetan snow
cave and answer questions for free?” When he’s
not busy answering the queries of his itinerant

clientele, he can usually be found writing some
esoteric sound or MIDI application. Back in his
days of worldly endeavor, Beaker wrote some of
the tools that were used for testing Kanji TrueType
fonts, and then worked on System 7 in the
TrueType group. Hence the retreat to his current
colder but more enlightened and sane
environment.•

8

Character orientation. The relationship between a character’s baseline and the line
orientation. When the line orientation and the character baselines go in the same
direction, it’s called with-stream character orientation. When the line orientation
differs from the character baseline direction, it’s called cross-stream character
orientation. For instance, in Japanese, when the line orientation is left-to-right,
characters are also oriented left-to-right (with-stream). Japanese can also be
formatted with a top-to-bottom (vertical) line orientation, in which case character
baselines can be left-to-right (cross-stream) or top-to-bottom (with-stream). See
Figure 1.

WRITING LOCALIZABLE APPLICATIONS June 1993

9

Line�
orientation

With-stream�
character�
orientation

Character�
orientation

Line�
orientation

Cross-stream�
character�
orientation

Line�
orientation

Cross-�
stream

With-�
stream

Figure 1
Line and Character Orientation in Mixed Japanese/English Text

SCRIPT CATEGORIES
Scripts fall into different categories that require different software solutions. Here are
the basic categories:

• Simple scripts have small character sets (fewer than 256 characters),
and no context information is required to choose a glyph for a
given character code. They have left-to-right lines and top-to-
bottom pages. Simple scripts encompass the languages of the U.S.
and Europe, as well as many other countries worldwide. For
example, some simple scripts are Roman, Cyrillic, and Greek.

• Two-byte scripts have large character sets (up to 28,000 characters)
and require no context information for glyph choice. They use
various combinations of left-to-right or top-to-bottom lines and
top-to-bottom or right-to-left pages. Two-byte scripts include the
languages of Japan, China, Hong Kong, Taiwan, and Korea.

• Context-sensitive scripts have a small character set (fewer than 256
characters) but may have a larger glyph set, since there are
potentially several graphic representations for any given character
code. The mapping from a given character code to a glyph
depends on surrounding characters. Most languages that use a
context-sensitive script have left-to-right lines and top-to-bottom
pages, such as Devanagari and Bengali.

• Bidirectional scripts can have runs of left-to-right and right-to-left
characters appearing simultaneously in a single line of text. These
scripts have small character sets (fewer than 256 characters) and
require no context information for glyph choice. Bidirectional
scripts are used for languages such as Hebrew that have both left-
to-right and right-to-left characters, with top-to-bottom pages.

There are a few exceptional scripts that fall into more than one of these categories,
such as Arabic and Urdu. Arabic, for instance, is both context sensitive and
bidirectional.

Now with the preliminaries out of the way, we’re ready to discuss some localization
pitfalls.

KEYBOARD INPUT
Sooner or later, your users are going to start typing. You can’t stop them. So now what
do you do? One approach is to simply ignore keyboard input. While perfectly
acceptable to open-minded engineers like yourself, your Marketing colleagues may
find this approach unacceptable. So, let’s examine what happens when two-byte script
users type on their keyboards.

d e v e l o p Issue 14

10

Obviously, a Macintosh keyboard doesn’t have enough keys to allow users of two-byte
script systems to simply press the key corresponding to the one character they want
out of 28,000. Instead, two-byte systems are equipped with a software input method,
also called a front-end processor or FEP, which allows users to type phonetically on a
keyboard similar to the standard U.S. keyboard. (Some input methods use strokes or
codes instead of phonetics, but the mechanism is the same.)

As soon as the user begins typing, a small input window appears at the bottom of the
screen. When the user signals the input method, it displays various readings that
correspond to the typed input. These readings may include one or more two-byte
characters. There may be more than one valid reading of a given “clause” of input, in
which case the user must choose the appropriate reading.

When satisfied, the user accepts the readings, which are then flushed from the input
window and sent to the application as key-down events. Since the Macintosh was
never really designed for two-byte characters, a two-byte character is sent to the
application as two separate one-byte key-down events. Interspersed in the stream of
key-down events there may also be one-byte characters, encoded as ASCII.

Before getting overwhelmed by all this, consider two important points. First, the
input method is taking the keystrokes for you. The keystrokes the user types are not being
sent directly into your application — they’re being processed first. Also, since the
user can type a lot into the input method before accepting the processed input, you
can get a big chunk of key-down events at once.

So let’s see what your main event loop should look like in its simplest form if you
want to properly accept mixed one- and two-byte characters:

// Globals
unsigned short gCharBuf; // Buffer that holds our (possibly two-byte)

// character
Boolean gNeed2ndByte; // Flag that tells us we're waiting for the

// second byte of a two-byte character

void EventLoop(void)
{

EventRecord event; // The current event
short cbResult; // The result of our CharByte call
unsigned char oneByte; // Single byte extracted from event
Boolean processChar; // Whether we should send our application

// a key message

if (WaitNextEvent(everyEvent, &event, SleepTime(), nil)) {
switch (event.what) {

. . .

WRITING LOCALIZABLE APPLICATIONS June 1993

11
System 7.1 provides a standard inline input
interface and the system input method supports
inline input. With inline input, the input translation
process can occur within the document window,
and no input window is used.•

case keyDown:
case autoKey:

. . .
// Your code checks for Command-key equivalents here.
. . .
processChar = false;
oneByte = (event.message & charCodeMask);
if (gNeed2ndByte) {

// We're expecting the second byte of a two-byte character.
// So OR the byte into the low byte of our accumulated
// two-byte character.
gCharBuf = (gCharBuf << 8) | oneByte;
cbResult = CharByte((Ptr)&gCharBuf, 1);
if (cbResult == smLastByte)

processChar = true;
gNeed2ndByte = false;

} else {
// We're not expecting anything in particular. We
// might get a one-byte character, or we might get the
// first byte of a two-byte character.
gCharBuf = oneByte;
cbResult = CharByte((Ptr)&gCharBuf, 1);
if (cbResult == smFirstByte)

gNeed2ndByte = true;
else if (cbResult == smSingleByte)

processChar = true;
}

// Now possibly send the typed character to the rest of the
// application.
if (processChar)

AppKey(gCharBuf);
break;

case . . .
}

}
}

CharByte returns smSingleByte, smFirstByte, or smLastByte. You use this
information to determine what to do with a given key event. Notice that the AppKey
routine takes an unsigned short as a parameter. That’s very important. For an
application to be two-byte script compatible, you need to always pass unsigned shorts
around for a single character. This example is also completely one-byte compatible —
if you put this event loop in your application, it works in the U.S.

d e v e l o p Issue 14

12

The example assumes that the grafPort is set to the document window and the port’s
font is set correctly, which is important because the Script Manager’s behavior is
governed by the font of the current grafPort (see “Script Manager Caveats”).
Although this event loop works fine on both one-byte and two-byte systems, it could
be made more efficient. For example, since input methods sometimes send you a
whole mess of characters at a time, you could buffer up the characters into a string
and send them wholesale to AppKey, making it possible for your application to do
less redrawing on the screen.

AVOIDING FONT TYRANNY
Have you ever written the following lines of code?

void DrawMessage(short messageNum)
{

Str255 theString;

GetIndString(theString, kMessageStrList, messageNum);
TextFont(geneva);
TextSize(9);
MoveTo(kMessageXPos, kMessageYPos);
DrawString(theString);

}

If so, you’re overdue for a good spanking. While we’re very proud of you for putting
that string into a resource like a good international programmer, the font, size, and
pen position are a little too, well, specific. Granted, it’s hard to talk yourself out of
using all those nice constants defined in Fonts.h, but if you’re trying to write a
localizable application, this is definitely the wrong approach.

WRITING LOCALIZABLE APPLICATIONS June 1993

13

When you use a char to store a character or part of a
character, use an unsigned char. In two-byte scripts, the
high byte of a two-byte character often has the high bit
set, which would make a signed char negative, possibly
ruining your day. The same goes for the use of a short to
store a full one- or two-byte character — use an unsigned
short.

Another important point is that most Script Manager
routines rely on the font of the current grafPort for their

operation. That means you should always be sure that
the port is set appropriately and that the font of the
current port is correct before making any Script Manager
calls.

A new set of interfaces has been provided for System 7.1.
While the old Script Manager’s text routines still work, the
new routines add flexibility. For example, you can use
CharacterByteType instead of CharByte.

SCRIPT MANAGER CAVEATS

A better approach is to do this:

TextFont(applFont);
TextSize(0);
GetFontInfo(&fontInfo);
MoveTo(kMessageXPos, kMessageYMargin + fontInfo.ascent +

fontInfo.leading);

Since applFont is always a font in the system script, and TextSize(0) gives a size
appropriate to the system script, you get the right output. Plus, you’re now
positioning the pen based on the font, instead of using absolute coordinates. This is
important. For instance, on a Japanese system TextSize(0) results in a point size of 12,
so the code in the preceding example might not work if the pen-positioning constants
were set up to assume a 9-point font height.

If you want to make life even easier for your localizers, you could eliminate the pen-
positioning constants altogether. Instead, use an existing resource type (the 'DITL'
type is appropriate for this example) to store the layout of the text items in the
window. Even though you’re drawing the items yourself, you can still use the
information in the resource to determine the layout, and the localizers can then
change the layout using a resource editor — which is a lot better than hacking your
code.

There are some other interesting ways to approach this problem. Depending on what
you’re drawing, the Script Manager may be able to tell you both which font and
which size to use. Suppose you need to draw some help text. You can use the
following code:

void DrawHelpText(Str255 helpText, Rect *helpZone)
{

long fondSize;

fondSize = GetScript(smSystemScript, smScriptHelpFondSize);
TextFont(HiWord(fondSize));
TextSize(LoWord(fondSize));
NeoTextBox(&helpText[1], helpText[0], helpZone, GetSysJust(),

0, nil, nil);
}

Here the Script Manager tells you the appropriate font and size for help text. On a
U.S. system, that would be Geneva 9; on a Japanese system, it’s Osaka 9. NeoTextBox
is a fast, flexible replacement for the Toolbox routine TextBox and is Script Manager
compatible. You can learn more about NeoTextBox by reading “The TextBox You’ve
Always Wanted” in develop Issue 9.

d e v e l o p Issue 14

14

The Script Manager has some other nice combinations:

smScriptMonoFondSize // Default monospace font and size (use when
// you feel the urge to use Courier 12)

smScriptSmallFondSize // Default small font and size (use when you
// feel the urge to use Geneva 9)

smScriptSysFondSize // Default system font and size (use when you
// feel the urge to use Chicago 12)

smScriptAppFondSize // Default application font and size (use as
// default document font)

The various FondSize constants are available only in System 7. If you’re writing
for earlier systems, you should at least use GetSysFont, GetAppFont, and
GetDefFontSize, as described in Chapter 17 of Inside Macintosh Volume V. And if
you’re too lazy to do even that, please use TextFont(0) and TextSize(0) to get the
system font, which will be appropriate for the system script. This is, by the way, how
grafPorts are initialized by QuickDraw. In other words, if you don’t touch the port, it
will already be set up correctly for drawing text in the system script.

INTERNATIONAL DATING
Before you get too excited, you should know that we’re not talking about the true-
love variety of date here. No, we’re talking about something much more tedious —
input and output of international dates, times, numbers, and currency values. First
we’ll look at output formatting, and then input parsing.

OUTPUT OF DATES, TIMES, NUMBERS, AND CURRENCY VALUES
To output dates, times, numbers, and currency values (which we’ll call formatted
values), you need to know the script you’re formatting for. This can be a user
preference, or you can determine the script from the current font of the field
associated with the value you’re formatting (use Font2Script).

You can use these International Utilities routines to format dates, times, and
numbers:

• Use IUDateString for formatting a date.

• Use IUTimeString for formatting a time.

• Use NumToString for simple numbers without separators.

• Use Str2Format and FormatX2Str for complete number
formatting with separators.

Formatting a currency value is a bit trickier. You have to format the number and then
add the currency symbol in the right place. We’ll show you how to get the currency
symbol and the positioning information from the 'itl0' resource.

WRITING LOCALIZABLE APPLICATIONS June 1993

15

First, let’s look at an example of date and time formatting:

#define kWantSeconds true // For IUTimeString
#define kNoSeconds false

unsigned long secs;
Str255 theDate, theTime;

// Get the current date and time into Pascal strings.
GetDateTime(&secs);
IUDateString(secs, shortDate, theDate);
IUTimeString(secs, kNoSeconds, theTime);

Formatting a number with FormatX2Str is a little more complicated, because
FormatX2Str requires a canonical number format string (type NumFormatString)
that describes the output format. You make a NumFormatString by converting a
literal string, like

##,###.00;-##,###.00;0.00

The strings are in the format

positiveFormat;negativeFormat;zeroFormat

where the last two parts are optional. The example string would format the number
32767 as 32,767.00, -32767 as -32,767.00, and zero as 0.00. The exact format of these
strings can be quite complicated and is described in Macintosh Worldwide Development:
Guide to System Software.

The following handy routine formats a number using a format read from a string list.
You provide the string list resource and specify which item in the list to use when
formatting a given number.

OSErr FormatANum(short theFormat, extended theNum, Str255 theString)
{

NItl4Handle itl4;
OSErr err;
NumberParts numberParts;
Str255 textFormatStr; // "Textual" number format spec
NumFormatString formatStr; // Opaque number format

// Load the 'itl4' and copy the NumberParts record out of it.
itl4 = (NItl4Handle)IUGetIntl(4);
if (itl4 == nil)

return resNotFound;

d e v e l o p Issue 14

16

numberParts = *(NumberParts *)((char *)*itl4 +
(*itl4)->defPartsOffset);

// Get the format string, convert it to a NumFormatString, and then
// use it to format the input number.
GetIndString(textFormatStr, kFormatStrs, theFormat);
err = Str2Format(textFormatStr, &numberParts, &formatStr);
if (err != noErr)

return err;
err = FormatX2Str(theNum, &formatStr, &numberParts, theString);
return err;

}

Given a currency value, the following routine formats the number and then adds the
currency symbol in the appropriate place. This routine assumes that you use a
particular number format for currency values, but you can easily modify it to include
an argument that specifies the format item in the string list.

OSErr FormatCurrency(extended theNum, Str255 theString)
{

Intl0Hndl itl0;
OSErr err;
Str255 currencySymbol, formattedValue;

// First, format the number like this: ##,###.00. FormatX2Str will
// replace the "," and "." separators appropriately for the font
// script.
err = FormatANum(kCurrencyFormat, theNum, formattedValue);
if (err != noErr)

return err;

// Get the currency symbol from the 'itl0' resource. The currency
// symbol is stored as up to three bytes. If any of the bytes aren't
// used they're set to zero. So, we use strncpy to copy out the
// currency symbol as a C string and forcibly terminate it in case it's
// three bytes long.
itl0 = (Intl0Hndl)IUGetIntl(0);
if (itl0 == nil)

return resNotFound;
strncpy(currencySymbol, &(*itl0)->currSym1, 3);
currencySymbol[3] = 0x00;
c2pstr(currencySymbol);

// Now put the currency symbol and the formatted value together
// according to the currency symbol position.

WRITING LOCALIZABLE APPLICATIONS June 1993

17

if ((*itl0)->currFmt & currSymLead) {
StringCopy(theString, currencySymbol);
StringAppend(theString, formattedValue);

} else {
StringCopy(theString, formattedValue);
StringAppend(theString, currencySymbol);

}
return noErr;

}

The 'itl0' resource also includes the decimal and thousands separators. These should
be the same values used by FormatX2Str, which gets these symbols from the
NumberParts structure in the 'itl4' resource.

If using the extended type in your application makes you queasy, you can easily
modify these routines to work with the Fixed type. Just use Fix2X in the
FormatX2Str call to convert the Fixed type to extended.

INPUT OF DATES, TIMES, AND NUMBERS
The Script Manager includes routines for parsing formatted values to retrieve a date,
time, or number. The process is logically the reverse of formatting a value for output.
Most applications don’t even deal with formatted numbers. They just read raw
numbers (no thousands separators or currency symbols), locate the decimal separator,
convert the integer and fraction parts using NumToString, and then put the integer
and fraction parts back together.

DEALING WITH CHARACTER ENCODINGS
When writing Macintosh applications, most developers make certain assumptions
that cause problems when the application is used in other countries. One of these
assumptions is that all characters are represented by a single byte; another is that a
given character code always represents the same character. The first assumption
causes immediate problems because the two-byte script systems use both one-byte
and two-byte character codes. An application that relies on one-byte character codes
often breaks up a two-byte character into two one-byte characters, rendering the
application useless for two-byte text. The second assumption causes more subtle
problems, which prevent the user from mixing text in several different scripts
together in one document.

Different versions of the Macintosh system software use a different script by default.
Systems sold in the U.S. and Europe use the Roman script. Those sold in Japan,
Hong Kong, or Korea use the Japanese, traditional Chinese, or Korean script,
respectively. In addition, some sophisticated users have several script systems installed
at one time, and System 7.1 makes this even easier. Actually, even unsophisticated
users can have two script systems installed at one time. All systems have the Roman

d e v e l o p Issue 14

18

script installed, so Japanese users, for example, have both the Japanese and the
Roman script available.

For an application to work correctly with any international system software, it must
be able to handle different character encodings simultaneously. That is, the user
should be able to enter characters in different scripts and edit the text without
damaging the associated script information. This section discusses three ways to
handle character encodings. These methods require different amounts of effort to
implement and provide different capabilities. Of course, those that require the most
effort also provide the most flexibility and power for your users. Before we discuss
these methods, let’s define some more terms.

Language. A human language that’s written using a particular script. Several
languages can share the same script. For example, the Roman script is used by
English, French, German, and so on. It’s also possible for the same language to be
written in more than one script, although that’s a rare exception.

Alphabet, syllabary, ideograph set. A collection of characters used by a
language. Some scripts include more than one of these collections. As a simple
example, the Roman script includes both an uppercase and a lowercase alphabet. As a
more complicated example, the Japanese script includes the Roman alphabet, the
Hiragana and Katakana syllabaries, and the Kanji ideograph set. An alphabet,
syllabary, or ideograph set isn’t necessarily encoded in the same way in two different
scripts. For example, the Roman alphabet in the Roman script uses one-byte codes,
but the Roman alphabet in the Japanese script uses either one-byte or two-byte
codes.

Segment. A subset of an encoding that may be shared by one or more scripts. For
example, the simple (7-bit) ASCII characters make up a segment that’s shared by all
the scripts on the Macintosh. Characters in this segment have the same code in any
Macintosh encoding.

Unicode. An international character encoding that encompasses all the written
languages of the world. Each character is assigned a unique 16-bit integer. Unicode is
a unified encoding — all characters that have the same abstract shape share a common
character code, even if they’re used in more than one language.

METHOD 1: NATIVE ENCODING
The easiest method is to simply pick one character encoding for your localization and
stick with it throughout the application. This is usually the native character encoding
for the country (and language) that you’re targeting with the localized application.
For example, if you’re localizing an application for the Japanese market, you choose
the shift-JIS (Shifted Japanese Industrial Standard) character encoding and modify all
your text-handling routines to use this encoding.

WRITING LOCALIZABLE APPLICATIONS June 1993

19

The shift-JIS encoding uses both one-byte and two-byte character codes, so you need
to use the Script Manager’s CharByte routine whenever you’re stepping through a
string. For a random byte in a shift-JIS encoded string, CharByte tells you if the byte
represents a one-byte character, the low byte of a two-byte character, or the high byte
of a two-byte character. You also have to handle two-byte characters on input (as
described earlier in the section “Keyboard Input”) and use the native system and
application fonts for text (as described in the section “Avoiding Font Tyranny”).

To summarize, the native encoding method has a few advantages:

• It’s very easy to implement, so most of your code will work with
simple modifications.

• Since you’re using the native encoding, the users in the country
for which you’re localizing will be able to manipulate text using
the conventions of the native language.

• Every encoding includes the simple (7-bit) ASCII characters, so
they’ll also be able to use English.

Unfortunately, this method has many disadvantages:

• You have to create one version of the application for every
localization that you do. Each version will use a different native
encoding.

• Documents created with one version of the application can’t
necessarily be used with another version of the application. For
example, a document created with the Japanese version that
includes two-byte Japanese text will be displayed incorrectly when
opened with the French version.

• The user doesn’t have access to all the characters in the Roman
script (extended ASCII encoding) because these are also used by
the native encoding. For example, the ASCII accented characters
and extended punctuation use character codes that are also used by
the one-byte Katakana syllabary in the shift-JIS encoding.
Remember, even the simple international systems really use two
scripts — the native script and the Roman script.

METHOD 2: MULTIPLE ENCODINGS
The most complete method for handling character encodings is to keep track of the
encoding for every bit of text that your application stores. In this method the
encoding (or the script code) is stored with a run of text just like a font family, style,
or point size. The first step is to determine which languages you may want to
support. Once this is determined, you can decide which encodings are necessary to
implement support for those languages. For example, suppose your Marketing
department wants to do localized versions for French, German, Italian, Russian,

d e v e l o p Issue 14

20

Japanese, and Korean. French, German, and Italian all use the Roman script. Russian
uses the Cyrillic script; Japanese uses the Japanese script; and Korean uses the Korean
script. To support these languages, you have to handle the Roman, Cyrillic, Japanese,
and Korean encodings.

In general, each script that you include requires support for its encoding and,
possibly, additional features that are specific to that script. For example, Japanese
script can be drawn left-to-right or top-to-bottom, so a complete implementation
would handle vertical text. There are other features specific to the Japanese script
(amikake, furigana, and so on) that you may also want to implement.

If any of the encodings include two-byte characters, the data structures that you use
to represent text runs must be able to handle two-byte codes. When you’re
processing a text run, the encoding of that run determines how you can treat the
characters in the run. For example, you can munge a Roman text run in the usual
way, safe and secure in the familiar world of one-byte character codes. In contrast,
your dealings with Japanese text runs may be wrought with angst since these runs can
include both one-byte and two-byte characters in any combination.

The Script Manager is designed to support applications that tag text runs with a
script code. As long as the font of the current grafPort is set correctly, all the Script
Manager routines work with the correct encoding for that script. For example, if you
specify a Japanese font in the current grafPort, the Script Manager routines assume
that any text passed to them is stored in the shift-JIS encoding.

Keyboard script. During this discussion of the multiple encodings method, we’ve
been assuming that you already know the script (and therefore the encoding) of text
that the user has entered. How exactly do you know this? The Script Manager keeps
track of the script of the text being entered from the keyboard in a global variable.
Your application should read this variable programmatically after receiving a
keyboard event, as follows:

short keyboardScript;

keyboardScript = GetEnvirons(smKeyScript);

Once you know the keyboard script, make sure that this information stays with the
character as it becomes part of a text run. If the keyboard script is the same as the
script of the text run, you can just add this character to the text run. Otherwise, you
must create a new text run, tag it with the keyboard script, and place the character
in it.

You can also set the keyboard script directly when the user selects text with the mouse
or changes the current font. The question is, which script do you set the keyboard to
use? That depends on the font of the selected text or the new font the user has

WRITING LOCALIZABLE APPLICATIONS June 1993

21
Amikake is a variable shading behind text.
Furigana is annotation of a Kanji character that
appears in small type above the character (or to
the right of the character, in the case of vertical
line orientation).•

chosen. The first step is to convert the font into a script and then use the resulting
script code to set the keyboard script. This process is known as keyboard forcing.

short fontScript;

fontScript = Font2Script(myFontID);
KeyScript(fontScript);

The user can always change the keyboard script by clicking the keyboard icon (in
System 6) or by choosing a keyboard layout from the Keyboard menu (in System 7).
As a result, you’re no longer sure that the keyboard script and the font script agree
when the user actually types something. You should always check the keyboard script
against the font script before entering a typed character into a text run. If the
keyboard script and the font script don’t agree, a new current font is derived from the
keyboard script. This process is known as font forcing.

short fontScript, keyboardScript;

fontScript = Font2Script(myFontID);
keyboardScript = GetEnvirons(smKeyScript);
if (fontScript != keyboardScript)

myFontID = GetScript(keyboardScript, smScriptAppFond);

The combination of keyboard forcing and font forcing is called font/keyboard
synchronization. Both keyboard and font forcing should be optional; the user should be
able to turn these features off with a preferences setting.

Changing fonts. An application that works with multiple encodings must pay special
attention to font changes. For each text run in the selection, the application should
check the script of the text run against the script of the new font. If the scripts agree,
the text run can use the new font. If the scripts don’t agree, the application can either
ignore the new font for that text run or apply some special processing.

short fontScript;
short textRunIndex, textRunCount;

fontScript = Font2Script(myNewFontID);
for (textRunIndex = 0;

textRunIndex < textRunCount;
textRunIndex++) {

if (textRunStore[textRunIndex].script == fontScript)
textRunStore[textRunIndex].fontID = myNewFontID;

else
SpecialProcessing(&textRunIndex, &textRunCount, myNewFontID);

}

d e v e l o p Issue 14

22

All the encodings used by the Macintosh script systems include the simple (7-bit)
ASCII characters, so it’s often possible to convert these characters from one script to
another. The special processing consists of these two steps:

1. Breaking a text run into pieces, some of which contain only simple
ASCII characters and others that contain all the characters not
included in simple ASCII

2. Applying the new font to the runs that contain only simple ASCII
characters and leaving the other runs with the old font

Boolean FindASCIIRun(unsigned char *textPtr, long textLength,
long *runLength)

{
*runLength = 0;

if (*textPtr < 0x80) {
// We know that this character is simple ASCII, since values less
// than 128 can't be the first byte of a two-byte character, and
// they're shared among all scripts. So, let's block up a run of
// simple ASCII.
while (*textPtr++ < 0x80 && textLength-- > 0)

*runLength++;
return true; // Run is simple ASCII.

} else {
// We know this character is not simple ASCII. It may be two-byte
// or it may be some character in a non-Roman script. So, let's
// block up a run of non-simple-ASCII characters.
while (textLength > 0) {

if (CharByte(textPtr, 0) == smFirstByte) {
// Skip over two-byte character.
textPtr += 2;
textLength -= 2;
*runLength += 2;

} else if (*textPtr >= 0x80) {
// Skip over one-byte character.
textPtr++;
textLength--;
*runLength++;

} else
break;

}
return false; // Run is NOT simple ASCII.

}
}

WRITING LOCALIZABLE APPLICATIONS June 1993

23

void SpecialProcessing(short *runIndex, short *runCount,
short myNewFontID)

{
TextRunRecord originalRun, createdRun;
unsigned char *textPtr;
long textLength, runLength, runFollow;
Boolean simpleASCII;

// Retrieve this run and remove it from the run list.
GetTextRun(*runIndex, &originalRun);
RemoveTextRun(*runIndex);

// Get the pointer and length of the original text.
textPtr = originalRun.text;
textLength = originalRun.count;

// Loop through all of the sub-runs in this run.
runFollow = *runIndex;
while (textLength > 0) {

// Find the length of the sub-run and its type.
TextFont(originalRun.fontID);
simpleASCII= FindASCIIRun(textPtr, textLength, &runLength);

// Create the sub-run and duplicate the characters.
createdRun = originalRun; // Same formats.
createdRun.text = NewPtr(runLength);
// Real programs check for nil pointer here.
createdRun.length = runLength;
BlockMove(textPtr, createdRun.text, runLength);

// Roman runs can use the new font.
if (simpleASCII)

createdRun.fontID = myNewFontID;

// Add the new sub-run and advance the run index.
AddTextRun(runFollow++, createdRun);

// Advance over this sub-run and continue looping.
textPtr += runLength;
textLength -= runLength;

}

// Dispose of the original run information.
DisposeTextRun(originalRun);

}

d e v e l o p Issue 14

24

Searching and sorting. Applications that work with multiple encodings must also
take care during searching or sorting operations. An application that uses only the
native encoding can assume that character codes are unique and that any two text
runs can be compared directly using the sorting routines in the International Utilities
Package. On the other hand, an application that uses multiple encodings must always
consider a character code within the context of a text run and its associated script. In
this case, character codes are unique only within a script, not across script boundaries,
so text runs can’t be compared directly using International Utilities routines unless
they have the same script. If the script codes are different, the International Utilities
routines provide a mechanism for first ordering the scripts themselves
(IUScriptOrder).

You have the same problems with searching as with sorting. In addition, search
commands usually include options for case sensitivity that could be extended in a
multiple encodings application. For example, the Japanese script includes both one-
byte and two-byte versions of the Roman characters. For purposes of searching, the
user might want to consider these equivalent. The simplified Chinese script also
includes both one-byte and two-byte versions of the Roman characters, and these
should also be equivalent to Roman characters in the Roman script and in the
Japanese script. Just like case sensitivity, considering one- and two-byte versions of a
character as equivalent should be an option in your search dialog box.

You can use the Script Manager’s Transliterate routine to implement a byte-size
insensitive comparison. Use Transliterate to convert both the source and the target
text into one-byte characters, then compare the resulting strings. Because all the
scripts share the same simple (7-bit) ASCII character codes, this mechanism treats all
the Roman characters, both one-byte and two-byte, in every script as equivalent.

Summary. The multiple encodings method has several advantages:

• The user can mix text in any number of scripts within one
document.

• You can produce several localized versions of the application from
a single code base.

• Users in a particular region can use features intended for users in a
different region, even if the product isn’t advertised to provide
those features.

The disadvantages of this method are apparent from the examples:

• It’s much more difficult to implement than the native encoding
method.

• The two-byte scripts use mixed one-byte and two-byte encodings,
so even though you’re keeping track of the script of each text run,
you still need to worry about mixed character sizes within a run.

WRITING LOCALIZABLE APPLICATIONS June 1993

25

• Because some characters are duplicated between scripts, you need
to treat their corresponding character codes as equivalent. This
further complicates the basic algorithms you use for text editing,
searching, sorting, and so on.

METHOD 3: POOR MAN’S UNIFICATION
Our favorite method combines the power of the multiple encodings method with the
simplicity of the native encoding method. The idea is to create a single “native”
encoding that encompasses all the scripts included in the multiple encodings method.
In the multiple encodings method, some characters are encoded several times: a
character can have the same code value in different scripts, or it can have different
code values in the same script. For example, the letter A has the code value 0x41 in
the Roman script and the same one-byte code value in Japanese and traditional
Chinese. However, Japanese also encodes the letter A as the two-byte value 0x8260,
and traditional Chinese also encodes it as the two-byte value 0xA2CF. A unified
encoding would map all of the identical characters in the multiple encodings to one
unique code value.

You might have noticed that this method has some of the same goals as the Unicode
scheme — a single character encoding for all languages with one unique code for
every character. Unicode extends this goal to the unification of the two-byte scripts.
Characters that have the same abstract shape in the simplified Chinese, traditional
Chinese, Japanese, and Korean scripts have been grouped together as a single
character under Unicode. Our method doesn’t go that far. We unify the simple ASCII
characters from all scripts but leave the various two-byte scripts to their unique
encodings. Thus the name for this method — poor man’s unification.

Segments. The poor man’s unification method relies on the concept of a segment.
A segment is a subset of an encoding with characters that are all the same byte size.
For example, the Roman script is divided into two segments — the simple ASCII
segment and the extended ASCII/European segment. The Japanese script has three
segments — the simple ASCII segment, the one-byte Katakana segment, and the
two-byte segment (including symbols, Hiragana, Katakana, Roman, Cyrillic, and
Kanji).

The key to poor man’s unification is the simple ASCII segment. This segment is
shared among all the scripts on the Macintosh (see Figure 2). Furthermore, poor
man’s unification treats the various encodings as collections of segments that can be
shared among encodings. There’s logically only one simple ASCII segment, and all
the scripts share it. In the multiple encodings method, characters in this range could
be found in each script. That is, the word “Beaker” could be stored in both a Roman
text run and in a Japanese text run (as one-byte ASCII). In contrast, an application
that uses poor man’s unification would tag text runs with the segment, not the script,
so these two occurrences of “Beaker” would be indistinguishable.

d e v e l o p Issue 14

26

The best way to see the advantages of this method is to solve a problem we already
considered — changing the font of the selection. With the multiple encodings
method, this entailed breaking text runs into smaller runs using our FindASCIIRun
routine. With poor man’s unification, the same problem is much easier to solve
because the runs are already divided into segments and the simple ASCII segment is
allowed to take on any font. Other segments are only allowed to use fonts that belong
to the same script they do.

#define asciiSegment 0
#define europeanSegment 1
#define katakanaSegment 2
#define japaneseSegment 3

WRITING LOCALIZABLE APPLICATIONS June 1993

27

Korean�
(KSC)

Roman�
(ASCII)

Simplified�
Chinese�

(Shift-GB)

Japanese�
(Shift-JIS)

Double-byte:�
Hangul�
Hanja

Single-byte:�
Extended/�
European

Single-byte:�
Strokes�
Radicals

Double-byte:�
Hanze�
Roman

Double-byte:�
Katakana�
Hiragana�
Roman�
Cyrillic�
Kanji

Single-byte:�
Katakana

Simple�
ASCII

Figure 2
Scripts Sharing the ASCII Segment

short fontScript, runSegment;
short textRunIndex, textRunCount;

fontScript = Font2Script(myNewFontID);
for (textRunIndex = 0;

textRunIndex < textRunCount;
textRunIndex++) {

runSegment = textRunStore[textRunIndex].segment;
if (SegmentAllowedInScript(runSegment, fontScript))

textRunStore[textRunIndex].fontID = myNewFontID;
}

The special processing is gone (surprise). Once you know that a segment isn’t
included in the script of the font, you can’t go any further. Such a segment consists
entirely of characters that aren’t in the script of the font.

Boolean SegmentAllowedInScript(short segment, short script)
{

switch (script) {
case smRoman:

switch (segment) {
case asciiSegment:
case europeanSegment:

return true;
default:

return false;
}

case smJapanese:
switch (segment) {

case asciiSegment:
case katakanaSegment:
case japaneseSegment:

return true;
default:

return false;
}

default:
switch (segment) {

case asciiSegment:
return true;

default:
return false;

}
}

}

d e v e l o p Issue 14

28

Determining a segment from keyboard input. How do you determine the
segment of a character when it’s entered from the keyboard?

1. First determine which script the character belongs to by checking
the keyboard script.

2. Then use the character-code value and the encoding definitions to
assign the character a particular segment.

#define ksJISSpace 0x8140

unsigned short keyboardScript;
unsigned short charSegment;
EventRecord lowByteEvent;

keyboardScript = GetEnvirons(smKeyScript);
charSegment = ScriptAndByteToSegment(keyboardScript, charCode);

if (charSegment == japaneseSegment) {
// Get low byte of two-byte character from keyboard.
do {

// You can get null events between two bytes of a two-byte
// character.
GetNextEvent(keyDownMask | keyUpMask | autoKeyMask, &lowByteEvent);
if (lowByteEvent.what == nullEvent)

GetNextEvent(keyDownMask | keyUpMask | autoKeyMask,
&lowByteEvent);

} while (lowByteEvent.what == keyUp);

if ((lowByteEvent.what == keyDown) || (lowByteEvent.what == autoKey))
charCode = (charCode << 8) | (lowByteEvent.message & charCodeMask);

else
// We've gotten a valid high byte under the Japanese keyboard
// with no subsequent low byte forthcoming. Something serious is
// wrong with the current input method. Return a Japanese space
// for now. Hmmmm.
charCode = ksJISSpace;

}

#define kASCIILow 0x00
#define kASCIIHigh 0x7f
#define kRange1Low 0x81
#define kRange1High 0x9f
#define kRange2Low 0xe0
#define kRange2High 0xfc

WRITING LOCALIZABLE APPLICATIONS June 1993

29

short ScriptAndByteToSegment(unsigned short script,
unsigned char byte)

{
switch (script) {

case smRoman:
if ((byte >= kASCIILow) && (byte <= kASCIIHigh))

return asciiSegment;
else

return europeanSegment;
case smJapanese:

if ((byte >= kASCIILow) && (byte <= kASCIIHigh))
return asciiSegment;

else if ((byte >= kRange1Low) && (byte <= kRange1High))
return japaneseSegment;

else if ((byte >= kRange2Low) && (byte <= kRange2High))
return japaneseSegment;

else
return katakanaSegment;

default:
// New scripts and segments added before this.
return asciiSegment;

}
}

You might think this is quite a bit of effort just to get the low byte of a two-byte
character. You’re right. And as for Joe’s use of the antiquated GetNextEvent instead
of the more modern WaitNextEvent, Beaker notes that “It’s a cooperative
multitasking world and Joe’s not cooperating.” Joe replies, “Yeah, but I don’t want a
context switch while I’m trying to get the low byte of a two-byte character.”

Changing fonts. Applications that employ poor man’s unification still have to worry
about font forcing. Here’s an algorithm for “smart” font forcing that tries to
anticipate which fonts the user will select for text in each segment. When you find a
case where the current keyboard script and font script don’t agree, instead of using
the application font for the keyboard script, search the surrounding text runs for a
font that does agree with the keyboard script. Only if you can’t find a font that agrees
do you default to the application font of the keyboard script. From the user’s
perspective, this is much nicer. Once the user has selected a font for each script, the
application goes back and forth between the fonts automatically as the keyboard
script is changed.

short fontScript, keyboardScript;

fontScript = Font2Script(myFontID);
keyboardScript = GetEnvirons(smKeyScript);

d e v e l o p Issue 14

30

// Search backward.
if (fontScript != keyboardScript) {

for (textRunIndex = currentRunIndex - 1;
textRunIndex >= 0;
textRunIndex--) {

myFontID = textRunStore[textRunIndex].fontID;
fontScript = Font2Script(myFontID);
if (fontScript == keyboardScript)

break;
}

}

// Search forward.
if (fontScript != keyboardScript) {

for (textRunIndex = currentRunIndex + 1;
textRunIndex < textRunCount;
textRunIndex++) {

myFontID = textRunStore[textRunIndex].fontID;
fontScript = Font2Script(myFontID);
if (fontScript == keyboardScript)

break;
}

}

// Punt if we couldn't find an appropriate run.
if (fontScript != keyboardScript)

myFontID = GetScript(keyboardScript, smScriptAppFond);

Applications that use font forcing also have to worry about keyboard forcing.
However, if the application includes the feature just described, keyboard forcing is
not as important. Many users will prefer to leave the keyboard completely under
manual control and allow the “smart” font forcing to choose the correct font when
they start typing. The keyboard script is always visible in the menu bar, but the
current font is not.

Summary. The poor man’s unification method has more advantages than the other
two:

• All characters in a run belong to the same segment and therefore
take the same number of bytes for their code values. That is, any
given run will be all one-byte characters or all two-byte characters,
which makes it easier to step through text for deleting or cursor
movement. This is in contrast to the multiple encodings method,
which can mix one-byte and two-byte characters in a single text
run.

WRITING LOCALIZABLE APPLICATIONS June 1993

31

• Runs of simple ASCII and European characters still take one byte
per character to store. If you’re working on a word processor and
plan to keep large amounts of text in memory, this can be an
advantage.

• Like the multiple encodings method, this method is easy to extend
as you add more scripts to the set your application supports. Each
time you add a new script, you need to define the new segments
that make up that script and then modify the classification routines
to correctly handle the new script and segment codes. Once you
locate a specification for the new encoding, these modifications
should be straightforward.

Unfortunately, this method has two disadvantages when compared to pure Unicode:

• You still have to deal with one-byte and two-byte characters, even
though they won’t be mixed together (see “The Demise of One-
Byte Characters”).

• The application needs to tag each text run with a segment code
because the character codes aren’t unique across segments.

d e v e l o p Issue 14

32

The point of poor man’s unification is to simplify your life.
On that theme, there’s another technique that will help.
You can simply decide that characters are two bytes.
Period. Expand one-byte characters into an unsigned
short, with the character code in the low byte and the
segment code in the high byte. Then just use unsigned
shorts everywhere instead of unsigned chars. You’ll find
that your code gets easier to write and easier to
understand, and that lots of special cases where you
would have broken everything out into one- and two-byte
cases collapse into one case.

Putting the segment code into the high byte of one-byte
characters ensures that the one-byte character codes are
unique. If your program handles only one two-byte script,
the two-byte codes are also unique. When both these
conditions are true, there’s no need to store the segment
codes in runs, since they’re implied by the high byte of
each character code.

Here are a few examples using the codes from the sample
segments in the section on poor man’s unification:

• 0x0041 is the letter A in the asciiSegment.

• 0x0191 is the letter ë in the europeanSegment.

• 0x8140 is a two-byte Japanese space character.

In other words, one-byte characters carry their segment
code in their high byte, and the two-byte characters all
belong to the same segment.

You can imagine how much easier searching and sorting
algorithms are if you know you can always advance your
pointers by two bytes instead of constantly calling
CharByte to find out how big each character is. Plus, you
might as well get used to storing 16 bits per character,
since that’s how Unicode works. Yes, it’s an extra byte per
character — deal with it.

THE DEMISE OF ONE-BYTE CHARACTERS

Unicode does away with both of these disadvantages by making all characters two
bytes wide and insisting on one huge set of unique character codes.

PAY ME NOW OR PAY ME LATER
Perhaps the moral of the story is “globalization, not localization,” as Joe says. The
more generalizations you can build into your application during initial development,
the more straightforward your localization process is destined to be, and the less your
localized code base will diverge from your original product.

Weigh the size and growth potential of a given language market against the amount
of effort required to implement that language. Stick to the markets where your
product is most likely to flourish. This article has shown that in some cases you can
dramatically reduce code complexity by taking shortcuts — the poor man’s
unification scheme in this article is a good example. A healthy balance between Script
Manager techniques and custom code will help you bring your localized product to
market fast and make it a winner.

WRITING LOCALIZABLE APPLICATIONS June 1993

33
THANKS TO OUR TECHNICAL REVIEWERS
Jeanette Cheng, Peter Edberg, Neville Nason,
Gideon Shalom-Bendor•

RECOMMENDED READING
• Inside Macintosh Volume VI (Addison-Wesley, 1991), Chapter 14, “Worldwide

Software Overview.”

• Inside Macintosh Volume V (Addison-Wesley, 1986), Chapter 16, “The
International Utilities Package,” and Chapter 17, “The Script Manager.”

• Inside Macintosh Volume I (Addison-Wesley, 1985), Chapter 18, “The Binary-
Decimal Conversion Package,” and Chapter 19, “The International Utilities
Package.”

• Inside Macintosh: Text (Addison-Wesley, 1993).

• The Unicode Standard, Version 1.0, Volume 2 (Addison-Wesley, 1992).

• Macintosh Worldwide Development: Guide to System Software, APDA
#M7047/B.

• Localization for Japan, APDA #R0250LL/A.

• Guide to Macintosh Software Localization, APDA #M1528LL/B.

• “The TextBox You’ve Always Wanted” by Bryan K. (“Beaker”) Ressler, develop
Issue 9.

Apple’s recently introduced ColorSync, a color
matching software technology, provides a common
platform for applications and device drivers to match
colors by communicating color information between
graphics devices with differing color characteristics.
This column starts off with an overview and then
delves deeper into the inner workings of ColorSync so
that you’ll have a better understanding of how to use
this new technology. We’ll also take a look at how
applications and device drivers can take advantage of
ColorSync.

WHAT IS COLORSYNC?
ColorSync is an extension to the Macintosh system
that’s distributed with the Apple Color Printer and the
Color OneScanner. It provides a platform for
maintaining quality and similarity of images that are
moved between different devices. Because different
devices typically reproduce different gamuts — ranges
of colors — ColorSync can be used by applications and
device drivers to perform color correction. For
example, monitors from different manufacturers have
dissimilar gamuts because they use different hardware
that drives different cathode ray tubes. In fact, there are
minute color differences among the same models due
to the video card, internal settings, user adjustments,
and even age. ColorSync uses color matching
algorithms to visually equate the images produced by
different devices. Applications that are ColorSync

aware attempt to display a document faithfully on any
monitor.

Besides supporting RGB, ColorSync supports color
matching with other color spaces, such as CMYK.
Printers normally work in the CMYK color space
because CMYK colors are subtractive — when added
they move the image toward black or dark gray. This is
entirely different from RGB monitors, which use
additive colors — colors that when added move the
image toward white. Consequently, ColorSync is
especially useful when it’s necessary to match on-screen
and printed colors — colors with two very different
gamuts.

PROFILES AND COLOR MATCHING METHODS
ColorSync uses two major elements to implement color
matching between devices: profiles and color matching
methods (CMMs). The profiles contain the device
characterization while the CMMs contain the color
matching code to perform the matching. A CMM
performs matching between a source profile and a
destination profile. A system will have at least one
profile for each device to be matched and at least one
CMM to perform the matching. Apple ships
ColorSync with one Apple CMM and with ColorSync
profiles for all Apple monitors currently being
manufactured. The open architecture of ColorSync
allows third-party developers to create their own
profiles and CMMs.

A ColorSync profile is simply a file whose data fork
contains a CMProfile record, usually stored in the
ColorSync™ Profiles folder. (This folder is in the
Preferences folder in your System Folder; your code
can get it by calling GetColorSyncFolderSpec.)
Profiles may also be stored in a 'prof' resource, as
discussed later. A device may have more than one
profile; however, only one is selected for use at any
given time. For example, printers have profiles for
various paper types since the output onto different
types of paper can vary. The Apple Color Printer has
default profiles for coated paper, transparency film, and
plain paper. A monitor may also have several profiles

d e v e l o p Issue 14

JOHN WANG (AppleLink WANG.JY) is standing in for Pete
(“Luke”) Alexander, who was busy working on his QuickDraw GX
article for a future issue of develop. We expect various members of
Developer Technical Support’s Printing, Imaging, and Graphics
group to take turns writing this column in the future. John also
found the time to write his regular QuickTime column; look there
(later in this issue) for the real John Wang bio.•

The ColorSync Utilities document on this issue’s CD is the
comprehensive document that developers should refer to for
ColorSync development. However, having worked with many
ColorSync developers, I’ve come across several issues that aren’t
covered in the ColorSync Utilities document. This column is a
conglomeration of hours of discussion and mutual enlightenment.•

34

PRINT HINTS

SYNCING UP
WITH COLORSYNC

JOHN WANG

PRINT HINTS: SYNCING UP WITH COLORSYNC June 1993

35

for various special gamma settings. ColorSync neither
affects nor is affected by the gamma setting. For best
results, the user must select a ColorSync profile that
matches the gamma.

Here’s the data structure for a CMProfile record:

typedef struct CMHeader {
unsigned long size;
OSType CMMType;
unsigned long applProfileVersion;
OSType dataType;
OSType deviceType;
OSType deviceManufacturer;
unsigned long deviceModel;
unsigned long deviceAttributes[2];
unsigned long profileNameOffset;
unsigned long customDataOffset;
CMMatchFlag flags;
CMMatchOption options;
XYZColor white;
XYZColor black;

} CMHeader;

typedef struct CMProfileChromaticities {
XYZColor red;
XYZColor green;
XYZColor blue;
XYZColor cyan;
XYZColor magenta;
XYZColor yellow;

} CMProfileChromaticities;

typedef struct CMProfileResponse {
unsigned short counts[onePlusLastResponse];
CMResponseData data[1];

} CMProfileResponse;

typedef struct CMProfile {
CMHeader header;
CMProfileChromaticities profile;
CMProfileResponse response;
IString profileName;
char customData[1];

} CMProfile, *CMProfilePtr, **CMProfileHandle;

CMMs are components of type 'cmm ' that contain
code to perform matching. The component subtype
distinguishes between different CMMs. ColorSync
ships with the default Apple CMM, which has the
subtype 'appl'. Developers who want to provide custom
CMMs to perform matching beyond the capabilities of
Apple’s basic color matching method need to register
their CMM subtype with the Apple Registry
(AppleLink REGISTRY) to avoid conflict with other
CMM manufacturers. The only requirement for
subtype naming is that all-lowercase types are not used,
because they’re reserved by Apple.

A CMM can have six routines, three of which are
required:

• CMInit: Given the source and destination profile,
prepare to perform color matching.

• CMMatchColors: Match a list of colors using
profiles specified by a call to CMInit.

• CMCheckColors: Check a list of colors and
determine whether they fall within the gamut of the
destination device’s color space.

The optional CMM routines are as follows:

• CMMatchPixMap: Match the colors of a pixel map
using profiles specified by a call to CMInit.

• CMCheckPixMap: Check a pixel map to determine
which pixels fall outside the destination profile’s
gamut.

• CMConcatenateProfiles: Concatenate two profiles
to create one new profile.

WHICH CMM TO USE?
ColorSync profiles that refer to the custom CMMs can
be created by setting the CMMType field in the
CMHeader to the subtype of the CMM. ColorSync
will attempt to use the corresponding CMM when
using that profile. However, the custom profiles must
still contain the data necessary for compatibility with
Apple’s default color matching method so that the
Apple CMM can be used if the custom CMM is

You make gamma settings in the Monitors control panel by
Option-clicking the Options button and, in the dialog box that
appears, selecting Use Special Gamma and choosing the special
gamma from the pop-up menu.•

Components are described in the Component Manager
documentation in the QuickTime Developer’s Kit v. 1.5. The
information will soon be published in Inside Macintosh: More
Macintosh Toolbox.•

unavailable. The rules for deciding which CMM to use
depend on the source and destination profile:

1. If the source and destination profiles use the same
CMM and the corresponding CMM is available, the
matching is performed entirely by that CMM. If the
CMM is not available, the Apple CMM is used.

2. If the source and destination profiles use different
CMMs, then:

a) If the CMM for the destination profile is available,
try using that CMM. If the CMM returns an error
because it can’t perform the color matching, try step
b. Since the Apple CMM will never return an error
because it’s always able to perform matching
between two profiles, this is considered a special
case, so skip to b.

b) If the CMM for the source profile is available, try
using that CMM. If the CMM returns an error
because it can’t perform the color matching, try step
3. Again, since the Apple CMM will never return
an error, this is considered a special case, so skip to
step 3.

3. If the CMMs for both the source and destination
profiles are available but can’t perform the matching
as described in step 2, ColorSync matches using the
source CMM from the source profile color space to
the XYZ color space, and then using the destination
CMM from the XYZ color space to the destination
profile color space.

4. If step 3 doesn’t work because a CMM is missing,
the Apple CMM is substituted for the missing one.

COLORSYNC ROUTINES
ColorSync provides high-level and low-level routines
that may be used by application and device driver
developers. Except for BeginMatching, EndMatching,
and DrawMatchedPicture — which are available in
System 7 only — the routines are available in system
software version 6.0.7 and later. On all systems,
ColorSync must be installed. The gestalt selector
'cmtc' returns gestaltColorSync10 (0x0100) for the
version of ColorSync that works with system software
version 6.0.7, and gestaltColorSync11 (0x0110) for the

version that works with System 7. (Note that 6.0.7
must also have version 1.2 of the 32-Bit QuickDraw
INIT installed.)

// Use Gestalt to get version of ColorSync.
if (Gestalt(gestaltColorMatchingVersion,

&CMversion) != noErr)
CMversion = 0;

The high-level profile management routines are as
follows:

• GetProfile: Get the profile currently selected for a
device.

• SetProfile: Add a profile to the device’s profile list.

• SetProfileDescription: Set profile description fields
for a new profile (typically created by a calibrator).

• GetColorSyncFolderSpec: Get the folder in which
ColorSync profiles should be stored.

• GetProfileName: Given a profile, return its name.

• GetProfileAdditionalDataOffset: Given a profile,
return the custom data offset.

• ConcatenateProfiles: Concatenate two profiles into
one.

• GetIndexedProfile: Return the number of profiles
and the profiles from the device’s profile list.

• DeleteDeviceProfile: Delete a profile from a device’s
profile list.

The following high-level matching routines provide a
layer of code between application and device driver
code and the CMM component code. They simplify
color matching by performing matching of all
QuickDraw drawing routines.

• BeginMatching: Tell Color QuickDraw to begin
matching for the current graphics device using the
specified source and destination profiles. (Not
available in system software version 6.0.7.)

• EndMatching: Tell Color QuickDraw to stop
matching. (Not available in 6.0.7.)

d e v e l o p Issue 14

XYZ is a device-independent color space defined by the
Commission Internationale de l’Eclairage (CIE). It’s an additive
color space similar to RGB. Each of the XYZ components is a
1.15-bit unsigned fixed-point number.•

36

PRINT HINTS: SYNCING UP WITH COLORSYNC June 1993

37

• EnableMatching: Insert picComments to turn
matching on or off inside a picture.

• UseProfile: Insert a profile into an open picture.

• DrawMatchedPicture: Draw a picture using color
matching. (Not available in 6.0.7.)

These low-level routines perform color matching:

• CWNewColorWorld: Create a color matching
world using the specified source and destination
profiles.

• CWDisposeColorWorld: Dispose of a color
matching world to end the session.

• CWMatchColors: Match a list of colors using the
current color matching world.

• CWCheckColors: Check a list of colors to see if
they fall within a device’s gamut. Use the current
color matching world.

• CWMatchPixMap: Match a pixel map using the
current color matching world.

• CWCheckPixMap: Check the colors of a pixel map
using the current color matching world to determine
whether the colors are in the gamut of the
destination device.

HOW DOES COLORSYNC WORK?
Now that you have an overview of the basic elements of
ColorSync — profiles, CMMs, and routines — we can
discuss how ColorSync works by putting all these
pieces together.

As mentioned earlier, ColorSync profiles are normally
stored in the ColorSync™ Profiles folder in the
Preferences folder. In this folder, you’ll find a selection
of monitor profiles for all Apple color monitor
products. In some cases, there are duplicates to account
for the color differences between different gamma
settings for the monitor. For example, the Apple
16-inch monitor has two profiles: Apple 16" RGB
Page-White and Apple 16" RGB Standard. The user
selects the profile that corresponds to the Use Special
Gamma setting made in the Monitors control panel.

This profile — also called the system profile — is
selected in the ColorSync control panel. The system
profile is used as the default source profile whenever
you’re matching from a document that doesn’t specify a
profile or matching to a device that doesn’t otherwise
have an associated profile.

You may be wondering how to use the ColorSync
control panel to select more than one system profile for
multiple monitors. Unfortunately, the system profile is
an abstraction that shouldn’t be associated with any
particular device. As described earlier in “Which CMM
to Use?” it should be used whenever a profile isn’t
explicitly specified for a source or destination.
ColorSync-aware applications can support multiple
monitors by matching to specific graphics devices,
thereby overriding the system profile selection. But this
isn’t recommended except with high-end applications
because of difficulties in implementation and
complexities for the user.

Applications can determine the current system profile
selection with GetProfile. In fact, GetProfile works
with any device to get the current profile selection for
that device. However, for the call to work, the devices
must register their profile responder. Every device that
uses ColorSync to perform matching must have a
profile responder, which is a component that supports
the following routines:

• CMGetProfile: Return the profile that the driver
would use to perform a match.

• CMSetProfile: Add the profile to the driver’s profile
list.

• CMSetProfileDescription: Set the device-specific
fields in a profile. This allows newly created profiles
to be used with the device.

• CMGetIndexedProfile: Get the profile that matches
the search criteria.

• CMDeleteDeviceProfile: Delete the profile from
the driver’s profile list.

The system profile responder is always registered
globally in a system, so you can use the ColorSync

Color matching to multiple monitors is implemented by
setting the destination profile for each graphics device with
SetProfile and then performing matching with DrawMatchedPicture
or BeginMatching/EndMatching.•

high-level profile management routines on the system
device. Printer driver profile responders are registered
only if requested; you register one by calling PrGeneral
with the driver opened. The PrGeneral opcode is
registerProfileOp (13). By using a profile responder, an
application can communicate with any device to
request ColorSync profile information. This is
especially useful for calibration applications. For
example, an application can create a new profile for a
printer, call SetProfileDescription to set the device-
specific fields in the profile, and then call SetProfile to
add the profile to the device driver’s profile list.

The following code excerpt demonstrates how to
register a device driver profile responder. The complete
sample code (including error checking!) is provided on
this issue’s CD.

// Register printer profile responder.
PrOpen();
if ((prError = PrError()) == noErr) {

printerOpened = true;
prRecHdl =

(THPrint)NewHandle(sizeof(TPrint));
PrintDefault(prRecHdl);

regProfileBlk.iOpCode = registerProfileOp;
regProfileBlk.iError = 0;
regProfileBlk.lReserved = 0;
regProfileBlk.hPrint = prRecHdl;
regProfileBlk.fRegisterIt = true;
PrGeneral((Ptr)®ProfileBlk);
prError = regProfileBlk.iError;

}

You don’t see the default profiles for device drivers such
as the Apple Color Printer in the ColorSync™ Profiles
folder because they’re stored as 'prof' resources in the
device drivers themselves. However, applications can
still create profiles for the printer driver to use by
placing them in the ColorSync™ Profiles folder. All
printer drivers should search not only in their private
profile storage location but in the ColorSync™ Profiles
folder as well. In the Apple Color Printer Print
Options dialog box, users can choose custom profiles in

a pop-up menu if Customized Color Matching is
selected. The driver even filters the profiles, so only
profiles that match the paper type appear in the menu.
This is accomplished by reading in each profile in the
folder and searching for the desired values in the
CMHeader record. The Apple Color Printer driver
stores the profile’s paper type in the deviceAttributes
field of the profile’s CMHeader record. This field is
used differently by various devices; for instance,
monitor profiles use it to store the gamma setting.

When you finally print to a color printer such as the
Apple Color Printer, the printer driver performs
matching from the system profile to the printer
profile. The application must pass the ColorSync
picComments through to the printer for matching to
occur. If the application strips out picComments, the
printer driver assumes the document uses the system
profile. If the picComments contain a custom profile,
the printer driver uses that profile as the source profile
instead of the system profile. Even a matching
method chosen in the Customized Color Matching
pop-up menu is overridden by such custom profiles.
For example, if a document contains scanned images,
the images may have a custom profile that uses
photographic matching while the rest of the document
uses the solid color system profile.

WHAT DOES AN APPLICATION HAVE TO DO?
In a way, most applications are already ColorSync
compatible because they can print to ColorSync-aware
printers such as the Apple Color Printer. However, for
an application to become ColorSync savvy, it should
have three key features:

• It should allow users to tag color matching
information to documents and to be able to display
them using ColorSync. ColorSync calls such as
UseProfile, DrawMatchedPicture, and
BeginMatching/EndMatching can be used to do
this.

• Applications should allow users to preview the
output to a ColorSync-aware printer by matching
from the document to the printer profile and back to
the system profile. The user can thus view color

d e v e l o p Issue 14

Applications that strip picComments from pictures before
sending them to the printer driver are not ColorSync compatible
because they remove the information that ColorSync uses to
perform matching. For general information on picComments, see
the Macintosh (Imaging) Technical Note “Picture Comments — The
Real Deal” (formerly #91).•

38

PRINT HINTS: SYNCING UP WITH COLORSYNC June 1993

39

differences that occur in the color matching
transition between gamuts. The application can even
visually outline colors that can’t be displayed
faithfully, using the CheckColors routine.

• Most important, the application must preserve
picComments in its documents. The application can
allow modification of the ColorSync picComments
as appropriate, but it must save the information in
the document and allow the information to be
passed through to the printer.

WHAT DOES A PRINTER DRIVER HAVE TO DO?
A printer driver must first have a responder component
that implements the responder routines mentioned
earlier. The responder allows ColorSync to
communicate with the printer driver. By watching for
picComments in the printer port bottleneck procs, the
driver is notified of source profile changes and other
information as well. The printer driver can then adjust
the color matching accordingly.

Matching can be performed with high-level calls such
as BeginMatching or with low-level calls such as
CWMatchColors. If the printer driver spools pages in
the PICT format and uses DrawPicture with an off-
screen graphics device for rendering, the high-level
calls can be used. Otherwise, matching is best
performed with the low-level calls from the
QuickDraw bottleneck procs. The Apple Color Printer
uses low-level calls and performs color matching in its

custom bottleneck procs before rendering occurs.
Applications that generate PostScript™ code directly
must perform color matching themselves using the
low-level calls. They can determine what destination
printer profile to use by calling GetProfile.

Apple doesn’t ship an updated LaserWriter driver to
support ColorSync because it would require a major
rewrite of current code. However, applications can
work around this by performing the color matching in
the application. On the other hand, PostScript Level 2
has color matching support built into the PostScript
language, so it would be possible to offload color
matching to the PostScript imaging device.

YOUR COLORFUL FUTURE
ColorSync is an open architecture platform that
enables third-party developers to create profiles,
CMMs, and drivers that are mutually compatible. As
shown in the past, open architecture promotes market
acceptance and user adoption. By using ColorSync as
your color matching platform, you’re ensured of
continued compatibility with future Apple
technologies.

As a developer, you can influence the direction of
ColorSync; send your feedback to AppleLink
DEVSUPPORT. In fact, you can even send me your
ColorSync-savvy application (AppleLink WANG.JY)
and I’d be thrilled to evaluate it.

Thanks to Bill Guschwan, Tom Mohr, Konstantin Othmer, Steve
Swen, and Forrest Tanaka for reviewing this column.•

One essential part of any 3-D graphics application is the ability to turn
an object so that it can be viewed from different sides. This article
describes a user interface technique called the Virtual Sphere that allows
you to perform continuous 3-D rotation using a 2-D input device such
as a mouse. For those who have played with my Rotation Controller
application and have been waiting for source code, here it is! For others,
this article is a good way to learn something about interactive 3-D
graphics and user interfaces for 3-D.

There are many situations in which users might want to view a 3-D graphics object
from different sides. They might want to do so while constructing an object or
rearranging objects in a scene. Or they may be viewing a multimedia document and
want to turn around a 3-D object that’s embedded in the page. Whatever the context,
it’s important to provide a simple, intuitive interface for the task that’s available to a
wide user base.

The problem of 3-D rotation has been approached in many ways. Some people have
designed their applications to use higher-degrees-of-freedom input devices such as
3-D mice, 3-D trackballs, the 6-D Spaceball, and the 6-D Polhemus. These devices
let you control values for x, y, and z (and perhaps roll, pitch, and yaw) at the same
time. Unfortunately, these input devices incur extra cost and must be available on the
machine currently being used. The user must also learn how to use the device and
possibly learn a new interface paradigm.

Other applications have stayed with 2-D input devices because of their familiarity
and availability. However, many of these applications will let you perform rotation
only about the x, y, or z axis, while others will let you use the mouse to perform only
“2-D rotations,” in which the user must specify an axis of rotation lying on, say, the
x-y plane. In both cases, the user needs to change tools or hold down modifier keys
(or mouse buttons) to specify rotations about other axes. This is cumbersome, but

d e v e l o p Issue 14

MICHAEL CHEN (AppleLink CHEN.M) works in
Apple’s Human Interface Group within the
Advanced Technology Group. The “high point” of
his five years at Apple was digitizing a
QuickTime movie on a tower of the Golden Gate
Bridge for John Sculley’s keynote presentation at
Macworld ’92 in San Francisco. Michael and his
two partners, Dan O’Sullivan and Ian Small, were
insured for a total of $12 million for this one-day

adventure. Of course, the insurance wasn’t for
protection against the loss of these valuable
Apple researchers; it was to cover the company if
one of them were to drop a Macintosh onto a car
below. It turned out to be a thrilling but safe trip.
When not staring at the computer screen
wondering why you should poke everything with
this little arrow, Michael enjoys playing flamenco
guitar and fooling around with his MIDI toys.

40

MICHAEL CHEN

3-D ROTATION

USING A 2-D

INPUT DEVICE

many have accepted the fact that they have only two degrees of freedom when using a
device like a mouse.

The Virtual Sphere controller is a user interface tool developed to solve the problem
of 3-D rotation using a 2-D input device. The controller allows continuous rotation
about an arbitrary axis in three-dimensional space. Because the controller works with
a 2-D input device, the interface can be used on a wide range of machines with a
mouse, trackball, touch screen, or similar device. (This article will assume the use of a
mouse.) An important part of the design effort was user testing. Not only must the
controller be technologically sound, it must also be easy to learn and use. Testing
results will be discussed later.

USING THE VIRTUAL SPHERE INTERFACE
Before getting into the design and implementation of the Virtual Sphere interface,
let’s first play a bit with the sample application. You’ll need to use a machine running
System 7 or a System 6 machine with 32-Bit QuickDraw. Find and launch the
application VirtualSphereSample, provided on this issue’s CD. As shown in Figure 1,
you’ll see a 3-D house enclosed by the circular Virtual Sphere controller (hereafter
called the cue).

3-D ROTATION USING A 2-D INPUT DEVICE June 1993

41
“Someday, someone is gonna figure out how you
can read music without wondering what those
tiny little notes are on the page.”•

Figure 1
The Initial Window, in Grayscale and With Dithering

Grayscale version Dithered version

You’ll see a color, grayscale, or dithered rendering of the house, depending on your
monitor and bit depth. To rotate the house, move the pointer inside the cue and then
drag the pointer around. Observe what happens to the house when you drag in the
following directions:

• left and right, beginning with the pointer at the center of the cue

• up and down, beginning with the pointer at the center of the cue

• around the edge of or outside the cue

See if you can position the house in a desired orientation.

The Virtual Sphere controller simulates the mechanics of a physical 3-D trackball
that can freely rotate about any arbitrary axis in three-dimensional space. The user
can imagine the cue to be a glass sphere that’s encasing the object to be rotated.
Rotation is a matter of rolling the sphere and therefore the object with the pointer.
Up-and-down and left-and-right movement at the center of the cue is equivalent to
“rolling” the imaginary sphere at its apex and produces rotation about an axis lying on
the plane of the screen. Movement along (or completely outside) the edge of the cue
is equivalent to rolling the sphere at the edge and produces rotation about the axis
perpendicular to the screen.

The Virtual Sphere is unusual in the sense that you seem to be able to squeeze an
extra degree of freedom out of a 2-D input device. The action of rolling the Virtual
Sphere lets you specify an arbitrary rotation axis in three-dimensional space, with the
advantage that you don’t need to think about the rotation axis. You just roll, and the
object turns in the expected way.

To validate the usefulness of the Virtual Sphere interface, two colleagues and I
designed an experiment to compare the performance of different rotational interfaces
in a matching task. In the experiment, the computer displays a house at a certain
orientation, and the user has to use the given rotational interface to match that
orientation. The performance measurement is based on time and accuracy. The result
showed that the Virtual Sphere was indeed easy to use and was fastest for complex
rotations. If you’re interested in the details of the other rotational interfaces and the
experiment, they’re described in “A Study in Interactive 3-D Rotation Using 2-D
Control Devices” (see “Recommended Reading” at the end of this article). A version
of the rotation controllers and computer experiment is available on this issue’s CD.

HOW THE VIRTUAL SPHERE INTERFACE WORKS
The general idea of this interface is that the Virtual Sphere cue is drawn around the
object to be rotated. The cue is centered over the object’s center of rotation and
should be just large enough to enclose the object. When the user drags over the cue,
the successive x-y locations of the pointer are used to incrementally rotate the object.
The next few paragraphs delve into the mathematics of this process. Those of you

d e v e l o p Issue 14

42

with an aversion to vectors and trigonometry may want to skip ahead to the next
section.

The orientation of the object is represented in the sample code by a 4 x 4 rotation
matrix. At each movement of the pointer, an incremental rotation matrix is
computed, using the Virtual Sphere algorithm. This matrix is then concatenated with
the object’s matrix, and the object is redisplayed. This process is repeated until the
user releases the mouse button.

The incremental rotation matrix is computed using the Virtual Sphere algorithm as
follows: Figure 2 shows a cue as it appears on the screen and also gives the
corresponding 3-D view. The cue is conceptually a hemisphere protruding from the
screen. When the pointer is moved from point p to point q on the screen, we think of
it as moving from point p' to point q' on the surface of the imaginary hemisphere. We
compute the points p' and q' by projecting points p and q upward (that is, straight out
from the screen) from the circle to the surface of the hemisphere. To simplify the
math, we’ll assume that the cue and hemisphere each have a radius of 1.

3-D ROTATION USING A 2-D INPUT DEVICE June 1993

43

On-screen view 3-D view

p

p’

o’

q’

q

p

q

o

Figure 2
The Virtual Sphere Cue and Its Corresponding 3-D Hemisphere

Given that we now have points p' and q', we create vectors from the center of the�
hemisphere, o', calling them vectors o'p' and o'q'. The axis of rotation, a, is
perpendicular to the two vectors and can be computed using the vector cross-product
(see Figure 3):�

a = o'p' x o'q'�

where

d e v e l o p Issue 14

44

p

p’

o’

q’

q

a→

Figure 3
Computing the Axis of Rotation

The amount of rotation, 0, is the angle between the vectors, and is computed from
the arc sine of the length of a:�

0 = sin-1 |a|�
�

�

tax+c�
�

taxay-saz�
�

taxaz+say�
�
0

2 taxay+saz�
�

tay+c�
�

tayaz-sax�
�
0

2

taxaz-say�
�

tayaz+sax�
�

taz+c�
�
0

2

0�
�
0�
�
0�
�
1

The corresponding 4 x 4 incremental rotation matrix is�
�

 • ax, ay, and az are the components of a�

 • s = sin 0 = |a|�

 • c = cos 0 = o'p' • o'q' (vector dot-product of o'p' and o'q')�

 • t = 1 - c

Note that we have a choice here for computing the matrix. We can first compute the
angle of rotation and then use the sine and cosine functions to obtain s and c.�
However, knowing vector o'p' and o'q', we can also compute s and c using the length
of a and the dot-product. The latter approach allows us to compute the matrix
efficiently without using any trigonometric calculations, which are expensive.

The Virtual Sphere algorithm just described is an improvement over the one
described in the paper “A Study in Interactive 3-D Rotation Using 2-D Control
Devices.” The paper used a three-step procedure to convert movement of a 2-D
input device into a 3-D rotation matrix. However, it turns out that if we first convert
the 2-D input to 3-D, the Virtual Sphere calculation can be done much more
efficiently.

IMPLEMENTING THE VIRTUAL SPHERE INTERFACE
The preceding description of the Virtual Sphere algorithm probably sounds more
complicated than it is. The actual implementation is really quite simple. In fact, the
VirtualSphere module contains only one externally visible routine:

pascal void VirtualSphere (Point p, Point q, Point cueCenter,
Integer cueRadius, Matrix4D rotationMatrix)

{
CPoint3D op, oq;

/* Project mouse points to 3-D points on the +z hemisphere of a unit
* sphere. */
PointOnUnitSphere (p, cueCenter, cueRadius, &op);
PointOnUnitSphere (q, cueCenter, cueRadius, &oq);

/* Consider the two projected points as vectors from the center of the
* unit sphere. Compute the rotation matrix that will transform vector
* op to oq. */
SetRotationMatrix (rotationMatrix, &op, &oq);

}

USING THE VIRTUAL SPHERE INTERFACE
Let’s look at how we use the VirtualSphere routine to rotate a 3-D object
interactively.

void DoRotation (WindowPtr window, EventRecord *event, Matrix4D
objectMatrix)

{
Point p, q;
short dx, dy;

3-D ROTATION USING A 2-D INPUT DEVICE June 1993

45

First, the routine PointOnUnitSphere is used to convert p and q (the previous and�
current locations of the mouse) into the vectors o'p' and o'q'. The routine
SetRotationMatrix then computes the 4 x 4 incremental rotation matrix as described
in the previous section. The parameters cueCenter and cueRadius define the location
of the cue circle in the window. Integer is a macro for long, and CPoint3D is a
structure of three doubles.

Point sphereCenter;
Integer sphereRadius;
Matrix4D tempMatrix;
Matrix4D rotationMatrix;

p = event->where;
GlobalToLocal (&p); /* Get mouse-down point in local coordinates.*/

/* Figure out where to place the Virtual Sphere cue. */
sphereCenter.h = kSphereCenterH;
sphereCenter.v = kSphereCenterV;
sphereRadius = kSphereRadius;
while (StillDown()) {

GetMouse (&q);
dx = q.h - p.h;
dy = q.v - p.v;
if (dx != 0 || dy != 0) {

VirtualSphere (p, q, sphereCenter, sphereRadius, rotationMatrix);
MultiplyMatrix (objectMatrix, rotationMatrix, tempMatrix);
CopyMatrix (tempMatrix, objectMatrix);
DrawWindow (window); /* Update the window. */
p = q; /* Remember previous mouse point for next iteration.*/

}
}

}

When DoRotation is called, the 3-D object’s current matrix is passed in as
objectMatrix. In the sample application, the Virtual Sphere cue is always centered
on the window and has a fixed size. Thus, sphereCenter and sphereRadius are
assigned with constants. In a general application, you’ll need to determine which
object is selected and figure out the size and location of the cue (in the window’s
coordinates) to surround the object. In any case, while the mouse button is still down
and the mouse has moved, we call VirtualSphere to obtain the incremental rotation
matrix. This matrix is concatenated onto the 3-D object’s current matrix using
MultiplyMatrix and CopyMatrix. We then redraw the window to display the object at
its new orientation. This process is repeated until the mouse button is released.

CREATING A SIMPLE 3-D GRAPHICS SYSTEM
The real point of this article and the sample code is to demonstrate the Virtual
Sphere interface. However, it turned out that a large part of the effort involved went
into creating a simple 3-D graphics system. It was much more work than the
implementation of the Virtual Sphere algorithm itself! I wanted to provide a simple
system that would be accessible by the majority of Macintosh programmers and
would allow even low-end Macintosh models to do interactive 3-D graphics.

d e v e l o p Issue 14

46

The graphics system I came up with is based on Graf3D. Graf3D is a simple library
for drawing 3-D graphics using a fixed-point interface to QuickDraw’s integer
coordinates. I chose Graf3D because it’s included in the THINK C and MPW
environments. It uses fixed-point math and runs reasonably quickly even on a
Macintosh SE! This means that the sample code should be quite usable for all develop
readers.

One major caveat is that the Graf3D library is unsupported. Most people doing 3-D
graphics on the Macintosh probably won’t care about this point, because they write
their own 3-D software and will simply port the Virtual Sphere code to their system.
I’ve provided the sample code using Graf3D to show how the whole system works.
Also, it’s nice to be able to show that Graf3D is not as brain dead as some people
might think.

GRAPHICS SYSTEM SPECIFICATION
The graphics system we need is extremely simple. It needs to be able to display only
one relatively simple 3-D object at the center of a window. We’ll assume that the
entire object is visible so that we won’t have to worry about 3-D polygon clipping
(which, unfortunately, is left as an exercise for the students in most 3-D graphics
courses). The object should be displayed with perspective projection. The displayed
object can only be rotated. We predefine the center of rotation to be the center of the
object.

On the display screen, we define the origin of the 3-D coordinate system at the
center of the screen, the x axis as extending to the right, the y axis as extending
upward, and the z axis as coming out of the screen toward the viewer. Note that in
the QuickDraw coordinate system, the y axis extends in the opposite direction.

For the sake of cosmetics, the graphics system should adapt to the monitor bit depth
so that the graphics can be shown on color, grayscale, and black-and-white displays.
The system must use double buffering to eliminate screen flicker.

To make the Virtual Sphere implementation easier to understand, I’ve used floating-
point math to compute the axis of rotation, the angle of rotation, and the 4 x 4
rotation matrix. However, we’ll take advantage of the fixed-point math used in
Graf3D to speed up graphics drawing.

SETTING UP GRAF3D
To implement our simple graphics system using Graf3D, we create and associate a
Port3D to the grafPort in which the 3-D object is to be displayed. We place the
camera at some distance on the positive z axis, looking at the origin. We draw the
object centered at the origin. With this setup, we have the 3-D view as specified
above.

3-D ROTATION USING A 2-D INPUT DEVICE June 1993

47

EXTENDING GRAF3D TO DRAW POLYGONS
Graf3D provides only two calls, MoveTo3D and LineTo3D, to perform line drawings
in 3-D. These calls are analogous to the 2-D MoveTo and LineTo calls, except that
the 3-D calls require an additional z parameter. Graf3D doesn’t have calls to draw
3-D polygons. However, that doesn’t mean we have to write our own routine from
scratch. We’ll take advantage of the fact that MoveTo3D and LineTo3D, after
performing the math to project 3-D onto 2-D, will call MoveTo and LineTo to draw
the line on-screen (of course, it helps to have access to the source code for Graf3D).
Hence, drawing a polygon projected from 3-D is no more difficult than drawing a
regular 2-D polygon: we use the standard QuickDraw polygon routines. Here’s an
example that draws a filled 3-D triangle:

polyHdl= OpenPoly ();
MoveTo3D (Long2Fix(0),Long2Fix(0),Long2Fix(0)); /* 1st point */
LineTo3D (Long2Fix(2),Long2Fix(5),Long2Fix(0)); /* 2nd point */
LineTo3D (Long2Fix(5),Long2Fix(1),Long2Fix(0)); /* 3rd point */
LineTo3D (Long2Fix(0),Long2Fix(0),Long2Fix(0)); /* 1st point again */

ClosePoly ();
PolyColor (&rGBColor);
FillPoly (polyHdl, lgPolyShade);
KillPoly (polyHdl);

PolyColor is a new routine for specifying the color of the polygon; lgPolyShade
specifies the polygon’s fill pattern. These two items are explained in the next section.

DEALING WITH BLACK-AND-WHITE AND COLOR QUICKDRAW
In general, if you want to take advantage of a grayscale or color display when
available, you have to write parallel code. You also need to worry about different
versions of QuickDraw so that you don’t make the mistake of making Color
QuickDraw calls on machines with black-and-white QuickDraw. (See the Graphical
Truffles column in this issue for a discussion of the different possible QuickDraw
versions.) In our simple graphics system, we want to be able to draw in color when we
can and draw in simulated grays using dither patterns when we have a 1-bit display.
Parallel code is eliminated by hiding all the complexity of different QuickDraw
versions inside the routine PolyColor.

static ConstPatternParam lgPolyShade;
pascal void PolyColor (const RGBColor *rGBColor)
{

if (gDrawInColor) {
lgPolyShade = qd.black;
RGBForeColor (rGBColor);

} else {
/* Convert rGBColor to a dither pattern. */
unsigned long index;

d e v e l o p Issue 14

48

index = RGBToGrayscale (rGBColor, (**lgDitherPatterns).patListSize);
lgPolyShade = (**lgDitherPatterns).patList [index];
ForeColor (blackColor);

}
}

PolyColor takes an RGBColor as an argument. If we’re drawing in color (the global
variable gDrawInColor is true), PolyColor simply calls RGBForeColor, and
lgPolyShade is set to a black pattern. When FillPoly(polyHdl, lgPolyShade) is
eventually called, the polygon will get drawn in that color. If we’re drawing in black
and white, PolyColor makes the foreground color black and converts the RGB value
to one of 65 dither patterns (including white), which is assigned to lgPolyShade (see
“Converting RGB Color to a Grayscale Value”). When FillPoly(polyHdl,
lgPolyShade) is called, the polygon will be filled with that dither pattern. Note that
lgDitherPatterns is just a (locked) handle to a PAT# resource. We’re limited to 65
possible dither patterns because the Pattern data structure is 8 x 8.

3-D ROTATION USING A 2-D INPUT DEVICE June 1993

49

The conversion from an RGB value to a grayscale value can be done in a number of
ways. The most obvious way is to have the R, G, and B components each contribute
equally to the gray value. However, this implies that, for example, pure red, green,
and blue colors will all map to one value, which might not be desirable. In the sample
code, the conversion routine RGBToGrayscale employs a set of often-used weighting
factors for the RGB components. The routine returns an integer value from 0 to
maxGrayValue–1:

unsigned long RGBToGrayscale (const RGBColor *rGBColor, Integer
maxGrayValue)

{
#define kRWeight 3
#define kGWeight 6
#define kBWeight 1
#define kTotalWeight (kRWeight + kGWeight + kBWeight)

unsigned long intensity;
unsigned long index;
intensity = kRWeight*rGBColor->red + kGWeight*rGBColor->green +

kBWeight*rGBColor->blue;
index = intensity * maxGrayValue/ kTotalWeight / (USHRT_MAX+1);

/* Note integer math. Order matters. */
return (index);

}

CONVERTING RGB COLOR TO A GRAYSCALE VALUE

DEALING WITH ROTATION
In Graf3D, the Port3D data structure contains a 4 x 4 xForm matrix that defines how
the object is to be transformed before it’s displayed. Recall that in our DoRotation
routine we compute the object’s rotation matrix directly. Thus, all we need to do is
copy this matrix to xForm before we display the object. However, we need to do
some number conversions since the rotation matrix is in floating point and the xForm
matrix is in fixed point. The routine Matrix2XfMatrix does the necessary conversion:

pascal void Matrix2XfMatrix (Matrix4D fromMatrix, XfMatrix toMatrix)
{

Integer i, j;
for (i=3; i>=0; i--) {

for (j=3; j>=0; j--) {
toMatrix[i][j]= X2Fix (fromMatrix[i][j]);

}
}

}

DOUBLE BUFFERING
The sample code contains a module for off-screen drawing that uses GWorlds to
eliminate drawing flicker. The use of GWorlds means that graphics acceleration
comes for free if it’s available in hardware. This module provides a very simple way of
dealing with GWorlds. It contains only five routines:

pascal OSErr InitializeOffscreen (Boolean *gWorldAvailable);
pascal void FreeOffscreen (GWorldPtr offscreenGWorld);
pascal QDErr CheckOffscreenForWindow (GWorldPtr *offscreenGWorld,

short pixelDepth, WindowPtr window);
pascal void BeginDrawingOffscreen (GWorldPtr offscreenGWorld,

WindowPtr window);
pascal void EndDrawingOffscreen (GWorldPtr offscreenGWorld,

WindowPtr window);

The routine InitializeOffscreen determines whether GWorlds are available on a
particular machine and internally remembers whether System 6 or 7 is running. The
latter is needed because there are subtle differences between the GWorld calls in
System 6 and those in System 7 (see Offscreen.c and Inside Macintosh Volume VI,
page 21-19).

The routine CheckOffscreenForWindow checks to see whether a GWorld has the
proper bit depth and memory boundary aligned for efficient transfer using CopyBits.
If a GWorld hasn’t been allocated, a new one is created. If an existing GWorld has
the wrong bit depth or isn’t memory aligned, it’s reallocated. This routine hides the
subtle differences between the Toolbox NewGWorld and UpdateGWorld calls. You

d e v e l o p Issue 14

50

should call this routine when a window has just been created and whenever you think
the GWorld is out of sync with the screen.

The routine BeginDrawingOffscreen redirects drawing to the GWorld. The routine
EndDrawingOffscreen ends the redirection and copies the off-screen buffer onto the
window. The routine FreeOffscreen frees the GWorld when it’s no longer needed.

The basic calling sequence for this module is as follows:

InitOffscreen (...);
window = GetNewWindow (...);
gWorld = nil;
CheckOffscreenForWindow (&gWorld, window, ...);
. . .
while (still not done with drawing) {

CheckOffscreenForWindow (&gWorld, window, ...);
BeginDrawingOffscreen (&gWorld, window);
/* Draw something */
EndDrawingOffscreen (&gWorld, window);

}
FreeOffscreen (&gWorld);

In the actual code, CheckOffscreenForWindow is called only when there’s an update
event that could have been generated when the user changed the monitor bit depth.
It’s not necessary to call CheckOffscreenForWindow during the loop when the
mouse is interacting with the object.

CODE OPTIMIZATION
I didn’t optimize the sample code because it would have detracted from presenting a
clear implementation of the Virtual Sphere algorithm and the 3-D graphics system.
For example, we deal only with 3-D rotation in this program, so we don’t really need
to have a general 4 x 4 matrix when a 3 x 3 matrix would do. Even if we were willing
to waste storage, some of the math routines (such as CopyMatrix, MultiplyMatrix,
SetRotationMatrix, and Matrix2XfMatrix) could have been optimized to use only the
upper left 3 x 3 cells of the 4 x 4 matrix. It might also be worthwhile to do a full fixed-
point implementation of the Virtual Sphere algorithm.

MPW C VERSUS THINK C
One of my objectives in creating this sample code was to make sure that it could be
used in both the MPW and THINK C environments. I also wanted to allow the
option of compiling the application using SANE or a hardware floating-point unit
(FPU). This turned out to be a learning experience in itself. Here are a few things I
picked up from the process:

3-D ROTATION USING A 2-D INPUT DEVICE June 1993

51

• The main difference between the two environments is the way in
which floating-point numbers are handled. MPW provides an easy
way of switching between SANE and a hardware FPU simply by
switching compile flags and by including the proper versions of
the math libraries. The header files need not be changed. With
THINK C, the SANE and ANSI math libraries aren’t integrated.
You must include either SANE.h or Math.h, but not both.

• In THINK C, some of the transcendental functions (for example,
asin and atan2) are not available when SANE is used.

• In THINK C, there are five floating-point formats. Some of the
fixed-point/floating-point conversion routines (such as X2Fix and
Fix2X) are incompatible when native floating-point format is used.

I created the files MyMath.h and MyMath.c to hide all the ugliness of floating-point
math from the rest of the code.

Compiling the code in both environments requires more careful coding. A version
that compiled fine in one environment would get errors and warnings in the other. In
general, MPW C is a bit pickier about type checking.

On my wish list is a common pragma structure for changing compile options in the
source code. I wanted to display an error message if the user launched a version of the
sample application compiled for a hardware FPU on a non–floating-point machine.
Here’s an example of the gymnastics I had to go through to make sure the routine
MessageAlert could be executed on all processors:

#ifdef applec
#pragma push /* MPW: save compiler flags */
#pragma processor 68000 /* Generate 68000 instructions only */
#endif
pascal void MessageAlert (Str255 message)
{

#ifdef THINK_C /* THINK C: Generate 68020 instructions...*/
#pragma options(!mc68020) /* NOT! Silly way of saying 68000 */
#endif /* instructions only. Note this pragma */

/* is defined only until end of routine. */
SetCursor (&qd.arrow);
ParamText (message, "", "", "");
SysBeep (10);
(void) Alert (rMessageAlert, nil);

}
#ifdef applec
#pragma pop /* MPW: restore compiler flags */
#endif

d e v e l o p Issue 14

52

Why should the processor pragma matter for such a simple routine? The reason is
that MPW C with the -68020 flag will generate an RTD (not available on a 68000
machine) instead of an RTS instruction for returning to the calling routine. This
would cause the resulting sample application to crash on a 68000 machine instead of
putting up an alert message. THINK C doesn’t seem to generate the RTD
instruction even when asked to generate 68020 code. However, I put the pragma in
for THINK C just in case.

GOING ON FROM HERE
I hope this article has whetted your appetite for 3-D graphics and 3-D user interfaces.
Several companies have released commercial programs that improve on the Virtual
Sphere concept. Silicon Graphics’ Inventor Toolkit contains a version with three
orthogonal “ribbons” around the sphere to provide constrained-axis rotation. Virtus
Walkthrough contains a version with momentum — the object continues to spin in
the direction of the pointer movement when the mouse button is released.

The Virtual Sphere interface introduces a new interaction technique that was backed
with user testing. If you’re doing new interface development, I encourage you to use
the same process: design followed by testing with iterations. Remember to keep the
big picture in mind. 3-D rotation is just one small task that the user has to do in a
3-D application. All the interaction techniques for manipulating objects must work
together and must be appropriate for the 3-D task the user wants to perform.

3-D ROTATION USING A 2-D INPUT DEVICE June 1993

53
THANKS TO OUR TECHNICAL REVIEWERS
Michael Chmilar, Forrest Tanaka, Dan Venolia•

• “A Study in Interactive 3-D Rotation Using 2-D Control
Devices” by Michael Chen, S. Joy Mountford, and
Abigail Sellen (ACM Siggraph ’88 Proceedings,
Volume 22, Number 4, August 1988, pages
121–129). An electronic version of this paper is
available on this issue’s CD.

• “A Technique for Specifying Rotations in Three
Dimensions Using a 2-D Input Device” by Michael
Chen and K. C. Smith (Proceedings IEEE Montech ’87
— Compint ’87, November 1987, pages 118–120).

• “An Object-Oriented 3D Graphics Toolkit” by Paul
Strauss and Rikk Carey (ACM Siggraph ’92
Proceedings, Volume 26, Number 2, July 1992, pages
341–349).

• “Tablet Based Valuators That Provide One, Two or
Three Degrees of Freedom” by K. B. Evans, Peter P.

Tanner, and M. Wein (ACM Siggraph ’81
Proceedings, Volume 15, Number 3, August 1988,
pages 91–97).

• “Iterative Design of an Interface for Easy 3-D Direct
Manipulation” by Stephanie Houde (ACM CHI ’92
Proceedings, May 1992, pages 135–142).

• “Three-Dimensional Widgets” by B. Conner, S. Snibbe,
K. Herndon, D. Robbins, R. Zeleznik, and A. Van Dam
(Proceedings of the 1992 Symposium on Interactive
3D Graphics, pages 183–188).

• “Understanding Graf3D” by Scott Berfield (The
Essential MacTutor Volume 3, pages 230–238).

• Computer Graphics: Principles and Practice, 2nd ed.,
by J. D. Foley, A. Van Dam, S. K. Feiner, and J. F.
Hughes (Addison-Wesley, 1990).

RECOMMENDED READING

QuickDraw regions were almost lost when Bill
Atkinson crashed his car and nearly killed himself.
Considering that Steve Wozniak also crashed his
airplane, crashing must be a hallmark of Apple genius.
I’m no Macintosh wizard, though I did crash my car
once. To aid and abet other non-wizards, I’ll divulge
four cool answers that apply to nearly any QuickDraw
question:

• Check the graphics state.

• Check the QuickDraw version.

• Do it off-screen.

• Use the bottlenecks.

They may not answer your questions completely, but
they’ll probably get you partway there.

CHECK THE GRAPHICS STATE
Whenever you call a QuickDraw routine, its behavior
depends heavily on the state of the machine at the time
of the call: things like the pen size, transfer mode, and
color environment all affect the drawing. Most of the
state information QuickDraw depends on can be found
in two handy locations — the current grafPort and the
current GDevice.

The grafPort maintains state information for the pen,
the text, and the bitmap (or pixel map) to draw into.
The GDevice defines the color environment, among

other things. This information is accessed by many
QuickDraw routines. For example, the LineTo routine
draws a line from the current pen location to the point
you pass to the routine, using the current pen size,
pattern, and transfer mode; all these values are fields of
the current grafPort. Because most QuickDraw
routines use these “implied” parameters, you can’t fully
understand the behavior of a QuickDraw routine
without knowing about them.

The current grafPort also defines where your drawing
will occur. Even though you call a routine, it may not
draw, because QuickDraw applies a rectangle — the
portRect — and two regions — the visRgn and clipRgn
— to your drawing. No drawing will occur outside the
intersection of these areas. QuickDraw places control
of the clipRgn in your hands, first initializing it to be
wide open (a rectangular region that covers the entire
QuickDraw coordinate space). If your grafPort is in a
window, control of the visRgn is placed in the hands of
the Window Manager. (A region is a truly marvelous
concept, a compact description of strange shapes that
can be extended and changed dynamically. It’s a good
thing Bill Atkinson survived his crash.)

Let’s try applying this first answer to a common
QuickDraw question: Why can’t you nest calls to
OpenPicture? Well, as you may know, when you call
OpenPicture to begin saving picture data, a handle is
created to store the picture information until the
corresponding ClosePicture call. This handle is kept in
the picSave field of the current grafPort. If you nest a
second OpenPicture call, where in the grafPort will
you store the newly created handle? Answer: There is
no place, so you can’t nest OpenPicture calls.

Because so many other Managers rely on QuickDraw,
this answer will help with questions about other
Managers as a bonus.

CHECK THE QUICKDRAW VERSION
There are currently seven versions of QuickDraw.
You can find out which version is available using
Gestalt, and that’s usually the most important thing for
your code to know about. But many developers also

d e v e l o p Issue 14

BILL GUSCHWAN (AppleLink ANGUS) asked Howard Roark to
dialog with him: “So, Angus, you ditched med school to become a
protector of the dogcow? I love you, man.” Angus: “Well, Howard,
as Tori Amos would say, ‘Sometimes I hear my voice and it’s been
here silent all these years.’” Howard: “You know, I ditched
architecture school, not unlike David Byrne. Speaking of Talking
Heads, you got kicked out of one of his concerts because you
wanted to dance.” Angus: “Words are very unnecessary, they can
only do harm, so I dance.” Howard: “Even your idol Wittgenstein

went back to school. What about you?” Angus: “As you know,
Howard, even Atlas shrugged.”•

54

GRAPHICAL
TRUFFLES

FOUR COMMON
GRAPHICS ANSWERS

BILL GUSCHWAN

GRAPHICAL TRUFFLES: FOUR COMMON GRAPHICS ANSWERS June 1993

55

want to know which machine and system software
combinations produce which versions of QuickDraw.
For example, some developers code for 32-Bit
QuickDraw and want to inform their users of the
minimum Macintosh machine requirement. The ROM
version, extensions, and system software all combine to
affect which version of QuickDraw is available.

ROM versions of QuickDraw can be neatly categorized
into three classes of machines: black and white, Color
QuickDraw, and “ci class.” The original Macintosh and
the Macintosh 512K, Plus, Portable, SE, and
PowerBook 100 are examples of the black-and-white
class. The Macintosh II, IIx, IIcx, and SE/30 fall into
the Color QuickDraw (256K ROM) class. The
Macintosh IIci, IIsi, LC II, IIfx, and later models
belong to the ci class (>256K ROM).

Black-and-white class. There are only two common
versions of QuickDraw on black-and-white machines
today: original black-and-white QuickDraw and
System 7 black-and-white QuickDraw. (The
uncommon ones are present only with pre-Macintosh
Plus ROMs or system versions earlier than 4.2.) When
System 7 is installed on a machine of this class, it
installs some new routines so that a few Color
QuickDraw routines can be used (you get 1-bit
GWorlds, you can correctly display pictures containing
direct-color information, you can create version 2
pictures, and so on).

Black-and-white QuickDraw is documented in Inside
Macintosh Volumes I and IV. For a comprehensive list
of the routines that System 7 adds to black-and-white
QuickDraw, see “QuickDraw’s CopyBits Procedure:
Better Than Ever in System 7.0” in develop Issue 6.

Color QuickDraw class. This class of machines has
8-bit Color QuickDraw built into ROM, so it will
always be there regardless of the system version. When
these machines are running system versions earlier than
System 7, they can be extended to handle direct color
through the use of the 32-Bit QuickDraw INIT.
Finally, if they’re running System 7, System 7 Color
QuickDraw is available.

Inside Macintosh Volume V describes 8-bit Color
QuickDraw. For documentation on the various 32-Bit
QuickDraw versions, including System 7 Color
QuickDraw, the best place to look is Inside Macintosh
Volume VI. If you really need to know the differences
in capabilities among the versions, 32-Bit QuickDraw
v. 1.0 is covered in “Realistic Color for Real-World
Applications” in develop Issue 1, and the features added
in 32-Bit QuickDraw v. 1.2 are documented in the
Tech Note “32-Bit QuickDraw: Version 1.2 Features.”

ci class. This class of machines has only three possible
QuickDraw versions. The least common version, 32-
Bit QuickDraw v. 1.01, is found on a IIci running
system software version 6.0.4. The other machines in
this class that can run System 6 need at least version
6.0.5, which will patch in 32-Bit QuickDraw v. 1.2.
Finally, System 7 provides its own version of Color
QuickDraw.

Again, for documentation on the various 32-Bit
QuickDraw versions, including System 7 Color
QuickDraw, see Inside Macintosh Volume VI.

In the GestaltEqu.h header file, you’ll find Gestalt
values for six QuickDraw versions:

gestaltOriginalQD = 0x000, // 1-bit QD
gestalt8BitQD = 0x100, // 8-bit color QD
gestalt32BitQD = 0x200, // 32-bit v1.0
gestalt32BitQD11 = 0x210, // 32-bit v1.1
gestalt32BitQD12 = 0x220, // 32-bit v1.2
gestalt32BitQD13 = 0x230, // 32-bit v1.3

One of these — gestalt32BitQD11 — will never be
returned, so this list accounts for only five of the total
of seven versions. The sixth is 32-Bit QuickDraw
v. 1.01, mentioned above, which returns the Gestalt
value 0x201 but doesn’t have a gestalt constant defined
for it. The seventh is System 7 with a black-and-white
machine: You’ll need to check for both black-and-white
QuickDraw (gestaltOriginalQD) and System 7
(gestaltSystemVersion greater than or equal to $0700).
If both are true, you’re running System 7 black-and-
white QuickDraw. That’s the only way to tell.

Table 1 shows all the possible combinations, in one
handy location.

Exactly which permutations you need to code for
depends entirely on what you’re doing, but typically
the major divisions are color versus black-and-white,
direct color versus indexed color, and GWorlds versus
no GWorlds. Whenever possible, of course, you should
make decisions in your code based on the QuickDraw
version rather than on the specific machine
configuration.

DO IT OFF-SCREEN
Off-screen environments give you explicit and total
control over an image. Since the image and its
associated data structures are no longer tied to a
physical device, many of the complexities and
limitations of QuickDraw are reduced, and your hands
— previously tied tightly behind your back — are now
freed. You’ll typically manipulate your image off-screen

and then use CopyBits to move the image to the
screen. The FX snippet on this issue’s CD provides a
robust demonstration of some snazzy CopyBits effects,
and there’s a nice overview of how to perform
animation using off-screen graphics environments in
the Graphical Truffles column (“Animation at a
Glance”) in develop Issue 12.

Using CopyBits and off-screen environments for speed
is covered eloquently in Konstantin Othmer and Mike
Reed’s article “Drawing in GWorlds for Speed and
Versatility” in develop Issue 10, so I won’t dwell on it
here. Also, the Tech Note “Principia Offscreen
Graphics Environments” gives details for creating off-
screen environments on machines without 32-Bit
QuickDraw (see the discussion above).

The point is this: when faced with a question in the
“How do I . . .” category, try this answer on for size
first. That may be as far as you need to go.

d e v e l o p Issue 14

56

Table 1
Possible Combinations of ROM Versions and System Software Versions

ROM Class System Version Gestalt Value
Black-and-white class Pre-7.0 gestaltOriginalQD

7.0 and later gestaltOriginalQD and
gestaltSystemVersion =
$0700 or greater

Color QuickDraw class Pre-7.0, no INITs gestalt8BitQD

6.0.3 or 6.0.4, and gestalt32BitQD
32-Bit QuickDraw INIT v. 1.0

System 6 from 6.0.5 on, and gestalt32BitQD12
32-Bit QuickDraw INIT v. 1.2

7.0 and later gestalt32BitQD13

ci class 6.0.4 gestalt32BitQD + 1

System 6 from 6.0.5 on gestalt32BitQD12

7.0 and later gestalt32BitQD13

GRAPHICAL TRUFFLES: FOUR COMMON GRAPHICS ANSWERS June 1993

57

USE THE BOTTLENECKS
QuickDraw routines are easily customizable, which can
be incredibly useful; however, this feature is typically
underused. (In fact, most of the Macintosh is
customizable. There ought to be a whole chapter in
Inside Macintosh on customization; there are so many
places in the OS that you can intercept, you could
probably patch out the whole OS if you were so
inclined.) You can replace QuickDraw’s “guts” with
viscera of your own design, completely (and reversibly)
transforming QuickDraw’s functionality.

Here’s one example of how this can be useful: Let’s say
we want to find out the exact colors used in a picture
that contains innumerable colors. We’ll be drawing the
picture to an 8-bit color monitor, and we want to
manually select the best 256 colors, replacing the
default color table that DrawPicture uses. There are
two methods of getting the colors used in a PICT: use
the System 7 Picture Utilities Package, or do it
yourself. The Picture Utilities Package is available only
in System 7, so if we want to run on earlier systems, our
only choice is to do it ourselves. We do that by using
the bottlenecks.

You can replace all the bottlenecks with no-ops except
for a few carefully selected ones, then draw the picture.
Your replacement bottlenecks will be able to watch all
the picture data go by and can keep track, say, of the
colors used in the picture. (Two sample programs on
the CD, CollectPictColors and GMundo, demonstrate
this technique.) So, for instance, to draw our many-
colored picture with a custom-picked set of 256 colors,
we actually have to draw the picture twice: the first
time, we replace the bottlenecks, allowing us to use —
collect, extract, or read — the colors in the picture. We
can then set up the destination cGrafPort with the
colors we want to show, restore the bottlenecks, and
draw the picture again, this time to actually image it
into the destination cGrafPort.

THAT’S IT FOR NOW
When you’re faced with a question about QuickDraw,
try running through the answers in this column first, to
see if any of them fit. Is the state of the machine at the
time of the call different than you assumed? Did you
check the QuickDraw features and version? Can you do
it off-screen? Can you intercept processing at the
bottleneck level to customize QuickDraw’s routines?
It’s likely that one of these answers will help.

Thanks to Edgar Lee, Konstantin Othmer, Brigham Stevens,
Forrest Tanaka, and John Wang for reviewing this column.•

RELATED READING
• “Graphical Truffles: Animation at a Glance” by

Edgar Lee, develop Issue 12.

• “Drawing in GWorlds for Speed and Versatility”
by Konstantin Othmer and Mike Reed, develop
Issue 10.

• “QuickDraw’s CopyBits Procedure: Better Than
Ever in System 7.0” by Konstantin Othmer,
develop Issue 6.

• “Realistic Color for Real-World Applications” by
Bruce Leak, develop Issue 1.

• Inside Macintosh Volume VI (Addison-Wesley,
1991), Chapter 17, “Color QuickDraw.”

• Inside Macintosh Volume V (Addison-Wesley,
1988), Chapter 4, “Color QuickDraw.”

• Inside Macintosh Volume IV (Addison-Wesley,
1986), Chapter 4, “QuickDraw.”

• Inside Macintosh Volume I (Addison-Wesley,
1985), Chapter 6, “QuickDraw.”

• Macintosh (Imaging) Technical Notes “Principia
Offscreen Graphics Environments” (formerly
#120) and “32-Bit QuickDraw: Version 1.2
Features” (formerly #275).

With the introduction of the 'vdig' component in QuickTime 1.0, Apple
established an API that encompassed the critical features of video
digitizing hardware. This article takes a closer look at the more
complex aspects of the QuickTime 1.0 interface and at the new
functionality provided by QuickTime 1.5. Thanks to the QuickTime
framework, application writers and video digitizer developers have
begun to deliver the kind of high-performance solutions we’ve all been
waiting for. And the evolution of this technology has just begun.

Video digitizing hardware on the Macintosh is not new. Way back in 1990, dozens of
hardware developers were offering video digitizing cards that they hoped would score
big in that elusive but potentially lucrative market called multimedia. However,
because these products targeted different niches and had different feature sets, there
was a lot of chaos and redundancy in the marketplace. Each video digitizer card had
its own API. A multimedia software developer who wanted to support more than one
specific card had to either write a single application that included code for the API of
every card on the market or else release multiple versions of an application, one
version for each card. The inefficiency of this situation kept developers from
introducing innovative products quickly. Users, for their part, were confused by the
vast differences in the user interfaces of various products and in the capabilities of the
hardware.

The introduction of QuickTime in December 1991 changed all this by providing a
standard video digitizing interface. The component nature of QuickTime allowed
video digitizer manufacturers to concentrate on making value-added hardware and
software, secure in the knowledge that their products would work with whatever
general-purpose video capture and editing applications were out there. Application
writers could at last code to a standard interface and take advantage of improvements
in the underlying hardware as they came along. Customers also benefited from a
standard, and usually simplified, interaction with these devices.

d e v e l o p Issue 14

CASEY KING AND GARY WOODCOCK
are considered fictitious by Apple Computer, Inc.
(at least, they’re never around their offices when
anybody’s looking for them). Any similarity to
actual persons, living, dead, or somewhere in
between, is unintentional, unlikely, and if true,
probably unfortunate. All persons appearing in

this article are over 18 years of age (physically,
anyway). This article was written entirely on
location in Austin, TX, and Cupertino, CA, usually
between the hours of 10 P.M. and 4 A.M.•

Casey King and Gary Woodcock are trademarks of
Apple Computer, Inc.

58

CASEY KING AND GARY
WOODCOCK

VIDEO

DIGITIZING

UNDER

QUICKTIME

So much for history! This article takes a look at the present and future of QuickTime
video digitizing from two perspectives — that of the digitizer developer and that of
the video application developer (although the video neophyte will find valuable
information here as well). The article focuses on the less understood areas of the
'vdig' interface and the new features in QuickTime 1.5. Because a discussion of video
digitizing under QuickTime would be incomplete without a look at the video
digitizer’s main client, the sequence grabber, we also briefly examine this powerful
component. We conclude with a wish list of features for the next generation of video
digitizing products.

To get the most out of this article, you need to be familiar with QuickTime
components in general, video digitizer components specifically, and some basic video
terminology. For an overview of components, read our article “Techniques for
Writing and Debugging Components” in Issue 12 of develop. We also suggest that
you read Chapter 7, “Video Digitizer Components,” in Inside Macintosh: QuickTime
Components (which is included in the QuickTime Developer’s Kit v.1.5). Finally, while
we’ve attempted to interject definitions of some basic video terms, the References box
at the end of this article lists some of our favorite books on video. If you’re really
interested in dazzling your friends with your new-found video expertise, you’ll want
to investigate some of these books.

This issue’s CD contains two pieces of sample code related to this article. The 'vdig'
code is an example of a software-only digitizer. You can use it as a template to write
your own video digitizer components or as a vehicle for testing grab applications
when you don’t have any video digitizing hardware. The sample application,
HackTV, shows how to use the sequence grabber to preview and record movies.
HackTV can use either the software 'vdig' provided or a hardware 'vdig' that you
may already own. HackTV can also be used by 'vdig' makers to test their code.

THE VIDEO CAPTURE PROCESS
As Figure 1 shows, the process of making movies involves several components. The
sequence grabber component (component type 'barg') plays an especially critical role.
It’s responsible for coordinating the activities of the lower-level components to
achieve different results — like displaying video in a window, grabbing a single
picture, or grabbing a movie. By protecting application developers from having to
deal with the low-level management of the video digitizer, the sequence grabber
makes it much easier to incorporate video input capabilities in applications. Note that
the sequence grabber also handles audio input devices and synchronization of picture
and sound. For the sake of simplicity, these tasks aren’t shown in Figure 1.

Data flow in the video digitizing pipeline begins with an analog video source like a
video camera, but it could also be a VCR, a laser disc, or a direct broadcast feed. The
video digitizer’s primary purpose in life is to convert the analog signal into a digital
form that can be either displayed in the frame buffer or processed further by an

VIDEO DIGITIZING UNDER QUICKTIME June 1993

59

image compressor. The video digitizing hardware can optionally perform resizing,
color conversion, or clipping. In the absence of hardware support for these
operations, the sequence grabber will sometimes provide them, as we’ll explain later.
If the application’s request is for video in a window, the process is complete. (From a
video digitizing perspective, displaying live video in a window is called play through,
and capturing video to a movie is called capturing or grabbing. The sequence grabber
calls these operations previewing and recording, respectively.) When a movie is
requested, an image compressor processes the data further, and the result is stored
either in system memory or to disk.

An important restriction of the QuickTime 1.0 video capture process is that the
digitizer is limited by the image compressor. Since the grabbed image has to be
perfectly still while the compressor is working, the digitizer can’t grab the next frame
until the compressor is finished with the current one; otherwise, there will be frame

d e v e l o p Issue 14

60

QuickTime application

Sequence grabber

Video digitizer

Color�
convert

Resize Clip

Image compressor

Buffer QuickTime�
movie

Video�
play through

Analog video�
sources

= data flow
= control flow

QuickDraw�
PICT

Figure 1
Grabbing Video — The Big Picture

tears. Thus, the speed of the compressor has a significant influence on the effective
capture rate of the digitizer. (For a discussion of industry-standard frame rates and
acceptable QuickTime capture rates, see “Frame Rates and Motion Quality.”) One of
the biggest challenges in making a movie is figuring out how to compress the data
fast enough to maintain a good effective capture rate.

A CLOSER LOOK AT SOME 'VDIG' BASICS
In this section, we explore a few QuickTime 'vdig' topics that seem to give developers
the most trouble when they first undertake the task of writing a video digitizer
component. While Inside Macintosh is the definitive reference source for all the
information we present here and for all of QuickTime, this section will give you
additional insight into the more difficult aspects of rolling your own 'vdig'.

To illustrate some specific points, this section presents code excerpts from our
software implementation of a 'vdig'. In practice, how you write a video digitizer
component depends heavily on your particular digitizer hardware implementation.
For the sake of illustration, however, we’ll simulate some hardware features with
software that provides roughly equivalent functionality.

GETTING VIDEO COORDINATE SYSTEMS STRAIGHT
The coordinate system for video digitizers can seem confusing, but it’s actually quite
straightforward. The common mistake is to try to map the digitizer coordinate

VIDEO DIGITIZING UNDER QUICKTIME June 1993

61
Great QuickTime movies are tough to
produce due to the number of tradeoffs that need
to be considered. See the article “Making Better
QuickTime Movies” in this issue for more
information on managing frame rate, frame size,
compression, image quality, and sound to
achieve the best results.•

The term frame rate is frequently tossed about in
discussions of the pros and cons of video digitizers.
Frame rate is the rate at which frames appear during
video playback.

It’s commonly held that the frame rate corresponding to
full-motion video is 30 frames per second (fps). However,
30 fps is not the only interesting frame rate or even the
only “true” full-motion frame rate.

• 30 fps is the normal frame rate for NTSC video and
broadcast production. The precise rate is actually
29.97 fps. When a QuickTime product promises “full-
motion” video, this is the rate that’s typically implied.

• 25 fps is the normal frame rate for PAL and SECAM
video and broadcast production.

• 24 fps is the normal frame rate for theatrical film
production.

• 10 to 12 fps is widely regarded as the minimum
acceptable frame rate for a QuickTime movie. At rates
below this threshold, the motion is generally perceived
to be too jerky.

In addition to frame rate, there are two other terms you
should know about. If the frame rate measures the speed
at which the movie is played back for the viewer, the
capture rate is the rate at which the 'vdig' hardware is
capable of capturing frames. The effective capture rate is
the number of frames per second that end up in a
QuickTime movie. Many factors can make the effective
capture rate less than the intrinsic rate the hardware can
support. We’ll discuss these factors later in the article.

FRAME RATES AND MOTION QUALITY

system onto the QuickDraw global coordinate system, even though the two aren’t
related. The critical point to keep in mind is that when referencing the video source,
you’re working in a coordinate system that’s specific to your digitizing hardware. All
cropping rectangles are relative to this coordinate system.

Figure 2 shows the four rectangles that define the video source. The MaxSrcRect
defines the maximum source area that the digitizer is capable of grabbing. Typically
this area includes all or portions of the vertical and horizontal blanking areas. Note
that you don’t have to define the top left point of MaxSrcRect as 0,0; this is an
entirely arbitrary reference point that 'vdig' developers can define as they choose.
The other three rectangles are defined in relation to MaxSrcRect. The ActiveSrcRect
is the region of the maximum source rectangle that contains the actual video image.
The first pixel of active video is the top left corner, and the last pixel is the bottom
right.

The DigitizerRect describes the area of the MaxSrcRect to be captured — the image
that the user will actually see, although it hasn’t been scaled yet. The DigitizerRect
defaults to the area of the ActiveSrcRect; to describe a cropped image, the
DigitizerRect is usually defined as a portion of the ActiveSrcRect. It’s not uncommon
for part of the blanking signal to be displayed in the ActiveSrcRect. This is because
different source devices — like VCRs, laser discs, and broadcast signals — send out
slightly different analog signals. To align the image, a 'vdig' client can nudge the
DigitizerRect a few pixels in the appropriate direction using VDSetDigitizerRect.

The last rectangle, VBlankRect, defines the area of vertical blanking. This region can
contain vertical interval time code (VITC), closed captioning, and teletext. For those

d e v e l o p Issue 14

62

(20,10)

Digitizer�
rectangle

Active source rectangle

Maximum source rectangle

Vertical blanking rectangle

(0,0)

(10,10)

(20,650)

(500,650)

(510,652)

Figure 2
A Video Digitizer Coordinate System

video dweebs out there, this corresponds to lines 10 to 19 of each field of the
incoming video.

Remember, all rectangle coordinates are relative to MaxSrcRect. MaxSrcRect,
ActiveSrcRect, and VBlankRect are always fixed and hardware dependent. The only
control that a client has is in the definition of DigitizerRect. The following code
shows how to implement the VDGetMaxSrcRect call for a 'vdig'. Implementing the
VDGetActiveSrcRect and VDGetVBlankRect calls is very similar.

pascal VideoDigitizerError GetMaxSrcRect(Handle storage, short inputStd,
Rect *maxSrcRect)

{
long error = noErr;

if (inputStd == ntscIn) // Example supports only NTSC.
SetRect(maxSrcRect, 0, 0, kMaxHorNTSCIn, kMaxVerNTSCIn+kVerBlank);

else
error = paramErr;

if (!error)
(**storage).maxSrcRect = *maxSrcRect;

return (error);
}

SetDigitizerRect, shown below, is also very straightforward. Notice that the
DigitizerRect must fully intersect the MaxSrcRect.

pascal VideoDigitizerError vdigSetDigitizerRect(vdigGlobals storage,
Rect *digiRect)

{
Rect tempR;

// Can't be empty.
if (!digiRect || EmptyRect(digiRect)) return (paramErr);
// They must intersect . . .
if (!SectRect(digiRect, &(**storage).maxSrcRect, &tempR))

return (paramErr);
// . . . completely.
if (!EqualRect(digiRect, &tempR)) return (paramErr);
(**storage).digiRect = *digiRect;
. . .
// Insert hardware-dependent code to crop.
. . .
return noErr;

}

VIDEO DIGITIZING UNDER QUICKTIME June 1993

63
A single full-sized video frame consists of
two fields, one containing the odd-numbered scan
lines and the other containing the even-numbered
scan lines.•

One more very important point to understand about video coordinate systems is that
scaling and translation can be specified either as a matrix or as a destination rectangle.
Your digitizer must support both transformation methods. If the matrix is nil, use the
destination rectangle; otherwise, ignore it and use the matrix. The 'vdig' must offset
the top left of the DigitizerRect to 0,0 before applying the matrix, or the video won’t
be positioned correctly. This isn’t necessary when using the destination rectangle. By
the way, the sequence grabber uses the destination rectangle, and not the matrix, to
specify scaling and translation, although this may change at any time.

ACCELERATING THE FRAME CAPTURE PROCESS
Video digitizer clients — such as an application or, more likely, the sequence grabber
— that want to configure a 'vdig' for video play through can do so by specifying a
video source rectangle with VDSetDigitizerRect and a destination with
VDSetPlayThruDestination. The live video stream is then enabled via the
VDSetPlayThruOnOff call. Clients that want to capture and store images to make a
QuickTime movie, on the other hand, must deal with the tradeoff between
compression time and capture rate described earlier. This section explains how a
video digitizer client and a 'vdig' can cooperate to maximize the effective capture rate
and thus the overall performance of a digitizing system.

At the most basic level, the frame capture process involves grabbing a frame,
compressing it, appending the frame to a movie, grabbing another frame,
compressing it, and so on. Unfortunately, while this synchronous frame grabbing
(with the VDGrabOneFrame call) is fine for single grabs, it’s too slow for capturing
moving images. The real killer when using the synchronous call is that no parallel
processing can occur. Once the call to the video digitizer is made, the entire system is
brought to a stop waiting for the completion of the frame grab. Since the digitizer
must synchronize to the incoming video’s vertical blanking interval, this can mean
waiting the duration of up to one or two video fields (33,333 to 66,666 microseconds
for NTSC video). What’s more, because the video stream must be stopped at the
conclusion of the call and restarted to grab another frame, the actual wait between
synchronous grabs tends to be even longer.

A video digitizer client can achieve parallel processing, and thus better performance,
if it grabs asynchronously, sending the image either to a single buffer or to a series of
buffers. If you use just one buffer, you get a slight performance improvement over a
synchronous grab. The VDGrabOneFrameAsync call tells the digitizer to kick off a
frame grab and to return immediately to the caller (this typically takes around 500
microseconds). The compressor can be turned loose on the frame being grabbed
without waiting for the grab to be complete. (Such beam chasing assumes that the
compressor is slower than the video digitizer and won’t catch it. Most software
compressors today are in fact slower than digitizers.) Once the compressor is finished
with the frame, the client makes the VDDone call to determine whether the first
frame grab is complete before requesting another one. This process continues until
recording is terminated.

d e v e l o p Issue 14

For an example of how to set up destination
characteristics, see the description of
VDSetPlayThruDestination in Inside Macintosh:
QuickTime Components.•

VDSetPlayThruDestination is one of the
required calls defined in the video digitizer
component API. For a complete list of all the calls
that a digitizer component must implement, see
the section “Required Functions” in Chapter 7 of
Inside Macintosh: QuickTime Components.•

64

One problem with such single-buffer asynchronous grabs is that the client must still
start and stop the video stream with each call, incurring the same overhead as in a
synchronous grab. An even more serious problem is that the 'vdig' client must handle
frame synchronization between the digitizer and compressor; otherwise, the resulting
movie will contain annoying frame tears. Why does this happen? Suppose the
VDGrabOneFrameAsync call is made while the digitizer is in the middle of a frame.
The digitizer will honor the request and return immediately, but the video won’t
really start until the beginning of the next field. If the compressor is turned loose as
soon as the digitizer returns, it will be compressing stale data. And depending on how
slow the compressor is, new digitizer data may overwrite the stale data in midstream,
all of which is bad news.

Clients of your 'vdig' can attain still better performance if the 'vdig' implements
multiple buffers. By constantly ping-ponging between two or more buffers, the 'vdig'
can increase the effective capture rate, potentially to the maximum rate. The process
works roughly as follows: A 'vdig' client initializes the process by making the video
digitizer call VDSetupBuffers (we’ll look at this in more detail momentarily). The
client then begins the capture process by calling VDGrabOneFrameAsync to fill
buffer 1 with a frame and to start the next grab into buffer 2. The client calls
VDDone to make sure that the frame grab in buffer 1 is complete. Next, the
compressor compresses the frame in buffer 1. Then VDGrabOneFrameAsync is
called to send the next digitized frame back into buffer 1, and the compressor starts
compressing the contents of buffer 2. The whole sequence is repeated for successive
frames.

If you think two buffers are a snap, that’s great, because in practice there are often
three. Figure 3 shows a snapshot of the asynchronous grab process when three buffers
are implemented. The number of buffers your 'vdig' needs to implement, by the way,
is typically equal to the number of concurrent operations a video digitizing system
must perform on those buffers. The example shown in Figure 3 uses three buffers to
support interframe compression. This technique, which is also known as frame
differencing, makes it possible for a compressor to eliminate the redundant data in a
sequence of frames — essentially the parts of the image that stay the same from one
frame to the next. At specified intervals, all the data in a frame is saved; this frame is
known as a key frame. Depending on the content of the image sequence, frame
differencing can provide a substantial increase in compression efficiency.

Figure 3 shows what’s going on in three hypothetical buffers at a specific moment in
time. The whole process of grabbing a frame from the digitizer and compressing it
with frame differencing involves the following steps:

1. The 'vdig' initially uses a buffer — in this case, buffer 1 — as a
play-through destination.

2. The sequence grabber makes the VDGrabOneFrameAsync call
with the next available buffer, buffer 2.

VIDEO DIGITIZING UNDER QUICKTIME June 1993

65

3. The 'vdig' receives VDGrabOneFrameAsync, returns to the
sequence grabber, and begins the asynchronous grab — in this
case, completing a frame grab into buffer 1. Upon completion it’s
available to begin digitizing into buffer 2.

4. The sequence grabber uses VDDone to find out when the frame
grab into buffer 1 is complete.

5. The sequence grabber makes another VDGrabOneFrameAsync
call. The 'vdig' completes the frame grab into buffer 2 and then is
available to begin digitizing into buffer 3.

6. The sequence grabber calls the Image Compression Manager to
compress the completed frame, while the 'vdig' continues
digitizing.

7. The sequence grabber writes the compressed frame to disk.

8. The sequence grabber repeats the basic process outlined in steps 4
through 7, this time using buffer 3 for the next buffer, compressing
buffer 2, and using buffer 1 as the first key frame for frame
differencing.

9. The sequence grabber repeats the process outlined in steps 4
through 7, using buffer 1 for the next buffer, compressing buffer 3,
and using buffer 2 as the next key frame for frame differencing.

10. The 'vdig' is returned to play-through mode when the record
operation is completed. A movie file is created.

d e v e l o p Issue 14

66

Buffer�
2

Buffer�
1

Buffer�
3

The compressor is currently
compressing the frame that has just
been digitized and put in buffer 3,
using the frame in buffer 2 to
perform frame differencing.

Buffer 2 now holds the
previously compressed
frame.

The 'vdig' is currently digitizing into
buffer 1, having recently finished
digitizing a frame into buffer 3.�
The next destination has been set�
up for buffer 2.

Figure 3
Multiple Buffers in Motion

A word of caution: A common mistake in using VDGrabOneFrameAsync is to pass in
the current buffer to be worked on rather than the next destination buffer. By telling
the digitizer in advance where the next frame should be placed, you give the digitizer
all the information it needs to do a fast buffer change once the current frame grab is
complete. The time required to reposition the video buffer is less than the time in a
vertical blanking period, so the digitizer theoretically has enough time to grab every
frame without the need for resynchronization. In this case, the obstacles to achieving
the maximum capture rate are the other processes involved, such as compression and
disk access speeds. Note that there’s no need to turn the digitizer on and off with
multiple buffers because the video frame in buffer 1 will in effect be frozen once the
digitizer repositions its free-running output to buffer 2.

Now let’s take a step back and look at the interaction between the video digitizer
client and the 'vdig' during buffer initialization. Figure 4 shows two possible
scenarios. In scenario A, the card has local memory available for multiple buffering
but doesn’t support generic hardware DMA. (Digitizers that support hardware DMA

VIDEO DIGITIZING UNDER QUICKTIME June 1993

67

1 2 3

Video source
Video digitizer with�

integrated frame buffer Monitor

Off-screen�
VRAM buffers

On-screen�
VRAM buffer

Video source
Video digitizer with hardware�
DMA and no local buffering

Monitor

Scenario A

Scenario B

3

Frame buffer
3

1 2 CPU DRAM�
buffers

3

Figure 4
Initializing Multiple Buffers — Two Scenarios

can send the video data to any available memory; they aren’t restricted to local
memory.) In scenario B, the digitizer supports hardware DMA but doesn’t have local
memory for multiple buffering.

For both scenarios in Figure 4, the basic sequence of events is similar.

1. The sequence grabber uses VDSetPlayThruDestination to set up
the first destination, which happens to be visible to the user on a
monitor.

2. The sequence grabber determines how many buffers to allocate
based on the video characteristics, the compression settings, and
the amount of memory available for multiple buffering.

3. The sequence grabber uses VDSetupBuffers to tell the video
digitizer how to partition the buffers.

The differences between the scenarios depicted in Figure 4 are subtle but very
important to understand. First, in scenario A, the sequence grabber uses the
integrated frame buffer when setting up the play-through destination. In scenario B,
where the digitizer is more flexible in its ability to redirect video data, the sequence
grabber can make the play-through destination any frame buffer — that is, any screen
— that the user chooses.

The second difference between the two scenarios in Figure 4 is in how the sequence
grabber finds available memory and partitions that memory into multiple buffers.
Because the digitizer in scenario A doesn’t support hardware DMA, local memory on
the card is the only memory available for multiple buffering. The sequence grabber
will make the VDGetMaxAuxBuffer call to determine the maximum usable memory
available. In our example, three buffers are allocated. If sufficient space for three
buffers isn’t available, the sequence grabber will make the buffer sizes smaller and use
software to expand the frame to the desired size. In contrast, the video digitizer in
scenario B supports hardware DMA and doesn’t have any local buffering, so the
sequence grabber will use system memory for buffer allocation. In this case the size of
the buffers is limited by the amount of free memory available. Once the number and
size of the buffers have been determined, VDSetupBuffers is used in both cases to
communicate this information to the 'vdig'.

To sum up, a 'vdig' client looks at two video digitizer capabilities to determine how to
initialize buffers — the availability of local off-screen memory and the digitizer’s
ability to do generic hardware DMA. While there are actually four possible
combinations of these two capabilities, the two scenarios shown in Figure 4 define
the major options for initializing multiple buffers. The two combinations not shown
in the figure are a 'vdig' that doesn’t provide any local off-screen memory and doesn’t
support hardware DMA, and a 'vdig' that supports both capabilities. If a 'vdig' has
neither capability, it’s not a very interesting digitizer — just consider yourself lucky
that it can digitize video into a window at all. At the other end of the spectrum, the

d e v e l o p Issue 14

68

increasing numbers of digitizers that support both local memory and hardware DMA
are very interesting. With these digitizers, buffers are allocated in the local off-screen
memory first for performance reasons, while hardware DMA is normally used to
display video in a window on any screen.

At this point you’re probably asking yourself, “Do I really need to understand this
stuff?” The answer for video digitizer developers is a resounding “Yes,” especially if
you want to squeeze out every last drop of performance. For those interested only in
the general concepts, we’ve probably led you down a road you wish you hadn’t
embarked on. Sometimes the quest for new knowledge hurts!

If you’re writing a digitizer, you’ll be interested in the following code, which shows
how to write the routines that support multiple-buffer asynchronous frame grabs.
Notice that in the vdigSetupBuffers routine, pendingAsyncBuffer is used to keep
track of the next buffer to be grabbed. Here it’s initialized to -1, which is not a valid
buffer number.

pascal VideoDigitizerError vdigSetupBuffers(vdigGlobals storage,
VdigBufferRecListHandle bufferList)

{
OSErr err;
MatrixRecord matrix;
short i;
RgnHandle clipRgn;

if (!bufferList) return paramErr; // Can't have empty list.
if (!(**bufferList).count) return paramErr; // Can't have 0 buffers.
// Dispose of any buffers previously created.
if ((**storage).bufferList) {

DisposeHandle((Handle)(**storage).bufferList);
(**storage).bufferList = 0;

}
// Same with any clipRgn previously created.
if ((**storage).clipRgn) {

DisposeRgn((**storage).clipRgn);
(**storage).clipRgn = 0;

}
// Don't accept a mask if the 'vdig' can't clip.
if (!gCanClip && (**bufferList).mask) return paramErr;
// Copy the matrix if it exists.
if ((**bufferList).matrix)

matrix = *(**bufferList).matrix;
// Make a local copy.
HandToHand((Handle *)&bufferList);
if (err = MemError()) return err;

VIDEO DIGITIZING UNDER QUICKTIME June 1993

69

if (clipRgn = (**bufferList).mask) {
HandToHand((Handle *)&clipRgn);
if (err = MemError()) return err;
(**storage).clipOrigin = (**bufferList).list[0].location;

}
// Save the important stuff in private storage for later retrieval.
(**storage).bufferList = bufferList;
(**storage).clipRgn = clipRgn;
(**storage).pendingAsyncBuffer = -1;
(**storage).matrix = matrix;
// Do the important error checking when it's not performance-critical.
for (i=0; i < (**bufferList).count; i++) {

if (!validatePixMap(storage, (**bufferList).list[i].dest))
return paramErr;

}
return noErr;

}

The vdigGrabOneFrameAsync routine (below) is continually being called by the
sequence grabber once movie making starts. After some simple error checking, the
software digitizer draws the frame at the appropriate destination. The buffer used in
drawVideoFrame is the pending buffer that was passed into this routine on the last
call. While this isn’t so important with the software-only video digitizer illustrated
here, it can give hardware digitizers some additional time to get things switched over
and started in anticipation of the next vdigGrabOneFrameAsync call.

pascal VideoDigitizerError vdigGrabOneFrameAsync(vdigGlobals storage,
short buffer)

{
VdigBufferRecListHandle bufferList;
// Bail if you can't do asynchronous grabs.
if (!gCanAsync) return digiUnimpErr;
// Make sure the buffer list is set up first with VDSetupBuffers.
if (!(bufferList = (**storage).bufferList)) return badCallOrder;
// Make sure the buffer request is within bounds.
if (buffer > (**bufferList).count) return paramErr;
// Get the buffer to draw into from the last one saved.
// This is the one saved in pendingAsyncBuffer.
if ((**storage).pendingAsyncBuffer != -1) {

short aBuf = (**storage).pendingAsyncBuffer;
if (aBuf == buffer)

DebugStr("\pasync grab into incomplete buffer");
drawVideoFrame(storage, (**bufferList).list[aBuf].location,

(**bufferList).list[aBuf].dest);
}

d e v e l o p Issue 14

70

// Set up the next buffer to use when called.
(**storage).pendingAsyncBuffer = buffer;
return noErr;

}

IDENTIFYING DIGITIZER TYPES AND CAPABILITIES
No two video digitizers are alike. To make sure your 'vdig' component works
smoothly with QuickTime, it’s critical to identify the capabilities your hardware
provides.

The 'vdig' component interface attempts to be very flexible in allowing you to
indicate what your card can do. A 'vdig' specifies its type and capabilities in the
DigitizerInfo structure, shown below. Two calls — VDGetDigitzerInfo and
VDGetCurrentFlags — give a client (normally the sequence grabber) access to
information contained in this structure.

typedef struct {
short vdigType;
long inputCapabilityFlags;
long outputCapabilityFlags;
long inputCurrentFlags;
long outputCurrentFlags;
short slot;
GDHandle gdh; // For vdigs with preferred screen
GDHandle maskgdh; // For vdigs that have mask planes
short minDestHeight; // Smallest resizable height
short minDestWidth; // Smallest resizable width
short maxDestHeight; // Largest resizable height
short maxDestWidth; // Largest resizable height
short blendLevels; // # of blend levels = 2 if 1-bit mask
long reserved;

} DigitizerInfo;

In the vdigType field, you specify which of the four types of digitizer you are. Either
you’re a basic rectangular digitizing device or you’re a device that supports clipping
— an alpha channel device, a mask plane device, or a key color device. In the
capability flags fields, you indicate to clients what capabilities a particular digitizer
instance provides.

The current flags fields have the same attribute bit fields as the capability flags, but
they indicate the currently available capabilities, not the total possible capabilities. By
nature, some capabilities are mutually exclusive. For instance, if you support NTSC
and PAL input formats, at any given time you’re actively doing only one of them.
The bit corresponding to the active standard is the one that would be set in the
current flags, while both would be set in the capability flags.

VIDEO DIGITIZING UNDER QUICKTIME June 1993

71

Figure 5 lists each of the attribute flags for input and output capabilities, with the
flags added to the API in QuickTime 1.5 shown in bold. Complete descriptions of the
flags can be found in Chapter 7, “Video Digitizer Components,” of Inside Macintosh:
QuickTime Components.

One point we’d like to emphasize is that clients of your digitizer will be much happier
if you truthfully state what you can and can’t do. The sequence grabber, in particular,
will function much better. So don’t broadcast that you can support hardware play
through or hardware DMA unless you can! In addition, when designing your device’s
feature set, it’s better not to make your capabilities modal. For instance, don’t build a
card that can resize in 32-bit-per-pixel mode but not in 16-bpp mode.

Applications also need to know about your capabilities. An application makes
preflight calls, like VDPreflightDestination, to your digitizer to determine whether
its request will be honored, denied, or changed. Digitizers are required to support all
the preflight calls.

Some examples. To see how the attribute flags are set, let’s take a look at three
completely different fictional video digitizer implementations. One of the examples
includes the support provided by QuickTime 1.5 for digitizer hardware compression
— a nifty feature we’ll discuss when we look at the QuickTime 1.5 additions later in
this article.

As you consider the examples, pay particular attention to the use of the following
structure members and attribute flags, which seem to be among the least
understood:

vdigInfo->inputCapabilityFlags[digiInVTR_Broadcast]
vdigInfo->outputCapabilityFlags[digiOutDoesDMA]
vdigInfo->outputCapabilityFlags[digiOutDoesDouble]
vdigInfo->outputCapabilityFlags[digiOutDoesQuad]
vdigInfo->outputCapabilityFlags[digiOutDoesHWPlayThru]
vdigInfo->outputCapabilityFlags[digiOutDoesAsyncGrabs]
vdigInfo->gdh
vdigInfo->maskgdh
vdigInfo->blendLevels

The size of the MaxAuxBuffer is also very important if the device supports one. The
only way for a client to determine this is to make the VDGetMaxAuxBuffer call to see
if it returns valid data. See “What the $#%!! Is a MaxAuxBuffer, and Do I Have
One?” for details.

For our first example of a fictional digitizer, let’s suppose SuperOps announces an
entry-level video digitizing card with the following capabilities: The card has one
video input (an RCA-style connector) and can support only the NTSC video

d e v e l o p Issue 14

72

VIDEO DIGITIZING UNDER QUICKTIME June 1993

73

 –�

 –�

PlayThruDuringCompress�

CompressOnly�

Compress�

UnreadableScreenBits�

AsyncGrabs�

KeyColor�

Inverse LUT�

Hardware play through�

Hardware DMA�

Warp�

Blend�

Skew�

Vertical flip�

Horizontal flip�

Rotation�

Sixteenth�

Quarter�

Quad�

Double�

 –�

Mask�

Shrink�

Stretch�

Dither�

32 bpp�

16 bpp�

8 bpp�

4 bpp�

2 bpp�

1 bpp

 Signallock�

 –�

 –�

 –�

 –�

 –�

 –�

 –�

 –�

 –�

 –�

 –�

 –�

 –�

 –�

 –�

 –�

 –�

Black & white�

Color�

VTR_Broadcast�

Component�

SVideo�

Composite�

Genlock�

 –�

 –�

 –�

 –�

SECAM�

PAL�

NTSC�

�

Input flags

= Reserved�
= New for QuickTime 1.5

–�
bold

31�

30�

29�

28�

27�

26�

25�

24�

23�

22�

21�

20�

19�

18�

17�

16�

15�

14�

13�

12�

11�

10�

9�

8�

7�

6�

5�

4�

3�

2�

1�

0

31�

30�

29�

28�

27�

26�

25�

24�

23�

22�

21�

20�

19�

18�

17�

16�

15�

14�

13�

12�

11�

10�

9�

8�

7�

6�

5�

4�

3�

2�

1�

0

Output flags

Figure 5
Video Digitizer Attribute Flags

standard. The card is a combined video digitizer and frame buffer. The frame buffer
can support 1, 2, 4, 8, 16, and 32 bpp on a monitor that’s 640 by 480 pixels. The video
digitizer, however, can display real-time video on its own frame buffer only in the
16-bpp and 32-bpp modes. Our SuperOps card doesn’t support compression, but it
does support clipping via an alpha channel. Because it can resize the video but not
zoom, scaling only makes the video smaller. The card has additional local memory for
grabbing in 16-bpp mode, but not in 32-bpp mode.

The interesting fields and their values for the SuperOps card are:

vdigType = vdTypeAlpha;
inputCapabilityFlags = digiInDoesNTSC | digiInDoesComposite |

digiInDoesColor;
outputCapabilityFlags = digiOutDoes16 | digiOutDoes32 |

digiOutDoesShrink | digiOutDoesMask |
digiOutDoesQuarter | digiOutDoesSixteenth |
digiOutDoesBlend | digiOutDoesHWPlayThru |
digiOutDoesAsyncGrabs;

gdh = // Handle to frame buffer graphics device
blendLevels = video16 ? 2 : (video32 ? 256:0);

In 32-bpp mode, there’s no room for a MaxAuxBuffer, so the call to
VDGetMaxAuxBuffer fails. In 16-bpp mode, a MaxAuxBuffer is available because

d e v e l o p Issue 14

74

VDGetMaxAuxBuffer is an extremely misunderstood 'vdig'
call. For a video digitizer that implements this call, the
sequence grabber can provide improved capture rates
and enhanced capabilities, even if the digitizer hardware
wasn’t originally designed with off-screen buffering in
mind.

Simply put, a MaxAuxBuffer is the total unused off-screen
local memory on a digitizer card. The sequence grabber
can use the MaxAuxBuffer to implement resizing,
clipping, and color conversion operations for digitizers
that don’t support these operations in hardware. The
MaxAuxBuffer can also be used to provide a low-
performance equivalent to DMA for devices that don’t
support hardware DMA. Alternatively, the sequence
grabber can use the MaxAuxBuffer for multiple buffering
by partitioning it into one or more smaller buffers.

Even if your card supports high-performance
DMA–to–system memory operations, we suggest that
video digitizers support and implement this feature
whenever possible. Transferring data into your local
memory system will be faster than transferring it across
NuBus™ into system memory. This, in turn, makes it
possible for clients to achieve a faster effective capture
rate.

A couple of rules of thumb for using VDGetMaxAuxBuffer:
First, because a MaxAuxBuffer is composed of local
memory only from your device, you should not allocate
system memory to support this call. Second, the sequence
grabber will sometimes act like a snapperhead and make
this call multiple times. Just be consistent with your replies.
You aren’t responsible for managing or partitioning this
memory — you simply have to say it’s around.

WHAT THE $#%!! IS A MAXAUXBUFFER, AND DO I HAVE ONE?

only half of the on-board local frame buffer memory is being used, and the size of the
unused memory is equivalent to the display size, 640 by 480 pixels.

The second fictional card, the OneShot-O-Matic, is designed to do only single-frame
grabs. The card has three inputs — composite, S-Video, and component RGB — and
can support both the NTSC and PAL video standards on all three. The maximum
size that can be grabbed is a function of which input standard the card uses (for
example, the maximum size would be 768 by 576 pixels when decoding the PAL
standard). Because the OneShot-O-Matic can grab only to its local memory, it can’t
do hardware DMA — that is, it doesn’t support play through to any frame buffer.
The OneShot-O-Matic supports only 32-bpp grabs. Resizing, clipping, and hardware
compression aren’t supported. The board is populated with 2 megabytes of memory,
which is enough to support the maximum size required by the PAL standard.

For the OneShot-O-Matic card, the interesting fields and their values are:

vdigType = vdTypeBasic;
inputCapabilityFlags = digiInDoesNTSC | digiInDoesPAL |

digiInDoesComposite | digiInDoesSVideo |
digiInDoesComponent | digiInDoesColor;

outputCapabilityFlags = digiOutDoes32 | digiOutDoesAsyncGrabs;
gdh = nil;
blendLevels = 0;

In this case, the MaxAuxBuffer will consume the entire 2 MB local buffer area. This
works out to be 524,288 available pixels in 32-bpp mode (2097152 / 4 bytes per
pixel). The representation of this as a width and height must be large enough to
support the largest grab size; thus 800 by 655 pixels would be valid, as would 700 by
748 pixels. Hardware resizing would have allowed multiple buffers to reside in the
MaxAuxBuffer. With this card, however, the video digitizer will be relying on the
sequence grabber to do resizing, color conversion, and on-screen placement
operations.

Our third fictional card, the Verne-Motion, is designed to perform not only video
digitizing, but also hardware compression using a highly proprietary algorithm called
SqueezeMe. (We’ll discuss compressed-source devices shortly.) The card has one
S-Video input and supports all input standards — NTSC, PAL, and SECAM. In
addition, the Verne-Motion can simultaneously support two channels of video: an
RGB pixel stream formatted for display, and a compressed SqueezeMe stream to be
saved as a QuickTime movie. The card has a general-purpose DMA engine that can
direct these data streams either to memory on the card or to system memory. The
on-card memory is 4 MB and gives better performance than you get when you send
the video data to system memory. The Verne-Motion supports hardware clipping
with an 8-bit mask plane, which can also be stored in local memory or in system
memory. The video input circuitry has a mode that distinguishes between clean

VIDEO DIGITIZING UNDER QUICKTIME June 1993

75

broadcast-quality input signals and noisier VCR-type signals. Finally, the Verne-
Motion lets you arbitrarily scale video images to make them up to two times larger in
both the horizontal and vertical directions.

The interesting fields and their values for the Verne-Motion card are:

vdigType = vdTypeMask;
inputCapabilityFlags = digiInDoesNTSC | digiInDoesPAL |

digiInDoesSECAM | digiInDoesSVideo |
digiInVTR_Broadcast | digiInDoesColor;

outputCapabilityFlags = digiOutDoes8 | digiOutDoes16 | digiOutDoes32 |
digiOutDoesStretch | digiOutDoesShrink |
digiOutDoesMask | digiOutDoesDouble |
digiOutDoesQuarter | digiOutDoesSixteenth |
digiOutDoesHW_DMA | digiOutDoesHWPlayThru |
digiOutDoesAsyncGrabs | digiOutCompress |
digiOutPlayThruDuringCompress;

gdh = nil;
maskgdh = // Handle to local mask plane — 8 bpp deep
blendLevels = 256;

The size of the MaxAuxBuffer in this case would be 1024 by 1024 pixels in 32-bpp
mode (1024 * 1024 * 4 bytes per pixel equals 4 MB, which is the total available
memory). In the 16-bpp mode, the MaxAuxBuffer would be 2048 by 1024 pixels, and
in the 8-bpp mode, it would be 2048 by 2048 pixels.

As you can see from these examples, there are many different classes of video
digitizers out there. Your card may look very similar to one of the ones we’ve
presented, but it’s more likely that you’ll have to set different flags to describe your
card’s features.

THE POWER OF THE SEQUENCE GRABBER
The sequence grabber makes life easier for application programmers by handling all
the messy details of controlling video digitizers, sound input devices, and
compressors. This marvelous piece of QuickTime has a very rich API that we won’t
even pretend to cover in this article. However, the sequence grabber plays such an
important role in a video digitizing application that a brief introduction is in order.
Note that while the code excerpts below demonstrate how the sequence grabber can
preview and record a video channel, the HackTV application on the CD includes an
audio channel as well.

Before we discuss previewing and recording, we want to briefly describe how the
sequence grabber can make up for functionality missing from a digitizer. For the
sequence grabber to be able to do this, the video digitizer must be able to use off-

d e v e l o p Issue 14

76

screen memory — either local memory on the digitizing device or, in the more
general case, any memory. (Recall that you can use the VDGetMaxAuxBuffer call to
locate local device memory.) As an example, let’s see how the sequence grabber can
support color conversion.

Suppose a video digitizer can display video only to its own integrated frame buffer. In
a multimonitor system, this would mean a user could display video on only one of the
monitors. The sequence grabber comes to the rescue because it can use off-screen
memory for the grab and copy it to the desired destination buffer, making the video
appear on one of the unsupported displays. Now suppose the digitizer is asked to
display video in a depth it doesn’t support (say the user changes the graphics mode
from 32 bpp to 4 bpp with the Monitors control panel). The sequence grabber can
again use off-screen memory to do the right thing. Of course, you never get
something for nothing. All this buffer copying will adversely affect performance.

PREVIEWING
Previewing video with the sequence grabber is the equivalent of setting up the 'vdig'
in play-through mode to display live video on the computer screen. The code to
make this happen is shown below. Remember that the sequence grabber can simulate
live video play through for devices that don’t support hardware play through.

// Find and open a sequence grabber.
gSeqGrabber = OpenDefaultComponent(SeqGrabComponentType, (OSType) 0);
// If we get a sequence grabber, set it up.
if (gSeqGrabber != 0L) {

// Get the monitor — in this case, the dialog
// window in which video is displayed.
gMonitor = GetNewDialog(kMonitorDLOGID, nil, (WindowPtr) -1L);
if (gMonitor != nil) {

// Initialize the sequence grabber.
GetPort(&savedPort);
SetPort(gMonitor);
ShowWindow(gMonitor);
result = SGInitialize(gSeqGrabber);
if (result == noErr) {

result = SGSetGWorld(gSeqGrabber, (CGrafPtr) gMonitor, nil);
// Get a video channel.
result = SGNewChannel(gSeqGrabber, VideoMediaType,

&gVideoChannel);
if ((gVideoChannel != nil) && (result == noErr)) {

short width;
short height;
gQuarterSize = false;
gHalfSize = true;
gFullSize = false;

VIDEO DIGITIZING UNDER QUICKTIME June 1993

77

result = SGGetSrcVideoBounds(gVideoChannel,
&gActiveVideoRect);

width = (gActiveVideoRect.right-gActiveVideoRect.left)/2;
height = (gActiveVideoRect.bottom-gActiveVideoRect.top)/2;
SizeWindow (gMonitor, width, height, false);
// Preview the video only.
result = SGSetChannelUsage(gVideoChannel, seqGrabPreview);
result = SGSetChannelBounds(gVideoChannel,

&(gMonitor->portRect));
}
// Go!
if (result == noErr) result = SGStartPreview(gSeqGrabber);

}
SetPort(savedPort);

}
}

We establish a connection to the sequence grabber component in the usual way, with
OpenDefaultComponent. We initialize the sequence grabber, set up the graphics
environment, and allocate a new channel for video. We want the displayed video to
be one-quarter size, so we call SGGetSrcVideoBounds to see what size the source
video is. This function calls VDGetDigitizerRect, which returns the source video size
equal to the digitizer rectangle. We scale the height and width accordingly, and the
new size is sent to the sequence grabber via the SGSetChannelBounds routine.
Finally, we call SGStartPreview, which turns on the video digitizer by calling the
digitizer function VDSetPlayThruOnOff, and previewing begins.

RECORDING
Recording is very similar to previewing and is almost as simple. The following code
highlights the differences between recording and previewing.

// Start exactly the same way as for previewing.
// Find and open a sequence grabber.
gSeqGrabber = OpenDefaultComponent(SeqGrabComponentType, (OSType) 0);
// If we get a sequence grabber, set it up.
if (gSeqGrabber != 0L) {

. . .
if ((gVideoChannel != nil) && (result == noErr)) {

// Set up size the same as in previewing case.
short width;
short height;
gQuarterSize = false;
gHalfSize = true;
gFullSize = false;

d e v e l o p Issue 14

78

result = SGGetSrcVideoBounds(gVideoChannel, &gActiveVideoRect);
width = (gActiveVideoRect.right-gActiveVideoRect.left)/2;
height = (gActiveVideoRect.bottom-gActiveVideoRect.top)/2;
SizeWindow(gMonitor, width, height, false);
// Record and play images instead of just previewing them.
result = SGSetChannelUsage(gVideoChannel, seqGrabRecord |

seqGrabPlayDuringRecord);
result = SGSetChannelBounds(gVideoChannel,

&(gMonitor->portRect));
// Get ready. . .
result = SGSetDataOutput(gSeqGrabber,&gMovieFile,seqGrabToDisk);
result = SGPrepare(gSeqGrabber, true, true);
// Go!
result = SGStartRecord(gSeqGrabber);
while (!Button() && !result) {

result = SGIdle(gSeqGrabber);
}
result = SGStop(gSeqGrabber);

}
. . .

}

There are several differences between recording and previewing. First we set up the
sequence grabber to record and to play through while recording. We next specify a
file for the movie to be written to, indicating that the movie be grabbed directly to
disk. For a short movie, we could grab to memory if we wanted. By default, the
recording time is limited by the system resources available — in this case, disk space.

The SGStartRecord call initiates the grab to disk. SGIdle is called repetitively to
provide processing time to the sequence grabber. You should call SGIdle as often as
possible while recording. When the user clicks the mouse button, or when the disk is
full, recording will stop, and we call SGStop to complete the recording process.

That’s all there is to simple recording. If you want to do more sophisticated tasks with
the sequence grabber, such as replacing the standard sequence grabber disk- or
compression-bottleneck routines with your own, consult Inside Macintosh: QuickTime
Components, or refer to the SGSample sample code on the QuickTime 1.0
Developer’s CD-ROM.

WHAT’S NEW FOR DIGITIZERS IN QUICKTIME 1.5
QuickTime 1.5 provides expanded support for sophisticated new types of video
digitizing hardware. First, it defines a number of routines that allow digitizers to
describe their capabilities to clients more completely. It also defines routines that give
clients more control over the digitization process. QuickTime 1.5 adds to the video

VIDEO DIGITIZING UNDER QUICKTIME June 1993

79

digitizer API by supporting devices that are capable of producing compressed-image
data. Finally, a standard user interface has been introduced for choosing and
configuring video digitizers.

EXPANDED INFORMATION SERVICES
QuickTime 1.5 encompasses a greater range of digitizer capabilities than did
QuickTime 1.0. The latest API defines new flags and several new routines to allow
applications to determine whether a digitizer supports these new capabilities.

New digitizer information flags. Four new flags have been defined in the
outputCapabilityFlags field of the DigitizerInfo record.

• The digiOutDoesUnreadableScreenBits flag indicates that the
video digitizer may put pixels on the screen that are visible but
can’t be used when compressing images. In other words, image
data can’t be read directly from the screen as source material for
the compression phase.

• The digiOutDoesCompress flag indicates that the digitizer is
capable of producing compressed-image data directly.

• The digiOutDoesCompressOnly flag indicates that the digitizer
provides compressed-image data only and that it’s unable to
provide image data for display.

• The digiOutDoesPlayThruDuringCompress flag indicates that
the digitizer can display image data while it’s compressing it.

New information routines. Four new functions allow applications to get additional
information about the digitizer’s capabilities.

• The VDGetSoundInputDriver call gives video digitizers a way to
tell applications which sound input driver they’re associated with.
Several digitizer boards now available have sound as well as video
digitizing capability.

• The VDGetPreferredTimeScale routine allows digitizers that can
time-stamp the data they create to communicate their preferred
time scale to applications. The sequence grabber, in particular,
uses this call to establish the time scale of the video data it creates
from the digitizer output.

• The VDGetDataRate routine is extremely useful because it gives
clients a way to determine the performance capabilities of a
digitizer. The call returns three values. The first value,
milliSecPerFrame, indicates the number of milliseconds of
overhead involved in digitizing a single frame. Overhead is defined
as the average delay between the time the digitizer requests a

d e v e l o p Issue 14

For more information on time scales, see
Inside Macintosh: QuickTime Components and
“Time Bases: The Heartbeat of QuickTime” in
develop Issue 12.•

80

frame from its associated hardware and the time the device actually
delivers the frame. The second value, framesPerSecond, is the
maximum rate at which the digitizer can capture video frames in
its current configuration. This value is not affected by the
VDSetFrameRate call, described later on. The last value,
bytesPerSecond, indicates the data rate at which a compressed-
source digitizer can produce compressed-image data. This value
varies depending on parameters for spatial and motion quality,
image size, and depth. In other words, unlike milliSecPerFrame
and framesPerSecond, bytesPerSecond isn’t a static value.

• The VDGetDMADepths routine allows an application to
determine the pixel depths a DMA-style digitizer can support. The
depthArray parameter is a pointer to a long word of flags, with
each flag representing a possible depth. A flag with a value of 1
indicates that the corresponding depth is supported. The
preferredDepth parameter is a pointer to a long word indicating
— big surprise — the preferred depth of the digitizer. A value of 0
indicates that all depths are equally acceptable. Note that if a
DMA-style digitizer doesn’t support this call, the digitizer is
assumed to be capable of handling off-screen buffers at all depths
indicated in the outputCapabilityFlags field of its DigitizerInfo
record.

ENHANCED DIGITIZATION CONTROL
Two new routines in QuickTime 1.5 give applications greater control over how a
video digitizer performs its task. Video digitizers that can time-stamp the video
frames they produce should implement the new VDSetTimeBase routine so that
applications can specify the time coordinate system the video digitizer should use
when time-stamping video frames.

The second routine, VDSetFrameRate, allows applications to tell a digitizer the
precise frame rate to use for capture. Digitizers used to capture video at only one
frame rate — as fast as possible. However, the advent of full-frame-rate digitizing
hardware and compressed-source devices has made it increasingly important for
clients to manage the tradeoff between frame rate, image size, and compression
quality. The rate in VDSetFrameRate is expressed as a fixed-point value, typically
between 0 and 29.97 (see “Frame Rates and Motion Quality” earlier in this article for
a discussion of frame rate values).

COMPRESSED-SOURCE DEVICE SUPPORT
OK, pay attention here — this enhancement alone is worth the price of admission for
QuickTime 1.5. QuickTime is finally poised to silence all complaints about “postage
stamp video sizes” and “jerky frame rates.” By expanding the video digitizer API to
support compressed-source video digitizers, QuickTime gives users access to full-

VIDEO DIGITIZING UNDER QUICKTIME June 1993

81

size, full-frame-rate digital video. A number of new video capture boards with on-
board compression and decompression capabilities are already shipping, and there
will undoubtedly be others soon.

QuickTime 1.5 includes eight new routines for servicing compressed-source video
digitizers. Several of these calls should look familiar to you, since they’re largely
compressed-source versions of existing calls and serve very similar purposes.

• VDGetCompressionTypes is a straightforward call. It simply
returns a handle to the list of compressors that your video digitizer
implements. Each element of the list contains the component ID,
type, name, format, and capabilities of a compressor.

• The VDSetCompression routine specifies which of all the possible
compressors a digitizer should use. The parameters for
VDSetCompression specify the spatial quality, temporal quality,
depth, and other characteristics of the compression.

• VDCompressOneFrameAsync starts the digitizing process for
compressed-source devices, just as VDGrabOneFrameAsync starts
the process for regular digitizers. The major difference is that a
compressed-source digitizer handles all the management of data
buffers itself, without external assistance from the caller.

• VDCompressDone is similar to VDDone in that it allows a caller
to determine when a frame has been completed (in this case,
digitized and compressed).

• The VDReleaseCompressBuffer tells a compressed-source device
to free the buffer returned by the VDCompressDone call.

• The VDResetCompressSequence call instructs a digitizer to insert
a key frame into a frame-differenced image sequence as soon as
possible after it receives this call.

• The VDGetImageDescription routine prompts the digitizer to
return an image description structure corresponding to the current
settings. This structure is defined in the Image Compression
Manager chapter of Inside Macintosh: QuickTime and is the same
structure that’s used to describe image data in movie files.

• The VDSetCompressionOnOff routine starts and stops the
digitizer. To give the digitizer adequate time to prepare itself for
the requested operation, clients must call this routine before
calling VDSetCompression or VDCompressOneFrameAsync.

Typically, compressed-source devices are able to act as hardware decompressors and
have a corresponding QuickTime image decompressor component that clients can
use to play back the compressed images. However, if your hardware produces

d e v e l o p Issue 14

82

compressed data that can’t be read by any of the standard QuickTime image
decompressor components, you need to provide an appropriate software-only
decompressor component. This way, users who don’t have your hardware will still be
able to play movies produced with your compressor.

A STANDARD USER INTERFACE FOR CONFIGURING VIDEO DIGITIZERS
QuickTime 1.5 introduces changes to the sequence grabber component, which many
developers rely on to reduce the complexity of dealing with video and sound
digitizers. One of the more significant additions to the sequence grabber component
is standard dialog boxes for configuring video and sound digitizers. Both Apple and
third parties can extend the controls presented in these dialog boxes through
sequence grabber panel components. Although this article won’t delve into the details of
writing a panel component, you should be aware of them and how they relate to
video digitizers.

Figure 6 shows the Source panel, one of the three panel components built into
QuickTime 1.5. The other two panel components are the Image panel and the
Compression panel. You navigate to the different panels through the pop-up menu at
the top of the panel area.

If your video digitizer has capabilities that aren’t addressed by the standard panels in
QuickTime 1.5, and it’s important to give users access to these features, we strongly

VIDEO DIGITIZING UNDER QUICKTIME June 1993

83

Figure 6
The Source Panel

urge you to write a panel component. Any applications that use the sequence grabber
dialog boxes can then pick up the functionality in your panel component. There’s less
work for everybody this way — video digitizer manufacturers don’t have to write
applications that show off their card-specific features, and application developers
don’t have to write card-specific code.

You’ll find a description of how to write your own sequence grabber panel
components in Chapter 6 of Inside Macintosh: QuickTime Components. As a bonus,
we’ve included the source code for an example panel component on this issue’s CD.

THE IDEAL VIDEO DIGITIZER
To bring a video digitizer board to market, developers must make numerous
compromises between design, features, and cost. It’s not unusual for a few hasty
design decisions to lead to a less-than-wonderful QuickTime digitizer product.

For example, if the SuperOps company creates a video digitizing card that can do
video play through at only 24 bpp in a display size of 640 by 480 pixels, and that can
capture at only 8 bpp in a display size of 240 by 180 pixels, the card probably isn’t
going to be a prime candidate for the next QuickTime product of the year. Why?
Because the video digitizer API is designed to encourage the creation of devices that
have more or less symmetrical operating characteristics in both the play-through and
capture modes. Obviously, the card just described doesn’t meet this goal — it behaves
quite differently depending on whether it’s performing play through or capture. In
addition, the choice of 240 by 180 pixels as the board’s capture size is unwise. In
general, an ActiveSrcRect size that’s evenly divisible by 2 produces the best quality
without the support of sophisticated filtering (see “What’s So Magic About Magic
Sizes?”).

d e v e l o p Issue 14

84

When the vertical dimension of the ActiveSrcRect can be evenly divided by 2, the
resulting sizes are referred to as magic sizes. Actually, there’s nothing magic about
them. They just happen to be easily produced by some simple tricks in hardware and
software. It takes two fields to produce a complete frame of full-size NTSC video (for
example, 640 by 480 pixels), with each field holding half the lines of the video
frame. The most common resizing trick is to drop a field from each video frame to
produce the requisite number of lines for a half-size image (for example, 320 by 240
pixels). This makes it very simple to produce good-quality half-size video without
performing more sophisticated image filtering in software. Because software isn’t
burdened with the additional task of performing a more complex filtering of the
image, the effective capture rate of the digitizer is increased at this “magic” size.

WHAT’S SO MAGIC ABOUT MAGIC SIZES?

So how does a developer decide what sorts of features to include in a digitizer board?
Well, we’ve got some pretty solid ideas about what characteristics make for a really
great digitizer. To get a sense of the kind of features we believe an ideal QuickTime
video digitizer should have, take a look at Table 1. Keep in mind that each of the
features of this ideal digitizer has a very real associated cost, which gets reflected in
the retail price. Our ideal digitizer would probably be priced out of the reach of most
users today. But then again, two years ago we wouldn’t have believed we could afford
personal computers with 32 MB of RAM, so who knows?

VIDEO DIGITIZING UNDER QUICKTIME June 1993

85

Table 1
Characteristics of an Ideal Video Digitizer

Feature Benefit
Hardware DMA support The ability to display video on any screen

(or off-screen) and not be captive to a local
frame buffer

Enhanced resizing algorithms (anti-aliasing, Improved image quality
improved line filtering, and so on)

Arbitrary resizing in hardware Fast resizing to any size

16-bit pixel support Reduced data rate with minimal loss of color
fidelity

Enhanced color control Finer control over compression efficiency
and improved image quality

Hardware compression and decompression Improved live-capture frame rates, movie
playback rates, and bigger movie sizes

Arbitrary hardware zoom (stretch, shrink) Better cropping

Multiple buffering Better performance

Signal lock sensing and standard detection Improved user experience

Symmetrical play-through and record Improved user feedback
characteristics

Hardware special effects (flips, warps, skews) Fun stuff to create that jaw-dropping impact
on users

Key color Fast masking, blue screen effects

Hardware clip mask Video window clipping in graphics
environments

Simultaneous compression and decompression Video conferencing and video phone
of multiple video channels applications

GO GRAB A MOVIE
Wow, we’ve covered a lot of ground here! Start thinking about integrating video data
types into your applications, and experiment with the sample code to get started. The
main message we want to pass on to application writers is that you should use the
sequence grabber as your entry point into the world of video. Taking advantage of the
enormous capability of the sequence grabber leaves you more time to spend on
creating features that differentiate your product. As for video digitizer developers, we
hope this article has given you more insight into the grab process and gotten you
ready to start implementing some of the cool features listed in Table 1. We’re
counting on seeing many of these capabilities in the next generation of digitizer
boards. Finally, to the video neophyte, all we can say is that there aren’t too many
things that are more entertaining than going out and grabbing a movie. So go do it!

d e v e l o p Issue 14

THANKS TO OUR TECHNICAL REVIEWERS
Bill Guschwan, Peter Hoddie, Guillermo Ortiz,
John Wang•

86

REFERENCES
• Inside Macintosh: QuickTime and Inside Macintosh: QuickTime Components.

These are included in the QuickTime Developer’s Kit v. 1.5.

• “Inside QuickTime and Component-Based Managers” by Bill Guschwan, develop
Issue 13.

• “Techniques for Writing and Debugging Components” by Gary Woodcock and
Casey King, develop Issue 12.

• “Time Bases: The Heartbeat of QuickTime” by Guillermo A. Ortiz, develop Issue
12.

• Electronic Cinematography: Achieving Photographic Control over the Video Image
by Harry Mathias and Richard Patterson (Wadsworth, 1985).

• Film Art: An Introduction, 3rd ed., by David Bordwell and Kristin Thompson
(McGraw-Hill, 1990).

• Graphics Gems Volume I edited by Andrew S. Glassner (Academic Press, 1990),
Chapter 3, “Useful 1-to-1 Pixel Transforms.”

• Raster Graphics Handbook, 2nd ed., Conrac Corporation (Van Nostrand
Reinhold, 1985).

• Television Production, 3rd ed., by Alan Wurtzel and Stephen R. Acker (McGraw-
Hill, 1989).

SOMEWHERE IN QUICKTIME: DERIVED MEDIA HANDLERS June 1993

87

In this column, I’ll be telling you about derived media
handlers in QuickTime 1.5 — but first, some
background.

QuickTime movies contain tracks that refer to media.
In QuickTime 1.0, two media types are supported:
video and sound. A movie might therefore have one
track that refers to video media and one that refers to
sound media. Each of these supported media has a
media handler, which is code that’s responsible for
interpreting the media’s data. Obviously, displaying
video images requires different code than playing
sound. The media handler code is in the form of a
component of type 'mhlr'. The video media handler
has the subtype 'vide', and the sound media handler has
the subtype 'soun'.

QuickTime uses the concept of a media to separate
media interpretation from the Movie Toolbox and to
place the responsibility into individual media handlers.
This has the added advantage that media handlers can
be created to interpret new media types. However, it
wasn’t possible to easily create a media handler in
QuickTime 1.0.

DERIVED HANDLERS TO THE RESCUE
Derived media handler support was introduced in
QuickTime 1.5 to allow developers to define new
custom media types. As an example of the capabilities
of the derived media handler, QuickTime 1.5 has a new

'text' media type that’s implemented using a derived
media handler. Derived media handler components can
easily be created because they can use the services of a
common base media handler supplied by Apple; hence
the name derived media handler. The base media handler
manages most of the duties that must be performed by
all media handlers and reduces the intricacies of writing
a standalone media handler.

This column will discuss sample code (provided on this
issue’s CD) that implements a complete QuickDraw
derived media handler. This media handler will
interpret QuickDraw pictures stored in the media’s
data. Each media sample in the data is a QuickDraw
picture. For example, you could have a movie of a
bouncing ball, but instead of having compressed pixel
images of the balls bouncing, as in a video media, you
would have a series of pictures of a ball drawn with
PaintOval as it moves along its path. The CD also
contains a sample that creates interesting movies using
our new QuickDraw media type.

CREATING THE COMPONENT SHELL
The first step in creating our sample derived media
handler is to create a component shell to which we can
add media handler–specific calls in a later step. The
MyComponent.c file contains the following routines:
main (the dispatch routine for the component),
MyOpen, MyClose, MyCanDo, MyVersion, and
MyRegister.

MyOpen, the initialization routine for our component,
opens the base media handler and sends a target request
to it. A target request is a Component Manager service
that allows a new component instance to establish itself
as a target component instance for another (delegate)
instance. In our case, the target is our QuickDraw
derived media handler and the delegate is the base
media handler. The delegate will be called by the target
whenever the target wants to delegate calls to it. The
delegate should call the target whenever the delegate
would normally call itself (for example, when it uses its
own services). This effectively makes our derived media
handler sit on top of the base media handler by

JOHN WANG (AppleLink WANG.JY) of Apple’s Printing,
Imaging, and Graphics group was once a math and science nerd
whose writing skills were as bad as the BASIC programming
language compared to C. His hard work (hah) and prep school
training finally pulled him through. Yet he still can’t believe he’s
writing to an audience greater than just himself. (The editors can’t
either.) He’s even got a double feature in this issue (see also “Print
Hints”). Will wonders never cease.•

For more information about derived media handlers,
see the Derived Media Handler Components chapter of Inside
Macintosh: QuickTime Components (which is included in the
QuickTime Developer’s Kit v. 1.5).•

SOMEWHERE IN
QUICKTIME

DERIVED MEDIA
HANDLERS

JOHN WANG

handling all requests that it can handle and delegating
requests that it can’t handle to the base media handler.

By calling the ComponentSetTarget routine after
opening an instance of the base media handler
component, we inform the base media handler that our
component is derived from it. For example, the
following code from our derived media handler
component’s open routine, MyOpen, will open the base
media handler and target it:

myComp = OpenDefaultComponent(MediaHandlerType,
BaseMediaType);

ComponentSetTarget(myComp, self);
(**storage).delegate = myComp;

The above description of targeting a component is
similar to another Component Manager service, called
capturing. Capturing is a service whereby the target
component completely and permanently overrides the
delegate component by hiding it from further use. This
is feasible, for example, when updating a component or
fixing bugs in it; the target can implement only the new
features while delegating the original functionality to
its delegate. Since the target wouldn’t want the
outdated delegate component to be visible any longer,
it would capture the delegate using the Component
Manager’s CaptureComponent routine. You shouldn’t
call CaptureComponent on the base media handler,
because that would hide it and prevent other derived
media handlers from using it. Conceptually, you’re not
replacing the base media handler; you’re just using its
services. Therefore, targeting it is sufficient.

When the media handler is no longer used by the
Movie Toolbox, the QuickDraw derived media
handler’s MyClose routine will be called. To close the
connection to the base media handler, MyClose must
call CloseComponent to close the base media handler
component instance:

CloseComponent((**storage).delegate);

To prevent our derived media handler from registering
if the base media handler isn’t available, the MyRegister

routine returns true (to not register) if the initialization
done by MyOpen fails or false (to register) if it
succeeds.

DEFINING THE MEDIA DATA FORMAT
The next step in creating a derived media handler is to
define a media type identifier, a sample description
record that’s stored along with the media samples, and
the format of the media data.

For our QuickDraw media, we’ll use 'Qdrw' as the
media type. (As with resource types, Apple reserves
all-lowercase types, so we use a media type that
contains one uppercase character.) Every movie that
contains a track created by using NewTrackMedia with
mediaType 'Qdrw' will automatically refer to our
custom media handler. Our media handler will have the
component type 'mhlr' and subtype 'Qdrw'.

All description records must contain size, type, resvd1,
resvd2, and dataRefIndex fields as a minimum. You
should always fill in the size and type fields, but you can
set the other fields to 0. It’s also recommended that a
field for the media data version be included in the
sample description record so that it’s always possible to
identify the version of the media data.

#define QDrawMediaType 'Qdrw'
#define QDMediaVersion 0x100
typedef struct GraphicsDescription {

long size;
long type; // QDrawMediaType
long resvd1;
short resvd2;
short dataRefIndex;
short version; // QDMediaVersion

} QDrawDescription, *QDrawDescriptionPtr,
**QDrawDescriptionHandle;

Since every media data sample has an associated
description record, it’s possible to find out the version,
or any other data defined in the record, for the
particular sample. To prevent wasting space with
duplicate description records, QuickTime associates a
sample description index with each sample; thus, many

d e v e l o p Issue 14

For more information on the Component Manager, see
“Techniques for Writing and Debugging Components” in develop
Issue 12 and the Component Manager documentation in the
QuickTime Developer’s Kit v. 1.5. (The Component Manager will
also be described in Inside Macintosh: More Macintosh Toolbox.)•

88

SOMEWHERE IN QUICKTIME: DERIVED MEDIA HANDLERS June 1993

89

media samples can refer to the same description record
through its index.

As mentioned earlier, the samples stored in our media
data are simply QuickDraw pictures. So the data handle
passed to AddMediaSample, which is the Movie
Toolbox call to add data into a media, will simply be a
PicHandle. This allows us to easily create sample data
with OpenPicture and ClosePicture and dispose of it
with KillPicture.

CREATING A MOVIE THAT USES THE DERIVED
MEDIA HANDLER
When we start writing the implementation-specific
component routines for the media handler, we’d like to
be able to test them with a QuickTime movie that uses
that media handler. So, the next step is to write an
application that creates a movie using the QuickDraw
media handler. But there’s a sort of Catch-22: We won’t
be able to run the application to create the movie until
after we begin implementing some of the QuickDraw
media handler component routines, because some of
the Movie Toolbox calls that are used to create the
movie will use the QuickDraw media handler. For
example, NewTrackMedia will cause QuickTime to
open an instance of our component to prepare for
editing and playback of the new media.

The code below shows how to create a movie using our
newly defined QuickDraw media format (the complete
code is on this issue’s CD). AddGraphics, defined later,
is a wrapper procedure for AddMediaSample that any
application can call to easily add media samples.

// Create track and media.
myTrack = NewMovieTrack(myMovie,

(long) kFrameWidth << 16,
(long) kFrameHeight << 16, 0);

myMedia = NewTrackMedia(myTrack, QDrawMediaType,
600, nil, (OSType) nil);

// Add samples to media.
BeginMediaEdits(myMedia);
myQDDesc = (QDrawDescriptionHandle)

NewHandleClear(sizeof(QDrawDescription));

(**myQDDesc).size = sizeof(QDrawDescription);
(**myQDDesc).type = QDrawMediaType;
(**myQDDesc).version = QDMediaVersion;
myPict = OpenPicture(&drawRect);
PaintOval(&drawRect);
ClosePicture();
AddGraphics(myMedia, myPict, myQDDesc, 600, 0,

nil);
DrawPicture(myPict, &drawRect);
KillPicture(myPict);
EndMediaEdits(myMedia);

// Place media into movie.
InsertMediaIntoTrack(myTrack, 0, 0,

GetMediaDuration(myMedia), kFix1);

The main difference between code that generates a
movie using normal QuickTime video media and code
that uses our QuickDraw media is in the
NewTrackMedia and AddMediaSample calls. For
NewTrackMedia, we pass 'Qdrw', as defined earlier, for
the mediaType parameter.

The wrapper procedure AddGraphics is defined as
follows:

pascal OSErr AddGraphics(Media graphicsMedia,
PicHandle myPic,
QDrawDescriptionHandle QDDesc,
TimeValue duration,
short mySync;
TimeValue *sampleTime)

{
return (AddMediaSample(graphicsMedia,

(Handle) myPic, 0L, GetHandleSize(myPic),
duration, (SampleDescriptionHandle)
QDDesc, 1L, mySync, sampleTime));

}

ADDING THE MEDIA HANDLER ROUTINES
The last step is, of course, to complete our derived
media handler component.

The file named MyMediaComponentRoutines.c
contains the routines that our QuickDraw media

For more information on the picture format, see the
“Color Picture Format” section of the Color QuickDraw chapter of
Inside Macintosh Volume V.•

handler implements rather than delegating to the base
media handler. It wouldn’t make much sense to
delegate MediaInitialize and MediaIdle, since these
routines are crucial to our code: MediaInitialize
initializes our media handler and MediaIdle is the
routine that gets called for drawing. On the other hand,
a call such as MediaGSetVolume wouldn’t be very
useful to our very quiet graphics media, so
MediaGSetVolume would be delegated to the base
media handler.

All media handler routines, as defined in the Derived
Media Handler Components chapter, must be
delegated to the base media handler if not
implemented. We’ve chosen to implement the
following routines because our media handler does
spatial processing (in other words, it draws).

• MediaInitialize: Prepares access to media by saving
necessary information passed to it in the
GetMovieCompleteParams record.

• MediaIdle: The Movie Toolbox provides processing
time to the derived media handler through this
routine. The QuickDraw media handler draws
during this call.

• MediaSetActive: The Movie Toolbox calls this
routine if the media is enabled or disabled.

• MediaSetRate: Called if the rate changes. This is
necessary to determine when the movie rate is
reversed.

• MediaSetMediaTimeScale: Our media handler cares
about the media time scale since we store times in
the media’s time coordinate system.

• MediaTrackEdited: Called if the track has been
edited. If so, we’ll want to redraw.

• MediaSetGWorld: Called if the destination GWorld
changes. If so, we’ll want to know the new GWorld
for drawing.

• MediaSetDimensions: Called if the spatial
dimensions change.

• MediaSetMatrix: Called if the track matrix or movie
matrix changes due to movie resizing.

• MediaGetTrackOpaque: Called to determine
whether the track is opaque. We want to return true
so that correct compositing occurs. Our media may
be semitransparent.

• MediaSampleDescriptionChanged: Called if the
sample description record changes. If we ever store
information beyond the media data version, we’ll
probably want to know if the user changes the
sample description contents. If the description
record changes due to different media samples
referring to different description records, this
routine isn’t called. Instead, the media handler must
check the sample description index returned by
GetMediaSample.

The routines we didn’t implement are:

• MediaGGetStatus: Our simplified QuickDraw
media handler doesn’t need any error processing.

• MediaPutMediaInfo, MediaGetMediaInfo: Since we
don’t store any proprietary information along with
the media data, we don’t need to implement this.

• MediaSetMovieTimeScale: Our media handler
doesn’t care about the movie time scale since we
don’t store any times in the movie’s time coordinate
system.

• MediaSetClip: Our media handler doesn’t support
clipping.

• MediaSetGraphicsMode, MediaGetGraphicsMode:
Our media handler doesn’t support graphics modes.

• MediaGetNextBoundsChange: Our bounds doesn’t
change dynamically. (The text media handler is an
example of a media that has dynamically changing
bounds.)

• MediaGetSrcRgn: Our media doesn’t have an
irregular display region.

• MediaGSetVolume, MediaSetSoundBalance,
MediaGetSoundBalance: We don’t play sound.

• MediaPreroll: We let the base media handler do our
prerolling for us. The data handler is smart about
caching, so we really don’t need to worry about this.

d e v e l o p Issue 14

90

SOMEWHERE IN QUICKTIME: DERIVED MEDIA HANDLERS June 1993

91

Since it’s difficult for us to cover every possible
condition in which the media handler will get called, a
clever approach is needed to aid in the development of
the derived media handler. The solution lies in
DebugStr: By strategically placing DebugStr calls
throughout the media handler, we can see which
routines are being called. Knowing which events
trigger calls to our media handler will allow us to
decide which calls the handler should support and
which ones we can delegate. For example, it was
through this process that I found that MediaSetMatrix
was a call I needed to implement because resizing a
movie window causes MediaSetMatrix to be called.

This approach makes it possible to create a media
handler starting off with just a MediaInitialize routine
and building from there. The selectors for a media
handler component are in the range of 0x500 to 0x5FF.
Therefore, any calls that are delegated with selectors in
this range should be examined to determine whether
the actions that cause the routine to be called are
significant to the media handler implementation. If so,
the routine should not be delegated. The QuickTime
documentation, this column, the sample code, and
common sense should give you a good idea of which
media handler–specific routines a derived media
handler must implement.

THE GUTS OF THE MATTER
As you can see in MyMediaComponentRoutines.c,
most of the guts are in the routines MediaInitialize and
MediaIdle. MediaInitialize is called by the Movie
Toolbox when a movie using the media is opened. The
MediaInitialize routine should grab information it
needs that’s passed to it by QuickTime in the
GetMovieCompleteParams record and store it in a
private data structure.

typedef struct {
short version;
Movie theMovie;
Track theTrack;
Media theMedia;
TimeScale movieScale;
TimeScale mediaScale;

TimeValue movieDuration;
TimeValue trackDuration;
TimeValue mediaDuration;
Fixed effectiveRate;
TimeBase timeBase;
short volume;
Fixed width;
Fixed height;
MatrixRecord trackMovieMatrix;
CGrafPtr moviePort;
GDHandle movieGD;
PixMapHandle trackMatte;

} GetMovieCompleteParams;

typedef struct {
// Component stuff
ComponentInstance delegate;
ComponentInstance self;

// Characteristics
Movie myMovie;
Track myTrack;
Media myMedia;
Fixed mediaRate;
Rect graphicsBox;
MatrixRecord myMatrix;
CGrafPtr port;
GDHandle device;
long sampleDescIndex;

// Media globals
long somethingChanged;
Boolean enabled;
Fixed newMediaRate;
TimeValue lastMediaTime;

} PrivateGlobals;

The above private data structure for the QuickDraw
derived media handler shows the fields that the
handler is interested in. For example, we would
obviously need to know the trackMovieMatrix, but a
sound media handler would not. The information in
the GetMovieCompleteParams record is valid at the
time of the MediaInitialize call and is updated through
other derived media handler routines such as

MediaSetGWorld. It’s important to implement such
derived media handler routines to update information
used by the media handler.

MediaInitialize also needs to inform the base media
handler of its capabilities by calling the routine
MediaSetHandlerCapabilities. Our media handler uses
this routine to tell the base media handler that we
perform spatial processing and that we also can work
with transfer modes.

MediaIdle does the bulk of the processing in a media
handler. Our MediaIdle routine uses GetMediaSample
to get the media sample and then calls DrawPicture to
display the sample. It also uses a scheme of calling
GetMediaNextInterestingTime to implement sync
frames; this allows greater performance when playing
movies backward, because the media handler won’t
have to begin drawing from the beginning of the
media. The concept of sync frames is important in
QuickTime movies because it allows temporal
compression so that not all frames need to contain
complete state information. Keeping a small number of
frames between key frames makes it possible to
preserve performance when playing movies backward,
since rendering of frames must still occur in the
forward direction.

The effect of not having sync frames is evident if you
create a movie without any (see the example on the
CD). Such a movie will look to the media handler like a
movie in which every frame is a key frame. As you can
see with these movies, backward playback of movies
gives different results than forward playback since each
sample is treated as a sync sample even though it
shouldn’t be. This is not recommended because it’s
conceptually and visually confusing to users.

In addition, to prevent the redrawing of previously
drawn frames, our media handler keeps track of the last
media time that the image has been updated so that it
can continue from there if no other changes to the
environment prevent it. This works only when the
movie is playing in the forward direction. When a
movie is played backward, each frame must be
completely recreated starting from the last key frame.

OUT OF TIME
Using the QuickDraw derived media handler as a
framework, you can create your own media type.
Interactivity tracks, custom sound format tracks (such
as MIDI), and even hardware control tracks are all
possible. With some creativity and work, you can
expand the capabilities of QuickTime beyond
imaginable limits.

d e v e l o p Issue 14

Thanks to Ken Doyle, Bill Guschwan, Peter Hoddie, and
Guillermo Ortiz for reviewing this column.•

92

QuickTime 1.5 makes it easier than ever to make CD-playable movies.
These tips on capturing, compressing, and playing back movies will help
you use the new Apple Compact Video compressor to its best advantage,
creating movies that will play well off a standard CD-ROM drive on a
Macintosh LC computer.

QuickTime introduced the world of digital video to the Macintosh and enabled a
whole new category of multimedia content: movies. With QuickTime, it’s simple to
play back movies in any application and to exchange movies between applications
using the standard cut/copy/paste mechanism. But no one ever said it was going to
be easy to create them!

What makes movie creation tricky is the tradeoffs required to get QuickTime movies
to play off a CD-ROM drive, the most effective distribution medium for digital
video. Uncompressed, full-screen, full-motion video requires a data transfer rate of
about 27,000 kilobytes/second, yet a typical CD-ROM drive has a data transfer rate
of only 100 kilobytes/second. QuickTime solves this problem by using video
compression, which requires you to make tradeoffs between frame size, frame rate,
image quality, and sound quality when making a movie.

The tips in this article will help you make the right tradeoffs to produce high-quality
movies that will play off CD-ROM. You’ll also find tips on capturing digital video,
using the MovieShop utility on this issue’s CD to produce compressed movies, and
playing back what you’ve created. I assume you’re already familiar with the basics of
movie making with QuickTime.

TIPS ON TRADEOFFS
Making the right tradeoffs is the key to producing better QuickTime movies.
Depending on your target platform, to get smooth playback you may need to limit
the frame size and rate, minimize the differences between frames, and trade off audio
for video quality.

MAKING BETTER QUICKTIME MOVIES June 1993

93
KIP OLSON lives by the motto “I never met an
avalanche I didn’t like” and spends his winters
skiing the extreme in places like Chamonix,
Jackson Hole, and Hoboken. When not cornice
surfing, he’s been known to cast a #12 Adams to
a rising brookie and score a perfect 18 at putt-
putt golf. He works for Apple in his spare time.•

KIP OLSON

MAKING

BETTER

QUICKTIME

MOVIES

PLATFORM
Before you get started, you need to decide which Macintosh platform your movie will
play on. Obviously, a Macintosh Quadra 950 with a double-speed CD-ROM drive
can play much larger, higher-quality movies than a Macintosh LC with a standard
CD drive. Table 1 shows some common platforms and their capabilities. (See the
following sections for more on frame size and rate.)

For the purposes of this article, our target platform is the Macintosh LC II with an
AppleCD SC CD-ROM drive (transfer rate of 100 kilobytes/second). Movies created
for this platform should play back well on virtually every color Macintosh, covering as
much of the installed base as possible. However, keep in mind that machines that use
NuBus video, such as the Macintosh II, won’t have the playback performance of the
LC II. You should always test your movies on the platforms they’ll play on.

FRAME SIZE
The frame size determines how large the movie will be on the screen. The larger the
frame size, the greater the number of pixels that have to be updated every frame. This
can be a problem for less powerful machines, so you often need to limit the frame size
to get smooth playback.

Frame sizes are typically specified by horizontal and vertical pixel measurements.
Some common frame sizes for digital video are shown in Table 2.

d e v e l o p Issue 14

For more information on QuickTime 1.5,
your best source is the QuickTime Developer’s Kit
v. 1.5, available from APDA. This kit includes the
complete printed documentation for QuickTime
1.5 as well as the QuickTime 1.5 Developer CD,
which is full of example code, movies, and
utilities. The new Inside Macintosh: QuickTime
and Inside Macintosh: QuickTime Components

together provide a complete description of
QuickTime 1.5.•

94

Table 1
Common QuickTime Platforms

Built-in Maximum Movie
Macintosh Bits/Pixel CD Drive Frame Size, Rate Market
Quadra 950 1, 4, 8, 16, 24 Optional 320 x 240, 24 fps Power user, professional
Performa 600 1, 4, 8, 16 Optional 320 x 240, 15 fps Consumer, home
LC II 1, 4, 8, 16 No 240 x 180, 12 fps Education
Macintosh II Card-dependent No 160 x 120, 15 fps Loyal customers

Table 2
Common Frame Sizes for Digital Video

Frame Size Description Pixels/Frame Capability Required
640 x 480 Full-screen 307,200 Hardware acceleration
320 x 240 Quarter-screen 76,800 Fast CPU like a Macintosh Quadra
240 x 180 Eighth-screen 43,200 Apple Compact Video compressor
160 x 120 Sixteenth-screen 19,200 Apple Video compressor

Note that full-screen movies are practical only with hardware acceleration, and for
quarter-screen movies you need a fast CPU like a Macintosh Quadra. With our LC II
platform and the Apple Compact Video compressor made available by QuickTime
1.5, we can create eighth-screen movies, which have more than twice the screen area
of the “postage-stamp movies” possible with QuickTime 1.0’s Apple Video
compressor.

For the Apple Compact Video compressor to function optimally, the frame size
should be a multiple of 4 in each dimension. This is because the compression
algorithm uses a 4-pixel by 4-pixel cell.

FRAME RATE
The frame rate is the number of frames displayed in each second of the movie,
typically described in frames per second (fps). The frame rate to use for a movie
depends on the frame rate of the source material, whether film or videotape. For the
smoothest results, you should use a frame rate of which the source material frame rate
is a multiple, but this may only be possible if you have hardware acceleration or a fast
CPU. Still, an acceptable compromise is available if your platform is limited.

The frame rate of source material in the NTSC video format is approximately 30 fps.
Much source material is shot using film at 24 fps and then transferred onto videotape.
Frame rates to use for movies based on these types of source material are shown in
Table 3. Other video standards such as PAL and SECAM have different frame rates;
if your movie is based on one of these types of source material, you’ll have to
compensate accordingly. For our target platform, we can use 12 fps with good results.

There are a couple of minor quirks having to do with frame rate that you should be
aware of when you make a movie. First, you’ll note that I said the NTSC frame rate

MAKING BETTER QUICKTIME MOVIES June 1993

95

Table 3
Common Frame Rates for Digital Video

If Your Source Material Is NTSC Video:
Frame Rate Description Capability Required
30 fps Full-motion Hardware acceleration
15 fps Half-motion Fast CPU like a Macintosh Quadra
12 fps Half-film rate Apple Compact Video compressor
10 fps Third-motion Apple Video compressor

If Your Source Material Is Film:
Frame Rate Description Capability Required
24 fps Full-motion Hardware acceleration
12 fps Half-motion Apple Compact Video compressor
10 fps Third-video rate Apple Video compressor

is approximately 30 fps. For reasons lost in the dawn of television, the NTSC frame
rate is actually 29.97 fps. If you assume the frame rate is 30 fps, long movies can lose
synchronization between sound and video over time, since there are fewer video
frames than expected. For example, if you digitized 100 seconds of video, you would
expect to get 3000 frames, but you would really only get 2997 frames in that period of
time. The GrabGuy utility and the HyperCard® Movie Making Stack (found on the
QuickTime 1.5 Developer CD and on this issue’s CD) automatically take care of this
problem, but if you find sound sync drifting over time on long movies, you may need
to duplicate a video frame every 1000 frames to get things back in sync.

The second item to note involves transferring 24-fps film to 30-fps video. On
videotape, each frame is composed of two fields, one containing the odd scan lines
and the other containing the even scan lines. These fields are interlaced to produce
the frame. When film is transferred to video, six extra frames are “made up” every
second. Typically, once every four frames, two adjacent film frames are put into the
two fields of a single video frame to form a fifth frame. Figure 1 shows how this
works. These made-up frames have a blurred look when digitized.

You can use a couple of different methods to digitize only the original film frames and
skip the blurry made-up frames. If you have a capture system that can grab individual
video fields, you can set it to capture at 12 fps, and it will skip the duplicate fields and
give the original 12 film frames each second. Or simply capture at 30 fps and throw
away every fifth frame, yielding the original 24 film frames.

FRAME DIFFERENCING
Frame differencing is the technique used by QuickTime of storing and updating only
the pixels that differ from the previous frame, so that much less data has to be stored
and displayed. For example, in Figure 2 the frame on the right contains only the
information needed to update the areas of the screen that differ from the frame on
the left. As a consequence, less data has to be stored on disc for the second frame and
it takes less time to draw. This in turn allows larger frame sizes and frame rates,
giving better-quality movies.

d e v e l o p Issue 14

96

Film frames:

Video frames:

1 2 3 4
5

5 6 7 8 9
9

10 11 12
13

4 8 12
++ +

1 2 3 4 5 6 7 8 9 1110 12 13 14 15

- - -

- - -

Figure 1
Making Up Extra Frames When Film Is Transferred to Video

When you’re using the Apple Compact Video compressor, it’s a good idea to create
movies in which not much changes from one frame to the next, since frame
differencing is one way the compressor achieves lower data transfer rates. Here are
some things to keep in mind to get the most benefit from frame differencing:

• When possible, use source material with constant backgrounds
and solid colors — especially all-black and all-white areas — to
reduce the difference between frames.

• When possible, use videos of “talking heads.” These are great
candidates for frame differencing, since typically only the lips and
head move.

• Avoid videos with lots of panning and zooming or with complex
backgrounds. These effects increase the difference between frames
and thus decrease the possibility of compression gains.

• Avoid source material with a lot of video noise, as this increases the
difference between frames.

Frames can’t be differenced indefinitely, however. At regular intervals a key frame —
a frame that refreshes the entire movie area, not just the pixels that differ from the
previous frame — is inserted. You can adjust the interval to achieve the tradeoff
between data rate and movie quality that you desire. Normally, you should have one
key frame per second. The more you put in, the higher the data rate and the better
your movie looks but the less compression gain you get from frame differencing.

SOUND SAMPLING RATE
The standard Macintosh sound rate is 22.254 kHz, so you’ll get the highest-quality
audio by sampling to this rate. The Sound Manager is also more efficient at this
native rate, so the movie will play back better. However, because your data transfer

MAKING BETTER QUICKTIME MOVIES June 1993

97

Figure 2
Example of Frame Differencing

rate off CD-ROM is limited, using higher audio rates will decrease the quality of the
video. The same constraint applies to stereo and 16-bit sound, both of which are
supported by QuickTime: these formats eat up more bandwidth, so the video quality
may suffer.

If your source is mostly people talking and not music, you can record audio at the
alternate sampling rate of 11.127 kHz. In many cases this will make your video look
sharper and give acceptable sound quality.

With most audio sampling hardware, it’s best to set the hardware at the sampling rate
you desire, since the hardware will often do filtering to avoid aliasing artifacts. One
exception is the MacRecorder digitizer (from MacroMedia), which doesn’t filter at
11.127 kHz. If possible, you should record at 22.254 kHz on a MacRecorder and
downsample the audio to 11.127 kHz when you compress the movie.

One other thing to keep in mind when using a MacRecorder to digitize audio at
22.254 kHz is that its sample rate tends to drift away from the standard Macintosh
rate, so you should always resample it to 22.254 kHz or 11.127 kHz when you
compress the movie.

TIPS ON CAPTURING
The QuickTime 1.5 Developer CD and this issue’s CD contain two utilities for
capturing video: GrabGuy and the HyperCard Movie Making Stack. GrabGuy is an
application that does a multipass grab off a controllable VCR like the Sony µMatic,
giving frame-accurate recording. HyperCard and the Movie Making Stack enable you
to get frame-accurate grabs off controllable Pioneer laser discs. Most video cards also
come with software that enables you to grab raw video directly to RAM or hard disk.

To get the highest possible quality when you’re capturing the source material, you
should do three things:

• Start with a clean source.

• Adjust black, white, brightness, and contrast levels.

• Grab at a larger size than you need and scale down when you
compress.

I’ll discuss these tips one at a time.

START WITH A CLEAN SOURCE
The less video noise, the better compression and the more benefit from frame
differencing you’ll get, so you should digitize from the cleanest, highest-quality video
source possible. The most common video formats, in decreasing order of quality, are
BetaCam, µMatic/S-VHS/Hi8, laser disc, and VHS.

d e v e l o p Issue 14

For more on capturing, see the article “Video
Digitizing Under QuickTime” in this issue.•

98

Beware of tapes that have been duplicated many times or played a lot — they can be
very noisy. If your digitizing card supports S-Video inputs, use them if you can, as
S-Video delivers better quality than composite video.

ADJUST LEVELS
Many digitizing cards support one or more settings with regard to black level, white
level, brightness, and contrast. To enhance compression gains from frame
differencing, you should adjust the black level of your card so that black areas in your
source digitize as truly black pixels. A frame with truly black pixels differs much less
from the original than the same frame with noisy black pixels. Thus, refreshing the
screen with the noisy frame takes more data than refreshing the screen with the clean
frame. Often what looks like black is quite noisy, so you should experiment with your
video card. The same rule applies to white levels.

GRAB AT A LARGER SIZE THAN YOU NEED
Because many video cards do a poor job of scaling down frames when they grab, it’s
best to capture at a large size and let QuickDraw do a filtered scale when you
compress. If you’re using GrabGuy you don’t need to worry, because it will grab
320 x 240 fields and use QuickDraw to scale them down. If you’re grabbing from
laser disc, grab frames at 640 x 480 and scale them down at compression time.

To save disc space, you should grab using JPEG compression set to the highest
quality instead of grabbing raw frames. Most of the quality you might lose this way
isn’t used by the Apple Compact Video compressor anyway, so this won’t reduce the
quality of your final movie very much. A number of video cards now support
hardware JPEG compression, which makes this even easier.

TIPS ON COMPRESSING
The MovieShop utility on this issue’s CD is indispensable for compressing
QuickTime movies. After an admonition to edit before compressing, I’ll take you
through the steps involved in using MovieShop to create CD-playable movies. My
emphasis here is more on what to do than why you’re doing it. If you’re curious
about the reasons you go through the steps you do, refer to the MovieShop
documentation on the CD.

EDIT BEFORE COMPRESSING
To achieve the best possible playback performance with the smallest amount of
memory, you should completely edit your movie in raw form before compressing
with MovieShop. By the same token, it’s not a good idea to compress the movie in
pieces and then cut and paste the pieces together to form the final movie, as this will
require extra input/output buffers and may cause QuickTime to run out of memory.
If this happens, movie playback will slow down considerably.

MAKING BETTER QUICKTIME MOVIES June 1993

99

Here’s why: Movies are composed of tracks that typically contain video and sound
data. When you capture a movie, the track data is often stored sequentially in the file,
resulting in a file layout like the first one shown in Figure 3. To play this movie,
QuickTime must allocate four large buffers — one for each track — and seek
between tracks during playback. This can cause miserable playback performance off
CD-ROM drives, which typically have very slow seek times (we’re talking hundreds
of milliseconds).

To solve this problem, QuickTime enables you to interleave the video and sound
tracks, resulting in a file layout like the second one shown in Figure 3. Because the
sound and video track data are now close to each other in the file, seeking is
minimized and only two buffers are needed for data transfer. This is often the file
layout you get when you paste two movies together.

The most efficient layout is to append the second video/sound sequence onto the
first, as illustrated by the third file layout in Figure 3, so that only one buffer is
needed and playback is optimized. When you compress with MovieShop, it
automatically merges all the video and sound tracks of a movie into a single video and
sound track, thus giving you the most efficient layout.

d e v e l o p Issue 14

100

Figure 3
Ways of Storing Video and Sound Track Data in a Movie

video 1 video 1

sound 1 sound 1

video 2 video 2

sound 2 sound 2

Data stored sequentially:

video 1 sound 1 video 1 sound 1

video 2 sound 2 video 2 sound 2

Video and sound data interleaved:

video 1 sound 1 video 1 sound 1 video 2 sound 2 video 2 sound 2

One video and sound sequence appended to another:

SET THE DATA RATE
After importing a movie to compress, the first thing you do in MovieShop is to set
the data rate. (See Figure 4.) To play off CD, a movie must be compressed to deliver a
consistent data rate of 100 kilobytes/second or less, the effective data transfer rate of
the first generation of CD-ROM drives. Some of the newer CD-ROM drives can
now deliver twice this data rate, but you’ll probably want to make your movie at 100
kilobytes/second anyway, for backward compatibility. So a data rate of 100 is usually
best for CD playback, while a range from 90 to 105 kilobytes/second will usually
produce good results.

SET THE VIDEO SETTINGS
Next you indicate your preferences relating to compression method, colors, and key
frame spacing. To do so, choose Video from the Preferences menu. The dialog box
shown in Figure 5 will be displayed. This is where you choose Apple Compact Video
as your compression method. The Apple Compact Video compressor has been
optimized for CD playback and has a built-in data rate constraining algorithm to give
consistent playback from CD. Computationally, it’s a highly asymmetric algorithm,
taking about an hour to compress a minute of video. The results are worth it,
however.

MAKING BETTER QUICKTIME MOVIES June 1993

101

Figure 4
Setting the Data Rate in MovieShop

MovieShop tries to limit the data rate of a movie by adjusting the amount of frame
differencing (motion quality) and lowering the compression quality (spatial quality).
However, since the Apple Compact Video compressor determines motion and spatial
quality internally, you should turn these settings off by entering the numbers shown
in Figure 5. (For details about what these magic numbers mean, see the MovieShop
documentation.) That way, Apple Compact Video will always make the right choices
for the data rate you’ve chosen.

If your source material is in color, choose “Millions of colors”; if it’s in black and
white, choose “256 grays.” “Use previous compressed video” should be checked for
most video sources; however, if you’re compressing raw animations or composite
movies with a constant background, uncheck this setting to get more benefit from
frame differencing. MovieShop will then use the last uncompressed frame instead of
the last compressed frame as the basis for frame differencing.

The key frame setting should be related to the frame rate of your video. As I
mentioned earlier, you should normally have one key frame per second, although in
some cases you might want to have fewer than one per second to lower the data rate
(which will, however, decrease quality as well).

d e v e l o p Issue 14

102

Figure 5
MovieShop’s Video Quality Preferences Dialog

SET THE SOUND SETTINGS
To change sound settings, choose Sound from the Preferences menu. Selecting
22 kHz will ensure that your movie uses the standard Macintosh rate of 22.254 kHz.
As discussed earlier, if you’re not concerned about audio quality you should probably
resample to 11 kHz as a tradeoff for sharper video. The Video to Sound setting lets
you set how far ahead in seconds the audio is interleaved on the file from the video on
the disc. This setting should normally be at 1.90, but if you find that CD playback is
choppy or the audio portion breaks up, try lowering this number to 1.5. “Interleaved
sound” should always be checked so that the audio and video are interleaved as
explained earlier for smooth CD playback.

SCALE AND CROP THE MOVIE
Now you need to crop the movie, since there’s often tape noise and jitter on the edges
of the video frames. At the same time you can scale the movie to ensure that the
frame size is a multiple of 4 pixels in each dimension. (Recall that due to its
algorithm, the Apple Compact Video compressor functions optimally if this is so.) To
change cropping settings and scale the movie, choose Cropping from the Preferences
menu. In Figure 6, the movie is being cropped by 2 pixels on all sides to eliminate
noisy edges and make the output dimension values multiples of 4.

MAKING BETTER QUICKTIME MOVIES June 1993

103

Figure 6
MovieShop’s Cropping Dialog

DISABLE EXTRA COMPRESSION METHODS
MovieShop can apply a large number of techniques when compressing a movie to get
the data rate you specify. These techniques are used by the Apple Compact Video
compressor, but since the compressor itself takes care of all data rate limiting, all of
these methods should be turned off. To turn them off, choose Methods from the
Preferences menu. Then drag item 18 to the second position in the list of methods, as
shown in Figure 7.

The version of MovieShop on the CD (v. 1.0c2) has a bug that causes it to use the
settings for methods 2, 3, 4, and 5 even when they’re below item 18. If you’re
working with that version, you should additionally set those methods to the following
values to really disable them:

2. Forced Key frame — 255

3. Natural Key frame — 1

4. Natural Key frame — 200

5. Drop duplicate frame — 255

d e v e l o p Issue 14

104

Figure 7
MovieShop’s Methods Dialog

Again, for details about what these magic numbers mean, see the MovieShop
documentation.

Once you’ve set up MovieShop this way, click “Make the movie,” choose an output
file, and sit back and watch the show. It can be a long wait, but the results will be
worth it.

TIPS ON PLAYBACK
If you’re developing an application to play QuickTime movies, there are four things
you can do to make movie playback everything you’d hoped it would be:

• Optimize the movie’s screen position and depth.

• Avoid clipping any portion of the movie.

• Hide the movie controller.

• Don’t call WaitNextEvent as often.

OPTIMIZE SCREEN POSITION AND DEPTH
The position of the movie on the screen can affect playback performance. For
greatest efficiency, the left edge of the movie should be aligned to a long-word
boundary in video memory. A new function in QuickTime 1.5 called AlignWindow
moves a window to the optimal screen location for movie playback.

The screen depth also affects playback. If the screen is set to millions of colors, the
movie will play back more slowly than at 256 colors, because there are more bytes to
move to the screen every frame. The Apple Compact Video compressor is optimized
for thousands of colors (16 bits/pixel), so you’ll get the best performance and quality
at that depth.

AVOID CLIPPING
If any portion of the movie is clipped, playback performance will be substantially
decreased because QuickTime will have to do a lot more work to draw the frames.
Try to avoid overlapping windows and drawing to multiple screens. Be aware of the
menu bar and the rounded corners on the edges of the Macintosh screen. Set the
clipping region correctly for the movie.

HIDE THE MOVIE CONTROLLER
Displaying and updating the movie controller can cause the movie to play back more
slowly, especially on low-end machines and for shorter movies, so you may want to
hide it to achieve better playback. Still, it’s desirable to have an option to show/hide
the controller in your human interface. You might consider using the badge option
for the movie controller to achieve this.

MAKING BETTER QUICKTIME MOVIES June 1993

105
For more information on AlignWindow
and other alignment routines, see the Image
Compression Manager chapter of the QuickTime
1.5 Developer’s Kit documentation, and Inside
Macintosh: QuickTime.•

DON’T CALL WAITNEXTEVENT AS OFTEN
Since QuickTime performs all its drawing operations at main event loop time, the
more often you call MoviesTask the better movie playback you’ll get. However, most
applications call WaitNextEvent once every event loop, which can go away for a fairly
long time under System 7, effectively reducing the number of times MoviesTask gets
called each second. To improve this, simply call WaitNextEvent only once a second
or so while movies are playing. This will allow background tasks time to run but
won’t interfere with foreground event processing.

SEE YOU AT THE MOVIES!
Now you know a little bit more about making and playing movies than you did before
you sat down with this article. You understand what the tradeoffs are in making CD-
playable movies: to get smooth playback, you may need to limit the frame size and
rate, minimize the differences between frames, and trade off audio for video quality.
You know that to get the best possible quality when you capture, you need to start
with a clean source, adjust levels, and grab at a larger size than you need. You know
how to use MovieShop with the Apple Compact Video compressor to compress your
movie. And you know that to get the best possible playback, you need to optimize the
movie’s screen position and depth, avoid clipping any portion of the movie, hide the
movie controller, and not call WaitNextEvent as often.

In a nutshell, if you want your movie to play well on a Macintosh LC II with an
AppleCD SC and thousands of colors, you should use the following setup:

• Frame size: 240 x 180

• Frame rate: 12 fps

• Sound rate: 11.127 kHz

• Data rate: 100 kilobytes/second

• Compressor: Apple Compact Video

• Key frame: every 12 frames

With this knowledge, you can really put this technology to work and produce a
QuickTime movie with the best of them. While you may not become the next Steven
Spielberg, you can at least see your name in lights (check out the QuickTime 1.5
Developer CD About Box movies to see the QuickTime team in action). See you at the
movies!

d e v e l o p Issue 14

THANKS TO OUR TECHNICAL REVIEWERS
Dean Blackketter, Bill Guschwan, Peter Hoddie,
Eric Hoffert•

106

BE OUR GUEST: SYSTEM ENABLERS June 1993

107

System 7.1 introduced system enablers to Macintosh
system software architecture. Since their introduction
on some of Apple’s new machines, there’s been some
confusion about what system enablers are for, and
developers have expressed interest in writing and using
them. This column will shed some light on the subject.

THE BAD NEWS
Even before beginning to describe them, we have to
emphasize that system enablers are system software,
designed and intended solely for the use of Apple
Computer. Detailed descriptions of their design and
use will not be released. Their functionality and
implementation will change; any developers who try to
decipher enablers and implement their own are warned
that they will fail in future system releases. Do not write
your own enabler or modify a current one!

Kinda harsh, huh? But we really mean it: the
functionality of system enablers makes sense only for
system software. Also, modifying or creating an enabler
without fully understanding how one works could cause
the enabler mechanism to fail silently. This could result
in a machine that appears to be working correctly but
does not have the full enabler functionality active,
causing very hard-to-isolate crashes or other problems.

OK, SO WHAT ARE THEY?
System enablers (which were called “gibblies” in early
documentation and system development releases)

replace the release strategy that Apple used in the past
for minor system changes needed for new hardware.
The old strategy was to release a new version of the
system software, such as version 6.0.8 or 7.0.1. With
enablers, the differences in hardware no longer require
a new system release, but instead each new machine has
its own enabler (if necessary) to make the system work
for that hardware.

This change was made for two reasons:

• Creating an enabler instead of a whole new system
release reduces Apple’s quality assurance and testing
time. By creating an enabler, we’re testing new code
only on new machines; past machines aren’t affected
since the new enabler won’t run on those machines.
This also reduces your testing time as a third party,
since you no longer have to install a new system
release on all your older machines and test for
compatibility; you know the system changes will
affect only the newly released machines.

• Enablers reduce user confusion and unnecessary
upgrades. In the past, every time a machine was
released, with its corresponding new software
release, users of older machines were unsure
whether they needed to upgrade to the new system.
Many assumed that since it was newer, it was better.
While this has been true occasionally, it usually isn’t
(upgrading from 7.0 to 7.0.1 on a Macintosh IIcx,
for example, gives the user nothing new).

Apple will continue to use system extensions or
components when new functionality is being added
across the product line, as with QuickTime and
Macintosh Easy Open. Enablers just broaden the range
of options for enhancing the user’s environment.

HOW DO THEY WORK?
Nope, no cheating — we really won’t be describing the
internals of enablers. But here are some general rules
about their behavior.

An enabler is essentially an extension to the System file;
from a programmatic standpoint it is the System file.

C. K. HAUN works in Apple Developer Technical Support, where
he is the perennial winner of the coveted “Most Documentation
Heaped on the Floor” award. Before coming to Apple he was a
commercial developer, writing educational, game, and utility
software on Macintosh, IBM, and Apple II platforms. His main
focus in DTS is interapplication communication and application
toolbox support. He’s also single again; please see ad #298700
in the personal ads section of this issue.•

We welcome guest columns from readers who have
something interesting or useful to say. Send your column idea or
draft to AppleLink DEVELOP or to Caroline Rose at Apple
Computer, Inc., 20525 Mariani Avenue, M/S 75-2B, Cupertino,
CA 95014.•

BE OUR GUEST

SYSTEM ENABLERS

C. K. HAUN

d e v e l o p Issue 14

Thanks to Chris Derossi, Greg Marriott, and Dean Yu for
reviewing this column.•

108

The Resource Manager was changed slightly to
recognize references to the System file (CurResFile(0),
for example) as being references to the System file and
the current enabler. The code or other resources
included in the enabler file appear to actually reside in
the System file.

Any new machine may have a system enabler. The
enabler will contain the system-level code necessary to
implement changes required for that machine. A single
enabler may be used for a family of machines, or a
separate enabler may be created for each new machine.

If there are multiple enablers in a machine’s System
Folder, the system will use only one of them. The
system software (System file plus enabler) is responsible
for arbitrating which enabler is used on a specific
machine. It looks at the machine type it’s currently
running on, the machines that the enabler supports,
and some enabler-internal applicability flags. Note that
this is how the decision is currently made; as enablers
are used for more machines and in different situations,
more variables may be added to the decision process.

ENABLERS AND REFERENCE RELEASES
A specific enabler may not stay around forever. Apple
has announced its intention to have “reference
releases” every year to 18 months; these are the system
upgrades that all users will be encouraged to install.
Some enablers may be rolled into a reference release,
so a machine that needed an enabler for System 7.1
may not need one for System 8. This is not a hard and
fast rule; some enablers may stay around forever,
depending on the functionality they enable.

THE BOTTOM LINE
System enablers make everyone’s life easier by
encapsulating system changes for new machines in one
place. But they are not for non-Apple use, and
developers cannot implement them with any hope of
long-term success. The safest path to take is not to
think of enablers as separate files. An enabler is the
system; when you encounter one on a machine, you’re
looking at the System file. The traditional methods
(INITs, cdevs, components, and so on) are still the only
supported ways for developers to extend system
functionality.

When system enablers were being designed, it was
clear they were going to be a mechanism for extending
the system. Engineers began calling them INITs, since
they served much the same purpose. This caused some
confusion with people who thought we really were
talking about INITs, and issues were raised about
possible conflicts with other INITs, loading order, and so
on. (These issues don’t apply to system enablers at all.)

It was obvious to me that we needed to change the
name to differentiate system enablers from other types of
system extension mechanisms. We couldn’t use the term
extension because that was the public name for INITs.
We couldn’t use addition because that term already
referred to things like QuickDraw GX and AOCE.

So, I decided to use a made-up word. I wanted a word
that would be memorable and one that would sound
funny when used in all seriousness by executives and
upper management. Hence the name “gibblies.”

The engineering documentation for gibblies states that
the singular is “gibbly” and the plural is “gibblies.” It
also states that the “g” may be pronounced hard or soft
depending on the speaker’s preference. In practice, the
hard form (as in “give”) became the one used by those
in the know.

There you have it. And, yes, it was very amusing to hear
the made-up word being used all over the company in
serious conversation.

GIBBLY HISTORY
BY CHRIS DEROSSI

Q When a request for information is passed to me through an Apple event, the direct
object parameter of my reply event is a descriptor list that includes an AERecord of my
information. When I use AEPutPtr and the AEPutParamDesc, is the data copied or
merely referenced? Should I be disposing of the AERecord and/or the descriptor list, or
should I expect AEProcessAppleEvent to dispose of them?

A Whenever you make one of the AEPutXXXX calls, the Apple Event Manager
copies the data you put into the list, event, or record, so as soon as you make the
call you can dispose of the data you put. Thus, the following is correct:

AEPutParamDesc(&theEvent, keyDirectObject, &theSpec);
AEDisposeDesc(&theSpec);

And so is this:

HLock(myTextHandle);
AEPutParamPtr(&theEvent, keyDirectObject, typeText,

(Ptr)*myTextHandle, GetHandleSize(myTextHandle));
DisposeHandle(myTextHandle);

The only two descriptors disposed of by the Apple Event Manager itself (at the
conclusion of AEProcessAppleEvent) are the original Apple event and the reply
Apple event. So, anything that you create and manipulate yourself should be
disposed of by you when you add it to another Apple event record or when
you’re done with it. The two that you don’t dispose of yourself are theEvent and
reply, which are passed to you, as in:

pascal OSErr AEXXXHandler(AppleEvent *theEvent, AppleEvent *reply,
long refIn)

This even holds true for AESend. When you send an event, you can
immediately dispose of your copy of the event, as follows:

AESend(&myEvent, nil, kAENoReply, kAENormalPriority,
kAEDefaultTimeout, nil, nil);

AEDisposeDesc(&myEvent);

Q The System 7.1 Digest has a disturbing comment about GetMHandle — namely that
it was never supported and will no longer work. Is this true?

A This warning is misleading and is being corrected in future release notes. It
applies only to pop-up menus created with the pop-up menu control. Before
System 7.1, after a control was created GetMHandle would return the menu
handle for the control, although it was never documented as doing so. In

MACINTOSH Q & A June 1993

109
Kudos to our readers who care enough to
ask us terrific and well thought-out questions. The
answers are supplied by our teams of technical
gurus in Apple’s Developer Support Center; our
thanks to all. Special thanks to Pete (“Luke”)
Alexander, Mark Baumwell, Brian Bechtel,
Cameron Birse, Joel Cannon, Matt Deatherage,
Tim Dierks, Steve Falkenburg, Nitin Ganatra, Bill
Guschwan, C. K. Haun, Dave Hersey, Scott

Kuechle, Edgar Lee, Jim Luther, Joseph Maurer,
Kevin Mellander, Martin Minow, Ed Navarrete,
Guillermo Ortiz, Dave Radcliffe, Brigham
Stevens, Dan Strnad, Forrest Tanaka, and John
Wang for the material in this Q & A column.•

MACINTOSH

Q & A

System 7.1 it was changed so that the menu would be inserted into the menu list
only when the control was getting ready to pop up the menu and deleted as
soon as the control was done with it, so you could no longer use GetMHandle
to retrieve the menu handle. The proper way to get the menu handle is from
the mHandle field of the popupPrivateData structure. The handle to this
structure is in the contrlData field of the pop-up menu’s control record.

A corollary is that the pop-up control has always checked to see if the menu is
already in the menu list. If it is, the control doesn’t get the menu from the menu
resource and doesn’t delete the menu when it’s done. You can use this feature,
for example, if you want to create a menu with NewMenu rather than getting it
from a resource. In this case, and all other cases where the application inserts
and deletes the pop-up menu in the menu list itself, GetMHandle can be used
to retrieve the menu handle because it’s under the control of the application.

Q I read that Photo CD discs can be read by the AppleCD SC Plus and the AppleCD 150.
Does this mean a plain vanilla AppleCD SC can’t read them? Is this a hardware
limitation, or will there be a software fix?

A Apple erroneously reported that the original AppleCD SC could not read
single-session Photo CD discs. This turns out not to be the case; all of Apple’s
CD-ROM drives can read single-session Photo CD discs.

Two levels of support are available for Kodak Photo CDs: the ability to read the
first session on the Photo CD itself, and the ability to deal with more than just
the initial session of a multisession CD. The AppleCD 300i is the first CD-
ROM player from Apple to support multisession Photo CDs. For details about
both support levels, check the Tech Info Library on AppleLink.

Q Inside Macintosh Volume V, page 103, says that when a PICT pattern opcode (for
instance, 0x0012) comes along, and the pattern isn’t a dither pattern, the full pixMap
data follows the old-style 8-byte pattern. The pixMap data structure shown on page
104 starts with an unused long (baseAddr placeholder), followed by the rowBytes,
bounds, and so on. However, looking at the Pict.r file on the October 1992 Developer
CD, at the same opcode (BkPixPat == 0x0012), the first data field after the old-style
pattern (hex string[8]) is the rowBytes field (broken down into three bitstrings). The
baseAddr placeholder field isn’t there. Which is correct?

A The Inside Macintosh Volume V documentation on pages 103–104 is wrong. The
Pict.r file correctly describes the format of the PnPixPat and BkPixPat opcodes.
So there shouldn’t be a baseAddr field in the pixMap record of a pattern as
stored in the PnPixPat of a PICT. However, the baseAddr does occur in a 'ppat'
resource as described on page 79. Thanks for pointing out this discrepancy.

d e v e l o p Issue 14

110

Q How do I find the correct time values to pass to GetMoviePict, to get all the sequential
frames of a QuickTime movie?

A The best way to find the correct time to pass to get movie frames is to call the
GetMovieNextInterestingTime routine repeatedly. Note that the first time you
call GetMovieNextInterestingTime its flags parameter should have a value of
nextTimeMediaSample + nextTimeEdgeOK to get the first frame. For
subsequent calls the value of flags should be nextTimeMediaSample. Also, the
whichMediaTypes parameter should include only tracks with visual information,
'vide' and 'text'. Check the Movie Toolbox chapter of the QuickTime
documentation for details about the GetMovieNextInterestingTime call. For a
code example, see the revised SimpleInMovie on this issue’s CD. The routine to
look at is called DoGetMoviePicts in the file SimpleInPicts.c.

Q My routine uses a dialog hook to set and retrieve certain values in new items added to
the default box. Previously, with SFPPutFile, I was able to use a hit on the Save item
to retrieve and save the values. This also works with CustomPutFile unless the
Replace/Cancel dialog box appears, because the dialog hook routines are also called for
it! With the dialog pointer now pointing at the small alert, any reference to expected
items leads to disaster, since they don’t exist. Isn’t calling the dialog hook routine to
respond to hits in the alert box wrong and therefore a bug?

A Both Standard File and the Edition Manager in System 7 allow you to have
control in your filter when one of the subdialog boxes comes up. You can
differentiate between the main dialog and the subdialogs by looking in the
refCon field of the dialog record passed to you. In Standard File’s case, if the
dialog is the main dialog, the refCon will be:

/* From StandardFile.h */
/* The refCon field of the dialog record during a modalfilter

or dialoghook contains one of the following: */
#define sfMainDialogRefCon 'stdf'
#define sfNewFolderDialogRefCon 'nfdr'
#define sfReplaceDialogRefCon 'rplc'
#define sfStatWarnDialogRefCon 'stat'
#define sfLockWarnDialogRefCon 'lock'
#define sfErrorDialogRefCon 'err '

This is described in detail on page 26-18 of Inside Macintosh Volume VI, in the
middle of the section that describes all the callbacks and pseudo items for
Standard File under System 7. The main purpose of this is to allow your
additional dialog items to react properly when another dialog box is brought up
in front of them, not to allow you access to the subdialogs. Also, since Standard

MACINTOSH Q & A June 1993

111

File has no idea what types of items you’ve added to the dialogs, giving you
control during subdialogs allows you to change the look of your subitems, or to
keep them active if they need periodic time for any reason.

Q How do I find the current KCHR resource?

A Here’s a method for getting a copy of the KCHR resource currently being used
by the system. This method works for both System 6 and System 7.

{ long keyScript, KCHRID;
Handle KCHRHdl;
/* First get the current keyboard script. */
keyScript = GetEnvirons(smKeyScript);
/* Now get the KCHR resource ID for that script. */
KCHRID = GetScript((short)keyScript, smScriptKeys);
/* Finally, get your own copy of this KCHR. Now you can pass

a proper KCHR pointer to KeyTrans. */
KCHRHdl = GetResource('KCHR', KCHRID);

}

Q When I use CopyBits to move a cGrafPort’s portPixMap to another cGrafPort (my
printing port), it works like a charm when background printing is turned on, but when
CopyBits gets called with background printing turned off, the image that prints isn’t the
image at all. Why is this happening?

A You should be aware that since you’re copying the pixels directly from the
screen, the baseAddr pointer for the screen’s pixMap may be 32-bit addressed.
In fact, with 32-Bit QuickDraw, this is the case. This in itself isn’t a problem,
since CopyBits knows enough to access the baseAddr of the port’s pixMap in
32-bit mode, as follows:

mode = true32b;
SwapMMUMode(&mode); // Make sure we're in 32-bit addressing mode.
// Access pixels directly; make no other system calls.
SwapMMUMode(&mode); // Restore the current mode.

That’s how you’d normally handle things if you were accessing the pixels
directly yourself. Unfortunately, the LaserWriter driver doesn’t know enough to
do the SwapMMUMode and instead ends up copying garbage (from a 32-bit
pointer stripped to a 24-bit pointer).

So why does background printing work? Because when you print in the
background, everything is rolled into a PICT, which the driver saves off for
PrintMonitor. Since the driver is using the standard QuickDraw picture

d e v e l o p Issue 14

112

bottlenecks to do this, and CopyBits knows to swap the MMU mode before
copying the data into the picture, everything works great. Later, at
PrintMonitor time, the picture is played back. Since the data is no longer 32-bit
addressed, the LaserWriter driver doesn’t have to call SwapMMUMode to do
the right thing; it can just play the picture back.

The solution we propose for you is something similar. At print time (before
your PrOpenPage call), call OpenPicture, copy the data from the screen with
CopyBits, call ClosePicture, and then call DrawPicture within your
PrOpenPage/PrClosePage loop. That should do the trick.

Note that copying bits directly from the screen is not something we
recommend. Unless you have no alternative, you should always copy from the
original source of the data instead.

Q Is there a way to read Greenwich Mean Time offsets from the Map control panel?

A There’s actually a system-level call to find out where you are. It’s a Script
Manager call named ReadLocation (used by the Map control panel), which
returns a structure giving you all the information you need. Here’s a description
of the call, copied from MPW 411:

pascal void ReadLocation(MachineLocation *loc)
= {0x205F,0x203C,0x000C,0x00E4,0xA051};

File {CIncludes}script.h

In C:

pascal void ReadLocation(MachineLocation *loc);
pascal void WriteLocation(const MachineLocation *loc);

These routines access the stored geographic location and time zone information
for the Macintosh from parameter RAM. For example, the time zone
information can be used to derive the absolute time (GMT) that a document or
mail message was created. With this information, when the document is
received across time zones, the creation date and time are correct. Otherwise,
documents can appear to be created after they’re read. (For example, someone
could create a message in Tokyo on Tuesday and send it to San Francisco, where
it’s received and read on Monday.) Geographic information can also be used by
applications that require it.

If the MachineLocation has never been set, it should be <0,0,0>. The top byte
of the gmtDelta should be masked off and preserved when writing: it’s reserved
for future extension. The gmtDelta is in seconds east of GMT; for example, San

MACINTOSH Q & A June 1993

113

Francisco is at minus 28,800 seconds (8 hours * 3600 seconds per hour). The
latitude and longitude are in fractions of a great circle, giving them accuracy to
within less than a foot, which should be sufficient for most purposes. For
example, Fract values of 1.0 = 90°, -1.0 = -90°, and -2.0 = -180°. In C:

struct MachineLocation {
Fract latitude;
Fract longitude;
union {

char dlsDelta; /* signed byte; daylight savings delta */
long gmtDelta; /* must mask - see documentation */

} gmtFlags;
};

The gmtDelta is really a 3-byte value, so you must take care to get and set it
properly, as in the following C code examples:

long GetGmtDelta(MachineLocation myLocation)
{

long internalGMTDelta;
internalGMTDelta = myLocation.gmtDelta & 0x00ffffff;

if ((internalGMTDelta >> 23) & 1) // need to sign extend
internalGmtDelta = internalGmtDelta | 0xff000000;

return (internalGmtDelta);
}

void SetGmtDelta(MachineLocation *myLocation, long myGmtDelta)
{

char tempSignedByte;
tempSignedByte = myLocation->dlsDelta;
myLocation->gmtDelta = myGmtDelta;
myLocation->dlsDelta = tempSignedByte;

}

Q Did you hear that they had computer music at Clinton’s inauguration?

A Yes, they danced to Al Gore Rhythms.

Q What (if at all) is the limitation on the number of files in a folder? In other words, is
there a number N, such that if I have N files in a folder, and I try to Create file
number N+1, I’ll get some error?

A In general, the number of files that can be put in an HFS directory is unlimited;
there isn’t any point at which you’ll receive an error from Create, because new

d e v e l o p Issue 14

114

file description records can almost always be created. The only way you can get
a disk full error back from Create is if the catalog file needs to grow to add your
new record and the disk is full, but this should be extremely rare; even when the
disk is full, there’s generally room to create dozens of files or folders before the
catalog file will need to be enlarged, as it’s grown in relatively large chunks.

There are, however, a couple of related limits on large numbers of files. Because
HFS allocates space in “allocation blocks,” and there can be at most 65,536
allocation blocks on a volume, there’s a limit of 65,536 files that contain data on
a volume. If your disk is full with 65,536 one-block files, you’ll probably be able
to create more files (Create will succeed), but no data will be able to be written
to them. In reality, the limit on the number of files is somewhat smaller; the
catalog and extents files will each occupy space. Also, because the allocation
block size needs to be an even multiple of 512 bytes, most volumes won’t have a
full 65,536 allocation blocks; they’ll have as many as they can, somewhere
between 32,767 and 65,536 (except for small volumes, which may have less). In
addition, each fork (either the data fork or the resource fork) of a file needs to
be separately allocated, so each counts as a file for this calculation.

There’s also a practical limit on how many files can be placed in a folder. HFS
can maintain as many files as required in a directory; however, because the index
field is a short, if there are more than 32,767 files in a folder, they can’t be
enumerated. Thus, while they can be identified and opened by name, there’s no
way to index through them to determine what’s in the directory without
deleting or moving some of the files.

These limit descriptions apply to HFS only; other file systems may be available
on the Macintosh, such as MFS, MS-DOS, ISO 9660, or virtually any file
system via an AppleTalk Filing Protocol (AFP) translator. These descriptions
also don’t include limitations of the Finder, the Standard File Package, or any
other intermediaries. The Finder and Standard File are likely to become quite
unusable long before you run into the limits of HFS. Also, while HFS will
continue to function, it wasn’t designed for optimum performance with
extremely large numbers of files; for more dire warnings on this subject, see the
Macintosh (Overview) Technical Note “Don’t Abuse the Managers” (formerly
#203).

Q In the two-byte script version of our application, we need to insert certain characters
such as “-” and “%” into some of our strings. How can we do this, since these are
obviously only one character long in C?

A All 7-bit ASCII characters (codes less than 127) are maintained as such in all
two-byte scripts. If your routines just concatenate existing (localized) strings and
characters, you don’t have to worry about anything. Otherwise, you’ll need to

MACINTOSH Q & A June 1993

115

call CharByte (Inside Macintosh Volume V, page 306, and Volume VI, pages
14-45, 14-114, and 14-124) while walking the bytes in the string.

In the Macintosh (Text) Technical Note “Fond of FONDs,” the part about
OutlineMetrics was updated recently to be “two-byte aware.” The code
fragment there should help you with strings containing text for two-byte scripts.
See also the article “Writing Localizable Applications” in this issue.

Q The Icon Utilities routine GetIconCacheData leaves two bytes of garbage on the stack.
This surfaced as a problem for me because it prevented a saved register from getting
restored properly. SetIconCacheData probably has the same problem, since it calls the
same trap internally. I solved the problem by encapsulating GetIconCacheData within
my own static function, like so:

static OSErr _GetIconCacheData(Handle theCache, void **theData)
{
return GetIconCacheData(theCache, theData);
}
#define GetIconCacheData _GetIconCacheData

I then call GetIconCacheData normally. The #define redirects my call to my static
wrapper function. The extra two bytes on the stack are recovered when the wrapper
function UNLKs and returns. This method has the advantage that the calling code will
still work even after the trap is fixed. Am I correct?

A You’re quite correct; this is a bug. Here’s the offending code from the source:

EXIT MOVEA.L (SP)+, A0 ; Pop return address into A0
ADDQ.L #6, SP ; Point stack at return value
MOVE.W D0, (SP) ; Put return value on the stack
JMP (A0) ; Return

As you can see, the exit routine is adding 6 to the stack to clear up the input
parameters instead of 8 (handle and handle), so an extra word of garbage is
being left on the stack. Thanks for letting us know about the problem.

Q When I double-click a document that launches my application, the current directory for
the Standard File Package (at location $398 in memory) is set to the directory of my
application and not my document. This seems to be a bug according to the text on page
3-31 of the new Inside Macintosh: Files manual. Is there anything special I have to do?

A You’re right. The behavior described in Inside Macintosh: Files isn’t entirely
correct. It should say that the first time your application calls one of the

d e v e l o p Issue 14

116

Standard File Package routines, the default current directory (that is, the
directory whose contents are listed in the dialog box) is determined by the way
your application was launched.

• If the user launched your application directly (perhaps by double-clicking its
icon in the Finder), the default directory is the directory in which your
application is located.

• If the user launched your application indirectly (perhaps by double-clicking
one of your application’s document icons) and your application is passed
Finder information, the default directory is the directory of the last
document listed in the Finder information. The Finder information is the
data referenced by AppParmHandle and accessed by the Segment Loader
routines CountAppFiles, GetAppFiles, ClrAppFiles, and GetAppParms.

Note that applications that are high-level event aware are passed the list of
documents to open or print in a kAEOpenDocument or kAEPrintDocument
Apple event. There’s no Finder information (AppParmHandle will be NIL) and
the default directory is the directory in which your application is located.

Q Sometimes, at the beginning of a PBRead on a serial port, I get back a result code of
-90 in the completion routine. I don’t quite know how to handle this error, because I
can’t find a -90 result code anywhere. Any idea what -90 means?

A According to the MPW Errors.h interface file, -90 is a BreakRecd result. (The
interface files are always a good place to look for error codes and calls that you
can’t find.) The serial driver returns that error to a pending Read if the SCC
chip detects a break condition.

Q Why does MacApp use the Initialize and Free methods instead of the normal C++
constructor and destructor methods?

A MacApp doesn’t use constructors for historical reasons. Object Pascal was used
in MacApp 2.0.1, which doesn’t have constructors and destructors as part of the
language, and as a result these facilities had to be provided as part of MacApp
instead of the language.

MacApp 3.0 designers tried to achieve backward compatibility with applications
written with older versions of MacApp based on Object Pascal. Because of this,
the designers decided to stay with the Initialize and Free functions rather than
just have an instance of the object declared and destroyed with new and free.

Q Can I use the CompressPicture routine to spool in a source picture from disk by
overriding the QuickDraw proc getPicProc as documented in Inside Macintosh Volume

MACINTOSH Q & A June 1993

117

V, pages 88-89? I’m trying to save the contents of an off-screen GWorld as a compressed
PICT resource. Unfortunately there’s no direct way to compress the GWorld’s pixel map
to a resource.

A We definitely don’t recommend trying to spool in or out the results of
CompressPicture or CompressImage. We recommend doing one of the
following instead:

• You can compress the GWorld using CompressImage and then call
OpenPicture, DecompressImage, and ClosePicture using a data-unloading
picture proc. The drawback here is that you need to have a copy of the
compressed image in memory.

• If it’s unacceptable to have an entire compressed image in memory, you can
consider banding along with data unloading: Call OpenPicture, then
CompressImage and DecompressImage on a band, CompressImage and
DecompressImage on another band, and so on. When all bands are done,
call ClosePicture. The drawback for this is that the compressed picture will
have bands of image data that won’t display well dithered. This could be an
issue, but the best way to find out is to try it.

The second suggestion is probably the best idea if you want to keep your
memory footprint small. But much of the decision depends on your application.

Q Our product’s sound/video synchronization is way off with QuickTime 1.5; it worked
perfectly with QuickTime 1.0. The video can’t keep up with the sound, especially on the
full-screen movies. The movies are playing much slower with 1.5. Isn’t QuickTime 1.5
supposed to make movies play faster?

A Your movies probably aren’t properly interleaved. When you add sound to a
movie with SoundToMovie, the sound is added to the end of the video data. We
recommend that sound and video be interleaved so that the hard drive doesn’t
have to spend extra time seeking between media that store video and media that
store audio on a hard drive. The data handler prefers to be able to sequentially
read through a movie file. This is especially important for slower Macintosh
models that don’t have the extra CPU and SCSI access speed to spare.

QuickTime can accommodate for some noninterleaved data by caching an
entire sound track of a movie if small enough. However, the size of a cache is
internal to QuickTime and can’t be depended on. It’s possible that different
QuickTime versions could have different cache sizes since we’ve been
recommending that video and sound movies be interleaved. The result could be
that the extra disk-seeking time has caused sound and video to be out of sync for
slower machines such as the Macintosh LC.

d e v e l o p Issue 14

118

One way to check interleaving is to resave the movie using Movie Converter (or
some other program that flattens movies) in a flattened format. Movie
Converter uses QuickTime’s FlattenMovie call to do this. The steps Movie
Converter takes are: choose Save As, select “Make movie self-contained,” and
save to a new movie file. This new movie should play back with correct video
and sound sync.

You can actually see the problem if you examine the movie with MovieShop, a
program that lets you deal with QuickTime movies at a movie data level. For
example, if you select the Play information button that’s in the window after you
open a movie, the program will display a time graph showing you where the
video and sound data are saved in the continuous data stream. If the movie is
interleaved, the green (for video) and red (for sound) indicators are interleaved.
If the movie isn’t interleaved, the green indicators are clumped together in the
beginning of the file, and the red indicators (for sound) are at the end.

The latest version of MovieShop and documentation is available on this issue’s
CD. MovieShop and related information are discussed in the article “Making
Better QuickTime Movies” in this issue.

Q How long can a Macintosh filename be on an international system? Our program
currently assumes a maximum filename length of 31. What does the length byte of a
Pascal string signify on an international system — the actual length in bytes of the
string, the logical length (the number of international characters), or neither?

A The Macintosh file systems — the flat (MFS) and the hierarchical (HFS) —
have (reasonable) limitations on the length of filenames. The limits on the
lengths refer to the number of bytes required for the strings. Usually, filenames
are represented as Pascal strings. The first byte of a Pascal string indicates the
number of bytes occupied by the string. In the worst case in a two-byte script,
only 15 two-byte characters fit into a Str31. Compared to one-byte scripts, this
isn’t so bad, however: two-byte characters tend to carry much more meaning
than two of our familiar one-byte characters!

Q What is QuickTime for Windows and what hardware do you need to run it?

A QuickTime for Windows makes QuickTime a cross-platform technology that
you can use in both the Macintosh and the Microsoft Windows programs that
you’re developing. With it, you can create multimedia programs on the
Macintosh and be able to add the playback of QuickTime movies to any PC
application running Microsoft Windows 3.1.

The minimum hardware configuration required for QuickTime for Windows is
the following:

MACINTOSH Q & A June 1993

119

• A personal computer with an 80386SX or greater CPU

• A CPU speed of 20 MHz or higher

• 4 MB of conventional and extended memory

• A hard disk with at least 4 MB free for the basic QuickTime for Windows
software

• A graphics adapter and mouse (or other pointing device) supported by
Microsoft Windows

Optional hardware:

• A CD-ROM drive supported by Microsoft Windows (if installing from a
CD)

• A sound card supported by Microsoft Windows

• Additional free disk space if you want to keep movies and pictures on your
hard disk

The software requirement for running QuickTime for Windows is Microsoft
Windows 3.1. To write QuickTime for Windows programs, you must have (in
addition to the QuickTime for Windows Developer’s Kit) a development
package such as Borland C++ 3.1 or Microsoft C/C++ 7.0.

The sample QuickTime for Windows executables may be played under
Windows 3.1 immediately following QuickTime for Windows installation and
configuration, without C or C++ being present.

Q I tried to unmount a volume shared with Macintosh File Sharing from my program
as follows: I shut down the file service with the SCShutDown server control call; I
call SCPollServer to make sure the file service is really off (scServerState =
SCPSJustDisabled); then I call PBUnmountVol to attempt to unmount the volume.
It didn’t work because PBUnmountVol fails with fBsyErr (-47). I broke on the
_UnmountVol trap because the AppleShare PDS file, where the file server keeps the
access privilege and share-point information for the shared volume, was open. Why is
AppleShare PDS still open when I’ve turned the file service off? How can I close it and
unmount the volume?

A SCPollServer returns the state of the file service, not the file server application
(in this case, File Sharing Extension is the file server application). When
SCPollServer returns a server state of SCPSJustDisabled, the file service is off;
however, the file server application may or may not still be running. The
AppleShare PDS file will eventually get closed before the file server application
quits.

d e v e l o p Issue 14

120

There’s an easy way to determine when the File Sharing Extension application
has quit (and thus when the AppleShare PDS file is closed): just use the Process
Manager GetNextProcess and GetProcessInformation calls to find out when
File Sharing Extension is no longer running. The File Sharing Extension
application has a processType of 'INIT' and a processSignature of 'hhgg'.
Here’s a function you can use to see if File Sharing Extension is running:

FUNCTION FileSharingAppIsRunning: Boolean;
CONST

FileSharingSignature = 'hhgg'; {Macintosh File Sharing}
VAR

err: OSErr;
myPSN: ProcessSerialNumber;
myPInfoRec: ProcessInfoRec;

BEGIN
myPSN.highLongOfPSN := 0; {Start at beginning of process list}
myPSN.lowLongOfPSN := kNoProcess;
myPInfoRec.processInfoLength := sizeOf(ProcessInfoRec);
myPInfoRec.processName := NIL; {Don't need process name}
myPInfoRec.processAppSpec := NIL; {Don't need process location}
FileSharingAppIsRunning := FALSE; {Haven't found it yet}
WHILE (GetNextProcess(myPSN) = noErr) DO

IF GetProcessInformation(myPSN, myPInfoRec) = noErr THEN
IF (myPInfoRec.processSignature = FileSharingSignature) THEN

FileSharingAppIsRunning := TRUE; {Found it}
END;

After shutting down the file service, your event loop will need to poll with
FileSharingAppIsRunning because you must give the file server application
processing time to close files, dispose of memory, and perform other shutdown
operations. If you poll with FileSharingAppIsRunning without giving other
processes time, File Sharing Extension will never shut down.

Q I’m having trouble understanding the problems of dealing with potentially infinite loops
in interconnected, distributed applications. Can you help me?

A Please see the next message.

Q I’m having trouble understanding the problems of dealing with potentially infinite loops
in interconnected, distributed applications. Can you help me?

A Please see the previous message.

MACINTOSH Q & A June 1993

121
Have more questions? Need more answers?
Take a look at the Macintosh Q&A Technical
Notes on this issue’s CD and in the Dev Tech
Answers library on AppleLink.•

I recently attended the First General Conference on
Nanotechnology. The conference was sponsored
primarily by the Foresight Institute, an organization
based in Palo Alto, California, whose sole self-stated
goal is to disseminate information about
nanotechnology, to inform the public about the topic,
and to just sort of do whatever seems necessary to get
society ready, to prepare the ground, for the advent of
this world-transforming future technology. (Apple also
helped sponsor the conference, a fact I didn’t even
know until I arrived.) There had been previous
“research” gatherings dealing with nanotechnology, but
those were primarily for scientists and other gearhead
types (most of whom, it should be noted, showed up for
this one, too). This, though, was the first such
gathering intended for the general public, and the first
intended to foster open discussion on the topic by all
kinds of people.

It was absolutely fascinating, on lots of levels, and a
total blast! It was intellectually and scientifically
stimulating, of course, and that’s a lot of fun by itself, in
a quiet sort of way. But it was also an unparalleled
opportunity to watch some really weird people, and that’s
fun in a much larger, noisier sort of way. Watching wild
ideas being bandied about by wild, zealous people is
fine sport, and this was the perfect place for it. The
enthusiasm among the participants was sizzling, and
the whole thing smelled sort of cultish, almost religious
in its zeal and drive. As I said, a blast!

I don’t want to imply that it was a circus, that the
participants were doddering, babbling boobs or
mindless, frenzied fanatics. Nothing could be further
from the truth. On the contrary, there were all kinds of
people there — writers, computer folks, venture
capitalists, cryonicists, physicists, doctors, marketers,
biologists, businesspeople, you name it — and the ideas
being discussed were often taken very seriously. But
there was a healthy contingent of fringe-dwellers and
edge-runners, people whose beliefs often set them
slightly apart from your average, ordinary citizen
(whatever that is). People who like to peek over the
edge — any edge — to see what’s there.
Nanotechnology is a precipitous edge indeed.

Nanotechnology has been getting a lot of press lately,
but for those of you who haven’t heard or read about
it yet, let me run you through the basics.
Nanotechnology is the brainchild of one Dr. K. Eric
Drexler, MIT graduate and technological visionary
extraordinaire. (Some of the ideas and concepts of
nanotechnology weren’t new, but Drexler brought
them together, gave them a name, and carried them
much further than anyone else had dared.) Simply put,
nanotechnology is the ability to precisely and
completely control the structure of matter at the
molecular or atomic level, by building the desired
substance or structure molecule by molecule or atom
by atom, placing each in the precise location we want.
This capability has implications and ramifications
without end, as we’ll soon see. But the central spark of
the idea — placing atoms one by one — remains simple
and elegant, and we should be careful to remember that
fact as we wander, often lost in the churning chaos,
through the landscapes of possibilities that this oh-so-
simple idea can generate.

(It’s equally important, by the way, to remember that
nanotechnology is still a fairy tale, though possibly a
prophetic one. All the books, meetings, articles,
discussions, and press coverage are about something
that can’t be done, at least not yet. So although the
general buzz around the conference tended to use the
present tense — an indication of the rampant
confidence most of these people possess — it’s all still

d e v e l o p Issue 14

DAVE JOHNSON and his brother Doug decided to dig to China
one fine morning long ago, but it turned out to be harder than they
thought. The digging slowed and finally stopped around lunch
time, both of them exhausted and hungry after digging perhaps 14
inches. They decided to finish the next day. That night, falling
asleep, Dave decided to dive through head first, so he’d be right
side up when he got to the other side. Dave still hasn’t been to
China.•

122

THE VETERAN
NEOPHYTE

TINY FUTURES

DAVE JOHNSON

THE VETERAN NEOPHYTE June 1993

123

a dream, though as compelling and disturbing a dream
as any I’ve ever known, and one that’s being dreamt by
some very, very capable minds.)

The term nanotechnology has been popularized lately, for
better or for worse, and has been applied to a number
of very different technologies that are decidedly not
what Drexler has in mind. Their only similarity with
Drexler’s nanotechnology is that they involve very
small scales. You’ve probably all seen those electron
microscope pictures of little bitty gears and shafts and
motors and flaps that have been carved from silicon.
There’s a large effort under way to build these
micromachines, and it’s a fascinating technology, but
it’s not what we’re talking about. Those efforts, like
many others that are popularly called nanotechnology,
are characterized by starting with some block of
material — a bazillion atoms in a chunk — and carving
out bits or adding bits like a sculptor to get the shape
you want. The resulting parts are still made of a
bazillion atoms; you’re still dealing with clumps of
atoms at a time. Drexler calls this bulk technology.
Admittedly, the clumps are getting very, very small
these days, but it’s really just a refinement of the same
manufacturing technology we’ve had since the stone
age: take a hunk of material and shape it.

Drexler’s nanotechnology — he promoted the term
molecular manufacturing at the conference, and it’s a
more descriptive, if less poetic, name — comes around
from the other side. It starts with individual atoms and
molecules and puts them together, essentially one piece
at a time, to build up the desired material or structure.
This is the key distinction between bulk technology
and what we’re calling nanotechnology.

Drexler also postulates a nanomachine he calls an
assembler. It’s a general-purpose atom positioning
machine, sort of a nano-scale robot, complete with
sensors to detect the atom or molecule, some sort of
“gripper” to hold and position it, and a powerful
computer to control the thing. This is the little bugger
that really cuts nanotechnology loose. If you have
assemblers, you have the proverbial general
manufacturing machine: you can build anything,

including more general manufacturing machines.
(Actually, these days people talk more about “mills”
than individual robot-like assemblers. Mills are like
production lines, with conveyor belts rather than arms,
and a continuous flow of material. Although in this
column I’ll use the word assembler what I really mean is
this: a machine that can arrange atoms and molecules
in a general way, and therefore can be used to build
anything we can think of.)

OK, so now that we have a handle on what we’re
talking about, let’s play that game we all love so much,
Predicting the Future. If we could be atomic bricklayers,
if we could command the structure of matter, just what
sorts of strange things would we build? Here’s where
we can really have some fun. The ramifications of
being able to build things atom by atom are of course
myriad. Nanotechnology is one of those ideas that,
when planted firmly in human minds, seems to serve as
a catalyst, breeding innumerable possible future
scenarios. It’s a technology (a nonexistent one,
remember!) that could conceivably touch and
transform every important aspect of our lives.

Many scenarios are immediately apparent. For one
thing, molecular manufacturing promises materials that
are lighter, stronger, cheaper, and just generally better
in every way. As any materials scientist will be happy to
tell you, materials in the real world are generally
riddled with defects. Carving away at them or adding
other bulky bits to them as we do today doesn’t change
that fact, and actually often exacerbates it. But if we
could build up our materials atom by atom, each
precisely placed, the resultant material would be
atomically precise, atomically perfect! This would mean
that we could build much, much lighter weight
structures, using lots less material to do the same job.
That in itself has enormous benefits, but it’s just the
beginning: beyond improving existing materials, we
could build any new material we can think of, as long as
it’s allowed by the laws of nature.

And the manufacturing processes themselves could be
made amazingly efficient, using cheap and plentiful raw
materials, producing virtually no waste, and consuming

very little energy, if any at all. At the conference there
was much talk, only partly tongue in cheek, of a
tabletop nanofabricator, about the size of a microwave
oven, with four rubber feet and a fan in the back,
plugged into the wall. According to Drexler’s
calculations we could feed this thing 1.6 kilograms per
hour of feed stock solution (acetone, I think he said: a
cheap and plentiful source of carbon and hydrogen)
and 0.8 kg/hr of atmospheric oxygen, and out the other
end would come 1.0 kg/hr of diamond (or whatever
carbon material you have in mind), 1.5 kg/hr of
chemically pure water, 1.1 kW of waste heat, and, as a
by-product of the process, 3.6 kW of surplus electricity.
(Why plug it in? So that you can deliver the electricity
to the power grid.)

With manufacturing processes like that, economics is
suddenly turned on its ear. Some say there would be no
more poverty, that since with assemblers we’d be able
to make nearly anything for nearly nothing, precious
materials would no longer be precious; we could make
treasure from garbage! Some say we could make food,
or better yet, create new materials and technologies
that let us make full use of the food we already produce,
bringing an end to world hunger.

Going even further out on an already shaky limb, let’s
examine some medical implementations. If we could
build assemblers, we could build other nano-scale
robots to do our bidding. Tiny observation machines
could be injected into our bloodstream to seek out and
report any damage, effectively giving doctors eyes into
your body at the cellular level. How about nanogoop
that you pour on a wound that disinfects it, seals it, and
accelerates the regeneration of lost tissue? The
cryonicists — people who have themselves frozen for
some hopeful future awakening — have pinned most of
their hopes for resuscitation on some sort of cell-repair
machines that can go in and repair the tissue damage
due to freezing. One speaker at the conference, an MD
researching organ cryopreservation, planted his tongue
firmly in his cheek and went truly wild with his
speculations. Get this: subcutaneous “smart” armor
that could see a blow or a bullet coming and react,
bracing itself or maybe even pulling your skin away

from the danger! He went on to talk about the
“tradeoffs involved in becoming a flying person,” a
topic “no one has talked about before.” (The
conclusion was effectively that wings are very
inconvenient and would really get in the way when you
weren’t flying, but they’re probably worth the trouble.)

Then there are, of course, the “dark” scenarios. If it’s
possible to build assemblers, it will probably also be
possible to build disassemblers: imagine scavenger
nanostuff whose programming has gone out of control,
so that it disassembles anything it comes into contact
with and just builds more copies of itself (I can see you
artificial life fans pricking up your ears). This is known
as the “gray goo” scenario. (Speculations about this sort
of out-of-control goo cause equally energetic counter-
speculations: encrypting the program so that a one-bit
error turns it to hash; anti-goo goo — so-called “blue
goo” — that recognizes and destroys the gray stuff;
using a “broadcast architecture” so that the machines
have no autonomy at all, and thus can’t get out of
control in the first place; and so on.)

Machines building copies of themselves opens up a
Pandora’s box of implications and problems: if these
machines are the least bit autonomous and there’s the
possibility of mutation — of nonfatal errors when
building new copies — they’ll naturally begin to evolve!
Drexler makes the good point that at the atomic level
things are either exactly right or exactly wrong, that
nanomachines are wrought in a fundamentally digital
medium and are therefore brittle, so errors will tend to
be catastrophic and bring things to a screeching halt.
But it seems to me that the nanomachines we’re talking
about — machines that can sense their environment,
harvest raw materials, and build copies of themselves,
including their own instructions — are so complex that
a digital error, a bit error, may not bring everything to a
halt, and may indeed change the operation of the
machine in subtle, mysterious ways. Anyone who has
ever programmed a computer can testify to that.

You can also bet that if one group of people has this
technology and another doesn’t, and those groups don’t
like each other, the results could be many kinds of ugly.

d e v e l o p Issue 14

124

THE VETERAN NEOPHYTE June 1993

125

Nanoweaponry could be more insidious and invisible
than any biological weapon, more tenacious than
radiation, and ultimately more destructive than any
bomb.

Good or bad, many of these scenarios seem pretty far
out there. Which brings up a very good question: will it
really ever happen? Will we ever be able to build a
general manufacturing machine? Can we ever gain that
degree of control over matter? Naturally, Drexler
thinks so, and so do many others. It’s instructive to take
a look at some of the practicalities involved.

First there’s the problem of scale. Obviously, there are
an awful lot of atoms in a piece of material that’s, say,
the size of your fist. Won’t it take a long, long time to
build up something that size atom by atom? Well, we
can do the arithmetic to find out: Let’s assume that we
could put individual atoms together at a rate of 100
atoms per second. And let’s say we want to build 12
grams of diamond. (Diamond is a very popular material
in these nano-examples, not because of its worth and
beauty but because of its amazing hardness and stability
and the fact that it’s made of carbon, a very common
element.) If you’ve ever taken a chemistry course you
know that 12 grams of carbon contains 6.02 x 1023

atoms (Avogadro’s number, remember?). A hundred
atoms per second is 864,000 per day, assuming no time
off for the little buggers. This is about 3.15 x 109 atoms
per year. So we could get our 12 grams of carbon in
only, let’s see, 6.02 x 1023 atoms divided by 3.15 x 109

atoms per year is roughly 2 x 1014 years. That’s two
hundred million million years! About fifty thousand times
the estimated age of the earth! To build less than half
an ounce of carbon. Hmm. Clearly we’re going to have
to do something drastic, numbers-wise, for this to be at
all useful. Because of the extreme scales involved, the
numbers quickly fly wildly out of control.

Well, the only way I’ve heard discussed to bring those
numbers under our control is to fight back with large
numbers of our own, in this case large numbers of
nanomachines (or conveyor belts, or whatever) working
simultaneously. And the only way to get that many
machines is to build nanomachines that can reproduce,

that can build copies of themselves. It’s like the old
story about the blacksmith shoeing a horse, who
charged a penny for the first nail, two pennies for the
second, four for the third, and so on: he became rich on
one horse. Back to our example, we’d need about
1.0 x 1017 machines working simultaneously, each
placing 100 atoms a second, to get our 12 grams in
under 24 hours. How long will it take to make that
many machines? Well, if each machine can build a copy
of itself in one hour (a conservative estimate: an average
bacterium does it faster), and we start with one
machine, I come up with something like 56 hours. Very
doable. And, of course, if we let it go for one more
hour, we have twice what we need! When you’ve got
geometric progression on your side, you’ve got a
friend!

OK, so maybe we can handle the scale problem, as long
as we’re willing to let machines self-reproduce. What
about the problem of actually reaching in there and
grabbing atoms or molecules? Is it really possible to
build molecular “hands”? Well, there are several
technologies, each making rapid progress, that are
converging on this capability. Scanning Probe Microscopy
is a technology that shows great promise in positioning
individual atoms (by now you’ve probably all seen that
picture of “IBM” spelled out in individual atoms on a
plate). Molecular biotechnology is another promising
avenue: molecular biologists are gaining an amazing
degree of control of the molecules of life, a degree of
control that looks as though it will continue to increase
quickly. (In a sense, using bacteria to manufacture
insulin, as is done today, is molecular manufacturing;
it’s just that most of the nanomachinery was borrowed
from living things, rather than designed from scratch.)
The point is that there are many paths that may lead us
to atomic control of matter, not just one.

But there are also some compelling arguments against
the “full” vision, the future in which everyone has
assemblers and we can make anything we want. First
off, an assembler is a very, very complex machine, much
more complex than anything humans have ever built,
and I’m honestly not convinced that human beings are
capable of ever deliberately building something like

that. (Accidentally, maybe, but that’s another story.) You
try to design a machine, constructed entirely from
sticky marbles, that can build a copy of itself from
ambient sticky marbles floating nearby. Oh yeah, and it
has to also be fully programmable, so that it can be
instructed to build anything else (also from ambient
sticky marbles). To my knowledge, no human has ever
succeeded, at any scale, in building a purely mechanical
machine that can build a copy of itself. But that’s
exactly what an assembler needs to be.

Even if we can get the mechanics together, there’s still
The Software Problem; complex software is always
buggy, and the more complex it is, the further from
“correct” it will be and the more unpredictable will be
the results of such errors. Anyone who says otherwise
doesn’t know what they’re talking about. The software
to control a machine that can sense its environment,
locate the appropriate parts, grab them, turn them the
right way, and stick them to other parts is going to be
more complex than anyone today knows how to write.

Then there’s this sad fact: no technology is ever equally
available to all people at its introduction, or for that
matter for as long as there’s some advantage, economic
or otherwise, to maintaining control over it. And the
advantages to maintaining control of this one are
obviously huge. What if you’re the first one on the
block with that tabletop machine (four rubber feet,
remember) cranking out intricately structured diamond
struts and electricity? Are you going to stop building
your struts and start building copies of your machine
for everyone else, or would you be tempted to sell
those excellent struts (that no one else can make yet)
for just a little while first, and build up a nest egg? OK,
I’ll give you the benefit of the doubt, but what about
that snake oil salesman over there? What do you think
he would do? How about your government? If they had
it first would they give a copy to you? To another
country? These are hard questions, very hard indeed.

There is, of course, one piece of irrefutable proof that
nanotechnology can ultimately work: life itself. In a
very real way, we are nanotechnology. What are we but
a mass of autonomously running nanomachines
frantically making copies of themselves and each other?
What are we but “out of control” nanostuff that has
attained a very high level of organization? Some
theorists believe that the odds of the emergence of life
are better than previously thought, perhaps even that
it’s inevitable. They believe that matter has an inherent
tendency to organize itself, and that we are the result of
that tendency. (I get this creepy image of matter sort of
turning around to look at itself.) If we gain total control
over matter, perhaps we will also, as part of the bargain,
gain total control over life. Now that would be
something to write home about!

d e v e l o p Issue 14

Thanks to Jeff Barbose, Michael Greenspon, Bill Guschwan,
Bo3b Johnson, Lisa Jongewaard, Ted Kaehler, and Ned van
Alstyne (aka Ned Kelly) for reviewing this column.•

Dave welcomes feedback on his musings. He can be reached
at JOHNSON.DK on AppleLink, dkj@apple.com on the Internet, or
75300,715 on CompuServe.•

126

RECOMMENDED READING
• Engines of Creation by K. Eric Drexler

(Doubleday, 1986). The first book detailing
Drexler’s ideas.

• Unbounding the Future by K. Eric Drexler and
Chris Peterson, with Gayle Pergamit (Morrow,
1991). A popular account of the implications of
nanotechnology.

• Nanosystems by K. Eric Drexler (Wiley
Interscience, 1992). A nanoengineering textbook
with detailed designs and calculations. The
ultimate in theoretical engineering.

• Blood Music by Greg Bear (Arbor House, 1985).

• Whole Earth Review No. 67, Summer 1990.

• Nick and the Glimmung by Philip K. Dick (Piper
Books, London, 1988).

See if you can solve this programming puzzle, presented in the form of
a dialog between Konstantin Othmer (KON) and Bruce Leak (BAL).
The dialog gives clues to help you. Keep guessing until you’re done; your
score is the number to the left of the clue that gave you the correct
answer. These problems are supposed to be tough. If you don’t get a high
score, at least you’ll learn interesting Macintosh trivia.

KON I’m trying out this new C compiler to see what we can do to make the
system and Finder smaller and faster.

BAL Wait. Since when has the Finder been written in C?

KON It’s better than that! It’s actually C++, with some assembly routines so
that we can claim the copyright goes back to 1983.

BAL Oh, that explains how the System 7 Finder got so much bigger. I
thought it was just the About box. I’m running System 6 on my
PowerBook 100. I’d sure like to get a smaller and faster version of
System 7. Are you making any progress?

KON Well, yes and no. The compiler output is certainly smaller but I
haven’t nailed down how much faster it is. When I boot up and the
Finder launches, the machine restarts, which relaunches the Finder,
which causes the machine to restart, and so on. It all happens pretty
fast but doesn’t seem all that useful.

BAL What machine is this on?

KON Macintosh Classic — the original, not the Macintosh Classic II.

BAL Somehow the compiler is generating bogus code that causes the
system to restart. So I compare the code from the new compiler to the
code from the old compiler, look at the differences, and see if they
make sense.

KON & BAL’S PUZZLE PAGE June 1993

127
KONSTANTIN OTHMER AND BRUCE LEAK
Long-time Puzzle Page fan Al Gore recently
invited KON and BAL to upgrade the White
House situation room to BALKON-4, the latest in
networked Spaceward Ho! technology. On his
lunch hour, KON debugged Clinton’s economic
plan and found the memory leak that was
causing that $50 billion Medicare shortfall. BAL
is now working on an audio-animatronic Silicon

Valley executive so that the President can always
have one at his side.•

KON & BAL’S

PUZZLE PAGE

FINDER++

KONSTANTIN OTHMER
AND BRUCE LEAK

KON Everything’s different: 42,000 bytes went away and the rest is totally
different. This isn’t a minor compiler revision. We’re talking Advanced
Technology here. Where are you going to look?

BAL OK, OK. Let’s debug it. I set an ATB on _Launch and then another on
_InitGraf.

KON OK. You break at _Launch and then after you Go you break at
_InitGraf.

BAL I set an ATB on _WaitNextEvent.

KON You break at _WaitNextEvent.

BAL I say Go and see if I get back to _WaitNextEvent again.

100 KON The machine reboots almost immediately.

BAL I go back to the same place and instead of saying Go I trace over
_WaitNextEvent.

95 KON The machine crashes into MicroBug. But it’s not your ordinary crash
into MicroBug. The screen is trashed and you can’t type anything. But
it looks as though MicroBug is trying to come up.

BAL Can I hit the NMI button?

90 KON You can press it all you want, but it doesn’t do anything. And, by the
way, G -1 doesn’t work either.

BAL Hmmm. It seems as if something is seriously wrong with
_WaitNextEvent. Did you recompile the Process Manager, any DAs,
or other stuff?

85 KON Nope, I only recompiled the Finder. When I get that working, I’ll get
around to the rest.

BAL So you didn’t recompile the Finder extensions? Since the C++ virtual
function tables are different, all your existing Finder extensions are
incompatible and maybe that’s what’s hosing you.

80 KON None of the extensions are active, and even if they were, the Finder
verifies their versions. What do you expect? They’re object oriented.
Of course it works.

BAL Of course. Well, since we couldn’t make it across _WaitNextEvent,
let’s step into it.

75 KON As soon as you step, you get the same weird crash into MicroBug.

BAL I just step into it?

KON Yes.

d e v e l o p Issue 14

128

BAL As soon as I step, pending interrupts come in and kill me. So I disable
interrupts with an SR = 27000000 and try stepping again.

70 KON Same crash.

BAL Seems like there might be something wrong with MacsBug.

KON Let me make sure I’m following you here. Only the Finder is
recompiled and you blame the strange crashes on MacsBug? I’m going
to have trouble selling that one.

BAL Clearly there’s something wrong with the recompiled Finder. It’s
probably trashing MacsBug memory.

65 KON Come on. MacsBug does some sort of a checksum on itself and tells
you if it’s been altered. When you break at _WaitNextEvent, you don’t
get any messages to that effect.

BAL You got me there, KON. So you’re saying that MacsBug is in perfect
working order at this point. I can do an IL or whatever, but if I step
I’m dead?

KON Perfect working order? Same as it ever was. But the Surgeon General
has determined that stepping or tracing at this point causes ill effects.

BAL This is not my beautiful MacsBug. If I trace after I hit _InitGraf, is
everything fine?

60 KON No problem.

BAL So I do an

ATB ‘;t ;g’

which breaks on every trap, traces over it, and then continues. That
way I can see what the last trap I hit was.

55 KON The machine runs for a while, but when you crash and burn into
MicroBug, you lose your MacsBug screen.

BAL Fine. I set up another screen, put MacsBug on that screen using the
Monitors control panel, and use the SWAP command so that MacsBug
is always visible. That way when I crash I can see what just happened.

KON Great strategy for a modular Macintosh, but this is on a Macintosh
Classic. I’d let you figure it out that way except you used up your
whole budget flying to North Dakota a few puzzles ago.

BAL I was hoping you’d forget that. OK, fine. Someone must be trashing
low memory, so I’ll use Bo3b Johnson’s totally awesome Blat dcmd.
It’ll catch any read or write from memory locations $0–$100.

KON & BAL’S PUZZLE PAGE June 1993

129
Bo3b Johnson’s Blat dcmd can be found on
this issue’s CD and on the E.T.O. disc. (The “3” in
Bo3b’s name is silent.) Blat is written up in the
Macintosh Debugging article in Issue 13 of
develop.•

50 KON You’re on a Macintosh Classic, which doesn’t have an MMU. That
dcmd works via the MMU.

BAL KON! Those correspondence classes are finally paying off. So I’ll
narrow down the area that’s causing the problem by doing an ATB 10
to skip over 16 ($10) traps at a time until the machine crashes into
MicroBug. If it takes five times to crash, the next time I’ll do an
ATB 40, and then an ATB 4, until it crashes. After I do this enough
times I’ll know what was the last trap that was successfully executed,
and I can go from there.

45 KON Rather than crashing, the machine is now rebooting.

BAL OK, so what’s the last trap called before the machine reboots?

40 KON _WaitNextEvent.

BAL Fabulous. Déjà vu. Is this a Never Ending Story? And when I’m at
_WaitNextEvent I can’t step or trace or anything?

KON Well, you can’t step or trace. That’s all you’ve tried so far.

BAL So I set a breakpoint on the first instruction of _WaitNextEvent and
say Go.

35 KON You crash into MicroBug, just like before.

BAL OK, what’s the current score? Can we call it quits?

KON I wouldn’t say you aced this one. Luckily we’re getting paid per word,
so let’s keep going.

BAL But when I was at _InitGraf, I could trace. So something’s hosing
MacsBug between _InitGraf and _WaitNextEvent. I’ll do the ATB 10
trick like before, but this time I’ll try tracing after every break. That
way I can figure out where MacsBug is getting mauled.

30 KON You figure out that you can trace over a call to _InitWindows, but
when you trace over the next trap, a call to _GetResource, you crash
into MicroBug.

BAL So I go to _InitWindows and trace until I get to the call to
_GetResource. If it’s a long way, I do a T 1000. If that crashes, I reboot
and do a T 500, then a T 250, and so on, until I find the offending
instruction.

25 KON The offending instruction is a

MOVE.L d0,20(a2)

BAL What’s in A2?

d e v e l o p Issue 14

130

20 KON $100.

BAL Writing to low memory like this sounds like a bad idea. My guess is
that A2 is trashed and we’re pounding an important vector. What’s at
$120?

15 KON That’s MacJmp.

BAL Aha! MacJmp is the vector that exception code uses to go to the
debugger. Once you trash that, all bets are off.

KON Yeah, setting ATBs works because MacsBug patches the trap
dispatcher and looks for the A-traps you have breaks on. If it
encounters one, it just drops into MacsBug directly. Other breakpoints
are set by replacing the existing instruction with a trap instruction.
When these instructions are processed, they go through MacJmp.
When MacJmp gets trashed, tracing and stepping and setting
breakpoints no longer works, as we found out.

BAL Nasty.

KON Don’t try to finish up so fast! You still haven’t figured out why the
machine is rebooting.

BAL The new compiler must do a better job of register allocation and
actually use them all in its optimizations. Some Finder glue routine
you called must have trashed A2.

KON Exactly. An easy problem to fix, though. The Finder was calling an
assembly routine that hammered A2. After you fix the bug and build a
new Finder, the machine still restarts.

BAL So I set an ATB on _WaitNextEvent, since that was as far as we got
last time, and try to trace over it.

10 KON OK. No problem.

BAL Whew! Finally I get past that _WaitNextEvent. Let’s go for two. I say
Go and see if we hit _WaitNextEvent again.

KON Nope. The machine restarts.

BAL After the first _WaitNextEvent I do the trick with T 1000, T 500,
T 250, and so on, until I find the offending instruction or subroutine.
If the problem is occurring in a subroutine, I go into it and do the
same thing. At some point this process has to stop and I’ll find the
problem instruction.

5 KON The offending instruction is an

LEA 13(a7),a7

KON & BAL’S PUZZLE PAGE June 1993

131
SCORING
75–100 How long have you been a member of the Liar’s Club?
50–70 Sharpshooter. You win the (virtual) kewpie doll.
25–45 A valiant effort. These puzzles are hard!
5–20 Brush up for Issue 15’s Puzzle Page.•

BAL Well, that’s bogus. Using an odd address on a 68000 will cause an
address error.

KON Yeah, but the machine is rebooting.

BAL I get it. It’s an odd address in the stack pointer. The Macintosh gets an
address error because of the odd address. When it goes to process the
exception, the exception handler gets an address error trying to push
the exception frame onto the stack. If the Macintosh ran in user mode,
it wouldn’t have this problem, since it could switch to supervisor mode
— essentially a clean machine with a properly aligned stack pointer —
to handle the exception. But since it runs in supervisor mode, hosing
the stack pointer messes the machine up to the point where it can’t
even handle an exception, so it reboots.

KON Yeah. We were working on cleaning up the stack after function calls in
the compiler and had a small problem with the way Booleans are
handled. Since a Boolean is only a char, which is one byte, the
compiler thought it needed to clean up an odd amount of space from
the stack. Once we explained to the compiler that stacks must be word
aligned, the problem went away.

BAL Two bugs in one Puzzle Page!

KON Nasty.

BAL Yeah.

d e v e l o p Issue 14

Thanks to Gary Davidian, scott douglass, and
Jean-Charles Mourey for reviewing this column.•

132

A
AddGraphics, derived media

handlers and 89
AddMediaSample, derived media

handlers and 89
AEProcessAppleEvent, Macintosh

Q & A 109
AEPutParamDesc, Macintosh

Q & A 109
AEPutPtr, Macintosh Q & A 109
AERecord, Macintosh Q & A 109
AlignWindow, QuickTime 1.5 and

105
alphabet, localization and 19
AppleCD 150, Macintosh Q & A

110
AppleCD SC

Macintosh Q & A 110
QuickTime 1.5 and 93–106

AppleCD SC Plus, Macintosh
Q & A 110

Apple CMM, ColorSync and 34,
35, 36

Apple Color Printer, ColorSync
and 34, 38, 39

Apple Compact Video compressor,
QuickTime 1.5 and 93–106

Apple events, Macintosh Q & A
109

Apple Registry, ColorSync and 35
AppleShare PDS file, Macintosh

Q & A 120–121

B
background printing, Macintosh

Q & A 112–113
base media handlers, derived

media handlers and 87, 88, 90,
92

beam chasing, video digitizing and
64

BeginMatching, ColorSync and
36, 38, 39

“Be Our Guest” (Haun) 107–108

bidirectional scripts, localization
and 10

black-and-white machine class,
QuickDraw and 55

black-and-white QuickDraw, 3-D
rotation and 48–49

bottlenecks, QuickDraw and 57

C
C

KON & BAL puzzle 127
Macintosh Q & A 115–116

C++
KON & BAL puzzle 127,

128
Macintosh Q & A 117

CaptureComponent, derived
media handlers and 88

capture rate, video digitizing and
61

capturing movies, QuickTime 1.5
and 93–106

capturing video, video digitizing
and 60

character code, localization and 8
character encodings, localization

and 18–33
character handling, localization

and 7–33
character orientation, localization

and 9
CheckColors, ColorSync and 39
Chen, Michael 40
ci machine class, QuickDraw and

55–56
clipping movies, QuickTime 1.5

and 105
CloseComponent, derived media

handlers and 88
ClosePicture

derived media handlers and
89

QuickDraw and 54
CMCheckColors, ColorSync and

35

INDEX June 1993

133
For a cumulative index to all issues of
develop, see this issue’s CD.•

INDEX

CMCheckPixMap, ColorSync and
35

CMConcatenateProfiles,
ColorSync and 35

CMDeleteDeviceProfile,
ColorSync and 37

CMGetIndexedProfile, ColorSync
and 37

CMGetProfile, ColorSync and 37
CMInit, ColorSync and 35
CMMatchColors, ColorSync and

35
CMMatchPixMap, ColorSync and

35
CMSetProfile, ColorSync and 37
CMSetProfileDescription,

ColorSync and 37
CollectPictColors, QuickDraw

and 57
color matching methods (CMMs),

ColorSync and 34, 35, 36, 37
Color OneScanner, ColorSync

and 34
Color QuickDraw

ColorSync and 36
3-D rotation and 48–49

Color QuickDraw machine class,
QuickDraw and 55

ColorSync 34–39
ColorSync control panel 37
ColorSync Profiles folder 34, 37,

38
Component Manager, derived

media handlers and 87, 88
ComponentSetTarget, derived

media handlers and 88
compressed PICT resources,

Macintosh Q & A 118
compressing movies, QuickTime

1.5 and 93–106
CompressPicture, Macintosh

Q & A 117–118
ConcatenateProfiles, ColorSync

and 36

constructor, Macintosh Q & A
117

context-sensitive scripts,
localization and 10

CopyBits
Macintosh Q & A 112–113
QuickDraw and 56

CopyMatrix, 3-D rotation and 46
Create, Macintosh Q & A

114–115
Cropping (MovieShop Preferences

menu), QuickTime 1.5 and
103

cropping movies, QuickTime 1.5
and 103

cross-stream character orientation,
localization and 9

cue, 3-D rotation and 41
currency formats, localization and

15–18
current directory, Macintosh

Q & A 116–117
CurResFile, system enablers and

108
Customized Color Matching,

ColorSync and 38
CustomPutFile, Macintosh Q & A

111–112
CWCheckColors, ColorSync and

37
CWCheckPixMap, ColorSync and

37
CWDisposeColorWorld,

ColorSync and 37
CWMatchColors, ColorSync and

37, 39
CWMatchPixMap, ColorSync and

37
CWNewColorWorld, ColorSync

and 37

D
data rate, QuickTime 1.5 and 101
dates, localization and 15–18

Day, Neil 6
DebugStr, derived media handlers

and 91
delegate instance, derived media

handlers and 87
DeleteDeviceProfile, ColorSync

and 36
derived media handlers,

QuickTime 1.5 and 87–92
Derossi, Chris 108
destination profile, ColorSync and

36, 37, 39
destructor, Macintosh Q & A 117
develop Bookmark CD 2
dialog hook routines, Macintosh

Q & A 111–112
digital video, QuickTime 1.5 and

93–106
digitizing video, QuickTime and

58–86
directories, Macintosh Q & A

116–117
dither pattern, Macintosh Q & A

110
DoRotation, 3-D rotation and 46
DrawMatchedPicture, ColorSync

and 37, 38
DrawPicture

ColorSync and 39
derived media handlers and

92
QuickDraw and 57

Drexler, K. Eric, Dr. 122–126

E
editing movies, QuickTime 1.5

and 99–100
effective capture rate, video

digitizing and 61
EnableMatching, ColorSync and

37
encodings, localization and 8,

18–33
EndMatching, ColorSync and 36,

38

d e v e l o p Issue 14

134

F
file limits, Macintosh Q & A

114–115
filenames, Macintosh Q & A 119
Finder, KON & BAL puzzle

127–132
First General Conference on

Nanotechnology 122
folder limits, Macintosh Q & A

114–115
font forcing, localization and 22
font/keyboard synchronization,

localization and 22
fonts, localization and 13–15
Foresight Institute 122
formatted values, localization and

15
frame differencing

QuickTime 1.5 and 96–97
video digitizing and 65

frame rates
QuickTime 1.5 and 95–96
video digitizing and 61

frames
Macintosh Q & A 111
QuickTime 1.5 and 95–96
video digitizing and 61

frame size, QuickTime 1.5 and
94–95

Free, Macintosh Q & A 117
front-end processor (FEP),

localization and 11
full-screen movies, Macintosh

Q & A 118–119
FX snippet, QuickDraw and 56

G
gamuts, ColorSync and 34, 37,

39
Gestalt, QuickDraw and 54
GetColorSyncFolderSpec,

ColorSync and 34, 36
GetIconCacheData, Macintosh

Q & A 116

GetIndexedProfile, ColorSync and
36

GetMediaNextInterestingTime,
derived media handlers and 92

GetMediaSample, derived media
handlers and 92

GetMHandle, Macintosh Q & A
109–110

GetMoviePict, Macintosh Q & A
111

GetProfile, ColorSync and 36,
37, 39

GetProfileAdditionalDataOffset,
ColorSync and 36

GetProfileName, ColorSync and
36

“Gibbly History” (Derossi) 108
glyph, localization and 8
GMundo, QuickDraw and 57
grabbing movies, QuickTime 1.5

and 99
grabbing video, video digitizing

and 60
GrabGuy, QuickTime 1.5 and 96,

98, 99
Graf3D, 3-D rotation and 40–53
“Graphical Truffles” (Guschwan)

54–57
graphics, 3-D rotation and 40–53
grayscale values, 3-D rotation and

49
Greenwich Mean Time,

Macintosh Q & A 113–114
Guschwan, Bill 54

H
HackTV, video digitizing and

58–86
Haun, C. K. 107
HyperCard Movie Making Stack,

QuickTime 1.5 and 96, 98

I
Icon Utilities, Macintosh Q & A

116
ideograph set, localization and 19
Initialize, Macintosh Q & A 117
input devices, 3-D rotation and

40–53
input method, localization and 11
input window, localization and 11
interframe compression, video

digitizing and 65
International Utilities Package,

localization and 15, 25
Inventor Toolkit (Silicon

Graphics), 3-D rotation and 53

J
Johnson, Dave 122

K
KCHR resource, Macintosh

Q & A 112
keyboard forcing, localization and

22
keyboard input, localization and

10–13
key frame

QuickTime 1.5 and 97
video digitizing and 65

KillPicture, derived media
handlers and 89

King, Casey 58
“KON & BAL’s Puzzle Page”

(Othmer and Leak) 127–132

L
language, localization and 19
LaserWriter driver, ColorSync

and 39
Leak, Bruce 127
levels, QuickTime 1.5 and 99
line orientation, localization and 8
LineTo, QuickDraw and 54

INDEX June 1993

135

localization
Macintosh Q & A 119
“Writing Localizable

Applications” (Ternasky
and Ressler) 7–33

M
MacApp, Macintosh Q & A 117
Macintosh File Sharing,

Macintosh Q & A 120–121
Macintosh LC II, QuickTime 1.5

and 93–106
Macintosh Q & A 109–121
Macintosh Technical Notes 6
MacRecorder (MacroMedia),

QuickTime 1.5 and 98
MacroMedia 98
magic sizes, video digitizing and

84
“Making Better QuickTime

Movies” (Olson) 93–106
Map control panel, Macintosh

Q & A 113–114
MaxAuxBuffer, video digitizing

and 74
MediaGetGraphicsMode, derived

media handlers and 90
MediaGetMediaInfo, derived

media handlers and 90
MediaGetNextBoundsChange,

derived media handlers and 90
MediaGetSoundBalance, derived

media handlers and 90
MediaGetSrcRgn, derived media

handlers and 90
MediaGetTrackOpaque, derived

media handlers and 90
MediaGGetStatus, derived media

handlers and 90
MediaGSetVolume, derived media

handlers and 90
media handlers, QuickTime 1.0

and 87
MediaIdle, derived media handlers

and 90, 91, 92

MediaInitialize, derived media
handlers and 90, 91, 92

MediaPreroll, derived media
handlers and 90

MediaPutMediaInfo, derived
media handlers and 90

MediaSampleDescriptionChanged,
derived media handlers and 90

MediaSetActive, derived media
handlers and 90

MediaSetClip, derived media
handlers and 90

MediaSetDimensions, derived
media handlers and 90

MediaSetGraphicsMode, derived
media handlers and 90

MediaSetGWorld, derived media
handlers and 90, 92

MediaSetHandlerCapabilities,
derived media handlers and 92

MediaSetMatrix, derived media
handlers and 90, 91

MediaSetMediaTimeScale,
derived media handlers and 90

MediaSetMovieTimeScale,
derived media handlers and 90

MediaSetRate, derived media
handlers and 90

MediaSetSoundBalance, derived
media handlers and 90

MediaTrackEdited, derived media
handlers and 90

media type identifier, derived
media handlers and 88

media types, QuickTime 1.0 and
87

Methods (MovieShop Preferences
menu), QuickTime 1.5 and
104–105

Monitors control panel,
ColorSync and 37

motion quality, video digitizing
and 61

mouse, 3-D rotation and 40–53

movie controller, QuickTime 1.5
and 105

movies
derived media handlers and

87–92
Macintosh Q & A 111,

118–120
QuickTime 1.5 and 93–106
video digitizing and 58–86

MovieShop, QuickTime 1.5 and
93–106

MoviesTask, QuickTime 1.5 and
106

Movie Toolbox
derived media handlers and

88, 89, 91
QuickTime and 87

MPW C, 3-D rotation and 51–53
multiple encodings, localization

and 20–26
MultiplyMatrix, 3-D rotation and

46
MyCanDo, derived media

handlers and 87
MyClose, derived media handlers

and 87, 88
MyOpen, derived media handlers

and 87, 88
MyRegister, derived media

handlers and 87, 88
MyVersion, derived media

handlers and 87

N
names, Macintosh Q & A 119
nanotechnology, Johnson ponders

122–126
native encoding, localization and

19–20
NewTrackMedia, derived media

handlers and 88, 89
noise, QuickTime 1.5 and 98–99
numbers, localization and 15–18

d e v e l o p Issue 14

136

MediaSampleDescriptionChanged,

O
off-screen environments,

QuickDraw and 56
off-screen GWorlds, Macintosh

Q & A 118
Olson, Kip 93
one-byte scripts, localization and

32
OpenPicture

derived media handlers and
89

QuickDraw and 54
Othmer, Konstantin 127
overhead, video digitizing and

80–81

P
PaintOval, derived media handlers

and 87
panel components, video digitizing

and 83
Pascal, Macintosh Q & A 119
patterns, Macintosh Q & A 110
PBRead, Macintosh Q & A 117
PBUnmountVol, Macintosh

Q & A 120–121
Photo CD discs, Macintosh

Q & A 110
PICTs

ColorSync and 39
Macintosh Q & A 110,

117–118
QuickDraw and 57

Picture Utilities Package,
QuickDraw and 57

playing back movies, QuickTime
1.5 and 93–106

play through, video digitizing and
60

PointOnUnitSphere, 3-D rotation
and 45

poor man’s unification, localization
and 26–33

ports, Macintosh Q & A 117
PostScript, ColorSync and 39

PostScript Level 2, ColorSync and
39

Preferences menu in MovieShop
Cropping 103
Methods 104–105
Sound 103
Video 101–102

previewing video, video digitizing
and 60, 77–78

PrGeneral, ColorSync and 38
“Print Hints” (Wang) 34–39
printing, Macintosh Q & A

112–113
profile responders, ColorSync and

37, 38, 39
profiles, ColorSync and 34–38
'prof' resource, ColorSync and

34, 38
Puzzle Page 127–132

Q
Q & A, Macintosh 109–121
Q & A Technical Notes 6
QuickDraw

ColorSync and 36, 39
common answers 54–57
derived media handlers and

87, 88, 89, 91
Macintosh Q & A 117–118
QuickTime 1.5 and 99
3-D rotation and 48–49

QuickTime, Macintosh Q & A
111

QuickTime 1.0
derived media handlers and

87
Macintosh Q & A 118–119
video digitizing and 58–86

QuickTime 1.5
derived media handlers and

87–92
Macintosh Q & A 118–119
“Making Better QuickTime

Movies” (Olson) 93–106
video digitizing and 58–86

QuickTime for Windows,
Macintosh Q & A 119–120

R
readings, localization and 11
recording video, video digitizing

and 60, 78–79
Resource Manager, system

enablers and 108
Ressler, Bryan K. 7
RGB values, 3-D rotation and 49
ROM version, QuickDraw and 55
rotation, 3-D 40–53
Rotation Controller, 3-D rotation

and 40–53

S
scaling movies, QuickTime 1.5

and 103
SCPollServer, Macintosh Q & A

120–121
SCPSJustDisabled, Macintosh

Q & A 120–121
screen position/depth, QuickTime

1.5 and 105
script code, localization and 8
Script Manager, localization and

13
scripts

localization and 8, 10–13,
32

Macintosh Q & A 115–116
SCShutDown, Macintosh Q & A

120–121
segment, localization and 19
sequence grabber, video digitizing

and 58–86
sequential frames, Macintosh

Q & A 111
serial ports, Macintosh Q & A

117
SetIconCacheData, Macintosh

Q & A 116
SetProfile, ColorSync and 36, 38

INDEX June 1993

137

SetProfileDescription, ColorSync
and 36, 38

SetRotationMatrix, 3-D rotation
and 45

SFPPutFile, Macintosh Q & A
111–112

Silicon Graphics 53
simple scripts, localization and 10
“Somewhere in QuickTime”

(Wang) 87–92
sorting order, localization and

15–18
Sound (MovieShop Preferences

menu), QuickTime 1.5 and
103

Sound Manager, QuickTime 1.5
and 97

sound sampling rate, QuickTime
1.5 and 97–98

sound settings, QuickTime 1.5
and 103

sound/video synchronization,
Macintosh Q & A 118–119

source profile, ColorSync and 36,
37, 38, 39

spooling, Macintosh Q & A
117–118

Standard File Package, Macintosh
Q & A 116–117

syllabary, localization and 19
synchronization of sound/video,

Macintosh Q & A 118–119
System 6.0.7, ColorSync and 36,

37
System 7

ColorSync and 36
QuickDraw and 57
QuickTime 1.5 and 106

System 7.1, system enablers and
107, 108

System 7.1 Digest, Macintosh
Q & A 109–110

System 8, system enablers and
108

system enablers 107–108

System Folder, system enablers
and 108

system profile, ColorSync and 37,
38

T
target instance, derived media

handlers and 87
“Tech Notes and Q&As: State of

the Union” (Day) 6
Ternasky, Joseph 7
text drawing, localization and

7–33
THINK C, 3-D rotation and

51–53
“3-D Rotation Using a 2-D Input

Device” (Chen) 40–53
32-Bit QuickDraw

ColorSync and 36
QuickDraw and 55, 56

time
localization and 15–18
Macintosh Q & A 111,

113–114
2-D input devices, 3-D rotation

and 40–53
two-byte scripts

localization and 10–13
Macintosh Q & A 115–116

U
Unicode, localization and 19
unified encoding, localization and

19
_UnmountVol, Macintosh Q & A

120–121
UseProfile, ColorSync and 37, 38
Use Special Gamma setting,

ColorSync and 37

V
VDGetMaxAuxBuffer, video

digitizing and 74
'vdig' component, video digitizing

and 58–86

“Veteran Neophyte, The”
(Johnson) 122–126

video, QuickTime 1.5 and
93–106

Video (MovieShop Preferences
menu), QuickTime 1.5 and
101–102

“Video Digitizing Under
QuickTime” (King and
Woodcock) 58–86

video settings, QuickTime 1.5 and
101–102

video source, QuickTime 1.5 and
98–99

Virtual Sphere, 3-D rotation and
40–53

VirtualSphere, 3-D rotation and
45, 46

VirtualSphereSample, 3-D
rotation and 41

Virtus 53

W, X, Y, Z
WaitNextEvent, QuickTime 1.5

and 106
Walkthrough (Virtus), 3-D

rotation and 53
Wang, John 34, 87
Window Manager, QuickDraw

and 54
Windows, Macintosh Q & A

119–120
with-stream character orientation,

localization and 9
Woodcock, Gary 58
“Writing Localizable

Applications” (Ternasky and
Ressler) 7–33

d e v e l o p Issue 14

138

