
d e v e l o p
T h e A p p l e T e c h n i c a l J o u r n a l

ASYNCHRONOUS
BACKGROUND
NETWORKING ON
THE MACINTOSH

APPLE II Q & A

MACINTOSH Q & A

SYSTEM 7.0 Q & A

THE VETERAN
NEOPHYTE

DEVELOPER
ESSENTIALS:
VOLUME 2, ISSUE 1

SCANNING FROM
PRODOS

PRINT HINTS

PALETTE MANAGER
ANIMATION

THE POWER OF
MACINTOSH
COMMON LISP

V ol .2 , Is s ue 1 Winter 1991
Apple Computer, Inc.

E D I T O R I A L
Editor in Chief’s Clothing Louella Pizzuti

Technical Buckstopper Dave Johnson

Managing Editor Monica Meffert

Developmental Editors Lorraine Anderson,

Judy Bligh, Judy Helfand,

Loralee Windsor

Editorial Assistant Patti Kemp

Copy Editor Toni Haskell

Production Manager Hartley Lesser

Indexer Ira Kleinberg

Manager, Developer Technical Communications
David Krathwohl

A R T & P R O D U C T I O N
Design Joss Parsey

Technical Illustration J. Goldstein

Formatting Bruce Potterton

Printing Craftsman Press

Film Preparation Aptos Post, Inc.

Production PrePress Assembly

Photographer Ralph Portillo

Circulation Management Dee Kiamy

Online Production Cassi Carpenter

R E V I E W B O A R D
Pete “Luke” Alexander
Larry “Cat Couch” Rosenstein
Andy “The Shebanator” Shebanow

To create the cover, Hal Rucker,
Cleo Huggins, a flashlight, black
construction paper, a lightbulb, a
chair and a whole lot of duct tape
came together.

d e v e l o p, The Apple Technical
Journal, is a quarterly publication
of the Developer Technical
Communications group.

Asynchronous Background Networking on the Macintosh
by Harry Chesley A MacApp class for handling asynchronous network
activities, used in an application that propagates messages among machines on
the AppleTalk network. 6

Apple II Q & A Answers to your product development questions. 31

Macintosh Q & A Answers to your product development questions. 34

System 7.0 Q & A Answers to your product development questions. 44

The Veteran Neophyte by Dave Johnson Commentary from
the trenches. 47

Developer Essentials: Volume 2, Issue 1 The latest disc containing
essential tools for developers. 49

Scanning from ProDOS by Matt Gulick Including support for the Apple
Scanner in your Apple II applications: it’s easier than you think. 51

Print Hints with Luke & Zz Tips and tricks from the print masters. This time:
a cautionary fable, and a little known constant. 76

Palette Manager Animation by Rich Collyer Techniques for color table
animation are presented, along with some of the newer features of the Palette
Manager and the reasons you should use it. 78

The Power of Macintosh Common Lisp By Ruben Kleiman
An introduction to the Macintosh Common Lisp development environment,
highlighting its key features and strengths. 85

Index 114

CONTENTS

CONTENTS Winter 1991

1© 1991 Apple Computer, Inc. All rights reserved.

Apple, the Apple logo, Apple IIGS, AppleLink, AppleShare, AppleTalk, APDA, APDAlog, GS/OS,
HyperTalk, ImageWriter, LaserWriter, LocalTalk, Mac, MacAPP, Macintosh, MPW, MultiFinder and
ProDOS are registered trademarks of Apple Computer, Inc. Develop, Finder, HyperMover, QuickDraw,
and ViewEdit are trademarks of Apple Computer, Inc. Hypercard is a registered trademark of Apple
Computer, Inc. and is licensed to Claris Corporation. ACOT is a service mark of Apple Computer, Inc.
IBM is a registered tradmark of International Business Machines Corporation. MacDraw is a registered
trademark of Claris Corporation. MacWeek is a registered trademark of Coast Associate Publishing,
L.P. NuBus is a trademark of Texas Instruments. Postscript is a registered trademark of Adobe Systems
Incorporated. Prototype is a trademark of Smethers Barnes.

d e v e l o p Winter 1991

SUBSCRIPTION INFORMATION
Use the order form on the last page of the journal
to subscribe to develop. Please address all
subscription (and subscription-related) inquiries
to develop, Apple Computer, Inc., P.O. Box 531,
Mt. Morris, IL 61054 (AppleLink Dev.Subs).•

BACK ISSUES
Back issues of develop are available through
APDA® (see inside back cover for APDA
information), and are, of course, there for the
browsing on each CD.•

2

Dear Readers,

Have you ever searched and searched for the answers to your questions only to find
that they were right there under your nose the whole time? That’s happened a lot
with develop. We’ve made several changes in the one short year that we’ve been
around: we’ve started printing the code dark enough so that you can read it, we’re
printing on recycled paper (see the letters section), we’ve added two columns, and
we’ve trashed themes. The first two changes were direct results of your comments
and our research (you see, we really do want to hear what you have to say), the other
two were things I’m sure you thought of, but never got around to writing about.

The columns should help reduce the commitment that reading develop has
become—we hope they’ll provide you with some food for thought and with some
time left over to ruminate.

And the themes, well, they just weren’t working. Since the articles were only loosely
grouped around a theme, you didn’t get enough information to decide whether to
read an issue or to pass it along (I most sincerely hope you’d never consider trashing
it); it also forced us to defer some articles until there was a theme or an issue they fit
in. So without themes, we’ll let you decide how to categorize them (and still look
forward to your article suggestions and ideas), and we’ll concentrate on filling each
issue with thorough, helpful, and interesting articles.

We’re a nosey bunch and we want to know what you’re thinking and what you’re
hoping. (Don’t consider this a threat, but if we don’t get more feedback, we’ll have
to do a survey to figure out what you want.)

So, nose around the articles and the code and pick out what interests you. Then let
us know what intrigued you and what baffled you (we strive to intrigue, not baffle).

Louella Pizzuti
Editor

2

LOUELLA PIZZUTI

Thanks for the excellent article in the
October 1990 issue of develop dealing
with polymorphism in C++ stand-alone
code resources. I have one question
about the code that accompanied it
on the disc; it concerns the file
WindowDef_main.cp: why are the
overloaded “new” and “delete”
operator definitions bracketed by
the #ifdef NEEDED and #endif
statements? Is NEEDED defined
somewhere else? (I couldn’t find it
in any of the other files on the CD.)
Are there circumstances in which you
wouldn’t want to overload the storage
operators for a window definition
function? I’m confused.

—Carlos Weber, M.D.

Yahoo, a technical buck to stop! Lemme at
it!

The code in question (#ifdef NEEDED...
#endif) shouldn’t be there at all, and as a
matter of fact is ignored by the compiler,
since NEEDED isn’t defined. It is left over
from when Patrick was developing the code
and still experimenting.

In the final version he is basing his
WindowDefinition class on the
Relocatable class, which is in turn based on
HandleObject, an Apple® extension to C++
which uses handles instead of pointers when
allocating space for new objects. No
overloading of the storage operators is
necessary.

Sorry about the confusion. I should have
spotted that code and yanked it out before
we published.

—Dave Johnson

In develop, Issue 4, you advocate
installing DRVR resources at startup
time by changing their resource ID to
an empty slot in the Unit Table and
then calling OpenDriver rather than
use _DrvrInstall due to its bug.

The problem with this method is
that it actually modifies the DRVR
resource, which has two consequences:
1. According to Apple you are not
supposed to modify yourself; and 2. it
sets the last date modified field on the
file. This latter problem causes backup
programs to think the file has really
changed and it worries users that
perhaps some virus has modified that
file when they know they didn’t.

Thus, in my opinion, it is much better
to use _DrvrInstall and, until Apple
fixes the bug, stuff the DCE yourself.
This method does not suffer the side
effects of the OpenDriver method.

—Jeff Shulman

You’re right, it’s easier to use the method
outlined in my article, but it’s “better”to
use _DrvrInstall and manually put the
pointer to the driver into the appropriate
field in the DCE.

—Tim Enwall

LETTERS Winter 1991

3
COMMENTS
We welcome timely letters to the editors,
especially from readers wishing to react to
articles that we publish in develop. Letters should
be addressed to Dave Johnson or Louella Pizzuti
at Apple Computer, Inc., Developer Programs,
20525 Mariani Ave., M/S 75-3B, Cupertino,
CA 95014 (AppleLink: Johnson.DK or Pizzuti1).

All letters should include name and company
name as well as address and phone number.
Letters may be excerpted or edited for clarity
(or to make them look like they say what we
wish they did).•

LETTERS

d e v e l o p Winter 1991

4

I have a question about the article on
the 8•24 GC card in develop, Issue 3,
which, incidentally, was excellent. On
pages 338 and 339 you mention the files
that must be present to use the card. Is
the GC file a transparent patching
upgrade or is it a supplemental code
block that duplicates all of the 32-Bit
QD file functionality?

Good luck with Dogcow breeding,

—David

The 8•24 GC file contains more (and less)
than just the 29000 equivalent of 32-Bit
QuickDraw™; it also contains the IPC
software that steals QD calls and transfers
them to the card, the shell (GC OS) that
receives the commands and dispatches them
as well as doing the Memory Management
chores and such, and finally the ‘drawing’
parts of 32 QD. Note that calls that do not
cause any drawing to take place, such as
NewGWorld, are not part of GC QD but
are executed by the main processor even
when acceleration is on.

All these functions are not part of 32 QD
and therefore make it necessary to have the
8•24 GC file present when you want to
have acceleration. So when running 6.0.x
you need both files, 32 QuickDraw and
8•24 GC; under 7.0 you will need to have
the 8•24 GC file present.

—Guillermo Ortiz

Have you guys considered adding
perfume to the CD envelope, to try to
raise a little capital from advertising to
offset your costs? “C perfume, for the
programmer in every man,” “L’Air du
Comp, as fresh as a new CPU.”

—Jason Rusoff

My copy of develop arrived in my P.O.
box this morning and therein lies the
problem. In its original shape develop
will not fit into my P.O. box so its shape
was altered to make it fit. The CD is
warped, and try as it might, the Finder™

cannot make the “minor repairs” it says
are needed. Unfortunately, we out here
on the frontier don’t have someone to
bring our mail to us each day; we have to
go fetch it—and pay for the privilege. So
I’m stuck with the U.S. Postal Service
and an unusable CD.

Perhaps a large “DO NOT BEND”
on the outside of subsequent issues
will avert deformation. Then again,
maybe not. Would you kindly use
your considerable influence to get
me a flat CD?

And if the printed warning doesn’t work,
how about a steel plate in each issue?
Make that a really stiff steel plate. You
know how those Postal Service people
are—neither rain nor snow nor CD. . .

—Warren Michelsen

Sorry about that mangled CD—pushing the
limits on information distribution sometimes
we run into hassles like how to actually get
the information into the hands (and drives)
of the folks that need it. Hopefully our “DO
NOT BEND” notice will help because I’d
sure hate to have to resort to a steel plate.

If in fact, the warning doesn’t help, you
can contact the fulfillment house (see the
subscription order form at the back of the
issue for contact information) and tell
them that your CD was mauled; they’ll
be happy to send you a new copy.

—Louella

LETTERS

In response to recent concern regarding
the ecological soundness of your page
layout, I have the following comments:

CD-ROM and electronic magazines are
examples of technologies that—provided
they are adopted—are ecologically
superior to more traditional media,
such as paper.

develop is encouraging the adoption of
these new media, and thus can easily
defend its spacious page layout. It is
one of the few publications that
can have a positive environmental
impact—provided that developers
absorb and act upon its contents.

Incorporating these new technologies
into useful products is the first step
toward their eventual widespread
adoption. By keeping develop easy-to-
read, you are encouraging this trend.

P.S. Providing an e-mail address
for comments would also decrease
paper usage!

—Bryn Dyment

Thanks for your words of encouragement.
Pushing CD distribution is one way we’re
trying to get away from killing forests; using
recycled paper is another. Our production
manager, Hartley Lesser, found a paper that
meets our quality standards, that doesn’t use
toxic chemicals for de-inking, and that’s
available in the quantities we require. This
issue is the first one printed on the new
paper—let us know what you think.

Also, we are now even more available
electronically (although Dave’s much more
connected than I am), so if you’d rather

send e-mail, feel free to use the addresses
we provide.

—Louella

May it be known by you and your
wonderfully talented crew how very
much I appreciate your efforts on behalf
of creating the wonderful, informative,
interesting, entertaining, and otherwise
“slick” magazine, develop. The
opportunity to see what others are
doing, who those others are, and perhaps
to learn more than you would from
MacWeek, but less than from
Inside Macintosh, is indeed welcome.
Add to this the fact that you include a
CD-ROM and I am hard-pressed to
even IMAGINE a more valuable
offering. Great job. Thanks a zillion!!

—Lance Drake

I noticed that Apple is looking for a
new editor-in-chief for the major
publications. You’re not going anywhere,
are you?

—A concerned reader

First of all, believe it or not, I did
not make up this letter (or even the
signature). Our group (Developer
Technical Communications) recently
reorganized and now my grouplet is
responsible for not only develop, but also
technical updates (like the Q & A stack),
Technical Notes, Sample Code, and
reporting compatibility bugs to developers.
Since I need to spend my time doing the
things that managers do, I’m looking for
someone to do all the real work. If this
sounds fun and you think you’d be
qualified, let me know.

—Louella

LETTERS Winter 1991

5

d e v e l o p Winter 1991

HARRY CHESLEY Due to a rare psychological
impediment, Harry Chesley frequently finds himself
incapable of giving short, simple answers to
questions, instead reciting long stories that are
only vaguely related to the original question. To
spare you from having to read about Harry for
hours, we took great care not to ask him too many
questions about himself. Despite this cautious
approach, we did discover that he has been at

Apple so long that he no longer remembers his
official title, that he has been programming the
Macintosh since the 512K came out (and made it
possible to do so without a Lisa), and that the first
personal computer he bought was an Apple I (still
buried in the closet somewhere). In the interest of
brevity, the long stories behind each of these facts
have been omitted. Even longer stories surround
other events of his past life. He’s been an

6

HARRY R. CHESLEY

LACS is a program that provides lightweight asynchronous conferencing
for Macintosh® computers connected to the same AppleTalk® network. This
article discusses the techniques used for implementing the asynchronous
network operations, techniques that work well even when the application is
running in the background under MultiFinder®. While the article
provides the basic algorithms and techniques, the Developer Essentials
disc includes full source code for the entire LACS application.

Every Macintosh includes a local area network—LocalTalk®. Any two or more
Macintosh computers can easily be configured to communicate with each other,
passing data back and forth to work together as a larger system. There are many
applications of computers that require or benefit from this sort of multiple
workstation operation. Most of these applications involve groups of people working
together and are known as collaborative computing, or computer supported
cooperative work. While there are limited numbers of applications available in this
category today, the numbers are increasing rapidly, and the potential for this genre
is exciting.

Similarly, with the advent of MultiFinder and the ability to run programs in the
background while the user continues working on a foreground application, it has
become possible to write applications that operate on the user’s behalf even when
not immediately controlled by the user. These sorts of background “daemons” have
long been available on mini, main-frame, and even workstation computers, but are
relatively new to personal computers.

Network and background applications are, by their very nature, asynchronous.
Network applications must communicate with other machines that may be slower
than the local machine or busy with some other task. The other machines may even
be temporarily turned off. Background operations must step very lightly to make
sure that they don’t affect the responsiveness of the system as perceived by the user.
This usually involves using asynchronous techniques.

6

ASYNCHRONOUS

BACKGROUND

NETWORKING

ON THE

MACINTOSH

Asynchronous programs are often the hardest to design and develop. Our minds
don’t deal well with multi-threaded algorithms. And the Macintosh today has little
in the way of development tools to help in this respect—there are no facilities for
lightweight processes within Macintosh applications, for example.

The Lightweight Asynchronous Conferencing System (LACS) is a program
that uses asynchronous background networking to propagate information from
machine to machine. It distributes messages over a network of locally connected
Macintosh computers. The LACS implementation provides examples of how to do
the following:

• Invoke network operations asynchronously.
• Use an abstract superclass to simplify asynchronous design.
• Use NBP and ADSP.
• Operate in the background under MultiFinder.
• Implement a distributed database without requiring central

control or coordination.

This article describes LACS, concentrating on the first two of these elements,
with some limited discussion of the other items. You’re encouraged to examine the
source code of LACS (provided on the Developer Essentials disc) in order to uncover
more details.

THE LIGHTWEIGHT ASYNCHRONOUS CONFERENCING
SYSTEM (LACS) APPLICATION
LACS spreads messages from machine to machine across the local network. It is
designed to run in the background under MultiFinder and communicate quietly
with other machines. It uses the AppleTalk Name Binding Protocol (NBP) to
find other machines to communicate with, and it uses the AppleTalk Data Stream
Protocol (ADSP) to actually exchange messages. When new messages come in, the
Notification Manager is used to alert the user.

LACS is written in Object Pascal using MacApp®. It uses object-oriented techniques
to simplify the problem of implementing periodic asynchronous functions. To
accomplish this, it uses an abstract superclass that provides a framework for other
classes of the same type.

From the user’s point of view, the application consists of three windows: Messages,
New Message, and Status. Figure 1 shows these three windows. To create a new
message, the user simply types in the New Message window and clicks the Send
Message button. The message can be any text the user wants—but no pictures or
graphics in this edition. The application then spreads the message to other locally
connected Macintosh computers. When a new message arrives from another
machine, it appears in the Messages window on that machine. The Messages

ASYNCHRONOUS BACKGROUND NETWORKING ON THE MACINTOSH Winter 1991

7independent Mac software developer (the genesis
of PackIt is a novella unto itself) and worked in a
startup company named Metapath and at SRI
(don’t even ask). His favorite pastimes are
playing with his two-and-a-half year old daughter
(she has her own Macintosh but doesn’t yet know
how to run MPW®) and programming. Given the
opportunity, he also enjoys writing about himself
in the third person. •

d e v e l o p Winter 1991

8

Figure 1
LACS User Interface

window displays two lists of messages, one for those which have yet to be read and
one for those which the user has already read at least once. Only the first few words
of each message appear in the read or unread list. When the user clicks on an entry
in one of the lists, the full text of the message appears in a third section of the
window. The Status window contains information about how many messages have
been seen, what other machines are actively communicating, and so on.

There is more to the program than is covered in this brief description; for example,
users can set expiration dates for the messages they create. You might want to
run LACS to experience what it does and how it goes about it. However, the above
description is sufficient for our purposes here. The basic operation and intent of the
program is quite simple.

ALGORITHM FOR DISTRIBUTING MESSAGES
From the programmer’s point of view, LACS maintains a distributed database of
messages across multiple loosely connected computers. The central problem is
how to distribute database updates across the network quickly and efficiently. The
solution comes from a paper published by Xerox PARC: Epidemic Algorithms for
Replicated Database Maintenance. (See references at the end of the article. Seems like
everything interesting comes from PARC, doesn’t it?) In fact, LACS was directly
inspired by reading this paper.

In oversimplified form, the algorithm operates as follows: When a new message is
first heard, it is considered “hot.” The program then tries to tell other network nodes
the new message. When a node passes on a message, the receiving node tells whether
it’s already heard the message or not. The more times the program tries to spread
the message to nodes that have already heard it, the cooler the message becomes.
Eventually it becomes completely cold and the program stops trying to spread the
message to more nodes. The people at Xerox called the action of this algorithm
“rumor mongering.”

In LACS, the algorithm is implemented on top of the AppleTalk protocols. The
Name Binding Protocol (NBP) is used to register LACS on the network. This allows
the application to find other machines that are interested in exchanging messages.
Each copy of LACS registers itself using the local machine’s Chooser name with an
NBP type of “LACS.” The program then builds a list of other nodes of type “LACS.”
Rather than trying to maintain a list of all the systems on the net (potentially a very
large list), it keeps up to ten nodes with which it communicates directly. These nodes
communicate with up to ten others, they communicate with up to ten others, and so
forth. Periodically, one of the entries in the local list is replaced with another machine
chosen at random, so that the list slowly changes over time.

ASYNCHRONOUS BACKGROUND NETWORKING ON THE MACINTOSH Winter 1991

9

The Apple Data Stream Protocol (ADSP) is used to communicate between LACS
systems. This protocol provides reliable byte-stream connections, correcting for any
errors in transmission across the network. When a LACS machine decides to spread
a message, it makes an ADSP connection with another LACS node. It exchanges
messages with the other machine and then closes the ADSP connection.

MESSAGE EXCHANGE PROTOCOL
LACS implements a message exchange protocol on top of ADSP’s reliable byte
stream. This message exchange protocol consists of separate commands, each having
a command name and a series of parameters. For example, the “Here’s a new
message” command includes the message itself, its origination and expiration dates,
and other related information as parameters.

The ADSP session consists of a series of command exchanges. The originating node
starts the conversation. The destination node then responds with a command of its
own. Usually, the conversation starts with an attempt by the originator to pass on a
message; this is known as “pushing.” But under some circumstances, the originator
may instead ask the other machine for a message; this is known as “pulling.” In that
case, the other machine takes control of the conversation and sends a message.
When the controlling side has nothing further to say, the connection is closed.

The message exchange protocol commands include

• “Here’s a new message.”
Valid responses: “I’ve seen it.” or “I haven’t seen it.”

• “Give me a hot message.”
Valid responses: “Here’s a new message.”

• “Give me a message; I don’t care if it’s hot or cold.”
Valid responses: “Here’s a new message.”

The responses “I’ve seen it” and “I haven’t seen it” are actually implemented as
commands as well. But they are only generated in response to a “Here’s a new
message” command.

The protocol is very simple and is designed to use only ASCII text in the commands
and responses. This makes it easy for someone to write a program other than LACS
that can become part of the community of message spreaders. For example, a
gateway could spread messages from the local network to a wider area network.
Or an archive agent could collect and save messages.

Internally, LACS keeps track of the number of times it successfully or unsuccessfully
tried to pass on a message. The number of failed attempts is used to determine when
a message becomes cold and also how long to wait until the next attempt to pass it on.

d e v e l o p Winter 1991

10

The program actually implements several variations of the basic algorithm, which
can be selected by changing a few global parameters to the program. The default
parameters are

• Cool off messages deterministically (as opposed to stochastically).
• Consider a message to be cold after 30 redistribution failures.

This makes it highly likely that all machines will see each
message, since each machine tries 30 times to redistribute it.
Of course, once most machines have seen the message, most
redistribution attempts will fail, since they will more than likely
pick a machine that has already seen the message.

• Push messages (rather than pull). This means that connections are
only made when there actually are messages to be transmitted.

• When picking another LACS machine with which to
communicate, look in the local AppleTalk zone twice as
frequently as in other zones. This tends to reduce network
overhead by keeping communications local.

• Use an exponential back-off when determining how long to wait
before attempting to distribute the message again. This allows for
quick initial redistribution, but keeps the messages “hot” for some
time, so that they get to machines that were turned off when the
message initially entered the network.

See the paper mentioned earlier from Xerox PARC, the source code of LACS, and
the file “About LACS” on the Developer Essentials disc for complete details of the
algorithm and variations used in LACS.

ASYNCHRONOUS OPERATION: TPERIODIC
LACS requires that several activities proceed asynchronously. Since it runs in the
background under MultiFinder, it cannot wait for the completion of a network
operation. It has to release control to the foreground process as quickly as possible.
In addition, there are several semi-independent activities in the program. Making
them dependent on each other, even to the extent that only one operates at a time,
would unnecessarily complicate the design.

The semi-independent, asynchronous activities in LACS include the following:

• Build and maintain a list of AppleTalk zones.
• Build and maintain a list of other LACS nodes with which to

communicate.
• Initiate outgoing communication sessions.
• Receive incoming communication sessions.
• Perform housecleaning operations, such as saving the message

database to disk periodically.

ASYNCHRONOUS BACKGROUND NETWORKING ON THE MACINTOSH Winter 1991

11

In order to keep the design manageable, it is important to be able to separate these
activities into distinct code modules. Each individual piece is relatively easy to
understand and implement. It’s only when they’re taken together that the problem
becomes difficult.

This design separation is provided by building an abstract superclass, TPeriodic,
that implements periodic asynchronous operations. The model for TPeriodic is that
asynchronous periodic activities follow a particular pattern:

[1] Wait for a set period of time.
[2] Initiate an asynchronous action.
[3] Check repeatedly to see if the action has completed.
[4] Do something with the result.
[5] Repeat from step 1.

The concrete subclasses of TPeriodic include TZoneLookup, TNodeLookup,
TGossip, and TDocumentSaver. Each of these subclasses are discussed in more
detail in subsequent sections.

INTERFACE
The interface to TPeriodic looks like this:

PeriodicStates = (kPeriodicInactive, kPeriodicWaiting, kPeriodicActive);

TPeriodic = object(TEvtHandler)
fInactiveIdle: longInt; { Idle period when inactive. }
fActiveIdle: longInt; { Idle period when waiting for completion. }
fState: PeriodicStates; { Current state. }

procedure TPeriodic.IPeriodic(initialIdle, inactiveIdle,
activeIdle: longInt);

{ Initialize the periodic object. }

procedure TPeriodic.Free; override;
{ Free the periodic object. }

procedure TPeriodic.WaitForAsync;
{ Wait until any asynchronous activity is finished. }

procedure TPeriodic.Kick;
{ Get things moving right now. }

function TPeriodic.DoIdle(phase: IdlePhase): boolean; override;
{ Internal method -- perform idle activities. }

d e v e l o p Winter 1991

12

procedure TPeriodic.Activate;
{ Start asynchronous operation.

To be overridden by subclass. }

procedure TPeriodic.Waiting;
{ Check for completion of asynchronous operation.

To be overridden by subclass. }

procedure TPeriodic.DoIt;
{ Take action after completion of asynchronous operation.

To be overridden by subclass. }

end;

STATE MACHINE
TPeriodic implements the state machine shown in Figure 2.

ASYNCHRONOUS BACKGROUND NETWORKING ON THE MACINTOSH Winter 1991

13

WAITING

done

async operation error

not yet
ready

ACTIVATE

began async
operation

done

inactive time-out

active
time-out

async operation
complete

done

another
async operation
begun

kPeriodicInactive

kPeriodicWaiting kPeriodicActive

DO IT

= fState value

= method call

Figure 2
TPeriodic State Machine

IPeriodic and Free are called to initialize and free instances of TPeriodic. Kick
is called to start an activity even though the time-out hasn’t expired yet. Each
subclass of TPeriodic overrides Activate, Waiting, and DoIt to implement their
own functionality. DoIdle is an internal routine that is discussed later with the
implementation. WaitForAsync is a utility method used by Free to wait until any
outstanding asynchronous operations have completed before freeing the object.

The current state is stored in fState. While a TPeriodic object is waiting for
the time-out to occur, fState is kPeriodicInactive. When the time-out happens,
Activate is called, which sets fState to some new value. If the Activate procedure
has started an asynchronous activity, it sets fState to kPeriodicWaiting. If it has
taken some synchronous action and then wants to go back to sleep, it sets fState to
kPeriodicInactive again. While in kPeriodicWaiting, the method Waiting is called
repeatedly. Waiting’s task is to test for completion of the asynchronous activity
begun by Activate. When completion occurs, it sets fState to kPeriodicActive.
If no action is needed after the asynchronous activity, or if the asynchronous
activity failed, Waiting sets fState back to kPeriodicInactive. Finally, when fState is
kPeriodicActive, DoIt is called immediately (no time delay). The DoIt method takes
the appropriate actions with the results of the asynchronous activity, and then sets
fState to kPeriodicInactive. The process then repeats.

The instance variable fInactiveIdle determines the length of time between
activations. The variable fActiveIdle determines the length of time between calls
to Waiting when an asynchronous activity has been started—that is, how often to
check if it’s finished yet. These are set by the inactiveIdle and activeIdle parameters
to IPeriodic. The initialIdle parameter to IPeriodic determines the initial time-out
to be used—how long to wait for the very first activation.

TPeriodic is a subclass of the MacApp TEvtHandler class. IPeriodic installs the
instance in the MacApp cohandler chain. Most of the work is then done by facilities
already built into MacApp. DoIdle, which is called by MacApp software when the
cohandler’s time-out occurs, simply decides which of the Activate, Waiting, and
DoIt methods to call. Those methods set fState to determine what to do next. Since
Activate, Waiting, and DoIt are implemented by the subclasses, TPeriodic consists
only of the four methods IPeriodic, Free, DoIdle, and Kick plus one internal utility
method, WaitForAsync. Here is the actual code:

procedure TPeriodic.IPeriodic(initialIdle, inactiveIdle, activeIdle: longInt);
{ Initialize the object. }

begin
IEvtHandler(nil);
fIdleFreq := initialIdle;
fInactiveIdle := inactiveIdle;
fActiveIdle := activeIdle;
fState := kPeriodicInactive;

d e v e l o p Winter 1991

14

{ Install the object in the co-handler chain. }
gApplication.InstallCohandler(self,true);

end;

procedure TPeriodic.Free;
{ Free the object. }

begin
{ First wait for any outstanding operation to complete. }
WaitForAsync;
{ Deinstall ourselves from the co-handler chain. }
gApplication.InstallCohandler(self,false);
{ Free ourselves. }
inherited Free;

end;

procedure TPeriodic.WaitForAsync;
{ Wait until any asynchronous activity is finished. }

begin
while fState = kPeriodicWaiting do Waiting;

end;

function TPeriodic.DoIdle(phase: IdlePhase): boolean;
{ Internal method -- idle the object. }

var fi: FailInfo;

procedure hdlFailure(error: OSErr; message: LongInt);
{ If we fail, reset to inactive. }

begin
fState := kPeriodicInactive;
fIdleFreq := fInactiveIdle;
exit(DoIdle);

end;

begin
DoIdle := false;
if phase = IdleContinue then

begin
CatchFailures(fi,hdlFailure);
{ If we've just timed out, then activate the object. }
if fState = kPeriodicInactive then Activate
else

ASYNCHRONOUS BACKGROUND NETWORKING ON THE MACINTOSH Winter 1991

15

begin
{ If we're waiting, see if we're done yet. }
if fState = kPeriodicWaiting then Waiting;
{ If we're done, do something with the results. }
if fState = kPeriodicActive then DoIt;

end;
{ Figure out the new idle frequency. }
if fState = kPeriodicInactive then fIdleFreq :=

fInactiveIdle
else fIdleFreq := fActiveIdle;
Success(fi);

end;
end;

procedure TPeriodic.Kick;
{ Start things up even if it isn't normally time yet. }

begin
fIdleFreq := 0;

end;

MAINTAINING AN APPLETALK ZONES LIST: TZONELOOKUP
In order to maintain its list of AppleTalk zones, LACS contains a TPeriodic subclass
called TZoneLookup. Looking up the list of AppleTalk zones can be done in one of
two ways. The old way involved talking directly to a nearby AppleTalk Router. The
newer and simpler way, which is used in LACS, makes use of AppleTalk Phase 2 calls,
leaving the underlying communication with the Router to the AppleTalk software.

However, the new technique will not work with older versions of AppleTalk (prior
to System 6.0.3). It is important, therefore, to check and make sure that AppleTalk
Phase 2 is available before using TZoneLookup. This test is performed in
TLACSApplication.ILACSApplication, and takes the following form:

{ Check for AppleTalk phase 2. }
if gConfiguration.atDrvrVersNum < 53 then
begin

StdAlert(phNoPhase2);
ExitMacApp;

end;

The interface to TZoneLookup primarily overrides the TPeriodic methods
Activate, Waiting, and DoIt. In addition, it defines several constants, a data type
used in the new AppleTalk calls, instance variables used by TZoneLookup, and the
initialization function IZoneLookup.

d e v e l o p Winter 1991

16

const

{ csCodes for new .XPP driver calls: }
xCall = 246;

{ xppSubCodes: }
zipGetLocalZones = 5;
zipGetZoneList = 6;
zipGetMyZone = 7;

type

{ Offsets for xCall queue elements: }
xCallParam =

packed record
qLink: QElemPtr;
qType: INTEGER;
ioTrap: INTEGER;
ioCmdAddr: Ptr;
ioCompletion: ProcPtr;
ioResult: OsErr;
ioNamePtr: StringPtr;
ioVRefNum: INTEGER;
ioRefNum: INTEGER;
csCode: INTEGER;
xppSubCode: INTEGER;
xppTimeOut: Byte;
xppRetry: Byte;
filler: INTEGER;
zipBuffPtr: Ptr;
zipNumZones: INTEGER;
zipLastFlag: INTEGER;
zipInfoField: packed array[1..70] of Byte;

end;

xCallPtr = ^xCallParam;

const

kXPPTimeOutVal = 3; { Re-try XPP attempt every 3 seconds. }
kXPPRetryCount = 5; { For five times. }
kZonesBufferSize = 578; { Size of buffer for zone names. }
kMaxZones = 100; { Maximum number of zones to handle. }

type

ASYNCHRONOUS BACKGROUND NETWORKING ON THE MACINTOSH Winter 1991

17

TZoneLookup = object(TPeriodic)
fDocument: TLACSDocument; { The document we're looking up for. }
fZoneCount: integer; { How many zones we've found. }
fXPPPBPtr: xCallPtr; { XPP parameter block. }
fZonesBuffer: Ptr; { Input buffer. }
fOurZone: Str32; { The name of our own zone. }
fZones: array [1..kMaxZones] of Str32; { Zone names. }

procedure TZoneLookup.IZoneLookup(aDoc: TLACSDocument;
initialIdle, inactiveIdle, activeIdle: longInt);

{ Initialize the zone lookup object. }

procedure TZoneLookup.Free; override;
{ Free the zone lookup object. }

procedure TZoneLookup.Activate; override;
{ Start a zone list lookup. }

procedure TZoneLookup.Waiting; override;
{ Wait for the zone lookup to complete. }

procedure TZoneLookup.DoIt; override;
{ Process returned zone list. }

end;

INITIALIZATION AND FREEING
During initialization, in IZoneLookup, the current zone list size is cleared out,
emptying the list, and some buffers that are needed for the zone lookup procedure
are allocated:

procedure TZoneLookup.IZoneLookup(aDoc: TLACSDocument;
initialIdle, inactiveIdle, activeIdle: longInt);

{ Initialize the zone lookup object. }

begin
IPeriodic(initialIdle,inactiveIdle,activeIdle);
fDocument := aDoc;
fOurZone := '';
fZoneCount := 0;
{ Allocate memory blocks we'll need later. }
fXPPPBPtr := xCallPtr(NewPtr(sizeof(xCallParam)));
FailNil(fXPPPBPtr);
fZonesBuffer := NewPtr(kZonesBufferSize);
FailNil(fZonesBuffer);

end;

d e v e l o p Winter 1991

18

When the TZoneLookup object is freed, it waits for any asynchronous activity
to complete and then deallocates its buffers. If it didn’t do the WaitForAsync call, an
outstanding operation might try to write something into one of the buffers after it
was deallocated.

procedure TZoneLookup.Free;
{ Free the zone lookup object. }

begin
WaitForAsync;
DisposPtr(Ptr(fXPPPBPtr));
DisposPtr(fZonesBuffer);
inherited Free;

end;

ZONES LIST REQUEST
When the zone lookup process is started in Activate, two actions are taken. First, the
local zone name is obtained and stored for future use. This is done synchronously,
since it shouldn’t take very long. Second, an asynchronous request for a complete
list of zones is issued. The results of the request will be dealt with in DoIt.

procedure TZoneLookup.Activate;
{ Start a zone list lookup. }

var addrBlock: AddrBlock;
ignore: integer;
s: Str255;

begin
{ Let the user know what we're doing. }
fDocument.fStatusWindow.SetStatus(kStatZoneUpdate);
{ Clear out the zone list. }
fZoneCount := 0;
{ Get our zone name. }
with fXPPPBPtr^ do

begin
ioRefNum := xppRefNum; { Driver refNum -41. }
csCode := xCall;
xppSubCode := zipGetMyZone;
zipBuffPtr := @s;
zipInfoField[1] := 0; { ALWAYS 0. }
zipInfoField[2] := 0; { ALWAYS 0. }

end;
{ Send the getMyZone request synchronously (and cross }
{ our electronic fingers it doesn't take long). }

ASYNCHRONOUS BACKGROUND NETWORKING ON THE MACINTOSH Winter 1991

19

if PBControl(ParmBlkPtr(fXPPPBPtr), false) <> noErr then
fState := kPeriodicInactive

else
begin

{ Update the display to reflect any changes. }
if (s <> fOurZone) and (s <> '') then

begin
fOurZone := s;
fDocument.fNewWindow.GetSignature;

end;
{ Now make a getZoneList request. }
with fXPPPBPtr^ do

begin
{ ALWAYS 0 on first call; contains state info on
{ subsequent calls. }
zipInfoField[1] := 0;
{ ALWAYS 0 on first call; contains state info on
{ subsequent calls. }
zipInfoField[2] := 0;
ioRefNum := XPPRefNum;{ Driver refNum -41. }
csCode := xCall;
xppSubCode := zipGetZoneList;
xppTimeOut := kXPPTimeOutVal;
xppRetry := kXPPRetryCount;
{ This buffer will be filled with packed zone
{ names. }
zipBuffPtr := Ptr(fZonesBuffer);
zipLastFlag := 0;

end;
{ Send off the request. }
ignore := PBControl(ParmBlkPtr(fXPPPBPtr), true);
fState := kPeriodicWaiting;

end;
end;

PERIODIC CHECKING
The Waiting method then checks periodically to see if the result has come in or an
error has occurred.

procedure TZoneLookup.Waiting;
{ Wait for the zone lookup to complete. }

begin
if fXPPPBPtr^.ioResult = noErr then fState := kPeriodicActive
else if fXPPPBPtr^.ioResult < noErr then fState := kPeriodicInactive;

end;

d e v e l o p Winter 1991

20

COLLECTING THE RESULTS
Finally, when the result is available, DoIt is called to record the new zones in the
local list. If there were more zones than fit in this message, another asynchronous
call is made, and the state returns to kPeriodicWaiting. Otherwise, the zone lookup
process is finished.

procedure TZoneLookup.DoIt;
{ Process returned zone list. }

var dCount: integer;
dCurr: Ptr;
ignore: OSErr;

begin
{ Cycle through the returned list. }
dCount := fXPPPBPtr^.zipNumZones; { Find out how many returned. }
dCurr := fZonesBuffer; { Put current pointer at start. }
while (fZoneCount < kMaxZones) and (dCount > 0) do { Get each zone. }

begin
fZoneCount := fZoneCount+1;
fZones[fZoneCount][0] := chr(dCurr^);
BlockMove(pointer(ord4(dCurr)+1),

pointer(ord4(@fZones[fZoneCount])+1),dCurr^);
dCurr := pointer(ord4(dCurr) + dCurr^+1);
dCount := dCount-1;

end;
{ If there are more to come, do another request. }
if (fZoneCount < kMaxZones) and (fXPPPBPtr^.zipLastFlag = 0) then

begin
ignore := PBControl(ParmBlkPtr(fXPPPBPtr), true);
fState := kPeriodicWaiting;

end
{ Otherwise, we're all done. }
else fState := kPeriodicInactive;

end;

LOOKING UP NODES: TNODELOOKUP
Finding the NBP names of other LACS systems is handled by class TNodeLookup.
This class uses standard NBP name lookup procedures, and is otherwise similar to
TZoneLookup. Therefore, its implementation is left as an exercise for the reader
(or for the CD-ROM driver, as the full source code can be found on the Developer
Essentials disc). Meanwhile, we will jump straight into the TGossip class.

ASYNCHRONOUS BACKGROUND NETWORKING ON THE MACINTOSH Winter 1991

21

MESSAGE PASSING: TGOSSIP
Being a gossiper (who initiates the communication session) and being a gossipee
(who listens for others who want to communicate with it) are much the same, so
they are implemented as the same class, but with a parameter to IGossip to declare
which case a particular instance is. Two copies of TGossip are instantiated, one to
initiate message-passing sessions over ADSP and one to respond. The TGossip class
looks much the same as the other TPeriodic subclasses:

TGossip = object(TPeriodic)
fDocument: TLACSDocument; { The document we're communicating in. }
fOutgoing: boolean; { Whether this is an outgoing gossiper. }
fDidPull: boolean; { Whether we just did a pull. }
fADSPSocket: integer; { Our socket number. }
fADSP: DSPPBPtr; { The ADSP IO block pointer. }
fCcbPtr: Ptr; { CCB for ADSP. }
fSendQueue: Ptr; { Send queue for ADSP. }
fRecvQueue: Ptr; { Receive queue for ADSP. }
fAttnPtr: Ptr; { Attention pointer for ADSP. }
fADSPData: Ptr; { The data buffer pointer. }
fNTE: ^NamesTableEntry; { Our names table entry. }

procedure TGossip.IGossip(aDoc: TLACSDocument; outgoing: boolean;
initialIdle, inactiveIdle, activeIdle: longInt);

{ Initialize the gossip object. }

procedure TGossip.Free; override;
{ Free the gossip object. }

procedure TGossip.Activate; override;
{ Start a new gossip session (outgoing only). }

procedure TGossip.Waiting; override;
{ Wait for more input or a connection to open. }

procedure TGossip.DoIt; override;
{ Handle new input. }

procedure TGossip.PassiveOpen;
{ Do a passive connection open. }

procedure TGossip.ResetConnection;
{ Reset the connection. }

end;

d e v e l o p Winter 1991

22

We’ll quickly summarize the straightforward methods of TGossip, and go into
detail only on the central DoIt method. Again, full details can be found in the
source code on the Developer Essentials disc.

INITIALIZATION
IGossip allocates buffers and prepares for connections. If this is for incoming
messages (the outgoing parameter is false), IGossip starts up a listen for a new
ADSP connection (by calling PassiveOpen) and registers the system’s name using
NBP. If this object is going to be initiating connections (the outgoing parameter is
true), it simply waits for the first Activate time-out to take action.

INITIATING A CONNECTION
The Activate method is used to initiate a connection with another LACS machine.
The other LACS machine is chosen at random and an ADSP session initiated by
issuing an ADSP active open call. After the connection is open, the rest of the work
is done in DoIt. Note that Activate is never called for instances that are waiting for
incoming connections—they always go straight to the kPeriodicWaiting state since
they’re always waiting for another connection from outside.

TESTING FOR COMPLETION
The method Waiting tests for the completion of the last ADSP request, the result
of which is either an opened connection or a completed data transmission. Whether
the connection was initiated by this object or the other communicating system
depends upon whether this is an incoming or outgoing gossip object. And a data
transmission may be either a send or a receive. (A discussion of how data
transmissions get started comes later.)

THE HEART OF TGOSSIP: DOIT
DoIt is called when a network operation has completed. Initially, that operation is
the establishment of a connection. Once the connection is established, the machine
that initiated it needs to generate the first command to be sent; the machine that did
not initiate the connection needs to start up a receive to obtain that command from
the other node. Once the connection is open and a command is sent and received, a
response must be constructed and sent. All of this is done by DoIt.

While this seems like a lot of functionality to cram into one routine, it isn’t really all
that bad. Because there are no distractions from other aspects of the communication
activity, and because much of the component functionality is provided by other
parts of the system (by TMessage, for example), all the functionality can be included
in one routine without overloading the programmer who is reading, writing, or
maintaining that code.

The following is a slightly simplified copy of TGossip.DoIt. (See the source code on
the Developer Essentials disc for the full implementation.) DoIt decides which of the
possible operations it should perform based on the csCode field of the I/O block.

ASYNCHRONOUS BACKGROUND NETWORKING ON THE MACINTOSH Winter 1991

23

This field tells what operation was last requested (open, read, or write). The csCode
field is effectively used as another state machine within the state machine already in
use and defined by fState. (State machines tend to be very useful in implementing
asynchronous algorithms.)

If the connection just opened, the initiator must find a hot message to spread,
build a “Here’s a new message” command, and start an ADSP write. After the
receiving node reads the command from the connection, the command is passed to
HandleIncomingCommand. That routine builds a reply command, which needs
to be sent via another write. If a write or a non-initiated opening of a connection
just occurred, the receiver starts up an ADSP read.

Most of the real work is done in GetHotMessage, BuildMessage, and
HandleIncomingCommand. GetHotMessage decides what messages to send.
BuildMessage and HandleIncomingCommand implement the message exchange
protocol on top of ADSP. These methods are implemented in other classes of the
system, which know more about those other parts of the application. For example,
BuildMessage is in the class TMessage, which knows all the internal details of a
message object.

procedure TGossip.DoIt;
{ Handle new input. }

var r: TMessage;
p: Ptr;
noGood: boolean;

begin
noGood := false;
{ If this is a session open and we're the initiator... }
if (fADSP^.csCode = dspOpen) and fOutgoing then

begin
{ Get a message to send. }
r := fDocument.GetHotMessage;
{ Decide if we've something to send. }
if r <> nil then

begin
{ Generate the appropriate send request. }
with fADSP^ do

begin
p := fADSPData;
reqCount := r.BuildMessageCommand(p);
dataPtr := fADSPData;
eom := 1;
flush := 1;
csCode := dspWrite;

d e v e l o p Winter 1991

24

end;
{ Send it. }
if PBControl(ParmBlkPtr(fADSP),true) <> noErr then

noGood := true;
end

else noGood := true;
end

{ If this is a completed read... }
else if fADSP^.csCode = dspRead then

begin
{ Handle the incoming command, and build a reply if appropriate. }

with fADSP^ do
begin

reqCount := fDocument.HandleIncomingCommand
(fADSPData,fADSP^.actCount);

dataPtr := fADSPData;
eom := 1;
flush := 1;
csCode := dspWrite;

end;
{ If there's a reply, send it. }
if fADSP^.reqCount > 0 then

begin
if PBControl(ParmBlkPtr(fADSP),true) <> noErr then

noGood := true;
end

else noGood := true;
end

{ Otherwise... }
else

begin
{ Start up a receive. }
with fADSP^ do

begin
dataPtr := fADSPData;
reqCount := kADSPMaxCommand;
csCode := dspRead;

end;
if PBControl(ParmBlkPtr(fADSP),true) <> noErr then

noGood := true;
end;

{ If we're all done, reset the connection. }
if noGood then ResetConnection
{ Otherwise, wait for the results. }
else fState := kPeriodicWaiting;

end;

ASYNCHRONOUS BACKGROUND NETWORKING ON THE MACINTOSH Winter 1991

25

AUTO-SAVING: TDOCUMENTSAVER
It’s also possible to use TPeriodic for activities which are not related to the network
at all, for example, to automatically save a document periodically. Since LACS is
intended to be kept running all the time the Macintosh is on, it can accumulate
a large number of changes to its message database over time. The user could
periodically issue a command to save the data base to disk, but it’s much nicer if
LACS does it automatically. TDocumentSaver provides that functionality.

When the time-out occurs, TDocumentSaver waits for LACS to be in the
foreground and then saves the document to disk. Saving could occur in Activate,
without waiting for the application to be in the foreground. But saving can
potentially take several seconds, much too long an activity for a background task.
On the other hand, the document could be saved asynchronously, one piece at a
time, in the background. But that would have been difficult to implement, since
none of the MacApp existing document read/write structure could be used. It uses
an entirely synchronous implementation.

procedure TDocumentSaver.IDocumentSaver(aDoc: TLACSDocument;
initialIdle, inactiveIdle, activeIdle: longInt);

begin
IPeriodic(initialIdle,inactiveIdle,activeIdle);
fDocument := aDoc;

end;

procedure TDocumentSaver.Activate;

begin
fState := kPeriodicWaiting;

end;

procedure TDocumentSaver.Waiting;

begin
if not gInBackground then fState := kPeriodicActive;

end;

procedure TDocumentSaver.DoIt;

begin
fDocument.Save(cSave,false,false);
fState := kPeriodicInactive;

end;

d e v e l o p Winter 1991

26

INITIALIZING AND LAUNCHING THE PERIODIC OBJECTS
Each of the periodic objects must be allocated and initialized. In LACS, this
happens in the TLACSDocument initialization methods as follows:

const

{ Document saver: }
kDocSaverInitial = 60*60*30; { 30 minutes. }
kDocSaverInactive = 60*60*30; { 30 minutes. }
kDocSaverActive = 30; { 1/2 second. }

{ Zone lookup: }
kZoneLookupInitial = 0; { Right away. }
kZoneLookupInactive = 60*60*60*4; { 4 hours. }
kZoneLookupActive = 30; { 1/2 second. }

{ Node lookup: }
kNodeLookupInitial = 60*8; { 8 seconds. }
kNodeLookupFastInactive = 60*8; { 8 seconds. }
kNodeLookupSlowInactive = 60*60*20; { 20 minutes. }
kNodeLookupActive = 30; { 1/2 second. }

{ Gossipee: }
kGossipeeInitial = 0; { Right away. }
kGossipeeInactive = 60*60 + 13; { 1 minute. }
kGossipeeActive = 30; { 1/2 second. }

{ Gossiper: }
kGossiperInitial = 60*21; { 21 seconds. }
kGossiperInactive = 60*30 + 27; { 30 seconds. }
kGossiperActive = 30; { 1/2 second. }

var ds: TDocumentSaver;
zl: TZoneLookup;
nl: TNodeLookup;
g: TGossip;

.

.

.

ASYNCHRONOUS BACKGROUND NETWORKING ON THE MACINTOSH Winter 1991

27

{ Document saver. }
new(ds);
FailNil(ds);
ds.IDocumentSaver(self,kDocSaverInitial,kDocSaverInactive,

kDocSaverActive);
fDocumentSaver := ds;

{ Zone lookup. }
new(zl);
FailNil(zl);
zl.IZoneLookup(self,kZoneLookupInitial,kZoneLookupInactive,

kZoneLookupActive);
fZoneLooker := zl;

{ Node lookup. }
new(nl);
FailNil(nl);
nl.INodeLookup(self,kNodeLookupInitial,kNodeLookupFastInactive,

kNodeLookupSlowInactive,kNodeLookupActive);
fNodeLooker := nl;

{ Gossipee. }
new(g);
FailNil(g);
g.IGossip(self,false,kGossipeeInitial,kGossipeeInactive,

kGossipeeActive);
fGossipee := g;

{ Gossiper. }
new(g);
FailNil(g);
g.IGossip(self,true,kGossiperInitial,kGossiperInactive,

kGossiperActive);
fGossiper := g;

Note that some of the idle times are slightly odd numbers. This is to keep activities
from becoming synchronized—occurring at the same time—and therefore taking a
noticeable amount of processing time within a particular time period.

USER INTERFACE AND THE INTERNAL DATABASE

The rest of LACS is concerned with the internal message database and with the user
interface.

d e v e l o p Winter 1991

28

The internal database consists of a collection of objects of class TMessage. Each of
these objects contains a message and includes the text of the message, the date it was
created, the date it is to expire, how many times it has successfully been passed on to
other LACS systems, how many times it was unsuccessfully passed on because
the recipient had already heard it, and so forth. The messages are kept in a
TLACSDocument object. Besides holding the message objects, TLACSDocument
knows how to search for hot messages.

The user interface is handled by vanilla MacApp classes such as TStaticText,
TCheckBox, TTEView, and so on. The only special case is in handling the read and
unread message lists. For this, LACS creates the subclasses TTextListView and
TSortedList to provide a new pair of classes that know about each other and
automatically propagate changes between the two paired objects. When a new
object is inserted in TSortedList, it is immediately added to the TTextListView in
the Messages window.

All of these objects are managed by TLACSDocument, which acts as a central
coordinator for the database and message-passing activities of the system. For
example, TLACSDocument includes HandleIncomingCommand, which decides
what actions to take based on an incoming command from an ADSP connection.
As currently implemented, there is only one TLACSDocument active at a time.
However, by combining the active elements of the database and network into a
document object, it is an easy extension to allow multiple simultaneous databases to
be active. This allows for the possibility of parallel sets of LACS systems divided by
topic or security level. It also opens the door to other types of documents supported
by the same application—archiving or gateway functions, for instance.

SUMMARY
The Lightweight Asynchronous Conferencing System (LACS) implements a
distributed database update algorithm in order to spread messages around a local
network using AppleTalk protocols. It is implemented in Object Pascal using
MacApp. In order to accomplish its goals, LACS must implement multiple
asynchronous background activities.

Asynchronous network and background operations tend to be challenging to
implement on the Macintosh. Much of the difficulty involves the inherent problems of
dealing with parallel algorithms—we humans prefer to deal with one thing at a time.

It is possible, however, to greatly reduce the cognitive burden of implementing this
type of algorithm by providing a proper context for the implementation. LACS does
this by creating an abstract superclass in the MacApp environment. Using this
approach, the problem is isolated from other, irrelevant, parts of the application, and
the individual parts of the particular asynchronous activity are clearly broken out.

ASYNCHRONOUS BACKGROUND NETWORKING ON THE MACINTOSH Winter 1991

29

This abstract superclass is called TPeriodic. It implements the generic algorithm
“wait for time out; start asynchronous operation; wait for asynchronous operation to
complete; do something with the results; start over.” The algorithm is implemented
as a state machine, driven by TPeriodic, but with details supplied by TPeriodic’s
subclasses. Specific subclasses may use all or only portions of the state machine.

Using the TPeriodic framework, it becomes quite straightforward to implement
classes for performing zone name lookup, node name lookup, initiating messages,
receiving messages, automatically saving the document to disk, and more. Each
individual function is implemented separately without regard for the other periodic,
asynchronous functions in the system.

In addition to the explanation of the TPeriodic class within this article, it is hoped
that the source code supplied on CD-ROM will serve as an example of how to
implement each of the separate pieces of network functionality listed. Many of them
were taken from example code fragments in the Technical Notes, Sample Code, and
elsewhere, but they are drawn together here into a coherent, working application
and integrated into the MacApp environment.

ACKNOWLEDGMENTS

This program would be roughly half as good as it is if it weren’t for Brian Bechtel.
He provided suggestions, encouragement, testing, evangelism, and the ear the
Notification Manager flashes in the menu bar. Thanks also to Michael Gough, who
pointed me to the article from Xerox PARC, which got me started on this whole
project in the first place. And thanks to our early group of testers, who put up with
a fair number of flaky releases. Of course, all of this was done in the very serious
pursuit of collaborative computing research.

d e v e l o p Winter 1991

Thanks to Our Technical Reviewers
Mary Boetcher, Michael Gough, Kerry Lynn •

30

For information on collaborative computing see
Irene Greif: Computer-Supported Cooperative Work:
A Book of Readings, Margaret Kaufmann Publishers,
Inc., 1988.

For details on the algorithm see
Alan Demers, Mark Gealy, Dan Greene, Carl Hauser,
Wes Irish, John Larson, Sue Manning, Scott Shenker,
Howard Sturgis, Dan Swinehart, Doug Terry, Don
Woods: Epidemic Algorithms for Replicated Database
Maintenance, Xerox PARC Technical Report CSL-89-1,
January 1989.

For information on protocols see
Gursharan S. Sidhu, Richard F. Andrews, Alan B.
Oppenheimer: Inside AppleTalk, Addison-Wesley, 1989.
Inside Macintosh, volume II, chapter 10, “The AppleTalk
Manager,” Addison-Wesley, 1985.
Inside Macintosh, volume V, chapter 28, “The AppleTalk
Manager,” Addison-Wesley, 1988.
Macintosh Technical Note #132, AppleTalk Interface
Update, March 1988.
Macintosh Technical Note #225, Using RegisterName,
February 1989.
Macintosh Technical Note #250, AppleTalk Phase 2 on
the Macintosh, December 1989.

A

Q
Q

A
31

APPLE II Q & A Winter 1991

Q
The Apple IIGS® GS/OS
Reference, page 43, alludes to
“an enhanced ProDOS® 8 QUIT
call, which contains a pathname to
an application to be launched.”
However, I find no mention of this
enhancement in the ProDOS 8
Technical Reference. How do I
use this call?

A
The enhanced ProDOS 8 QUIT call
allows you to quit to another application
if GS/OS or ProDOS 16 has been
booted. The enhanced ProDOS 8
QUIT call requires either of the
following four-count parameter blocks:

Standard
dc.b $00 ;quit type

;normal
dc.w $0000 ;null
dc.b $00 ;null
dc.w $0000 ;null

Extended
dc.b $EE ;quit type

;enhanced
dc.w path ;addr of

;launch
;pathname

dc.b $00 ;reserved
dc.w $0000 ;reserved

path str 'myprog.sys16'

GS/OS patches ProDOS 8 to get
control on a QUIT and launches the
next program if the quit type is $EE.

The code to do this is not part of
ProDOS 8; it doesn’t fit in the kernel,
and it can’t go in the “quit code” because
program selectors swap that out. The
enhanced Quit call, therefore, works
only when GS/OS has been booted.

Q
What’s the difference between
Apple IIGS System Software
versions 5.0.3 and 5.0.4?

A
Apple IIGS System 5.0.4 includes the
following changes:

• TOOL.SETUP for System
Software 3.2 in May 1987 changed
QDStartUp to make the cursor
image handle safe and has now been
changed for ROM 03 as well.

• QuickDraw Auxiliary no longer
returns bogus errors for SeedFill and
CalcMask in pure 640 mode, and a
low-level stack imbalance has been
corrected.

• The ImageWriter® and ImageWriter
LQ drivers now spool to the User
Path if the system was booted over
AppleShare®. A bug concerning
memory allocation has been fixed,
and the drivers now check errors
more robustly.

• The SCSI Manager no longer resets
the SCSI bus when the Manager is
started.

• The AppleShare FST now saves and
restores the correct QuickDraw
direct page locations when shielding
the cursor to draw the AppleShare
arrows.

Kudos to our readers who care enough to
ask us terrific and well thought out questions.
The answers to these puzzles have been
supplied courtesy of our teams of technical
gurus; our thanks to all. Special thanks to Matt
Deatherage, C. K. Haun, Jim Luther, Eric
Soldan, Dan Strnad, and Tim Swihart for the
material in this Q & A column. •

Have more questions? Need more
answers? Take a look at the new developer
technical library on AppleLink (updated weekly)
or the Q & A stack on each Developer CD
Series disc. •

APPLE II

Q & A

A

Q
Q

A
d e v e l o p Winter 1991

32

Q
What do I need to get started with
MPW IIGS?

A
MPW IIGS is a set of tools and
languages that creates Apple II and
Apple IIGS programs and object code
under the Macintosh MPW
development environment. The system
requirements for MPW are detailed in
APDAlog® in the MPW product
description. In addition to MPW and
a system suitable for it, you need the
MPW IIGS Tools package, which
contains necessary development tools
like the linker and other useful tools
such as the resource compiler, object
module dumper, and ProDOS file
duplicator. You will also need the MPW
IIGS language of your choice—currently
assembly, C, or Pascal.

Q
If a task in the Heartbeat Interrupt
Task queue has not yet been
executed (the tick counter has not
yet reached zero), is it possible to
store a zero into the TaskCnt
field to keep the system from ever
executing the task?

A
This will work fine. If you know where
the count word is, then you can set it to
zero to prevent yourself from being
called. The system does not keep this
information in a separate buffer; it
checks the value in the queue header
each pass through the Heartbeat queue,

so if you were at 200 one pass, and
then 0 the next, the system will not be
bothered because it does not remember
the previous value. And because the task
is not executed unless the system itself
decrements the count to zero, storing a
zero into the TaskCnt field is a fine
way to prevent a task from executing.

Q
Can run queue tasks remove
themselves?

A
Yes, run queue tasks can call Desk
Manager RemoveFromRunQ on
themselves without difficulty.

Q
Can QuickDraw II Auxiliary’s
CopyPixels call scale pixel
images beyond maxWidth?

A
No, but you can use the QuickDraw II
SetBufDims call to increase the size
of the QuickDraw buffer to beyond
what was specified for the maxWidth
variable in the QDStartUp routine.

Q
How do I port my Macintosh
HyperCard® stack to run with
HyperCard IIGS?

A
You can use HyperMover™, which is
available on AppleLink® on developer

APPLE II

Q & A

A

Q
Q

A

CDs. HyperMover allows HyperCard
1.2.5 stacks from the Macintosh to run
with little or no modification on the
Apple IIGS with HyperCard IIGS.
HyperMover consists of two stacks,
one for the Macintosh and one for the
Apple IIGS. HyperMover for the
Macintosh creates a folder containing
files that describe the stack you wish to
convert to the IIGS. This folder and the
files it contains are then transferred to
the IIGS via Apple File Exchange or an
AppleTalk network. HyperMover for
the IIGS then rebuilds a stack as close
as possible to the original stack using
the files contained in this folder. The
most noticeable difference between the
original and the rebuilt stack will be in
the graphics. Because the IIGS and the
Macintosh have such different sized
screen displays, the graphics and
objects of the rebuilt stack must be
scaled to fit the IIGS screen, resulting
in some loss of detail.

HyperMover contains several features
designed to make the rebuilt stack as
useful and as close to the original stack
as possible. It can create scaled
representations of Macintosh pictures,
convert Macintosh sounds to IIGS
sounds and Macintosh icons to IIGS
icons, and transfer all HyperCard
objects including backgrounds, cards,
buttons, and fields and their attributes.
However, because HyperMover is a
stack, it cannot convert XCMD/XFCNs
and cannot fix scripts that need specific
Macintosh screen coordinates to
function.

Q
Is HyperTalk the same in
HyperCard IIGS as in Macintosh
HyperCard?

A
Generally, HyperTalk® on the Apple
IIGS is the same as HyperCard 1.2.5
HyperTalk on the Macintosh, but the
HyperTalk on the Apple IIGS has an
extended command set to support the
features available in the Apple IIGS
environment. New commands are
included for setting color properties
of objects, painting properties, and
printing. A new property for buttons
called the family property also has
been added.

Q
Does HyperCard IIGS provide for
extending the HyperTalk
language?

A
Yes. External commands and functions,
which are usually referred to as XCMDs
and XFCNs, or externals as a general
group, are functionally identical in the
Macintosh HyperTalk and Apple IIGS
HyperTalk software environments.
XCMDs and XFCNs provide for
extensions to the existing HyperTalk
language and are called using the same
methods as those for Macintosh
HyperTalk. Modifications have to be
made, however, to move existing source
code for Macintosh externals into the
Apple IIGS environment. HyperTalk
callback procedures and interfaces for
the Apple IIGS differ slightly from
Macintosh HyperTalk.

APPLE II Q & A Winter 1991

33

A

Q
Q

A
Kudos to our readers who care enough to
ask us terrific and well-thought-out questions. The
answers to these puzzles have been supplied
courtesy of our teams of technical gurus; our
thanks to all. Special thanks to Pete "Luke
Skywalker" Alexander, Mark Baumwell, Jeremy
Bornstein, Rich Collyer, Dennis Hescox, Jim
Luther, Guillermo Ortiz, Jim Reekes, Bryan
Stearns, Robert Stobel,

Forrest Tanaka,Vince Tapia, Jon Zap, and Scott
"Zz" Zimmerman for the material in this Q & A
column. •

d e v e l o p Winter 1991

34

Q
How can I determine the size of my
application’s memory partition?

A
It’s really difficult to find the exact
size of the memory partition the
application is running under. Because
there is little that an application can do
to change its partition size (except to
change the SIZE resource and then
force a relaunch), the real concern
would be to find the size of the
available stack and heap. Included in
the application’s partition are the
application parameters, jump table,
application globals, and QuickDraw
globals, the size of which is not easily
determined. The only portions of an
application’s memory use that are
adjustable at run time are the stack and
the heap.

The stack and heap sizes are fixed
within the boundaries of the entire
application partition. Increasing one
decreases the other. There are Memory
Manager calls to change the size of the
heap. To increase the stack size, you
decrease the heap size. If you need to
change the size of your stack or heap,
be sure to do so at the start of your
app, before memory at the end of the
heap is allocated—before calling
MaxApplZone, for sure.

Q
Is it still ok to adjust BufPtr?

A
The Macintosh documentation of
BufPtr recommendations is based on
the Macintosh 128 with 64K ROMs.
MemTop is where the highest
addressable physical RAM is located.
The Macintosh IIci may store memory
used by the video somewhere below
this. The IIci does not have contiguous
memory, and it is not safe to assume
that you can adjust BufPtr based on the
size of installed RAM. You may be
running into the video RAM area used
by the built-in video port.

Another problem will be that MemTop
is different when running under
MultiFinder. Since System 7.0 always
runs MultiFinder, MemTop will be
the top of the application’s partition
and not the physical RAM. In addition,
while running Virtual Memory,
MemTop may be a very large number
such as 16 MB. We no longer
recommend adjusting BufPtr to use
the memory in this area.

Our current recommendation is to use
the system heap. INITs can use the
'sysz' resource to increase the size of the
system heap. If you are using memory
at interrupt time, it should be in the
system heap for virtual memory (VM)
compatibility or held in real RAM with
VM’s HoldMemory call. Memory
above BufPtr will be paged to disk
while running VM.

MACINTOSH

Q & A

A

Q
Q

A

Q
How do penguins know when
it’s safe to go in the water?

A
Penguins in the Antarctic face many
perils, not the least of which are several
species of sea mammals waiting at the
edge of icebergs to nibble on their little
penguin bods when they go in the
water. So, penguins will just wander
around on the edge of an ice floe until
one of them accidentally falls in the
ocean. When that happens all the
penguins will stand by and watch to see
if the fallen penguin gets eaten. If the
penguin comes to harm it’s back to
business as usual on the iceberg. If the
penguin is safe (apparently for a period
of time known only to the other
penguins) then the entire dissimulation
leaps in, hunting for food.

Q
Is the maximum size of a resource
still 32K?

A
No. There used to be a bug in the
64K ROMs that didn’t allow you to
write even multiples of 32K (that is,
32K-64K, 128K-192K). This was fixed
in 128K ROMs. As of 128K ROMs,
the resource size is limited to
“maxlongint” bytes.

Q
How do I write a background-only
application for MultiFinder?

A
A background-only application is
similar to a standard MultiFinder-aware
application except that it performs a
task in the background with no user
interface such as windows or menus.
A background-only application must
not initialize any Toolbox managers; for
example, it must not call InitWindows
or InitMenus. If a dialog needs to be
displayed by a background application,
the Notification Manager should
be used.

Q
I am writing a Chooser PACK
resource. When I change the flags
that control which messages I will
be sent, nothing seems to change.
Why?

A
Chooser caches the flags from your
Chooser PACK the first time it sees
the file. From then on, changes are
ignored until the PACK’s name is
changed, or until the Chooser’s cache
is flushed. To flush the cache, simply
hold down the Command and Option
keys when selecting Chooser from the
Apple menu. When the cache is
flushed, the system will beep.

MACINTOSH Q & A Winter 1991

35
Have more questions? Need more answers?
Take a look at the new developer technical
library on AppleLink (updated weekly) or the Q &
A stack on each Developer CD Series disc. •

A

Q
Q

A

Q
What can I do and not do while
executing in interrupt code?

A
Interrupt code is most commonly used
for I/O completion routines, VBLs,
Time Manager tasks, and deferred tasks.
Contrary to popular belief, the Deferred
Task Manager will run your task at
interrupt level. All code that runs at
interrupt level must follow very strict
rules. The most important rule is that
the code cannot allocate, move, or purge
memory, reference memory manager
structures (that is, HUnlock), or call a
Toolbox routine that would. This
eliminates nearly, if not all, QuickDraw
operations. For a more complete list of
these Toolbox routines, refer to the
Inside Macintosh X-Ref.

Additionally, interrupt code should
avoid accessing a low-memory global
or calling a trap that would access one.
While MultiFinder is running, the
applications’ low-memory globals are
being swapped in and out. Because of
this, the interrupt code cannot rely on
which application’s globals are currently
available. Even if CurApName is
correct, the interrupt routine may be
called while MultiFinder is in the
process of swapping the applications’
globals. This restriction is difficult
to deal with because there is no
documention as to which low-memory
globals are swapped by MultiFinder, nor
which globals are accessed by traps.

A typical example of this problem is
interrupt routines that attempt to
restore A5 by examining CurrentA5.

This low-memory global is valid only
while the current application is running
at non-interrupt time. Thus, the
Macintosh Programmer’s Workshop
(MPW) routine SetCurrentA5 (or
the obsolete SetupA5) cannot be used
at interrupt level. It is necessary to place
the application’s A5 value somewhere it
can be located while in the interrupt
routine. This is documented in
Technical Notes #180 and #208. In fact,
the exact code you need is in #180.

Also, there are interrupt limitations
while System 7 is running under Virtual
Memory. Therefore, it is best to avoid
interrupt code if at all possible. Move
the functionality of the interrupt code
into the application. For example, if you
do require a VBL, limit the code to an
absolute minimum. Also, set a global
flag for the application to check in its
event loop.

Q
Is the maximum size for global and
local data still 32K?

A
Starting with MPW 3.0, the maximum
size for global data in MPW became
larger than 32K, using compiler and
linker options -m and -srt. Local data is
tougher, because local data is allocated
by using the LINK instruction, for
example, LINK A6,#$-380. With this
relative addressing mode, you’re
constrained to the negative side of a
16-bit value for local space, which
translates to 32K. That is, this limit is
basically due to the Motorola processor
architecture.

d e v e l o p Winter 1991

36

MACINTOSH

Q & A

A

Q
Q

A

If you are allocating more than 32K
either globally or locally, you might want
to rearchitect your system to use dynamic
(and theoretically unbounded, especially
on virtual architectures) storage space.

Q
Is it possible to get PAL (Phased
Alternate Lines) timing from the
new 4•8 and 8•24 cards?

A
The 4•8 and 8•24 cards currently
support NTSC (National Television
Standards Committee) output and will
support PAL output as well when the
next ROM revision is put into
production early this year. (The 8•24
GC card currently supports PAL.)

Q
What is a System Error 29? It’s not
in any of the documentation I have
available. One of my applications has
been reported to crash with this error
occasionally.

A
When the Package Manager can’t load
in a PACK resource for any reason, it
calls SysErr. There is a range of system
error codes reserved for the situation in
which the PACK resource couldn’t be
loaded. That range is 17 through 24. So
if it couldn’t load the List Manager
package, which is PACK 0, the Package
Manager adds 0 to 17 and calls SysErr
with a code of 17. If it couldn’t load the
Standard File package, which is PACK 3,
the Package Manager adds 3 to 17 and
calls SysErr with a code of 20.

The problem is, we overflowed our
PACK SysErr range. The Color Picker
is PACK 12. If the Package Manager
couldn’t load in PACK 12, it adds 12 to
17 and calls SysErr with a code of … 29.
And there you have it.

PACKs are loaded into the system heap.
If there’s not enough room in the system
heap for a PACK, the system heap is
expanded and the PACK is loaded in. If
you set your application to take over the
entire application memory space, the
system heap can’t grow anymore. The
GetResource('PACK',12) call that the
Package Manager makes fails: It adds 12
to 17, and calls SysErr with a code of 29.
This could be what’s causing the crashes
in your case.

Q
How can we increase the stack space
allocated by the DA Handler?

A
There is no simple, supported way
to increase the stack space available
to a DA. DAs were designed to
provide easy access to simple tools from
the user’s desktop. As such, the
environment of a DA is relatively
limited. Now, with MultiFinder and
especially with System 7.0, applications
can provide all the functionality of a DA
with none of the limitations. Under
MultiFinder the DA Handler actually
reduces the stack space available to a DA
by about 25 percent. This limitation is
not a problem for applications. If you
need stack space beyond the bounds of
the DA’s environment, we encourage you
to convert your DA to a full application.

MACINTOSH Q & A Winter 1991

37

A

Q
Q

A

Q
Does 32-Bit QuickDraw support
packed PICTs? What’s the technique
for saving packed PICT formats?
What compression schemes are
supported?

A
Color QuickDraw has always supported
packed PICTs. See Inside Macintosh,
volume V, for details on how CLUT
PixMaps are packed. Under 32-Bit
QuickDraw, to pack direct RGB
PixMaps in PICTs, call CopyBits with
the packType field in the source PixMap
set to one of the following constants that
apply to direct RGB PixMaps:

0 default packing
(pixelSize 16 defaults to packType
3 and pixelSize 32 defaults to
packType 4)

1 no packing
2 remove pad byte (32-bit pixels

only)
3 run-length encoding by pixel size

chunks (16-bit pixels only)
4 run-length encoding, all of one

component at the time, one scan
line at a time
(24-bit pixels only)

Scheme 4 will store the alpha channel
also if cmpCount is set to to four.
PackSize is not used and should be
set to zero for compatibility reasons.
See Inside Macintosh, Volume 6, for
complete details.

Q
Is there any way to stop the Dialog
Manager from playing with the
txSize and txFace fields of a
dialog’s grafPort so that I can

draw Geneva 9-point text from
within a userItem proc?

A
Unfortunately, because the Dialog
Manager forgets about your previous
calls to TextFont and TextSize when you
put up your dialog again, you will need
to call TextFont and TextSize every time
your userItem proc is called.

Q
When should the Color Manager be
used and when should the Palette
Manager be used?

A
The Palette Manager is by far the
friendlier and more versatile of the two.
It provides all the functionality you need
to customize and animate the colors in
your application. You shouldn’t ever
need to use the Color Manager unless
you require custom color search and
complement functions. Unless you really
understand the Color Manager in detail,
you are likely to have problems getting
the Color Manager to work in a clean
fashion.

When using the Palette Manager,
applications following the rules will
maintain their respective color
environments safely as windows move
back and forth from foreground to
background, and from one screen to
another. Accomplishing this with the
Color Manager calls is not worth the
effort. For additional information, see
the Palette Manager article in this issue.

d e v e l o p Winter 1991

38

MACINTOSH

Q & A

A

Q
Q

A

Q
I would like to make my fills print
better. Currently, they come out as
72 dpi patterns. Is there a way that
I can make them print at a higher
resolution, but have my patterns still
print as patterns?

A
To make your patterns print at the
printer’s resolution, you need to use
Printing Manager PrGeneral’s
GetRslData and SetRsl opcodes
to get and set the resolution, and you
must scale the pattern to match. Let
me explain.

If we do not scale our patterns up to the
printer’s resolution before print time, we
would get “big chunky” patterns because
the printer driver would need to scale
the patterns on the fly from 72 dpi to its
resolution. Therefore, we use the
“cookie cutter” approach to “place” the
pattern into the object that is being
filled. The size of the “cookie cutter”
(the destination Rect) depends on the
“scaleFactor.” For example, a
“scaleFactor” of 2 will have a destination
rect of 16 x 16. We will then CopyBits
the pattern one square at a time into the
object that is being filled.

You might find the article “Meet
PrGeneral” from the July 1990 issue
of develop useful for describing the
functionality of PrGeneral in greater
detail.

Q
What versions of Apple Color
Printer software work with what
system software versions? Can Apple
Color Printer software distributed
with System 6.0.7 work with System
6.0.5 and earlier versions? I am
distributing LaserWriter® drivers
with modified pgsz resources. I
would like to cut back on the number
of files I need to distribute.

A
The software sent with version 6.0.7 will
work with all other 6.0.x systems. This
should be the rule with most other
LaserWriter printer software as well.
Color has been supported since
LaserWriter driver 6.0, for color depths
of 8 bits or less. Depths greater than 8
bits must be converted before printing.

There really isn’t any simple way to
match up the version of released printer
software with what version of the system
it is compatible. LaserWriter 7.x is
compatible with both System 7 and
System 6. It’s still prerelease software,
however. Do not ship the preliminary
LaserWriter 7.x driver with your
application. You’ll be able to ship the
final LaserWriter 7 driver with your
product as soon as System 7 is final.

MACINTOSH Q & A Winter 1991

39

A

Q
Q

A

Q
How can I use SndPlay to function
asynchronously? It seems to ignore
the async parameter.

A
To use SndPlay asynchronously, you
must have allocated a sound channel
without passing NIL as the chan
parameter. There is one thing to be
aware of in doing this, which often
confuses developers. If the 'snd' resource
being used with SndPlay specifies a
'snth' resource, then you cannot create
the sound channel with a synth. Because
of a Sound Manager bug that has been
present in all releases through System
6.0.7, SndPlay has not worked correctly
for a 'snd' resource specifying a 'snth',
with a user channel initialized with a
'snth'. For example, the following code
will fail:

SndNewChannel(myChan,
sampledSound, init,
@myCallBack);

SndPlay(myChan, sndHdl,
async); {sndHdle is a
sampled sound}

The Sound Manager attempts to link
this 'snth' to the channel with every call
to SndPlay. If the synthesizer has already
been installed, the Sound Manager
attempts to install it again, only this time
as a modifier. The same 'snth' code ends
up being installed more than once in the
channel. If the 'snd' contains 'snth'
information, then SndPlay can be used
once and only once on a channel. A
format 2 'snd' resource is assumed to be
a sampled sound. For format 1, check

the number of snths specified in the
'snd' and then check each one. The
latest version of SoundApp has source
code that does these tests.

This limitation has been fixed in System
7. In System 7, SndPlay can be called
any number of times on a channel. For
older system releases you need to create
and dispose of the channel each time
after calling SndPlay, as in the following
code:

#include <Resources.h>
#include <Sound.h>

#define TRUE 0xFF
#define FALSE 0

main()
{

Handle Sound;
SndChannelPtr chan;
int i;
OSErr err;

Sound = GetResource
('snd', 100);
if (ResError() != noErr

|| Sound == nil)
Debugger();

for (i = 0; i < 3; ++i)
{

chan = nil;
err = SndNewChannel(

&chan, 0, 0, nil);
if (err != noErr)

Debugger();

err = SndPlay (chan,
Sound, FALSE);

if (err != noErr)
Debugger();

d e v e l o p Winter 1991

40

MACINTOSH

Q & A

A

Q
Q

A

err =
SndDisposeChannel(
chan, FALSE);

if (err != noErr)
Debugger();

}
}

A good method for playing sampled
sound asynchronously on any Macintosh
is to create a sound channel and use the
bufferCmd. Find the sound header from
the 'snd ' resource and pass the pointer
to this in the bufferCmd. Use this with
SndDoCommand or SndDoImmediate.
To determine when the sound has
completed so that you can know when
to dispose of the channel, send a
bufferCmd with SndDoCommand (in
order to queue it) after the bufferCmd.
Once your callback procedure is called,
set a global signalling that the sound has
finished. The new Sound Manager
(System 6.0.7 and beyond) supports a
new call, SndChannelStatus, which
will tell you if the channel is playing a
sound or not. Instead of the callback
procedure, you can poll the channel’s
status to determine when to dispose of
the channel. Example code using the
callback procedure can be found in the
DTS sample code SoundApp.

Q
What is the difference between
North and West?

A
North is an absolute direction on the
globe. Once you are on the North Pole
it is impossible to go any “further
North.” West, on the other hand, is a
relative position. No matter where you

are on the surface of the Earth, it’s
always possible to go further West.

Q
I have found that sounds recorded at
good or better quality will not play
with system software prior to 6.0.7.
That’s expected, but the fact that
SndPlay does not return an error
message is not. How can I check to
see if a sound is compressed when
running older system software?

A
There is a byte in the SoundHeader
data structure (and thus in a 'snd'
resource), called “encode.” If the sound
is compressed, the value of this byte will
be $FE, which is defined as the constant
cmpSH in the headers for the Sound
Manager.

Q
Why do golf balls have pocks?

A
As counter intuitive as it may seem
at first, the pocks on golf balls actually
make them fly farther. A golf ball builds
turbulence in front of it as it flies
through the air. If the ball is pocked, the
turbulence “fills” the pockets as the ball
spins, resulting in less resistance and
more flight. 747s have pocks on their
wings for the same reason. Dolphins
presumably have these pocks on their
fins for this purpose as well, but to date
none of them have come out publicly
and said so.

MACINTOSH Q & A Winter 1991

41

A

Q
Q

A

Q
We generate sounds using the Sound
Driver’s four-tone synthesizer. Our
application must run on all
Macintosh computers and all system
software versions starting with
System 6.0. According to an early
version of Inside Macintosh, Volume
VI, the new Sound Manager’s wave-
table synthesizer, which replaces the
Sound Driver’s four-tone synthesizer,
does not perform as expected on some
Macintosh systems. When should we
use the Sound Manager and when
should we use the Sound Driver?

A
The Sound Driver is no longer
supported, as of System 6.0.7. The wave-
form synthesizer in the Sound Manager
released with 6.0.7 does not work
correctly for non-Apple Sound Chip
machines (Macintosh Plus, SE, Classic,
and LC), but this will be fixed in System
7. If you need to use the wave-form
synthesizer for non-ASC machines
running 6.0.7, you could try the Sound
Driver with 6.0.7 on the chance it’ll work
for your purpose. Use the Sound Driver
for non-ASC machines running System
6.0.5 and earlier.

Q
Does stereo work? I was hoping to
init the left and right channels
separately (using initChanLeft
and initChanRight) and send
different sampled sounds out both
channels. But the Sound Manager
documentation says stereo is not

supported. I figured this would be a
“cheap” way of playing two sounds at
the same time, sending them out the
left and right channels and letting
the Macintosh mix them together (or
telling the user to flip the MONO
switch on their stereo).

A
Stereo and mixing multiple channels
are new features of the Sound Manager
released with System 6.0.7. If you create a
mono channel, the sounds come out both
speakers. If you create a left channel, it is
a mono sound coming from only the left
channel. Alternatively, creating a right
channel will only come from the right.
If you create a stereo channel, then
the sound’s left or right position is
determined by the sound header you
use (with the bufferCmd). A stereo sound
is only supported by a compressed or
extended sound header. You cannot
control the left or right panning of a
stereo sound. This is only determined by
the sound header and its interleaved data.
The left or right init params will have no
affect on a stereo channel. True stereo
sounds can only occur by using a stereo
sound header. Two mono channels, one
for the left speaker and one for the right,
could be opened for the affect that most
developers want.

Only the Macintosh SE/30 and the
Macintosh IIsi have both the left and
right sources mixed to the internal
speaker. A stereo sound on all other
Macintosh systems have the left source
only sent to the internal speaker. The
right source is only sent to the external
port, and it isn’t possible to determine if
the external port is in use or not.

d e v e l o p Winter 1991

42

MACINTOSH

Q & A

A

Q
Q

A

Q
Is it necessary to lock a 'snd' resource
that is to be played asynchronously
with SndPlay?

A
Yes, if you are playing a sound resource
asynchronously with SndPlay, then you
have to lock the sound. SndPlay will
restore the handle’s state as soon as the
trap returns to the caller. If the call is
asynchronous, the handle’s state is
restored immediately after calling
SndPlay, before the sound finishes
playing.

Q
When converting stacks from
HyperCard 1.2.5 to 2.0, the default
“fixed line height” setting for text
fields sometimes enlarges the space
required by text and destroys the
layout of the screen. For example,
text tends to disappear outside the
edges of the field, or be misaligned.
Deselecting “fixed line height”
corrects the problem in most instances,
but there can still be a slight
discrepancy in the amount of space
taken up by identical fonts in identical
fields between 1.2.5 and 2.0, such
that layouts are disrupted even if
“fixed line height” is not selected.

A
Inherent in the design of HyperCard
2.0, the way a field is displayed may
be different in HyperCard 2.0 than
in HyperCard 1.2.5. Converting a

stack to HyperCard 2.0 from
HyperCard 1.2.5 may require that
fields be tweaked to appear properly.
Therefore, developers may want to
provide special versions of their stacks
for use with HyperCard 2.0, regardless
of whether features specific to
HyperCard 2.0 are incorporated.

Q
Since I have received HyperCard 2.0
I have converted several stacks for
1.x to 2.0 and have experienced
several problems with scripts that
worked fine in 1.x. I have recently
learned that HyperCard 1.x will
NOT run on System 6.0.7 and later
versions. For HyperCard 1.x users
this results in stacks that cannot be
used in HyperCard 2.0. For
HyperCard stack developers this
presents a nightmare in converting
old 1.x stacks for users into 2.0
stacks. Since encountering these
problems I have changed my scripts
in 1.x so that when converted they
work. What is Apple’s position on
“seamless conversion” of HyperCard
1.x stacks to HyperCard 2.0?

A
Most functioning 1.x scripts will work
without modification under HyperCard
2.0. However, HyperCard 2.0 is a bit
more strict in enforcing some of the
grammar of HyperTalk. For example,
keywords can no longer be used as
variable names under 2.0. Under 1.x,
keywords could be used as variable
names, but the documentation
specifically warned against doing this.

MACINTOSH Q & A Winter 1991

43

7.0

7.0
7.0

7.0

Q
When I use the name and
vRefNum returned from
FindFolder, I always get a fnfErr
from OpenRFPerm. Why?

A
FindFolder returns both a vRefNum
and a DirID. They both must be used
to identify the folder. Instead of using
OpenRFPerm,which takes only a
vRefNum, try HOpenResFile. Avoid
using PBHSetVol! (See Technical
Note #140 for more information.)

Q
We want to use OpenCPicture
for higher resolution, not for color
per se. Can OpenCPicture in
System 7.0 be used with non-Color
as well as Color QuickDraw
Macintosh computers?

A
Yes, with System 7.0, OpenCPicture
can be used to create extended PICT2
files from all Macintosh computers.
Under System 6.0.7 or later, you must
test for 32-Bit QuickDraw before
using OpenCPicture. You can
do this by calling Gestalt with the
gestaltQuickDrawVersion selector.
If it returns gestalt32BitQD or greater,
then 32-Bit QuickDraw is installed.

Q
Can the Communications Toolbox
be used in a DA? InitCM has to be
called and the manual says it
should be called only once.

A
Yes, it is all right to call CTB
Initialization routines from CODE
resources. This includes a DRVR, cdev,
or INIT.

Q
Can I use my 8•24 GC card with
System 7.0ßx? I was told the GC
misbehaves with any and all
nonlinear address mapping, such
as System 7.0 and A/UX. Is this
true? Can this be fixed with
CODE/INIT patch? Is it scheduled
to be fixed in the near future?

A
The 8•24 GC card software version
1.0 is not intended to run in any
environment involving virtual memory
management. A VM-compatible
version of the GC software will be
made available when System 7.0 is
final. Until then, the card can be
used as a video buffer, and System 7.0
preliminary software might run with
VM switched off.

d e v e l o p Winter 1991

Kudos to our readers who care enough to
ask us terrific and well-thought-out questions. The
answers to these puzzles have been supplied
courtesy of our teams of technical gurus; our
thanks to all. Special thanks to Pete "Luke
Skywalker" Alexander, Jim "Im" Beninghaus,
Rich Collyer, Guillermo Ortiz, Forrest Tanaka,
and Scott "Zz" Zimmerman for the material in this
Q & A column. •

Have more questions? Need more answers? Take
a look at the new developer technical library on
AppleLink (updated weekly) or the Q & A stack
on each Developer CD Series disc. •

44

SYSTEM 7.0

Q & A

7.0

7.0
7.0

7.0
SYSTEM 7.0 Q & A Winter 1991

45

Q
Under what System 7.0 and
System 6.0 conditions is it legal to
call the QDError function?

A
Under System 7.0, QDError can be
called from all Macintosh computers.
(System 7.0 supports RGBForeColor,
RGBBackColor, GetForeColor, and
GetBackColor for all Macintosh
computers as well.) On a non-Color
QuickDraw Macintosh, QDError
always returns a “no error.” Under
System 6.0, QDError cannot be used
for non-Color QuickDraw Macintosh
systems.

Q
Why do some CopyBits transfer
modes produce different results for
System 7.0 than for System 6.0?

A
Under System 6.0, the srcOr, srcXor,
srcBic, notSrcCopy, notSrcOr,
notSrcXor, and notSrcBic transfer
modes do not produce the same effect
for a 16- or 32-bit (direct) pixel map as
for an 8-bit or shallower (indexed) pixel
map. With Color QuickDraw these
classic transfer modes on direct pixel
maps aren’t color based; they’re pixel
value based. Color QuickDraw
performs logical operations
corresponding to the transfer mode on
the source and destination pixel values
to get the resulting pixel value.

For example, say that a multicolored
source is being copied onto a black
and white destination using the srcOr
transfer mode, and both the source
and destination are 8 bits per pixel.
Except in unusual cases, the pixel value
for black on an indexed pixel map has
all its bits set, so an 8-bit black pixel
has a pixel value of $FF. Similarly, the
pixel value for white has all its bits
clear, so an 8-bit white pixel has a pixel
value of $00. CopyBits takes each pixel
value of the source and performs a
logical OR with the corresponding
pixel value of the destination. Using
OR to combine any value with 0 results
in the original value, so any pixel value
ORed with the pixel value for white
results in the original pixel value.
Using OR to combine any value with 1
results in 1, so any pixel value ORed
with the pixel value for black results in
the pixel value for black. The resulting
image shows the original image in all
areas where the destination image was
white and shows black in all areas
where the destination image was black.

Take the same example, but this time
make the source and destination 32 bits
per pixel. The direct-color pixel value
for black is $00000000 and the
direct-color pixel value for white is
$00FFFFFF. CopyBits still performs
a logical OR on the source and
destination pixel values, but notice what
happens in this case. Using OR to
combine any source pixel value with the
pixel value for white results in white,
and using OR to combine any source
pixel value with the pixel value for black
results in the original color.

7.0

7.0
7.0

7.0
d e v e l o p Winter 1991

46

The resulting image shows the original
image in all areas where the destination
image was black and shows white in all
areas where the destination image was
white—roughly the opposite of what
you see on an indexed pixel map.

The newer transfer modes addOver,
addPin, subOver, subPin, adMax, and
adMin work consistently at all pixel
depths, and often, though not always,
correspond to the theoretical effect of
the old transfer modes. For example,
the adMin mode works similarly to the
srcOr mode on both direct and indexed
pixel maps. Also, 1-bit deep source
pixel maps work consistently and
predictably regardless of the pixel
depth of the destination even with the
old transfer modes.

Under System Software 7.0, the old
transfer modes now perform by
calculating with colors rather than
pixel values. You’ll find that transfer
modes like srcOr and srcBic work
much more consistently even on
direct pixel maps.

Q
Is the Macintosh printing
architecture different for System 7.0?

A
No changes were made to the printing
architecture for System 7.0. Printer
drivers were revised for System 7.0 to
support TrueType, to be completely
32-bit clean, and to fix bugs, but the
printing architecture remains the same
for System 7.0.

Q
BitMapToRegion does not work as
described in Technical Note #275 for
a PixMap with baseAddr = (NuBus
address). Which calls support
PixMap 32-bit base addressing with
pmVersion = 4?

A
As of System 7.0ß1, BitMapToRgn
cannot handle a bitmap whose base
address is in the NuBus™ address space
or any bitmap that requires 32-bit
addressing. The problem will be fixed
for System 7.0’s final release. As far as
we know, BitMapToRgn is the only
call that doesn’t yet support 32-bit
addressed bitmaps.

Q
Can the LaserWriter 7.x driver be
used with System 6.0?

A
Yes! LaserWriter 7.x is compatible with
both System 7.0 and System 6.0. It’s
still prerelease software, however. Do
not ship the preliminary LaserWriter
7.x driver with your application. You’ll
be able to ship the final LaserWriter 7
driver with your product as soon as
System 7.0 is final. To use the new
LaserWriter driver with an AppleShare
print spooler, you need a special
LaserPrep, available on developer CDs
and on AppleLink.

SYSTEM 7.0

Q & A

THE VETERAN NEOPHYTE Winter 1991

47

I recently started learning Lisp, in order to write
a color icon editor for a project in ACOT

SM

(that’s
Apple Classroom of Tomorrow). The people
behind ACOT are creating an environment in
which kids can build and explore simulated
ecologies, and I wanted to help, but didn’t know
Lisp well enough to be of much use. A color icon
editor was needed, and it seemed like a
straightforward and painless little project to cut
my Lisp teeth on. Hah.

I did learn lots of Lisp, but I spent a disproportionate
amount of time learning the low-level system
interface in Macintosh Allegro Common Lisp (MCL)
and wrestling Color QuickDraw to the ground. For
you CopyBits fans, did you know that CopyBits
always assumes that the destination PixMap is on
the current GDevice? I guess I already knew
this—it’s documented all over the place—but the
implications never affected me before. I needed to
convert a 4-bit PixMap to 8 bits, so hey, let’s use
CopyBits, right? Wrong. The colors got munged
every time, because color mapping kicked in and
the source’s color table didn’t match the GDevice’s.
For the gory details, see Technical Note #277,
especially the section on color mapping. If you like
CopyBits, you’ll love this tech note.

I was curious what others thought of Lisp, so I asked
around a little. Here are some of the responses I got:

Functional languages are cool if you have
good libraries, but all those parentheses are
a pain in the ass.
— Bryan “Beaker” Ressler, C programmer.

It’s the shortest distance between conception
and realization.
— Matthew MacLaurin, self-admitted Lisp

junkie.

I hate it.
— Neil Day, who was forced to write the

Tower of Hanoi iteratively in an
introductory Lisp course.

It’s a great productivity tool, and Common
Lisp provides a rich (though perhaps
Byzantine) programming environment.
—Gregg Williams, technical writer and

sometime Lisper.

(expectant look)
— Natty, my dog.

There are several immediately apparent things
about Lisp that are foreign to people used to C or
Pascal. Data typing is nonexistent unless you want
it: Any variable can hold any type of data at any
time. Functions can be data, too, and can be
passed around all over the place. Everything is
cozily wrapped in parentheses many levels deep
(after a while, this is somehow comforting).
Context is all important and omnipresent. Changes
can be immediately tried out, so for prototyping
(and for those of us who thrive on immediate
gratification) it’s a joy to work in. For those lacking
in discipline, Lisp can help to create a real mess
(of course, any language can do that for you, it’s
just easier in Lisp). Because it is so forgiving, it
encourages my own built-in “middle-out” design

THE VETERAN
NEOPHYTE
LISP, COLOR ICONS,
AND LAYERS

DAVE JOHNSON

d e v e l o p Winter 1991

48

strategy, which in the long run isn’t terribly
efficient, although lots of fun. With a little
self-control, of course, this problem would go
away (left as an exercise for the reader).

Writing Lisp code that is QuickDraw intensive is
kind of a pain at first. MCL provides great libraries
for basic QuickDraw tasks, but if you want to get
fancy, you have to do it yourself. For the icon
editor, I needed lots of little utility routines to do stuff
like find a particular color’s pixel value in the color
table, add a color to a color table, copy a cicn,
change the depth of a cicn, build new cicns from
scratch. Nearly half my code consists of these little
utilities. They’d be needed regardless of the
language, I guess, but writing them in Lisp required
me to learn the low-level system interface much
more thoroughly than I originally intended. This
made me grumble a little, but after I’d gotten over
the initial syntactical hump, low-level access
became transparent and largely effortless.

The other half of the code was much Lispier. I used
the built-in object system (Object Lisp, since I was
using MCL 1.3.2. Now, in MCL version 2.0, it’s
the Common Lisp Object System, or CLOS), and I
found that it successfully isolated me from most of
the grungy system details like events and window
handling (that’s what it’s supposed to do, right?).
I haven’t done a lot of object programming, so I
can’t make incisive comparisons with other object
systems, but I liked it.

The sort of layered, threaded structure of Lisp, and
the continual “level switching” I had to do during
development, got me thinking about how the
machine is getting progressively more distant from
the software I write. It seems that I write software
to live on top of other software, not software to live
on a machine. Object programming is a kind of
layer creation, in that a well-designed object hides
lots of details from the user of the object. MacApp
is a layer (a thick one), HyperCard is also a layer

(a really thick one), the Mac® Toolbox is a layer,
and so on.

More and more, programmers need to be
comfortable stuffed between these layers. Here’s
the hard truth: YOU NO LONGER HAVE TOTAL
CONTROL OF THE MACHINE. Once upon a time,
in the dim and distant past, programmers had
absolute power over every aspect of the computer.
There wasn’t even any such thing as a user! A
programmer was God in a monotheistic universe.
Now there are all sorts of software smoke screens
between your code and the machine itself. You are
no longer God; at best, you are a minor demigod
in charge of shoes, or something. A long time ago I
read a discussion of Macintosh programming, and
one person compared it to sitting in a dark closet
by yourself, and occasionally answering a note that
is passed under the door from the outside. I think
that’s exaggerating a little, but the point is valid.
You no longer need to know everything that’s going
on in the house; you can just be responsible for
your own room. At least, that’s the idea . . .

One persistent problem is that you have to depend
on the reliability of the other code. When my icon
editor was almost done, I found a memory leak.
Two tiny handles were left on the heap after closing
the editor. It took me almost a week (and some
expert help) to track it down to a bug in the MCL
object system. Obviously, this diluted the benefits
gained by using the system.

Overall, though, I really do think that this division
of labor, this layering, is a good thing. It lets people
find the niche they like best, and ignore much of the
rest if they want to. Often it is an incredible time-
saver to learn to use others’ code rather than
learning to do what they did from scratch. Ideally,
the layers will insulate you completely from
irrelevant detail, and allow you to focus on your
task. We’re not there yet, but someday, maybe, you
can actually stop inventing the wheel.

DEVELOPER ESSENTIALS: VOLUME 2, ISSUE 1 Winter 1991

49

Here’s the latest Developer Essentials disc. In addition to develop and
related code, on this issue of the disc you’ll find tools and information we
think every developer should have. These pages highlight what’s on the disc,
but once you start browsing, you’ll also find a few surprises.

To use the disc, you need a CD-ROM drive and the appropriate cables and
conectors. Refer to your CD-ROM drive’s owner’s manual for detailed
information about connecting the drive to your particular machine.

For a Macintosh, you need at least 1 MB of memory, System 4.1 or
later, and Finder 5.4 or later. In addition, you need to copy the Apple CD-
ROM INIT that comes with the CD drive startup disks into your System
Folder. For an Apple II, your SCSI card must have Rev C or later ROM.
With ProDOS, no special setup is required. If you use GS/OS, you must use
the Installer on System Disk 4.0 or later to install the CD-ROM driver on
your startup volume.

DEVELOPER

ESSENTIALS:

VOLUME 2,

ISSUE 1

develop
You’ve read the articles, you’ve bought
the arguments, and now it’s time to write
your own code. The idea is that you
don’t have to waste your time typing the
example programs—just mount this
handy CD-ROM, then copy and paste.
We’ve included develop as well as the
code from each of the articles to help you
avoid typos. So, browse around, take
what you need, and save the rest for a
rainy day. Each new issue of Developer
Essentials will archive all of the back
issues of the journal and the code. So
look forward to one-stop searching
coming soon to a CD-ROM near you.

ATG
The ATG folder contains a sampling of
work being done by ATG researchers.
ATG has projects for software and

hardware, for artificial intelligence and
education research, for human interface
and library science. We’ve tried to bring
you a sampling from all areas. We hope
you’ll find something useful, something
interesting, and maybe even something
amusing.

SpInside Macintosh
Of course the most essential of all
documentation for Macintosh
developers is Inside Macintosh, so
Developer Essentials offers you SpInside
Macintosh, an on-line version of volumes
I-V. SpInside Macintosh combines all five
volumes into a single, searchable
electronic form that is cross-referenced
with the Macintosh Technical Notes
Stack, Q & A Stack, and Human
Interface Notes Stack.

Apple II
Nine folders full of fantastic findings!
Here you’ll find a Programming and
Utilities folder which contains such
goodies as MPW IIGS Interfaces,
and Apple II Getting Down to
Basics. Check the Info Island folder
to find out how to create icons that
the AppleIIGS Finder can recognize.
The Storage folder contains
information on the 5.25 inch Disk
Holder, CDSC Setup, SCSI Utilities,
and SCSI Driver Shell, all for Apple
II. If you need Apple II system
software it’s located in both the Apple
II Systems folder and in the
Apple.II.partition folder. You’ll find
HyperCard in the HyperCard IIGS
folder. Be sure to browse through the
Imaging, AppleShare and Universal
Access folders for even more Apple II
goodies.

DTS Technical Notes
and Sample Code
Could you use a few programming
tips and techniques? (Couldn’t we
all?!) All Apple II and Macintosh
Technical Notes and Sample Code
programs are here for your
reference. Technical Notes are
updates to existing technical
documentation, useful hints and
tips, and special coverage of
technical topics. Included as well are
Human Interface Notes which will
help you develop uniform user
interfaces in Apple II and Macintosh
applications. In the Interim Toolbox
Docs folder you’ll find the World
Wide Guide to System Software
including release notes. This folder
also contains the Sound Manager if
you want your application to be able
to create, modify, and play sounds.

Other latest and greatest
development information can be
found in the Misc Tech Docs folder.
One of these is Learning to Drive
which is a detailed description of the
Printing Manager: a guide to
printing on the Macintosh. Finally,
look in the Apple Publications
folder to find an Apple Publications
Style Guide and Glossary.

Macintosh Technical Notes Stack
This HyperCard stack incorporates
all of the latest Macintosh Technical
Notes into a single on-line source,
which is cross-referenced with
SpInside Macintosh, Q & A Stack,
and the Human Interface Notes
Stack.

Macintosh Q & A Stack
Got a tough development question?
Try the Q & A Stack, which is a
collection of the most frequently
asked questions DTS receives from
developers. Organized by subject, this
stack answers the questions within
and includes cross-references to
SpInside Macintosh and the Macintosh
Technical Notes Stack.

International System Software
Developer Essentials includes all the
latest international versions of
Macintosh system software. In
addition, look for KanjiTalk Toolkit,
KanjiTalk 6.0 Docs, and Taiwan
Chinese Font Option Kit. (You must
have a Macintosh to run DiskCopy
and create floppy disks from these
images.) Explore!

International HyperCard
Need the latest version of
HyperCard? Look no further.

Developer Essentials includes the
latest international versions of this
“software erector set” in DiskCopy
image format.

U.S. SystemSoftware/HyperCard
Here you will find the versions of
system software from 0.1 to 6.0.5
which you can copy right to a floppy
using DiskCopy. With access to
these versions of system software,
you can have compatibility with
applications written under different
versions. In addition, look for
HyperCard U.S. versions 1.2.2,
1.2.5, and 2.0 all of which come
complete with an idea stack. Try
one! Have you ever wondered how
many gills there are in a pint? Find
the answer in the idea stack.

Programming
No, we won’t do it for you, but we’ll
give you some tools. HyperCard
XCMDs (pieces of code used to
extend HyperCard functionality),
MPW Interfaces & Libraries 3.1,
and DefProcs (modules of code for
system functionality) are included
for your reference.

Essential Utilities
Do you need quick access to either
TeachText 1.2 or Apple DiskCopy
4.1? Look here!

Now you know about some of the
headliners in Developer Essentials, but
you should take some time to browse
the disc and see what else you might
discover. We’ll be adding more as
Developer Essentials evolves, and we
hope you agree that these are tools
no developer should be without.

d e v e l o p Winter 1991

5050

SCANNING FROM PRODOS Winter 1991

51
MATTHEW GULICK According to his business
cards, Matt Gulick is an all-around SCSI (say it
out loud) guy—who hates to shave and refuses to
wear shoes except when meeting with someone
with a title of VP or higher. He dearly loves the
strict dress code, highly regimented working
hours, and totally controlled environment at
Apple. His career here was preordained by his
being “genetically defective at birth.”

This condition first visibly manifested itself at age
12 when he began reading computer punch
cards for fun. He did temporarily buck his
computer industry destiny by studying pre-vet
medicine at Brigham Young University. However,
after college he got back on track by working as
an “electronic stuff” sales rep, and then he
programmed for ParaMIS. Now he feels he’s
running the perfect scam: getting paid to play

MATT GULICK

This article shows just how easy it is to include support for scanner
hardware in your application program. With just a little effort, you
can add significant functionality to your program.

In this article, we explore using the Apple Scanner (a flatbed scanner) and the
Apple II High-Speed SCSI Card with either an Enhanced Apple IIe computer or
an Apple IIGS computer running the ProDOS-8 operating system. (A future article
will cover GS/OS.) The concepts presented here can be used for any scanner that
can be connected to an Apple IIe or Apple IIGS via the Apple II SCSI card.

For this article, we limit our discussion to the graphics modes available on the Apple
IIe (HiRes and Double HiRes modes). These modes are more limited in resolution
and color generation than the Super HiRes mode available on the IIGS, but they
allow our sample program to run on most of the current Apple II family of systems
in use today. We focus on 1-bit-per-pixel halftone and line art images. In so doing,
we are able to display the data on the screen easily.

PLAYING HIDE-AND-SEEK WITH THE SCANNER
...98, 99, 100. Ready or not, here we come. Under the ProDOS-8 operating system,
we don’t have access to the loaded drivers that have been written for the GS/OS
environment. Since the scanner is a character device, data is returned in bytes rather
than in blocks. ProDOS-8 can’t help us read from character devices, so we need to
walk the slots looking for the card we want and then talk to the card directly to find
the device we want.

APPLE HIGH-SPEED SCSI CARD, WHERE ARE YOU?
We must first find which slot the high-speed SCSI card is in. We start at slot 7 and
work our way down. In the following code segment, we look for a SmartPort device
in the current slot. If one is found, we must determine if it is a SCSI card that
supports extended SmartPort calls. Finally, we need to make sure that this is the
type of card we want. In other words, “Is this card from a vendor whose command
set I understand?” See Code Sample 1.

SCANNING

FROM

PRODOS

;***
;
; CODE SAMPLE 1
;
; In this first code segment, we walk the slots starting
; at slot 7, looking first for a card of any kind. Once
; found, we check the ID bytes for a SmartPort card.
; Once found, we check the ID Type byte to see if it is
; a SCSI card. If the card passes all these tests, we
; then issue a Device $00 Status $00 call to further
; ensure that this is the Apple II High-Speed SCSI Card.
;
;***

find_card
;
; Save the current Zero
; Page values before
; using them.
;

lda <My_ZPage
pha
lda <My_ZPage+1
pha

;
; Start at slot 7.
;

lda #slot_7
sta <My_ZPage+1 ;Zero Page
sta slot+1 ;For Safe keeping
stz <My_ZPage
stz slot

;
; Is it a SmartPort card?
;

@chk_smart ldy #Blk_sigl
lda (My_ZPage),y ;Block_device Signature Byte
cmp #$20 ;#1 = $20
bne @next_slot

ldy #Blk_sig2
lda (My_ZPage),y ;Block_device Signature Byte
bne @next_slot ;#2 = $00

with computers. A member of the Dr. Demento
Fan Club (DDFC), he fears his wife will sue him
for dementing his four children, who only know
the Weird Al versions of song lyrics. •

d e v e l o p Winter 1991

5252

SCANNING FROM PRODOS Winter 1991

53

ldy #Blk_sig3
lda (My_ZPage),y ;Block_device Signature Byte
cmp #$03 ;#3 = $03
bne @next_slot

ldy #SPort_sig
lda (My_ZPage),y ;SmartPort Signature Byte
bne @next_slot ;#1 = $00

;
; We have a SmartPort
; device. Is it SCSI with
; Extended SmartPort?
;

ldy #SPort_ID
lda (My_ZPage),y
and #Ext_SPort+\

SCSI
cmp #Ext_SPort+\

SCSI
bne @next_slot

;
; Is it an Apple II
; High-Speed SCSI Card?
;

jsr is_it_appl
bcc @exit

;
; Check the next slot.
;

@next_slot lda <My_ZPage+1
dec a
sta <My_ZPage+1
sta slot+1
cmp #slot_1
bge @chk_smart
lda #No_dev ;No Device Error

;
; Clean exit
;

@exit tax
pla

sta <My_ZPage+1
pla
sta <My_ZPage
txa

cmp #$01 ;Set Carry if Non-Zero.
rts

;
; This routine determines
; if the card is the new
; high-speed SCSI card.
;

is_it_appl ldy #$ff
lda (My_ZPage),y
clc
adc #$03 ;Set SmartPort Entry Address.
sta card_ntry

lda <My_ZPage+1
sta card_ntry+1

jsr call_card
dc.b $00 ;Status Call Command Number
dc.w stat_list1

;
; Check the results.
;

lda stat_data+2 ;Low Byte of Vendor ID
cmp #$01 ;Must be $01
bne @non_apple

lda stat_data+3 ;High Byte of Vendor ID
bne @non_apple ;Must be $00

lda stat_data+4 ;Low Byte of Version
bne @non_apple ;Should be Null

lda stat_data+5 ;High Byte of Version
bne @non_apple ;Should be Null

d e v e l o p Winter 1991

54

SCANNING FROM PRODOS Winter 1991

55

clc ;Acc. 0 by previous LDA
bra @done

@non_apple lda #No_dev ;Device not found

sec
;
; Restore ZPage.
;

@done pha
php
lda slot
sta <My_ZPage
lda slot+1
sta <My_ZPage+1
plp
pla
rts

slot dc.w $0000

;***

call_card jmp (card_ntry)

card_ntry dc.w $0000

;***

stat_list1 dc.b $03 ;PCount = 3
dc.b $00 ;Device = Card
dc.w stat_data ;Data returned here
dc.b $00 ;Get Host Status Call

;***

stat_data dcb.b 64,0 ;Our Buffer

;***

FINDING THE SCANNER IN A HAYSTACK
Now that we’ve found the card, or at least a card (there may be more than one), we
need to ask the card, politely of course, if it has seen the scanner and if so, where.
See Code Sample 2.

“Excuse me SCSI card, we’re taking a census and would like to ask you a few
questions if you don’t mind. How many devices live at this slot? I see, and are any of
them by chance character devices? Hmmm, too bad. I’ll try the next slot. Sorry to
bother you, and thank you for your time.”

. . . a few slots later . . .

d e v e l o p Winter 1991

56

The scanning process involves five steps for your
application, described briefly below. For general
information about scanner technology and terminology,
see the Apple Scanner Reference.

1. Initialize the scanner parameters
You must set the scanner parameters before you start a
scan. These parameters determine how much space the
image needs.

Use these commands: MODE SENSE ($1A)
MODE SELECT ($15)
SEND ($2A)
DEFINE WINDOW

PARAMETERS ($24)

2. Define an image buffer
The image buffer is free memory within the computer
system that holds the bitmap image returned by the
scanner. The size of the buffer dictates the amount of
data you can retrieve from the scanner and thus the size
of the image. If an image is larger than the available
free memory, you can spool it to disk for later retrieval.

3. Start the scan
After you set the parameters, you can issue a scanner
command to start scanning. When the scanner receives
this command, it scans the image and places it in its
internal memory.

Use this command: SCAN ($1B)

4. Request the scanned data
You must read the image from the scanner as it is placed
in the scanner’s internal memory. Because the scanner’s
memory can hold only a small portion of the image
being scanned, and because you must read the data to
allow the scan to continue, you should poll the
scanner promptly.

Use these commands: GET DATA STATUS ($34)
READ ($28)

5. Save the image to a file
You can save the data in a number of formats: HiRes
and Double HiRes for the Apple II family, Super HiRes
for the Apple IIGS, and PICT or any other Macintosh
image format. You can also store the data in other
formats, such as GIF. The choice is yours.

THE SCANNING PROCESS

SCANNING FROM PRODOS Winter 1991

57

“Hi, we’re taking a poll and would like your response to a few short questions. How
many devices live at this slot? That many, great. Are any of them character devices?
Getting warmer. May we come in to talk to them? Thank you.”

;***
;
; CODE SAMPLE 2
;
; In this code segment, we walk the unit numbers from the
; SCSI card starting at unit 2 and going to unit 0 to
; get the actual unit number count. Once this is
; done, we start at unit 1 and walk forward until we
; find the scanner.
;
;***

find_scanr
;
; First we issue a
; Status call to device
; number 2. This call
; forces the card to
; build its tables if it
; has not yet done so.
;

lda #$02
sta dev_num2
stz stat_code2

jsr call_card
dc.b $00 ;Status Call Command Number
dc.w stat_list2
bcs @error

;
; Now call unit 0 to
; find out the total
; device count.
;

stz dev_num2
jsr call_card
dc.b $00 ;Status Call Command Number
dc.w stat_list2
bcs @error

lda stat_data2 ;Get the Total Device
sta dev_count ;Count.

lda #$03 ;Set up for DIB Status
sta stat_code2 ;calls.

@loop lda dev_num2 ;First time we increment
cmp dev_count ;a zero giving a device
bge @error ;number of 1.

inc dev_num2
jsr call_card
dc.b $00 ;Status Call Command Number
dc.w stat_list2
bcs @error

lda d_type
cmp #$08 ;Is it Type = Scanner?
bne @loop ;No

lda d_stype
cmp #$A0 ;Subtype = $A0?
bne @loop ;No

;
; Scan string is a Pascal
; string (a length byte
; followed by ASCII). We
; want to make sure that
; both the length and the
; text in 'scan_str' match
; the data returned in
; 'id_str_len' and

'id_str'.
;

ldx id_str_len
@str_loop lda id_str_len,x

cmp scan_str,x
bne @loop
dex
bne @str_loop

lda dev_num2 ;We have our scanner.
sta scan_dnum
lda #No_Err
clc
rts

d e v e l o p Winter 1991

58

SCANNING FROM PRODOS Winter 1991

59

@error lda #No_dev ;Device not found.

sec
rts

;***

scan_str dc.b 'APPLE SCANNER ';4 Spaces between
;1 Space after

dev_count dc.b $00

;***

scan_dnum dc.b $00 ;Scanner Device Number

;***

stat_list2 dc.b $03 ;PCount = 3
dev_num2 dc.b $00 ;Device number

dc.w stat_data ;Data returned here
stat_code2 dc.b $00 ;Status Code

;***

stat_data2 ;Our Buffer. Used over.
d_stat dc.b $00 ;Device Status Byte
blk_low dc.b $00 ;Block Count (Low)
blk_mid dc.b $00 ;Block Count (Mid)
blk_hi dc.b $00 ;Block Count (High)
id_str_len dc.b $00 ;ID String Length
id_str dcb.b 16,$00 ;ID String (16 Bytes)
d_type dc.b $00 ;Device Type
d_stype dc.b $00 ;Device Subtype
d_version dc.w $00 ;Version Word

;***

SCANNING FOR ‘STILL LIFE’ FORMS, CAPTAIN
Now that we’ve found the scanner, we’re ready to plant our thoughts in it. We do
this by sending a few commands to the scanner, telling it what type of image we
expect and what the scanner should do with the image before transferring it to us.

WE ARE ONE—OUR THOUGHTS ARE YOUR THOUGHTS
First, we send the scanner the halftone filter we want to use; then we set our scan
window.

Halftone filter. Since we’re going to do a halftone scan in our example, we issue a call
to set the halftone filter. Note that we don’t need to set this halftone filter if we choose
to use one of the default filters or if we are going to scan in Line Art mode.
A halftone filter is nothing more than a defined threshold for each pixel of a 4 by 4
block. As the image under the mask changes intensity, the filter causes more or fewer
of the dots to be black; the rest of the dots are white. The 4 by 4 block then becomes
darker or lighter depending on the number of dots that are set to white within it,
simulating gray tones even though our graphic mode knows only black and white.

Setting the halftone filter is easy; picking the filter pattern that best suits your needs
is harder. Use one of the built-in patterns unless you have a better one. We use a
simple Bayer type filter for this example. See Figure 1 and Code Sample 3.

Figure 1
Simple Bayer Pattern

;***
;
; CODE SAMPLE 3
;
; In this code segment, we issue an Apple Scanner SEND
; command by using the Apple SCSI Card Generic SCSI
; call ($2B). By so doing, we can send our halftone
; filter to the scanner.
;
;***

d e v e l o p Winter 1991

60

$08

$C8

$38

$F8

$88

$48

$B8

$78

$28

$E8

$18

$D8

$A8

$68

$98

$58

0

12

3

15

8

4

11

7

2

14

1

13

10

6

9

5

SCANNING FROM PRODOS Winter 1991

61

htone_filter

;
; Issue the call.
;

lda scan_dnum
sta dev_num3

jsr call_card
dc.b $04 ;Control Call Command

Number
dc.w cmd_list3
rts

;***

cmd_list3 dc.b $03 ;PCount = 3
dev_num3 dc.b $04 ;Device number

dc.w filter_data ;Pointer to data
dc.b $2B ;Control Code

;***

filter_data ;Our Data
dc.w 24 ;Total Length of Parms
dc.l send_fltr ;CDB Pointer (Long)
dc.l DCData3 ;DCMove Ptr (Long)
dc.l $00000000 ;Rqst Sense Ptr (Long)
dc.b $00 ;Reserved
dc.b $00 ;SCSI Status
dc.b $00 ;Command Count
dc.l $00000011 ;Trans Count (Long)
dc.b $00 ;DMA Mode
dc.l $00000000 ;Reserved (Long)

;***

send_fltr dc.b $2A ;Scanner SEND Command
dc.b $00 ;Reserved
dc.b $02 ;Transfer Type
dc.b $00 ;Reserved
dc.b $00 ;Reserved
dc.b $02 ;Transfer ID Byte
dc.b $00 ;Reserved
dc.b $00 ;Transfer Length (High)
dc.b $11 ;Transfer Length (Low)
dc.b $00 ;Reserved

;***

DCData3 dc.l send_data ;Scanner SEND Data Ptr
dc.l $00000011 ;Transfer Count
dc.l $00000000 ;Offset
dc.l $00000000 ;Reserved

dc.l $00000000 ;DCStop
dc.l $00000000 ;Reserved
dc.l $00000000 ;Reserved
dc.l $00000000 ;Reserved

;***

send_data dc.b $44 ;4 X 4 Matrix Size
dc.b $08 ;Pel 0
dc.b $88 ;Pel 1
dc.b $28 ;Pel 2
dc.b $A8 ;Pel 3
dc.b $C8 ;Pel 4
dc.b $48 ;Pel 5
dc.b $E8 ;Pel 6
dc.b $68 ;Pel 7
dc.b $38 ;Pel 8
dc.b $B8 ;Pel 9
dc.b $18 ;Pel 10
dc.b $98 ;Pel 11
dc.b $F8 ;Pel 12
dc.b $78 ;Pel 13
dc.b $D8 ;Pel 14
dc.b $58 ;Pel 15

;***

d e v e l o p Winter 1991

62

SCANNING FROM PRODOS Winter 1991

63

Our scan window. Now that the scanner knows what halftone filter to use, we
need to describe the scan window through which we’ll view the document. Because
we’re using one of the Apple IIe graphics modes, our window will be fairly small. At
75 dpi in HiRes mode, or 150 dpi in Double HiRes mode, our window is about 3.75
inches across.

For the vertical screen, we have 192 pixels. At 75 dpi, our window is about 2.5 inches
tall.

By using 75 dpi for HiRes and 150 dpi for Double HiRes, we can maintain a good
aspect ratio. This allows us to display an image with minimum distortion.

In our example we use Double HiRes, so we first set the resolution for the X axis to
150 dpi and for the Y axis to 75 dpi. Then, we set our scan window’s upper-left
corner to absolute zero. See Code Sample 4.

;***
;
; CODE SAMPLE 4
;
; In this code segment, we issue an Apple Scanner
; DEFINE WINDOW PARAMETERS command by using the Apple
; SCSI Card Generic SCSI call ($2B). This command
; defines the area of the scanner glass we want to scan.
;
;***

def_window
;
; Issue the call.
;

lda scan_dnum
sta dev_num4

jsr call_card
dc.b $04 ;Control Call Command Number
dc.w cmd_list4
rts

;***

You should let users adjust the settings for
Brightness, Threshold, and Contrast so they can
customize the scan to the type of image being
scanned (black and white or color; printed page
or photo). If you let users choose Line Art or
Grayscale, they can also optimize the scan for
text or for an image. •

cmd_list4 dc.b $03 ;PCount = 3
dev_num4 dc.b $00 ;Device number

dc.w def_wndo ;Pointer to data
dc.b $2B ;Control Code

;***

def_wndo ;Our Data
dc.w 24 ;Total Length of Parms
dc.l def_wnd_cmd ;CDB Pointer (Long)
dc.l DCData4 ;DCMove Ptr (Long)
dc.l $00000000 ;Rqst Sense Ptr (Long)
dc.b $00 ;Reserved
dc.b $00 ;SCSI Status
dc.b $00 ;Command Count
dc.l 8+40 ;Trans Count (Long)
dc.b $00 ;DMA Mode
dc.l $00000000 ;Reserved (Long)

;***

def_wnd_cmd dc.b $24 ;Scanner Define
Window

;Parameters Command
dc.b $00 ;Reserved
dc.b $00 ;Reserved
dc.b $00 ;Reserved
dc.b $00 ;Reserved
dc.b $00 ;Reserved
dc.b $00 ;Transfer Length (High)
dc.b $00 ;Transfer Length (Mid)
dc.b 8+40 ;Transfer Length (Low)
dc.b $80 ;Apple Bit

;***

DCData4 dc.l wndo_data ;Scan Window Data Ptr
dc.l 8+40 ;Transfer Count
dc.l $00000000 ;Offset
dc.l $00000000 ;Reserved

dc.l $00000000 ;DCStop
dc.l $00000000 ;Reserved
dc.l $00000000 ;Reserved
dc.l $00000000 ;Reserved

d e v e l o p Winter 1991

64

SCANNING FROM PRODOS Winter 1991

65

;***
; NOTE: Remember that all values longer than 1 byte
; are in reverse order from native 65xxx code.
;***

wndo_data dcb.b 6,$00 ;Reserved
dc.b $00 ;Transfer Length (High)
dc.b 40 ;Transfer Length (Low)

dc.b $01 ;Window Identifier
dc.b $00 ;Reserved

dc.b $00 ;X Resolution (High)
dc.b 150 ;X Resolution (Low)

dc.b $00 ;Y Resolution (High)
dc.b 75 ;Y Resolution (Low)

;
; We will use the corner as
; our upper-left position.
; This is at coordinate 0,0.
;

dc.b $00 ;Upper Left X (High)
dc.b $00 ;Upper Left X (Mid High)
dc.b $00 ;Upper Left X (Mid Low)
dc.b $00 ;Upper Left X (Low)

dc.b $00 ;Upper Left Y (High)
dc.b $00 ;Upper Left Y (Mid High)
dc.b $00 ;Upper Left Y (Mid Low)
dc.b $00 ;Upper Left Y (Low)

;
; Width is defined as the number
; of 1/1200-inch increments on
; the horizontal axis; must be on
; a byte boundary for both the
; start and end points. We will
; set for 4 inches and drop the
; extra.
;

dc.b $00 ;Width (High)
dc.b $00 ;Width (Mid High)
dc.b 4*1200/256 ;Width (Mid Low)
dc.b 4*1200 ;Width (Low)

;
; Length is defined as the number.

; of 1/1200-inch increments on
the

; vertical axis. We want ≈ 2-1/2
; inches (or 3072 increments).
;

dc.b $00 ;Length (High)
dc.b $00 ;Length (Mid High)
dc.b 3072/256 ;Length 2.56*1200 (Mid Low)
dc.b 3072 ;Length 2.56*1200 (Low)

dc.b $80 ;Median Brightness
dc.b $80 ;Median Threshold
dc.b $80 ;Median Contrast
dc.b $01 ;Image Composition (Halftone)
dc.b $01 ;Bits per Pixel
dc.b $00 ;Halftone Mask Always $00 (High)
dc.b $02 ;Downloaded Mask Pattern (Low)

dc.b $03 ;Padding Type
dcb.b 2,$00 ;Reserved
dc.b $00 ;Compression Type (None)
dcb.b 7,$00 ;Scanner Ref. is wrong

; should be 7,
; not 5.

;***

ENGAGE SCANNER
After telling the scanner how to scan, we need to tell it to start scanning.
See Code Sample 5.

;***
;
; CODE SAMPLE 5
;
; This code segment issues an Apple Scanner SCAN
; command by using the Apple SCSI Card Generic SCSI
; call ($2B). This starts the actual scanning.
;
;***

d e v e l o p Winter 1991

66

SCANNING FROM PRODOS Winter 1991

67

start_scan
;
; Issue the call.
;

lda scan_dnum
sta dev_num5

jsr call_card
dc.b $04 ;Control Call Command Number
dc.w cmd_list5
rts

;***

cmd_list5 dc.b $03 ;PCount = 3
dev_num5 dc.b $00 ;Device number

dc.w scan_cmd ;Pointer to data
dc.b $2B ;Control Code

;***

scan_cm ;Our Data
dc.w 24 ;Total Length of Parms
dc.l do_scan ;CDB Pointer (Long)
dc.l DCData ;DCMove Ptr (Long)
dc.l $00000000 ;Rqst Sense Ptr (Long)
dc.b $00 ;Reserved
dc.b $00 ;SCSI Status
dc.b $00 ;Command Count
dc.l $00000001 ;Trans Count (Long)
dc.b $00 ;DMA Mode
dc.l $00000000 ;Reserved (Long)

;***

do_scan dc.b $1B ;SCAN
;Parameters Command

dcb.b 3,$00 ;Reserved
dc.b 1 ;Transfer Length (Low)
dc.b $00 ;Wait and Home Bits = 0

;***

DCData5 dc.l window_ID ;Scan Window ID Ptr
dc.l 1 ;Transfer Count
dc.l $00000000 ;Offset
dc.l $00000000 ;Reserved

dc.l $00000000 ;DCStop
dc.l $00000000 ;Reserved
dc.l $00000000 ;Reserved
dc.l $00000000 ;Reserved

;***

window_ID dc.b $01 ;Window Identifier

;***

ENERGIZING!
We can get data from the scanner in two ways. We could get it all at once and then
manipulate it to go on the screen. In our example, we would need a buffer with
115,200 pixels or 14,400 bytes for the data: (4.0 inches * 150 dpi horizontally) *
(2.56 inches * 75 dpi vertically).

To save the amount of RAM our program uses, however, we set up a buffer large
enough for only one line; then we read each line from the scanner and display it
until the entire image is on the screen. See Code Sample 6.

The data returned by the scanner is 8 pixels per byte. Bit 7 is the left-most pixel and
bit 0 is the right-most pixel; a value of 1 means a black dot in the image. In the
Apple II HiRes mode, we have 7 pixels per byte. Bit 0 is the left-most pixel and bit 6
is the right-most pixel; a value of 1 means a white dot. Because the formats are
different, the program must convert the returned data, which it does as it goes,
using code shown in Code Sample 6.

;***
;
; CODE SAMPLE 6
;
; In this code segment, we issue a series of calls to
; the Apple Scanner by using the Apple SCSI Card Generic
; SCSI call ($2B). We first issue a GET DATA STATUS
; call to see if there is enough data. Then we read
; in a single scan line with a READ call. The data is
; then converted and placed in a video buffer.
;
;***

d e v e l o p Winter 1991

68

SCANNING FROM PRODOS Winter 1991

69

get_data
stz scan_line ;Init the scan line to 0.

;
; Issue the call.
;

lda scan_dnum
sta dev_num6
sta dev_num65

@get_data2 jsr call_card
dc.b $04 ;Control Call Command Number
dc.w cmd_list6
bcs @out

;
; Is there enough data?
; Enough data = 1 scan
; line of 4 inches at 150
; dpi (or 600 pixels). At
; 8 pixels per byte, the
; data will be padded to
; 75 bytes.
;

lda scan_data
bne @have_line
lda scan_data+1
bne @have_line
lda scan_data+2
cmp #rqst_cnt ;Decimal 75
blt get_data

;
; We have the data. Read
; it.
;

@have_line jsr call_card
dc.b $04 ;Control Call Command Number
dc.w cmd_list65
bcs @out

;
; Now we need to invert
; the data.
;

lda #80 ;80 bytes/line for Double HiRes

sta byte_count
stz byte_index

@loop_1 lda #$07
sta seven ;Pixels/byte

@loop_2 ldx #rqst_cnt-2
asl raw_image+\
rqst_cnt-1 ;Shift bits out the top to

@loop_3 rol raw_image,x :the next byte 1 at a time
dex
bpl @loop_3
ldx byte_index ;Shift the last bit into
ror screen,x ;this byte. This reverses the
dec seven ;bit ordering and takes 8 bits
bne @loop_2 ;per byte down to 7.
lsr screen,x
inc byte_index
dec byte_count
bne @loop_1

;
; Move data to scan line.
;

ldx scan_line
jsr on_screen
inc scan_line
bra @get_data2

@out lda #$00
clc
rts

;***

scan_line dc.b $00 ;Scan Line Index
byte_count dc.b $00 ;Number of bytes left
byte_index dc.b $00 ;Current Byte in use
seven dc.b $00 ;Count off 7 pixels
screen dcb.b 80,0 ;Place to do the screen

;***

cmd_list6 dc.b $03 ;PCount = 3
dev_num6 dc.b $00 ;Device number

dc.w gd_status ;Pointer to data
dc.b $2B ;Control Code

d e v e l o p Winter 1991

70

SCANNING FROM PRODOS Winter 1991

71

cmd_list65 dc.b $03 ;PCount = 3

dev_num65 dc.b $00 ;Device number
dc.w read ;Pointer to data
dc.b $2B ;Control Code

;***

gd_status ;Our Data
dc.w 24 ;Total Length of Parms
dc.l get_stat ;CDB Pointer (Long)
dc.l DCData6 ;DCMove Ptr (Long)
dc.l $00000000 ;Rqst Sense Ptr (Long)
dc.b $00 ;Reserved
dc.b $00 ;SCSI Status
dc.b $00 ;Command Count
dc.l $0000000C ;Trans Count (Long)
dc.b $00 ;DMA Mode
dc.l $00000000 ;Reserved (Long)

read ;Our Data
dc.w 24 ;Total Length of Parms
dc.l get_data2 ;CDB Pointer (Long)
dc.l DCData65 ;DCMove Ptr (Long)
dc.l $00000000 ;Rqst Sense Ptr (Long)
dc.b $00 ;Reserved
dc.b $00 ;SCSI Status
dc.b $00 ;Command Count
dc.l rqst_cnt ;Trans Count (Long)
dc.b $00 ;DMA Mode
dc.l $00000000 ;Reserved (Long)

;***

get_stat dc.b $34 ;GET DATA STATUS
;Parameters Command

dcb.b 7,$00 ;Reserved
dc.b 12 ;Transfer Length (Low)
dc.b $00 ;Wait and Home Bits = 0

get_data2 dc.b $28 ;READ

;Parameters Command
dcb.b 4,$00 ;Reserved
dc.b $01 ;Window ID
dc.b $00 ;Transfer Length (High)
dc.b $00 ;Transfer Length (Mid)
dc.b rqst_cnt ;Transfer Length (Low)
dc.b $00 ;Wait and Home Bits = 0

;***

DCData6 dc.l data_cnt ;Data Pointer
dc.l 12 ;Transfer Count
dc.l $00000000 ;Offset
dc.l $00000000 ;Reserved

dc.l $00000000 ;DCStop
dc.l $00000000 ;Reserved
dc.l $00000000 ;Reserved
dc.l $00000000 ;Reserved

DCData65 dc.l raw_image ;Data Pointer
dc.l rqst_cnt ;Transfer Count
dc.l $00000000 ;Offset
dc.l $00000000 ;Reserved

dc.l $00000000 ;DCStop
dc.l $00000000 ;Reserved
dc.l $00000000 ;Reserved
dc.l $00000000 ;Reserved

;***

data_cnt ;Data Space
dcb.b 2,$00 ;Reserved
dc.b $00 ;Data Length
dc.b $00 ;Block
dc.b $00 ;Window Identifier
dcb.b 4,$00 ;Reserved

scan_data dc.b $00 ;Scan Data (High)
dc.b $00 ;Scan Data (Mid)
dc.b $00 ;Scan Data (Low)

raw_image dcb.b 100,$00 ;Scanned Data Image

;***

d e v e l o p Winter 1991

72

SCANNING FROM PRODOS Winter 1991

73

PUT IT ON THE SCREEN, ENSIGN
Because we display the image in black and white, we need to set up the graphic soft
switches accordingly. In our example, we display our image in HiRes Page 1, and we
assume black and white display. On a color video monitor, the image would appear
in black and white. See Code Sample 7.

;***
;
; CODE SAMPLE 7
;
; In this code segment, we toggle the HiRes soft
; switches so that we can see what was just scanned.
;
;***

display
;
; Save the current state.
;

lda RDTEXT
sta @text ;Text/Graphics
lda RDMIX
sta @mixed ;Mixed?

lda RDPAGE2
sta @page ;Page 1 or 2

lda RDHIRES
sta @hires ;HiRes Mode?

lda RD80VID
sta @80col ;80-Column Mode?

sta SET80VID ;Set 80-Column Mode
sta TXTCLR ;Standard Apple II Graphics
sta MIXCLR ;Clear Mixed Mode
sta TXTPAGE1 ;Page 1
sta HIRES ;HiRes Mode
sta CLRAN3 ;Clear annunciator 3

sta KBD_STRB ;Clear Key Strobe

@key_loop lda KBD ;Get key
bpl @key_loop ;Wait for Key Press
sta KBD_STRB ;Clear Key Strobe
cmp #ESC ;ESC Key
clc
bne @chk_txt
sec ;Exit on ESC

lda SETAN3 ;Set annunciator 3.

@chk_txt lda @text
bpl @chk_mix
sta TXTSET ;Text on

@chk_mix lda @mixed
bpl @chk_page
sta MIXSET ;Mixed on

@chk_page lda @page
bpl @chk_hires
sta TXTPAGE2 ;Page 2

@chk_hires lda @hires
bmi @chk_40col
sta LORES ;HiRes Off

@chk_40col lda @80col
bmi @rts
sta CLR80VID ;80-Column on

@rts rts

@text dc.b $00
@mixed dc.b $00
@page dc.b $00
@hires dc.b $00
@80col dc.b $00

;***

d e v e l o p Winter 1991

74

SCANNING FROM PRODOS Winter 1991

75
Thanks to Our Technical Reviewers
Greg Banks, Charlie Eckhaus, Dave Lyons, Llew
Roberts, Mike Seilnecht •

FILE THE REPORT AND HEAD FOR HOME
Now, save the image in its displayable format. Save it as you would any file, using
standard ProDOS MLI calls.

FINAL LOG ENTRY
The ability to bring printed images into the computer opens up many possibilities
for you and for your customers. Programs that use graphics can import and add
color to printed images. For example, users can put together files that include family
photos. These files can then be transmitted electronically to others for viewing.

You can also give users control over a number of scan parameters. For example, you
could allow them to position the scan window on a graphic representation of the
scanner glass; users could then position the scan without adjusting the printed page
on the scanner glass. Or you could allow users to specify the resolution of the scan,
showing them how the scan window size changes.

Although not demonstrated here, Line Art mode provides very clean images of
scanned text. If you use Line Art mode to support optical character recognition
(OCR), users can import text and avoid retyping entire manuscripts.

The possibilities are endless. Have fun exploring them. That is, after all, what it is
all about—doing more with your Apple II and having fun doing it.

Once upon a time, in an engineering department
far, far away, the great implementors (GIs) ran
across a problem with their Frankensteinian monster.
They had designed and built a powerful beast. A
beast that had traveled great distances into unknown
territories, and that had cut many new paths in the
hot lead jungle. Many spoke of the creation, and it
had become well known and respected in many
lands and platforms. But the complexity that only the
great implementors had dared to conceive was
being challenged by the great hackers of the land.
Many of them had conquered the secrets of the beast,
and shared the knowledge of the great implementors.
Soon, even mortal hackers would be able to control
the beast. This would not do. . .

The GIs traveled far to find the infamous “field
workers.” They had already given the GIs the gift
of dynamic, incomprehensible data structures, and
the GIs were hopeful that they could provide
something more. They could not. . .

At last, on their return from the field, they ran
across a court jester. Like all good jesters, he was
trying hard to find some fun. He tried to get the
GIs to play a game with him. He tried Monopoly,
Pictionary, even checkers, but the GIs were not

interested (he did notice a little glimmer when he
mentioned thermonuclear war, but not enough to
be important). As a last resort, he finally said, “Pick
a number.” Suddenly, the great gods of arbitration
came down on the GIs like a 5-ton weight. “Pick
a number!” one of them shouted. “It’s beautiful!”
laughed another one. And soon they were off to
the lab to implement their new discovery.

This folks, is the not-based-on-a-true-story story of
the constant named iPfMaxPgs. This constant is
part of the Printing Manager, and limits the
number of pages that can be spooled (that is,
written to disk) in one print job. In the old days,
when even engineers at Apple were using floppy
drives, the Print Shop came to the conclusion that
there should be a limit on the number of pages
you could print in a single job. If not, the user
could easily use up all the disk space on the boot
disk, which at the time, led to other, even more
interesting problems. The decision to limit the
number of pages was quickly followed by a
decision to use the court jester’s advice and “pick
a number.” The magic number is 128, and is
referenced by the constant iPfMaxPgs.

So now, you are printing your favorite report, all
130 pages of it, and just to annoy your neighbors,
you’re printing to your ImageWriter II in Best
mode. You’ve placed the printer next to the
window in the bathroom where the acoustics
are especially outgoing, and the window is open
for the extra cooling effect (at least, that’s what
you told the neighbors). As the head rips across
the bottom of page 128 like nails across the
chalkboard, you are suddenly greeted with a
Printing Manager error code. Sure, your neighbors
are happy, but you still have two pages to go. You
frantically dig for that suicide prevention number
(that your neighbors have obviously borrowed),
but decide instead that printing more than 128
pages in one job would be a great way to get
new neighbors.

d e v e l o p Winter 1991

76

PRINT HINTS
WITH LUKE
& ZZ

ZZ speaks

To print jobs longer than 128 pages, you simply
treat them like multiple jobs, printing each set of
128 pages just like the first set. To make this even
simpler, it would be nice if there was one line of
code that told you when to close the current
document and open the new one. Welcome to the
MOD squad (or the % Club for you C dudes).

The MOD instruction is very useful for tracking sets
of things, like the number of pages in a print job.
Most people that have implemented a Macintosh
printing loop (you can spot them by the gray hair
and growing forehead) use some kind of page loop.

The following code fragments will show the flow of
control using the MOD operator. The parameters of
the Toolbox routines have been omitted for
simplicity.

Before you knew enough words to type 128-page
documents, you used to have a print loop that
figured out how many pages you had to print and
then printed them one at a time.

This works well for bothering neighbors, but you’ll
never get any For Sale signs with this technique. To
print jobs larger than 128 pages, you need to call
PrOpenDoc/PrCloseDoc within the FOR loop.
Whenever you reach 128 pages, you need to call
PrCloseDoc to close the current document, and
then PrPicFile to despool the (now full) spool
file. Once this is done, a new document is opened,
and everything continues as before.

FOR pageIndex := firstPage
TO kNumberOfPages - 1 DO

BEGIN
(* If we are on page number
128, we need to close and
reopen the document *)
IF(pageIndex - firstPage)
MOD iPFMaxPgs = 0 THEN
BEGIN

(* Make sure there is a
document open before
calling PrCloseDoc! i.e.
if this is the first
page, don’t call
PrCloseDoc... *)

IF pageIndex <>
firstPage THEN

BEGIN
PrCloseDoc(...);
PrPicFile(...);

END;
(* Now open a fresh, 128

page spool file. *)
PrOpenDoc(...);
END;
(* Call PrOpenPage/
PrClosePage for each
page of the document. *)
PrOpenPage(...);
PrintAPage(...);
PrClosePage(...);

END;
(* Finally, close the document

and despool the spool file.*)
PrCloseDoc(...);
PrPicFile(...);
.
.
.

Pretty straightforward, but you’d be surprised how
many developers the great implementors have
caught with this one. Using the above method, you
can safely print large documents on any device,
without having to worry about overflowing the
spool file. As for your neighbors, you could always
put a Pause/Continue button in your Printing Status
dialog, but then, where’s the fun in that?

PRINT HINTS WITH LUKE & ZZ Winter 1991

77

d e v e l o p Winter 1991

RICH COLLYER Eagle Scout/Fractal Hacker,
claims there is nothing unusual about himself.
He’s done the routine, everyday stuff we all do,
such as attending a sacrifice at a temple in the
Himalayas, climbing a 17,500-foot peak
(climbing the 20,000-foot one would have been
“unreasonable”), and strolling the byways of
Katmandu and Bhutan. His adventurous
tendencies led him to pursue a physics degree

from Cal Poly with a specialty in computational
fluid dynamics, and routinely compels him to
climb rocks. He’s survived at least three 20-foot
falls; outwardly he seems unscathed, but we have
to wonder. He has a distinct penchant toward
chaos, named his dog Precious of Bonshaw, and
fosters a burning desire to be a DTS engineer.
Nothing unusual. •

78

RICH COLLYER

In the last several weeks many of you have asked “How do I animate
colors with the Color Manager?” I usually answer, “The Color
Manager is not a good way to animate colors. Try the Palette Manager
instead.” I figure that for every person who asks this question there are
a hundred others out there trying to figure out the answer by
themselves. This article is for all of you independent types who never
ask questions but could use the answer just the same.

This article comes with a sample: GiMeDaPalette. The article shows how to do
color table animation by using the Palette Manager, and by the end of the article
I think you’ll be convinced that using the Palette Manager is the only way to fly.

To see the animation effect, you will need to run the sample on a monitor (device)
that uses a color look-up table, often called a clutType device; you need a color
look-up table to do color table animation.

The sample is designed to run only under System 6.0.5 or greater, or when
32-Bit QuickDraw is installed; the Palette Manager shows its abilities best in these
environments. This limitation may discourage those who want their applications to
work on all systems and hardware configurations, but remember that if you stick to
32-Bit QuickDraw or 6.0.5, you’ll be able to take advantage of the upgrades and
improvements that Apple provides. If you don’t, your application is likely to
stagnate. One possible way to work around this dilemma is to separate your code
into a pre-32-Bit QuickDraw version and a 32-Bit QuickDraw version. This will
make your application more complex, but it will give you the flexibility to work
under most, if not all, color systems.

When you run the sample application, you will find that there is a File menu, which
just allows you to quit, and a Palette menu that allows you to pick the color usage of
the palette. The sample initializes itself to use a palette with the color usage Courteous.

78

PALETTE

MANAGER

ANIMATION

When you want to animate the palette, you will want to select one of the menus
that contains the word animated. (Animated, Tolerant + Animated, Explicit +
Animated, Tolerant + Explicit + Animated).

A LOOK AT THE SAMPLE
The three major parts of the sample:

• Setting up the color environment
• Picking a color for drawing
• Animating the colors will be needed in most applications that

require color table animation.

SETTING UP THE COLOR ENVIRONMENT
The four main lines of code that I used to set up the environment in
GiMeDaPalette are

mycolors = GetCTable(clutID);

(*mycolors)->ctFlags |= 0x4000;

srcPalette = NewPalette(numcolor, mycolors, pmCourteous, 0);

SetInhibited(pmCourteous);

Since this sample is a more general use of the Palette Manager, I started by building
a palette that is Courteous. This means that you get what colors the system can give
you with the best matches it can make, but the Palette Manager is not going to

PALETTE MANAGER ANIMATION Winter 1991

79

PALETTE MANAGER HISTORY

1987 – The Palette Manager arrived on the scene late
in the development of the original Macintosh II. The
engineer who was responsible for the Palette Manager
was given only a few weeks to produce it. Under the
circumstances, it's amazing that the Palette Manager
worked at all.

1988 – System 6.0.2 shipped with a new version of the
Palette Manager that was much closer to the way it was
supposed to work, but it still didn't do all that people
wanted it to.

1989 – The first version of 32-Bit QuickDraw included a
lot of big changes and improvements to the Palette
Manager. There were still a few problems, but the
Palette Manager was finally able to do what people
really wanted it to.

1990 – The 32-Bit QuickDraw version of the Palette
Manager was made part of the system software in
6.0.5. The last of the major problems were ironed out,
and the new Palette Manager was available to
everyone who ran system 6.0.5 or greater, with or
without 32-Bit QuickDraw.

change any of the colors in the environment to give you what you want. The
palette is built with a color table that is stored as a resource and retrieved with the
trap call to GetCTable. The manipulation to the ctFlags is described in a
sidebar, “Other Features of the Palette Manager,” later in this article; basically the
manipulation makes it possible to use the colors in an offscreen world. The palette
has 256 colors (numcolor = 256) and the tolerance is set to zero. The tolerance
value tells the Palette Manager how close the color match needs to be, but unless
you have the usage set to pmTolerant, it is ignored. For more information on
these calls, see the Palette Manager chapters in Inside Macintosh (volume V, chapter
7, and volume VI, chapter 20). My function SetInhibited, is described in the
sidebar, “Other Features of the Palette Manager.” I used it to set the palette usage so
that the palette will be good for any pixel depth that the window may end up on.

After setting up the palette, you attach it to the window:

SetPalette ((WindowPtr) myWindow, srcPalette, TRUE);

If you want more control over when the window gets its updates, you would want to
use NSetPalette instead of SetPalette. NSetPalette allows you to
specify whether you want the updates to happen only when the window is in the
background, only when it is in the foreground, always, or never.

The simplest way of using palettes is to store them as resources of type 'pltt'.
When GetNewCWindow is called the system looks for a 'pltt' resource with
the same ID as the window being opened. If it is found, the palette is loaded and
attached to the window. It is also possible to have a palette that is used for all the
windows an application may open; in this case when NewCWindow or
GetNewCWindow is called (and no 'pltt' with the same ID is found) the
'pltt' with ID = 0 is used.

When you select one of the Animated menus, the code calls SetInhibited and
passes the function a usage of pmAnimated. The function then sets up the palette
to have the new usage and makes the palette available for animation.

PICKING A COLOR FOR DRAWING
In GiMeDaPalette I don’t have to pick a color to draw with. If you want to do any
drawing in your application, other than calling CopyBits, you call the trap
PmForeColor to select a color to draw with and then just draw.

ANIMATING COLORS
Once you select one of the Animated menus, GiMeDaPalette requires only four
lines of code to animate colors. First you save the first color in the palette:

GetEntryColor(srcPalette, 1, &changecolor);

d e v e l o p Winter 1991

80

Then you cycle the colors 2 to 254:

AnimatePalette(myWindow, StoreCTab, 2, 1, numcolor - 2);

Next you move the saved color to the last entry :

AnimateEntry(myWindow, numcolor - 1, &changecolor);

Finally you save the new version of the palette into the color table for use during the
next animation:

Palette2CTab(srcPalette, StoreCTab);

The sample does not animate the entire palette, because the Palette Manager will
not let you animate white (entry 0) and black (entry 255).

USING THE COLOR MANAGER
All of this can be done with the Color Manager, but to do it and get the same
functionality, you will need to generate considerably more code. The main problem
with the Color Manager is that it does not provide automatic support for multiple
monitors, color arbitration, compatibility with other applications, and several other
features that are basic to any real color application.

OTHER AUTOMATIC FEATURES OF THE PALETTE MANAGER

KEEP IT SIMPLE
The Palette Manager takes care of several details for you, and the result is a simpler,
more elegant application. It also provides more compatibility; that is, it helps ensure
that the application will work under GC QuickDraw and will be friendly under
MultiFinder.

TAKE CARE OF THE ENVIRONMENT
Like a good citizen in a community, an application must take care of its
environment. If applications have no concern for their environments, users will
constantly need to reboot their machines to get back to stable ground. The Palette
Manager provides this support without extra code.

Background. One of the differences between the Color Manager and the Palette
Manager is that the Color Manager usually animates the background and the Palette
Manager tries not to. The Palette Manager reserves the colors so that no other
applications can use them. This means that when the colors are animated, only the
foreground animates, if possible. In general the Palette Manager tries to make sure
that the colors your application is using will not make a mess of other applications
that are running at the same time.

PALETTE MANAGER ANIMATION Winter 1991

81

Reserve entries. You can reserve the colors with the Color Manager by using
ReserveEntry, but if you do, you can no longer use Index2Color to get the
colors you need. But even if you get around that problem, you still cannot call
RGBForeColor to set the color; you need to change the graphics port directly,
and we all know what a bad idea this is. Once again the Palette Manager is cleaner,
because it does not force your application to manipulate the graphics port.

MultiFinder switch. The Palette Manager cleans up when you are switched out in
MultiFinder. If another application that uses a different color environment is
running at the same time as yours, it gets the colors it wants when it is the frontmost
application, and you get the colors you want when you are the frontmost
application. The Color Manager does not do this for you; you must do the work
yourself.

Multiple monitors. The Palette Manager will work over multiple monitors, while
the Color Manager does not. If you wish to run your application on multiple
monitors, and you are using the Color Manager, you will have to worry about what
monitors your windows span and make sure that SetEntries is called for each
monitor. This can get really cumbersome.

GIVE ME SPEED
Generally you would expect the Color Manager to run faster, since the
AnimatePalette trap ultimately calls SetEntries. However, the Palette
Manager is just as fast as the Color Manager. And don’t forget that while the Palette
Manager is just as fast as the Color Manager, it is also providing the support for all
of its cool features; the Color Manager provides none of this support.

d e v e l o p Winter 1991

82

GetEntries: ONE OF THE GOTCHAS IN THE COLOR MANAGER

Some people think they can call GetEntries
to save the current color table and later rebuild the color
table with SetEntries. Unfortunately, GetEntries
and SetEntries do not work well together. Each
time you call GetEntries and follow it with
SetEntries, the color table will get a little lighter.
What happens is that when you call SetEntries, the

colors are gamma corrected and GetEntries does
not reverse this effect. So each gamma correction
causes the color table to get lighter. For more
information about gamma correction take a look at
“Designing Cards and Drivers for the Macintosh
Family.”

USE THE PALETTE MANAGER
I hope that I have convinced you that the Palette Manager is considerably better at
color table animation than the Color Manager. Let’s go over the highlights:

•The Palette Manager makes your application more compatible
with GC QuickDraw and MultiFinder. The Color Manager does
not do this for you.

•The Palette Manager protects your application from making a
mess of the color environment by not letting it animate black and
white. With the Color Manager you have to protect yourself.

•The Palette Manager arbitrates the colors in the color environment
for you. This means that you don’t have to worry about your
window getting the colors it needs when it is the frontmost window.
Color Manager does not do this for you.

•The Palette Manager takes care of multiple monitor support for you.
Multiple monitor support comes free with the Palette Manager;
there are no freebies in the Color Manager.

•The Palette Manager can cleanly reserve the entries that you wish to
animate; there is no clean way to do this with the Color Manager.

PALETTE MANAGER ANIMATION Winter 1991

83
INTERRUPTS You may have noticed that a call
to AnimatePalette or SetEntries turns
off interrupts. All Apple video cards, and most
third-party video cards, turn off interrupts until
the next VBL (vertical bLanking interrupt) when
SetEntries is called. This generates a cleaner,
smoother color animation, but it is a real
headache for anyone who wants to animate
colors and at the same time take in data on the

serial lines or play a sound. Any kind of
interrupt-driven process, which requires a lot
of attention, is not going to work when
SetEntries is being called repeatedly. •

Table 1
Palette Manager versus Color Manager

Palette Manager Color Manager

Compatible with MultiFinder ■ ■

Compatible with GC QuickDraw ■ ■

Compatible with other color apps ■ ■

Easy to use ■ ■

Automatic color arbitration ■ ■

Easy support of multiple monitors ■ ■

Requires you to implement all features ■ ■

Renders your app hardware dependent ■ ■

Not worth the effort ■ ■

✘

✘

✘

✘

✘

✘

✘

✘

✘

d e v e l o p Winter 1991

Thanks to Our Technical Reviewers
Guillermo Ortiz, Forrest Tanaka, David Van Brink,
John Zap •

84

ctFlags BIT 14
If you would like to use an offscreen world and to
animate the images that you create, this is the bit for
you. If you

•set bit 14 of the ctFlags field in your color table
•use this color table to pick your colors when drawing

in the offscreen world
•set the usage of your palette to pmAnimated +
pmExplicit and then call CopyBits or
DrawPicture; the colors will map correctly and
the image will animate. This feature allows an
offscreen world full access to the color table via the
index values. If you do not follow these three steps,
you will get only a black-and-white image out of the
DrawPicture or CopyBits. I have included this
feature in the sample GiMeDaPalette. The code
below is just clippings from the sample itself.

- - - - - - - - - - - - - - - - -
mycolors = GetCTable (clutID);
(*mycolors)->ctFlags |= 0x4000;
...
srcPalette = NewPalette (numcolor,
mycolors, pmAnimated + pmExplicit, 0);
...
err = NewGWorld (&offscreenGWorld, 8,
&WinMinusScroll, mycolors, nil, nil);
...
DrawPicture (ThePict, &WinMinusScroll);

pmAnimated+pmExplicit
This is one of the really cool features of the Palette
Manager. Generally when you build a palette, the color
matching will just put the colors where they fit best, but

when you have a usage of explicit, the colors are
placed in the exact index locations in which you want
them. This is important because you can’t set a palette to
an offscreen world, and you generally want to be able
to draw off screen first and then copy to the screen. This
is a problem because you still need access to the palette
colors. But you can achieve this access by building the
palette in such a way that you know the colors are at
the exact index values you have specified in your color
table. This feature in conjunction with the ctFlags bit
14 feature will give you the access you need in your
offsceen world. For more information about this feature
take a look at the Palette Manager chapter in Inside
Macintosh, volume VI (chapter 20).

pmInhibit
This usage option is yet another cool feature of the
Palette Manager. It allows the application to specify
which colors are to show up on which monitors. So if
you have a palette of 256 colors, but the window is on
a 4 bit/pixel screen, you’ll get the 16 of the 256 colors
that are labeled as pmInhibitC2. In my sample the
function, SetInhibited, sets the first two colors to
always show. The next 12 entries will be available only
if the window is on a screen that is set to 4 or 8
bits/pixel. The rest of the colors will be available only if
the window is on an 8 bit/pixel screen. You can also set
the palette to consider whether the window is on a gray
scale screen or not. For more information about this
feature take a look at the Palette Manager chapter in
Inside Macintosh, volume VI (chapter 20) and the
sample code.

If this has convinced you that the Palette Manager is the way to go, I think you’ve
taken a big step toward making the next great color application that Mac users
around the world will love.

OTHER FEATURES OF THE PALETTE MANAGER

THE POWER OF MACINTOSH COMMON LISP Winter 1991

85RUBEN KLEIMAN was hired as a Senior
Research Scientist at Apple because of his proven
ability to withstand large amounts of pain,
function well after sleepless nights, and sincerely
worry about things that don’t need to be worried
over. He studied physics and comparative
literature during a college career that he likens to
the Harrad Experiment; he was never totally
convinced that his coed college in Florida

(which had no nudity rules in the dorms or
swimming pool areas) wasn’t backed by the CIA.
The experience drove him to Cambridge,
Massachusetts, where he studied linguistics
(Hittite, Sanskrit) at Harvard. He then began
researching the universe (that is, the unified
theory of quantum mechanics and relativity) while
being remunerated by MCC, Computervision,
and MITRE. Down to his last five dollars, he joined

RUBEN KLEIMAN

Macintosh Common Lisp (MCL) is a powerful implementation of the
Lisp language as well as a dynamic development environment. This
article describes major aspects of the MCL language and environment.
It provides essential information for non-Lisp programmers who are
unaware of the power of this language or of the MCL development
environment, as well as for Lisp programmers who are unaware of
MCL features or performance.

As the price of memory plummets and powerful computers become as cheap as
sand, developers are beginning to look afresh at the positive aspects of dynamic
programming environments, like Lisp and Smalltalk, that once seemed too slow and
memory-hungry. These environments offer the proven ability to generate and run
large-scale applications, easily access the toolbox, and call MPW C, Pascal, or
Assembler programs. With comprehensive and elegant class libraries for defining
user interfaces, these environments promise to significantly improve programmer
productivity over traditional languages.

Many Lisp environments are available for the Macintosh. We’ll focus here on
what one particular dynamic programming environment, Apple’s own Macintosh
Common Lisp (MCL), has to offer. We’ll compare it to the programming
environment provided by MPW in conjunction with MacApp, Apple’s
object-oriented application framework based on Pascal. We’ll take a close look
at its key advantages, and will illustrate them with fragments from a sample program.
The entire sample program plus a step-by-step description of its development can
be found on the Developer Essentials disc that accompanies this issue.

THE POWER

OF

MACINTOSH

COMMON

LISP

WHAT IS MCL?
MCL is a powerful implementation of the Lisp language. (If you’re new to Lisp,
take a look at the sidebar “A Mini Lisp Tutorial” for a quick overview of how it
differs from Pascal.) MCL provides full compatibility with the Common Lisp
standard, an extensive object-oriented system, and a rapid prototyping development
environment.

MCL 2.0 supports Common Lisp and the Common Lisp Object System
(CLOS). This extension of the Common Lisp standard offers an object-oriented
programming paradigm for Lisp, within which MCL implements a class library for
developing user interfaces. The MCL environment includes a syntax-oriented text
editor for Lisp; a direct way to navigate through sources; a tracer, stepper, and
backtracer; and the ability to disassemble code just in case you want to shave off a
microsecond.

The key advantages of MCL are its interactivity, the inherent power of symbolic
processing in Lisp, the overall consistency of its object library, and its abstraction
away from the Macintosh event-loop style of programming. We’ll take a closer look
at these advantages as we compare MCL with MacApp/MPW.

A COMPARISON OF MCL AND MACAPP/MPW
MCL and MacApp/MPW are both object-oriented programming environments
available from Apple. We’ll compare four different aspects of these environments:

• Their language bases
• Their class libraries and event systems
• Their strong points as development environments
• Their size and performance specifications

LANGUAGE BASES
MacApp is based on ObjectPascal, a set of object-oriented extensions to Pascal
somewhat on a par with the C++ extensions to C. MCL is based on the Common
Lisp standard (ANSI X3J13 Committee), which includes the Common Lisp Object
System (CLOS), an object-oriented extension to Lisp. Table 1 gives an overview of
what these languages offer.

The most striking differences in the languages are (1) their syntax (described in
the sidebar “A Mini Lisp Tutorial”), (2) the ability of Common Lisp to deal with
typeless variables, and (3) Common Lisp’s automatic garbage collection. Let’s turn
our attention to the latter two differences.

Apple three years ago. In his spare time he
plays together with his wife, sculpts, photographs,
skateboards, is writing the Great Argentinian
Novel (he’s a native of Buenos Aires), and tries to
cycle at least once a week. But he’s a little worried
that it might not make any difference until his
next life. •

A beta release of Macintosh Common Lisp 2.0
should be available from APDA by the time you
read this. See the inside back cover for
information on how to contact APDA. •

d e v e l o p Winter 1991

8686

THE POWER OF MACINTOSH COMMON LISP Winter 1991

87

A MINI LISP TUTORIAL

This tutorial gives a quick overview of Lisp, but it omits
many things, like macros and other intimidating nested
monsters. Excellent books on Lisp are available to suit
most tastes: see the list of recommended reading at
article’s end.

Lisp belongs to the Functional Programming Language
family. A key point is that every Lisp function or
expression always returns a value—whether you want it
to or not! It is thus difficult to talk about Lisp “programs”
because there is no preferred “entry point” or “main.”

Lisp functions differ from, say, Pascal functions in that in
Lisp the function name is enclosed in parentheses along
with its arguments:

Pascal Lisp Equivalent

SysBeep(120); (SysBeep 120)
ResError; (ResError)

To assign a value to a global variable, you must declare
the variable as global before using it and then use the
assignment function setq:

Pascal Lisp Equivalent

VAR x: integer; (defvar x nil)
...
x := 2; (setq x 2)

Control statements like IF and CASE are available:
Pascal Lisp Equivalent

if x = 2 (if (= x 2)
then SysBeep(30) (SysBeep 30)
else x := 0; (setq x 0))

case x of (case x
1: Sysbeep(30); (1 (SysBeep 30))
2: x := 10; (2 (setq x 10))
3: x := 20; ((3 4) (setq x 20)))
4: x := 20;

The simplest use of Common Lisp’s powerful repeat
control structure, called loop, is as follows:

Pascal Lisp Equivalent

x := 0;
repeat (loop for x from 1 to 5

x = x + 1; do (SysBeep 30))
SysBeep(30);

until x = 5

Function arguments are evaluated from left to right
before they are actually passed to the function. The
only exception to this is the function defmacro (and
related ones) used to create macros.

The function quote helps you to pass a symbol or
a list instead of passing whatever the symbol or list
evaluates to. For example, if the symbol x is bound to
19 and foo is some function, then evaluating (foo
x) will result in foo being passed the value 19, but
(foo (quote x)) will be passed the symbol x.
A short form for quote is a single quotation mark: for
example, (foo (quote x)) = (foo 'x).

In Lisp, you need not declare a variable’s type. You can assign to a Lisp variable
any type of object, or many types of objects at different times, within a lexical scope.
The type information is associated with the data objects themselves rather than with
the variables. However, declaration statements are available for optimal compilation.
A common practice is not to type variables until the program is thoroughly
debugged, and then to use typing only in the most crucial parts of the code. For
better performance, you can require the run-time system to forego type checking.

Common Lisp does automatic garbage collection of inaccessible values (for example,
objects, strings, arrays)—that is, values that are implicitly deallocated. A key advantage
of this is simplification of your code. For example, the following statement allocates an
instance of the class Window and binds it to the variable myWindow:

(setq myWindow (make-instance 'Window))

If thereafter you set myWindow to a different value, say,

(setq myWindow (make-instance 'Dialog))

Common Lisp will free up the space occupied by the Window instance (unless,
of course, you’ve bound it to a different variable or the window is still open). Much
of the power of Lisp derives from the ability to implicitly allocate and deallocate,

d e v e l o p Winter 1991

88

Table 1
Features of ObjectPascal Versus Common Lisp

Feature ObjectPascal Common Lisp
Instance variables Yes Yes
Class variables No Yes
Multiple inheritance No Yes
Inheritance types One One standard,

user-redefinable
Method combination Not applicable Yes
Before/after methods No Yes
Methods on instances No Yes
Method discrimination On single argument On all arguments
Toolbox interface Yes Yes
Variable typing Required Optional
Garbage collection Manual Automatic
Foreign language interface Yes (MPW object files) Yes (MPW object files)
Error handling Yes Yes

THE POWER OF MACINTOSH COMMON LISP Winter 1991

89

as well as to easily access, simple data structures like lists, or complex objects. In
contrast, MacApp requires explicit method calls to allocate, initialize, and deallocate
objects. In both cases, you must explicitly dispose of space that you’ve allocated from
the Macintosh heap via Memory Manager calls. However, Common Lisp allocates
space for its own objects and other data structures in its own heap area managed by
the garbage collector.

We can compare the key features of ObjectPascal and Common Lisp object systems
by inspecting the code needed to define two classes of objects, Beeper and
LongBeeper. These classes have a BeepMe method that causes them to beep a
number of times specified by an instance variable. LongBeeper inherits from
Beeper. Beeper makes three short beeps, and LongBeeper makes four long
beeps followed by the number of short beeps Beeper makes. In the ObjectPascal
code, we abrogate specifications otherwise required by the ObjectPascal compiler
that don’t concern us.

Here’s the ObjectPascal code:

TYPE
TBeeper = OBJECT

fBeeps: integer;
PROCEDURE TBeeper.IBeeper;
PROCEDURE TBeeper.BeepMe;
END;

TLongBeeper = OBJECT(TBeeper)
fLongBeeps: integer;
PROCEDURE TLongBeeper.IBeeper;
PROCEDURE TLongBeeper.BeepMe;
END;

PROCEDURE TBeeper.IBeeper;
BEGIN

SELF.fBeeps := 3;
END;

PROCEDURE TLongBeeper.IBeeper;
BEGIN

INHERITED IBeeper;
SELF.fLongBeeps := 4;

END;

d e v e l o p Winter 1991

90

PROCEDURE TBeeper.BeepMe;
VAR Count: integer;
BEGIN

For Count := 1 to SELF.fBeeps do
SysBeep(30);

END;

PROCEDURE TLongBeeper.BeepMe;
VAR Count: integer;
BEGIN

For Count := 1 to SELF.fLongBeeps do
SysBeep(120);

INHERITED BeepMe;
END;

{A function that uses the LongBeeper class}

FUNCTION UseBeeper;
VAR myBeeper: TLongBeeper;
BEGIN

NEW(myBeeper);
FailNil(myBeeper);
myBeeper.ILongBeeper;
myBeeper.BeepMe;
UseBeeper := myBeeper;

END;

The same sequence in Common Lisp looks like this:

(defclass Beeper ()
((Beeps :initform 3)))

(defclass LongBeeper (Beeper)
((LongBeeps :initform 4)))

(defmethod BeepMe ((me Beeper))
(dotimes (count (slot-value me 'Beeps))

(_SysBeep :word 30)))

(defmethod BeepMe ((me LongBeeper))
(dotimes (count (slot-value me 'LongBeeps))

(_SysBeep :word 120))

(call-next-method))

;;; A function that uses the LongBeeper

THE POWER OF MACINTOSH COMMON LISP Winter 1991

91

(defun UseBeeper ()
(let ((myBeeper (make-instance 'LongBeeper)))

(BeepMe myBeeper)
myBeeper))

Although Common Lisp object system may at first sight seem to have more features
than any particular programmer would need, in fact these capabilities are normally
used by Lisp programmers.

Multiple inheritance is an instructive example. If you are trying to define classes
with complementary behavior, multiple inheritance is the most elegant and
economical solution. For example, you can define two classes called ReadStream
and WriteStream that support read-only and write-only behavior for streams,
respectively. This gives you the option of basing a class of read-write streams on
inheritance from these classes:

(defclass ioStream (ReadStream WriteStream) ())

Since ReadStream and WriteStream are independent, you can also define a
class of windows that act like write-only streams by inheriting from both the
Window and WriteStream classes:

(defclass StreamWindow (Window WriteStream) ())

Using single inheritance to define ioStream and Window would result in
redundant and unmodular code—one of the problems object-oriented
programming tries to solve.

As you use multiple inheritance more seriously, however, you may have to deal
with cases where you inherit multiple definitions of the same method. From the
viewpoint of your class’s semantics, you will probably want to do one of the
following: (1) inherit all or some of the methods in any order or in a specific
order, or (2) inherit none of the methods. Common Lisp allows you to deal with
any of these possibilities. For example, to avoid inheriting a method, you simply
redefine the method for the class you are defining without making a call to
call-next-method. The latter is a generalization of ObjectPascal’s
INHERITED (compare above the BeepMe methods for the LongBeeper
class in ObjectPascal and Common Lisp). Method combination is a feature that
enables you to specify the order in which methods of a given name will be invoked.

“Before” and “after” methods enable you to specify behavior that should execute
just before or after your method is invoked. This provides you with flexibility in
method combination in subtle cases because the before and after methods are not
embedded in the code of the primary method. But more interesting is the manner in
which Common Lisp methods are dispatched. Whereas most object-oriented

systems dispatch on the class of the first argument, Common Lisp bases the method
dispatch on the class of each argument passed to a method call. One example of a
case in which you may want to dispatch on two arguments is when you have a
Print method that can print on a variety of media. If you have a class Document
that you want to be able to print into a ColorLaser stream or into an
ImageWriter stream, you can define Print as follows:

(defmethod Print ((thingToPrint Document) (stream ColorLaser))
;; Code to print to a ColorLaser goes here
)

(defmethod Print ((thingToPrint Document) (stream
ImageWriter))

;; Code to print to an ImageWriter goes here
)

This generalizes object-oriented programming’s idea that you shouldn’t have to
special-case your methods: the appropriate method will be called by the system on
the basis of the type of all passed arguments. In particular, if the second argument
(stream) is a ColorLaser, then the first method above will be called; if the stream is an
ImageWriter, then the second method will be called. The alternative would be to
check what kind of stream you are writing to within a monolithic Print method.

CLASS LIBRARIES AND EVENT SYSTEMS
Class libraries, which are provided with the language (some third parties sell
alternative libraries or extensions), impose a model of how Macintosh events are
handled, what kinds of Macintosh components (such as menus, dialog boxes) are
available, and how these interact.

Both MacApp and MCL offer a set of classes to easily instantiate menu bars, menus,
menu items, pull-down and pop-up menus, windows, dialogs, buttons, check boxes,
static and editable text, lists, and spreadsheet tables. MacApp features extensive
printer (via the TPrintHandler class) and undo (via the TCommand class)
support. MCL features easy installation and handling of view objects, including
menus and menu items.

Both systems support views as well as dialog and regular window classes. A view is an
abstract way of defining rectangular drawing areas on the screen that are hierarchically
related to other views. User interface objects, such as windows and buttons, inherit
from the view class to get their scrolling behavior as well as their own coordinate
system’s origin. Scrolling a view scrolls its subviews within it, while the coordinate
system of a view has its origin relative to the origin of its superview’s coordinate system.
Most useful toolbox controls and dialog items are predefined in both systems and are
integrated with the view system. A set of event-handling methods defined on all views
(for example, activate, draw) are automatically called by the event system, as
necessary; the user need not be involved with the Macintosh inner event loop.

d e v e l o p Winter 1991

92

THE POWER OF MACINTOSH COMMON LISP Winter 1991

93

Table 2 compares the most important classes in MacApp and MCL.

You’ll see examples of the use of some of these MCL classes in the later section
“Now for an Example.” For now, a note about the event system.

The MacApp class TApplication enables you to modify the handling of the
Macintosh inner event loop. Instead of providing a comparable class, MCL enables
you to optionally specify a function to which all events are passed. Your function can
take any course of action; it can also override the regular MCL event-handling
mechanism.

Table 2
A Comparison of Key Classes in MacApp and MCL

MacApp Class MCL Class
TObject Standard-Class
TAssociation association list
TCommand not applicable
TList list1

TApplication not applicable
TPrint Handler not available
TDocument not available
TView view

TWindow window
TDialogView dialog
TTEView dialog
TDialogTEView dialog
TScroller scroller-dialog-item2

TDeskScrapView scrap-handler
TGridView table-dialog-item

TTextGridView table-dialog-item
TTextListView sequence-dialog-item
TListView sequence-dialog-item3

TClassListView sequence-dialog-item3

TObjectView sequence-dialog-item3

TControl control-dialog-item
TCluster view
TStaticText static-text-dialog-item
TEditText editable-text-dialog-item

MacApp Class MCL Class
TNumberText editable-text-dialog-item
TIcon icon-dialog-item
TPattern not available
TPopup pop-up-dialog2

TPicture pict-dialog-item2

TCtlMgr control-dialog-item
TButton button-dialog-item
TRadio radio-button-dialog-item
TCheckBox check-box-dialog-item
TScrollBar scroll-bar-dialog-item

TStream stream
TFile pathname
not available fred-window
not available menu
not available menu-item

Notes:
1. MacApp includes a variety of list classes: these are

required because of static language constraints. The
regular Lisp list covers these cases.

2. These classes are distributed in example files with
MCL.

3. These MacApp variations are due to static
language constraints: they are handled within the
sequence-dialog-item.

Macintosh OS events are regularly dispatched by MCL, even between the
invocation of Lisp functions. Every few ticks (the number may vary with the version
of MCL that you are using, but it usually is five ticks), MCL checks the event queue
and if there’s an event (including a null one), interprets the event and takes the
appropriate action (for example, sends a mouseDown event to a view). Your
functions can act as if they have full control of the Macintosh, since the event
handling is opaque to the user. However, a macro called without-interrupts
helps you to protect critical code segments, such as an operation on a Mac heap data
structure (for instance, a window record) that might be disposed of by the code
dispatched by an interrupting event (such as a click on the window’s close box).

On the other hand, MacApp’s TView class inherits its event-handling capability
from the TEvtHandler class. For mouse event handling, since views are nested
within each other, the most specific affected view will receive the mouse event: for
example, the HandleMouseDown method of the most specific view under the
mouse would be invoked on that view when the mouseDown event takes place.
Events are processed by MacApp methods (primarily for TApplication,
TWindow, TDocument, and certain view classes) until completion, blocking any
other event handling.

In MacApp, one can generate TCommand objects, which can be created by menu
or keyboard events. These objects will not only have methods that handle the event,
but also conveniently store state information necessary to support Redo and
Undo, which are necessarily associated with the event they represent. This provides
a nice framework for Undo support, at the cost of generating and maintaining
these objects. In addition, event chains can be specified within MacApp: this enables
you to specify a chain of event-handling objects that are candidates for handling
specific types of events. MacApp will cycle through the chain to find an object that
can handle that event and invoke the appropriate method on that object. Similarly,
“target chains” allow you to specify hierarchies of objects that are candidates for
handling events.

In general, the MacApp event-handling system is far more articulated than MCL’s.
The cost of this articulation is increased complexity and some reduced flexibility.
Once you understand the MacApp event system and find its constraints acceptable
for your application, you may find that your workload is reduced.

Note also that menus and menu items are handled in MacApp via special menu
resources. At run time, MacApp invokes the DoMenuCommand method on the
TApplication instance; the latter must interpret what to do on the basis of the
chosen menu item.

d e v e l o p Winter 1991

94

THE POWER OF MACINTOSH COMMON LISP Winter 1991

95

STRONG POINTS OF THE DEVELOPMENT ENVIRONMENTS
Both MacApp (in conjunction with MPW) and MCL offer excellent development
environments. Still, each has its strong points, which we’ll focus on here.

The primary advantage of the MCL environment is the ability it gives you to
incrementally compile your code: you can recompile one function (or even a single
expression or statement) at a time. This fact has far-reaching implications for how
you develop your program.

Once you compile a function, it is automatically linked to the rest of your code. This
means that you can immediately test your function. If it does not work, you either
(1) go to the source code of another function and change it, recompile it, and retry
your original function, or (2) modify, recompile, and retry your function. The MCL
(and every other Lisp-based) debugging and browsing environment is geared to this
kind of activity. Jumping from one function’s source text to another one, perhaps in
different files in different directories or volumes, is a simple matter. And you are not
required to execute your program from a “main” but can try out each function as a
separate module.

MCL provides you with the following powerful debugging tools:

• Inspector—Enables you to inspect any value of any instance
variable of any instance and also to change that value at any time.
You can inspect any Lisp structure, class, or class instance. For
functions or methods, the Inspector will provide you with
disassembled code. Information about devices, files, packages,
and other system objects can be conveniently obtained via the
Inspector.

• Backtracer—Enables you to examine the execution state of your
program by looking at the program as a set of frames (like a
movie’s frames). Each frame is usually a function or method
invocation, with information about the state of all local variables
and objects last referenced. You can move through these frames
backward or forward to the point where the error or user break
occurred and can change any state in a frame.

• List of definitions—Provides you with a list of definitions of
variables, functions, methods, and macros within your text files.
You can go to any specific entry by double-clicking on it.

• Apropos—Allows you to search for information about any object
in the system based on its name.

• Error handling—Gives the ability to signal errors and general
conditions. Dead-end and continuable errors are supported.
Continuable errors enable the user to change the environment so
that the error state is reset and processing can restart.

See the sidebar “Evaluating and Navigating the Code in MCL” for key details about
the MCL development environment.

In contrast, although in MacApp you can separately compile a class definition
(an ObjectPascal Unit file), to actually test it you must link it to the rest of your
program. Debugging support must be explicitly requested from the compiler and
linker; debugging code is embedded in your running code. Fortunately, the MacApp
browser provides an excellent browsing facility, though it can only read, not write,
due to the absence of incremental compilation. MacApp does provide a debug
transcript window and a debug menu, and Inspector windows when you’ve compiled
your MacApp program with debug and inspect code, respectively. The Inspector
window enables you to examine the values of fields of class instances. To support the
Inspector window you must write methods for each class you define that know how
to supply the necessary information—that is, field names and values for any
instance—to the Inspector.

MacApp and MCL both provide tools to directly manipulate the user interface:
ViewEdit™ and the MCL Interface Tools (IFT), respectively. ViewEdit works mostly
by allowing you to create views and put objects into the views, as necessary: the
result is a set of resources that can be saved for your MacApp application. IFT
currently does not let you define views, but only dialogs and menus. You can create
new and modify existing menu, menu item, dialog, and dialog item objects: the
result is actual Lisp code that can regenerate those objects.

The reason ViewEdit generates resources is that the architecture of some parts of
MacApp rely on the coordination with existing resources (for example, menus),
whereas IFT considers resources as optional additions. IFT can be used for
instructional purposes: for instance, just to see how to program the user interface
objects you create via direct manipulation. Since IFT does not, like Prototyper™,
build a complete application for you, one tends to use IFT to assist the creation of
user interface code rather than as a replacement for doing the main work.

Although both MCL and MacApp/MPW encourage the use of existing class libraries
rather than low-level system access, substantial applications invariably require direct
access either to build new kinds of objects or to increase overall performance. The
MCL toolbox interface can be accessed from two levels: (1) as regular low-level
toolbox register or stack traps, and (2) through predefined higher-level methods
available with the class library (for example, a QuickDraw library).

d e v e l o p Winter 1991

96

When you first open an MCL application, you see the
window known as the Lisp Listener. The Listener serves the
same purpose as the message box does for HyperCard.
It reads whatever you type into it, evaluates it as a Lisp
expression, and prints out the value returned by the
evaluation (remember that all Lisp expressions return a
value). This process is called the read-eval-print loop.

When you evaluate expressions in the Listener or in
text windows (which you get by choosing New from the
File menu), you get immediate feedback without having
to explicitly compile or link the expressions you enter.
Similarly, evaluating a function you’ve just coded means
that the function is already compiled and linked: you are
ready to use it!

Navigating the code in MCL is also a simple matter. If you

are looking for the source of a function but are not sure
what it is called, you can use the Apropos dialog. You
suggest name fragments, and get back the names of
variables, functions, methods, or other defined symbols that
contain the fragment. If you find what you’re looking for
there, you need only double-click on the returned name
for the system to bring up the file containing the desired
definition and to position the cursor at the beginning of it.

When you are studying the code of the function and you
see functions it calls that you want to inspect, you need
only click on the function name with the Command and
Option keys pressed, and its definition will be shown to
you in a text window.

If you want to optimize your function, you can inspect it
by using the Inspector—for example, (inspect

THE POWER OF MACINTOSH COMMON LISP Winter 1991

97

EVALUATING AND NAVIGATING THE CODE IN MCL

Figure 1
A Sample Backtrace

d e v e l o p Winter 1991

98

(fboundp 'my-function-name)). The Inspector
window includes the disassembled code of the function.
Or you can more directly examine its assembler code by
using the disassembler—for example, (disassemble
'my-function-name).

When an error is signaled, you can use a Backtrace
window to check how you got there—for example, to
see which functions were called before this one, which
parameters were assigned to them, and to inspect the
values of local variables. (Figure 1 shows a backtrace
for a division by zero error.) You can automatically
invoke the Inspector on any value in the Backtrace
window by double-clicking on that value.

If you want to get documentation for a function, you
can click on the name of the function and choose the
Documentation menu item, or press Control-X followed
by Control-D to get it. If you’d like to get the formal

argument list for it, you can click on its name and press
Control-X followed by Control-A.

Once you’re inside a text window (officially called a
Fred* window), you can do incremental searches
backward and forward without the need of dialogs. In
addition, you can easily skip around nested expressions,
transpose expressions, words, or characters, and skip
forward or backward through definitions. A window
containing a list of the definitions in the Fred window can
be selected from the menu: this allows you to directly
go to a definition by double-clicking on the definition's
name. (Figure 2 shows a Fred window accompanied
by a window with list of definitions.) And if you can’t
find a way to do something, you can always extend the
programmable Fred Editor . . . and send the extension
to me!

* Fred is an acronym for “Fred resembles Emacs
deliberately.”

Figure 2
A Sample Fred Window

THE POWER OF MACINTOSH COMMON LISP Winter 1991

99

Pascal-style record definitions, with variant capability like PL/I’s, can be used to
define any toolbox handle or pointer-based records. For example, a rect would be
defined like this:

(defrecord Rect
(variant ((top integer 0)

(left integer 0))
((topleft point)))

(variant ((bottom integer 0)
(right integer 0))

((bottomright point))))

This variant specification enables us to describe the rect in any reasonable
combination of top, left, bottom, right, top-left, or bottom-right points. We use
the following code to create a rect and bind it to the variable myRect:

(setq myRect (make-record :rect :top 0 :left 0
:bottom 100
:right 100))

This calls the Macintosh Memory Manager. A call to the toolbox trap invalrect
would look like this:

(_InvalRect :ptr myRect)

The only argument to this stack trap is the pointer to the rect.

Similarly, to allocate a handle:

(_NewHandle :check-error :d0 80 :a0)

The :check-error parameter tells MCL to signal an error, with error
information, if the trap returns an error. Here, :d0 and :a0 specify the 68000
registers to be used in this register trap. 80 bytes are requested in :d0, whereas the
trap call is asked to return the value in :a0 (that is, for NewHandle, this is the
address of the handle).

The MCL foreign function interface will read any MPW-format object file and
load any specific or all entrypoints into MCL. Then, MCL will link the loaded
procedures with the required MPW libraries. From the viewpoint of MCL, the
foreign function is accessed as if it were a Lisp function. For example, if we’ve
compiled a C function called StringToNumber into the file myProgram.o,
we can load and link its code by evaluating the following form:

d e v e l o p Winter 1991

100

(ff-load "ff;myProgram.o"
:ffenv-name 'sample-of-linking-to-mpw
:libraries '("clib;StdCLib.o"

"clib;CInterface.o"
"mpwlib;interface.o"))

Now, to define a Lisp function that acts as if it were the C function, we evaluate the
following definition:

(deffcfun (StrToNumb "StringToNumber") (string)
:long)

This creates a Lisp function called StrToNumb that takes a string as its input and
returns a long integer. Hereafter, we can call it as follows:

(StrToNumb "198")

SIZE AND PERFORMANCE SPECIFICATIONS
The price of MCL’s flexibility and ease of use becomes apparent when we
compare its size and performance specifications to those of MacApp. While a small
MacApp program might require as little as 40 KB, at press time, MCL 2.0 requires a
minimum of more than 2MB. (Please consult APDA for specific information on the
size requirements for the released product.) A long-term goal of MCL is to reduce
this size by not loading functions you don’t use.

Insofar as speed is concerned, at the time of this writing the method lookup for
MCL is 16 microseconds on a Mac IIcx or 8 microseconds on a Mac IIfx when
dispatching on one argument. The method dispatch in MCL depends somewhat on
the number of a method’s arguments, whereas MacApp dispatches on the class of the
object only. But while the speed of MCL is certainly inferior to that of compiled
Pascal, with faster machines and better compiler technology speed is no longer
critical for real applications.

The other major disadvantage of MCL is the ubiquitous interference of the garbage
collector. The mark-and-copy garbage collector can freeze the system for up to ten
seconds in its current implementation. This can be inconvenient, to say the least, to
your application’s user. Fortunately, work is under way to provide an ephemeral
garbage collector that will incrementally work in the background under the virtual
memory feature of System 7.0. One way to postpone garbage collection (and,
incidentally, often to speed up your code) is to minimize consing—that is, to write
code that uses arrays instead of the commonplace list structures, or, better yet, code
that uses its own memory management by keeping a private pool of free objects. Of
course, the advantages of garbage collection (for example, no memory leaks, no need
to worry about allocating and deallocating memory) should not be forgotten. Since

THE POWER OF MACINTOSH COMMON LISP Winter 1991

101

vectors and lists can be treated as Sequence data types, it is possible to write code
that can deal with either data structure.

NOW FOR AN EXAMPLE
You’ll find an example of a program developed in MCL in the LISP folder on the
Developer Essentials disc that accompanies this issue. This sample application
combines some of the features of programs like MacDraw® and HyperCard. Its
main components are as follows:

• Windows in which the user can build graphics
• Palettes from which tools can be selected and from which graphic objects can be

dragged out
• A variety of graphic objects (for example, buttons, fields) that can be dragged from

the palettes to build something in the windows
• Menus to simplify the user interface
• An event system that approximates HyperCard application’s, including the ability

to write scripts for objects—albeit in Lisp

In the same folder, you’ll also find “All About the MiniLisp Application,” an article
that takes you step by step through the development of the application, in case you
really want to learn the details of how to program using MCL.

In the remainder of this article, I’ll show selected fragments from that example program
to illustrate some of the features and advantages of MCL mentioned earlier.

BUILDING A MENU
In our sample application, our File menu has New, Close, and Quit menu items. We
start building the File menu like this:

(defvar *mini-application-file-menu*
(make-instance 'menu :menu-title "File"))

First, defvar is the Lisp function we use to define and initialize a global variable:
we have thus initialized the variable *mini-application-file-menu* to
contain the menu instance. Note that Lisp identifiers can be of any length and can
consist of any character; by convention, names of global variables start and end with
an asterisk. The method make-instance, which is similar to New in Smalltalk
and in MacApp, enables us to create an instance from a class, and to optionally
initialize some of its slots. (The term slot is synonymous with instance variable in
other object-oriented languages.) The first argument to make-instance is the
name of the class, and the subsequent arguments are keyword-value pairs with
optional initializations that depend on the class. The predefined MCL class menu
is instantiated and the :menu-title keyword option is initialized with the name

of the menu. (The name menu is preceded with a single quotation mark to indicate
that we are referring to the symbol menu rather than to the variable menu.)

To test this instance, we invoke the menu-install method on it:

(menu-install *mini-application-file-menu*)

The menu bar now includes a new File menu. To define a menu item, we evaluate
the following:

(defvar *file-new-menu-item*
(make-instance 'menu-item

:menu-item-title "New"
:command-key #\N
:menu-item-action 'new-menu-item-action))

The predefined MCL class menu-item supports, among other things, an
optional command-key character (characters in Lisp are represented by prefixing
the character with #\) and a menu item action. The latter is a function that will be
called when the menu item is selected. In this example, we define the keystroke
combination Command-N to be equivalent to selecting the menu item. We have
also given new-menu-item-action as the name of the function that should be
called when this menu item is selected. The additional keywords :disabled,
:menu-item-color, :menu-item-checked, and :style (none of which are
used here) enable us to specify whether the menu item should be disabled, the color of
the parts of the menu (such as background, text), whether the item should be checked,
and its style.

We install the new menu item on the File menu by typing and evaluating the
following in a text window:

(add-menu-items *mini-application-file-menu*
file-new-menu-item)

add-menu-items is a predefined MCL method for menus that allows us to add
one or more menu items to a menu—whether the menu is installed or not.

CUSTOMIZING OUR WINDOW
We customize the MCL window for our application by creating a subclass of the
predefined window class. Our new class includes a slot my-items that will hold
a list of all the graphic objects that we draw into the window, remembering their
back-to-front ordering. We start by creating a subclass of the window class named
draw-dialog. defclass is the CLOS function for defining a class:

(defclass draw-dialog (window)

d e v e l o p Winter 1991

102

THE POWER OF MACINTOSH COMMON LISP Winter 1991

103

((my-items :initarg my-items :initform NIL) ; Items in window
(item-last-under-mouse :initarg item-last-under-mouse

:initform NIL) ; Item under the mouse
(browse-mode :initarg browse-mode:initform NIL) ; Window mode
(selections :initarg selections :initform NIL)) ; Item(s) now selected
(:documentation "This class defines our windows"))

Our class draw-dialog adds four slots named my-items, browse-mode,
item-last-under-mouse, and selections to its superclass, window. The
first argument to defclass is the name of the class, draw-dialog, followed
by a list with the names of all classes, if any, from which we want to inherit (that is,
that we want our class to be a subclass of)—in our case, just the window class. As
mentioned earlier, multiple inheritance is supported and although things are, by
default, inherited in the order in which they appear in this list, protocols are
available in the CLOS specification for controlling this. (This “meta-object”
protocol is not yet supported in MCL.) The third and fourth arguments shown here
are a list of descriptors for each new slot that we want to define and documentation
text, respectively.

A descriptor is a list that starts with the name of the slot followed by a set of
keyword-value pairs that represent options concerning how the slots get initialized
when an instance of this class is created. We used the :initform keyword
followed by the the expression NIL. This means that when an instance of
draw-dialog is created, the my-items slot will by default be set to whatever
the following expression evaluates to—that is, NIL. The :initarg keyword, on
the other hand, is followed by the name by which this slot will be recognized in
future slot accesses—in particular, how the slot will be referenced within a call to
make-instance.

The draw-dialog class will inherit slots from the window class and from the
classes it inherits from. We can verify that this new subclass definition works by
creating an instance of it:

(setq my-window (make-instance 'draw-dialog))

One way to check whether the slot my-items has been added and initialized to
NIL is to get its value directly, via the expression

(slot-value my-window 'my-items)

Another way to check this slot is by using the Lisp Inspector to view the object
instance. The Inspector provides us with a description of any object (this includes
constants, variables, and functions) that we want to look at. In addition the
Inspector will allow us to directly edit values. To inspect the instance in
my-window, we evaluate (inspect my-window), which brings up a
screen that looks like Figure 3.

d e v e l o p Winter 1991

104

Figure 3
Viewing an Instance of the draw-dialog Class in the Inspector

The items following Local slots: are slots of the object bound to my-window.
The slots that we added should be at the top, as shown; the remaining slots have been
inherited from the window class. For example, the slot wptr contains the pointer
to the Macintosh window definition block, and view-size is the point (that is,
a long used as a point) for the window’s size. To inspect the window block itself, we
can double-click on the line in Figure 3 with the wptr to get the display shown in
Figure 4.

THE POWER OF MACINTOSH COMMON LISP Winter 1991

105

Figure 4
Viewing the Window Record for Our Instance of draw-dialog in the Inspector

We could continue this process indefinitely—for example, looking next at the
rectangle records in the window record. This illustrates a point made earlier:
although Lisp is a very high-level language, you can still access the system as if
writing in assembler language. This clarifies toolbox access considerably when
compared with C and Pascal.

The complete source code goes on to define the behavior of our window,
including making the window handle events in the way that HyperCard does.
See the CD-ROM if you are interested in details.

CREATING OUR PALETTE
Our palette has two kinds of objects in it:

• Tools to select what should be done
• Objects that can be dragged into our windows

The draw-dialog class can do most of the work for us, so we define a subclass
of it called palette as follows:

(defclass palette (draw-dialog)
((my-tools :initarg :tools)
(my-draw-items :initarg :draw-items))
(:documentation "Palettes used in our application"))

The my-tools slot will contain all the items in the palette that can be viewed as
tools, whereas the my-draw-items slot will contain all the items that can be
dragged out of the palette into other windows. These slots will be initialized with
instances of tools and graphic items that will be used in any one session of our
application. Once a palette is created and initialized, a layout method (in CD ROM
sources) will look at these slots to figure out how to lay out the items—for example,
tools first and draggable items next. These are convenience slots, since graphic items
themselves know whether they are tools or not.

We have to enforce the following differences between our palette and
draw-dialog classes:

• Since tools are not accessible to users, a convenient place to put
the code that does the tool’s work when it is clicked is the tool’s
mouse-down event handler.

• Items in our palette cannot be moved within or resized in the
palette.

• Tools cannot be dragged out of the palette.

d e v e l o p Winter 1991

106

THE POWER OF MACINTOSH COMMON LISP Winter 1991

107

First, we want to make sure that a palette’s tools get the mouse-down
event whether or not we are in author mode. We redefine
view-click-event-handler this way:

(defmethod view-click-event-handler ((palette palette)
where)

(let ((item (find-view-containing-point palette where)))
(if (slot-value item 'tool)

(mouse-down item where)) ; dispatch the
; mouse-down event

(call-next-method))) ; proceed with the
; usual behavior

If an item is selected and if it is a tool, we force the mouse-down and then
call the draw-dialog’s view-click-event-handler method using
8call-next-method. The check (slot-value item 'tool) anticipates
that the tool slot of an item tells it whether it is a tool or not.

Finally, since the resizing and dragging is done by the items themselves, items that
know themselves to be in the palette should not allow themselves to be dragged
or resized around a palette (but they should let themselves be dragged to other
windows!). Similarly, items that are tools will know better than to drag themselves
out of a palette!

CREATING DRAW ITEMS
In our application, the graphic items have been delegated most of the work by the
other classes. We define one basic class of graphic items from which tools and other
kinds of user interface objects will derive.

(defclass draw-item (dialog-item)
((rectangle :initarg :rect :initform nil)
(tool :initarg :tool :initform nil)
(selected :initform nil)
(name :initarg :name :initform ""))
(:documentation "The user interface objects"))

We call our class draw-item. It will be a subclass of MCL’s dialog-item
class. The latter class supports a variety of specializations for typical Macintosh user
interface items, like radio and round buttons, check boxes, and static text. Since
we don’t want to duplicate that functionality, we subclass from dialog-item.
Since dialog-item itself inherits from the class view (actually, from
simple-view—but let’s not split hairs here), we get all the functionality we need
without using multiple inheritance! We can verify this provenance by inspecting
the class object for draw-item using the Inspector, as shown in Figure 5.

Figure 5
The Class Precedence List for draw-item

You will notice that our draw-item not only inherits from simple-view, but
also from stream. The latter class allows one to apply format, print, and
other stream (input/output) methods to our items!

draw-item’s rectangle slot will be used to keep the bounds of the
draw-item. These bounds will be the same as one would obtain by using the
methods view-position and view-size when applied to the item, but will
be much more efficient than making two method calls. The tool slot tells us
whether the item is a tool or not. The selected slot tells us whether the item is

d e v e l o p Winter 1991

108

THE POWER OF MACINTOSH COMMON LISP Winter 1991

109

selected (note that this information is redundant since it is also maintained in the
window�s selections slot). Finally, a name for the draw item.

Our code goes on to define the behavior of the draw item. We won�t take the space to
discuss it here, but do want to show the resize and drag methods.

The resize method looks like this:

(defmethod resize ((item draw-item) current-mouse-loc)
(let* ((resize-direction (get-resize-direction

item current-mouse-loc))
(topleft (view-position item))
(size (view-size item))
(bottomright (add-points topleft size))
(top (point-v topleft))
(left (point-h topleft))
(bottom (point-v bottomright))
(right (point-h bottomright))
new-mouse-loc new-mouse-h new-mouse-v
;; Two regions to produce inverted effect:
(old-resize-region (new-region))
(new-resize-region (new-region))
;; The rectangle enclosing the window
(window-rectangle (rref (wptr item)

:window.portrect))
;; The rectangle enclosing the draw-item:
(item-rectangle (slot-value item 'rectangle))
(window (view-container item)))

(_inverrect :ptr item-rectangle)
(unwind-protect
(loop ; until the mouse is released
(if (not (mouse-down-p))

(return nil)) ; We're through!
;; Update the location of the mouse in window coordinates

(setq new-mouse-loc (view-mouse-position window)
new-mouse-h (point-h new-mouse-loc)
new-mouse-v (point-v new-mouse-loc))

;; Do resize graphics if mouse is within the window:
(when (point-in-rect-p window-rectangle new-mouse-loc)

(_RectRgn :ptr old-resize-region
:ptr item-rectangle)

(case resize-direction
(:top (and (< new-mouse-v bottom)

(rset item-rectangle
:rect.top new-mouse-v)))

(:bottom (and (> new-mouse-v top)
(rset item-rectangle

:rect.bottom new-mouse-v)))
(:left (and (< new-mouse-h right)

(rset item-rectangle
:rect.left new-mouse-h)))

(:right (and (> new-mouse-h left)
(rset item-rectangle

:rect.right new-mouse-h)))
(:topleft (and (< new-mouse-v bottom)

(< new-mouse-h right)
(rset item-rectangle

:rect.topleft new-mouse-loc)))
(:topright (when (and (< new-mouse-v bottom)

(> new-mouse-h left))
(rset item-rectangle

:rect.right new-mouse-h)
(rset item-rectangle

:rect.top new-mouse-v)))
(:bottomleft (when (and (> new-mouse-v top)

(< new-mouse-h right))
(rset item-rectangle

:rect.left new-mouse-h)
(rset item-rectangle

:rect.bottom new-mouse-v)))
(:bottomright (and (> new-mouse-v top)

(> new-mouse-h left)
(rset item-rectangle

:rect.bottomright new-mouse-loc))))
(_RectRgn :ptr new-resize-region :ptr item-rectangle)
(_xorrgn :ptr new-resize-region :ptr old-resize-region

:ptr old-resize-region)
(_inverRgn :ptr old-resize-region)
))

(_inverrect :ptr item-rectangle)
(set-view-size item (subtract-points

(rref item-rectangle
:rect.bottomright)

(rref item-rectangle
:rect.topleft)))

(set-view-position item (rref item-rectangle :rect.topleft))
(dispose-region old-resize-region)
(dispose-region new-resize-region))))

d e v e l o p Winter 1991

110

THE POWER OF MACINTOSH COMMON LISP Winter 1991

111

The resize method illustrates the use of direct stack-based toolbox calls: these
are the functions whose names are prefixed by the underscore (_) character, like
_inverrect. In these calls, you can only pass a pointer, a single word, or a double
word. You must take all the precautions you would if you were calling the traps from
assembler. As a matter of fact, you are at assembler level when you make these calls:
you can pass pointers or handles or a long number in a double word: you�re the
boss.

Another important feature of Common Lisp to observe in resize is the
unwind-protect construct. This enables you to protect an expression (in this
case, the long expression enclosed within the loop) in case there�s an error
during its execution. The unwind-protect guarantees that the expressions
following the protected expression will be executed despite the error. We thus
ensure that all the regions created for resize will be disposed of even if the
routine crashes.

Here�s the drag method:

(defmethod drag ((item draw-item) current-mouse-loc)
(let ((start-position (view-position item)) ; Start of the drag

(end-position nil) ; End of drag
(item-region (new-region)) ; What are we dragging?
(window (view-container item)) ; Where are we dragging?
(destination-window nil) ; Where did drag end?
(drag-offset nil)) ; Drag offset

(unwind-protect ; dispose regions despite errors
(progn

;; Define the region that we want to drag:
(open-region window)
(with-port (wptr item)

(_framerect :ptr (slot-value item 'rectangle)))
(close-region window item-region)

;; Do the drag and get the offset of the drag:
(setq drag-offset

(drag-inverted-region (view-container item)
item-region :start current-mouse-loc))

;; Find out in which window the item landed:
(setq end-position (add-points start-position drag-offset)

destination-window (find-draw-dialog-in-point
(add-points end-position

(view-position window))))

(when destination-window ; Do nothing if it lands nowhere
(if (eq window destination-window)
;; Move within this window: set the item's
;; position at the end of the drag:
(unless (eq (type-of window) 'PALETTE) ; No drags within PALETTE
(set-view-position item end-position))

; Move to another window: drop it there
(move-item-to-window item end-position window destination-window))

(view-draw-contents item)))

(dispose-region item-region))))

The drag method creates a region around the bounds of the thing to be
dragged and calls the function drag-inverted-region, which enables drags
to occur between as well as within windows and returns an offset to where the item
was dragged. If the destination window is the same as the window where the drag
started and the window is a palette, we want to do nothing since we can�t have
a drag within a palette. Otherwise, we adjust the position of the item using
set-view-position. If the move is to another window, then we use
move-item-to-window. The latter will interpret a drag as a clone of the item
if the drag started on a palette and ended in a draw-dialog window, or else
it will interpret it as a simple drag. move-item-to-window uses the MCL
view methods add-subviews and remove-subviews to add and remove
the items from the source and destination windows. If there�s a clone, the function
clone-draw-item is called and the item is added to the destination window.
move-item-to-window ends by selecting the destination window.

CREATING A DOUBLE-CLICKABLE APPLICATION
You can create a double-clickable version of your application using the MCL
function save-application. This allows you to distribute your final
application for run-time use, without the rest of the MCL development
environment.

TO SUM UP
Macintosh Common Lisp offers many advantages that are beginning to look more
attractive to developers as faster machines and cheaper memory minimize its
drawbacks. Advantages like multiple inheritance; typeless variables; abstraction away
from Macintosh event-loop style of programming; the ability to implicitly allocate
and deallocate, as well as to easily access, simple data structures like lists or complex
objects; a large and consistent class library; and the ability to incrementally compile
code outweigh MCL slower speed and larger memory requirements. If this taste of
MCL has made you want to learn more, see the Developer Essentials disc and the
following list of recommended reading.

d e v e l o p Winter 1991

112

THE POWER OF MACINTOSH COMMON LISP Winter 1991

113Thanks to Our Technical Reviewers
Yu-Ying Chow, Bill St. Clair, Sarah Smith,
Jim Spohrer, Steve Weyer •

RECOMMENDED READING

REFERENCES

Common Lisp: The Language, 2nd ed., by Guy Steele
(Digital Equipment Corporation, 1990).
This is the language book of last resort not only for
programmers but also for implementors of the Common
Lisp standard. A must for any serious programmer, it is
nevertheless too lengthy and detailed to serve as a
quick reference guide: at 1,029 pages, it makes the
Old Testament look inviting. The second edition contains
changes and extensions to the standard, including the
addition of the Common Lisp Object System (CLOS).

Common Lisp: The Reference by Franz, Inc.
(Addison-Wesley, 1988).
This is a useful alphabetically ordered reference book
on Common Lisp. Unfortunately, at the time of this
writing there is no revised version of it that matches
Steele’s second edition.

Object-Oriented Programming in Common Lisp: A
Programmer’s Guide to CLOS by Sonya E. Keene
(Addison-Wesley, 1989).
After you’ve waded through the 1,029 pages of Steele’s
book, this will quickly land you on Mother Earth. This
book does much to disentangle the complexity of the
Common Lisp Object System. Keene’s book will be a
companion to your Common Lisp reference.

Macintosh Common Lisp 2.0 Reference
(Apple Computer, 1990).
This is Apple’s reference for MCL. It describes all user
interface classes, the event system, and the development
environment, and gives you everything you need to get
started—except for the application.

TUTORIALS

Lisp tutorial books vary in quality. There is no substitute
for going to a well-stocked technical bookstore and
taking the time to select the book that appeals most to
you. However, you should not miss the following three:

Lisp, 3rd ed., by P. H. Winston and B. K. P. Horn
(Addison-Wesley, 1989).
If you enjoyed college coursework , you’ll love this
book. It is replete with problem sets and includes an
instructive and interesting variety of examples. The
essentials of the Lisp language and of Lisp thinking are
covered quite nicely—if you have the stamina to
systematically work your way through it all.

Common LISPcraft by Robert Wilensky (Norton, 1986).
Ranking in serviceability midway between the other two
tutorial books listed here, this one manages to avoid the
tedium of the one and the shallowness of the other. Its
examples are short and direct. It contains lucid
explanations of some subtle issues (for example, funargs
and binding) that in other contexts could appear alien to
you.

LISP: A Gentle Introduction to Symbolic Computation by
David S. Touretzky (Harper & Row, 1984).
If you are intimidated by Lisp, this may be the book for
you. Touretzky takes great pains to make sure that you
understand every point he sets out to make—particularly
about the fundamentals of the language (for example,
"what is a list?"). The only problem with this is that the
only place to go from here is to another, more thorough
tutorial book. But we all must begin somewhere!

A
ACOT. See Apple Classroom

of Tomorrow
activate 92
Activate 14, 16, 19, 23, 26
activeIdle 14
add-menu-items 102
add-subviews 112
ADSP. See AppleTalk Data

Stream Protocol
Alexander, Pete (Luke) 76–77
Allegro Common Lisp.

See Macintosh Allegro
Common Lisp

AnimateEntry 81
AnimatePalette 81, 82, 83
Apple Classroom of Tomorrow

(ACOT) 47
Apple Scanner, scanning from

ProDOS using 51–75
AppleTalk, asynchronous

background networking
using 6–30

AppleTalk Data Stream Protocol
(ADSP), LACS and 7, 10

AppleTalk Name Binding
Protocol (NBP), LACS and
7, 9

Apple II High-Speed SCSI Card,
scanning from ProDOS
using 51–75

applications, double-clickable
112

Apropos, described 95
Apropos dialog 97
asynchronous background

networking 6–30
“Asynchronous Background

Networking on the
Macintosh” (Chesley) 6–30

B
background, Color Manager vs.

Palette Manager 81

background networking,
asynchronous 6–30

Backtracer, described 95
Backtrace window 98
Bayer type filter 60
Brightness 63
browse-mode 103
buffers, image 56
BuildMessage 24

C
call-next-method 91, 107
CASE 87
:check- error 99
Chesley, Harry R. 6–7
class libraries, MCL vs.

MacApp/MPW 92–94
clone-draw-item 112
CLOS. See Common Lisp

Object System
Collyer, Rich 78
color icons, Lisp and 47–48
ColorLaser 92
Color Manager, animating colors

with 78–84
colors, animating 78–84
Command-N 102
Common Lisp. See Lisp;

Macintosh Common Lisp
Common Lisp Object System. See

Macintosh Common Lisp
Contrast 63
CopyBits 80, 84

Lisp and 47
Courteous 78, 79
csCode 23, 24
ctFlags 80, 84

D
defclass 102–103
DEFINE WINDOW

PARAMETERS 56
defmacro 87
defvar 101

d e v e l o p Winter 1991

For a cumulative index to all issues
develop and a complete source code
listing, see the Developer Essentials disc. •

114

INDEX

dialog-item 107
:disabled 102
disassembler 98
Document 92
Documentation menu item 98
DoIdle 14
DoIt 14, 16, 19, 21, 23–25
DoMenuCommand 94
double-clickable applications,

creating in MCL 112
Double HiRes mode 51, 56, 63
drag 111–112
drag-inverted-region 112
draw 92
draw-dialog 102–103, 106,

107, 112
draw-item 107, 108
draw items, creating in MCL

107–112
DrawPicture 84

E
event systems, MCL vs.

MacApp/MPW 92–94

F
fActiveIdle 14
filters, halftone 60–62
fInactiveIdle 14
format 108
Fred Editor/Fred window 98
Free 14
fState 14, 24

G
GetCTable 80
GET DATA STATUS 56
GetEntries 82
GetEntryColor 80
GetHotMessage 24
GetNewCWindow 80
GIF format 56
GiMeDaPalette, animating colors

with 78–84

“Give me a hot message”
command (LACS) 10

“Give me a message; I don’t care if
it’s hot or cold” command
(LACS) 10

Grayscale 63
Gulick, Matt 51–52

H
halftone filters 60–62
HandleIncomingCommand 24,

29
HandleMouseDown 94
“Here’s a new message” command

(LACS) 10, 24
High-Speed SCSI Card. See Apple

II High-Speed SCSI Card
HiRes mode 51, 56, 63, 68, 73
“hot,” defined 9

I
icons, color 47–48
IF 87
IFT. See Interface Tools
IGossip 22, 23
“I haven’t seen it” command

(LACS) 10
image buffer, defined 56
ImageWriter 92
inactiveIdle 14
Index2Color 82
INHERITED 91
:initarg 103
:initform 103
initialIdle 14
Inspector 97–98, 103, 107

described 95
instance variable, defined 101
Interface Tools (IFT) 96
interrupts 83
invalrect 99
_inverrect 111
ioStream 91

INDEX Winter 1991

115

IPeriodic 14
iPfMaxPgs 76–77
item-last-under-mouse

103
“I’ve seen it” command (LACS)

10
IZoneLookup 16, 18

J
Johnson, Dave 47–48

K
Kick 14
Kleiman, Ruben 85–86
kPeriodicActive 14
kPeriodicInactive 14
kPeriodicWaiting 14, 21, 23

L
LACS. See Lightweight

Asynchronous Conferencing
System

layers, Lisp and 47–48
libraries, class 92–94
Lightweight Asynchronous

Conferencing System
(LACS) 6–30

Line Art mode 60, 63, 75
Lisp

color icons and 47–48
tutorial 87
See also Macintosh Common

Lisp
Listener 97
Local slots: 104
LocalTalk, asynchronous

background networking
using 6–30

LongBeeper 89, 91
loop 87, 111

M
MacApp, MCL compared to

86–101
Macintosh Common Lisp (MCL)

85–113
background reading 113
compared to MacApp/MPW

86–101
described 86
evaluating and navigating

code in 97–98
example program 101–112
See also Lisp

make-instance 101, 103
MCL. See Macintosh

Common Lisp
menu 101, 102
menu-install 102
menu-item 102
:menu-item-checked 102
:menu-item-color 102
menus, building in MCL

101–102
:menu-title 101–102
Messages window (LACS)

7–9, 29
*mini-application-file-

menu* 101
MODE SELECT 56
MODE SENSE 56
monitors, multiple 82
mouseDown 94
mouse-down 106, 107
move-item-to-window 112
MPW, MCL compared to

86–101
MultiFinder

asynchronous background
networking using 6–30

Color Manager vs. Palette
Manager 82

multiple monitors, Color Manager
vs. Palette Manager 82

d e v e l o p Winter 1991

116

INDEX

N
name 109
Name Binding Protocol.

See AppleTalk Name
Binding Protocol

NBP. See AppleTalk Name
Binding Protocol

networking, background 6–30
NewCWindow 80
NewHandle 99
new-menu-item-action 102
New Message window (LACS) 7
Notification Manager, LACS

and 7
NSetPalette 80

O
Object Lisp. See Macintosh

Common Lisp
Object Pascal, MCL compared to

86–101

P
Palette2CTab 81
palette 106
Palette Manager, animating colors

with 78–84
“Palette Manager-Animation”

(Collyer) 78–84
palettes, creating in MCL

106–107
PARC 9, 11
Pascal, Lisp compared to 87
PassiveOpen 23
performance specifications, MCL

vs. MacApp/MPW
100–101

PICT format 56
‘pltt’ 80
pmAnimated 80

pmAnimated+pmExplicit 84
PmForeColor 80
pmInhibit 84
pmInhibitC2 84
pmTolerant 80
“Power of Macintosh Common

Lisp, The” (Kleiman)
85–113

PrCloseDoc 77
Print 92
print 108
“Print Hints with Luke & Zz”

(Alexander and Zimmerman)
76–77

printing, hints for 76–77
Printing Manager 76–77
ProDOS 8, scanning from 51–75
PrOpenDoc 77
Prototyper 96
PrPicFile 77
“pulling”, defined 10
“pushing”, defined 10

Q
quote 87

R
READ 56
read-eval-print loop 97
ReadStream 91
rectangle 108
Redo 94
remove-subviews 112
ReserveEntry 82
resize 109–111
RGBForeColor 82
“rumor mongering,” defined 9

S
save-application 112
SCAN 56
scanners. See Apple Scanner
scanning from ProDOS 51–75

INDEX Winter 1991

117

“Scanning from ProDOS”
(Gulick) 51–75

scan window 63–66
SCSI Card. See Apple II

High-Speed SCSI Card
SEND 56
Send Message button (LACS) 7
Sequence 101
SetEntries 82, 83
SetInhibited 80, 84
SetPalette 80
setq 87
set-view-position 112
simple Bayer type filter 60
simple-view 107, 108
size specifications, MCL vs.

MacApp/MPW 100–101
slot, defined 101
speed, Color Manager vs. Palette

Manager 82
Status window (LACS) 7, 9
stream 108
StringToNumber 99–100
StrToNumb 100
:style 102
Super HiRes mode 51, 56

T
TApplication 93, 94
TCheckBox 29
TCommand 92, 94
TDocument 94
TDocumentSaver 26
TEvtHandler 94
TEvtHandler 14
TGossip 22–25
Threshold 63
TLACSDocument 27–28, 29
TMessage 23, 24, 29
TNodeLookup 21
TPeriodic 11–26

TDocumentSaver 26
TGossip 22–25
TNodeLookup 21
TZoneLookup 16–21

TPrintHandler 92
TSortedList 29
TStaticText 29
TTEView 29
TTextListView 29
TView 94
TWindow 94
TZoneLookup 16–21

U
Undo 94
unwind-protect 111

V
“Veteran Neophyte, The”

(Johnson) 47–48
view 92, 107, 112
view, defined 92
view-click-event-handler

107
ViewEdit 96
view-position 108
view-size 104, 108

W
WaitForAsync 14, 19
Waiting 14, 16, 20, 23
Window 88, 91
window 102, 103, 104
windows, customizing in MCL

102–106
without-interrupts 94
wptr 104
WriteStream 91

X, Y
Xerox PARC 9, 11

Z
Zimmerman, Scott (Zz) 76–77

d e v e l o p Winter 1991

118

INDEX

