Micron backs you up. Each system is custom-configured and shipped directly, so it meets your needs, not someone else's. If you have any PC or networking questions, call our award-winning 24-hour technical support. Buy Micron. And get the job done right.
WE GIVE YOU INDIVIDUALLY ASSIGNED SALES AND TECHNICAL SUPPORT REPRESENTATIVES WHO KNOW YOUR BUSINESS.
Support is always being able to call for backup.
As an IT manager or administrator, you want reliable, high-performance PCs.

You want a sales representative who knows about the product, your business and your networking needs. And you want fast, expert assistance and issue resolution that's just a phone call away. But most of all, you want your day to go smoothly. Micron's total-value proposition gives you what you want — and more. We've streamlined our entire purchase process to ensure your orders and service needs are expedited. We give you personal service from dedicated sales and technical support representatives assigned to your account. Their intimate knowledge of your business promotes quick action and fast resolution of your computing-related issues. We also give you a comprehensive selection of servers, desktops and portables to choose from. And no matter which Micron system you select, you get one of the best limited warranties in the industry. Service and support that's always there to back you up. With a personal touch. Call us today and discover the many advantages Micron can give your business.

Call now to order.
800-362-7306
www.micronpc.com

Thinking Out Of The Box.
The Framework Is FREE.

For A FREE CD, Call 1-888-864-2368.
The Benefits Are Invaluable.

Time to market.

It's the biggest challenge every developer faces. But now there's something that can help you conquer it. An amazing new framework that will enable you to develop your applications much, much faster than before.

The Unicenter TNG Framework Can Save You Years Of Development Time.

The TNG Framework provides an instant foundation for virtually any kind of application you need to develop.

Sure, you could write your own but do you have countless months to do it? And would it be as robust as everything TNG can give you today? Not to mention, it would take even the most gifted developer a very long time to develop some of the very uncommon services the TNG Framework offers. Like a revolutionary 3-D interface that incorporates virtual reality. And innovative Business Process Views* that let users look at their systems and processes any way they like.

Why spend the next five years building your applications from scratch, when you can use the Framework to get an edge on your competition today?

Unicenter TNG Framework Provides All Your Applications With Cross-Platform Support.

With the TNG Software Development Kit and FREE TNG training programs, you'll be able to develop for the broadest variety of UNIX and NT platforms. In fact, Unicenter TNG is the most open, interoperable, and scalable management solution available. Today, over a
dozen companies are shipping the Unicenter TNG Framework with their systems. Companies like HP, DIGITAL, NCR, Tandem, SGI, Data General, SCO, and Fujitsu, to name a few. They ship it, so you don't have to.

Unicenter TNG is Widely Recognized As The Industry Standard For Network And Systems Management.

Unicenter TNG is the only management solution that has been publicly endorsed by virtually every major hardware and software company including Microsoft, Sun, SAP, Intel, HP, DIGITAL, Tandem, NCR, SGI, and Data General. Information Week summed it up best when it recently said "Unicenter TNG is a generation ahead of the competition."

Call today and give yourself a free head start on every single application you develop. It just might be the competitive edge you need. To finish first, every time.

Unicenter TNG Framework

©1997 Computer Associates International, Inc., Islandia, NY 11788-7000. All other product names referenced herein are trademarks of their respective companies.
The rap on Java is that it's too slow. Proponents are inventing ways to speed it up, including better compilers.

PART II

NINE RECIPES FOR FAST, EASY JAVA

By Peter Wayner

Our tests will help you find the right development tools for your Java projects.

MANAGING DATA

When Parallel Lines Meet

By Ken Rudin

Parallel databases can wring the best performance out of parallel-processing hardware.

NETWORK INTEGRATION

Breaking Bandwidth Bottlenecks

By Scott Mace

Management tools can prioritize traffic, guarantee bandwidth, and cache data closer to users.

Cracker Tracking

112C

It's midnight. Do you know who's trying to hack your network?

By Russell Kay

What to expect in the future of portable computing.

JDBC's Growing Pains

112M

Java Database Connectivity: Developers need more than promises.

The Road to a Universal Repository

1125

Component technology heats up an old idea.

Computers to Go

80NA 1

By Bruce Schneier

Cracking encryption gets easier as computers get faster and cheaper. Now what?
Unix Gears Up for Merced
SCO’s SVRS-based UnixWare 7 offers faster networking, better reliability, and 64-bit features for Intel boxes.

Using Perl with Databases
The Royal Botanic Gardens takes on the task of publishing Access data on the Internet in a Unix-only server environment.

DATABASES
Using Perl with Databases
Need to publish data, locked up in a Unix database, on the Web? This article shows you how, using Perl and several inexpensive tools.

Where Parallel Lines Meet
The linchpin of this object-relational system is a data structure that maps the details of object structure (and object relationships) to a relational database.

JAVA
Java for Windows
New Windows Foundation Classes make Microsoft Visual J++ 6.0 a good tool for running Java on Windows.

Servlets: CGI the Java Way
Servlets are Java programs designed to provide CGI-like capabilities. They offer better performance.

How to Soup Up Java
“It’s Java, Captain. She can go any faster.” (Obviously Scotty hasn’t read this month’s cover story.)

Nine Recipes for Fast, Easy Java
We test development tools from Borland, Coms, IBM, Lotus, Microsoft, Sun, SuperCede, Sybase, and Symantec.

TopLink Bridges
TopLink III for Windows
JavaTalk covers a 100-percent-pure-Java object-relational database system.

NETWORKS
How to Build an E-Store Fast
You don’t have to host your own Web site to open up an online store.

Double Trouble for E-Mail Security
The director of the Internet Mail Consortium discusses standards problems.

SMS: Ready for NT 5.0
A look at the beta of Microsoft’s Systems Management Server 2.0 shows smarter use of inventory management standards.

What’s Your Service?
The Service Location Protocol allows devices to advertise their functions and features on an intranet. Computers and other devices can automatically find and use these services.

Servlets: CGI the Java Way
Given Java’s pointerless nature, a Java-based servlet is less likely than a C++ plug-in to crash the entire Web server.

Breaking Bandwidth Bottlenecks
Technology can rush important applications through a congested network, or create the illusion of more bandwidth.

Deploying Effective HTML Forms
Everybody has seen a bad HTML form. Here are 10 rules for making your forms better.

Remote-Control Registry
Remote Access for Short Attention Spans
Our reporter watches the installation of Covad Communications’ commercial ADSL service.

UNIX
OS Vendors Race
After Merced
Unix proprietors are busy porting their OSes to Intel’s 64-bit architecture.

WINDOWS
More PC Power to Go
BYTE tests show that the speed of Mobile Pentium II notebooks will nearly match that of the fastest x86 desktops.

Gartner Group Report
With the real NT 5 about a year away, do you buy into Win 98? Or stay with Win 95? Or...

Java for Windows
Microsoft’s Visual J++ 6.0 blends an enhanced Visual Basic IDE with Java’s object-oriented programming toolset.

3D Labs Puts a Glint in Graphics World’s Eye
The first single-chip geometry and lighting processor screams it’s a breeze to add storage to Windows 95 and NT systems.
It's a fact. Dongles are the most secure method of protecting your software. But there's only one that has the power to change the way you think. The SentinelSuperPro from Rainbow, the world leader in software protection. It's the first dongle to enable "Try and Buy" software activation and upgrades via the Internet. And its compact size is ideal for laptops and cascading. The SentinelSuperPro is part of the complete line of Sentinel security and license management products from Rainbow. Leading the industry year after year, Rainbow has more than 14 million dongles currently in use and the most progressive license management suite in the industry. So it's no surprise that when you need proven, reliable, and innovative software protection, we're right here to help. Call now for your free guide to securing sales on the Internet. The SentinelSuperPro from Rainbow—small size, monumental opportunities.

SentinelExpress
Secures software distribution, activation, and registration over the Internet.

SentinelLM
"Try and Buy" and comprehensive license management for PC, UNIX, and Java.

SentinelTrack
Monitors software usage, ensures license agreement compliance.

Rainbow Technologies
Changing the way the world secures business.

50 Technology Drive, Irvine, CA 92618
800.705.5552 tel. 714.450.7300 fax. 714.450.7450 www.rainbow.com
Offices and distributors located worldwide.

Enter HotBYTEs No. 140 at http://www.byte.com/hotbyte/
The IT Manager

Who I am.

Visionary.

Agent of change.

Engineer.

Teacher.

Troubleshooter.

Just your everyday kind of hero.
I put out fires.
I rescue data.
I increase productivity.
I plan capital investment.
I guide colleagues through the technological wilderness.
I keep my network up and running, which keeps my company on its feet.
What I want.

I want from my vendors what
my people need from me.
Rock-solid reliability.
Expert, caring support.
Custom-fit technology.
Incredible high-value,
long-term solutions.
But most of all, I need
my vendors to do
things my way.

Isn't it great when you can meet your
wants and needs at the same time?

E-1000
Low-Cost Network-Ready Desktops
- Fully Featured Intel®
 Processor-Based PCs
- Manageability and Serviceability
 Features (including Wired for
 Mgmt. 1.1 compliance)
- Prices Starting at $999
 Including Monitor

NS-8000
Departmental Servers
- Upgradeable to Two Intel Pentium®
 Pro or Pentium II Processors
- Error Checking and Correcting
 Memory System (expandable
to 512MB)
- Ultra Wide SCSI RAID System
 (expandable to 108GB)
- Prices Starting at $3699

At Gateway Major Accounts, we pride
ourselves on giving our clients unique,
customized solutions. In short, we do
things your way. Please call, and we'll
be glad to show you how.
Get Two For Under Three.

Pentium®II Processor Power at less then $3000.

266 MHz, 13.3” TFT, 4 GB HD, 3-D

With speed gains up to 50% in floating point calculations and a big boost in MMX enhanced functions, the introduction of the new mobile Intel® Pentium® II Processor is a big leap forward for portable computing.

Even better news is that WinBook is offering this exciting new technology at a great low price. Our new XLI model is packed with high-end features like 32 MB of fast SDRAM, a 4 GB Ultra DMA hard drive, 4 MB of SGRAM for 3-D acceleration and more.

Combine all of that with our award-winning reputation and it’s a package that’s hard to resist. Call today or visit us at www.winbook.com.

Mon-Fri 8am-9pm EST Sat 9am-4pm EST
U.S. sales only. 30-day unconditional money-back guarantee from date of purchase.

1-888-480-4559 www.winbook.com

Upgrade to 64/128 MB SDRAM
Upgrade to 56k Internal Modem
Upgrade to 5 GB Hard Drive

Winner of over 140 industry awards

©1995 Winbook Computer Corporation. All rights reserved. Winbook is a registered trademark of Micro Electronics, Inc. The Intel Inside logos and Pentium are registered trademarks and MMX is a trademark of the Intel Corporation. All other trademarks and registered trademarks are property of their respective corporations. All prices and specifications are subject to change without notice or obligation. Prices do not include shipping.
Developers: get the at a price you can't

FREE
(With purchase of select Visual Tools)

*Includes a limited license for development and testing only; BackOffice license limited to ten (10) simultaneous connections. ** Offer good through June 30, 1998. While supplies last. No shipping or handling costs.
© 1998 Microsoft Corporation. All rights reserved. Microsoft, BackOffice, Visual Basic, Visual C++, Visual Studio, Windows, and Windows NT are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.
power you need ignore.

For a limited time, get the power and stability of Microsoft Windows NT Workstation or BackOffice Server 4.0 Developer Editions, free when you acquire a select Visual Tool.

Take your pick.

Or, if you're building enterprise solutions, choose the Enterprise Edition of one of these same Visual Tools and get BackOffice Server 4.0 Developer Edition—free. This suite of application servers, including Microsoft Windows NT Server, Microsoft Exchange Server and SQL Server, help you build comprehensive business-critical, client/server solutions.

Either way you get the high performance and stability of Windows NT, along with the most powerful, easy-to-use visual development tools for building client/server, Internet, Intranet, and Windows-based solutions.

This offer is too good to ignore. But it's only good for a limited time**. So act now. Visit your nearest reseller or call (888) 229-0738 to order. Then go to www.microsoft.com/developer/offer to get further details and to find out how to redeem your free copy of Windows NT Workstation 4.0 or BackOffice Server 4.0. All redemption will be accessed via a coupon on the web.

www.microsoft.com/developer/offer Where do you want to go today?
Reliability Counts

Speed thrills, but crashes kill. Time to focus on quality code and never-say-die computing.

With last month's cover story, "Crash-Proof Computing," we put a stake in the ground for reliable computing. In the past, we've been as guilty as anyone of being dazzled by clock speeds and feature sets. These are important, but reliability has become a critical issue, and at BYTE we're not closing our eyes to it anymore.

In the aforementioned cover story, senior editor Tom Halfhill took a balanced look at the whys and wherefores of today's woefully crash-prone PCs. At the top of this page, it says "Editorial," so I don't have to be balanced. In my opinion, there's absolutely no excuse for computing that requires multiple reboots each day. The typical excuses sound awful whiny to me: Everything's so complex; people want so many features; it's a competitive market.

It's oft been pointed out that only in computing do we tolerate the shoddy work that passes for mainstream operating systems and apps. And I'm hard-pressed to think of any other piece of hardware you can buy for $3000 that's as failure-prone as a PC.

Sure, the culprits are often the cut corners that make PCs affordable: the cheap video card, the marginal memory chip, the inexpensive drive controller. But how often do PCs fail because of bad cooling, improper voltage regulation, or other fundamental design flaws? I'm betting pretty often. Preventing those failures with better components would not be that expensive. For example, while it's nice that disk drive capacities have been on a serious price/performance ramp-up, I'm sure we'd all take a slightly less steep ramp if they were combined with increasingly rugged and foolproof drives. Yet several years ago, some in the drive industry adopted the reverse tack. They said: Who needs MTBFs of hundreds of years when computers are obsolete in four? Yes, but that M stands for mean; that average is a combination of happy clams and less fortunate individuals whose hard drives fail in the first year of operation.

So, no more excuses. Time to get serious about quality. I'm mad as hell and I'm not going to take it anymore!

I have some definite ideas about where computing has to go to become more reliable. I'll be on-line May 11-15 (http://www.byte.com/discuss/discuss.htm) to talk about them with you. We'll put together a Manifesto for Reliable Computing and lobby for it in the industry. As a first step, we'll add to our awards at PC Expo and Comdex and our annual Editors' Choice Awards to recognize products that contribute to this cause, if and when they appear. So, let me throw down the gauntlet and get the dialog started:

I'm hard-pressed to think of any other piece of hardware you can buy for $3000 that's as failure-prone as a PC.

1. All OS and application installs should have absolute rollback capabilities, for multiple generations. The PC will never live in as small a universe as the mainframe, where packaged software tends to be much better behaved. In such a diverse world, rollback at least preserves workability.

2. General-purpose computers need some real-time capabilities. Specifically, what good is network administration if a computer is so locked up that it can't communicate over the Net? All operating systems should keep a channel open to network admin traffic.

3. All OSes should be self-healing. If any component of the OS becomes corrupted or fails (due to version conflicts, for example), the OS should know that and take any appropriate actions.

4. All computers should monitor their own temperature and power consumption (for high and low voltage) and warn of out-of-limit operations.

5. All peripherals should run a POST-like diagnostic at start-up and have an invocable diagnostic routine that can be run when trouble occurs.

Beyond such a list of engineering principles, we should all exercise stern judgement in purchasing. Replace that smile with a frown when vendors say they produced their app on "Web time"—what they mean is that it's late alpha code and you're the beta tester. We all complain about buggy software and unreliable hardware—now let's put our money where our mouth is.

Mark Schlack, Editor in Chief
mark.schlack@byte.com
Everyone agrees: the future belongs to objects.

But today’s application developers have limited choices when it comes to harnessing the power of object technology without sacrificing performance, flexibility, or the freedom to use what you like.

Jasmine™ gives you the power you need with the freedom you want.

It’s the first complete and pure object solution that has it all:

- The industry’s easiest integrated development environment lets you drag and drop, and use all your favorite tools: native Java support, ActiveX controls, built-in VB integration, and C++.
- Jasmine is a powerful, true object database. It supports abstract classes, encapsulation, classification, inheritance (both single and multiple), unique object identity, methods (including instance-level, class-level, and collection-level), polymorphism, and aggregation.
- An industrial-strength architecture featuring SMP support, backup and restore, security, and transaction management.
- Built-in multimedia and Internet support: not only can you build and package the next generation of multimedia business applications, you can run them everywhere: Internet, intranet, extranet, client/server—all without recompiling.

Jasmine is real. A proven, complete object-oriented database and development environment. Unlike hybrid or partial object solutions, Jasmine actually works.

So you can shorten your time to market and gain a distinct competitive advantage. Try it out—pick up the phone right now. Because Jasmine is ready today.

Are you?

Call 1-888-7JASMINE for your FREE Developer Edition CD
or visit www.cai.com

Introducing
Jasmine
Objects @ Work™
Your software is your baby — and you want to look after it. You created it, you developed it, you saw it right through to the moment it was ready for market. Now protect it. 50% of business software is stolen; $11 billion of developers’ income is lost to piracy.* Is your software a statistic?

All over the world, more developers are protecting against piracy. They’re protecting more products, on more platforms, with more security — and selling more as a result. And more of these developers are protecting with HASP.

To see why 25,000 developers worldwide protect with Aladdin, call and order your HASP Developer’s Kit now!
Kudos

Kudos to Scott Mace and his fellow authors. “Weaving a Better Web” (March cover story) is timely, comprehensive, and understandable. It has provided me with a clearer understanding of the interrelated concepts of Extensible Markup Language (XML), cascading style sheets, and Dynamic HTML than any other article or book that I have read. Keep up the excellent work.

Thomas P. Chester
Chief technology advisor
Securities and Exchange Commission

Limited Vocabulary

Sorry, but I didn’t get the point of “Stored Procedures: Threat or Menace?” (March feature). Did the authors mean that we all should become SQL gurus? That would be a step backward. The real reason developers go back to the familiar way of doing things when they can’t think of a simple way to solve a problem nonprocedurally is that SQL is limited, restrictive, and nonexpressive in comparison to C++, Delphi, Visual Basic, or even plain old C, BASIC, or Pascal. SQL development environments are about 20 years behind the times. Interactive debuggers, tracers, watches—all the things that allow developers to debug and validate today’s complex applications—are virtually absent. I work with Delphi 3, and when I am forced to use SQL tools, I feel like I have entered a time warp and come out around 1975. I want to get back to my 1997 integrated development environment!

Michael Nachison
Horizon Real-Time Systems
MN@bucutting.com

Wake-Up Call

I was lucky enough to use Sun workstations 8 years ago at university, and now my Pentium II system is probably equal in clock speed, if not in MIPS, to those machines. Yet, one thing is missing: power management. Those Sun monsters were never switched off; it was essential that they were ready to kick in at the touch of a spacebar. As a home user, without a network, you would think that I have no need of such a technology. It’s just for laptops, you say? I am convinced it would be welcomed by millions of PC users. For a start, my Windows 95 machine is even slower to boot than my old 486DX. Secondly, I would like to leave it ready to check my e-mail account, receive fax messages, and possibly handle voice mail. I’d like to be able to do this without having to listen to a noisy fan, or have glowing LEDs watch over me at night. Please raise this issue with a wider audience.

Christopher G D Tipper
Athens, Greece
tc@iis.forthnet.gr

The PC 98 specification, developed by Microsoft and Intel, with input from others, provides a sleep capability similar to that in laptops. The problem with laptops is that not everything wakes up upon Resume; for example, you may have to reboot to get modems and network interface cards to work. PC 98 is supposed to fix that. It also is supposed to have “OnNow” capability, part of which deals with LAN wake-up events. A specific set of packets sent across the LAN will turn the machine on, enabling, for example, a network administrator to install software on desktops at night. A similar facility could allow you to contact your computer remotely and turn it on. We’ll see how well it works. For an overview, see http://www.microsoft.com/hwdev/pc98.htm. —Mark Schlack, editor in chief

VBA Bashing

In “VBA and COM” (March feature), Mr. Gates repeated his tired mantra: Buy Visual Basic for Applications and use it to bludgeon other Microsoft products into an application stew. After all, with the declining purchase cost of hardware, who cares about such archaic concepts as speed, parsimony, and efficiency? I do. Besides wanting to avoid bankrupting my clients with perpetual equipment upgrades, I want to avoid bankrupting myself with the time-consuming exercise of trying to make incompatible off-the-shelf components do something productive together. Before Microsoft talks about bashing modules, it should get the infrastructure of its programming languages in working order.

Jill McLeaster
Three Systems
jill@three-systems.com
One Disk to Another

Russell Kay’s report on disk drives (“15 Disks Cover More Data Than Ever,” February Hardware Lab Report) was good, but not as technically detailed as previous reports. In particular, the last time around you discussed the issue of dynamic recalibration interrupting streaming data transfers from magnetic disks to optical drives. This is mentioned only in passing in this review. Do all the drives now handle it transparently? Or do the optical drives all have big enough buffers?

Stephen Leake
leakstan@erols.com

We didn’t touch on this because there wasn’t much new to say. In general, the newer magnetic drives seem to handle asperities better than older models, partly because they are using something bigger buffers. That said, if you want to deliver streaming, uninterrupted data, you’re still advised to use an AV-rated drive designed specifically for that requirement. Some of the newer 18- to 20-GB AV drives we’ve looked at use 2-MB buffers, and their firmware is optimized for streaming data. —Russell Kay, technical editor

Infinite Space, Fallible History

With regard to Edmund DeJesus’s otherwise excellent “Infinite Space” (February feature), I should like to point out that he is mistaken when he says “holography itself was discovered shortly after the invention of the laser.” In fact, if memory serves, holography was invented by Dennis Gabor in 1954. The laser was first proposed by Charles Townes in 1958, and the first laser was built, by Theodore Maiman, in 1960. Therefore, holography is four years older than the laser.

John F. Schlesinger
New York, NY

Gabor worked out the theory of the hologram in 1947, but in connection with electron microscopy. I was thinking of laser holograms when I wrote the sentence. You make a good point that the theory of holograms was worked out for another technology before lasers came along. —Ed DeJesus, senior technical editor

To Be or Not to Be (A System Component)

I just got the latest Microsoft Developer Network universal CD and it includes the ActiveX Redistributable Installation Kit, which seems to have an installer for WININET.DLL and friends. Perhaps using this installer will solve some of the registry setup problems you described in “In Search of SSL Spidering” (February Web Project).

Spencer Low
spencer@lowtek.com

Thanks for the pointer. However, if it’s unclear whether it would solve the basic problem I referred to, which is that Microsoft Internet Explorer, an application, shares state information with WININET.DLL, a shared system component. Microsoft may now wish to argue that WININET is not a shared system component, but rather an application-specific component particular to MSIE. However, I remember the pitch that was made at the Microsoft Professional Developers Conference in 1995: WININET was described as a system component, not an application-specific component. I think it should be a system component, but unfortunately, it isn’t. —Jon Udell, executive editor, New Media

Any ORB Will Do

In “Making Components Portable with JavaBeans” (February feature), author David S. Renshaw states “The basic model for the Enterprise Bean is one of a client and server, where communication between the client application and the Enterprise Bean executed in the server is via remote method invocation (RMI), the CORBA Internet Inter-ORB Protocol (IIOP), or the forthcoming RMI over IIOP.” You also stress platform-independence. Different servers using IIOP and using different ORBs can communicate, but the API for them has not been standardized. This results in writing code for a particular ORB and might limit the platforms available. Also, I would be concerned about the financial health of any of the software houses providing ORBs, given they are up against. I like the use of RMI over IIOP the most, but it’s not available yet.

John Menarek
Lombard, IL

If I use CORBA IIOP to communicate between the client and my server, the ORB in the client (or merely IIOP support classes) will happily talk to a variety of ORBs in the server(s), as the protocol is specified, but the client application is built for a specific client-side ORB and is dependent on that ORB’s API definitions. I agree with you entirely in cases where the client is something other than Java. I would expect a Java client to communicate via RMI, or RMI over IIOP in the future. In this case, the APIs will be standard, i.e., part of the Java definition, core, or extension. In the case of non-Java CORBA objects in the client, there is a dependency on the ORB environment. On the server side, Enterprise JavaBeans (EJBs) are insulated by their use of Java-defined APIs to access server functions. They do not access ORB APIs directly. In fact, there may be no ORB as such; the EJB server environment may be provided by a procedural TP monitor such as CICS. For the latest on EJBs, see the JavaSoft Web pages at http://java.sun.com/products/ejb/index.html.

—David S. Renshaw

Correction

In “Three Vendors Make an Alpha Bet” (February Eval), we erred in including the Aspen Durango II, which is based on a 21164A processor and 164LX motherboard. To make amends, we asked the vendors—Aspen Systems, Polywell Computer, and Tri-Star Computer—to send in their systems for a retest. To create a truly level playing field, we asked for 533-MHz systems based on the 21164PC processor, 164SX motherboard, with a street price of $2500 or less. Aspen sent us the $2383 (minitower) Monrose system with a 4.5-GB Wide/Fast Ultra SCSI hard disk, 16x EIDE CD-ROM, and 4-MB Matrox Millennium II PCI graphics adapter. Polywell turned in a $2499 PolyAlpha
Platform by Microsoft. Business results by IBM. Obviously, we're not the only ones who can make Microsoft® Windows NT® work. What we do best is make it pay. Our software building blocks include everything you need to create, deploy and manage the new apps you're counting on for a business edge. The “back room” functions extend seamlessly to legacy systems, leveraging enterprise assets on Windows® desktops. And all IBM software for Windows NT is Web-enabled, ready for e-business when you are. So you can extend critical functions to users, suppliers and customers anywhere, without anybody's platform getting in the way. For the whole lineup and free trial code, visit www.software.ibm.com/nt
164SX, which housed a 4.5-GB, 10,000-rpm, Ultra Wide SCSI hard disk and an 8-MB Diamond FireGL 1000a AGP graphics card. Tri-Star sent a $2383 StarStation SX5, with a 4.3-GB, 7200-rpm, SCSI-3 Ultra Wide hard drive, 14/32x IDE CD-ROM, and 4-MB Matrox Millennium II PCI graphics adapter. We measured performance with our low-level processor test, BYTEmark, and BAPCo’s SYSmark 4.0 application test. Not surprisingly, the three systems had similar performance numbers. Though all are solid machines, we give our nod to the $2383 Tri-Star, which had the right mix of configuration and price for performance. We also liked its large cabinet with easily replaceable cover, roomy inside for accessing RAM, extra fan, and space to support three high-speed drives.
Who's Top Dog...
when it comes to high-performance workstations?

Tri-Star Computer. A leading manufacturer of graphics workstations since 1988, Tri-Star has a proven leg up on the big dogs trying to leave their mark these days.

It's no surprise tongues are wagging over Tri-Star's growing list of honors for quality, performance and value. Tri-Star's natural instinct for leading-edge technology, application optimization and unparalleled customer service has earned it the respect — and repeat business — of thousands of visual computing professionals over the past decade.

Unleash your creativity with a powerful, custom-configured NT workstation from Tri-Star Computer. And celebrate Tri-Star's 10th anniversary with a visit to www.tristar.com. You just might win a Tri-Star workstation featuring an award-winning 21-inch ViewSonic monitor and a Dynamic Pictures Oxygen® 202 graphics accelerator with PowerThreads™ technology. Enter online today.

Enter HotBYTES No. 97 at http://www.byte.com/hotbytes/

(800) 844-2958 www.tristar.com
Joe reboots his PC *every day.*

That's a fact.

Conventional OS Architecture
The monolithic OS on Joe's machine clumps all OS components into a single address space. One subtle programming error in just one driver, and *whoomp!,* Joe has to reboot—again.
Dave hasn't since 1994.

That's a fact too.

Four years ago, Dave Cawfield at Olin Chemicals replaced expensive PLCs with OMNX Open Control Software and the QNX Realtime OS. “Since then,” says Dave, “we’ve upgraded the control system regularly with new hardware and software – including parts of the OS itself. But not once have we had to reboot.”

For a handy 12-point checklist on OS reliability, download Dave’s paper, Which OS for PC-based Control?, at www.omnx.com/productinfo/technical_papers.htm.

Build Reliable Embedded Systems with QNX

Most operating systems work fine – until they hit a minor software glitch. Or until you perform a simple maintenance task, like changing an input device. Then, like it or not, the OS goes down – and your application with it.

With QNX, on the other hand, your system can recover from software faults, even in drivers and other critical programs. What’s more, you can hot-swap peripherals. Start and stop filesystems and network services. Change I/O drivers. Add or remove network nodes. Even access the OS after a hard disk failure. All without a reboot.

And here’s the kicker: QNX scales seamlessly from handheld consumer appliances to continent-spanning telephony networks. So you can use one OS to keep all your solutions running 24 hours a day, 7 days a week – nonstop. And that’s a fact.

www.qnx.com (don’t miss our demo!)
call 800 676-0566 ext. 1064
Intel has mobilized its Pentium II processor, and the new CPU gives portable PCs a significant boost in performance. Available initially at 233 and 266 MHz, the Mobile Pentium II is built on a 0.25-micron process and shares the dual independent bus (DIB) architecture of the desktop versions of the Pentium II.

Previous Intel notebook processors ran both system and L2 cache traffic over the same bus. The Pentium II’s DIB architecture gives the L2 cache its own private path to the CPU running at speeds of 117 MHz in the 233-MHz version and 133 MHz in the 266-MHz version. That, plus other advantages of the Pentium II architecture, such as dynamic execution (first used in the Pentium Pro), allows for notebooks with performance that approaches that of the fastest x86-compatible desktop PCs.

BYTE’s tests of several new notebooks with the 266-MHz version of the CPU show about a 25 percent improvement in BYTEmark integer performance over Intel’s previous fastest notebook CPU, the Mobile Pentium with MMX, running at 266 MHz. In addition, we found almost a 40 percent improvement in BYTEmark floating-point performance.

All three Pentium II notebooks we tested turned in very similar results on the BYTEmark tests; there was no significant difference in their scores. We also tested Apple’s current-generation 250-MHz PowerPC G3-based PowerBook, and it beat Intel’s desktop and notebook processors in the BYTEmark tests.

The PowerBook’s performance advantage was not nearly as decisive when we tested the notebooks using Photoshop, which is available in 32-bit Windows and Mac OS versions. Here the results were more mixed, for a variety of reasons. One is that the PC notebooks benefit from certain operations in Photoshop that take advantage of Intel’s MMX instructions, such as the Default Unsharp Mask and the Gaussian Blur tests. Furthermore, three of the PC-compatible notebooks, Compaq’s Armadas and Toshiba’s Tecra, were running Windows 95. Digital Equipment’s HiNote, however, ran NT 4.0. In previous tests BYTE has performed, the exact same desktop system turns in slightly faster Photoshop performance in the Unsharp Mask and Gaussian Blur operations when running NT instead of Win 95. We found similar results when comparing the Photoshop performance of the HiNote running NT and the other Pentium II notebooks running Win 95.

One thing is clear: The Pentium II offers significant performance improvements over the previous-generation Intel mobile processor, whether you run Win 95 or NT on your notebook. And prices for notebooks are coming down. The price you pay for one of these new Pentium II notebooks may be less than what you would have paid for the first Tillamook notebooks. (Tillamook was the
code name for Intel's first Pentium processor to be built on a 0.25-micron process.) "Many of the first Tillamook machines were in the $5000 price range, and some cost even more," says Stephen O'Brien, product manager for Digital's VP line of value notebooks. (Digital's Hi-Note VP 765 will start at $3999; at press time, Toshiba and Compaq hadn't finalized their prices.)

Donnie Oliphant, product marketing manager for Dell's Portable Development Group, agrees that prices for notebook components are declining, but you can still pay a lot for a high-end system. "Prices on all key components are trending down, especially for hard drives, but most significantly for LCDs," he explains. "Processor modules are not significantly cheaper today [than Tillamook], but I expect prices will drop as the year progresses and speed that downward trend."

For example, last year Dell's Latitude CP laptop with a 233-MHz Pentium with MMX, 32 MB of RAM, a 2.1-GB hard drive, a 13.3-inch screen, and a 20X CD-ROM cost $4700. But a Dell Latitude with a 266-MHz Pentium II and a 2.2-GB hard drive, a 13.3-inch screen, 64 MB of RAM, and a 20X CD-ROM starts at $3300.

But Tillamook won't go away quickly. For one thing, vendors estimate that the battery life of a Pentium II-based notebook is about 10 percent to 15 percent less than that of an equivalent Tillamook (your mileage may vary). And heat dissipation is always a concern in notebook and handheld designs. Pentium II designs that require a fan might be too bulky for a mini-notebook, for example. But if performance is what you want, these notebooks deliver.

-Dave Andrews and Jason Krause

OS Vendors Race After Merced

The race to port Unix OSes to Intel's next-generation 64-bit IA-64 (aka Merced) chip has reached full stride. While jockeying for position by Unix vendors—who will compete with each other and Microsoft on IA-64—is far from over, already some dark horses and surprise contenders have emerged. IT managers who have tied their fortunes to the wrong OS may be out in the cold when the chip emerges.

SCO, the Unix market-share leader, has almost two years' worth of work invested in a 64-bit port to Merced, while Hewlett-Packard has been at it for three years. Sun and Digital Equipment announced their porting projects more recently—in December and January, respectively. IBM remains committed to its own architectures and has not announced a port to IA-64. Meanwhile, Novell, at the Brainshare conference in March, announced that after NetWare 5, its next release will be a new OS for the IA-64 chip.

Perhaps the most surprising statement to date regarding IA-64 was Digital and Sequent's joint announcement that they are collaborating to port Digital Unix to Merced. Today these companies occupy a niche position, jointly laying claim to a mere 5 percent of the market. But Digital, which is now owned by Compaq, already has a high-end 64-bit Unix OS. With Sequent's large transaction-processing and datawarehousing capabilities, analysts say, these partners could be well positioned for Merced's launch, which is scheduled for late 1999.

Observers were somewhat surprised that Sequent chose Digital Unix, which will be renamed when it's introduced on Merced. Sequent worked with Sun
for 12 months and nearly signed on to collaborate on a similar effort for Solaris, but it backed off at the last minute.

Solaris is a leading contender on Merced, with a strong market share, independent software vendor (ISV) partnerships, and a reputation for reliability. But, according to Jeff Pancottine, vice president of marketing for Sequent, “Sun’s focus is on SPARC, and while Solaris on Intel and Solaris on SPARC share a common source base, Solaris on Intel is not equal to Solaris on SPARC.” Today, Solaris on x86 lacks the scalability, partitioning, and hot-swap capabilities of Solaris on SPARC.

Sun officials respond that Solaris on Merced will have advantages that Solaris on x86 never had. “Sun has reached a level of cooperation with Intel for Solaris on Merced that we never had on x86,” says Brian Croll, director of product marketing for Solaris. Unlike previous x86-based development efforts, Sun has early access to Merced’s inner workings, thanks to a nondisclosure agreement. Sun has also opened a porting center for ISVs, application developers, and OEM partners, such as NCR, to tune Solaris applications on Merced simulators.

SCO had initially planned to develop a single binary specification for Merced with HP, but the company eventually settled for a technology-sharing agreement, which has since ended. Analysts point out that SCO’s UnixWare is a general-purpose enterprise platform and must be upgraded in order to compete on IA-64. UnixWare 7, announced in March, already includes 64-bit capabilities, and Compaq, Data General, ICL, and Unisys are today committed to UnixWare.

HP is Intel’s partner in developing Merced, and it will phase out its PA-RISC architecture in favor of IA-64. This relationship bodes well for HP-UX on Intel, but HP is challenged by the fact that HP-UX will be the only big-endian OS on Merced (Merced will be bi-endian, supporting big- and little-endian OSes). This might scare off some ISVs.

Of course, Windows NT will also be competing with the various flavors of Unix on Merced. Microsoft believes it will release a 64-bit NT almost concurrently with Merced’s introduction and says it will provide SDKs by the end of this year. NT continues to evolve, and Microsoft believes it will be competitive with more high-end Unix OSes. “SMP [symmetric multiprocessing] scaling, graphics performance, I/O subsystems, memory support, ATM [asynchronous transfer model] support, and all the necessary pointers are ready for a 64-bit implementation of NT,” says Ed Muth, group product manager for Personal Business Systems with Microsoft.

OS vendors might be eager to port to a chip that doesn’t exist yet, but analysts and IS directors are more blasé. “We have a few applications that could benefit from Merced, but probably not anytime soon,” says Todd Wright, a system architect with Wells Fargo in San Francisco. “First we’ve got to take care of Year 2000 compliance issues. Maybe in 2001 we can look at Merced.”

“IA-64 is not a compelling reason to lose sleep right now,” admits Tom Henkel of Gartner Group. “But I would be uneasy if I were an IT manager committed to a second-tier vendor and I had to migrate to a new OS in order to implement Merced.” For example, Henkel points out that Sequent customers will have to migrate to Digital Unix if they plan to use Sequent’s IA-64 servers, and NCR users will be faced with a migration to Solaris.

When Merced arrives, it will likely be supported by more software platforms than previous Intel architectures, which would mean more choices for customers. That means every OS vendor will need to provide a smooth migration path to Merced or risk losing customers. —J. K.

Security for Your Eyes Only

A new method that identifies people by analyzing their eyes might soon be coming to a bank, store, or building near you. Iriscan (Mt. Laurel, NJ, 609-234-7977; http://www.iriscan.com), whose identification technology can recognize the unique pattern in the iris of the human eye, is partnering with technology and financial organizations to market products for applications that require nonintrusive, noncontact, and extremely accurate electronic identification. Iriscan is also currently developing a low-cost version of its solution for the PC market.

Iris technology identifies people through an electronic analysis of patterns found in the iris of the human eye. Scientifically accepted as a personally unique human characteristic, the iris, the colored ring of tissue that surrounds the pupil of the eye, features a complex combination of patterns that can be recorded as a 256-byte “Iriscode.” An iris-recognition product captures a photographic image of the iris, analyzes its unique visual structure, and then compares it to previously stored Iriscodes for authentication of identity. The technology can be used for access control, point-of-sale (POS) solutions, and data protection.

Sensar, of Moorestown, New Jersey, is now using Iriscan technology in a test pilot program for the banking industry. Pilot programs using iris-recognition products in bank ATMs are under way with Citicorp in the U.S. and NCR and NationWide Bank in the U.K., and in cooperation with Oki Industry Co. and other financial institutions in Japan. Although Sensar’s cur-
"How did we put Spain's Railroad on the Information Super Highway?"

We used WebFOCUS."

"We use WebFOCUS and EDA middleware to publish up-to-the minute schedules from multiple dynamic databases."

Eduardo Fernandez, Managing Director of Information Services, RENFE

Adding New Meaning to Great Service
RENFE, Spain's State-owned railway system, has always been known for outstanding rail service. And now, thanks to the latest Web technology from Information Builders, they're known for outstanding customer service, as well.

Integrating Web Applications with Live Data
Using Information Builders' WebFOCUS reporting engine and EDA middleware, RENFE publishes up to the minute train schedules based on live, dynamic data from multiple databases. Anyone with a standard Web browser can determine exactly when any train in the system will arrive at or depart from any destination... even if the train encounters unexpected delays. All it takes are a few simple menu picks to launch a query. The new system has virtually eliminated the expense of creating and maintaining over 6,000 pages of static train timetables. And the thousands of hits on their Web site has produced valuable marketing demographics as an added bonus.

RENFE is also developing Web transaction applications with Information Builders' Cactus application development environment. The new applications will allow customers to fill out forms on RENFE's Web site to plan trips, make reservations and purchase tickets.

Call THE BUILDERS
Want to build cutting-edge Web applications that can access, update, or create dynamic reports from live data resident in any application or database? Call THE BUILDERS at (800) 969-INFO or visit our Web site at www.ibi.com.

CALL THE BUILDERS
www.ibi.com
(800) 969-INFO
In Canada call (416) 364-2760

Enter HotBYTES No. 104 at http://www.byte.com/hotbytes/
THE CUSTOM-BUILT COMPUSA PC™ IS AS UNIQUE AS YOUR BUSINESS NEEDS.
At CompUSA®, we know that no two businesses are exactly alike. That’s why we offer total solutions to meet your unique technology needs. Throughout the entire PC lifecycle – from acquisition, installation, maintenance and training to custom PCs built to fit your network – CompUSA has the reach and resources to help reduce risks and enhance end-user productivity in increasingly complex IT environments.

PCs MADE TO MEET YOUR NEEDS.

Each CompUSA PC is custom-built to fit your network environment. You make the decision, then we make the computer. Each one is custom-built to your exact specification—no standard options or features, just quality and value. And each CompUSA PC is built around the highest quality motherboards, processors and chassis. So the quality inside is as dependable as the name on the outside.

INCREASE PURCHASING POWER.

When a business purchases our custom-built CompUSA PC, they’re getting more than a quality computer; they’re getting exceptional warranties and support. And with CompUSA at your side, you eliminate the need for multiple sourcing and potential incompatibility or overlapping costs.

COMPREHENSIVE COMPUTER TRAINING.

CompUSA is pioneering the concept of cost containment through productivity management. With training classrooms nationwide, our training programs are designed to increase productivity while reducing downtime.

EASY ORDERING.

An Account Representative can help you determine the best level of power, options and add-ons to meet your company’s needs. Simply call 1-888-421-8986 to speak to an Account Representative, or shop our Web site at www.compusa.com. Either way, ordering has never been easier.

SYSTEM UPGRADES

CALL AN ACCOUNT REPRESENTATIVE FOR PRICING

<table>
<thead>
<tr>
<th>Upgrade</th>
<th>3-Year #172123</th>
<th>5-Year #172124</th>
</tr>
</thead>
<tbody>
<tr>
<td>From 32MB to 464MB RAM</td>
<td>$1999.95</td>
<td></td>
</tr>
<tr>
<td>From 464MB to 966MB RAM</td>
<td></td>
<td>$1999.95</td>
</tr>
<tr>
<td>From 464MB to 1288MB RAM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>From 464MB to 1288MB RAM Add an Iomega Zip Drive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>From 464MB to 1288MB RAM Upgrade to 3-Year On-site Service</td>
<td></td>
<td></td>
</tr>
<tr>
<td>From 464MB to 1288MB RAM Upgrade to 5-Year On-site Service</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

INCREASE PURCHASING POWER.

When a business purchases our custom-built CompUSA PC, they’re getting more than a quality computer; they’re getting exceptional warranties and support. And with CompUSA at your side, you eliminate the need for multiple sourcing and potential incompatibility or overlapping costs.

COMPREHENSIVE COMPUTER TRAINING.

CompUSA is pioneering the concept of cost containment through productivity management. With training classrooms nationwide, our training programs are designed to increase productivity while reducing downtime.

EASY ORDERING.

An Account Representative can help you determine the best level of power, options and add-ons to meet your company’s needs. Simply call 1-888-421-8986 to speak to an Account Representative, or shop our Web site at www.compusa.com. Either way, ordering has never been easier.

SYSTEM UPGRADES

CALL AN ACCOUNT REPRESENTATIVE FOR PRICING

<table>
<thead>
<tr>
<th>Upgrade</th>
<th>3-Year #172123</th>
<th>5-Year #172124</th>
</tr>
</thead>
<tbody>
<tr>
<td>From 32MB to 464MB RAM</td>
<td>$1999.95</td>
<td></td>
</tr>
<tr>
<td>From 464MB to 966MB RAM</td>
<td></td>
<td>$1999.95</td>
</tr>
<tr>
<td>From 464MB to 1288MB RAM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>From 464MB to 1288MB RAM Add an Iomega Zip Drive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>From 464MB to 1288MB RAM Upgrade to 3-Year On-site Service</td>
<td></td>
<td></td>
</tr>
<tr>
<td>From 464MB to 1288MB RAM Upgrade to 5-Year On-site Service</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

INCREASE PURCHASING POWER.

When a business purchases our custom-built CompUSA PC, they’re getting more than a quality computer; they’re getting exceptional warranties and support. And with CompUSA at your side, you eliminate the need for multiple sourcing and potential incompatibility or overlapping costs.

COMPREHENSIVE COMPUTER TRAINING.

CompUSA is pioneering the concept of cost containment through productivity management. With training classrooms nationwide, our training programs are designed to increase productivity while reducing downtime.

EASY ORDERING.

An Account Representative can help you determine the best level of power, options and add-ons to meet your company’s needs. Simply call 1-888-421-8986 to speak to an Account Representative, or shop our Web site at www.compusa.com. Either way, ordering has never been easier.

SYSTEM UPGRADES

CALL AN ACCOUNT REPRESENTATIVE FOR PRICING

<table>
<thead>
<tr>
<th>Upgrade</th>
<th>3-Year #172123</th>
<th>5-Year #172124</th>
</tr>
</thead>
<tbody>
<tr>
<td>From 32MB to 464MB RAM</td>
<td>$1999.95</td>
<td></td>
</tr>
<tr>
<td>From 464MB to 966MB RAM</td>
<td></td>
<td>$1999.95</td>
</tr>
<tr>
<td>From 464MB to 1288MB RAM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>From 464MB to 1288MB RAM Add an Iomega Zip Drive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>From 464MB to 1288MB RAM Upgrade to 3-Year On-site Service</td>
<td></td>
<td></td>
</tr>
<tr>
<td>From 464MB to 1288MB RAM Upgrade to 5-Year On-site Service</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
rent pilot program requires end users to carry an access card (but doesn't require them to remember a personal identification number [PIN]), Iriscan can also be deployed in an application that doesn't use such a card (see the figure "Banks Eye New Security" at right).

Current Iriscan solutions can be a bit pricey. For example, the company's System 2100, which includes a computer, a frame grabber, and other components needed for access control, costs about $5000. "The costs associated with iris recognition are high compared to other forms of authentication," explains Erik Bowman, biometrics analyst with CardTech/SecurTech, an industry watcher based in Bethesda, Maryland. "In addition, there are issues with social acceptance. The general public will need to become more comfortable with it."

Despite those drawbacks, Bowman says Iriscan has advantages over other access solutions that are based on smartcards and fingerprint analysis. "Iris recognition represents the least intrusive form of biometrics available today," he says. The nonintrusive, noncontact nature of iris recognition, coupled with an extremely low error rate, makes the technology attractive. According to IEEE studies on the technology, the probability of two irises producing the same iriscode is approximately 1 in 10^{28}.

In addition, a project under development between Iriscan and GTE, known as Iris Certificate Security (ICS), adds a security element that might increase the technology's appeal. ICS binds the iriscoderrecognition process to digital certificates. In essence, encrypted electronic-commerce transactions are also biometrically secured, requiring the sender and recipient to possess the digital-certificate keys and a personal iriscoderrecognition iriscode to access data.

Targets for this initiative range from business-to-business e-commerce and stock and commodity trading to credit-card purchases and securing information contained in e-mail. According to Iriscan, ICS prototypes are expected to be operational in the third quarter of this year.

Another advantage is that iris recognition isn't burdened with the negative stigmas associated with other forms of biometrics, such as fingerprinting. "Iris recognition has never been associated with the criminal-justice system, the way fingerprinting has," says Iriscan spokeswoman Kelly Gates. "We feel this will make social acceptance of the technology easier to attain."

The company is also addressing the issue of price. A prototype of an inexpensive hand-held imaging device is expected this fall. The device will be bundled with software for PCs and could be priced as low as $200. If the company succeeds in getting its products widely available in low-cost solutions, the possibilities are endless. Some day, instead of fumbling for your keys outside your front door, you might gain access by simply looking into a camera and smiling. —Dan Coyle
The PC X Server Standard:

Exceed

The Gold Standard:

Exceed

Version 6

The world leader now brings the world to you. Exceed, the fastest growing PC X server, outsells all other PC X servers combined, with over 55% of the world market. We packed the new Exceed Version 6 with highly enhanced features: new web capabilities, improved performance, advanced functionality and an enriched and simplified interface. Then we added HostExplorer Terminal Emulation Suite including TN3270E for today's enterprise computing environment. Exceed Version 6 for Windows NT and Windows 95 and Exceed Version 5.2 for Windows are all on one CD. Being the best-selling, most powerful X server on earth just wasn't enough. It's only natural we keep exceeding...it's in our name.
How to Build an Electronic Store Fast

You don’t have to host your own Web site on the Internet to have an online store. Many ISPs are becoming commerce solution providers (CSPs), which provide electronic store-hosting services for businesses that would like to use the Internet as a new sales channel but don’t have the time or resources to build and maintain their own Web site.

The tasks involved in hosting such a Web site can be daunting, especially to small businesses: You must buy and maintain numerous hardware and communications equipment, including a computer, a fractional T1 line from an ISP, and a router; you also have to install the Web server and electronic-commerce software. Only then can you start developing and hosting your Web store. The approximate costs for such a project include $11,500 for hardware, software, and connectivity, plus about $2000 in monthly connectivity charges.

Instead of doing all that yourself, you can have a CSP do it for you. If you choose to partner with a CSP, a key criterion in choosing where to host your e-commerce Web site is the store software provided to you. The functionality that a merchant can provide is limited by the software that’s used.

For example, PSI Net and MindSpring offer Web-store-creation software from Mercantec (http://www.mercantec.com) that might appeal more to bigger

<table>
<thead>
<tr>
<th>E-Commerce Solutions at a Glance</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSP</td>
</tr>
<tr>
<td>Web-store software</td>
</tr>
<tr>
<td>Storage space (MB)</td>
</tr>
<tr>
<td>E-mail addresses included</td>
</tr>
<tr>
<td>Monthly data transfer limit</td>
</tr>
<tr>
<td>Cost per MB transfer over limit</td>
</tr>
<tr>
<td>Dial-up account included</td>
</tr>
<tr>
<td>Setup fee</td>
</tr>
<tr>
<td>Monthly fee</td>
</tr>
</tbody>
</table>

Survey

What Users Dislike About Notebooks

Screens and price tags. Those are the top two things users found not to like with PC notebooks when comparing them to their desktop counterparts, according to a recent survey by BYTE Research. Although Intel’s new mobile Pentium II processor adds a performance boost to the latest notebooks (see “More PC Power to Go” on page 24), respondents to the survey seemed satisfied with their CPU performance overall. Instead, they are dissatisfied with inferior displays (compared to those on desktops); high prices; small keyboards; lack of durability, reliability, and expandability; and their unfortunate tendency to “walk away” (i.e., get lost or stolen) when users aren’t looking. Prices are currently dropping for PC notebooks, but the systems are still more expensive than equivalent desktops. Perhaps users will always have to pay a price in exchange for the most-liked aspect of notebooks, their portability. But users have spoken, and there’s a lot they still don’t like about notebooks—which would explain why, in a situation where they need to give an employee a second PC to work on at home, many respondents buy another desktop PC instead of a notebook.

<table>
<thead>
<tr>
<th>Disadvantages of Portables Compared to Desktops</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display</td>
</tr>
<tr>
<td>Price</td>
</tr>
<tr>
<td>Durability/reliability</td>
</tr>
<tr>
<td>Keyboard</td>
</tr>
<tr>
<td>Expandability*</td>
</tr>
<tr>
<td>Too easily lost/stolen</td>
</tr>
<tr>
<td>Battery life</td>
</tr>
<tr>
<td>CPU performance</td>
</tr>
<tr>
<td>Pointing devices</td>
</tr>
<tr>
<td>Hard drive capacity</td>
</tr>
<tr>
<td>Other</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of respondents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

* Expandability refers to memory and add-in cards.

Source: BYTE Research, telephone survey, 149 responses

Source: BYTE Research, 150 respondents (multiple answers accepted)
APC Smart-UPS® delivers unmatched network uptime and complete peace of mind

"...Inherent flexibility and excellent software... Don't be caught without one."

Power problems attack networks relentlessly. To protect hardware and data from system crashes, experts, network managers and computer users worldwide prefer one solution above all others combined: APC Smart-UPS. Now, all 120V Smart-UPS include FREE PowerChute plus power management software.

The most reliable protection you can buy

Smart-UPS provide complete protection against power spikes, surges, brownouts, and blackouts. You'll also gain maximum server up-time and decrease management costs. Award-winning features include:

- CellGuard™ intelligent battery management monitors battery performance and extends battery life.
- SmartSlot™ internal accessory slot lets you customize and enhance the performance of your Smart-UPS.
- QuickSwap™ user-replaceable batteries can be quickly and safely swapped out without powering down the connected equipment.

Plan for and control crisis situations

PowerChute plus FlexEvents™ lets you control UPS reactions to power events. You can configure PowerChute plus to provide graceful, unattended server shutdown during an extended power outage or alert you to out-of-bounds environmental conditions before they result in costly downtime.

Web server and
SNMP ready

APC's NEW WebAgent™ allows you to monitor and manage your Smart-UPS using your Web browser. New WebAlert™ notifies users of Web server shutdown via their browser. PowerChute plus also includes the PowerNet™ SNMP Agent plug-in, which allows you to integrate your Smart-UPS with your existing SNMP management strategy.

Smart-UPS and PowerChute plus provide the complete solution in one convenient box. Server protection and peace of mind have never been easier.
We admit that on occasion we've even asked you to rip and replace what's inside your head.

But this is not one of those occasions. Instead we've got a plan to help you build the latest enterprise solutions using technologies you're already familiar with. Microsoft® Windows NT®, COM, and the Visual Studio™ development system can help you make it happen. It doesn't even matter if you have UNIX, NetWare or a legacy system that needs to be integrated. Hey, this whole distributed computing thing gets quite a bit easier when you use what you have, and more importantly, use what you know.

To find out more about building new solutions with Microsoft Windows NT and Microsoft Visual Studio go to www.microsoft.com/msdn
companies, while NetCom’s and Go-Site’s partnership with iCentral, the publisher of ShopSite Express (http://www.shopsite.com), might appeal to smaller companies. Both Mercantec’s SoftCart and iCentral’s ShopSite Express provide basic store functionality, including a virtual shopping cart, a collection of credit-card information, extremely flexible calculation of taxes and shipping charges, and notification of orders via e-mail to both buyer and merchant.

But ShopSite Express is designed for merchants with a small selection of items (25 or less) and a limited knowledge of HTML. (iCentral also offers programs, such as ShopSite Pro, for managing bigger e-commerce projects.) You can easily set up a ShopSite store using just a Web browser, but this approach offers only limited flexibility regarding Web-page layout; you’ll probably want to use ShopSite with an HTML editor, such as Adobe PageMill. ShopSite Express supports on-line ordering, including purchase orders, but it doesn’t support real-time credit-card authorizations.

One of ShopSite’s negatives is that it uses cookies to store a user’s shopping cart during ordering. Many users elect to turn off the cookies option on their computer because of their concern for privacy. This is somewhat problematic to the software.

Mercantec’s SoftCart is designed for more sophisticated vendors with up to 10,000 products and an understanding of HTML. The package supports on-line ordering and real-time credit-card authorizations through CyberCash. It also lets shoppers print and fax or mail their order. SoftCart can generate a transaction log file that can be directly imported into Intuit’s QuickBooks. SoftCart does not use cookies for storing shopping-cart information. Instead, it stores this data on the merchant’s host server.

Limited space prevents us from covering all the CSP options and e-store software available. Each CSP offers a variety of hosting plans to suit your needs, so you should shop around and compare. And if you can’t find exactly what you’re looking for, ask the CSP if it can customize a plan for you.

Hosting your own e-commerce solution might be a better idea for your organization in the long term, especially if your e-commerce business grows. But getting in front of your customers quickly might be even more important, at least in the short term. By using a CSP, you can get started quickly, even if you’re operating on a budget.
Ultra2 SCSI
is twice as fast,
but that may be
overshadowed
by a somewhat
longer story.

Up to 12 meters of cable, 4 times more than before. Not quite as exciting as
doubling your burst rate from 40MB/sec
to 80MB/sec. Or boosting your overall
system performance by 40% or more*.
But if you’re adding lots of drives or
configuring clustered servers, that extra
cable comes in pretty handy. And we
made the transition to Ultra2 SCSI easy
in other ways as well. While the kit
includes all the cables you’ll need for
both legacy and Ultra2 devices, the card
incorporates SpeedFlex™ technology,
which makes Ultra2 SCSI completely
backwards compatible.

As always, the best way to increase
performance is the simplest way. The
Adaptec® way. Get trained on Ultra2 SCSI
at www.GoSCSI.com/ultra2/byte. Or
for product testing and evaluation
information, call 1-800-804-8886 x9486.
This year will mark the peak of the hype cycle for the next iterations of Windows 95 and NT. Although Windows 3.x was adopted by many companies as a single enterprise-wide standard, Windows 98 and NT 5.0 will coexist in most enterprises through 2001.gartnerGroup believes that NT 5.0 will become generally available in the second quarter of 1999. In addition, we recommend that you shouldn’t deploy NT 5.0 Workstation until the first service pack is released and proven to be stable, which GartnerGroup believes will be six to nine months after NT 5.0’s initial release.

Win 98 will become generally available in the second quarter of 1998. However, because Win 98 is very similar to Win 95, OSR 2, and Internet Explorer 4.0, we believe that organizations will be able to deploy Win 98 upon its release, without having to wait for a service pack.

With these time frames in mind, how does an organization break through all this noise and decide which OS is appropriate for its particular needs? Defying the conventional wisdom, GartnerGroup believes that both Win 98 and NT 5.0 will be applicable to business and consumer markets alike. Organizations should consider the following considerations before deploying Windows 98 or NT 5.0:

- The importance of legacy (16-bit) Windows and DOS business applications that are running on the desktop.
- The diversity of PC hardware that must be supported.
- The organization’s desktop-management strategy.

Although Win 98 and NT 5.0 share a common 32-bit architecture, Win 98 retains a significant amount of legacy 16-bit code that helps it achieve better reliability running 16-bit legacy applications. Organizations that continue to rely on these older applications will be better served by Win 98 than by NT. This backward compatibility, however, is expected to be short lived. GartnerGroup expects Win 98 to be the last Windows release to be based on non-NT code. Organizations deploying Win 98 for better applications compatibility need to begin their 16-bit applications migration. Enterprises that have limited dependency on legacy applications will be much better candidates for NT 5.0 when it ships.

Issues of PC hardware diversity and mobile computing also play an important role in choosing among the different versions of Windows. NT 5.0 and Win 98 offer robust support for a wide variety of new hardware, but many systems purchased prior to mid-1998 will be unable to take advantage of at least some of the new features planned for Win 98 and NT 5.0, such as Advanced Configuration and Power Interface (ACPI) support. Although the new Windows Device Driver Model will alleviate some of the issues associated with hardware working on both Win 98 and NT 5.0, it will apply only to new classes of devices, such as universal serial bus (USB) or IEEE-1394 (also known as FireWire). Drivers for older devices will still need to be created individually for both Win 98 and NT 5.0.

PC laptop users in particular will face a greater hurdle in deploying NT 5.0. Although NT 5.0 will finally support such mobile features as advanced power management, it will do so only on systems that are purchased after the second half of 1998. GartnerGroup believes that existing mobile systems running NT 4.0 will not migrate smoothly to NT 5.0 and will be hampered by compatibility and performance issues. As a result, those older mobile PCs should continue to run NT 4.0.

One of the key features of NT 5.0 will be support for a wide variety of management technologies aimed at lowering the total cost of ownership (TCO) through better centralized control. Known as the Zero Administration Initiative (ZAW), its features will exist on both NT 5.0 and, to a lesser degree, Win 98. Features available only on NT 5.0 that enable the best manageability and TCO reduction include true server-based roaming profiles; side-by-side machine replacement, which provides simplified moves and installations; and better system stability. This stability is due to the use of ZAW-enabled and branded applications that will have a much more restricted installation process and no access to the system directory.

Despite the attractiveness of the ZAW features set, NT 5.0 will incorporate a host of unproven technologies. As a result, GartnerGroup recommends that you should wait at least six to nine months until the first NT 5.0 service pack is released and proven stable before deploying.

Windows NT Workstation and Win 9.x are both powerful 32-bit OSeS that can meet a variety of business-computing needs. Organizations should not be swayed by marketing hype; instead, they should choose the OS that best fits their computing requirements based on the three major areas outlined above.

Although NT technology will eventually become the standard for all Windows users, this change will not happen for at least three years, with the major impediments being legacy hardware, software, and mobile-computing needs. Organizations should not withhold deployment of a 32-bit OS waiting for NT 5.0 but should instead proceed with migration efforts to Win 98 or NT 4.0 as appropriate. This will help them reap the benefits that 32-bit OSeS bring to the desktop and avoid the death throes of 16-bit Windows and DOS.

Michael Gartenberg is a research director for GartnerGroup, where he focuses on end-user computing, particularly the implications of personal computer technologies on end users and enterprises alike.
Do your PC capabilities measure up to your company's growing needs? Then take a look at the Dell® PowerEdge® 2200 server, the feature-rich server with the perfect mix of performance and expandability, that can be yours for one of the best prices in the industry. Relevant technology like dual Pentium® II processor capability, ECC EDO memory and an optional RAID feature delivers outstanding performance in its workgroup class. And our service offering includes three years of next-business-day on-site® service and lifetime 7x24 server hardware technical telephone support. So give us a call or visit our website today. With the PowerEdge 2200 server on your team, managing growth won't be such a stretch.
Blasts from the Past

Years ago in BYTE

Intel's new Pentium was initially found mostly in PCs and servers starting at prices of $5000 and up, but many systems sold at prices closer to $8000. Today you can easily get that much PC computing for about one-tenth the price.

Years ago in BYTE

The DisplayWrite 4, MASS-11, MultiMate, OfficeWriter, Samna, WordPerfect, WordStar, and XyWrite word processors were reviewed (which was your favorite 10 years ago?), along with Microsoft Word, which back in those days required only 256 KB of RAM.

Years ago in BYTE

Tandy's amazing TRS-80 Model 100 portable computer (prices started at $799 for an 8-KB system), which weighed 4 pounds and included built-in text-editing and communications software, was to prove popular for years to come.

Years ago in BYTE

The majority of this issue was devoted to color and 3-D graphics. Editor in chief Carl Helmers wrote that he spent a day during the infamous Blizzard of 1978 (which hit in February) updating his documentation, creating a new 1-KB EROM with low-level disk drivers for interrupt-driven block transfers between memory and disk, implementing a "primitive" physical/OS, and working on other projects in the basement laboratory in his home.

Double Trouble for E-Mail Security

Paul Hoffman, director of the Internet Mail Consortium, discusses e-mail security-standards problems, the prospects for merging, and what to do when merging doesn't happen.

BYTE: It doesn't look like we're going to see one single standard anytime soon for e-mail security.

Hoffman: Everyone has known all along that we need secure e-mail. E-mail is easy to intercept over the Internet, which is why we need private e-mail. And the need for authentication is also strong because it's easy for someone to spoof your e-mail address.

Two protocols have been submitted to the IETF for consideration as standards for adding authentication and privacy to messages: S/MIME v.3 and OpenPGP. The problem is, these two protocols don't interact at all. You can't read messages from one to the other.

BYTE: What is the status in the IETF for the two?

Hoffman: Both working groups had their first official meetings in December. Neither of them is yet a standard, and they both have a fair amount of work to be done, although S/MIME is well ahead of OpenPGP. OpenPGP has been going very slowly; they've only put out one draft, whereas S/MIME has revised the draft a couple times. So, it's very likely that S/MIME v. 3 will be out much sooner than OpenPGP. S/MIME v. 3 should be ready by this summer. OpenPGP will probably be ready by the end of the year.

BYTE: So, if I'm managing a network of trusted individuals or companies, I have two options—get people to convert to one standard, or somehow juggle both?

Hoffman: Yes, and this is the big dilemma. Unfortunately, there are actually a very small number of signed and/or encrypted messages traversing the Internet today, because there's more than one standard. If we had picked a standard a few years ago and if you were an IT manager, you would buy certain products that you knew to be interoperable.

Instead, you're looking at a huge hassle. The current versions of S/MIME and PGP/MIME, which are also not interoperable, are being used within organizations in which a manager has been able to specify one or the other. PGP/MIME has a fair number of people using it because you get it free with Qualcomm's Eudora, which is a popular mail program. However, S/MIME has a lot more people using it because you get it free from both Netscape and Microsoft. You can buy plug-ins for Eudora that also do S/MIME, but when you have to deal with someone who's outside your organization, the answer is you shrug a lot in these situations.

The simple fact is that there's often nothing you can do. If one of the standards becomes dominant—and it appears that standard will be S/MIME—it's most likely that people who really want to use PGP (because of some of the features it has that S/MIME doesn't have) would get clients that do both PGP and S/MIME at the same time. I'm not aware of any clients that do that yet, but there will be products that do. Some vendors have announced that their clients that do PGP today will also do S/MIME in the future.

For more on these standards, see http://www.imc.org/smime-pgpmime.html.
Java for Windows

What happens when an irresistible force meets an immovable object? With Microsoft's Visual J++ 6.0, the result is fireworks. Technology Preview 1 of VJ6 makes Java into a potent Windows tool, blending an enhanced Visual Basic integrated development environment (IDE) with Java's rich object-oriented programming toolset.

At VJ6's core is the new Windows Foundation Classes (WFC) application framework, which builds on Microsoft's J/ Direct technology to access the core Win32 API via Java. Visual Basic (VB) programmers will feel right at home dragging and dropping list boxes, tabbed panels, and other GUI elements from the Toolbox to the WFC form designer.

VB's familiar Properties Window has been extended with custom property editors that I used to apply layout effects such as anchored and docked objects. Gone, too, is the laborious menu editor, replaced with a MainMenu control (written in VB5) that let me visually design menus, submenus, and keyboard accelerators in seconds. Similarly, visual data controls can open multiple data sources and bind WFC, HTML, ActiveX, and Component Object Model (COM) controls via Microsoft's new ActiveX Data Objects (ADO) 2.0 framework.

To test VJ6's packaging and deployment tools, I configured an NT server with BackOffice 4.0 and associated a deployment target at its URL address. You can package any combination of Java class files, Windows EXEs and DLLs, and HTML pages into COM DLL, cabinets (CABs), self-extracting EXEs, and ZIP files. CABs generated by VJ6 contain an Open Software Distribution (OSD) description that lets Java applets be installed and updated on a local machine, much like ActiveX components.

If you are deploying to Internet Information Server, you can push server-side components, including Active Server Pages (ASP), COM servers, and Java classes. With my server as the active deployment target, I was able to set up breakpoints and step through HTML, script, and Java code on both browser and remote server.

VJ6 does not overtly support JavaBeans, though you can use its extensibility features to add JAR packaging as a menu item. With wizards like the Class Builder, which automates COM, Distributed COM, and Microsoft Transaction Server component creation, Windows developers may not miss Beans support.

An easy migration path for VB programmers, an attractive alternative to C++, encapsulated server-side DHTML for the thin-client world—VJ6 is hard to put down.

Steve Gillmor (sgillmor@southerndigital.com) is a consultant in South Carolina.
Graphics Accelerator

The first single-chip geometry and lighting processor, 3D Labs’ Glint GMX 2000 screams on Windows NT. By David Em

3D Labs Puts a Glint in Graphic World’s Eye

The latest graphics accelerator from 3D Labs, the Glint GMX 2000, features a single-chip OpenGL geometry and lighting processor called Gamma. Containing more than 5 million transistors and a million gates, Gamma dramatically improves the real-time performance of such computation-intensive graphics tasks as lighting and vertex transformation.

I tested a 3D Labs’ GMX reference board on a 300-MHz Pentium II with 96 MB of RAM. The board contained two Glint MX graphics processors, each of which can have up to 40 MB of nonlocal, extended data out (EDO) DRAM frame buffer, one Glint Gamma chip, and a VGA boot chip. The GMX reference board took up a single PCI slot, had a 16-MB frame buffer, and a 250-MHz RAMDAC.

Three-D Labs claims the GMX will support up to 2000 by 2000 pixels in true color. But our reference board displayed wavy lines at 1600 by 1200 pixels, a driver problem that should be resolved in the shipping version.

TECH FOCUS

OpenGL Visualization Under Windows NT

True real-time photo-realism is still a few years away, but with the latest implementations of OpenGL coupled with boards such as the GMX 2000, the gap between previsualization and high-quality output rendering is rapidly narrowing.

To test this, I used the GMX 2000 with Evans & Sutherland’s Glaze program. Using a model of a turtle, the GMX 2000 maintained frame rates that varied between 10 and 100 frames per second while using various combinations of bilinear and trilinear texture mapping, antialiasing, multiple light sources, fog, transparency, and reflection.

The GMX 2000 achieved impressive scores on the OPC ViewPerf 5 benchmarks, which measure 3-D rendering performance under OpenGL. The CDRS-03 test returned a geometric mean average of 76.5, more than 50 percent faster than a Silicon Graphics 195-MHz Octane R10000. Also, the DRV walk-through test returned a mean of 9.6, compared to the Octane’s 8.2. Given that NT-based GMX systems will likely cost less than $10,000, and that Unix-based systems with similar capabilities cost three to five times as much, these are compelling numbers.

I ran a number of 3-D modeling tests using Kinetix 3D Studio MAX R2, which was stable in its performance. I loaded very complex models made up of thousands of polygons, displayed them as shaded surfaces, lit them with 16 lights, applied textures to them, and performed a variety of transformations on them with excellent results. The 2-D performance on the reference board was adequate but sluggish. Previous 3D Labs chip sets have excelled at 2-D, so it’s likely this one will ship with more refined 2-D drivers.

The GMX 2000 encompasses 100 percent of all key 3-D API functionality, including Gouraud shading, texture mapping, trilinear texture filtering, antialiasing, and destination Alpha blending under OpenGL 1.1, Direct3D, Heidi, and QuickDraw3D. Along with competitive products such as HP’s Kayak and Intergraph’s Realizm II VX 113-GT, the GMX is redefining desktop 3-D. The GMX chip set is a price/performance breakthrough. The company expects production boards with the chip set to ship for $2000 to $3000, depending on configuration.

David Em (Sierra Madre, CA) is a digital artist and writer. You can contact him at davidem@earthlink.net.
THINKING ABOUT
RAID for your MISSION-CRITICAL data?

Then THINK about this: many RAID storage vendors list the same features, but not all companies implement those features in the same way. Before you purchase a RAID system, ask each vendor how their products provide the following features...

- Given Ultra SCSI's cable length restrictions, can the system maintain Ultra Wide SCSI performance (40MB/second) over several daisy-chained RAID units?
- Does the system support the new higher performance 10,000 RPM disk drives? If so, what have you done to handle the additional power, thermal and vibration requirements of these higher performance drives?
- What if I need to reconfigure or add more storage capacity to the RAID system? Do I have to down the system?
- Does the system include free storage management software? If so, does the software provide remote monitoring capabilities via the Internet? Does it include a common GUI interface to configure and manage both PC LAN and UNIX operating environments?
- Can this system be upgraded to future technologies such as clustering, LVDS or Fibre-Channel?

Lots of RAID storage companies claim fantastic features, but when you start asking for details about these features, you will find many are just plain marketing hype. Not at nStor. We incorporate all the above features and many more (too many to list here) into our RAID technology. And, nStor stands behind its products 100% with FREE pre- and post-sales support, unmatched technical support and warranty programs such as “spare-in-the-air” cross shipments of hot swap components.

We're confident you'll see that not only does nStor understand today's RAID technology, we're building RAID systems to support future technologies as well. We invite you to call our nStor account managers at 800.724.3511 and ask how nStor provides these features and many more.

Enter HotBYTES No. 103 at http://www.byte.com/hotbytes/
Unix Gears Up for Merced

With UnixWare 7.0, SCO has taken an important step on the road to 64-bit Unix for Intel CPUs, specifically the upcoming Merced. Whether Sun Microsystems and Digital Equipment can catch up remains to be seen, but the race is on.

Because this isn't designed as a desktop OS, I tested it on a Gateway NS-8000 with two 333-MHz Pentium II processors, 512 MB of RAM, and two 9-GB SCSI hard drives. The OS exhibited eye-blinking performance and rock-solid reliability. I tried SCO's Java virtual machine (JVM) and just-in-time (JIT) interpreter with Pendragon's CaffeineMark Java benchmark. The interpreter had about 20 percent better performance on CaffeineMarks than the previous release.

The new kernel has a rewritten networking subsystem that handles LAN traffic quickly and efficiently. It integrates nonuniform memory access (NUMA) and supports up to 16 GB of RAM, 2-GB file systems, and 512 disks. The maximum process size is 3.75 GB; file size, 1 TB. SCO includes limited support for I2O (see the Tech Focus), Compaq's PCI Hot Plug for hot-swapping controller cards, and multipath I/O technology, which lets a system automatically fail over to alternate I/O cards and mirrored disks in case of failure. Topping off this impressive hardware support, UnixWare 7.0 can distribute work loads across up to 32 processors.

Just 64 Bits More

SCO owns the AT&T Unix source code, including System V release 5 (SVR5), which introduces a 64-bit file system, libraries, commands, and APIs. SCO says you can simply flip a compiler switch to invoke the 64-bit extensions. They use the LP64 standard to represent pointers and give even 32-bit CPUs access to a 64-bit long data type. The new APIs also have code libraries for Secure Sockets Layer (SSL), Posix-based threads, and LDAP.

Older versions of UnixWare had few graphical tools. Here, we get a beefed-up Common Desktop Environment (CDE) and heavy reliance on a Web-browser interface. There's still no tool for administering network addresses for configured IP interfaces, but SCO's SkunkWorks CD contains an ipalias utility along with many other useful administrative aids.

SCO's DOS emulator, Merge 4.0, lets Windows 95 or 3.x applications run on a Unix system, but SCO didn't have a compatible version ready for my tests.

UnixWare 7.0 is SCO's best effort to date to unify and consolidate its Unix products. With its improved performance and reliability, UnixWare 7.0 should help SCO retain its dominance in the Intel-based Unix market.

Barry Nance, a computer analyst and consultant, is a BYTE consulting editor. You can reach him at baryn@erols.com.

UnixWare's Common Desktop Environment is just as easy to use as Windows.
Microsoft SMS 2.0 has better inventorying and distribution, but upgrading might be tricky. By Gary Monti and John Clay

SMS: Ready for NT 5.0

Microsoft's Systems Management Server 2.0 beta 1 took us back to the days when vendors released upgrades with new features requested by customers, instead of bug fixes and marketing ploys. SMS 2.0 delivers enhanced capabilities for software distribution, complementing the intelligent mirroring technology expected in the upcoming Windows NT 5.0 (see the Tech Focus).

The hardware-inventory function now uses data from more sources, such as Win32, SNMP, and DMI. The software-inventory function has shed its package-based approach, instead searching every executable on a client machine for version information. Software distribution is now based on NT group affiliation, TCP/IP network segments, and user name. Also new is rule-based distribution.

SMS's software-metering function now monitors shared servers and local workstation applications, and network-attached and mobile clients must check out a license for each metered application. Microsoft says a later beta will also offer native support for managing Windows clients that authenticate through Novell Directory Services (NDS).

Installation now supports secondary site setup, which you previously could deploy only as a system job from a primary site. In our tests, we encountered SQL Server setup, which detected an invalid machine name, aborted, and returned control to SMS installation—which also aborted. Neither of the resulting partial SMS and SQL installations uninstalled properly, so we had to manually clean up the file system and registry.

SMS upgrade installations went off without a hitch, courtesy of the upgrade wizard, but we recommend carefully planning upgrades of existing sites. The setup program migrates SMS 1.x machine groups into SMS 2.0 collections, and a new client agent replaces Package Command Manager and the Program Group Control, so client program group controls are lost. You must create a target collection that advertises the same programs and assigns them to run when the client's code is being upgraded to SMS 2.0.

We like this rearchitected SMS, which enhances its classic services while adding nice new features. Companies with big investments in SMS 1.2 may pay a price, but Microsoft promises migration wizards and support for interoperability between 1.2 and 2.0 in the second beta.

Gary Monti (gary_monti@ins.com) is managing consultant and John Clay (john_clay@ins.com) is network systems engineer for International Network Services.
QNX offers a small resource footprint and real-time processing power, all while using familiar Unix APIs. By Robert Krten

A Tiny OS That Scales Up

QNX Software Systems, Ltd. (QSSL) created the QNX OS in the early 1980s. QNX started life as an embedded real-time OS. You accessed its services through standard Unix APIs instead of a set of proprietary APIs. A decade later, QNX 4 was introduced, which built upon the capabilities of the earlier versions. Notably, it supplied many Posix features, had a Posix API, and was Posix-certified.

Last year saw the introduction of QNX/Neutrino, which offers a Posix-based microkernel; Posix support, such as Posix threads and real-time processing; and better scalability. This third capability makes QNX/Neutrino readily adaptable—through the addition of extensible service-providing modules—from a small kernel suitable for embedded systems up to a full-blown OS with networking, a file system, and a GUI that handles jobs on large, high-end systems.

The key to QNX/Neutrino's ability to offer both real-time performance and scalability is its design. What follows is a look at the OS's architecture that will reveal how its designers managed to accomplish this feat. (It's important to note that the OS reuses existing code wherever possible for reliability.)

A Quick Tour

QNX/Neutrino is a preemptive scheduling, multitasking OS with configurable memory protection. Its microkernel occupies only 32 KB of memory. The kernel was written from the ground up around Posix real-time standards, including ANSI and the Posix 1003.1, 1003.1a, 1003.1b (real-time), 1003.1c (threads), and 1003.1d (draft) real-time extensions. It manages two fundamental operations: message-passing and scheduling.

The kernel orchestrates the operations of cooperating processes. Some of these processes implement other QNX system services, such as process creation (the Process Manager), file-system support (the File System Manager), networking (the Network Manager), and device I/O (the Device Manager).

These four managers are system processes, as opposed to standard processes. The only difference between the two types is that system processes manage services that are traditionally associated with the OS, while standard processes don't. Because both process types use the same interfaces and calls (there are no hidden system APIs), QNX/Neutrino is easy to extend: Just write a service-providing module, which is a process that implements a new service.

Furthermore, device drivers are themselves processes and can be either system or standard processes. A driver's in-

The microkernel handles all message-passing and process states, which permits it to coordinate and synchronize processes.

The kernel's interrupt redirector and scheduler oversee thread-level scheduling, interrupt handling, and timing, as illustrated in the figure "QNX OS Architecture" below. The kernel itself is never scheduled for execution; it's only entered through kernel calls that are invoked by a process or from a hardware interrupt.

www.byte.com

MAY 1998 BYTE 47
Threads send messages synchronously between each other. It's easy to implement process synchronization because the kernel design is fixed and does not require concern itself only with the scheduling of threads.

This threaded design pervades the QNX/Neutrino architecture and so provides the fast response times necessary for a real-time OS. For example, the Process Manager uses a loader thread that copies a process image into memory. This allows the Process Manager to service other requests while programs load. QNX/Neutrino also uses priority levels when scheduling time-critical processes, so when the Process Manager creates a new process, it inherits the priority of its parent.

The Message Is the Medium

All QNX OSes employ message-passing for process coordination. Message-passing refers to the mechanism used by one thread to communicate with another. Messages have no special format; they are just packets of bytes. A message's content is determined solely by the client and server threads. The important point to remember here is that the two threads can be part of the same process, in different processes on the same machine, or even on different machines that are connected by a LAN.

QNX/Neutrino employs the same form of message-passing as previous QNX versions, with minor revisions. As the elements of the microkernel architecture show, message-passing is the underlying infrastructure of the OS. In fact, some of the supplied Posix and ANSI C library functions, such as fopen(), fseek(), write(), and others, transparently use message passing on your behalf.

Different States

Threads send messages synchronously between each other. It's easy to implement process synchronization because threads change states during such transfers. As shown in the figure “Process States” above, a client thread constructs a message and sends it to a server thread via the kernel call MsgSend().

At this point, the client thread becomes SEND-blocked: It's waiting for the server thread to receive the message. The server thread fetches the message using aMsgReceive() call, and now the client becomes REPLY-blocked, since it's waiting for a reply from the server.

The server thread performs some processing, depending on the message content. When it's finished, the server replies to the client with the results, using a MsgReply() call. Now the client becomes unblocked and runs. Note that the kernel not only modifies the state of the processes but performs the message transfers between the client and server. On reflection, this makes sense, because in a memory-protected model only the kernel has access to both threads' memory.

This arrangement has several advantages. First, processes that are blocked don't consume processor time, which enables the kernel to load-balance the needs of high-priority processes in a more effective manner.

Second, the message-passing and process states allow you to design your target application as a set of cooperating processes. Each individual process has a fixed area of responsibility and can provide and/or request services to or from other processes. This lets you design a system where programs are decoupled from each other, resulting in easier integration and unit testing, as well as distributed processing support.

Finally, message-passing works consistently, regardless of the location of the two threads that wish to perform a message-passing operation.

The advantage to this approach is that clients use the same server interface whether they're on the same system or on different nodes. For example, when writing data to either a local or remote hard drive, QNX/Neutrino uses the same open and write messages. These messages can be transferred to a thread located on the same or another CPU, or to another node on the network. QNX/Neutrino thus permits you to easily construct symmetric multiprocessing (SMP) or distributed applications.

The QNX/Neutrino OS is easily adaptable to a variety of uses. Because it supports execute-in-place (XIP) code, the OS and its applications can execute out of ROM or flash memory. Unneeded system processes can be trimmed from the OS for embedded applications. Conversely, you can write service-providing modules that extend the OS for specialized applications or devices.

QSSL has created a demo disk that you can download for evaluation from the company's Web site (at http://www.qnx.com). The entire OS, GUI, TCP/IP package, and Web browser all fit on a single 1.44-MB floppy disk.

Robert Krten is an independent software/systems consultant with Parse Software Devices, Ltd. (Kanata, Ontario, Canada). You can contact him by sending e-mail to rk@parse.com or to the Parse Web site, at http://www.parse.com.
Networking

A new protocol enables computers to automatically locate a network’s resources. By James Kempf and Charles Perkins

What’s Your Service?

The Service Location Protocol (SLP) is a new, broadly applicable protocol for connecting service providers to service clients. It’s a TCP/IP-based protocol designed for advertising and locating network services on corporate intranets. In this context, advertising means that a network device describes its functions and capabilities to other clients.

Using SLP, a computer can automatically discover and use network resources, such as printers and e-mail servers. In addition, SLP supports the attribute-based description of services, so clients can browse through services and select exactly the one they want. Existing services that might be advertised through SLP include Web servers, fax machines, printers, and mail servers, among others.

SLP is well suited to low-cost administration designs because the setup and administration of an SLP-enabled network requires a fraction of the effort necessary for solutions based on directory services. SLP’s simplicity allows it to be built into firmware, so network-enabled devices can advertise themselves as soon as they are plugged into the network.

SLP is complementary to Hewlett-Packard’s JetSend protocol (see “HP JetSend: Off-the-Cuff Communication,” April BYTE). While JetSend allows clients to use network devices without requiring a special driver, it offers no support for locating services, except on a peer-to-peer level. SLP can handle device locations spanning a corporate intranet, and it offers some security and management features that JetSend lacks.

A Trio of Agents

As described in RFC 2165, an SLP-enabled network contains three different active entities, or agents. Service agents advertise services. User agents seek service agents based on attribute queries describing the service they need. Directory agents function as intermediaries between user agents and service agents, aggregating advertisements so that user agents can find services without searching all the networks where services might be located.

The figure above illustrates the various roles played by agents in an SLP-enabled network. The fax machine is connected directly to the network; it functions as its own service agent through the SLP in its firmware. The printer and the storage system advertise their functions through proxy service agents running on servers. SLP is very flexible in that the user agent and the service agents in the 11.0.0.x subnet can directly exchange data. Through the intervention of a directory agent, agents outside the subnet can more efficiently locate services within it.

As an enterprise grows, it might no longer be convenient to let user agents search the entire network for services. When this happens, services that are advertised these services. An example of a scope is the collection of services available to a marketing department. User agents can be configured to a scope name in their SLP requests, so directory agents reply only to requests that include the scopes that they support. To continue with the company example, the marketing department’s directory agent won’t respond to requests for color-printer services issued by a user agent in the accounting department.

It’s in the URL

SLP uses text to specify service information, which allows it to be both readable and sent via e-mail. (Note that not all the data in SLP packets is text; some of it is binary.) Because the URL has become a standardized way of describing resources on

Several processes, or agents, help clients discover and query devices about the services they offer.
the Internet, SLP uses a particular URL scheme, called a service: URL, for service advertisements. It consists of the string service:, followed by a string describing the kind of service, followed by information indicating how to contact the service. An example of a service: URL is service:printer:lp://printserver .fiction.org/colorprint

This service: URL designates a print service that uses the Internet LPR protocol. The service is contacted through the DNS-resolvable name printserver .fiction.org, and the particular printer queue is colorprint.

The string following service: designates the kind of service and is called a service type name. Service type names are standardized by being registered with the Internet Assigned Numbers Authority (IANA), but unregistered names can be used by tacking a naming-authority token onto the service-type name after a period. An example is video.exp, which might designate an experimental video service.

The service type is defined by a service-type template, which is also registered with the IANA. The template contains information identifying the service’s type name, version number, syntax of the service: URL, and a short description of the type in human-readable form. Attribute definitions form the bulk of the template and describe the service. They can describe a service’s dynamic characteristics, such as a printer’s current workload and queue length, as well as static characteristics, such as its resolution and color support.

The SLP protocol is based on messages where user agents query available service types and attributes and then request services based on the values of the attributes. A client searching for a service formulates a query based on the attributes of a service and the desired values. The query is sent to SLP, and matching service: URLs are returned.

For example, suppose one of the printer-service type attributes is control_language. A client searching for a PostScript printer could formulate a query with control_language=postsript to find printers that support PostScript. To support changes in an intranet’s services, SLP has additional messages that let service agents add (register) and remove (deregister) service advertisements. See the table below for a brief description of these messages.

Inter-Agent Communication

Inter-agent communication in SLP is designed to efficiently scale from networks containing very few nodes up to large, enterprise-wide networks. Directory agents act as the primary scaling mechanism. When they start up, agents discover directory agents on a network through three mechanisms: static configuration, DHCP option 78, or a multicast service request.

User and service agents must either try DHCP or multicast a service request to the directory-agent discovery-multicast address, 224.0.1.35. Periodically during operation, they can multicast a request for directory agents to the directory-agent discovery-multicast address and passively listen for directory-agent advertisements on the service-location multicast-multicast address, 224.0.1.22, to detect any directory agents that have appeared in the interim.

The only security mechanism specified by SLP is the protected scope. An example of a protected scope is a manager who wants to print out workers’ salaries. To prevent tampering, the manager needs to make sure the printer is available from a protected scope. A protected scope is implemented by service agents, directory agents, and user agents that share a public-key cryptographic algorithm and a public key. Every service advertisement in a protected scope is validated twice—once when it registers itself with a directory agent and once when the user agent validates the URL received in a service reply. This protects the user against malici-

SLP Messages

Every message is prefixed with a header that identifies the protocol version, message type, packet length, natural language, transaction identifier, and flags.

- **Service request**—Contains a query in which the service type, scope, and a predicate describe what kinds of service advertisements the client is interested in.
- **Service reply**—Contains a status code and a list of service: URLs that match the predicate, along with authentication information if the scope is protected.
- **Registration request**—Contains a service: URL and a list of attributes for advertisement, along with authentication information if the scope is protected.
- **Deregistration request**—Contains a service: URL and an optional list of attribute tags to remove. If the tags are missing, the entire service: URL is removed. Authentication information is also required if the scope is protected.
- **Attribute request**—Contains a service: URL or a service-type name and a list of attribute tags that identify the attributes of interest.
- **Attribute reply**—Contains a status code and a list of attribute tags with their values, along with authentication information if the scope is protected.

Valuable Uses

SLP offers companies the ability to construct intranets that can dynamically change as the business’s needs change. Clients can automatically query the network for services, which minimizes network-configuration and management problems. Directory agents can act as intermediaries, which reduces multicast traffic. Authentication is possible by configuring the agents for protected scopes.

SLP is well suited for today’s businesses that have a mobile workforce and ad hoc workgroups.

ColdFire Revisited

The microprocessor has made its mark on the world since its introduction three decades ago. It has changed not just the electronics industry, but how we work, communicate, and play. While desktop processors routinely get the lion’s share of ink, the market for embedded processors (often called microcontrollers) has grown to titanic proportions: It literally dwarfs the desktop computer market. Hundreds of millions of embedded processors are used each year in a wide variety of applications ranging from communications devices, business machines, and automobiles to toys, home appliances, and consumer electronics.

Lasting Legacy

System designers today look at the whole picture regarding an embedded product’s life cycle. Issues such as price, system development environment (i.e., development tools, debugging tools, OS support, and modeling support), reuse of existing software, ease of integrating custom logic, and the ability to migrate to newer processors in the future are important factors when selecting a CPU. Motorola’s 32-bit RISC ColdFire architecture readily addresses these issues, because its instruction set is founded on the venerable 68000 architecture. Since many 32-bit embedded applications today use the 68000 processor or its descendants, ColdFire lets designers preserve their investment in time-tested, solid code. The latest progeny of this family, the MCF5307, combines a third version (V3) of the ColdFire core, along with an integrated package of communications peripherals.

The previous-generation ColdFire core (V2) was designed to address two complementary goals. First, it enabled the rapid, low-cost deployment of new embedded systems. Second, it allowed customers to leverage the 19-year legacy of code, tool sets, and engineering know-how from 68000-based designs. Representing a major upgrade, the MCF5307’s V3 ColdFire core continues its predecessors’ goals while boosting processing throughput. This was accomplished through architectural improvements, better mathematical performance, and the addition of DSP-like functions. These enhancements, along with sufficient built-in peripherals (as shown in “5307 Architecture” above), enable the 5307 to implement a single-chip system capable of handling a wide range of consumer and business electronics. It is a 3.3-V part fabricated using a 0.35-micron TLM CMOS process, and it is available as a 208-pin quad flat pack.

At the Core

Fundamental to the 5307’s design is its compact and modular ColdFire core. It employs a variable-length RISC instruction set that maximizes code density (the “packing efficiency” of instructions and operands held within registers, buffers, and on-chip memory). The core’s frugal use of system memory greatly minimizes the need for off-chip memory, which in turn lowers a product’s cost.
pipeline combine to create a more balanced instruction load in the 5307, thus enabling high-frequency operation. Branch-prediction hardware reduces the penalty of change-of-flow operations (such as branches or jumps).

The 5307 also embodies specialized execution engines in the form of a dedicated multiply-accumulate (MAC) unit and a hardware divider. These modules significantly augment the processor’s performance in target systems such as printers and mass-storage devices. Depending on the specific code that’s implemented, the signal-processing algorithms for a servomotor control can be accelerated by as much as 70 percent using the MAC unit, while the hardware divider can accelerate raster-image processing in printers by as much as 15 percent. The 5307’s glueless memory interface and specialized processing power make it ideal as a printer controller, as shown in the figure “Ink-Jet Printer Design” at right.

The 5307 maintains two isolated clock domains: one for the processor core and memory, and one for the other on-chip modules such as external bus controllers and peripheral logic. This simplifies the integration of slower peripherals (e.g., on-chip UART and timers) and minimizes power consumption, while allowing the core to operate independently at higher frequencies for best performance.

Potent Peripherals

Supplementing the 5307’s accelerated throughput is a host of integrated peripherals. An on-chip, 8-KB, four-way set associative unified cache and 4 KB of SRAM help reduce external memory accesses for tight code loops. The 5307’s external bus provides a direct interface to external 8-, 16-, and 32-bit memory and I/O devices. A DRAM controller provides glueless support for up to 256 MB of synchronous, extended data out (EDO), or page-mode DRAMs. The integrated 5307 also includes two 16-bit general-purpose multimode timers, serial and parallel communications interfaces, and an I²C-compatible bus.

The 5307’s programmable DMA controller supports four fully independent DMA channels, including two that can be invoked by external request pins to initiate transfers internally or externally. The DMA controller handles single- and dual-address transfer operations in burst or cycle steal mode. It supports 8-, 16-, and 32-bit block-transfer sizes, with independent widths for source and destination addresses. It can also perform 128-bit bursting block transfers and manage a dedicated UART service.

The 5307 has an on-chip debug module that supports background debugging, real-time tracing, and real-time debugging. The debug module provides a common interface for consistent emulator support across the entire ColdFire processor family. This internal debug capability provides direct observation of internal registers at any point during code execution, simplifying and speeding up software/hardware integration, as well as final testing and verification.

Where the debug module really shines is that it facilitates the debugging and testing of embedded devices. Static debug monitors are limited because they must halt an application’s execution to read internal kernel resources or change a task’s state. Unfortunately, servomotor controllers, or other time-critical mechanical parts, can be damaged if their operations are suspended. While real-time systems may not withstand complete stops, they can tolerate small interrupt routines inserted into their execution streams that allow register values and other memory variables to be saved externally—the approach taken by the ColdFire debug module. In addition, this debug unit enables system designers to perform real-time traces during the dynamic execution of instructions, allowing them to observe and identify code bugs.

Compatibility and Upgradability

The 5307 is code-compatible with previous ColdFire cores, which makes it an ideal upgrade for existing designs based on the MCF5206 (an earlier member of the ColdFire family). Because ColdFire is based on the 68000 instruction set, the MCF5307 is suitable for upgrading legacy embedded designs based on Motorola’s 68340 or 68EC040 parts.

 Embedded applications will continue to multiply and evolve, and system designers must examine their choices closely. The features of ColdFire cores have found them homes in applications such as set-top boxes, printers, network hubs, video games, GPS units, cellular base stations, and storage devices.

Susan Shimshock is a technical marketer in Motorola’s Consumer Systems Group. She is working with the design team for the Version 4 ColdFire core. She can be reached at editors@byte.com.
Control up to 4 computers using one keyboard, monitor and mouse with SwitchView! At only 8 inches across, this sleek, compact unit takes up less room on crowded desktops. Combine that with the economical price and SwitchView is quite an attractive package!

But don’t be fooled . . . there are brains behind this beauty.

Built-in mouse translation lets you use a PS/2 or IntelliMouse to control any attached PC - serial or PS/2 style. Keyboard or front panel push-button switching, automated scanning and industry standard cables make the SwitchView easy to use too! Two and four port models are available; cascade units to support up to 64 attached PCs. And, SwitchView is Class B certified for use in residential and commercial areas.

Not your usual lightweight. For more information on this exciting new KVM switch, contact us today.

Cybex Computer Products Corporation
4912 Research Drive • Huntsville, AL 35805
(800) 932-9239 • (256) 430-4030 fax
http://www.cybex.com

SEE US AT: Network+Interop, May 5-7, Las Vegas, Booth #3843, #4485
How to get your web-to-host applications on the hit parade.

Start with your favorite web development tool — like Visual InterDev® or Visual Basic® — then just add the award winning Attachmate® HostPublishing System. It removes the complexity of working with mainframes and AS/400s by automatically building code that extracts selected data from enterprise systems.

Based on open development standards, the applications you build with HostPublishing System integrate with Windows NT® Server. Our ASP Design Time Control gives you the dynamic web interactions you’re looking for. And you get the security you demand thanks to Attachmate’s comprehensive support for authentication, authorization and encryption.

As the market leader in mainframe access, we’ve been helping customers leverage their legacy data for more than 16 years — including 4 out of every 5 Fortune 500 companies. Attachmate also offers special support for developers and we can help you build your first prototype through our QuickStart Consulting program.

For a free HostPublishing System Reviewer’s Guide and evaluation copy, call toll-free or go to www.attachmate.com/ad/byt.htm

Easy. Orchestrate host information for the web with Attachmate HostPublishing System and Visual InterDev.

For a Reviewer’s Guide and evaluation copy call 1-800-426-6283.
When Web servers made their appearance on the Internet, they were built to serve Web pages and nothing more. Now, server-oriented Java classes, known as servlets, give Web servers the ability to exchange information with applications without sacrificing speed or reliability.

Early Web servers had no way to access a database and return the results of a query as HTML. This was soon remedied with the introduction of the CGI, a rather unwieldy specification that defines how Web servers exchange information with external software.

Using CGI programs (or CGIs), it then became possible for Web servers to spawn these programs (i.e., start running a new copy), communicate with them via the CGI, and perform arbitrary yet useful functions, including accessing databases.

While CGIs represented a major breakthrough in extending the Web's capabilities, many problems are associated with them. The chief one is performance. Every time a request is made to a Web server that requires running a CGI, the server must spawn it and suffer the performance impact of having the CGI load, initialize, execute, and finally return HTML. Fielding many simultaneous CGI requests can quickly bring a high-traffic server to its knees.

Improvements to CGIs have since appeared. Both Microsoft and Netscape released APIs to enable Webmasters to write CGIs as libraries that load as part of the Web server itself. This greatly improves performance because the libraries don't require a spawning operation. But it places more responsibility on the programmer. A badly written library can easily crash the whole server.

Meet a Servlet
Servlets are an attempt to address the problems of speed and reliability. Servlets are Java classes loaded into and invoked by a Web server. They're the server equivalent of applets on the browser side. Once loaded, they become part Web server. This provides improved performance because they load only once, instead of being spawned at every request.

Given Java's pointerless nature, a Java-based servlet is less likely than a C++ plug-in to misbehave sufficiently to crash the entire Web server. Also, most servlet-capable servers allow running servlets in a "black box" isolated from the rest of the server to enhance stability and security.

Because they effectively become part of the Web server, servlets can save state between invocations. In the stateless nature of HTTP, this is an important advantage. For example, a servlet could track a surfer's actions for statistical purposes and/or generate custom HTML based on the behavior that it witnesses.

Finally, servlets inherit the advantages of the Java language, such as cross-platform portability, garbage collection, multi-threading, and synchronization.

Servlet Architecture
Although this article mostly discusses servlets from the point of view of replacements for CGIs, they play other roles in the enterprise Java world. Servlets are considered a general mechanism for extending the capabilities of services, a generic name for Web servers, mail servers, and so forth.

Thus, a servlet is not only cross-platform thanks to Java, it also provides a measure of independence from proprietary servers and protocols. In other words, assuming that you are willing to write your custom logic as servlets, you will be able to "plug" them into different vendors' products, whether they are
Web servers (HTTP), file servers (NFS), mail servers (SMTP), and so on.

The figure "Servlet Architecture" illustrates some of the more important features and concepts. In this hypothetical example, an intranet client (e.g., a Web browser) makes an HTTP request to a servlet-capable Web server.

The dispatcher, the part of the server that assigns threads to incoming requests and dispatches them to various servlets, discovers that the required servlet (db_serv) to invoke is not on the server. In this case, it is loaded from a central servlet repository (potentially another Web server) and given the request. This shows another strength of servlet environments: the ability to load servlets from a remote site as well as from local storage. Presumably, various company systems use db_serv extensively, and therefore it is worth centralizing.

Db_serv carries out the request and, in the process, accesses a company database for information. Its results are passed to pretty_serv, a servlet that formats db_serv's output into HTML and sends it to the browser. This entire operation is called servlet chaining. The servlets are configured in series, with each processing the output of the previous link and sending its output down the chain.

A Sample Servlet

The sample code BrowserCounter, shown in the listing "A Simple Servlet," determines what kind of browser accesses the site. It returns a line of text stating how often the site has been hit by that type of browser. This shows how servlets can maintain state across invocations and generate custom HTML. BrowserCounter is invoked by embedding the following servlet tag in an HTML file: `<servlet class="BrowserCounter" /></servlet>`. You can also invoke servlets as CGI scripts via URLs or as part of a chain.

BrowserCounter is a subclass of HttpServlet, which adds HTTP-specific methods to the generic servlet interface. In this example, only two methods are shown: service() and getServletInfo(). Others (e.g., init() and destroy()) are provided by superclasses and can be overridden as necessary. For instance, db_serv might connect to a database in init() and release the connection in destroy(). And getServletInfo() enables a servlet to return a short description that's displayed in a server's administration interface.

The service() method is called each time a servlet is invoked. Two parameters are passed in. The first, request, encapsulates the information about the HTTP request (e.g., the client's IP address, host name, and request parameters). The second, response, contains methods for setting the type of data we are returning (e.g., text or HTML), finding the output stream we should write to, and—in our case—sending HTTP-specific headers. Notice that because servlets are inherently multithreaded, I made the service() method synchronized to prevent the data in BrowserCounter's hashtable variable from being corrupted.

The service() method works as follows. I determine the client's browser type, or User-Agent in HTTP parlance. Next, I check whether this type has an entry in the hashtable. If it does, I increment its counter (a simple Integer object). If it doesn't, I create a new entry in the hashtable, with the new type's counter set to 1. Finally, I print the message to response's output stream. In my case, this is a socket back to the client, but had this servlet been part of a chain, I would have written to the next servlet's input stream transparently.

Future Services

Servlets are set for a bright future. The servlet classes are now part of the Java Development Kit (JDK) 1.2 distribution as the first of JavaSoft's Standard Extensions. Servlets are also being combined with JavaBeans to form Servlet Beans.

These servlets have the added advantages of serializing their state and enabling their instance variables to be modified via configuration interfaces. This would have let BrowserCounter's hashtable be saved to disk when the server is shut down. Preserving any statistics gathered. Servlets' simple interface, performance, and the independence they provide are likely to prove attractive to many developers.

Paul Clip (paul@clip.org) is a Java-certified consultant working at Sapient's San Francisco office.
scientific environments have always generated large numbers of databases, and office software such as Microsoft Access has fueled an explosion in smaller data repositories. I'm often asked by colleagues if it is possible to make these databases available on the Internet. Until recently, my answer has been "not easily," for the simple reason that we don't have an NT server. For organizations wedded to Unix, installing and maintaining an NT system to host an Access database makes poor economic sense.

However, I decided to investigate further. How difficult (and therefore expensive) might it be to publish Access data on the Internet, using a Unix-only server environment? I would need to transfer Access data to a relational DBMS running under Unix, use a Web CGI to pass SQL queries, and format the query results for an HTML browser. Since the project had zero budget, any software would have to be free, and ideally I'd want to exploit my modest Perl programming skills.

As I believe in starting simply and adding complexity later, I chose a small Access database for my prototype system. It consists of two tables with about 4000 rows of data detailing the amount of DNA ("4C") stored in the nucleus of different plant species. My aim was to duplicate Access functions as far as reasonably possible and be able to select and sort DNA data by combinations of various fields and numeric ranges on an HTML form.

Assembling the Tools

First, I had to find what tools were available for accessing databases via CGI. All roads led to the Perl Database Interface (DBI), written by Tim Bunce. The DBI furnishes a constant Perl API with which to manipulate databases. Source for DBI is available at http://www.hermetica.com/technologia/DBI/. Versions of DBI exist for different sorts of database systems.

Equally important, DBI lets you write database-independent scripts. The DBI layer uses database drivers (DBD) to translate DBI API calls to database-specific commands. If your Perl script conforms to the DBI specifications, it can manipulate any database for which a Perl DBD module exists. A single script lets you perform the same operation on major RDBMSes such as Oracle, Informix, and Sybase, plus a host of smaller ones. DBI also allows you to manipulate multiple databases at the same time, as shown above in "The Database Interface (DBI) Layer Connections."

The most attractive packages fitting my project criteria were inexpensive Unix RDBMSes for which a DBD module was available. A little research focused my attention on the freely available MySQL package (http://www.tcx.se/), written by Monty Widenius. Not only does it have a Perl DBI, but ODBC (Unix/Win32) and Java Database Connectivity (JDBC) drivers are also available.

MySQL is available as source code and as prebuilt binaries for most flavors of Unix. Don't assume it's not a serious RDBMS just because it's free—MySQL can administer databases containing millions of entries. It's very fast, supports all standard data types, including binary large objects (BLOBs), and implements practically all the ANSI SQL92 specification (plus a number of useful extensions). MySQL has a sophisticated privilege system that allows managers to control access to database functions according to database, user, and location. I set my DBI scripts to run as the user "webclient," for which I gave read-only access to my test database.

Compiling and installing the MySQL...
Building the User Interface

So that Web browsers could query the database, I needed to construct an interface that passes queries to the database via the DBI/DBD layer. I created a Web form, shown in the screenshot at right, that acts as the main query interface. A Perl script takes information from this form and constructs a SQL query that's forwarded to the database.

Building SQL queries properly requires careful consideration of the Web form's field types, combinations of selected fields, and how data from fields may be validated or otherwise sanitized prior to submission to the database. I found Perl's associative arrays excellent for mapping form field names to database field names. I used checkboxes to allow users to choose which database fields to include in the SQL SELECT statement. These checkboxes set internal flags that ensure inclusion of fields in the SELECT statement; they also cause the contents of any associated modifier fields to be checked. If modifiers exist, they are added to a list of items to be included in the subsequent WHERE clause.

To preserve SQL syntax, a field must "know" if it is the first modifier to a SELECT statement, which requires a WHERE keyword, while subsequent clauses require AND keywords. For example, the processed form in the screenshot will yield the following SQL statement:

```sql
SELECT genus, species, family, fourc FROM main
WHERE genus = 'Tulipa'
AND fourc <= '10' AND fourc >= '600'
ORDER BY species;
```

SQL syntax must be maintained, however, if genus is not selected and species is the first modifier field. Scripts must therefore react dynamically to the fields found selected and always produce correct SQL syntax. Notice also how the range of fourc is explicitly given an upper limit, even though this is not specified in the form field. Numeric fields should have upper and lower limits that can be inserted when fully qualified expressions are not provided. This type of defensive coding is essential for preventing unexpected errors when users enter incorrect data into a field. You can exploit Perl's powerful regular expression engine to correct such errors.

Using DBI

A DBI script can be coded to use a specific database/driver combination, or else find all installed drivers and load each in turn to discover any databases available on the local machine. This latter feature can be used to great advantage: By cycling through installed drivers, the first one capable of accessing a requested database can be used. Should the database crash or need to go off-line, and a copy is available via another driver, then the DBI script automatically selects the next driver that can service the request. This capability helps implement fault tolerance and improve database availability. This is possible only because DBI-compliant scripts are database-independent.

Once a suitable SQL query string has been constructed, DBI passes it to the database. DBI database operations are encapsulated in objects that are manipulated via handles. A successful $dbh->connect() function loads the appropriate driver, establishes a connection, and returns a database handle. Once a handle object has been obtained, its member functions may be called. The $dbh->execute() function passes a string containing a SQL query to the database. A successful query returns a handle to a statement object. This handle provides convenient access not only to query results but also to metadata such as column names. Multiple $dbh->fetchrow_array() function calls retrieve references to query results, a single row at a time, and can be used to place them in an array. This makes it simple to present the returned data in an HTML table.

The Cost Advantage

Making information in desktop PC databases available on the Internet in the absence of an NT server proves to be far from an insurmountable task. Many excellent tools are available to help you achieve this goal. While you might need to spend some money on writing Perl scripts and building an HTML form for the front end of the database, most of the process can be done for free. A sample Perl script is available for downloading from the BYTE site at http://www.byte.com/art/download/download.htm.
JBuilder 2 is the preferred development solution for leading companies such as NationsBank, Daiwa Securities, and MicroAge. These and other corporations are currently using JBuilder to deliver robust business applications, while building a bridge between disparate platforms and complex corporate databases.

JBuilder 2 is the only Java™ development solution that delivers on the promise of Java. While other development tools use proprietary extensions, compromising the true platform benefits of Java, JBuilder generates applications that are truly portable by adhering to the Pure Java standard and by supporting JDK 1.1, JDK 1.2, JFC/Swing, Enterprise JavaBeans™, JDBC, RMI, and Servlets. Corporations benefit by being able to create applications once and then run them on all their computing platforms.

JBuilder 2 Client/Server Suite comes with VisiBroker™ for Java, Borland’s CORBA technology. Now applications can be integrated in distributed computing environments and cooperate with other applications whether written in Java or not.

JBuilder 2 excels in productivity as well. It comes with over 200 JavaBean components with source code and visual tools for creating and managing JavaBeans. It facilitates drag-and-drop creation of database applications. It also has a DataStore for pure Java data caching and persistent storage of data, objects, and files. Developers will build better Java applications in less time than ever before.

Get to know JBuilder better. Download a free self-running demo from our Web site at www.borland.com/jbuilder/demo2 to find out how JBuilder can mean increased productivity, competitive advantage, and improved profitability for your company.

SOFTWARE tends to get slower over time, not faster. Otherwise, our applications could still be cruising on a 4.77-MHz IBM PC. But Java is bucking the software trend, at least for now. Thanks to the brute force of global research and development, Java is experiencing a growth spurt that will bring it very close to the performance of languages such as C++.

Competitive performance is crucial to Java’s success. Java tool vendors and developers agree that sluggish execution is their customers’ biggest complaint—both the customers who are using Java and those who are still evaluating it. Indeed, poor performance is second only to the problem of inconsistent cross-platform compatibility, another annoyance of Java’s youth.

“THERE’S been a lot of buzz in the marketplace about Java performance, and the fact that it’s not as fast as C++, which is the benchmark,” says Collette Coad, a partner at Ernst & Young who leads its Java development in the U.S. “It’s holding some people back from building enterprise-level, server-based Java applications.”

Despite those misgivings, Coad adds, Java continues to score major design wins, especially at large organizations whose need for cross-platform solutions overrides other factors. (See “Java Gets Down to Business,” October 1997 BYTE.)

It’s happening because Java is already fast enough for many purposes. Often, Java applets are merely the front end for a centralized process, such as a database manager, that’s running on a server. It’s the database’s stored procedures, the server, or the network that’s the bottleneck, not the applet. However, it’s more often the case that Java is simply too slow for applications that could benefit from its advantages: multiplatform compatibility, developer productivity, and run-time safety.

The same barriers stunted the popularity of earlier object-oriented, dynamic languages, such as Smalltalk and Eiffel. Even more successful languages, such as Visual Basic and PowerBuilder, have been limited by their less-than-C performance. But the tremendous hype over Java is generating an unprecedented amount of R&D at companies and universities all over the world. In general, researchers are exploring nine approaches to higher performance:

- Better Java compilers. These are the compilers that translate Java source code

- Better Java virtual machines. JVMs will benefit from more efficient garbage collectors and thread monitors.

- Bytecode optimizers. These tools recompile and optimize the bytecode, still producing standard bytecode.

- Just-in-time compilers. JIT compilers are still relatively new and offer many opportunities for improvement.

- Adaptive compilers. These sophisticated JIT compilers can profile a program while it’s running and apply optimizations as needed.

By Tom R. Halfhill
BYTE Lab Testing By Al Gallant

HOW TO SOUP UP JAVA

PART I

Will Java always be noticeably slower than C++? It’s a matter of debate, but many experts say no. They’re working on nine ways to boost Java’s performance.

By Tom R. Halfhill
BYTE Lab Testing By Al Gallant

Better source compilers
Java source-to-bytecode compilers are relatively primitive and could benefit from classic compiler optimization.

Better Java virtual machines
JVMs will benefit from more efficient garbage collectors and thread monitors.

Bytecode optimizers
These tools recompile and optimize the bytecode, still producing standard bytecode.

Just-in-time compilers
JIT compilers are still relatively new and offer many opportunities for improvement.

Adaptive compilers
These sophisticated JIT compilers can profile a program while it’s running and apply optimizations as needed.

Better source compilers
Java source-to-bytecode compilers are relatively primitive and could benefit from classic compiler optimization.

Better Java virtual machines
JVMs will benefit from more efficient garbage collectors and thread monitors.

Bytecode optimizers
These tools recompile and optimize the bytecode, still producing standard bytecode.

Just-in-time compilers
JIT compilers are still relatively new and offer many opportunities for improvement.

Adaptive compilers
These sophisticated JIT compilers can profile a program while it’s running and apply optimizations as needed.
Ways to a Faster Java

1. Java source code
2. Java virtual machine
3. Optimizer
4. JIT compiler
5. Adaptive compiler
6. Static native compiler
7. Native method interface
8. Java CPU
9. Native OS

Static native compilers: Compiling directly to native object code could yield near-native performance, but early compilers aren't that good yet.

Native method calls: Calling native code from a Java program seems like cheating but isn't, especially if it's done right.

Java chips: Java CPUs execute bytecode as their native machine language. Most will end up in low-cost devices, not PCs.

Better source code: Programmers can do a lot to boost performance merely by writing better code.
(Java files) into Java bytecode (.class files) for execution on Java virtual machines (JVMs).

- **Faster JVMs.** The JVM is the software layer in a Web browser or OS that interprets Java bytecode and handles run-time operations such as garbage collection.

- **Bytecode optimizers.** These tools apply additional optimizations by recompiling the bytecode produced by other Java compilers, yielding faster class files that still consist of standard bytecode.

- **Just-in-time (JIT) compilers.** When a JVM loads a program’s classes, a JIT compiler quickly translates the bytecode into native machine code and then caches it in memory. JIT compilers are common in Web browsers.

- **Dynamic or adaptive compilers.** These high-tech compilers intelligently translate Java bytecode into native machine code at run time based on profiles of how the program is running. An example is Sun’s upcoming HotSpot technology.

- **Static native compilers.** These tools translate Java source code or bytecode into native object code at design time, just like compilers for C/C++.

- **Native method calls.** Java applications can invoke native executable files, including DLLs written in C++ and services in the native OS. (See the text box “Calling Native Code” on page 68.)

- **Java chips.** A new breed of microprocessors can directly execute Java bytecode as their native machine language, making it unnecessary to interpret or compile the bytecode into some other CPU’s machine language.

In theory, this could allow Java to run as fast as native code on other CPUs—if Java chips were as powerful as other CPUs. In practice, most Java chips will be sub-$50 processors, because they’re designed for network computers (NCs), TV set-top boxes, smartcards, and other embedded devices. Only one company, Sun Microelectronics, is known to be developing a high-end Java processor (UltraJava).

Nine companies are working on Java chips: Sun, NEC, IBM, Fujitsu, LG Semicon, Rockwell, Siemens, Patriot Scientific, and International Meta Systems (IMS). Seven of them (Sun, NEC, IBM, Fujitsu, LG Semicon, Rockwell, and Siemens) are designing their chips around Sun’s picoJava core, which is available for licensing. Patriot modified an existing processor to run Java, and IMS is working on an independent design.

Sun plans to ship its first Java chip, the microJava 701, in the second half of this year. Later, Sun plans to introduce additional 700-series microJava chips, plus some lower-end 500-series and 300-series chips. For the high end, Sun is designing the ultraJava for 1999 or later. It’s for graphics workstations and will compete against high-end CPUs of other architectures, says Harlan McGahan, technical marketing manager.

So far, nobody has shipped actual products with Java chips. Sun has announced the JavaBlaster, a $99 ISA card that turns old PCs into Java-based computers, but it won’t appear until after the microJava 701 ships. Siemens is designing a picoJava-based smartcard. Rockwell might use its JEM1 chip in navigation and communications systems. Patriot has shipped more than two dozen development kits for its PSC1000.

Java chips aren’t limited to running software written in Java; any more than other CPUs are. Programmers can use any high-level language that has a bytecode compiler. In fact, Sun is introducing C/C++ compilers that generate bytecode. The picoJava architecture defines about half a dozen extended bytecode instructions to support C/C++ and low-level hardware functions, such as memory writes, on-board cache control, access to control registers, and power-up/power-down diagnostics.

Is this heresy? No, says Sun. Java chips must support those functions and the precedence can change if the program loads another class. (A method is the Java counterpart to a function, procedure, or subroutine in other languages.)

C compilers statically bind a program during compilation by inserting pointers to the function calls, so the program does not have to resolve those references at run time. But C++ allows virtual methods that are late-bound and polymorphic like Java methods, and C++ also suffers from the hierarchical nesting of objects. That’s why C++ is generally slower than C, a classic procedural language.
To recover some of the efficiency of static binding, Java defines a bytecode instruction called \texttt{invoke	extunderscore virtual} _\texttt{quick} that a smart JVM can substitute at run time for the more common \texttt{invoke	extunderscore virtual} instruction. The quick version bypasses a few table lookups after the JVM has already resolved a method call. In general, though, dynamic binding and object hierarchies play a relatively minor role in Java's poor performance. A much larger factor is Java's almost unprecedented degree of hardware abstraction.

Higher levels of abstraction have been a trend in software development for half a century. Starting from the hard-wired logic of ENIAC, computer programming has advanced to machine language assemblers, high-level-language compilers, high-level-language interpreters, OS-level APIs, and object-oriented class libraries. Each step up the ladder makes it less necessary for application programmers to bother with hardware details. But each step also consumes more CPU cycles. Fortunately, that penalty is largely hidden by a parallel trend in hardware: Moore's law. The circuit density (and thus the performance) of CPUs roughly doubles every 18 months.

Java carries abstraction to a new height. It's a programming language that's also a platform. The JVM contains a software representation of a CPU, complete with its own instruction set. (Java chips turn that virtual CPU into real hardware.) The bytecodes in Java class files contain instructions for the virtual CPU, and the classes will run on any native platform with a compatible JVM. By writing to the Java APIs and compiling to bytecode, developers don't have to worry about the native CPU or OS.

To make this work, the JVM has an interpreter that translates bytecode instructions into native CPU instructions at run time. Interpreted programs always run slower than natively compiled programs, because a compiler has already turned a native program into a binary executable file at design time. No run-time translation is necessary.

Run-time interpreting alone would put Java at a disadvantage, but there's much more. Java removes another burden from programmers by automatically handling memory management. In C/C++, programmers are responsible for allocating memory, using the memory properly, and releasing the memory when they're done with it. Memory leaks and pointer bugs are the most common reasons why C/C++ programs crash. Java avoids those headaches by using a garbage collector—an automatic background process that frees up memory when a program no longer needs it. But garbage collection adds more overhead to execution.

The JVM eliminates another common hazard of C/C++ by automatically checking for array-bounds exceptions—attempting to reference array elements that don't exist. The JVM also checks for null pointers, division-by-zero errors, illegal string-to-number conversions, invalid type casting, and a host of other exceptions that threaten to crash a program.

Java's powerful multithreading adds significant overhead. Threading is easy in Java, and programmers can prevent thread conflicts by using a built-in keyword (synchronized) that ensures only one thread at a time is executing a particular method. However, calling a synchronized method takes longer, because the JVM's thread monitor must check to see if any other threads are using the method. This penalty applies even to single-threaded programs that call synchronized methods—and hundreds of methods in Java's standard classes are synchronized.

Don't forget Java's dynamic loading. The JVM can load new classes at any time while a program is running, which means it needs resources to load, verify, and initialize the new class. Most native platforms can dynamically load and link, too—that's how Windows DLLs work—but programmers have to explicitly write a program that way. In Java, dynamic class loading demands no extra effort, because a program can automatically load any class file whenever it's needed. Therefore, dynamic loading happens more often.

Finally, there are Java's restrictive but effective security measures. Web browsers implement a Java security manager that normally stops applets from reading or writing to local disk drives, calling native executable files, connecting to servers other than the host, and doing some other potentially dangerous things. Checking for those violations sucks up more CPU cycles. But Java applications don't suffer as much in this regard. Unlike applets, they're stand-alone programs that can do virtually anything a native program can do.

It's a trade-off. In return for multiprocessor compatibility, greater safety, the flexibility of dynamic loading, and higher programmer productivity, users pay the...
price of slower execution. Of course, like all software, Java will ride the coattails of Moore's law. But even if CPUs never get any faster, Java's performance would still get better.

The Garbageman
To begin with, JVMs are getting faster. JVMs based on Sun's Java Development Kit (JDK) 1.1 are about twice as fast as those based on JDK 1.0.2. One reason is that Sun streamlined the event model.

The old model would "broadcast" events (e.g., mouse-clicks, mouse movements, and keystrokes) throughout an entire program until an object trapped the event with event-handling code. That was very inefficient, especially for high-volume events such as mouse movements. Under the new event model, objects can register with another object called a listener to hear only those events in which they're interested. For example, a button might want to listen only for mouse-clicks. From the button's point of view, all other events are like trees falling in an uninhabited forest: They don't make a sound.

Changing the event model might seem like a small thing, but it makes a big difference at run time. JVMs spend roughly 50 percent of their time interpreting bytecode (assuming there's no JIT compiler), so anything that speeds up that process yields big gains in performance.

JVMs may spend another 15 percent to 25 percent of their time on garbage collection. Why so much? Because object-oriented languages such as Java make heavy use of memory.

Classes are templates that define objects. A program can create any number of objects from a class, and each instance of an object stays in a memory heap until the program no longer needs it. The garbage collector in Sun's current JVM uses a simple mark-and-sweep algorithm that periodically marks all unreferenced objects and sweeps them away in a single pass.

If you chart the memory usage of a JVM with this kind of garbage collector, you'll see a jagged sawtooth pattern (see the screen on page 66). The memory consumption goes way up, then way down, then way up again. The JVM could smooth out those jaggies by scavenging the heap more often, but it would steal CPU cycles away from other processes, including the program's execution threads.

Luckily, JVM vendors can draw on two decades of research into garbage collectors, thanks to pioneers who faced the same problem with Lisp, Smalltalk, and other languages. Later this year, the JVM that includes Sun's HotSpot technology will introduce a new collector based on an advanced generational algorithm.

Generational collectors are more efficient because they sweep smaller parts of the heap more often. They're called generational because they base their sweeps on the "age" of objects. "Most objects die young," explains Tim Lindholm, a senior staff engineer at JavaSoft. In other words, a program tends to use an object briefly before discarding it. Sun's new JVM keeps the references to newly created objects in a special part of the heap called the "nursery." The garbage collector sweeps the nursery often to make room for more infant objects.

Objects that outlive a few sweeps in the nursery move on to another part of the heap reserved for middle-aged objects. The garbage collector doesn't visit them as often. Longer-lived objects eventually graduate to a third area of the heap that the collector sweeps least often of all. And to optimize the technique still further, Sun uses different collection algorithms for each region of the heap. For example, the collector sweeps the oldest region with a "train" algorithm that divides memory into chunks called "cars." If the collector is pressed for time, it can sweep individual cars instead of the whole train.

The garbage collector in Microsoft's JVM uses similar techniques, according to Joe Herman, Microsoft product manager for Internet platforms. It keeps a dynamically ordered table of objects and cleans only part of the list at a time. As with Sun's new garbage collector, it tends to level out the jagged peaks and valleys of memory consumption. Because most Java vendors license their JVMs from either Sun or Microsoft, these advances will ripple through the entire Java community.

Thread synchronization is another runtime task that's ripe for improvement. Like garbage collection, it might account for 15 percent to 25 percent of a JVM's workload. Symantec licensed Sun's JVM and extensively modified the thread monitor—and, according to Al Bannon, Symantec's director of developer relations, thread synchronization is now 80 percent to 150 percent faster. Symantec licenses those modifications to other companies.

Sun improved the performance of its own JVM for Solaris by rewriting it to map individual Java threads onto native OS threads. The earlier version piggybacked all Java threads on a single Solaris thread, which meant the OS couldn't dispatch Java threads to different CPUs on multiprocessor systems. Microsoft's JVM for Windows NT also maps Java threads directly to native threads. But it isn't feasible with an OS such as Windows 3.1, which has little or no native support for multitreading.

This is one area where application programmers can make a difference, too. Sun's HotJava browser used to require the JVM to spend 25 percent of its time monitoring thread synchronization in the program, says Peter Kessler, a senior staff engineer at JavaSoft. By rewriting the browser to optimize threading, Kessler says Sun reduced that work load to 10 percent to 15 percent.

Better Compilers
Despite the ongoing improvements in JVMs, that's not where Java will realize the greatest gains in performance. Interpreted execution simply isn't fast enough for most
WANT THE LOWDOWN ON CREATING KILLER CUSTOM WEB APPS?

DOWNLOAD THIS.

esuite.lotus.com/devpackpreview

That's all it takes to get a free evaluation copy* of our Lotus eSuite™ DevPack™ (or, about $99 for a single-user edition gets you the whole magilla). And just what is eSuite DevPack? Only the most comprehensive set of kick-butt prebuilt, reusable, time-saving integrated Java®-based applets around. Use the sublime skills you already possess, plus eSuite DevPack, to build interactive Web apps that'll reduce the competition to chopped liver. 'Nuff said?

*Evaluation copy offer good until June 1, 1998. Restrictions may apply. For more information, call 1-800-872-3382, ext. 0172. In Canada, call 1-800-64-LOTUS. © 1998 Lotus Development Corporation, an IBM Company. 55 Cambridge Parkway, Cambridge, MA 02142. All rights reserved. Lotus and Working Together are registered trademarks and eSuite and DevPack are trademarks of Lotus Development Corp. Java is a trademark of Sun Microsystems, Inc.
pursu­

There are five types of compilers relevant to Java: source code compilers, bytecode optimizers, JIT compilers, dynamic/adaptive compilers, and static native compilers. It's possible for a single Java program to undergo as many as three different levels of compilation with these tools. And because today's Java compilers are relatively primitive, the potential gains are enormous.

Source code compilers turn Java source files into class files of bytecode, ready to run on any compatible JVM. By modern standards, Java source compilers don't do much optimization. The JAVAC compiler in Sun's JDK—the benchmark Java source compiler—has only one command-line optimization switch (-O), and it applies only a few simple optimizations, such as method inlining. (See “Better Java Programming,” September 1996 BYTE.)

Other Java tool vendors have their own source compilers. Most vendors concentrate on making their compilers work faster, rather than making the compilers produce faster code. Fast compilers shorten the edit-compile-test cycle for programmers but do nothing for users. Tool vendors are just starting to add the optimizations found in mature compilers for other languages.

There's nothing especially new about those optimizations—most of them are straightforward of computer science textbooks. It's just a matter of bringing Java compilers up to date. For those who can't wait, one alternative is a bytecode optimizer. This tool recompiles bytecode (you don't need the source code) into optimized bytecode that's still platform-independent. Some examples are DashO and DASHO Pro, from Preemptive Solutions.

DashO is the brainchild of Paul Tyma, president and chief scientist of Preemptive, who's writing his doctoral dissertation on Java performance at the University of Syracuse. Tyma says DashO can speed up typical logic code by about 30 percent, with loops and matrix multiplication showing even greater improvement. DashO applies several classic compiler optimizations to Java bytecode, and Tyma says future versions will introduce some of his own Java-specific optimizations. Here are some examples:

- **Transient variable caching.** This technique (for which a patent is pending) recognizes that Java's virtual CPU has a stack instead of registers. When a program swaps the values of two variables, an ordinary Java compiler generates three pairs of stack load and store instructions. DashO uses the stack in a smarter way to generate only two pairs of stack loads and stores.

- **Loop unrolling.** This is a classic optimization that replaces short loops with a series of instructions that duplicate the function of the loop. It's faster because it eliminates a compare instruction and a branch instruction for every iteration through the loop.

- **Loop-invariant code motion.** Some loops contain statements that execute during every iteration but always yield the same results. (Example: a+b=c, where neither variable is a loop variable.) Good compilers move this code outside the loop so it executes only once.

- **Common subexpression elimination.** Given a statement such as x=(y+5) + (y+5), a smart compiler will reuse the result of the first expression rather than evaluate the second expression.

- **Tail-recursion elimination.** In some recursive algorithms, only the tail portion is recursive. Often, it's more efficient for the compiler to transform the recursive algorithm into an iterative algorithm.

- **Statically analyzed polymorphic inlining.** This lets an optimizer inline public methods. (Java compilers can inline private, final, and static methods, but they can't inline a public method, because a polymorphic method might override it.) First, the optimizer analyzes the bytecode to find public methods that aren't overridden. Then it inlines those methods, eliminating the JVM's overhead of checking for child methods. Drawback: There will be a problem if the program dynamically loads a class that tries to override the inlined public methods.

- **Method desynchronization.** Tyma says a future version of DashO will use this Java-specific technique to fix the thread-synchronization problem described earlier. DashO will analyze the bytecode to see if a synchronized method really needs to be synchronized; if not, it removes the lock. For example, if method A is the only method that calls method B, and if method A is synchronized, there's no need to synchronize B. Removing the lock on B reduces the overhead of calling the method without compromising the thread safety of the program.

It's possible that these optimizations and more will eventually find their way into Java source compilers, reducing the need for a recompiler such as DashO. But tool vendors seem to be focusing on three other types of compilers: JIT compilers, dynamic/adaptive compilers, and static native compilers.

Going Native

At some point, bytecode must become native machine code so it can execute on a real CPU (unless the real CPU is a Java chip). The slowest way is to let the JVM's interpreter translate the bytecodes one by one, over and over again. A much faster way is to bypass the interpreter by compiling the bytecode into machine code and then to cache the machine code in memory. The main difference between JIT compilers, adaptive compilers, and static native compilers is when they do that translation. The first two types do it dynamically, at run
Join
Oracle Development Tools
User Group
at the
OASIS OF KNOWLEDGE...
Become an Oracle of the Desert

• 150+ Technical Presentations on:
 - Oracle Development Tools (including Designer 2000, Developer 2000, Discoverer, and AppBuilder for Java)
 - Data Warehousing
 - Web Development and Deployment
 - Development Methodology (including Object Oriented)
 - Modeling and Analysis (including Relational and Object Oriented)
 - Oracle8 Objects

• Oracle Development Tools Theater
• Hands-on Computer Labs
• Vendor Presentations

June 2-5, 1998
Renaissance Esmeralda Resort • Palm Springs, CA

For more information:
www.odtug.com
910-452-7444

Oracle Development Tools User Group (ODTUG) is the independent, not-for-profit, international user group for analysts, designers, and developers who use Oracle's Development Tools to deliver high quality information systems.

MAJOR SPONSORS:

ORACLE

BYTE
time; static compilers do it at design time.

There's a fine line, or perhaps no line, between JIT compilers and adaptive compilers. Both are really dynamic compilers. The simplest JIT compilers translate byte-pilars. Both are really dynamic compilers. The simplest JIT compilers translate byte-code into machine code immediately after the JVM loads each class into memory. Then the JIT compiler steps out of the way and lets the program run. If the JVM dynamically loads another class at a later time, the JIT compiler may compile the new class as well.

However, a JIT compiler may decide not to compile every class, especially if a class is so large that compiling it would seriously delay execution. That's the weakness of a JIT compiler—it has to be quick and dirty. "A lot of optimizations take a lot of time," notes Tyma. "JITs can't take too much time or the user will say, 'Whoa, when is this program going to start?'

The solution: smarter JIT compilers. Borland's JIT compiler can compile individual methods without compiling a whole class. It doesn't bother to compile static initializers (which a program calls only once per class), and it won't compile an object constructor method unless the program calls it more than once.

The JIT compilers from Microsoft and Symantec are similarly intelligent, and they're making rapid progress. Symantec's first JIT compiler appeared in March 1996; six months later, version 2.0 was 50 percent faster, according to several benchmarks. Symantec says version 3.0, introduced last December, beats that by another 50 percent. Depending on the nature of the code, today's JIT compilers can run a program from five times to 20 times faster than an interpreter. (See the text box "Benchmarking Java" on page 70.)

Java programs that are compiled with Microsoft's JIT compiler can achieve 30 percent to 40 percent of the performance with a JIT compiler. Java applets normally can't do it, because Web browsers have a security manager that prevents hostile applets from doing evil things to your system. But stand-alone Java applications can do virtually anything native applications can do, and that includes calling native executable files such as DLLs and OS services.

Critics say it threatens Java's integrity. Perhaps they don't realize Java has always allowed it. Java has a built-in keyword (native) that declares a Java method as the gateway to a native binary. Java Development Kit (JDK) 1.1 defines a native interface called native method invocations (NMIs), and JDK 1.2 will introduce a better one called the Java native interface (JNI).

NMIs neatly partition a Java program into platform-dependent and platform-independent modules. As Java gets faster, developers can rewrite the native modules until eventually the whole application is pure Java. That's the vision.

Native methods are also a good way to integrate Java programs with existing systems—a big point for businesses that have lots of legacy software. And they can tap the richer veins of native APIs.

Microsoft's Visual J++ supports a Windows-specific interface called J/Direct. With J/Direct, a programmer merely precedes a Java native method declaration with a compiler directive that identifies a DLL by its filename. The Java native method passes any parameters that the DLL function requires, and it receives any results the function returns.

J/Direct is easy, but Microsoft isn't finished. In March, it planned to introduce the Windows Foundation Classes (WFC) for Java. This is a library of Java classes that wrap major parts of the Windows API in Java code that handles native method calls automatically.

Let's say you want to create a push button. Normally, you'd call the button class in Java's Abstract Window Toolkit (AWT), a class library that maps cross-platform GUI components to native components. Microsoft's WFC bypasses the AWT. WFC's Button class has a constructor that uses J/Direct to invoke the button function in USER32.DLL, a standard Windows library that has basic GUI components. According to Microsoft's informal tests, a WFC window with 12 miscellaneous components opens and closes about 800 percent faster than an identical AWT window. Line drawing is about 50 percent faster. Filling a list box with 2000 strings is about 12 times faster. What's equally important is that the WFC gives Visual J++ programmers access to almost the entire Windows API. They can call functions that Java APIs don't duplicate: Multiple Document Interface (MDI) windows, graphics, animation, rich text objects—the works.

"We're always going to be able to give the developer full functionality," says Bill Dunion, Visual J++ product manager.

Of course, the resulting programs run only on Windows. That fits Microsoft's business strategy of promoting Java as a language, not as a virtual platform. But J/Direct and the WFC do offer a way to get higher performance and richer functionality.
Introducing our latest big idea. The G790 is the latest innovation from ViewSonic, a company known for taking the lead. It's one of those rare “best-of-all-possible-worlds” solutions for those who need a larger display area but don't want to compromise either screen performance or desktop space.

It's the first 19" display (18.0" viewable) made by ViewSonic, and while its screen size is big, its footprint is small, taking up about the same space as a typical 17" (various viewables) monitor.

No small-fry when it comes to performance. For graphics users, web pros, business types and home surfers alike, the G790 is a big performer. It has a super fine 0.26mm true dot pitch and flicker-free optimal resolution of 1,280 x 1,024 at an 88Hz refresh. In other words, it's razor sharp. And with a vertical scan rate of 180Hz, it even displays flawless 3D applications. Check out the G790 for yourself. It's a real eye-opener.

For the dealer nearest you, call ViewSonic at (800) 888-8583 and ask for agent 81283, or visit our website at: www.viewsonic.com.

Copyright © 1997 ViewSonic Corporation, all rights reserved. Corporate names and trademarks are the property of their respective companies.
of native C++ programs, says Bill Dunlap, product manager of Visual J++. He estimates that JIT-compiled Java could eventually attain 60 percent to 70 percent of the speed of native C++. Symantec is more optimistic, predicting that fast JVMs and JIT compilers could eventually match C++.

To reach those goals, JIT compilers are doing some amazing things. Borland's JIT compiler doesn't stand on the sidelines according to how often the code executes. It can make decisions about which parts of a program to compile and then compile or recompile parts of the program to relieve the bottlenecks. This is the cornerstone of Sun's HotSpot technology, which will probably appear later this year in JDK 1.2.

HotSpot (a code name) isn't a new technology. It grew from research that began at Stanford University in 1987, based on earlier work on Smalltalk at Xerox Palo Alto Research Center (PARC). Stanford researchers created an object-oriented language called Self to explore dynamic compilation. Several of them later founded a small company known as Animorphics Technologies (or Animorphics Systems). Sun acquired the company to make HotSpot.

Sun is using HotSpot as an umbrella term for several acceleration techniques, including the generational garbage collector described earlier and a new thread monitor. But the most interesting part is adaptive compilation. HotSpot is like a hyperactive JIT compiler—it profiles, it compiles, it recompiles. It can start compiling when the program launches or wait to see how the program runs. It can make decisions about which parts of a program to compile according to how often the code executes or how much time the code takes to execute. It balances the time required for compilation against the time saved by faster execution.

It can apply additional optimizations by recompiling code that's already been compiled. It can flush compiled code from memory to make room for newly compiled code. It can inline the parameters of method calls if the program always calls a method with the same parameters. It can even turn bytecode into buttered popcorn. (OK, that last claim was a joke.)

Or maybe it's not a joke. Critics accuse Sun of overselling HotSpot. Last year, Sun speculated that HotSpot could boost Java even beyond the performance of C++. Lately, Sun has been more conservative. "We think it's going to be a horse race," says JavaSoft's Peter Kessler. "But it would be irresponsible to say at this point that a Java program will be faster than the same program written in C++."

One of the foremost authorities on dynamic compilers is Dr. Craig Chambers, an associate professor in the University of Washington's department of computer science and engineering. Chambers worked on the Self project at Stanford in the 1980s and continues to develop experimental languages (such as Cecil) and adaptive compilers (such as Vortex). "There will be
STATISTICA (automatically configures itself for Windows 95/NT [long file names, etc.] or 3.1) • A complete data analysis system with thousands of on-screen customizable, presentation-quality graphs fully integrated with all procedures • Comprehensive Windows support, OLE (client/server), DDE, customizable dialog boxes, pop-up menus • Multiple data, result-, and window-windows with data-graph links • The largest selection of statistics and graphs in a single system; comprehensive implementations of: Exploratory techniques with advanced brushing, multi-way tables with banners (presentation-quality reports); nonparametric distribution fitting; multiple regression; general nonlinear estimation; logisitic/log/ probit; general ANOVA/MANOVA; variance components; stepwise discriminant analysis; log-linear analysis; confirmatory/exploratory factor analysis; cluster analysis; multidimensional scaling; classification trees; canonical correlation; item analysis/reliability; correspondence analysis; survival analysis; a large selection of time series modeling/forecasting techniques; structural equation modeling with Monte Carlo simulations; and much more • On-line Electronic Manual with comprehensive introductions to each procedure and examples • Hyperlink-based Stat Advisor expert system • Workbooks with multiple Auto/Open documents (e.g., graphs, reports) • Extensive data management facilities (full spreadsheet of unlimited capacity with long formulas, Drag-and-Drop, AutoFill, Auto-Accumulate, split-screen/variable-speed scrolling, advanced Clipboard support, DDE links, hot links to graphs, relational merge, data verification/cleaning) • Powerful STATISTICA BASIC language (professional development environment) with menu operations, full graphics support, and interface to external programs (DDE) • Batch command language and editable macros, flexible “turn-key” and automation options, custom-designed procedures can be added to existing Auto Task toolbars • All output displayed in Scrollboard (dynamic, customizable, presentation-quality tables with instant 2D, 3D, and multiple graphs) or word processor-style report editor (of unlimited capacity) that combines text and graphs • Extremely large analysis designs (e.g., correlation matrices up to 50,000×50,000; virtually unlimited ANOVA designs) • Megafile Manager with up to 32,000 variables (8 MB) per record • Unlimited size of files; extended (“quadraphonic”) precision, unamplified speed • Exchanges data and graphs with other applications via DDE, OLE, or an extensive selection of file import/export facilities (incl. ODBC access to virtually all database and mainframe files) • Hundreds of types of graphs, incl. categorized multiple 2D and 3D graphs, ternary 2D/3D graphs, matrix plots, icons, and unique multivarate (e.g., 4D) graphs • Facilities to create custom new graph types and add them permanently to menus or toolbars • On-screen graph customization with advanced drawing tools (e.g., scrolling and editing of complex objects in 32x real zoom mode), compound (nested) OLE documents, Multiple-Graph Autolayout Wizard, templates, special effects, icons, page layout control for slides and presentations, unmatched speed of graph redraws • Interactive rotation, perspective and cross-sections of 3D displays • Large selection of tools for graphical exploration of data; extensive brushing tools with animation, filing, smoothing, overlaying, spectral planes, projections, layered compression, marbled subsets • Price $995.

Quick STATISTICA (for Windows) • A subset of STATISTICA; comprehensive selection of basic statistics and the full analysis and presentation-quality graphics capabilities of STATISTICA • Price $495.

STATISTICA Industrial System (requires STATISTICA or Quick STATISTICA) • The largest selection: of industrial statistics in a single package; quality control charts (real-time data acquisition options), process capability analysis, R&D, full analysis-sampling plans, and an extremely comprehensive selection of experimental design (DOE) methods • Flexible tools to customize and automate all analyses and reports (incl. “turn-key” system options, and tools to add custom procedures) • Price $995.

NEW

STATISTICA Neural Networks (interfaces with, but does not require STATISTICA) • The most comprehensive NN application available on the market • Price $795.

STATISTICA/Mac (for Macintosh) • Price $695 (Quick $395).

Overseas prices vary. Domestic sh/b $12; 30-day money back guarantee.

STATISTICA has received the highest rating in EVERY comparative review of statistics software in which it was featured, since its first release.

Over 3 Hours of Multimedia, Animated Overviews and Examples

StatSoft®

2300 East 14th Street • Tulsa, OK 74104 • (918) 749-1119
Fax: (918) 749-2217 • WEB: http://www.statsoft.com
e-mail: info@statsoft.com

StatSoft Ltd. (London, UK), ph: +44 1254 341296; fax: +44 1254 341269
StatSoft GmbH (Hamburg, Germany), ph: +49 40/48268-0, fax: +49 40/48268-77
StatSoft Polska Sp. z o.o. (Warsaw, Poland), ph: +48 22-283-5121
StatSoft Italia (Padua, Italy), ph: +39 49-9931-4554; fax: +39 49-9931-2907
StatSoft Pacific Pty Ltd. (Australia), ph: +61 9521-4833; fax: +61 9521-4280
StatSoft Japan (Tokyo, Japan), ph: +81 3-3267-1110; fax: +81 3-3268-3100
StatSoft Taiwan (Taipei, Taiwan, R.O.C.), ph: +886 2 2769-8977, fax: +886 2 2769-0169

The complete line of StatSoft products and training/consulting services are available from authorized representative worldwide, including: North, South, Asia, Africa South America, and Europe. Please contact your nearest StatSoft office for the authorized representative nearest your location. StatSoft, Stat/Soft, STATISTICA, and StatSoft GmbH are trademarks of StatSoft, Inc.
Java systems that match the performance of C++,” he says. But he adds that some programs—perhaps 5 percent—will always be faster in C++, because of Java’s run-time overhead and dynamic nature.

Others, however, denounce HotSpot as an overhyped JIT compiler. “Dynamic processes like garbage collection are one of the things that will keep Java from ever matching the performance of native compiled languages like C++,” declares Microsoft’s Herman.

Dynamic vs. Static

Static compilers would seem to enjoy an enormous advantage over dynamic compilers: virtually unlimited time to analyze and optimize a program. Programmers are accustomed to lengthy builds, while users are not. Besides that, static compilers usually work from source code, not bytecode, so it should be easier for them to deduce the semantics of a program before optimizing it. And static compilers can globally analyze a whole program, so they can apply more aggressive optimizations. Dynamic compilers are limited to peephole (local code) optimizations.

But dynamic compilers have a big advantage, too: They profile a program while it’s running, so they don’t have to guess where the actual bottlenecks are.

They know which way branches are forked, how many objects the program is creating, and the actual size of arrays. Indeed, they can adapt to the different ways that different people use the same program. Working from bytecode instead of source code isn’t a huge problem, because bytecode isn’t nearly as obscure as native object code. In fact, bytecode is similar to the intermediate code generated by the front ends of some compilers, says Jim Russell, manager of Java technology for IBM Research.

Static native compilers for Java are available from SuperCede, Symantec, Cosmo Software (a Silicon Graphics spin-off),

Speed Tips for Java Coders

Java developers don’t have to wait for fancy new compilers and other whizbang technologies to make their programs run faster. It’s possible to achieve major gains in performance simply by writing (surprise!) better code.

Strangely enough, Sun engineers discourage programmers from using too many clever tricks. As Java evolves, some tricks won’t work anymore, they point out. “In effect, you’re writing to a specific VM implementation, and that doesn’t make sense. You’re doing damage to your code,” says Tim Lindholm, a senior staff engineer at JavaSoft and coauthor of The Java Virtual Machine Specification (Addison-Wesley, 1997).

This is especially true when the tricks compromise good object-oriented program (OOP) design. For example, liberal use of Java’s final keyword does make programs run a little faster, because the JVM knows a program can’t subclass final classes, override final methods, or alter final data members. But final makes code reuse more difficult—and code reuse is what OOP is all about.

“There’s a lot of pretty rotten code being written out there,” says Collette Coad, the U.S. leader for Java-based computing at Ernst & Young. “People attend a few Java courses and then revert back to old habits. They’re writing scripted Java programs or procedural Java programs. They’re not embracing the concepts of OO.”

You’re better off studying good design and algorithms—classic computer science. However, if you absolutely must squeeze the last drop of performance out of Java, here are some tips from experts:

- **Strings are slow.** Use StringBuffers or char arrays instead. String concatenation is particularly costly, because the JVM must convert the String constants into StringBuffer objects, join them together, and convert them back into Strings. —Doug Stein, an engineer at Active Software, who created the GridBag layout manager while at Sun

- **You have control over dynamic class loading.** If you’d rather take the hit when a program first launches, initialize all objects immediately, even before you need them. Or delay class loading by not creating objects until later. —Stein

- **It’s possible to write better class loaders.** Borland JBuilder, which is 80 percent Java, starts up faster because Borland improved Sun’s class loader. —Jayson Minard, JBuilder product architect

- **The new Java Foundation Classes (JFC) are faster than the Abstract Window Toolkit (AWT) because they’re not bogged down by as much thread synchronization.** Also, JFC components are pure Java—easier to compile. —Minard and Tim Freehill, engineering managers for Metroworks CodeWarrior

- **Don’t create a lot of temporary objects; they make more work for the garbage collector.** Avoid creating objects locally within loops or frequently executed methods. —Paul Tyma, president and chief scientist of Preemptive Solutions

- **If all objects of a class require some identical initialization code, put that code in a static initializer, not a constructor method.** It will execute only once. —Richard M. Fogel, technical product manager for KL Group’s JProbe

- **Find bottlenecks with a profiling tool.** Examples are JavaScope (SunTest), JProbe (KL Group), Optimizet (Intuitive Systems), TrueTime (NuMega), Visual Quantity (Rational Software), and VTune (Intel).
Create space in your computer room by eliminating extra equipment. UltraView allows one keyboard, monitor, and mouse to control all of your computers, any mix of PC, MAC, SUN, HP, SGI, and more.

UltraView accesses each CPU from menus that pop up over your existing video. Switch from the keyboard, on-screen menus, front panel, or RS 232 port of the UltraView.

Customize your UltraView on-screen menu with personalized port names, colors, fonts, and display window placement so that the entire system makes sense to you.

Upgrades are easy, too! Add up to 16 CPUs on one switch and daisy-chain to access up to 256 computers! Plus, Flash memory upgrades keep you on the leading edge of future improvements ensuring that the switch never becomes obsolete. The excellence you have come to expect from Rose is apparent in UltraView’s simple setup. You’ll easily define the automatic Scan, Screen Saver, and other parameters so you can quickly get down to the real business at hand.

UltraView is the most flexible KVM switch on the market. You can choose between 3 different chassis sizes and 4 different platforms: PC Only, SUN Only, APPLE Only, and Multi-Platform.

With UltraView you’ll see how simple it is to switch from CPU to CPU-making your work a lot easier and faster. Call our sales staff today for detailed information on any computer system application.

Call For A Free Catalog:

- Keyboard/Video Control
- Print Servers
- Data Switches

800-333-9343

Visit our Web Site at www.rosel.com

UltraView

10707 Stancliff Road Houston, Texas 77099
Phone 281-933-7673 Fax 281-933-0044

On-screen display menu—This screen shows the overlay menu with the selection for the color scheme popped up.

Enter HotBYTES No. 95 at http://www.byte.com/hotbytes/
IBM, Tower Technology, and the Open Group, with more on the way from Microsoft, Borland, Instantiations, and others. They target platforms as varied as Windows (x86), IBM OS/2, AS/400, AIX, Mips Rx000, HP-UX, and Linux (x86).

Most of these compilers work from bytecode, not source code, so developers can compile third-party JavaBeans and class libraries that don’t include source code. The compilers produce native-code executable files—which are, of course, limited to a single platform.

That doesn’t necessarily violate the write-once, run-anywhere religion. A compiled Java program still exists in its original cross-platform source code and bytecode, unless the programmers lose their disks. More important, static compilation makes sense when developers are deploying a Java application on a known platform, especially a server. This wouldn’t make sense for an applet, which downloads at run time to an unknown client. Dynamic compilers are better for applets.

Just because a Java program is statically compiled doesn’t mean it escapes Java’s run-time overhead. The program still needs a run-time system to handle garbage collection, thread synchronization, bounds checking, exception handling, and—ideally—dynamic class loading. That’s why a statically compiled Java program often isn’t faster than the same program running on a JVM with a smart JIT compiler.

That may change as the compilers get better. Most of them don’t do much optimizing, and some are rather crude. One of them converts Java bytecode into C source code, which then feeds through a regular C compiler to produce native object code. Another compiler chokes on finalize() methods, and few of them can handle dynamic class loading.

Several sources told BYTE that static compilers for Java could eventually outperform the best JIT compilers and deliver near-native performance. Those sources include Tim Freehill, the engineering manager for Metrowerks’ Code Warrior; Robert “Rock” Howard, chief technology officer at Tower Technology; Jayson Minard, the product architect for Borland’s JBuilder; Jim Russell, manager of Java technology and applications at IBM Research; and Allen Wirfs-Brock, chief technology officer at Instantiations.

On the other hand, Sun, Sybase, Symantec, and Microsoft are leaning toward dynamic compilers or doubt that any technology can make Java as fast as C++. But that isn’t necessarily stopping them from developing static compilers. “The move is toward native compilation,” says Microsoft’s Herman. “We have to get to the point where we have performance comparable to native code, and we’re going to need native compilers to get there.”

Fast Enough

Does Java really need to be as fast as C++ to succeed? History says no.

Where to Find

<table>
<thead>
<tr>
<th>Company</th>
<th>Address</th>
<th>Phone</th>
<th>Website</th>
</tr>
</thead>
<tbody>
<tr>
<td>Borland International</td>
<td>Scotts Valley, CA</td>
<td>408-341-1000</td>
<td>http://www.borland.com/jbuilder/</td>
</tr>
<tr>
<td>Instantiations</td>
<td>Tualatin, OR</td>
<td>503-612-9337</td>
<td>http://www.instantiations.com/</td>
</tr>
<tr>
<td>Intel (Vtune)</td>
<td>Santa Clara, CA</td>
<td>408-765-8080</td>
<td>http://www.intel.com/design/perftool/vtune/index-1.htm</td>
</tr>
<tr>
<td>Metrowerks</td>
<td>Austin, TX</td>
<td>512-973-4700</td>
<td>http://www.metrowerks.com/</td>
</tr>
<tr>
<td>Microsoft</td>
<td>Redmond, WA</td>
<td>425-882-8080</td>
<td>http://www.microsoft.com/java/</td>
</tr>
<tr>
<td>NuMega</td>
<td>Nashua, NH</td>
<td>603-888-0000</td>
<td>http://www.numeaga.com/</td>
</tr>
<tr>
<td>Preemptive Solutions</td>
<td>Cleveland, OH</td>
<td>216-732-5985</td>
<td>http://www.preemptive.com/</td>
</tr>
<tr>
<td>Sun Microsystems</td>
<td>Palo Alto, CA</td>
<td>650-786-7737</td>
<td>http://www.sunmicrosystems.com/java/</td>
</tr>
<tr>
<td>Patriot Scientific</td>
<td>San Diego, CA</td>
<td>619-674-5000</td>
<td>http://www.patriotscientific.com/</td>
</tr>
<tr>
<td>Tower Technology</td>
<td>Austin, TX</td>
<td>512-452-9455</td>
<td>http://www.tower.com/</td>
</tr>
</tbody>
</table>

*Keep in mind the 50-year trend toward higher levels of hardware abstraction. Although Java needs competitive performance to succeed, it doesn’t need superlative performance. When there’s a trade-off between raw performance on one side and code productivity and portability on the other, developers rarely choose performance.

The C language replaced assembly language for the vast majority of development, because it’s easier, more portable language than assembly language. C++ has been replacing C for the same reasons. Likewise, Java will replace C++. Sure, some programmers still resort to C or assembly language when they need to write low-level code, device drivers, or critical loops. Java programmers can do that, too.

Besides high productivity and portability, Java offers two additional advantages that help make up for its slow performance: run-time safety and code longevity. Both will become more important in the future.

The PC industry gets away with buggy code on client systems today, but customers won’t tolerate it on their mission-critical servers, and they’re growing more aware of what it’s costing them on clients. That’s why mainframes are still popular: They really work. To build reliable systems, PC developers must trade the guns and knives of C++ for the seat belts and air bags of a modern language.

Meanwhile, users are learning the hard way that mission-critical code often lives for decades. Consider the year 2000 problem or the U.S. government’s troubles with the air-traffic-control system.

Millions of lines of code written today will still be running 30 years from now. Nobody can predict what platforms will be popular at that time. A virtual platform such as Java is cross-platform not only in the horizontal dimension, but also in the temporal dimension. No matter what new platforms appear, only the JVM and native compilers will have to be ported—not the applications.

All those factors will outweigh Java’s laggard performance, as long as Java can achieve at least 50 percent of C++ native performance. That’s a much smaller gap than the difference between C++ and assembly language. Even Microsoft thinks Java can reach 60 percent to 70 percent of native performance, and most experts are more optimistic. The enormous amount of effort invested toward that goal and the numerous ways of getting there virtually guarantee that if Java fails, it won’t be because it isn’t fast enough.*

Tom R. Halfhill is a BYTE senior editor based in San Mateo, California. You can reach him at tom.halfhill@byte.com.
Java has come a long way from Sun's old javac compiler. Today, all the major development-tool manufacturers are putting out serious Java efforts. All this vendor activity is good news for anyone preparing to use Java. The available options have never been better.

We tested nine such products for this report. At one extreme, Lotus BeanMachine might provide the easiest way for someone with no programming skills to produce sophisticated applets for Web pages without writing any source code. It shows how powerful the JavaBeans model can be for making programming accessible to a wide range of people.

At the other extreme lie Symantec's Visual Café for Java, Borland's JBuilder, CosmoCode, and Microsoft's Visual J++, which all have a look and feel similar to that of those companies' C++ products. Traditional programmers will feel right at home with these tools, which have a familiar look, focus squarely on source code, and have debuggers that are much improved over earlier versions.

We also tested IBM's VisualAge for Java and Sybase's PowerJ, both of which offer more elaborate tools that incorporate the source code into their own internal format. Java is a highly structured language, and ASCII source files are far from the best way to store data internally, so these sophisticated tools might be indicative of Java programming's future.

SuperCede's SuperCede Java Edition 2.0 blends Java and C++ development into one package, making it easy to produce applications that use both languages—although the resulting x86 native code doesn't run everywhere, as good Java code should. While Internet-based and cross-platform programming will continue to drive Java development, SuperCede is too good for people building native applications to ignore.

Filling out the list is Sun's Java Studio, a high-level Bean-editing tool meant for connecting compiled Beans rather than hacking Java source code. Each of these tools focuses, more or less, on simplifying the process of remotely accessing databases. Java looks like a great answer for custom programmers looking to solve database-access problems in a heterogeneous world with a single piece of code.

That said, there are also big differences. Lotus's BeanMachine is a low-cost tool offering rudimentary database access. Aimed at large-scale enterprise developers, Sybase's high-priced PowerJ comes with a wide range of more sophisticated server and client tools. The others all fall in between. Most of the low-end versions come complete with compilers and often with debuggers, ready for building Web-based applets, while the high-end tools include the client and server software necessary to build complete enterprise applications. These usually include middleware that sits on the server and accesses the databases through more traditional C++ interfaces.

We tested all these products on a low-cost Cyrix Media GX system running at 150 MHz with 64 MB of RAM and a 1.6-GB disk. They all ran well on this system, although loading more than two or three of these disk-intensive applications at a time proved impossible.

Lotus BeanMachine 1.1
Lotus BeanMachine, deceptively simple yet surprisingly powerful, at first glance seems to be an idiot-proof design tool that lets you string together basic Beans to create slick Web sites. With tools for basic input and output and slick multimedia effects such as animations, ticker tapes, and headlines, BeanMachine lets you join these widgets together and compile them into applets for Web sites without touching source code. Lazy coders, neophyte programmers, and even nonprogrammers will find it useful.

BeanMachine surprised us with its power, letting us inject source code and invoke methods when an event was generated. This simplifies generating forms that animate and do useful analysis. You can go a long way gluing together methods that link into the event hierarchy.

Still, there are limitations: BeanMachine lacks a debugger, so you must resort to the usual black-box debugging tricks.

A maturing Java brings a wide variety of programming solutions to developers.
By Peter Wayner
Lotus BeanMachine lets you connect Beans from a palette and edit their properties. The Gallery (lower left) organizes images and stills from animation.

Cosmo Software's CosmoCode generator lets you glue together controls chosen from floating menus. The source code is hidden in this view, but you can access it directly.

Sybase PowerJ's editing window constantly updates breakpoint locations, comments, and basic blocks. Class properties and methods can be selected from the separate class browser (at right).

Java tools differ mostly in the degree to which they expose source code to direct manipulation.

to catch errors. Also, there's no easy way to subclass a Bean or wrap substantial functionality around it. We couldn't find where it hides the source code for the applets, and it would be great if you could develop an applet here and extend it in a full programming environment. But even with its limitations, BeanMachine can help you get plenty done.

Cosmo Code 2.5

Silicon Graphics started its Cosmo Software unit to make it easier for people to develop Java code for their SGI workstations. The main product, a Java development tool named Cosmo Code, turned out to be good enough to port to the Windows platform. The latest version, 2.5, includes all the major features of its competitors and provides them all in a richly detailed visual-design environment.
The software incorporates all the information in a standard integrated editor/compiler that lets you view the ASCII text and step through it as you debug. There's also a fairly sophisticated window that sorts the classes, methods, and other elements.

The best feature might be a rich collection of widgets, controls, charts, graphs, and other devices that make it easier to thread together an application. The most frustrating feature is the tiling windows, which make it difficult to open up a text window to fill the whole screen.

Symantec Visual Café 2.1

Visual Café has become one of the dominant Java tools, and it's easy to understand why. It provides a strong visual design field and well-integrated database-access tools. The JavaBeans standard is completely supported, and the wizards that help you lay out new source code are great.

Entry-level programmers might want to start with Visual Café instead of a program like Bean Machine, because its wizards make it quite easy to spin up a good application. But the wizards leave the complete source code available, providing a growth path into full-folded programming.

The greatest strength of Visual Café is its ample database support. We tested the complete enterprise-level version, which comes with the tools and the middleware that make it fairly easy to create client applications that access a central server.

Visual Café is one of the few products to offer both a Macintosh and a PC version. The Windows version also provides a native-code compiler that produces x86 native executables for those who demand the best performance.

Borland JBuilder 1.2

Borland's Philippe Kahn created an identifiable style when he built the first Turbo Pascal compilers, and this style lives on in JBuilder. This tool provides a fast and efficient way to produce Java code.

JBuilder's approach might be termed classic. The code is kept in ASCII text files that you can edit with another editor. The binaries are stuck in separate directories that correspond to the packages from which they come. It's easy to write code in JBuilder and have it downloaded into Visual Cafe to be targeted into an old Unix environment.

Still, there are nice innovations. The visual design tools are neatly integrated with the source code. If you add a button in the visual part of JBuilder, the ASCII source for initializing and positioning that button appears in the source file. This also works in the reverse direction.

JBuilder comes with a number of different Beans that Borland developed to work together and integrate with its visual design environment. Some are plain Abstract Window Toolkit (AWT) objects; others are more intricate, including a number of Beans for building business charts, spreadsheets, and outliners. It's a nice collection, but it could use some glitzy components, such as animators or ticker tapes.

Some Bean devotees might not like JBuilder's visual approach because it's so source-code-centric. Some of them believe that Beans should be manipulated at a higher level by sending commands to real objects, not changing the source code that produces the Beans. So be it. If that's your feeling, then a tool like Bean Machine is a better choice for you.

Microsoft Visual J++ 1.1

Microsoft is one of the big players in the C++ development world, so it's no surprise that it leveraged its marketplace strength by extending Visual Studio to embrace Java. The result is Visual J++, a tool with many familiar-looking features.

The biggest problem with Visual J++ is that it doesn't fully embrace the full JavaBeans component model, which is now fairly standard. This might change if Beans become dominant, but for the time being...
J++ users will feel a bit behind the times. There are still plenty of other reasons to recommend J++. Its Java virtual machine (JVM) is one of the best in the industry, and its tools come with extensive documentation. And the Visual Studio is a great environment that provides a good breakdown of methods and code.

IBM VisualAge for Java 1.0

IBM’s VisualAge takes a sophisticated approach to Java development. All the source code is sucked into a central file, and the bytecode is kept attached to it. When you want to publish the code on a Web site, you push a button and it emerges as a JAR file or the class files.

The advantages of this approach are speed and flexibility. ASCII source code is a pretty inefficient way to represent object-oriented software with many methods and variables. The source code must be continually parsed and reparsed as it’s edited. If the methods, classes, variables, and so on are kept in custom-designed data structures, then searching, compiling, and execution can be more controlled.

There are downsides to this approach. It’s more complicated for developers to use the best compiler or tools for advancing a project. And you must export the Java source to use it with other tools.

SuperCede 2.0

SuperCede might be the most advanced tool in this roundup because it integrates Java projects with C++ so that you can mix and match code. This approach might be the most attractive for developers who want to produce native code for machines like the x86 while leveraging the capabilities of the Java language. It will likely be less attractive to developers who want to produce cross-platform Java applets.

In either case, the rapid application development (RAD) tool incorporated with SuperCede is excellent. It provides a sophisticated graphical development environment and an excellent visual editor. The compiler is fast and produces code that can be hot-patched. If you find a small error and want to fix it, you can compile the new code and drop it into place without restarting the entire program. This is a great feature. We also like the fact that SuperCede registers its own special sounds for alerting you to breakpoints and errors.

Tools like SuperCede will certainly be part of Java’s future. The language is too good to be relegated to developing bytecode for cross-platform use. SuperCede is a great tool for leveraging these advantages and using them for serious development for native Win32 platforms.

Sun Java Studio 1.0

Java Studio is not a complete development package like the others. It’s more a visual development tool than a compiler and source-code-editing environment. You drop components into a window, where they appear as boxes with pipelike fittings for routing the events. You then design an applet’s behavior by linking these boxes with pipes.

This might seem like taking the saying “a picture is worth a thousand words” to the extreme. But we found Java Studio ele-
gant and easy to use, though a bit awkward when the number of boxes and pipes grows large. Also, we wish you didn’t have to create another box to insert a line or two of source code to tweak an event before it reaches its destination.

Also, programmers will probably disagree about the way applets are generated. In Java Studio, you push a button and answer a few questions, and the class files appear somewhere. You can produce fairly neat applets without ever typing a curly bracket. Beginners and object-oriented-programming (OOP) aficionados will like this approach, but code-heads who have spent hours learning the idiosyncrasies of a compiler might feel disconnected. In all, Java Studio is a close cousin to BeanMachine in approach. But it comes with substantially more components and many more options for more-advanced users to manipulate.

Sybase PowerJ 2.0

Sybase’s PowerJ, like IBM’s VisualAge for Java, takes a sophisticated approach to Java development. Like VisualAge, it sucks all the code into its internal data structure and manipulates it. The resulting markup-up data structure allows more in-depth analysis than you typically get from tools that store programs in ASCII text format.

PowerJ comes from Sybase, so it’s no surprise that it’s a full-featured, enterprise-level package with a wide range of solutions for building databases and providing client-level access to them. It comes with a full toolkit and plenty of examples.

PowerJ is also one of the more Microsoft-friendly products in the group, providing an easy way to integrate ActiveX controls with Java. This might not be what Sun intends, but it might be the fastest way to pull together an x86 application if you have some prewritten ActiveX controls.

PowerJ will appeal most to corporate developers who already use other PowerSoft database tools, such as PowerBuilder.

Final Thoughts

The top product of the bunch, Borland’s JBuilder, gave us the best feel of the raw code, which might seem antiquarian to moderns who hope that OOP and instantiation will take us beyond all that.

It may be that this source-code-centric view of programming is reaching its end. BeanMachine is surprisingly powerful for a product that doesn’t allow you to touch the source code that it feeds to the compiler. BeanMachine might be the best argument for the Bean creation-and-linking model imagined by the creators of JavaBeans because it shows that the Bean model can be used to create a low-cost but powerful tool for nonprogrammers.

Finally, while our bias may be toward the lower-end developer, there’s no reason why programmers with bigger projects and a bigger budget shouldn’t use the relatively more expensive IBM VisualAge for Java or Microsoft Visual J++. To a large extent, you get what you pay for.
Computers to Go

What kind of portable will best suit your needs? And what improvements can you expect in the next couple of years?
By Russell Kay

Just a couple of years ago, if you said, "mobile computing," everyone knew what you were talking about: laptops. These densely packaged, battery-powered little PCs were popping up everywhere. But the rapid increase in processing speeds and chip densities, coupled with the advancement of display technology, has lowered the cost of computing power, sparking the development of whole new classes of computing and communications devices.

Today we have notebooks, subnotebooks, mini-notebooks, hand-held PCs, personal digital assistants, smart phones, and two-way pagers. But we don't need to tell you that; you probably already have two or more of these little devices. And we don't need to tell you which kind of device is good for particular kinds of computing and communications; you've probably got that down, too. Instead, this article looks at how these devices are going to evolve into their next stages—what technologies need to change and what kinds of devices you can expect to be able to purchase during the coming year.

Balancing Act

Designing a portable computer is one of the ultimate expressions of the phrase "engineering trade-offs"; when you change x, you must also change y. If you want a larger monitor, you're going to add weight and power consumption. Conversely, if you want a 2-pound computer, you're going to sacrifice things like battery life, monitor size, and keyboard size. Everything must balance.

Here are the 15 areas where most of the trade-offs happen:

1. Case design, size, and weight
2. Processing power
3. Memory
4. Keyboard
5. Navigation devices
6. Display
7. Video circuitry
8. Video input
9. Storage
10. Communications and networking
11. Battery life
12. Heat dissipation
13. Connectors
14. Additional I/O devices
15. Expandability

We can examine some portable-computing issues, including how these machines interact and where they might be headed, by designing what at least one BYTE editor considers an ideal portable computer, looking at what is (and isn't) possible with today's technology (see the text box "Proposing the Perfect Portable" on page 80NA 2).

As for what we can expect during the next few years, let's look at it while performing a modified version of that hoary old party dance, the hokey-pokey.

You Put Your Data In...

Getting data into a computer is a necessary first step. Right now, for most purposes, that means a keyboard. Some of the ultra-thin systems coming out this year have keyboards with a very short throw: a millimeter or two. This makes a keyboard feel stiff. The ultra-narrow systems have narrow keyboards—in many cases, too narrow for touch-typing (witness Toshiba's Libretto and most of the Windows CE hand-held PCs). IBM has experimented...
Proposing the Perfect Portable

To get a clear view of what's possible with mobile computing, let's indulge in a little fantasy. I'm going to design the perfect portable computer, one that fulfills all my needs and wants, with a little regard (not too much) for what's doable with the current technology.

Case Design, Size, and Weight
Clearly, I want a computer that's small and light, but I need to be able to type on it and read its display. So, let's say I want the final package size to be a bit smaller than the current subnotebooks — roughly 8 inches wide, 6 inches front to back, and under 1 inch thick. Weight, under 2 pounds.

I want a good-size, built-in, retractable handle for easier, more secure carrying. Any little doors used to cover connectors should retract into the case, not be removable (and thus prone to loss). And can I please get this in some color that's not gray or black?

Processing Power
Of course, I'll want the fastest CPU I can get—say, a 400-MHz Pentium II, with as much L2 cache as the CPU can support.

Memory
I'll need at least 64 MB of synchronous DRAM (SDRAM), expandable to 1 GB.

Keyboard
A small package means a too-small keyboard. Here's the perfect place for a newer, more rigid version of IBM's "butterfly" unfolding keyboard, one that grows at least 2 inches wider when the case is opened. Good key switches with tactile feedback are a must, and the key tops must be thick enough to provide decent separation between adjacent keys so that your fingers can find their proper places.

Pointing Devices
This is such a personal and non-rational choice that I'd like to see several options available: a track-point type stick in the middle of the keyboard; plus a touchpad below that's replaceable with a trackball, as in the original Compaq Armada 4100. Hewlett-Packard's mouse-on-a-stick might be an option, but what I'd most like to see is a retractable platform on the side to be used with a real mouse (with a wheel, of course). And when I'm not using the mouse, can I please dock it inside the portable unit's case? No, not attached outside with Velcro, but firmly located inside the case's volume.

Display
Given the case size that I've defined, it's possible to fit about a 9-inch display (active-matrix, of course). However, that's simply not big enough for a lot of users, who need to run at SVGA or XGA resolution without squinting. Let's face it, I really want a 14- or 15-inch screen.

I've seen a keyboard that gets bigger; how about an expanding or unfolding display? But the standard display panel, whatever its size, must be bright and clear, with the image clearly visible from at least 60 degrees off-axis horizontally and vertically.

Video Circuity
I want 8 MB of high-speed video memory, MPEG-2 and zoom-video support in hardware, fast 2-D and 3-D acceleration, and support for an external display at a different resolution than what's simultaneously used on-screen. If this were a desktop, not a laptop, I'd specify at least two monitors side by side.

You Get Your Data Out...

With a portable, output is normally the display screen; printing is rarely an issue. Displays represent a problem in terms of future development, for several reasons. First, today's flat-panel LCD screens are already good enough, big enough, and bright enough for most users; they don't need significant improvement. "The 14-inch TFT [thin-film transistor] display is actually significantly better than most 17-inch CRT monitors," says Greg Munster, product marketing manager for Hewlett-Packard's mobile-computer division, "and thus it's all most users really need or want." But the big screens don't cut it in terms of price and power consumption. Ironically, the worst problem of all might be size. We all want a bigger screen, but we want the total package to be as small and light as possible.

How do you shrink a display screen without shrinking the image? There are three likely possibilities: a display whose physical size can be reduced for transport and enlarged for use (e.g., some kind of foldable LCD or mirror-based system), an
and data communications.

Why carry around a separate device that you have to hook up to your computer? Nokia is already building computer functions into its high-end GSM phone; it would seem far simpler (and more marketable) to instead build a phone into our portable PC.

Battery Life
All these features should consume minimal electrical power so that we can reduce the number of batteries and increase their working life. The battery pack should be no bigger than, say, four AA cells. It should be good for 6 hours before needing recharging, and, in a pinch, it should be able to run on real AA cells, which you can obtain almost anywhere.

Heat
As CPUs and disk drives get smaller, they consume less power and thus generate less heat, which in turn allows tighter packaging. That's good, because I can still remember the first 5-V Pentium laptop that BYTE tested: The magnesium case reached 118°F—and no, you didn't want to put that on your lap!

Connectors
Current laptops are seriously limited in the number of add-on connectors they can fit around the edges of the case, primarily because each is different from the others. Let's see: two PC Card slots, one mini-DIN mouse jack, one mini-DIN keyboard jack, one minidin mouse jack (and no, I don't want to have to choose between mouse and keyboard), one RJ-11 telephone jack, one RJ-45 Ethernet connection, one headphone/speaker jack, one microphone jack, one DB-15 video port, one RCA video-out-to-TV jack, one external power adapter (preferably just a cord, without a wall wart), a SCSI connector, and one or two universal serial bus (USB) jacks.

Oh, yes, let's not forget the docking connector, the Kensington security slot, and the on/off switch. And we really ought to include an IEEE-1394 connector.

And even with all this multiplicity, some of these connections are doing double-duty, especially the parallel port. Let's hope that widespread adoption of USB can eliminate the need for so many different connectors.

Additional I/O Devices
With the experience of numerous PDAs behind me, I'd like to see a few additional input devices built into my perfect portable. First, a voice recorder with a microphone and controls that are accessible when the case is closed. Second, I want a panel for pen/stylus input of graphics and text, together with excellent handwriting recognition. Requiring users to write in the specially modified Graffiti alphabet, as with the PalmPilot, would be an acceptable compromise.

Expandability
I've already talked about memory, swappable disk drive modules, and interchangeable pointing devices. Everything should be hot-swappable, without interruption of processing. I'm going to assume the availability of an effective, lockable docking station with extra drive bays, PCI slots, a network connection, a printer, and other attached peripherals for those instant office situations.

But the third might soon be possible. A number of companies, including DisplayTech, Kopin, and Siliscape, are developing small LCD displays that you can hold up to your eye behind a lens (think one-eyed View-Master slides, and you get the idea) to see a decent color image.

At the present time, the resolution is at VGA levels and the number of colors is limited, but the potential is there (see "Mini Displays Get Sharper Focus," September 1997 BYTE, page 24). Indeed, Rockwell incorporated such a display into its body-mounted computer, the Trekker (see "Wearable Pentium," September 1996 BYTE). Kopin has demonstrated a display small enough to be built into a Motorola StarTack, the smallest cellular phone on the market, so getting faxes on the run might someday be truly easy.

You Store It on Your Hard Drive
Disk drive technology, for the moment, advancing faster than Microsoft's attempts to occupy it all for Office 9x, so storage capacity isn't much of a problem. IBM is currently supplying 8.4-GB hard drives in some ThinkPads, and more will come. Solid-state or other nonmagnetic technologies might eventually replace magnetic disks, but not soon. And high-capacity removable drives—those of the Zip/Sparq/Shark/ SuperDisk/Jaz/Quest ilk—will take care of the need for moving data physically.

Digital versatile disc (DVD) drives are starting to appear as options on some full-size laptops. Apple's Greg Joswiak says that "the availability of DVD will be important for our newest generation of PowerBook laptops, which are heavily used for graphics presentations and video-intensive applications."

And You Bake It All About
Heat has been a constant concern of designers of full-function laptops and associated peripherals. The first 5-V Pentiums and older DRAM chips ran at shockingly high temperatures and required fans for cooling. Earlier hard disks were also serious heat producers, and we've had more than one PC Card modem that ran hot enough to fry itself. However, the modern versions of all these components run
Which Portable for You?

<table>
<thead>
<tr>
<th>Class of device</th>
<th>Pluses</th>
<th>Minuses</th>
<th>Best applications</th>
<th>Available machines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smart pagers</td>
<td>Easy paging and e-mail; real OS; graphical display for future application development</td>
<td>Difficult keyboard; tiny display; no expandability; limited storage</td>
<td>Paging</td>
<td>Motorola PageWriter; Airtouch; Research In Motion Inter@ctive Pager</td>
</tr>
<tr>
<td>PDAs</td>
<td>Fits in shirt pocket; easy synchronization with PC apps</td>
<td>Text entry awkward; screens dim; add-on applications limited</td>
<td>Address books, calendars</td>
<td>Apple MessagePad; TI Avigo; 3Com PalmPilot; IBM WorkPad; Zaurus SE-600; Psion Siena</td>
</tr>
<tr>
<td>Hand-held PCs</td>
<td>Color displays bright and sharp; dedicated application buttons</td>
<td>Mono displays dim; touch-typing impossible</td>
<td>Light-duty computing, e-mail</td>
<td>Win CE PCs from Casio, Compaq, Hewlett-Packard, LG, NEC, Philips, and Sharp; Psion Series 3 and 5</td>
</tr>
<tr>
<td>Subnotebooks</td>
<td>Small; under 3 pounds; serious power; runs full Windows 95 apps</td>
<td>Limited expandability and battery life</td>
<td>Real work in tight quarters (although keyboards and displays are marginal)</td>
<td>Hitachi Traveler; Mitsubishi Amity; IBM Nimantics Persona; Toshiba Libretto; ThinkPad 735 (Japan only)</td>
</tr>
<tr>
<td>Superthin laptops</td>
<td>Sleek; attractive; attention-getting; 233 MHz; 64 MB; TFT display; under 3 pounds</td>
<td>Expensive; needs add-ons for I/O</td>
<td>Instances where a floppy or a CD is not needed</td>
<td>HP Sojourn; Mitsubishi Pedion</td>
</tr>
<tr>
<td>Full-size, full-function laptops</td>
<td>Everything in one package; easy desktop replacement</td>
<td>2 inches thick; weighs 8 pounds or more; expensive; limited battery life</td>
<td>Anything</td>
<td>Too numerous to list</td>
</tr>
</tbody>
</table>

If it were any smaller, and if the case were tan, you might mistake this Inter@ctive Pager for a big walnut.

If you do the Clickey Pokey...

With GUI screens and most modern software usable on portables, you absolutely need to have a pointing/navigation device. Yes, you can certainly perform a lot of operations in Windows 95 or NT or the Mac OS using keyboard shortcuts, but you can’t do everything.

So, you need a (choose one): mouse, mouse-on-a-stick, touchpad, trackpoint, joystick, trackball, digitizing pad/pen, or touchscreen. The mouse was there first, and most desktop systems still have one, with trackballs coming in a very distant second place. The other pointing devices were all designed to concentrate fingerprint screen navigation into a small, fixed space. They all work—some better than others—and we will likely see even more ingenious systems in the future.

And You Connect Yourself Around

One problem facing portable designers is the number of different connectors they must incorporate into their machines for communications and peripheral hookups. A typical full-size laptop these days can have almost two dozen I/O connectors and switches on the outside of its case. And there still have to be bays for removable drives and batteries, plus upgrade...
Looking for technologies used by big business—without the big business expenses? Then take a look at this Dell® PowerEdge® 2200, specially configured with Microsoft BackOffice Small Business Server software. You get a comprehensive solution tailored to businesses of 25 users or less with applications that allow multiple users to share files, databases and printers. Plus software that allows you to fax to and from your desktop, send and receive e-mail from the office as well as from the road, and create/manage your own website.

The PowerEdge 2200 server is certified as 3Com Network Ready with a pre-installed, configured and tested network interface card. And we made it available through the business lease program*, configured to start effectively as low as $5.65/day—perfect for your growing business. Call us today or visit our website.
access to the memory and hard drive. The universal serial bus (USB) standard, which can hook up to 127 different devices, is one good possibility for replacing many, though not all, of those varied connectors. Also, eliminating the number of different components would noticeably reduce the manufacturing cost of the system for both parts and labor.

For all its potential, however, USB has been slow to catch on, and it's not clear when it will reach the critical mass of acceptance. There's still only a trickle of USB peripherals available, and most of the things people want to plug into their portables need some other connector. A pure USB machine is an interesting idea, but it seems to be science fiction. No portable maker we talked to, including Compaq, HP, and Toshiba, seems to be even considering such a machine. Mark Hanson, a product manager for Compaq's Armada laptops, thinks the great number of legacy peripherals will limit USB's acceptance. "IEEE-1394 will be more likely to replace some other connectors and will also be implemented in drive bays, although it raises some power-management issues," he says. For better or worse, USB seems to be not a replacement but just one more connector standard—aggravating, not solving, the problem.

That's What It's All About!

Finally, we come to the matter of software, without which none of these machines is more than a paperweight. The larger machines use full-function desktop OSes and applications, so you need make no compromise when selecting them. Certainly Windows 95 (and soon 98?) and NT are widely available on laptops and subnotebooks, and Macintosh fans have the PowerBook laptops.

For hand-helds and PDAs, though, you must consider your needs and choose carefully. Do you go with Windows CE, now in version 2.0, or a proprietary but more efficient (and perhaps more limited) OS, such as Psion's EPOC, Apple's Newton, or the 3Com PalmPilot's Palm OS?

There's been significant application development for the PalmPilot (http://www.pilotgear.com/index.html lists over 1100 Pilot applications) and Psion machines; the current crop of CE applications is limited by comparison but likely to grow rapidly. Still, all the smaller machines are adequate for taking notes and doing minor data entry in the field, they're a lot easier to carry around, and you can easily upload your work and information to your desktop or full-laptop PC.

What's Next?

As we approach the twenty-first century, we're more likely than ever to have some type of portable computer with us. Today's mainstream laptops are too big and heavy for general carry, and they're suited only for sit-down, tabletop or desktop operation. Thus, the smaller portables we've discussed—PDAs, hand-helds, mini-notebooks—are where the real action and innovation are called for.

We could use one more development: standardization. Today's portables have just too many limiting incompatibilities among their hardware, accessories, and system software. You can interchange PC Card modems, but you don't get much beyond that. Docking stations? A painful subject. Is it too much to ask for hardware that's usable with several different brands instead of being specific to a single vendor's line? Desktop architectures have failed precisely because of such incompatibilities—remember Micro Channel?

The mass (and mess) of device-driver software is another place where unnecessary individualism rears its head and makes interoperability difficult. Standardizing on fewer connectors, as discussed earlier, would simplify life for everyone. Will we ever see such standardization? Somehow, we don't think so. The industry will muddle along for the next few years on an incremental path. But until (or unless) someone develops a really new approach to computing, we'll carry evermore-powerful (and, hopefully, smaller) computers with us to complement our digital address/schedule books, cellular phones, pagers, GPS receivers, and who knows what else.

Today's laptops have gotten big and heavy enough to require travel cases on wheels. Maybe, with all these computing devices hung on our belts, inside our pockets, and locked up in our shoulder bags, we should just admit that we're the ultimate portable-computing device, strap on rollerblades, and be on our merry way.

Russell Kay is a BYTE technical editor for reviews. You can contact him by sending e-mail to russell.kay@bix.com.
Databases today start out as gigabyte babies and rapidly grow to terabyte toddlers. Feeding their growth are trends including: the rush to build data warehouses that consolidate all your corporate data, the desire to put ever more information on-line for access by Internet or intranet, data mining solutions that require access to detailed transaction-level data, and the corporate longing to track every interaction with customers. And the data itself is expanding to include documents, pictures, video, and anything else that exists in digital form.

Large and rapidly growing databases strain the abilities of traditional hardware platforms. Just storing all this data will stress most existing platforms. But an even more serious problem is the ability to query these mountains of data in a reasonable amount of time. Traditional single-processor machines don’t have the raw number-crunching power to sift through these large and growing databases efficiently.

In response to these needs, hardware vendors have created multiprocessor machines (historically referred to as “parallel” platforms, and now more frequently referred to as “scalable” platforms). These systems can hold from two to hundreds of processors. The resulting computers give you enough aggregate processing power to handle all your data more quickly.

However, these scalable hardware platforms are only one part of the solution. Their strength in numbers won’t help if the database software is not able to take advantage of the hard-
Partitioning Data

Due to the large size of modern databases, you might find it beneficial to divide an entire database into smaller partitions. Each partition then resides on a different disk or another data store. In a multiprocessor system, especially a shared-nothing hardware architecture, the CPUs in each node are responsible for their own data stores. Since these CPUs must respond to requests for either data or results from their owned data stores, it is important to create the partitions judiciously for optimum processing.

For example, each partition should have approximately the same number of records. Why? Because if some partitions are larger than others—a condition called data skew—tasks performed on those partitions will take longer. This will mess up the parallel processing because one processor has to do more work than the others. Because of this unequal distribution of labor, the query takes longer than it should.

Unfortunately, it’s easy to choose a partition scheme that results in data skew. An example would be partitioning a sales table by month when most of your sales are during the Christmas season. As a result, nearly all the data would end up in the December partition, and very little data would be in any other partition. Partitioning by customer name would also result in data skew, since more names begin with some letters (like M and S, in English) than with others (like X and Z). Partitioning by year is probably the worst choice, since most queries will probably be looking for the most recent data, and the CPUs that own that partition will get run into the ground. (This is known as the problem of access frequency.)

There are three basic forms of partitioning: round robin, hash-based, and range (see the figure “How to Partition Data” at right). You can create hybrid methods, based on these three, for specific purposes.

Round robin is the simplest way to partition. With n data stores, the first record goes in the first data store, the second in the second store, and so on until the nth record goes in the nth data store. Then the next record goes in the first again, the next in the second, and so on. Round robin thus guarantees nearly equal partition size. The major drawback of round-robin partitioning is that it does not help expedite searches for specific queries, unless indexes are available. For on-line transaction processing (OLTP), an index is likely to be available. If so, round robin balances the OLTP workload over the processors.

On the other hand, range partitioning does help with some kinds of queries. With range partitioning, a certain defined range of a record value goes into the first data store, another range in the second, and so forth. If you do a lot of searching by customer name, for example, you should place part of the alphabet in one data store, another part in the next, and so on. Then when you perform your search, you know which data store to go to immediately, saving considerable time. You would do similar partitioning if you do a lot of searching by date, product, or other specific field in the record.

The disadvantage here is the danger of data skewing. If you’re storing things alphabetically, it may take a lot of effort to ensure that the partitions have comparable numbers of records. This can be easier if you have a large database already. You can determine the percentage that each part of the range occupies in the database, then combine ranges into roughly equal partitions. You can be confident that future additions to the database will be in similar proportions, thus maintaining the same relative sizes. Naturally this won’t work if the percentages change—for example, if you partition by year and your sales keep growing.

Hash-based partitioning is a more abstract version of range partitioning. With this approach, you compute a hash value modulo n from one or more fields in every record, then store the record by its hash value. A sufficiently randomizing hash function will ensure that each partition is about the same size. Hash-based partitioning can also help in searching for records with specific values, since you know where the records with the hash of that value are.

One major disadvantage of hash-based partitioning is that it doesn’t help with range searches. Since a range of values does not correspond to a range of hash values, you must do many separate searches instead.

Obviously, no one method does everything. That is why people invent hybrids. Knowing the type of data your database contains, and especially knowing the most common types of queries run against that data, you can probably...
When Parallel Lines Meet Managing Data

ware’s multiprocessing capabilities. In other words, the database management system must be able to put the multiple processors to good use when handling large queries. This means that relational DBMSes must be able to process queries in parallel in order to achieve the required performance levels.

Queries Without Parallel

Though the optimization details can become extremely complex, the general concept of performing a query in parallel is fairly straightforward. You must first understand the two basic types of parallelism used in parallel queries: partitioning and pipelining. To become familiar with these techniques, let’s first look at a sample query to see how it executes without parallel queries (that is, as a sequential query). Then we’ll add in partitioning and pipelining to see how they both increase database performance.

For our sample sequential query, I’ll choose a query that first scans two tables, then performs a join of the results of the scan, then sorts the results, and finally returns the sorted set to the user. Let’s assume that each of the two tables contains 20 million rows, and that when we run this query sequentially on a uniprocessor, each of the three stages (scan, join, and sort) takes 4 minutes to execute. (See the figure “Sequential Query Execution vs. Query Partitioning” on page 84.)

In the Pipeline

Query partitioning provides an impressive improvement. Or does it? Yes, our entire query now runs four times faster, but remember that we went from a uniprocessor machine to a 12-processor machine. We used 12 times the computing power, but achieved only a fourfold improvement. Why is this the case?

Because we have not yet leveraged the second part of parallel queries, which is the concept of query pipelining. With query pipelining, the consecutive stages in processing a query (in our example, scanning, then joining, then sorting) form a “pipeline,” and separate processors can work on separate stages of the pipeline.

The concept is similar to an assembly line in an automotive plant, where individual workers focus on one stage of a car’s construction. And, similar to there being multiple cars in the assembly line at any point in time (each one at a different stage of completion), there will also be multiple queries in the pipeline at any point in time, each one at a different stage of completion. In the assembly line, much of the performance gain comes from there...
being multiple cars in the line, because even though it still may take hours to build an individual car, a newly completed car will roll off the assembly line every few minutes.

The same holds true for queries. Pipelining may not speed up the execution time of any single query, but more queries can be completed in the same amount of time.

After pipelining is introduced into our example, as soon as the four processors that are assigned to the scan stage finish the scan for a query, they hand off their results to the processors executing the join stage, and then they immediately begin scanning the tables for the next query. They don’t just sit there idle until the entire query finishes. The same holds true for the join-stage processors. As soon as they finish joining the rows for the first query, they hand off their results to the sort-stage processors and immediately begin joining the next set of rows sent to them by the scan processors. As in the automobile assembly line, all workers on the line are always busy, working on their stage of the cars progressing through the pipeline.

So, each minute, the sort stage receives a new set of rows to sort, and at the end of each minute it completes the sort and hands the query results back to the user. (See the figure “Query Pipelining” on page 86.) After an initial ramp-up period to fill the pipeline (which lasts 3 minutes in our example), 12 queries complete in 12 minutes.

Because of parallel queries—including query partitioning and query pipelining—we are therefore now able to achieve 12 times the throughput that we obtained with our sequential query. Our 12-processor system increases overall system throughput by a factor of 12.

Parallel Kinds

There are several different types of multiprocessor architectures. The preceding description of the use of parallel queries applies directly to multiprocessor designs known as shared-everything hardware architectures, in which all the processors physically share all the hardware components (such as memory and disks). This sharing makes it easy to divide the workload of a parallel query among multiple processors, because each processor can directly query the data residing on any disk drive. Symmetric multiprocessing (SMP) platforms fall into this category.

Shared-everything is not the only type of hardware architecture. Another type of multiprocessor hardware design is known as a shared-disk hardware architecture. Even though different groups of processors have their own physically separate pools of memory, all the processors can still access all the disks. Some vendors’ clusters, massively parallel processing (MPP), and nonuniform memory access (NUMA) platforms fall into this category.

Since any CPU on the platform can still access any piece of data residing on any disk by issuing an I/O request to that disk, the preceding description of parallel queries also directly applies to these shared-disk hardware architectures.

However, most clusters and MPP platforms fall into the category of shared-nothing hardware architectures, in which different groups (nodes) of processors each have their own pool of memory and their own set of nonshared disks. Since processors on one node cannot issue I/O requests against data that resides on disks connected to another node, my earlier description of parallel queries needs some clarification.

The main concepts of parallel queries do not change in a shared-nothing hardware architecture: Partitioning and pipelining are still alive and well. However, there are new performance considerations to take into account because accessing data on a remote node involves more overhead in the form of additional message passing.

Drawing a Parallel

Just as there are different parallel multiprocessor architectures, there are different parallel database architectures. Database vendors have created two different architectures to address the issues that appear in shared-nothing hardware designs. The first approach is referred to as a shared-disk database architecture, and the other is a shared-nothing database architecture. (Note that we’re referring to these as shared-disk or shared-nothing database architectures, as opposed to the shared-disk or shared-nothing hardware architectures we discussed earlier.) Oracle follows the shared-disk architecture, whereas most other database vendors such as IBM, Informix, Sybase, and Teradata follow the shared-nothing architecture. Both database architectures have their relative strengths and weaknesses, in both theory and reality. It is crucial to understand which issues are important...
Mr. Gates will be with you in a moment sir. He's watching "com"

FEED YOUR BRAIN
THE GOOD STUFF,
WATCH "com"

Hosted by
Mark Hamill

Upcoming Features
Special Report - US West
Designing the future of Broadband
www.uswest.com
A Better Way to Make Business Decisions
www.mapinfo.com

Secure Shopping from Your Desktop
www.buysafe.com
State-of-the-art Human Resource Outsourcing
www.hewitt.com
The Power Behind Online Banking
www.vifi.com
The Future of Communications is Digital
www.destination.com
Business Technology Multisite Videoconferencing
www.gte.com/conferencing

CNBC Saturdays @ 12:00 p.m. ET • Watch on the web @ www.tviweb.com
"com" is produced and paid for by TV Interactive • 1.800.311.8001
and which are not. Also, we must keep in mind that we’re now talking about the architecture of the database server software, not the hardware. As we’ll see, despite their names, both the shared-disk and shared-nothing database architectures can (and do) run on shared-nothing hardware.

Share and Share Alike

Briefly, a shared-disk database architecture means that at a conceptual level, when the DBMS is executing a parallel query, any processor is allowed to query data residing anywhere in the entire database. The situation is obviously different on a shared-nothing hardware architecture, since a processor can’t directly issue an I/O request to a disk residing on a remote node. So, if a set of rows that a processor needs happens to be on remote disks, then the appropriate message passing will automatically occur behind the scenes. The processors that “own” the disks in question will issue the I/Os and will then send all the data read from the disks back to the original requesting processor for local query processing. This technique of sending all the rows back to the requesting processor is called *data shipping*.

With this architecture, the DBMS has no notion of a certain node “owning” a certain set of disks—it views all the disks as logically shared, even though they are not physically shared. The “behind the scenes” message passing is responsible for allowing the database to treat all the disks as accessible to all processors.

The theoretical advantage of this database architecture is increased flexibility regarding how your system’s resources are used during a parallel query. The database management system can dynamically choose not only how many processors and how many nodes to involve in executing a query, it can also choose which processors and which nodes to use. This improves your ability to perform load balancing.

The theoretical drawback, however, is that this flexibility incurs additional communication overhead between nodes due to data shipping (that is, because many rows may need to be sent across the interconnect as messages). This additional overhead can have a detrimental effect on performance.

Does Not Share Well

In contrast, a shared-nothing database architecture focuses on minimizing the message-passing overhead required to process a parallel query. It does so by dividing each table into “partitions,” based on some partition scheme that you choose, and assigning each partition to a different node. For example, if you have four nodes, a trivial partitioning scheme for your customer table could use the customer’s last name as the partitioning key and assign names in the range A-F to node 1, G-L to node 2, M-S to node 3, and T-Z to node 4.

In essence, each node exclusively “owns” a partition of each table. If a processor needs to query rows that reside on a remote node, the database does not send the rows back to the original processor for local processing. Rather, by employing function shipping, the database sends the query to the remote node, processes it there, and then returns only the query results back to the original processor. (See the figure “Data Shipping vs. Function Shipping” on page 88.)

The theoretical advantage is reduced internode-communications overhead during parallel query execution (and therefore more efficient use of interconnect bandwidth). Rather than sending all the rows across the interconnect network, you just send the query itself, and you get back only the results of the query (rather than each row that was queried).

However, there are a few theoretical drawbacks as well. The first drawback is simply reduced flexibility, because a query that involves a particular database partition can execute only on the CPUs of the node that owns that partition.

The second drawback is that response times for these parallel queries are very sensitive to data skew. Data skew occurs when a poor partition scheme is chosen, leading to one partition having a disproportionate amount of data.

Parallel Realities

I very carefully used the word “theoretical” when referring to the advantages and drawbacks of the shared-disk and shared-
"I am a guide to the Himalayas. They call me a Sherpa. People come to me from all over for my Sherpa-ness. I don't know how they find me. It must be karma."

Lost in the mountains? Use a Sherpa guide. Lost on the Web? Use Lycos, the Web's most powerful search engine. Lycos is a free, fast, Personal Internet Guide that divides the Web into 22 topic areas, making it easy to find the information you want from over 100 million Web sites. We've got features like StockFind, CityGuide, Yellow Pages, PeopleFind and free Classifieds—even a special search tool to help you find just the pictures and sounds you're looking for. Throw in the silly hat, and Lycos is everything you'll ever need from an Internet guide.

Karma, schmarma, it's all those people using Lycos to find our Web site.

Get Lycos or get lost.

www.lycos.com
Managing Data When Parallel Lines Meet

Data Shipping vs. Function Shipping

Data Shipping
In a shared-disk database architecture, a processor will receive all requested data from the remote node and then process it.

Function Shipping
In a shared-nothing database architecture, a processor receives only results from the remote node controlling that data store.

- Request for data goes to remote node.
- Local CPU issues I/O request to local disk.
- All requested data from disk goes to the local CPU.
- In Data Shipping, all raw data is sent back to the requesting CPU, where it is processed.
- In Function Shipping, the data is processed on the local CPU and only the results are passed on to the requesting CPU.

Nothing database architectures. How much should you believe the theories about these architectures and how well they will run data warehousing applications? Can you make your technology and product choices based solely on these theories?

No—it would be a mistake to do so. Although understanding the theoretical pros and cons of these two architectures is critical to understanding whatever technology you choose, in reality the actual quality of a database vendor’s implementation is much more important than the architecture. This will likely be true for years to come, until the products are fully mature.

For example, the quality of a vendor’s query optimizer often has a far greater effect on performance than any of the pros and cons I’ve mentioned. In another example, one database vendor’s code path to perform a certain operation might be 50 percent the length of a competitor’s. For this operation, the first vendor has an enormous advantage over the competitor, regardless of the architecture. In these and many other cases, the differences in how well the vendor’s developers wrote various parts of the products are the true determining factors of performance. This is the issue on which you should focus. Although this might sound like heresy, architecture is currently only a secondary consideration.

So, how can you determine which database products are built better in the areas where it matters most to you? Industry standard benchmarks are of only limited use, since they are highly specified and highly controlled. The only way to really know is to test your own database queries. The larger the test, the more you will learn, because larger tests will put more stress on a system, highlighting its strengths and exposing its weaknesses.

The Most Effective Approach

If your database is strategic, sooner or later it will scale up to a size that only multiprocessor platforms—such as SMP, clustering, MPP, and NUMA architectures—can handle. To use these platforms to effectively improve query-processing performance, you will have to employ parallel queries. Though parallel queries are not magic, and will require you to learn new approaches to query tuning, they are the most effective technology available today for quickly processing large amounts of data.

Ken Rudin is CEO and cofounder of Emergent Corporation, an independent consulting firm that helps businesses design and implement scalable IT solutions. He has published many articles on designing and implementing scalable solutions. You can reach him by sending e-mail to krudin@emergent.com.
Bandwidth Bottlenecks

Technology can rush key applications through a congested network or create the illusion of more bandwidth. By Scott Mace

If you’ve been adding T1 lines to your WAN but not seeing any improvement in your network application performance, you’re not alone. Adding WAN links is the most costly yet fastest-growing aspect of today’s intranets and extranets. Meanwhile, the use of these long-distance links is exploding. New high-bandwidth applications, including push sites and multimedia, must run across an entire enterprise.

By simply throwing more bandwidth at the problem, corporations are wasting millions of dollars each year in misused or unused network bandwidth. This is because it isn’t a real solution; it results in demand always outpacing supply. TCP/IP was primarily designed to support FTP and telnet applications, but today’s higher-speed networks are placing greater demands on bandwidth, exaggerating delays and bottlenecks. The result: lost productivity and lost business.

Currently there are few good available alternatives for managing TCP/IP traffic. That’s because such traffic wasn’t designed to be managed. This situation is beginning to change, however. Low-priority applications can now be controlled, given lower priority, and otherwise made to go to the back of the line waiting to pass through a bottlenecked portion of a network. Because so much data is redundant, caching and multicasting can reduce network traffic problems by keeping packet-copying to a minimum.

The bad news is that some bandwidth-control techniques, such as class of service (CoS), still don’t guarantee a given amount of bandwidth, although they offer “better than best effort” service to priority traffic. Other techniques can guarantee bandwidth, but only in networks that are under your control.

Finally, caching technologies are getting sophisticated enough to deliver Web pages in a snap, so even if your particular bottleneck situation persists, or if the Internet backbones or your ISP offers substandard performance, you or your users might not notice as much as before.

These caching technologies will become critical in a situation where ISPs provide differentiated services and you pay more to obtain a higher quality of service (QoS). This situation is still a rare offering on the Internet today.

Clearing Up Congestion

Wherever there’s traffic, there’s bound to be congestion. Many systems that process large amounts of traffic—human or otherwise—have specific ways of dealing with it. The California Department of Transportation throttles traffic with metering ramps. Macy’s increases its sales capacity by adding more staff members. The U.S. Postal Service decreases delivery time with Priority Mail. United Airlines maintains capacity with reservations. The Internet uses (or will use) techniques that are roughly analogous to all these techniques, which are outlined below.

Metering ramps. Metering ramps are at the heart of the Internet, but they’re a little different from traffic ramps, which, instead of throttling cars at an on-ramp, tell drivers to stay away. When congestion occurs, devices running TCP/IP begin dropping packets and send messages back to the originators of the
traffic, telling them to slow down. At the point of the traffic originators, TCP/IP's slow-start mode throttles transmission back and then ramps it up until it reaches a relatively stable state.

Until recently, this technique has worked admirably. But even though they are efficient and fair, metering ramps cause wild swings in network utilization, leading to the burstiness of the Internet. This makes the Internet's metering ramps as much a part of the problem of delivering consistent QoS as they are a part of the solution.

Increased capacity. Why not just make the pipes bigger? For a long time, we were able to live with the idea of just throwing bandwidth at it. In a LAN, it might be possible to over-provision bandwidth enough that congestion never occurs. But this is hardly ever possible with a WAN, due to the economics of transmitting data over long distances. Companies simply can't afford to keep WAN links up all the time.

Second, services such as voice, video, and mission-critical applications need predictable latencies—the round-trip times between transmissions—to avoid the phenomenon known as jitter. But increasing capacity just exaggerates the Internet's burstiness. The Internet's best-effort system might cause packets from one application to get in the way of critical packets.

Priority. The aforementioned services require packets to be prioritized somehow. Like opening several windows at a bank to serve different types of customers, one line must become three (or even more) so that each packet can get an appropriate level of attention. Customers are willing (and even begging) to pay for that kind of attention. But until recently, there haven't been any standards for setting priority, and the new standards still aren't widely used. On top of that, service providers haven't yet figured out how to maintain and charge for priority services, especially if they cross from one provider to another.

Reservations. Internet customers are even willing to reserve a place in line ahead of time, like airline customers. But so far, the Internet and WANs haven't been able to fulfill these desires. One possible solution to this problem, asynchronous transfer mode (ATM), failed to make it to the desktop. And the shortcomings of the Resource Reservation Protocol (RSVP) have been well documented (see "Faster, Smarter Nets," April 1997 BYTE), so its appearance in Windows 98 will have minimal impact for the next couple of years. In short, ISPs are still figuring out how to provide and bill for QoS (see "A Virtual Private Affair," July 1997 BYTE).

So where does that leave you? The good news is that there are ways to manage any network bottleneck or the bandwidth in a leased line, provided you control the network and can establish the network's policies. The three main techniques (in increasing order of the apparent performance improvement they create) are CoS; QoS, also known as guaranteed bandwidth or prioritization; and caching.

Setting Some Priorities

The Internet guarantees "best effort" delivery of packets—it tries its best to get the packets to their destinations. CoS tries for "better than best effort"; like Avis, it tries harder, typically by setting some bandwidth aside for high-priority traffic. Don't confuse CoS with QoS, however. Unlike QoS, CoS doesn't guarantee bandwidth or latency. Instead, CoS enables network managers to request priority for traffic based on its importance.

3Com is one of the heavyweights behind CoS. Early this year, 3Com announced CoS prioritization support on its TranscendWare SuperStack Layer 2 and CoreBuilder Layer 3 switches, as well as on a new line of desktop network interface cards (NICs), some routers, and some WAN concentrators. "This strategy scales across the WAN and works with packets as well as [ATM] cells," says Frank Fuller, director of systems marketing at 3Com.

3Com claims to be the first vendor to implement CoS broadly and adhere to the new IEEE 802.1p and 802.1q standards for CoS, as well as IP Type of Service (ToS). IP ToS is a proposed Internet Engineering Task Force (IETF) standard dating back to 1992 that allows for up to eight classes of service over WANs. "By spending 1 hour setting up policies, you'll be able to reduce staff time by an hour a day," Fuller says.

ToS is equivalent to a carpool lane: You reserve bandwidth ahead of time and then assign traffic that needs priority, such as voice or a priority CoS, so that it can use that reserved bandwidth. IP ToS's history shows that, just like carpooling, traffic isn't congested in enough places for many people to use it. But, just as the awareness of carpooling zooms up when highway
If you're a corporate professional looking for real solutions to your most challenging IT problems, PC EXPO is the one event that delivers all the goods.

More than 800 IT suppliers will come to PC EXPO with one thing in common: corporate IT solutions—and to attend over 50 sessions within our Corporate Education Program.

We mean all. Including an explosion of new Web and e-commerce solutions at our best-ever WEB.X – The Internet Event for Business, held concurrently during PC EXPO.

The world's full of IT events. But for corporate professionals, there's really only one. PC EXPO in New York.

To attend, call 800-829-3976, ext. 2980 or register online at www.pcexpo.com.

Exhibitors! Reach one-half-trillion dollars in IT buying power!
conditions worsen, so too is attention turning to IP ToS. And the newly achieved capability of Layer 3 devices, such as 3Com's CoreBuilder, to prioritize packets at wire speeds adds to the increase in interest in IP ToS.

Skeptics doubt that the 802.1p and 802.1q standards promoted by 3Com will be widely adopted. Both standards were unanimously approved by the IEEE late in 1997, with participation by all major networking vendors. Ratification of the final standards is due by July.

3Com also pledges to provide drivers for non-3Com Ethernet NICs by June. By prioritizing packets at the desktop, network administrators can lessen the load on core network devices. And later this year, 3Com will deliver an LDAP-compatible Policy Server to store policies and push them out to switches, routers, and desktops, instead of requiring individual configuration of each device.

Private Bandwidth

Sometimes CoS's "better than best effort" isn't good enough. This is particularly true if an application requires a guarantee of bandwidth and latency. To get this kind of control, you need to manage all the network devices in your network end-to-end. Then bandwidth-management products can dole out dollops of bandwidth by application, group, or user.

Using leaky-bucket algorithms, bandwidth-management products queue up or drop packets that don't fit bandwidth policies. (In a leaky-bucket mechanism, the queue allows a limited stream of packets out at any time but has a maximum depth, so packets exceeding the bucket's drainage rate are discarded.) The latest generation of these products, which typically sit at the threshold of the narrow pipe being managed, also provide separate queues for each class of traffic.

That's the high-level view. Once you examine these products, at least three different approaches emerge.

Xedia's Access Point devices offer basic Layer 3 traffic management, giving administrators the capability to allocate a committed bandwidth rate to each application and guaranteeing that the bandwidth allocated will never drop below that committed rate. Xedia's Class-Based Queuing also lets applications borrow spare bandwidth from other applications. Xedia is targeting not only corporations but also ISPs and office buildings seeking to offer guaranteed bandwidth to tenants.

Check Point Software, best known as the leading maker of firewalls, offers Floodgate-1, server-based software that allocates bandwidth by a committed rate, but Floodgate adds the ability to allocate by an abstract number. The advantage of this ratio method: If a network adds bandwidth, the individual bandwidth allocations don't all have to be readjusted to reflect the increased available pipe.

Packeteer's Packet Shaper devices use TCP Rate Control (see the table on page 94) to tell devices they should not burst traffic into the network due to congestion. Although it works with Web traffic, TCP Rate Control is not usually admired because it lacks support for UDP packets, such as voice and video. Packeteer acknowledges this but denies allegations that TCP Rate Control is risky stuff.

You might think that at least one of these three approaches could solve bandwidth problems. But even TCP Rate Control can't cure all congestion woes in a network. "There are implementations of TCP/IP, such as some versions of Solaris, with bad default values going to dial-up users," says Bob Packer, chief technical officer at Packeteer. "These values create TCP window sizes that are too large, causing a huge amount of unnecessary packet retransmission." Packet Shaper detects these redundant premature transmissions and drops them, which can help reduce and smooth out traffic more quickly. But every dropped packet requires a TCP slow-start, with its accompanying drop in performance.

By contrast, traffic managers, such as Access Point and Floodgate-1, attempt to eliminate dropped packets entirely with queuing. However, the larger the queue, the bigger the potential for latency during congestion.

So, for now, bandwidth managers are doing the best they can with a protocol which, poor implementations aside, will continue to rule the Internet.

Cache in Hand

CoS and guaranteed bandwidth have their problems. So, if you can't keep the information where it is and get at it faster, then why not bring the information closer? That's exactly what caching does. Already, the leading Web browsers maintain small caches of viewed pages on local hard drives. Many of the caching techniques being deployed today on servers
Win a Website!

The prize package consists of one year's worth of hosting (80MB website storage and full CGI access). The prize package is provided by Interland, Inc.

1. Do you currently have a private website? (Choose one.)
 - Yes
 - No

2. Does your company have a website? (Choose one.)
 - Yes
 - No
 - Not currently but plan to have one soon
 - Not currently and have no plans

3. Does your company have an intranet? (Choose one.)
 - Yes
 - No
 - Not currently but plan to have one soon
 - Not currently and have no plans

4. Do you currently use web hosting services? (Choose one.)
 - Yes
 - No

5. How satisfied are you with the web hosting service you are currently using? (Choose one.)
 - Very satisfied
 - Somewhat satisfied
 - Somewhat dissatisfied
 - Very dissatisfied

6. How proficient would you say you are with web technologies? (Choose one.)
 - Expert
 - Advanced
 - Novice

7. Rate on a scale of 1 to 5 (1=low experience, 5=expert) your knowledge of the following technologies:
 - Security
 - Certificate servers
 - Virtual private networks
 - Electronic commerce
 - Firewalls
 - Remote access
 - Intranet
 - Java
 - Dynamic HTML
 - XML
 - HTML

8. In which technologies do you hope to improve your understanding over the next six months?
 - Security
 - Certificate servers
 - Virtual private networks
 - Electronic commerce
 - Firewalls
 - Remote access
 - Intranet
 - Java
 - Dynamic HTML
 - XML
 - HTML

9. If you have a website/intranet/ extranet today, what do you use it for?
 - E-mail
 - Groupware
 - Displaying product/company information
 - Remote access
 - Electronic commerce
 - Business to business commerce
 - Other

10. What new capabilities do you plan to add to your website/intranet/extranet?
 - E-mail
 - Groupware
 - Dynamic HTML
 - XML
 - Java
 - ActiveX
 - Virtual private networking
 - Electronic commerce
 - Remote access
 - Other

11. How many employees does your organization have?
 - Under 100
 - 100 - 499
 - 500 - 999
 - 1000 or more

12. If you win the free website, what will you do with it?

The Future of Information Technology Today

A Division of The McGraw-Hill Companies

The odds of winning depend on the total number of entries received by the contest's entry deadline of May 29. Employees of The McGraw-Hill Companies, Inc., Interland, Inc., their agencies, subsidiaries, employees and families are not eligible to participate in the contest. The McGraw-Hill Companies, Inc., is not responsible for lost, late, or misdirected mail or ineligible entries. Entries must be submitted by May 29, 1998, to be eligible for the drawing. The winner will be notified by phone on June 1, 1998. Personal contact with the individual specified on the entry card must be made for the finalist to be declared the winner. If the winner cannot be contacted within 15 days of the drawing, then the unclaimed prize shall be awarded to an alternate winner selected at random. The unclaimed prize shall be awarded to an alternate winner selected at random. The winner shall be required to sign an affidavit releasing The McGraw-Hill Companies, Inc., from liability in connection with use of the prize.
Network Integration Breaking Bandwidth Bottlenecks

are similar, though much more sophisticated and effective.

A prominent example of such a technique is Inktomi’s Traffic Server, software that runs on Solaris-based systems. Piggybacking off the recent work done in the parallel-computing and cluster-technology fields, Inktomi first made a splash in the search-engine arena with its HotBot technology. Traffic Server soon followed.

“Caching lets you store information much closer to the user, and it gives that user a better quality of experience than going through a congested net with multiple hops,” explains Peter Galvin, director of marketing for Traffic Server. Inktomi estimates that 60 percent of the traffic on the backbone of one ISP it works with is redundant.

But caching is not as simple as storing HTML pages. The trick, of course, is figuring out how often to refresh each object in the cache. Each page is actually made up of many objects—sometimes dozens. Each of those objects changes over time, but not at a constant rate. Making matters worse, the original HTTP 1.0 protocol did not let page publishers dictate the typical time interval before a cache must fetch a refreshed object.

How does Traffic Server approach the problem? After a user requests a page for the first time, Traffic Server keeps all the objects on that page in its cache. Since pages don’t change quickly, future users of that same page consume only a fraction of the first user’s bandwidth. A simple get-if-modified HTTP request is the only thing that travels across the Internet and back if a page is unchanged.

In addition, Traffic Server is mildly proactive in updating the cache. By default, the cache refreshes each object hourly.

<table>
<thead>
<tr>
<th>Beyond Queuing</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP Rate Control is achieving new prominence through technology such as Packeteer’s Packet Shaper.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Queuing</th>
<th>TCP Rate Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efficiency</td>
<td>Tosses packets.</td>
</tr>
<tr>
<td></td>
<td>Induces packet loss; generates retransmissions.</td>
</tr>
<tr>
<td></td>
<td>No bit-per-second control.</td>
</tr>
<tr>
<td></td>
<td>No flow-by-flow QoS.</td>
</tr>
<tr>
<td>Inbound/outbound</td>
<td>No inbound control.</td>
</tr>
<tr>
<td>Ability to react</td>
<td>Reactive.</td>
</tr>
<tr>
<td></td>
<td>Congestion has already occurred.</td>
</tr>
</tbody>
</table>

CacheFlow eliminates latency problems, even for pre-HTTP-1.1 objects, by prefetching objects based on usage and update schedules.

That default can be changed.

Traffic Server can also take advantage of HTTP 1.1’s Time-to-Live (TTL) HTML tag. To reduce latency, HTTP 1.1 lets Web publishers attach a TTL tag to each object, which gives them more granular control over when the cache requests a new copy of the object. Banner ads might have to be excluded from such treatment because Traffic Server doesn’t return hit information to servers for the all-important Web-ad click-through information. But the bandwidth savings derived from caching every object on a page except the banner ad is still substantial.

CacheFlow, from the company of the same name, takes caching a step further. The company started with the observation that the typical browser fetches only four objects at once. A page containing many objects might take many fetches to pull down everything. CacheFlow gets around this problem by fetching all objects on a page at once.

Web pages are starting to contain more objects, so the savings can be substantial. For instance, http://www.cnn.com has so many objects that, in the best case, electrons have to travel something like 600,000 network miles to deliver the home page coast to coast. Given the limitation
IS THERE
A High Performance Data Access
Driver Suite Out There That Offers Me
CHOICE ACROSS
Database Engines & Operating Systems.
Available As A Single Product Solution -
AT NO ADDITIONAL COST.

Xerox Corporation • AT&T • ABB Power • Lucent Technologies

Pepsi Cola • ALCOA • Sprint • 3Com • Lehman Brothers

ASK SOME OF THE WORLD'S LEADING COMPANIES ABOUT THE BENEFITS

Ingersoll Rand • US Navy • PG&E • PRC

Applied Materials • Hewlett Packard • Network Solutions • MCI

OF FAST, RELIABLE, AND SECURE CORPORATE DATA ACCESS ...

British Telecommunications Plc • Merrill Lynch • United Technologies

South Western Bell • EDS and many more...

... THEN ASK WHICH JDBC/ODBC/UDBC DATA ACCESS DRIVER THEY USE.

Operating Environments Supported:
Windows 3.x, NT, 95, Unix (All Flavors), OSI2, Linux, VMS & Macintosh

Databases Supported:
Oracle, Informix, Ingres, Progress, Sybase, MS SQL Server, DB2, Postgres SQL,
Solid Server, Velocis, Kubi & Other ODBC Data Sources.

For More Information Call Us Free On 800-495-ODBC
Tel 781 273 0900 • Fax 781 229 8030

Web Site: http://www.openlinksw.com
(Software Available For Immediate Download)
Network Integration Breaking Bandwidth Bottlenecks

of the speed of light, that's nontrivial.

The CacheFlow engine is also constantly prefetching Web pages based on a complex formula of a page's popularity and the cost in time and bandwidth of fetching the page. According to the company, this prefetching is so much more efficient than the fetching done by products such as Traffic Server that CacheFlow doesn't need to send a get-if-modified statement when a second user requests a page and its objects. This saves not bandwidth, but latency: When demonstrated, CacheFlow easily fetches pages faster than the eye can blink.

Traffic Server might approach that kind of low latency, but only if the entire Web adopts HTTP 1.1. Just how fast that's happening is a matter of controversy. For various reasons, CacheFlow claims that the latency reduction with HTTP 1.1 will approach only 20 percent, and then only because HTTP 1.1 also supports persistent connections.

One thing is for sure: Nothing will force Web publishers to cache ads unless hit-rate information can be returned from the cache to the Web server. CacheFlow's cache can do this; Traffic Server's can't. Inktomi officials point out that Web publishers are using sophisticated banner-ad-rotation schemes, so they still won't be thrilled about caching.

Different Packets Coming
As if all the tricks employed to decongest and apparently speed up Internet traffic weren't enough, within the next year multicast traffic will proliferate. The bandwidth-management wizards all agree that multicast will change the Internet again and help hasten the system-wide CoS standards that companies such as 3Com are evangelizing. Time will tell if multicast is a killer application, but its introduction hastens the day when no network device can be indifferent about where a packet came from, where it's going, or what it's carrying.

Meanwhile, the more control you have over your network, the more possible it is to guarantee bandwidth to critical applications and to begin to shape bandwidth priorities for other applications. Even if you don't control your network, caching might offer a quick way out of the World Wide Wait. Either way, the old solution—getting out the checkbook and ordering up more expensive bandwidth—isn't the only game in town.

Scott Mace is a BYTE senior editor based in San Mateo, California. He can be reached at scott.mace@byte.com.
Today's faster, less expensive computers can crack current encryption algorithms easier than ever before. So what's next?

By Bruce Schneier

Cryptographic algorithms have a way of degrading over time. It's a situation that most techies aren't used to: Compression algorithms don't compress less as the years go by, and sorting algorithms don't sort slower. But encryption algorithms get easier to break; something that sufficed three years ago might not today.

Several things are going on. First, there's Moore's law. Computers are getting faster, better networked, and more plentiful. The table "Cracking for Dollars" on page 98 illustrates the vulnerability of encryption to computer power. Cryptographic algorithms are all vulnerable to brute force—trying every possible encryption key, systematically searching for hash-function collisions, factoring the large composite number, and so forth—and brute force gets easier with time. A 56-bit key was long enough in the mid-1970s; today that can be pitifully small. In 1977, Martin Gardner wrote that 129-digit numbers would never be factored; in 1994, one was.

continued
Aside from brute force, cryptographic algorithms can be attacked with more subtle (and more powerful) techniques. In the early 1990s, the academic community discovered differential and linear cryptanalysis, and many symmetric encryption algorithms were broken. Similarly, the factoring community discovered the number-field sieve, which affected the security of public-key cryptosystems.

There are many encryption algorithms currently available; see the table "Encryption Algorithms: Suitability to Task" on page 100 for classes of algorithms and their characteristics. What algorithms are considered secure today? What about the future? Predictions are dicey at best, but they are essential in the business of cryptography.

For instance, if I design a cryptographic system today, it may spend two years in development and be fielded for another dozen. The information it carries might have to remain secure for six years after transmission. This means I'm forced to make a decision today about what the state of cryptography will be 20 years from now. Like it or not, cryptographers have to be futurists.

Fearful Symmetry

Symmetric algorithms use the same key for both encryption and decryption. These algorithms are the workhorses of cryptography. They encrypt anything digital, including e-mail, telnet connections, audio, and video. You can divide symmetric algorithms into two piles: stream ciphers and block ciphers. **Stream ciphers** encrypt data in streams—a bit, byte, or word at a time. **Block ciphers** encrypt data in fixed chunks, generally 64 bits. Since you can use block ciphers to build stream ciphers, most ciphers are block ciphers.

And there are a lot of them. The table "Symmetric Algorithms and One-Way Hash Functions" on page 102 lists the major ones, comparing speed, block size, key size, and patent and licensing terms.

A few points are worth noting here. Triple-DES is the conservative choice, although it's the slowest. Everything else has received far less cryptanalytic attention. Blowfish is the fastest algorithm, but it has a long key-setup time and isn't suitable for encrypting small blocks. And its large tables make it completely unsuitable for smartcards. The International Data Encryption Algorithm (IDEA) got its fame as the encryption algorithm in PGP, and it would probably be used more if it weren't impossible to get any reasonable licensing terms out of Ascom-Systec. CAST, the new algorithm in PGP, is similar to Blowfish. RC2 has been largely abandoned in favor of RCS.

If I had to choose an encryption algorithm to use today, I'd select Triple-DES (it's much harder to break via exhaustive searching than DES), IDEA (it has survived since 1991 without any serious cryptanalysis), or Blowfish (it's fast, compact, and simple; allows variable key lengths; and has been the victim of no known successful cryptanalysis). A couple of years ago, I and a group of other cryptographers recommended a 90-bit key as the bare minimum for security today (see why in the table above); all three of these algorithms exceed that key length.

The block-cipher landscape will change soon. The National Institute of Standards and Technology (NIST) is soliciting candidate algorithms for an Advanced Encryption Standard (AES), which will replace DES. None of the aforementioned algorithms is suitable because AES must have a 128-bit block size and key lengths of 128, 192, and 256 bits.

Candidates are due in June of this year, and NIST will select an algorithm sometime in 1999 or 2000. Thus far, about 15 people have indicated that they will submit an algorithm. Most will likely be pretty awful attempts by crypto wannabes, but expect to see an RCS variant from RSA Data Security, a CAST variant from Entrust Technologies, a variant of Square, and Blowfish II (based on Blowfish).

Those who need a stream cipher have two choices. One option is to use a block cipher in stream mode. This isn't difficult; any block cipher will work, and you can consult any cryptography text to find out how to do it.

The other option is to use a dedicated stream cipher. There are a few of these, some optimized for custom hardware and others for 32-bit microprocessors. RC4 is one common choice. Once a trade secret of RSA Data Security, it was "outed" to the Internet in 1994 and has since become public-domain. There's an Internet Draft for something called ARCFOUR, which is actually RC4: The draft's authors didn't want to use the real name.

No one has succeeded in breaking RC4, but cryptographers have found some sta-

Cracking for Dollars

An expenditure of twice the dollars makes your adversary's attack twice as fast. By Moore's law, these attacks will be 10 times less expensive (and 10 times faster) every five years.

<table>
<thead>
<tr>
<th>Type of attacker</th>
<th>Budget</th>
<th>Tool</th>
<th>40 bits: Time and cost per key recovered</th>
<th>56 bits: Time and cost per key recovered</th>
<th>Key length for protection in late 1996</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pedestrian hacker</td>
<td>Tiny</td>
<td>Scavenged computer</td>
<td>1 week (No cost) 5 hours ($0.08)</td>
<td>Unfeasible (No cost)</td>
<td>38 years ($5000)</td>
</tr>
<tr>
<td>Small business</td>
<td>$10,000</td>
<td>FPGA</td>
<td>12 minutes ($0.08)</td>
<td>556 days ($5000)</td>
<td>55</td>
</tr>
<tr>
<td>Corporate department</td>
<td>$300K</td>
<td>FPGA</td>
<td>24 seconds ($0.08) 0.18 second ($0.001)</td>
<td>19 days ($5000)</td>
<td>60</td>
</tr>
<tr>
<td>Big company</td>
<td>$10M</td>
<td>FPGA</td>
<td>0.7 second ($0.08) 0.006 second ($0.001)</td>
<td>13 hours ($5000)</td>
<td>70</td>
</tr>
<tr>
<td>Intelligence agency</td>
<td>$300M</td>
<td>ASIC</td>
<td>0.0002 second ($0.001)</td>
<td>12 seconds ($38)</td>
<td>75</td>
</tr>
</tbody>
</table>

FPGA = field-programmable gate array

Elliptic-Curve Cryptography vs. RSA and DSA

A comparison of the time needed to break ECC and the time needed to break RSA and DSA using the best general algorithms. This assumes you believe that the elliptic-curve problem is inherently harder than taking discrete logs modulo p.

The Speed of RSA

<table>
<thead>
<tr>
<th>Task</th>
<th>512 bits</th>
<th>768 bits</th>
<th>1024 bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Encrypt</td>
<td>0.03</td>
<td>0.48</td>
<td>0.93</td>
</tr>
<tr>
<td>Decrypt</td>
<td>0.16</td>
<td>0.52</td>
<td>0.97</td>
</tr>
<tr>
<td>Sign</td>
<td>0.16</td>
<td>0.07</td>
<td>0.08</td>
</tr>
<tr>
<td>Verify</td>
<td>0.02</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RSA speeds in seconds (on a SparcStation 2) for different modulus lengths with an 8-bit public key.

tistical anomalies in it, including weak keys. When I recommend RC4, I advise the use of a more complicated key schedule, namely spinning the key schedule twice. A key schedule is an algorithm that expands a relatively short master key to a relatively large expanded key for use in encryption and decryption. RC4 uses a key schedule to initialize the state of the stream cipher prior to generating the keystream. Due to weak mixing in its key schedule, RC4 has a class of detectable keys. The more complicated key schedule strengthens that.

Making a Hash of It

A hash function is a fingerprint function that takes an arbitrary-length input (i.e., a pre-image) and produces a fixed-length output (i.e., a hash value). Given a digital blob (a file, a message, or whatever), it's easy to calculate the hash of that file. But given a hash value, it's hard to create a file that hashes to that value. It's much easier (by a factor of \(2^n/2\) for an \(n\)-bit hash function) to find collisions for a hash function than to reverse the function. This means that the function is "one-way," unlike something like a cyclic redundancy check (CRC), where it's easy to create a file with a given CRC value.

Hash functions also have to be "collision-free": It must be hard to find two files that hash to the same value (see the figure "Cracking Hash Functions with Collisions" on page 100). This means that if I give you a hash value and then later show you a file that hashes to that value, you can be sure (to the extent of the security of the hash function) that I had that file at the time I created the hash value.

Most hash functions in use a few years ago produced 128-bit hashes, although for any long-term security a 160-bit hash is de rigueur. I wouldn't use a 128-bit hash for anything unless I had a really good reason for doing so.

There are only a few suitable algorithm choices here. I recommend SHA-1, from the National Security Agency (NSA). SHA, the Secure Hash Algorithm, is a NIST standard. It produces a 160-bit hash. Another choice is RIPE-MD-160, from the European Community. MD5 produces only 128-bit hashes, and cryptographers have found weaknesses in the algorithm. Don't toss your MD5-based applications immediately, but you should switch them over to SHA as soon as possible.

Not much is forthcoming in this category. A lot of work has been done on creating hash functions from block ciphers, but no single proposal has emerged as a front-runner. People are likely to stick with SHA-1 or RIPE-MD-160, although some ultra-high-end applications use a combination of MD5 and SHA-1.

Big MACs

Message-authentication codes, or MACs, are hash functions with a key: Only someone who knows the key can create or verify a MAC value. For instance, I can use MACs for integrity checking. After creating a file, I calculate its MAC (using a key you and I share) and append it to the file. Anyone can read the file, but only someone who knows the key can create a new MAC when you get the file, you can calculate the MAC and verify that it's the same as the MAC I sent you. If it is, you know that no one has tampered with the file during transit.

There are several MAC algorithms, but the most promising ones are HMAC and NMAC. They're based on hash functions, generally SHA-1; HMAC is an Internet Draft (RFC 2104). There are other MAC constructions based on hash functions, but they're not nearly as good. And I haven't seen any MACs based on block ciphers that I've liked very much.

Playing the Public Keys

Public-key algorithms are the surprise of the 1970s. Encryption and decryption use different keys and, more important, you cannot calculate these keys from each other. Thus, you can generate a key pair and publish just the encryption key (see the table "Pick Your Enemy, Then Your Key" on page 102 for recommended key
lengths). Anyone can get that key and send you a message that only you can decrypt (using the decryption key). You can use the same math for digital signatures (more on this later). The actual implementation is complicated, with certificates, certificate authorities, trust management, and lots of odds and ends, but that's the general idea (see “Picking the Crypto Locks,” October 1995 BYTE).

Public-key algorithms are based on one of two problems: the factoring problem and the discrete-logarithm problem. Both are more or less equally hard, so I'll discuss the factoring problem with the understanding that what I say applies to both. Factoring the kind of numbers used in public-key cryptography—1024 bits or more—is hard. It would take all the computers in the world years to accomplish.

Patents are another issue to deal with when choosing a public-key algorithm. RSA is patented, for example, and will remain so until 2000. Diffie-Hellman and ElGamal are both in the public domain: Any patents that might have applied expired last year. I usually use ElGamal, unless I have a strong reason to use RSA.

Legible Signatures

Digital-signature algorithms are simply public-key-encryption algorithms turned on their ears—the private key is used for signing, the public key for verification—and all the key-length discussion in the previous section applies. RSA digital signatures are just as secure (or as vulnerable) as RSA encryption. The same is true for ElGamal. There are other alternatives: NIST has endorsed something called the Digital Signature Algorithm (DSA) as a federal standard. And there are several elliptic-curve algorithms.

Elliptic curves are the newest kids on the block. Points on an elliptic curve form a mathematical group: Given any two points, there are operations that always produce another point on the curve. Further, you can use a number and a point on the curve to give another point on the curve—but it's hard to figure out what number you used, even if you know the original point and the resulting point. This one-wayness leads to cryptographic applications. And because cracking this is much harder than cracking other systems, it requires much smaller keys to obtain comparable encryption.

This normally wouldn't be interesting, but the fast algorithms used for finding discrete logarithms don't work with elliptic curves. Therefore, proponents of this technology argue, you don't need as long a key. For applications where bits are very dear, like smartcard applications, these are enticing words.

The question is not whether elliptic-curve cryptosystems are secure, but whether they offer the same security with shorter key lengths than comparable systems. Today, the discrete-logarithm problem for elliptic curves is harder than the discrete-logarithm problem modulo prime numbers p: There is no subexponential algorithm for doing the calculation. (The discrete-logarithm problem involves finding the exponent to which you must raise a given number to generate a value modulo some large prime number.) Thus, people use elliptic-curve cryptosystems with significantly shorter key lengths. The figure "Elliptic-Curve Cryptography vs. RSA and DSA" on page 99 illustrates the difference between key sizes required for comparable security.

It's unknown whether the discrete-logarithm problem is harder because of the fundamental mathematical nature of elliptic curves or because of our limited knowledge of their mathematical properties. This is a very new area of research, and recent discoveries indicate that there is still much theoretical work to be done. I do not recommend assuming that they can provide the same security over the long term with shorter key lengths than cryptosystems using discrete logs modulo prime numbers p.

Encryption Algorithms: Suitability to Task

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Confidential</th>
<th>Authentication</th>
<th>Integrity</th>
<th>Key</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symmetric encryption</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Public-key encryption</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Digital signature</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Key agreement</td>
<td>Yes</td>
<td>Optional</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>One-way hash</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Message-authentication</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

continued
BYTE Reprints serve as high-quality, inexpensive promotional tools for:

- Trade show handouts
- Direct mail campaigns
- Dealer/distributor promotions
- Training and educating key personnel
- Presentations at conferences/seminars

And there's more!

- BYTE article reprints are NOW AVAILABLE in hard-copy and electronic formats
- BYTE reprints can be customized with your company name, logo, product picture, etc.

Call today for information and quantity prices.

Hard copy:
Mike Guyer
Reprint Services
Phone: 612-582-3856
Fax: 612-633-1862
E-mail: maguyer@reprintservices.com

Electronic:
Faith Ellington
Phone: 603-924-2525
Fax: 603-924-2602
E-mail: faith_ellington@mcgraw-hill.com
Security? What Security?

Popular magazines like to describe cryptography products in terms of algorithms and key lengths. Algorithms make good sound bites; they can be explained in a few words and are easy to compare with one another: "128-bit keys are good security." "Triple-DES means good security; 40-bit RC4 means weak security." "2048-bit RSA is better than 1024-bit RSA." Unfortunately, reality isn't that simple.

Longer keys don't always mean more security. Compare the cryptographic algorithm to the lock on your front door. A door lock might have four metal pins, each in one of 10 positions. Thus, there are only 10,000 possible keys, and a burglar willing to try all 10,000 is guaranteed to break into your house.

But an improved lock with 10 pins, making 10 billion possible keys, probably won't make your house any more secure. Burglars don't try every possible key (a brute-force attack); most aren't even clever enough to pick the lock (a cryptographic attack against the algorithm). Instead they smash windows, kick in doors, disguise themselves as police officers, or rob keyholders at gunpoint. Better locks don't help against these attacks.

I've spent years designing, analyzing, and breaking cryptographic systems. I do research on published algorithms and protocols, but most of my work consists of examining actual products. I've designed and analyzed systems that protect privacy, ensure confidentiality, provide fairness, and facilitate commerce.

I can almost always find attacks that bypass the algorithms altogether. I don't have to try every possible key, or even discover flaws in the algorithms. Instead, I exploit errors in design, implementation, and installation. And most of the time I exploit the same old mistakes that implementers make over and over again.

The moral here is not that cryptography is useless, but that cryptography is not enough. Strong cryptography is not a panacea. Focusing on crypto algorithms while ignoring the other aspects of security is like defending your house not by building a fence around it but by putting a single immense stake into the ground and hoping that your adversary runs right into it.

Security designers occupy what Prussian general Carl von Clausewitz called "the position of the interior." A good security product must defend against every possible attack—even attacks that haven't been invented yet. Attackers, on the other hand, need to find only one security flaw in order to defeat the system. Moreover, they can cheat: They can collude, conspire, and wait for technology to provide them with additional tools. They can attack a system in ways the system's designer never thought of. They can ignore the algorithms.

Building a secure cryptographic system is easy to do badly and very difficult to do well. Unfortunately, most people can't tell the difference.

In other areas of computer science, functionality serves to differentiate the good from the bad. For instance, a good compression algorithm will work better than a bad one; a bad compression program will look worse in feature-comparison charts.

Cryptography is different. Just because an encryption program functions doesn't mean it's secure. What happens with most products is that someone reads Applied Cryptography, chooses an algorithm and a protocol to use, performs tests on it to make sure everything works, and thinks the job is done. It's not. Functionality does not equal quality, and no amount of beta testing will ever reveal a security flaw. Too many products are merely "buzzword compliant": They use secure cryptography, but they are not secure.

Pick Your Enemy, Then Your Key

<table>
<thead>
<tr>
<th>Year</th>
<th>vs. Individual</th>
<th>vs. Corporation</th>
<th>vs. Government</th>
</tr>
</thead>
<tbody>
<tr>
<td>1995</td>
<td>768</td>
<td>1280</td>
<td>1536</td>
</tr>
<tr>
<td>2000</td>
<td>1024</td>
<td>1280</td>
<td>1536</td>
</tr>
<tr>
<td>2005</td>
<td>1280</td>
<td>1536</td>
<td>2048</td>
</tr>
<tr>
<td>2010</td>
<td>1280</td>
<td>1536</td>
<td>2048</td>
</tr>
<tr>
<td>2015</td>
<td>1536</td>
<td>2048</td>
<td>2048</td>
</tr>
</tbody>
</table>

Recommended public-key lengths (in bits).

Bruce Schneier (Minneapolis, MN) is president of Counterpane Systems and author of Applied Cryptography (John Wiley & Sons, 1994 and 1996). You can reach him by sending e-mail to schneier@counterpane.com or to his Web page, at http://www.counterpane.com.
Web applications nowadays can use all sorts of fancy user-interface gadgetry, including JavaScript, Java, and Dynamic HTML. Is there still a place for plain old HTML-based forms? You bet. HTML forms tied to server-side processing still work just fine. And, as I'll discuss this month, there are lots of ways to extend and refine the HTML/CGI technique.

A recent overhaul of our Web site gave me the opportunity to review and upgrade our forms and related scripts. This effort led me to articulate 10 principles for effective use of HTML forms.

1 Mark required elements. Many sites do this, but many more don't. Remember that people are always in a hurry and will bail out of your application in a heartbeat if it starts to feel like a waste of time.

2 Attach explanations directly to form elements. Put field-level documentation right on the form, next to or below the widget it explains. A separate help file is fine, and a hyperlink that jumps context-sensitively from the form to the relevant part of the help file is even better. But where practical, it's best to put the explanation right on the form. Remember: People are in a hurry. If you require six-character alphanumeric passwords, say so. Don't make users click on Submit to find out the hard way.

3 Solicit feedback. Add a <textarea> widget that invites users to ask questions and make comments. Then accumulate that information into a Web, mail, or news archive that you can review periodically. A mailing to: link is fine, too, but it's one click removed from the form. People are in a hurry, and the Web relentlessly encourages context-switching.

Over time, patterns emerge from these responses. Pay attention to them, and refine your feedback mechanism accordingly. To improve a business process, you have to be able to measure it. If you instrument them properly, Web-based customer-service forms can provide the raw data.

4 Use layout and visual cues to organize elements. Two years ago, I avoided using HTML tables because a lot of browsers handled them poorly or not at all. This time around, I formatted all our forms using tables. The new batch look nicer than the old ASCII-formatted forms, but my motivation was only partly aesthetic. Built on a grid, forms can best express the sequences and hierarchies implicit in the data they capture.

The structure that emerged from several rewrites of our current batch of forms is a two-column grid of name-value pairs. This design flexibly accommodates not only simple elements but also more complex clusters of elements.

Table formatting works in several ways here. The horizontal alignment of the radio buttons, located in successive rows of the nested table, binds them into a unit. The adjacency of the cells containing the credit-card radio button and its four associated widgets binds all these into another unit. Finally, a background color groups the credit-card widgets. This design (I hope) wordlessly conveys the following instructions: 1) Choose credit-card or bill-me-later; 2) if you choose credit-card, you must fill in the associated fields; and 3) if you fill in any of these fields, complete them all.

5 Develop a consistent style. The BYTE Site is a cluster of servers that delivers a suite of applications. We took pains to standardize the look of the HTML pages dished out by the various applications, such as archive articles, search results, and conference messages. But we failed to standardize the look and feel of the forms presented by these applications.

It makes sense to do so, and we will, for reasons that are as much functional as aesthetic. One instance of the design illustrated in the screen above might work well enough, but it works better when users encounter consistent variations on the theme.

Given such standardization, you can create and leverage a data dictionary of

Effective HTML Forms

Principles of Form Design

- Mark required fields.
- Bind explanations tightly to fields.
- Use grid layout to clarify sequence and hierarchy.

Effective HTML Forms

An overhaul of The BYTE Site prompts us to rethink our methods of creating and processing forms.

Effective HTML Forms

1. Mark required elements. Many sites do this, but many more don't. Remember that people are always in a hurry and will bail out of your application in a heartbeat if it starts to feel like a waste of time.

2. Attach explanations directly to form elements. Put field-level documentation right on the form, next to or below the widget it explains. A separate help file is fine, and a hyperlink that jumps context-sensitively from the form to the relevant part of the help file is even better.

3. Solicit feedback. Add a `<textarea>` widget that invites users to ask questions and make comments. Then accumulate that information into a Web, mail, or news archive that you can review periodically.

4. Use layout and visual cues to organize elements. Two years ago, I avoided using HTML tables because a lot of browsers handled them poorly or not at all. This time around, I formatted all our forms using tables.

5. Develop a consistent style. The BYTE Site is a cluster of servers that delivers a suite of applications.
form elements, along with associated error-handling code and messages. For example, we collect e-mail addresses on four different forms. Clearly, each ought to inherit a common widget, along with associated error-handling code.

6 Parse forms completely and report all errors and omissions. In order to download the JDK 1.2 beta from JavaSoft’s site, I had to register. On my first try, the server rejected my form with the “Username cannot match password” message. So I backed up, corrected that, and resent the form. It rejected my form again, this time with “Required address field is blank.”

This all-too-common behavior irks me. The application saw all the fields I sent, and didn’t send, on the first try. Why not do all the necessary griping immediately? I’d rather take care of everything at once. Finding multiple errors one at a time, by bouncing repeatedly off a server, rapidly erodes my patience.

To spare users this headache, I’ve settled on an error-handling technique based on the assumption that it’s better to deliver all the form-processing results all the time. I’ve implemented the technique in Perl, but you could just as easily do it in any other Web scripting language.

It’s nothing fancy. I just accumulate the complete list of errors each time I process the form. If the list isn’t empty at the conclusion of the script’s error-checking phase, the script passes the list to a common library routine that displays all the errors, along with associated explanations.

An unexpected benefit of this approach was that it greatly accelerated the process of testing the error-checking code associated with our forms. In a single cycle, you can verify that a form’s handler correctly reports an incorrectly confirmed password, an empty address field, and an ill-formed account number.

7 Accept all unambiguous inputs. When I last renewed a digital certificate on the VeriSign site, the server rejected my order form with an “Invalid credit card number” message. Why? I’d typed the number with hyphens, but the application was looking for unhyphenated input. That’s just silly. Here’s the line of Perl that will reduce a mixture of 16 digits, hyphens, spaces, or other junk to just 16 digits:

```perl
$num =~ s/\D*//g;
```

C’mon, VeriSign. You said that better service was the reason you raised your rates on digital certificates. Doesn’t my extra hundred bucks buy me one line of Perl?

8 Use short error messages linked to longer explanations. As I worked through the new batch of forms, I consolidated the error messages into a dictionary of keyword/value pairs. The keywords are short phrases, such as “AccountNotActive.” The values are longer explanations, such as “please activate your account first, using the activate link on any protected page.”

In my case, the dictionary is implemented as a Perl hash table, but you can easily achieve the same effect in any scripting language.

This method works in conjunction with a standard error-message routine shared by all form-handling scripts. When a script checks the input sent from a form, it does not report any errors directly. Instead, it builds a list containing the keywords associated with all errors found. For example:

```perl
if ($#errs > 0) { 
    errorMsg($errs); exit;
}
```

Then, if the error list is nonempty, the script sends the list to the error-message routine, which reports errors along with their associated explanations:

```perl
if ($#errs > 0) { 
    errorMsg($errs); exit;
}
```

I like this approach for two reasons. In the source code, the error keywords bind closely to the tests that trigger them, so the code becomes self-documenting. The same keywords, appearing on the page generated by the error-message routine, are more explanatory than numeric codes would be, yet they are more easily communicated than the accompanying long explanations. And, of course, since the error-message routine is always prepared to handle a list of keywords, the system
Introducing StarTeam Professional 3.0 by StarBase. By optimizing the interactions between the people, tools and processes in your development enterprise, StarTeam greatly increases your output, improves communication and collaboration, and streamlines the entire process for higher performance and profitability than ever before.

StarTeam interoperates with existing Microsoft® Visual SourceSafe® and Intersolv® PVCS archives. This allows you to keep your project on track while migrating to a solution that delivers superior configuration management that is both easier and less expensive to implement, as well as increasing the overall productivity of your team.

And StarTeam puts all of this power into a single, intuitive interface that gets everyone up to speed immediately.

- **Visual Configuration Management**
 Visually control configurations with "views"

- **Collaborative Communication**
 Collaborate with anyone, anywhere in real time

- **Change Management**
 Effectively manage the entire process of change

- **Interoperability**
 Works with PVCS® and Visual SourceSafe® archives

- **Location Independence**
 Secure, web-enabled remote functionality

- **Intuitive Interface**
 Easy for everyone to learn and use

So call us at 1-888-STAR700, or visit our web site, www.starbase.com, and we’ll help you put StarTeam Professional 3.0 to work for your team on your next project.
obey principle 6: It always reports all errors and omissions.

9 Use forms as components. The design of the new subscriber-access part of BYTE's Web site required the capability to vary the outcome of a given interaction with a form according to the context in which the form is invoked. For example, as a subscriber to BYTE magazine, you're entitled to activate your on-line account and view complete current articles that are otherwise shown only as abstracts. A link to the activation form appears on every abstract. Completion of the form leads back to the full version of the article that was first displayed as an abstract.

How can you achieve this effect? It's straightforward if you dynamically generate the form from a template. In this case, the link that invokes the form self-referentially encodes the URL of the article containing the link. Here's an example:

```html
```

The signal mode=form tells activate.pl to read and emit the file activate.htm, which contains the form's HTML. That file contains a placeholder for a URL to be interpolated into this form:

```html
<input type="hidden" name="art" value="ART">
```

Here's how activate.pl renders the form:

```perl
if ($mode eq 'form') {
    open(F, 'activate.htm');
    while (<F>) {
        s/value=ART/value='$art'/;
        print $_;
    }
    close F;
    exit;
}
```

The form's action attribute again names the script activate.pl. But the form itself contains no element named MODE. So when activate.pl regains control, it skips the form-generation phase and proceeds to the form-parsing phase. If there are no errors, it calls a database routine to activate your account and then issues a confirmation page. A link on that page invites you to continue reading the article that originally prompted this sequence of events. The address embedded in that link is the URL passed on the first call to activate.pl, which was embedded in the form as a hidden variable during the form-generation phase.

10 Vary widget types according to context. As soon as this problem was solved, another requirement emerged. BYTE's circulation department decided to run a circulation drive hosted on another site, http://www.bytesub.com. We wanted to refer new subscribers from bytesub.com to the same activation form used by existing magazine subscribers on The BYTE Site. But the circumstances were different. An existing BYTE magazine subscriber has to enter a subscriber name and number on the activation form in order to authenticate. A bytesub.com subscriber shouldn't have to, because the ordering process on that site already has this data.

We could tell bytesub.com subscribers to write down their credentials. Then we could refer them to a byte.com activation form that would require them to enter that data. But that would be silly. Using a Web-style remote procedure call (RPC), bytesub.com need only construct the URL that transmits this data to activate.pl.

This causes byte.com to display an activation form with prefilled subscriber-name and subscriber-number fields.

This was an improvement, but it still wasn't quite right. The name and number appeared in editable input fields, yet in this context the data should only be displayed, never changed. Although most users wouldn't touch this data, it seemed wrong to invite them to do so.

The final iteration resolved this problem by varying the types of the widgets according to context. As shown in the figure on page 104, the template contains placeholders for two versions of the widget pair. The mode=signal tells the form generator which pair to include. In a byte.com context, the form presents empty input boxes. Called from bytesub.com, it prints the passed values in these same locations.

Future Directions

We've made a lot of progress this time around, but there's still plenty of room for improvement. The data dictionary remains just a good idea; we haven't rigorously decomposed all our forms to create an inventory of reusable widgets.

Another tantalizing possibility is name-space completion. Using the replaceable-widget technique shown in the figure on page 104, I've prototyped a mechanism that accepts partial input in a text box and then returns a version of the form that swaps in a listbox containing matches resulting from a database lookup. This magical effect is the holy grail of Web-based data-collection applications. Many commercial toolkits can deliver this capability, but homegrown (and, thus, maximally customizable) implementations are well within the reach of competent scripters.

There's nothing Perl-specific about the techniques discussed here; they'll work in any scripting environment. You just need to know how HTML forms work and be willing to fluidly adjust the relationship between scripts and forms.

BOOKNOTE

Understanding Digital Signatures

McGraw-Hill $34.95

This handy, free Java application builds an uncompressed zip archive from a list of class files. Since the JDK's jar utility works only on entire subtrees, you need something like JHLZip to build a distributable package from a list of specifically enumerated classes.

TOOLWATCH

JHLZip

John Leach

http://www.easynet.it/jhl/apps/zip/zip.html

This handy, free Java application builds an uncompressed zip archive from a list of class files. Since the JDK's jar utility works only on entire subtrees, you need something like JHLZip to build a distributable package from a list of specifically enumerated classes.

Jon Udell is BYTE's executive editor for new media. You can reach him by sending e-mail to jon.udell@byte.com.
sometimes you can't get from one place to another without crossing a bridge. The same is true if you want to reap the benefits of Java object programming but need to work with data that's stored in a relational database. Top Link for Java provides that bridge. A 100 percent pure Java object-relational database system, the program is the third in a line of object-relational database products from Object People. Previous versions of TopLink supported Smalltalk and Gemstone.

TopLink (prices start at $4000 per developer for a four-developer license, and volume discounts are available) works with databases equipped with a Java Database Connectivity (JDBC) driver. The documentation gives examples for DB2, Oracle, Sybase, dBase, and Access. Object People has also built custom back ends for mainframe systems.

The linchpin of the TopLink system is a descriptor, which is a data structure that serves to map the details of the object structure (and object relationships) to the relational database. In other words, a descriptor tells the Top Link system how an object's data is to be stored in the relational database.

A descriptor includes the name of the Java class it describes, as well as the associated tables that the Java class will be mapped to (e.g., the table in the database where objects of the class will be stored). Information in a descriptor describes the attributes and object-object relationships that exist for objects in the class. Necessarily, a descriptor must also carry information describing the structure of the table. This information includes the primary key of all records in the table, the field names, and so on.

A descriptor holds other information that's necessary for successful storage and retrieval of database objects. For example, the Java object may contain a data type that is not supported in the relational database. A descriptor contains information necessary to transform data of one type to the other.

To help in this task, TopLink provides the Builder tool. The Builder reads in the database schema (via JDBC) and the class structure (Builder reads Java class files directly). With the schema and class structure fed into the Builder, you then have a visual view into both the database and the application's classes (see the screen). Using the Builder's Descriptor Editor, you can easily go through the process of mapping attributes to table columns. The Builder will construct a descriptor for you automatically and emit a file ready for import into the application.

At run time, a descriptor is imported into a session object (TopLink defines a session class). A session object is an...
objects live in the cache and thereby consumes. The developer can control how long the developer can control how long the cache rather than from the database. This cache is a customizable one. That is, the developer can control how long objects live in the cache and thereby control the memory footprint that the cache consumes.

I couldn't help noticing a one-page "design strategy" in the TopLink documentation. The question it tackled was this: As you begin designing an object-relational database schema, which part do you do first: the object structure or the relational database schema?

On the one hand, tackling the object structure first appears advisable. It's certainly the tack I would take, because it would permit me to construct what I would consider to be an optimal object structure. Optimal, in this case, refers to how easy it would be to program and does not necessarily refer to performance.

Furthermore, it does seem to be best to design the object structures with no regard for artifacts from the relational database system underneath. Designing your structure with the relational database in mind would mean adding features that don't really benefit the application. You're just adding them to make the relational database happy.

However, the documentation points out that the object structure and the underlying database schema are intertwined—the structure of one influences the structure of the other. Also, the relational database imposes restrictions on the object model "above." Keeping these limitations in mind while the object structure is being built can keep you from painting yourself into a corner.

Still, this raises the "impedance mismatch" question. That the relational database need be considered at all is something that likely causes cheerying in the camps of purveyors of pure object databases. They can rightly point out that, compared to other object-relational approaches taken by TopLink's Builder, ServerSession objects are session managers to the client tier. ClientSession objects give the application the "appearance" of being a "typical" (i.e., two-tiered) application. ServerSession objects are session managers to the client tier. ClientSession objects give the application the "appearance" of being a "typical" (i.e., two-tiered) application.

Where to Find
The Object People
Ottawa, Ontario, Canada
919-852-2200
fax: 919-852-1032
http://www.objectpeople.com

Javatalk TopLink Bridges Two Worlds

So, Help Me, Java

JavaSoft continues to roll out APIs about as fast as you can hiccup. The new Java Help API, currently in beta testing, is an all-Java "über alles" help system for JavaBean components, applications, desktops, and HTML pages. (That's a big target.) The Java Help document envisions a Java help system written purely in Java. That means you can embed a help system within an application or compress it into a Jar file for transport to another destination.

The primary component of a Java help system seen by a user is the help viewer, which comprises a toolbar, content pane, and navigation pane. (Java Help relies heavily on Swing's user-interface components.) The contents of the help viewer ought to be familiar to anyone who has interacted with a help system. The content pane displays help topics. The navigation pane is a tabbed pane that lets a user select from among the table of contents, index, and text search options. Java Help permits a single help system to support varying "navigational views" of help content. The navigational view is a description of how a particular kind of content is to be viewed. In that sense, it is metadata—data about data. For example, a navigational view is defined by (among other things) its format (how it is to be shown) and data that identifies the format and location of the view. A navigational view is implemented by a Help Navigator, which is a subclass of the JHelpNavigator class (a swing component).

The Java help system already understands several navigational views. The table of contents, index, and search information (displayed in the help viewer) already have navigational views defined. Java Help provides mechanisms for registering new navigational views. Consequently, the diversity of data permitted, and the means by which the data is viewed, is limited only by developers' imaginations.

The data structure that carries all the information needed to provide a view into a help system is bundled into a HelpSet file. Note that there are two "loose" terms at use here. First, a HelpSet file isn't necessarily a file, in the same sense as files that you store on your hard disk. A HelpSet file could be bound into an application, for example.

Second, it's probably more accurate to say that the information is rooted in the HelpSet file. The structure of a HelpSet is XML-encoded (Extensible Markup Language) data. The data points to the URLs from which you can find the info necessary to build the help system.

Here's an example. One portion of the HelpSet file points to yet another structure called the Map file. A Map file is a series of "key = value" pairs. Each key is a help topic (i.e., an entry from the table of contents), and the value is the URL of another file that stores the actual content that the system will display when the user selects a table-of-contents item.

The upshot is that the data structures used by a Java help system are flexible enough to permit a wide variety of delivery scenarios: Help can be bundled into a JavaBean, help can be inside an application, help can be a separate (but local) file outside the application, help can be pulled in from across the network, and so on. The architecture is initially daunting, but it looks as if it will serve the (and over-broadening) needs of Java applications and applets.
It's a third generation Java tool.
But you've never seen anything like it.

It's a box. A tightly sealed, shrink-wrapped box of software open to anything a Java™ developer can dream up. A wish list fulfilled. A third generation tool created by Silicon Graphics and unleashed by Cosmo. An integrated set of powerful and highly visual tools for creating Java applications, applets, and classes. It's our response to your desire to maintain your code and your cool at the same time. So unwrap it. Dive into it. Create sophisticated, cross-platform media rich applications. Blast through the entire development cycle, designing, debugging and delivering. Imagine everything. Stop at nothing.

But this is not some marketing inspired fantasy. Cosmo™ Code was built by the same engineers who created Silicon Graphics' award-winning ProDev™ Workshop and RapidApp™. This is a mature, robust development environment that utilizes a proven code base. And this development tool includes class libraries from the leader in object oriented components—Rogue Wave® Software.

See for yourself. Call 1-888-91-COSMO ext. 282 or visit http://cosmo.sgi.com for more information on Cosmo Code 2.5. It's a product that has just what a Java developer needs. Everything you can imagine.

Now available on Windows® 95 and Windows NT®.
The Path to Real-World
ENTERPRISE NETWORK SOLUTIONS

Explore the Whole World of Communications

Enterprise Network solutions are everywhere at SUPERCOMM! From the 340,000+ square foot exhibit floor to the ICA End User Zone, you'll see the hottest new products and applications up close. More than 140 major players covering 150,000+ square feet will turn the exhibit floor into your playground for hands-on experimentation with these breakthrough technologies and products:

- Application Development
- ATM/Frame Relay
- Bridges/Routers/Gateways/Hubs
- Broadband Equipment and Services
- Computer Telephony
- Customer Premises Equipment
- Data Communications
- Integrated Voice/Data/Video
- International Carrier Services
- Internet Solutions
- Intranets/Extranets
- ISDN/SMDS
- LANs/MANs/WANs
- Multimedia Applications
- Network Management Systems
- Wireless Communications

Only at SUPERCOMM can you visit such industry giants as Sun Microsystems, Unisys, Hewlett-Packard, NCR, DEC, Tandem, Bay Networks, Cabletron, Cisco, 3Com, Ascend, EDS, Microsoft, Ericsson, Lucent, NORTEL (Northern Telecom), NEC and Newbridge, plus the leading international carriers; attend 63 informative enterprise network sessions*; and "Explore the Whole World of Communications" under one roof.

Put Yourself on the Path to Real-World Enterprise Network Solutions Today:

To attend: 1-800-2-SUPERC or 1-312-559-3327; fax 1-312-559-4111
To exhibit: 1-800-COMM-NOW or 1-703-907-7480; fax 1-703-907-7746

For registration information, fill out and mail today!
SUPERCOMM '98, 549 W. Randolph, Suite 600, Chicago, IL 60661-2208 USA
Name__________________________
Title_________________________
Organization___________________
Address________________________
City_________________ State ZIP/Postal Code________
Country_______________________ E-Mail____________________
Phone____________________ Fax____________________
Interest: ___Registering ___Exhibit Space
Conference Interest: ___ICA ___IEC ___IEEE
___GTM Forum
No one under 18 years of age will be admitted.

For fastest response and to receive a FREE SUPERCOMM CD-ROM, FAX to 1-312-559-4111 or visit www.supercomm98.com
Walking the corridors of an R&D lab at the world's largest computer company, you naturally expect to see all manner of things electronic. Yet I was struck on my visit to IBM's Zurich Lab, in Rüschlikon, by the prominence of nanomechanical and optical technologies. As we near the limits of today's semiconductor fab technology, will the new millennium be a post-electronic world? Will BYTE in 2010 be filled with new technologies layered on top of electronics in the same way that electronic marvels like the integrated circuit now work side by side with antique electrical devices like switches and coils?

Probably, if Gerd Binnig is right. Getting beyond the biases of electronic engineering has been a career for Binnig. In 1978, when he and Heinrich Rohrer first started their quest to map and manipulate matter at the atomic level, they had a "beginner's innocence," Binnig recounts. They ignored the conventional wisdom that their goal could be achieved only with ephemeral ion or electron beams. They turned to mechanics. The result was the scanning tunneling microscope (STM) in 1981 and a subsequent Nobel Prize in 1986.

The STM offered the first view ever of the world from an atomic perspective. Scanning a sample's surface line by line, it measures the tunnel current—a quantum mechanical effect exhibited by the electrons surrounding an atom—between a microscopic tip and the surface and translates it into an atom-by-atom image.

The STM was refined into the atomic force microscope (AFM) in 1986. It also scans with a microtip, but without the current the STM requires, which limited the STM to imaging conductive materials. Instead, the AFM measures attracting and repelling forces between atoms. A cantilever suspending the tip acts like a spring. The forces of interaction deflect the cantilever; gauging the amount of deflection yields an atom-level picture.

Using the STM to move single atoms around, scientists have achieved a theoretical density of a million gigabits per square inch, but these experiments require temperatures near absolute zero. In a more practical approach, IBM's Almaden (California) and Zurich research labs are experimenting with probe-based storage using AFM technology. With a rotating, penny-size plastic disk, Dan Rugar's group at Almaden constructed a kind of high-tech phonograph with a 0.008-micron tip. At a reliable density of 64 gigabits per square inch, the electrically heated stylus writes dents into the disk; it later dips into those dents for reading (see "Infinite Space," February BYTE, page 121).

The Zurich team has taken that AFM work a step further, trying to overcome single-tip data rates that are limited to between 1 and 10 megabits per second. Their answer is Project Millipede. In January, they reported the construction of a 5 by 5 set of tips; by year's end, they hope to have a 1000-cantilever array working, which would yield a terabit on a 1.4-inch-square area at a rate of 1 gigabit per second.

PROBABLE IMPACT

Storage
- Atomic force microscope (AFM) technology could produce devices that write a terabit of data on a 1.4-inch-square area at a rate of 1 gigabit per second.
- Holographic storage could instantaneously retrieve from large data sets the answers to complex queries.

Chip Manufacturing
- AFM could be used to overcome the limits of photolithography by using very tiny mechanical elements within multilayer chips.
- New printing techniques can't reduce the size of chips, but they can reduce the price of less size-sensitive components because they are only 10 percent of the cost of photolithography.

Binnig's vision extends further. He wants to put the new technology to work creating a generation of microprocessors that will be mechanical. If this evokes clattering wheels and sprockets, you've got the wrong picture. Binnig is talking about components so tiny they are invisible to the naked eye.

He predicts that nanoprocessors will be more tightly integrated and less energy-hungry than today's transistor-based chips. Several orders of magnitude less, in fact, which is why "the VLSI age of micromechanics" could make three-dimensional processor architectures a reality. Today's chips crowd all their elements into a single plane, Binnig says, "because nobody has a clue how to cool a 3-D package."

Zurich's Bruno Michel is working on less esoteric small-scale manufacturing techniques that will also have an impact on chip design and other processes. In
Future Vision

The Smallest Components

Michel’s case, he’s looking at a centuries-old technology to eliminate lithography altogether: printing. Using an elastomer-based “rubber stamp,” the researchers transfer patterns of submicron resolution to solid surfaces. Using “self-assembling” molecules, they achieve “conformal contact” on a molecular scale across several square inches. The process, called micro-contact printing, helps create medical tests for very small sample quantities by “printing” live protein molecules, but it could also be used to simplify chipmaking: Printing circuits with a rubber stamp costs only about a tenth of photolithography and is more environmentally compatible because it requires fewer chemicals, Michel says. But, he cautions, this technology will not scale down to the highest levels of integration achievable with lithography.

If Binnig deals with an arcane world too small to see, Hans Coufal’s work is something you can hold in your hand. Looking at the sugar cube-size crystal in my palm, it was awe-inspiring that I was holding 10 gigabits, more than a gigabyte, of data. At Almaden, Coufal is pushing the envelope forward for holographic storage. Since BYTE first reported on it two years ago (“Creating Holographic Storage,” April 1996, page 48), Coufal’s group has pushed the capacity of the cube up from 48 megabytes, nearly two orders of magnitude.

The cube is based on holography. Holograms store a pattern of interference formed by a split laser beam, recording it on film or a light-sensitive crystal. (One part of the beam reflects off the original object; the other part is the reference beam.) Illuminating the pattern with the reference beam (or with ordinary light) recreates a 3-D image of the object when tilted for different viewing angles.

In Coufal’s crystal cubes, however, each viewing angle holds a different page of information. By changing the angle in tiny increments, he has been able to store 10,000 pages of 1 megabit each (10 gigabits) in a crystal the size of a sugar cube.

A whole page is recorded and retrieved at once—yielding data rates up to 1 Gbps—which makes Coufal’s approach ideal for associative memory. Illuminating the hologram with a search pattern immediately returns the target page’s reference beam and angle. Thousands of fingerprints or satellite images, for example, can thus be searched in milliseconds. Finally, if a hologram is damaged or even breaks, each piece still contains all the information; only the image’s light intensity suffers. Coufal, who is currently experimenting with less expensive and more reliable recording crystals, expects to have a prototype in about two years.

Research labs should be near universities. Evaluate the process, not the short-term result. While some breakthroughs may take decades of research, an experienced manager will be able to judge the dynam-
Cracker Tracker
Crackers are watching you. Get even: Watch them back.

Page 112C

JDBC's Growing Pains
Full of promise, JDBC is still too immature for many.

Page 112M

The Road to a Universal Repository
They aren't for most of us yet, but it's time to check out repositories.

Page 112S
IntraServer
Advanced
Multi-Function
Adapters are
worth a look...

Ordinary SCSI adapters trap the true performance
of your Alpha, Intel, and SUN workstations and servers.
Don't let your processors stand idle, waiting for I/O
to catch up. Unleash the full performance you need
with Ultra Wide ITIpci™ SCSI host adapters from
IntraServer Technology.

These ultrafast adapters deliver a wild 10,000 I/Os per
second per SCSI port – over twice the I/O performance
of other SCSI adapters – at a very tame price. They are
the ideal solution for your Alpha, Intel, and SUN systems,
supporting Windows NT™, DIGITAL UNIX®, Linux™,
OpenVMS™, and Solaris™. IntraServer offers a variety
of single-port, dual-port, and our new Ultra Wide SCSI
10/100 Ethernet combination adapters – just plug-and-play
to connect up to 30 SCSI
devices to a single adapter.

And all our adapters are
ClusterReady™ for your high-
availability configurations.

Need support? We're ready to leap into action.
Whether it's SCSI configuration or Clustering advice,
you won't have to chase after IntraServer – we provide
the highest levels of support in the industry.

For high performance, outstanding support,
and great value – contact IntraServer today.

Call toll-free: 888-429-0425
Visit us on the Web: www.intraserver.com

Ultra2
Soon!
You can’t stop all security violations. Here’s how to track the ones that get through. By Michael Hurwicz

Cracker Tracking:
Tighter Security with Intrusion Detection

It’s midnight. Do you know who’s trying to hack your network? Probably not. According to a 1996 study by the Computer Emergency Response Team (CERT), an Internet security watchdog, network administrators fail to detect about 80 percent of network hacking.

That may change, though, with the advent of real-time intrusion-detection products. These electronic burglar alarms complement the locks (e.g., authentication, authorization, and encryption) designed to keep intruders out of your network and the inspections (security assessments and audits) that look for unlocked doors and windows. When intrusion-detection products detect something suspicious, they notify you, typically by pager, e-mail, or an SNMP trap. Intrusion-detection products may also have automated responses that can cut short a hacker’s visit to your network within milliseconds.

Complementary Technologies
There are two kinds of intrusion-detection products: host-based and network-based.

Host-based products have an agent running on each protected host. Examples include the Kane Security Monitor, from Intrusion Detection; OmniGuard/Intruder Alert, from Axent Technologies; and Stalker, WebStalker Pro, and ProxyStalker, from Trusted Information Systems. The agent sends a regular heartbeat, as well as alarms, to a management station. The heartbeat ensures that the management station can detect a denial of service aimed at overwhelming a host so that it's unable to respond or do normal work.

Network-based monitors sit on the network capturing packets and matching what they see with known attack patterns. Examples include Internet Security Systems' RealSecure, Network Associates' CyberCop, and NetRanger (introduced by WheelGroup but now a Cisco product). They, too, generate alarms when they see something suspicious and may also send a heartbeat to a central console.

Each approach has its strengths and weaknesses. Advantages of network-based detection include:

- Faster detection: A network-based monitor will typically detect a problem in seconds or milliseconds. Most host-based...
Host-Based Intrusion Detection

For small networks, a host-based intrusion-detection system is probably the most cost-effective.

Pros:
- Cost-effective for small numbers of hosts, unlikely to miss activity due to high traffic loads, probably won't require dedicated hardware.

Cons:
- Requires agent for each host, vulnerable to attack, costs rise with number of hosts, requires resources on host.

Some Vendors:
- Intrusion Detection
- Agent Technologies
- Trusted Information Systems

Network-Based Intrusion Detection

If you have to choose one kind of intrusion-detection system, a network-based one is probably better.

Pros:
- Protects every device on network, detects problems quickly, not very vulnerable to attack, one flat cost.

Cons:
- Expensive, can’t watch individual files on a specific host, requires dedicated hardware, may miss traffic due to network load.

Some Vendors:
- Internet Security Systems
- Network Associates
- Cisco Systems

approaches depend on auditing logs every few minutes.

Less visible: A monitor is less visible and accessible than a host, and thus less vulnerable to attack. Unlike a host, a network-based monitor doesn’t have to respond to pings, allow access to its local storage, let users run programs on it, or allow access to multiple users.

Bigger perimeter: The network-based approach may be able to stop an attack at the perimeter of the network, before the perpetrator ever accesses a host.

Fewer monitors: You need fewer monitors because one monitor can protect a shared network segment. In contrast, you need an agent per host, which can be costly and hard to manage. On the other hand, in switched environments, you may need a monitor per host, too, because every host is on its own segment.

Fewer resources: It doesn’t take up any resources on the protected device.

The host-based approach also has its advantages:

More cost-effective: It may be more cost-effective for small numbers of hosts.

More granular: It can easily monitor activities, such as access to sensitive files, directories, programs, or ports, that are difficult to deduce from protocol-based clues.

Tighter perimeter: Once a perpetrator has obtained a password and user name for a host, the host-based agent has the best chance of distinguishing harmful from normal activities.

More customizable: Per-host customization is easy with a separate agent for each host.

Fewer hosts: The host-based approach may not require a dedicated hardware platform.

Less traffic-sensitive: An agent is unlikely to miss any activity due to traffic loads.

These two approaches complement one another. One possible strategy is to implement network-based monitoring and add agents on particularly sensitive hosts.

Real-time intrusion detection also differs from programs such as TripWire, a freeware utility that creates checksums for critical files. Normally run once a day, TripWire notifies you if a file changes, possibly indicating corruption or virus
Apps run soooooooo slowwww.

Cubix lets 'em flow!

Application performance choking over routers and modems burdened with bandwidth limitations.

Instead, use Cubix's Managed Server Farms™ with pre-loaded Citrix WinFrame® or a variety of remote-control software options to maximize remote-application performance.

Cubix's thin-server solutions reduce your network traffic by sending only thin-client transmissions.

Cubix's Managed Server Farms do all the work. You upgrade your network capacity by reducing data traffic.

You can even run Windows NT® apps on old 386 desktop PCs without sacrificing performance.

Call us today and we'll show you a solution that won't choke you up.

1-800-953-0147

www.cubix.com/corporate/ads/01.htm

to find out more

Up to 8 Bandwidth-Busting Servers Within—
You Can Stop Upgrading Desktop PCs Company-Wide!
Cisco’s NetRanger

NetRanger, introduced in March 1996 by WheelGroup, is based on years of field experience. The product has two components: the sensor ($9000), which monitors packets and generates alarms, and the director ($10,000), which receives and correlates alarms and initiates responses.

You’ll also need at least a Pentium PC for the sensor and a Sun SparcStation running OpenView or NetView for the director. Both run Sun’s Solaris. Your hardware and software costs will be $13,000 for a sensor and $25,000 for a director.

NetRanger has a reputation for high performance. It is also highly scalable. Directors can coordinate information from multiple sites and watch for attacks that span an enterprise. NetRanger’s biggest claim to fame is its enterprise focus. One indication of this focus is the distribution channel, which includes companies such as EDS, Perot Systems, and IBM Global Services—all serving large clients with large global networks.

NetRanger works well across global WANs. For instance, it has a path-doubling feature. If one link goes down, perpetrator may access a port in character mode and then send one character per packet. If a monitor thinks only in terms of single packets, it will never see the whole message.

NetRanger is one of the most sophisticated network-based intrusion-detection products on the market today, according to Jude O’Reilly, a research analyst with the GartnerGroup (Stamford, CT).

However, NetRanger’s very strengths can turn out to be weaknesses for some users. It is designed for use in a network operations center (NOC) and for integration under OpenView or NetView. Its configuration requires detailed Unix knowledge. NetRanger is also relatively expensive. These won’t suit the typical LAN administrator very well.

Network Associates’ CyberCop

Network Associates is the result of a 1997 merger between Network General, of Sniffer fame, and McAfee Associates, known for its antivirus expertise. CyberCop uses NetRanger’s engine and database of attack signatures, which Network Associates licensed from Cisco. Network Associates created its own browser-based graphical front end.

CyberCop is basically NetRanger packaged for the LAN administrator—Network Associates’ main customer base. The software is more expensive than NetRanger: $9000 for a sensor and $15,000 for a server. However, the platform is a Dell PC running Solaris 2.5.1. (CyberCop is typically sold preinstalled.) The cost for the platform is about $3000 for a sensor and $5000 for a server.

In addition, CyberCop is designed as a network appliance. Network Associates says it should typically take 20 minutes to install. The company has created six standard configurations for the typical situations it expects to see: mixed Windows NT and Unix subnet, Unix subnet, NT subnet, remote access, perimeter (e.g., an Internet connection), and backbone. It lacks a NetWare configuration.

The browser front end is designed for ease of use and draws on Network General’s experience in condensing packet data and making it easy for users to view and understand. Expert knowledge is built into help files, as it is with the Sniffer. CyberCop can also create trace files readable by a Sniffer. CyberCop lacks some enterprise features of NetRanger, such as path doubling.

Network Associates plans a number of acquisitions and partnerships in the security arena, says Katherine Stolz, product manager for CyberCop. “We will be setting the tone for large-scale security. We are going to be a holistic provider.”

Internet Security Systems’ RealSecure

RealSecure’s strong points include simplicity and low cost, says the GartnerGroup’s O’Reilly. Like NetRanger and CyberCop, RealSecure has a two-component architecture. Engines monitor packets and generate alarms. Consoles receive alarms and provide a central point for configuration and database reporting. Both run under NT, Solaris, SunOS, and Linux. You can mix and match Oses. They can run on commodity PCs.

For small installations, it is possible to run the console software on the same machine as the engine. That’s not possible with NetRanger and CyberCop. The RealSecure engine costs about $10,000; console software is free. One engine can report to multiple consoles. One console can manage multiple engines.

RealSecure can reconfigure the Firewall-1 from Check Point Software. ISS has plans for reconfiguring Cisco routers, according to Mark Wood, manager of intrusion-detection technology. ISS is also working on an OpenView application for RealSecure, according to Wood.

Intrusion Detection’s Kane Security Monitor for NT

Kane Security Monitor (KSM) for NT, a host-based monitor, was introduced in September 1997. It has three architectural
The Xircom CreditCard Modem 56-GlobalACCESS™
Now you can send and receive data across town or across the hemisphere at the fastest available 56Kbps* speeds.

Our durable MiniDock™ connector system provides the kind of connection you can count on. Add Xircom’s unique GlobalACCESS™ features and versatile GSM/PCS 1900 digital cellular capabilities, and you get the maximum mobility for anytime, anywhere communications. Best of all, you can enjoy the benefits of this high-speed modem now and in the future. All of Xircom’s 56K PC Card modems are easily software-upgradable to the future ITU standard at no charge.

Look for the Xircom CreditCard Modem 56-GlobalACCESS at your local computer retailer. Or learn more about Xircom’s family of cellular capabilities, and you get the maximum mobility for anytime, anywhere communications. With Xircom, you’ve got the power, speed and mobility for anytime, anywhere communications. With Xircom, you’ve got the power, speed and flexibility to communicate around the globe.

Enter HotBYTES No. 122 at http://www.byte.com/hotbytes/

*56Kbps refers to server download speed only and requires compatible modems at both the user and server sites. Download speeds of 56K are currently unavailable in the U.S. Other country-specific regulations may impose similar limits. Additional technical information on X.56FLEX™ performance can be found at www.xircom.com/XL. ©1998 Xircom, Inc. Xircom is a registered trademark of Xircom, Inc. Xircom U.S. Headquarters (800) 438-4526. Xircom Europe NV/SA 193 495.8.11. Xircom Asia (65) 523-3311. Xircom in Canada (800) 565-3284. Xircom in Latin America (888) 452-8467.
components: an auditor, a console, and agents. The agents browse NT logs and forward statistics to the auditor. The security administrator uses the console GUI to receive alerts and look at historical reports and real-time activity. KSM costs $1495 per protected server (auditor and console included). Add workstation agents to this for $295 each.

KSM is particularly strong in TCP/IP monitoring, according to David Brussin, a senior consultant with Miora Systems Consulting, security specialist in Playa Del Rey, California. He also adds that Intrusion Detection’s products are not designed for speedy WAN performance.

Intrusion Detection will release an OpenView application for KSM in this quarter, according to Robert Kane, founder and CEO. Integration with the Tivoli Management Environment (TME) will follow toward the end of the year. In the future, Intrusion Detection plans to support Unix, Microsoft BackOffice, and Novell NetWare.

Axent Technologies’ OmniGuard/Intruder Alert

The three architectural components of OmniGuard/Intruder Alert (ITA) are a manager ($1995), console (free), and agents ($995 per server, $95 per workstation). They correspond to KSM’s auditor, console, and agents.

ITA offers much broader platform coverage than Intrusion Detection’s KSM. It runs on Windows NT, 95, and 3.1; NetWare 3.x and 4.x (manager and agent only); and various versions of Unix, including Solaris, SunOS, IBM AIX, HP-UX, and Digital Equipment Unix.

You can customize ITA using solution packs for major Oses, firewall vendors, Web-server vendors, database applications, and router manufacturers. Axent acquired firewall vendor Raptor in February and will enhance ITA to reconfigure Raptor firewalls.

Trusted Information Systems’ Stalkers

Stalker, introduced in 1993 by Haystack Labs, is a host-based monitor for NT and various versions of Unix, including Solaris, AIX, HP-UX, and The Santa Cruz Operation’s UnixWare. Pricing for version 2.1 was $9995 for the manager and $695 for each agent. At press time, pricing had not been announced for version 3.0, which should be out now.

continued
Introducing SmartRAID V Century
The World's Fastest Fibre Channel Controller
(or your money back!)

Total Fibre Channel Solutions
RAIDstation Fibre Storage Arrays offer up to 882GB capacity in one cabinet. No compromises with choices from 7 to 98 drive bays. Fibre Channel and SCSI cabinets can even be attached to the same controller in a single slot.

At DPT, we understand the importance of delivering solutions you can depend on. DPT's RAIDstation Fibre Storage Arrays are fully tested to assure compatibility with SmartRAID V Fibre Channel controllers.

Speed Plus Intelligence
DPT's intelligent Fibre Channel controller offers performance and ultra flexibility that surpasses all others. In addition to hardware RAID 0, 1* and 5* on the world's fastest Fibre Channel controller, you also get unsurpassed Ultra SCSI performance and connectivity. From a single card you can connect up to 126 Fibre Channel devices. Plus Century offers internal and external Ultra Wide SCSI connectivity for disk, tape, CD-ROM, etc.

DPT's new P* technology allows data transfer up to 132MB/s with sustained throughput of 66 MB/s handling thousands of concurrent commands. And because the controller has an onboard Intel i960 processor, SmartRAID V controllers deliver top throughput without zapping your host CPU performance.

Setup is a snap with DPT's ROM-based SMOR utility (Storage Manager on ROM). And SmartRAID V is fully I/O compliant for guaranteed compatibility with current and future OS releases from Microsoft, Novell, SCO and others.

Call today to try one at 50% off. Prove for yourself it's the world's fastest or your money back.

1-800-860-4589

DPT distributors include:

- GatesArrow
- Ingram Micro
- Merisel
- Tech Data

* Available with RA4050 module.

Limit one per reseller. 50% off promotion on PM2554UWF, 40% off on Fibre Storage Array products. Cannot be combined with any other DPT promotion. If not satisfied, PM2554UWF must be returned within 30 days of purchase date. Offer expires June 1, 1998.

DISTRIBUTED PROCESSING TECHNOLOGY • 140 Candace Drive • Maitland, Fl 32751 • 407-830-5522 • Fax 407-260-6690 • sales@dpt.com

Enter HotBYTES No. 115 at http://www.byte.com/hotbytes/
Intrusion Detection's Kane Security Monitor is a host-based monitor that scrutinizes logs for abuse patterns.

WebStalker Pro, which was introduced by Haystack Labs in June 1996, runs under the same OSES as Stalker. It specifically addresses Web servers. It costs $495 for Unix and $2995 for NT. A version of WebStalker ships with Sun’s Netra Web server. IBM Global Services also resells WebStalker.

Trusted Information Systems, maker of the NT-based Gauntlet firewall, bought Haystack in October 1997. In December 1997, it announced ProxyStalker, a monitor that runs only under NT and is designed for Microsoft Proxy Server 2.0. At press time, ProxyStalker was expected out in the first quarter. Pricing had not been announced, but it was expected to be commensurate with Proxy Server, which costs less than $1000.

All three Stalker products can reconfigure Gauntlet firewalls, and all three are able to terminate attacks as well as detect them. For instance, WebStalker Pro can terminate a log-in or a process, or restart the Web server. The Stalker family also integrates with TME.

An Alarm Conclusion

Intrusion detection is only one part of a complete security program. It’s no use installing burglar alarms, for instance, if you don’t lock the doors with proper authentication, authorization, and encryption.

“Intrusion detection is for the customer who has already taken the steps to put together good strong firewalling and an authentication process. Intrusion detection offers an added layer of security,” says John Freees, president of N2N Solutions, a security integrator in Mount Prospect, Illinois.

In addition, many if not most security breaches are based on social engineering—which, in plain language, often means tricking users into revealing passwords. Therefore, education is fundamental to making security technology work. Users must understand what they’re supposed to do and what they’re not supposed to do—like never give their passwords out over the phone.

In the context of a well-planned security program, intrusion-detection products can help a security manager sleep at night.
See us at Comdex Spring
Booth #1618

With DUAL REDUNDANT POWER SUPPLIES, HOT SWAPPABLE RAID capabilities, and a full barrage of REMOTE SYSTEM MONITORING, you can rest assured that the dual Intel Pentium® Pro and Pentium® II processors can run at full throttle....

It's not just the big things either.
For instance, what's the use of dual hot swap power supplies if you have only one power cord? Ours have two, and either cord can power both power supplies. Or how about not being able to lock your easily swappable drives (ours locks!). Attention to the detail of running a network as well as the server itself is evidenced in every high-end Everex product (with over 30,000 servers in the government, that's pretty convincing evidence).

BUT THE BEST PART IS...
You can remotely status temperature inside the server, measure the capacities on crucial system hard drives, monitor DMI 2.0 compliant clients with full manager authority, reset the server or just check if the CPU fan is spinning. AND you can do it from just about anywhere by remote control with the Everex EV2701 Server Management Board and ESMPRO™ software that comes with every StepServer™ DS.

For details call 1-800-EVEREX-1 • or visit our web site at www.everex.com
24 hour Technical Support • 7 days a week 1-800-262-3312

Circle the best answer to the following:

1. My cubicle is more comfortable than:
 a) a prison cell
 b) a cold toilet seat
 c) my home

2. My spouse would be happier if I were:
 a) rich
 b) better looking
 c) a long haul trucker so I could spend more time at home

3. My server maintenance routine often involves:
 a) backups
 b) diagnostics
 c) offerings to the gods.

If you answered 'C' to any of the above then it's time to look at the StepServer™ DS by Everex.
Now! All the Computing Power You Need... and All in One Hand!

Whatever the occupation and wherever the location, you will appreciate the ACME LUNCHBOX COMPUTER desktop computer full capabilities in a portable configuration. Imagine, large TFT LCD color panels with 4 MB video RAM to highlight every detail from the Pentium II processor for unmatched speed, and flexibility in the form of 8 card slots to customize the ultimate computing machine to your needs.

ACME PORTABLE MACHINES, INC.
14140 Live Oak Ave., #D, Baldwin Park, CA 91706 U.S.A.
Tel: (626) 814-0516 • Fax: (626) 814-0323
http://www.acmeportable.com
E-mail: info@acmeportable.com

Distributors in Germany, France, and UK Office in Taiwan

Enter HotBYTEs No. 121 at http://www.byte.com/hotbytes/
Java Database Connectivity is a step in the right direction but still too immature for some Java developers. By Alan Joch

JDBC’s Growing Pains

Sun’s JavaSoft division released the Java Database Connectivity (JDBC) specification, early in 1996, to define a collection of APIs for connecting Java applications to relational database management systems. Like its cousin ODBC ("O" is for "Open"), JDBC uses one common interface backed by DBMS-specific drivers and a driver manager that acts as traffic cop between applications and DBMSes.

To some degree, JavaSoft achieved its goal of providing an open-systems way for clients to access databases. But some developers have grown frustrated with JDBC’s slow evolution.

One developer with a love/hate attitude toward JDBC is Ward Mullins, president and chief technology officer of Thought, Inc. (San Francisco), a Java consultancy and middleware developer. One minute, he credits JDBC for being “functional and useful” at its core. The next, he calls the specification “a beta spec” because of its authors’ lack of attention to details.

“Working consistently across JDBC drivers is like herding cats: You can make them all move, but you can’t make them go where you want them to go,” he complains.

Until a new version of JDBC comes out—maybe this spring—resellers and integrators who want to merge Java applications with RDBMSes must rely on somewhat immature JDBC drivers and their own finesse in making applications work. Success often comes down to choosing the right driver type from the four defined by JavaSoft (see “JDBC Driver Quartet,” page 112N) and picking the right JDBC tools from DBMS vendors, third-party driver sources, and middleware developers.

Database Direct

Major RDBMS vendors, including IBM and Oracle, ship custom JDBC drivers with their database products. These drivers supply the cross-platform connectivity inherent in the generic spec along with the capability to use special characteristics within their individual RDBMSes. For example, a custom driver for Oracle 8 might extend JDBC to support Oracle sequences.

Oracle supplies driver Types 2 and 4. Moe Fardoost, senior product manager for Oracle’s Data Server Marketing Division, characterizes this support as the initial step in bringing Java connectivity into the Oracle realm. Type 2 is for heavyweight, three-tier architectures. “Type 2 drivers map JDBC to native

“Working consistently across JDBC drivers is like herding cats: You can make them all move, but you can’t make them go where you want.”

—Ward Mullins, Thought, Inc.
APIs in C/C++," Fardoost explains. "This gives you access to more functionality that's Oracle-specific." Type 4 drivers provide downloadable applets and bypass any translation layers by going directly from Java calls to the RDBMS using Java sockets.

The Internet and New Media Division of systems integrator EDS (Plano, TX) uses Oracle as its primary RDBMS for its Web-hosting services. Prior to JDBC, the division used CGI as a kind of broker for communications between clients and C programs or Perl scripts on the database server, explains Darryl Thomas, consultant and systems engineer. "JDBC is smoother at the process level," he says. "With JDBC, because you talk to other entries directly, you don't have to worry about script violations."

The division currently uses only Oracle's Type 4 JDBC drivers. "We stay away from the Type 2 driver because Oracle's implementation is only for Solaris, NT, and 95," Thomas explains. "That may be enough for some companies that are perhaps running an intranet with only Solaris or Windows clients. But our customers have many more different types of clients that we need to support."

For its part, IBM provides two categories of JDBC drivers, based on driver Types 2 and 4, for DB2. The Type 2 relative, dubbed application drivers, translates JDBC calls from clients into call-level interface (CLI) calls, which then travel to the DB2 server via Client Application Enablement (CAE). CAE lets clients talk to DB2 servers, according to Judy Escott, IBM's manager of DB2 user-centered design and development. Application drivers differ from straight Type 2 drivers primarily in their support for DB2 CLI, the ODBC-like interface that takes advantage of DB2 capabilities such as object-relational support.

The second category, applet drivers, contains a "client" and a "server" component. The applet client component runs on Java-enabled Web browsers, while the applet server resides on the Web server alongside CAE.

Deciding to use applets or applications depends on a number of issues. Applets require only a Web browser (not CAE) on the client. This makes for a smaller client footprint and simplifies installation and maintenance, especially for companies with a large number of clients. Because applets are Web-enabled, they're the best choice for Internet-based DB2 access, according to IBM's Escott. Applications fit the more traditional two-tier model: clients on a LAN accessing servers such as DB2. Performance is better because there is one less communication layer to deal with, she says. The DB2 CAE must be installed on each client.

JDBC drivers are "a natural way for Java
KINGSTON'S DATA STACKER IS JUST AS ADAPTABLE TO CHANGE.

Kingston's new cost-effective Data Stacker™ can adapt to your customers changing storage needs just as smoothly and easily as the chameleon adapts to its changing environment. With Data Stacker's Snap-n-Stack design, it's simple to pop-on or off units effortlessly as your storage requirements change.

- Small footprint
- Platform-independent
- Poly/steel construction
- Supports 3.5" drives (including 10K RPM)
- Compatible with SCSI 2, 3 & ULTRA
- Enhanced, auto ranging power supply(ies)
- Adjustable high speed fans
- Stacked units can support multiple hosts
- 100% tested in collaboration with major device mfrs.
- 7-year warranty

Call a Kingston® representative at (800) 251-9059 to find out how Data Stacker can make adapting to change easier.
What Do Java Developers Want?

Java developers aren't shy about pointing out JDBC's shortcomings. Here are some wishes on the top of their fix-it list.

1. Write Better Documentation. Consultant Jennifer McLean of Clarkston-Potomac gives high marks to the JavaSoft support staff for helping solve technical problems. But, she says, JDBC is plagued by Spartan tech manuals that could otherwise help developers avoid time-consuming tech-support calls.

2. Specify Techniques for Mapping Data Types into Java. According to Ward Mullins of Thought, Inc., the JDBC spec fails in not specifying how common databases and database types map to specific Java types. "Instead of saying 'For Oracle, a DATE type should map to a Java Timestamp object,' the JDBC spec leaves it up to JDBC driver vendors to decide if they even support specific types and how those types map into Java," Mullins says. The result: An application written for one driver vendor may get a different result-field object if you run it against the same tables using drivers from another vendor. "Because the spec is loose, so are the implementations," Mullins complains.

3. Control the Use of "Undefined" Fields. JDBC driver vendors may choose not to support a given database type and describe it as an "undefined" field when one or more of the JDBC types could readily be used to map the value into JDBC. "This is often done because it makes passing the JDBC driver compatibility tests easier," Mullins says. "Those tests allow database types to be listed as 'undefined,' and doing so will skip any logic that might test their compatibility.

4. Standardize Metadata Management. To create a JDBC command as one line of code that works under a variety of JDBC drivers requires custom coding for developers to achieve consistent results. Mullins offers a hypothetical example: To find all the columns for a given table, a call passes through the fields "catalog" (the database catalog name), "schemaPattern" (the user ID in Oracle and other DBMSes), "tableNamePattern" (a table or wildcard pattern used for tables), and "columnNamePattern" (the column name or wildcard). "The values I enter for these fields will vary wildly among JDBC drivers," Mullins says. "Some want the catalog parameter to be an empty string. Others want it to be a 'null' value. Others want it to be a wildcard (usually a % character as a Java string). Likewise the schema, table, and column patterns can vary in the same way."

Mullins says there are also problems with the return values of getColumns in many drivers. "Some throw in Java exceptions when you try to extract the results, which must be caught correctly or your whole program blows up," he says. "Others return faulty data, such as invalid column data-type information, while others simply don't return certain information that should be readily available."

5. Handle Transactions Consistently. Some JDBC drivers allow only one result set, rather than multiple results, open at once. With other drivers, there's a lack of reverse scrollability (i.e., an application can move either forward or backward from the current row).

Finally, some drivers display exceptions if you read the same column twice, and most don't fully support the JDBC matrix of casting.

The casting chart means, for example, I should be able to read an integer value from the database into a Java LONG," Mullins says.

...programmers to get data through stored procedure calls that you can send over the network," says Jeff Jones, IBM's program manager for data management marketing. Nevertheless, it's not the only way, in

WHERE TO FIND

IBM
White Plains, NY
770-863-1234
fax: 770-863-3030
http://www.ibm.com

Oracle
Redwood Shores, CA
650-506-7000
http://www.oracle.com

Sun Microsystems
Palo Alto, CA
888-843-5282
(North America)
512-434-1591
(Elsewhere)
http://java.sun.com/products/jdbc

Thought, Inc.
San Francisco, CA
415-836-9199
http://www.thoughtline.com

WebLogic
San Francisco, CA
415-659-2600
http://www.weblogic.com

SunSoft's JDBC compatibility tests and by writing drivers that can pass more of the modules in JavaSoft's JDBC compatibility tests easier, Mullins says. "Those tests allow database types to be listed as 'undefined,' and doing so will skip any logic that might test their compatibility.

Bye BYTE MAY 1998

IBM's view. Net.Data, which comes bundled with DB2, resides on a Web server and maps requests from Java apps to the database, using native RDBMS language.

Third-Party Solutions

Third-party driver vendors build any of the four driver types and add nuances not spelled out in the spec (see http://java.sun.com/products/jdbc/jdbc.drivers.html for a list of driver vendors). In the short term, driver vendors like WebLogic work to distinguish themselves by writing drivers that can pass more of the modules in JavaSoft's JDBC compatibility tests and by adding features beyond what the generic spec requires. For example, WebLogic says jdbcKona supports extended SQL and multibyte characters.

But a competitive advantage gained with extensions won't last forever, as RDBMS vendors continue to roll out newer versions of their JDBC drivers. "Over time, most people will probably buy their Type 2 drivers from the database vendors," concedes Scott Dietzen, WebLogic's vice president of marketing.

The future for driver vendors lies in Types 3 and 4, which offer benefits for application developers who want to create better-performing and more sophisticated Java/RDBMS applications. Type 3 drivers, which reside on an application server and communicate with all-Java clients, give Java applications the ability to read and write to an RDBMS anywhere on the network. Because Type 3 drivers work with all-Java clients, there are no C libraries to download, making this type best for browser-based access to RDBMSes. When evaluating commercial Type 3 drivers, you should judge according to how they extend the generic spec. For example, some drivers support IIOP, query caching, and pooling of database connections.

Type 4 drivers provide essentially the same capabilities as Type 2 interfaces but have the advantage of being all-Java.

A Step Forward

Many programmers emphasize that despite its flaws, JDBC is a positive step forward, especially with the help of RDBMS and third-party products that flesh out the spec. Few are unhappy about leaving behind the time-consuming alternatives, like writing CGI scripts, to marry Java applications and RDBMSes. As Jennifer McLean, a consultant with systems integrator Clarkston-Potomac (Durham, NC), puts it: "The advantage of using JDBC is that it's all one Java program, it's all object-oriented."

Alan Joch is a BYTE consulting editor. His e-mail address is ajoch@monad.net.
Now, you try to catch up with me!
Don't be fool!

Sitting for chances, might as well grasp the moment! Because 32x CD-ROM has already got in front of the market. It provides stable quality and sources. With prodigious competition, it will achieve higher revenue and great profit for you.

Profit-share line: http://www.leoptics.com
(Distributors, resellers, and OEM are welcome to join us)
For IntraServer Technology, Inc., a two-year-old venture capital-backed start-up in Holliston, Massachusetts, sales of its Ultra Wide ITIPci SCSI host bus adapters are booming worldwide. With business slated to quintuple in 1998, Senior Vice President Rene Martinez, one of the company's four founders, needed to find the most effective way to target resellers in multi-platform environments — and he did. Now, every month IntraServer Technology runs a full-page advertisement in BYTE's Reseller Edition.

"Bottom line, our advertisements in BYTE's Reseller Edition are generating new customers and incremental business we couldn't afford to get any other way."

Rene Martinez
Senior Vice President & Co-founder
IntraServer Technology, Inc.

"OEMs, VARs, and Systems Integrators — those in the business of building end-user systems — account for approximately 90 percent of our business. Clearly, these resellers are always looking for cost-effective, best-in-class solutions to improve system performance, provide faster I/O throughput, and enhance storage connectivity in Intel, UltraSPARC, and Alpha-based PCI servers. Our job is to tell resellers how IntraServer Technology's high-function, high-performance adapters are a perfect fit for workstations and servers in these system environments. Because of its targeted reach to a broad base of technical professionals in multi-platform environments, the BYTE Reseller Edition is where our message gets read by our customers and prospects."

"Month after month, the BYTE Reseller Edition is an excellent lead generator — in both quantity and quality. We not only get a minimum of 5 to 10 times more calls and leads than we did with other vehicles we've tried; we also hear from qualified prospects who are looking to buy. A recent advertisement in BYTE's Reseller Edition, for example, generated a serious inquiry from one of the world's largest computer manufacturers. Since our lead-to-sales conversion rate often runs as high as 50 percent, I can only say that our advertising response continues to far exceed all expectations."

"The BYTE Reseller Edition is a highly targeted vehicle for helping IntraServer Technology build brand awareness and create demand for our product line. We also experience a high return on investment, as our advertising expenditures quickly translate into revenue growth."

The BYTE Reseller Edition is where you can cost effectively target 126,000 paid channel subscribers — in multi-platform environments — who have the authority to evaluate, specify, and approve technology and product purchases. Advertisers like Rene Martinez at IntraServer Technology are already counting our influential resellers among their new customers. You can, too, when you call your BYTE Reseller Edition advertising representative today.

On the West Coast, call Jim Hussey at 650-513-6861; on the East Coast, call Lori Silverstein at 614-899-4908.
The problem with repositories, notes Michael Barnes, an analyst with the Hurwitz Group consultancy, is that no one wants to deal with them directly. We might add that no one wants to pay for them, either. Their appeal is simply as an enabling technology, something that's supposed to make programmers' and information technology (IT) enterprise architects's lives easier.

At their simplest level, repositories are basically databases. More accurately, they're database applications for system information. System information? In the context of repositories, system information refers to information about an organization's IT assets—everything from C++ header files, component definitions, and COBOL copy books to information about on-line corporate knowledge-base assets. Repositories typically also contain database design information, business rules, and corporate naming standards, for example. In a sense, a repository's role is similar to that of a library's card catalog—an exhaustive and cross-indexed list of resources.

Chances are that most programmers will recognize the notion of a repository as the library or component manager associated with many of today's developer tools. Imagine that kind of library for an entire organization's resources. That's the vision of the repository, so it shouldn't be surprising that repositories have been called data dictionaries—even encyclopedias—and that their contents are often referred to collectively as metadata, or data about data.

Data repositories aren't new. For example, they have often been associated with CASE and data-modeling tools. CASE repositories have focused on storing design information, often about database schemata. Some repositories, usually from tool vendors, have been designed to store information related to the software-development process: source code, version history, project management information, and so on. But the need to share information across enterprises and government entities has led to a variety of domain-specific proposals for metadata repositories, including Federal Geographic Data Committee (FGDC) for geographic information systems, the Warwick Framework and Dublin Core for digital libraries, and industry standards such as Common Data Interchange Format (CDIF),
The Road to a Universal Repository

Repositories, then, are tools to help manage computer systems and networks. Metadata is extensively used in systems and applications to gain efficiency when accessing, transferring, sharing, or processing large amounts of data.

An ideal repository will be distributed, open, and extensible. It will also be largely self-managing and will interoperate with metadata sets coming from different sources and represented using different standards. It will let itself be interrogated through open, standard, and well-defined interfaces.

Repositories are back in the public eye. This has happened largely because of their role in the exploding field of data warehousing and on-line analytical processing (OLAP) applications. Repository technology makes sense in data warehousing, because you need to store information about a data warehouse’s (or OLAP server’s) source data and about the extraction, cleansing, and aggregation rules that are associated with building and maintaining it.

Historically, data-warehousing-tool vendors have created proprietary database applications to store and manage that data. Interestingly, some of these vendors make it easy to let traditional information-worker end users “browse” the repository data; others see IT staffers as their ultimate end users.

The Metadata Council was formed in July 1995 in an effort to help bridge the gap among proprietary stores of metadata, and the Metadata Interchange Specification (MDIS) is the result. Now in version 1.1, MDIS promises to be a valuable basis for interoperability. (See “The Quest to Standardize Metadata” by Stephen R. Gardner in the November 1997 BYTE for more on MDIS.)

OMG Repository Efforts

Meta Object Facility
Focuses on metadata and model management in distributed object environments.

Object Analysis and Design Facility
Focuses on object analysis and design methods, metamodel, and tool interoperability.

(Source: The Object Management Group)

Microsoft’s Bottom-Up Strategy

Data warehousing isn’t the only reason for the renewed interest in repositories. Another reason is Microsoft and its forthcoming Microsoft Repository 2.0. Unless you’re a die-hard Visual Basic programmer, you probably don’t even know that Microsoft shipped the first version of the Microsoft Repository in March 1997 as a Visual Basic add-in.

Although thousands of programmers have reportedly downloaded it from the Microsoft site, it hasn’t set the world on fire. In fact, more than one programmer has complained that, not only did they have trouble installing the Microsoft Repository, they couldn’t figure out what they were supposed to do with it.

That’s been the problem with most repositories. They tend to be a hassle to set up and maintain, and, from a programmer’s perspective, there’s no perceived added value.

Some of you will remember IBM’s AD/Cycle, a grandiose, but unsuccessful, attempt to centralize the management of mainframe application development. IBM’s repository initiatives date back to the late 1980s, and its first host-based repository shipped in 1990 as part of AD/Cycle. Since then, IBM has switched to the client/server model, and its repository technology has evolved through Configuration Management Version Control (CMVC), from 1991, to the current VisualAge TeamConnection, which has been available since 1995.

The simple fact that IBM’s top-down initiative was so far ahead of its time was undoubtedly the main reason AD/Cycle failed. However, it, too, was widely viewed by programmers as unnecessary overhead with no payoff. To be fair, Microsoft admitted that Microsoft Repository 1.0 was mainly for independent software vendors (ISVs), and not programmers.

The Microsoft Repository dates back
Interested OEMs/ODMs, private labels and distributors, please contact our staffs at the addresses below:

- **MITAC INTERNATIONAL CORP. (TAIWAN)**
 - Lin-Kuo Office: No. 40 Wen Hua 2nd., Rd., Kuei San Hsiang, Taoyuan, Taiwan, R.O.C.
 - Tel: 886(3)3289000 Fax: 886(3)3280928

- **MITAC USA INC.**
 - 4200 Christy Street, Fremont, CA 94538, U.S.A.
 - Tel: 1(510)6563333 Fax: 1(510)2526930
 - Email: market@smtplink.mic.com.tw (URL): http://mitac.mic.com.tw/

Enter HotBYTES No. 117 at http://www.byte.com/hotbytes/
to May 1994, when Microsoft and Texas Instruments announced collaboration on the design of an object-oriented repository that would store OLE components. (TI, with its Information Engineering Facility [IEF]/Composer product, was then a major CASE-tool vendor. TI's software division has subsequently been sold to Sterling Software, and Composer is now part of Sterling's Cool family of products.) TI may be out of the picture now, but the Microsoft Repository remains an ActiveX/COM-based (Component Object Model) vision.

Last summer, Microsoft and Platinum Technology announced an alliance whereby Platinum received the rights to port the Microsoft Repository to non-Windows platforms and to databases other than SQL Server for Windows NT—efforts that are both expected to bear fruit later this year. Platinum itself is a major high-end repository player (its prices start at $150,000), selling both Platinum Repository/MVS and Platinum Repository/OEE.

At the same time, Microsoft announced its Open Information Model (OIM), an extensible COM-based object model that defines the structure of objects shared by tools. Conceptually, it's probably useful to think of the Microsoft Repository in two parts.

The first part is the repository engine, a type-driven interpreter that is actually built on top of a SQL database (initially either Microsoft Access or SQL Server). The second part is the OIM part, a meta-meta model that can support a variety of information-model extensions such as database and OLAP.

Paul Harmon, editor of the monthly newsletter Object-Oriented Strategies and author of several books on the Unified Modeling Language (UML), describes a four-layer metamodeling architecture in the January issue of his newsletter. Meta-meta models such as the Object Management Group's (OMG's) Meta Object Facility (MOF) or Microsoft's OIM, he says, define the fundamental infrastructure for a metamodeling architecture, while metamodels such as UML and Microsoft's database model (DBM) are simply instances of a meta-meta model. Models and User Objects round out the four layers.

Microsoft's OIM is derived from UML, which means that the behavior of UML is present inside the OIM. At each level of the OIM, you inherit behaviors of the previous level. For example, the SQL Server model inherits behavior from the DBM, which inherits behavior from the OIM. ISVs and developers can build their own custom models based on information that can be inherited from other portions of the OIM. Other organizations and standards groups, such as those associated with creating a document-exchange standard, could also extend the model to support their own repository efforts.

The Microsoft Repository's first information model basically offered support for UML, an analysis-and-design modeling language that has gained widespread industry support. That meant, for example, that you could create a Visual Basic program, use another optional download—Visual Modeler, which is a subset...
Did you know that being a certified PC technician can increase your salary dramatically?

• As an example, according to MCP Magazine, last year's average salary for a certified MCSE (Microsoft Certified Systems Engineer) was $56,000! Improve your career and income NOW! Call for current CD course pricing.

• We offer easy to understand courses on CD with all the materials you'll need to become certified for MCSE, CNE (Certified Novell Engineer) A+ (General Systems Certification) and Windows NT Simulator CD—and our tech support is top notch.

• These CDs contain everything you need to know about Microsoft systems (DOS, Windows NT/95/3.1/3.11), Novell systems and general system setup and debugging. They also contain sample questions and tests with exact references to materials to make certain you pass your certification exams! Call us for complete information.

Then equip yourself with the top-rated diagnostic tools on the market & you're set—our award-winning Micro-Scope™ 6.5 & POST-Probe™ diagnostic card—the Universal Diagnostics Toolkit™.

• This complete package will allow you to quickly debug "dead" PCs and 100% accurately diagnose what's wrong with any Intel-compatible PC in a flash regardless of O/S. Used by the Army, Navy, Air Force and other branches of the U.S. Govt., and many major corporations around the world.

NEW! Year 2000 Hardware Solution

• Our CENTURION™ card is the perfect hardware solution for the Y2K problem facing many PCs. Simply pop this inexpensive card in a free slot and forget it. Survives hard drive crashes and viruses—no software installation required. Call about volume discounts for your entire organization.

Call Now for Latest Pricing 1-800-864-8008

(818) 547-0125 or Fax (818) 547-0397

www.micro2000.com • netsales@micro2000.com

Attention: PC Repair Technicians and MIS Directors
of Rational Software's Rose product—to reverse-engineer your Visual Basic program, and then export the design into the repository. At that point, the UML version of your Visual Basic program would be available to other repository-aware tools (at the time, limited to products such as Visio's tools).

However, what if the list of repository-aware tools included other programming languages, testing tools, project management tools, revision management tools, and so forth? According to Mike Budd, an analyst who tracks the CASE tools and repository markets for Ovum, the Microsoft Repository is a clever way of adding enterprise panache to its immensely popular programming tools that are actually geared toward single programmers.

Budd also thinks that Microsoft has recognized the incredible value of middleware in the largest sense of the word. He sees the company's Microsoft Repository as a means of owning the glue that integrates the application-development process.

What does all this mean for you? At this point, you have two choices. Either experiment with the pretty rudimentary Microsoft Repository 1.0 and associated Visual Modeler and Visual Component Manager (VCM) tools. (VCM is Microsoft's "interface" to the Repository.) Or wait until version 2.0 of all these tools, which are expected to ship some time this summer with version 6.0 of Microsoft's Visual Studio development environment.

Other Repositories

Not only isn't the Microsoft Repository the only repository, it isn't even the only meta-meta model out there. The OMG's CORBA-based (Common Object Request Broker Architecture) meta-meta model provides another alternative, one that is embraced by many of the traditional CORBA champions. Unisys's Urep repository (with prices starting at $1900) is the leading example of an OMG/MOF-compliant repository.

Unisys Fellow and Urep architect Sridhar Iyengar points out the advantages of Urep as a heterogeneous, multiplatform object repository that supports both COM and CORBA middleware on Unix, NT (client and server), and mainframe (client) platforms. He adds that, "Urep supports a rich set of core repository services, including object-level version control, nested transactions, and long transactions, which are not available in competing products." (According to Microsoft, Microsoft Repository 2.0 will support versioning.) Urep uses the Versant object database as its default storage engine.

IBM's VisualAge TeamConnection (prices start at $9995 per server) and associated DataAtlas represent another alternative that will be especially attractive to enterprises that use IBM's VisualAge tools. TeamConnection, which evolved from IBM's CMVC product, not AD/Cycle, is an open tool with a published API and is source code--compliant (i.e., interoperable with Microsoft's SourceSafe and other version-control products). Although TeamConnection currently uses Object Design's ObjectStore as its data store, the next version will reportedly be hosted on DB2 Universal Database (UDB).

Other repositories worthy of mention include LogicWorks' Universal Directory ($30,000), a data-warehouse-oriented repository; Viasoft's Rochade repository (formerly the R&O Repository with roots in the mainframe world, $35,000 and up); and Software Enabling Labs' Enabler, Visual Enabler, and Maestro suite (pricing starts at $3500 per developer).

Look Ahead

Repositories may not affect your life this month or even this year. However, it behooves you to start investigating this technology and thinking about how it's going to affect the way you design, develop, and manage applications, including data warehousing applications. Platinum's Chris Justice, product manager for Platinum Repository/OEE, cited hockey's Wayne Gretzky ("I play where the puck's going to be, not where it is...") in his perspective on the repository market. Repositories should be on your radar screen.

Karen Watterson (San Diego, CA) is a writer and consultant specializing in database and data warehousing issues. She is the author of several books and is editor of Pinnacle Publishing's Visual Basic Developer and SQL Server Professional newsletters. You can reach her at karen_watterson@msn.com.
Keep Up To Speed
On The
Information
Superhighway...

GET
5
Books
FOR ONLY
$4.95
when
you join
The Computer
Book Club®

Act now to get these
great club benefits:

Substantial Savings... you save up to 50% on
every book you buy!

Great Selection... every 3-4 weeks you’ll receive the
Club Bulletin packed with the latest and best books
from all publishers.

Club Convenience... when the Bulletin arrives,
if you want the Main Selection do nothing at all —
it will be shipped automatically. If you want another
book, or no book at all, just indicate your choice on
the reply form and return it by the date specified.

Dependable Service... you always have a full 10
days to decide whether you want the Main Selection.
If you ever receive a book you don’t want due to late
delivery of the Bulletin, you can return it at our expense.

Generous Bonus Plan... you’re automatically
enrolled in our Bonus Plan that lets you earn bonus
points toward FREE purchases.

Easy Membership Terms... your only obligation
is to buy two more books within the next 12 months —
at regular Club discounts — after which you may
enjoy the benefits of membership with no further
obligation. You or the Club may cancel membership
at any time thereafter.

A shipping/handling charge and sales tax are added to each shipment. All books
are paperback unless otherwise noted. Publishers’ prices shown. © 1998 CBC

If card is missing, write to: The Computer Book Club®
A Division of The McGraw-Hill Companies
P.O. Box 549, Blacklick, OH 43004-0549

PHONE: 1-614-759-3666 (8:30 a.m. to 5:00 p.m. EST Monday-Friday)
FAX: 1-614-759-3749 (24 hours a day, 7 days a week)
INTERNET: www.bookclubs.mcgraw-hill.com

BY598
333-MHz Pentium IIs: Slow-Bus Swan Song

Deschutes is Intel's code name for the fast new Pentium II chips built using the 0.25-micron CMOS process. Ironically, these recently introduced 333-MHz processors are also the fastest Intel CPUs currently running on the soon-to-be-updated 66-MHz system bus motherboards. That makes these machines somewhat akin to dinosaurs, albeit extremely fast dinosaurs.

BYTE Lab evaluated 19 333-MHz Deschutes systems running NT 4.0 Workstation. All use the 66-MHz bus and 440LX chip set on the motherboard. The extra 33 MHz of clock speed might lead you to expect a roughly 11 percent increase in performance over the Deschutes’ older 300-MHz cousins, and that’s almost exactly what we found on these machines.

Yet that performance doesn’t actually show the true worth of the Deschutes chip. Increasingly, it’s slow components and the 66-MHz system bus, not the processor, that stifle overall system performance.

Fortunately, 66-MHz motherboards are about to become a thing of the past, at least for high-end systems. Deschutes PCs built around 100-MHz motherboards, clocked from 350 to 450 MHz, should make their debut about the time you read this.

Several manufacturers opted to wait out this 333-MHz round-up, choosing to submit PCs with 100-MHz motherboards and even faster Pentium II processors instead. All arrived far too late for comprehensive testing for this issue. But after April 15, you can check our Web site, at http://www.byte.com, for a first look at these machines.

AMD and VIA are already building chip sets to support systems with 100-MHz motherboards; expect to see Deschutes competitors from AMD and Cyrix supporting this interface later this year.

Where Deschutes Fits

This first Deschutes chip, and those shipping in the next few months, will still fit the same proprietary Intel Slot 1 motherboard interface as today’s Pentium II. Later on, Deschutes-series PIs will likely migrate to the newer Slot 2 connector.

Like the Klamath series, Deschutes CPUs now come packaged in a single-edge contact (SEC) cartridge. Within the SEC, the processor core and industry-standard burst static RAM (BSRAM) Level 2 (L2) cache are enclosed in plastic and metal and are surface-mounted.

Later Deschutes-series PIs, with full-speed backside buses, will require Intel to replace commodity BSRAMs with custom static RAMs (CSRAMs). BSRAMs require one clock cycle to read and another to rewrite data, so their top speed is half that of the CPU. The CSRAMs are limited-quantity proprietary Intel parts that can run at a full 450 MHz (i.e., with their 64-bit interface, at 3.6 Gbps).

Deschutes and Klamath have the same P6 microarchitecture, including support for MMX, 32 KB of Level 1 (L1) cache, and (for the first Deschutes chip) a 66-MHz frontside bus. Both include an external 512-KB BSRAM L2 cache contained in the SEC cartridge. Both support Intel’s 440FX/440LX chip sets and others from third parties. The current CPU interface and chip sets, however, limit them to a two-way multiprocessing implementation. Error-correction code (ECC) is available on the L2 cache of the Deschutes processor.

Pentium II’s pipelined system bus allows multiple simultaneous transactions. Like the Pentium Pro, the PI speeds up performance at a given clock speed by using dynamic execution, Intel’s term for branch prediction. The processor predicts which branch instructions will fork (with a claimed 90 percent accuracy) and speculatively executes some instructions along the predicted path, rearranging them to take maximum advantage of the chip’s resources.

Market Splash

Deschutes may have a bigger impact on the processor market than on overall system performance. Intel released the 333-MHz version at $721, $200 below the usual price for its top-line PC processor, and only two months later dropped that price almost 20 percent, to $583. As might be expected, the prices of previous-generation Pentium IIs tumbled.

Intel also cut prices on Pentiums for mobile computers from 15 to 51 percent, although desktop Pentium Pro prices remain unchanged.

The second half of 1998 will see a new Deschutes series, this time with 256 KB of on-die L2 cache.
CACHE
Future Pentium IIs will boost L2 cache from these chips' 512 KB to 1 MB or more, which has prompted Intel to add ECC RAM to Deschutes. Turning it off (see "Trick of the Trade?" on page 116) can boost performance.

CPU
These first Deschutes chips continue Intel's proprietary Slot 1 design.

SCSI
Look for controllers supporting later SCSI standards; we prefer Ultra Wide SCSI.

ETHERNET
Integrated or add-in Ethernet ports are standard fare on these high-end PCs. Look for those that support Fast Ethernet (100 Mbps) as well as the older 10Base-T standard.

EXPANSION SLOTS
The best PCs in this roundup offer at least four PCI slots; a few systems include connections for 64-bit PCI devices as well.

GRAPHICS ACCELERATOR
You'll need a minimum of 4 MB of VRAM on any high-end graphics card to match the PII/333 performance. Even better, opt for those systems that offer 8 MB or more of SGRAM. For NT, choose an OpenGL-compatible video subsystem. While AGP offers faster connections than PCI for some applications, it lacks crucial software support in many areas, including native Windows 95 and NT.

SYSTEM RAM
Synchronous DRAM, offered on many of the machines tested here, is about three times faster than older fast page-mode (FPM) DRAM and twice as fast as extended data out (EDO) and burst EDO (BEDO) RAM.

For high-end PCs, Slot 2 versions offering glueless support for up to four-way multiprocessing will arrive at 400 (mid-1998) and 450 MHz (year end), with L2 cache ranging from 512 KB to 2 MB.

Intel's road map for all market segments involves total, eventual migration to Pentium II:

- Slot 2 Pentium IIs will be used in high-performance servers and workstations, in single- to four-way multiprocessor designs.
- Slot 1 Pentium II machines will be used in desktops requiring midrange to high-level performance, using one or at most two processors.
- Celeron, Intel's latest Pentium II series, will become the chip of choice for low-cost desktop systems. Basically a Pentium II processor without L2 cache memory, Celeron is Intel's answer for under-$1000 PCs (for a look at new sub-$1000 PCs, please see page 125 in this issue).
- Mobile-cartridge Pentium II modules, with low power-consumption levels, will increasingly be seen in high-end notebook designs.

Pentium II Architecture
Deschutes uses the Dual Independent Bus (DIB) architecture, just like the Pentium Pro, to gain a performance advantage on single-bus systems. The superscalar processor can use the L2 cache bus and processor-to-main-memory buses simultaneously, for a possible peak capacity of five instructions per clock cycle.

The PII also includes 57 MMX instructions that it executes two at a time. Moreover, MMX instruction architecture is single instruction/multiple data (SIMD)—one instruction can perform identical operations on multiple pieces of data, reducing compute-intensive loops characteristic of video, audio, 2-D graphics, videoconferencing, printing, and animation processing.

Contributors
Al Gallant, Technical Manager, BYTE Lab
Michelle Campanale, Technical Editor
Tom Halfhill, Senior Editor
Robert Pickering, Technical Assistant
Dan Tanner, Technical Editor
Any of these 333-MHz PCs offers high performance at a good price. All include support for Accelerated Graphics Port (AGP) and SCSI hard disk connections, making them sure bets for speed gains under the forthcoming Windows NT 5.0.

We rated these PII workstations based on their quality of performance, implementation, technology, price, usability, and features, on a scale of one to five stars. You’ll find a complete listing of features, along with overall ratings, in the chart on pages 122 and 123. We requested identical configurations from each manufacturer to achieve a level playing field; deviations from the standard configuration are noted in this chart.

Performance is an important consideration, especially for any PC sporting a topline processor. Our Best Overall scores recognize this by heavily weighting total performance ratings as 70 percent of the total score. Technology and implementation ratings share the remaining 30 percent.

Performance scores were obtained by averaging the results from multiple runs of our benchmark tests (see “Test Methodology” on page 121). The tests rate machine speed in integer, floating-point, and application operations.

We judge a system’s usability based on the quality of documentation and other information provided to the user. We also look for ease of access to internal components; quick, well-designed setup and installation; and as much expandability and upgradability as possible.

Implementation scores rate the choices made by a manufacturer’s design engineers. We come up with these scores by evaluating the overall system design and functionality. In our tests, these machines were uniformly excellent; on a scale of 1 to 5, no system included in this test scored less than a 4.

Our features score measures an overall rating of base features in the tested system. We look for good-quality integrated and nonintegrated options, supplied at reasonable costs.

Our technology scores reflect the quality of highly desirable options included with the test systems, in addition to standard options rated in our features score. For example, a high-scoring system may have included an additional processor slot on the motherboard for a second CPU, or a 10/100 Ethernet card in place of the standard lOBase-T. Systems providing integrated SCSI and sound, for example, were given higher technology ratings.

A combination of high technology ratings and low price put a system high on our list for Best Value. The Best Value scores are a weighted combination of our performance, usability, features and price ratings. Performance scores make up 50 percent of the final Best Value score; price receives a weighting of 30 percent; and features and usability scores contribute 10 percent each.

Best Overall

The DTK APRI-76M/P333 has no elaborate, expensive engineering features. Using a basic motherboard, standard options and memory, with an acceptable 17-inch monitor, the DTK has managed to keep a low price. At the same time, it scored top marks for performance.

Controls are conveniently located, with a primary power switch on the back panel to shut off the juice to the power supply as well as the more conventional power-on button in front. Inside, there’s easy access and plenty of room for an extra CD-ROM, tape, or Zip drive. Besides the expected mouse, keyboard, USB, serial, and parallel ports, the back panel also holds connectors for the AGP video adapter, external SCSI, 10/100 Ethernet, and an x256K modem. The inside of this machine is simple and straightforward, offering easy access for repairs or upgrades.

Kingdom’s Pinnacle 333 Power system came in second in our Best Overall scorings, largely due to an excellent technology implementation. Like the third-place Xi machine, this PC can support up to 1 GB of RAM on the motherboard.

Don’t overlook NEC’s nifty PowerMate Professional 9000 and SAG’s fast STF 3300. Priced at less than $3,200, both offer technology options you’d expect to see in higher-priced machines. They have a secondary processor slot for an additional CPU, for example, and free up an extra slot by integrating SCSI on the motherboard. The NEC’s 64-bit PCI slot offers an upgrade path for the future, and its NEC 32X CD-ROM drive is one of the best on the market.

Best Value

The $2,799 DTK system, with the third lowest price of all systems tested but lowest price of our top seven performers, also won honors as Best Value. It offers 10/100 Ethernet as standard equipment, a Toshiba 32X CD-ROM drive, a good-quality ELSA Gloria Synergy video card with 8 MB of SGRAM on-board instead of the more usual 4 MB, and a large 300W (its maximum output) power supply at a very reasonable price.

The $2,399 Micron ClientPro 766Xi was fourth in Best Value. Its performance kept it out of the running for Best Overall system, but the machine managed to incorporate a good feature set—4.5-GB

Trick of the Trade?

Our time-tested BYTEmark benchmarks showed oddly variable scores on these systems, scores that became even more suspicious when our Van Horn Photoshop benchmarks returned virtually identical results for all systems. It turns out that the BYTEmarks had uncovered a little known trick of the PC maker’s trade: Some manufacturers—Compaq, Everex, DTK, and Kingdom, in this case—disable the standard error-correction code (ECC) on the L2 cache and improve performance, apparently with Intel’s blessing.

Unfortunately, most buyers can’t perform the large-scale comparative testing that allowed us to discover this ECC performance tweak. And users will find it virtually impossible to disable (or enable) ECC themselves. While there’s probably little likelihood that turning off ECC will cause problems, we believe that buyers should be given a chance to decide if they want to opt for speed and ignore the possibility of unchecked error on the L2 cache.
The Performance to realize your Dreams.

FROM YOUR IMAGINATION TO REALITY.

Create the most compelling 3D animation content in the shortest possible time. Work with freedom from rebooting after every animation. No swapping 3D cards to try another effect. No creative compromise or missed deadlines. Satisfy yourself and your clients and increase your opportunities for repeat business.

Silicon Graphics® O2™ and OCTANE™ workstations give you the power to try as many versions of an animation as you can imagine. Combined with the massive rendering performance of our Origin2000™ servers, you have the ideal tools to visualize your most vivid 3D dreams. The processing and applications performance of Silicon Graphics helps you meet those crazy deadlines with better results. And when your work is a product of your imagination, only Silicon Graphics can help you visualize that kind of success.

©1998 Silicon Graphics, Inc. All rights reserved. Silicon Graphics is a registered trademark, and O2, OCTANE, Origin2000 and the Silicon Graphics logo are trademarks of Silicon Graphics, Inc. Turbo images courtesy of Microsoft/Softimage. Cowboy image courtesy of Alan/Watertone.

*Price quoted is valid for US only.
Let Microway build your next Graphics Workstation, Personal Supercomputer or Server using...

Screamer™ 600

Cray Performance at a PC Price!

600 MHz Alpha, 1.2 Gigaflops, 4MB Cache

Since 1982 Microway has provided the PC world with the fastest numeric devices and software available. No product in the last 15 years has excited us more than the Alpha Screamer. With its ability to execute 2 billion operations per second, the Screamer is the best choice for your next workstation or server! In addition to NT, the Screamer runs Digital UNIX and Linux.

Your applications can now run on “the fastest Windows NT machine on the planet.” These include Microsoft Office, Oracle and Netscape; plus engineering and graphics software such as Pro/Engineer, Fortran, C/C++, Visual Basic, Microstation, ANSYS, LAPACK, Gaussian, Softimage and Lightwave. Over the last 15 years we have designed systems for thousands of satisfied customers worldwide, including prestigious institutions like NASA and Fidelity Investments. Our technicians are expert at configuring all Alpha operating systems and applications, and you will not find more technically competent sales people anywhere.

Custom Screamer Workstations

Microway systems include fast CPUs with equally fast caches, up to 2GB of high-speed memory and peripherals including SCSI hard drives, 3D graphics cards and RAID solutions. Microway's exclusive 4MB SSRAM cache, fed by a 144-bit wide memory system, boosts performance by up to 100%. Screamer™ workstations range in price from $1,895 to over $30,000.

Microway produces one of the finest numeric optimized compilers - NDP Fortran. Since 1986, hundreds of applications have been ported to the X86 with it. Using hand-coded BLA's and FFT's, our new NDP VDSP Library hits 343 megaflops triangularizing dense arrays and performs a 1024 complex FFT in 200 microseconds. This library also includes LAPACK.

AlphaPowered™

Press Accolades for Microway's Screamer

Windows Sources - February, 1998

"the Microway system blew away the best Intel-based workstations we've tested...on our number-crunching Lightwave 3D test."

LINUX Journal - January, 1998

"Literally everything runs profoundly faster on the Screamer."

PC Computing - July, 1997 ★ ★ ★ ★

Microway's Screamer... "is, quite simply, the fastest Windows NT machine on the planet... The performance leader."

Desktop Engineering - September, 1997 Product of the Month

Computers in Physics - September, 1997 Product of the Month

Visit www.microway.com for complete product information or call technical sales at 508-746-7341.

Technology You Can Count On

Microway Systems include fast CPUs with equally fast caches, up to 2GB of high-speed memory and peripherals including SCSI hard drives, 3D graphics cards and RAID solutions. Microway's exclusive 4MB SSRAM cache, fed by a 144-bit wide memory system, boosts performance by up to 100%. Screamer™ workstations range in price from $1,895 to over $30,000.

Microway produces one of the finest numeric optimized compilers - NDP Fortran. Since 1986, hundreds of applications have been ported to the X86 with it. Using hand-coded BLA's and FFT's, our new NDP VDSP Library hits 343 megaflops triangularizing dense arrays and performs a 1024 complex FFT in 200 microseconds. This library also includes LAPACK.
The DTK APRI-76M/P333 not only won Best Overall honors, it placed first in our price/value rankings (see below). Last September, the company’s entry also garnered the Best Overall award in our testing of 17 233- and 266-MHz Pentium II systems.

BEST OVERALL

DTK APRI-76M/P333

The DTK APRI-76M/P333 not only won Best Overall honors, it placed first in our price/value rankings (see below). Last September, the company’s entry also garnered the Best Overall award in our testing of 17 233- and 266-MHz Pentium II systems.

WEIGHTING

<table>
<thead>
<tr>
<th>PRICE</th>
<th>PERFORMANCE</th>
<th>TECHNOLOGY</th>
<th>IMPLEMENTATION</th>
<th>BEST OVERALL</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2799</td>
<td>*****</td>
<td>*****</td>
<td>*****</td>
<td>*****</td>
</tr>
<tr>
<td>$2997</td>
<td>****</td>
<td>*****</td>
<td>*****</td>
<td>*****</td>
</tr>
<tr>
<td>$3199</td>
<td>****</td>
<td>*****</td>
<td>*****</td>
<td>*****</td>
</tr>
<tr>
<td>$3199</td>
<td>****</td>
<td>*****</td>
<td>*****</td>
<td>*****</td>
</tr>
<tr>
<td>$2946</td>
<td>****</td>
<td>*****</td>
<td>*****</td>
<td>*****</td>
</tr>
<tr>
<td>$3724</td>
<td>****</td>
<td>*****</td>
<td>*****</td>
<td>*****</td>
</tr>
<tr>
<td>$3750</td>
<td>****</td>
<td>*****</td>
<td>*****</td>
<td>*****</td>
</tr>
</tbody>
</table>

BEST VALUE/LOW-COST

DTK APRI-76M/P333

DTK Computer's APRI-76M/P333, selling for $2799 in the configuration we tested, was one of the lowest-priced systems submitted to us for review. And although other systems were faster in individual tests, it came in as the top overall performer, easily making it our choice for Best Value.

WEIGHTING

<table>
<thead>
<tr>
<th>PRICE</th>
<th>PERFORMANCE</th>
<th>PRICE RATING</th>
<th>FEATURES</th>
<th>USABILITY</th>
<th>BEST VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2799</td>
<td>*****</td>
<td>*****</td>
<td>*****</td>
<td>*****</td>
<td>*****</td>
</tr>
<tr>
<td>$3724</td>
<td>****</td>
<td>****</td>
<td>*****</td>
<td>*****</td>
<td>*****</td>
</tr>
<tr>
<td>$3750</td>
<td>****</td>
<td>****</td>
<td>*****</td>
<td>*****</td>
<td>*****</td>
</tr>
<tr>
<td>$2599</td>
<td>****</td>
<td>*****</td>
<td>*****</td>
<td>*****</td>
<td>*****</td>
</tr>
<tr>
<td>$2730</td>
<td>***</td>
<td>*****</td>
<td>*****</td>
<td>*****</td>
<td>*****</td>
</tr>
<tr>
<td>$2997</td>
<td>***</td>
<td>*****</td>
<td>*****</td>
<td>*****</td>
<td>*****</td>
</tr>
<tr>
<td>$3199</td>
<td>***</td>
<td>*****</td>
<td>*****</td>
<td>*****</td>
<td>*****</td>
</tr>
</tbody>
</table>

Ultra Wide SCSI hard drive and 8-MB Number Nine video card—and still come in as the lowest-priced machine.

While the $3724 SytTech and $3750 Compaq PCs were among the more expensive machines tested, their combinations of great features and high usability made them our second and third choices, respectively, for Best Value.

The Bottom Line

With the 66-MHz system bus on the way out, at least for high-end PC workstations, does buying one of these machines make sense? If you’re in the market for high-performance bargains, our response is an unqualified “You bet.”

Prices for these 333-MHz units are, in many cases, less than half the price of the 300-MHz systems we reviewed in our January issue (see “Eight Heavy-Hitting NT Workstations,” page 98).

We expect that prices of Pentium PCs will continue to fall, possibly precipitously, as the 100-MHz system bus makes its debut and new sub-$1000 PCs utilizing Intel’s Celeron and other low-cost chips become popular.

If performance and upgradability are your chief concerns, however, you may want to wait out this round for even faster machines emerging in the next couple of months. Next-generation 350- and 400-MHz machines, supported by the faster system bus and faster components, likely will add to the overall cost of the PC, but the improvements in speed and compatibility with future upgrade paths might be worth the extra cost.
NEC Looks Ahead with 64-Bit PCI Slot

Up close and personal is the best way to know your system. Here's something that you'd miss unless you opened up the NEC PowerMate Professional and removed the internal drive bays. Just below the AGP card is the first of four PCI slots, a 64-bit connector that we'd normally expect to find only in higher-priced NT workstations. Even though 64-bit devices are still relatively rare, these slots will be increasingly valuable as performance demands increase. NEC engineers showed foresight by including it in a reasonably priced, and strong-performing, system.

SAG Makes Upgrading Easy

The SAG Electronics STF 3300 shows value in engineering and design. It's extremely easy to add a second processor, without moving or dismantling anything, by simply sliding the PI1 processor into its Slot1 connector. The machine has four memory slots that hold up to 512 MB, and plenty of drive bays and PCI/ISA slots for adding components. You don't need to remove components to install PCI options, add memory, or put in drives. As in the NEC system, this machine's integrated, on-board Adaptec 2940UW SCSI adapter, along with the second processor option, are usually found on systems priced much higher.

TECH FOCUS

0.25-Micron and Smaller

More efficient process technology means Deschutes runs faster, cooler, and uses less power than its predecessors. The first Deschutes attained a core frequency of 333 MHz—11 percent faster than the fastest Klamath-series PI1 (300 MHz). It has a 131-square-millimeter die, compared to Klamath's 202 square millimeters, and consumes almost half the power, 23.7 W as opposed to the older chip's 43 W.

Silicon etch resolution has been sharpened 29 percent with the Deschutes chip, from 0.35- to 0.25-micron. Shrinking linear dimensions on a chip to 71 percent reduces the chip's area by half. Reduced chip area translates to shorter distances for signals to travel, enabling ever-higher clock speeds. And, as chip geometry shrinks, "parasitics"—largely the signal-degrading effects of stray capacitance— are naturally reduced.

Nowadays we can process information faster than we can move it. Ultimately board, bus, and machine geometry will have to shrink, too, and that may be even more difficult to accomplish (see "Amending Moore's Law," March BYTE).

At 333 MHz, a clock period consumes only 3 nanoseconds. But it's during the rise/fall times of the clock that signals are gated or triggered. Such times are an order of magnitude less, well into the picosecond range. In 300 picoseconds, light can travel merely 9 centimeters. Small wonder that processor cores and cache memory are migrating to a single die.
When is 333/90 greater than 3.7?

Answer: When you’re comparing Pentium II performance to original Pentium performance, back in the days when 90MHz reigned supreme.

BYTEmark evaluates processor and memory performance. We base our results on an index system, in this case a Dell 90-MHz Pentium PC. If the clock speed of the processor under test is 333 MHz, one might expect performance scores of 3.7.

The enhanced architectures of new Pentium systems can achieve much higher scores. Our top-rated DTK machine scored an integer index over 4.75; floating-point was nearly 5.33.

Changes in Pentium II architecture can take the credit for this feat; many PII instructions are simply more efficient. Integer Multiply (IMUL), for example, has been trimmed from 10 clock cycles on a Pentium to three cycles on a PII (see “Which Compiler Is Fastest?,” January BYTE). In addition, the Pentium II employs such speed-up methods as dynamic execution.

BAPCo SYSmark Results

BAPCo SYSmark tests exercise real-world applications running native-mode code under Windows NT 4.0. BAPCo chose Microsoft Excel and Word for typical office operations, TextEdit for project management jobs, and Layout Plus for CAD work.

BAPCo’s test applications provide intense system exercise, including file I/O that works a hard drive heavily. The spreadsheet and word processing applications are integer-intensive; BAPCo’s CAD application generally emphasizes floating-point operations.

Our Photoshop Test

The BYTE/Van Horn Photoshop benchmark is an integer-intensive test using the functions that graphic artists with Adobe Photoshop 4.0 would employ. The file used for the test is large, over 8 MB, to ensure that memory calls go far beyond the range of the processor’s cache.

Photoshop interpolation was set to Bicubic. We eliminated video-card performance differences from these scores. The following tests were performed:

- Rotate Canvas. Arbitrary rotation at 7 degrees clockwise.
- Unsharp Mask at two settings, first with the default values (50 percent, radius of 1 pixel, no threshold) and again with more demanding values (50 percent, radius of 10 pixels, threshold of 5).
- Gaussian blur with 3-pixel radius.
- RGB-to-CMYK Mode Change.

Methodology

Every configuration we examined met the following specifications:

Processor: Intel Pentium II/333-MHz (Deschutes)
Chip set: Intel 440LX

Operating system: Microsoft Windows NT 4.0 Workstation, with a separate installation of Service Pack 3
Memory: 64 MB
Hard drive: Minimum 4-GB SCSI, controller on motherboard or PCI card
File structure: NTFS
Graphics adapter: AGP adapter, minimum of 4 MB of video memory
Monitor: 17-inch color, 1024 x 768 resolution, true color (24-bit), 75-Hz refresh rate

No other applications, including virus shields, TSRs, or applets, were running during the tests. Nonessential start-up applications or placeholders that could be using memory were removed before testing.

Evaluations in this report represent the judgement of BYTE editors based on tests conducted in BYTE’s laboratory. For full documentation of the benchmarks, visit the BYTE Web site at http://www.byte.com; see http://www.byte.com for the BYTEmark, http://www.bapco.com for BAPCo data, and for the Van Horn Photoshop tests, see “MMX: Better in Fits and Starts,” February BYTE (magazine or CD-ROM), or visit the BYTE Web site.
333-MHz Pentium II PCs

FEATURES

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Price as tested</td>
<td>$3750</td>
<td>$3800</td>
<td>$2799</td>
<td>$2799</td>
<td>$2999</td>
<td>$2799</td>
<td>$2730</td>
</tr>
<tr>
<td>Overall rating</td>
<td>⭐⭐⭐⭐⭐</td>
<td>⭐⭐⭐⭐⭐</td>
<td>⭐⭐⭐⭐⭐</td>
<td>⭐⭐⭐⭐⭐</td>
<td>⭐⭐⭐⭐⭐</td>
<td>⭐⭐⭐⭐⭐</td>
<td>⭐⭐⭐⭐⭐</td>
</tr>
</tbody>
</table>

MICROPROCESSOR

<table>
<thead>
<tr>
<th>BIOS vendor and version</th>
<th>Compaq</th>
<th>Phoenix 4.0 rel.6.0</th>
<th>CompUSA</th>
<th>Phoenix 4.0 rel.6.0</th>
<th>CyberMax</th>
<th>Phoenix 4.0 rel.6.0</th>
<th>DTK</th>
<th>Phoenix 4.0 rel.6.0</th>
<th>Award</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supports second CPU</td>
<td>On</td>
<td>On</td>
<td>On</td>
<td>On</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
</tr>
<tr>
<td>ECC on L2 cache</td>
<td>Off</td>
<td>Off</td>
<td>On</td>
<td>Off</td>
<td>On</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
</tr>
<tr>
<td>DMI-compliant</td>
<td>⚫</td>
<td>⚫</td>
<td>⚫</td>
<td>⚫</td>
<td>⚫</td>
<td>⚫</td>
<td>⚫</td>
<td>⚫</td>
<td>⚫</td>
</tr>
</tbody>
</table>

EQUIPMENT INFORMATION

<table>
<thead>
<tr>
<th>Sound adapter/chip</th>
<th>Embedded ES1869</th>
<th>Yamaha OPL-3 on board</th>
<th>Ensoniq AudioPCI</th>
<th>None</th>
<th>None</th>
<th>ES1868 w/ WaveLab</th>
<th>None</th>
<th>Ensoniq PCI/16-bit</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD-ROM/speed</td>
<td>Hitachi/24X</td>
<td>Pioneer/32X</td>
<td>Toshiba/32X</td>
<td>Toshiba/32X</td>
<td>Sony/24X</td>
<td>Toshiba/32X</td>
<td>Plextor/32X</td>
<td>Matsushita/24X SCSI</td>
</tr>
<tr>
<td>10/100 Ethernet LAN</td>
<td>Integrated</td>
<td>Optional</td>
<td>Optional</td>
<td>Optional</td>
<td>Optional</td>
<td>Optional</td>
<td>Optional</td>
<td>Optional</td>
</tr>
</tbody>
</table>

HARD DISK

<table>
<thead>
<tr>
<th>Bay(s) (3½/5¼-inch)</th>
<th>3/2</th>
<th>3/2</th>
<th>3/2</th>
<th>3/2</th>
<th>3/2</th>
<th>3/2</th>
<th>3/2</th>
<th>3/2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal/external</td>
<td>2/3</td>
<td>2/3</td>
<td>2/3</td>
<td>2/3</td>
<td>2/3</td>
<td>2/3</td>
<td>2/3</td>
<td>2/3</td>
</tr>
</tbody>
</table>

VIDEO

<table>
<thead>
<tr>
<th>Video accelerator</th>
<th>Matrox STB Velocity</th>
<th>Number Nine Revolution</th>
<th>ELSA Gloria Synergy</th>
<th>STB Velocity</th>
<th>Nvidia Model</th>
<th>AccelGraphics</th>
<th>ATI Rage Pro</th>
</tr>
</thead>
<tbody>
<tr>
<td>Video memory and type</td>
<td>4-MB SGRAM</td>
<td>4-MB SGRAM</td>
<td>8-MB SGRAM</td>
<td>4-MB SGRAM</td>
<td>4-MB SGRAM</td>
<td>4-MB SGRAM</td>
<td>4-MB SGRAM</td>
</tr>
<tr>
<td>Maximum resolution without upgrade</td>
<td>1280 x 1024</td>
<td>1920 x 1080</td>
<td>1280 x 1024</td>
<td>1280 x 1024</td>
<td>1280 x 1024</td>
<td>1280 x 1024</td>
<td>1080 x 1024</td>
</tr>
</tbody>
</table>

I/O PORTS

<table>
<thead>
<tr>
<th>Serial/USB</th>
<th>2/2</th>
<th>2/2</th>
<th>2/2</th>
<th>2/2</th>
<th>2/2</th>
<th>2/2</th>
<th>2/2</th>
<th>2/2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parallel ports</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>SCSI-2 ports</td>
<td>1 60-pin, 1 68-pin ext.</td>
<td>1 68-pin</td>
<td>1 68-pin</td>
</tr>
<tr>
<td>EIDE ports</td>
<td>1 2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

MEMORY

<table>
<thead>
<tr>
<th>Maximum RAM on motherboard</th>
<th>384 MB</th>
<th>1 GB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type and architecture</td>
<td>SDRAM/ECC</td>
<td>SDRAM</td>
<td>SDRAM</td>
<td>SDRAM</td>
<td>SDRAM</td>
<td>SDRAM</td>
<td>SDRAM/ECC</td>
<td>SDRAM/ECC</td>
</tr>
</tbody>
</table>

VENDOR INFORMATION

<table>
<thead>
<tr>
<th>Phone number</th>
<th>291-370-0670</th>
<th>888-228-6772</th>
<th>800-219-4881</th>
<th>856-610-0998</th>
<th>974-4198</th>
<th>500-779-2000</th>
<th>800-779-2000</th>
<th>Sales</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toll-free phone number</td>
<td>800-349-1918</td>
<td>888-228-6772</td>
<td>800-219-4881</td>
<td>800-268-2388</td>
<td>800-581-6000</td>
<td>800-269-3312</td>
<td>800-849-2303</td>
<td>800-859-5438</td>
</tr>
</tbody>
</table>

Inquiry Number

| 1101 | 1102 | 1103 | 1104 | 1105 | 1106 | 1107 | 1108 |

**=BYTE Best

• =yes

⭐⭐⭐⭐⭐ Outstanding

⭐⭐⭐⭐⭐ Very Good

⭐⭐⭐⭐⭐ Good

⭐⭐⭐⭐⭐ Fair

⭐⭐⭐⭐⭐ Poor

* Access vendor Web site for latest price, warranty, service, support, terms and conditions, and telephone number (if not in toll-free area).
Micro Express MicroFlex
- Microelectronics: ClientPro
- Micron Electronics: Millennia
- NEC PowerMate Professional: P9000
- Polywell Computers: Poly
- Premier Computer Premio LX...

NEC Polywell Premio SAG
- NEC Polywell: STF3300
- Premio SAG: System Technologies Corp.

Tagram
- NEC Polywell: Premio SAG
- Tagram: System Technologies Corp.

System Technologies Corp.
- NEC Polywell: Premio SAG
- System Technologies Corp.: Tagram

Tagram System
- System Technologies Corp.: Tagram
- System Technologies Corp.: Tagram

Technology Avanta
- System Technologies Corp.: Tagram
- System Technologies Corp.: Tagram

XI Computer Corp.
- System Technologies Corp.: Tagram
- XI Computer Corp.: Mitac

Price
- $2799
- $2599
- $2950
- $3355
- $2945
- $3724
- $3299
- $2799
- $3199

Sound
- Sound Blaster: AWE64
- Toshiba/100X: PowerMate

Video
- Video: Both

3/3
- 3/3
- 3/2
- 3/2
- 3/2
- 3/2
- 3/2
- 3/2
- 3/2
- 3/2

Ultra Wide
- Ultra Wide:
- SCSI:

4.5 GB
- 4.5 GB:
- 4.3 GB:

3 PCI, 3 ISA, 1 AGP
- 3 PCI, 3 ISA, 1 AGP:

2/2
- 2/2
- 2/2
- 2/2
- 2/2
- 2/2
- 2/2
- 2/2
- 2/2
- 2/2

150-pin, 1 68-pin, 1 ext.
- 150-pin, 1 68-pin, 1 ext.
- 150-pin, 1 68-pin, 1 ext.
- 150-pin, 1 68-pin, 1 ext.

512 MB
- 512 MB:
- 512 MB:

SDRAM ECC
- SDRAM:

384 MB
- 384 MB:
- 384 MB:

2MB RAM
- 2MB RAM:

714-689-8000
- 714-689-8000

800-888-8088
- 800-888-8088

http://www.micronpc.com
- http://www.micronpc.com

http://www byte.com MAY 1998 BYTE 123
The experts agree: HotBot is the Web's best search engine. Not only is HotBot the fastest, freshest, and easiest to use, it's also the biggest – indexing an astonishing 110 million documents every three weeks.

Find out for yourself why the critics choose HotBot.

"The top search engine is clearly HotBot."
- PC Computing

"HotBot is superior to all Internet search engines."
- Internet World

"Editors' Choice for power searches."
- PC Magazine

"★★★★★"
- Computer Life

"HotBot could easily replace all its competitors."
- Database

"The best search engine in the world."
- Network World

"The top engine, the search site we'd head to first."
- CNET

Wired's HotBot.
The ultimate search machine.
www.hotbot.com
Low-Cost PCs

Does a low price tag always equal a value? We put five sub-$1000 PCs—all Pentium alternatives—to the test. By Robert L. Hummel

Cheap PCs: Bargain or Blunder?

For over a decade, PC manufacturers have tried to find the exact combination of features, applications, and price required to woo new home and business users. Early attempts at bargain PCs have produced anemic, underpowered machines that were soundly rejected by the market. Are the latest crop of sub-$1000 systems viable PCs or just expensive toys?

Specifying Systems

To qualify for this review, a PC had to provide adequate processing power for business and multimedia applications. We demanded a Pentium-class processor with support for the MMX instruction set, 32 MB of RAM, and Windows 95 OSR2. To store all that software, we asked for a 2-GB hard drive.

These systems do not include a monitor, a necessary purchase that will add $150 to $350. To accurately reflect small office/home office (SOHO) usage, we used a video resolution of 800 by 600 pixels with a 16-bit color depth for all performance evaluations.

To accommodate on-line activity, each machine had to include a 56-Kbps modem. A 16x-or-faster CD-ROM drive, Sound Blaster audio-card compatibility, and powered external speakers were required to provide basic multimedia ability. Finally, the price of the system (excluding monitor) had to be under $1000. In response to our request, we received five systems, three based on the AMD-K6 processor with MMX (Compaq, IBM, and Polywell), one powered by the Cyrix 6x86MX, and one built around the Cyrix MediaGX (both from Pionex).

How We Tested

To measure each system's real-world performance when running typical SOHO applications, we chose Bapco's Symmark 32 for Windows 95, version 1.0. This benchmark suite executes and times predetermined scripts of eight application programs. The overall performance score weights Bapco at 40 percent.

The BYTEmark benchmark most accurately determines pure processor power. Not surprisingly, we saw the best BYTEmark performance on the fastest chip with the largest L2 cache.

The Intel Media Benchmark release 1.0 measures video, image processing, 3-D graphics, and audio performance on systems running Windows 95. This benchmark uses DirectX and supports MMX-enabled processors.

Compaq Presario 4540

Although the Presario 4540 turned in good performance on our benchmark tests, its sleek, molded mini-tower chassis is an example of emphasizing form over function. Also, given Compaq's obvious goal of making the Presario an

RATINGS

TECHNOLOGY

IMPLEMENTATION

PERFORMANCE

VALUE

PIONEX 6x86

COMPAQ PRESARIO 4540

IBM APTIVA E26

Outstanding Very Good Good Fair Poor

MAY 1998 BYTE 125
Review Cheap PCs: Bargain or Blunder?

appliances, we believe the documentation and software should have been better.

The default Presario screen is heavily customized with Internet Explorer (IE). Background music, a channel guide, shortcuts for a host of applications, and a huge invitation to take the IE tutorial all add to the overly busy desktop. Bundled software includes Microsoft's Encarta 98, Bookshelf 98, Money 98, and games.

Inside, the Presario 4540 is no less busy. Wedged between the CD-ROM drive and floppy drive cage is a 3½-inch Quantum Bigfoot hard drive. Below the floppy drive, the power supply runs nearly the full depth of the tower, hiding the system board. One of the three available expansion slots is occupied by the modem.

The Presario 4540 contains 16 MB of RAM on the system board and provides only one dual in-line memory module (DIMM) slot for expansion, filled with another 16 MB in our review machine. Replacing this with a 32-MB DIMM brings the system up to its maximum 48 MB. Getting to the DIMM slot, however, requires removing all expansion cards, unplugging all external cables, and swinging the system board out from the back.

On the front panel, a hinged door covers both 3½-inch bays, but it allows access to the CD-ROM drive through a window when closed. Install a device in the open 3½-inch bay, however, and you may not be able to close the door.

The Presario 4540 is a solid performer, but its lack of expandability means you'll replace it before you upgrade it.

IBM Aptiva E26

IBM wants your first PC experience to be a good one. The Aptiva E26 is easy to set up, due in part to its color-coded cables and superb manual.

The Aptiva's case is stylized but still retains a classic computer look. The best feature of the case is its no-tools design that makes access a breeze. Release a latch at the rear of the unit, push a tab up front, and the entire case slides off toward the front of the unit.

The inside of the Aptiva is roomy, the CPU fan is unobstructed, and the cables are neatly out of the way. Two 3½-inch drive bays open to the front of the case and allow the addition of a tape drive or a digital versatile disc (DVD) drive. The modem takes up one of the six expansion slots in the unit.

The system board contains two DIMM slots. Our test system was equipped with a single 32-MB DIMM; you can add up to 32 MB more memory, for a total of 64 MB. At the heart of the E26 is an IBM-branded version of the AMD-K6 233. The chip can be a top Windows performer, but IBM has hindered its efficiency by eliminating the L2 cache.

The Aptiva consistently lags behind the other K6-based systems in our benchmark tests. Its on-board video is built around the ATI 3D Rage II+ chip set. But again, IBM has purposely limited the video memory to a nonexpandable maximum of 1 MB.

IBM rounds out the E26 package with a solid bundle of software, starting with the Lotus SmartSuite 97. Included are 1-2-3, WordPro, Freelance, Approach, Organizer, and ScreenCam. IBM includes both Netscape and IE, plus a CD full of utilities.

Pionex 6x86

The Pionex 6x86 stands out because of its simple, clean construction. Unencumbered with fancy molded cases or swinging doors, it is a straightforward PC that clearly doesn't pretend to be anything else.

The system is built around a generic motherboard that can accept a variety of CPUs, but this one has a Cyrix 6x86MX PR233. Video and sound are provided on separate expansion cards. Although this uses two of the seven available expansion slots, it also lets you troubleshoot or upgrade easily.

The case is roomy inside. It's easy to add or remove expansion cards and memory. Additionally, the Pionex is the only PC in this review that provides a reset button.

The generic user's manual does a good job of explaining Windows. Also included is the manual for the system board, showing jumper settings, cable connections, and BIOS setup options. Granted, it's not what the first-time user needs, but something that a friend performing an upgrade or a
third-party service agency will be grateful to have at hand.

You won’t notice any big names in the Pionex 6x86 software bundle. The Akrose Works CD provides a five-function collection of basic word processing, spreadsheet, database, draw, and paint programs. Reference works include Compton’s Interactive Encyclopedia and Reference Collection as well as TLC Properties’ BodyWorks medical-exploration program. Given the consumer slant of the under-$1000 market, it is odd that only Pionex bundled any software targeted at children, the Akrose Creativity Workshop for Kids.

Pionex GX

Cosmetically, the Pionex GX is identical to the Pionex 6x86 system and comes with the same software bundle. But on closer examination, several differences help keep its price $300 below its costlier sibling.

Powering the system is the Cyrix MediaGX processor and chip set. The GX and its companion Cx5510 chip provide a compact and inexpensive bundle of CPU, core logic, PCI, video, and sound support in one chip set. Video memory is carved out of normal system RAM, reducing costs further.

But all this economy comes at a price. Compared to the other review systems, the 200-MHz Pionex GX system was noticeably slower. System operation seemed sluggish, a problem exacerbated by slower video. As a result, the system has a trailing-edge feel to it, despite its recent vintage.

Nonetheless, given its $699 price and probable end use, it’s not fair to expect the system to deliver the same performance as systems costing $300 more. Once Windows is up and running and you’re connected to the Web or word processing, the real delays lie outside the PC.

When running office applications, the Pionex GX has about half the power of the AMD-K6 233 systems we tested, just enough to function as a network client or as an inexpensive office PC. Its lack of multimedia horsepower, however, limits its usefulness as a general home PC, where games and other video-intensive applications are the norm.

Polywell Poly LPC5201

The most striking feature of the Polywell Poly LPC5201 is its size, just 3 inches high and 12.5 inches wide. Despite its stature, the unit turned in the top overall performance score, fueled by its AMD-K6 233 processor and a 512-KB L2 cache.

The SiS chip set uses a type of universal memory architecture that assigns system memory to the video subsystem. Using the built-in BIOS setup, you can allocate between 0.5 and 4 MB of system RAM for use by the video display, depending on your required resolution. The lack of dedicated video memory doesn’t hurt the LPC5201’s performance at all.

Integrated Ethernet and universal serial bus (USB) ports are built onto the system board. It also has the largest hard drive of the bunch—a whopping 6.5 GB of storage. And the LPC5201 is the only system that configured its modem as COM3, leaving both serial ports active and available.

Although it has some impressive features, the LPC5201’s small size translates to some compromises. There are no expansion possibilities for additional devices, such as a DVD or tape drive. A riser card provides one ISA slot (used by the modem) and one shared PCI/ISA slot, limiting your expansion choices.

Small also means cramped. The bottom of the floppy drive is less than one-quarter-inch away from the top of the CPU—blocking effective cooling of the chip by its CPU-mounted fan. The heat problem is aggravated by the tiny power-supply fan and obstruction of airflow in the unit by internal partitioning. Over the period of an hour’s testing in a cool lab, the area of the case above the CPU got quite hot.

Equipping the LPC5201 with required software will drive up your total purchase price. Only Windows 95 and a few utilities are included. Despite its limitations, the LPC5201 is equipped to serve as a client for small networks, a second PC for SOHO use, or a first PC for home or school use.

Summary

Manufacturers are convinced that the key to getting more users to purchase their first computer is price, but we’re not so sure. Although the PCs reviewed here cost less than $1000, they’re no easier to use than their more expensive siblings. For those of us who are willing to configure our computers and don’t mind downloading a new driver occasionally, these PCs are a cost-effective way to add another computer to our stables.

Robert L. Hummel is an electrical engineer, programmer, and consultant. You can reach him at rhummel@cheshire.net.
Remote-Control Registry

Windows 95 and NT applications live and die according to their registry settings, but managing them is a bear. Like many network administrators, I've spent countless hours tracking down registry-configuration problems on networked PCs. It's a difficult task involving cryptic, poorly documented variables.

But a marvelous new tool, KeyVision, brings order to the registry with searching, reporting, and updating features that allow me to monitor and alter registries across the network. I wouldn't be without it now.

KeyVision's client/server architecture has NT-based communications and management servers you administer with ActiveX controls via a Web browser. Agents run on Windows NT or 95. IntraSoft also provides agent installation for Microsoft Systems Management Services (SMS).

Heavy-duty requirements allow KeyVision to work in large networks. It needs Microsoft SQL Server 6.5 on a dual Pentium Pro machine that has 256 MB of RAM. Although IntraSoft recommends KeyVision and SQL Server be on different machines for reliability and performance, I ran both KeyVision and SQL Server on the same dual-processor BackOffice server.

KeyVision agents run in the background and communicate securely between the registry and the KeyVision server. The Web-based management console provides access to users (query only), operators (change workstation groups and registries), and administrators (access policy and configuration options).

The management console was very easy to use. Workstations with agents installed showed up in the Unassigned group. Creating groups and moving workstations to them was a snap. KeyVision supports queries to find workstations whose registries meet specific criteria, monitors for real-time notification of registry changes, and filters to prevent unwanted updates.

KeyVision's Acrobat documentation was useful, though screens were unclear.

RATINGS

TECHNOLOGY	★★★★☆	★★★★☆	★★★☆☆	★★☆☆☆	★☆☆☆☆
IMPLEMENTATION	★★★☆☆	★★★☆☆	★★★☆☆	★★☆☆☆	★☆☆☆☆
PERFORMANCE	★★★☆☆	★★★☆☆	★★★☆☆	★★☆☆☆	★☆☆☆☆

I had minor SQL Server configuration hassles during installation. KeyVision's configuration support is poor, but maybe you won't need it. The installation program didn't put folders on the start menu, but all actions were available from the main form. Once installed, KeyVision was very stable.

KeyVision does only one thing—registry management—but does it so well that it should be easily justifiable by the management cost savings. Its use of SQL Server and SMS makes it a good fit for BackOffice environments.

William Wong is a computer consultant and author. You can contact him at bwong@voicenet.com.
Remote Access for Short Attention Spans

Sometimes it's easy to spot irony. I watched a home installation of Covad Communications' new high-speed, synchronous 1.1-Mbps asymmetric digital subscriber line (ADSL) modem for one of Web TV's network engineers, Robert Gutierrez. With the resulting major speed increase over his previous Pacific Bell ISDN connection, Gutierrez can now more efficiently monitor the analog modem bank for the slower, dial-up connections of Web TV's customers.

In the future, Web TV and other companies that offer services to home users will likely benefit from ADSL technology. But that won't happen for at least a year, because newer ADSL technologies, such as splitterless discrete multitone (DMT), have yet to be standardized, and home implementation is tricky.

For the time being, Covad's TeleSpeed ADSL service uses carrierless amplitude and phase (CAP) modulation. Like the competing DMT, CAP is not "splitterless" and works at the single-user level for remote-access connections. Once splitterless DMT becomes standardized by the Universal ADSL Working Group (UAWG), the technology will be available as a much less expensive (yet slightly slower) solution for consumers.

What's Involved

Currently, solutions like Covad's TeleSpeed 1.1—which functions as high-bit-rate DSL (HDSL) and requires the user to live less than 12,400 feet from the central office—remain costly. The service, which essentially turns a company into an ISP, requires an investment of expensive back-end ATM/DS3 or T1/frame-relay equipment and routers. Companies must also pay costly monthly surcharges. For example, Web TV's installation of the Covad ATM/DS3 device cost $7500; add to that a back-end recurring monthly rate of $4000 for the service. Companies also need to invest in a router if they don't already have one.

On Gutierrez's end, there are a series of installation charges, including $550, $325, and $80, for inside and outside wiring and customer premises equipment (CPE) installations, respectively. In addition, his employer must pay $195 per month for each TeleSpeed 1.1 user.

Unlike ISDN, Covad's service has a flat-rate fee, so there are no per-minute charges. Gutierrez says that in a competitive market like Silicon Valley, top engineers' demands for such perks as a T1 equivalent to their homes are often met. "I have headhunters calling me all the time for six-figure-salary jobs. This becomes an incentive on the [Web TV] employment package," he explains.

Setup issues are another impediment to the release anytime soon of a Covad package for individual home users. Currently, installation requires a visit from a service technician; the user's corporate network administrator must then tackle TCP/IP addressing and routing issues.

During Gutierrez's installation, I witnessed some thorny TCP/IP routing problems between Web TV's router and the newly installed ADSL modem. According to Lou Pelosi, director of marketing for Covad, the company's TeleSpeed service is an Ethernet interface, so the point of demarcation is on the side of the modem. "It's up to the company [i.e., Web TV] to ensure that the NIC [network interface card] software is configured properly," Covad installs its remote-access device, a Diamond Lane ADSL router called SpeedLink Modem, into users' homes.
Pelosi says. He adds that Covad monitors and supports the service up to the modem, "but it's the [participating] corporation's responsibility to deal with the NICs and IP-addressing issues."

Advantage: Speed

Although it's costly and installation is tricky, Covad's service offers some compelling advantages. Before installation, Gutierrez transferred a series of files, through an ISDN connection, from his home computer (a Sun Ultra 1 Model 170E, running Solaris 2.6) to the Web TV server. After the Diamond Lane ADSL router and TeleSpeed 1.1 hookup, he transferred the same files, showing the differences in speed between ISDN and ADSL (see the text box below).

I later tested some of Covad's products at the company's executive briefing center in Mountain View, California (which is located 3000 feet from the central office), where I found the TeleSpeed 1.1 service capable of 1-Mbps throughput for FTP puts and sends to the server. In addition, I was able to ping the network in 11 milliseconds using a program that tests whether a network destination is on-line.

I did these tests using a Diamond Lane ADSL router connected to a Compaq 233-MHz Presario Pentium MMX with 32 MB of RAM and running Windows 95, MS-DOS 7.10, Chameleon FTP Server, and Netscape Communicator 4.01a. Using Covad's TeleSpeed 144, which uses existing ISDN infrastructure and is based on ISDN digital subscriber line (IDSL technology), I was able to transfer data at 6.6 KBps. (I did the tests using an Ascend Pipeline 50 terminal adapter connected to a Fujitsu LifeBook with 32 MB of RAM, running Win 95 and Netscape Communicator 4.01a.)

I also loaded a graphics-intensive Web page—the Chicago Tribune Web site (which reloaded in about 2.5 seconds)—that is often sluggish over a 56-Kbps modem connection. Unlike using a cable modem, Covad's end-user services are shared. These services have a dedicated line for each user, resulting in greater security without the need for encryption.

Because they use a switched, dedicated medium where no packets are shared, Covad's DSL services are fairly secure and do not require encryption or a firewall. Covad's architecture is a layer 2 network; Covad uses individual, dedicated permanent virtual circuits (PVCs) to encapsulate the transport data from the home to the corporation.

In addition to TeleSpeed 144 and 1.1, Covad offers two other services: TeleSpeed 1.5 (1.5-Kbps downstream and 384-Kbps upstream) and TeleSpeed 384 (symmetrical 384 Mbps). TeleSpeed 1.1 and 1.5 cost $195 per month per user and $4000 for back-end monthly service charges. The TeleSpeed 384 and 144 services cost $125 and $90, respectively, for the end-user fee, and $4000 and $975 for back-end monthly service charges. All these services except TeleSpeed 144 (which works over ISDN lines) work over 26-gauge, double-wired copper lines.

Who Benefits?

Currently, Covad is targeting businesses with as few as 40 telecommuters—the minimum that Covad believes is necessary for a company to get a return on its investment. But Web TV's Gutierrez estimates that his company will get a return on its investment with its five top producers, extremely productive employees who spend a lot of time on-line monitoring mission-critical services.

But even in Silicon Valley's competitive market, Covad's 1.1-Mbps service is a luxury that most companies can't afford. Covad hopes economies of scale will allow it to grow this service quickly and that prices will drop enough so that nearly everyone can afford it.

Michelle Campanale is a BYTE technical editor based in San Mateo, California. You can reach her at michelle.campanale@byte.com.
of the neatest developments in the computer revolution is the plethora of cheap storage systems. We have a bunch of them at Chaos Manor.

The first solution is simple: add a larger hard drive. Except for portables, it's nearly impossible to buy a hard drive smaller than 2 GB, and larger ones are about 50 bucks a gigabyte. Put a new hard drive in your old system or install it in another system and network to it. Network costs have fallen to nearly trivial levels. Basic new machines are getting cheap enough that you can afford to use one as a "disk box" with the cheapest possible video card, no sound card or other accessories, a network card, and as much disk space as you want.

There are far more elegant solutions to your space problem—spending a bit more to get a good Windows NT server is one of them. However, if all you want is disk space in a hurry without configuration problems, networking to a box full of storage space certainly works.

Even Fast Ethernet is cheap. Last time I was at Fry’s, the big discount electronics superstore, I saw a Netgear FA310TX Fast Ethernet PCI auto-sensing 10Base-T/10Base-T adapter for $29, which is like putting in the right cable to the faster hub, and you have 100-Mbps communications. Now, three of my systems talk to each other at 100 Mbps.

I already had two Garrett Ethernet hubs, one running at 10 Mbps and one at 100 Mbps. They’re linked, so if I have 100-Mbps machines, I can simply plug into the 100-Mbps board. I figured that if this worked, I'd have 100-Mbps capability in my new machine on the cheap.

I installed the Netgear board at 10 Mbps without incident. The drivers they supplied worked just fine. After the system was stable, I unplugged the cable from the 10-Mbps hub and plugged it into the 100-Mbps hub to see if the auto-sensing really worked. It didn’t: there was no green light. The Netgear board has a bunch of lights to signal what’s wrong. In this case, it wasn’t getting a signal.

The Netgear manual says you must have Level 5 cable to run at 100 Mbps. I wasn’t sure what my old cable was, but I’d read that on the box when I bought the board, so in preparation I also bought a 25-foot cable certified as Level 5. I forget what it cost, but it was under 20 bucks.

I plugged that into the Netgear board and the other end into the 100-Mbps hub, and voilà! No change in software; literally plug in the right cable to the faster hub, and you have 100-Mbps communications. Now, three of my systems talk to each other at 100 Mbps (and to the rest of the network at 10 Mbps). I can sure notice the difference; enough so that I’ll probably get a couple more of those boards and cables, and upgrade other PCI-bus systems.

The installation was painless. Plug and Play worked just fine (in Windows 95; and once everything works in that, I install NT 4 and feed it the values that worked in Windows 95).

The moral of this story is that Pournelle’s law holds: if you have a computer problem, check your cables first. The other lesson is more general: 100-Mbps equipment is now cheap enough that you ought to be using it, but it won’t work without quality cables. Level 5 cable costs a little more, but once you have it, you can run at 10 Mbps until you get faster boards and then upgrade without pulling more wire. The odd thing is you may be better off paying attention to the brand of cable you buy than the brand of Ethernet board.

The Netgear board went into Fireball, which is my experimental dual 200-MHz Pentium Pro (the big ones with a 1-MB cache) system that I built from a Micronics W6-LI motherboard and a PC Power & Cooling case and cooling fans; see my December 1997 column for details.

Fireball also sports a Distributed Pro-
would then be written to the other. If either failed, the other would have everything on it. RAID 1 is fast on both reads and writes, and utterly safe unless both drives fail. It halves disk capacity, of course.

In the RAID box, I could have two drives in a RAID 1 array, and the third can be a hot-swappable spare. That is, if one of the drives fails, the third, which has been on standby, would swing in to substitute for the failed drive. The system would build up a copy of everything on the working drive, and within minutes, I'd be back to a fully backed up RAID 1 system. Alternatively, the third drive can just be a drive, not part of the RAID system at all.

The third alternative is RAID 5. A RAID 5 system requires at least three drives. All files are written across the three in such a way that if one of the drives fails, you can recover all the data through error-correction files stored on all three drives. This happens invisibly. RAID 5 is slower than RAID 0 or RAID 1, but most of the penalty is in writing files; reads in RAID 5 are fast.

RAID 5 also uses disk space. In my case, I have two 4-GB drives and one 3-GB drive, is in writing files; reads in RAID 5 are fast.

The hard part of the installation is getting the drives into the drive trays. The Fireball drive, I simply must have faith; the drive tray onto the jumper pins that control the SCSI ID for the drive. It's explained reasonably well in the DPT RAID-Station3 documentation, but the ease varies from drive to drive.

On the Quantum Fireball, it was easy to connect to the SCSI ID jumper pins, but I never did find a connection to connect the "drive busy" light cable to. Consequently, I have no drive-activity indicator on that drive. The Seagate drives, on the other hand, have good documentation, making it easy to connect both the SCSI ID cables and the drive light cable. However, those connections are on the back of the drive in a position that makes it hard, mechni-

Setting up the RAID arrays is both easy and complex.

The third alternative is RAID 5. A RAID 5 system requires at least three drives. All files are written across the three in such a way that if one of the drives fails, you can recover all the data through error-correction files stored on all three drives. This happens invisibly. RAID 5 is slower than RAID 0 or RAID 1, but most of the penalty is in writing files; reads in RAID 5 are fast.

RAID 5 also uses disk space. In my case, I have two 4-GB drives and one 3-GB drive, is in writing files; reads in RAID 5 are fast.

The hard part of the installation is putting the drives into the drive trays. The array sets the SCSI ID number for the drive; to do that, you must connect cables from the drive tray onto the jumper pins that control the SCSI ID for the drive. It's explained reasonably well in the DPT RAID-Station3 documentation, but the ease varies from drive to drive.

On the Quantum Fireball, it was easy to connect to the SCSI ID jumper pins, but I never did find a connection to connect the "drive busy" light cable to. Consequently, I have no drive-activity indicator on that drive. The Seagate drives, on the other hand, have good documentation, making it easy to connect both the SCSI ID cables and the drive light cable. However, those connections are on the back of the drive in a position that makes it hard, mechni-

The third alternative is RAID 5. A RAID 5 system requires at least three drives. All files are written across the three in such a way that if one of the drives fails, you can recover all the data through error-correction files stored on all three drives. This happens invisibly. RAID 5 is slower than RAID 0 or RAID 1, but most of the penalty is in writing files; reads in RAID 5 are fast.

RAID 5 also uses disk space. In my case, I have two 4-GB drives and one 3-GB drive, is in writing files; reads in RAID 5 are fast.

The hard part of the installation is putting the drives into the drive trays. The array sets the SCSI ID number for the drive; to do that, you must connect cables from the drive tray onto the jumper pins that control the SCSI ID for the drive. It's explained reasonably well in the DPT RAID-Station3 documentation, but the ease varies from drive to drive.

On the Quantum Fireball, it was easy to connect to the SCSI ID jumper pins, but I never did find a connection to connect the "drive busy" light cable to. Consequently, I have no drive-activity indicator on that drive. The Seagate drives, on the other hand, have good documentation, making it easy to connect both the SCSI ID cables and the drive light cable. However, those connections are on the back of the drive in a position that makes it hard, mechni-
After that, Bob's your uncle. The DPT Storage Manager software is slow and thorough and quite self-explanatory, and you can create RAID 0, RAID 1, or RAID 5 at will. Each takes a while—about an hour—as does switching from one to another, and you must save your data before doing it; but it all works about as advertised. In theory, you can change RAID types without losing data, but I'd sure hate to try.

My first effort produced a RAID 5 setup that turns 11 GB of storage on three drives into a single 6+–GB drive (which I formatted into three 2-GB drives due to the limitations of Windows 95). When I saw that worked, I changed it into one 4-GB RAID 1 drive (mirroring the two Seagate drives) and one independent 3-GB drive. This gives me 7 GB, with 4 GB self-backing. That will become the safety cache for all-important storage.

I used PowerQuest's PartitionMagic to partition my RAID 5 array into three 2-GB drives, and again when I changed over to RAID 1 plus an independent drive. PartitionMagic sees a RAID array as one drive, which it partitions like any other. One note of caution: PartitionMagic works like magic until you hit 8 MB. It simply ignores any drive space beyond 8 MB, no matter how large your drive is. That's about its only problem, and PowerQuest claims they'll have it fixed Real Soon Now.

I have been partitioning my drives into 2-GB logical drives, because of Windows 95. When I change Fireball over to NT 4, I will repartition to 4-MB logical drives.

In theory, you can change RAID types without losing data, but I'd sure hate to try.

Interestingly, Windows 95 can network-access more than 2 GB of space although it can't see more. That is, Spirit, a Pentium Pro NT 4 server built from the husk of Big Cheetah (hence the name Spirit), has two 4-GB drives. One is a Micropolis AV! external drive, one of the best drives in the house. It will send audio and visual data in a continuous stream. Alas, Micropolis has ceased to exist, although I note that Fry's advertised some Micropolis drives this morning.

Anyway, if I look at Spirit's drives across the network with a Windows 95 machine, they appear to be 2 GB only. I see 1310 KB used space, 836,894 KB space available, and 2147 KB total. If I look at that same drive with Princess, my Compaq Professional Workstation 5000, running NT, I see 3448 KB used space, 836,894 KB space available, and 4285 KB total. None of this is a problem: I can always find files on Spirit through the network.

Anyway, the RAIDStation3 is a good choice for critical mass storage. RAID 5 is a bit costly in space, but it works, it's easy to set up, and while the write-time penalty is fairly high, the read-time cost is negligible. RAID 1 is utterly safe (for the mirrored drive) and as fast as the drive can be, and it leaves a drive for you to use as you like. It's all easy to set up, experiment with, and change around. It's classy solution to your data-storage problems. I use DPT Smart-Cache SCSI controllers on many systems, and I've always been impressed with their capability and reliability. Recommended.

You can then forget about it.

Installation is simple, the manual is clear, the recovery paths seem reasonable, and the company includes people I've known for years—one was formerly associated with Quarterdeck's CleanSweep—so it all seems safe enough, and it's a simple solution to file-location nightmares.

My only doubts here involve using redirects with memory-resident compression programs like Mijenix's FreeSpace. Either program is reliable acting alone, but one of the programs may not understand what the other is doing. Thus, I'd be cautious about using BigDisk with any on-the-fly compression programs; but then I'm always cautious about compression programs to begin with.

If you're thinking of adding a new and large hard drive to an existing system, BigDisk can help you get things organized without your having to do much work.

I'm told that Syncronys will soon bring out a version of BigDisk that lets you map in network drives so they seem to be part of your C drive. I'm looking forward to that, and I'll let you know when I get it.

The next addition to storage is CD, both CD-R (recordable, i.e., write only) and CD-RW (read and write). The cheapest and most useful is CD-R, but if you have the extra cash, it may be worth it to get a Ricoh MediaMaster MP-6200S Internal CD-RW drive. This will function as a (rather slow—6x) CD-ROM drive, write CD-R gold discs, and work with CD-RW if you need that.

It's a SCSI device that in my case operates off the DPT caching controller in Fireball, but it comes with a PE Logic SCSI board that has both internal and external SCSI connectors. If you don't have SCSI, this will work, because installation is a snap, and everyone ought to have SCSI.

You also get Adaptec's Easy CD Creator and DirectCD software, making it simple to copy CD-ROM discs or make new ones, as well as manage the CD-RW capability. The Adaptec software is easy to learn and has a mode for testing before you start burning a CD-R.

One caution about CD-RW: unless you have a fairly new system, your CD-ROM drive probably can't read CD-RW discs. The only drive I have that reads CD-RW discs (other than the Ricoh drive that created them) is a Panasonic 24x ATAPI CD-ROM drive that resides in Cyrus, my Cyrix 6x86 P-166 system. Most newer CD-ROM drives will read CD-RW discs, but newer means manufactured after the fall of 1997. The buzzword to look for is multiread with a silver sticker. Drives that have that will read CD-RW discs. Others probably won't.

continued
Speed is essential in all database projects, but not at the expense of stability. You wouldn't try to go 100 miles per hour with your bicycle! The same is true in database technology. FairCom has been delivering fast, safe, full-featured database engines to the commercial marketplace for 19 years. Proven on large Unix servers and Mac. Check out www.faircom.com for detailed information. You'll be glad you did.

c-tree Plus® key features for $895:
- Royalty Free
- Portable Multi-Threaded API
- Complete C Source
- Thread Safe Libraries
- Standalone or Client/Server
- Complete Transaction Processing, including automatic recovery
- Save-points
- Abort/Commit
- Roll-forwards /Roll-backwards
- Easy make system
- Advanced Variable Length Records
- BLOBs
- Space Management
- File Level Security
- Conditional Index
- ODBC/Jave interfaces
- Over 25 Developer Servers included

Platforms:
- MIPS ABI
- DEC Alpha
- HP/UX
- AIX
- RS/6000
- Sun SPARC
- Windows 95
- SCO
- OS/2
- Windows NT
- Interactive Unix
- Sun OS
- Windows 3.1
- AT&T System V
- Chorus
- Netware NLM
- Lynx
- Benyan VINES
- UnixWare/Window.

FairCom ® Server Development System

Half of your Client/Server project is the Server! You control 100% of your Client Side. Why settle for less on your Server side? Move your functions to the server-side to decrease network traffic and increase performance!

Today's database demands may often be too complex for traditional Relational Model Database Servers. Server needs come in many different sizes and shapes. What better way to accommodate these requirements than by allowing the developer to take full control of the Server side? FairCom's Server Development System was created to meet this need. It provides the developer the means to create an industrial strength Server. Complete make-files are included for all FairCom commercial platforms. With our proven kernel add or override existing database functionality or create your own special multi-threaded server:

- Application Server
- Network Gateway Server
- Special Web Server
- Departmental Database Server
- Data Warehouse
- Embedded Servers

FairCom Server Development System key features:
- Provides complete source code for all the interface subsystems to the FairCom Server. Server mainline, Communication, Threading, Remote function interfaces and procedure calls are all supplied in complete C source code together with the FairCom Server sophisticated thread-safe kernel libraries.
- Customizable Transaction Processing
- Online Backup
- Disaster Recovery
- Rollback-Forward
- Anti-Clock Lock Resolution
- Client Side Source
- Multi-threading
- Data History
- Multiple Protocols
- Heterogeneous Networking
- File Mirroring
- Conditional Index
- Small Memory Footprint
- ODBC/Jave interface
- Key level locking

www.faircom.com

FairCom Corporation

USA. 800.234.8180

Phone: USA 573.445.8833 - EUROPE +33.30.73.3644 - JAPAN +81.0929.29.7504 - BRAZIL +55.14.226.1610

Chaos Manor

I don’t use the Ricoh drive for CD-RW anywhere near as much as for CD-R. Fry’s now has blank CD-R discs for under $2, so once a week, I use the Ricoh drive to burn a new “full Monty” backup of every word I have ever written (at least all of them I have in electronic readable form). I carry the latest of those on trips, so if the house burns down I’m still in business. I leave copies in safe-deposit boxes and at Larry Niven’s house. I also make copies of the really critical system software on all my machines.

We currently recommend the Ricoh CD-R and CD-RW internal SCSI drives, and the Philips CDR-870 external drive. One caution: you can get two discs into a Philips drive. When you do, it scrapes off the laser. Not good. Don’t do it. We managed to.

I’VE SAVED THE NEWEST BACKUP system for last. We have an Indigita iDT 2500 SCSI tape drive. It holds 6 GB on each tape.

The iDT 2500 can be an internal drive or an external drive; ours is internal in Fireball to back up the entire network. That does not make full use of the iDT 2500’s capabilities, but it is something I need. One problem with installation. All my flat SCSI cables have three connectors, one for the controller and two for the devices; but both the Ricoh MediaMaster and Fireball’s main hard drive are internal SCSI devices. Of course, I could buy a four-connector flat SCSI cable, but it’s storming outside.

Fortunately, the Micronics motherboard has an on-board Adaptec SCSI, but we were using the DPT SmartCache IV and never implemented it. Reset the machine, enter the BIOS setup, and enable the SCSI drive; install the Adaptec SCSI drivers that came with the board; and then connect the iDT 2500. It took longer to do than to tell about it, but not much longer.

Now I have a new drive, T, and an icon of a tape drive. Put in a tape, format it, and there’s 6 GB of data storage available. The interesting thing about the iDT 2500 is that the system can’t really tell it from a disk; you copy files and such to it, and you can selectively add and delete and overwrite as you choose. Moreover, once it finds a file, it’s fast: you can play audio and small-screen real-time video direct from the tape. It’s great for saving Internet multimedia downloads.

Note I say once it finds the file. It can take up to a minute to find and open a new
Get the product information you need, when you need it, now!

HotBYTES, our product information server, gives you fast access to the product information you need from one convenient source, 24 hours a day. Simply click on the HotBYTES link from the BYTE Site home page to request the latest product information from BYTE advertisers and companies mentioned in the pages of BYTE. Product information will be rocketed to you via e-mail, the web or traditional mail. Powerful search capabilities allow you to find products by company, reader service number or category.

Quit waiting for product information to arrive by snail mail, carrier pigeon or the pony express. Try HotBYTES today! No hassles, no stamps or long waits—just free product information—FAST at www.byte.com/hotbytes/
drive. Once that's made up, I'll copy it to backup last time, I forgot to look into some storage, since the cost per gigabyte for storage on a CD-R disc. However, since it's on the networked drives. This time for sure.

ware's Drag and File Gold to find and copy age media is very low while 6-GB chunks are more convenient than the 600 MB you can also use it to store any multimedia files CD-R disc. When I did my "full Monty" the other end of a 100-Mbps Ethernet, I may have some stuff that didn't get onto one of the networked drives. This time for sure.

I'll mostly use the iDT 2500 as backup storage, since the cost per gigabyte for storage media is very low while 6-GB chunks are more convenient than the 600 MB you get on a CD-R disc. However, since it's on the other end of a 100-Mbps Ethernet, I can also use it to store any multimedia files I download from the Internet. If you're looking into data storage, be sure to check out Indigita's iDT 2500. More as I use it more, but I like it already.

CREDENTIALISM HAS BECOME the curse of the age. It's no longer what you know, but what credentials you have that determine salary and promotion. Now much of this is due to Equal Opportunity legislation. If you can't prove that the person you promoted is somehow "superior," you could be sued by a legal

people who will find these books most useful are those who know a lot about the subject, but don't know it in a systematic way; who have holes in their knowledge base; and who are a bit nervous about exams anyway.

The New Riders MCSE books are the computer books of the month. Just be sure to notice the publication date; books of this kind become dated as quickly as Microsoft releases new versions of its products. Generally, the titles that say MCSE Training Guide are more recent than the ones that say MCSE Study Guide.

If you already know Windows NT, or Exchange Server, or one of the other major Microsoft product lines, but like the scarecrow in the Wizard of Oz you don't have a diploma, go to http://www.newriders.com and see if there's not an MCSE category and book for you. It could change your life.

THE BOOK OF THE MONTH IS BY George and Meredith Friedman, The Future of War (Crown, ISBN 0-517-70403-X). While I don't agree with all they say, it's a valuable contribution to the discussion of technology and warfare. Incidentally, I am doing a two-volume set on high-tech wars for St. Martin's Press, and I hope to turn in the manuscript of the first volume about the time you read this.

The game of the month is Cavedog Entertainment's Total Annihilation. It'd sworn off real-time strategy games, but this one has good enough speed control to be useful. It's a fairly stylized war reminiscent of Warcraft set in the next millennium, and it has certainly eaten enough of my time. Warning, if you get this, you may find yourself playing at dawn, and not just once.

Be sure to see the Web Exclusive for another graphics report from David Em. There's a new era in color printing. Next month, waiting for the bus: what USB will do for us, plus the usual tales of hope and glory.

Jerry Pournelle is a science fiction writer and BYTE's senior contributing editor. You can write to Jerry c/o BYTE, 29 Hartwell Ave., Lexington, MA 02173. Please include a self-addressed, stamped envelope and put your address on the letter as well as on the envelope. Due to the high volume of letters, Jerry cannot guarantee a personal reply. You can also contact him on the Internet or BIX at jerry@bix.com. Visit Chaos Manor at http://home.earthlink.net/~jerryp/.
Buyer's Guide
Essential Products and Services for Technology Experts

Mail Order
Top mail-order vendors offer the latest hardware and software products at the best prices. Page 138

Hardware/Software Showcase
Your full-color guide to in-demand hardware and software products, categorized for quick access. Page 146

Buyer's Mart
The BYTE classified directory of computer products and services, by subject so you can easily locate the right product. Page 150
Global solutions

Designed and manufactured in house by Tri-MAP International.

Full design, customisation and production service in the UK and USA.

Chassis, industrial CPU cards, passive back planes and power supplies.

Tri-MAP International

BS EN ISO 9002 Registered (UK)

UK Manufacturing Headquarters
Units 2 & 3, Kingscroft Court, Ridgway, Havant, Hampshire, UK
Tel: 01705 424800 Int: +44 1705 424800
Fax: 01705 424801 Int: +44 1705 424801
email: sales@map.co.uk Web: www.tri-map.com

31,000 sq ft production facility

USA Manufacturing Headquarters
4569A Las Positas Road, Livermore, California, CA94550, USA
Tel: 510 447 2030 Int: +1 510 447 2030
Fax: 510 447 4559 Int: +1 510 447 4559
email: trimapintl@earthlink.net Web: www.rackco.com

30,000 sq ft production facility
ForeFront offers the fastest and easiest way to prepare you for a career in the Information Technology (IT) industry. From introductory self-study courses to industry certifications like MCSE, ForeFront has the training to meet your needs. Our courses are 100% Computer Based Training (CBT) to give you flexibility unmatched by traditional training methods. Study at your own pace using our step-by-step format, when and where it's convenient for you!

Become MCSE Certified ...FAST!

The ForeFront MCSE Self-Study Course™ ensures the highest rate of information retention so that when you complete your training you'll be fully prepared to pass your MCSE exams. You'll be ready and confident to go into the workplace to effectively plan, implement, maintain and support information systems in a wide range of computing environments, using Windows NT and other Microsoft® Server products. Call now to get more details!

Become CNE Certified ...FAST!

The ForeFront CNE Self-Study Course™ provides fast, effective and convenient training to anyone wishing to become a Certified Novell Engineer, even when hampered by a busy schedule. Our CNE CBT allows you to learn and practice everything you'll need for full Novell certification. Call now for more information!

Become A+ Certified ...FAST!

Getting A+ Certified will help open the way to further advancement in the corporate world. The ForeFront A+ Certification Self-Study Course™ is a hands-on self-study course that will give you all the technical material, knowledge and interactive exercises you'll need to pass your exams and excel in today's competitive PC repair marketplace! Call now to learn more!

New! Introduction to PCs Self-Study Course™

Provides the easiest and most effective way to learn the technical fundamentals necessary for a productive and successful career as a PC Repair Technician. Ideal for individuals new to the IT profession! Call now for more information!

Call for Special Discount Pricing Today!

1-800-475-5831

- Free Technical Support
- Next Day Shipping
- Performance Guaranteed
AUTOMATED DATA ENTRY
Any Form...Every Format!

If your company enters information into a database, you need TELEform, the data collection solution. TELEform reads hand print from any form. It reads any data type from faxed, scanned, or even Internet-based forms. The TELEform family of products can handle your forms processing needs, whether it's a hundred or tens of thousands of forms each day. Create a form, print it, fax it, post it on your Web site. One form in any format, paper or electronic. Thousands of companies use TELEform's data collection server and robust recognition capabilities to reduce their dependence on manual data entry.

Phone: 760-752-5244
FAX: 760-752-5222

Find out more about TELEform, your Total Data Collection solution Toll Free 888-254-8918 www.cardiffsw.com
CLONE, FORMAT, REPAIR
AND TEST ANY DISK DRIVE

STAND ALONE DRIVE DUPE-IT!
CLONES ENTIRE DRIVES
Copy entire hard drives with ease. Why
spend hours installing and formatting
drives when you can do it instantly with
Drive Dupe-It! Set up any SCSI or IDE
drive with all your original software.
Connect blank drives and press start.
You’ll copy entire drives instantly!
With our combo IDE/SCSI model, you can
copy entire hard disk images from IDE to
SCSI or vice-versa.

HOT NEW TECHNOLOGY
REPAIRS DRIVES
Don’t throw those used drives away!
Breathe new life into old drives with
Dupe-It Pro. Reassign and eliminate bad
SCSI blocks and IDE defects. Put the
built-in drive repair system to work for
you. Here’s how it works: First, a precise
analysis system scans the disk surfaces
for errors. Defects are then mapped
around and effectively “erased”. The
built-in error correcting system “trains”
the drive to permanently avoid defective
areas. Your data is stored only on safe
areas of the disk. Capacity is reduced by
an insignificant amount, and the drive
works flawlessly once again.
Get the technology used by major repair
shops and modern data recovery
centers. Dupe-It Pro repairs all disk
defects caused by normal wear. Drives
with excessive mechanical damage
may not be repairable.

PRO MODEL INCLUDES FACTORY
TEST SYSTEM
Choose the Dupe-It Pro, and you’ll also
have an entire factory drive test system
for under $1000. The Pro model gives
you the ability to copy, reformat, repair,
translate, and test any hard disk drive. Use
the Pro to put any hard drive through its
paces. A full factory final test and performance
analysis is performed. Complete
test and repair reports are sent to any
standard printer.

COPY ANY CD
INSTANTLY!

STAND ALONE IDE DRIVE DUPE-IT
P/N ID1 .. $395.
COMBO IDE AND SCSI DUPE-IT WITH TRANSLATOR
P/N SDI2 .. $795.
PRO MODEL LOADED WITH IDE AND SCSI INTERFACE
DRIVES, TRANSLATOR, DRIVE MECHANIC, AND DRIVE
DIAGNOSTIC TEST SOFTWARE WITH PRINTER PORT
P/N SDIPRO ... $995.

CORPORATE SYSTEMS CENTER
www.corpsys.com
ORDER FACTORY DIRECT:
408-743-8732

CD DUPE-IT!
Instantly duplicate master CDs for software
distribution. Make steady backup copies of your favorite software on rugged, permanent media. Produce custom discs quickly and economically. No mastering or multimedia experience is required.

ONE BUTTON OPERATION.
NO PC NEEDED.
Insert your original disc and press “start”. The multimedia processor quickly copies any CD to the internal AV hard drive. Insert blank discs and make as many copies as you like. You’ll produce identical, bit-for-bit duplicates. The system is totally self contained — no computer is needed. Just plug it in and press “start”. You’ll get perfect copies of any CD.

BUILD YOUR OWN CUSTOM
AUDIO DISCS!
You can make your own custom audio discs without a PC! Insert your original CDs, select the tracks you want, and copy them. Then insert a blank CD-R, and you’ll have a custom audio disc with just the songs you want.

With the included CD mastering software, CD Dupe-It will work overtime. Just attach a SCSI cable to your PC or Mac, and you’re ready to design and create your own original CDs.

CD DUPE-IT! ... $1095.
CASE OF 100 BLANK DISCS (Green/Gold) $159.
CASE OF 100 BLANK DISCS (Gold/Gold) $199.

Enter HotBYTEs No. 107 at http://www.byte.com/hotbytes/
40,000 REASONS TO HOST WITH HIWAY

Serving 40,000 domains, Hiway is the world's most popular web hosting provider.

And with good reason. We deliver the best performance by using the fastest equipment available. We guarantee 99.5% uptime. We offer the most responsive service, including around the clock support in multiple languages. Is it time to choose a web hosting provider? Then choose Hiway for reliability. And for performance. And for 40,000 other reasons. Order online at www.hway.net and your site will be hosted today.

Order online at www.hway.net and your site will be hosted today.

Features

- 24 x 7 network operation center
- 30 day money-back guarantee
- 24 x 7 multilingual support
- Accounts set up within a few hours
- Domains registered within 24 hours
- Serving 500 million hits per month

PLANS FROM $24.95 per month

Reseller Opportunities Available

Hiway Technologies
THE WORLDWIDE LEADER IN WEB HOSTING

If you have a problem with your BYTE subscription, let us know! For best service, provide a brief description of the problem and a copy of a recent magazine mailing label (if available). If your label is unavailable, just give us your subscription account number along with your name, address, and zip code where your BYTE subscription is currently being sent. If you have a change of address, be sure to provide both your old and new addresses. If the problem involves a payment, be sure to include copies of your cancelled check (both sides) or your credit card statement. Please include a "business hours" phone number if possible.

Send to:

BYTE Magazine Subscriber Service
PO Box 555, Hightstown, NJ 08520

Fax: 609-426-7087
Phone: (9 a.m. to 8 p.m. Eastern Time, Mon. – Fri.) 800-232-2983 (U.S.), or 609-426-7676

A Division of The McGraw-Hill Companies
The Definitive Reference Source!

BYTE on CD-ROM

Eight Years of BYTE — 1990 to Present

Plus, Quarterly Updates

Call 1-800-924-6621 or Order via the Web at https://www.byte.com/orders/subcd.htm

It's all at your fingertips — emerging trends, comprehensive world-wide industry analysis, multiplatform coverage of all the technologies, in-depth testing and product evaluations, advice, tips, expert opinions, and much more! It's a deal for anyone who's evaluating the significance of new technologies...doing research...making complex multi platform purchasing decisions...developing the next generation hardware or software products...preparing corporate plans.

It's Comprehensive...Time Saving...and Easy to Use! It's all in BYTE on CD-ROM. Order Today! 1-800-924-6621

Available for Windows 3.1 ,NT, Win 95.
Something Missing?
Complete your BYTE collection by ordering Back Issues today!

January
February
March
April
May
June
July
August
September
October
November
December

Special Issues U.S. Delivery $3.00, Foreign Delivery $4.00 • 1990 thru 1998 U.S. Delivery $6.50, Foreign Delivery $8.50, Canada & Mexico $7.00 • All issues prior to 1990 U.S. Delivery $3.00, Foreign Delivery $4.00. Call for availability) These prices include: postage (U.S.), surface mail (foreign). • All checks must be in U.S. funds and drawn on a U.S. bank. Please indicate which issues you would like by checking (/) the boxes. Send requests with payment to:

BYTE
Back Issues,
One Phoenix Mill Lane, Peterborough, N.H. 03458
(603) 924-9281, ext. 194

Check enclosed Charge:
MasterCard Eurocard American Express VISA
Card #
Exp. Date
Name
Signature
First Name
Last Name
Address
Address
City
State Zip

Only credit cards or Eurochecks accepted! Please allow three weeks for delivery by surface mail.
Selecting the right SCSI equipment is crucial for ensuring compatibility and maximizing performance. A variety of products are available to meet specific needs:

SCSI Cables and Adapters
- **SCSIView Active Terminator**
- **SCSIView Gold Diagnostic Cables**
- **Gold 8mm Ultra SCSI Cables**

Features:
- Suitable LVD & FDDI Operation
- Triple Shielded (O.D. 0.35mm)
- Double 30μ Gold Plated Contacts

Benefits:
- No Loss Of Important Data
- Faster Performance
- Test Cable Integrity
- Tripple Shielding Output
- Silver Wire Improves Signal Quality

See page for more information.

SCSI Repeater
- **Active Digital SCSI Repeater**
 - Supports all SCSI bus types
 - Automatic Termination and Signal Retention

Features:
- Active Termination and Signal Repetition
- Faster Performance for Added Capabilities
- Diagnostic Capabilities: LVD, SDI, and FDDI

OEM SCSI Repeater
- **Custom Teflon Internal Cables**
 - Designed for specific requirements
 - Flexible solution for custom projects

Practical Considerations
- **Granite Cables Are The Best Because They're Engineered Right**
- Granite Cables are designed for engineers to provide the best cables on the market.

SCSI Cables
- **Ultra 2 SCSI Cables**
 - 2X Speed - 80 MB/s
 - Ultra Fast Speed for Maximum Performance

Benefits:
- Faster Transmission
- Increased Data Integrity
- Optimized for LVD/SE and FDDI Standards

Ultra 2 LVD - SCSI Host Adapter
- **Ultra 2 25 Pin 50 MO**
 - Supports all Ultra 2 SCSI commands
 - Optimized for Ultra 2 and LVD/SE applications

Features:
- Full Duplex Operation
- Auto Negotiation
- 4X Speed Over Standard SCSI

SCSIPRO Utilities - SCSI Repair
- **SCSIPO Utilities**
 - Professional-grade diagnostic tools
 - Comprehensive testing and troubleshooting

Summary
- Choosing the right equipment is essential for maximizing performance and ensuring compatibility in your system.
- Consult with a professional to select the best components for your specific needs.

Visit www.scsipro.com for more information

The SCSI Solution Company
3101 Whipple Rd, Union City, CA 94587
Ph: 510-471-6442 Fax 510-471-6267
Add-In Boards • Data Acquisition

Z-World introduces the LP3100 C-programmable controller with an innovative sleep mode function that cuts current consumption to microamps! This multitasking controller is ideal for portable, remote, mobile or handheld applications.

- Low-power — 66 milliwatts, or 0.7 milliwatts in sleep mode (200 microamps @ 3.5 VDC).
- Operates over a range of 3.5 - 24 volts DC.
- 4 digital inputs, 8 digital outputs, and 8 digital I/O configurable as 8 inputs or 8 outputs.
- 4 analog inputs — 12-bit resolution.
- RS-232 and RS-485 serial channels.

The LP3100 is programmable using Z-World’s Dynamic C software development system. Dynamic C includes an editor, compiler, and debugger, simplifying and speeding your software development effort.

Order a development kit or receive a FREE catalog by calling 1.888.362.3387
Visit our web site at http://www.zworld.com

HotBytes No. 124

Virtual Instrument Developers Tools—Free Evaluation CD

The new Software Showcase CD-ROM includes free evaluation versions of the industry LabVIEW graphical programming and LabWindows/CVI C/C++ development tools for virtual instrumentation. Also included are ActiveX controls for Visual Basic, Excel Tools, and analysis and visualization software.

National Instruments
6504 Bridge Point Parkway, Austin, Texas 78730
(512) 794-0100 (800) 433-3488 (U.S. and Canada)
Fax: (512) 794-8411
E-mail: Info@natinst.com www.natinst.com

HotBytes No. 129

HotBytes No. 125

Industrial Rackmount Computers

HotBytes No. 130

HotBytes No. 126

Why have the new LaserLite", DuraTrax", and LaserLite Pro received such outstanding reviews?

Because metal cases provide impressive strength and durability! You get over 100,000 scans from one set of batteries! And, you get easy-to-use Windows" software to build your application!

Best of all—LaserLite, DuraTrax, and LaserLite Pro are uniquely affordable!

Call for your free information packet today.

1105 N.E. Circle Blvd., Corvallis, OR 97330
541-758-0521 • Fax 541-752-5285 • http://www.videq.com

HotBytes No. 131

Pentium® II & Sound SBC

For Intel Pentium® II 233-333MHz CPU.
Creative Sound Blaster, Ultra DMA/33 IDE.
DiskOnChip® Flash Disk. E'Key® Function.
PICMG Standard Complied.

ICP ACQUIRE INC.
453 Ravendale Drive, #H Mountain View, CA 94043

HotBytes No. 128
Control

Two to Eight PCs From
One Keyboard, Monitor and Mouse

CompuSwitch

- All PC brands and operating systems
- Flawless PC booting and operation
- Mix PCs with PS/2 and serial mouse ports
- High-resolution video
- Tangle-proof PC cables

Call Today! 800-724-8090 x17

Industrial Computers

RACK MOUNT PC PRODUCTS

ENCLOSURES
- Integrated monitors
- 8 and 14 slot models

MONITORS
- 15” to 17” CRTs
- Monitor enclosures

KEYBOARDS
- Keyboard drawers
- 1 Unit high, 101 keys

SINGLE BOARD COMPUTERS
- Pentium and Pentium Pro SBCs
- MMX Processor Support
- Onboard video and SCSI models
- 8 and 14 slot ISA/PCI backplanes

PRINTERS
- Rack Mount color inkjet printer
- Easy paper & controls access
- HP 600 series inkjet printer enclosure available

RACK MOUNT TFT LCD DISPLAYS
- 12.1” Active Matrix color TFT display
- Equivalent viewing of a 14” CRT
- 800x600 resolution, 262K colors

RECORTEC, INC.
1290 Lawrence Station Road
Sunnyvale, California 94089-2220
Ph: 408-734-1290 Fax: 408-734-2140
email: info@recortec.com

Sliger Designs

Vertical Integration

is the answer!

Call us and find out why!

HotBytes No. 134

HotBytes No. 131

HotBytes No. 135

HotBytes No. 132

LET YOUR TRUE COLORS SHINE THROUGH

Advertise your product in the BYTE HARDWARE/SOFTWARE SHOWCASE
the popular, affordable, 4-color advertising section!
For more information call your BYTE sales representative (see listing, page 153)
or fax 603-924-2683

BYTE magazine

The Future of Information Technology Today
Introducing LANWatch3ZM
For Windows 95 and NT 4.0

WHO SAYS?? "...LANWatch is just for DOS?????

Introducing LANWatch3ZM
For Windows 95 and NT 4.0

HotBytes No. 133

A-Engine
40 MHz!
High Performance, Compact, Reliable, Easy to program in Borland C/C++

Prices for 20M kiloStart at $159 Qty 1 - $54 OEM
- 3.62x3', Am1885ES, 1MB Memory
- 50+ I/Os, 11-12-bit ADC, 2ch. 12-bit DAC.
- 3 UARTs, 3 timers, PWM, Battery, RTC, Networking

Low Cost C/C++ Development Kits for 20+ Low Cost 16-bit Controller with ADC, DAC, solenoid drivers, relays, PC-104, PCMCIA, LCD, DSP motion control, 10 UARTs, 100 I/Os. Custom board design. Save time and money!

HotBytes No. 127

CD-Recorders
from CONSAN—the best high-end integrator for all your mass storage needs.

NOW AVAILABLE from Yamaha
4X2X6—first ever IDE INTERFACE in a CDRW.
4X RECORD 2X WRITE 6X READ
This is the multi-function drive you’ve been waiting for. Call TODAY for aggressive pricing!

1-800-221-6732

HotBytes No. 126

9Net Standard Features
- Multiple OC-3's to UUnet, MCI & GTE Int'l
- Powered by SGI origin 2000 server
- Your own FTP site + Your own CD directory
- 7500 Serial Sysco Router • POP 3 accounts
- Account "Control Panel" access via WWW
- Daily Tape Backup of your data
- Expert technical support • On-site UPS
- 24-hour on-site monitoring
- No minimum contract

9Net One Plan $14.95/mo.
- 2MB • 10 mailboxes

9Net PRO plan $39.95/mo.
- 10 MB of disc space • 25 POP3 mailboxes
- ALL features of 9 Net One Plan Plus:
 - Dedicated secure server (SSL) + Secure FTP + XferMover + CyberCash
 - MS 98, MS Access, mSOL, Shopping Cart
 - Unlimited Domains with unique IP addresses (www.yourcustomer.com) • That's a reseller program with 100% discount

Dedicated Server
Yours or ours from $99.

a one stop e-commerce solution by iCat includes software, development, hosting, and a free listing in giantmall.com

1-888-9NETAVE 1-888-963-8283 1-201-933-0765
9NETAVENUE

HotBytes No. 138
Worldwide Internet, the global leader in NT hosting, has the speed (dual T-3's) and reliability (99.70% uptime) necessary to accommodate the most dynamic sites on the Internet. Whether you are interested in conducting E-commerce or working with database applications, our high speed servers can meet your needs. Furthermore, our status as a Microsoft Certified Solutions Provider™ and an Internic Premier Partner ensures that you will receive the highest level of support in the industry.

* Dedicated server and Co-Location plans available.
* Reseller opportunities available.

1(800) 785-6170
www.nthosting.net
VT Protect
SECURE SOFTWARE LICENSING FOR PIRACY PREVENTION!
Incorporates a unique "adaptive" fingerprint technology that provides security which is second to none in the industry!
Single tool allows administrative of multiple products on Windows and UNIX platforms with full integration measured in hours, not days!
Supports customizable licensing security and support for multi-channel distribution and selling strategies.
An individual, node locked password generated with VT Protect Administrator converts trialware to a full single user product, cutting sales time and reducing licensing headaches.

www.vtprotect.com
(888) 842-8323 / (508) 647-0464

HotBYTES No. 394

SIMULATION SOFTWARE

Analog/Digital Simulation!!

New A'HOL Modeling Kit!! systems, 5595-52595
Power Mac, Macintosh • More Than 5000 parts

Download VT Protect Today!

Call for your Free Demo and information kit.

HotBYTES No. 399

CRYPKY SOFTWARE LICENSING SYSTEM
"Software Protection with NO hardware lock and NO disk key"
CrypKey is software copy protection that is:
- completely secure from any disk copy program
- perfect for CD-ROM or INTERNET distribution!
- cost effective, user friendly, and 100% guaranteed to satisfy!
CrypKey can increase your software sales:
- usefull options and levels of your software
- lease or demo your software by runs or time
- enable or upgrade your customers instantly
- by phone, fax or E-mail!
New unique Ready-To-Try feature upon install allows 1 trial period only per customer. New unique Add-On feature - add more options, levels, runs or time to existing licenses. New CrypKey Instant-protects in just 5 minutes with no source code changes.
CrypKey is completely compatible with MS-DOS, MS-Windows 3.x, Win16, Win32, Win 95, Win NT, and manages network licenses on all Novell and Microsoft operation systems based networks.

CrypKey Instant is Ready-To-Try. FREE for 30 days on our web site:
http://www.kenonic.com/crypkey.htm
Kenonic Controls Ltd., Calgary, Canada
(403) 289-2520 • fax: (403) 289-2521
INTERNET: crypkey@kenonic.com

HotBYTES No. 389

WEB HOSTING
CO-LOCATION
E COMMERCE

Pre-sales questions
1-910-485-2383
sales@aitcom.net
http://www.aitcom.net

Order Today
1-800-878-4084

Enter HotBYTES No. 113 at http://www.byte.com/hotbytes/
<table>
<thead>
<tr>
<th>HOTBYTES NO.</th>
<th>PAGE NO.</th>
<th>PHONE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>138</td>
<td>148</td>
<td>138</td>
<td>148</td>
<td>888-986-1820</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>125</td>
<td>148</td>
<td>125</td>
<td>148</td>
<td>800-993-1077</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>121</td>
<td>112L</td>
<td>121</td>
<td>112L</td>
<td>808-814-5108</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>37</td>
<td></td>
<td>37</td>
<td>800-304-8986</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>444</td>
<td>4085 11</td>
<td>444</td>
<td>4085 11</td>
<td>+44-19-249-3004</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>113</td>
<td>151</td>
<td></td>
<td>151</td>
<td>903-970-4304</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>449</td>
<td>4085 23</td>
<td>449</td>
<td>4085 23</td>
<td>+49-98-994221-0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>85</td>
<td>16</td>
<td></td>
<td>16</td>
<td>212-556-5776</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>85</td>
<td>16</td>
<td></td>
<td>16</td>
<td>800-223-5277</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>447</td>
<td>4085 24</td>
<td></td>
<td>4085 24</td>
<td>+92-2-389-2222</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>86</td>
<td>33</td>
<td></td>
<td>33</td>
<td>888-298-1865</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>441</td>
<td></td>
<td>441</td>
<td>911-202-9358</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>59</td>
<td></td>
<td>59</td>
<td>800-339-8964</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>87</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>114</td>
<td></td>
<td>114</td>
<td>800-650-1250</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>107</td>
<td></td>
<td>107</td>
<td>800-221-6623</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>141</td>
<td></td>
<td>141</td>
<td>408-745-9322</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>109</td>
<td></td>
<td>109</td>
<td>800-611-3380</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>90</td>
<td></td>
<td>90</td>
<td>625-430-4000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>438</td>
<td>4085 2</td>
<td></td>
<td>4085 2</td>
<td>+353-1-871-077</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>39</td>
<td></td>
<td>39</td>
<td>800-995-3544</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>102</td>
<td></td>
<td>102</td>
<td>408-989-9833</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>105</td>
<td></td>
<td>105</td>
<td>800-989-9833</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>432</td>
<td></td>
<td>432</td>
<td>407-914-7742</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>115</td>
<td></td>
<td>115</td>
<td>407-303-5522</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>437</td>
<td></td>
<td>437</td>
<td>808-995-3544</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E</td>
<td>19</td>
<td></td>
<td>19</td>
<td>+808-995-7775</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>433</td>
<td>72</td>
<td></td>
<td>72</td>
<td>900-656-5701</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>120</td>
<td>112K</td>
<td></td>
<td>112K</td>
<td>800-656-5701</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>51</td>
<td></td>
<td>51</td>
<td>526-445-8033</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>434</td>
<td>4085 14</td>
<td></td>
<td>4085 14</td>
<td>+44-030-894-5000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>G</td>
<td>8-9</td>
<td></td>
<td>8-9</td>
<td>808-217-4941</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>435</td>
<td>140</td>
<td></td>
<td>140</td>
<td>520-411-6441</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>436</td>
<td>4085 10</td>
<td></td>
<td>4085 10</td>
<td>+40-030-894-5000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>H</td>
<td>111</td>
<td></td>
<td>111</td>
<td>800-309-9900</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>441</td>
<td>124</td>
<td></td>
<td>124</td>
<td>800-309-9900</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>I</td>
<td>43</td>
<td></td>
<td>43</td>
<td>800-221-9000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>440</td>
<td>4085 10</td>
<td></td>
<td>4085 10</td>
<td>+800-221-9000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>120</td>
<td></td>
<td>120</td>
<td>800-804-9000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>435</td>
<td>512</td>
<td></td>
<td>512</td>
<td>800-221-9000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>436</td>
<td>4085 10</td>
<td></td>
<td>4085 10</td>
<td>+800-221-9000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M</td>
<td>87</td>
<td></td>
<td>87</td>
<td>800-672-2391</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>437</td>
<td>139</td>
<td></td>
<td>139</td>
<td>800-672-2391</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>109</td>
<td></td>
<td>109</td>
<td>800-969-1069</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>438</td>
<td>120</td>
<td></td>
<td>120</td>
<td>408-494-2200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>O</td>
<td>141</td>
<td></td>
<td>141</td>
<td>408-494-2200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>39</td>
<td></td>
<td>39</td>
<td>800-959-5393</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>102</td>
<td></td>
<td>102</td>
<td>408-959-5393</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>105</td>
<td></td>
<td>105</td>
<td>800-959-5393</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>432</td>
<td></td>
<td>432</td>
<td>407-930-5522</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>115</td>
<td></td>
<td>115</td>
<td>407-930-5522</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>438</td>
<td></td>
<td>438</td>
<td>4085 18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Q</td>
<td>444</td>
<td></td>
<td>444</td>
<td>4085 18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>436</td>
<td></td>
<td>436</td>
<td>4085 18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>S</td>
<td>445</td>
<td></td>
<td>445</td>
<td>4085 18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T</td>
<td>437</td>
<td></td>
<td>437</td>
<td>4085 18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>U</td>
<td>438</td>
<td></td>
<td>438</td>
<td>4085 18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>V</td>
<td>439</td>
<td></td>
<td>439</td>
<td>4085 18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>440</td>
<td></td>
<td>440</td>
<td>4085 18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>X</td>
<td>441</td>
<td></td>
<td>441</td>
<td>4085 18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Z</td>
<td>442</td>
<td></td>
<td>442</td>
<td>4085 18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Correspond directly with company

Indicates FAX Number

Regional Edition Definitions:

RAS - Ads only appear in RAS Edition
EUR - Ads only appear in European Edition
IS - Ads only appear in International Edition
N.A. - Ads only appear in North American Edition
U.S. - Ads only appear in U.S. Edition
WORLD - Ads only appear in World Edition
This month, we look at a PC backup product, image-editing software for business, PA-RISC notebooks, and easy Web access.

Hardware

Workstations

Brawner 3-D Workstations

INTERGRAPH has beefed up its line of graphics workstations with the StudioZ T-RAX 3-D system, powered by dual 300-MHz Pentium II processors. The StudioZ maintains the same serial digital (D1/SD1) video capabilities as previous-generation systems, but it adds the capabilities of Intergraph's Realizm 3-D graphics subsystem, designed for 3-D animation creation. The machine costs $28,895 and comes with 128 MB of EDO memory and 40 GB of onboard storage.

Contact: Toshiba America Information Systems, Irvine, CA, 800-334-3445 or 714-583-3000; http://computers.toshiba.com.

Enter HotBYTES No. 1036.

Systems

Pentium II and More

Worried that low-cost systems are just obsolete, low-powered machines sold at cut-rate costs? Toshiba's Equium 7000 Series corporate desktops attempt to dispel that perception by offering Pentium II-based systems with an NLX chassis, starting at $1229. You can slide the Intel industry-standard NLX motherboard in and out of the machine without unscrewing a single screw. This simplifies upgrades. You can mount the 70000 machine on a wall to make it less intrusive. The 70000 machine supports up to a 333-MHz CPU and has expansion capabilities the 70000 lacks, with five drive bays and four expansion slots. Both systems have an integrated 512-KB L2 cache, the Intel 40lx chip set, up to 256 MB of SDRAM, and ATI 3-D Rage Pro 64-bit PCI graphics with up to 6 MB of SGRAM.

Contact: RDI Computer, Carlsbad, CA, 760-929-0992; http://www.rdi.com.

Enter HotBYTES No. 1037.

continued
A Skinnier Notebook

HEWLETT-PACKARD'S OMNIBOOK SOJOURN ($6599) is likely the thinnest, lightest full-size notebook on the market. At 3.2 pounds and 0.7 inch thick, this notebook is skinny but not malnourished. It packs a 233-MHz Pentium processor with MMX, a 128-bit graphics controller with 2 MB of video RAM, 64 MB of RAM, and a 12.1-inch TFT 800-by-600-pixel-resolution screen. The system is a result of a collaborative effort with Mitsubishi.

Flexible Pentium II Servers

DUAL PENTIUM II PROCESSORS POWER THE newest generation of enterprise servers from Tangent Computer. The Enterprise X-D is highly configurable, with up to two Pentium IIs running at 266 or 300 MHz, up to 512 MB of EDO RAM or SDRAM, redundant power and cooling options, hot-swap disks and power supplies, and nine expansion slots (six PCI, two ISA, and one shared). It is set for 1x0-ready system software and comes with built-in RAID support using on-board Ultra SCSI and an i960 processor. A machine with two 300-MHz Pentium II CPUs, 12 GB of storage, 128 MB of RAM, and Windows NT loaded will cost $6995.

Contact: Tangent Computer, Burlingame, CA, 888-826-4368 or 650-342-9388; http://www.tangent.com. Enter HotBYTES No. 1042.

Printers

LEXMARK'S 5700 COLOR INK-JET PRINTER generates high-quality output at an affordable price ($249). The Lexmark 5700's laser-crafted print heads deliver laser-like, sharp text and image copies. The printer's Accu-Feed paper-feed system helps avoid paper jams and can handle a wide range of paper stock. The 5700 can create 1200-by-1200-dpi-resolution images at speeds that Lexmark rates up to 8 ppm for black text and 4 ppm for color. An optional photo ink cartridge and high-resolution paper are available.

Servers

A Digital Camera in a Camcorder

PANASONIC HAS INCORPORATED ITS VHS Palmcorder camcorder and a digital still camera in one unit, the PV-L858 ($1000). This combination system can capture either regular video or 640-by-480-pixel still images. A flip-out 3.2-inch color monitor serves as both a viewer for still-camera and camcorder functions. The camcorder can input still images from memory onto tape and can take still frames from tape and download them to a PC. The camera has optical 23x zoom lenses and 1 MB of on-board memory for capturing 30 still photos.

Storage

4.7 GB of Removable Storage

SYQUEST'S QUEST DRIVE HAS MORE THAN triple the capacity of previous generations of removable hard drives, offering 4.7 GB of storage. SyQuest estimates the drive can hold over 9 hours of digital audio, 1 hour of 16-track audio, or a full length DVD-quality movie. It connects via Ultra Wide SCSI and uses IBM's new magnetoresistive heads. Pricing starts at $599 with one cartridge, while individual cartridges cost $199.

Backup Tape Drives

TANDBERG'S MLR3 TAPE DRIVE ($2749) has 50 GB of compressed data capacity (25 GB native) and transfer rates of up to 240 MB per minute. MLR technology is similar to DLT and 8-mm technologies in the midrange segment of the server backup market. MLR3 is the second generation of Tandberg's multi-channel linear recording technology, which is compatible with existing quarter-inch-tape technology, but uses magnetic rails to guide the heads into place to simplify the mechanisms of data recovery.

New Modems for New Standards

The HDSL, ADSL, and SDSL STANDARDS are making possible remote-access speeds that today's modems and terminal adapters can't match. Adtran has the Express L128 T integrated ISDN and ADSL modem ($795), Express L768 SDSL modem ($995), and Express L 1.5 HDSL modem ($1495). These stand-alone remote-access products feature IP and IPX routing and bridging, and support an unlimited number of users over 10Base-T Ethernet ports.

Contact: Adtran, Huntsville, AL, 800-923-8726 or 205-963-8000; info@adtran.com; http://www.adtran.com. Enter HotBYTES No. 1047.

New Modems

THE LATEST MAXTOR DRIVE USING IBM'S magnetoresistive-head technology, the 11.5-GB DiamondMax 2880 should provide enough desktop storage space for all your hard-drive-hogging files and applications. The 3.5-inch IDE hard drive offers a 9-ms average seek time, 5400-rpm spindle speed, a 256-KB cache buffer, and on-the-fly error correction. It's priced at $479.

Contact: Maxtor, Longmont, CO, 800-262-9867.

Hard Drives For Any System

IBM is using its giant magnetoresistive hard drive technology to boost hard disk capacities in all form factors. Following its announcement last year of an 8.1-GB hard drive in a 17-mm form factor for high-end notebooks, IBM now introduces the Travelstar 6GT ($695), a 6.4-GB hard drive in a 12.5-mm form factor (about the size of a deck of playing cards) for slim notebooks. It has the highest areal density of any IBM disk drive with 4.1 Gb per square inch and has software power management to minimize power usage.

RAID Solutions

Adaptec’s FileArray Accelerator ($2995) product doesn’t rely on the host CPU to handle I/O requests, but processes data itself. This PCI-to-SCSI accelerator card has 4 MB of ECC-protected, nonvolatile DRAM and support for a 16-MB parity-protected data cache.

Contact: Adaptec, Milpitas, CA, 408-945-8600; http://www.adaptec.com. Enter HotBYTES No. 1044.

CD-ROM

CD-ROM Today, DVD-ROM Tomorrow

JVC’s new CD-ROM library system offers up to 200-disc capacity for CD-ROM, CD-R, and DVD—when the latter is available. The MC-Printer Model 200 is a CD-ROM library with disc duplication and label printing built in, capable of burning 18 CDs an hour. Priced at $16,395, it can hold up to 130 GB of data, has a SCSI-2 connection, and has an average disc load time of 4 seconds and disc exchange time of 8 seconds.

Contact: JVC Professional Computer Products Division, Cypress, CA, 714-816-6500; http://www.jvc.net. Enter HotBYTES No. 1046.

Graphics

More RAM for Your Buck

Diamond Multimedia’s Monster 3D II graphics card ups the ante for graphics accelerators by including 12 MB of memory (previous generations had 8 MB) on a board priced at $299.95. It offers 4 MB of fast EDO DRAM for the Voodoo 2 pixel engine and 4 MB for each of two texture engines, generating 1024- by 768-pixel resolution.

Upgrades

New Life for Your Mac

Newer Technologies’ G3 upgrade cards take advantage of the capabilities of the G3 processor to add power to your old Mac, Umax, or PowerPC system. The high-end Maxpower 300 ($1999) 300-MHz upgrade with a 1-MB cache manages to run the L2 cache bus at the same speed as the CPU. The NuPower 1400 ($999) will upgrade a PowerBook 1400 to 250 MHz with a 1-MB L2 cache.

Contact: Newer Technologies, Wichita, KS, 316-943-0222; info@newertech.com; http://www.newertech.com. Enter HotBYTES No. 1125.

Software

Analysis

Java Reporting and Analysis

Unlike HTML-based reporting tools that you access through a Web browser, PowerScribe is an application written entirely in Java for deploying OLAP tools on an individual user’s desktop. The company claims that this desktop-based technology is faster than browser-based analysis tools, which claim to be faster than client/server applications. The company designed the tool for nontechnical users with no knowledge of SQL to process complex database queries. It costs $99 per user.

Java Spreadsheet Component

Integer, a real-time spreadsheet component for Java, lets you integrate spreadsheet functionality into distributed client/server applications. Integer ($3000 per server, $500 per developer seat) provides real-time data feeds, JDBC support, and compatibility with legacy spreadsheets and macros. Multiple users can collaborate on a single server-based spreadsheet in real time. The spreadsheet server is made up of the engine, which you can implement as a JavaBean or Enterprise JavaBean, and a JavaBean-based user interface. Integer was designed for distributed component systems.

E-mail

Coordinate Your E-Commerce Efforts

The Extranet Creator is a kind of all-purpose middleman for your e-commerce efforts. This enterprise software resides between your company’s intranet firewall and Internet customers and business partners to control access to data, secure data sharing, manage accounts, and process data. It provides extensible data-processing APIs, has user account management, controls accounts according to business policies, and tracks billing and order information. The package starts at $40,000, works with SSL-enabled browsers, and runs on Sun Solaris or HP-UX. The company plans to release a Windows NT version sometime this year, and future releases will support LDAP.

Contact: Differential, Cupertino, CA, 408-864-0600; info@different.com; http://www.different.com. Enter HotBYTES No. 1057.

Programming

Java for the Enterprise

Synon has upgraded Obsydi an 3.0, its client/server application development environment, with TCP/IP support for AS/400 systems and automatic import of database structures from ODBC databases. The company also introduced a new Java code generator for this release, called Obsydi an for Java. Programmers using Obsydi an for Java can automatically generate Java applications for multiprocessor server environments and deploy Java applications from any platform that
Java Troubleshooting

JPROBE PROFILER ($499) IDENTIFIES AND aids in the elimination of inefficient algorithms, I/O blockage, excessive method calling, excessive object and thread creation, inefficient memory usage, and other performance bottlenecks in your Java code. Its GUI displays the calling relationships between all your Java methods, letting you drill down and navigate through an individual method's source code to better understand and untangle the code.

Contact: KL Group, Toronto, Ontario, Canada, 800-663-4723 or 416-594-1026; http://www.klg.com/jprobe. Enter HotBYTES No. 1058.

Put Your Intranet on a Hand-Held PC

With AVANTGO's Web Client and Desktop programs, you can put your intranet in your pocket. The programs consolidate, compress, transfer, and render Web content onto PalmPilot and Windows CE handheld PCs. Graphics are automatically converted to gray-scale images, and Web pages are scaled to fit the smaller screens. The Desktop program lets you manage synchronization and Web replication, and the bundle costs $99 per seat.

Easier Web Surveys On-Line

VIRTUAL ARCHITECTS' SURVEYBUILDER.com is an automated, self-service system that lets you create and conduct customized e-mail and Web surveys. It eliminates the need for you to buy, program, and maintain survey software, as all operations, from survey creation to reporting, are done on the SurveyBuilder Web site. You manage the survey creation-and-analysis process yourself using a Web browser. Prices vary by sample size, but they start at $1500 for 100 respondents.

Contact: Virtual Architects, Sausalito, CA, 800-809-9764 or 415-332-0992; info@utechs.com; http://www.surveybuilder.com. Enter HotBYTES No. 1054.

Get on the Web for Less

QUICKSITE 3.0 DROPS THE PRICE BARRIER to getting on the Web. For $49, you get a WYSIWYG layout editor, templates, an HTML editor, and style wizards, as well as CSS, Java, and ActiveX support. It automatically builds product catalogs and order forms for running an on-line business, and has a built-in database engine to simplify updating your site.

Contact: Site Technologies,
Input

Your PDA Is a Notepad

With the Virtual NotePad ($20), you can take notes or make sketches in your own handwriting. It works with a number of PDAs, including 3Com's PalmPilot, and a software viewer plug-in for Web browsers is available to download files to a desktop system.

Contact: NewCo Partners, Philadelphia, PA, 215-625-3930; newco@newcopartners.com; http://members.aol.com/newcoppers/index.html

Enter HotBYTES No. 1060.

Business

Report Card for Your Applications

Empirical Software's Director 2.0 gives you a leg up for planning, measuring, and improving service on your mission-critical applications. You set and define service requirements, and the software notifies you of violations while providing a graphical representation of how an application is performing. The program includes new rules for relational database applications, analyzes O/D distribution, identifies and corrects poorly written SQL statements, and has a Web interface for remotely correcting any problems discovered.

Contact: Empirical Software, Richmond, VA, 804-794-0354; http://www.empiricals.com

Enter HotBYTES No. 1050.

Utilities

Learn to Share

ANNOUNCED WITH OTHERS MESSING UP YOUR computer? WinShield 2.1 ($69) can help anyone who shares a system with others, including computer lab administrators and MIS directors, to control desktop clutter and reduce the cost of computer maintenance. It prevents accidental and deliberate damage to your Windows NT/95 configuration and lets administrators configure options on all other networked computers.

Contact: Citadel Technology, Dallas, TX, 214-520-9292; http://www.citadel.com.

Enter HotBYTES No. 1062.

Software Updates

Microsoft Office 97 Small Business Edition ($499) includes Word 97, Excel 97, Publisher 98, Outlook 98, financial-analysis tools, and the Expedia Streets 98 business and mapping program. The Outlook 98 e-mail/calendar/contact client lets you view all your appointments, tasks, e-mail, and Web alerts from a single Outlook Today view. You can drag and drop an e-mail message onto other Outlook modules to create a new task, contact, or calendar entry without typing. Publisher 98 adds numerous features for business and personal desktop publishing. The program now shares Word's look and feel. New color schemes help you add coordinated colors consistently to your publication, and an auto-convert lets you repurpose information. For example, you can design a brochure and convert it into HTML format for the Web. And Expedia Streets 98 now includes new restaurant listings, links to the Expedia hotel database, and enhanced maps.

Contact: Microsoft, Redmond, WA, 425-882-8080; info@microsoft.com; http://www.microsoft.com/office/info.

Enter HotBYTES No. 1064.

Kane Security Analyst security suite has been upgraded with a new release for Novell NetWare and an enhanced version for Windows NT. The product for NT has the ability to cross trusted NT domains and supports the 32-bit Crystal Reports reporting-and-analysis software. Kane Security Analyst for NetWare includes customizable reports and has enhanced password-cracking capabilities, including more words and complete files from the password cracker's dictionary. Both releases start at $695 per server.

Contact: Intrusion Detection, New York, NY, 212-348-8900; info@intrusion.com; http://www.intrusion.com.

Enter HotBYTES No. 1065.

Seagate's unified NT/Unix console for NerveCenter 3.0 ($2195 for a single-server license) correlates SNMP events, helping network administrators identify points of failure, and monitors network traffic, performance, security, and error conditions. Automated features include the ability to execute NT or Unix commands, execute Perl subroutines, page personnel, and generate an SNMP command across both platforms. This release has a fully distributed architecture, integrates Seagate's Crystal Reports analysis software, supports HP OpenView NNM 5.0 and IT/O 4, and has expanded action-routing capabilities.

Contact: Seagate Software, Heathrow, FL, 800-327-2232 or 407-531-7500; sales@img.seagatesoftware.com; http://www.seagatesoftware.com.

Enter HotBYTES No. 1066.

VTune 3.0 ($279), from Intel, is not just a software optimization tool for Java, C, C++, Visual Basic, and FORTRAN. It has also been updated with more features to help programmers write better code. The ASM coach not only points out bottlenecks but offers suggestions on how to rewrite code and has been updated to include advice for C++. Intel claims it takes 30 seconds for the program to point out "performance hot spots," and it now watches for problematic events in the OS and processor when analyzing code.

Enter HotBYTES No. 1067.
The remote-control TV clicker gives us control of many things, yet it still cannot filter out televised fluff. That’s about to change, however.

We’re not talking V-chip here. We’re not talking about the blunderbuss snuffing of entire channels. We’re talking pinpoint personal control.

ClickJab (tm) is a simple, universal remote control that has one unique feature. Press its Delete key, and ClickJab will delete the program you’re watching. That show will vanish from your TV viewing experience forever.

You don’t like Touched by an Angel, for example? Next episodes of Touched by an Angel are broadcast, the channel is removed from the myriad of channels available to you. As soon as that program ends, its channel again becomes available.

Gefingerpoken GmbH, of Mannheim, Germany, manufactures ClickJab. It retails for $59.95 in the U.S. Those of us who have already used it would pay twice the price, or more. It’s a very satisfying product.

Take heart, though. Unless someone comes up with an extremely clever idea, disabling ClickJab would also disable most of the other channel-selection conveniences that consumers want. Our prediction on the future of ClickJab is: Score one for convenience in the (sometimes) struggle against crass commercialism.

Chance Gardener

Most of us love trees and flowers, yet few are the people who can name more than three of the species growing in their own backyards, if they have backyards. Yes, there are guidebooks, but this is 1998, and no one should have to read a book.

A device called the Chance Gardener (tm)—from Chance Devices, in Oakland, California—can identify any species of plant life. The Chance Gardener uses a small PCR (polymerase chain reaction) probe to sample, amplify, and pre-analyze the DNA from even a small piece of vegetable matter. A Pentium II (tm) chip-driven hand-held computer finishes the analysis and identifies the species by name in English, Latin, and 174 other languages. At $299, the device is pricey, but look for the cost to drop dramatically over the next year—along with that of other consumer-oriented botanical equipment.

Thanks to yet another new device from Chance Devices, there will no longer be any confusion about pets. The Chance Housepet Analyzer (tm) is a close cousin to the Chance Gardener (tm). The Housepet Analyzer can identify any dog, cat, hamster, Vietnamese potbellied pig, garter snake, guppy, emu, or other animal that you have as a pet. It can even identify mutts, thanks to a clever use of fuzzy logic.

The only drawback, aside from its extravagant price tag of $299, is that the Housepet Analyzer’s sampling probe destroys approximately 5 percent of the samples presented to it. If the product’s price drops low enough, however, this might prove to be a glitch that’s worth looking at.

Marc Abrahams is the editor of the Annals of Improbable Research. You can contact him by sending e-mail to marca@improb.com.
WE HAD THE CHOICE OF INCREASING THE PRICE OR THE SPEED.

(HOLD ON TIGHT.)

INTRODUCING THE NEW DELL INSPIRON 3200 NOTEBOOK
FEATURING THE MOBILE PENTIUM II PROCESSOR.

Shift into fifth gear with the latest mobile Pentium II processor. It moves at top speed to better handle all your company's productivity needs. And because it's from Dell it's maxed-out on great new technology, not on price. Not only will you get the fastest mobile Pentium II processor available, 266MHz, you will also get SDRAM, the fastest mainstream memory technology. To top that off, the Ultra ATA hard drive transfers data at twice the speed in burst mode of a normal ATA hard drive. And, if that doesn't blow you away, then maybe the 13.3" XGA active matrix display and 3D surround sound will.

The new Dell Inspiron 3200 notebook with a mobile Pentium II processor allows you to up the ante and hold on to your wallet. To take advantage give us a call or stop by our website. Feel free to loosen your grip now.
DELL DIMENSION DESKTOPS FOR BUSINESS

Common features: • Mini-Tower Model • 512KB Integrated L2 Cache • 56K U.S.R. 2x WinModem • 3.5" Floppy Disk Drive • Two USB Ports • MS Home Essentials 98 with Money 98 • McAfee VirusScan • MS Windows 95 • FREE MS Windows 98 Upgrade Packet • MS Internet Explorer • MS IntelliMouse • 3-Year Limited Warranty • 1-Year On-site Service Upgrades: HP DeskJet 722C, add $299 • HP LaserJet 6Lse, add $429 • APC Back-UPS Pro 650 PnP, add $289

DELL DIMENSION XPS D333
333MHz PENTIUM II PROCESSOR FEATURING MMX TECHNOLOGY

Common features listed above plus:
• 128MB SDRAM Memory
• 16.6GB Ultra ATA Hard Drive (9.5ms)
• 1200HS 19" (17.9" v.i.s., 26dp) Monitor
• STB nVidia 4MB 3D AGP Video Card
• 2X DVD-ROM Drive and Decoder Card
• NEW Turtle Beach Montego A30 64 Voice PCI Sound Card
• Dell QuietKey Keyboard
• Aztech ADSL Modem 56K Capable

$3149
Business Lease: $116/Mo., 36 Mos. Order Code #590401

DELL DIMENSION XPS D300
300MHz PENTIUM II PROCESSOR FEATURING MMX TECHNOLOGY

Common features listed above plus:
• 128MB SDRAM Memory
• 8.4GB Ultra ATA Hard Drive (9.5ms)
• 1200HS 19" (17.9" v.i.s., 26dp) Monitor
• STB nVidia 4MB 3D AGP Video Card
• 2X DVD-ROM Drive and Decoder Card
• NEW Turtle Beach Montego A3D 64 Voice PCI Sound Card
• Dell QuietKey Keyboard
• Aztech ADSL Modem 56K Capable

$2799
Business Lease: $106/Mo., 36 Mos. Order Code #590402

DELL DIMENSION XPS D266
266MHz PENTIUM II PROCESSOR FEATURING MMX TECHNOLOGY

Common features listed above plus:
• 64MB SDRAM Memory
• 6.4GB Ultra ATA Hard Drive (9.5ms)
• 1000LS 17" (19.5" v.i.s., 26dp) Monitor
• STB nVidia 4MB 3D AGP Video Card
• 32X Max Variable CD-ROM Drive
• Integrated Yamaha Wavetable Sound
• Dell Comfort Key Keyboard
• Dell QuietKey Keyboard

$2199
Business Lease: $83/Mo., 36 Mos. Order Code #590403

DELL DIMENSION XPS D233
233MHz PENTIUM II PROCESSOR FEATURING MMX TECHNOLOGY

Common features listed above plus:
• 32MB SDRAM Memory
• 4.3GB Ultra ATA Hard Drive (9.5ms)
• 1000LS 17" (19.5" v.i.s., 26dp) Monitor
• STB nVidia 4MB 3D AGP Video Card
• 32X Max Variable CD-ROM Drive
• Integrated Yamaha Wavetable Sound
• Dell Comfort Key Keyboard
• Dell QuietKey Keyboard

$1699
Business Lease: $64/Mo., 36 Mos. Order Code #590404

DELL DIMENSION DESKTOPS FOR HOME

Common features: • Mini-Tower Model • 512KB Integrated L2 Cache • 56K U.S.R. 2x WinModem • 3.5" Floppy Disk Drive • Two USB Ports • MS Home Essentials 98 with Money 98 • McAfee VirusScan • MS Windows 95 • FREE MS Windows 98 Upgrade Packet • MS Internet Explorer • MS IntelliMouse • 3-Year Limited Warranty • 1-Year On-site Service Upgrades: • DeskJet 722C, add $299 • LaserJet 6Lse, add $429 • APC Back-UPS Pro 650 PnP, add $289

DELL DIMENSION XPS D333
333MHz PENTIUM II PROCESSOR FEATURING MMX TECHNOLOGY

Common features listed above plus:
• 128MB SDRAM Memory
• NEW 16.6GB Ultra ATA Hard Drive (9.5ms)
• 1200HS 19" (17.9" v.i.s., 26dp) Monitor
• STB nVidia 4MB 3D AGP Video Card
• 2X DVD-ROM Drive and Decoder Card
• NEW Turtle Beach Montego A30 64 Voice PCI Sound Card
• Dell QuietKey Keyboard

$3479
Personal Lease: $168/Mo., 24 Mos. Order Code #590405

DELL DIMENSION XPS D300
333MHz PENTIUM II PROCESSOR FEATURING MMX TECHNOLOGY

Common features listed above plus:
• 128MB SDRAM Memory
• 8.4GB Ultra ATA Hard Drive (9.5ms)
• 1200HS 19" (17.9" v.i.s., 26dp) Monitor
• NEW Diamond Permedia 2 8MB 3D AGP Video Card
• 32X Max Variable CD-ROM Drive
• NEW Turtle Beach Montego A3D 64 Voice PCI Sound Card
• Altec Lansing ACS-90 Speakers

$2899
Personal Lease: $140/Mo., 24 Mos. Order Code #590406

DELL DIMENSION XPS D266
266MHz PENTIUM II PROCESSOR FEATURING MMX TECHNOLOGY

Common features listed above plus:
• 64MB SDRAM Memory
• 6.4GB Ultra ATA Hard Drive (9.5ms)
• 1000LS 17" (19.5" v.i.s., 26dp) Monitor
• STB nVidia 4MB 3D AGP Video Card
• 32X Max Variable CD-ROM Drive

$2399
Personal Lease: $117/Mo., 24 Mos. Order Code #590407

DELL DIMENSION XPS D233
233MHz PENTIUM II PROCESSOR FEATURING MMX TECHNOLOGY

Common features listed above plus:
• 32MB SDRAM Memory
• 4.3GB Ultra ATA Hard Drive (9.5ms)
• 1000LS 17" (19.5" v.i.s., 26dp) Monitor
• STB nVidia 4MB 3D AGP Video Card
• 32X Max Variable CD-ROM Drive
• Diamond Powermedia 28MB 3D AGP Video Card
• 32X Max Variable CD-ROM Drive

$1799
Personal Lease: $88/Mo., 24 Mos. Order Code #590408

Reference the appropriate order code to each system or order the system by calling 1-800-707-2000. Prices are subject to change without notice. All taxes, fees, shipping charges, and security deposits must be paid in full at the time of order. Personal leases are subject to credit approval. For more information, visit Dell at www.dell.com or call 1-800-DELL-USA (1-800-335-5872).
DELL INSPIRON™ NOTEBOOKS

NEW DELL INSPIRON 3200
D266XT
- 266MHz Pentium II Processor
- MMX Technology

NEW DELL INSPIRON 3200
D266XT
- 266MHz Pentium II Processor
- MMX Technology

NEW DELL INSPIRON 3000
M233XT
- 233MHz Pentium Processor
- MMX Technology

NEW DELL INSPIRON 3000
M206ST
- 200MHz Pentium Processor
- MMX Technology

DELL WORKSTATION 400
- New 333MHz Pentium II Processor
- Feature-Featuring MMX Technology
- Dual Processor capable

DELL POWEREDGE
- 2200 Server
- New 333MHz Pentium II Processor
- Dual Processor/RAID capable

DELL POWEREDGE
- 2000 Server
- New 333MHz Pentium II Processor
- Dual Processor/RAID capable

SOFTWARE OPTIONS

Microsoft® Office 97 Small Business Edition includes:
- Word 97
- Excel 97
- Publisher 97
- Outlook
- Small Business Financial Mgr. 97
- Autopart Streets Plus

Microsoft Home Essentials 98 includes:
- Word 97
- Encarta 98 Encyclopedia
- Money 98
- Works 4.5
- Greetings Workshop 2.0
- Puzzle Collection

Software Upgrades:
- Quicken Deluxe 98, add $62
- Game Pack I (Command & Conquer: Gold, Myst and Warcraft II), add $59

DELL INSPIRON 3200 D266XT

- 13.3" XGA Active Matrix TFT Display
- 144MB SDRAM Memory
- 4GB Ultra ATA Hard Drive
- 128-bit Graphics Accelerator with 65K Colors
- 56K K-Flex Modem
- Leather Carrying Case
- MS Office 97 Small Business Edition
- 6.9 Pounds
- Inspiron Port Replicator, add $159
- 3Com 10/100 Fast Ethernet Adapter, add $189

DELL INSPIRON 3200 D266XT

- 13.3" XGA Active Matrix TFT Display
- 64MB SDRAM Memory
- 4GB Ultra ATA Hard Drive
- 128-bit Graphics Accelerator with 65K Colors
- 56K K-Flex Modem
- Office 97 Small Business Edition
- 6.9 Pounds
- Upgrade to 96MB SDRAM, add $199
- 2GB Smart Lithium-Ion Battery, add $169
- Leather Carrying Case, add $99

DELL INSPIRON 3000 M233XT

- 13.3" XGA Active Matrix TFT Display
- 32MB SDRAM Memory
- 3GB Ultra ATA Hard Drive
- 128-bit Graphics Accelerator with 65K Colors
- Office 97 Small Business Edition
- 6.9 Pounds
- Upgrade to 3GB SDRAM, add $199
- 4GB Ultra ATA Hard Drive, add $99

DELL INSPIRON 3000 M206ST

- 12.1" SVGA Active Matrix TFT Display
- 32MB SDRAM Memory
- 3GB Ultra ATA Hard Drive
- 128-bit Graphics Accelerator with 16 Million Colors
- Office 97 Small Business Edition
- 6.4 Pounds
- Upgrade to 3GB SDRAM, add $199
- 4GB Ultra ATA Hard Drive, add $99

DELL WORKSTATION 400

- 128MB ECC ED0 Memory (512MB Max)
- 9.1GB Ultra-Wide SCSI-3 Hard Drive
- 1600xS 21" (19.8" v.i.s.) Trinitron Monitor
- Matrox B8M WRAM PCK Video Card
- 24X Max Variable SCSI CD-ROM
- Integrated Sound Blaster Pro Compatible Sound
- Integrated Com EtherLink XL 10/100 Ethernet Adapter
- MS Windows NT® Workstation 4.0
- Microsoft Mouse
- 3-Year Limited Warranty
- 1-Year On-site Service

DELL POWEREDGE 2200

- 128MB ECC ED0 Memory
- 9GB Ultra-Wide SCSI-3 Hard Drive
- 12/24GB Variable SCSI DAT Tape Backup Unit
- 6 Expansion Slots: 3 PCI/3 EISA
- 6 Drive Bays: 3 External 5.25"/ 3 Internal 3.5"
- 3-Year NB On-site Service
- 7x24 Dedicated Server Hardware Technical Telephone Support

DELL POWEREDGE 2200

- 4GB Ultra-Wide SCSI-3 Hard Drive
- 8GB/24GB Variable SCSI DAT Tape Backup Unit
- 6 Expansion Slots: 3 PCI/3 EISA
- 6 Drive Bays: 2 External 5.25"/2 Internal 3.5"
- 3-Year NB On-site Service
- 7x24 Dedicated Server Hardware Technical Telephone Support

DELL WORKSTATION 400

- 24-Hour Online Tech Support

DELL® SERVERS

- 1-Year NBD On-site Service
- 7x24 Dedicated Server Hardware Technical Telephone Support
- 7x24 Dedicated Server Hardware Technical Telephone Support
- 7x24 Dedicated Server Hardware Technical Telephone Support

GSA Contract #GS-35F-4076D

ORDER ONLINE 24 HOURS A DAY

ACCESS SPECIAL PROMOTIONS

DESIGN YOUR IDEAL COMPUTER

CHECK THE STATUS OF YOUR ORDER

ACCESS 24HR ONLINE TECH SUPPORT

TO ORDER TOLL-FREE

800-553-6023

TO ORDER ONLINE

www.dell.com/buydell
THE DELL DIMENSION XPS D333 – 333MHz PENTIUM II PROCESSOR FEATURING MMX TECHNOLOGY.

You need a hard-hitting system with solid performance to blow your competition away. But you shouldn’t have to blow your budget to get it. That’s where the Dell Dimension® XPS D333 comes in. It offers all the power and reliability you require at a price that’s hard to beat. It’s loaded with an ultra-fast 333MHz Pentium® II processor, a massive 19-inch (17.9” v.i.s., .26dp) monitor and an impressive 8MB AGP video card for amazing 2D and 3D performance. Plus 64MB of SDRAM memory, which bursts data twice as fast as EDO RAM. And we offer an optional 16.8GB Ultra ATA hard drive to store all your critical data. So, if you’ve been holding out for the champion of values, you just won the fight. Call us or visit our website at www.dell.com.