
d e v e l o p
T h e A p p l e T e c h n i c a l J o u r n a l

DRAWING IN GWORLDS
FOR SPEED AND
VERSATILITY

IN SEARCH OF THE
OPTIMAL PALETTE

APPLE EVENT
OBJECTS AND YOU

POSTSCRIPT ENHANCEMENTS
FOR THE
LASERWRITER
FONT UTILITY

TOP 10
PRINTING CRIMES

MULTIPLE SCREENS REVEALED

KON & BAL’S
PUZZLE PAGE

MACINTOSH Q & A

I ssue 10 May 1992

Apple Computer, Inc.

E D I T O R I A L S T A F F

Editor-in-Cheek Caroline Rose

Technical Buckstopper Dave Johnson

Review Board Pete (“Luke”) Alexander, Neil Day,

C. K. Haun, Jim Reekes, Bryan K. (“Beaker”)

Ressler, Larry Rosenstein, Andy Shebanow, Gregg

Williams

Managing Editor Monica Meffert

Assistant Managing Editor Ana Wilczynski

Contributing Editors Lorraine Anderson,

Toni Haskell, Judy Helfand, Rebecca Pepper,

Rilla Reynolds

Indexer Ira Kleinberg

Manager, Developer Support Systems and

Communications David Krathwohl

A R T & P R O D U C T I O N

Production Manager Hartley Lesser

Art Director Diane Wilcox

Technical Illustration Nurit Arbel, Geoff

McCormack, Dave Olmos, John Ryan

Formatting Forbes Mill Press

Printing Wolfer Printing Company, Inc.

Film Preparation Aptos Post, Inc.

Production PrePress Assembly

Photography Sharon Beals

Online Production Cassi Carpenter

develop, The Apple Technical Journal, is a
quarterly publication of the Developer
Support Systems and Communications
group.

Hal Rucker of Rucker Huggins used
Adobe Illustrator and Adobe Photoshop
to create this cover. The colorful tents
illustrate subpixel sampling using a “tent
filter,” but we just think they’re beautiful
to look at.

The Developer CD Series disc for May 1992
or later contains this issue and all back
issues of develop along with the code that
the articles describe. The contents of this
disc, which includes other handy software
and documentation, can also be found on
AppleLink.

See Macintosh Q & A, page 110.

CONTENTS May 1992

1
© 1992 Apple Computer, Inc. All rights reserved.

Apple, the Apple logo, APDA, Apple IIGS, AppleLink, AppleShare, AppleTalk, ImageWriter, LaserWriter, LocalTalk,
Macintosh, MPW, and MultiFinder are trademarks of Apple Computer, Inc., registered in the U.S. and other countries.
Balloon Help, develop, Finder, Macintosh Quadra, Moof, Powerbook, QuickDraw, QuickTime, Sound Manager,
System 7, and TrueType are trademarks of Apple Computer, Inc. PostScript is a registered trademark of Adobe
Systems Incorporated. HyperCard and MacPaint are registered trademarks of Claris Corporation. Helvetica is a
registered trademark of Linotype Company. NuBus is a trademark of Texas Instruments. UNIX is a registered trademark
of UNIX System Laboratories. All other trademarks are the property of their respective owners.

Spring hasn’t necessarily sprung. 2

Lots about the CD this time. 4

Apple Event Objects and You by Richard Clark Supporting the Apple
event object model isn’t as tough as you might think, and it will guarantee the future
scriptability of your application. 8

PostScript Enhancements for the LaserWriter Font Utility by Bryan K.
(“Beaker”) Ressler Unbeknownst to many, the LaserWriter Font Utility is
extensible, allowing you to add custom functionality. PostScript hackers, rejoice! 37

Drawing in GWorlds for Speed and Versatility by Konstantin Othmer
and Mike Reed Custom drawing routines can radically increase graphics
performance. Kon and Mike show you how and give you some extremely useful
examples. 62

In Search of the Optimal Palette by Dave Good and Konstantin Othmer
Choosing the best colors to display an image with is tricky. This article explains how
the Picture Utilities methods work and gives you tips on developing your own
methods. 90

Print Hints: Top 10 Printing Crimes by Pete (“Luke”) Alexander These
ten problems with printing show up again and again, but they’re easily avoided. Luke
spells it out for you. 33

Graphical Truffles: Multiple Screens Revealed by Forrest Tanaka and
Bill Guschwan The fact that QuickDraw handles multiple screens transparently
can seem like magic. Here’s the inside scoop and some tips on how to optimize your
drawing quality. 57

The Veteran Neophyte: Yeah, But Is It Art? by Dave Johnson Dave has
some fun with image processing and has an enlightening encounter with his
encyclopedia. 103

KON & BAL’s Puzzle Page: Sleeping Beauty by Konstantin Othmer and
Bruce Leak See if you can figure this one out: a bug that shows up only after
several hours of continuous QuickTime movie playing. 118

Macintosh Q & A Answers to your product development questions. 106

122

E D I T O R I A L

L E T T E R S

A R T I C L E S

C O L U M N S

Q & A

I N D E X

Dear Readers,

We’ve made a change to develop that I’d like to draw to your attention for two
reasons: (1) observant long-time readers may wonder why we’re reverting to an old,
abandoned practice, and (2) we’ve learned a lesson that also applies to the products
you’re developing.

Issues 1 through 4 of develop were “subtitled” January 1990 through October 1990.
Our fifth issue started out 1991 not only with the since-abandoned “Vol. 2”
designation, but also with the subtitle “Winter 1991.” When I started this job in
February 1991, I learned that the change to seasons was made because of the
uncertainty of just when an issue would fall into developers’ hands. But now we’re
switching back to months with this, our May 1992 issue.

There’s the problem that it’s not real clear which year any given winter belongs to,
since that season spans two years. But the worst offense is that winter doesn’t hit all
parts of the globe at the same time. So we were confusing and offending some of our
Australian developers, for example (see the first letter in the Letters section).

Localization is something that’s of course critical to any products you hope to sell in
other countries—sometimes even other cities or states. And it applies to both code
and documentation. Way back when we were writing the first Macintosh user
manual, we were surprised to get feedback that we shouldn’t refer to pizza in our
sample text because it was too regional. (Somehow the problem of having only white
males in all the photographs was overlooked, but that’s another story.)

If you’re thinking that people in other countries never use your software anyway,
consider this: In the song “Talkin’ Wheelchair Blues” by folk singer Fred Small, a
woman in a wheelchair has extreme difficulty getting into a restaurant. She tells the
owner that there are things he can do to make it easier for folks in wheelchairs. The
owner replies, “Oh, it’s not necessary. Handicapped never come here anyway.” The
moral is that if you essentially shut some potential users out, of course they won’t use
your software.

Apple can offer some new resources to you in your quest for localization. The Guide
to Software Localization will be replaced by a Guide to Macintosh Software Localization,
to be published by Addison-Wesley and available by around late July. Besides the

d e v e l o p May 1992

CAROLINE ROSE (AppleLink: CROSE) has been
writing computer documentation for more than
half her life. She harks back to the days when
using “you” in a manual was controversial.
Caroline hasn’t stood still: she switched from
writing and programming (at Tymshare, R.I.P.) to
writing and editing (Inside Macintosh, at Apple)
to managing and editing (at NeXT) to editing
develop (couldn’t stay away). Besides her job at

Apple, Caroline loves almost all kinds of music,
dancing, and reading. Her eclectic tastes are
typified by the three books she’s involved in at the
moment: a history of MAD magazine, an
annotated Hamlet, and an Italian language
textbook. A New York City transplant, Caroline
thinks that nothing compares to the New York
Times Book Review or real New York pizza. She’s
occasionally nostalgic for knishes.•

2

CAROLINE ROSE

EDITORIAL May 1992

3
SUBSCRIPTION INFORMATION
To subscribe to develop, use the subscription card
in the back of this issue. Please address all
subscription-related inquiries to develop, Apple
Computer, Inc., P.O. Box 531, Mt. Morris, IL
61054 (or AppleLink DEV.SUBS).•

BACK ISSUES
For information about back issues of develop and
how to obtain them, see the last page of this
issue. Back issues are also on the Developer CD
Series disc.•

subtle title change, the difference between these two is that the new book will cover
third-party script support as well as script systems directly supported by Apple. And
by the time you read this, there should be a new APDA product, called Localization
for Japan, that covers the business and technical aspects of getting software into the
Japanese market. You’ll of course get all the latest technical details on worldwide
software in the forthcoming new, improved Inside Macintosh.

Another change starting with this issue is that there’s no longer an Apple II Q & A
section. Instead, we’ll pass on those Q & A’s to the Apple II journal A2-Central
(published by Resource Central). We think this is a better way of getting the
information out to the majority of Apple II developers. All current Apple II
development products previously sold through APDA are now sold through
Resource Central. For more information, you can phone them at (913)469-6502.

Now on to Issue 9’s trivia question. Here it is again: The original hardcover Inside
Macintosh Volumes I-III had a running pattern of Macintosh computers across its
endpapers . . . what broke this pattern, and why? The first two correct replies came
from Tom Bernard of Bersearch Information Services and Bill Lipa of CODAR
Ocean Sensors. The answer is that the screen of the last Macintosh in the back of the
book contains my favorite character in the Cairo font, a rose, and it represents yours
truly, the editor and principal author of that tome. The tricky part of the answer is
that the rose was a surprise to me. My boss arranged for it to be put there; I didn’t
know about it until he handed me my first hardcover copy, hot off the press, and slyly
asked me to lift up the inside end flap.

This time I’ve got a puzzle for you font fiddlers out there—a test of just how good
your font-observing eye is: What character in develop’s body font is upside-down (not
just one-time-only, but defined that way)? Clue: There are lots of them in this issue,
but none in this editorial. Get out those magnifying glasses!

Caroline Rose
Editor

PROVINCIALISM
I would be pleased if Apple (and APDA,
etc.) would cease dating publications by
what would seem to be the season in the
northern hemisphere (for example,
“Winter 1992”). This practice is
inconsistent with Apple’s dedication to
Worldwide Software and the avoidance
of cultural values. In addition to it being
ignorant and arrogant, it is both
confused and confusing—the seasons in
the U.S.A. are not, I believe, simply the
opposite of ours.

Furthermore, what the heck is “Winter
1992”? Which end of the year is it? Is it
sometimes also known as “Winter
1991”?

—Dr. Ross L. Richardson, Australia

Thanks for the kick in the pants—and for
inspiring the theme of this issue’s editorial.
The change (back) to using months has been
made in this, our May issue. I wish we
could have done it for Issue 9 (February,
a.k.a. Winter 1992), because I agree that
“Winter” is particularly confusing, but the
timing was too tricky. In fact, just after
hearing from you about this, I received a
“Winter 1991” catalog in the mail!

—Caroline Rose

WHERE’S THE SKB STACK?
Wow, a real Developer CD! At first I
thought it was one of those errors that
are in my favor (a rarity for sure!). But
no, I will continue to receive Developer
CDs. Last year I would have considered
murder to gain access to one of these.

Needless to say I’ve been over it as
much as possible. There’s one thing that
I can’t find. I can’t seem to locate the
Search Knowledge Base stack. I was

able to select which stacks to search and
get the report of all Tech Notes
containing what I was looking for. I
don’t mind telling you that it saved my
butt on a couple of contracts. I’ve
looked in the logical places on the CD
for it. Where is it?

—J. R. Hughson

Yes, since Issue 8, subscribers to develop
have been getting the entire Developer CD
Series disc and not just the Developer
Essentials subset. Truly the bargain of the
century (tell your friends). We’re glad you
didn’t have to resort to foul play to get one.

The Search Knowledge Base (SKB) stack
was modified slightly and integrated into
the Developer Info Assistant (DIA) stack—
so it was only hiding, not gone. We
apologize for not communicating this
change to you. To go directly to the SKB
utility, just open the DIA stack (in the
Start Here folder) and click the “Search...”
button.

—Caroline Rose

ON LOCATION (MOOF!)
It was nice to get more goodies on the
CD that came with Issue 8, but the CD
has a couple of deficiencies that I think
should have been detected/eliminated.

1. Unless something is wrong with my
copy of On Location, the On Location
index on the CD can’t be used to view
the files it references. On Location says
that the index is out of date. I don’t
know about all files, but this was true of
the sample I tried to look at. To rebuild
the index on my hard disk will take a big
chunk of my limited hard disk space.

2. The time I spent with the CD from
develop Issue 7 getting accustomed to

d e v e l o p May 1992

PLEASE WRITE!
We welcome timely letters to the editors,
especially from readers reacting to articles that
we publish in develop. Letters should be
addressed to Caroline Rose (or, if technical
develop-related questions, to Dave Johnson) at
Apple Computer, Inc., 20525 Mariani Avenue,
M/S 75-2B, Cupertino, CA 95014 (AppleLink:
CROSE or JOHNSON.DK). All letters should

include your name and company name as well
as your address and phone number. Letters may
be excerpted or edited for clarity (or to make
them say what we wish they did).•

4

LETTERS

the Search Knowledge Base stack was
for naught since SKB is not present on
the CD that came with Issue 8. The old
version does not work on the new CD
without substantial modification. I
found Issue 7’s SKB very useful.

By the way, what does “Moof!” mean?

—Pete Roberts

The On Location index was indeed broken
on the Developer CD Series disc Volume X.
Our apologies, and thanks for alerting us.
It works fine on later CDs.

As for the apparent disappearance of the
Search Knowledge Base (SKB) stack,
please see the answer to the previous
question.

Moof is a sacred tradition among Apple’s
Developer Technical Support engineers. It
means several things. First, it’s the sound
that the dogcow makes. (The story of the
dogcow is “hidden” in Macintosh Technical
Note #31 on the CD; if you can find it,
you’ll be considered a Moof initiate.) The
dogcow is integrated into our artwork in a
number of places. Take a look at the cover
card of the Technical Notes stack or Q & A
stack, for example. There’s also a guest
appearance of the dogcow in this issue of
develop (see the Print Hints column).

Second, the word is used to indicate any
software that’s a hack, something untested
and on the edge. Certain folders on the CD
are marked Moof, such as “Tools & Apps
(Moof!)” and “Development Platforms
(Moof!).” This is to let you know that these
folders contain software that’s not fully
tested or sanctioned by the powers that be.
When you open these folders you cross the
boundary into hackerland.

—Sharon Flowers

QUICKTIME MOVIES ON THE CD?
I want to thank you and your staff for a
truly wonderful publication. I currently
hold a dual position as a Macintosh/
Windows developer and as director of a
research lab using UNIX® boxes with
Motif; of all the trade magazines I get
(and let me tell you, I get a zillion of
them), develop shines above all the rest.
The articles addressed aren’t always the
ones I’d have chosen, but with as large
an audience as you probably have, you
still manage to print more than enough
for me to get plenty out of each issue.

The CD has also provided me with
hours of exploration each time. I would
really like to see you include
QuickTime movies made by Apple
employees and maybe even readers.

Keep up the good work—and treat
yourselves to pizza on me (send the bill
to my mailing address).

—Robert H. Zakon

Thanks for the glowing comments. You have
no idea (or maybe you do) how much these
things mean to us.

Regarding QuickTime movies on the CD, I
agree that would be great, sorta like the old
days when we had an audio track on every
CD: our chance to get creative and add
some entertainment value. Unfortunately,
it’s unlikely that it will happen, for a few
reasons. The main one is that we’d have to
get rid of a lot of useful stuff to make room
for the movies (which, as I’m sure you
know, tend to be largish). Even though we
have 600 MB of space on the disc, it’s
always burstingly full.

So despite the fun we could all have with
movies, the Developer CD is just not the
place for them, alas. The QuickTime CD is,

LETTERS May 1992

5

of course, chock full of fun movies, if you
haven’t seen it yet. It’s available from
APDA as part of the QuickTime
Developer’s Kit, APDA #R0147LL/A.

Thanks again for writing, and if you have
ideas for articles you’d like to see (or want to
write one yourself!), please don’t hesitate to
let us know.

—Dave Johnson

P.S. The pizza was delicious. All 114 of us
thank you heartily. The bill is in the mail.

NOT READY FOR PAPERLESS
I’m more concerned about the
environment than most, but the race to
achieve the paperless office, without
determining what people’s needs really
are, will only end up convincing them
that the electronic office has not come
of age! Apple isn’t considering that
we’ve spent most of our lives looking at
the printed page, so the productivity
loss now in using on-line electronic
media is high. The fact is most people
relate more easily and absorb
information more quickly from the
printed page than from any existing on-
line method.

A case in point is develop. Scanning Issue
8 on-line took more than 30 minutes,
just for a quick scan. An equal amount
of information could have been
obtained from the printed magazine in
less than 1 minute. That’s a factor of 30!

I applaud the effort to save trees, but
how many trees are being saved when
developers merely print the information
themselves (single-sided, I might add)?
If Apple wants to make an impact in this
area of environmental concern I suggest
they provide a set of integrated on-line
tools that allow retrieval of information

in a way that’s more human oriented.
Apple held a carrot under our noses at
the 1991 Worldwide Developers
Conference called BlueNote, but
they’ve been unable to deliver. In the
meantime we’re expected to make do
with the existing (poor) HyperCard®

utilities. Come on, Apple—now is the
time to make a difference.

—Todd Stanley

I couldn’t agree with you more that Apple
needs to develop an electronic publishing
strategy that advances the art of access to
information. But Apple is many people and
consensus is somewhat of an endangered
species! Current strategies, electronic
develop included, do make some advances.
Regretfully, in some ways they are more
difficult to use than the tried-and-true
print media.

But beyond regret and apologies we actually
have some solutions in the works. The
“BlueNote” carrot that was dangled before
you is in fact now in use on the Developer
CD. It’s being used to present chapters from
the new, improved Inside Macintosh.
Unfortunately, like most solutions to date, it
creates as many problems as it solves. So
please be patient as we try to come up with a
solution that does the electronic medium
justice.

As a side note: This discussion should send a
message to the developer community. There’s
clearly a need in the marketplace for generic
electronic publishing tools. And where there
is a need, there is opportunity.

—Corey Vian

WHERE’S PRINTED DEVELOP?
I’m an Apple Associate and lately I have
not been receiving the printed version

d e v e l o p May 1992

6

of develop magazine. Issue 7 was the last
printed one I received. I don’t know
why this happened, but I would like to
receive the printed version again.

The CD-ROM paperless approach is
admirable, but it doesn’t work for me
because I do all my reading while
commuting on CalTrain.

—Joe Zuffoletto

Letters like yours are all too common.
What’s happened is that, starting with Issue
8, printed develop was removed from the
mailing to Apple Associates and Partners.
In various places (including in the mailing
itself), it was announced that developers
would have to explicitly subscribe to keep
getting develop in printed form—but
apparently many developers didn’t see this
announcement. Since then we’ve received a
lot of less-than-positive feedback about the
decision to drop the printed magazine out of
the mailing and about the difficulties in
trying to read it on the CD (see, for
example, the previous letter). The paperless
approach isn’t working for a lot of people, as
it turns out.

For now, you’ll have to subscribe in order to
get printed develop. If you don’t want to go
through the trouble of finding the
subscription form in develop on-line, you
can place a phone order at 1-800-877-
5548—or you can subscribe through
APDA.

As for the future, rest assured that Apple is
paying attention to the feedback and has
learned a lot from it. I can’t say what will
happen, but I know that the more developers

tell us what they want, the more likely they
are to get it. So thanks for writing to us.

—Caroline Rose

UP TO HIS EARS IN CDS
I agree 105% with your editorial
comment in Issue 8 (about preferring to
read develop in printed form). I guess I’ll
cast my vote by subscribing to develop,
but I need another copy of the CD like I
need a typewriter. I sometimes wonder
whether I should still keep all the old
CDs that compete for room in my
limited collection space. I want the hard
copy develop, but it bothers me to waste
that CD that comes with it.

—Bruce Radford

Apple Associates and Partners who subscribe
to develop to get it in hard copy do end up
with an extra CD. At one time I was
concerned about the extra cost of this as well
as the waste. It turns out that the CD
doesn’t add much at all to the cost of
develop. But as for the waste, I don’t have
an answer; maybe some of our readers do?

I wouldn’t recommend holding on to the old
CDs (which only compounds your disposal
problem, but oh well). For the most part
they’re cumulative—we’ve only deleted old
versions of international system software
and a few other things that we had pressing
reasons to remove. In particular, the
develop code on the CD is kept up-to-date,
and any bugs are fixed, with each new CD.

—Caroline Rose

LETTERS May 1992

7

With Apple events, Apple has opened the door for applications to control
each other and work collaboratively. However, before applications can
communicate, they have to agree on the commands and data they’ll
support. Apple event objects form the basis of such a protocol—the Apple
event object model. The object model is powerful, but still a source of
confusion for many developers. This article provides an overview of the
object model and answers several commonly asked questions, including
“What is the Apple event object model?” and “How do I support it?”

One of the greatest strengths of the Macintosh—its graphical user interface—is also
the basis of one of its greatest weaknesses—the difficulty of automating routine or
repetitive tasks. “Give us batch files!” many users cried. The developers responded
with macro programs such as QuicKeys and Tempo, which handle many of the
routine tasks but can’t always make a program do exactly what the user wants.

The problem is that macro programs are generally limited to manipulating an
application’s human interface and have limited information about the state of the
application. This means that if some setting has been changed or something has been
moved, running a particular macro might not have the desired effect. In other words,
one Macintosh application cannot control another application reliably through the
target application’s human interface.

For one application to control another application reliably, all of the following must
happen:

• The two applications must agree on a protocol for sending
commands and data and agree on the specific information to be
sent across this connection.

• The controlled application needs to provide a rich enough set of
commands and sufficient access to its data so that meaningful work
can be done.

d e v e l o p May 1992

RICHARD CLARK, an instructor and course
designer in Apple’s Developer University, is no
stranger to projects both large and small. (He
claims that both of his recent projects—the new
Advanced System 7 class and Daniel Guy
Clark—took around nine months and developed
a life of their own.) When he’s not playing with
his new son, you can find him dancing in local
Renaissance Faires, stunt kite flying, searching for

the ultimate chocolate recipe, and dreaming up
horrible new puns.•

8

RICHARD CLARK

APPLE EVENT

OBJECTS

AND YOU

• The protocols and command sets should be standardized so that
many different applications can work together.

On the Macintosh, Apple events and the Apple Event Registry provide the standards
that allow applications to control each other reliably. The Apple event, a standard
protocol for sending commands and data between applications, was introduced as
part of System 7. The Apple Event Registry defines standard Apple event commands
and two standard data types—Apple event object and primitive. Apple event objects
describe an application’s internal data, and primitive types describe the data that can
be sent between applications. In essence, the Registry forms the basis for a standard
language that applications can use when sending or receiving Apple events.

One of the challenges in creating the Apple Event Registry was to keep the set of
commands small while providing an adequate level of control between applications.
The Registry does this by allowing the same command to apply to different Apple
event objects within an application. The application of Apple events to Apple event
objects is commonly referred to as the Apple event object model.

This article provides an overview of the object model and then discusses how you can
add object model support to your application. The fundamentals of Apple events are
given in Inside Macintosh Volume VI.

OBJECT MODEL BASICS
The Apple Event Registry defines an application’s programmatic interface as a series of
Apple event objects, where each object belongs to a particular object class. Each
Apple event object is comprised of some data and a set of Apple event commands that
operate on that data. In a traditional object-oriented fashion, new classes are defined
by taking an existing class and adding new data and/or commands. Related classes are
grouped together into suites.

The most commonly used objects (and their associated commands) are grouped
together into the Apple event core suite. The commands in the core suite, which
include Create Element, Delete, Get Data, and Set Data, cover the basic operations
for any given object. The Apple event objects defined within the core suite include
documents, windows, and the application itself. The core suite also includes some
primitive classes such as long and short integers, Boolean values, and text. Every
object model–aware application should support the core suite, and all Apple event
objects defined within your application should support the core suite events.

The data portion of an Apple event object is broken into two parts: the object’s
properties and its elements:

• The properties of an object contain the attributes of the object—for
example, its name and a 4-byte code designating its class.

APPLE EVENT OBJECTS AND YOU May 1992

9
Concepts from object-oriented
programming (notably inheritance—the
process of defining new classes in terms of other
classes) are used in defining the Apple event
object model, but supporting Apple event objects
does not require the use of an object-oriented
language or class library. You can use any
language or implementation technique you want,

as long as your application can understand the
Apple events sent to it.•

• The elements of an object are the other objects (in other words,
data) that it contains. For example, a drawing application contains
one or more documents, and each document may contain several
rectangles and a picture or two. When the Registry describes an
object, it lists all the element classes of an object, but a particular
object may contain only some (or no) elements of each class at run
time. (The number of elements can change during run time. For
example, the number of words in a window could increase due to
user typing or an incoming Apple event.)

For more detail on the difference between a property and an element, see “Properties
and Elements.”

Figure 1 shows three object classes that we’ll use throughout the article; they’ve been
derived from the Apple Event Registry and simplified for the purpose of illustration.

OBJECT SPECIFIERS
Most of the Apple events defined in the Apple Event Registry contain one or more
object specifiers as parameters. An object specifier is similar to the instructions you
might give someone who’s looking for a particular house: turn left at the first signal,
then look for Jones Street and turn right, then travel down to the third house on the
right. Object specifiers can also be used to specify a group of objects—for example,
every green house on Jones Street.

d e v e l o p May 1992

In addition to the core suite, the Apple
Event Registry includes other specialized suites for
text processing, database manipulation,
manipulating QuickDraw graphics, and the like.
Application developers can define their own
custom Apple event object classes and suites and
submit them to the Apple Events Developer
Association for standardization.•

10

pClass�
pDefaultType�
pName�
plsModified�
�
�
cFile�
cRectangle�
�
Create Element�
Get Data�
Set Data�
Delete�
Open�
Close�
Print�
Save�

Properties�
�
�
�
�
�

Elements�
�
�

Apple Events�
�
�

cDocument

pClass�
pDefaultType�
pBounds�
�
�
�
(None)�
�
�
Create Element�
Get Data�
Set Data�
Delete

cRectangle

pClass�
pDefaultType�
pFont�
pSize�
pStyle�
�
cCharacter�
�
�
Create Element�
Get Data�
Set Data�
Delete�
�

cWord

Figure 1
Some Hypothetical Apple Event Object Classes

Or imagine you send an Apple event–aware word processor the object specifier
“every Paragraph in the current Document that contains the Word ‘Apple’.” The
application would search in stages, first finding the current document and then
searching through the paragraphs one at a time to see if they contained the word
“Apple.” Object specifiers provide a powerful general mechanism for locating a
particular object in an application.

The Apple event’s direct parameter typically contains the object specifier, yielding
such commands as “Close Document 3” and “Delete Word 3 of Document ‘fred’.”
Passing an object specifier as part of a command allows the same command to be
reused for different objects (New window, New document, or New rectangle) instead of
inventing a unique command for each action-object pair (NewWindow,
NewDocument, or NewRectangle).

Internally, an object specifier consists of a series of recursive “get a particular element
of class x from object y” commands. For example, in the command “Close Document
1,” the object specifier (Document 1) is represented as “the first object of class
Document contained within the Application.” Another way of looking at this is “(the
first object of class Document in (the Application))” where the parentheses represent
one object specifier embedded within another. In addition to specifying a single
element, an object specifier can refer to a property of some object or to a set of
objects. For example, your application may receive the object specifier for “the
Bounds of Window 1” or “every Icon contained within Rectangle 1 of Window 5.”

APPLE EVENT OBJECTS AND YOU May 1992

11

Each Apple event object contains exactly one of each of
its properties (each of which has a name), so you might
ask for the “Bounds of the frontmost Window” and
receive back the pBounds property of the specified
window. An object can contain zero or more of each of
its element classes (each of which has a name), so you
could ask for “every Paragraph in Document 1,” where
Paragraph is a valid element class for the document.

Many developers want to know when you should
declare something as a property and when you should
declare it as an element. You should make something (call
it x) a property of an object when x describes something
about that object. You should make something else (call it
y) an element of an object if y is contained within the
object.

Some developers use the rule “If there’s only going to be
one y in the object, make it a property.” Alas, this rule
isn’t always correct. Let’s assume that an application
could display only one document window at a time.
Should that document be an element or a property?
According to the Registry’s definition of an element, since
the document is contained within the application, you
should make it an element. If you make something an
element based simply on the Registry’s definition, your
new classes will be consistent with the existing classes.

Another useful test is to ask “Can I delete this item?” If you
can, it’s not a property. (You can delete a window from
within an application, so a window is an element of that
application, not a property. But since you cannot delete
the bounds of the window, the bounds is a property.)

PROPERTIES AND ELEMENTS

d e v e l o p May 1992

12

Figure 2 shows a simplified representation of two object specifiers. Object specifiers
are stored as Apple event records, with one field each for the object class and the
object’s container (stored as a handle) and two fields for the element identifier. The two
fields of the element identifier together represent the specific element to be selected.
In part A of Figure 2, the desired object class is cDocument, the container is 'null' (in
other words, a descriptor that has type typeNull and a nil handle), and the element
identifier is 1. The null container typically represents the application. In part B, the
desired object class is cWord, the container is a handle to the object specifier from
part A, and the element identifier is 5.

An actual object specifier is slightly more complicated than the ones shown in Figure
2. In the examples given above, we’ve consistently referred to elements by number.
However, you might want to refer to some object, such as a document, by name. In
that case you would need to know that the two fields of the element identifier contain
a key form and some key data.

Each different way you can refer to an element uses a different key form. When we
refer to an element by number, we’re using the “absolute position” key form. We
could also specify a “name” key form, a “property” key form (to get a property of an
object instead of one of its elements), and so on. A complete object specifier is shown
in Figure 3. A list of all standard key forms is given in the Apple Event Registry and in
the Apple Event Manager chapter of the new, improved Inside Macintosh (preliminary
draft) on the Developer CD Series disc.

(A) Close Document 1

Object class
Object container
Element identifier

�

'null' (the application)
cDocument

1

Figure 2
Simplified Representation of Object Specifiers

(B) Get Data Word 5 of Document 1

Object container

Object class

Object class
Object container
Element identifier

Element identifier

cWord

5

� cDocument
'null' (the application)
1

HOW DO I DISPATCH AN APPLE EVENT CONTAINING
OBJECT SPECIFIERS?
One of the side effects of the object model is that the same command will be executed
differently depending on the type of object involved. Therefore the object class, event
class, and event ID are required before you can dispatch an Apple event. Since the
Apple Event Manager uses only two of these values when dispatching an Apple event
(the event class and event ID), you’ll need to write some additional dispatching logic.

We’ll discuss three major ways of dispatching object-model Apple events: an event-
first approach, an object-first approach, and a method that uses a lookup table to
dispatch the events. These approaches all serve the same function—extracting an
object specifier and using the combined object class, event class, and event ID to
select one of the application’s routines. They differ only in the way you structure your
code.

AN EVENT-FIRST APPROACH
The event-first approach allows the Apple Event Manager to do most of the work.
The Apple Event Manager calls a different handler for each event—for example, Get
Data and Set Data—and that handler calls different routines depending on the object
class given by the object specifier. Figure 4 and the following sample code illustrate
this approach.

pascal OSErr AESetDataHandler (AppleEvent *message, AppleEvent *reply,
long refCon)

{
OSErr err;
AEDesc theObject, theToken;

err = AEGetKeyDesc(message, keyDirectObject, typeObjectSpecifier,
&theObject);

if (err != noErr) return err;

APPLE EVENT OBJECTS AND YOU May 1992

13
For source-code samples that use the event-
first technique, see the samples Quill and
AEObject-Edition Sample in the Apple Events and
Scripting Development Kit on the Developer CD
Series disc.•

Close Window 1

Object class
Object container
Key form

cWindow
AEDesc: type 'null', no data
formAbsolutePosition

Key data AEDesc: type 'long', value "1"

Figure 3
The Four Fields of an Object Specifier

err = AEResolve(&theObject, kAEIDoMinimum, &theToken);
AEDisposeDesc(&theObject);
if (err != noErr) return err;

/* The token is an Apple event descriptor. For now, we can */
/* assume that the token's descriptor type is the class of the */
/* object that should handle this event. */
switch (theToken.descriptorType) {

case cWindow: case cDocument:
err = Win_SetData(&theToken, message, reply);

break;

case cRectangle:
err = Rect_SetData(&theToken, message, reply);

break;

case cWord:
err = Word_SetData(&theToken, message, reply);

break;

default:
err = errAEEventNotHandled;

}
AEDisposeDesc(&theToken);
return err;

}

An application that processes events using the event-first approach goes through the
following steps after it receives an Apple event and calls AEProcessAppleEvent (the
numbers correspond to the numbers in Figure 4):

1. The Apple Event Manager locates the event in its dispatch table.

2. The appropriate handler routine is called by the Apple Event
Manager—in this example, it’s Set Data. This handler routine
needs to determine the object class before it can perform the
appropriate action, so it calls AEResolve to convert the object
specifier into a reference to a particular object.

3. AEResolve takes an object specifier as input, and calls one or more
accessor routines to convert this object specifier into a token that
refers to some object. (See the section “How Do I Resolve an
Object Specifier?” for more information.)

4. The token is returned to the handler.

d e v e l o p May 1992

14

5. Once the handler knows the object class, it can call the appropriate
object-specific routine. This routine typically accepts the token as
one of its parameters.

Since many of the things you can do with a token fall into a few basic operations, such
as reading, writing, inserting, or deleting the information represented by a token, you
can choose to write a set of token-handling routines for each token type that you
define. Token-handling routines are not required, but they are useful. (See the section
“What Are Token-Handling Routines?” for more information.)

Due to its simplicity, the event-first approach is recommended for all applications
written in a procedural programming style (as is typically done in C or Pascal). Its
only real drawback is that if you add a new object class to your application, you have
to modify a number of Apple event handlers to recognize the new class (one handler
per event that the new object class supports).

Set Data
object specifier

token
4

3
2

Apple event handler

Get Data
Set Data
Create Element
Delete
...

AEM dispatch table

Object accessors

cRectangle from cDocument

cDocument from null

cWord from cDocument

Event+object handler

Token-handling routines

Word_SetDataRect_SetDataWin_SetData

1

5

APPLE EVENT OBJECTS AND YOU May 1992

15

Figure 4
Event-First Approach to Dispatching Apple Events

If you have code spread across several source files, consider whether this could
present a code maintenance problem. If so, the object-first approach might work
better for your application.

AN OBJECT-FIRST APPROACH
You can limit the amount of work required when adding a new object class by making
each object class a self-contained unit. In this approach, an individual file (or group of
files) contains all the code required to implement a single object class, including the
event-dispatching code, object accessors, and token handlers. (For more information
on token handlers, see the section “What Are Token-Handling Routines?”)

Since the object includes its own event-dispatching code, you don’t usually install a
separate handler for each individual Apple event. Instead, you install one or more
wild-card handlers that route the event to the appropriate object using the following
algorithm:

1. Extract the parameter containing the object specifier.

2. Call AEResolve to convert this object specifier into a token.

3. Extract the object class from the token.

4. Call the event dispatcher within the appropriate object.

Since most Apple events carry their object specifiers in the direct parameter, a single
wild-card handler works for all of these Apple events. However, there are some events
that carry their object specifiers in different places, so you need to install specific
handlers for these events. (For example, the Create Element event carries its object
specifier inside an insertionLoc structure.) Using a single handler that uses the first
object specifier it finds is inadequate, since some events use multiple object specifiers
and an object specifier can appear anywhere another parameter can.

The handler that extracted the object specifier passes the token, the message, and the
reply event to the object’s central event dispatcher. This dispatcher then calls the
appropriate routine, which typically calls one or more token-handling routines. This
approach is illustrated in Figure 5 and in the following sample code.

/* This is a typical Apple event handler that you install using */
/* a wild card (in this case, the class = 'core', and the event */
/* ID = '****'). This would go in a "common area" file, separate */
/* from the individual object implementation files. */
pascal OSErr AECoreSuiteHandler (AppleEvent *message, AppleEvent *reply,

long refcon)
{

OSErr err;
AEDesc directParam, theToken;

d e v e l o p May 1992

16

/* The following code works for all core Apple events except */
/* Create Element. Either this routine would need to be modified */
/* for Create Element, or a specific handler installed. */
err = AEGetKeyDesc(message, keyDirectObject, typeWildCard,

&directParam);
if (err != noErr) return err;

if (directParam.descriptorType == 'null') {
/* AEResolve doesn't like null descriptors, so skip it. */

theToken = directParam;
}
else {

err = AEResolve(&directParam, kAEIDoMinimum, &theToken);
AEDisposeDesc(&directParam);
if (err != noErr) return err;

}
/* We assume the token's type is the class that handles this event. */
switch (theToken.descriptorType) {

/* Include one entry for each object class. */

case 'null':
/* This is the application object's token class. */
err = AppEventDispatcher(&theToken, message, reply);

break;

case cDocument:
/* See the example of this routine below.*/
err = DocumentEventDispatcher(&theToken, message, reply);

break;

/* And so on for cRectangle, cWord, etc. */

default:
err = errAEEventNotHandled;

}
AEDisposeDesc(&theToken);
return err;

} /* AECoreSuiteHandler */

/* ===In the Document Object file...=== */

OSErr DocumentEventDispatcher (AEDesc *theToken, const AppleEvent *message,
AppleEvent *reply)

{
OSErr err = noErr;

APPLE EVENT OBJECTS AND YOU May 1992

17

d e v e l o p May 1992

18

AEEventID eventID;
OSType typeCode;
Size actualSize;

/* Get the event ID. */
err = AEGetAttributePtr(message, keyEventIDAttr, typeType,

&typeCode, (Ptr)&eventID, sizeof(eventID), &actualSize);
if (err != noErr) return err;

switch (eventID) {

case kAECreateElement:
err = Doc_CreateElement(theToken, message, reply);

break;

case kAEGetData:
err = Doc_GetData(theToken, message, reply);

break;

/* And so on for Set Data, Delete, Open, Close, Print, etc. */

default:
err = errAEEventNotHandled;

}
return err;

} /* DocumentEventDispatcher */

When an event is processed using the object-first technique, the application takes the
following steps after it receives an Apple event and calls AEProcessAppleEvent (the
numbers correspond to the numbers in Figure 5):

1. The Apple Event Manager locates a handler routine in its dispatch
table. The handler is usually installed with a wild-card value so
that it’s passed all (or most) events.

2. The appropriate handler routine is called. This routine acts as an
object dispatcher—it determines the type of object involved and
calls the code in the appropriate object’s source file. This handler
routine needs to determine the object class, so it calls AEResolve
to convert the object specifier into a reference to a particular
object.

3. AEResolve takes an object specifier as input, and calls one or more
accessor routines to convert this object specifier into a token that
refers to some object. (See the section “How Do I Resolve an
Object Specifier?” for more information.)

4. The token is returned to the handler.

5. Once the handler knows the object class, it can call the appropriate
object’s event dispatcher. The dispatcher looks at the event’s class
and ID and calls the appropriate routine.

6. The called routine performs a task specific to the event class, event
ID, and object class. It typically accepts the token as one of its
parameters.

APPLE EVENT OBJECTS AND YOU May 1992

19

...

Object�
Dispatcher

object specifier

token
4

3
2

AEM dispatch table

to other objects...

Doc_CreateElement
Event+object handler

Token-handling routines

1

Document�
Event�

Dispatcher

Apple event handler

6

Object Dispatcher file

Document Object file

5

Object accessors

cRectangle from cDocument

cDocument from null

cWord from cDocument

Doc_GetData Doc_SetData Doc_Open

Figure 5
Object-First Method for Dispatching Apple Events

This approach, or some variant of it, could be implemented using object-oriented
programming and is recommended for object-oriented applications.

If you use the object-first approach in a procedural application, you can still get some
of the benefits of object-oriented programming, since this technique can be used to
implement a simple form of inheritance for Apple event objects. If a particular
object’s event dispatcher doesn’t recognize an event, it can pass the event to its
superclass’s event dispatcher. If that dispatcher doesn’t recognize the event, the
request can be passed up the chain until the topmost dispatcher is reached (typically
cObject). This minimizes the code required for adding a new object, since an object
only needs to implement its unique events (and any standard events that it handles
differently) and can pass all other events to its superclass.

One drawback to this approach is the overhead involved in dispatching the event.
Each event goes through the Apple Event Manager, AEResolve, a pair of switch
statements (one in the top-level Apple event handler, and another in the object’s
dispatch routine), and possibly a couple of superclass event dispatchers. Still, each of
our approaches requires the initial use of the Apple Event Manager and a call to
AEResolve, so the added overhead lies primarily in the switch statements.

Another drawback is that each Apple event typically has several parameters, and each
Apple event handler needs to extract the set of Apple event–dependent parameters for
that Apple event. This can lead to redundant code.

TABLE-BASED DISPATCHING
One way to lower the overhead associated with dispatching object-model Apple
events involves building a dispatch table of your own to replace the Apple Event
Manager’s. The Apple Event Manager constructs a two-way hash table based on the
event class and event ID. Since this isn’t enough information to properly dispatch an
object-model Apple event (you also need to know which object class will be
responsible for handling the event), the solution is to construct your own table using
a three-part index (event class, event ID, and object class) that contains the addresses
of the appropriate routines.

As in the object-first example, this dispatcher should be “attached” to the Apple
Event Manager through a wild-card handler in the Manager’s regular dispatch table.
(This is necessary since there’s no other robust way to “unpack” an Apple event when
it arrives from the outside world.) This handler would extract the event class and
event ID attributes and would get the object specifier from the direct parameter. The
handler would then call AEResolve and pass the object class (along with the event
class and event ID) to your table lookup routine.

The only real problem occurs when the object specifier isn’t contained in the direct
parameter. The solution here is to install handlers for any events that don’t contain

d e v e l o p May 1992

20

their object specifiers in their direct parameters, and have these handlers call
AEResolve and then jump directly into your table lookup routine.

The implementation of such a table-based dispatcher is left to you.

HOW DO I RESOLVE AN OBJECT SPECIFIER?
When an object-model Apple event is received, such as “Close Document 1,” the
object specifier (Document 1) is usually contained in the direct parameter of the
event. Before the event can be processed, the object specifier needs to be resolved.
Resolving an object specifier involves locating the specified information in memory
so that the Apple event can act on this information.

While it’s possible to parse an object specifier directly, object specifiers can be much
more complicated than the simple examples shown here. The Apple event Object
Support Library (OSL) helps you resolve an object specifier through a set of object
accessor routines, which you write and then install. One type of accessor routine
extracts one or more types of element from a given object, while other accessor
routines extract a property from an object. When you ask the OSL to resolve an
object specifier, it calls the appropriate accessor routines in the necessary order.

Figure 6 shows how the OSL resolves the object specifier “Word 5 of Window 1.”
First, the accessor for the innermost specifier (Window 1) is called. This accessor
returns a token, which is an Apple event descriptor (AEDesc) referring to some data
in your application. The returned token and the next part of the object specifier to be
processed are then passed to the appropriate accessor. This process is repeated until
the object specifier has been fully resolved, and the final result is returned to your
application.

HOW DO I IMPLEMENT AN OBJECT ACCESSOR?
Each accessor routine should accept one part of an object specifier and return a
token. An accessor routine has the form

pascal OSErr MyAccessor (DescType desiredClass, const AEDesc *container,
DescType containerClass, DescType keyForm, const AEDesc *keyData,
AEDesc *value, long refCon);

and is passed the desiredClass, containerClass, keyForm, and keyData fields directly
from the part of the object specifier being resolved. The container is either the token
returned from the last accessor called or an AEDesc of type 'null' containing a null
handle (if this is the first accessor in the series to be called).

All accessors have to perform essentially the same functions:

1. Check that the specified key form is valid.

APPLE EVENT OBJECTS AND YOU May 1992

21

d e v e l o p May 1992

22

Word 5 of Window 1

Object container

Step 1

The OSL uses the returned token in place of the �
inner object specifier when calling the next accessor

Object class

Object class
Object container
Element identifier

Element identifier

cWindow
'null'
1

cWord

5

OSL calls accessor

Token type cWindow

Token data a WindowPtr

Accessor returns a token

Object container

Object class

Element identifier

cWord

5

Token type cWindow

Token data a WindowPtr

Step 2

OSL calls accessor

Token type cWord

Token data location of the word�
in memory

Accessor returns a token

Extract Window from null (1)

Token type cWord

Token data location of the word�
in memory

Token is returned to the application

Extract Word from Window (5)

Figure 6
Resolving an Object Specifier

2. Locate the requested information.

3. Construct a return token.

The following code illustrates this process using a simple “extract a Window from a
null container” accessor. (In most applications, this accessor extracts both windows
and documents from the null container since most applications maintain a one-to-one
correspondence between documents and windows.)

pascal OSErr WindowFromNull (DescType desiredClass,
const AEDesc *containerToken, DescType containerClass,
DescType keyForm, const AEDesc *keyData, AEDesc *theToken,
long theRefcon)

{
WindowPtr wp;
long count;

/* 1. Make sure we can handle this request. We only handle */
/* object specifiers of the form "Window 1", "Window 2", etc. */
if ((keyForm != formAbsolutePosition) return errAEBadKeyForm;

/* 2. Extract the window number and find the window. */
count = **(long**)(keyData->dataHandle);
wp = FrontWindow();
while (count > 1) {

if (wp == 0L) return errAENoSuchObject;
wp = (WindowPtr)((WindowPeek)wp)->nextWindow;
--count; /* Count down by 1. */

};

/* 3. Create the token. */
/* The token is an AE descriptor of type 'cwin' (window). */
/* The AEDesc contains a handle to a WindowPtr. */
return AECreateDesc(desiredClass, (Ptr)&wp, sizeof(wp), theToken);

} /* WindowFromNull */

While the above code contains many of the features of an object accessor, it’s far from
complete. For example, it doesn’t handle formName, which is one of the more
common key forms. It also assumes that the value for a formAbsolutePosition
parameter will be a positive integer. In fact, the value could be a negative number
(with -1 signifying the last element of the container, -2 signifying the next to the last
element, and so on), or one of the special constants representing the first, last,
middle, any, or every element of the container.

To make the formAbsolutePosition code complete, you need to add a routine that
looks at the key data for one of the special values and converts the key data into a

APPLE EVENT OBJECTS AND YOU May 1992

23

positive integer or returns a flag indicating that every element should be returned.
Such a routine would look something like this:

OSErr GetWindowIndex (const AEDesc *keyData, long *index, Boolean *getAll)
{

long numWindows;
long rawIndex;

/* There are three flavors of formAbsolutePosition key: */
/* typeLongInteger/typeIndexDescriptor, typeRelativeDescriptor, */
/* and typeAbsoluteOrdinal. */

/* 1. Initialize some values. */
*getAll = false; *index = 1;
numWindows = CountUserWindows(); /* A private routine */

/* 2. Get the number out of the key. If it's not an absolute */
/* value, convert it to one. */
rawIndex = **(long**)(keyData->dataHandle);
switch (keyData->descriptorType) {

case typeLongInteger:
if (rawIndex < 0)
/* A negative value means "the Nth object from the end," */
/* i.e., -1 = the last object. */

rawIndex = numWindows + rawIndex + 1;
/* A positive value is an absolute value, so do nothing. */

break;

case typeAbsoluteOrdinal:
/* kAEFirst, etc. are special 4-byte constants. */
if (rawIndex == kAEFirst) rawIndex = 1;
else if (rawIndex == kAELast) rawIndex = numWindows;
else if (rawIndex == kAEMiddle) rawIndex = numWindows / 2;
else if (rawIndex == kAEAll) *getAll = true;
else if (rawIndex == kAEAny) { /* Select a random window. */

if (numWindows <= 1) /* 0 or 1 */
rawIndex = numWindows;

else
/* Get a random number between 1 and numWindows. */

rawIndex = 1 + ((unsigned long)Random() % numWindows);
}
else return errAEBadKeyForm;

break;
}

d e v e l o p May 1992

24

return noErr;
} /* GetWindowIndex */

To install an accessor, use the AEInstallObjectAccessor routine:

pascal OSErr AEInstallObjectAccessor (DescType desiredClass,
DescType containerType, accessorProcPtr theAccessor,
long accessorRefcon, Boolean isSysHandler)

In the “extract a Window from a null container” example, the call to the
AEInstallObjectAccessor routine would look like this:

err = AEInstallObjectAccessor(cWindow, 'null',
(accessorProcPtr)WindowFromNull, 0, false);

You can also install accessor routines to get one of the properties of an object (use the
special constant 'prop' in specifying the desired type), or you can supply a wild card
for either the container or the desired type. Most developers install one accessor
routine for each of the element types supported by a particular object, and one
accessor routine to handle all of the properties of that object.

WHAT SHOULD I PUT INTO A TOKEN?
As noted earlier, accessors communicate with each other and with the application
using application-specific tokens. Most Apple events that contain an object specifier
end up resolving the object specifier into a token and then manipulating the data
represented by that token. Since the format of each object class is different, you’ll
typically write Read Token Data and Write Token Data routines for each object class
that your application supports. (You might also choose to write Create Token Data
(Create Element) and Delete Token Data routines if more than one Apple event in a
given object needs to create or delete information.) What you put into these token-
handling routines depends completely on the contents of your tokens.

Each token is stored in an Apple event descriptor—a data structure containing a
4-byte type code and a handle to some data, where the contents of the handle are
completely up to you. While this raises the question of what should go into the
handle, many developers decide to invent a different token data type for each object
class or set of related object classes.

In this approach, a window token would contain a WindowPtr, a text token would
contain a handle to some text, and so on. Since tokens are used for both elements and
properties, each token might also contain a 4-byte property code.

Here’s how the tokens might look for the object classes defined in Figure 1:

APPLE EVENT OBJECTS AND YOU May 1992

25

struct DocumentTokenBody {
WindowPtr theWindow;
Boolean useProperty;
DescType propertyCode;

};

struct RectTokenBody {
Rect *theRect; /* Use a pointer so we can read */

/* and write the rectangle. */
long elementNumber; /* See token-handling examples */

/* below. */
Boolean useProperty;
DescType propertyCode;
WindowPtr parentWindow; /* The window that holds this */

/* rectangle. */
};

struct WordTokenBody {
Handle theText;
long startingOffset; /* How many bytes in does the text */

/* start? */
long textLength; /* How many bytes long? */
Boolean useProperty;
DescType propertyCode;
TEHandle parent; /* The location from which we took */

/* this text. */
};

These three sample tokens demonstrate several things you should keep in mind when
designing your own tokens:

• Each token contains a reference to the data—not a copy of the
data itself. This allows the same token to be used for both reading
and writing the data.

• Each token contains a field for the property code. If the
application received the object specifier “the Name of Document
1,” the returned token would contain a pointer to the document’s
window and the Name property code—'pnam'. The token-
handling routines have to include code to support property
tokens.

• Since each token format is different, you’ll need to write the
token-handling routines (Read/Write and, optionally,
Insert/Delete) for each token type.

d e v e l o p May 1992

26

• The Word and Rectangle tokens contain references to the objects
that contain them. This is important, since changing the text or
the rectangle could affect the document containing the
information and there’s no way to get either a partially resolved
object specifier or the intermediate products of the resolution.
Therefore, if you need to know the parent of a particular token, you must
store a copy of that information in the child token yourself, since the OSL
may dispose of the original parent token. (You may need to supply a
custom DisposeToken callback if your tokens contain handles or
pointers to other data.)

The guidelines given above cover the contents of the token’s handle, but they don’t
say anything about the descriptorType field. When you return a token from an
accessor routine, you must put the proper type code into the descriptorType field of
the AEDesc. This is required because the OSL uses the returned token type from one
step of the resolution process to guide the next step. Having the accessor routines
control the resolution process actually insulates outside Apple event sources from
having to know about your specific implementation details.

Throughout the article, we’ve assumed that the token type in the token is the same as
the external data type specified by the object specifier. However, your code can put
anything in the token type field as long as you write the matching object accessors for
those token types.

For example, let’s say that you’ve written a word-processing program, and another
application sends the request “Get Data Word 2 of Paragraph 2 of Window 1” where
the italicized part is an object specifier. The returned type would probably be some
styled text. However, if the requester had sent “Get Data Word 1 of the Name of
Window 1,” your application would have to access a completely different form of text
(a simple Str255) and might return some nonstyled text.

Internally, the data type that represents text within a document can be different from
the data type representing a simple string. Instead of forcing the user to use two
different terms for the same thing (documentWord and plainTextWord, perhaps), the
application can make this determination at run time. Figure 7 shows how an
application might resolve the two examples given above.

WHAT ARE TOKEN-HANDLING ROUTINES?
Token-handling routines are optional routines (in other words, routines not explicitly
required by the object model or OSL) that perform common editing operations on
the data referred to by a token. Generally, when you have a token, you want to read,
write, insert, or delete the data the token refers to. Here are Read Token Data and
Write Token Data handlers for the cRectangle object class:

APPLE EVENT OBJECTS AND YOU May 1992

27

d e v e l o p May 1992

28

Get Data Word 2 of Paragraph 2 of Window 1

Token type cWindowReturned token is for a�
window

Token type cStyledTextStyled text is returned to�
the application

AEResolve

OSL calls accessor Extract Window from null (1)

Extract Paragraph from cWindow (2)OSL calls accessor

Returned token is for �
some styled text

Token type cStyledText

Extract Word from cStyledText (2)OSL calls accessor

Text is returned to the�
application

Token type cText

Token type cWindowReturned token is for a�
window

Get Data Word 1 of Name of Window 1

AEResolve

OSL calls accessor Extract Window from null (1)

OSL calls accessor Extract Name property from cWindow (pName)

Token type cString
Returned token is for a�
plain string class�
(not a true AE Registry�
class, by the way)

Extract Word from cString (1)OSL calls accessor

Figure 7
Controlling Object Specifier Resolution with Returned Tokens

struct RectTokenBody {
Rect *theRect; /* Use a pointer so we can read */

/* and write the rectangle. */
long elementNumber;
Boolean useProperty;
DescType propertyCode;
WindowPtr parentWindow; /* The window that holds this rectangle. */

};

typedef struct RectTokenBody RectTokenBody;
typedef RectTokenBody *RectTokenPtr, **RectTokenHandle;

OSErr ReadRectToken (const AEDesc *theToken, AEDesc *result)
{
/* This routine gets called by the Get Data Apple event handler (or any */
/* other handler that needs to read some data and possibly return it to */
/* the user). If the useProperty flag is true, we return the requested */
/* property, otherwise we return the default representation for this */
/* class (we'll use the cQDRect primitive type for this). */

RectTokenPtr tokenPtr;
DescType descCode;
OSErr err;

HLock(theToken->dataHandle);
tokenPtr = (RectTokenPtr)*theToken->dataHandle;
if (tokenPtr->useProperty) {

switch (tokenPtr->propertyCode) {

case pClass:
/* Tell the world that this is a rectangle. */
descCode = cRectangle;
err = AECreateDesc(typeType, (Ptr)&descCode,

sizeof(descCode), result);
break;

case pBounds:
/* Return the bounds of this rectangle, as a QuickDraw */
/* rectangle. */
err = AECreateDesc(typeQDRectangle,

(Ptr)&tokenPtr->theRect, sizeof(Rect), result);
break;

/* More property codes go here... */

APPLE EVENT OBJECTS AND YOU May 1992

29
The cRectangle class used in this code is
simplified. Remember that if you’re implementing
the real cRectangle class from the Apple Event
Registry, you’ll need to support many more
properties and a more complex default
representation.•

default:
err = errAENoSuchObject;

}
}
else {

/* Return the default representation. In this simple example, */
/* it's a QuickDraw rectangle. */
err = AECreateDesc(typeQDRectangle, (Ptr)&tokenPtr->theRect,

sizeof(Rect), result);
}
return err;

}

OSErr WriteRectToken (const AEDesc *theToken, const AEDesc *theData)
{
/* This routine gets called by the Set Data Apple event handler (or */
/* any other handler that needs to change a property or some value */
/* of the object). If the useProperty flag is true, we check to see */
/* if the property is writable and modify it, otherwise we change */
/* the contents of this object. */

RectTokenPtr tokenPtr;
AEDesc thisRectDesc;
OSErr err;

HLock(theToken->dataHandle);
tokenPtr = (RectTokenPtr)*theToken->dataHandle;
if (tokenPtr->useProperty) {

switch (tokenPtr->propertyCode) {

case pClass: /* This is a read-only property. */
err = errAEWriteDenied;

break;

case pBounds: /* Set the bounds of this rectangle. */
/* Make sure we have a QuickDraw Rectangle. */
err = AECoerceDesc(theToken, typeQDRectangle,

&thisRectDesc);
if (err != noErr) return err;
/* Copy the data into our rectangle. */
BlockMove(*thisRectDesc.dataHandle, &tokenPtr->theRect,

sizeof(Rect));
AEDisposeDesc(&thisRectDesc);

break;

d e v e l o p May 1992

30

/* More property codes go here... */

default:
err = errAENoSuchObject;

}
}
else {

/* Change the default representation (the bounds of this */
/* rectangle). */
err = AECoerceDesc(theToken, typeQDRectangle, &thisRectDesc);
if (err != noErr) return err;
/* Copy the data into our rectangle. */
BlockMove(*thisRectDesc.dataHandle, &tokenPtr->theRect,

sizeof(Rect));
AEDisposeDesc(&thisRectDesc);

}
return err;

}

The contents of the Create Element and Delete Token Data routines are completely
application-specific and are not illustrated here. Typically, the Create Element
routine takes a token for the element’s container and an index position within that
container, and returns an object specifier describing the new element. (This object
specifier may be returned as the result of a Create Element Apple event, or may be
resolved so that you can insert some data into the newly created element.)

COMBINING OBJECTS AND EVENTS
Once you’ve created the object event dispatcher code, the object accessor routines,
the token formats, and the token handlers, your last task is to write the actual event-
handling routines. (These are different from the routines that you install into the
Apple Event Manager’s dispatch table; event-handling routines do the work for a
specific event as handled by a specific object class.) While the exact content of these
routines is application dependent, they do have some features in common:

• Routines that need to return something to the outside world can
use a Read Token Data handler to convert an internal token into
an externally usable form, and can use the other token
manipulation routines as needed.

• Each routine should accept both the event and the reply record as
parameters. The results from an event are typically placed into the
direct parameter of the reply record. When your event has
finished execution, the Apple Event Manager will send the reply
back to the client application.

APPLE EVENT OBJECTS AND YOU May 1992

31

d e v e l o p May 1992

THANKS TO OUR TECHNICAL REVIEWERS
Kevin Calhoun, Donn Denman, C. K. Haun, Eric
House, Bennet Marks •

32

MOVING ON
Writing an object model application isn’t difficult; once you’ve implemented an
object or two (including the accessors and tokens) and a couple of events, you should
have a good understanding of the issues. I hope that this article has given you a good
idea of where and how to begin adding the object model to your application. If you
still need help there are several options: reading the related documentation (see the
box below); looking at the sample code on the Developer CD Series disc (the samples
Quill and AEObject-Edition Sample in the Apple Events and Scripting Development
Kit and the sample code provided with this article); talking with other programmers;
training through Apple’s Developer University; and using the on-line support
available through AppleLink, CompuServe, and other means.

Good luck! We all look forward to seeing the exciting things that can be done when
applications can work both cooperatively and under the control of scripting
environments.

RELATED READING
• Inside Macintosh Volume VI (Addison-Wesley, 1991) provides fundamental

information about Apple events. Chapter 1 gives an overview of interapplication
communication and explains the relationship of the Apple Event Manager to other
parts of System 7. Chapter 6 provides a complete description of Apple events,
explains how to send and receive Apple events, and includes reference
information for all Apple Event Manager routines.

• The Apple Event Manager chapter of the new, improved Inside Macintosh
(preliminary draft) on the Developer CD Series disc provides information about
Apple event objects and object classes.

• Apple Event Registry: Standard Suites, on the Developer CD Series disc, describes
standard Apple events, Apple event data types, and Apple event object classes. A
printed version of the Apple Event Registry is available from APDA (#R0130LL/A).

PRINT HINTS: TOP 10 PRINTING CRIMES May 1992

33

In this issue, we’re going to take a slightly different
tack. Instead of dealing with one printing hint, we’re
going to give you ten. We’ll take a look at the “Top 10
Printing Crimes” that I’ve seen during my three and a
half year adventure in Apple’s Developer Technical
Support Group. I’ll start by listing these crimes, and
then I’ll discuss the solution to each one.

Here’s the list:

10. Loading PDEFs directly from within your
application.

9. Poor memory management at print time.

8. Assuming the grafPort returned by PrOpenDoc is
black and white.

7. Not saving and restoring the grafPort or resource
file in your application’s pIdle procedure.

6. Not using PrGeneral when you should to
determine and set the resolution of the current
device.

5. Not reading Macintosh Technical Note #91,
“PicComments—The Real Deal,” before you start
using PicComments in your application.

4. Opening the Printing Manager when your
application starts up.

3. Mixing high-level and low-level printing calls.

2. Accessing private and unused fields in the print
record.

1. Adding printing to your application two weeks
before going final.

All of these crimes are very easy to avoid. Let’s take a
look at the solution to each one.

SOLUTIONS TO THE PRINTING CRIMES

10. Loading PDEFs directly from within your
application.

A PDEF is a printer driver’s CODE resource
definition. Each printer driver contains multiple
PDEFs, which implement the various functions of the
driver (such as displaying the Print dialogs, opening the
connection with the printer, and supporting
PrGeneral). A few applications load and call these
PDEFs directly, probably because they feel this will
improve printing performance. Instead, this approach
will usually cause serious compatibility problems and
headaches for printer driver developers. Also, it’s very
difficult for printing utilities (for example, utilities that
count the number of pages printed) to patch into
printing if an application isn’t using the printing trap
(PrGlue). Finally, this approach could cause some
serious compatibility problems for users when a new
printer and its associated driver software are released.

Solution: The main function of the Printing Manager is
to load the printer driver PDEFs in a device- and
driver-independent manner. Using the Printing
Manager to load the PDEFs is the simplest and most
compatible method.

9. Poor memory management at print time.

Poor memory management at print time will cause
some interesting problems with various printer drivers.
Usually, some object in your document won’t print or
you’ll receive a blank page. The problem is that each
printer driver available on the Macintosh requires a
different amount of memory; some require very little
memory, while others require a lot. For example, the

PETE (“LUKE”) ALEXANDER Inquiring minds want to know:
Does Luke have a life beyond these weird Print Hints he dishes out
occasionally? The answer is a resounding YES! This happy hacker
likes to keep his head in the clouds—literally. The proud owner of
an ASW-20 sailplane, Luke’s other passion (besides working at
Apple) is soaring 10,000 feet above ground, while observing
eagles, mountain goats, and wild horses in exotic outposts of
California and Nevada. Luke has the “funnest time” when he’s

gliding like a bird, suspended in time with the air rushing past him.
For him, it’s pure, unparalleled excitement and enjoyment.•

PRINT HINTS

TOP 10
PRINTING CRIMES

PETE (“LUKE”) ALEXANDER

LaserWriter SC is one of the piggier drivers. What’s an
application to do?

Solution: Since each printer driver uses a different
amount of memory, there’s not a magic amount of
memory that will always ensure the success of a print
job. The best solution to this problem is to unload all
unnecessary code and data segments at print time. The
more memory available, the better. In addition to
ensuring that printing will work OK, more memory
can improve printing performance significantly, which
your users will thank you for.

8. Assuming the grafPort returned by PrOpenDoc is
black and white.

Yes, PrOpenDoc can return a color grafPort, if the
printer driver you’re using supports color.
Unfortunately, not all printer drivers are capable of
returning a color grafPort. This feature caused
compatibility headaches for us when we released
LaserWriter driver version 6.0, which was the first
printer driver from Apple that could return a color
grafPort. Many applications assumed that the grafPort
it returned was black and white, and this assumption
caused quite a few applications to die when printing to
LaserWriter driver 6.0. This assumption can also have
some very ugly results if your user is printing to a color
printer and you’re only sending black-and-white data.

Solution: A good rule of thumb when printing: never
assume anything. Usually there are methods available
to enable your application to determine the
environment it’s in. Printing isn’t any different; in fact,
this is probably even more important for printing. You
should check the grafPort returned by PrOpenDoc to
see whether it’s color or black and white: if the high bit
in the rowBytes of the grafPort is set, you have a color
grafPort.

7. Not saving and restoring the grafPort or resource
file in your application’s pIdle procedure.

Many applications install a pIdle procedure at print
time. This procedure allows the application to present

the print job status to the user. This is a very good
idea—but you must be a little defensive to keep a
printer driver happy.

Solution: When your application enters its pIdle
procedure, you should save the current grafPort and
resource file (that is, the printer driver’s). When you
exit your pIdle procedure, you should restore the
grafPort and resource file back to the original. This is
extremely important, because the printer driver
assumes that the current grafPort and resource file are
always its own. If they’re not, when you exit your pIdle
procedure you won’t be drawing into the correct
grafPort, and when the printer driver makes the next
Resource Manager call, it will have the wrong resource
file. Technical Note #294, “Me And My pIdle Proc (or
how to let users know what’s going on during print
time . . .),” describes the details of creating and using a
pIdle procedure within your application.

6. Not using PrGeneral when you should to
determine and set the resolution of the current
device.

The PrGeneral trap allows a developer to determine
the supported resolutions of the current printer, and
also to set the resolution, determine the page
orientation selected by the user, and force draft
printing. Many developers who want resolution
information don’t use the power of this trap, but
instead use a device-dependent method, which is bad.
PrGeneral allows you to determine the resolution in a
device-independent manner, so that you’ll be able to
print to all printers connected to the Macintosh
without knowing about the printer you’re talking to.
There are now over 130 printer drivers available on the
Macintosh. It would be a real shame if your application
couldn’t maximize its output to a device just because
you made a bad assumption.

Solution: This is a case where you can be completely
device independent in your print code without
sacrificing anything. You can obtain outstanding results
if you use the PrGeneral trap correctly. Any time
you’re interested in the available resolutions for the

d e v e l o p May 1992

34

PRINT HINTS: TOP 10 PRINTING CRIMES May 1992

35

current printer, you should use the GetRsl opcode
supplied by PrGeneral. For details about getting and
setting the resolution, see the “Meet PrGeneral” article
in Issue 3 of develop. If you don’t have the article handy,
it’s available on the Developer CD Series disc.
Accompanying the article on the CD is an application
named PrGeneralPlay that contains complete sample
code for PrGeneral. You should probably also take a
look at Inside Macintosh Volume V, pages 410-416.

5. Not reading Macintosh Technical Note #91,
“PicComments—The Real Deal,” before you start
using PicComments in your application.

Many developers have tried to use PicComments in
their applications before understanding their function,
with very mixed results. If you don’t follow the
recommendations in Technical Note #91, you’ll
definitely receive some undesirable results—especially
if you don’t match all “open” calls with a “close” call.

Solution: Read Technical Note #91 before you start using
any PicComments in your application. This Note has
been rewritten with new pictures, sample code, and
descriptions to help developers properly use
PicComments in their printing code. It will help
you avoid many of the pitfalls and misuses of
PicComments. It’s also helpful to look at pictures
generated by other applications, to see what they’re
doing.

4. Opening the Printing Manager when your
application starts up.

In the early Macintosh days, it was recommended that
you always call PrOpen at application startup. This
hasn’t been the recommendation for a long time. Why?
When you open the Printing Manager, it loads some of
the printer driver’s resources into memory. This means
that less memory is available for your application.
However, the real problem is that other applications or
DAs cannot print until you close the Printing Manager,
since the Printing Manager is not reentrant.
Unfortunately, there isn’t a reliable method for
determining whether the Printing Manager is open,

nor is there a method for closing it if it’s already open.
This isn’t much of a problem any more because the
majority of applications today no longer call PrOpen at
startup.

Solution: Do not open the Printing Manager until
you’re ready to print or perform some other printing-
related task (for example, initializing a print record
when your application starts up). You should close the
Printing Manager when the print job is complete or
when you’ve accomplished the task at hand. You should
never allow a user to switch your application out with
the Printing Manager open (that is, never call
WaitNextEvent between PrOpen and PrClose).

3. Mixing high-level and low-level printing calls.

This is one of the classic printing problems. You should
never mix the high-level and low-level printing calls.
This approach will usually cause instant death at print
time, because the high-level and low-level calls do very
similar things. One of the common mistakes is calling
PrDrvrClose after calling PrClose. Printer drivers are
not designed to use both interfaces simultaneously.

Solution: In general, all applications should be using the
high-level printing calls. Please follow the advice in
Technical Note #161, “A Printing Loop That
Cares . . . ,” which describes the use of the high-level
calls. Always match each “open” printing call with its
corresponding “close” call. Also, check the PrError
function for a printing error before making the next
printing call.

The only advantage gained by using the low-level calls
would be when you’re text streaming, which is easier
with those calls. Technical Note #192, “Surprises in
LaserWriter 5.0 and Newer,” describes the use of the
low-level interface.

As you might expect, there’s a minor exception to this
rule. If you’ve read the Printing Manager chapter of
Inside Macintosh Volume II, you may have noticed that
the PrDrvrVers function is defined in the “Low-Level
Driver Access Routines” section (page 162). This

function can also be used with the high-level interface
(it’s the only low-level call that can be called in the high-
level interface). PrDrvrVers is very useful for
determining the version of a printer driver, which will
enable you to work around bugs that may exist in a
specific version of a printer driver.

2. Accessing private and unused fields in the print
record.

Many of the print record fields should not be accessed
by an application because they’re used by the printer
driver as storage locations, which means the
information in them will change during a print job.

Solution: You should never use any information from
fields in the print record that have “PT” at the end of
the field name. All of them have corresponding
“public” fields in the print record for application use.
For example, you should use the information stored in
rPage, and not rPagePT. Printer drivers store some of
their private information in the fields with “PT” at the
end of the field name. During printing, the values in
these fields will change. Furthermore, different printer
drivers use these fields differently, so accessing one of
them might work on one driver but not another. Use
the public fields!

1. Adding printing to your application two weeks
before going final.

This one might be a slight exaggeration, but it’s
definitely in the ballpark. Believe it or not, I’ve talked
to quite a few developers who have left printing as the
last feature they add to their application (or maybe next
to last, just before Undo). This can cause some serious
problems in your development schedule.

Solution: There are a few pitfalls in printing, but they
can be avoided if you start early in the design phase of
your application. My advice to avoid this problem is to
start printing from your application as soon as possible.
When you have an early prototype running, send some
output to the printer. Usually you can tell very early if
you’ll have any problems.

One more thing: I created this list in order from the
least printing crime to the worst. Actually, if you
commit any of the printing crimes mentioned, you’ll
probably receive some undesirable results with various
printers. I would suggest testing your application on at
least one PostScript® printer and a QuickDraw printer.

Finally, if we take a look out onto the documentation
horizon, we can see something new peeking through.
What is it, you ask? It’s the new and improved Inside
Macintosh chapter on printing. Yes, after years of
waiting, it’s finally coming. I believe you’ll find the new
printing chapter useful and informative. It will unlock
additional information about printing on the
Macintosh.

d e v e l o p May 1992

Thanks to Dave Hersey and Scott “Zz” Zimmerman for reviewing
this column.•

36

REFERENCES

• Inside Macintosh Volume V, Chapter 22, “The
Printing Manager,” pages 410–416 (Addison-
Wesley, 1988).

• Inside Macintosh Volume II, Chapter 5, “The
Printing Manager,” page 162 (Addison-Wesley,
1985).

• “Meet PrGeneral, the Trap That Makes the Most of
the Printing Manager,” Pete “Luke” Alexander,
develop Issue 3, July 1990.

• “Me And My pIdle Proc (or how to let users know
what’s going on during print time . . .),”
Macintosh Technical Note #294.

• “Surprises in LaserWriter 5.0 and Newer,”
Macintosh Technical Note #192.

• “A Printing Loop That Cares . . . ,” Macintosh
Technical Note #161.

• “PicComments—The Real Deal,” Macintosh
Technical Note #91.

For System 7, the LaserWriter Font Utility was given the ability to
handle drop-in enhancements, called UTILs. These hybrid Macintosh-
and-PostScript utilities are provided with a rich parameter block and
many useful callbacks. They offer a straightforward method for putting
useful tidbits of PostScript code to work—with a real user interface.

The LaserWriter Font Utility is an obscure system software application that isn’t
even installed by the System 7 Installer. Its main mission is to facilitate the
downloading of TrueType, PostScript Type 1, and PostScript Type 3 fonts to
PostScript (and PostScript-compatible) printers and printer hard disks. With System
7, however, the innocuous LaserWriter Font Utility has been endowed with an
extensible Utilities menu and the ability to handle drop-in enhancements, called
UTILs. UTILs can be used for a variety of interesting applications. For example:

• downloading a PostScript language file or restarting a PostScript
printer with special-purpose PostScript utilities

• setting the resolution or printing an alignment page on a particular
model of typesetter with device-specific applications

• putting little snippets of PostScript code to work

INTRODUCING UTILS
UTILs are resources that are stored in the LaserWriter Font Utility’s application
resource file. When the Font Utility is run, UTILs are collected into the Utilities
menu, listed by their resource name.

UTILs are generally modal and very task-specific. For example, one of the UTILs
that are distributed as part of the Font Utility, Start Page Options, allows users of
PostScript printers to decide whether or not the printer produces a “start page” when
turned on. When the user chooses this UTIL from the menu, the dialog box shown
in Figure 1 appears.

POSTSCRIPT ENHANCEMENTS FOR THE LASERWRITER FONT UTILITY May 1992

37
BRYAN K. RESSLER, a.k.a. “Beaker,” is a
bloodstained “binary vivisectionists” who
regularly cuts into live code just to see what
happens. He terrorized the University of
California, Irvine for four years, and just to get rid
of him, they gave him a B.S. in computer science.
Beaker did the System 7 revision of the
LaserWriter Font Utility. Now, when the
medication wears off and he’s allowed out of his

cell, he writes sound and MIDI applications,
composes marginal music, and sharpens his
“binary scalpel.”•

BRYAN K. (“BEAKER”)
RESSLER

POSTSCRIPT

ENHANCEMENTS

FOR THE

LASERWRITER

FONT UTILITY

A UTIL performs its task via PostScript code embedded in the UTIL or in its owned
resources. Therefore, UTILs are provided with routines that ease two-way
communication with the PostScript printer.

UTILs may own resources and allocate a block of private “global” memory. UTILs
get printer configuration information from the Font Utility and may also query the
printer directly for configuration information. This allows for device-specific UTILs.

Since most UTILs are expected to be implemented similarly, many application
facilities are provided to UTILs so that common code, like the bold outline for the
default button in Figure 1, is not duplicated in every UTIL. As a result, most UTILs
are very small (under 2K).

UTIL RESOURCES
UTILs are stored as resources of type 'UTIL'. Their IDs start at 128. However, the
range 128 through 149 is reserved by Apple, so you should use an ID of 150 or higher
for the UTILs you write. The UTIL’s resource name defines the text of the menu
item that’s appended to the Utilities menu.

The UTIL resource format is shown in Figure 2.

The first two bytes of the resource specify the version of the UTIL resource format,
which is currently $0001. Next comes resSpace, the first ID in the UTIL’s resource
space. A UTIL’s resource space is the range of IDs that the UTIL may use for its owned
resources. The UTIL has 100 consecutive IDs, starting with resSpace. In general, to
calculate a given UTIL’s resource space ID, use the formula

resSpace = 16000 + (UTILID - 128) * 100

where UTILID is the resource ID of the UTIL resource itself. For example, if your
UTIL resource were numbered 158, your UTIL’s resource space would be calculated
as follows:

d e v e l o p May 1992

38

Figure 1
Example of a UTIL Dialog Box

resSpace = 16000 + (158 -128) * 100 = 19000

In your UTIL’s code, it’s important to use relative resource IDs, in case your UTIL is
renumbered at installation time. There are several examples of relative resource IDs
in the code we’ll be examining.

Following the version and resSpace, the UTIL resource contains offsets to the four
UTIL entry points (described in the next section). These offsets are from the
beginning of the UTIL resource. The beginning and order of entry points is flexible
(see “Variations on UTIL Entry Points” for details).

UTIL ENTRY POINTS
Let’s take a quick look at the four UTIL entry points. Later, in the section “The
Script: NamerUTIL.c Code,” we go into more detail.

Utility_Open. This routine is called by the Font Utility at startup, right after the
UTIL is loaded into memory. Utility_Open initializes the UTIL and allocates any
memory it requires. Utility_Open needs to return a Boolean result which, if true, tells
the Font Utility to install the UTIL in the Utilities menu. A false result from
Utility_Open, which might occur if there were insufficient memory, tells the Font
Utility not to install this UTIL.

POSTSCRIPT ENHANCEMENTS FOR THE LASERWRITER FONT UTILITY May 1992

39

UTIL resource Offset�
�

0�

2�

4�

8�

12�

16�

20

Resource version (word)�

First resource ID in resource space (word)�

Offset to Utility_Open routine (long)�

Offset to Utility_Delta routine (long)�

Offset to Utility_Prime routine (long)�

Offset to Utility_Close routine (long)�

Utility_Open routine �

Utility_Delta routine�

Utility_Prime routine�

Utility_Close routine�

Figure 2
UTIL Resource Format

Utility_Delta. This routine is called by the Font Utility once after Utility_Open and
subsequently any time the user selects a different printer with the Chooser.
Utility_Delta is the means by which a UTIL informs the Font Utility whether the
UTIL’s menu item should be dimmed or not (usually based on the characteristics of
the currently selected printer). The Font Utility provides a host of useful printer
configuration information, but should your UTIL require different or more specific
information, it may download PostScript code at this point and parse the response

d e v e l o p May 1992

40

There’s no requirement that the Utility_Open routine start at offset 20, nor is there any
specification of the order in which the routines are stored within the resource. This
allows noncode data to be stored in the UTIL resource along with the code. Figure 3
shows an example of PostScript code stored inside a UTIL resource, and the four
routines rearranged as desired.

While this method of storage works well for embedded PostScript code, remember
that other textual data (that’s not PostScript code) should be stored in resources to
facilitate localization.

VARIATIONS ON UTIL ENTRY POINTS

0�

2�

4�

8�

12�

16�

20

UTIL resource Offset�
�

Resource version (word)�

First resource ID in resource space (word)�

Offset to Utility_Open routine (long)�

Offset to Utility_Delta routine (long)�

Offset to Utility_Prime routine (long)�

Offset to Utility_Close routine (long)�

serverdict begin 0 exitserver...�

Utility_Prime routine�

Utility_Delta routine�

Utility_Open routine �

Utility_Close routine�

Figure 3
Arranging UTIL Routines

from the printer. Utility_Delta needs to return true if the UTIL’s menu item is to be
available, or false if it’s to be dimmed.

Utility_Prime. This routine is called by the Font Utility to carry out the basic
function of the UTIL. It’s called when the user chooses your UTIL’s menu item from
the Utilities menu. The Start Page Options UTIL described earlier downloads some
PostScript code to determine the current state of the dostartpage flag in the printer,
puts up a dialog box, and then downloads more PostScript code to set the flag to the
new setting. The Utility_Prime routine needs to return a long word composed of
(possibly multiple) return codes. These codes tell the Font Utility of any special
behavior it should take upon return, such as refreshing its font lists.

Utility_Close. This routine is called by the Font Utility at quit time. Normally, at
this point your UTIL releases any memory it has allocated.

GOODIES IN THE LWFUPARMBLK STRUCTURE
When the LaserWriter Font Utility is starting up, it allocates one LWFUParmBlk
for each installed UTIL. That means that each UTIL’s parameter block is unique,
and the same block is always passed to it. Each of the entry points described above
takes as a parameter a pointer to an LWFUParmBlk structure. This structure is
discussed in detail in the section “The Script: NamerUTIL.c Code,” but here are the
high points.

General information. This part of the structure includes the version of the
LWFUParmBlk structure, the base resource ID for this UTIL’s resource space, and a
storage field into which the UTIL may place a handle to some global storage space.

Driver information. You’re provided with an FSSpec pointing to the currently
selected printer driver. Tempting as this might be, you should use this only to retrieve
the driver’s version, allowing your UTIL to put the driver version in a dialog box.

Printer information. This includes the name of the current printer and a host of
printer configuration information. Also included is a handle to the Font Utility’s own
standard Macintosh print record, which allows you to print via the Printing Manager
if you wish.

Callback information. This is a rich set of callbacks into the Font Utility. There’s
also a pointer to the Font Utility’s QuickDraw globals and pointers to two large I/O
buffers you can use for printer communication. The callback routines can be grouped
into three major categories:

• 3 PAP routines that assist in printer communication

• 18 dialog utility routines, many of which you would have probably
had to include anyway

POSTSCRIPT ENHANCEMENTS FOR THE LASERWRITER FONT UTILITY May 1992

41

• 4 Pascal-string utility routines that aid in the construction of
PostScript language strings

ON STAGE: NAMERUTIL
Now that we’ve got an overview of how UTILs fit into the LaserWriter Font Utility,
let’s take a closer look at a specific example, NamerUTIL, provided on the Developer
CD Series disc. NamerUTIL, which appears in the Utilities menu as Rename Printer,
allows the user to rename the currently selected printer.

Figure 4 shows part of the Utilities menu, including the Rename Printer UTIL.

Rename Printer’s Utility_Prime routine presents the user with the dialog box shown
at the top of Figure 5. The dialog is smart enough to limit the length of the new
name to 30 characters and disallow various illegal characters. If the user clicks
Rename, the UTIL transmits a PostScript program to rename the printer as
specified. The UTIL then puts up one of the two alerts shown in Figure 5,
depending on whether the printer was successfully renamed or not.

That’s the basic user interface design for the Rename Printer UTIL. So how do we
make it work? First, let’s take a look at how you rename a printer in PostScript.

RENAMING A PRINTER IN POSTSCRIPT
The PostScript code to rename a printer is trivial.

serverdict begin 0 exitserver
statusdict begin

(NewPrinterName) setprintername
end

The first line enters serverdict, a dictionary of operators for controlling the
PostScript server, then exits the server loop with the exitserver operator. The 0 is the
system administrator password, which is almost universally 0. (In fact, the
LaserWriter driver won’t work correctly if the password has been changed, so it’s OK
for us to assume it’s 0 and hard-code the password.) The net effect of exiting the
server loop is to allow us to change persistent parameters, like the printer name.

d e v e l o p May 1992

42

Figure 4
UTILs in the Utilities Menu

The next line enters statusdict, a dictionary containing machine- and configuration-
dependent operators. The printer is renamed with the setprintername PostScript
operator. The UTIL replaces NewPrinterName with the new name provided by the
user.

NAMERUTIL AND ITS SOURCE FILES
NamerUTIL, the Rename Printer UTIL, is made up of five source files. Two of
them, UTIL.h and UTILHead.a, are provided on the CD as general interface files
and are the same for all UTILs. Figure 6 gives an overview of the source files and
their relationships. We’ll look at the source files whose names begin with “Namer”
and at the makefile.

POSTSCRIPT ENHANCEMENTS FOR THE LASERWRITER FONT UTILITY May 1992

43

Figure 5
Rename Printer Dialog Box and Alerts

NamerUTIL.c. This C language source file is the bulk of the code for NamerUTIL.
It contains the four entry points, and three other routines that carry out
NamerUTIL’s job. Thanks to all the Font Utility’s callbacks, it’s fairly
straightforward.

NamerUTIL.r. This Rez input file contains descriptions of all the NamerUTIL’s
owned resources. Since the owned resources’ IDs depend on the ID of the UTIL
resource itself, the resource IDs are specified relatively, that is, by an offset from a
variable named ResSpace, which is defined in the makefile.

NamerResIDs.h. This file contains #define statements for all the resource IDs. It’s
included by both NamerUTIL.c and NamerUTIL.r.

MakeFile. MakeFile ties all the pieces together. For development, it’s easiest to use
Rez to place NamerUTIL’s resources into a copy of the Font Utility. Use Rez’s
-a option to append the resources to those already present in the LaserWriter Font
Utility application file. Then link NamerUTIL’s UTIL resource directly into the
Font Utility as well. Finally, by launching the Font Utility, you can test your UTIL.
That’s the approach of the makefile we’ll be looking at. The CD contains an alternate
makefile that generates a standalone file and an application called UTILInstall for
installing UTILs into the Font Utility.

Let’s dive right into NamerUTIL.c.

d e v e l o p May 1992

44

UTIL.h NamerResIDs.h

UTILHead.a NamerUTIL.c NamerUTIL.r

LaserWriter Font Utility

Figure 6
Source File Relationships

THE SCRIPT: NAMERUTIL.C CODE
Here’s the first part of NamerUTIL.c in MPW 3.2 C.

/* NamerUTIL.c - a UTIL that allows the LaserWriter Font Utility to rename
PostScript printers. */

/* --- Includes --*/
#include <Types.h> /* Macintosh includes */
#include <Memory.h>
#include <Resources.h>
#include <QuickDraw.h>
#include <Dialogs.h>
#include <Printing.h>
#include <ToolUtils.h>
#include <Errors.h>

#include "UTIL.h" /* Standard UTIL constants and */
/* structures */

#include "NamerResIDs.h" /* "Relative" resource IDs */

/* --- Defines -- */
#define kMinVersion 1 /* Minimum version we'll run */

#define kPSErrStr 1 /* Strings in 'STR#' kNamerStrs */
#define kExitVerStr 2
#define kRenameStartStr 3
#define kRenameEndStr 4

#define kNDDummy 0 /* Item #s in Namer dialog box */
#define kNDRename 1
#define kNDCancel 2
#define kNDNewName 6
#define kNDBoldOutline 7

#define kReturnKey 0x0d /* Key and char code constants */
#define kEnterKey 0x03
#define kBackspaceKey 0x08
#define kAtChar '@'
#define kColonChar ':'
#define kLowASCII 0x7f

#define kMaxNameLength 30 /* Maximum printer name length */
#define kNameBufLen 40 /* Size of printer name buffers */
#define kCompStrLen 80 /* Size of parse string buffers */

POSTSCRIPT ENHANCEMENTS FOR THE LASERWRITER FONT UTILITY May 1992

45

/* --- Prototypes --- */
pascal Boolean Utility_Open(LWFUParmBlk *pb);
pascal Boolean Utility_Delta(LWFUParmBlk *pb);
pascal unsigned long Utility_Prime(LWFUParmBlk *pb);
pascal void Utility_Close(LWFUParmBlk *pb);
pascal short ExitBufferRtn(short length, LWFUParmBlk *pb);
pascal Boolean NamerFilter(DialogPtr TheDialog,

EventRecord *TheEvent, short *ItemHit);
short RenamePrinter(LWFUParmBlk *pb);

At the beginning are the includes. Besides the usual Macintosh Toolbox and OS
includes, we include UTIL.h, a header file used by all UTILs, and NamerResIDs.h.
The latter, as mentioned earlier, contains constants that we’ll add to the resSpace
field of the LWFUParmBlk to form valid resource IDs. Sharing this file with
NamerUTIL.r makes maintenance easier.

The #defines are for indices into NamerUTIL’s owned STR# resource, item numbers
for the dialog box, various keyboard and character constants, and buffer sizes.

Below the constant definitions are prototypes for NamerUTIL’s routines. You can see
the standard four entry points, Utility_Open, Utility_Delta, Utility_Prime, and
Utility_Close, plus three other routines, which will be called from the Prime routine.

THE SUPPORTING CAST: UTILITY_OPEN, UTILITY_DELTA, AND UTILITY_CLOSE
The Utility_Open routine is exceedingly simple. It checks that the parameter block
passed in pb is equal to or newer than the minimum version. In the future, the
LWFUParmBlk structure may be extended—for instance, to add new fields or
callbacks. Since subsequent versions of the UTIL parameter block are defined to be
extensions, a UTIL can function with any version of the LWFUParmBlk greater than
or equal to the version provided when the UTIL was written. The current version is
$0001. If the parameter block is new enough, Utility_Open returns true and we’re on
our way.

pascal Boolean Utility_Open(LWFUParmBlk *pb)
{

return(pb->version >= kMinVersion);
}

Some UTILs might want to allocate memory in their Utility_Open routine and store
a handle to the storage in pb->uStorage. If the allocation failed, Utility_Open could
return false, indicating that it should not be installed into the Utilities menu.

If you thought NamerUTIL’s Utility_Open was trivial, take a look at Utility_Delta.
This entry point is called for each UTIL, once at startup and subsequently every time
the user chooses a different printer with the Chooser. Since NamerUTIL can rename

d e v e l o p May 1992

46

any PostScript printer, its Utility_Delta always returns true, indicating to the Font
Utility that the Rename Printer menu item should always be available (as opposed to
dimmed). Utility_Delta is provided to facilitate device-specific UTILs that might, for
instance, want to send out PostScript code to determine the printer’s specific make
and dim the menu item if the UTIL isn’t applicable to the chosen printer.

pascal Boolean Utility_Delta(LWFUParmBlk *pb)
{
#pragma unused(pb)

return(true);
}

The #pragma keeps the C compiler from barking at us about not using the pb
parameter.

Let’s save the best for last and dispatch with Utility_Close, so we can get on with the
meat of the UTIL, Utility_Prime. Since Utility_Open didn’t allocate any storage, the
Utility_Close routine can simply return without doing anything. Even though the
routine may do nothing, it must be included, and will be called at quit time.

pascal void Utility_Close(LWFUParmBlk *pb)
{
#pragma unused(pb)
}

THE STAR OF THE SHOW: UTILITY_PRIME
All the work NamerUTIL performs is handled by the Utility_Prime routine, shown
here:

pascal unsigned long Utility_Prime(LWFUParmBlk *pb)
{

if (RenamePrinter(pb))
return(urCheckPrinter | urCheckFeatures | urEraseLists);

else return(urNoAction);
}

Utility_Prime calls RenamePrinter to do most of its work. RenamePrinter returns a
Boolean result that indicates, if true, that the printer was successfully renamed or, if
false, that there was an error or the user canceled the process. If RenamePrinter
returns true, Utility_Prime returns a conglomerate return code that indicates to the
Font Utility that it should recheck its connection with the chosen printer, recheck the
printer’s features, and forget any font lists it might have for the printer. If the user
canceled or there was an error, Utility_Prime tells the Font Utility to take no special
action.

POSTSCRIPT ENHANCEMENTS FOR THE LASERWRITER FONT UTILITY May 1992

47

Let’s look at the beginning of RenamePrinter:

short RenamePrinter(LWFUParmBlk *pb)
{

DialogPtr nameDlg; /* The Rename dialog */
short itemHit; /* From ModalDialog */
char psBuffer[150]; /* Buffer for PostScript */
char newName[kNameBufLen]; /* New printer name */
char blankStr[1]; /* Handy empty string */
short status; /* ExitBufferRtn's status */
Point where; /* For positioning dialog */
LWFUCallBackInfo *cb; /* Pointer to callbacks */
Boolean doneFlag = false; /* Flags to dismiss */
Boolean renameFlag = false; /* Flags to rename */
Boolean retVal = false; /* True/false on success */

*blankStr = 0;
cb = pb->callBacks;

Here we declare the local variables. The most important locals are nameDlg, the
dialog pointer; status, which tests the success of the rename operation; and cb, a
cached pointer to the callback array. We set blankStr to be an empty string (for use in
ParamText calls and such) and initialize cb’s value.

Creating the set. Now, we set up our Namer dialog box.

nameDlg = GetNewDialog(pb->resSpace + kNamerDlg, nil, (WindowPtr)-1);
cb->CenterDialog(nameDlg, &where);
MoveWindow(nameDlg, where.h, where.v, true);

ParamText(pb->printerInfo->currentPrinterName, blankStr, blankStr,
blankStr);

cb->SetPText(nameDlg, kNDNewName, blankStr);
cb->UserItem(nameDlg, kNDBoldOutline, cb->BoldOutlineItem);

(LWFUParmBlk *)((DialogPeek)nameDlg)->window.refCon = pb;
ShowWindow((WindowPtr)nameDlg);

RenamePrinter gets the Namer dialog box from the resource file with a call to
GetNewDialog. Notice the way the resource ID is specified as pb->resSpace +
constant. This relative resource ID convention makes the code flexible in case the
UTIL was renumbered for some reason. You’ll see this convention throughout
NamerUTIL.

d e v e l o p May 1992

48

The design for the Font Utility tried to encompass the most common types of
operations UTIL writers would be performing and provided those routines as
callbacks. One example is centering a dialog box. The CenterDialog callback returns
a point—the top left coordinates for a MoveWindow call.

RenamePrinter then installs the current printer name as parameter ^0, so the user
can see the current printer name in the dialog box. RenamePrinter presets the new
printer name to blank and installs a userItem to put the bold outline around the
dialog box’s default button. Again, notice the handy callbacks.

The dialog filter, NamerFilter, needs access to the LWFUParmBlk. To allow this,
RenamePrinter installs a pointer to the block in the dialog window’s refCon field.

The dialog template resource for the Namer dialog box specifies a hidden window, so
all the fuss we’ve just gone through hasn’t been disturbing the poor user. Once
finished, RenamePrinter puts the dialog box on the screen with ShowWindow.

Behind the scenes. Next comes the ModalDialog loop.

do {
ModalDialog(NamerFilter, &itemHit);
switch(itemHit) {

case kNDRename: /* Rename */
renameFlag = doneFlag = true;
break;

case kNDCancel: /* Cancel */
doneFlag = true;
break;

}
} while (!doneFlag);

HideWindow((WindowPtr)nameDlg);

This is your average modal dialog hit-loop. RenamePrinter waits for the user to
dismiss the dialog box, setting the renameFlag appropriately, then hiding the dialog
window (but not disposing of it yet). RenamePrinter filters the dialog events with
NamerFilter, shown here:

pascal Boolean NamerFilter(DialogPtr TheDialog, EventRecord *TheEvent,
short *ItemHit)

{
unsigned char theKey; /* From the event record */
short retVal = false; /* The return value */
char newName[kNameBufLen]; /* The new name */
LWFUParmBlk *pb; /* The parameter block */

POSTSCRIPT ENHANCEMENTS FOR THE LASERWRITER FONT UTILITY May 1992

49

/* Retrieve a pointer to the parameter block. */
pb = (LWFUParmBlk *)((WindowPeek)TheDialog)->refCon;

/* Trap keyDown and autoKey events. */
if (TheEvent->what == keyDown || TheEvent->what == autoKey) {

/* Grab the ASCII character code from the event record. */
theKey = TheEvent->message & charCodeMask;

if (theKey == kReturnKey || theKey == kEnterKey) {
/* Return or Enter? Hit the default button. */
retVal = true;
*ItemHit = kNDRename;

} else if (theKey == kAtChar || theKey == kColonChar ||
theKey > kLowASCII) {

/* "@", ":", or a high ASCII char? Beep and tell */
/* ModalDialog to ignore the event. */
SysBeep(5);
retVal = true;
*ItemHit = kNDDummy;

} else if (theKey != kBackspaceKey) {
/* Key other than Backspace? Check length to decide. */
pb->callBacks->GetPText(TheDialog, kNDNewName, newName);
if (*newName >= kMaxNameLength) {

SysBeep(5);
retVal = true;
*ItemHit = kNDDummy;

} else retVal = false;
}

} else retVal = false;

return(retVal);
}

This filter keeps users from entering an illegal printer name. Specifically, it disallows
ampersand (@) and colon (:) characters (reserved for forming NBP network names)
and high ASCII characters (because PostScript is technically 7-bit ASCII), and it
limits the length of the name to kMaxNameLength (30). The filter can make use of
callbacks, because we put a pointer to our LWFUParmBlk into the window’s refCon
field.

Performance time. If renameFlag is true, RenamePrinter performs the rename
operation.

Here’s the code:

d e v e l o p May 1992

50

if (renameFlag) {
GetIndString(psBuffer, pb->resSpace + kNamerStrs, kRenameStartStr);
cb->GetPText(nameDlg, kNDNewName, newName);
cb->Pstrcat(psBuffer, newName);
cb->GetAndAppend(psBuffer, pb->resSpace + kNamerStrs, kRenameEndStr);

In constructing an appropriate PostScript program to rename the printer, we get the
first part of the PostScript code from our STR# resource, append the new name the
user provided, and finally tack on the end of the PostScript code. The handy Pascal-
string utility callbacks were included for just this situation. We end up with our little
PostScript renamer program in psBuffer, as a Pascal string.

Now things start getting a little more interesting. The code that actually downloads
psBuffer to the printer and checks the results is as follows:

if ((status = cb->OpenPrinter()) == noErr) {
status = cb->DoWrite(psBuffer + 1, (short)*psBuffer, sendEOF, pb,

ExitBufferRtn);
cb->ClosePrinter();

}

RenamePrinter opens a connection to the printer with the callback OpenPrinter. If
there’s no error, RenamePrinter uses DoWrite to write psBuffer to the printer. The
sendEOF argument tells DoWrite to send an end-of-file indication to the printer
after writing the specified text to the printer. Notice that ExitBufferRtn, the “output
parser,” is included as a parameter to DoWrite.

Here’s the code for ExitBufferRtn:

pascal short ExitBufferRtn(short length, LWFUParmBlk *pb)
{

Handle dataHandle; /* "Handlized" response */
short status; /* The return code */
char psErrorText[kCompStrLen]; /* Buffer for "fail" test */
char exitText[kCompStrLen]; /* Buffer for "success" test */

GetIndString(psErrorText, pb->resSpace + kNamerStrs, kPSErrStr);
GetIndString(exitText, pb->resSpace + kNamerStrs, kExitVerStr);

PtrToHand(pb->callBacks->PAPReadBuffer, &dataHandle, length);

if (Munger(dataHandle, 0, psErrorText + 1, *psErrorText,
nil, 0) >= 0)

status = printerError;

POSTSCRIPT ENHANCEMENTS FOR THE LASERWRITER FONT UTILITY May 1992

51

else if (Munger(dataHandle, 0, exitText + 1, *exitText,
nil, 0) >= 0)

status = noErr;
else status = printerError;

DisposHandle(dataHandle);
return(status);

}

DoWrite constantly polls the printer for some response. If anything comes back from
the printer (like an error, or some verification that the operation was completed), it’s
sent to ExitBufferRtn. The return value from ExitBufferRtn is passed back to
DoWrite, and subsequently returned as DoWrite’s return value. This allows
ExitBufferRtn to essentially “post” an error. The only predefined error is
printerError, which is defined in UTIL.h. You may define your own error codes as
well.

In order to return an error code, ExitBufferRtn needs to look for some sign of success
or failure from the printer. To determine failure, it looks for “%%[Error: ”, which is
the beginning of all error strings that are returned by PostScript printers. We don’t
care about parsing the rest, since any error is enough for us to return printerError.

To detect success, ExitBufferRtn searches for the string “%%[exitserver:
permanent”, which is the beginning of “%%[exitserver: permanent state may be
changed]%%”. This string tells us that the exitserver password was correct. We
should always see this response from the printer. These two search strings are stored
in the resource file. Observe the relative resource IDs.

You may have noticed that a characteristic of UTILs seems to be avoiding work by
using all those handy callbacks. But now we have to search for a string. Yuck! Well,
let’s cheat. We’ll take the momentary memory hit and use PtrToHand to create a
handle to a copy of the response from the printer. Then we’ll search with every
hacker’s dream routine, Munger. After ExitBufferRtn sets status, it disposes of the
temporary handle and returns.

Back in RenamePrinter, we set our local variable status from the DoWrite call. Since
status was passed through from ExitBufferRtn, RenamePrinter can tell whether or
not the rename operation was successful. Either way, it’s really important to
remember to close the connection. The rule is, if the OpenPrinter call succeeded, do a
ClosePrinter call, even if the code in between failed.

Posting the reviews. Now that the ugly transmission-reception stuff is finished,
let’s tell the user what’s going on.

d e v e l o p May 1992

52

cb->UseCursor(0);
if (status == noErr) {

retVal = true;
ParamText(newName, blankStr, blankStr, blankStr);
cb->PositionAlert(pb->resSpace + kVerifyAlrt);
CautionAlert(pb->resSpace + kVerifyAlrt, nil);

} else {
retVal = false;
cb->PositionAlert(pb->resSpace + kFailAlrt);
StopAlert(pb->resSpace + kFailAlrt, nil);

}
}

Since the user needs to go out and choose the newly renamed printer with the
Chooser, RenamePrinter puts up an alert if the rename operation is successful, half as
a reminder to choose the printer, and half as a reminder of the new printer name.
(See “Where’d That Printer Go?”) If status, the local variable, was nonzero,
RenamePrinter puts up a general error alert. In any case, RenamePrinter sets the
return value appropriately, since Utility_Prime needs to know whether the printer is
renamed, so that it can return the appropriate flags to the Font Utility.

Finally, RenamePrinter disposes of the (currently hidden) Namer dialog and returns.

DisposDialog(nameDlg);
return(retVal);

}

That’s basically it! Now let’s glance at the resource file, NamerUTIL.r.

NAMERUTIL’S RESOURCES: NAMERUTIL.R
The only remarkable feature of NamerUTIL’s resource file, NamerUTIL.r, is its use
of relative resource IDs. For example, here’s NamerUTIL’s main dialog box DLOG
resource:

resource 'DLOG' (ResSpace + kNamerDlg, "Namer", purgeable) {
{40, 20, 162, 412},
dBoxProc, invisible, noGoAway, 0x0,
ResSpace + kNamerDlg,
""

};

Note that both the resource ID of the DLOG resource itself and the ID of the
associated DITL resource are specified relatively. NamerUTIL.r also contains the
following resource definition:

POSTSCRIPT ENHANCEMENTS FOR THE LASERWRITER FONT UTILITY May 1992

53

resource 'uvrs' (ResSpace + kVersion) {
0x01, 0x00, final, 0x00,
verUS,
"1.0",
"1.0, © 1991 Apple Computer, Inc."

};

The 'uvrs' resource is encouraged but not required. A 'uvrs' resource is structured
exactly like a 'vers' resource. It stands for UTIL version, and should have the same
ID as the UTIL resource. The 'uvrs' resource provides a handy way to attach your
copyright information to the UTIL.

d e v e l o p May 1992

54

We rename the printer behind the Font Utility’s back (and
the Chooser’s, for that matter). The name and zone
information for the currently chosen printer is stored in
some string resources in the System file. After we rename
the printer, the strings in the System file still contain the old
printer name.

The return value urCheckPrinter causes the Font Utility to
attempt to open a PAP connection with the “currently

chosen printer.” Since the name of the currently chosen
printer has not been updated, the PAPOpen call fails, and
the user gets the alert shown in Figure 7. This is an
unfortunate side effect of renaming the printer.

The solution is to tell the Chooser that we have chosen a
printer in the same zone with our new name, but there’s
no officially sanctioned way to do this. Future versions of
system software will remedy this situation.

WHERE’D THAT PRINTER GO?

Figure 7
A NamerUTIL Side Effect

BUILDING NAMERUTIL: MAKEFILE
Here’s NamerUTIL’s makefile:

makefile - make rules for NamerUTIL

Set up vars that describe UTIL's ID and resource space base
ID UTILID = 150
ResSpace = 18200
UTILName = "Rename Printer…"

COptions = -b -mbg full -sym off -r
AOptions = -d ResSpace={ResSpace}
LOptions = -sym off
ROptions = -a -d ResSpace={ResSpace}
Objects = UTILHead.a.o NamerUTIL.c.o "{Libraries}Interface.o"

LWFU ƒ LWFU.bak {Objects} NamerResources.rsrc MakeFile
Duplicate -y LWFU.bak LWFU
Rez {ROptions} -o LWFU NamerUTIL.r
Link {LOptions} ∂

-rt UTIL={UTILID} ∂
-sn Main={UTILName} ∂
-o LWFU {Objects}

Beep 1c,5 1e,5 1g,5 2c,5 2c,5,0 1g,5 2c,10

This makefile assumes you have a copy of the LaserWriter Font Utility named
LWFU.bak in your target directory. It makes a copy, called LWFU, and Rezzes and
links your UTIL directly into LWFU. Naturally, you can’t distribute a modified
version of the LaserWriter Font Utility (see “Distribution of UTILs”), but for
development, this is a really handy way to test your UTILs. The Beep command to
play “CHARGE!” at the end is optional. I put it there to remind me that I’d rather be
at the ball game.

BUT WAIT! THERE’S MORE!
Our little NamerUTIL is a useful example of what you might do with a LaserWriter
Font Utility UTIL. It does not, however, use every callback and exercise every option
available to it. The CD contains a UTIL specification that lists prototypes for all the
callbacks and more detailed descriptions of the fields of the LWFUParmBlk. There’s
also a version of the NamerUTIL sources that’s set up for use with the UTILInstall
application, for those who are hoping to write the first modal-word-processor-
spreadsheet-communications-package UTIL.

POSTSCRIPT ENHANCEMENTS FOR THE LASERWRITER FONT UTILITY May 1992

55

SO GO FOR IT!
A great aspect of UTILs is their hybrid nature—a unique combination of Macintosh
code and PostScript code. So where you would have had to analyze a text file that
came back from your PostScript code, you can write a UTIL that actually does
something useful with the output. UTILs are also a great chance for hardware
manufacturers to make those device-specific test and calibration pages accessible to
common users.

So go for it! If you’ve got a collection of really cool PostScript hacks sitting around,
here’s your chance to give them a shiny faceplate and loose them on the unsuspecting
world!

d e v e l o p May 1992

THANKS TO OUR TECHNICAL REVIEWERS
Richard Hu, Dave Johnson, Scott “Zz”
Zimmerman•

56

Since you can’t distribute modified Apple system software,
how can you distribute UTILs? The answer is to distribute
them as UTIL files along with the UTILInstall application.
UTILInstall (included with the source code on the
Developer CD Series disc) is specifically designed for
installing UTILs into the LaserWriter Font Utility. It requires
that you generate a file, containing the UTIL and all its
owned resources, that has a creator of 'UtIn' and a type
of 'UTIL'. Also, you must supply a resource of type 'USPC'
(UTIL specification) that tells the UTILInstall program what
resources you own. This is the Rez format of the USPC
resource:

type 'USPC' {
integer = $$Countof(ResourceList);
array ResourceList {

unsigned longint; /* Resource type */
integer; /* Resource ID */

};
};

You provide a USPC resource with the same ID as your
UTIL. The USPC resource lists the resource type and ID for
every resource your UTIL owns. This tells the UTILInstall

program exactly what resources to move, plus it facilitates
the renumbering of your owned resources should there be
an ID conflict.

For instance, suppose you’ve built your UTIL with UTIL ID
150 and ResSpace 18200. If the user attempts to install
your UTIL into a copy of the Font Utility that already
contains a UTIL with the ID 150, UTILInstall renumbers
your UTIL and all its owned resources as specified in the
USPC list.

Given a little thought, you might wonder what happens to
resources that refer to other resources by ID, like DLOG
and ALRT resources. Unfortunately, UTILInstall doesn’t
provide a comprehensive renumbering facility. It does,
however, have special cases for renumbering DLOG and
ALRT resources. Other resource types that refer to other
resources by ID should be avoided if you plan to
distribute your UTIL with UTILInstall.

For a complete example of the use of USPC resources, see
the alternate NamerUTIL sources and the UTILInstall source
code on the CD.

DISTRIBUTION OF UTILS

GRAPHICAL TRUFFLES: MULTIPLE SCREENS REVEALED May 1992

57

One very neat feature of the Macintosh is that you can
connect more than one screen to the computer and use
them as if they were one big screen. Better still,
applications take advantage of multiple screens
automatically. But the screens that are attached to your
system can have different sizes, depths, and color
tables, and you might want to optimize your
application for each screen, or you might want to find
the best screen to display something on. Both these
things are easy to do, but not necessarily in the ways
that you might think at first. In this column, we’ll
uncover a few important truths about QuickDraw’s
handling of multiple screens, and we’ll talk about a few
ways to deal with multiple screens if you want to go
beyond what QuickDraw gives you for free.

It’s important to understand that if you’re just drawing
items to a window and want to stay completely above
the specifics of different screens, don’t do anything
special—just draw to your window as if there were one
screen. QuickDraw was designed to make multiple
screens look like one, so you should take advantage of
this valuable abstraction if you can. Note too that
machines with original QuickDraw can also have
multiple screens, but we don’t describe that here.

Truth #1: Windows don’t change their depth or color table
when they’re moved to different screens.

One of the most common misconceptions about
multiple screens is that a window’s pixMap holds the

size, depth, and color table of the screen that the
window is on. That seems logical enough at first
glance, especially considering that each screen has its
own pixMap. But it’s not true, because a window can
cross more than one screen. Instead, the pixMap of a
window always holds the depth, color table, and bounds
rectangle of the main screen (the one with the menu
bar) even if the window is nowhere near the main
screen. The pixMap of a window is, in essence, a copy
of the main screen’s pixMap, except for one detail: the
bounds rectangle of a window’s pixMap is in the local
coordinates of the window while the bounds rectangle
of the main screen’s pixMap is in global coordinates. In
fact, any screen’s pixMap has a bounds rectangle that’s
in global coordinates, indicating that screen’s position
relative to the main screen.

To find the sizes, depths, or color tables of the screens
your window is on, you should use the list of GDevices
that the system maintains (usually called the device list),
which gives you the pixMap of each screen. We’ll
describe a method of using the device list later.

Truth #2: There are exactly two coordinate systems.

With multiple screens, it’s easy to get confused by what
looks like many coordinate systems, but there are only
two: the local coordinate system of the current port and
the global coordinate system. QuickDraw has no
concept of a coordinate system for each screen. Global
screen coordinates are always relative to the main
screen—the global coordinate (0,0) is always at the
extreme upper left corner of the menu bar.

All coordinates in a graphics port are local coordinates,
including the bounds rectangle of the port’s pixMap.
This bounds rectangle has two purposes. First, it
defines the area of a pixel image that QuickDraw can
draw into. Second, the top left point of the bounds
rectangle is the horizontal and vertical distance from
the origin of the local coordinate system to the origin
of the global coordinate system. Specifically, if you
subtract the coordinate of the top left corner of the
bounds rectangle from all the other coordinates in a
port, you convert those coordinates into the equivalent
global coordinates.

FORREST TANAKA Just before fastening that buckle on his bike
helmet and snapping into those pedals, Forrest whispered,
“Howdy, my name is Forrest; I don’t drink, and I hate nicknames
and terms of endearment. But I firmly believe that real life is more
exciting and fantastic than the best fiction, except for Antoine de
Saint-Exupéry’s The Little Prince.”•

BILL (“ANGUS”) GUSCHWAN Stopping between moguls after
some maney fakey shredding on his snowboard, Bill borrowed a
few clock hands to say “Hi, my name is Angus; I like tacos, ’71
Cabernet, and my favorite color is magenta.” His favorite
philosopher, Ludwig Wittgenstein, would be proud of his brevity.•

GRAPHICAL
TRUFFLES

MULTIPLE SCREENS
REVEALED

FORREST TANAKA AND
BILL GUSCHWAN

An example of the relationship between the portRect of
a window and the bounds rectangle of its pixMap is
shown in the following figure. The two screens in the
example are next to each other and are both 640 pixels
across and 480 pixels down, with the main screen on
the left, and the window is contained entirely on the
second screen. Global coordinates are marked around
the corners of the screens and the portRect and bounds
rectangle are marked with a dashed outline. Notice that
the bounds rectangle circumscribes the main screen,
and it’s in the local coordinates of the window. If you
subtract the components of the bounds rectangle’s top
left corner from the coordinates of the portRect, you
get the rectangle [T:25 L:660 B:325 R:1160], which is
the portRect in global coordinates.

Truth #3: QuickDraw switches to the GDevice of each
screen your drawing crosses as it’s drawn.

When you draw something to a window, QuickDraw
searches the device list for every GDevice whose
gdRect intersects your drawing. For each intersecting
GDevice, QuickDraw makes it the current GDevice
and then draws the intersecting part of your drawing.
Switching GDevices is important because the current
GDevice provides the current color environment,
which tells the system what color corresponds to each
pixel value and vice versa. As QuickDraw draws across
your screens, it keeps switching the current GDevice to
the one for the screen it’s actively drawing to.

Color environments are specific to each screen.
Compare this with grafPorts and cGrafPorts, which
provide the screen-independent drawing environment

that tells the system things like the pattern, pen size,
and color to use when drawing something. Each
window gets its own drawing environment, but has to
share the color environments with other windows.

Therefore, you should never switch GDevices to have
QuickDraw draw to a specific screen—QuickDraw
switches GDevices as appropriate. Whenever you have
QuickDraw draw to any screen, the current GDevice
should be the main screen’s GDevice, which it is by
default. The only time that you should switch
GDevices explicitly is to switch between on-screen and
off-screen drawing.

Truth #4: On- and off-screen drawing are different.

QuickDraw distinguishes between on-screen and off-
screen drawing for a couple of reasons. Starting with
32-Bit QuickDraw 1.0, video memory can only be
reached in 32-bit addressing mode. If QuickDraw
detects that it’s drawing to a screen, it switches to 32-
bit addressing mode, writes to video memory, and then
switches back to the native addressing mode.
QuickDraw stays in the native addressing mode for the
entire operation when it draws off-screen unless bit 2
of the pmVersion field of the destination pixMap is set
or unless it draws into a GWorld that’s cached on a
QuickDraw accelerator board. In those two cases,
QuickDraw switches to 32-bit addressing mode even
though it’s drawing off-screen.

Another important difference between on-screen and
off-screen drawing is that on-screen drawing makes
QuickDraw go through the additional work of using
the gdRects of the screens to determine which
GDevices you’re drawing to. We described this in
Truth #3. When QuickDraw draws off-screen, it just
uses the current GDevice.

QuickDraw senses whether it’s drawing on-screen or
off-screen by comparing the baseAddr field of the
current graphics port’s pixMap against the baseAddr of
the main screen’s pixMap. If they’re equal, QuickDraw
assumes that it’s drawing on-screen (not necessarily the
main screen!). Otherwise, QuickDraw assumes that it’s
drawing off-screen.

d e v e l o p May 1992

The device list is documented in the section “The Graphics
Device Record” in Chapter 21 of Inside Macintosh Volume VI.•

58

Window Ptr^.portPixMap^^.bounds:�
WindowPtr^.portRect:

T�
–25�
0

L�
–660�

0

B�
455�
300

R�
–20�
500

(0,0) (640,0) (1280,0)

(0,480) (640,480) (1280,480)

 File Edit
Experiment III

GRAPHICAL TRUFFLES: MULTIPLE SCREENS REVEALED May 1992

59

To avoid confusing QuickDraw regarding whether it’s
drawing on-screen or off-screen, make sure that you
always draw to a window for any on-screen drawing.
The pixMap of any window is a lot like the main
screen’s pixMap, as we described in Truth #1, so the
baseAddr of a window’s pixMap is always the same as
the baseAddr of the main screen’s pixMap.

TRUTH IN ACTION
There are several ways to use these truths so that your
applications optimize their displays for the sizes,
depths, and color tables of each of the screens that are
attached to the systems your application runs on. What
follows are a few ways to do this.

If your window is completely contained on one screen,
you might want to optimize your window’s image for
the screen it appears on. Usually, this means finding
out the depth and color table of the screen your
window is on. The device list, introduced in Truth #1,
is invaluable for getting this information. For each
GDevice in the list (remember, each GDevice
represents a screen), compare the rectangle of its
gdRect field against the rectangle of your window. The
gdRect is in global coordinates while your window’s
portRect is in local coordinates, so you’ll have to
convert one or the other before doing the comparison.
Once you’ve found the GDevice whose gdRect
encompasses your window, get the GDevice’s pixMap
from the gdPMap field. Within this pixMap, the
pixelSize field tells you the depth of the screen, and the
pmTable field gives you a handle to the screen’s color
table. The device list is a linked list; you can get the
first GDevice in the list with GetDeviceList, and you
can go to the next GDevice with GetNextDevice.

What if your window intersects more than one screen?
A common way to deal with this is to compromise by
choosing a screen based on some criterion. You might
want to choose the deepest screen that your window
crosses, or the screen that intersects most of your
window. The program listing at the end of this column
shows a routine called FindScreenGDevice that takes a
rectangle in global coordinates and a criterion, and
returns the GDevice of the screen that satisfies the

criterion. From this GDevice, you can get the
information you need from the pixMap in the gdPMap
field. If you pass kDeepestScreen for the criterion,
FindScreenGDevice returns the GDevice of the
deepest screen that intersects the rectangle. If you
instead pass kLargestAreaScreen, the GDevice of the
screen that has the largest intersection area is returned.
Normally, you’d convert your window’s portRect to
global coordinates with the LocalToGlobal QuickDraw
routine, and pass the resulting rectangle to
FindScreenGDevice.

If your window displays an off-screen image and
GWorlds are available, you can use GWorlds to make
an off-screen image with the best depth and color table
for the screens your window is on. If you pass 0 as the
pixel depth to NewGWorld or UpdateGWorld and
pass a rectangle defining the part of your window that
displays the off-screen image in global coordinates,
NewGWorld and UpdateGWorld set up an off-screen
graphics environment that has the same depth and
color table as the deepest screen your rectangle
intersects, even if the area of intersection is as small as
one pixel.

In some cases, you might want to display an image
specifically to one screen, maybe for a presentations
application or a game. To choose a screen, use a routine
like FindScreenGDevice. Once you’ve chosen a screen,
set up a window that fills that entire screen. Then draw
to the window normally. In other words, you should
again pretend that there’s only one screen available,
except that you have a little bit of insider information
about where to put a window on that screen to make
your images look or act best.

System 7 introduced the DeviceLoop routine, which is
the recommended method for drawing images that are
optimized for every screen they cross. For example, the
highlight color can be drawn in black on a 1-bit screen,
but in magenta on a deeper screen. If your application
is running on a pre-7.0 system, you can simulate
DeviceLoop by using a routine like DeviceLoopSim, as
we show below. But to maintain future compatibility,
DeviceLoop should be used if it is available.

DeviceLoop is described in Chapter 21 of Inside Macintosh
Volume VI.•

You don’t have to do anything special to let your
applications work with multiple screens; QuickDraw
makes multiple screens look like one screen. Use this

abstraction even if you want to take advantage of
specific screens. Keep using QuickDraw at a high level,
and multiple-screen compatibility comes for free.

d e v e l o p May 1992

For information about using the Picture Utilities
Package to find colors that are optimized for different screen
depths, see the article “In Search of the Optimal Palette” later in
this issue.•

60

void DeviceLoopSim(
RgnHandle drawingRgn, /* Region to draw to */
DeviceLoopDrawingProcPtr drawingProc, /* Routine to call to draw */
long userData, /* User-definable data */
DeviceLoopFlags flags) /* Options; not implemented */

{
GDHandle aGDevice; /* GDevice of each screen */
RgnHandle screenRgn; /* Intersection of screen area and drawingRgn */
RgnHandle savedClip; /* Saves the current port's clipping region */
Rect screenRect; /* Rectangle of screen in global coordinates */

/* Save the current port's clipping region */
savedClip = NewRgn();
GetClip(savedClip);

/* Loop through every GDevice in the device list */
screenRgn = NewRgn();
aGDevice = GetDeviceList();
while (aGDevice != nil)
{

/* Find region of intersection between screen and drawingRgn */
screenRect = (**aGDevice).gdRect;
GlobalToLocal(&topLeft(screenRect));
GlobalToLocal(&botRight(screenRect));
RectRgn(screenRgn, &screenRect);
SectRgn(screenRgn, drawingRgn, screenRgn);

/* If there is an area of intersection, call drawing proc */
if (!EmptyRgn(screenRgn))
{

SetClip(screenRgn);
(*drawingProc)((**(**aGDevice).gdPMap).pixelSize, (**aGDevice).gdFlags,

aGDevice, userData);
}
/* Go to the next GDevice in the device list */
aGDevice = GetNextDevice(aGDevice);

}
SetClip(savedClip);
DisposeRgn(savedClip);
DisposeRgn(screenRgn);

}

GRAPHICAL TRUFFLES: MULTIPLE SCREENS REVEALED May 1992

61
Thanks to Edgar Lee, Guillermo Ortiz, and John Wang for
reviewing this column.•

enum { kDeepestScreen, kLargestAreaScreen };

GDHandle FindScreenGDevice(
Rect * bounds, /* Global rectangle of part of screen to check */
short screenOption) /* Use deepest or largest intersection area screen */

{
GDHandle baseGDevice; /* GDevice that satisfies criterion */
GDHandle aGDevice; /* Handle to each GDevice in the GDevice list */
long maxArea; /* Largest intersection area found */
long area; /* Area of rectangle of intersection */
Rect commonRect; /* Rectangle of intersection */

/* Different screen options require different algorithms */
if (screenOption == kDeepestScreen)

/* Graphics Devices Manager tells us the deepest intersecting screen */
baseGDevice = GetMaxDevice(bounds);

else if (screenOption == kLargestAreaScreen)
{

/* Get a handle to the first GDevice in the device list */
aGDevice = GetDeviceList();

/* Keep looping until all GDevices have been checked */
maxArea = 0;
baseGDevice = nil;
while (aGDevice != nil)
{

/* Check to see whether screen rectangle and bounds intersect */
if (SectRect(&(**aGDevice).gdRect, bounds, &commonRect))
{

/* Calculate area of intersection */
area = (long)(commonRect.bottom - commonRect.top) *

(long)(commonRect.right - commonRect.left);

/* Keep track of largest area of intersection found so far */
if (area > maxArea)
{

maxArea = area;
baseGDevice = aGDevice;

}
}
/* Go to the next GDevice in the device list */
aGDevice = GetNextDevice(aGDevice);

}
}
return baseGDevice;

}

32-Bit QuickDraw brought system support for off-screen drawing
worlds to the Macintosh, and Color QuickDraw continues this support
in System 7. Using custom drawing routines in off-screen worlds can
increase a program’s speed and image-processing versatility. This article
describes custom drawing routines that do just that.

It’s a basic rule of Macintosh programming never to write a drawing routine that
draws directly to the screen. There are two good reasons for this rule. First, multiple
clients share the screen, and custom routines that draw directly to the screen may
violate cooperation rules (new ones are being invented all the time). Second, support
for new types of displays may be added to QuickDraw (as was the case with 32-Bit
QuickDraw), and custom routines that draw directly to the screen certainly won’t
work when new display types are introduced.

So if your application has a drawing need that QuickDraw cannot fulfill, off-screen
drawing is the only way to go. Your application draws to an off-screen copy of the
application window, and the off-screen image is transferred to the screen with
QuickDraw’s CopyBits procedure. In the off-screen environment your application is
the sole proprietor, and support for new displays will not affect how the off-screen
environment behaves. In addition, using CopyBits to transfer an off-screen image
onto the screen enables fast and smooth updating.

There are a couple of different ways to create an off-screen drawing environment.
The old-fashioned way is to create it by hand, an arduous task that results in all the
structures being kept in main memory. The new, improved way is to create it with the
NewGWorld call first made available by 32-Bit QuickDraw and now supported by
Color QuickDraw in System 7. When this method is used, a copy of the GWorld can
be cached on an accelerator card, thus enabling improved performance by
minimizing NuBus™ traffic during drawing operations. (For a full comparison of
drawing operations with and without the use of GWorlds, see “Macintosh Display
Card 8•24 GC” in develop Issue 3.)

d e v e l o p May 1992

KONSTANTIN OTHMER AND MIKE REED
are on the lam again. Kon was recently spotted
toting a padded canvas carrying case the size
and shape of a PowerBook 170 on board a
camel en route to the Pyramids of Giza. A source
close to Kon reports that he neglected to bring a
charger and had to spend extended hours inside
a pyramid letting pyramid power recharge his
PowerBook. Mike was last seen working his way

across India as a caddy for the Dalai Lama.
Our sources say he’s picking up spiritual
enlightenment, total consciousness, and a steady
downstroke with his five iron. Exercise caution if
you encounter either of these guys; they’ve
corrupted system heaps in the past and could do
so again.•

62

KONSTANTIN OTHMER
AND MIKE REED

DRAWING IN

GWORLDS

FOR SPEED

AND

VERSATILITY

Given that you must certainly see the wisdom of using GWorlds in applications, we’ll
now move on to the good stuff—how to increase performance and create some
interesting special effects with custom drawing routines. You should know the basics
of creating and disposing of GWorlds to get the most from this article. If you need a
review of these basics, read “Braving Offscreen Worlds” in develop Issue 1 or see
Chapter 21 of Inside Macintosh Volume VI.

CUSTOM DRAWING ROUTINES TO INCREASE SPEED
Sometimes QuickDraw works too slowly for some of us. Whereas QuickDraw often
trades performance for flexibility, there are times we’d just as soon trade flexibility for
performance. In those cases, we can achieve tremendous gains in speed by writing
custom routines to draw to off-screen worlds. Before writing such a routine, though,
we need to understand what slows QuickDraw down.

WHY IS QUICKDRAW OFTEN SO SLOW?
Let’s examine EraseRect to help us understand the considerable overhead QuickDraw
has to deal with just to perform a simple operation. An EraseRect call is issued via a
trap, so right off the bat we incur the overhead of the trap dispatcher. For a complex
operation, this overhead is relatively small, but for a simple operation performed
repetitively, this overhead can be significant. In the latter case, the trap dispatcher
overhead can be avoided by calling GetTrapAddress and then calling the routine
directly. (Note that with high-level routines, some traps take a selector.)

After we’ve called the routine, QuickDraw must do the following setup:

1. Check for a bottleneck procedure in the current port.

2. Check whether picture recording is enabled.

3. Calculate the intersection of the clipRgn and the visRgn and see if
the drawing will be clipped out.

4. Check whether drawing is to the screen, and if so shield the cursor
if the drawing intersects the cursor location.

5. Walk the device list and draw to each monitor that the clipped
rectangle intersects.

Then the drawing takes place, consisting of these steps:

6. If the pixel map requires 32-bit addressing, enter 32-bit mode.

7. Determine the transfer mode to draw with.

8. Convert the pattern to the correct depth and alignment for this
drawing.

9. Determine how to color the pixel pattern using the colors from
the port.

DRAWING IN GWORLDS FOR SPEED AND VERSATILITY May 1992

63

10. Blast the bits.

The teardown consists of two steps:

11. Exit 32-bit addressing mode, if appropriate.

12. Unshield the cursor.

Notice that this list doesn’t include error checking. QuickDraw does do some error
checking, but rigorous checking slows performance further. While many of the items
on this list are a simple check, others require considerable processor time. There’s
plenty of room here for reducing overhead by writing custom routines.

Custom routines can often skip all but step 10. For drawing operations that spend the
majority of time in step 10, custom routines can’t offer big wins in performance. But
for operations that spend most of the time elsewhere, custom routines can achieve
significant performance gains.

For example, if you copy a large image with CopyBits and the source and destination
pixel depths are the same, the fgColor is black and the bkColor is white, the color
tables match, the clipping regions are rectangular, and the alignment is the same, the
operation is already very efficient since the majority of time is spent moving the bits
rather than doing overhead. In this situation, you can’t hope to gain substantial speed
with a custom drawing routine. In contrast, for an operation such as setting a single
pixel, the overhead involved in setting up the drawing operation eclipses the time
actually spent drawing, so this is a candidate for a custom drawing routine.

OPTIMIZING A CUSTOM ROUTINE TO SET A SINGLE PIXEL
The simplest drawing to an off-screen world is setting a single pixel. Let’s compare
how QuickDraw sets a single pixel with how a custom drawing routine might do it.
For our custom routine, we’ll assume the off-screen world is 32 bits deep. This
assumption gives us significant gains in speed and reduces code size and complexity.

Our sample code inverts the red and green channels. Figure 1 illustrates the
transformation this accomplishes. Using QuickDraw, the code looks like this:

for (y = bounds.top; y < bounds.bottom; y++)
{

for (x = bounds.left; x < bounds.right; x++)
{

GetCPixel(x, y, &myRGB);
myRGB.red ^= 0xFFFF; /* Invert the red and green channels. */
myRGB.green ^= 0xFFFF;
SetCPixel(x, y, &myRGB);

}
}

d e v e l o p May 1992

For details of how CopyBits works in
System 7, see “QuickDraw’s CopyBits
Procedure” in develop Issue 6.•

64

As shown here, we use the QuickDraw routines GetCPixel and SetCPixel to get and
set the color of a single pixel. SetCPixel is converted to a line-drawing command,
because setting a single pixel is actually a special case of drawing a line (a very short
line!). This way of implementing pixel setting is advantageous because line-drawing
operations are saved in pictures and use the pattern and transfer mode from the port.
It also simplifies QuickDraw on the bottleneck level since no separate bottleneck
routine exists for setting pixels. The downside is that setting a single pixel this way is
slow. To produce the transformation shown in Figure 1, the code takes 624 ticks or
about 10.4 seconds to run on a Macintosh IIfx.

Faster. Now let’s develop a custom routine that optimizes setting a single pixel. For a
first pass, we’ll eliminate the majority of the overhead and set the pixel directly rather
than do line drawing. Given a GWorldPtr, an x and y position, and a 32-bit value, our
routine GWSet32PixelC sets the pixel at that position to that value. The parallel call
GWGet32PixelC is identical, except that where GWSet32PixelC sets the value,
GWGet32PixelC returns it.

GWSet32PixelC(GWorldPtr src, short x, short y, long pixelValue)
{
PixMapHandle srcPixMap;
unsigned short srcRowBytes;
long srcBaseAddr;
long srcAddr;
char mmuMode;

DRAWING IN GWORLDS FOR SPEED AND VERSATILITY May 1992

65

Before After

Figure 1
A Couple of Crazy Guys, Before and After Red/Green Inversion

srcPixMap = GetGWorldPixMap(src);
/* Get the address of the pixels. */
srcBaseAddr = (long) GetPixBaseAddr(srcPixMap);
/* Get the row increment. */
srcRowBytes = (**srcPixMap).rowBytes & 0x7fff;

/* Make coordinates pixel map relative. */
x -= (**srcPixMap).bounds.left;
y -= (**srcPixMap).bounds.top;

mmuMode = true32b;
SwapMMUMode(&mmuMode); /* Set the MMU to 32-bit mode. */

/* Calculate the address of the pixel: base + y*(row size in
bytes) + x*(bytes/pixel). */

srcAddr = srcBaseAddr + (long)y*srcRowBytes + (x << 2);
*((long *)srcAddr) = pixelValue;
SwapMMUMode(&mmuMode); /* Restore the previous MMU mode. */

}

Of interest in this code is the call to SwapMMUMode before drawing to the
GWorld. This is necessary since the GWorld could be cached on an accelerator card
and require 32-bit addressing to access it. (See “QuickDraw’s CopyBits Procedure” in
develop Issue 6 for a complete explanation.)

If we revise our sample code to use our new calls GWGet32PixelC and
GWSet32PixelC, the image shown in Figure 1 takes 398 ticks (or 6.8 seconds) to
process. This is about 65% faster than QuickDraw, but is still much slower than it
needs to be.

And faster. There are two major inefficiencies in our sample code: it makes four
trap calls and it’s at the mercy of the C compiler. Both of these problems are easily
overcome, as the FastGWSet32Pixel routine demonstrates. Rather than take a
GWorldPtr, FastGWSet32Pixel takes a pixMap pointer and a base address.
Furthermore, the routine assumes it’s being called in 32-bit mode. Note that the
variables bounds, top, rowBytes, and left are defined in QuickEquate.a.

FastGWSet32Pixel(PixMap *srcPixMap, long *srcBaseAddr, short x,
short y, long pixelValue)

{

asm {
move.l srcPixMap,a0 ;Must be 32-bit-clean pointer
move.w y,d1 ;Get y
sub.w bounds+top(a0),d1 ;Make y bounds 0 relative

d e v e l o p May 1992

66

move.w rowBytes(a0),d0 ;Get rowBytes
and.w #0x7FFF,d0 ;Strip bitmap/pixMap bit
mulu.w d0,d1 ;Calculate offset to start of this row
move.l srcBaseAddr,a1 ;Must be 32-bit base address
adda.l d1,a1 ;Calculate address of this row
moveq #0,d0 ;Extend x to a word
move.w x,d0
sub.w bounds+left(a0),d0 ;Make x bounds 0 relative
lsl.w #2,d0 ;Convert x to pixels (4 bytes/pixel)
adda.l d0,a1 ;Calculate pixel address
move.l pixelValue,(a1)

}
}

You may wonder why this routine takes both a pixMap and a base address. Can’t it
just get the base address from the pixMap directly? The answer is no, since the base
address of a GWorld can be a handle rather than a pointer and in the future might be
something different again. You must pass in a base address that’s good in 32-bit
addressing mode. The GetPixBaseAddr routine called by GWSet32PixelC returns
the correct base address given a pixMap.

Revising our sample code isn’t as trivial as it was before because of the additional
assumptions made by these fast get and set pixel routines. Here’s the new version of
the code:

/* Get pixMap's 32-bit base address. */
srcBaseAddr = (long *) GetPixBaseAddr(myPixMapHandle);
myPixMapPtr = *myPixMapHandle;

/* WARNING: The pixMapHandle is dereferenced throughout these next
loops. The code makes sure memory will not move. In particular,
it's important that the segment containing the FastGWGet32Pixel and
FastGWSet32Pixel routines is already loaded or is in the same
segment as the caller. Otherwise memory might move when the segment
is loaded. A trick to make sure the segment is loaded is to call
a routine in the same segment (or these routines themselves) before
making assumptions about memory not moving. */

/* Make it 32-bit clean. */
LockPixels(myPixMapHandle);
myPixMapPtr = (PixMap *) StripAddress((Ptr)myPixMapPtr);

mmuMode = true32b;
SwapMMUMode(&mmuMode); /* Set the MMU to 32-bit mode. */

DRAWING IN GWORLDS FOR SPEED AND VERSATILITY May 1992

67

for (y = bounds.top; y < bounds.bottom; y++)
{

for (x = bounds.left; x < bounds.right; x++)
{

myPixel = FastGWGet32Pixel(myPixMapPtr, srcBaseAddr, x, y);
myPixel ^= 0x00FFFF00; /* Invert the red and green channels. */
FastGWSet32Pixel(myPixMapPtr, srcBaseAddr, x, y, myPixel);

}
}

SwapMMUMode(&mmuMode); /* Set it back. */
UnlockPixels(myPixMapHandle);

Note that the code calls StripAddress on the pixMapPtr since it’ll be used in 32-bit
mode. Also note that although we locked the pixels, we didn’t lock the
pixMapHandle, so no operation that could move memory is performed. You must be
careful that the get and set pixel routines are in the same segment as the code that’s
calling them, or the Segment Loader might move memory when the routines are
called. If all these restrictions are too much to keep in mind, simply call HLock on
the pixMapHandle, and then HUnlock when you’ve finished.

Our sample image now takes only 17 ticks to process, or about .3 second. This is a
nearly 37-fold improvement over the first version. But we’re not done yet.

And even faster. We’re still performing two subroutine calls and two multiplies per
pixel, a major inefficiency. The RedGreenInvert routine gets rid of this inefficiency
by walking a GWorld’s pixMap to invert the red and green channels.

RedGreenInvert(GWorldPtr src)
{
PixMapHandle srcPixMap;
short srcRowBytes;
long *srcBaseAddr;
long *srcAddr1;
char mmuMode;
short row, column;
short width, height;

srcPixMap = GetGWorldPixMap(src);

if(LockPixels(srcPixMap))
{

/* Get the base address. */
srcBaseAddr = (long *) GetPixBaseAddr(srcPixMap);

d e v e l o p May 1992

68

/* Get the row increment. */
srcRowBytes = (**srcPixMap).rowBytes & 0x7fff;
width = (**srcPixMap).bounds.right-(**srcPixMap).bounds.left;
height = (**srcPixMap).bounds.bottom-(**srcPixMap).bounds.top;
mmuMode = true32b;
SwapMMUMode(&mmuMode); /* Set the MMU to 32-bit mode. */
for (row = 0; row < height; row++)
{

srcAddr1 = srcBaseAddr;
for (column = 0; column < width; column++)
{

/* Invert the red and green. Note that for 32-bit pixels,
pixel memory is organized as XRGB, where each component is
8 bits. */

srcAddr1++ ^= 0x00ffff00; / Bump to next pixel. */
}
/* Go to the next row. */
srcBaseAddr = (long *) ((char *) srcBaseAddr + srcRowBytes);

}
SwapMMUMode(&mmuMode); /* Restore the previous MMU mode. */
UnlockPixels(srcPixMap); /* Unlock the pixMap. */

}
}

Using the RedGreenInvert routine, our sample image now takes 1 tick or 1/60th of a
second to process. This is nearly 624 times faster than the original version! Even
greater performance gains can be made by rewriting this routine in assembly, but
that’s left as an exercise for you.

The price you pay. Note that as performance increases, the flexibility of the code
decreases. In our example, the original version of the code, which calls GetCPixel and
SetCPixel, works for all pixel depths, is recorded into pictures, and does the actual
drawing using QuickDraw. GWSet32PixelC works only on 32-bit off-screen
pixMaps. FastGWSet32Pixel has the additional restriction that it has to be called in
32-bit addressing mode. And finally, RedGreenInvert performs only one specific
operation on an entire 32-bit GWorld.

We’ve shown you the tremendous speed improvements you can achieve by writing
custom drawing routines. Now we turn our attention to some useful code examples
for manipulating images.

CUSTOM DRAWING ROUTINES TO MANIPULATE IMAGES
Some image transformations lend themselves to direct manipulation of GWorld data.
For example, with custom drawing routines we can transform images off-screen in

DRAWING IN GWORLDS FOR SPEED AND VERSATILITY May 1992

69

various ways, find the edges of an image, quickly scale an image for use as a mask, and
fill a rectangle in real time. We present these custom routines here and on the
Developer CD Series disc.

A CUSTOM ROUTINE TO TRANSFORM IMAGES
We can obtain a variety of special effects—including rotation, stretching, perspective
transformation, and sine wave warping—by applying a mapping matrix to a source
GWorld, resulting in a transformed destination GWorld. This technique requires us
to access an image at fractional rather than integer pixel coordinates—that is, to do
subpixel sampling rather than point sampling. Let’s consider subpixel sampling first
and then look at the mapping routine.

Subpixel sampling. In QuickDraw, pixels are defined only for integer coordinates
and undefined elsewhere. The location of each pixel is defined by the pair of integer
coordinates at its upper left corner. To determine the value a pixel has at a fractional
location in the pixMap, we must use a filter function. The routine we provide to do
subpixel sampling, called GetFractionalPixel, can use either of two types of filters: a
box filter or a tent filter. If use_box_filter is defined in the GetFractionalPixel
routine, a box filter is used; otherwise a tent filter is used.

Here’s how the filters work. Suppose the grid with corners at (0,0) and (6,4)
represents part of an image, which we want to sample at fractional position
(2.667,1.75). We can visualize each filter as a geometric solid whose base covers the
pixel(s) on the grid to be sampled and whose height represents the weight to assign to
the sampled pixel(s).

The box filter can be visualized as a 1-pixel x 1-pixel x 1-pixel cube that we plop down
on the grid with its bottom right corner at the fractional coordinates, as shown in
Figure 2. The box filter merely chooses the value of the pixel whose integer
coordinates are covered by its base—in this case (2,1)—and gives this value a weight
of 1, since the box is 1 pixel high above the integer coordinates. This value is then
used to represent the image at the requested fractional position.

While the box filter takes the value of one integer pixel location in the source to
represent a fractional pixel location, the tent filter averages the weighted values of up
to four adjacent pixels in the source to represent a fractional pixel location. The tent
filter can be visualized as a tent with a 2-pixel-square base that we plop down on the
grid with the exact center of its base at the fractional coordinates, as shown in Figure
3. The tent filter takes the values of the one, two, or four pixels whose integer
coordinates are covered by its base—in this case (2,1), (3,1), (2,2), and (3,2)—and
gives each value a different weight. As with the box filter, the weighting for each value
is determined by the height of the solid above each integer pixel coordinate. The
average of these weighted values is then used to represent the image at the requested
fractional position.

d e v e l o p May 1992

70

Note in Figure 3 that the edge from the center of the side of the tent base to the top
is linear (z = x), while the edge from the corner of the tent base to the top is quadratic
(z = x2). Note also that in two dimensions our tent filter is equivalent to imposing on
the grid a pixel with its upper left corner at the fractional location, calculating what
percentage of each of four integer coordinate pixels it overlaps, multiplying the value
of each overlapped pixel by this respective percentage, and then averaging these
values, as shown in Figure 4.

The box filter approximation makes the pixel value calculation easy, but results in
some blurring of the image. The tent filter produces much better images than the box
filter, but the calculation time for each pixel is considerably longer. Figure 5

DRAWING IN GWORLDS FOR SPEED AND VERSATILITY May 1992

71

(0,0)

(6,0)

(0,4)

(6,4)

The weighted average of the values of�
the pixels at (2,1), (3,1), (2,2), (3,2)�
is the value used.

(2.667,1.75)

Figure 3
Subpixel Sampling Using a Tent Filter

(0,0)

(6,0)

(0,4)

(6,4)

(2.667,1.75)

The value of the pixel at�
(2,1) is the value used.

Figure 2
Subpixel Sampling Using a Box Filter

illustrates the difference between an image scaled with a tent filter and with a box
filter.

The GetFractionalPixel routine does all the work. The code first determines whether
the requested pixel lies within the bounds of the source pixMap and returns false if it
doesn’t. Next, the code truncates pixels that lie off the right or bottom to fit wholly
within the source. Finally, the pixels touched by the requested location are weighted
and averaged (depending on the filter function) and the result is returned.

d e v e l o p May 1992

72

(0,0)

(2.667,1.75)

(6,0)

(0,4) (6,4)

.333*.25 of (2,1) = .0833 of (2,1)�

.667*.25 of (3,1) = .1667 of (3,1)�

.333*.75 of (2,2) = .2500 of (2,2)�

.667*.75 of (3,2) = .5000 of (3,2)

The average of�
these values is�
the value used.

Figure 4
Two-Dimensional Equivalent of Our Tent Filter

Tent filter Box filter

Figure 5
The 32-Bit QuickDraw Icon, Scaled With a Tent Filter Versus a Box Filter

static Boolean GetFractionalPixel(long *srcBaseAddr, long srcRowLongs,
Rect *srcBounds, Fixed fx, Fixed fy, long *dstLong)

{
unsigned long tempBlue, tempGreen, tempRed;
long srcPixel[2][2];
shortFrac scale[2][2];
Point p;

SetPt(&p, fx >> 16, fy >> 16);
/* ModelessPtInRect is a version of QuickDraw's PointInRect

routine that works in either 24-bit or 32-bit addressing mode. */
if (!ModelessPtInRect(p, srcBounds))

return false;

if (p.h == srcBounds->right - 1)
fx = ff(p.h); /* ff() is a macro that given a short,

returns a fixed. */
if (p.v == srcBounds->bottom - 1)

fy = ff(p.v);

/* Compute the address of the first source pixel. */
{

long *srcAddr = srcBaseAddr + p.v * srcRowLongs + p.h;

#if use_box_filter
*dstLong = *srcAddr;
return true;

#endif
srcPixel[0][0] = *srcAddr++;
srcPixel[0][1] = *srcAddr++;
srcAddr += srcRowLongs;
srcPixel[1][1] = *--srcAddr;
srcPixel[1][0] = *--srcAddr;

}

/* Precompute the scales for each pixel. ShortFracMul multiplies
two short fractions and returns a short fraction. */

{
shortFrac xFrac = Fixed2ShortFrac((unsigned short)fx);
shortFrac yFrac = Fixed2ShortFrac((unsigned short)fy);

scale[0][0] = ShortFracMul(oneShortFrac - xFrac,
oneShortFrac - yFrac);

scale[0][1] = ShortFracMul(xFrac, oneShortFrac - yFrac);
scale[1][0] = ShortFracMul(oneShortFrac - xFrac, yFrac);

DRAWING IN GWORLDS FOR SPEED AND VERSATILITY May 1992

73

scale[1][1] = ShortFracMul(xFrac, yFrac);
}

/* Now scale each component of each corner by the percentage of the
"real" pixel covered by the fractional pixel (the area covered
by the filter). */

tempBlue = ShortFracMulByte(scale[0][0], srcPixel[0][0]) +
ShortFracMulByte(scale[0][1], srcPixel[0][1]) +
ShortFracMulByte(scale[1][0], srcPixel[1][0]) +
ShortFracMulByte(scale[1][1], srcPixel[1][1]);

if (tempBlue == 256) tempBlue = 255;

tempGreen = ShortFracMulByte(scale[0][0], srcPixel[0][0] >> 8) +
ShortFracMulByte(scale[0][1], srcPixel[0][1] >> 8) +
ShortFracMulByte(scale[1][0], srcPixel[1][0] >> 8) +
ShortFracMulByte(scale[1][1], srcPixel[1][1] >> 8);

if (tempGreen == 256) tempGreen = 255;

tempRed = ShortFracMulByte(scale[0][0], srcPixel[0][0] >> 16) +
ShortFracMulByte(scale[0][1], srcPixel[0][1] >> 16) +
ShortFracMulByte(scale[1][0], srcPixel[1][0] >> 16) +
ShortFracMulByte(scale[1][1], srcPixel[1][1] >> 16);

if (tempRed == 256) tempRed = 255;

*dstLong = (tempRed << 16) | (tempGreen << 8) | tempBlue;
return true;

}

The mapping routine. Our custom routine to transform images by applying a
mapping matrix makes use of the GetFractionalPixel routine. The mapping routine
sets up a mapping matrix and then calls MapGWorld. MapGWorld takes a GWorld
and applies the mapping matrix to it, resulting in a transformed GWorld.
MapGWorld also takes a VAR mask parameter. If this parameter is set to nil, it’s
unused. Otherwise, MapGWorld returns a 1-bit mask that indicates which
destination pixels were set. This mask can be passed as a parameter to CopyMask or
CopyDeepMask to transfer the results onto the screen.

Figure 6 diagrams how MapGWorld works. The matrix shown there is the one that
rotates an image 35 degrees from the x-axis toward the y-axis.

static GWorldPtr MapGWorld(GWorldPtr srcWorld, mapping *dstMapping,
GWorldPtr *maskWorld)

{
GWorldPtr dstWorld;
PixMapHandle srcPixMap, dstPixMap;

d e v e l o p May 1992

Our matrix mapping functions use only a
3 x 2 matrix. Doing perspective transformations
requires a 3 x 3 matrix.•

74

long *srcBaseAddr, *dstBaseAddr, srcRowLongs, dstRowLongs;
Rect srcRect, dstRect;
mapping inverseMapping;
char x, y, mmuMode;

/* Create the dstWorld sized to hold the transformed srcWorld. */
dstRect = srcRect = srcWorld->portRect;
MapRectangle(dstMapping, &dstRect);
if (NewGWorld(&dstWorld, 32, &dstRect, 0, 0, 0))

return 0;

/* Optionally, create a maskWorld with the same bounds as
the dstWorld. */

if (maskWorld)
{

if (NewGWorld(maskWorld, 1, &dstRect, 0, 0, 0))
{

DisposeGWorld(dstWorld);
return 0;

}
EraseGWorld(*maskWorld, &dstRect);

}

/* Set up for fast walking of the src and dst. Need to swap
MMU mode to look at the baseAddr. */

srcPixMap = GetGWorldPixMap(srcWorld);
dstPixMap = GetGWorldPixMap(dstWorld);
/* Get the address of the pixMap. */
srcBaseAddr = (long *) GetPixBaseAddr(srcPixMap);
/* Get the row increment. */
srcRowLongs = ((**srcPixMap).rowBytes & 0x7fff) >> 2;
/* Get the address of the pixMap. */
dstBaseAddr = (long *) GetPixBaseAddr(dstPixMap);
/* Get the row increment. */
dstRowLongs = ((**dstPixMap).rowBytes & 0x7fff) >> 2;

inverseMapping = *dstMapping;
InvertMapping(&inverseMapping);

mmuMode = true 32b;
SwapMMUMode(&mmuMode); /* Set the MMU to 32-bit mode. */
for (y = dstRect.top; y < dstRect.bottom; y++)
{

long *dstAddr = dstBaseAddr;

DRAWING IN GWORLDS FOR SPEED AND VERSATILITY May 1992

75

for (x = dstRect.left; x < dstRect.right; x++)
{

Fixed srcX = ff(x);
Fixed srcY = ff(y);

MapXY(&inverseMapping, &srcX, &srcY);
if (GetFractionalPixel(srcBaseAddr, srcRowLongs, &srcRect,

srcX, srcY, dstAddr++) && maskWorld)
SetGWorldPixel(*maskWorld, x, y);

}
dstBaseAddr += dstRowLongs;

}
SwapMMUMode(&mmuMode); /* Restore the previous MMU mode. */
return dstWorld;

}

The first thing MapGWorld does is call MapRectangle, which computes the size of
the destination GWorld. (This and other subroutines can be found on the Developer
CD Series disc.) It does this by applying the matrix transformation to the coordinates
of the rectangle’s four corners and then finding the tightest-fitting rectangle that
contains the four points. It uses the same rectangle to make a 1-bit mask world, if
needed.

Next, the matrix is inverted by calling InvertMapping, which establishes the inverse
mapping—that is, the mapping from the destination to the source. Therefore, the
matrix passed into MapGWorld must be invertible. (A commercial version of our
routine would check for noninvertible matrixes and report an error.) If a transform
that expands the source pixMap by 2 is used to map the source to the destination,
only every other pixel in the destination is touched. So we walk the destination and
use an inverse transform to find the source pixel location that maps to each
destination location. This guarantees that each pixel in the destination is touched.

This brings us to an interesting observation: geometries, such as the bounding
rectangle, are transformed from the source to the destination, but pixMaps use the
inverse transform to walk the destination and map coordinates back to the source.

The next section of code walks the destination pixMap, performs the inverse
mapping, and then calls GetFractionalPixel to put the pixel value directly in the
destination GWorld. The corresponding entry in the mask pixMap is set if the
requested pixel was in the range of the source pixMap and the mask GWorld exists.

A couple of the transformations that can be achieved with the MapGWorld routine
are shown in Figure 7. The rotation is achieved by applying the matrix given in
Figure 6. The stretching is achieved by scaling the mapping by 2 in the x direction.

d e v e l o p May 1992

76

Included in the code on the Developer CD Series disc are routines for setting up the
mapping matrix. RotateMapping sets up a matrix to perform rotation, as in

RotateMapping(&map, ff(35), ff(center.h), ff(center.v));

which rotates an image 35 degrees about some point specified by center.
ScaleMapping sets up a matrix that performs stretching about a center, as in

ScaleMapping(&aMapping, ff(2), ff(1), ff(center.h), ff(center.v));

Note that MapGWorld is slow for the reasons discussed earlier. It’s left as an exercise
for you to optimize all or part of this code. Optimized assembly code for rotation can
rotate a 400 x 400 8-bit pixMap at about five frames a second on a Macintosh II.

More tricks. We can perform nonlinear transformations as well. Consider the image
in Figure 8. This sine wave warp was generated by transforming the coordinates of
the source GWorld after they had been computed by sending the destination
coordinates through the inverse of the mapping. The routine FancyMap performs a

DRAWING IN GWORLDS FOR SPEED AND VERSATILITY May 1992

77

MapGWorld

.82 -.57�

.57 .82�
 0 0�
�

Source Some Matrix

Result Mask

Figure 6
How MapGWorld Works

d e v e l o p May 1992

78

Rotation

Stretching

Figure 7
A Couple of Crazy Guys, Transformed With MapGWorld

simple trigonometric transformation of the y coordinate. It’s not meant to be
efficient, only to illustrate the flexibility provided by our MapGWorld routine.

static void FancyMap(const Rect *srcR, Fixed *xPtr, Fixed *yPtr)
{

double x = *xPtr / 65536.0;
double dx = 2 * pi() * (x - (srcR->right + srcR->left >> 1)) /

(srcR->right - srcR->left);
double amp = srcR->right - srcR->left >> 3;
double delta = sin(dx) * amp;

*yPtr += delta * 65536.0;
}

Other variations are easy to add. For example, sine and cosine can be used in
combination to map an image onto a circle. If you expand the mapping to a full 3 x 3
matrix, you can draw images in perspective.

A CUSTOM ROUTINE TO FIND EDGES
Another example that lends itself to direct manipulation of GWorld data is finding
edges by calculating the change in pixel values across a pixMap. Our CalculateDeltas

DRAWING IN GWORLDS FOR SPEED AND VERSATILITY May 1992

79

Figure 8
A Couple of Crazy Guys, Transformed Nonlinearly

routine does just that. First it copies the 32-bit pixMap down to a preallocated 8-bit
gray-scale pixMap via CopyBits. This precalculates the luminance of each pixel in the
source, rather than doing this individually on the fly. Next the routine calculates the
difference between horizontally adjoining pixels and writes the result back out in
place.

CalculateDeltas(GWorldPtr src, GWorldPtr dst)
{
PixMapHandle srcPixMap, dstPixMap;
short srcRowBytes, dstRowBytes;
long *srcBaseAddr, *dstBaseAddr, *dstAddr;
unsigned char *srcAddr1;
char mmuMode;
short row, column;
unsigned char lum1,lum2;
unsigned long dstLong;
short width, height;
GDHandle oldGD;
GWorldPtr oldGW;

srcPixMap = GetGWorldPixMap(src);
dstPixMap = GetGWorldPixMap(dst);

/* Lock the pixMaps. */
if (LockPixels(srcPixMap) && LockPixels(dstPixMap))
{

GetGWorld(&oldGW, &oldGD);
SetGWorld(dst, nil);
CopyBits((BitMap*)*srcPixMap, (BitMap*)*dstPixMap,

&(**srcPixMap).bounds, &(**dstPixMap).bounds, srcCopy, 0L);
SetGWorld(oldGW, oldGD);

srcBaseAddr = (long *) GetPixBaseAddr(srcPixMap);
srcRowBytes = (**srcPixMap).rowBytes & 0x7fff;
dstBaseAddr = (long *) GetPixBaseAddr(dstPixMap);
dstRowBytes = (**dstPixMap).rowBytes & 0x7fff;
width = (**srcPixMap).bounds.right - (**srcPixMap).bounds.left;
height = (**srcPixMap).bounds.bottom - (**srcPixMap).bounds.top;

mmuMode = true32b;
SwapMMUMode(&mmuMode); /* Set the MMU to 32-bit mode. */
for (row = 0; row < height; row++)
{

srcAddr1 = (unsigned char *) dstBaseAddr;
dstAddr = dstBaseAddr;

d e v e l o p May 1992

80

lum1 = *srcAddr1++; /* Get luminance of src pixel. */
for (column = 0; column < ((width-1)/4); column++)
{

/* Do a long in the destination (4 pixels). This is OK
since memory blocks are always long word aligned. Thus,
we will never write over the right edge. */

dstLong = 0;
lum2 = *srcAddr1++;
dstLong = (unsigned char) ((0x100 + lum1 - lum2)>>1);
dstLong = dstLong << 8;
lum1 = *srcAddr1++;
dstLong |= (unsigned char) ((0x100 + lum2 - lum1)>>1);
dstLong = dstLong << 8;
lum2 = *srcAddr1++;
dstLong |= (unsigned char) ((0x100 + lum1 - lum2)>>1);
dstLong = dstLong << 8;
lum1 = *srcAddr1++;
dstLong |= (unsigned char) ((0x100 + lum2 - lum1)>>1);
*dstAddr++ = dstLong;

}
/* Next row. */
srcBaseAddr = (long *) ((char *) srcBaseAddr + srcRowBytes);
/* Next row. */
dstBaseAddr = (long *) ((char *) dstBaseAddr + dstRowBytes);

}
SwapMMUMode(&mmuMode); /* Restore the previous MMU mode. */
UnlockPixels(srcPixMap);
UnlockPixels(dstPixMap);

}
}

Notice that the routine assumes the 8-bit gray-scale color table is linear.
Furthermore, the routine does not deal with the right edge correctly. The problem is
that if there are n pixels per row, there are n-1 deltas, so the resulting figure is one
pixel narrower than the source. This routine puts garbage in the last pixel position in
each row. When the image is displayed, you should shrink the image’s bounds
rectangle by one pixel on the right.

Figure 9 shows the result of applying the CalculateDeltas routine to one of our
favorite images.

A CUSTOM ROUTINE TO SCALE IMAGES FOR MASK GENERATION
In our “Scoring Points With TrueType” article in Issue 7 of develop, we discuss a
technique for drawing antialiased text using CopyDeepMask. There the mask for
CopyDeepMask is created by (1) drawing the text at four times the target size into a

DRAWING IN GWORLDS FOR SPEED AND VERSATILITY May 1992

81

4-bit mask GWorld

Magnified view of 4-bit mask GWorld

d e v e l o p May 1992

82

Before After

Figure 10
A “Hello, World” Mask Created With a Dithered CopyBits

Figure 9
A Couple of Pool Sharks, Before and After Deltas Calculated

Large 1-bit GWorld

1-bit GWorld and (2) using a dithered CopyBits to shrink the text to the target size in
a 4-bit gray-scale GWorld.

While this technique produces very nice results, as shown in Figure 10, it’s somewhat
slow. One of the easiest ways to speed the routine up is to replace the dithered
CopyBits with a custom routine that shrinks a 1-bit GWorld into a four times smaller
4-bit GWorld. Scale1BitTo4Bit is the routine we need.

Scale1BitTo4Bit(GWorldPtr src, GWorldPtr dst)
{
PixMapHandle srcPixMap, dstPixMap;
short srcRowBytes, dstRowBytes;
long *srcBaseAddr, *srcAddr1, *srcAddr2, *srcAddr3, *srcAddr4;
long *dstBaseAddr, *dstAddr;
long thirtyTwoPixels1, thirtyTwoPixels2, thirtyTwoPixels3,

thirtyTwoPixels4;
char mmuMode;
short row, column;
short TranslationTable[256];
unsigned short RemapTable[0x211]; /* See later comment on RemapTable. */
short dstTenBits;
unsigned char dstChar;
unsigned long dstLong;
short width, height;
short index, index1;

for (index = 0; index < 256; index++)
{

/* The translation table takes an index and counts the number of
bits set. TranslationTable format:

Low 5 bits contain number of bits set in low nibble of index.
Next 5 bits contain number of bits set in high nibble.
Top 6 bits always zero. */

TranslationTable[index] = ((index & 1) != 0) + ((index & 2) != 0) +
((index & 4) != 0) + ((index & 8) != 0) +
0x20 * ((index & 0x10) != 0) +
0x20 * ((index & 0x20) != 0) +
0x20 * ((index & 0x40) != 0) +
0x20 * ((index & 0x80) != 0);

}

/* The RemapTable converts a 10-bit number into an 8-bit value.
The 10-bit number is a composite of two 5-bit numbers that
can have values from 0-16.

DRAWING IN GWORLDS FOR SPEED AND VERSATILITY May 1992

83

The result for each 5-bit input is:

0-7 -> 0-7
8 -> 7
9-$10 -> 8-$F */

for (index = 0; index <= 0x10; index++)
{

for (index1 = 0; index1 <= 0x10; index1++)
RemapTable[(index << 5) + index1] = (char) ((index - index/8 +

index/16) << 4) + (index1 - index1/8 + index1/16);
}

srcPixMap = GetGWorldPixMap(src);
dstPixMap = GetGWorldPixMap(dst);
/* Lock the pixMaps. */
if (LockPixels(srcPixMap) && LockPixels(dstPixMap))
{

/* Get the address of the pixMap. */
srcBaseAddr = (long *) GetPixBaseAddr(srcPixMap);
/* Get the row increment. */
srcRowBytes = (**srcPixMap).rowBytes & 0x7fff;
/* Get the address of the pixMap. */
dstBaseAddr = (long *) GetPixBaseAddr(dstPixMap);
/* Get the row increment. */
dstRowBytes = (**dstPixMap).rowBytes & 0x7fff;
width = (**srcPixMap).bounds.right-(**srcPixMap).bounds.left;
height = (**srcPixMap).bounds.bottom-(**srcPixMap).bounds.top;
mmuMode = true32b;
SwapMMUMode(&mmuMode); /* Set the MMU to 32-bit mode. */

for (row = 0; row < (height/4); row++)
{

/* Get addresses of first pixels in four rows of pixMap. */
srcAddr1 = srcBaseAddr;
srcAddr2 = (long *) ((char *) srcAddr1 + srcRowBytes);
srcAddr3 = (long *) ((char *) srcAddr2 + srcRowBytes);
srcAddr4 = (long *) ((char *) srcAddr3 + srcRowBytes);
dstAddr = dstBaseAddr;
for (column = 0; column < ((width+31)>>5); column++)
{

thirtyTwoPixels1 = *srcAddr1++; /* Get four longs of src. */
thirtyTwoPixels2 = *srcAddr2++;
thirtyTwoPixels3 = *srcAddr3++;
thirtyTwoPixels4 = *srcAddr4++;

d e v e l o p May 1992

84

dstLong = 0;

/* Do eight bits of source. */
dstTenBits = TranslationTable[thirtyTwoPixels1 & 0x000000FF];
dstTenBits += TranslationTable[thirtyTwoPixels2 & 0x000000FF];
dstTenBits += TranslationTable[thirtyTwoPixels3 & 0x000000FF];
dstTenBits += TranslationTable[thirtyTwoPixels4 & 0x000000FF];
dstChar = RemapTable[dstTenBits];
dstLong = dstChar;

/* Do second eight bits of source. */
thirtyTwoPixels1 >>= 8; /* Move to second byte. */
thirtyTwoPixels2 >>= 8;
thirtyTwoPixels3 >>= 8;
thirtyTwoPixels4 >>= 8;

dstTenBits = TranslationTable[thirtyTwoPixels1 & 0x000000FF];
dstTenBits += TranslationTable[thirtyTwoPixels2 & 0x000000FF];
dstTenBits += TranslationTable[thirtyTwoPixels3 & 0x000000FF];
dstTenBits += TranslationTable[thirtyTwoPixels4 & 0x000000FF];
dstChar = RemapTable[dstTenBits];
dstLong += (dstChar << 8); /* No need to cast since C

makes char into int. */

/* Do third eight bits of source. */
thirtyTwoPixels1 >>= 8; /* Move to third byte. */
thirtyTwoPixels2 >>= 8;
thirtyTwoPixels3 >>= 8;
thirtyTwoPixels4 >>= 8;

dstTenBits = TranslationTable[thirtyTwoPixels1 & 0x000000FF];
dstTenBits += TranslationTable[thirtyTwoPixels2 & 0x000000FF];
dstTenBits += TranslationTable[thirtyTwoPixels3 & 0x000000FF];
dstTenBits += TranslationTable[thirtyTwoPixels4 & 0x000000FF];
dstChar = RemapTable[dstTenBits];
dstLong += (long) ((long)dstChar << 16);

/* Do fourth eight bits of source. */
thirtyTwoPixels1 >>= 8; /* Move to fourth byte. */
thirtyTwoPixels2 >>= 8;
thirtyTwoPixels3 >>= 8;
thirtyTwoPixels4 >>= 8;

dstTenBits = TranslationTable[thirtyTwoPixels1 & 0x000000FF];
dstTenBits += TranslationTable[thirtyTwoPixels2 & 0x000000FF];

DRAWING IN GWORLDS FOR SPEED AND VERSATILITY May 1992

85

dstTenBits += TranslationTable[thirtyTwoPixels3 & 0x000000FF];
dstTenBits += TranslationTable[thirtyTwoPixels4 & 0x000000FF];
dstChar = RemapTable[dstTenBits];
dstLong += (long) ((long)dstChar << 24);

*dstAddr++ = dstLong;
}
srcBaseAddr = (long *) ((char *) srcBaseAddr + 4 *

srcRowBytes); /* Next four rows. */
dstBaseAddr = (long *) ((char *) dstBaseAddr +

dstRowBytes); /* Next row. */
}
SwapMMUMode(&mmuMode); /* Restore the previous MMU mode. */
UnlockPixels(srcPixMap);
UnlockPixels(dstPixMap);

}
}

Notice that the routine assumes the 4-bit destination pixMap is already allocated and
has a linear gray-scale color table. Second, observe the use of a remapping table. This
is necessary since each 1-bit x 4 x 4 patch in the source maps to a single 4-bit pixel in
the destination. A 4 x 4 patch can have any value between 0 and 16, a total of 17
possibilities. Since a 4-bit pixel can hold only 16 different values, the code maps both
values 7 and 8 in the source to a value of 7 in the destination via the remapping table.

A CUSTOM ROUTINE TO FILL RECTANGLES
Have you ever seen on TV the special effect of blocking out someone’s face to
preserve anonymity? We can create this effect ourselves with a custom drawing
routine that simply undersamples the source image. While our custom drawing
routine turns the whole image into blocks, it’s easy for an application to block out just
part of an image.

Our BlastRect routine simply fills a rectangle at a given x, y coordinate with the
specified color in the prescribed GWorld. Note that this routine is a simple extension
of the GWSet32PixelC routine we looked at earlier. Also note that we must make sure
we don’t fill beyond the right edge or the bottom of the pixMap.

void BlastRect(long value, Rect *rect, short x, short y, GWorldPtr dst)
{
PixMapHandle dstPixMap;
short dstRowBytes;
long dstBaseAddr, dstAddr;
char mmuMode;
short row, column;
short width, height;

d e v e l o p May 1992

86

dstPixMap = GetGWorldPixMap(dst);

/* Get the address of the pixMap. */
dstBaseAddr = (long) GetPixBaseAddr(dstPixMap);
/* Get the row increment. */
dstRowBytes = (**dstPixMap).rowBytes & 0x7fff;

if ((x + rect->right) < (**dstPixMap).bounds.right)
width = rect->right - rect->left;

else
width = (**dstPixMap).bounds.right - (x + rect->left);

if ((y + rect->bottom) < (**dstPixMap).bounds.bottom)
height = rect->bottom - rect->top;

else
height = (**dstPixMap).bounds.bottom - (y + rect->top);

/* Make x and y bounds relative. */
x -= (**dstPixMap).bounds.left;
y -= (**dstPixMap).bounds.top;

dstBaseAddr = dstBaseAddr + (long) y*dstRowBytes + (x << 2);
mmuMode = true32b;
SwapMMUMode(&mmuMode); /* Set the MMU to 32-bit mode. */
for (row = 0; row < height; row++)
{

dstAddr = dstBaseAddr;
for (column = 0; column < width; column++)
{

*(long *) dstAddr = value;
dstAddr += 4;

}
/* Go to the next row. */
dstBaseAddr = (long) ((char *) dstBaseAddr + dstRowBytes);

}
SwapMMUMode(&mmuMode); /* Restore the previous MMU mode. */

}

Our UnderSampleGWorld routine, given a GWorld and a rectangle, undersamples
the GWorld’s pixMap at the resolution of the supplied rectangle. The performance of
this routine isn’t too bad for large rectangle sizes since most of the time is then spent
in the inner loop of the BlastRect routine. When the image is only slightly
undersampled, most of the time is spent doing overhead: recalculating the address
where the fill starts, calling traps such as GetPixBaseAddr and SwapMMUMode, and

DRAWING IN GWORLDS FOR SPEED AND VERSATILITY May 1992

87

calling a subroutine. The UnderSampleGWorld routine was used to hide the identity
of the two people shown in Figure 11.

void UnderSampleGWorld(Rect *rect, GWorldPtr dst)
{
short x, y;
PixMapHandle dstPixMap;
long value;

dstPixMap = GetGWorldPixMap(dst);
for (y = (**dstPixMap).bounds.top; y < (**dstPixMap).bounds.bottom;

y += rect->bottom)
{

for (x = (**dstPixMap).bounds.left; x < (**dstPixMap).bounds.right;
x += rect->right)

{
value = GWGet32PixelAsm(dst, x, y);
BlastRect(value, rect, x, y, dst);

}
}

}

d e v e l o p May 1992

88

Before After

Figure 11
A Couple of Blockheads, Before and After UnderSampleGWorld

Again, it’s left to you as an exercise to speed up this routine. With a little work, you
should be able to munge an image in real time on a Macintosh II.

TO WRAP IT ALL UP
Now you know how to optimize code and manipulate images in various ways in
GWorlds. You’ve learned how to design custom drawing routines to maximize speed
rather than flexibility by cutting out unnecessary overhead. You’ve seen basic routines
to do subpixel sampling, transform images by applying a mapping matrix to a source
GWorld, calculate deltas, scale images for mask generation, and fill rectangles in
close-to-real time. Now go exercise your new knowledge by optimizing those
routines and have fun with some images of your own.

DRAWING IN GWORLDS FOR SPEED AND VERSATILITY May 1992

89
THANKS TO OUR TECHNICAL REVIEWERS
Keith McGreggor, Jean-Charles Mourey, Forrest
Tanaka, Ken Turkowski•

FURTHER READING
• Computer Graphics: Principles and Practice, 2nd ed., by J. D. Foley, A. Van Dam,

S. K. Feiner, and J. F. Hughes (Addison-Wesley, 1990). The standard text on
computer graphics, offering a solid discussion of the basics.

• “Filters for Common Resampling Tasks” by Ken Turkowski, in Graphics Gems,
Vol. 1 (pages 147–165), edited by A. S. Glassner (Academic Press, 1990).
Describes filters that offer quality beyond that afforded by box and tent filters.

• Digital Image Warping by George Wolberg (IEEE Computer Society Press, 1990).
All about different image processing effects, especially those used in movies. The
discussion is very technical, very mathematical, really good on theory, and full of
great ideas.

• The Elements of Seven Card Stud by Konstantin Othmer (Strategy One Publishing,
1989). Advanced strategy for seven card stud and psychology useful for all forms
of poker. Contains numerous charts, tables, and graphs produced on the
Macintosh. The strategies were developed through many hours of play as well as
computer analysis of specific hands and situations. Available from Strategy One
Publishing, P.O. Box 161544, Cupertino, CA 95016-1544, for $24.95 plus $2
shipping and 7% sales tax for California residents.

When you want to display an image that contains more color
information than the display device is capable of rendering, how do you
pick the best colors to use? The Picture Utilities Package, new in System
7, provides two methods, which we describe here. You also have the
option of developing your own color selection algorithm. This article and
the accompanying code on the Developer CD Series disc will get you
started.

It’s tricky to display an image when the number of colors used in the source exceeds
the number of colors available on the device. On an indexed device (256 or fewer
colors), an application can choose, via the Palette Manager, which colors to use. But
how will it know which colors are the best ones to choose, given a particular image?

To avoid this issue altogether, your application can simply draw the image and let
QuickDraw use its default color palettes to make the choice. Because these palettes
contain a well-dispersed set of colors, most images look pretty good. However, in the
case of an image that uses an unbalanced set of colors, such as an underwater scene
with many subtle shades of blue, relying on the default palette will not produce a
good-looking result. In this case, you must tackle the issue of how to choose the
optimal palette. That’s when the new Picture Utilities Package can help.

Picture Utilities provides two methods—the popular method and the median
method—for determining the best colors. This article describes these two methods.
In addition, it describes a third method—the octree method—which, in addition to
being useful in itself, makes a convenient starting point for you to develop your own
algorithm for choosing the optimal color palette.

DECIDING WHICH METHOD TO USE
It would be nice if one method of selecting colors worked best for all types of images.
But the truth is that the methods provided in Picture Utilities work best for some

d e v e l o p May 1992

DAVE (“KNOW”) GOOD admits to never
having graduated from grade school, high
school, or college, though he’s attended all three.
Still, this didn’t keep him from learning to
program the Macintosh, and he’s been employed
by Apple for four years, working on things as
varied as System Utilities 3.1 for the Apple IIc,
TextEdit for the IIGS, and Picture Utilities (and
other graphics-oriented work) for the Macintosh.

Like most graphics programmers, he enjoys
juggling, eating Chinese food, reading science
fiction, and working from midafternoon till 4 or 5
in the morning. As a public service, he runs a
talk-line at 976-DAVE. “If it’s 3 A.M. and you’re
bored, just give me a call (techno-weenies only)!”
On the rare occasions when Dave isn’t at work,
you can find him hiking in the Santa Cruz
Mountains, riding his mountain bike, or skiing.•

90

DAVE GOOD AND
KONSTANTIN OTHMER

IN SEARCH OF

THE OPTIMAL

PALETTE

types of images (such as those whose colors are all clustered in one small portion of
the RGB cube), while QuickDraw’s standard method works best for other types.
Therefore, it’s always important to give the user a choice of which Picture Utilities
color-picking method to use and whether to use one of these at all.

The three methods we discuss here differ in how they approximate the ideal color set.
The popular method bases its choices on a frequency count of colors used in the
image, returning the most frequently used colors. Both the median and octree
methods are algorithms that describe occupancy in a space. In this case, the space is
the color cube with axes of red, green, and blue, and the occupants are the colors in
the image. These algorithms differ in the way they divide up the space in order to
return the correct number of colors. The median algorithm starts with one giant box
covering the entire cube and splits it into successively smaller boxes; the octree
algorithm starts with lots of tiny boxes and joins them into larger ones. Both methods
return the weighted average of each of the boxes as the final set of colors.

The most appropriate method for your particular use depends on factors such as the
type of image you want to display (real world, computer-generated, graphic, and so
on), image content (perhaps the colors of items in the foreground are more important
than the colors of items in the background), or even how the image will be displayed
(halftoned or dithered, for example). For instance, none of these methods take
dithering into account, although since we provide you with the source code, you
could modify the octree method to do so.

The speed of each method also varies, with the popular method being fastest, the
median method slower, and the octree method slowest, since in the latter there are
more calculations involved for each color chosen. Also, the code that we supply for
the octree method is intended to be easy to understand rather than blazingly fast. In
fact, the current code is slower than the popular method by a factor of four, but with
a little work this could probably be improved to be only twice as slow.

Another basic consideration is whether you want to represent the majority of colors
in the image or the range of colors present. For example, if you could select only two
colors to represent an image that contains several different shades of red and one blue
dot, you would have to decide whether to pick two reds in an attempt to represent the
majority of colors in the image, or one red and one blue to represent the range of
colors the image contains. The popular method would do the former, while the
median method would do the latter.

In general, the best method to use for an image that has a fairly well dispersed set of
colors is QuickDraw’s default palette. The popular method is useful when the source
image contains only a few more colors than are available on the display device. For
example, if you want to display a 32-bit image that uses only 200 distinct colors on an
8-bit device, the popular method is the best choice for speed and accuracy. While this
case is trivial, using the popular method does guarantee that the needed colors will be

IN SEARCH OF THE OPTIMAL PALETTE May 1992

91
KONSTANTIN OTHMER has been known to
frequent Garden City (a local poker club) and is
said to be planning an early retirement from
Apple.•

The RGB cube is pictured in color on the first
page of Inside Macintosh Volume V and is
described on page 43 of that volume.•

made available, a claim that can’t be made for the default palette. The median and
octree methods generally give the best results for images where small patches of a
distinctly different color must be preserved at the cost of blending together large
patches of similar colors.

Experience will give you a better feel for the strengths and weaknesses of each of
these methods. Meanwhile, for purposes of comparison, Figure 1 shows screen
snapshots of a 32-bit image as it originally appeared, using QuickDraw’s default 16-
color palette, using 16 popular colors, using 16 median colors, and using 16 octree
colors. The original image has 77 different colors (to a resolution of five bits per
color component). A test program on the Developer CD Series disc enables you to
experiment with this image (or others) and to take a look at the code used to generate
the various versions.

Notice in the original image that the colors marking the minutes follow a smooth
progression from cyan on the far left to dark blue at the top to magenta on the right
to purple on the bottom and then to dark red just before the cyan. Also notice the
subtle color blending where the translucent minute and second hands intersect the
underlying clock. When the standard 16-color palette is used, the soft colors of the
minute markers change into much brighter, harder colors, and the smooth transitions
are replaced by sudden transitions. The colors of the background and the face of the
clock have changed. Furthermore, the subtle difference in color between the
background and the background of the date (January 24) is lost.

The popular method preserves the colors of the largest color areas: the background,
the clock face, the background of the date, the color of the minute and hour hands,
and the lettering. The colors of the minute markers remain soft, but lose their
shading resolution; for example, the cyan is replaced by a darker blue. Because it
preserves the range of colors, the median method performs somewhat better on the
minute markers than the previous two methods, but the clock face turns to black and
the green hand becomes washed out. Although the image’s appearance may not be
ideal because many of the large areas are wrong, areas of the image that depend on
the color ranges (which in this image just happen to occupy small areas) are
reproduced more accurately. When the octree method is used, the result is similar to
that of the median method, except the green hour hand is completely lost. This is due
to the simple tree reduction algorithm we use; if the tree reduction improvements
that we suggest at the end of the article were implemented, the hour hand most likely
would be preserved, although its shade of green might change (much as happened
with the median method). The octree performed better than the median in
preserving the color of the text and the background of the date.

One conclusion from these images is that there is not a single best color-picking
algorithm, even for a particular picture. For this image, we would be inclined to use
the popular method, since we don’t care too much about the subtle shading effects on
the minute markers. However, an artist might be much more concerned with the

d e v e l o p May 1992

92

IN SEARCH OF THE OPTIMAL PALETTE May 1992

93

Figure 1
An Image Displayed Using Four Different Color-Picking Methods

Original

Default 16-color palette 16 popular colors

16 median colors 16 octree colors

subtle shading effects and actually not care if the face of the clock went to a
completely different but still solid shade. In this case, the artist would probably pick
the median or octree method. This is why applications that provide color
optimization should allow the user to choose between the various available methods.

There is also a “system” method built into the Picture Utilities Package that tries to
select the best general method available. Currently, the popular method is selected if
the number of requested colors is 75% or greater of the total number of distinct
colors in the image (to a resolution of five bits per color component); otherwise the
median method is selected. The operation of this system method is almost certain to
change in the future.

Now that you have some idea of how the available color-picking methods compare,
we turn to details of how the popular, median, and octree methods work.

HOW THE POPULAR METHOD WORKS
The popular method of color selection is the easiest to understand and in general
produces the least satisfactory results. This method chooses colors based on how
frequently they’re used in the image. The operation is performed by creating a
histogram (a frequency count of each color) and then returning the colors that occur
most often (as shown in Figure 2), up to the specified number of colors. If the image
contains more than 256 different colors or if any of the source items are 32-bit
pixMaps, Picture Utilities only maintains color information to a resolution of five bits
per color component. Thus, colors must differ in the highest five bits of any of the
three color components (red, green, and blue) to be considered distinct.

d e v e l o p May 1992

94

RGB color to 5 bits

Fr
eq

ue
nc

y

0–0–0 32–32–32

Most popular colors

Figure 2
Picking Four Colors Using the Popular Method

In Figure 2, the x-axis represents each possible RGB color to a resolution of five bits
per component. These colors range from 0-0-0 (0 red, 0 green, 0 blue) to 32-32-32
(32 red, 32 green, 32 blue) in the high five bits of the red-green-blue color
components, for a total of 215 or around 32,000 entries. The y-axis measures the
frequency of each of the colors, up to a maximum of 32,767 occurrences. Thus, this
table contains 215 entries of one word each and occupies 64K of memory.

For custom methods, Picture Utilities can generate this histogram of color usage for
you. If your custom method wants this, its initialization subroutine must return the
value ColorBankIs555 for the color bank parameter. The octree method described
later in this article does not use a histogram. Instead, it uses its own custom color
bank and thus returns ColorBankIsCustom as its color bank parameter.

HOW THE MEDIAN METHOD WORKS
The median method is an iterative algorithm that views the colors in an image as if
they were arranged in a cube with axes representing the red, green, and blue
components. It starts by generating a histogram of the source colors, just as the
popular method does. However, while the popular method is pretty much done after
this, the median method’s real work has only just begun.

The first real step is to determine the smallest RGB cube that will hold all the colors
in the image. After finding the median color along the longest color axis, it then puts
all the colors on one side of that color into one box and the remaining colors into
another box. It continues this measuring and splitting process until the colors have
been assigned to as many boxes as colors requested. Then the weighted average color
of each of the boxes is returned as the color set to use.

Since the algorithm is much easier to visualize in two dimensions, we’ll illustrate how
it works in the red-green plane only. Extending the algorithm to three dimensions is
straightforward. In Figure 3, eight colors are present in the red-green color plane
(the blue component is taken as 0 for all colors). In this simplified example, each
color occurs only once. In the general case, if a color occurs more than once, that
color is weighted accordingly in the final step when the colors in each box are
averaged.

The first division is along the green axis since the difference between the most green
and the least green color is slightly larger than the difference between the most red
and the least red color. This division results in the two boxes shown in step 2 of
Figure 3. The largest difference in colors along one axis is now along the red axis of
the top box. Thus, this box is divided into two along the red axis, leaving us with
three boxes as shown in step 3. This time the largest difference is in the red axis of
the bottom box, so this box is divided along the median, producing the result shown
in step 4.

IN SEARCH OF THE OPTIMAL PALETTE May 1992

95
How direct pixel values are stored in
memory is explained in Chapter 17 of Inside
Macintosh Volume VI.•

We now have four boxes, and since the best four colors were requested in this
example, we’re done. The colors returned are the weighted averages of the colors in
each of the boxes, as shown.

HOW THE OCTREE METHOD WORKS
The octree method, like the median method, is an iterative algorithm that describes
how the colors in an image are arranged in an RGB cube. Like the median method,
the octree method groups the colors in an image together into the same number of
boxes as colors requested and then returns weighted averages from these boxes, but
the way these boxes are constructed differs substantially between the two methods.

d e v e l o p May 1992

96

Red

G
re

en

Red

G
re

en

Red

G
re

en

Red

G
re

en

1 2

43
Indicates weighted average of�
colors in box

Figure 3
Picking Four Colors Using the Median Method

While the popular and median methods process data that’s stored in a histogram, the
octree method does its color accounting via a tree. This means that rather than
truncating colors to 5-5-5 from the get-go, the method maintains the full 8-8-8 color
throughout the process.

An octree is similar to a binary tree, except that instead of having two branches at
each node, it has eight. An octree corresponds to a cube with axes representing the
red, green, and blue components of an image. At each level of the tree, the colors are
placed in the branch of the tree indicated by the corresponding bits of the red, green,
and blue components. For instance, say a color consists of one bit of red, one bit of
blue, and one bit of green. The 0-0-0 (red-green-blue) color will be the first entry in
the node, the 0-0-1 color will be the second entry in the node, and the 1-1-1 color
will be the eighth entry in the node. Astute readers will notice that to determine
which entry a color should be, we simply use the color value itself as a zero-based
index into the node.

Our octree must deal with eight bits of red, green, and blue for each color, but this is
an easy extension of the previous case. To handle multiple bits of color information,
the code extracts the highest bit of each of the red, green, and blue components of
the color and uses this as an index into the level-0 node to find the level-1 node.
Then the next highest bit of each component is extracted and used as an index into
this level-1 node to find the level-2 node. This process continues down to the lowest
bit, which is used as an index into the level-7 node to find the color record (a level-8
leaf).

The actual color selection details of the octree method are much easier to understand
in two dimensions, just as the core of the median method was. In two dimensions
we’re working with a quadtree instead of an octree. A quadtree has four branches at
each node, as illustrated in Figure 4. (Note that below level 1 only one branch per
node is followed to a deeper level, for the sake of simplifying the drawing. In reality,
each node sprouts four branches, each of which in turn sprouts four more, and so on
to the deepest level.) Colors are inserted into the quadtree much as they would be in
an octree, except that the blue component is missing. For instance, the 0-0 (red-
green) color is the first entry in the node, the 0-1 color is the second entry, and the
1-1 color is the fourth entry. Thus, the two-dimensional color value can still be used
as a zero-based index into the node.

We think of this quadtree as corresponding to a coordinate plane formed by two
color axes; each branch then corresponds to a quadrant of the space covered by the
parent node. For instance, if a quadtree is being used to represent the red-green plane
of an RGB cube with each axis ranging from 0 to 8, the four level-1 nodes represent
the four quadrants of this plane defined by (red 0-4, green 0-4), (red 4-8, green 0-4),
(red 0-4, green 4-8), and (red 4-8, green 4-8). The level-2 nodes of the (red 0-4,
green 0-4) quadrant represent the four quarters of this particular quadrant, and so on
down to the deepest level. Of course, in the case of the octree (the structure that our

IN SEARCH OF THE OPTIMAL PALETTE May 1992

97
How an octree works is discussed in more
detail on pages 550–555 of Computer Graphics:
Principles and Practice, 2nd ed., by Foley, Van
Dam, Feiner, and Hughes (Addison-Wesley,
1990).•

algorithm actually uses), the eight branches contained by a node correspond to the
eight subcubes of the space represented by the entire node.

The octree algorithm first adds colors (leaves) to the tree until there is one more
color (leaf) than requested. Then the tree is reduced so that there are no more leaves
than colors requested. The reduction process starts on the deepest level and attempts
to find two or more leaves that have the same parent. If this condition is not met on
the deepest level, the search continues up to the next level until multiple leaves with
the same parent are found. These leaves are then reduced to the parent node. The
process continues until the tree contains no more than the number of colors (leaves)
requested and no more colors remain to be added. The final color for each leaf in the
tree is determined by calculating a weighted average of all the colors reduced to that
leaf.

One major difference that distinguishes our octree implementation from the median
or popular method is the way that colors are recorded. The octree method calculates
the set of best colors (reduces nodes) as the source colors are being added to the tree,
instead of counting and storing all the colors before beginning to pare them down.
This is not an inherent limitation of octrees in general; we simply chose this
implementation to reduce our memory requirements and to make these requirements
independent of the complexity of the image. The disadvantage of this choice is that
the octree method must make decisions on which colors to throw out based on
incomplete information.

d e v e l o p May 1992

98

Level 5

Level 4

Level 3

Level 2

Root – Level 1

node

branch

Figure 4
A Five-Level Quadtree

Another interesting difference is that the octree algorithm can actually return fewer
colors than requested, instead of always returning the exact number. Theoretically,
this can reduce the accuracy of the returned color set, since there are fewer colors to
represent the full range and detail of the picture. However, we have found that most
images do return either the full number of colors requested or only one or two fewer.

For purposes of comparison, we’ll discuss how the octree method picks the best four
colors in a color plane when given the same eight colors as used in the example for
the median method. The process is illustrated in Figure 5. Note that the quadtree is
represented there by a 16 x 16 grid; each position in the grid corresponds to one of
the leaves on the fifth level of the quadtree shown in Figure 4.

In the grid, each color initially occupies its own tiny box. The color selection process
translates into collecting the grid squares into bigger and bigger boxes until more
than one color falls into a single box. We start with five colors in step 1, one more
color than requested. The reduction from step 1 to step 2 in the figure involves

IN SEARCH OF THE OPTIMAL PALETTE May 1992

99

Red

G
re

en

Red

G
re

en

1 2

Indicates weighted average of�
colors in box

Red

G
re

en

3

Red

G
re

en

Red

G
re

en

4 5
Red

G
re

en

6

Figure 5
Picking Four Colors Using the Octree Method

reducing a node at the fourth level of the quadtree, creating a 4 x 4 box containing
two colors. Had a fifth-level node containing two colors been found, the new box
would be 2 x 2 rather than 4 x 4.

In step 3, another color is added and since it doesn’t fall into an existing subdivision,
the tree is reduced again. This time an 8 x 8 box, as shown in step 4, is formed. Step 5
adds another color, but since it falls in the 8 x 8 box, no further reduction is necessary.
Step 6 adds the eighth and last color. It doesn’t fall into an existing node, so a
reduction is done and another 8 x 8 box is formed. As there are no more colors in the
image, the weighted average of the colors in each of the boxes is returned and we’re
done.

Extending this algorithm to work in three dimensions rather than two is easy. The
details of the implementation are in the source code, which can be found on the
Developer CD Series disc. Once you’ve studied this source code you may want to write
your own completely different color selection algorithm; Chapter 18 of Inside
Macintosh Volume VI fully describes how to do this.

ADDITIONAL APPLICATION CODE
In addition to the code for the octree algorithm itself, we’ve supplied code on the CD
for a crude test application that demonstrates how to apply both the popular and
median methods as well as the octree method to a picture contained in a PICT file.
The test application has a very simple user interface that allows you to open any
PICT file and see what it looks like using the set of colors returned by the popular,
median, and octree algorithms, as well as the standard system color table.

The source code for this application shows how to associate the color information
that Picture Utilities returns with windows, and it also contains several useful
routines for managing pictures stored on disk. These routines allow you to treat “disk
pictures” as objects that can easily be passed around to various routines, drawn,
profiled (using Picture Utilities), and even cached in memory if there’s space to do so.
Take a look at the actual source for the details on all this.

Our test application does not attempt to demonstrate how to use Picture Utilities to
profile multiple pictures and pixMaps; see Inside Macintosh Volume VI for a complete
explanation of how to do this.

ROOM FOR IMPROVEMENT
From the algorithms, it seems as though the median and octree methods should
produce an excellent set of colors with which to display any image. Unfortunately,
both algorithms fall somewhat short of this goal, especially with images that have a
fairly well dispersed set of colors.

d e v e l o p May 1992

100

We can think of several areas where both could be improved. First, both algorithms
weigh the red, green, and blue axes equally. As it turns out, the eye does the best job
of perceiving green and a relatively poorer job of perceiving blue. Perhaps different
weights could be assigned to the axes to compensate for this quirk of human
perception. An advanced color selection method could take into account the fact that
even within one color axis, the eye does not perceive the color (intensity and
saturation) uniformly, and could compensate for variation in the gamma function of
each monitor as well.

Second, in both methods the colors in the final boxes are averaged. While this
produces the color that most accurately represents each box, it necessarily leaves
some colors unreachable, even by dithering. A better choice of color might be the
corner of the final box that’s farthest away from the center of the RGB cube. This
would assure that all the colors in the image would be within the cube of colors
defined by the palette used to represent the image.

The median method isn’t a realistic candidate for improvement since it’s built into the
Picture Utilities Package. On the other hand, we’re providing you with the full
source code for the octree method, so you’re free to modify it. Since that’s the case,
we’ll suggest a few other things that could be improved.

The most important part of the octree method is determining which nodes in the tree
to reduce when the maximum number of colors has been reached. The algorithm we
use in our sample code is much too simple; we simply scan through all the nodes at
the deepest level looking for one that has two or more colors hanging off it. Then if
we don’t find any such nodes at the deepest level, we move up a level and look for
ones that have two or more nodes hanging off them.

One better approach would be to reduce nodes that have the most discrete colors
hanging off them; this would tend to blend similar shades into a single color, while
preserving “fringe” colors. Another approach would be to reduce the nodes that have
the most occurrences of colors hanging off them so that small splashes of color would
not lose their distinctness.

Of course, if it’s important to preserve subtle shades in the main areas of the picture
and it’s OK for fringe colors to be drastically modified, the previously mentioned
improvements could be reversed to always reduce the nodes with the fewest discrete
colors or the nodes with the fewest occurrences. A good general algorithm would
probably try to incorporate both of these effects by having an occurrence threshold;
colors that occur fewer than a certain number of times would be considered noise and
either thrown out completely or reduced before more significant colors. In the case
of colors that occur more than the threshold number of times, the algorithm could
look for nodes with the most colors, since if a patch of fringe color is large enough to
be noticeable, it should probably be preserved.

IN SEARCH OF THE OPTIMAL PALETTE May 1992

101

To properly implement these improvements, the octree method would probably need
to be modified to collect all the colors before reducing any of them, to ensure
accurate occurrence counts. Also, as we’ve mentioned before, currently our method
can return fewer colors than were actually requested. If the code were modified to
collect all the colors first, it would be relatively easy to ensure that the octree is never
reduced below the requested number of colors. While overall this effect would
probably be small compared to the benefit of a smarter reduction algorithm, it would
substantially improve the quality of the rare images that degenerate under the current
implementation and return many fewer colors than requested.

Other general improvements that could be made to the octree sample provided on
the CD are dynamic memory management and overflow checking. We presently
allocate all the memory that we’ll need for the maximum size octree up front. While
this is easy to do, it wastes space and prevents the code from being robust enough to
support storing all the colors in the image before reducing any nodes. We also don’t
check for overflows when accumulating the average color represented by the node.
Enhancements like this are very important if a piece of software is going to be more
than just a sample. For example, both the built-in Picture Utilities methods do check
for overflows and do some dynamic memory allocation.

HACK ON
This article has discussed techniques for picking the best colors for displaying an
image that contains more color information than the display device is capable of
rendering. While there is no one best algorithm for selecting colors in every case,
experience will show you which of the three simple methods we’ve discussed is most
appropriate in each case. With your new understanding of the popular and median
methods offered by the Picture Utilities Package and with the source code sample for
the octree method, you should find it easy to generate your own custom color
selection algorithm.

d e v e l o p May 1992

THANKS TO OUR TECHNICAL REVIEWERS
Sean Callahan, Edgar Lee, Greg Marriot, Mike
Reed, Steve Swen•

102

THE VETERAN NEOPHYTE May 1992

103

Digital image processing has come a very long way.
Remember when MacPaint® was a revolutionary
concept? Now we’ve got a plethora of sophisticated
graphics programs available on the Macintosh for
regular folks: 32-bit painting programs, image-
processing programs, CAD programs, photo-realistic
rendering programs, solid modeling programs,
animation programs—you name it. The power to be
your best, or the power to run off into the weeds? I
guess it depends on who’s at the keyboard. One thing is
sure: art will never be the same.

I’ve been messing around lately with digital filtering of
scanned images: taking an existing image and applying
some sort of mathematical transformation to it. The
results are sometimes funny, sometimes beautiful, often
ugly, but always fun.

One of the programs I’ve been spending time with lets
you interactively type in mathematical expressions and
apply them to an image. This application, called Pico,
is a Macintosh implementation of an image-processing
language developed by Gerard J. Holzmann at AT&T
Bell Laboratories, and described in his book Beyond
Photography: The Digital Darkroom. (The Macintosh
version I’ve been using was written by John W.
Peterson here at Apple, and I’ve included it on the
Developer CD Series disc so that you can play with it,
too.) If you’re the least bit interested in image
processing, you should read Holzmann’s slim, friendly

book. It describes the language in detail and gives lots
of examples of its use. The book is full of fascinating
photographs that have been tweaked and transformed
using the language, ranging from the hilarious (in
particular, see the Einstein caricature on page 35), to
the sublimely beautiful (make up your own mind). The
overall feel is one of whimsy and fun, with a strong
dose of the joy of discovery. The book also includes a
very instructive and in-depth discussion of the software
that implements the language (a lexical analyzer, a
recursive-descent parser, and an interpreter) and source
code in C.

Holzmann’s language allows you to invent, implement,
and try out digital filters on the fly. It uses a C-like
syntax and is decidedly mathematical, but that’s where a
lot of the fun comes in: seeing a photographic image
quickly transformed by a simple mathematical formula
is really fascinating. The language makes it easy to mess
around and discover unusual things about math and
filters: you can just type in an expression, hit the Enter
key, and see the results immediately. The program
operates only on 8-bit gray-scale images that are 256 by
256 pixels, but the power of the language far outshines
this limitation. Try it, you’ll like it.

There’s another kind of digital filtering that I first
learned about a little over a year ago in an article by
Paul Haeberli at Silicon Graphics: Paint By Numbers:
Abstract Image Representations, in the SIGGRAPH ’90
Conference Proceedings. This is an interactive kind of
filtering, which makes it a lot of fun. The concept is
simple: Start with a given image, any image (call it the
source). Create a new, blank one (the destination) that’s
the same size. Then you “paint” on the destination
with the mouse, and at each point you touch, the color
of the source image is determined at that same location.
A “brush stroke” is then drawn in the destination at
that position, with the source’s color. If the brush just
drew single pixels, you would be copying the source
image exactly, which would be a pretty tedious way to
copy it. Ah, but the brush can do anything it wants to,
and that’s where the fun begins. If the brush draws, say,
a circle a few pixels in diameter, you get a sort of “blot”
effect, with the blots overlapping each other

DAVE JOHNSON would like to share with you a quote from
The Three-Pound Universe by Judith Hooper and Dick Teresi, a
wonderful book about the human brain: “Research at Yale
University’s Center for Behavioral Medicine turned up the
surprising fact that regular ‘reading therapy’—that is, reading a
book for half an hour a day—is neurophysiologically equivalent to
the practice of TM. (Whether this means the Maharishi’s mantras
are comparable to Heidi or merely reflects the crudeness of our

measuring devices, we’ll let you decide.)” This finding vindicates
Dave’s habits in a way no heartfelt argument ever could.•

THE VETERAN
NEOPHYTE

YEAH, BUT IS IT ART?

DAVE JOHNSON

haphazardly. Or you could draw a line in some random
direction from the source pixel’s location, or add some
noise to the color so that it varies a little from the
source color, or draw a clump of dots centered at the
source pixel, or draw a silhouette of a wiener dog in the
appropriate color, or . . . the possibilities are endless. In
a way you’re tracing the source, but the brush you use
to trace with isn’t exact, and the results can be striking.

The finished images tend to look very “painterly” and
are often evocative of impressionist paintings like those
of Monet or Renoir, or of the pointillist “divisionist”
technique of Seurat. (Can you tell I’ve been spending
some time with my handy-dandy Random House
Encyclopedia? Thanks, Mom.) This is a refreshing move
away from the trend toward photo-realistic rendering
that you see so much of in computer graphics.

I wrote a Macintosh application that implements a
simplified version of what Haeberli did, so I could play
around with it. (The application and all the source code
are on this month’s CD, for you to mess around with. If
you find any problems, please let me know.) The most
fun part turned out to be writing the brush routines,
and I was curious to see just how hard it is to
incorporate plug-ins into an application, so I made up a
simple plug-in interface for the brushes (plug-ins are
code resources separate from the application that are
loaded and run as needed). Surprisingly, it turned out
to be pretty trivial to implement plug-ins. I figured I
was going to be forced to descend to the level of A5
worlds and code resource headers, but with the
exception of one subtle gotcha it was easy. Basically you
just get a handle to the code resource with
GetResource, lock it, dereference it, and call it. I had to
do some ugly casting to convince the C compiler to let
me make the call, but other than that there were almost
no problems.

One thing turned up that I couldn’t figure out, and I
was forced to seek help. I was writing a filter routine
(the application supports both brushes and filters as
plug-ins) that was a modified version of the
RedGreenInvert routine from the article “Drawing in
GWorlds for Speed and Versatility” in this issue. I first

tried it linked into my application, so I could use the
source debugger on it. Once it was working, I
converted it to a plug-in and BOOM, it crashed with a
bus error. Some investigative work pointed to
SwapMMUMode as the culprit, but I couldn’t figure
out why. (Trumpet fanfare) Bo3b Johnson to the rescue
once again! It turns out that since I was calling the
plug-in in 24-bit mode, when it came time to call
SwapMMUMode the PC contained an address that had
some of its high bits set (in this case the “locked” bit
since I had locked the handle and the “resource” bit
since it was a handle to a code resource). This is a bad
thing. The solution, of course, is to call StripAddress
on the pointer to the plug-in before calling it. That
way the address in the PC is clean and
SwapMMUMode is happy.

There are several commercially available applications
that do Haeberli-like image manipulation. Monet, by
Delta Tao Software, is a much more complete and
sophisticated implementation of Haeberli’s concepts,
incorporating some of the cooler features like opacity
control, getting the direction of the brush strokes from
the movement of the mouse, and so on. (You gotta love
Delta Tao Software: when a customer asks for an IBM
version of one of their products, they gleefully answer
“Buy a Macintosh.”) There’s also Painter, a truly
unique and remarkable paint program from Fractal
Design that simulates very naturally the media artists
use—chalk, pencil, charcoal, and so on. It has a
“cloning” function that’s similar to Haeberli’s in
concept: you can manually or automatically draw over
the “source” image with any of the brushes. Aldus
Gallery Effects by Silicon Beach Software is a product
that basically consists of canned filters that can be
applied to images to transform them in interesting
ways, many of which are similar to the effects you get
with Haeberli’s technique. And then of course there’s
Adobe Photoshop, the brilliant, precocious teenager of
image-processing programs.

Photoshop seems to have become the de facto industry
standard image-processing program. Its versatility is, so
far, unmatched by any other program I’ve seen. And its
plug-in interface has also become something of a

d e v e l o p May 1992

104

THE VETERAN NEOPHYTE May 1992

105

standard: many Macintosh graphics programs (Painter,
for one) now support Photoshop plug-ins, and I know
of at least one software company that does nothing but
write Photoshop plug-ins. I think plug-ins are a very
cool thing: they allow extension and customization of
an application on the fly, bringing us a tiny step closer
to the dream of “erector set” applications that can be
taken apart, rearranged, and rebuilt by users to suit
their needs. If you want to write some Photoshop plug-
ins, you can find the documentation for the plug-in
interface (along with examples in MPW C, MPW
Pascal, and THINK C) on the CD.

Here’s the big, deep question about these digitally
transformed images: Are They Art? An image produced
by any of these applications can indeed be “arty”; of
that there is no doubt. But is it really art? Many graphic
artists would immediately answer with a resounding
“NO!” They’d say that it just looks like art, that it
imitates art (kinda like life), but isn’t really art because
it’s automatic. But many painters in the surrealist and
abstract impressionist movements took great interest in
what they termed “automatic” painting, painting
without the intervention of conscious control. Jackson
Pollock was a notable practitioner of this technique. Is
the creation of a painting by automatic means any
different, in principle, from what these computer-based
tools do?

“Wait a minute!” these artists might cry, “Pollock
began with a blank canvas! What he did was truly
original! You (smug smirk) are just taking an existing
image and transforming it with a computer. That’s not
art, that’s just (expression of extreme distaste) filtering.”

“Wipe that smug smirk off your face,” I might smirk
smugly, “what about the dadaists? They claimed that
art was anything that anyone decided to call art, and I’m
calling these images art.” (Fun dadaist tales: Marcel
Duchamp, a dadaist in New York, bought a urinal,
signed it “R. Mutt,” and called it art. He claimed that
the signature alone made any manufactured item into a

work of art. These “readymades,” as he called them,
sold quite well. And then there’s Kurt Schwitters, a
Hanover dadaist, who made collages from rubbish.
Now the dadaist movement, admittedly, was intended
to upset the status quo, rip apart the definition of art,
and shock people out of their bourgeois sensibilities,
but their influence is still strongly felt in modern art,
and has forever muddied the definition of what art is.
For that I heartily thank them.)

There’s another eminently pragmatic definition of art:
it’s art if someone is willing to buy it. This one is
distasteful in its materialistic slant, but I must admit
that it’s a useful one, at least to people who make a
living making art. Then there’s the Marshall McLuhan
stance that “art is anything you can get away with.” I
personally love this one for its nebulousness, and I’m
willing to leave it at that.

Whatever definition we pick, we still can’t conclusively
say whether these computer-transformed images are
art. Art is just too slippery a thing to pin down, like
trying to put a cloud in a chair. I think art is primarily a
dialog between the creator and the experiencer: if
something is communicated, I’ll call it art. But in the
final analysis, does it really matter? These tools are just
another kind of computer fun, and everyone, artist or
not, can play.

Dave welcomes feedback on his musings. He can be reached
at JOHNSON.DK on AppleLink, dkj@apple.com on the Internet, or
75300,715 on CompuServe.•

RECOMMENDED READING
• Beyond Photography: The Digital Darkroom by

Gerard J. Holzmann (Prentice-Hall, 1988).

• Paint By Numbers: Abstract Image
Representations by Paul Haeberli (in the
SIGGRAPH ’90 Conference Proceedings).

• Elbert’s Bad Word by Audrey Wood (Harcourt
Brace Jovanovich, 1988).

Q Our application uses the movie poster as a still frame in a cell, similar to using a PICT.
If a user sizes the cell width so that it’s narrower than the poster, even though we clip
the drawing to the cell size, QuickTime posters draw their full width, writing over
whatever is in the way. Pictures clip through DrawPicture; why doesn’t
ShowMoviePoster stay within the clipping region?

A ShowMoviePoster, as well as the movie and preview showing calls, uses the
movie clipping characteristics rather than the destination port’s clipping region.
You must set the movie’s clipping region to obtain the results you want. An
easier way to do this is to get the picture for the poster by calling
GetMoviePosterPict, and then simply use DrawPicture to display the poster.
Because this is just a picture, the clipping region of the port is honored. This
way you don’t need different code for movies and pictures.

Q Our QuickTime application gets a Sound Manager error -201 after playing movies in
succession, apparently because sound channels used in the previous movies have not been
reclaimed. How does QuickTime decide to deallocate sound channels? It doesn’t seem to
happen in my “while (!IsMovieDone(theMovie) && !Button())” play loop.

A Sound channels are released by active movies when they notice that some other
movie needs them. This is currently done only at MoviesTask time. Before
entering your loop to play a single movie, you can do one or both of the
following:

• Preroll the movie you’re about to play and check the error. If preroll returns
-201, call MoviesTask(0,0) to give the other active movies a chance to give
up their sound channels. A subsequent preroll of theMovie should return
noErr.

• Call SetMovieActive(otherMovies, FALSE). Deactivate the movies that you
aren’t playing to force them to give up their resources.

Q When I select all frames in QuickTime and then do an MCCut or MCClear, the
standard controller gets larger and redraws itself at the top of the movie. Is this a
situation I should be prepared to handle or a bug? Does the controller behave strangely
when the selectionTime of a movie is -1 or when the duration of the movie is 0?

A The behavior you’re observing is to be expected if the controller is attached to
the movie. In this case, the controller goes to wherever the bottom left corner
of the movie box takes it. If the movie loses all its “visible” parts, the movie
controller will jump to the top of the window. The only way to get around this
is to detach the controller when the movie box is empty; this is also something
to keep in mind for the cases when the movie contains only sound, since pure
sound movies have no dimensions. You can find sample code showing how to do

d e v e l o p May 1992

Kudos to our readers who care enough to
ask us terrific and well thought-out questions. The
answers are supplied by our teams of technical
gurus; our thanks to all. Special thanks to Pete
(“Luke”) Alexander, Tim Dierks, Steve Falkenburg,
Bill Guschwan, C. K. Haun, Dave Hersey, Dennis
Hescox, Rich Kubota, Edgar Lee, Jim Luther,
Joseph Maurer, Kevin Mellander, Jim Mensch,
Guillermo Ortiz, Craig Prouse, Dave Radcliffe,

Greg Robbins, Kent Sandvik, Gordon Sheridan,
Bryan (“Stearno”) Stearns, Brigham Stevens,
Sriram Subramaniam, Forrest Tanaka, John
Wang, and Scott (“Zz”) Zimmerman for the
material in this Q & A column. Thanks also to
developer Bruce Ballard for his graphics
sample.•

106

MACINTOSH

Q & A

this on the Developer CD Series disc, in the SimpleInMovies example that
accompanies the QuickTime article in develop Issue 7.

Q Stepping through QuickTime movie video frames in the order they appear in the movie
is simple using GetMovieNextInterestingTime, except for getting the first frame. If I
set the time to 0 and rate to 1, I get the second frame, not the first. In addition, the
video may start later than at 0. How do you suggest finding this first frame of video?

A To get the first frame under the conditions you describe, you have to pass the
flag nextTimeEdgeOK = $2000 to GetMovieNextInterestingTime. What this
flag does is make the call return the current interesting time instead of the next,
if the current time is an interesting time. You need to do this because there’s no
way to go negative and then ask for the next interesting time.

Q I save PICTs to my document’s data fork by writing the contents of the PicHandle. To
save movies, do I convert the movie to a handle, and then save that as I would with
PICTs? I just want the file references, not the data itself.

A To save movies that are suitable for storage in a file, use PutMovieIntoHandle.
The result of this call can be saved in the data fork of your files, and then you
can call NewMovieFromHandle to reconstruct the movie for playback or
editing.

You should also read the documentation regarding the Movie Toolbox
FlattenMovie procedure, which creates a file that contains the 'moov' resource
and the data all in the data fork. The advantage here is that the movie file you
create using FlattenMovie can be read by any other QuickTime-capable
application.

Q How can I identify the sender of an Apple event?

A If your application is just sending a reply, it should not be creating an Apple
event or calling AESend. Instead, the Apple event handler should stuff the
response information into the reply event, as shown on page 6-50 of Inside
Macintosh Volume VI. The Apple Event Manager takes care of addressing and
sending the event.

To find the target ID or process serial number of the sender of an Apple event,
use AEGetAttributePtr to extract the address attribute, as follows:

retCode := AEGetAttributePtr(myAppleEvent, keyAddressAttr,
typeWildCard, senderType, @senderBuffer,
sizeof(senderBuffer), senderSize)

MACINTOSH Q & A May 1992

107
Looking for the Apple II Q & A section?
It’s gone. See the Editorial for details.•

The senderBuffer can later be used with AECreateDesc to create an address to
be passed to AESend. The buffer should be at least as large as data type
TargetID. See Inside Macintosh Volume VI, page 5-22, for a description of
TargetID.

Q When I resize my real-time animation window in System 6, I call UpdateGWorld with
the new size, and after that any drawing into the GWorld has no effect. This same code
works perfectly in System 7. What could cause this?

A You probably can’t draw anything into your GWorld after using UpdateGWorld
to resize it because of the clipping region of your GWorld. In system software
versions before 7.0, UpdateGWorld always resizes the GWorld’s clipping region
proportional to the amount that the GWorld itself is resized. Unfortunately,
NewGWorld initializes the clipping region of the GWorld to the entire
QuickDraw coordinate plane, [T:-32767 L:-32767 B:32767 R:32767]. If
UpdateGWorld resizes any of these coordinates so that they fall outside this
range, the coordinates wrap around to the other end of the signed integer space,
and that makes the clipping region empty. Empty clipping regions stop any
drawing from happening.

The change in System 7 is that UpdateGWorld explicitly checks for the
clipping region [T:-32767 L:-32767 B:32767 R:32767]. If it finds this, it doesn’t
resize the clipping region. Otherwise, UpdateGWorld acts the same way that it
did before System 7.

One of our mottos is, “Never give QuickDraw a chance to do the wrong thing.”
In keeping with that, we always explicitly set the clipping region of a GWorld
whenever we change the size of the GWorld. So after calling NewGWorld, set
its clipping region to be coincident with its portRect. After calling
UpdateGWorld to resize the GWorld, set its clipping region to be coincident
with its new portRect. That way, you’ll always have a known environment and
you won’t have to worry about the change that was made in System 7—and
you’ll be less susceptible to bugs in this area in the future.

Q UpdateGWorld doesn’t seem to respond to the ditherPix flag unless color depth changes.
The return flag after changing my color table is 0x10000, indicating that color
mapping happened but not dithering. Is this a bug?

A Yes, this is a bug. UpdateGWorld ignores dithering if no depth change is made.
It probably won’t be changed in the near future. The workaround is as follows:

1. Create a new pixMap with the new color table.

2. Call CopyBits to transfer your image to the newly created pixMap with
dithering from the original GWorld’s pixMap.

d e v e l o p May 1992

108

3. Update the GWorld with the new color table without using ditherPix.

4. Use CopyBits from the newly created pixMap without dithering back to the
GWorld.

This will give you the same effect as UpdateGWorld with ditherPix.

Q Can I create, open, write, and close a file completely at interrupt time? I need to be
compatible with both System 6 and System 7.

A All these operations (and more) can be done completely at interrupt time. Any
call that can be made asynchronously can be safely made at interrupt time,
provided it’s made asynchronously. Glancing through Inside Macintosh Volume
IV, we can see that this includes just about all of the File Manager, except for
the calls to mount and unmount volumes, which must be made at a time when it
is safe to move or purge memory.

One caveat: Making a call asynchronously here means really making it
asynchronously; making the call and then sitting in a little loop waiting for the
ioResult field to change does not qualify. Either you must use completion
routines to determine when a call has completed, or you must check the
ioResult from time to time, never waiting for it at interrupt time (and in this
case, a deferred task does qualify as being at interrupt time).

Q How can I tell whether a window is a Balloon Help window?

A First, call the Help Manager procedure HMIsBalloon to determine whether a
balloon is being displayed at all. Then call HMGetBalloonWindow to get the
help window’s window pointer, and compare that to the window pointer of the
window you’ve got.

Note that if HMIsBalloon returns TRUE and HMGetBalloonWindow returns
a window pointer of NIL, it means that the balloon “window” that’s displayed
really isn’t a window at all; this will happen, for instance, if the balloon is being
displayed on top of a pulled-down menu (we call this “to boldly go where no
window has gone before”).

Q How can I tell whether a font is monospaced or proportional? The FontRec record’s
fontType field doesn’t correctly tell me whether the font is fixed width as Inside
Macintosh Volume V says it should. All system fonts appear to have the same fontType
regardless of whether they’re fixed or proportional. Currently I test whether the width
of the characters “m” and “i” are equal and if they are, I consider the font to be fixed
width. Is there an easier (and faster!) way?

MACINTOSH Q & A May 1992

109

A The Font Manager documentation is not explicit enough about the fact that bit
13 (0x2000) of the fontType field is useless. The Font Manager doesn’t check
the setting of this bit, nor does QuickDraw (or any printer driver). As you
observed, monospaced fonts like Monaco or Courier don’t have the bit set; the
bit is meaningless. In addition, the fontType field is available only for 'FONT'
and 'NFNT' resources; it does not exist in 'sfnt' resources, and you would have
to check separately for the resource type of the font. Your idea of comparing the
widths of “m” and “i” (or any other characters that are extremely unlikely to
have the same widths in a proportionally spaced font) is indeed the only
reasonable way of figuring out whether a font is monospaced.

Q The TrueType system extension (INIT) apparently renders glyphs differently with
System 6 than with System 7. For example, our “abc” string in 160-point Helvetica®

is almost half as many pixels under System 7, so the styled text no longer lines up with
the bitmapped graphics underneath. Any way to avoid this?

A Your System 6 configuration probably has the specific Helvetica Bold TrueType
outlines available, while this Helvetica Bold TrueType version is missing in your
System 7. When the Font Manager gets a request for Helvetica, txSize 160,
txFace bold, it looks in the font association table of the Helvetica FOND (font
family record; see page 37 of Inside Macintosh Volume IV). First, it looks for the
right size (yes, there’s a TrueType outline font: size requirement fulfilled), then
it looks for the style (oops, no Bold variant of the font available; must ask
QuickDraw to apply its algorithmic “smearing” to produce a bold version of it).

Unfortunately, the QuickDraw emboldening always works the same way,
regardless of the size of the character: it just smears the character horizontally
by one pixel—which is rather ineffective for big point sizes and, of course, quite
different from the typographically truly bold outline of the Helvetica Bold font.

By the way, if you choose the stylistic variants outline or shadow, the result is
equally disappointing, because there are no specific TrueType versions available
for Helvetica Outline or Helvetica Shadow.

d e v e l o p May 1992

110

System 6 System 7

In conclusion, the only way to avoid this problem is to make sure your users
have the required font versions in their system. You may want to include this as
a recommendation in the manual, or even to come up with an alert in your
application if there’s no Helvetica Bold in the system. Unfortunately, there’s no
easy, built-in way to check for this; IsOutline returns TRUE even when there’s
no Helvetica Bold, because the Helvetica TrueType font is used to render the
character in the first place; the QuickDraw smearing is applied in a second step,
and is not considered for the result of IsOutline. You would have to take the
Helvetica FOND and walk its font association table “by hand.”

Q My application calls SetOutlinePreferred so that TrueType fonts are used if both
bitmapped and TrueType fonts are in the system. It was reported to me, however, that
some international TrueType fonts look really bad at small point sizes on the screen.
Should I avoid calling this function?

A SetOutlinePreferred is best used as a user-selectable option. Along the same
lines, you might want to include the SetPreserveGlyph call (Inside Macintosh
Volume VI, page 12-21)—again, as a user-selectable option.

Currently, the default for outlinePreferred is FALSE for compatibility reasons
(existing documents don’t get reflowed if the bitmapped fonts are still around)
and for aesthetic and performance reasons (users are free to maintain bitmapped
fonts in the smaller point sizes if the TrueType version isn’t satisfying for small
sizes or is too slow). On the other hand, as soon as a bitmapped font is
unavailable for a requested point size, and a TrueType font is present, the
TrueType font is used even with outlinePreferred = FALSE. Setting
outlinePreferred = TRUE makes a difference only for point sizes where a
bitmapped font strike is present along with an 'sfnt' in the same family.

TrueType fonts might be preferable even for small point sizes if linearly scaled
character widths are more important than screen rendering: if the main purpose
of a program is preprint processing for a high-resolution output device,
outlinePreferred = TRUE may give better line layout results on the printer, at
the price of “not so great” type rendering on a 72 dpi screen. (An example of the
conflict between linearly scaled TrueType and nonlinearly scaled bitmapped
fonts is Helvetica: StringWidth('Lilli') returns 19 for the 12-point bitmapped
font, and 15 for the 13-point size from TrueType!)

All this boils down to the recommendation stated initially: the user should be
given the flexibility to decide whether to use the existing bitmaps (using
TrueType only for bigger point sizes and high-resolution printers), or to go
with TrueType even if the result on the screen is not optimal. (By the way, it’s
likely that TrueType development will substantially reduce this conflict in the
future.)

MACINTOSH Q & A May 1992

111

Q When you bring up the Finder windows under System 7 on a color system and click a
control panel item icon, it paints itself that fancy gray. How can I get that effect?

A To get the fancy System 7 icon dimming to work in your program, read
Macintosh Technical Note #306, “Drawing Icons the System 7 Way,” and use
the icon-drawing routines contained in it. The routines show how to use the
Icon Toolkit, which is what the Finder uses. If you want the same effect under
System 6, you’ll have to emulate the dimming of the icons via QuickDraw; the
IconDimming sample code in the Snippets folder on the Developer CD Series
disc shows how to do this.

Q When the OK button is disabled in the System 7 Standard File dialog box, it’s drawn
in gray. I was looking for sample code on how to do this in a way that’s appropriate for
multiple screens at various color depths. For example, how should you draw the outline
if you have an OK button in a movable modal dialog box with half the OK button on
an 8-bit color screen and the other half on a 1-bit monochrome screen?

A There are two ways to draw the gray (dimmed) outline across several screens in
different depths: one uses MakeRGBPat (Inside Macintosh Volume V, page 73),
the other uses DeviceLoop (Inside Macintosh Volume VI, page 21-23). Look for
GrayishOutline.p in the Snippets folder on the Developer CD Series disc for a
code sample that demonstrates both ways.

Q If the Epcot Center building “Spaceship Earth” were a golf ball and you were
proportionally tall enough to hit it, where would it land?

A Zimbabwe.

Q How do you determine whether the Picture Utilities Package function GetPictInfo is
available? Gestalt doesn’t seem to have the right stuff!

A To determine whether the GetPictInfo routine is available, check the system
version number with the Gestalt function. GetPictInfo is available in system
software version 7.0 and later. Use the Gestalt selector gestaltSystemVersion to
determine the version of the system currently running. Usually it’s best not to
rely on the system version to determine whether features are available, but in
this case, it’s the only way to determine whether the Picture Utilities Package is
available.

For example, the following C function will determine whether the GetPictInfo
call is available:

d e v e l o p May 1992

112

#include <GestaltEQU.h>
Boolean IsGetPictInfoAvail()
{

OSErr err;
long feature;
err = Gestalt(gestaltSystemVersion,&feature);
/* Check for System 7 and later */
return (feature >= 0x00000700);

}

In Inside Macintosh Volume VI, see page 3-42 for information on using Gestalt
to check the system version number, and see page 18-3 for information on the
Picture Utilities Package.

Q How can I directly access the alpha channel (the unused 8 bits in a 32-bit direct pixel
using QuickDraw) under System 7? Under System 6 it was easy, but under System 7’s
CopyBits the alpha channel works with srcXor but not with srcCopy.

A With the System 7 QuickDraw rewrite, all “accidental” support for the unused
byte was removed, because QuickDraw isn’t supposed to operate on the unused
byte of each pixel. QuickDraw has never officially supported use of the extra
byte for such purposes as an alpha channel. As stated in Inside Macintosh Volume
VI, page 17-5, “8 bits in the pixel are not part of any component. These bits are
unused: Color QuickDraw sets them to 0 in any image it creates. If presented
with a 32-bit image—for example, in the CopyBits procedure—it passes
whatever bits are there.”

Therefore, you cannot rely on any QuickDraw procedure to preserve the
contents of the unused byte, which in your case is the alpha channel. In fact,
even CopyBits may alter the byte, if stretching or dithering is involved in the
CopyBits, by setting it to 0. Your alternatives are not to use the unused byte for
alpha channel storage since the integrity of the data cannot be guaranteed, or
not to use QuickDraw drawing routines that can alter the unused byte.

Q When used from MPW C++, pragma unused, pragma force_active, and pragma
once don’t appear to work. In fact, pragma unused actually causes a C compile-time
error. Why does this occur in spite of assurances in release notes that all pragmas are
passed on to the C compiler?

A The problem with pragmas and C++ is that the CFront compiler generates C
code, and during this phase it also shuffles around the source code lines, so the
pragma doesn’t end up in the same place as originally intended. Also, CFront
moves any pragmas inside the function body outside, because it can’t do much
with the pragmas, and the best bet is to move them just outside the body for the

MACINTOSH Q & A May 1992

113

C compiler. This means that any pragmas stated inside the function body are
unusable in real life.

Here’s a summary of how pragmas work with C++:

• pragma segment, pragma parameter, and pragma processor should work
OK.

• pragma force_active may or may not work, depending on the code case.

• pragma warnings and pragma pop/push should work in most cases,
depending on the code movement.

• pragma trace should also work, especially if it’s defined just before a
function or member function.

• pragma unused and pragma once won’t work, alas.

For more information about pragmas and C++, please consult the MPW 3.2
C++ documentation.

Q Inside Macintosh Volume II, page 33, states that _GetHandleSize returns D0.L >= 0
if the trap is successful or D0.W < 0 if the trap is unsuccessful. What happens if the
handle size is 0xFFFF, for instance? A TST.W will indicate an error when in fact
there is none. How should I check for this condition?

A Inside Macintosh is correct (although confusing) regarding the determination of
an error condition. The way to do it is first test the long to see if it’s valid
(D0 >= 0). If the long is valid, you can continue with confidence that no error
occurred. If, however, the long in D0 is negative, the low word contains the
error (and currently the high word contains $FFFF, the sign extension). The
reason the manual highlights the fact that only the low word contains the error
is to allow you to save the error in standard fashion since all other errors are
word sized, and also to caution you against using the processor status on exit
from GetHandleSize since it will be based on the low word only. In other
words, if the long is negative, simply ignore the high word. Here’s some
assembly code that will work:

move.L theHandle(a6),A0
_GetHandleSize
tst.L D0
bpl.s @valueOK
move.W D0,theError(A5)
moveQ #0,D0

@valueOK

d e v e l o p May 1992

114

Q What are recommended values for retry interval and retry count when using the
AppleTalk NBP call PLookupName on a complicated internet?

A You might want to start with the NBP retry interval and retry count values
Apple uses for its Chooser PRER and RDEV device resource files. The
Chooser grabs these values from the PRER’s or RDEV’s GNRL resource
-4096:

Apple’s engineering teams found these values to work well in most situations.

The count value should be based on how likely it is for the device to miss NBP
lookup requests. For example, the AppleTalk ImageWriter has a dedicated
processor on the LocalTalk option card just to handle AppleTalk, so its count
value is low; most Macintosh models and LaserWriter printers depend on their
680x0 processor to handle AppleTalk along with everything else in the system
(the Macintosh IIfx and Macintosh Quadra models are exceptions to this), so
their count value is higher.

The interval value should be based on the speed of the network and how many
devices of this type you expect there to be on the network. On a network with
very slow connections (for example, one using a modem bridge), or in cases
where there are so many devices of a particular type that lots of collisions occur
during lookups, the interval value should be increased.

Apple puts these values in a resource because not all networks and devices are
alike. You should do the same (put your interval and count in a resource so that
it can be configured).

Q I’d like to use the same names that the system uses to identify itself on the AppleTalk
network in my program. Where can I find those names?

A The names used by the system for network services are stored in two 'STR '
resources in the System file. Your program can retrieve those names with the
Resource Manager’s GetString function.

MACINTOSH Q & A May 1992

115

Device Interval Count
LaserWriter $0B $05
AppleTalk ImageWriter $07 $02
AppleShare $07 $05
If no GNRL resource $0F $03

Only one of the names is available in systems before System 7: the name set by
the Chooser desk accessory. That name is stored in 'STR ' resource ID -16096.
With System 7, the Sharing Setup control panel lets the user assign two names
for network services: the Owner name and the Computer name.

The Owner name is the name stored in 'STR ' resource ID -16096; it identifies
the user of the Macintosh. The Owner name is used by System 7 for two
primary purposes: to identify the owner of the system when accessing the
system remotely through System 7 file sharing or through the user identity
dialog used by the PPC Toolbox (and Apple Event Manager), and to serve as the
default user name when logging on to other file servers with the Chooser.

The Computer name (also known as the Flagship name) is the name stored in
'STR ' resource ID -16413; it identifies the Macintosh. The Computer name is
the name used by system network services to identify themselves on the
AppleTalk network. For example, if your system’s Computer name is
“PizzaBox,” the PPC Toolbox registers the name “PizzaBox:PPCToolBox@*”
when you start program linking, and file sharing registers the name
“PizzaBox:AFPServer@*” when you start file sharing.

Q What’s the recommended technique for telling whether the user has turned off
AppleTalk?

A The best way to determine whether AppleTalk has been turned off is to use the
AppleTalk Transition Queue to alert you to .MPP closures. (This is one of the
reasons why the AppleTalk Transition Queue was implemented.) The AppleTalk
Transition Queue is available only in AppleTalk version 53 or later, and is
documented in the AppleTalk chapter of Inside Macintosh Volume VI, starting on
page 32-17. There’s also a code snippet, Transition Queue, in the Snippets
folder on the Developer CD Series disc.

Q Sometimes when my system extension (INIT) starts executing, the current zone is the
system zone rather than the application zone. Should I call SetZone(ApplicZone) before
allocating memory in the system extension?

A The system does not set the zone to the application zone before loading each
system extension, so if a previous extension left the zone set to the system zone,
it’s possible that an extension could unintentionally be loaded into the system
heap and have the current zone be the system zone.

To ensure that nonpermanent memory requested by a system extension is
allocated in the application heap, do a SetZone(ApplicZone) before calling
NewHandle or NewPtr. Any system extension that calls SetZone should restore
the current zone to what it was upon entry.

d e v e l o p May 1992

116

Any permanent memory allocation by a system extension should be made in the
system heap with NewPtrSys or NewHandleSys. Use a 'sysz' resource if the
system heap allocations will exceed 16K.

Q Are there any new rules regarding SCSI driving with virtual memory? My System 6
driver doesn’t work with System 7.

A It’s important to remember that VM usually uses a SCSI device for its backing
store. As such, if VM needs to use your driver it can’t tolerate a driver’s page
swap in the middle of a page swap. This means if your driver’s code is not in the
system heap, it needs to be held when called, and your buffers also need to be
held if your driver is entered by a Control or Status call. Buffers are
automatically held by the system if your driver is entered by a Read or Write
call. The following documents provide a good overview of what you need to do
to revise a SCSI driver for VM compatibility.

• Inside Macintosh Volume VI, which contains new information specific to
virtual memory as it relates to drivers and especially SCSI

• Macintosh Technical Note #285, “Coping with VM and Memory
Mappings”

• “VM Paper” from the System 7 CD in the VM Goodies folder

Q I discovered an interesting bug in the Macintosh LaserWriter driver. If the word
“timeout” is in the name of a document, the LaserWriter driver will give a timeout
error -8132. Are there similar magic words?

A PostScript error messages are sent from the LaserWriter to the driver as text
streams. The driver must check these strings to see if they contain an error
message. If a document is named something that contains the same string as a
PostScript error message, the driver may think there’s an error when the printer
sends the “status: printing document XXXXX” message. Other strings cause
similar problems; one of them is “printer out of paper.” If you want to see the
rest of the strings, take a look at the LaserWriter printer driver resource type
'PREC' ID = 109.

Q What do the terms “maney” and “fakey” mean?

A These are slang words commonly used in California. “Fakey” means you’re
riding your snowboard backwards. “Maney,” often applied to snowboarding, is
derived from “maniac”; it means intense, high-energy, absorbing maximum
consciousness. It also has allusions to the mane of a lion, as in the pride of the
lion. Nietzsche might have equated “maney” with “will to power.”

MACINTOSH Q & A May 1992

117
Have more questions? Need more answers?
Take a look at the Dev Tech Answers library on
AppleLink (updated weekly) or at the Q & A stack
on the Developer CD Series disc.•

See if you can solve this programming puzzle, presented in the form of
a dialog between Konstantin Othmer (KON) and Bruce Leak (BAL).
The dialog gives clues to help you. Keep guessing until you’re done; your
score is the number to the left of the clue that gave you the correct
answer. These problems are supposed to be tough. If you don’t get a high
score, at least you’ll learn interesting Macintosh trivia.

During the development of QuickTime, a number of interesting bugs reared their
ugly heads. Try to figure out this one before KON does.

120 BAL Here’s the problem: When you play a movie on a Macintosh IIfx the
machine hangs after about six hours. If you turn off the sound, or try
it on any Macintosh other than an fx, it doesn’t hang.

KON How does it hang? Is the Macintosh locked up?

115 BAL Well, the movies aren’t playing. They just all freeze about halfway
through. Menus still work, though. You can even switch to the Finder
and click between windows and move icons around, but when you
launch an application or open a folder, the Finder draws one of the
zoom rectangles and then hangs.

KON Like a time bomb. Can you get into MacsBug?

110 BAL Yeah.

KON Whew. For a second I thought this was going to be really tough.
You’ve got MacsBug, so what’s the problem?

BAL I don’t know, you tell me.

KON How do movies get time? SystemTask or something?

105 BAL No, you have to call MoviesTask.

KON Figures. So I set a break on MoviesTask; is it getting called?

d e v e l o p May 1992

KONSTANTIN OTHMER AND BRUCE LEAK
have been puzzling about reality, life, the
universe, and even computers for a long time.
Since the great success of their Graphics ’90
World Tour, which included peace-keeping,
hostage-freeing, and wall-smashing, they settled
down, shipped a few QuickDraw packages, and
cleaned out their closets. Then came the coup: da
division of da Union. Konstantin got QuickDraw,

200 rubles, and a guaranteed spot at the front of
the bread line. Official party line on Bruce:
“vacationing in the Crimea.” Bruce was actually
working on the first QuickDraw spinoff. To
provide a seamless upgrade path, and to
leverage off of brand awareness, he decided to
call this project QuickTime.•

118

KON & BAL’S

PUZZLE PAGE

SLEEPING
BEAUTY

KONSTANTIN OTHMER
AND BRUCE LEAK

100 BAL Nope.

KON The application is supposed to call it?

95 BAL Yep.

KON So is WaitNextEvent getting called?

90 BAL Nope.

KON But menus work???

85 BAL Yep.

KON WaitNextEvent is being called with a bogus sleep time. I set a
breakpoint on it, pull down a menu, and see what the sleep time
parameter is.

80 BAL Now you’re thinking, Kon! But no. The sleep time is 1, just as it’s
supposed to be.

KON Hmmm. So I trace 50 times and see where I’m spinning.

75 BAL There’s a bunch of stuff going on; it’s not just some simple loop.

KON So I record A-traps.

70 BAL There are three traps getting called: ABF7 from inside MF, A0DD
(PPCToolbox) from a big block in the system heap that’s not
QuickTime, and A030 (EventAvail) from a 'scod' resource that’s
different from the block calling ABF7.

KON There are no null events coming through to the application, so
MoviesTask never gets called. The sleep time must never be expiring.
Are ticks running?

BAL How do you figure that out?

KON I DM ticks, continue executing, and then DM ticks again.

65 BAL Ticks doesn’t change.

KON It’s updated by some hardware mechanism at interrupt time, right?

BAL Sure, a hardware mechanism. Is that what they teach you at Caltech?

KON OK, OK. There’s a heartbeat task that generates a level-1 interrupt
that updates ticks, right?

60 BAL Yeah.

KON So is the level-1 interrupt happening?

BAL How do you check that?

KON I know from reading this cool develop column that the level-1 interrupt
vector is at location $64, so I set a break there and see if it’s firing.

KON & BAL’S PUZZLE PAGE May 1992

119

55 BAL Wait a second. That’s the way ticks are updated on every Macintosh
except the fx. This problem happens only on an fx.

KON Why is the fx different?

50 BAL The guy that designed the hardware assumed that the heartbeat
task—and thus ticks—was supposed to happen every 60th of a second.
Unfortunately it’s supposed to be every 60.14th of a second or
something, so Gary Davidian fixed it by installing a Time Manager
task that updates ticks. The extended Time Manager, found in System
6.0.4 and later, adds a drift-free mode for Time Manager callbacks.
This allows for accurate scheduling of periodic events without long-
term drift. With the extended Time Manager, the next callback is
scheduled with respect to when the current callback should have fired,
rather than the current time. So as of System 6.0.4 there are two types
of Time Manager tasks: the regular ones and the drift-free ones. Ticks
are updated via a drift-free task, so they advance accurately over time.

KON Hmmm. So is the Time Manager task that updates ticks getting called?

45 BAL Obviously not; ticks aren’t changing.

KON How are the tasks in the queue organized?

40 BAL They’re kept in the order that they fire in.

KON So where is the ticks task in the queue?

35 BAL Well, it’s not the first one, and the first one is scheduled for sometime
tomorrow.

KON Fine. I leave and come back tomorrow. Does my movie start playing?

30 BAL It could be. But we’re shipping before then.

KON So the first element is getting messed up and never completes. Then
none of the other items in the queue get executed because they’re all
deltas off the first element and the movies hang.

25 BAL Now we’re getting somewhere.

KON So how is that first element getting confused?

BAL Whose problem is this?

KON OK. Who owns the first item?

BAL How do you figure that out?

KON I do an IL to see what traps it’s calling. I see where it is in the heap. I
set a breakpoint on it, force it to fire, and see what it does.

20 BAL You’re knee deep in spaghetti. You could probably figure it out this
way but it’s pretty nasty.

d e v e l o p May 1992

SCORING
100–120 Members of the QuickTime team and their immediate family aren’t eligible.
75–95 Scores count only on the first reading!
50–70 Not bad—buy yourself an ice cream.
25–45 The next one will be easier.
5–20 Stick to word searches.•

120

KON OK. I break on InsTime to see who installs it. I break on PrimeTime
to see who starts it up. I figure out whether it’s using InsTime or
InsXTime.

15 BAL The PrimeTime comes from an 'snth' resource. It was installed with
InsXTime.

KON Aha! The Sound Manager. That’s why it works when the sound is
turned off.

BAL They don’t pay you enough, Kon.

KON So how does this element get updated in the queue? Don’t Time
Manager tasks call PrimeTime to reschedule themselves?

10 BAL Yeah.

KON So is someone calling PrimeTime on the Sound Manager task with a
bogus value?

5 BAL Not really. It always calls PrimeTime with a value of 0, indicating that
it wants to be called right away. The Sound Manager does this since it’s
not reentrant. By scheduling a task, it knows it won’t be called until it’s
finished servicing the current interrupt, avoiding reentrancy problems.

KON I’m sure everyone that’s reading this has figured it out by now. I know
I have.

BAL You’re bluffing again, Kon.

KON It’s easy. Since the drift-free Time Manager schedules tasks based on
when they should occur, and since this sound task is using a count of 0
when calling PrimeTime, its backlog gets bigger and bigger. So each
PrimeTime call schedules an event that should have occurred further
and further in the past. The task is executed immediately, of course,
but the backlog builds. It always puts this element at the head of the
queue, but eventually it overflows the long that contains the backlog,
and the scheduling time becomes incredibly large. There are about 4
billion microseconds in a long, which is about an hour. The Time
Manager counts in units that are about 20 microseconds, so it would
take about 20 hours to overflow. Take away a bit for signed math and
another because it’s calculating scheduling times, and I would guess it
should hang about once every 5 hours. It must have taken forever to
find that one.

BAL Yeah, it was a drag. We fixed it before we shipped QuickTime, of
course. But it’s just the kind of thing that makes scheduling software
projects so hard.

KON Nasty.

BAL Yeah.

KON & BAL’S PUZZLE PAGE May 1992

121
Thanks to Gary Davidian and Jean-Charles
Mourey for reviewing this column.•

A
Adobe Photoshop 104–105
AEDesc, Apple events and 21, 27
AEInstallObjectAccessor, Apple

events and 25
AEProcessAppleEvent, Apple

events and 14, 18
AEResolve, Apple events and 14,

16, 18, 20, 21
Aldus Gallery Effects (Silicon

Beach Software) 104
Alexander, Pete 33
alpha channel, Macintosh Q & A

113
animation, Macintosh Q & A 108
Apple Event Manager 13, 14, 18,

20, 31
Apple event object model 8–32
Apple event objects 9

combining objects and
events 31

elements 11
object accessors 21–25
object specifiers 10–21
properties 11

Apple event Object Support
Library (OSL), Apple events
and 21, 27

“Apple Event Objects and You”
(Clark) 8–32

Apple Event Registry 9, 32
Apple events

Apple event object model
and 8–32

Macintosh Q & A 107–108
AppleTalk, Macintosh Q & A

115–116
Apple II Q & A 3
application zone, Macintosh

Q & A 116–117
art, Johnson ponders 103–105

B
Balloon Help, Macintosh Q & A

109

Beep, UTILs and 55
bitmapped fonts, Macintosh

Q & A 111
BlastRect, GWorlds and 86, 87
box filters, GWorlds and 70–74

C
CalculateDeltas, GWorlds and

79–80, 81
CenterDialog, UTILs and 49
Clark, Richard 8
ClosePrinter, UTILs and 52
color, Macintosh Q & A 112
ColorBankIs555, popular method

of color selection and 95
ColorBankIsCustom, octree

method of color selection and
95

color mapping, Macintosh Q & A
108–109

color palettes, Picture Utilities
Package and 90–102

Color QuickDraw
GWorlds and 62–89
See also QuickDraw; 32-Bit

QuickDraw
color table

Macintosh Q & A 108–109
multiple screens and 57

control panel, Macintosh Q & A
112

coordinate systems, multiple
screens and 57–58

CopyBits
GWorlds and 62, 64, 80, 83
Macintosh Q & A 113

CopyDeepMask, GWorlds and
74, 81–83

CopyMask, GWorlds and 74
core suite, Apple events and 9
Create Element, Apple events and

9, 16, 25, 31
Create Token Data, Apple events

and 25

d e v e l o p May 1992

For a cumulative index to all issues of
develop and a complete source code
listing, see the Developer CD Series disc.•

122

INDEX

current zone, Macintosh Q & A
116–117

custom drawing routines,
GWorlds and 62–89

D
dadaists, digital image processing

and 105
Delete, Apple events and 9
Delete Token Data, Apple events

and 25, 31
Delta Tao Software 104
depth

Macintosh Q & A 108–109,
112

multiple screens and 57
device list 57
DeviceLoop, multiple screens and

59
DeviceLoopSim, multiple screens

and 59
dialog boxes

Macintosh Q & A 112
UTILs and 48, 49, 53

digital image processing, Johnson
ponders 103–105

dispatching, table-based 20–21
DisposeToken, Apple events and

27
dithering, Macintosh Q & A

108–109
DoWrite, UTILs and 51, 52
drawing

off-screen 58–59, 62–89
on-screen 58–59

“Drawing in GWorlds for Speed
and Versatility” (Othmer and
Reed) 62–89

drawing routines, custom 62–89
DrawPicture, Macintosh Q & A

106
drivers, Macintosh Q & A 117
Duchamp, Marcel 105

E
element identifier, Apple event

objects and 12
elements, Apple event objects and

9, 10
EraseRect, GWorlds and 63
event-first dispatching, Apple

event objects and 13–16
event object model. See Apple

event object model
event objects. See Apple event

objects
events. See Apple events
ExitBufferRtn, UTILs and 51–52
exitserver (PostScript), UTILs

and 42, 52

F
FancyMap, GWorlds and 77–79
FastGWSet32Pixel, GWorlds and

66, 69
file operations at interrupt time,

Macintosh Q & A 109
filters

GWorlds and 70–74
Johnson ponders 103–105

Finder, Macintosh Q & A 112
FindScreenGDevice, multiple

screens and 59
fixed-width fonts, Macintosh

Q & A 109–110
fonts, Macintosh Q & A 109–111
Fractal Design 104

G
GDevices, multiple screens and

57–59
Gestalt, Macintosh Q & A

112–113
GetCPixel, GWorlds and 65, 69
Get Data, Apple events and 9, 13
GetDeviceList, multiple screens

and 59

GetFractionalPixel, GWorlds and
70, 72, 74, 76

_GetHandleSize, Macintosh
Q & A 114

GetMovieNextInterestingTime,
Macintosh Q & A 107

GetNewDialog, UTILs and 48
GetNextDevice, multiple screens

and 59
GetPictInfo, Macintosh Q & A

112–113
GetPixBaseAddr, GWorlds and

67, 87–88
GetResource, digital image

processing and 104
GetTrapAddress, GWorlds and

63
global coordinates, multiple

screens and 57–58
glyphs, Macintosh Q & A

110–111
Good, Dave 90
“Graphical Truffles” (Tanaka and

Guschwan) 57–61
graphics programs, Johnson

ponders 103–105
Guschwan, Bill 57
GWGet32PixelC, GWorlds and

65, 66
GWorlds

custom drawing routines and
62–89

Macintosh Q & A 108
multiple screens and 58, 59

GWSet32PixelC, GWorlds and
65–67, 69, 86

H
Haeberli, Paul 103
help, Balloon Help 109
HLock, GWorlds and 68
Holzmann, Gerard J. 103
HUnlock, GWorlds and 68

INDEX May 1992

123

I
icons, Macintosh Q & A 112
image processing, Johnson

ponders 103–105
images, custom drawing routines

and 69–89
INITs. See system extensions
“In Search of the Optimal Palette”

(Good and Othmer) 90–102
internet, Macintosh Q & A 115
interrupts, Macintosh Q & A 109
InvertMapping, GWorlds and 76

J
Johnson, Bo3b 104
Johnson, Dave 103

K
key data 12
key form 12
“KON & BAL’s Puzzle Page”

(Othmer and Leak) 118–121

L
LaserWriter Font Utility, UTILs

and 37–56
Leak, Bruce 118
local coordinates, multiple screens

and 57–58
LocalToGlobal, multiple screens

and 59
LWFU, UTILs and 55
LWFU.bak, UTILs and 55
LWFUParmBlk structure 41, 46,

49–50

M
Macintosh Q & A 106–117
McLuhan, Marshall 105
MakeFile, UTILs and 44, 55
MapGWorld, GWorlds and 74,

76, 77, 79
mapping routine, GWorlds and

74–77

MapRectangle, GWorlds and 76
MCClear, Macintosh Q & A

106–107
MCCut, Macintosh Q & A

106–107
median method of color selection,

Picture Utilities Package and
90–94, 95–96, 100–102

memory
Macintosh Q & A 116–117
print hint 33–34

ModalDialog, UTILs and 49
Monet (Delta Tao Software) 104
monospaced fonts, Macintosh

Q & A 109–110
MoveWindow, UTILs and 49
movies, Macintosh Q & A

106–107
MPW C++, Macintosh Q & A

113–114
multiple screens 57–61

Macintosh Q & A 112
Munger, UTILs and 52

N
Namer dialog box, UTILs and

48, 49, 53
NamerFilter, UTILs and 49–50
NamerResIDs.h, UTILs and 44,

46
NamerUTIL, UTILs and 42–56
NamerUTIL.c, UTILs and 44,

45–53
NamerUTIL.r, UTILs and 44,

46, 53–54
NBP (AppleTalk), Macintosh

Q & A 115
NewGWorld

GWorlds and 62
multiple screens and 59

NuBus, GWorlds and 62

O
object accessor routines 21

object-first dispatching, Apple
event objects and 16–21

object model. See Apple event
object model

objects. See Apple event objects
object specifiers 10
Object Support Library. See Apple

event Object Support Library
octree method of color selection,

optimal color palettes and
90–94, 96–102

off-screen drawing
custom drawing routines and

62–89
multiple screens and 58–59

OK button, Macintosh Q & A
112

on-screen drawing, multiple
screens and 58–59

OpenPrinter, UTILs and 51, 52
optimal color palettes, Picture

Utilities Package and 90–102
OSL. See Apple event Object

Support Library
Othmer, Konstantin 62, 91, 118

P
Painter (Fractal Design) 104, 105
Palette Manager, optimal color

palettes and 90
palettes, Picture Utilities Package

and 90–102
PAPOpen, UTILs and 54
PDEFs, print hint 33
Peterson, John W. 103
Photoshop (Adobe) 104–105
PicComments, print hint 35
Pico, digital image processing and

103
PICTs, Macintosh Q & A 107
Picture Utilities Package

Macintosh Q & A 112–113
optimal color palettes and

90–102

d e v e l o p May 1992

124

pixel sampling, GWorlds and
70–74

PLookupName, Macintosh Q & A
115

plug-ins 104
Pollock, Jackson 105
popular method of color selection,

Picture Utilities Package and
90–95, 100

posters, Macintosh Q & A 106
PostScript, UTILs and 37–56
“PostScript Enhancements for the

LaserWriter Font Utility”
(Ressler) 37–56

pragmas, Macintosh Q & A
113–114

PrGeneral, print hint 34–35
primitives, Apple events and 9
“Print Hints” (Alexander) 33–36
printing, print hints 33–36
Printing Manager

print hint 35
UTILs and 41

print record, print hint 36
PrOpenDoc, print hint 34
properties, Apple event objects

and 9
proportional fonts, Macintosh

Q & A 109–110
Puzzle Page 118–121

Q
Q & A

Apple II 3
Macintosh 106–117

quadtree 97–98, 99–100
QuickDraw

GWorlds and 62–89
Macintosh Q & A 113
multiple screens and 57–61
optimal color palettes and

90–93
See also Color QuickDraw;

32-Bit QuickDraw

QuickEquate.a, GWorlds and 66
QuickTime, Macintosh Q & A

106–107

R
Read Token Data, Apple events

and 25, 27–31
Rectangle token, Apple events and

27
RedGreenInvert

digital image processing and
104

GWorlds and 68, 69
Reed, Mike 62
RenamePrinter, UTILs and

47–53
Rename Printer UTIL, UTILs

and 42, 43, 47
resolving an object specifier 21
resource file, print hint 34
resource space, UTILs and 38
Ressler, Bryan K. 37
retry count, Macintosh Q & A

115
retry interval, Macintosh Q & A

115
Rez, UTILs and 44, 55
RotateMapping, GWorlds and 77

S
sampling, GWorlds and 70–74
Scale1BitTo4Bit, GWorlds and 83
ScaleMapping, GWorlds and 77
Schwitters, Kurt 105
screens, multiple 57–61, 112
SCSI drivers, Macintosh Q & A

117
Segment Loader, GWorlds and

68
serverdict (PostScript), UTILs

and 42
SetCPixel, GWorlds and 65, 69
Set Data, Apple events and 9, 13,

14

SetOutlinePreferred, Macintosh
Q & A 111

setprintername (PostScript),
UTILs and 43

SetZone, Macintosh Q & A
116–117

ShowMoviePoster, Macintosh
Q & A 106

ShowWindow, UTILs and 49
Silicon Beach Software 104
size, multiple screens and 57
sound, Macintosh Q & A 106
Sound Manager, Macintosh

Q & A 106
Standard File dialog box,

Macintosh Q & A 112
Start Page Options UTIL 37, 41
statusdict (PostScript), UTILs

and 43
StripAddress

digital image processing and
104

GWorlds and 68
subpixel sampling, GWorlds and

70–74
suites, Apple events and 9
SwapMMUMode

digital image processing and
104

GWorlds and 66, 87–88
System 6, Macintosh Q & A

108–111, 113, 117
System 7

GWorlds and 62–89
Macintosh Q & A 108–113,

117
multiple screens and 59
Picture Utilities Package and

90–102
UTILs and 37–56

system extensions, Macintosh
Q & A 110–111, 116–117

system zone, Macintosh Q & A
116–117

INDEX May 1992

125

T
table-based dispatching, Apple

event objects and 20–21
Tanaka, Forrest 57
tent filters, GWorlds and 70–74
32-Bit QuickDraw

GWorlds and 62–89
multiple screens and 58
See also Color QuickDraw;

QuickDraw
token-handling routines, Apple

events and 27–31
tokens, Apple events and 25–27
TrueType, Macintosh Q & A

110–111

U
UnderSampleGWorld, GWorlds

and 87, 88
UpdateGWorld

Macintosh Q & A 108–109
multiple screens and 59

'USPC' resource 56
UTIL.h, UTILs and 43, 46, 52
UTILHead.a, UTILs and 43
UTILInstall, UTILs and 44, 55,

56
Utilities menu, UTILs and 37,

39, 41, 42
Utility_Close, UTILs and 41,

46–47
Utility_Delta, UTILs and 40–41,

46–47
Utility_Open, UTILs and 39–40,

46–47
Utility_Prime, UTILs and 41,

42, 46, 47–53
UTILs, LaserWriter Font Utility

and 37–56
'uvrs' resource 54

V
“Veteran Neophyte, The”

(Johnson) 103–105

videos, Macintosh Q & A 107
virtual memory, Macintosh Q & A

117

W, X, Y
windows

Macintosh Q & A 108, 109,
112

multiple screens and 57–61
Word token, Apple events and 27
Write Token Data, Apple events

and 25, 27–31

Z
zones, Macintosh Q & A 116–117

d e v e l o p May 1992

126

