REDEFINING THE STANDARDS

Lab Tests: 15 33-MHz 80386-based Machines
Benchmark Results: 100 Different Computers

Plus: the 80486 • Extending DOS
SQL • Bus Mastering • OS/2
Super VGA • Unix • More
SO HOW COME YOU NEVER CALL?

"You will have to look far and wide to find a better price-performance package for the power user that is lurking inside you."

November 29, 1990
THE DELL SYSTEM* 210 12.5 MHz 256

If you have a truly high-performance 386 computer, this is it.

STANDARD FEATURES:
- Intel 80386 microprocessor running at 12.5 MHz.
- Choice of 1 MB, 2 MB or 4 MB of RAM* expandable to 16 MB (using a dedicated high-speed 32-bit memory stack).
- Advanced Intel 82385 Cache Memory Controller with 32 KB of high-speed static RAM cache.
- Page mode interleaved memory architecture.
- VGA systems include a high-performance 16-bit video adapter.
- LID 4.0 support for memory over 1 MB.
- Integrated diskette and video card controllers in system board.
- Socket for IBM 82387 math coprocessor.
- Over 1.5 MB diskette drive.
- Integrated high-performance bus/hard disk interface on system board.
- Enhanced 10-key keyboard.
- 1 parallel and 2 serial ports.
- 200-Watt power supply.
- 8 industry-standard expansion slots (6 available)

**Lease for as low as $190/month.
* 40 MB VGA Monochrome System $1,999
100 MB VGA Color Plus System $2,299
150 MB Super VGA Color System (60000) $2,090
150 MB Super VGA Color System (90000) $2,090

Prices listed reflect 1 MB of RAM. 325 MB hard drive configurations are also available.

THE DELL SYSTEM* 110 20 MHz: 166

The best combination of performance and value available in its class.

STANDARD FEATURES:
- Intel 80386 microprocessor running at 20 MHz.
- Choice of 1 MB, 2 MB or 4 MB of RAM* expandable to 16 MB (using a dedicated high-speed 32-bit memory stack).
- Advanced Intel 82385 Cache Memory Controller with 32 KB of high-speed static RAM cache.
- Page mode interleaved memory architecture.
- VGA systems include a high-performance 16-bit video adapter.
- Socket for 20 MHz Intel 82387 or 20 MHz WEITEL 167 math coprocessor.
- 5.25" 2 MB or 3.5" 1.44 MB diskette drive.
- Dual diskette and hard drive controllers.
- Enhanced 10-key keyboard.
- 1 parallel and 2 serial ports.
- 200-Watt power supply.
- 8 industry-standard expansion slots (6 available)

**Lease for as low as $100/month.
* 40 MB VGA Monochrome System $999
100 MB VGA Color Plus System $1,299
150 MB Super VGA Color System (60000) $1,999
150 MB Super VGA Color System (90000) $1,999

Prices listed reflect 1 MB of RAM. 325 MB hard drive configurations are also available.

THE NEW DELL SYSTEM* 210 12.5 MHz 280

The proof that this is an entry-level system.

The performance goes far more.

STANDARD FEATURES:
- Intel 80386 microprocessor running at 12.5 MHz.
- Choice of 512 KB, 640 KB* or 2 MB of RAM expandable to 16 MB (6 MB on system board).
- Page mode interleaved memory architecture.
- 1 MB 4.0 support for memory over 1 MB.
- Integrated diskette and high performance 16-bit VGA video controller on system board.
- Socket for Intel 82387 math coprocessor.
- Over 1.5 MB diskette drive.
- Integrated high-performance bus/hard disk interface on system board.
- Enhanced 10-key keyboard.
- 1 parallel and 2 serial ports.
- 3 full-speed 16-bit AT expansion slots available.

**Lease for as low as $20/month.
* 40 MB VGA Monochrome System $1,699
100 MB VGA Color Plus System $1,999
150 MB Super VGA Color System (60000) $2,199
150 MB Super VGA Color System (90000) $2,199

Prices listed reflect 512 KB of RAM.

All prices and specifications are subject to change without notice. Dell cannot be responsible for errors in typogaphy or photographs.

**Terms based on a 36-month open-end lease. Leasing arranged by Leasing Group, Inc. In Canada, configurations and prices will vary. Dell SYSTEM is a registered trademark of Dell Computer Corporation. Microsoft, MS-DOS and Windows are trademarks owned by Microsoft Corp. Intel is a registered trademark; 380 and 386CX are trademarks of Intel Corporation. UNIX is a registered trademark of AT&T. Dell UNIX System V is based on INTERACTIVE Systems Corporation's UNIX. *Signifies trademarks of entities other than Dell Computer Corporation. Service provided by NetServ Corporation. Service in remote locations will incur additional travel charges. ©1989 Dell Computer Corporation. All rights reserved.

CUSTOM LEASING PLANS AVAILABLE.

No matter how many reasons we give you to buy a Dell system, sometimes it makes more sense to lease one instead. Whether you need a single computer, or an entire office full, leasing is just like 100% financing. So you don't tie up working capital. Or credit lines. Of course, there can also be tax advantages as well.

And just as we can custom configure your computers, we can see to it you get a custom designed lease plan to fit the exact needs of your business.

It's just another example of why over half the Fortune 500 companies own or lease Dell systems.

And why you may decide that from now on, the only place you'll go to buy a computer is the phone on your desk.
If you've been looking at 386-based computers, you obviously feel the need for speed.

Something the Dell System* 310 delivers in spades.

In fact, the System 310 has more speed than even the most seasoned 386-users have come to expect. Case in point, PC Labs benchmark tests. The System 310 consistently outperformed the Compaq 386/20e. Not to mention the IBM PS/2 Model 70-121. Leading one reviewer to comment, "It's fast enough to burn the sand off a desert floor."

For us, however, fast enough is not enough. By utilizing an Intel *82385 Cache Memory Controller, page mode RAM and interleaved memory, the 310 not only delivers the aforementioned speed, but enough horsepower to do everything from CAD/CAM to megaspreadsheets to databases the size of the Manhattan Yellow Pages.

It even has the umph to work as a network file server.

TELL US WHAT TO DO NEXT.

As much as the System 310 has to offer, it doesn't even begin to reach its full potential until after we've heard your input.

For it's only in this way that we're able to custom configure every 310 system. To give users exactly what they need. No more. No less.

Do you do a lot of spreadsheets? There's an optional Intel 80387 or WITEK 3167 math coprocessor available.

Storage? You can have a 40 MB hard disk drive. Or choose a 100, 150, or 322 MB hard drive.

The System 310 comes standard with 1 MB of RAM. Want more? We can configure up to 8 MB on the system board.

Still not enough? We can add another 8 MB by installing a high-speed memory expansion board. You can even run your System 310 as either a MS-DOS® MS®OS/2 or UNIX® system.

The same holds true for monitors. You can choose between VGA Monochrome with paper-white screen, VGA Color Plus, or Super VGA for high resolution colors on a larger screen.

The point here is that when you order a System 310, you not only get a 386-based system that's incredibly fast, powerful and versatile, but incredibly personal as well.
YOU CAN'T GET MORE DIRECT THAN THIS.

To a sophisticated computer user, there's nothing worse than having to buy from a retailer who knows little more than you do.

In fact, in a recent poll, 92% say they'd like to skip the middleman and deal with the manufacturer.

Because, after all, computer retailers are in the retail business first. And in the computer business second.

So expecting expert advice on computers is asking a lot.

Getting after-the-sale service isn't always easy either.

But when you buy from us, you never set foot in a computer store.

Instead, you deal direct. You talk with a computer expert who can offer sound advice. Someone who can help you configure a system that not only meets your needs, but meets them for up to 35% less than you'd pay a retailer.

WE COME WHEN WE'RE CALLED.

One of the things that very clearly sets Dell systems apart from other computers is not just how they're sold but how they're supported.

Overkill was one description used in a recent PC Week article.

That's because every Dell system comes with self-diagnostic software and a toll-free technical support line. We solve 90% of all problems right over the phone.

The other 10% receive next-day, deskside service. Thanks to our new alliance with Xerox Corporation.

And you get all this help for a full year—whenever you need it—at no extra charge.

As you've probably guessed by now, one of the things that drives us most is customer satisfaction.

So we'd like to give you the ultimate guarantee: Try a System 310 in your office for a month. Run your toughest applications.

Put it through its paces, at your pace. If you're not completely satisfied, send it back anytime within 30 days. And we'll refund your money. No questions asked.

Dell Computer Corporation.

TO ORDER, CALL 800-426-5150
IN CANADA, CALL 800-385-3712
IN GERMANY, CALL 069/79020
IN THE U.K., CALL 0800-664-444

Circle 79 on Reader Service Card
How To Support Your Customers

You can provide software updates, answer technical questions, and offer reams of product information to anyone with a modem. 24 hours a day, 7 days a week, unattended.

All you need is a PC, XT, AT, or 386-compatible, and a Galacticomm multi-user hardware/software package. And some phone lines.

Our multi-user Bulletin Board System software, called The Major BBS™, supports your customers in several ways:

- Public Posting Areas technical dialogue, bulletins, Q&A listings
- Private E-Mail for one-on-one customer support
- Teleconferencing online "seminars" and real-time interaction
- File Upload/Download . . . distribute updates, P.R. info, "app notes"
- Questionnaires for market research, order forms, etc.

Our multi-modem PC cards are available in several configurations: 2 to 8 modems per card at 2400 baud, or 2 to 16 modems per card at 1200 baud. These are true single-slot cards with the modems built right in — no additional serial ports, power supplies, or external boxes of any kind are required.

The Major BBS can support up to 64 users simultaneously, although most of our customers operate small 4- to 16-user systems. The C source code is also available, so that you can modify the system to suit your specific requirements.

For $59, we'll send you an introductory copy of The Major BBS, suitable for use with your standard COM1 and/or COM2 modems. This is a fully functional version for up to 2 simultaneous users (3 if you count the SysOp). You can upgrade later to a fully supported 4, 8, 16, 32, or 64-user version for only $300 per doubling (plus modem hardware of course!).

GALACTICOMM
Galacticomm, Inc. 4101 S.W. 47 Ave.
Suite 101, Fort Lauderdale, FL 33314

For $59, we'll send you an introductory copy of The Major BBS, suitable for use with your standard COM1 and/or COM2 modems. This is a fully functional version for up to 2 simultaneous users (3 if you count the SysOp). You can upgrade later to a fully supported 4, 8, 16, 32, or 64-user version for only $300 per doubling (plus modem hardware of course!).

Yes! Send me a copy of THE MAJOR BBS!

[Form for ordering]

(Florida orders add $3.50 tax. Overseas orders add U.S. $25 for shipping.)

D $59.00 check enclosed
D $67.30 for C.O.D.
D $65.15 for credit card:

[Credit card details]

City, State, Zip

[Signature]

Circle 113 on Reader Service Card (DEALERS: 114)
IBM SPECIAL EDITION

8 Editorial: More Bang for Your Bucks
 by Fred Langa

13 Megahertz Madness
 by the BYTE Staff

49 Benchmarks at a Glance: 1989
 by Stanford Diehl

56 Redefining the Standards
 by Martin Heller

67 The 80486: A Hardware Perspective
 by Ron Sartore

79 Stretching DOS to the Limit
 by Frank Hayes

87 The State of OS/2
 by Mark J. Minasi

95 AIX on the PS/2s
 by Ben Smith

105 Looking Beyond the DOS Prompt
 by Stan Mlackowski

123 Using Expanded Memory
 by David M. Yancich

131 Serving Many Masters
 by Brian T. Anderson

139 Is It Really Super?
 by Bill Nichols

159 SQL: A Database Language Sequel to dBASE
 by Mark L. Van Name and Bill Catchings

185 Unix Filenames for Turbo Pascal
 by Jim Kerr

203 The Language of Lasers
 by Kent Quirk

209 A Standards Dictionary
 by L. Brett Glass

221 Optimizing Numeric Coprocessing
 by Stephen Fried

229 Inventing the PC's Future
 by Gordon A. Campell

264 Editorial Index by Company

269 The Status of Applications Software: Late
 by Dennis Allen

276 The Wages of Sin
 by Pete Wilson

143 Clash of the Graphics Titans
 by Rick Cook

PROGRAM LISTINGS

From BIX: See 239
On disk: See card after 208
Microsoft profession something other lang
In an industry that evolves practically overnight, it's tough to stay ahead of the crowd. You need tools that not only give you an edge day-to-day, but open up endless possibilities. Tools that can only come from Microsoft. Combine Microsoft® C and Macro Assembler and you've got enough power to create programs for MS-DOS®, Windows and OS/2 systems. What's more, you can do it all in record time because our renowned CodeView® Debugger, Linker, Microsoft Editor, and MAKE utility work ingeniously and seamlessly together.

In other words, you've got the leverage of the most inventive and comprehensive tools around.

When you develop under OS/2 systems, you've got options no one else can touch. Like multi-tasking. And blasting through the 640K barrier. In addition, Microsoft® C and Macro Assembler can accommodate more third party add-ons than any other PC professional languages.

Maybe that's why the most popular applications on the market today were developed through the unique power of our C and Assembler: Lotus® 1-2-3®, WordPerfect® 5.0. Microsoft Excel. And Aldus® PageMaker®.

So drop by your nearest Microsoft dealer soon. And start turning out the most airtight, fine-tuned code ever to touch a disk.

After all, you've got the leverage.
EDITORIAL AND BUSINESS OFFICES:
One Phoenix Mill Lane, Poughkeepsie, NY 12601, (914) 924-8281
New York Branch Editorial Office: 121 Avenue of the Americas, New York, NY 10013, (212) 513-3175
Editorial Fax: (551) 828-1518 Advertising Fax: (551) 828-1518
SUBSCRIPTION CUSTOMER SERVICE: Outside U.S. (408) 425-7070, Inside U.S. 800-828-BYTE. For domestic orders, write to BYTE Customer Service, Lyman Clark Senior Account Coordinator, Data Communications, P.O. Box 1347, North Haven, CT 06473, (203) 234-4000. For international orders, write to BYTE European Subscriptions, P.O. Box 1347, North Haven, CT 06473. (203) 234-4000

OFFICERS OF McGRaw-Hill Information Services Company: President: Walter D. Sverris. Executive Vice President: Robert N. Landes. Vice President, General Counsel, and Secretary: John B. Heaney. Vice President, Chief Financial Officer: Jack L. Langer, Senior Vice President, Treasury Operations.

OFFICERS OF McGRaw-Hill: Inc., Joseph L. Gone, Chairman, President and Chief Executive Officer; Robert N. Landes, Executive Vice President, General Counsel, and Secretary; Robert J. Bahren, Executive Vice President and Chief Financial Officer; Frank G. Pangallo, Senior Vice President, Treasury Operations.

PUBLISHED VICE PRESIDENT
J. analyses
ABREVIATION SALES
Santie M. VU ASSOCIATE PUBLISHER, Vice President of Marketing
Santie Lynn Administrative Assistant
Arthur T. Kees, Eastern Regional Sales Manager
(212) 774-7508
Jennifer L. Bartlett, Western Regional Sales Manager
(212) 844-1111
Susan Varnis Sales Assistant

NEW ENGLAND
ME, NH, VT, MA, RL, ONTARIO, CANADA & EASTERN CANADA
John D. Brown (617) 336-9385

ATLANTIC
NY, NJ, CT, (NORTH)
John D. Brown (617) 336-9385

EAST
PA, KY, NJ (SOUTH), MD, VA
Kathleen J. Brown (609) 388-9385

SOUTHEAST
SC, GA, FL, AL, TN, VA, NS
Robert H. Brown (619) 732-9385

MIDWEST
IL, IA, KS, MN, SD, MN, WI, NE, IN, MI, OH
Kurt Kiley (714) 732-9385

SOUTHERN CA, AZ, NM, LAS VEGAS, UT
Ron Coleman (714) 732-9385

TOM Harvey (714) 732-9385

NORTHERN PACIFIC
WA, OR, ID, MT, NORTHERN CA, NV (except
LAS VEGAS), WESTERN CANADA
Bill Macmillan (408) 876-8811
TOM Harvey (714) 732-9385

NATIONAL SALES
Scott O'Donnell (203) 828-9385
Mary Ann Goulding (203) 828-9385

Eli Sherman (203) 828-9385

BYTE DECK
Mark Stone (203) 828-9385

THE MUYBRIT MAT (700)
Richard Jones (203) 828-9385

BIBLIOGRAPHIC SERVICES
Japan

INTERNATIONAL ADVERTISING SALES STAFF
See listing on page 267.
Are you using a DOS-based personal computer for controlling instrumentation? Do you want the best available software tools for acquiring and analyzing data using standard DOS programming languages? If your answer to these questions is yes, LabWindows® is just the solution you're looking for. The unique LabWindows function panel interface lets you interactively control your instrumentation hardware and collect data, as well as automatically generate Microsoft® C or QuickBASIC program code for your application.

With LabWindows you can control GPIB, RS-232, or VXI instruments, or plug-in data acquisition cards for PS/2 and PC-AT computers. For standalone instrument users, the LabWindows instrument library has over 50 ready-to-use instrument drivers so you can program your instrument using intuitive instrument-specific function panels, without knowing the instrument inside-out.

Because acquiring data is only one element of your application, LabWindows has a complete set of QuickBASIC and C compatible libraries for data analysis, presentation, and storage. Manipulate arrays, create a histogram, or use the optional Advanced Analysis Library to perform operations such as Fast Fourier Transforms, digital filtering, and curve fitting. Give your programs a big performance boost using the specially optimized LabWindows analysis routines for computers with an 80387 numeric coprocessor. For your data presentation and storage needs, use the LabWindows Graphics Library to create multiplot graphs, bar charts, or scatter plots, and use the Data Formatting Library for data logging and file operations.

If you're looking for the right tools to take maximum advantage of your DOS computer using QuickBASIC or C for data acquisition and analysis, there is only one solution... LabWindows. Call National Instruments at (800) IEEE-488 to speak with a sales or applications engineer about how LabWindows can help you.

Ask for a FREE Catalog
New 80486-based systems from Cheetah and ALR prove that high-performance hardware doesn't have to cost a fortune

Several months ago, I crossed my fingers for luck and wrote, "We may see the 80486 market split in two radically different directions: killer systems with killer prices for departmental computing needs, and relatively inexpensive fast systems for personal desktop use."

In this industry, one of the safest things that you can do is to predict high prices. But fortunately for me (I don't like the taste of crow), Cheetah and ALR delivered on the low-price prediction. Their machines could trigger a major reshuffling of prices across all Intel-architecture machines.

Cheetah's new 25-MHz 80486 tower system is based on the motherboard it showed last spring (see the June and August editorials). The entry-level version of the new system comes with 4 megabytes of RAM, a 60-megabyte hard disk drive, a VGA controller, a monochrome VGA monitor, and a 1.2-megabyte 5¼-inch floppy disk drive. For this, you pay just $4995.

ALR's PowerFlex is based on its attractive $1495 12-MHz 80286 system that comes standard with a 40-megabyte hard disk drive and 1 megabyte of RAM. With the addition of a $2995 plug-in module, it becomes a $4500 80486-based system, albeit one with a 16-bit data bus; sort of an 80486SX.

Stunning Price and Performance

In absolute terms, $4500 or $5000 is still a fair chunk of change. But in terms of relative pricing, or better still, price-performance, these systems represent a stunning advance.

Maybe "stunning" sounds like hyperbole. After all, there are no "real" 80486 machines yet: Every system we've seen so far is built around a prototype motherboard carrying a prototype ("A" Step) CPU chip.

But from the early benchmarks, we're confident that the production-model Cheetah 80486 systems will outpace many, and maybe all, of the current crop of 33-MHz 80386-based systems. For example, the Everex Step 386/33—a very nice machine—turns in CPU, FPU, and video benchmark indexes of 6.84, 15.48, and 4.26, respectively (where an 8-MHz AT equals 1). The preproduction 25-MHz Cheetah already yields 6.52, 21.49, and 5.57, respectively.

At its introductory price, the Cheetah's cost is only about half that of the next-least-expensive 80486-based box. I'd call that "stunning."

The ALR system, with its AT-bus bottleneck, isn't nearly as fast as the Cheetah, or any 80486 with a full-width data path: Its preliminary CPU, FPU, and video benchmark indexes are 4.18, 21.85, and 3.80, respectively.

But the ALR system also isn't nearly as costly as most other 80486-based systems: The ALR system is simply the world's least-expensive 80486, period. For some non-I/O-intensive software, we expect that the PowerFlex 486 will easily keep up with machines costing two and even three times as much. "Stunning?" You bet.

EISA on the Way

BYTE's November issue will have a complete First Impression and preliminary benchmarks of the Cheetah and ALR 80486 systems.

We're also planning coverage of three other 80486-based machines, including what will be the first announced EISA-bus machine. (Yes, a brand-new bus and a brand-new chip in the same machine.)

The story is currently under a strict embargo, so we can't release the name of the manufacturer yet; but I'll bet that you will be surprised when you see just who it is.

In any case, the appearance of a relatively "low end" in 80486 machines is a welcome development. Cheetah and ALR have done us all a favor.

For one thing, the aggressive prices announced by Cheetah and ALR place immediate pressure on the high-priced 80486 vendors. To justify the extra costs, 80486 vendors will have to be sure they've added meaningful extra value beyond the pizzazz of simply having an 80486 chip inside.

Aggressive low pricing may even advance the date when 80486 price wars break out.

Big Ripples

And the ripple effects will be profound. Consider that an 80486 chip, with its onboard FPU and cache, outperforms and currently costs less than a 33-MHz 80386 with separate FPU and cache chips. Very simply, for the 80386 chip to survive, 80386 machines will have to drop to a price point well below that of similarly equipped 80486 systems. With Cheetah and ALR already drawing the lower boundaries of 80486 pricing, vendors of fast 80386 systems now have a clear target to beat.

There will always be a place for departmental "killer" systems that only a corporate budget can afford. But these first low-cost 80486 machines may help lower all 80386 system prices back down toward the range where personal computing can become personally affordable again.

Systems like these two from Cheetah and ALR may be just what the doctor ordered.

—Fred Langa
Editor in Chief
(BIX name "flanga"
Not too long ago, a few dozen people sharing the same programs, resources, and information on a single computer at the same time meant only one thing—a mainframe. Powerful, big, expensive, and proprietary.

More recently, the same people could be found doing exactly the same things—simultaneously sharing programs, resources, and information—on a minicomputer. A lot cheaper, a lot smaller, yet powerful enough to do the same jobs. And just as proprietary.

Then along came the latest generation of personal computers. And now, the same people are more and more likely to be found doing exactly the same things—simultaneously sharing programs, resources, and information—on a PC. And not a whole officeful of PCs networked together, either, but a single PC powering the whole office at once. A lot cheaper, a lot smaller, yet still easily powerful enough to do the same jobs. Built to non-proprietary, open system standards that allow complete freedom of choice in hardware and software. And running the industry-choice multiuser, multitasking UNIX® System V platform that gives millions of 286- and 386-based PC users mainframe power every business day.

The UNIX System standard for PCs—SCO.™

Today, SCO UNIX System solutions are installed on more than one in ten of all leading 386 computers in operation worldwide. Running thousands of off-the-shelf XENIX® and UNIX System-based applications on powerful standard business systems supporting 32 or even more workstations—at an unbelievably low cost per user. And with such blazing performance that individual users believe they have the whole system to themselves. Running electronic mail across the office—or around the world—in seconds. Running multiuser PC communications to minis and mainframes through TCP/IP and SNA networks.

And doing some things that no mainframe—or even DOS- or OS/2®-based PC—even thought about, such as running multiple DOS applications. Or networking DOS, OS/2, XENIX and UNIX Systems together. Or running UNIX System versions and workalikes of popular DOS applications such as Microsoft® Word, 1-2-3®, and dBASE III PLUS.™

Or even letting users integrate full-featured multiuser productivity packages of their choice under a standard, friendly menu interface. Today's personal computer isn't just a "PC" anymore, and you can unleash its incredible mainframe-plus power for yourself—today. Just add SCO.

The SCO family of UNIX System software solutions is available for all 80286- and 80386-based industry-standard and Micro Channel™ computers.
We develop products on the premise that
People have their own quirky ways of doing things. Some think fast. Some think slow. Some are deliberate. Some are intuitive. Some work from 9 to 5. Others never stop.

That's precisely why we offer so many different products.

Including the widest range of truly portable PCs anywhere.

And a line of printers that includes everything from a high volume laser to a four-pound, letter-quality, battery-operated portable.

All of which can be easily networked. But all of which are designed to meet the specific needs of each of our individual users.

Because the fact is, at Toshiba, we have an incredibly diverse and sophisticated customer base.

And from what we've been able to determine they have only one thing in common.

They're all different.

In Touch with Tomorrow

TOSHIBA

Toshiba America Information Systems, Inc., Computer Systems Division

Circle 249 on Reader Service Card (DEALERS: 250)
We've got the guts,
you get the glory.

Whether you're building systems or simply upgrading existing hardware, you can bet your reputation on DTK.

We offer clearly superior 80386, 80286 and 8088-based Bare Bone™ systems with FCC, UL, CSA and TUV certification. Plus motherboards and fully compatible add-on cards. All built to deliver the performance and reliability today's sophisticated computer users demand.

More Guts. Choose from a dozen Bare Bone systems designed to fit every need—and every desk. Including a 33MHz 386 file server with cache memory. Or select from an extensive line of motherboards (our XT and AT compatible models are widely regarded as industry standards).

Want LAN adapters? Or VGA, I/O, or disk controller cards? Maybe you need to gain an extra slot or two with multiple function cards. DTK can provide the solutions.

At prices you'll really like.

Better Quality. Our substantial R & D capabilities and stringent QC procedures mean you can depend on us for the most reliable, highest performance products available today. And tomorrow. Our inspection conforms with MIL-STD-105D, and our boards enjoy an overall reliability rate of 98%.

So why take chances? We've got all the guts you need at prices that are hard to beat. Go for the glory.

Call or write DTK COMPUTER, Inc., 15711 E. Valley Blvd., City of Industry, CA 91744. Tel: (818) 333-7533 Fax: (818) 333-5429 BBS: (818) 333-6548. Chicago, IL (312) 393-3080 Edison, NJ (201) 417-0300 Houston, TX (713) 568-6688 Miami, FL (305) 477-7440 West Germany (0211) 656031

DTK is a registered trademark and Bare Bone is a trademark of Datatech Enterprises Co., Ltd. Intel 386 is a trademark of Intel Corporation. XT and AT are registered trademarks of IBM Corporation.

Circle 89 on Reader Service Card (DEALERS: 90)
MegaHertz Madness

BYTE editors
check out 15 of the world's fastest PCs

For the last couple of months, BYTE has received a steady stream of press releases touting the virtues of the latest "world's fastest PC." Since Intel began shipping its 33-MHz version of the 80386 CPU, PC makers have hustled to get it into their systems in the hope that a magazine like BYTE will award them that title. We would like to oblige, but the task is more complicated than it first appears.

BYTE received 14 33-MHz PCs and the new Unix-based Altos 80386 system (see the text box "Altos 386 Series 1000: For Unix Only" on page 30). We benchmarked them all. We can tell you which one had the fastest CPU (the Everex Step 386/33) and which one had the best overall application index (the SIA 386/33). But when you run applications that are not CPU-intensive or change the system configuration, those rankings become less meaningful.

A fast CPU will always be a fast CPU, but it won't make your hard disk drive access data any faster. For a better application index score, all you have to do is install a good disk-caching controller with lots of memory—expensive, but the results are impressive.

The "world's fastest PC" is the one that lets you finish your work in the least amount of time. Since this is what the BYTE application index measures, the SIA 386/33 has the most right to the claim. But then, no other PC in this group had a 4.5-megabyte hard disk cache, which dramatically improves performance for disk-intensive applications. When reading the descriptions of each machine, remember that every PC here, even the SIA 386/33, could have received better application index scores by using faster I/O interfaces, increasing the size and speed of the CPU and disk caches, or using faster hard disk drives. It's just a matter of how much money you want to spend.

Speaking of Money
We have compiled several tables so you can more easily compare the systems. Tables 1 and 2 list the features of each system's base model. The configuration and model designations for the units we received may vary from the entries in the tables. Some systems start at a very low price but offer little more than a keyboard, a case, a motherboard and memory, and a floppy disk drive. Two, the Dyna Cache 386 and the Tangent 333, don't have standard models at all; the companies custom-configure each unit to the buyer's specifications.

Higher-priced units offer more in the way of hardware, and they often carry a well-known brand name. You pay a premium for a computer from a company with an established reputation that can presumably provide greater system reliability and better customer support. But buying from a lesser-known company can save you several thousand dollars—an important factor for those with a limited budget.

Keep in mind, too, that the prices we give in this roundup are the manufacturers' retail prices. Retailers, value-added resellers (VARs), and mail-order houses may have lower prices.

We've omitted some obvious categories from tables 1 and 2 because all vendors offer the same type of feature. For instance, all systems come with a 1.2-megabyte 5¼-inch floppy disk drive standard (a few will swap it for a 1.44-megabyte 3½-inch floppy disk drive if you wish), and all systems accept either an Intel 80387 or a Weitek 3167 math coprocessor. Each system allows you to change the CPU speed setting, and all the systems will run OS/2 or a variety of Unix given sufficient RAM and hard disk capacity.

Table 3 and figure 1 give the BYTE benchmark indexes. When looking at the rankings, it's important to maintain perspective. Even the slowest 33-MHz PC is over 20 times faster than an IBM PC AT on the application index. In fact, it's about 20 percent faster than the fastest machine that IBM currently offers. Speed is wonderful, but other factors, such as expandability, construction quality, and price, are just as important.

Wonderful, Yes; But Who Needs It?
Buying a barn-burning 33-MHz PC for everyday office grunt work is silly; relatively simple tasks such as word processing...
Table 1: Main system features, price, and warranty. Price variations are due mainly to differences in what’s offered in the standard configuration. Note that most vendors use third-party motherboards; variations in performance among systems using the same motherboard are possible by using faster I/O controllers and devices, larger and faster caches, and faster memory.

<table>
<thead>
<tr>
<th>Computer</th>
<th>Price</th>
<th>Motherboard maker</th>
<th>RAM</th>
<th>ROM BIOS</th>
<th>Power supply</th>
<th>Warranty</th>
<th>Access time</th>
<th>Cache size</th>
<th>Cache type</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALR FlexCache 33/386 Model 150</td>
<td>$9990</td>
<td>ALR</td>
<td>2 Mb</td>
<td>60 ns</td>
<td>Phoenix</td>
<td>200 W</td>
<td>16 Mb</td>
<td>128K</td>
<td>25 ns</td>
</tr>
<tr>
<td>AST Premium 386/33 Model 115V</td>
<td>$8495</td>
<td>AST</td>
<td>2 Mb</td>
<td>80 ns</td>
<td>AST</td>
<td>220 W</td>
<td>36 Mb</td>
<td>32K</td>
<td>25 ns</td>
</tr>
<tr>
<td>Blackship 386/33</td>
<td>$4195</td>
<td>Micronics</td>
<td>1 Mb</td>
<td>80 ns</td>
<td>Phoenix</td>
<td>220 W</td>
<td>16 Mb</td>
<td>128K</td>
<td>25 ns</td>
</tr>
<tr>
<td>Compaq Deskpro 386/33 Model 84</td>
<td>$10,499</td>
<td>Compaq</td>
<td>2 Mb</td>
<td>80 ns</td>
<td>Compaq</td>
<td>300 W</td>
<td>16 Mb</td>
<td>64K</td>
<td>25 ns</td>
</tr>
<tr>
<td>Dyna Cache 3861</td>
<td>$9593</td>
<td>AMI</td>
<td>4 Mb</td>
<td>70 ns</td>
<td>AMI</td>
<td>275 W</td>
<td>16 Mb</td>
<td>64K</td>
<td>20 ns</td>
</tr>
<tr>
<td>Everex Step 386/33</td>
<td>$7599</td>
<td>Everex</td>
<td>4 Mb</td>
<td>100 ns</td>
<td>Phoenix</td>
<td>200 W</td>
<td>16 Mb</td>
<td>64K</td>
<td>20 ns</td>
</tr>
<tr>
<td>FiveStar 386 Model 333</td>
<td>$5985</td>
<td>Micronics</td>
<td>4 Mb</td>
<td>80 ns</td>
<td>Award</td>
<td>200 W</td>
<td>16 Mb</td>
<td>32K</td>
<td>25 ns</td>
</tr>
<tr>
<td>Matrix MOP 386-33</td>
<td>$5895</td>
<td>AMI</td>
<td>4 Mb</td>
<td>70 ns</td>
<td>Phoenix</td>
<td>275 W</td>
<td>16 Mb</td>
<td>64K</td>
<td>20 ns</td>
</tr>
<tr>
<td>National MicroSystems Flash 386-33</td>
<td>$4999</td>
<td>Micronics</td>
<td>4 Mb</td>
<td>80 ns</td>
<td>Phoenix</td>
<td>200 W</td>
<td>16 Mb</td>
<td>64K</td>
<td>25 ns</td>
</tr>
<tr>
<td>PC Link 386/33 Model 160</td>
<td>$5995</td>
<td>Hauppauge</td>
<td>4 Mb</td>
<td>80 ns</td>
<td>Award</td>
<td>220 W</td>
<td>16 Mb</td>
<td>64K</td>
<td>20 ns</td>
</tr>
<tr>
<td>SIA 386/33</td>
<td>$6490</td>
<td>AMI/EMI</td>
<td>4 Mb</td>
<td>70 ns</td>
<td>Award</td>
<td>275 W</td>
<td>16 Mb</td>
<td>64K</td>
<td>20 ns</td>
</tr>
<tr>
<td>Tangent 333</td>
<td>$5995</td>
<td>Mylex</td>
<td>4 Mb</td>
<td>80 ns</td>
<td>Award</td>
<td>275 W</td>
<td>16 Mb</td>
<td>32K</td>
<td>25 ns</td>
</tr>
<tr>
<td>Zenith Z-386/33 Model 150</td>
<td>$11,499</td>
<td>Zenith</td>
<td>2 Mb</td>
<td>80 ns</td>
<td>Zenith</td>
<td>200 W</td>
<td>16 Mb</td>
<td>128K</td>
<td>25 ns</td>
</tr>
</tbody>
</table>

1 No standard model; systems are built to customer's specifications. Configuration shown represents system sent to BYTE.

Table 2: Standard storage, video, I/O, and expansion features, plus bundled software and FCC ratings. Hard disk storage and controller type vary considerably, although in virtually all cases it is possible either to specify the drive and controller type of your choice or to buy a stripped system and install your own. When considering expansion slots, keep in mind that on most systems at least one slot is occupied by a video, memory, CPU, or controller card. Systems that integrate these functions onto the motherboard may have fewer slots, but the same or greater expansion capability. Most vendors sell the operating system at extra cost, often offering a choice of MS-DOS or OS/2. An FCC rating of A means that the machine is certified for use only in business environments; B is certification for home or residential use.

<table>
<thead>
<tr>
<th>Computer</th>
<th>Controller type</th>
<th>Hard disk drive</th>
<th>Access time</th>
<th>Capacity</th>
<th>Hardware cache?</th>
<th>Max. # bays</th>
<th>Case type</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALR FlexCache 33/386 Model 150</td>
<td>ESDI</td>
<td>Maxtor or CDC</td>
<td>17 ms</td>
<td>150 Mb</td>
<td>No</td>
<td>5</td>
<td>T</td>
</tr>
<tr>
<td>AST Premium 386/33 Model 115V</td>
<td>AT</td>
<td>Imprimis</td>
<td>16 ms</td>
<td>110 Mb</td>
<td>Yes</td>
<td>5</td>
<td>D</td>
</tr>
<tr>
<td>Blackship 386/33</td>
<td>AT</td>
<td>Seagate</td>
<td>28 ms</td>
<td>40 Mb</td>
<td>No</td>
<td>5</td>
<td>D</td>
</tr>
<tr>
<td>Compaq Deskpro 386/33 Model 84</td>
<td>AT</td>
<td>Compaq</td>
<td>28 ms</td>
<td>84 Mb</td>
<td>No</td>
<td>5</td>
<td>D</td>
</tr>
<tr>
<td>Dyna Cache 3861</td>
<td>ESDI</td>
<td>Micropolis</td>
<td>18 ms</td>
<td>147 Mb</td>
<td>No</td>
<td>6</td>
<td>T</td>
</tr>
<tr>
<td>Everex Step 386/33</td>
<td>AT</td>
<td>Option</td>
<td>-</td>
<td>-</td>
<td>Option</td>
<td>5</td>
<td>D</td>
</tr>
<tr>
<td>FiveStar 386 Model 333</td>
<td>Option</td>
<td>Option</td>
<td>-</td>
<td>-</td>
<td>Option</td>
<td>5</td>
<td>D</td>
</tr>
<tr>
<td>Matrix MOP 386-33</td>
<td>AT</td>
<td>Option</td>
<td>-</td>
<td>-</td>
<td>No</td>
<td>5</td>
<td>T</td>
</tr>
<tr>
<td>National MicroSystems Flash 386-33</td>
<td>ESDI</td>
<td>Option</td>
<td>-</td>
<td>-</td>
<td>Yes</td>
<td>5</td>
<td>D</td>
</tr>
<tr>
<td>PC Link 386/33 Model 160</td>
<td>ESDI</td>
<td>Micropolis</td>
<td>17 ms</td>
<td>159 Mb</td>
<td>No</td>
<td>5</td>
<td>T</td>
</tr>
<tr>
<td>SIA 386/33</td>
<td>Option</td>
<td>Option</td>
<td>-</td>
<td>-</td>
<td>Option</td>
<td>10</td>
<td>T</td>
</tr>
<tr>
<td>Tangent 333</td>
<td>ESDI</td>
<td>CDC</td>
<td>18 ms</td>
<td>100 Mb</td>
<td>No</td>
<td>10</td>
<td>T</td>
</tr>
<tr>
<td>Zenith Z-386/33 Model 150</td>
<td>ESDI</td>
<td>MiniSorbiene</td>
<td>18 ms</td>
<td>150 Mb</td>
<td>No</td>
<td>4</td>
<td>D</td>
</tr>
</tbody>
</table>

1 D=desktop; T=tower
2 A=MS-DOS 3.3; B=MS-DOS 4.xx; C=system setup software; D=disk-caching utility; E=system utilities; F=Microsoft Windows
3 Game port
4 No standard model; systems are built to customer's specifications. Configuration shown represents system sent to BYTE
5 Two bays accept only 3½-inch devices.
M E G A H E R T Z M A D N E S S

perform only slightly faster at 33 MHz than they do at 12 MHz. Place a 33-MHz machine in front of an engineer, financial analyst, or software developer, though, and you've made a friend. Fill a 33-MHz PC with a few hundred megabytes of hard disk storage and the right networking hardware, and you have a powerful file server for a LAN or multiuser environment. Combine a 33-MHz machine with a laser printer and imaging hardware, and you get a fast workstation suitable for desktop publishing.

With a 33-MHz PC, you can expect to shave 20 percent to 30 percent off the CPU processing time of a 25-MHz PC. The longer your application takes to process, the greater the benefit. Switching to a faster processor might save you seconds, minutes, or even hours. For some tasks, even the most expensive 33-MHz PC could pay for itself in the time it saves.

ALR FlexCache 33/386

Advanced Logic Research's 33-MHz entry sports a unique tower design. Remove the side panel and you see a large swing-arm on which the hard disk drive is mounted. The advantage is twofold: The arm's full-height hinge and an accompanying brace on the other side add much-needed rigidity to the ALR's otherwise flimsy case, and swinging out the hard disk drive provides easy access to the rest of the FlexCache 33/386's internals.

The brace, however, is a pain to reinstall. Although held in

<table>
<thead>
<tr>
<th>Video</th>
<th>Expansion slots</th>
<th>Ports</th>
<th>Software Included*</th>
<th>FCC rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Graphics board</td>
<td>Monitor</td>
<td>8-bit</td>
<td>16-bit</td>
<td>32-bit</td>
</tr>
<tr>
<td>16-bit VGA</td>
<td>Option</td>
<td>1</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>16-bit VGA</td>
<td>Option</td>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Monochrome</td>
<td>Monochrome</td>
<td>2</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>VGA</td>
<td>Option</td>
<td>1</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>16-bit VGA</td>
<td>VGA</td>
<td>1</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>Option</td>
<td>Option</td>
<td>2</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Option</td>
<td>Option</td>
<td>2</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Option</td>
<td>Option</td>
<td>2</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Option</td>
<td>Option</td>
<td>1</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>Option</td>
<td>Option</td>
<td>2</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>16-bit VGA</td>
<td>Option</td>
<td>1</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>Option</td>
<td>Option</td>
<td>1</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>16-bit VGA</td>
<td>VGA</td>
<td>1</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>VGA</td>
<td>Option</td>
<td>0</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>
Introducing a PS/2 joystick adapter as reliable as a Sidewinder at pointblank range.

The GPA-1000™ from Qua Tech. It supports the IBM® Micro Channel™ for PS/2™ Models 50, 60, 70, and 80. And it's compatible with the IBM Game Control Adapter™ for the PC-XT® and AT®.

The GPA-1000 handles two joysticks or four paddles.

Also for the PS/2 Micro Channel from Qua Tech: the SP-1000 Parallel Port Adapter and the SP-1050 Serial/Parallel Port Adapter. Both offer multiple address and interrupt options.

And the DS-1000 Dual Serial Adapter for users who are looking for terminal communication flexibility.

Take a look at the PS/2 market, with Qua Tech.

For order info, call: 1-800-553-1170

Where

HARD DRIVE REPAIR

We will repair your hard drive at a fraction of the cost of replacing it. Fast turn-around.

• Specializing in recovering your lost data.
• Sell new and rebuilt drives, low prices!!
• Purchase used, excess, and defective drives.

Call for details!!!

H&W micro, inc.
528-C Forest Parkway
Forest Park, GA 30050
404-366-1600

We bring High-Technology Down to Earth

Table 3: (a) The BYTE low-level benchmark indexes, sorted from highest to lowest CPU rating. Of these numbers, the disk I/O index had the greatest influence on the cumulative application indexes.

<table>
<thead>
<tr>
<th>Computer</th>
<th>CPU</th>
<th>FPU</th>
<th>Disk I/O</th>
<th>Video</th>
</tr>
</thead>
<tbody>
<tr>
<td>Everex Step 386/33</td>
<td>6.84</td>
<td>15.48</td>
<td>2.45</td>
<td>4.26</td>
</tr>
<tr>
<td>ALR FlexCache 33/386</td>
<td>6.74</td>
<td>15.66</td>
<td>2.80</td>
<td>2.83</td>
</tr>
<tr>
<td>SIA 386/33</td>
<td>6.27</td>
<td>14.97</td>
<td>8.99</td>
<td>3.27</td>
</tr>
<tr>
<td>Compaq Deskpro 386/33</td>
<td>6.09</td>
<td>15.50</td>
<td>2.90</td>
<td>4.53</td>
</tr>
<tr>
<td>National MicroSystems</td>
<td>6.06</td>
<td>15.07</td>
<td>6.48</td>
<td>2.01</td>
</tr>
<tr>
<td>Flash 386-33</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blackship 386/33</td>
<td>6.03</td>
<td>13.71</td>
<td>2.37</td>
<td>3.61</td>
</tr>
<tr>
<td>Matrix MDP 386-33</td>
<td>5.75</td>
<td>15.07</td>
<td>1.93</td>
<td>5.73</td>
</tr>
<tr>
<td>FiveStar 386 Model 333</td>
<td>5.74</td>
<td>15.75</td>
<td>7.14</td>
<td>2.22</td>
</tr>
<tr>
<td>Tangent 333</td>
<td>5.73</td>
<td>14.83</td>
<td>2.28</td>
<td>1.79</td>
</tr>
<tr>
<td>Dyna Cache 386</td>
<td>5.67</td>
<td>14.86</td>
<td>2.56</td>
<td>3.85</td>
</tr>
<tr>
<td>Micro Express ME 386-33</td>
<td>5.66</td>
<td>15.06</td>
<td>7.02</td>
<td>2.97</td>
</tr>
<tr>
<td>PC Link 386/33 Model 160</td>
<td>5.10</td>
<td>14.87</td>
<td>2.83</td>
<td>2.11</td>
</tr>
<tr>
<td>AST Premium 386/33</td>
<td>4.80</td>
<td>14.21</td>
<td>2.32</td>
<td>3.89</td>
</tr>
<tr>
<td>Zenith Z-386/33</td>
<td>4.79</td>
<td>15.10</td>
<td>2.98</td>
<td>5.05</td>
</tr>
</tbody>
</table>

place by only two screws, the housings for the mass storage devices fit into notches on the brace's backside. The edges of those housings are fitted with plastic strips that immediately fall off when you remove the brace. Replacing them can get tedious if you frequently tinker inside the machine. But this is a minor annoyance, especially in light of the Flex-Cache 33/386's superb performance in the BYTE benchmark tests. With a 6.74 CPU index, it is the second-fastest PC we've ever tested, CPU-wise, after the Everex Step 386/33. Its cumulative application index of 24.02 is a respectable one, especially considering that it doesn't have a hardware disk cache. ALR has historically taken performance seriously, and the FlexCache 33/386 certainly reflects that attitude.

ALR designed most of the electronics inside the FlexCache 33/386, the only exceptions being the ESDI disk controller (Adaptec or Western Digital), the 200-watt power supply, and the drives themselves. The motherboard was free of engineering wire changes.

The ALR FlexCache, in its base configuration, comes with a 150-megabyte 17-millisecond Maxtor or Control Data hard disk drive, a 1.2-megabyte 5½-inch floppy disk drive, an ALR 16-bit VGA card, 2 megabytes of 60-nanosecond RAM (expandable to 16 megabytes), 128K bytes of 25-nm cache RAM, room for another four half-height storage devices, and MS-DOS 3.3. The base unit price is $9990.

The unit has eight expansion slots: one 8-bit and seven 16-bit. Three slots are taken by the hard disk drive controller, a serial/parallel port card, and the VGA card. Memory goes on the motherboard in single in-line memory module (SIMM) slots for up to 16 megabytes.

The unit BYTE received had a 380-megabyte Maxtor drive, an Adaptec ESDI controller, 4 megabytes of RAM, an ALR VGA II monitor, and a 33-MHz 80387 math coprocessor. This configuration costs $14,587.

If you need a fast computer, the ALR FlexCache 33/386 is worth your consideration.

—Michael E. Nadeau
(b) The BYTE cumulative application indexes, sorted from highest to lowest. These numbers give an idea of what kind of performance for a given application you can expect in comparison to an IBM PC AT. The rankings are quite different from the low-level results, which measure performance at the system level.

<table>
<thead>
<tr>
<th>Computer</th>
<th>Word processing</th>
<th>Spreadsheet</th>
<th>Database</th>
<th>Scientific/engineering</th>
<th>Compilers</th>
<th>Cumulative*</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIA 386/33</td>
<td>5.49</td>
<td>4.32</td>
<td>8.09</td>
<td>7.42</td>
<td>7.32</td>
<td>32.64</td>
</tr>
<tr>
<td>Micro Express ME 386-33</td>
<td>4.76</td>
<td>4.32</td>
<td>5.83</td>
<td>7.12</td>
<td>5.55</td>
<td>27.58</td>
</tr>
<tr>
<td>National MicroSystems</td>
<td>5.08</td>
<td>4.35</td>
<td>5.77</td>
<td>6.00</td>
<td>5.37</td>
<td>26.58</td>
</tr>
<tr>
<td>Flash 386-33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FiveStar 386 Model 333</td>
<td>4.82</td>
<td>4.31</td>
<td>5.91</td>
<td>5.90</td>
<td>5.53</td>
<td>26.47</td>
</tr>
<tr>
<td>Compaq Deskpro 386/33</td>
<td>4.28</td>
<td>5.01</td>
<td>3.00</td>
<td>7.86</td>
<td>4.46</td>
<td>24.61</td>
</tr>
<tr>
<td>Dyna Cache 386</td>
<td>5.02</td>
<td>4.27</td>
<td>2.91</td>
<td>7.51</td>
<td>4.42</td>
<td>24.13</td>
</tr>
<tr>
<td>ALR FlexCache 33/386</td>
<td>4.61</td>
<td>4.50</td>
<td>2.88</td>
<td>7.18</td>
<td>4.86</td>
<td>24.02</td>
</tr>
<tr>
<td>Blackship 386/33</td>
<td>4.69</td>
<td>4.45</td>
<td>2.89</td>
<td>7.30</td>
<td>4.44</td>
<td>23.77</td>
</tr>
<tr>
<td>AST Premium 386/33</td>
<td>4.11</td>
<td>4.22</td>
<td>3.01</td>
<td>7.23</td>
<td>4.11</td>
<td>22.89</td>
</tr>
<tr>
<td>Everex Step 386/33</td>
<td>4.43</td>
<td>3.93</td>
<td>1.98</td>
<td>8.05</td>
<td>4.25</td>
<td>22.62</td>
</tr>
<tr>
<td>PC Link 386/33 Model 160</td>
<td>5.03</td>
<td>4.43</td>
<td>2.68</td>
<td>5.51</td>
<td>4.36</td>
<td>22.01</td>
</tr>
<tr>
<td>Tangent 333</td>
<td>4.57</td>
<td>4.45</td>
<td>2.45</td>
<td>5.43</td>
<td>4.27</td>
<td>21.17</td>
</tr>
<tr>
<td>Zenith Z-386/33</td>
<td>3.91</td>
<td>3.97</td>
<td>1.87</td>
<td>6.59</td>
<td>3.85</td>
<td>20.19</td>
</tr>
<tr>
<td>Matrix MDP 386-33</td>
<td>3.95</td>
<td>3.90</td>
<td>1.74</td>
<td>7.09</td>
<td>3.43</td>
<td>20.11</td>
</tr>
</tbody>
</table>

* Cumulative application index based on indexes at left.

BYTE BENCHMARK RESULTS

Figure 1: The systems that used the Distributed Processing Technology disk-caching controller took the top four spots on our cumulative application indexes, followed by the Compaq Deskpro. Installing a hardware disk cache in any of the other 33-MHz PCs would dramatically increase their scores, although expensively and sacrificing some hard disk capacity.
MEGAHERTZ MADNESS

AST Premium 386/33

With “Premium” as its middle name, AST’s 33-MHz entry has an image to live up to. The AST Premium 386/33 does this nicely with its clean, integrated design, solid construction, and proven components. An $8495 base price further enhances its high-quality image.

Its performance, however, is about average compared to the other machines tested here. AST includes a disk-caching utility that dramatically improves disk performance, though at the cost of extended RAM. I allocated the maximum 1 megabyte of RAM to the disk cache, which improved the BYTE disk I/O index score nearly sixfold. A 16K-byte RAM track buffer is standard.

The AST-designed motherboard integrates items usually found on separate cards: a parallel port and two serial ports, and the AT-style floppy and hard disk drive controllers. The system’s 32K-byte RAM cache is also integrated into four logic chips, including memory. The AST 386/33 has seven slots instead of the usual eight. Two of those slots are taken by the optional AST VGA card and the CPU card. The five remaining slots should meet most users’ needs, considering the devices that are integrated on the motherboard. The unit comes with setup software that allows you to disable these devices should you want to install your own.

Only Zenith offers more 32-bit expansion slots than AST (four versus three). Both machines allow for placing AT-type cards or proprietary 32-bit memory cards in those slots.

The CPU card contains the CPU, FPU, up to 4 megabytes of 80-ns SIMM RAM, and the 80325 cache controller. Additional memory, up to a total of 36 megabytes, requires proprietary memory cards from AST. Conceivably, this design could permit easy upgrading should, heaven help us, a faster CPU become available. The rugged metal case is about 1 1/2 inches narrower than those of most other desktop 33-MHz PCs we tested, thanks to the space-efficient integrated motherboard.

continued
Until now there was only one way to integrate C and Assembler.

While C and Assembler give you power to burn, switching back and forth between them can leave your brain feeling a little fried. All that stopping. And starting. And constantly retracing your steps.

Well, relax. Now there's Microsoft® QuickAssembler. Available with our clever QuickC® Compiler in one location: the first integrated environment for C and Assembler.

For the first time, you can save time with an integrated editor, compiler, assembler and debugger that let you create C programs, mixed C and Assembler programs, or Assembler programs that stand alone.

To make sure you feel at home in your new environment, we've designed Microsoft Quick Advisor, a hypertext electronic manual that coaches, coaxes and guides you on screen.

Quick Advisor gives you access to information on all ROM BIOS and MS-DOS® calls. And it even lets you cut and paste sample programs, so you can make both C and Assembler subroutines part of your routine in no time.

For more details on the incredible integrated power of QuickAssembler and QuickC Compiler, call (800) 426-9400. If you own QuickC Compiler version 2.0 already, we'll tell you how to add on QuickAssembler quick. And take a load off your mind.

Microsoft®
Making it all make sense.
MEGAHERTZ MADNESS

Nine Track Tape...

One Track Mind.

If you can't get your mind off 9 Track Tape... there's good reason.

It's still the number one choice in the entire world for exchanging information between computer systems.

Using a 9 Track Tape drive, you literally turn your PC into a mainframe.

We not only sell more 9 Track Tape drive systems than anyone else... we're known as problem solvers. People who develop and nurture solutions for other people. Give us a call today and let us solve your next conversion problem.

GSA# GS00K09AGS590

FLAGSTAFF ENGINEERING
Helping people read a world of information
1120 Keibab (602) 779-3341
Flagstaff, AZ 86001 FAX 602-779-5998

Our test unit came with a 110-megabyte Rigidyne (Control Data) 3½-inch hard disk drive, a TEAC 1.2-megabyte floppy disk drive, an AST VGA card and Premium Display/VGA monitor, a 33-MHz Intel 80387 FPU, MS-DOS 3.3, and a total of 4 megabytes of 80-ns SIMM memory. The total estimated cost for this system (AST does not offer a math coprocessor; 33-MHz 80387s sell for about $1000) is $11,828.

I had no problems using the machine with a Microsoft Mouse and card, and an NEC CDR-77 CD-ROM reader and its SCSI controller. The Premium 386/33 ran Windows 2.0, Lotus 1-2-3 release 3.0, XyWrite 3.51, a finicky public domain fractal program, and NEC's Clip-Art 3D, a Windows-based graphics library on CD-ROM. Compatibility seems good with the AST.

The Premium 386/33's main selling points are its high-quality design and AST's track record as a vendor of solid, reliable hardware. Unless you must have either the fastest or the cheapest 33-MHz PC, the Premium 386/33 should be among your top choices.

—Michael E. Nadeau

Blackship 386/33

Here's a reasonably priced system that performed well. Like several other systems that we tested, the Blackship 386/33 uses the Micronics motherboard. It includes a RAM cache that really speeds things up. I tried several informal tests using two CPU-intensive programs, AutoCAD and MapInfo. With the cache on, which is the default mode for the system, the Blackship performed 27 percent to 42 percent better than with the cache off. (All benchmark tests were run with the cache on.)

The basic system comes with a 33-MHz 80386, a Phoenix BIOS, 1 megabyte of 32-bit RAM, a 1.2-megabyte floppy disk drive, a disk drive controller with 1-to-1 interleave, a Seagate 40-megabyte (28-ms) hard disk drive, two serial ports, one parallel printer port, and one game controller port. It also includes a 32K-byte RAM cache, a monochrome display adapter...
Announcing VGA-TV®, the first VGA card that takes VGA right from your PC and puts it on your TV or VCR. It's fast. It's easy. It's economical. And, it will change the way you view VGA forever.

VGA-TV lets you display broadcast quality graphics, conduct PC training sessions, run interactive software demos, or simply see the full impact of your work on TV. Plus, you can videotape anything you display and send it to one or one million viewers.

EYE-OPENING POWER

VGA-TV is a standard VGA card that is 100% register and BIOS compatible. It outputs a broadcast quality NTSC (or RGB) signal of VGA images to your television, projection TV, large screen TV, or VCR.

On your TV, which connects to your computer by a simple RCA jack, VGA-TV gives you resolution up to 640 x 480 x 16 colors (256 colors when optional memory is added to the board's expansion sockets). On a multifrequency monitor, you get resolution up to 800 x 600 x 16 colors (256 with the additional memory).

Fully compatible with previous graphics standards, such as EGA and CGA, VGA-TV runs on the IBM PC/XT, PC/AT and compatibles. It can be used with a TV alone, or together with a monitor.

IT'S YOUR SHOW NOW, BABY!

Unleash the power of your PC with VGA-TV and let the world watch your show in style. Priced at an unbeatable $69.90, VGA-TV is fully backed by Willow's three-year warranty and toll-free technical support.

To order, or for more information, contact your dealer or call 1-800-444-1585, Ext. 36. Mastercard and VISA cards honored. Dealer inquiries welcomed.

Willow Peripherals, 190 Willow Ave., Bronx, NY 10454
Phone: (212) 402-0010 or Fax: (212) 402-9633

VGA Boards That Do More Than VGA.

Willow Peripherals is a division of ABV Electronics Ltd. Registered and unregistered trademarks/owners: VGA-TV/Willow Peripherals; ORASPI®/Paul Mac Software, Inc. Computer courtesy of Hewlett-Packard, Inc.

Circle 270 on Reader Service Card
MEGAHERTZ MADNESS

Your computer system shipped in . . .
2,880 minutes
Your computer system shipped in . . .
48 hours
Your computer system shipped in . . .
2 days
No matter how you say it, that's quick!

Now the two most popular industrial computers are being shipped in 48 hours. Complete, ready to plug in and use. No ifs, ands or buts.

*ABOUT OUR PRICING AND DELIVERY
These two high reliability industrial quality computers are the most popular models we make. We can ship them, equipped exactly as shown, fully tested and burned in, within 48 hours after acceptance of your order. Prices shown are for single unit orders, net, f.o.b. Houston. Other models and options available on 4 week delivery. Quantity pricing is available.

TO PLACE AN ORDER OR OBTAIN MORE INFORMATION, CONTACT YOUR NEAREST AUTHORIZED TEXAS MICROSYSTEMS SALES REPRESENTATIVE, OR CALL OUR HEADQUARTERS, DIRECT:
1-800-627-8700

TExAS MmCROSYSfEMS
INCORPORATED
10618 Rockley Road • Houston. Texas 77099
(713) 933-8050

Designers and manufacturers of quality computers for more than a decade

Key Tronic 101 enhanced keyboard. It sells for $419.50.

The unit I tested was equipped with 4 megabytes of RAM and a Maxtor 150-megabyte 5 1/4-inch ESDI hard disk drive in place of the Seagate unit. Instead of a monochrome display, it had a Paradise VGA Plus 16 board and an NEC Multisync 2A monitor, and it had a total of 64K bytes of RAM cache. This configuration costs a reasonable $749.50.

I used the Blackship as my primary work computer every day for about six weeks. Most of the time I used the extended RAM and a supplied driver to emulate EMS memory for a disk cache. With the disk cache, it took my Lotus Agenda files, whose category list and heavy disk activity had outgrown my old 80286 system, and made that program useful again. Without the disk cache, though—albeit less than before—for Agenda to respond.

None of the other many application programs I tried failed on the Blackship. It also ran multiple programs using DESQview with no problem. However, the Blackship made its real worth evident when I tried failed on its fourth-fastest system in the BYTE CPU test. In the BYTE application index—it did score impressive results. Thanks to its 64K-byte cache (with 25-ns static RAM), it was the fourth-fastest system in the BYTE CPU test. In the BYTE application index, it was the fifth-fastest system overall and the fastest system that did not use a special hardware disk cache.

The standard Model 84 comes with 2 megabytes of memory. It also has one 32-bit slot for the 32 bit memory card, which was installed in my unit. You can expand the memory to 16 megabytes, although you'll need to buy a daughterboard to exceed 8 megabytes.

The system comes with a one-year parts and labor warranty that's handled exclusively by the manufacturer, so you'll have to send your system back for warranty service. Though not toll-free, the company's customer support is courteous, fast, and competent. When I experienced a problem that turned out to be just an improperly seated drive controller (probably caused by shipping), the company's technical-support staff provided me with solid technical advice.

Overall, the Blackship did an average job on the benchmark tests, and better than some of the big-name-brand systems. Considering its reasonable price, it's easy to recommend this computer.

—Dennis Allen

Compaq Deskpro 386/33

Although the Compaq Deskpro 386/33 was not the fastest system tested—either in raw CPU power or in the BYTE cumulative application index—it did score impressive results. Thanks to its 64K-byte cache (with 25-ns static RAM), it was the fourth-fastest system in the BYTE CPU test. In the BYTE application index, it was the fifth-fastest system overall and the fastest system that did not use a special hardware disk cache.

The standard Model 84 comes with 2 megabytes of memory.
Our Printer Sharing Unit Does Networking!

An Integrated Solution
Take our Master Switch™, a sophisticated sharing device, combine it with MasterNet™ networking software for PCs, and you've got an integrated solution for printer and plotter sharing, file transfer, electronic mail, and a lot more. Of course you can also share modems, minis, and mainframes or access the network remotely. Installation and operation is very simple.

Versatile
Or you can use the Master Switch to link any computer or peripheral with a serial or parallel interface. The switch accepts over 20 commands for controlling the flow of data. It may be operated automatically, by command, or with interactive menus. Its buffer is expandable to one megabyte and holds up to 64 simultaneous jobs. The MasterLink™ utility diskette for PCs comes with every unit and unleashes the power of the switch with its memory-resident access to the commands and menus.

Other Products
We have a full line of connectivity solutions. If you just want printer sharing, we've got it. We also have automatic switches, code-activated switches, buffers, converters, cables, protocol converters, multiplexers, line drivers, and other products.

Commitment to Excellence
At Rose Electronics, we're not satisfied until you're satisfied. That's why we have thousands of customers around the world including large, medium, and small businesses, factories, stores, educational institutions, and Federal, state, and local governments. We back our products with full technical support, a one-year warranty, and a thirty-day money-back guarantee.

Call now for literature or more information.
(800) 333-9343

ROSE ELECTRONICS

Give a Rose to your computer.

P.O. Box 742571 • Houston, Texas 77274 • Tel (713) 933-7673 • FAX (713) 933-0044 • Telex 4948886

Circle 230 on Reader Service Card
TUESDAYS, THE SHIPMENT OF TIME ARRIVES EARLY.

But what if they needed more? What then?

If time could be manufactured, you'd buy it. Weitek's Abacus 3167 math coprocessor comes close. It can give a 386-based computer 2X to 3X its normal speed—workstation-level performance—for less than $1000. With high-end CAD, CAM, engineering and math applications like VersaCAD, Anvil-5000pc, CADKEY, Mathematica and many others. You can readily install Abacus and its 2X to 3X speed in machines from Compaq, H-P, AST, Zenith, Dell, Everex and many more manufacturers. And two times speed equals two times as much time for you.

Call Weitek Corporation at 1-800-HOT-3167 or see your dealer. Soon.

WEITEK is a registered trademark of WEITEK CORPORATION. All other company and product names are trademarks or registered trademarks of their respective holders. © 1986 WEITEK CORPORATION

Circle 264 on Reader Service Card
Intelligent
SCSI
Controllers
for NetWare,
OS/2 & DOS

- Novell DCB compatible
- OS/2 & DOS drivers available
- 286/386 ISA & PS/2 MCA versions
- Handles any SCSI drive
- Optical CD drive support available
- Use up to 4 boards & 32 SCSI drives
- Works with 33 MHz systems
- Available now.

Dealers and Distributors wanted.

DURANT
Uninterruptable
Power Supplies

You know that you need power protection, but how do you choose?
Durant's BPS Series of Uninterruptable Power Supplies (from 300 VA to 1.2 kVA) solves any possible problem that would over cross your power line. The solution starts with a 1/4 millisecond sense and switch time. Speed is important, but we realize that absolute safety involves much, much more. Switching technology is only an indication of what the BPS has to offer. At Durant, we leave nothing to chance. You simply have too much to lose.

To find out why only Durant's premium quality will insure your security write or call toll free.

1 800 451-4813
In Illinois: (312) 647-6707

Don't turn on without us!

MegaHertz Madness

For additional memory, you must use an expansion board, which fits into a special 32-bit expansion slot. This board has room for seven 2-megabyte memory modules (at a rather hefty $1299 each), bringing the total memory capacity up to 16 megabytes.

The unit we received had 4 megabytes of RAM, a 33-MHz 80387 math coprocessor, a second 1.44-megabyte 5.25-inch floppy disk drive, a Compaq Advanced Graphics 1024 controller, a Compaq Advanced Graphics color monitor, a Compaq 2400-bps internal modem, a 40-megabyte tape drive, MS-DOS 4.01, and OS/2 1.1. Total price for this system is $19,657.

In physical appearance, the Compaq system looks like a standard desktop AT clone, considerably larger than the company's other 80386 systems, such as the Deskpro 386/20e. The standard configuration consists of a 1.2-megabyte floppy disk drive, an 84-megabyte hard disk drive, and a VGA controller on the motherboard. One nice touch is the inclusion of a Microsoft-compatible mouse connector on the back panel.

Along with the VGA controller is a VGA pass-through connector. This connector appears to have the same function as the VGA lines on IBM's Micro Channel bus. If you purchase Compaq's Advanced Graphics 1024 board (the company's equivalent to IBM's high-resolution 8514/A controller), the VGA pass-through connector allows the Advanced Graphics board to display high-resolution 1024- by 768-pixel graphics as well as standard VGA graphics.

Like many high-end systems, the Compaq has room for five half-height storage devices. But the Compaq system has one additional feature. On the back panel is a removable grill that allows access to the two rear drive bays. Although Compaq does not spell this out, this possibly could allow all five of the drive bays to be used for removable media, such as floppy disk drives, tape drives, optical drives, or removable magnetic drives. This, along with the system's password protection scheme, indicates that the system could be used well as a file server.

The motherboard seems clean, although I did spot two jumpers. The two sockets that you will most probably need—those for the 80387 and the Weitek 3167 coprocessors—are continued
"It's a simple formula. The more power under the hood, the faster you go. Well, I just found a 386 PC with a Ferrari engine."

ZENITH INNOVATES AGAIN™

Racing at 8.2 MIPS: Zenith shatters the 33MHz speed barrier with one of the fastest Intel® 386™ workstations ever built.

Even after you see it, you still might not believe that any 386/33 workstation can deliver such unprecedented speed and reliability as Zenith Data Systems' Z-386/33. But it's true.

Up to 30% faster than many 25MHz desktops, Zenith's Z-386/33 even exceeds the limits of other 33MHz systems. In fact, its super-fast processor, disk and memory subsystems give you uncompromising performance. So you can blaze through the most demanding scientific, engineering and manufacturing applications at an almost unheard of 8.2 MIPS.

For those who need 25MHz power, there's the Zenith Z-386/25. It, too, gives you high-powered file serving, CAD/CAM/CAE, multi-tasking and multi-user capabilities. And each lets you take advantage of thousands of industry standard peripherals as well as such advanced operating environments as MS-DOS® and SCO™ Xenix®.

Both 32-bit powerhouse workstations also let you add hard drives and up to 64MB of memory to keep pace with your growing needs. Plus, they come standard with MS-DOS®. And all hard drive models even include Microsoft® Windows/386.

So if you need a faster workstation—or the fastest—shift into overdrive with Zenith's Z-386/25 or Z-386/33 today.
For the name of your nearest Zenith Data Systems authorized dealer, call: 1-800-553-0350.
easy to access. The design may still be in flux, however. Just before the product was announced, the floppy disk drive controller was moved from the motherboard to an expansion card. And although Compaq says that the system’s hard disk drive controller is on an expansion card as well, on our system it seemed to be on the motherboard.

Compaq should be commended for a number of small details: for example, the easy way that the system cover can be removed (via two small thumbscrews), the mouse connector on the back panel, and a Setup program that allows you to quickly set the system up. Some things were less than admirable, including Compaq’s use of Torx screws inside the system.

The system comes with a one-year warranty. No on-site service or other service contracts are available directly from Compaq.

At a list price of $10,499 for an 84-megabyte system, the Compaq is surely one of the more expensive systems around. Even with a street price considerably lower, it will still be an expensive system. But Compaq has a reputation for quality, and this system does a lot to uphold that reputation. The high cost of the Deskpro 386/33 should buy a substantial amount of peace of mind.

—Rich Malloy

Dyna Cache 386

Dyna Computer takes a smorgasbord approach to constructing a 33-MHz 80386; you start with an AMI motherboard and BIOS, and then select from a list of recommended subsystem components. The machine I tested was a sturdy, tower-style unit configured to provide the best performance for under $10,000. The Dyna Cache 386 was an able performer, coming in sixth in BYTE’s cumulative application index.

In addition to a switchable (8- or 33-MHz) 80386 and an 80387, our test machine included 4 megabytes of 70-nss DRAM on the motherboard with room for 4 more megabytes on SIMMs, and up to 8 additional megabytes on a 32-bit add-in

continued
Systemizing has become the connectivity standard at many of the world’s largest corporations and throughout the federal government. Ten’s of thousands are already in use. The new Systemizer Plus is the latest model in Applied Creative Technology’s line of Systemizing products, and it delivers what 95% of corporate computer users want from a Local Area Network— at far less cost and complexity, and yet with much more versatility.

Corporate computing managers prefer Systemizing over other connectivity methods because it offers:

- Up to 62 10 ports, each parallel and serial capable.
- Compatibility. Mix PC's, LAN's, mainframes, laptops.
- Easy owner installation. Low cost cabling.
- 5 min. user training with no support needed after.
- Flexibility; readily accommodates growth and changes.
- Powerful distributed buffering (up to 31 Megabytes)
- Distributed processing for high speed and reliability.

Call 1-800-433-5373 to get a FREE demo!

The CONNEXPERTS
A Division of Applied Creative Technology Inc.
8333 Douglas Ave., Suite 700
Dallas, Texas 75225 U.S.A.
(214) 358-4800
Altos 386 Series 1000:
For Unix Only

Unlike the other machines in this round up, the Altos 386 Series 1000 does not run MS-DOS except as a guest of the Unix operating system. The Altos does not have an AT bus, a Micro Channel bus, or any other bus, for that matter. It is engineered to run Unix. The AT bus machines are not designed to run a full 32-bit operating system; the Altos machine is.

The 33-MHz Altos has everything except the serial I/O on the motherboard. The basic system comes with eight serial ports, a tape drive, a 40-megabyte SCSI hard disk drive, and 4 megabytes of RAM. Both the CPU data and address buses are 32 bits wide. Performance is further enhanced by a 32K-byte memory cache. You can expand the RAM to 24 megabytes, the hard disk storage to 300 megabytes, and the ports to 24, but all these upgrades require proprietary hardware, which you must buy from Altos.

Unlike with AT-style Unix computers, the Altos's console, as well as any terminals, are connected to serial ports. Typical of all the newer Altos boxes, the machine stands on end and slips under a desk. All ports and switches are on the back. Only the floppy disk drive and tape drive are on the front.

The Altos falls into the category of general-purpose Unix engine. It is not your lightweight AT-bus machine, nor is it the heavy-duty mainframe serving hundreds of users. It will serve an office or department well. When our Unix minicomputer failed, the Altos filled in very easily. In fact, it outperformed the five-year-old 68020-based minicomputer on every function, even though you might mistake it for a 20-inch-high dwarf version of the 5-foot minicomputer.

The Altos ran most of the low-level BYTE Unix benchmarks (beta version) at 65 percent to 90 percent of the performance of the Everex Step 386/33 running SCO 386 Xenix, but it excelled in a few areas. It created subprocesses twice as fast as the Everex. But the benchmarks showed the Altos able to read, write, and copy file segments at a phenomenal 10 times the rate of the Everex.

If you plan to run database applications, this machine is considerably better than any other 80386 in its class.

Usually we don't focus on operating systems in a hardware roundup, but on Unix machines, the quality of the operating system and compiler is as important as the hardware. Altos Unix is a mix of Unix System V, Berkeley Unix, and Xenix. The entire system is designed to work to the best advantage of both the hardware and the operating system. The disadvantage is that everything is a little bit different than on any other Unix system.

In fact, everything about the Altos is just a little bit different. You can't buy it from your average computer vendor;
MEGAHERTZ MADNESS

you must go to an Altos value-added reseller or a systems house. If you need a good Unix engine for your office and require a generic system, the Altos gives you a jot of performance, and you won’t have to find someone other than your vendor to support both the hardware and the operating system. But, as with any proprietary system, you must go totally with Altos or not at all.

—Ben Smith

For raw CPU speed, the Everex Step 386/33 is the fastest PC we’ve ever tested. Its 6.84 CPU index narrowly beats ALR’s 33-MHz machine. On the application side, the Everex didn’t fare quite as well; it placed tenth among the 33-MHz PCs. Adding a hardware disk cache would significantly improve its performance.

For $7599, you get an Everex-designed motherboard, 4 megabytes of 100-ns RAM (expandable to 16 megabytes), an AT-style hard disk drive controller, a 1.2-megabyte 5¼-inch floppy disk drive, and an adequate 200-W power supply. Our evaluation unit came with 4 megabytes of RAM, a 160-megabyte Control Data hard disk drive and ESDI controller, a 33-MHz 80387 math coprocessor, a Renaissance RVGA II board, and a 14-inch multisync VGA monitor for a total price of $10,945.

Like all Everex machines, the Step 386/33 is well engineered. The motherboard is free from the wire fixes often found on early-production PCs, and it is housed in a sturdier-than-most stainless steel case. Everex uses a 64K-byte, 20-ns RAM cache of its own design.

Unlike most other 33-MHz PCs, the Step 386/33 provides only one serial and one parallel port. Its eight expansion slots include two 8-bit and six 16-bit slots. All memory mounts on the motherboard, eliminating the need for 32-bit memory-expansion slots. The case can accommodate up to five half-height storage devices. A switch on the front panel allows you to set the operating speed to 8, 16, or 33 MHz.

Though not the least expensive PC in this group, the Everex Step 386/33 is priced reasonably, and its performance speaks for itself. Everex is a midsize PC maker with a solid reputation; buying its 33-MHz PC is a relatively safe choice.

—Michael E. Nadeau

FiveStar 386

FiveStar Electronics’ 386 machine comes in two main configurations. The base Model 333 has 1 megabyte of RAM, an Award BIOS, a 1.2-megabyte 5¼-inch (or 1.44-megabyte 3½-inch) floppy disk drive, and an I/O card with serial, parallel, and game ports. The cost is $3395.

The Model 33/D, which we tested, is built around the same Micronics 09-00021 motherboard but comes with 4 megabytes of RAM, a 90-megabyte Control Data ESDI hard disk drive and controller, DOS 4.0, and an extra serial port and a clock/calendar on the I/O card. The unit also has an 80387 math coprocessor, a FastWrite VGA card driving an NEC Multisync monitor, and a year’s worth of on-site service through General Electric for a total cost of $8179.

The FiveStar’s 33-MHz chip operates at 6, 8, or 33 MHz, selectable by software, or you can select 33- or 8-MHz speeds using a push button/digital readout on the front panel. The 32K-byte, zero-wait-state hardware cache uses the Intel 82385 cache controller. As you can see from the benchmark results, the FiveStar Model 33/D falls about in the middle of the pack on the CPU benchmarks. It led the pack in the FPU tests, but here the differences between systems were minor.

The Micronics motherboard provides five 16-bit AT slots (two of which, in our system, were taken up by the disk and video controllers), two 8-bit slots (one of ours contained the serial/parallel/clock/calendar half-card), and a proprietary 32-bit slot for system memory.

The hard disk is driven by the Distributed Processing Technology (DPT) SmartCache controller for ESDI drives, which continued
MEGAHERTZ MADNESS

Matrix MDP 386-33

The MDP 386-33 features a Micronics motherboard in a tower enclosure. It is an AT compatible with five 16-bit, two 8-bit, and one dedicated memory slot. The speed of the I/O bus is hardware-switch-selectable between 8.1 and 11 MHz. In its basic configuration, the MDP 386-33 has two serial ports, a parallel port, a game port, and a DTC 7280 hard/floppy disk drive controller with a 1.2-megabyte floppy disk drive. It also has 4 megabytes of DRAM and 32K bytes of static RAM (SRAM) for the memory cache.

The interior layout makes it easy to configure and upgrade the machine. The I/O slots, configuration DIP switches and jumpers, 80387 socket, and sockets for added cache memory are easily accessible. The motherboard is free of visible jumpers. The machine I tested came with a Phoenix BIOS ROM; an Award BIOS ROM is also available. I encountered no hardware or software compatibility problems.

continued
"Your closet may not be this cluttered. But how about your PC hard disk?"

Only PC LIBRARIAN creates room for new files and archives old ones for instant retrieval. Searching through inactive files on your hard disk costs you time. Buying a larger disk costs you money. Let PC LIBRARIAN save you both.

Three Functions In One
The new PC LIBRARIAN is the only utility combining three time-saving functions in one. It clears inactive files from your hard disk. It transfers them to an alternative archiving medium. It creates a file catalog that remains on your hard drive.

Reclaim Hard Disk Space
Why invest in a larger hard disk when PC LIBRARIAN can instantly houseclean your old files? Imagine — all your outdated files suddenly gone. But not forgotten, because PC LIBRARIAN has moved them onto floppy, cartridges, LAN —whatever medium you prefer.

At the same time, it's created an on-line catalog. Now you can instantly locate and retrieve any inactive file.

The Essential PC Utility
No other utility on the market can match PC LIBRARIAN for archiving versatility. Not "backing up" which merely duplicates old files. Not "navigation" utilities which simply guide you through the clutter instead of clearing it away. Not DOS which removes files but gives you no way to conveniently locate and retrieve them.

And not "compression" utilities which only "squish" the files without archiving them (of course, PC LIBRARIAN also provides you the convenience of compression and encryption.)

PC Librarian — the essential new archiving product that saves you hassle, saves you time, saves you money.
And speaking of saving you money...

NOW ONLY $69
That's $30 off the regular price. Try PC LIBRARIAN for 30 days at this unbelievably low introductory price. If you're not delighted with all that new hard disk space suddenly at your disposal, simply request a full product refund.

Mail the attached coupon or call today:
800-892-0007

(Visa or MasterCard: 703-555-0007, FAX: 703-734-3368)

PC Librarian Features:
✓ Simple 2 minute installation procedure.
✓ Archive and catalog several versions of the same file.
✓ Sort files within directory by name, date, extension, etc.
✓ 99 characters available to describe archived files.
✓ On-line catalog file created for easy search and retrieval of archived files.
✓ 7 different reports available on each archiving session.
✓ Security available via encryption and password protection.

PC Librarian Features:
✓ Simple 2 minute installation procedure.
✓ Archive and catalog several versions of the same file.
✓ Sort files within directory by name, date, extension, etc.
✓ 99 characters available to describe archived files.
✓ On-line catalog file created for easy search and retrieval of archived files.
✓ 7 different reports available on each archiving session.
✓ Security available via encryption and password protection.

☐ Yes! I want to save time and money with PC Librarian! If I am not completely satisfied I may return it within 30 days for a full refund.

Send me _______ copies at $9.00 each, plus $1.00 postage & handling.
(Va. residents add 5% sales tax)
PAYMENT:
☐ CHECK ☐ VISA ☐ MC ☐ AMEX

I need a:
☐ 5" or 3 1/2" disk

Send to:
United Software Security
Dept. AMBS, Suite 800
8131 Leesburg Pike
Vienna, Va 22182-7205

CARD #: SIGNATURE ____________________________
EXP _______________________________________

Name ____________________________
Company ____________________________
Address ____________________________
City/State/Zip ____________________________
Phone ____________________________
The one problem I found with the design of the machine involves the memory slot. Either the alignment of the slot with the mounting bracket is off or the slot is too close to the bracket, because the memory card is bent slightly. This didn't affect the operation of the machine for the three weeks I used it, but the stress that the bend creates could cause long-term problems with the sockets for the memory chips.

To keep the bottleneck between the processor and memory as free as possible, the system uses a 32K-byte direct map or two-way set-associative memory cache (hardware-selectable). The cache consists of 25-nS SRAM chips that provide zero-wait state performance. The cache hit rate is about 96 percent. On a cache miss, the system accesses the 80-nS DRAMs that form the main memory. This memory access entails two wait states. Both the RAM on the motherboard and the DRAM in the memory slot run at 33 MHz.

The SRAM cache is upgradable to 64K bytes; the added 32K bytes brings the hit rate up another percentage point. Main memory is expandable to 8 megabytes on the memory board, and to 16 megabytes using a daughterboard.

With a CPU index of 5.75, the Matrix MDP 386-33 finished (albeit barely) in the top half of its class—an excellent showing considering its price. The problem with the Matrix machine, and the reason it brought up the rear in the application benchmarks, is its disk subsystem. The controller uses an ST-506 interface—a good ST-506, to be sure, but not ST-506 nonetheless. Using this interface in a 33-MHz machine is nearly criminal, as the disk and application benchmarks show. A high-powered machine needs a fast disk interface. Matrix supplies optional ESDI interfaces; it should make them standard.

One application area where the Matrix machine excelled is the scientific/engineering benchmarks. The review unit came with a high-resolution, 16-bit, PauLiT VGA board which, in conjunction with the machine's very good CPU and FPU performance, made the MDP 386-33 a tempting choice ($7190 with the VGA board and 72-megabyte hard disk drive) as a CAD workstation.

Buying a Matrix MDP 386-33 won't give you that warm, fuzzy feeling you might get with a Compaq, but it can save you money—even after you shell out the extra $1425 for the 145-megabyte ESDI disk upgrade option. Don't use it as a file server on large networks, but do consider it for less-disk-intensive applications.

—Bob Ryan

Micro Express ME 386-33

Distinguishing itself from some of the 33-MHz pack, Micro Express provides a caching disk drive controller in the ME 386-33 to help avoid I/O bottlenecks. The controller, which is included in the base system price, helped place the ME 386-33 among the top I/O performers. Depending on the hard disk drive used, you can choose either an ESDI or an ST-506 DPT controller, each providing 1-to-1 interleaving and 512K bytes of on-board memory.

The BYTE benchmark tests ranked the Micro Express third fastest in disk speed, while its CPU speed placed a modest eleventh. But the controller helped the ME 386-33 to perform respectively in the database, scientific/engineering, and compiler application tests. Notably, the system scored second overall in cumulative application performance.

However, even though our evaluation unit used a 130-megabyte ESDI hard disk drive, the controller recognized only 133 megabytes of formatted space. The company says the controller...
Building quality into our computers is not the solution to a problem, But the creation of an asset.

SYSTEM V
286-16 MHz NOVASC NEAT MOTHERBOARD
EGA MONITOR
EGA ADAPTER
1 MB RAM
1.2 MB 5-1/4 FLOPPY
1.44 MB 3-1/2 FLOPPY
40 MB HARD DRIVE
MULTI IO 1 PARALLEL 2 SERIAL 1 GAME
REAL TIME CLOCK
PS/2 HD CONTROLLER
101 ENHANCED KEYBOARD
200 WATTS POWER SUPPLY
DOS 3.3 GW BASIC
PHOENIX OR AWARD BIOS
$2,692.00

SYSTEM VIII-TOWER
386-25MHZ MONOLITHIC MOTHERBOARD
* (MOTHERBOARD IS GUARANTEED FOR 5 YEARS)
VGA SUPER SYNC
VGA ADAPTER
4 MB RAM
1.2 MB 5-1/4 FLOPPY
1.44 MB 3-1/2 FLOPPY
100 MB HARD DRIVE WITH CONTROLLER
MULTI IO 1 PARALLEL 2 SERIAL 1 GAME
REAL TIME CLOCK
101 ENHANCED KEYBOARD
MOUSE SERIAL OR BUS
220 WATTS POWER SUPPLY
DOS 3.3 GW BASIC
AWARD BIOS
$5,576.00

ONE FULL YEAR WARRANTY PARTS AND LABOR ON COMPUTER, KEYBOARD AND MONITOR.
UNCOMPROMISING HIGH QUALITY AT AN AFFORDABLE PRICE.
DEALERS INQUIRIES WELCOMED!

DIONEX

See us at
COMDEX/Fall '89
November 13-17, 1989
Tropicana Hotel
Las Vegas, Nevada

SYSTEMS BY DIONEX
8211 LaPorte Freeway
Houston, Texas 77012
(713) 921-5661
TO ORDER CALL: 1-800-729-5465
ATTENTION CAD/CAM USERS

If you're involved in Printed Circuit Board design using a CAD system... you now have a reliable source for accurate PHOTOPLOTTING.

Printed Circuit Photoplotting within 24 hours!
Send us your MS DOS floppy disk or 9 track Mag tape with Gerber formatted files, and we can produce an accurate 1:1 positive or negative using our state-of-the-art Raster photoplotter.

FOR MORE INFORMATION...
CALL: 1-800-325-3878
1-314-343-1630 (MO)

Kepro
Kepro Circuit Systems, Inc.
630 Ayrhaven Drive
Fenton, Missouri 63026

doesn't acknowledge disk space above 1024 cylinders in DOS, idling the remaining 17 megabytes. But Micro Express claims that DPT has developed an extended BIOS that will plug into an existing controller socket and allow use of the full disk space. Micro Express plans to offer the extended BIOS as a standard component with future ME 386-33 systems.

In other respects, the ME 386-33 sports a clean and typical design. Its American Megatrends, Inc. (AMI) motherboard is uncluttered and allows for eight expansion boards to be installed in one 8-bit, one 32-bit, and six 16-bit compartments.

A standard 4 megabytes of RAM comes with the machine. Eight logic chips provide a 64K-byte 20-ns static cache. Memory can be expanded to 8 megabytes on the main board or to 16 megabytes with an expansion board. The motherboard also includes four SIMM sockets. The system accepts either an Intel 80387 or a Weitek math coprocessor chip.

A 15-month repair warranty covers parts and labor. The company also provides a telephone service that allows customers to call technicians about machine problems. In some cases, you can arrange to have replacement boards sent or, if necessary, ship the entire computer back to the company for service.

The base ME 386-33 sells for $5995 and includes either a 1.2-megabyte 5¼-inch or a 1.44-megabyte 3½-inch floppy disk drive, one parallel and two serial ports, and a 101-key keyboard. Our evaluation system had a 150-megabyte ESDI hard disk drive ($1500), a VGA Plus card and an NEC MultiSync 2A monitor ($750), an 80387 math coprocessor ($750), and two floppy disk drives. At $9125, this system demands less than top dollar for near-high-end performance.

- Alan Joch

National MicroSystems Flash 386-33

The Flash 386-33 would make its comic-book namesake proud. Built around a 33-MHz Micronics motherboard and a DPT high-speed caching disk controller, the unit turned in exceptional benchmark times—often outrunning the bigger-name systems. The base price for the Flash 386-33, which includes 4 megabytes of memory, a disk drive controller, a floppy disk continued
INTRODUCING HAUPPAUGE'S 33MHz SYSTEM BOARDS.
If your computer feels slow, we know where it hertz. For a fast cure, get our new 386 MotherBoard/33MHz. We've built in 4 Megabytes of high speed RAM, 64K of RAM cache, and both 387 Weitek math coprocessor sockets. This board makes your 386 computer the fastest PC available!

Network Savvy. With the 386 MotherBoard/33MHz, you can build a file server or workstation that makes Novell networks scream. Enjoy compatibility with Token Ring, Arcnet, Ethernet, and other network cards.

The UNIX Engine. Great for VARS, Systems Integrators and UNIX OEMs, the Hauppauge 386 MotherBoard/33MHz runs SCO Xenix, Interactive 386/ix and AT&T's UNIX System V. With its PC/AT compatible I/O system, our 33MHz board accommodates the latest in disk control, graphics, and network I/O cards.

CAD Capability. Do your AutoCAD and other CAD programs seem slow? The 386 MotherBoard/33MHz boosts your math and graphics applications, and supports the high speed 387-33 and 33MHz Weitek math coprocessors.

Technical Features. The 386 MotherBoard/33MHz includes:
- 4 Megabytes of high speed 32-bit memory, expandable to 64 Megabytes
- 64K of 20 nsec cache memory
- Six 16-bit expansion slots, one 8-bit and one 8-bit/32-bit slot
- PC/AT compatible I/O system for support of OS/2 and UNIX.
drive, a 200-W power supply, and a keyboard, is $4999. With the hard disk drive, VGA video system, and math coprocessor that our review unit had, the complete system rings up at $7995.

The Micronics design puts all system memory on a daughter-card that fits in a proprietary 32-bit slot. Total 32-bit memory capacity, which will require a piggyback unit in addition to the daughterboard, runs up to 16 megabytes. The unit we tested had a daughterboard half-filled with 80-nS, 1-megabit DRAM, bringing the system RAM to 4 megabytes. A 33-MHz Intel 82385 manages the 25-nS, 64K-byte static cache.

The CPU memory subsystem performed admirably on our low-level benchmarks, placing the Flash 386-33 solidly alongside Compaq's entry. CPU performance also contributed to the Flash 386-33's strong showing on our application tests.

Other system board features include a DIP switch-selectable bus speed of 8.25 or 11 MHz, five 16-bit and two 8-bit slots, a Phoenix ROM BIOS, and 80387 support. The unit can also run a Weitek 3167 with an adapter card. Since high bus speeds often mean compatibility problems, we ran all our benchmarks at the default 8.25-MHz bus speed.

Disk I/O performance was another key in the Flash 386-33's outstanding application index. The hard disk drive unit is a 150-megabyte Control Data ESDI drive (standard type formatting under DOS will leave you with 127 megabytes) with a respectable 18-ms average access time. National Microsystems' standard 33-MHz configuration also includes DPT's SmartCache disk controller, outfitted with the SIA 386/33, the Flash 386-33) all had disk benchmark scores in the mid-2's. If you plan to use the Flash 386-33 as a file server and need really screaming disk performance, you can add cache memory to the controller up to a ceiling of 32 megabytes.

Peripheral such as a reasonably comfortable Chicory keyboard and a Sony VGA monitor round out the Flash 386-33. Video speed was disappointing, but the Sony monitor is easy on the eyes and provides good contrast.

---Steve Apiki
continued
SOLUTIONS

High capacity and networking solutions from 90 MB to 4 gigabytes for Compaq®, IBM®, AST®, Epson®, Hyundai®, NEC® and leading compatibles.

With CMS Enhancements, you can put an end to costly mistakes and corrections in meeting your computer mass storage needs. That's because CMS Enhancements provides the total solutions to today's most challenging hard disk storage problems.

CMS' complete line of high-speed, high-capacity disk drives are designed and manufactured with the finest components and craftsmanship— for reliable performance, time after time. No wonder CMS Enhancements is the leading producer of mass storage subsystems in the world.

So contact your nearest CMS Enhancements dealer today. And let CMS Enhancements fill in the blanks of your computer system—with storage solutions you won't need to pencil in.

For the name and telephone number of your local CMS Enhancements dealer, call us at 714-259-9555.
Getting a network off the ground is easy with AIX. Because AIX, IBM's enriched version of the UNIX operating system, brings a whole new standard of performance, documentation and security to the open systems environment.

In fact, AIX has improved upon other UNIX systems in so many ways, the Open Software Foundation recently chose AIX as its core operating system.

Your plans to connect up all your systems will fly a lot easier with AIX.

AIX gives you a very high degree of flexibility. AIX lets you create a transparent network between platforms from a broad range of vendors—from SUN® to DEC® to AT&T® and HP®.

It also lets you link up a broad range of IBM systems—from the PS/2® to the RT®, all the way up to the System/370®.

All for one, and one for all. AIX can integrate a network so effectively, you'd swear it was a single system.

Distributed Services on the RT lets everyone in the network share files, programs and devices. And to optimize your PS/2 and System/370® investment, AIX's Transparent Computing Facility lets you shift power from one processor to another, as the need arises.

And since AIX allows you to merge DOS and UNIX functions, you protect your software investment, too.

AIX's ease of use also sets a new standard. AIX is well documented, easy to learn and provides connectivity through multiple communications protocols.

So if you want to raise the quality of your networking, connect with your IBM marketing representative or IBM Business Partner today about AIX. The one system that connects the flexibility of open standards with all the classic strengths of IBM.

For more information, call 1 800 IBM-2468, ext 148. AIX from IBM. Making your business come together.
I doubt that any of the other 33-MHz machines got the same strenuous workout as the PC Link 386/33. As soon as it arrived, I set it up in the BYTE Lab. Immediately, the hard disk drive and the open card slots began to fill up. In addition to the standard BYTE application benchmarks, the PC Link transferred megabytes of data using Lap-Link and a Bernoulli Box; ran at least three versions of Windows; tested a new 400-dot-per-inch laser printer using Micrografx Designer 2.0; accessed BIX, Prodigy, and BYTE's editorial LAN; ran DESQview 386, Norton Utilities 4.05, and Scanning Gallery with an HP ScanJet; and negotiated the numerous small chores expected of all our lab computers. The PC Link was up to the task. It ran everything from PageMaker 3.0 to a new desktop publishing software package currently in beta testing. The only hitch was an annoying mechanical problem with the 3½-inch floppy disk drive.

PC Link Corp. sells the 33-MHz system in two basic flavors. Both models are based on the Hauppauge 386 Motherboard/33 and come with 4 megabytes of RAM, a 101-key Enhanced keyboard, a 220-W power supply, one parallel and one serial port, a 220-kbyte floppy disk drive, and a 16-bit Trident VGA board. Only the disk drive type distinguishes the configurations: The Model 160 ($5995) supports a 159-megabyte, 17-ms ESDI Micropolis hard disk drive, and the Model 330 ($6995) packs a 330-megabyte, 18-ms ESDI Micropolis drive.

Our evaluation unit was the Model 160 with the following options: a 1.44-megabyte 3½-inch floppy disk drive, a 33-MHz 80387 math coprocessor, a Video Seven 16-bit VGA adapter, and an NEC MultiSync 30 monitor, for a total of $7818. Three of the system's expansion slots are occupied, leaving four 16-bit slots free. An eighth expansion slot supports a dedicated 32-bit memory bus. A monitor is not included with any model. The Intel CPU can access up to 64 megabytes of 32-bit memory. The motherboard comes stuffed with 4 megabytes of 80-nS RAM; further memory upgrades require a card for the dedicated 32-bit memory slot. The PC Link optimizes memory access with a 64K-byte 3½-inch floppy disk drive, a 33-MHz 80387 math coprocessor, a Video Seven 16-bit VGA adapter, and an NEC MultiSync 3D monitor, for a total of $7818.

Three of the system's expansion slots are occupied, leaving four 16-bit slots free. An eighth expansion slot supports a dedicated 32-bit memory bus. A monitor is not included with any model. The Intel CPU can access up to 64 megabytes of 32-bit memory. The motherboard comes stuffed with 4 megabytes of 80-nS RAM; further memory upgrades require a card for the dedicated 32-bit memory slot. The PC Link optimizes memory access with a 64K-byte 20-nS cache and four banks of interleaved DRAM. Extended memory conforms to EMS 4.0 specifications. The motherboard also supports either an 80387-33 or a Weitek 3167-33 math coprocessor.
Most good work has an edge to it. And good work turns into a sharp, 300-dpi, colorful, awe-inspiring PostScript-compatible business weapon on the Tektronix Phaser CP Color Printer.

The Phaser CP works with a color thermal-wax process for IBM PC/XT/AT or bus-compatible computers, in any variety of network configurations. So you can finally put your color, HPGL and PostScript-compatible applications, not to mention every computer user, to full use.

And in as little as 47 seconds, you print out a document with a virtually unlimited range of bright, clear colors. You print out desktop presentations. Transparencies. Color layouts or comps. PC/CAD design. Or just about anything your heart desires.

To see a Phaser CP, or to find the best remedy for paper cuts once you get one call for more information, 1-800-835-6100 Dept. 4J, or fax to (503) 682-3408.

The printer for those who like to play with sharp objects.
The PC Link did not excel on the BYTE benchmarks, but it performed creditably for an inexpensive, no-frills system. Many of the systems reviewed here boost their performance with expensive disk controllers and on-board caches. The PC Link, on the other hand, offers only a disk-cache utility on the bundled disk. A software cache is not as efficient as a hardware one, and it also consumes valuable RAM. The decision to forego an on-board cache may stunt the benchmark results, but such choices also keep a rein on the system's price. PC Link has done a good job balancing the price/performance equation. Nothing spectacular, perhaps, but a solid machine at a reasonable price.

—Stanford Diehl

SIA 386/33

After the BYTE Lab tested Systems Integration Associates' 386/33, we realized how hard-disk caching can influence system performance. With an optional 4.5 megabytes of disk-cache memory, the SIA 386/33 achieved the BYTE Lab's rating as one of the fastest PCs on the market.

A caching controller from DPT is one key: it allows the SIA 386/33 to read and write to the controller cache while the controller card simultaneously accesses the disk. Because of the DPT controller, the SIA 386/33 blasted its nearest 33-MHz competitor by 18 percent on the cumulative application index. And the disk caching can be expanded to 12 megabytes.

CAD redrags were, at most, a nuisance for this machine. Word processing disk-access applications were even less taxing.

To keep main (motherboard) memory from slowing down the processor, all SIA 33-MHz systems include a 64K-byte, direct-mapped, 20-ns SRAM cache. SIA claims zero-wait-state operation and an 81 percent hit rate for the write-through cache, operated by a discrete logic controller. In a direct-mapped design, each memory access involves comparing a tag (which specifies blocks within the cache) with part of the requested address. The system uses faster 15-ns SRAM to store the frequently used cache tag. Up to 16 megabytes of main memory can be cached; accessing any memory installed beyond this limit will slow the system considerably.

The SIA 386/33 ships with 4 megabytes of 70-ns DRAM. Four bands for DIP memory are available on the motherboard, along with four SIMM slots. DIP sockets are compatible with both 256K-byte and 1-megabyte DRAM chips. SIA says that both SIMM and DIP sockets are compatible with the 4-megabyte versions of each package.

With 1-megabyte parts, you can get up to 8 megabytes on the motherboard; when 4-megabyte components are released, the board will take not 32, but 16 megabytes—a system board limit imposed by the AMI BIOS.

The 10-bay tower is well designed, with cabling connections up top where they're protected by a slide-off cover. The cover has handholds for moving the 75-pound behemoth. Loosen two screws, slide the cover off, and you have easy access to install drives and cards in the swing-mounted side cover.

You can easily distinguish the 10-bay system from the others from the loud roar of the two thermally controlled cooling fans that drag filtered air past the 350-W power supply. The standard configuration ($6490) has a PS/2-style keyboard, 4 megabytes of RAM, one serial port, and one parallel port. It does not have any hard disk drives or a caching controller.

The machine I reviewed had a second 1.2-megabyte floppy disk drive, an 80387 math coprocessor, an extra serial port, a 16-bit VGA card and VGA color monitor, two 16.5-ms, 680-megabyte hard disk drives with an accompanying DPT caching controller, a 125-megabyte tape drive, and a DPT mirroring kit. The total cost for this system is a whopping $26,365.

As configured, this machine is designed for heavy-duty file server applications for large LANs. The mirroring kit works with the two hard disk drives, mirroring the information from one onto another for backup. Besides, transparently writing on a second hard disk drive, the SmartCache mirroring kit automatically patches bad sectors with good data from the mirrored drive. Like the mirroring, which is handled transparently by the controller, patching sectors is transparent. —Roger Adams

Tangent 333

My first impression of the Tangent 333 was that you could live in this box. The huge tower measures almost 2 feet deep, just as high, and 9 inches wide; there's enough space inside for 10 half-height mass storage devices.

Even though the unit I tested had two floppy disk drives and a 100-megabyte hard disk drive (all ESDI), and I/O boards that included a Video Seven FastWrite VGA card, a multiport I/O card (with two serial, one parallel, and one game port), plus the controller board for the disk drives, the insides looked empty and lonely. Like Dyna, Tangent builds its systems to each customer's specifications; it offers no standard models. The price of the system I used was $6995.

This is a system you won't easily outgrow. The power supply is a large two-fan cube mounted in the bottom of the case. Regulated by a temperature sensing circuit, both fans blow air up and across a Mylex motherboard mounted so that the I/O boards are installed with their backsides pointing up.

This means that you attach monitor cables, keyboard cables, and whatnot across the top. But don't worry about spilling coffee into your RS-232C connector—a special covering saves the top of the machine, protecting its insides like a chimney hat.

The power supply in the model I tested was rated at 250 W continuous, but if you're certain to be loading your machine up, Tangent sells models with supplies rated at 360 W.

The motherboard appears to be capable of handling anything you can throw at it. It accepts either a 33-MHz 80387—which was in the system I tested—or a Weitek 3167 coprocessor. The peripheral board slot arrangement is geared to versatility: four 16-bit slots, an 8-bit slot, and two Intel AT/32-bit slots. If your computer has 16-bit slots, or DPT controller, the SIA 386/33 blasted its nearest 33-MHz
You're looking at the only mouse in the world with on-the-fly ballistic drivers, adjustable resolution (50 to over 15,000 d.p.i.), 35 free mouse menus, a super-lightweight self-cleaning ball, and a 1,000 mile road test (really).

It's also the world's most comfortable mouse, according to PC Magazine.

And it's yours for $99.

How do we do it, and provide 7-days-a-week unlimited support, and a Satisfaction Guarantee?

Economies of scale: we're the only major mouse marketer to make our own mice, and sell them to millions of PC users around the world, and many leading computer companies.

For information: 800-231-7717

In California:
800-552-8885
Before DBMS/COPY, transferring data was a real nightmare. With its user-friendly menu system, DBMS/COPY makes moving data between 85 packages a snap. Now you can move data among spreadsheets, databases, SQL DBMSs, time series, graphics, and statistics packages in seconds. Many packages claim to read spreadsheets, but only DBMS/COPY with its revolutionary spreadsheet grabber lets you visually select the cell range you want to transfer. And users say they actually enjoy moving ASCII files with DBMS/COPY.

All this can be yours for $195 (add $5 shipping). Of course, there is a 30-day money-back guarantee. If you don’t believe this ad, call or write for your free limited version of DBMS/COPY. Power users, ask about the PLUS version. Order today and stop sweating over your data transfers!

Conceptual Software, Inc. (800) STAT-WOW
P.O. Box 56627 (800) 782-8969
Houston, TX 77256 (713) 667-4222
(713) 667-3FAX

MEGAHERTZ MADNESS

GRAB IT!

DIGIVISION

framegrabbers are high-quality, versatile, affordable real-time digitizer cards. The basis of many of today’s OEM products, our boards excel in robotics, inspection, security, and medical imaging.

DV-512 Programmable resolution up to 512 x 480, independent field buffers, input and output LUTS, 24-bit RGB display, dual RS170b inputs. Advanced features. $1,199.00

DV-02 256 gray level board, 256 x 240 resolution, 24-bit analog RGB display, output LUTS, dual inputs, chroma filter and hardware cursor. $899.00

DV-03 94 gray level board with many DV-02 features. $549.00

PC-PID06 8255-based digital I/O card for PC. $175.00

Zenith Z-386/33

Several features of the Z-386/33 make it stand out. All the data lines to the serial and parallel ports have RF filters to minimize radio frequency interference; the system has FCC Class B approval. A built-in Monitor program allows you to diagnose, set up the computer, and do programming. A lithium “Smart Battery” circuit displays an error message telling you to replace the battery before you lose the setup information in CMOS RAM. Finally, the Zenith documentation is excellent. It is well written, well organized, and liberally illustrated.

The Zenith Z-386/33 came configured with one 1.44-megabyte 3½-inch floppy disk drive, a 155-megabyte MiniScribe continued
We’ll take your stats and make you the most valuable player in your league.

Data analysis software from SPSS gives your PC a winning advantage.

It doesn’t matter which field you play hardball in. With the right combination of equipment and ability, you can be a hero. You get that ability with SPSS. Whether your equipment runs on MS-DOS™ or PC-DOS™ OS/2™ or a Macintosh™, so you turn raw data into useful facts. And yourself into a smarter decision maker.

With SPSS and its options, you can interface directly with data from your database, spreadsheet or other application software. Then manipulate it in countless ways. From data entry to advanced statistics, forecasting, presentation and more. Voted #1 by the fans.

When the readers of PC Week chose the top statistical software for “user satisfaction” (12/5/88), their choice was SPSS. And no wonder.

SPSS is designed not only for your computer’s operating system, but also for its operator. With menu and help systems, plus an on-line statistical glossary. So you’re always in control. For market research, sales analysis, quality control and more.

And you can always count on the training, support, and ongoing upgrades of SPSS. The team that’s come through for over 1 million users since 1968.

Find out how SPSS can make you first in your micro league, by calling [312] 329-3315.

We’ll give you the numbers to really stand out in your field.

Circle 241 on Reader Service Card
MEGAHERTZ MADNESS

3180E ESDI hard disk drive, 3 megabytes of 80-/100-ns system RAM, 16K bytes of 15-ns SRAM for the cache, and a 200-W power supply. It also came paired with the Zenith ZCM-1490 Flat Technology 14-inch analog color monitor. The system comes with MS-DOS 3.3 Plus and Windows/386. The total price of this system is $13,197.

The Z-386/33 has seven expansion slots on the motherboard. Three are for standard, 16-bit, AT-compatible cards. The other four are Zenith's proprietary 32-bit SuperSet slots that are compatible with 16-bit cards and with Zenith’s 32-bit memory-expansion and I/O cards.

The computer is unusual because the motherboard holds the system RAM, CPU, FPU (80387 or Weitek 3167), cache RAM, and expansion slots. The Zenith BIOS and Monitor program ROMs, real-time clock circuit and battery, serial and parallel ports, and additional support circuits are on the I/O card that plugs into one of the 32-bit expansion slots.

Eight slots are available for the system memory. Either 1- or 4-megabyte SIMMs can be installed for a maximum of 8 or 32 megabytes of RAM on the motherboard. Optional Zenith ZA-3600-MQ memory-expansion cards can be plugged into the 32-bit slots to increase system RAM to a total of 64 megabytes.

The 16K bytes of RAM for the cache is located on a separate card that plugs into its own slot on the motherboard. Zenith anticipates offering a 256K-byte cache card in the future.

There is space for four half-height devices in the front panel. The floppy and hard disk drives are mounted in cradles. Remove one screw, and the cradle that holds two drives can be easily moved back and lifted out of the chassis.

The floppy and hard disk drives are controlled by a Data Technology ESDI hard/floppy disk drive controller card. Zenith gives it a data transfer rating of 10 megabits per second with a 1-to-1 disk interleave.

The hard disk drive versions of the Z-386/33 come with a Z-549 VGA card made by Sigma Designs. On boot-up, the video BIOS ROM is copied to 32-bit RAM to improve performance. The card provided a crisp display on the Zenith monitor.

The Zenith Z-386/33 is not at the top of the list when it comes to performance—perhaps because it is keeping such exotic company in this review. Where the Zenith does shine is in the overall quality of its design and construction. —Stan Wszola

MegaMate

MegaMate includes everything you need to add tomorrow's disk drive to today's computer. Installation is a snap, just plug in the card, plug in the drive, and run the setup software (4 keywords and you're done). MegaMate is easy to use, just like a 5 1/4-inch drive. It works with PCs, XTs, and ATs, and you can add it to any computer because it's external.

MicroSolutions

MicroSolutions Computer Products

MegaMate gives you the following:
- 2.8 MB version also available
- Installs in minutes
- Handles any 3.5-inch IBM disk, 720KB or 1.4MB automatically
- Complete package — for any PC, XT, AT, or compatible
- Attractive and compact, barely bigger than a diskette
- One-year warranty

MegaMate gives you the following:
- 2.8 MB version also available
- Installs in minutes
- Handles any 3.5-inch IBM disk, 720KB or 1.4MB automatically
- Complete package — for any PC, XT, AT, or compatible
- Attractive and compact, barely bigger than a diskette
- One-year warranty

132 W. Lincoln Hwy.
DeKalb, IL 60115
815.756.3771
Price
Quality
Service

This is where it all comes together.

GATEWAY
This is where it all comes together.

We founded Gateway 2000 on this farm located near Sioux City, Iowa to provide top quality computers at unbeatable prices with uncompromising service after the sale. No other company offers you the combination of Price, Quality, and Service that we do. We want you to be completely satisfied with your decision to purchase a Gateway 2000 computer system, and you have our personal pledge that you will be. We look forward to you joining our thousands of satisfied customers, and establishing a long lasting business relationship.

Sincerely,

Ted Waitt
President
Norm Waitt Jr.
Vice President

Price

Gateway 2000 offers the most aggressive prices in the industry. We offer fully loaded machines for the same price as most vendor's stripped down models. One customer wrote "I'm surprised that the computer media haven't mentioned anything about your prices relative to the rest. You don't merely edge them out you blow them away"—Clarence Larson. Look at our prices on the back page of this ad, shop around, compare apples to apples, then call Gateway 2000's knowledgeable sales staff to discover the GATEWAY DIFFERENCE. "I chose Gateway after much research because I felt that the product was the best value for the money and the sales staff was very patient with my never ending list of questions and and inquiries"—Keith Lazan.
Quality

Gateway 2000’s quality standards set us apart from our competition. From the top quality name brand components used in our systems to the painstaking quality assurance tests we run on our machines, you are guaranteed a top quality computer. Our complete line of computer systems are hand built in our factory located just outside Sioux City, Iowa. State of the art technology is used to provide you with a combination of performance, compatibility, and reliability that few vendors can match. One customer recently wrote: “The quality of your work is exemplary and frankly has made a lot of others jealous because they bought systems which were comparable in quality but with a stiff price difference”—George Syty.

Service

Gateway 2000’s service policies are the best in the industry. We stand behind all of our systems with a 30 Day Money Back Guarantee and a 1 Year Warranty. We also offer Lifetime Toll-Free Technical Support, and Free Federal Express Shipping of replacement parts. If our technicians can’t solve your problems over the phone or Fed-X you a solution we can dispatch a technician to most locations to provide Free On Site Service. Our policies are great, but it’s our people that really set us apart from the competition. Look at what our customers write:

“Thank you very much for kind attention and help. I am highly recommending your corporation to colleagues for your quality and service”—Herbert Markley.

“I’ve always heard your forte is customer service, and now you have definitely proven it to me”—Jose De Jesus.

“I am really glad I chose Gateway 2000”—Jerry Langland.

“I feel compelled to express my gratitude to your company for the impeccable service and support I received”—Andrei Weizmann.

“It is a pleasure indeed, to work with a computer sales company that exhibits a genuine desire to satisfy the customer”—Ron L. Kinney.
Benchmarks at a Glance: 1989

BYTE's performance rankings of popular IBM PC compatibles and Macs

Compiled by Stanford Diehl

Ever since the new BYTE benchmarks debuted in June 1988, a diverse field of microcomputer systems has vied for the title of "fastest personal computer." The BYTE Lab has busily tested the gamut of systems from 33-MHz network servers to the new notebook-size laptops. The boxes keep shrinking while the power within keeps growing, and new speed champions appear almost daily. Still, some systems deserve special notice.

While the crop of 33-MHz machines now dominates the top of our list, the ALR FlexCache 25386 clung to the top spot for over six months. At one time, a slick memory-caching scheme was enough to lead the pack. But now, with most observers agreeing that 80386 speeds have topped out, vendors are using more extreme measures to keep ahead, using extensive caching and top-of-the-line components in their speed demons.

As the BYTE benchmarks have evolved, so have the available computer systems. The Compaq Deskpro 386/16, still a powerful desktop model, has dropped to the bottom tier. The portables are now formidable foes, seriously competing with full-fledged systems. The Toshiba T5200 is one of the top 20-MHz performers, and the IBM PS/2 Model 70 edged out the PS/2 Model 70-121. The day of the desktop portable has arrived.

The 80386SX machines are also gaining stature. They, too, achieve a respectable showing on our list, comparing favorably with the 80386/16 machines. If the SX prices drop a little further, the chip may become significant after all.

As always, the BYTE benchmarks offer a glimpse of low-level component performance as well as application-specific performance. You can easily evaluate each system's overall standing, or you can analyze a system's performance by one of four component modules or one of five separate applications. The listing also tells you when each machine was reviewed or otherwise mentioned in the pages of BYTE if you'd like a more detailed picture of a system.

The BYTE benchmark indexes are relative. The IBM

continued
BYTE BENCHMARK INDEXES-WITH MATH COPROCESSOR

Low·lewl

Month
appeanld

Computer

CPU

FPU

Diak Video WP

6•.27

14.97

B.00

& 4!'l

SS

DB

Cum.

Sci./ Cmplr.
Eng.

4.32

S.OQ

7.42

7.32

6.66 15.06 7.02 2.U7 4J6 4.32

~~

1

!l,~

National Micro Systems 386/33

ISMS~.80
IBMSpel. 89

FlveStar Model 33/0 (386133)

IBMSoe/. 89

~.l4

Ccrnpaq De$kpro 366/33
Dyna Cache 386133
ALA FlexCache 331386
Blackshrp 386133
AST Premium 386/33
Ewrex Step 3B6l33
PC Llnk 386133
ALA FlexCache 25386
Tangent333
SIAa86132
Zenith Z-386133
Ma,trix MOP 386133
AST Premium 386/25•
Dell System 310 (386/20)
Proteus 386/25MX •
ALR FlexOache 20386
Compaq Deskpro 386120
Toshiba T52001100 {386120)
ALA MicroFlex 7000 (386125)
Compaq 386/20e"
IBM PSJ2 Model 70·A21 (386125)
Dolch-PAC. 386·25
AST Premi um/386C (386120) •

IBM Spcl. 89
IBMSpcl.89
IBMSpcl. 89
IBMSP,d.89
IBMSpcl.89
IBMSpcl.89
IBMSpcl. 89
Nov. 88
IBMSpcl. 89
Apr. 89
IBM Spcl. 89
IBMSpd. 89

ISMSpol.(19

SIA366/33

Micro Express ME 386/00

Oct.SS
Jun. 68
Feb. 88
Aug.89
Sep. 89
Jul, 89
Aug. 89

Micro Express RegaJ II (386/20)

Aug. 89
Sep. 88
Jun. 89
Feb. 89
Jun. 89
Aug. 88
Jan. 89

AST Premium/386 (386120)
FiveStar Model 320 (386/20)
Tandy 5000 MC (386120}
Tandon 386/20
Everex Step 386/20
Dol ch P .A.C. 386·?0(: (386120)
Compaq Portable 386 (386120)
IBM PS/2 Model 80-1 11 (386120)
Sun386i (386125)
IBM RS/2 Model P70 386 (386120)
IBM PS/2 Model 70·121 (386120)
Wells American CompuStar (286120)
NEC ProSpeed 386 (386/ 16)

Dec.88
Aug.89
Jan. 89
Apr.89
Aug. 89

Compaq 386s (386SXl16)

Nov.as

6.00

6.00

5.67
6.74
6.03
4.80

6,84
5.10

s:o1

3.91

8.38
9.97
7.00
8.34

4.2{;
3.92
3.61
3.96
4.99
3.62
4.71
3.84
3.26
3.30
2.51

10.29
8.19
10.23
8.77
7.42
8.08

5.26

7::.99
7.91
8,02
6.14
5.35
7.34
6 .97
6.02
6,98
6.84
2.04
6.00

4.11

'.t27

6A8 2.0t 5.08 4.35
7.14 2,22 4.82 4.31
2.00 4&1 428 5.01
2.56 3.85 5.02 4.27
2.60
2.37
2.32
2.45
2.83
2.74
2.28

2.83

3.61
3.89
4.26
2.11
2.57

1.79

2 .36 3.06
2.96
1.93
2,49
3,21
2.37
2.50
2.23
2.22
2.41

1.89
1.64
2.12
2.31
2.51
2.4 1
1.66
1.25
1.49
1.41
1.4 1

5.05

4.61
4.69
4.. 11
4.43
5.03
4.41
4.57
4 .41
3.91
3.95

4.50
4.45
4.22
3.93
4.43
4.13

4.45
4.07
3.97

5.77

6.00
5.90

3.00

7.86

2.91
2.88
2.89
3.01

7.51
7.18
7.30
7.23
8 .05
5 .51

1.96

2.68
2.83
2.45
2.02
1.87

3.90 1 ~ 74
2.34 3.62 3.93 2.60

5.73
2.45
1.72
2.01
2.54
2.16
2.97
3.03
2.96
2.64
2.28

2.50
1.90
2.1 1
2 .26

4.66
4.67
4.89
5.45

1.T1 2.91

2.22
1.49
1.50

3.19 1.52

1.51
1.48
1.96

S.76

1.27

1.25

3 .86

079

1.63

1.24

1.32

1.28
1.00

1.21

3.43

0 .92

1.54

1.47

1.07

1.00

0.22

0.71

1.00 1.00 1.00 1.00 1.00
0.32 0 .25 0:33 0,28 0.22

2 .66
2.74
2.41

Aug. 89
Aug. 89
Aug. 88
Jan. 89
Feb. 87
Mar. 89
Oct. 89
Aug. B9

2.38
1.96
3.04

2.11
2.20
1.93
2.04
1.76

Oct.89

1.78

Aug. 89
JuJ. 88
Jul. 88
Jan. 89
Jul.88
Sep.89
Aug, 89
Jul. ea
Jtrl.88

1.76
2.1'9
1.60
1.85

1. 03

3.41

2.88

4.88
1.73
5.90
2.36
1.74
5.50
1.52
4,9
4 .41
2.69
4.02
2.68
1.56
1.72
1.80
1.50

2168
3.61
2.66

3.68

3 .09

2.42

1.55

U58
1,49
1.40
2.36
1.35
1.46

1.65
2.14
2 .06
2 .48
1.39

1.69
2.00
1. 13
1.35
1.52
1.62
1.36
1.81

1.21
1.78
1.53
1.31
1.17

0.96
1.22
1.65

4.27

5.36
4.98
4.33

1.50
2.62
1.52
2,37
2.6 1

4.46
4.42
4.86
4.44
4.11
4.25
4 .36
4.08

7.09

6.59

2.40-

2.57

5.37
5 .5S

3.94
3.85
3.43

2 .84

s:.s6
3.88
3.51
3.20 3.51
3 .34 3.66
3.54 3.82
3.26 3.64
3.42 3.75
3.16 3.14
3.1 2 2.60
2.98 3.18
2.80 2.90
S.07 3.21
2.97 3.23

s.oa

Nov, 87

5.43
6.24

3.45

1.86

2.82

5.80

3.69
3.44

1.92

3..30

rz

5.91

1.59 2.94 3.37
2.23 2.96 2 .78
1.60 2.46 268 3,11
1.53 2.31 2.81 3.07
5.87 0.70 3.24 2.66
1.62 2.16 2.99 2.88
1.74 2.34 2.63 2.74
2.01 2.30 2.~ 3.11
2.15 1.59 2 .34 2 .33
1.78 l.87 2.24 2:15
2.64 1.37 2.38 2.25
1.40 2.0-2 2.71 2.68
1.34 1.32 2.25 2.48
1.48 1.9f 1.9a 2.22
l.18 0.94 2.41 2.98
1.55 1.93 2.28 2.18
1.45 1.49 2.26 2.40
1.4J5 1.17 2.29 2.00
1.38 1.57 2.08 1.82
1.55 1.24 1178 2.01
1.36 2.42 2.07 1.97
1.55 1.20 1.69 2 .04
4.16 1.01 2.02 2.21
4.05 1.09 1.83 2.01
1.24 1.42 1.76 1.72
2:so 1.49 1.75 1.43
1,12 1.18 1.57 1.30
1.23 1.27 1.25 1.23

Toshiba T5100 (386116)
Zenith TurbosPort-386(386n2)
Talung TCS-8000 (386120)
IBM PSl2 Model 70.E61 (386116)
Compaq Deskpro 386/16
Twirihead 386SX (386SX/16)
Mitac 2386 (386/16)
GRiDCase 1530 (386/12.5)
IBM PSl2 Model 55SX (386SX116)
GRiDCase 1535 EXP (386112.5)
Amdek $ystem/286A (286112.5)
Dell System 200 (286/12.5)
IBM PS/2 Model 50 Z (286110)
Arche Rival 286 (286112)
AST Bravo/286 (28618)
NEC PowerMate Portable (386SX116)
Leadlng Edge Model 02 (286/10)
Epson Equity II + (286112)
IBM PC AT (28618) • •
IBM PC XT(808614.7)" •

B Y T E JBM Special Edition

6.27

3.71
-9.30

2.72

.

9.92

3.3:1

Gee. 88

F11.ll 1989

10,55
14.83
14.2@
15.10
15.07

Dell System 220 (2S6120)

·s~ l'ta'i bee.i barclimme:! Ill.II no1'.190>4lled 1n e-m;:
• •L.ls!ed b° rwflwance Ori)'.

15.07
15.75
1550
14.86
15.66
13.71
14.21
15.48
14.87

5.73
5.99
4.79
5.75
3.78

Aug. 89

ADC Powerlite 386 (386SX/16) •

50

Appllcatlons

4 .68
5.33
4.67
4.50
4.29
3.98
4.31
4.35

3.66
3.44
3.45
• 3.40
3.30
3.07
2.62
3. 11
3.31
3.14
2.74
2.59
2.23

11ppl.
1ner.

32.64

tr.oo

26 58
26.47
24.61

24.13
24.02

23.77
2269
22.62
22.01
21.24
21 .17
20.67
20.19

20.11
19.20
18.24
17.95
17.94
17.93
17.86
17.61

17.26
16.64
16.45
16.14
15.76
14.85
14.67
14.27

3.!>7

2.41

14.01

3.67
3.79
3.73

2.4e

2.15
2.06
2.37

13.98
13.58
13.33
13.16
13.16
13,02
12.72
12.49
12.29

2.05

11.51

2.37

2 ~32

3.03

2.21

1.94

2 .96

3 .56
3.75
3.06
3.11
3.01
2.24
2.55

2.64
2.73

2.09
2.94
2.25
2.57
2.76
2.17

2.61
2.13

2 :22

2.1 3
2.11
1,97
1..97

1.92
1.78
1.96

1.7 6
1.67
1.82
1.67
1.80

11.47

11.'44
11.04

10.84
10.53
10.52.
10.38
10.23
9.70
9.58

9.53

9.44

1.72

1.70

9.17

1.74

8.34
8.12
7.12
6.89

1.22

1.,46
1.47
1.14
1.27
1.13
1.21
1.24

1.00
0.35

1.00
0.29

2.00
t.84
1.53
1.50
1..28

6.77
6.68
6.54

5.00
1.47


BYTE BENCHMARK INDEXES—WITH MATH COPROCESSOR
PC-compatible systems are referenced against an 8-MHz IBM AT with an 80287 coprocessor. The cumulative application index represents an overall score based on all application tests. The baseline AT registers at 1.0 on each application index for a cumulative index of 5.0. Therefore, a cumulative score of 20 would suggest an operating speed four times that of the standard AT. The NEC UltraLite could not run the entire set of application tests and so does not have a cumulative application index. The UltraLite’s low-level bar graph is more representa-

tive of its speed since the application-level bar lacks two segments. For all graphs, the low-level bar extends to the left of the listed system and the application-level bar extends to the right. Predictably, the 68030 machines (IIcx, SE/30, and Ix) top the Macintosh list. The 68000 processor inside the SE and the Plus does not support an integrated math coprocessor so those machines could not generate an FPU index. For the same reason, the Macintosh FPU indexes are referenced against the Mac II, while all other indexes are based on the Mac SE. The Macin-

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Gateway 386 (386/20)</td>
<td>Oct. 88</td>
<td>3.30</td>
<td>1.47</td>
<td>2.58</td>
</tr>
<tr>
<td>Macintosh II</td>
<td>Aug. 88</td>
<td>0.81</td>
<td>N/A</td>
<td>0.75</td>
</tr>
<tr>
<td>Macintosh SE</td>
<td>Aug. 88</td>
<td>1.00</td>
<td>N/A</td>
<td>1.00</td>
</tr>
<tr>
<td>Macintosh Plus</td>
<td>Aug. 88</td>
<td>1.00</td>
<td>N/A</td>
<td>1.00</td>
</tr>
<tr>
<td>Macintosh Icx</td>
<td>Aug. 88</td>
<td>4.81</td>
<td>1.15</td>
<td>3.85</td>
</tr>
<tr>
<td>Macintosh SE/30</td>
<td>Aug. 88</td>
<td>4.81</td>
<td>1.16</td>
<td>3.01</td>
</tr>
<tr>
<td>Macintosh Ix</td>
<td>Aug. 88</td>
<td>4.57</td>
<td>1.16</td>
<td>3.02</td>
</tr>
<tr>
<td>Macintosh SE/30</td>
<td>Aug. 88</td>
<td>4.57</td>
<td>1.16</td>
<td>3.02</td>
</tr>
<tr>
<td>Macintosh II</td>
<td>Aug. 88</td>
<td>4.57</td>
<td>1.16</td>
<td>3.02</td>
</tr>
<tr>
<td>Macintosh SE</td>
<td>Aug. 88</td>
<td>4.57</td>
<td>1.16</td>
<td>3.02</td>
</tr>
<tr>
<td>Macintosh Plus</td>
<td>Aug. 88</td>
<td>4.57</td>
<td>1.16</td>
<td>3.02</td>
</tr>
</tbody>
</table>
BENCHMARKS AT A GLANCE

BYTE BENCHMARK INDEXES—WITHOUT MATH COPROCESSOR

Low level
- Micro Express ME 386 (386/20)
- Gateway 386 (386/20)
- Fortron 386 (386/20)
- Zao 386 Tower (386/10)
- DataWorld 386 (386/16)
- Spear Mono 386A (386/16)
- Nortingate 386/16
- Micro 1 Power 386/20
- Club 386 (386/16)
- Whole Earth 386 (386/16)
- VIPC Micro 386 (386/20)
- CompuAdd Standard 386 (386/16)
- Pacesetter 386 (386/20)
- Suntronics 386 (386/16)
- Blackship 386 (386/16)
- Bus 386 (386/16)
- GCH EasyData 386 (386/16)
- Value 386 (386/16)
- PC Network THE 386 (386/16)
- Uniq 386 (386/16)
- Compaq SLT/386 (286/12)
- Hertz 386 (386/16)
- NCR P916sx (386/16)
- Ogivar 286 Laptop (286/12.5)
- Zenith SuperPort 286 (286/12)
- Mitsubishi MP-286L (286/12)
- Epson Equity LT (NEC V30/10)
- HP Vectra CS Model 20 (V30/1.6)
- NEC MultiSpeed HD (V30/9.54)
- NEC UltraLite (V30/9.83)

Application level

BYTE BENCHMARK INDEXES—MACINTOSH FAMILY

Low level
- Macintosh llcx
- Macintosh SE/30
- Macintosh llx
- Macintosh II
- Macintosh SE
- Macintosh Plus

Application level

- Word processing
- Spreadsheet
- Database
- Scientific/Engineering
- Compiler

Macintosh indexes should not be compared to the PC indexes.

Benchmarking can be a tricky business, especially given the wide range of methods employed to make systems run faster. For the most part, we run the systems intact, testing them the same way you would use them—as complete systems. We do disable software caching because it steals precious RAM, but hardware caching is fair game. We try to test all machines with a coprocessor installed. Machines tested without a coprocessor are listed separately. The Macintosh benchmarks have been revised since the last update, so the numbers have changed slightly. The PC benchmarks have not faced a major revision since the December 1988 listing.

As systems continue to stretch the performance curve and as the 80486s start to appear, the BYTE Lab will be ready with a new generation of system benchmarks. Stay tuned.

Stanford Diehl is a BYTE testing editor. He can be reached on BIX as "sdiehl."

B Y T E IBM Special Edition • Fall 1989 53
Introducing the best built, best backed 286- and 386-based systems.

Since 1985, CSR has been a leading microcomputer maintenance provider. We repair all major brands - IBM®, Compaq®, and the best-known peripherals - for the largest dealer networks and third-party service companies nationwide. So when we decided to build our own 286- and 386-based systems we knew how to make them even better.

With CSR, you can put your confidence in a company that has it all - the service, support, performance and IBM compatibility you expect - but at prices that will surprise you.

The industry's best 2-YEAR warranty.

For the first full year we provide complete on-site service on all parts and labor. During the second year we’ll repair or replace any parts that fail. This revolutionary warranty demonstrates the high degree of confidence we have in the quality and reliability of our computers.

Plus, when you call our toll-free Technical Support Hotline you’ll be connected to a highly-skilled Customer Engineer (CE). Your CE will either fix the problem over the phone or dispatch a Service Engineer to your site — within 24 hours of your call — for prompt, professional problem resolution.

And what’s best about this CSR-exclusive is that everything is included in the price of your computer!

High performance, not a high price.

CSR delivers high performance in every machine we make. Our 286/20 uses an Intel® based 80286 chip that runs at a blazing 20 MHz and outperforms most 386-based machines.

And unlike some of our competitors, we don’t embed the VGA or disk controllers on the motherboard — that can just lock you out of future innovations. Instead, we provide a high-speed VGA controller which supports all VGA modes. And a totally IBM-compatible disk controller which features the latest in track-buffer technology to boost drive performance by an amazing 30% to 50%.

Compatible with reality.

You’ve invested a lot in software. That’s reality. So we designed our machines to be 100% compatible with all your MS-DOS® and OS/2® software.

And we know you have software on both 3 1/2" and 5 1/4" media. That’s why all CSR computers have both size drives — even the low profile, small footprint 286/20 SL. It’s a convenience we’ve added without adding to the price.

Plus you’ll find our high resolution high contrast VGA monitors and ‘clickable’ keyboard to be consistent with your definition of how a computer should look and feel.

Compatible with your budget.

You may have computing needs that are incompatible with what other computer companies would like you to spend. Tell us the details of your needs. Then tell us your budget. And we’ll build you a system that’s compatible with both.

So if you want a better built, better backed computer system, compare warranties. Compare specifications. Then pick up the phone and call us at 800-366-1277. We’ll deliver what you need at prices that will surprise you.

Full leasing options available. Rates begin as low as $60/mo. We accept MasterCard, VISA and certified checks.

*The brands or product names mentioned are trademarks or registered trademarks of their respective holders. MS-DOS® and OS/2® are registered trademarks of Microsoft Corporation.

Made in the USA.
xing their best,
ours better.

CSR 286/14
CSR 286/20
CSR 386/20
CSR 386/25c

To order, please call 800-366-1277

Computer Systems Research
We build ours better.
Redefining the Standards

What did and didn’t happen, what came and went, and what’s coming—maybe...

Martin Heller

On the cover of the June BYTE it says “The Fastest 386s Ever?” Inside are reviews of real PCs running the 80386 chip at 33 MHz. That’s fast—a noticeable improvement over last year’s speed record, which was 20 MHz. (Between 20 MHz and 33 MHz, you briefly saw 25-MHz machines.) For software developers and others needing the horsepower—like people needing fast LAN servers—33 MHz is the new standard.

Meanwhile, Intel announced the 80486—four times faster than the 80386 at the same clock rate, with clock rates destined to go higher yet—and the 80860, a supercomputer on a chip that can also act as a coprocessor for the 80386 or 80486. When you see a real machine running an 80486 at 40 MHz with an 80860 processor, you’ll be seeing a PC capable of solid modeling in real time. For engineers and designers that need such things, this scenario is a revolutionary change. Even though you can now get this sort of performance on high-end engineering workstations, having an affordable PC with these capabilities opens a whole new world.

This year, a fast PC goes at 33 MHz and performs about 8 million instructions per second. Last year, a fast PC went at 20 MHz and ran at 5 MIPS; the standards are changing quickly. Now, a “big” PC has 300 megabytes of hard disk storage, 8 megabytes of RAM, tape backup, and a CD-ROM drive. In addition, a high-resolution PC displays 256 colors at 640 by 480 pixels, 16 colors at 800 by 600 pixels, or black and white at 1280 by 720 pixels, and it prints fonts from 6 to 60 points at 300 dots per inch. A portable PC can fit into your briefcase, with room to spare for your notepad, pens, and paperwork.

During the past few years, AT-class computers have become commodity items, and PC-class computers have become inexpensive enough to buy for home use. OS/2 caught on among programmers, but not enough OS/2 applications came out to interest users in the complexities—or RAM requirements—of a new operating system. Unix got ported to the 80386 and started looking like a possible competitor to OS/2. Lotus 1-2-3 release 3.0, dBASE IV, and a lot of other software slipped behind schedule. DOS 4.0 had so many bugs that few people upgraded from DOS 3.3.

There’s a trend here—the same trend that has been characteristic of the computer industry since 1948: Computers keep getting faster, smaller, and less expensive.

Chips on silicon are getting denser and faster—but new technology is waiting to take over. For instance, RISC chips, currently used in engineering workstations, are produced both in silicon and in gallium arsenide—which can run much faster. When this technology becomes inexpensive enough for PCs, you’ll see another round of speed improvements. Further on the horizon, quantum transistors may replace bulk transistors on chips, which will lead to even more improvement.

In Search of New Standards

First, the old standards are still out there. Despite what you read, wherever the price matters more than the performance, machines using the 8088 are still alive and well. My writing’s a good example: I may use a 20-MHz 80386 machine with a hard disk drive for programming, but I use a 4.77-MHz 80C88-based laptop for word processing. In other words, I don’t need a Porsche when a Hyundai Excel can get me to and from the supermarket.

But there are some new standards. IBM’s Micro Channel architecture (MCA) looks like it might have some uses after all. Microsoft Windows seems like it’s becoming a standard for a graphical environment. At least 640K bytes of RAM per machine is a new standard, too. Others include EMS 4.0 and XMS (memory standards for expanded and extended memory under DOS), as well as the virtual-control program interface (VCPI), a standard for control programs and DOS extenders on 80386-based machines. Finally, there is OS/2, which IBM and Microsoft would like to make into the standard multitasking protected-mode operating system.

continued
Around these standards, there's a plethora of products. PCs are packaged as tower, desktops, portables, and laptops. Their processors include Intel's 8088, 80286, 80386/80387, and 80486, and—in the dream world of announced products not yet shipping—the 80486 and 80860.

Given identical clock rates, an 80286 is still faster than an 8086. However, the clock rate enters the performance equation, too. The original PC ran its 8088 at 4.77 MHz—turbo PCs run the 8086 at 10 MHz. The original AT ran its 80286 at 6 MHz—this produced a machine that was seven times faster than a PC. Improved 80286 chips, including the CMOS 80286 variant, are powering machines up to 20 MHz—although the garden-variety AT clone that sells for under $2000 probably runs at 10 or 12 MHz. Available from Intel are 80386 chips rated for speeds of up to 33 MHz; at this writing, the first few 33-MHz machines are shipping.

A 33-MHz 80386 running with zero wait states pans out at about 8 MIPS—roughly eight times faster than the DEC VAX-11/780—for ordinary integer instructions. Without a numeric co-processor, its floating-point performance is still pathetically slow. With a 20-MHz 80387, it runs at about 220,000 floating-point operations per second; with a 20-MHz Weitek cosprocessor (and software to match), it cruises at about 450,000 FLOPS.

The 33-MHz 80387, which is not shipping yet, should run at about 350,000 FLOPS. The 33-MHz Weitek Abacus has just been announced, but it should run at about 650,000 FLOPS. For CAD, CAE, and scientific computing, the floating-point performance of a computer is just as important as the integer performance—if not more so.

The announced 80486 includes the numeric processing functions of the 80387 as well as the integer processing functions of the 80386—and some additional advanced features—all on one chip. It is expected to run about four times faster than an 80386/80387 pair at the same clock rate, and Intel expects to push it to higher clock rates.

Intel has also announced the 80860, which can operate as a coprocessor to the 80486—giving even better floating-point, signal-processing, and graphics performance. Industry speculation is that the 80860 could be the basis of a desktop supercomputer. The 80860 prototype boards in PS/2s have already outperformed high-end workstations in demos. Tantalizing stuff, but a bit far off to affect this year's buying plans.

Storage, Storage, Storage

Processor performance is only part of the story in computer performance. The other part, which, in some applications (e.g., accounting), is the dominant part, is I/O performance. On PCs, there are four major flavors of floppy disks—5⅜-inch and 3½-inch form factors at low and high density, giving 360K-byte, 1.2-megabyte, 720K-byte, and 1.44-megabyte capacities. All are very slow—10 times slower than the slowest hard disks. Hard disk drives can have access times as slow as 80 milliseconds or as fast as 14 ms.

Interestingly, the 720K-byte 3½-inch floppy disk was available at the time the PC was introduced. But despite its advantages, it didn't become widely accepted in the PC world until the laptop phenomenon took off late last year. Laptops (despite an FAA threat to ban them from airplanes) now seem ubiquitous. Transfer speed is just as important as access times to a hard disk drive's performance. Four kinds of hard disk drive interface are currently available—modified frequency modulation, run-length limited, ESDI, and SCSI. MFIM, also called ST-506, is the standard; RLL is basically MFM with data compression, which buys you higher data density and faster access at the expense of reduced reliability. RLL controllers are recommended only for RLL-rated disk drives. ESDI, a technology that migrated from minicomputers to PCs, has a data transfer rate roughly twice that of MFIM hard disk drives. SCSI hard disk drives don't have a fixed transfer rate—since SCSI is a systems interface and not a plain drive interface, the drive has enough intelligence to negotiate transfers with the controller. The promise of SCSI to serve fast, inexpensive drives hasn't really been fulfilled yet. In head-to-head comparisons, ESDI drives still tend to outperform SCSI drives. But as SCSI drives and controllers improve, they will probably get faster than ESDI drives.

Hard disk drives come as small as 10 megabytes and as large as 450 megabytes. It's a good bet that a 10-megabyte hard disk drive will have an 80-ms access time and an MFIM interface, and a 150-megabyte or larger hard disk drive will have an access time of under 30 ms and either an ESDI or a SCSI. Whether ESDI or SCSI will dominate the high-end hard disk drive market in the future is anybody's guess. Most hard disk drive manufacturers are hedging their bets and are producing larger, faster drives with both interfaces.

For even more capacity, you have to switch from magnetic to optical disks. There are three kinds of optical disks: CD-ROMs, WORMs (write once, read many times), and erasable optical disks. CD-ROM disks are read-only digital versions of audio compact disks. They hold 550 megabytes and are inexpensive to produce in quantity—mastering a CD-ROM costs about $1500, and reproducing one costs about $2 per platter. CD-ROM drives sell for about $700.

CD-ROMs are coming of age as an information distribution medium, with about 200,000 CD-ROM drives in the field and about 600 titles—including worthwhile, readily available applications such as Microsoft Programmer's Library, the Oxford English Dictionary, and Grolier's Electronic Encyclopedia. However, CD-ROM drives are slow compared to hard disk drives. In addition, CD-ROM drive interfaces have not been standardized, so it is not possible to freely mix CD-ROM drives and controllers.

WORM drives are a near-ideal medium for backup and archival storage; their higher speed and low mastering costs make them a good alternative to CD-ROMs for small-audience products. WORM gear is expensive, though—drives cost about $2500, and disks can cost $100 each, so the economics favor CD-ROM plus a tape backup.

The revolutionary change in hard disk storage this year has been rewritable, removable optical disks—first seen on the NeXT machine and announced shortly afterward for PCs.

NeXT-style 256-megabyte rewritable magneto-optical cartridges cost $50 for the media and $1500 for the drive. Similar products announced for the PC list for more like $5400. And 20-megabyte 3½-inch "floptical" disks ($8) and drives ($250) from Insignia Peripherals also let you "carry your whole world with you." While too slow to replace hard disk drives, too expensive to use as a software distribution medium, and not likely to be widely available this year, floptical disks look like a good bet to be standard equipment on high-end PCs and workstations in the early 1990s.

For backup today, the best storage value for your money still comes on tape. High-density streaming cartridge and cassette tape drives cost about $10 per megabyte of storage capacity—for instance, a 60-megabyte streaming cartridge tape drive goes for about $600; the media costs about 50 cents per megabyte. And you certainly wouldn't want to back up a 150-megabyte hard disk drive onto floppy disks. Daily tape backups are... continued
Example of graphic Modula - 2 program

```
MODULE Printid;
FROM InOut, IMPORT Read,Write,WriteLn;
VAR c:CHAR:
BEGIN
  Read(c);
  WHILE c <> ' ' DO
    Read(c);
    WHILE c <> '
      WriteLn;
    Read(c);
  Read(c);
  WriteLn;
END;
```

And the same program in traditional form

```
MODULE Printid;
FROM InOut, IMPORT Read,Write,WriteLn;
VAR c:CHAR:
BEGIN
  Read(c);
  WHILE c <> ' ' DO
    WriteLn;
    Read(c);
    WHILE c <> '
      WriteLn;
    Read(c);
  Read(c);
  WriteLn;
END;
```

To Order...

Phone: __________________________
FAX: __________________________
Mail: __________________________

Name: __________________________ Title: __________________________
Company: _______________________
Address: ________________________
City: __________________________ State: __________ Zip: __________
Card #: _________________________ Exp.Date: __________
Signature: _______________________
Phone: __________________________
<table>
<thead>
<tr>
<th>COMPANY INFORMATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adaptive Networks</td>
</tr>
<tr>
<td>Kendall Sq.</td>
</tr>
<tr>
<td>P.O. Box 1020</td>
</tr>
<tr>
<td>Cambridge, MA 02142</td>
</tr>
<tr>
<td>(617) 497-5150</td>
</tr>
<tr>
<td>Inquiry 881</td>
</tr>
<tr>
<td>Adobe Systems, Inc.</td>
</tr>
<tr>
<td>1585 Charleston Rd.</td>
</tr>
<tr>
<td>P.O. Box 7900</td>
</tr>
<tr>
<td>Mountain View, CA 94039</td>
</tr>
<tr>
<td>(415) 961-4400</td>
</tr>
<tr>
<td>Inquiry 882</td>
</tr>
<tr>
<td>Advanced Logic Research, Inc.</td>
</tr>
<tr>
<td>9401 Jeronimo</td>
</tr>
<tr>
<td>Irvine, CA 92718</td>
</tr>
<tr>
<td>(714) 581-6770</td>
</tr>
<tr>
<td>Inquiry 883</td>
</tr>
<tr>
<td>AGFA Compugraphic</td>
</tr>
<tr>
<td>200 Ballardvale St.</td>
</tr>
<tr>
<td>Wilmington, MA 01887</td>
</tr>
<tr>
<td>(800) 822-5524</td>
</tr>
<tr>
<td>(508) 658-5600</td>
</tr>
<tr>
<td>Inquiry 884</td>
</tr>
<tr>
<td>A.I. Architects, Inc.</td>
</tr>
<tr>
<td>1 Intercontinental Way</td>
</tr>
<tr>
<td>Peabody, MA 01960</td>
</tr>
<tr>
<td>(508) 535-7512</td>
</tr>
<tr>
<td>Inquiry 914</td>
</tr>
<tr>
<td>Amdisk Corp.</td>
</tr>
<tr>
<td>411 First Ave. S, Suite 200</td>
</tr>
<tr>
<td>Seattle, WA 98104</td>
</tr>
<tr>
<td>(206) 622-5500</td>
</tr>
<tr>
<td>(408) 727-8484</td>
</tr>
<tr>
<td>Inquiry 885</td>
</tr>
<tr>
<td>Amdek Corp.</td>
</tr>
<tr>
<td>3471 North First St.</td>
</tr>
<tr>
<td>San Jose, CA 95134</td>
</tr>
<tr>
<td>(800) 722-6335</td>
</tr>
<tr>
<td>(408) 436-8570</td>
</tr>
<tr>
<td>Inquiry 886</td>
</tr>
<tr>
<td>AST Research, Inc.</td>
</tr>
<tr>
<td>2121 Alton Ave.</td>
</tr>
<tr>
<td>Irvine, CA 92714</td>
</tr>
<tr>
<td>(714) 863-1333</td>
</tr>
<tr>
<td>Inquiry 887</td>
</tr>
<tr>
<td>AT&T Data Systems Group</td>
</tr>
<tr>
<td>100 Southgate Pkwy.</td>
</tr>
<tr>
<td>Morristown, NJ 07960</td>
</tr>
<tr>
<td>(800) 247-1212</td>
</tr>
<tr>
<td>Inquiry 888</td>
</tr>
<tr>
<td>Autodesk, Inc.</td>
</tr>
<tr>
<td>2320 Marinship Way</td>
</tr>
<tr>
<td>Sausalito, CA 94965</td>
</tr>
<tr>
<td>(415) 332-2344</td>
</tr>
<tr>
<td>Inquiry 895</td>
</tr>
<tr>
<td>CADKey, Inc.</td>
</tr>
<tr>
<td>440 Oakland St.</td>
</tr>
<tr>
<td>Manchester, CT 06040</td>
</tr>
<tr>
<td>(203) 647-0220</td>
</tr>
<tr>
<td>Inquiry 916</td>
</tr>
<tr>
<td>Canon USA, Inc.</td>
</tr>
<tr>
<td>1 Canon Plaza</td>
</tr>
<tr>
<td>Lake Success, NY 11042</td>
</tr>
<tr>
<td>(516) 488-6700</td>
</tr>
<tr>
<td>Inquiry 889</td>
</tr>
<tr>
<td>Compaq Computer Corp.</td>
</tr>
<tr>
<td>20555 SH 249</td>
</tr>
<tr>
<td>Houston, TX 77070</td>
</tr>
<tr>
<td>(800) 231-0900</td>
</tr>
<tr>
<td>(713) 370-0670</td>
</tr>
<tr>
<td>Inquiry 890</td>
</tr>
<tr>
<td>Everex Systems, Inc.</td>
</tr>
<tr>
<td>48431 Milmont Dr.</td>
</tr>
<tr>
<td>Fremont, CA 94538</td>
</tr>
<tr>
<td>(415) 496-1111</td>
</tr>
<tr>
<td>Inquiry 915</td>
</tr>
<tr>
<td>Hewlett-Packard Co.</td>
</tr>
<tr>
<td>Office Systems Division</td>
</tr>
<tr>
<td>8010 Foothills Blvd.</td>
</tr>
<tr>
<td>Roseville, CA 95678</td>
</tr>
<tr>
<td>(916) 786-8000</td>
</tr>
<tr>
<td>Inquiry 892</td>
</tr>
<tr>
<td>Hitachi America, Ltd.</td>
</tr>
<tr>
<td>Office Automation Systems</td>
</tr>
<tr>
<td>19530 Cabot Blvd.</td>
</tr>
<tr>
<td>Hayward, CA 94545</td>
</tr>
<tr>
<td>(415) 785-9770</td>
</tr>
<tr>
<td>Inquiry 893</td>
</tr>
<tr>
<td>IBM</td>
</tr>
<tr>
<td>900 King Dr.</td>
</tr>
<tr>
<td>Rye Brook, NY 10573</td>
</tr>
<tr>
<td>(800) 426-2468</td>
</tr>
<tr>
<td>Inquiry 894</td>
</tr>
<tr>
<td>Insite Peripherals, Inc.</td>
</tr>
<tr>
<td>2363 Calle del Mundo</td>
</tr>
<tr>
<td>Santa Clara, CA 95054</td>
</tr>
<tr>
<td>(408) 727-8484</td>
</tr>
<tr>
<td>Inquiry 895</td>
</tr>
<tr>
<td>Intel Corp.</td>
</tr>
<tr>
<td>Personal Computer Enhancement Operation</td>
</tr>
<tr>
<td>15220 Greenbrier Pkwy.</td>
</tr>
<tr>
<td>Mail Stop C03-04</td>
</tr>
<tr>
<td>Beaverton, OR 97006</td>
</tr>
<tr>
<td>(503) 629-7369</td>
</tr>
<tr>
<td>Inquiry 896</td>
</tr>
<tr>
<td>Microsoft Corp.</td>
</tr>
<tr>
<td>16011 Northeast 36th Way</td>
</tr>
<tr>
<td>P.O. Box 97017</td>
</tr>
<tr>
<td>Redmond, WA 98073</td>
</tr>
<tr>
<td>(800) 426-9400</td>
</tr>
<tr>
<td>(206) 882-8080</td>
</tr>
<tr>
<td>Inquiry 897</td>
</tr>
<tr>
<td>O'Neill Communications, Inc.</td>
</tr>
<tr>
<td>100 Thanet Cir.</td>
</tr>
<tr>
<td>Princeton, NJ 08540</td>
</tr>
<tr>
<td>(609) 924-1095</td>
</tr>
<tr>
<td>Inquiry 898</td>
</tr>
<tr>
<td>Open Software Foundation</td>
</tr>
<tr>
<td>11 Cambridge Center</td>
</tr>
<tr>
<td>Cambridge, MA 02142</td>
</tr>
<tr>
<td>(617) 621-8700</td>
</tr>
<tr>
<td>Inquiry 899</td>
</tr>
<tr>
<td>Phar Lap Software, Inc.</td>
</tr>
<tr>
<td>60 Aberdeen Ave.</td>
</tr>
<tr>
<td>Cambridge, MA 02138</td>
</tr>
<tr>
<td>(617) 661-1510</td>
</tr>
<tr>
<td>Inquiry 900</td>
</tr>
<tr>
<td>Pixar, Inc.</td>
</tr>
<tr>
<td>P.O. Box 13719</td>
</tr>
<tr>
<td>San Rafael, CA 94915</td>
</tr>
<tr>
<td>(415) 499-3600</td>
</tr>
<tr>
<td>Inquiry 916</td>
</tr>
<tr>
<td>Quadram</td>
</tr>
<tr>
<td>One Quad Way</td>
</tr>
<tr>
<td>Norcross, GA 30093</td>
</tr>
<tr>
<td>(404) 923-6666</td>
</tr>
<tr>
<td>Inquiry 901</td>
</tr>
<tr>
<td>Quarterdeck Office Systems</td>
</tr>
<tr>
<td>150 Pico Blvd.</td>
</tr>
<tr>
<td>Santa Monica, CA 90405</td>
</tr>
<tr>
<td>(213) 392-9851</td>
</tr>
<tr>
<td>Inquiry 902</td>
</tr>
<tr>
<td>Rational Systems, Inc.</td>
</tr>
<tr>
<td>220 North Main St.</td>
</tr>
<tr>
<td>P.O. Box 480</td>
</tr>
<tr>
<td>Natick, MA 01760</td>
</tr>
<tr>
<td>(508) 653-6006</td>
</tr>
<tr>
<td>Inquiry 903</td>
</tr>
</tbody>
</table>
inexpensive insurance against losing your data.

On the cutting edge of new technology are higher-density tapes. For instance, TEAC America has a hard disk drive that stores 320 megabytes on cassettes. For even higher density, look for tape drives based on 4-millimeter digital-audio tape cassettes, which can hold gigabytes and are headed toward being able to handle terabyte capacities. Like VCRs, DAT drives use helical-scan techniques. Helical scan is a diagonal recording technique that provides for very high-density storage. Under development are cassette drives using helical-scan techniques.

Coming down the pike is digital paper, the latest thing in a write-once optical-storage medium. Digital paper differs from existing WORM media in that it is flexible and can be cut, stamped, and otherwise made into a variety of products, including floppy Bernoulli disks and tapes (see "Digital Paper," February BYTE). Its promise is to make smaller, faster, and less-expensive WORM drives as available for PCs as floppy disk drives are today.

Seeing Is Believing

The most obvious part of a computer is the display; today there are video options from monochrome to SuperVGA to specialized intelligent display systems for CAD/CAM, imaging, and solid modeling. SuperVGA systems can display TV-quality images; 256 colors from a palette of 256,000 gives the illusion of continuous color, and 640- by 480-pixel resolution appears photographic if given an image with continuous color.

With such a system and appropriate software, you can display a digitized or a synthesized image. Solid modeling or rendering software with Gouraud or Phong shading, such as CADKey solids, can compute and display a convincing image of a three-dimensional solid; with the addition of Pixar's RenderMan software, the solid can have natural textures, and the image can be photo-realistic. Autodesk and CADKey have both announced support for RenderMan; neither has announced when it will be available.

High-resolution color displays are good for more than displaying images; Windows, Presentation Manager (PM), and a number of other graphical user interfaces (see "A Guide to GUIs," July BYTE) virtually require high resolution. The worst-case display for Windows is CGA, whose "high" resolution turns out to be a less-than-acceptable 640 by 200 pixels in black and white. On the other hand, the right SuperVGA card with a multiple-frequency monitor can display Windows at 800- by 600-pixel resolution with 16 colors for a combined cost of about $1000. For about the same price, the Wyse terminal displays 1280- by 760-pixel resolution in black and white.

High-resolution color images bog your hard disk drive, use lots of RAM, and stress the system. Even with the compression built into a format like GIF (for graphics interchange format), a 640- by 480- by 256-pixel color photographic image can easily take a quarter megabyte or more to store. The sheer size of such a file means it will take a while to load—anywhere from 10 seconds to several minutes. Computing such an image with even the best rendering software and PC hardware available takes the better part of an hour, and with run-of-the-mill equipment, it's an overnight job.

To deal with this problem, there are several emerging CD-ROM vision and sound standards. Digital Video Interactive (DVI) uses a highly compressed hardware/software scheme to fit an hour's worth of fully animated images and sound onto a CD-ROM, which otherwise would hold only a few minutes' worth.

For less-demanding applications, Microsoft, Philips, and Sony have collaborated on the CD-ROM extended architecture (XA), which is a variation on current CD-ROM drives that uses an adaptive compression chip and an ordinary CD-ROM drive to combine high-fidelity sound with photographic-quality images. At the moment, CD-ROM XA demos animate an image of a few inches and synchronize it with stereo sound: "Talking heads" are within the capabilities of the technology, but the larger images that DVI produces require considerably more hardware and are still out of reach.

Back to the Bus

The original PC bus carries 8 bits of data at a time; the AT bus, also called the Industry Standard Architecture (ISA) bus, carries 16 bits. For slow peripherals, such as serial and parallel ports driving moderns and printers, 8 bits of data coming from the bus is plenty. For fast disk drives, a 16-bit data path helps speed things up. However, for very high-speed devices, such as memory, even a 16-bit bus can be a bottleneck.

This problem has at least three solutions. Compaq, ALR, AST, Everex, and other manufacturers of high-performance 80386-based machines use a second, high-speed 32-bit bus for memory.

continued
Compal calls this “flex architecture.” The advantage of this solution is high performance, but it comes at the expense of standardization—memory-expansion boards for 80386-based systems are not interchangeable.

IBM’s MCA bus supports a rich set of bus-control signals, including “bus masters.” This flexibility means that MCA can support multiple processors directly. MCA also has enough grounding and shielding for a higher bus frequency— rumor has it that it can go as high as 80 MHz, or 10 times the rate of the AT bus. Unfortunately for anyone with an investment in ATs, the MCA bus is totally incompatible with ISA cards.

Extended ISA, a rival 32-bit bus standard promoted by the “Gang of Nine” (Compaq and other rivals of IBM), maintains compatibility with ISA cards. EISA members do not propose to standardize memory architectures. Instead, they intend to continue to compete in the area of memory subsystems.

Obsolete Processors?
Is the 8088 a has-been? Hardly. Even though the other Intel processors are faster, the 8088 consumes the least amount of power, especially in CMOS. This makes the 80C88 the obvious choice for battery-powered laptops. The one I use runs for 3½ hours on a little 2-amp-hour nickel-cadmium battery. And 8088-based computers are inexpensive enough (under $1000) to be sold as home computers.

Is the 80286 without value? Not if you care how much bang for a buck you get. AT clones have become commodities—you can buy them complete with a hard disk drive for under $2000. If you care about multitasking, an 80386 might be a better choice, but if you are on a budget, you can do fine with an 80286.

Is the 80386SX an idea whose time will never come? Not likely. What the 80386SX chip is good for is making an inexpensive computer with the flexibility and multitasking abilities of a full 80386, but without the performance of one. Lots of applications can benefit from the 80386’s memory management capabilities without requiring screaming performance—for example, desktop publishing. There’s enough competition between vendors so that an 80386SX machine might not cost any more than an 80286 with the same performance.

Does anyone really need a 33-MHz 80386? Well, I do. Programming Windows and OS/2 applications exercises a computer like nothing else. Rebuilding a 300K-byte program on an XT used to take me 8 hours; now I can do it in about 15 minutes on my 80386-based ALR FlexCache with a fast ESDI disk drive.

Printers Galore
I used to have a daisy-wheel printer in my office. The output was beautiful, but when it was running I had to leave the office to preserve my hearing. So I replaced this “machine gun” with a near-letter-quality dot-matrix printer, which wasn’t much better; it sounded like an air-raid siren.

A laser printer put an end to this problem. It makes less noise than a copy machine while printing immaculate text at eight pages per minute. However, at prices of about $2000 and up, it’s not for everyone. One alternative is the ink-jet printer. For about $700, the HP DeskJet offers the same 300-dpi resolution as laser printers and the same silent operation—although at a much slower printing speed.

For desktop publishing, there’s nothing like a PostScript printer. It’s true that the software packages support the less-expensive Printer Control Language (PCL) printers, but these printers use up lots of disk space for holding downloadable fonts.

Up until this year, Adobe had close control of the PostScript market it created. It managed this feat by encrypting its fonts partially in the fonts themselves and partially in the PostScript controller. Adobe is so proud of its encryption that its president, John Warnock, publicly challenged anyone to break the scheme.

Hackers, however, love a challenge. Needless to say, Adobe’s encryption has been broken, and it is now offering to license its technology. This opens the door for printer controllers with ersatz PostScript interpreters to use Adobe fonts, and for competing type foundries to offer PostScript fonts with Adobe encryption and hints (rules that improve the quality of scalable type in small sizes).

At the same time, PCL printers are multiplying like gerbils. It isn’t just that they’re much cheaper than PostScript printers—they’re also more convenient for PCs since they print text without any special settings.

Many Tasks, Big Tasks, or Many Big Tasks?
One of the most emotional issues in the trade press this past year has been the merit of and prognosis for OS/2. The pro-IBM/pro-Microsoft camp takes the religious position that OS/2 is the ordained and logical successor to DOS. Doubters and heretics, although divided
into camps favoring various alternatives to OS/2, are united in decrying OS/2 as fat, incomplete, overambitious, under-supported, and, most damning of all, associated with IBM.

At present, OS/2 is an excellent operating system that offers little or no benefit to end users. For a developer, OS/2 offers robust multitasking, transparent memory management, and excellent development and debugging tools. Given a choice between trying new code under OS/2 or under DOS, I'll always choose OS/2. Under OS/2, the bugs show up at the instruction that caused them, instead of, under DOS, resulting in a hung machine and possibly a corrupted disk directory.

For an end user, OS/2 offers only potential. Too many of the currently available applications for OS/2 are little more than ports of DOS or Windows applications. In some cases, they are better or faster or have bigger workspaces than under DOS; in other cases, something has been lost in the translation. Mostly, this situation is a matter of immaturity. OS/2 (and, in particular, PM) is still an infant system, with little user and software base.

Up until the beginning of the summer, for instance, the only PM printer driver I had was for an IBM dot-matrix printer; now I have a full set of Epson printer drivers and a PostScript driver. The generic driver with HP LaserJet support is coming—you guessed it—real soon.

Unix is much more mature, but it was designed by programmers for programmers. OS/2 demands at least 8 megabytes of space on your hard disk drive, and its GUI, PM, comes standard with the system. Unix demands at least 32 megabytes, and it has several competing GUIs, none of which is standard. Of these, OSF/Motif (from Open Software Foundation) has the virtue of interoperability with PM and the backing of over 100 of the players in the Unix market. But Open Look has the backing of both Unix originator AT&T and Unix International, the rival consortium to OSF.

While Unix and OS/2 both offer full-blown multitasking and virtual memory, most of the DOS-based alternatives offer none or at best very limited virtual memory system. Phar Lap's 386 VMM is a full-blown, paged virtual memory system that runs a 20-megabyte program in 4 megabytes of RAM—but it is limited to pricey 80386-based systems. And neither Phar Lap's product nor Rational System's allows multitasking. A.I. Architects has a product that does both DOS extension and multitasking—but only if you buy its HummingBoard, which is essentially another computer.

DESQview allows multitasking, but it won't permit a single application to use more than 640K bytes of memory. Windows/386 allows multitasking of DOS and Windows applications, but, again, DOS applications can't have access to more than 640K bytes of memory, and the memory management used by Windows applications is somewhat limited and incurs a large overhead. To give you an idea of how much overhead, consider that when Windows 2.1 increased the memory available to Windows programs by a mere 60K bytes, PageMaker and Excel both ran three times faster.

Windows applications are, in fact, very similar to PM applications. One paradoxical result of the marketing push behind OS/2 and PM has been that Windows under DOS has flourished like never before. Microsoft is now shipping more copies of Windows than Apple is shipping Macs; somehow, I don't think that was what IBM intended.

When Is a PC Not a PC?

It is a tribute to the power of 20 million PCs and the applications that run on them that most workstations and minicomputers support virtual PCs. They support them in two ways: with a PC board or with PC-emulation software.

At the same time, high-end PCs are trying to be workstations and minicomputers. What's the difference between a PC and a workstation? It's not just the nameplate. Workstations come with big displays, lots of RAM and disk space, Ethernet built in, and specialized software. The very word workstation denotes connectivity. The phrase personal computer denotes isolation and autonomy.

Workstation vendors are quick to tell you that their systems and applications software make as much difference as their hardware. Workstations generally run Unix or something similar and always have a GUI; the mouse and graphics display come standard. Intense engineering applications, such as printed-circuit-board routing, take advantage of all workstation features: gobs of memory, 40-year-old software, and, often, DOS. OS/2 doesn't have enough memory, and it doesn't have a graphics driver.
Control Your Presentation
with
SilentPartner
Only $349.00!

SilentPartner, the first universal handheld remote keyboard, is the most powerful, easy to use, reliable, and compatible wireless controller for PCs. Use SilentPartner for presentations, training, meetings, briefings or any other PC-P/S/2 remote control application.

- Use with any LCD panel or video projector
- Plug into keyboard (no software driver!) or serial port
- Easy to program and use

SilentPartner works reliably with virtually all software for the PC, even OS/2 and UNIX. SilentPartner can enter all keyboard commands and adds the power of macros to any program! Imagine, presenting with any software, free from the keyboard! You have all the parts of a great computer presentation system except the one that puts you in control...

REDEFINING THE STANDARDS

scads of disk space, plenty of pixels, transparent networking, and a GUI.

GUIs are necessary features on a workstation for many reasons. To begin with, they look good. Don't discount visual appeal—it makes a big difference in your attitude if you're looking at something attractive. In addition, GUIs are easy to learn on. Then throw into the GUI's feature/benefit statement the advantage of interoperability among different computers and operating systems, and you have some rather compelling reasons for mice and windows. Once you have learned to use Microsoft Windows, for instance, you'll find that you already know how to use OSF/Motif and OS/2 PM.

To LAN, or Not to LAN?

PC LANs have begun to seriously challenge minicomputers as the best host for mutliuser applications. You would think that computers would be cheaper by the dozen, but when you have to wire them together, the costs add up quickly.

Consider that the file server is probably a 25- or 33-MHz 80386 machine with at least 6 megabytes of RAM and 300 megabytes of hard disk space. It needs an uninterruptible power supply to avoid file and database corruption problems; its software costs anywhere from $2000 to $8000; and its network cards and wiring are likely to run $500 per workstation. LANs may be cheap compared to minicomputers, but they can be pricey compared to stand-alone microcomputers, even considering the savings gained by sharing peripherals.

One way to cut the cost of a network is to use diskless workstations. MIS managers love this solution—it gives them back the control they lost when PCs started taking over from big iron. But a user on a diskless workstation is totally dependent on the availability of the file server. One little disk problem, and you have 50 people telling customers, “I'm sorry, I can't help you right now—the system's down.”

Another way to reduce the cost of a network is to eliminate the file server. However, in the process, you lose some performance and features. OS/2 LAN Manager, while it embodies a client-server model, can be set up with servers running as tasks on workstations. Trans-M is one firm that makes a peer-to-peer network, also known as a zero-slot LAN.

There are some moderns that now let PCs communicate through wall sockets. You can plug your computer in, unplug it, move it, and plug it in again; it will still be able to communicate with other

PCs equipped with this type of modem. Adaptive Networks is one of the companies that make this type of modem.

A relatively new wrinkle on the whole LAN concept is to eliminate the wires altogether. O'Neill Communications has developed a wireless LAN that uses a high-frequency radio to communicate between network nodes. The local-area wireless network is designed primarily for workgroups with as many as 20 users who want to share peripherals, such as laser printers or modems, to transfer files, and to send and receive E-mail. A LANW doesn't allow file sharing, and its operating system won't support client/server applications.

Although the $495 cost per node of a LANW is higher than most low-end or zero-slot LANs, which run as low as $100 per node, O'Neill Communications claims that the savings from not having to wire up a network more than compensates for the difference.

The Yellow Brick Road

What's happening in IBM's Oz? If you look down the yellow brick road, you'll see faster, smaller, and less-expensive PCs. You'll also see standardized window-icon-mouse-pixel interfaces across all computing platforms and operating systems, and transparent data exchange among different brands of computers, whether they run DOS, OS/2, Unix, VMS, or Pick. Along with optical-storage facilities, helical-scan tape backup devices will become popular.

But if the past is any guide, you're in for some surprises. What will be the next new application area for PCs—next year's equivalent of desktop publishing or distributed databases?

The most striking thing about PCs this year, though, isn't how fast they run or how portable they are or how much graphics resolution comes in how many million colors or how they network; it's something much more subtle. PCs have done more than join the mainstream of computing; by their very numbers and practical importance, they have become the mainstream of computing. PCs aren't "toys" beneath the contempt of MIS and corporate computer managers anymore. PCs are an essential, ubiquitous part of the computing toolkit in businesses large and small, in academia, in science and engineering, and in publishing.

Martin Heller develops software and writes about technical computer applications. He holds a Ph.D. in physics. He can be reached on BIX as "mehler."
The Activator - Natural Selection For Software Protection

In any industry, just as in nature, the process of natural selection raises one solution above another. Natural selection is the most elegant of engineers.

In the area of software protection The Block has been selected by the marketplace as the solution that works. Over 500,000 packages are protected by our device.

For the past 4 years our philosophy has been: You have the right and obligation to protect your intellectual property.

A New Ethic For Software Protection

In allowing end-users unlimited copies of a software package and uninhibited hard disk and LAN operation, The Block has created a new ethic for software protection.

By removing protection from the magnetic media we remove the constraints that have plagued legitimate users.

They simply attach our key to the parallel port and forget it. It is totally transparent, but the software will not run without it.

A New Technology For Software Protection

Our newest model, The Activator, builds on our current patented design, and establishes an unprecedented class of software protection.

We have migrated and enhanced the circuitry of The Block to an ASIC (Application-Specific Integrated Circuit) imbedded in The Activator.

This greatly improves speed and performance, while reducing overall size. Data protection can also be provided.

Programmable Option

The Activator allows the software developer the option to program serial numbers, versions, or other pertinent data known only to the developer, into the circuit, and access it from the program.

Once you program your part of the chip, even we have no way to access your information.

The ASIC makes emulation of the device virtually impossible. It also presents an astronomical number of access combinations.

Full 100% Disclosure

Since The Activator is protected by our patent we fully disclose how it works. Once you understand it, endless methods of protection become evident.

Just as no two snowflakes are the same, no two implementations of The Activator are identical. And like the snowflake the simplicity of The Activator is its greatest beauty.

We never cramp your programming style or ingenuity. Make it as simple or complicated as you desire.

Let us help safeguard what's rightfully yours. Please call today for additional information or a demo unit. It's only natural to protect your software.

1-800-333-0407 ext.105
In Connecticut 203-329-8870
Fax 203-329-7428

Software Security Inc.
870 High Ridge Road
Stamford, CT 06905

Unlimited Copies • Programmable • No Batteries • Small Size • Fast • Patented • Data Protection
Cool, Quiet, Reliable Power.

PC/XT

STANDARD 150 $69
Economical This UL approved, fully tested unit is one of the best generic 150s available. Ideal for basic systems.

SILENCER 150 $129
Ultra-Quiet Stop that irritating whine with the Silencer 150. Its large, low speed, West German fan keeps your system 5° to 15° cooler and 84% quieter. Great in the executive suite or home office.

TURBO-COOL 150 $149
High Performance Upgrade your PC/XT with our popular, UL approved Turbo-Cool 150. Its patented twin fan, sloped-cover design keeps your system 25° to 40° cooler and 50% quieter. Prevents intermittent data errors and other heat-related problems. Meets the demands of a fully loaded system.

AT/TOWER

STANDARD 200 $99
Economical This UL approved, fully tested unit is one of the best generic 200s available. Ideal for basic systems.

SILENCER 200 $149
Ultra-Quiet Unrattle your nerves with the Silencer 200. Its high-efficiency, adjustable-speed fan offers 69% less noise with standard cooling. Quieter than most hard drives. Great in the executive suite or home office.

TURBO-COOL 250 $189
High Performance Protect your investment! Upgrade your AT/386 with our powerful, UL approved Turbo-Cool 250. Its high-capacity, adjustable-speed fan keeps expansion cards, hard drives, and other valuable components 20° to 35° cooler for up to three times longer life. Perfect for a fully loaded system.

TURBO-COOL 200 $189
Maximum Performance Put AT power and 200% more cooling under the hood of your PC/XT with our UL approved Turbo-Cool 200. Its twin fans keep your system 30° to 45° cooler for maximum expandibility. Perfect for hot rod PCs and Mini ATs!

COMPAQ

CP160 $169
Original Portable Upgrade Give your Portable greater reliability and 100% more power with our direct replacement CP160. Allows 286, 386, and hard disk upgrades.

CD270 $249
Desktop Upgrade The power user's power supply! Our direct replacement CD270 gives your 8086/286/386 Desktop up to 70% more power and the reliability it deserves. Prevents nuisance rebooting. Advanced design includes autoselect 110V/220V. 2-year warranty.

Our power supplies feature:
- Full-rated power
- UL/FCC compliance
- 110V/220V input
- 4 drive plugs (5 for Turbo 375)
- Heavy-duty components
- Low output ripple
- OVP, OCP, SC protection
- Installation instructions
- Rigorous testing
- 1-year immediate replacement warranty (2 years where noted)

"You could buy cheaper no-name power supplies almost anywhere, but don't. PC Power and Cooling's units are better made and more reliable than anything in the field."

PC Computing
January, 1989

Most orders shipped same day. We accept Visa, MC, COD or PO on approved credit.
THE 80486: A HARDWARE PERSPECTIVE

By putting the math coprocessor and cache controller on-chip, Intel shows that the whole can be greater than the sum of its parts

Ron Sartore

By now, you probably know that Intel's 80486 consists of a "soupede-up" 80386 processor, an enhanced 80387 coprocessor, an integral cache controller, and 8K bytes of static RAM (SRAM) all rolled into a 1.2-million-transistor package. You've probably read and reread all the marketing explanations and rationale behind the 80486 (see the text box "The Economics of Performance" on page 68). But have you thought about the real aspects of constructing a well-behaved, high-performance AT system around the 80486?

On the Pins

A comparison of the 80386 and 80486 pin-outs reveals 36 more pins on the 80486. Some extra pins provide more power connections to the device, some allow the proper use of the newly integrated caching and coprocessor elements, and others can be considered outright new features. Many have been left as "no-connects"—pins that you can truly leave unconnected—that will be available to future software development tools or to provide a method for specific manufacturing circuit testing or programmability. Because Intel has not publicly defined the 16 non-connect pins, system designers and designers of printed circuit board layouts can immediately say: "Our project is already 10 percent done." Unfortunately, completion of the job comes with more difficulty.

Table 1 shows the pin-out differences between the 132-pin 80386 and the 168-pin 80486. The designers eliminated four of the 80386's pins, added 20 pins to allow for integrated and new features, and threw in 19 inert logic pins. All the remaining 129 pins can be considered logically identical. I guess that makes the project 88 percent complete now (129 + 19 / 168 = .88). Piece of cake. The text box "The New Pins on the Block" on page 70 provides a short description for each new signal.

What's New?

It may be instructive to think of the 80486's new features as three different kinds of "hooks": cost-reduction/convenience hooks, performance-improvement hooks, and future hooks. Some of the new features hit combinations of these. The easiest new signal to categorize is the pin that identifies transfers to an 8-bit device (the 'BS8 pin). This pin is an obvious cost-reduction/convenience feature because it enables the 80486 to recognize and adjust itself to devices that can accept only 8-bit transfers.

On the other hand, the signals involving bus ownership and control (there are three of these) in conjunction with the six pins used to manage the continued
The Economics of Performance

Gene Sumrall

If the laws of supply and demand continue to function as they have in the past, you may be able to purchase an 80486 system for less than some comparably configured 33-MHz 80386 systems. When you total the cost of a 33-MHz 80386 CPU, a 33-MHz 80387 math coprocessor, and a 33-MHz 82385 cache controller chip, you come up with $991. That's $41 more than the cost of the 25-MHz 80486 chip. The comparison becomes even more lopsided when you consider that the 33-MHz 80386 design requires expensive static RAM and glue logic that raises the ante even more. It becomes laughable when you consider the difference in performance.

It's interesting that Intel should initially price the 80486 chip lower than a not-so-comparable 33-MHz 80386 set. Intel certainly knows that the 80486 is considerably faster and has more features, and that PC manufacturers will gladly pay a premium for it. From a cost point of view, 80486 systems should sell for less than 80386 systems. From a performance and functionality point of view, 80486 systems should sell for much more. Intel has provided the best of both worlds: relatively low cost and high performance. Eventually, supply and demand will correct this odd situation, presumably by reducing the market price of the 80386 chip sets.

What's the Cost?
You may reasonably ask, “If the cost of the 80486 chip is less, will an 80486 system cost less?” Based on Intel's initial pricing of the 25-MHz 80486 and the 33-MHz 80386 chip sets, it appears that the answer is yes. There is, however, a small problem.

The first 80486 chips will be in short supply. If Intel distributes them in the same way that it did the 80386 chips, initial shipments will go exclusively to the major PC companies and large distributors of PC components. If history repeats itself, the first 80486 systems may list for more than $15,000. As the volume of 80486s increases, shipments will find their way to the smaller, more competitive PC companies, and that's when you should see an interesting phenomenon.

Assembling a hypothetical $15,000 80486 system, dollar by dollar, should prove instructive. The CPU will cost $950, a price set by Intel. An 80486 system board, less CPU and memory, should have a street value of about $2750. Add in $800 for 4 megabytes of memory, and you still have $10,500 left to spend. A case, a 250-watt power supply, and a quality keyboard will cost another $400. Then you include the standard 1.2-megabyte floppy disk drive, and, while you're at it, add a 1.44-megabyte floppy disk drive just to be safe. With a 10-megabyte ESDI hard disk drive and a 1-to-1 interleaver controller, this adds about $1400.

You now have $8700 left. A quality 14-inch VGA multisync monitor and VGA adapter card should be no more than $650. And now the hard part: You must find an adapter board with two serial ports and one parallel port for less than $8050. If you can find one for about $45, you have succeeded in building a base model 80486 for $6995. This is less than some comparably configured 33-MHz 80386s.

Family Planning

When Intel introduced the 80486, it made a promise to the PC world that went something like this: "If you develop operating systems and software for the 80386 instruction set, you can depend on having a solid platform for the next 10 years and beyond." Every major hardware and software company in the industry has given the Intel 80386 instruction set its blessing. Predicting the future of the PC industry has never been easier—it will be based on the 32-bit 80386 instruction set. The least common denominator has been defined.

Predicting the obvious is easy; converting that knowledge into a purchasing strategy for the 1990s is the hard part. Perhaps I can help here. You can immediately eliminate any processor that does not have the ability to run the 80386 instruction set. Then your choice is between three members of the Intel family of 80386-based chips.

The baby of the family is the 16-MHz 80386SX, previously known as the P9. Think of the 80386SX as a fast 80286 chip that has the ability to run 32-bit 80386 code at a miserably slow pace. If 80486's cache appear to contain all the essential ingredients to construct multiple 80486 machines. The implicit software development needed to take full advantage of such a hardware-concurrent architecture is realistically five to 10 years in the future. (If that sounds pessimistic, look at how far protected-mode code for the 80286 and 80386 has gone!) See the text box "The BIOS Challenge" on page 72 for more details on utilizing the 80486.

The "new-feature" pins that provide for a significant (though subtle) performance advantage—ignoring the cache and coprocessor—are the ones associated with the parity path and the address bit 20 gating. I'll go into the details of how the parity path and address A20 gate increase the system's performance later in the article.

A History of Memory Demands

Back in 1985, when the first volume shipments of zero-wait-state memory add-ons for the AT became available, users would ask: "What's a wait state?" Today, performance is recognized to be gauged almost solely on the number of wait states between the processor and the memory subsystem. Yet the wait-state question is still as valid (and more complex) today as it was then.

In 1985 the processor of distinction was the 80286 (and then only at 6 and 8 MHz). The 80286, with its coarse clock granularity, made zero-wait-state operation relatively straightforward (i.e., an 8-MHz 80286 would require a memory access to be complete within 125-nanosecond clock increments—125 ns, 250 ns, and 375 ns correspond to zero, one, and two wait states, respectively).

Late in 1986, 80386 processor systems emerged with 16-MHz clock speeds. Now wait states were measured in increments of 62.5 ns, and systems were unable to achieve true zero-wait-state performance using conventional DRAMs. Many (somewhat unethical) suppliers, attempting to boost their 80386 specifications, claimed (wrongly) that they were running zero wait states when in fact they were running with one or two. Actually, they were using the 8-MHz 80286 as the yardstick. Their fear was that if they advertised their machines as...
you are absolutely certain that you will continue to run primarily DOS, with a few OS/2 applications mixed in, the 80386SX could be a possible choice. Like the other members of the 80386 family, the 80386SX has the ability to simulate EMS 4.0 in extended memory. No special expanded-memory boards are required; software does the trick. If you use programs such as DESQview or Lotus 1-2-3, this could be justification for purchasing the 80386SX as opposed to a fast 80286 system. But when you consider that a true 32-bit 80386 system costs only a few dollars more, the 80386SX is not your best choice.

The 80486: A HARDWARE PERSPECTIVE

... of the delay in accessing main storage is one. To state it simply, the 80486 burst mechanism represents a twofold increase in data transfer rates over the 80386's instruction prefetch buffer full. (The instruction prefetch buffer assumed that a series of linear sequential addresses would be the next required code and tried to maintain four words resident within the chip.) Often this effort proved to be nothing more than memory busywork, thus creating the undesired side effect of keeping the DRAM system in a nonoptimal situation for fast access. Pipelined memory writes were also hampered by not having the data until after a pending read was completed. (The pipelined read write could not proceed until the data from the preceding pipelined read left the data bus.) The perfect hurry-up-and-wait scenario.

Armed with 20/20 hindsight, Intel saw that the intended function of the 80386's instruction prefetch buffer was nothing more than a poor man's cache. Put the cache on-chip, chuck the prefetch mechanism as we know it, and—voilà—instant 80486. As to the pipeline mechanism, it's a good concept (maybe pipelined bursts are to come on the 80586) but Forget 80386 implementation. It still took two clock cycles per transfer, whereas the 80486 burst mode takes only one. To state it simply, the 80486 burst transfer mechanism represents a twofold increase in data transfer rates over the equivalent 80386 clocked approach.

Burst mode, an old mainframe bus technique, rightfully assumes that most of the delay in accessing main storage is in the connection time to retrieve a specific data address. Once the initial access occurs, adjacent or neighboring data is readily available without the formal protocol required of the first access. You may recognize the burst concept under a different name: nibble mode, video RAM, page mode, or any block transfer mechanism. Even disk drives have endorsed this technique, albeit under the name "multiple sector transfers." Memory bandwidth is greatly enhanced by this concept.

A quick calculation of the system's memory speed requirements to support the 80486 burst mode reveals an amazingly obvious memory architecture. Given that the chip has one clock to transfer data to and from memory and that the preferred memory device would be DRAM, how can you utilize the relatively slow and less expensive DRAM? Remember, the 80486 already has an on-chip SRAM cache.

The answer lies in the fact that a key element of bandwidth is width. Even for the 33-MHz 80486, true zero-wait-state burst cycles can be achieved by using DRAM. This is possible by structuring the 80486 main memory as 64 bits wide. The initial access to the memory requires only one true wait state, while the subsequent accesses are already present. The third and fourth accesses of the burst each then utilize the clocked page-mode mechanism to achieve zero wait states. The implementation of this approach is not difficult or unwieldy, and a 60-ns DRAM array organized in a 64-bit-wide architecture is capable of achieving a...
The New Pins on the Block

Here's a list of the 80486 processor's new pins. They are categorized by function, with descriptions of what they'll mean for upcoming systems built around the 80486.

Parity Path
DPO-DP3: The four parity data path (I/O) pins allow less external logic and faster memory interface than on the 80386.

/PCHCK: The parity checker output pin signals a parity error and emulates the AT memory parity-check function. Note that the system must decide whether to pay attention to this error. For example, RAM on video boards carries no parity component and so will likely generate a parity error that the system can ignore.

Burst Transfers
/BRDY: The burst-ready input pin indicates that the current cycle is complete and that the system will assume data transfer in the next clock cycle unless signal /BLAST is presented.

/BLAST: The burst last output signifies that burst-transfer mode is done.

AT A20 Emulation
/A20M: This input is the address bit 20 mask. When the system asserts /A20M, address bit A20 from the CPU is forced low (under 1 megabyte). This function was previously implemented by the AT to maintain 8086 compatibility.

8-bit Bus Interface
/BS8: The system board provides the bus size 8 bits input signal in response to a transfer request when the desired system element can execute only 8-bit transfers. On 80286 and 80386 processors this function was handled through external hardware.

Bus Ownership and Control
/BRQ: The bus request output signal indicates that the CPU needs the address/data bus. BRQ lightens the task of designing well-behaved multiple-processor systems.

/BOFF: With the back off input, an external system device (another processor, perhaps) can take control of the entire address/data bus, even within an active, yet incomplete, cycle.

/PLOCK: Intel defines the pseudolock output signal as a bus cycle definition. From a system viewpoint, it appears to be more of a pseudo-bus-priority bit. When the processor asserts this signal, it's saying “Don't take the bus away now; I've transferred only part of the data I wanted.” This differs from the /LOCK bit, which typically signifies a critical read-modify-write operation in which no other system element can examine the item being modified until the current operation is complete.

Cache Control
/KEN: The system is required to control the cache enable input through hardware. In practice, rather than being used to enable cache, this signal is most frequently used to disable areas of memory that cannot be cached. System implementations vary, but for most AT machines, the area of memory between 640K bytes and 1 megabyte should not be cached because it holds I/O-controlled and externally swapped data. Caching it proves futile or disastrous.

/AHOLD, /EADS: The address hold and external address strobe inputs allow an external device to present the 80486 with an address. If that address matches an address in the 80486’s cache, the associated data is flagged as invalid. For an AT single-processor machine, only direct-memory-access cycles would require use of this mechanism. In a multiple-processor implementation, this invalidation would likely occur from another processor.

/FLUSH: The flush cache input could be considered the “punt” approach to cache management. Essentially, it informs the 80486 that the entire contents of its cache are invalid. Why would you need this? Consider one 80486 electronically switching between two completely different memory systems. Each time the processor switched to a new system, its entire cache would be invalidated. With proper management of the other signals (i.e., /KEN, /EADS, and AHOLD) this should be a last resort.

PWT, PCD: The page write-through and page-cache-disable output pins reflect bit settings in internal registers. While /KEN allows hardware to control the caching of specific physical regions of memory, these pins indicate caching control that software has exerted over logical memory pages.

Coprocessor
/FERR: The floating-point error output pin is similar to the 80387’s error pin and is used under certain conditions to generate an interrupt 13 on ATs.

/IGNNE: The ignore numeric processor error input pin has no effect if not properly activated by software. I assume that this pin will be properly managed by an unannounced coprocessor. For now, this an elaborate no-connect.

sustained processor/memory transfer rate of over 88 megabytes per second in burst mode.

Here's how it works on the 80486 using DRAM (organized for a 64-bit-wide data bus):

Clock cycle 1: The CPU initiates access.
Clock cycle 2: The memory is not ready; add a wait state.
Clock cycle 3: Transfer the first word; assert burst ready to the 80486. Start 64-bit access of the next page.
Clock cycle 4: Transfer latched contents of memory (the second word); assert burst ready.
Clock cycle 5: Transfer the third word (paged); assert burst ready.
Clock cycle 6: Transfer the fourth word (paged); assert burst ready.

Here's how it would play on the 80386 (best case with zero-wait-state cache and assuming a cache hit):

Clock cycle 1: CPU initiates access.
Clock cycle 2: Memory responds with the first word.
Clock cycle 3: CPU initiates access.
Clock cycle 4: Memory responds with the second word.
Clock cycle 5: CPU initiates access.
Clock cycle 6: Memory responds continued
Micronics Raises The Stakes
With Its New 486 Motherboards!

As the established leader in high quality motherboards for the personal computer market, Micronics raises the price/performance stakes with the announcement of our 486 motherboards.

As always, Micronics comes to the table prepared. The new 486 technology allows our motherboards to operate **twice as fast** as their 386 predecessors. Now you can fly through your most challenging, memory intensive applications.

For those who want the ultimate in speed and performance, there is no substitute for Micronics' quality and reliability. With thousands of successful installations already in place, you have the security of knowing that you've bet on a sure winner—Micronics!

Call now for more information and the name of the Micronics supplier nearest you.

National WATS
(800) 234-4386

California
(408) 732-0940

FAX
(408) 732-6048

MICRONICS

935 Benecia Avenue, Sunnyvale, California 94086

Circle 180 on Reader Service Card
The BIOS Challenge

René Vishney

The 80486 processor has taken AT architecture to a new plateau. Throughout Award Software's development of a BIOS for the Intel 80486 (in conjunction with Cheetah International), our benchmark tests have shown performance to be significantly greater than existing 80386 processor architectures with a cache controller and math coprocessor. Benchmark tests will need to be rewritten to reflect this performance improvement.

An 80386 BIOS will run on current implementations of the 80486, but without the 80486 BIOS you won't experience the improved performance of the built-in cache controller and math coprocessor. Using an 80386-style BIOS on an 80486 would be like using an 80286 BIOS on an 80386 machine. The critical hardware and relatively minor software differences between the 80386 and 80486 technologies are the keys to understanding how the 80486 BIOS can give users the full benefit of this new technology.

Not the Same

Intel has incorporated many new features into the 80486 that allow it to support multiple processor systems. Other significant enhancements include an on-board math coprocessor and an on-board cache controller. These additions will help remove the processor-speed bottlenecks that are characteristics of current 80386 systems. The associated increased performance of the 80486 has proved to be greater than the obvious combination of an 80386, an 80385 cache controller, and an 80387 math coprocessor system. To put it tritely, the whole is greater than the sum of its parts.

Power-on self-test operations have also been improved in the 80486. The 80486's loop timing allows the entire POST routine to run faster than on an 80386. Now that the cache is on the processor, the BIOS includes a POST cache-memory test. The POST math coprocessor routine is also faster now that the coprocessor is no longer outside of the CPU. Award's POST routines flash the chip's version number on the chip's screen, making life easier for field service technicians and system developers.

Timing Is Everything

Since the last IBM PC AT 8-MHz update, 80286/80386 processor speeds have doubled and tripled. Using timing loops that depend on processor speed has been invalid for several years. You've got to use other methods within the AT architecture to find a reliable real-time base. Two such methods are available on the 80486. The first utilizes a refresh timer that can reliably return 30-microsecond time bases. Award's 80486 BIOS uses this method for the timing of "slow" devices such as floppy disk drives and hard disk drives.

The second method involves timing between accesses of external chips to the processor, such as the direct-memory-access controller and the interrupt controller (i.e., the CPU has to wait a few clock cycles for a peripheral chip to become ready). Timings of this sort require delays of several microseconds. The only time base available is through executing CPU instructions that consume a known number of cycles. Cache controllers for the 80386 have caused some problems in this area as guaranteed times for instruction fetches have been reduced. There are several nondestructive instructions that you can use to "spin the wheels." By experimenting, we found that we could use more or less the same delay instructions on the 80486 that we used on the 80386, even at the greater speeds.

Minor Software Differences

In terms of software, even at the BIOS and operating-system level, there are few differences between an 80386 and an 80486. These differences will require changes at the system level but should not affect upward migrations of 80386 applications to the 80486.

The software differences involve the on-chip math coprocessor and the cache controller. Some flags used to interact with the math coprocessor in protected mode behave differently. Intel has also added new instructions to control the initialization of the internal cache. The only functional effects on the BIOS are differences in initialization. For example, a previously nonfatal error in coprocessor initialization becomes a fatal processor error.

Protected-mode operating systems or applications will need to change methods for trapping coprocessor instructions. Such changes will be well worth the effort; initial benchmarks have shown an order of magnitude of improvement in the performance of floating-point instructions. Most packages on the market now are conservative in their use of floating-point instructions, even in applications that double in performance with a coprocessor. Most standard systems do not contain a coprocessor for cost reasons. Developers simply cannot afford to write applications for only 10 percent of the potential market. The bulk of the compiled code still uses floating-point emulation.

For example, C's \texttt{floor} function, commonly used in comparisons, can use floating-point libraries. This type of code will normally compile with emulation; a true coprocessor would be restricted to more time-critical areas. However, because the 80486 guarantees the availability of a floating-point coprocessor, applications can be packaged with all sections of the code utilizing floating-point, which will provide greater overall performance.

Intel is encouraging a joint effort to develop a standard method for software applications (primarily operating systems) to identify the processor type and revision of the 80486. The intent is to begin planning for future extensions to the processor family. If these efforts become a standard, they will also be applicable to the 80386 architectures already in the field with the appropriate BIOS changes. In fact, the 80486 will require BIOS products to evolve to provide a stable platform for software in this market.

Wide Open

The 80486 processor will open up many new possibilities in hardware design. The work on fully utilizing the 80486 through the BIOS has only begun. BIOS products for it will constantly be updated, upgraded, and introduced as new capabilities become available throughout the 1990s.

René Vishney is president of Award Software, Inc., in Los Gatos, California. He can be reached on BIX c/o "editor."
with the third word.

Clock cycle 7: CPU initiates access. Clock cycle 8: Memory responds with the fourth word.

You should realize that the above comparison shows the 80386 in its very best light. Also, the 80486 has an on-chip cache that frequently relegated the main memory to the chore of efficiently filling the on-chip cache—a chore well-performed by the burst-transfer mechanism of the 80486.

The use of a 64-bit-wide DRAM architecture does present some challenges to a system's minimum memory configuration. For example, implementing an approach with 1 megabit × 1 DRAMs would require 72 devices, yielding a total of 8 megabytes minimum of system memory. Each expansion to this approach would also be in 8-megabyte increments. Using 256K × 4 DRAMs solves the memory granularity problem for this 64-bit architecture but complicates the parity data path by requiring the inefficient use of 1 megabit × 1 DRAMs or the mixing of current-technology (256K-bit × 4) with older-technology (256K-bit × 1) DRAMs (i.e., you would need one 256K-bit × 1 DRAM—parity—for each pair of 256K-bit × 4 DRAMs). Furthermore, many currently available high-density single-in-line memory modules (SIMMs) do not provide for the mixing of DRAM technologies. These obstacles are not actually technical problems, but they do present a real conflict in attaining minimum system costs while achieving highest system performance.

Problems Solved

Writing parity-checked data to main memory on 80386 systems has always been trouble, because the fastest you could generate the parity checksum was 17 ns after you were presented with valid data from the CPU. This wreaked havoc with control logic because it alone represents half a wait state for a 33-MHz system. Should you complicate the control of the parity data bit during writes by treating it separately? Or should you penalize read access time to accommodate the write constraint?

Happily, Intel's engineers plugged this hole on the 80486 by adding a parity path. Now when all data bits are valid on the data bus, that includes the parity bits. Thank you, Intel.

The 80386 still bears the scars of the 8086's migration upward through the 80286. One particularly visible injury was Intel's handling of address bit A20.

In the 8086 world, no address could go beyond 1 megabyte (there was no address line A20). Computed addresses beyond the 1-megabyte limit would "wrap back" into low-order memory. IBM's AT designers rightfully maintained that compatibility through the 80286. They accomplished this by masking off (jamming inactive) the address A20 line through a control spigot from the keyboard controller chip.

Brilliant, right? Not quite. Remember the zero-wait-state calculations in table 2? Well, those figures don't compensate for a slow address line A20. So hardware designers were expected to insert a logic level (an additional delay) within the system to perform this task. The result is that when an address is asserted on the address bus, every line except A20 becomes valid in a specified time. Thus, for the memory speed requirement to achieve the zero wait states shown in table 2, you must subtract a good 7 ns. That's a 10 percent slowdown to a 70-ns memory.

Fortunately, Intel engineers came to the 80486's rescue again. They've added a line into the chip that, when active, tells the chip to operate its A20 line to emulate the action of the AT's A20 line. in the continued

Table 2: The 80386 zero-wait-state comparison (nonpipeline read). All times are in nanoseconds.

<table>
<thead>
<tr>
<th></th>
<th>16 MHz</th>
<th>20 MHz</th>
<th>25 MHz</th>
<th>33 MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero-wait-state access budget</td>
<td>125</td>
<td>100</td>
<td>80</td>
<td>60</td>
</tr>
<tr>
<td>Address valid delay (from CPU)</td>
<td>-36</td>
<td>-30</td>
<td>-21</td>
<td>-5</td>
</tr>
<tr>
<td>Address buffers (CPU to memory)</td>
<td>-6.5</td>
<td>-6.5</td>
<td>-6.5</td>
<td>-6.5</td>
</tr>
<tr>
<td>Data buffers</td>
<td>-4.5</td>
<td>-4.5</td>
<td>-4.5</td>
<td>-4.5</td>
</tr>
<tr>
<td>Data setup to CPU</td>
<td>-11</td>
<td>-11</td>
<td>-7</td>
<td>-5</td>
</tr>
<tr>
<td>Remaining time for zero-wait-state memory device</td>
<td>67</td>
<td>45</td>
<td>40</td>
<td>29</td>
</tr>
<tr>
<td>Remaining time for one-wait-state memory device</td>
<td>129.5</td>
<td>95</td>
<td>80</td>
<td>59</td>
</tr>
<tr>
<td>Remaining time for two-wait-state memory device</td>
<td>182</td>
<td>145</td>
<td>120</td>
<td>89</td>
</tr>
</tbody>
</table>

Table 3: The 80486 zero-wait-state comparison (nonpipeline mode). All times are in nanoseconds.

<table>
<thead>
<tr>
<th></th>
<th>25 MHz</th>
<th>33 MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero-wait-state access budget</td>
<td>80</td>
<td>60</td>
</tr>
<tr>
<td>Address valid delay (from CPU)</td>
<td>-22</td>
<td>-19</td>
</tr>
<tr>
<td>Address buffers (CPU to memory)</td>
<td>-6.5</td>
<td>-6.5</td>
</tr>
<tr>
<td>Data buffers</td>
<td>-4.5</td>
<td>-4.5</td>
</tr>
<tr>
<td>Data setup to CPU</td>
<td>-5</td>
<td>-5</td>
</tr>
<tr>
<td>Remaining time for zero-wait-state memory device</td>
<td>44</td>
<td>35</td>
</tr>
<tr>
<td>Remaining time for one-wait-state memory device</td>
<td>84</td>
<td>65</td>
</tr>
<tr>
<td>Remaining time for two-wait-state memory device</td>
<td>124</td>
<td>95</td>
</tr>
</tbody>
</table>
No major logic here, but a major performance boost. It's obvious that the semiconductor group at Intel had an excellent system mouthpiece (their board group? IBM? other users?) to champion this cause. Bravo!

What They Missed
The 80486 contains so many great system features that to criticize any part of it seems almost blasphemous. My personal gripes with the chip are relatively minor at 25 MHz but become substantial when you extrapolate operation at 40 and 60 MHz. I base these opinions not on RISC versus CISC issues, but on the more fundamental issues of the physics of electronics.

System implementers have had their hands full "managing" a common I/O bus at 33 MHz. The difficulty lies in avoiding bus contention. Data travels along the bus from a source to a destination (memory to CPU or vice versa), and bus contention occurs when—in the process of switching from one source to another—two sources are present on the bus simultaneously. To the layman, I can best describe this as a brief short circuit.

Processor clock speeds increase, the physical properties of electronics remain the same.

To the engineer, this presents reliability and manufacturing problems if not given proper attention.

The problem is exacerbated as system-memory speeds increase. Given the electronics components currently available to system designers, the quickest they can turn off or "shut up" a bus source from driving a common bus is about 11 ns.

This suggests that, in theory, ultimate usable processor speed is limited to 45 MHz. And even as processor clock speeds continue to increase, the basic physical properties of electronics aren't going to change. As useful as common data I/O bus 80486 is (if you consider multiple 80486 systems), it is not a desirable architecture in a 60-MHz single-processor implementation.

The solution? Separate the data lines on the CPU into DATA OUT and DATA IN. (Hey, at $1000 a chip, what do a few more pins cost?)

The 80486 represents a logical growth of the PC-compatible standard. That says a lot. The large base of applications software that has been established for the 80x86 is unparalleled in computing's short history. The 80486 promises to be a major commitment by Intel to software development maturation and stability. The job of hardware is to provide the reliable vehicle to maintain and enhance this desirable goal.

All CPU timings for the 80386 come from Intel's 1989 Microprocessor and Peripheral Handbook, vol. 1. All CPU timings for the 80486 are from Intel's manual, 80486 Microprocessor, April 1989 (#240440-001).

Ron Sartore is cofounder of Cheetah International, Inc., in Longview, Texas. He can be reached on BIX c/o "editors."

AutoKey 400 programmable macro keys!

Boost your CAD performance.
Automate word processing.

- Plugs into your keyboard line.
- Uses no system memory.
- Requires no software.
- Has its own microcomputer.
- Eliminates complicated memory resident macro programs such as SuperKey and ProKey.

Call 1-800-888-4146
(inside IL call 312-595-4146)
AutoKey 40 $139.00
AutoKey 20/20 $289.00 Visa/VC/AmEx.

Mextel Corp. 159 Beeline Road
Bensenville, Illinois 60106
AutoKey is trademark of Mextel Corp. All other product names are trademarks of their respective manufacturers. ©1989 MEXTEL CORP.
The Era of the Personal Workstation

When in 1981 the first personal computer from IBM was introduced to the market, no expert predicted its success. After only one year, this computer set a new standard, the PC standard. Of course, there were other computers, like the Apple II. Some of these computers were faster and more reliable than the IBM PC. But the standard was set by this machine. And it was set by the users, who bought this computer and demanded applications, programs, peripherals and services. A whole industry grew up with this one machine. The personal computers of today are the great-grandchildren of this little computer. One can find its roots in nearly every personal computer that works with MS-DOS. When the IBM PC was introduced, it worked with MS-DOS, too. It was MS-DOS 1.1, the first release. And it became standard as an operating system, just like the PC became standard as THE personal computer.

The technology today is far more advanced than it used to be in 1981. This an effect of the tremendous market power, which was unleashed by the PC standard. But know, the great history of this standard has become a burden, it slows down any development in this industry, which is bound to be "compatible". Today's microprocessors have more processing power than the big mainframe computers in 1981. But they use only 5-10 percent of their real abilities for the users, because of the existing industry standards. We at Bauer Systems think it's time for a new standard, it's time for the PERSONAL WORKSTATION!

Stop! This is not a break with the reported history of computers. It's a break with compromises, which were made to have the highest grade of compatibility. We have found a way to have the best of both sides: Unforeseen processing power and user friendliness and compatibility with existing industry standards. We cannot promise that your most beloved word processor will run on our new machine, and we cannot promise either that your beloved screen will work with our machine. But we can promise you that if you ever try our new system, you will not try another existing computer again.

The TESS IV PERSONAL WORKSTATION is based on the Intel i486 microprocessor. This microprocessor combines the features of the 80386 microprocessor and the 80387 arithmetic co­processor together with a sophisticated cache management unit on one chip. The i486 microprocessor has a raw processing power of 14–15 MIPS. In the TESS IV PERSONAL WORKSTATION, this microprocessor is combined with 8 Megabyte of 70 ns dynamic random access memory. The system has a clock rate of 25 MHz. Early benchmarks indicated a processing power of 12 MIPS for the whole system. We developed a configuration for this system, which represents the best combination of available options. The TESS IV PERSONAL WORKSTATION is equipped with our i486-computer. We chose a SCSI host adapter as storage interface. In the standard configuration, one 200 megabyte hard disk drive and one 3.5" Floptical disk drive are connected to the host adapter. It offers a sustained data transfer rate of 1 megabyte per second and it can handle up to seven SCSI devices. The hard disk drive has an access time of 16 ms. The Floptical disk drive is a newly developed 3.5" floppy disk drive that is able to store up to 20.8 megabyte of data on a 3.5" Floptical diskette. It can also format, write an read standard 3.5" diskettes in the PS/2 formats. The Floptical disk drive has an access time of 65 ms. The graphics subsystem of our TESS IV PERSONAL WORKSTATION contains its own Texas Instruments TI 34010 graphics processor, clocked at 40 MHz. At this clock rate, the TMS 34010 has a processing power of 6 MIPS. The processor is combined with 1 megabyte VRAM for a maximum screen resolution of 1024 x 768 pixels in 256 out of 262,144 colors. Our display features a 21" flat-type screen offering the user an optimal viewing area. The etched, non-glare 0.31 mm dot pitch CRT allows for brilliant FULLSCREEN graphics and text. A built-in dynamic focus circuit provides crisp images on-screen. The keyboard of our TESS IV PERSONAL WORKSTATION is connected to the screen and contains a standard 102 keys AT-layout. A 3-key mouse is connected to the keyboard as the standard pointing device.

The TESS IV PERSONAL WORKSTATION is equipped with four serial and two parallel external interfaces. It can be expanded by plug-in expansion cards compatible to the ISA-bus interface. The complete system except the desktop devices is mounted in a trim deskside tower case in a unique design. It is powered by a 300 W switching power supply with build-in battery backup and surge protection.

To unleash the full processing power of the i486 microprocessor, we chose the newly developed Open Desktop from SCO as operating system. Open Desktop features the full 32-bit, multitasking capabilities of the UNIX System, a graphical user interface offering Presentation Manager-compatible "look and feel", the industry-standard X Window System, SQL database management, TCP/IP networking to dissimilar systems, full data sharing between DOS and UNIX Systems, and instant access to thousands of existing DOS and UNIX System applications. Open Desktop delivers the multitasking computing power, friendly graphical interface, and seamless connectivity required for today's demanding business and technical professionals who require dedicated personal productivity systems. And it's equally well-suited as a multituser, multitasking platform for workgroups of 8, 16, 32 or even more users.

To meet the high standards we set ourselves by designing this computer, we developed a sophisticated distribution and service system. The TESS IV PERSONAL WORKSTATION will be distributed by the microtronics Trade Service through field consultants. Your computer will be set up at your site and configured to your demands. The microtronics Trade Service will provide worldwide on-site service for one year. If your system can't be repaired on-site, you will receive a equal replacement for the repair time.

To receive more information or to purchase your TESS IV PERSONAL WORKSTATION, please contact the microtronics Trade Service. We hope you will be with us in the era of the personal workstation!
How To Bring Minicomputer Power To Your PC
A multiuser system no longer means only a mainframe or minicomputer. Today’s 386- and 286-based PCs are more powerful than the minicomputers of just a few years ago. And they often provide more desktop power than one person can use effectively.

That’s why you need PC-MOS 3.0. It harnesses the power of your 386-or 286-based PC and turns it into a powerful multiuser, multitasking computer. PC-MOS is the multiuser operating system that lets you run popular DOS applications such as Windows®, Lotus 1-2-3®, dBase IV® or WordPerfect®—without modification.

PC-MOS is the perfect solution for a small business or a department of a large company that needs users to easily and affordably share programs, databases or peripherals. It takes full advantage of the hardware’s power—and saves you money in the process! For example, instead of replicating PCs, each user can have an inexpensive terminal or monitor that acts like a PC.

DOS Compatibility Means Minimal Training And Support

Since PC-MOS is DOS compatible—unlike UNIX® or OS/2®—there’s no need for users to learn a “new” operating system or be retrained on the applications they already know. And unlike most LANs, PC-MOS is easy to install and even easier to maintain. No hassle, no expensive wiring and no network management headaches.

There are now more than 100,000 users of PC-MOS worldwide, but if you haven’t seen it lately, take another look. We’ve broadened our base of compatible applications and added multi-level security, faster disk performance and larger task sizes. Version 3.0 also interfaces with Novell LANs, 3270 mainframe communications products and The Software Link’s LANLink™ local area network.

Call us today for more information about PC-MOS 3.0 and the location of your nearest multiuser dealer. We’ll show you how to easily and affordably turn your PC into a powerful multiuser system.

Your connection to advanced technology

Circle 337 on Reader Service Card (DEALERS: 238)
The ViVa24 Modem knocks 'em dead with style and convenience.

Finally! An affordable, state-of-the-art modem designed to maximize any workstation or desktop and take up minimal space. The new 2400 baud modem from Computer Peripherals, Inc. is a 100% Hayes compatible external modem which boasts more high-tech features than its competition at an unbelievable price tag.

The compact, distinctively sleek tower design simplifies placement, and it's easily accessible, front panel power switch eliminates fumbling around the back of the unit. The handsome weighted base holds the ViVa24 firmly in place, and sharp LED indicator lights are aligned for comfortable viewing, utilizing international graphic icons that make the ViVa24 simple to understand.

The small tower design creates a natural flow of air over the surface of the board, allowing the ViVa24 to run cooler and affording you 24-hour, worry-free operation. The ViVa24 modem provides the user compatibility with IBM PC, XT, AT, IBM PS/2, Apple Macintosh computers and any computer that supports RS-232C.

The ViVa24 modem represents innovation from its footprint up with features such as: use of the Hayes "AT" command set, asynchronous data format, auto-dialing, auto answer, adaptive equalization, non-volatile memory, automatic tone and pulse dialing, remote access while your computer is unattended, self-test and built-in diagnostics. Best, of all, the ViVa24 is fully backed with a five-year limited warranty.

Before investing in an ordinary modem, be sure to investigate the ViVa24. For more details, call your Ingram MicroD representative now at:

1-800-456-8000 (East)
1-800-642-7631 (West)
STRETCHING DOS TO THE LIMIT

VCPI brings order to DOS multitaskers, DOS extenders, and EMS emulators

Frank Hayes

Two years ago, OS/2 sounded like a dream come true. No more applications that had to squeeze into 640K bytes; no more overlays; no more cobbled together collections of TSR programs and utilities to create a useful work environment. With OS/2 running on an 80386-based PC, programs could be as large as necessary—and you would be able to run as many as you needed, concurrently.

But OS/2 hasn't yet delivered on its promises. Two years later, we're still waiting for OS/2 for the 80386, and we're still waiting for applications software that will turn the current 80286-based OS/2 from a great idea into a great operating system. Once that software does arrive—and it should be checking in over the next six months or so—OS/2 will become a contender.

But if OS/2 hasn't already generated the applications it needs to become a best-seller, it has intensified demand for its features: big programs and multitasking. Software publishers have responded by offering multitasking systems, DOS extenders, and EMS emulators that enable DOS programs to tap the full power—and full memory—of 80386-based PCs. Until now, though, these have largely been independent, ad hoc solutions; for example, there has been no guarantee that a program using a DOS extender would run under a multitasker.

Enter VCPI

In late 1987, six companies—including Phar Lap (386DOS-Extender), Quarterdeck (DESQview), and Qualitas (386Max)—set out to agree on a standard that, they hoped, would create some order out of the burgeoning chaos of ad hoc solutions. The result, several drafts later, is the Virtual Control Program Interface, or VCPI.

VCPI isn't a program. In fact, it isn't even the outline for a program. It's just the specification for how a VCPI-compatible program should behave. But it isn't vaporware, either: Lotus has joined the original members of the VCPI committee, and all the members are busy making their software conform to the VCPI specifications. And applications developers using VCPI DOS extenders and multitaskers are also aiming for VCPI compatibility.

VCPI is designed to solve two main problems that show up when several 80386-aware programs run at the same time: conflicts over the use of extended memory, and conflicts over which one of several programs is in charge.

The original six sponsors of the VCPI were A.I. Architects, Phar Lap Software, Quarterdeck Office Systems, and Rational Systems. The original continued
ChiWriter

Powerful Scientific/Multifont Word Processing at a Reasonable Price

How are you currently producing your scientific documents? Are you using a “golf ball” style typewriter? A regular word processor, hand lettering the special symbols? Are you fighting against a “what-you-see-is-definitely-not-what-you-get” system with a special command language? Can you use one of our competitors’ expensive and inflexible programs? Find out how ChiWriter can solve your scientific word processing problems.

... ChiWriter is a complete word processor, designed especially for scientific and foreign language text. Its features include: intuitive formula editing commands, automatic pagination, variable headers and footers, footnotes, a notepad, a journal, and an integrated spelling checker.

The complete VCPI specification is available from Phar Lap Software, Inc., 60 Aberdeen Ave., Cambridge, MA 02138, (617) 661-1510.

Who’s the Boss?

Unlike real multitasking operating systems, such as Unix or OS/2, DOS is designed for one user running one application program. As a result, its earliest days, a DOS program was traditionally written with the assumption that it was the only car on the road. That was fine when it was true. But as soon as users began adding pop-up TSR utilities, each application program found itself sharing memory with other programs. If the programs didn’t all follow the rules (or at least check in regular, predictable ways) conflicts were sure to arise.

The same problem, only magnified, appears when a multitasker tries to squeeze several full-scale application programs into memory at the same time. That’s cheating the limits of DOS, and if all the programs don’t cheat predictably, they’ll step on each other’s toes.

Fortunately the 80386 CPU features two modes—protected and virtual 8086—that can alleviate some of these problems. In protected mode, software has full access to all the capabilities of the 80386, including all its most powerful instructions and the entire 4 gigabytes of memory that can potentially be stuffed into an 80386-based PC. Once the CPU is in protected mode, it can switch into virtual 8086 (or V86) mode. When software runs in V86 mode, the CPU and memory act as if they’re running on an 8086 with its own 1-megabyte (or less) cohort of memory—hence the name “virtual 8086.”

But although a program runs in V86 mode as if it’s in a single chunk of memory, it may actually be split up all over the 80386’s available memory in smaller, 4096-byte pieces. Moreover, although the CPU appears to act like an ordinary 8086, there are some instructions that can’t be used in V86 mode. When the CPU encounters one of those instructions, it generates an exception, which returns the processor to protected mode.

Protected and V86 modes greatly simplify multitasking on an 80386. Each ordinary DOS application can run in V86 mode as if it had its own CPU and memory; the multitasker itself, which switches among the different applications, runs in protected mode, handling exceptions and generally directing traffic.

If all the programs running under a multitasker are ordinary DOS applications, this arrangement works fine—the multitasker is the unquestioned boss, running in protected mode. But multitaskers aren’t the only programs that use the 80386’s protected mode. Programs built with DOS extenders use it, too.

A DOS extender creates a run-time environment that lets a program run under DOS but still use the more powerful capabilities of the 80386. Since DOS doesn’t run in protected mode (where the real power lies), a DOS-extended program starts out running in V86 mode.

When it’s time to kick into high gear, the V86 program calls the DOS extender, which jumps into protected mode to access large amounts of memory or to execute specialized instructions.

There’s also a third category of programs that use protected and V86 modes: EMS emulators. An EMS driver lets a DOS program swap blocks of memory into and out of the memory-address space above the DOS 640K-byte limit but still below the 1-megabyte limit of the 8086 CPU. The original EMS memory boards worked with any PC or XT; several extra megabytes of memory could be swapped in and out, so a program could get fast access to lots of extra space for data or program overlays. An EMS emulator uses the same set of protocols, but, instead of using memory on a separate board, it uses the 80386’s own memory above the 1-megabyte limit. Once again, the DOS program runs in V86 mode; when it calls the EMS driver, the CPU kicks into protected mode so the driver can access the extra memory.

Each of these kinds of “control programs”—multitaskers, DOS extenders, and EMS emulators—needs to switch back and forth between protected and V86 modes. However, the 80386 is designed so that only one protected-mode program will handle the exceptions generated by V86-mode applications. That means that if you use them all together—say, an EMS emulator with a multitasker that’s running one or more DOS-extended programs—only one control program can use protected mode; the others must use V86 mode. But, as I’ve continued...
When you buy a computer, about 35% of your money goes to the store.

But we'd much rather see your money go to somebody who deserves it a lot more.

You.

So we give you a completely different kind of computer store.

The Dell Computer Store.

Instead of a crowded, high-overhead showroom, you get our brand new 44-page catalog. Which gives you a full line of 386™ and 286 systems, printers, peripherals, software, and accessories.

And since you buy direct from the manufacturer, you save about 35%.

But there's a lot more to it than saving money. We offer you the most complete service and support in the industry. Including a 30-day money-back guarantee. A toll-free technical support hotline. Self-diagnostic software. And next-day deskside service from Xerox Corporation.

If you read our ad in the front of this magazine, it will tell you a lot more about the systems we offer. And the service we put behind them.

So if you'd like a much more intelligent way to buy a personal computer, have a look at our ad. Or call us at 800-426-5150. Or send us the card on this page.

And we'll send the best computer store you've ever seen. One you don't have to set foot in.
Extended-Memory Allocation Techniques

The three techniques that VCPI allows for allocating extended memory—the memory above the 1-megabyte address boundary—are EMS allocation, top-down allocation, and bottom-up allocation. Using EMS memory is the easiest of the three; it involves nothing more than requesting pages of memory through the standard EMS 4.0 interface. Using EMS memory has another advantage for DOS-based applications; even if an application isn't running on an 80286- or 80386-based PC, it can still use EMS memory if an EMS memory card is installed.

Both top-down and bottom-up allocations depend first on knowing how much extended memory is available. That information is available from the BIOS extended-memory-size system call (Int 15h, function 88 hexadecimal). This function returns the amount of extended memory in K bytes. It's a simple matter to convert that number into the highest address occupied by extended memory: You shift the value left 10 times to multiply by 1024 and then add 100000h (1 megabyte). If function 88h of Int 15h returns 0, that means there's no extended memory in the system.

Top-down memory allocation is straightforward; it only requires lowering the memory ceiling, as indicated by the result of the extended-memory-size call. To do this, a program installs a new interrupt handler for Int 15h, one that passes all functions except 88h and returns a new, lower value for that function. Thus, in a multitasking situation, any other program that wants to allocate extended memory from the top down will first make its own call to Int 15h function 88h—and carve off its chunk of memory beginning where the first program's chunk left off.

Bottom-up allocation, by contrast, uses the technique that was originally used in IBM's VDISK driver for the AT. VDISK allocated memory for a RAM disk by installing a new interrupt handler for the PC reboot interrupt, Int 19h. A signature block and a location-size marker go into the interrupt handler, and a boot block with an allocation-size marker goes at the 1-megabyte boundary. Whether or not the bottom of extended memory has been carved off by VDISK or a similar program, it's possible to raise the floor still further by installing another interrupt handler and a new set of signature blocks and allocation-size markers.

If this sounds more complicated than top-down allocation, it is. Unfortunately, the process has to be more complex than it should be. It's necessary to check both the boot block and the interrupt handler for the size of the memory that's already been allocated, since some functions (such as the DOS 3.3 PRINT function) will wipe out some of the allocation information in one of the two locations. Still, it's possible to do; from the Int 19h vector, you can trace a 24-bit value that points to the first free byte of extended memory, and you can get the same value from the boot block at offset 1Eh, which is the address in K bytes; shifting it left 10 times gives the actual address.

By installing interrupt handlers and allocation-size markers, each program in memory can allocate as much available extended memory as it needs without interfering with other programs' allocations. However, once memory has been allocated, it cannot safely be deallocated and the original interrupt handlers restored until all programs are finished using extended memory.

Sharing Extended Memory

A second problem that can show up once an EMS emulator and several DOS extenders have been stuffed into memory together is that they may all want to use parts of extended memory (i.e., memory above the 1-megabyte boundary).

There are four basic ways for a program to make use of extended memory. One is to simply use it, no questions asked—but that almost guarantees problems when more than one program is in memory at once.

Two other standard techniques treat extended memory as a big chunk of memory from which a piece can be carved off either the top or the bottom end: top-down and bottom-up extended memory allocation, respectively. Both of these techniques require the programmer to install a new interrupt handler for an operating-system function. In the case of top-down allocation, which lowers the extended-memory ceiling, it's the BIOS extended-memory-size system call (Int 15h, function 88 hexadecimal). In the case of bottom-up allocation, which raises the extended-memory floor, it's the PC reboot interrupt (Int 19h). Because all programs in memory share these interrupts, each one can, in turn, carve a chunk off the top or the bottom of extended memory without interfering with the other programs. (See the text box "Extended-Memory Allocation Techniques" above.)

There's one common technique for allocating extended memory—an EMS emulator, which uses top-down allocation to acquire a block of extended memory and then parcels out sections of it through the standard EMS interface. Since there's only one EMS emulator in memory, it's also shared by all the programs that want to use it; thus, programs won't unintentionally interfere with each other if they get their memory through the EMS emulator.

VCPI allows programs to use extended memory through top-down or bottom-up allocation, or through the EMS emulator. The EMS emulator typically plays the most crucial role, because it handles VCPI functions.

How VCPI Does It

Table 1 lists the VCPI functions that an application program can call while it's running in V86 mode. Each function is called through the EMS interrupt (Int 67h), using a function call that's illegal for an ordinary (non-VCPI) EMS emulator. The VCPI function calls allow each application to switch to protected mode and determine EMS and extended memory availability (as well as get access to certain 80386 registers and interrupt controller information). Table 2 lists the VCPI functions available to applications once they are in protected mode.

How does it typically work? When DOS boots up, it installs an EMS driver whose name is in the CONFIG.SYS file. That EMS emulator—called the "VCPI server"—will handle all VCPI functions. A user can then run a DOS-extended application—or a multitasker, which in turn will run regular DOS-
STANDBY UPS MODELS
- 250 To 1600 Watt Output
- Synchronized Sinewave with 1 msec Switching Time
- Full One Year Warranty

ON-LINE UPS MODELS
- 1000 To 5000 VA Sinewave Output
- True On-Line — Total Isolation
- Static Bypass Switch Standard

SHUTDOWN SOFTWARE
- Auto Shutdown of Local Area Networks for Unattended Operation
- Compatible with SCO XENIX 2.2.3 and above
- Novell ELS 2.12 and above
 Advanced Netware 2.11 & above
 SFT Netware 2.11 and above

MINUTEMAN®
UNINTERRUPTIBLE POWER SUPPLIES

<table>
<thead>
<tr>
<th>Power Output (WATT)</th>
<th>120 Volt Models ($100)</th>
<th>208-240 Volt Models ($100)</th>
</tr>
</thead>
<tbody>
<tr>
<td>250 WATT</td>
<td>379.00</td>
<td>429.00</td>
</tr>
<tr>
<td>300 WATT</td>
<td>549.00</td>
<td>N/A</td>
</tr>
<tr>
<td>500 WATT</td>
<td>899.00</td>
<td>799.00</td>
</tr>
<tr>
<td>600 WATT</td>
<td>899.00</td>
<td>1049.00</td>
</tr>
<tr>
<td>900 WATT</td>
<td>1249.00</td>
<td>N/A</td>
</tr>
<tr>
<td>1200 WATT</td>
<td>1499.00</td>
<td>1749.00</td>
</tr>
<tr>
<td>1600 WATT</td>
<td>1999.00</td>
<td>2299.00</td>
</tr>
</tbody>
</table>

TRUE ON-LINE UPS MODELS

<table>
<thead>
<tr>
<th>Power Output (WATT)</th>
<th>120 Volt Models ($100)</th>
<th>208-240 Volt Models ($100)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000 WATT</td>
<td>2249.00</td>
<td>Available</td>
</tr>
<tr>
<td>3000 WATT</td>
<td>5495.00</td>
<td>Available</td>
</tr>
<tr>
<td>5000 WATT</td>
<td>8950.00</td>
<td>Available</td>
</tr>
</tbody>
</table>

PARA SYSTEMS, INC.
1455 LeMay Drive
Carrollton, TX 75007
Telephone: (214) 446-7363
1-800-238-7272
FAX: (214) 446-9011
TELEX: 140275OMEGA

Circle 198 on Reader Service Card
Table 1: The V86-mode interface is provided through the EMS interrupt (Int 67h), with a function code of DEh in the AH register and a VCPI function code in register AL. The function calls allow an application to switch to protected mode, determine availability of and allocate EMS and extended memory, and get access to 80386 debug registers and interrupt controller information.

<table>
<thead>
<tr>
<th>Subfunction</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>00h: VCPI Presence Detection</td>
<td>Checks for the presence of VCPI.</td>
</tr>
<tr>
<td>01h: Get Protected Mode Interface</td>
<td>Sets up the client's page table.</td>
</tr>
<tr>
<td>02h: Get Maximum Physical Memory Address</td>
<td>Initializes client's memory management data structures.</td>
</tr>
<tr>
<td>03h: Get Number of Free 4K Pages</td>
<td>Returns the total number of 4K-byte pages available to be allocated out of the server's EMS memory pool.</td>
</tr>
<tr>
<td>04h: Allocate a 4K Page</td>
<td>Allocates a 4K-byte page of memory.</td>
</tr>
<tr>
<td>05h: Free a 4K Page</td>
<td>Frees a page of memory previously allocated with subfunction 04h.</td>
</tr>
<tr>
<td>06h: Get Physical Address of 4K Page in First Megabyte</td>
<td>Returns the physical address of a 4K-byte page in the first megabyte of the V86-mode linear address space.</td>
</tr>
<tr>
<td>07h: Read CR0</td>
<td>Returns the current value of the CR0 register.</td>
</tr>
<tr>
<td>08h: Read Debug Registers</td>
<td>Stores the values of the debug registers into an array in memory.</td>
</tr>
<tr>
<td>09h: Load Debug Registers</td>
<td>Loads the debug registers with the values in the array.</td>
</tr>
<tr>
<td>0Ah: Get 8259A Interrupt Vector Mappings</td>
<td>Returns the interrupt vectors that will be generated by the 8259A interrupt controller when a hardware interrupt occurs.</td>
</tr>
<tr>
<td>0Bh: Set 8259A Interrupt Vector Mappings</td>
<td>Used by the client to inform the server if it remaps the 8259A interrupt controllers.</td>
</tr>
<tr>
<td>0Ch: Switch from V86 Mode to Protected Mode</td>
<td>Switches CPU to protected mode, sets up all system tables for the client, and transfers control to the specified entry point in the client.</td>
</tr>
</tbody>
</table>

Table 2: The protected-mode interface is a FAR entry point in the EMS emulator. The address of the entry point is obtained during initialization with the Get Protected Mode Interface system call (Int 67h, function DEh, VCPI function 01h). An application running in protected mode makes a FAR call to a USE32 segment, with an EMS function code of DEh in register AH and a VCPI function code in register AL.

<table>
<thead>
<tr>
<th>Subfunction</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>03h: Get Number of Free 4K Pages</td>
<td>Returns the total number of 4K-byte pages available to be allocated out of the server's EMS memory pool.</td>
</tr>
<tr>
<td>04h: Allocate a 4K Page</td>
<td>Allocates a 4K-byte page of memory.</td>
</tr>
<tr>
<td>05h: Free a 4K Page</td>
<td>Frees a page of memory previously allocated with subfunction 04h.</td>
</tr>
<tr>
<td>0Ch: Switch from Protected Mode to V86 Mode</td>
<td>Switches CPU from protected mode back to V86 mode after setting up all the server's system tables.</td>
</tr>
</tbody>
</table>

Frank Hayes is a BYTE news editor. He can be reached on BIX as "frankhayes."
Advantages are enhanced by Tatung VGA provides significantly higher resolution. In fact, image clarity is 37% higher than EGA. And while EGA gives you 16 on-screen colors, VGA puts 256 colors (from a palette of 262,144 colors) on a monitor's screen at a time. Distortion, ghosting, and even eye fatigue is sharply reduced. In text modes, characters (even those with descenders like y, p and g) are more clearly defined thanks to a 9 x 16 dot matrix. But, while the monitor is a vital part of a VGA system, we think the real key is the VGA card that goes with it.

The Tatung VGA card is all performance. Ours is a 16-bit graphics array board with a single high-speed, register compatible, VGA chip...a graphics controller that's incredibly fast (it has a bandwidth of more than 2 times than other VGA boards)! You can access this speed through the 16-bit data path to display memory, BIOS ROM, and I/O. Our exclusive SwiftWrite makes the write state virtually non-existent. More? With 16 colors, resolution increases to 800 x 600. On-board is a 256K DRAM; and the card is backward compatible with EGA, CGA, MDA and Hercules graphics standards.

Tatung Monitors deliver the new standard. We offer the broadest line of VGA monitors available; 5 newly styled and engineered monitors. Each model provides 640 x 480, 640 x 350 lines of graphics resolution; 720 x 400 lines for text. Tatung's new VGA monitors offer a broad range of features that contribute to their superior value: dark-on-white CRT's, automatic vertical size encoding, multi-color text or reverse video switching, 110/220V switchable power supply, removable tilt/swivel bases...all supported by Tatung's full year warranty.

Tatung bundles provide superior value. By bundling VGA monitors and cards, Tatung puts VGA within the reach of everyone. In most cases, the Tatung VGA bundle will cost no more than EGA packages! That's why we believe that feature for feature, dollar for dollar, the Tatung VGA bundle represents incomparable value. The kind of value only the largest manufacturer of monitors in the world can deliver.

In addition, Tatung offers users a huge advantage: a Tatung VGA bundle is 100% IBM™ VGA compatible and more...your investment in software is fully protected.

Tatung offers guaranteed compatibility. Whenever a new standard is introduced, system users have a justifiable concern about software compatibility. That's why Tatung offers a unique guarantee*...if you note any software incompatibilities within the 1 year warranty period, Tatung will correct them free of charge within 30 days, otherwise the full value of the Tatung VGA card will be refunded.

That's the Tatung VGA story. It's a story worth seeing. For complete information, specifications and the name of the Tatung dealer nearest you, and to arrange for a demonstration, call us today. After all, seeing is believing.

NOW AVAILABLE! New TVGA-8, 8-bit card!

* Warranty applies to IBM PC XT AT systems and their compatibles. Refer to Tatung VGA Card Manual for specific details. All details included with each Tatung VGA card. All names trademarked are properties of their respective manufacturers.
The MCSS-9IM is GTEK's newest intelligent card for the Micro-Channel. The MCSS-9IM provides 9 channels and comes with 32K of Dynamemory that can be upgraded to 1 Megabyte. Call for details on the MCSS-8TX a Micro-Channel version of the PCSS-8TX.

The PCSS-8TX is GTEK's workhorse multi-channel serial I/O card with compact RJ-11 telco jacks. The PCSS-8TX provides 8 standard uarts arranged as either COM1/COM2, or memory mapped. Also available the PCSS-8X with DB-25 connectors.

The PCSS-81 is GTEK's most popular intelligent serial I/O card. It provides 8 channels for PC/XT/AT/PS2-286 and is DOS Compatible. The PCSS-81 has 32K of Dynamemory, user upgradeable to 128K bytes.

If speed is what you want, GTEK's Model 9000 Eprom Programmer will never let you down. Its quick and intelligent programming algorithms give you super fast speed, and you can program the chip of your choice, including MPUs, erasable bipolar prom equivalents and Megabit parts.

Ten Times Faster than its predecessor, the 9800 Gang Programmer has supersonic QuickPulse programming algorithms. What's more, you'll get your programming completed 8 times faster by programming 8 eproms at a time. Plus, the 9800 programs megabit parts.

GTEK's ROMX-2XL emulates 2758-27010 eproms and comes with communications software for PC/XT/AT/PS2 type computers. ROMX-2XL supports 16 and 32 bit data paths. The time saved on just one development project will more than pay for a ROMX-2XL! Circle 111 on Reader Service Card (dealers: 113)

Order Now Toll Free 800-255-GTEK (4835)
O.E.M. and Distributor Inquiries Welcomed!
THE STATE
OF OS/2

OS/2, longer in ascendancy than planned, has a very bright future

Mark J. Minasi

W ell, it's clear by now that OS/2 is a flop. It just never made the grade. Only a few hundred software vendors are writing programs for it, and only 400 programs are currently available.

Huh?
Yes, we all read that "OS/2's not going to make it" stuff in the trade press. But, then, the trade press needs something to write about.
OS/2 is actually not doing badly, all things considered. First, I'll give a little historical perspective, and then I'll look at what's out there for OS/2 now. What can developers do in building OS/2 applications that they couldn't do under DOS, and are they doing those things? Also, I'll look at a few examples of unique OS/2 applications.

Looking Back at DOS
Examining the history of DOS in the same way that OS/2 has been scrutinized would lead you to conclude that DOS is a real flop. As of early June, 400 OS/2 applications were shipping—not DOS programs that can run in the DOS-mode session, but protected-mode OS/2 programs. By the time you read this, 100 more programs should be available.

Here's a look at DOS's record. The following examples are from two computer magazines: an IBM PC-specific trade publication that published a comprehensive list of available software for the PC in September 1982 (one year after the PC's release) and BYTE's first IBM PC special issue in the fall of 1983.

The 1982 IBM PC Product Guide sports full-page ads from the big vendors. Corvus, of course, was the only company offering hard disk drives for the PC. Ashton-Tate was offering to "make your micro work like a mainframe" with dBASE II. A lot of game programs. Some snappy ads for a new kind of program, called Context MBA, that incorporated spreadsheet, database, and graphics all under one roof. Lotus 1-2-3 wasn't to appear for a year yet. Excluding games, 600 programs were available for the IBM PC one year after its release. Of the 600, nearly a third were for program development—compilers, utilities, and libraries.

BYTE's first special issue on the IBM PC was actually a regular issue (November 1983) that featured several articles about the PC. By this time, the PC had been around for slightly over two years. The debate about whether or not it would endure had dissolved. However, the market still had some growing to do. My copy has a dog-eared page so I could easily find an ad for an interesting new compiler called Turbo Pascal.

Jerry Pournelle wasn't even using a PC yet, although he...
OS/2 and DOS? MultiBoot is the answer.

BYTE May 1989

MultiBoot Brings OS/2 Back to Earth

Bolt Systems has come to the rescue with a program called MultiBoot, which does away with the dual-boot problem for good. MultiBoot is simple, inexpensive, and foolproof, and it works flawlessly. It's a good example of a utility that fills a much-needed niche.

—Stan Miastkowski

OS/2 NOTEBOOK

Once you've spent thousands of dollars on OS/2 and on OS/2-ready work station, what's another $49.95 to have easy access to DOS? Highly recommended.

—Mark Minasi

Not all DOS programs work in the OS/2 compatibility box. MultiBoot lets you install both systems in your computer. MultiBoot works with DOS versions 3.0-4.01 up. And OS/2 versions 1.0 and 1.1.

TO ORDER:

Send $49.95 + $3.00 shipping and handling (check or money order) to:

MultiBoot, Bolt Systems, Inc.
4340 East-West Highway
Bethesda, Maryland 20814
or call 1-301-636-7313
FAX: 1-301-907-8736 to order by Visa/MasterCard. Specify 3.5" or 5.25" diskettes.

*Maryland residents add 5% sales tax.

Ask about our volume discounts.

A Product of BOLT Systems Inc.

mentioned in his column that he would be getting one soon. One author in the issue claimed that the PC would be popular because (1) Digital Research’s CP/M-86 would catch on with the release of its DOS emulator and (2) Logitech would soon release a Modula-2 compiler for the PC that would open the door for new applications to be written.

Back to the Present

Today, OS/2 looks similar to DOS in 1982. Getting started costs about the same amount of money. Back then, a 256K-byte PC with two floppy disk drives (essential for development), a dot-matrix printer, an editor, and a compiler cost about $4500. Starting OS/2 with an 80286-based machine, an 80-megabyte hard disk drive, EGA, 4 megabytes of RAM, and basic software tools runs about $5000.

A sizable proportion of the software available now for OS/2, although not the majority, is useful mainly to developers. The learning curve is steep. The terminology of graphical programming interfaces, threads, queues, dynamic link libraries, and the rest takes some getting used to. But in 1982, who knew what “segments” and “offsets” were, or how to (or why) to hook BIOS vectors. The sole documentation on assembly language code was the IBM/Microsoft Macro Assembler manual, which explained nothing except which op codes were which. The MASM manual had no examples of actual assembler programs and no tutorial information.

The OS/2 development situation is, in some ways, better than the DOS situation was at the one-year mark. Developers understand the iapx86 architecture, although some relearning is needed to work with protected mode. And OS/2 documentation and third-party references are more plentiful than DOS books were in 1982. OS/2 is still a bit unstable, but compare it to DOS 1.0. Early DOS wouldn’t support serial printers and most utilities (e.g., BASICA and DISKCOPY). Also, it wouldn’t use the full 640K bytes, and hard disk drives weren’t supported. Vendors had to patch COMMAND.COM to make devices work!

Current OS/2 Applications

One source of application information for OS/2 is IBM and Microsoft’s Operating System/2 Application Guide. (To get a free copy, call (800) 426-2468, ext. 120.) The guide lists these 13 application categories (with the number of applications in parentheses): accounting (160), business (140), communications (100),

database (82), desktop publishing (17), engineering/scientific (78), graphics (66), industry-specific (240), miscellaneous (27), spreadsheet (5), tools (142), utilities (70), and word processing (14).

Note the profusion of industry-specific products—vertical-market packages. This mimics the DOS experience.

The accounting category contains, well, accounting packages. Business is a potpourri of everything from device drivers for WORM (write once, read many times) drivers to more accounting packages.

Two companies, GammaLink and Pacific Image, are offering fax boards and software—an ideal offering. Fax boards and PCs together have the advantages that they eliminate the need for a separate fax machine, print in higher resolution, and print on laser paper rather than the slinky fax paper. But they are less than perfect because they can’t provide a 24-hour-a-day incoming fax service unless you’re willing to dedicate a PC to faxing—which makes PC-based fax pretty expensive—or unless you run the fax board in a multitasking operating system. OS/2 and fax, then, are made for each other. A package from Inset Systems, HiFax, will convert image formats and from other graphics standards (e.g., .PCX, .DRW, TIFF, and .PIC) and just about any file format you can name.

Communications includes the usual array of 3270 and VT-100 emulators, as well as X.25 and TCP/IP gateways and development tools. Unlike DOS, OS/2 supported LANs almost from day one with the LAN Manager. LAN Manager’s performance is, even in its first version, on a par with older, more refined network operating systems. Also, it lacks their drawbacks, namely, alien file systems and the continual worries about, “Will this work with the next version of DOS?”

Some of the old favorites, like CrossTalk XVI, aren’t out yet for OS/2. However, there is no shortage of basic asynchronous programs, like Hilgraeve’s HyperAccess/5. Logistique LMM has offered its shareware Procomm-like Logicom for over a year now, and its my communications mainstay at the moment—not because of anything lacking from the other packages, but because I learned Logicom first and haven’t had time to explore the alternatives.

Databases are OS/2’s first application. R:base System 5 for OS/2 was one of the first, if not the first commercially available OS/2 application. Access to a lot of
Reach for ultimate portability

200 MBytes of power, speed and security in a revolutionary, removable hard drive.

At last, the Disk Pack gives you everything you've always wished for in a data storage system. The speed and high storage capacity of a hard drive. The ease and convenience of a floppy diskette. And the safety of a tape backup. All wrapped up in a state-of-the-art rugged unit, about the size of a paperback book. Designed to make your life a lot simpler and more secure.

True portability is here
Just picture this: With the Disk Pack you carry your whole work environment with you, wherever you go. All your files, all your data stay organized and configured just the way you created them. Between your office and remote sites. Or home. Or another department. You can even mail a Disk Pack. It's that rugged.

Total security for your data
Simply slide out a Disk Pack module and lock away your entire business customer base and payroll figures in a drawer or safe. Same for lawyer, banker or accountant sensitive data and Uncle Sam confidential information. All fully secured in a snap.

Blazing speed
Rock-solid reliability
Limitless expansion
Breakthrough technology makes the Disk Pack four to five times more reliable than other removable products. Access times as low as 13 ms make it one of the fastest hard drives on the market. The Disk Pack doesn't limit you to a single storage capacity either. You can interchange 20-, 40-, 80- or 120-MByte modules in your system and between systems. Link modules up for a whopping Half-GByte + of on-line data. Store them for unlimited off-line data. And do lightning-fast data backups.

That's not all. The Disk Pack turns a shared computer into your fully personal machine within seconds. It's ideal for space grabbing applications such as color graphics, CAD, or music. One Disk Pack module does the job of 100 diskettes. Ten times faster. And with a lot less hassle.

And thanks to the Disk Pack's unique architecture, you'll use it equally well on any Mac, Apple, PC-compatible or PS/2 computer. It's that advanced.

For more information call 1-800-322-4744

The Disk Pack is ideal for data security. Lock it away and forget about accidental or intentional data loss.

Circle 171 on Reader Service Card

MEGADRIVE
The new standard in data storage technology

For more information about Mega Drive Systems' new data storage technology, please use the information on the back of this ad. Thank you.
memory greatly improves database speed, as any user of one of the “extended” database products like FoxBASE 386 or Paradox 386 can attest to. Name any major database product, and it’s available for OS/2 now: Oracle, Focus, Informix, Paradox—even the product similar to dBASE III Plus, QuickSilver/SQL from Wadtech.

Large scientific and analytic programs are being moved from VS FORTRAN on IBM mainframes to OS/2, now that the memory to do these applications justice is available. Powerful programs like MACSYMA and Mathematica will no doubt show up in an OS/2 incarnation. Matrix manipulation, linear programming, and statistical packages are all either delivered or on their way. The same programs that you needed a mainframe to use five years ago fit in OS/2’s memory space quite nicely.

Every major desktop publishing package will be on OS/2 by the end of the year, as well as a few new ones. And where would desktop machines be without word processing? The two biggies, Word and WordPerfect, are both out in OS/2 versions. And they don’t run badly. IBM originally offered the first OS/2 word processor, DisplayWrite 4/2. Now there’s DisplayWrite 5/2. Of course, with all this memory and graphics, word processing will continue to look more and more like desktop publishing.

Do OS/2 Applications Differ?
At this stage in OS/2’s development, most programs are mere ports of DOS programs. This is, again, a repeat of the DOS experience, where the early DOS programs were ports of CP/M applications. The first dBASE II was indistinguishable from the CP/M version, as were early WordStar and VisiCalc. Ashton-Tate actually shipped the CP/M manual with the first dBASE II.

But OS/2 programs can be fundamentally different from DOS programs, for several reasons:

First, LAN capabilities are built into OS/2. Machine-to-machine communications avenues are right there. Developers needn’t muck around with NetBIOS to write LAN-aware applications. Remote execution (another feature built into OS/2) and a machine-to-machine communications system called named pipes provide the foundation for client-server-type applications.

Second, OS/2 provides system tools that make multitasking programs easy to create. For example, why should you have to wait while saving a file in a word processor? You should be able to keep working while the save goes on concurrently. This can be done under DOS, but it requires a lot of tricky code. OS/2 has built in, the notion of threads of execution. It’s relatively simple to set up a procedure within a program as a separate thread of execution that runs in parallel with the main program. In the word processor case, the “save” thread could save the file in the background while the main editing thread continued. The thread-creation and thread-termination mechanism is fast, and it involves fairly low overhead.

Third, OS/2’s minimum platform is richer than that for DOS. The DOS developer who wants to sell many copies must write a program that will run well on the average user’s machine. The average user doesn’t have a mouse, so the program shouldn’t require one (unless it’s a Windows program, which assumes that it’s on a platform that requires a mouse). There are several competing video graphics standards, and some video boards don’t support graphics at all, so you shouldn’t include graphics in a crucial section. Or, if you do support video, you must support all kinds of video—Hercules, CGA, EGA, and VGA at a minimum; AT&T, 3270 PC, 8514/A, and Professional Graphics Adapter in the next bunch; and so on. Ditto color. Very discouraging.

OS/2 eases the burden. The OS/2 developer knows that the target machine essentially must have a mouse and must have video, and the video is managed by the Presentation Manager (PM), so there’s no need to worry about what type it is.

Are OS/2 programs different from DOS programs? Initially, not so much, but the newer applications are showing off OS/2’s unique features.

How Not to Write an OS/2 Application
As I said earlier, at this stage in OS/2’s history, applications are generally just continued
No Other Company We Know Imprints a
Seal of Quality on Every Piece of Equipment it Ships.
This Seal Guarantees Our Customers that Every Component
has been Hand Inspected and Electronically Tested
for 72 Consecutive Hours or More.

We’re Proud of
Our Components
Compare our 386/25mhz features before you purchase
any other system:
- Intel 25mhz CPU chip is at the heart of our computer.
- Our chip set is from Chips and Technology.
- 80287/Wintel co-processor socket for future upgrade.
- The best diagnostic and set up software from AMI.
- 1mb of memory easily expandable to 8mb on the board.
- Western Digital 1.1 Interleave mfm controller for fast data
transfer.
- Seagate 32mb mfm hard disc with auto park provides
substantial storage capacity at a fast 28ms access time.
- Your choice of Tec!Q high density 1.2mb 5.25 or 1.44mb
3.5” floppy drive.
- Hercules compatible monographica card has 132
column capability. You also get color emulation and
screen saver software.

MULTIMICRO
386/20 for $1889
The same features and high quality components.

MULTIMICRO
Custom Computers
We’ll build whatever you need to the same exacting standards.

Our Warranty Is Simple
If anything goes wrong with your MultiMicro computer, we will repair or replace it for
one year from date of purchase.
At this stage, OS/2 applications are generally just DOS conversions.

DOS conversions. Let’s look at an example of how not to write an OS/2 application. I don’t want to name any names, because the product itself is good enough in its particular product category. Most of the current OS/2 programs share its sins, so I don’t want to beat up on it in particular. This application searches for data on a hard disk, akin to what GOfer does under DOS. It has the ability to search across a fairly wide variety of string patterns.

Under OS/2, this program doesn’t seem to have any new functions. Basically, you fill out a request screen that includes the search criteria that you want to use. I can say something like, “Find a line where ‘banana’ and ‘monkey’ show up, but not where ‘ape’ shows up.” Then the program starts searching over whatever paths and filenames I tell it to. Very nice.

But the program keeps grinding away, one file at a time. It informs me at the bottom of the screen that it has found, let us say, 30 proper matches. It is still working to find others. Think about that: This program has found 30 files that match my criteria, and it’s making me wait while it looks for others! That’s definitely crazy. The edit/display screen should come up immediately with the first match, and the program should then spawn a thread in the background to keep searching.

As the application searches, it comes across a system file, OS2.INI. It gets a “sharing violation.” Well, of course it does—that file is kept open by the system. Does it skip over it? No, it actually wants me to answer “Continue or Stop? (C or S)” for every silly open file. On DOS, that’s no sweat—there aren’t too many open files. But on OS/2? Give me a break. Even if the error were legitimate, the program should keep searching other files while waiting for advice on the problem file.

There are other problems, but you get the picture. Even big-name word processors don’t have background saves incorporated yet. DOS-ported programs exploit OS/2 features chiefly in cases where the developer has already labored to add a feature to the application that DOS lacked. The most common one is virtual memory. For example, BRIEF, a text editor under DOS, can edit files that are larger than memory. UnderWare, BRIEF’s developer, added extra code to provide the ability to spill file overflow onto a disk. UnderWare happily removed the extra code for the OS/2 version, because virtual memory is an automatic and integral part of OS/2.

The applications that exploit OS/2 features, as would be logical, are those that have been built from scratch under OS/2. Hamilton Laboratories’ Hamilton C Shell is an example of this. It makes disk searches seem much faster, for example, by cleverly exploiting multithreading. Since making an application a PM application requires some massive code rewriting, the pile of programs coming in...
for PM will no doubt be built to be more
OS/2-aware.

OS/2 Applications Will Appear
Unexpectedly high memory prices and
delays from Microsoft and IBM on devel­
oper tools have held back OS/2 develop­
ment. But memory prices are subsiding,
and the tools that are out now are fairly
good. Third-party debugging products
like Logitech's MultiScope are powerful
additions to any programmer's toolkit
that simplify development.

One reason why OS/2 applications will
probably continue to appear is that devel­
opers report that once they get started
with OS/2, they find that they like it as a
development environment. Since it is a
protected-mode operating system, appli­
cations cannot go too awry without tripp­
ing a protection exception that causes
the operating system to shut down the err­
ant program. Thus, a not-yet-debugged
program won't crash the entire system,
only its session, which is then easily
restarted.

I've yet to talk to a developer who was
dissuaded from working with OS/2 by
the quality of the tools. Those who
choose not to write for OS/2 say it's be­
cause OS/2 is Intel-specific, whereas
Unix is not; OS/2 requires too much
(compared to DOS) in terms of hardware
platforms; OS/2 is buggy; or OS/2
doesn't use the 80386 features yet, whereas some versions of Unix do.

Like all software, OS/2 will improve
with age. Around the time you read this,
OS/2 version 1.2 will be released. It will
incorporate fixes for things like the
brain-damaged print spooler and the lack
of printer drivers, as well as introduce
the much-improved file system.

Next spring, the 80386 version of
OS/2 will finally arrive in version 2.0.
That will spur even more software. Re­
member that the 80286, although blessed
with its protected mode that lets it ad­
deress 16 megabytes of memory, is cursed
with having to address it 64K bytes at a
time. This is not so with the 80386. It
brings a new protected mode, a 32-bit
mode that can address 4-gigabyte address
spaces, with segments as large as 4 gig­
abytes. No more fumbling with 64K-byte
segments!

There's a lot of software out there sit­
ting on IBM mainframes, VAXes, and
Unix boxes that hasn't been ported to the
PC, partly because it's such a pain to cut
and arrange everything to fit in the silly
small Intel segments. With OS/2 2.0, that problem will go away. The 80386
supports multiple DOS sessions, so ver­
sion 2.0 can provide the best of both
worlds—DOS multitasking and 80386
OS/2 features.

There are hundreds of OS/2 programs
in existence today—and thousands more
are still to come. Many are warmed-over
DOS applications. But native OS/2 pro­
grams will appear toward the end of this
year and the beginning of next year.
Memory prices are dropping, so the larg­
est hardware barrier to OS/2 acceptance
is slowly going away. The applications
are broad-based and apply to many in­
dustries and users. All these things spell
success for OS/2—even if not the kind of
success that IBM and Microsoft were
expecting.

Mark J. Minasi is a managing partner at
Moulton, Minasi & Company, a Colum­
bria, Maryland, firm specializing in tech­
nical seminars. He can be reached on
BIX as "mjminasi."

Desktop Publishing Together At Last.

mouse and menu interface in multiple windows. Use DeScribe to
create professional quality documents—anything from a quick memo
to a textbook. Price: $595. Thirty-day money back guarantee.
DeScribe, Inc.; 4047 North Freeway Blvd. Sacramento, CA 95834.
Tel: (916) 646-1111 Fax: 923-5447
We'll give you 30 days to plug our product.

Try our multi-user/multi-channel communication boards (and our promises) for 30 days with no risk.

You're looking at multi-user systems. You want high performance. High reliability. Great service and technical support. And real value. Trouble is, that's what every board company promises.

But whose promises can you afford to stake your reputation on? Ours. Because only DigiBoard dares to let you try us in the real world. With no risk.

With DigiBoard you can order any DigiCHANNEL multi-channel communications board and evaluate its performance for a full 30 days. Choose basic boards or the industry's fastest intelligent boards. PC-Standard or Micro Channel. Four, eight or 16 ports. Even a Synchronous option on some models.

While you're evaluating the performance of our boards, we hope you'll benchmark our technical support too. Customers tell us it's as great as our engineering. But enough talk. The only way to see how good we are is to try us. And now you can plug us in without risking a penny. Just plug into your nearest DigiBoard distributor.

Ask your DigiBoard distributor for our FREE booklet, How to Do Multi-User Right.
IBM has gone the distance for a qualifying Unix event. It has fully implemented AIX (its licensed version of Unix) on the PS/2s. All the pieces are there, and they all work. But why should you consider using AIX? And for that matter, why should you consider using Unix in any of its incarnations?

Who Wants Unix?
Although there are proprietary operating systems that may offer more capabilities for a specific task, Unix is a generally solid and widely accepted operating system that runs on the widest range of computers in the world. As a result, it offers a consistent kernel around which application programs can be wrapped, giving developers maximum portability for their work.

Unix was developed about 20 years ago at Bell Labs. Since then it has gone through many generations of design and distribution. It became a commercial operating system just before MS-DOS was thrust on the world, but at that time it was generally found only on large minicomputers and mainframes. Now that the microcomputer has grown to the power and capacity of the minicomputer of five years ago, Unix also is found on the desktop.

Unix utilities and file organization have been the model for the enhancements of MS-DOS. In fact, Microsoft once published a memo to developers that stated that each subsequent release of MS-DOS would bring it closer to Xenix (its license of Unix).

Unix is not a reasonable operating system for a single user running a single application program such as Lotus 1-2-3, although it is quite possible to do just that. Unix is a reasonable operating system for a single user doing several tasks concurrently; it is an excellent operating system for many users sharing computing resources and information.

Unix Versions and Politics
Unix goes by many different names (e.g., AUX, AIX, Ultrix, Xenix, and HPUX), but these names all reflect source code licenses from AT&T for roughly the same thing. Each vendor has added its own utilities and enhancements. The basic core and utilities remain the same throughout. Until recently, all the vendor licenses for Unix fell into two flavors, System V and BSD. System V represents the "pure" AT&T release. BSD (Berkeley Software Distribution) is connected with a path of parallel development from the common parent, System 7. BSD was the first version to take advantage of the virtual memory capability of the VAX. Nowadays, all Unix licenses have many BSD features and utilities.

continued
Recently, AT&T and Sun Microsystems (which is the major exponent of BSD) reached an agreement to codvelop the next release of System V, merging the two versions. But there was a strong negative reaction from many of the manufacturers of hardware for Unix, including Hewlett-Packard, Digital Equipment Corp., and IBM. Although each of these companies had adopted many of the BSD features into their systems of Unix, they believed that the coalition of AT&T and Sun shut them out of the control of the new standards. They decided to form their own standards organization, the Open Software Foundation. All members of this list of elite computer manufacturers contributed huge amounts of money and personnel to form OSF. IBM also contributed the source code of AIX, its enhanced version of Unix.

There is no doubt that AIX will be a major design element in the OSF standard version of Unix. And there is also no doubt that OSF will influence future releases of AT&T versions in the same way that BSD has. Although the union of BSD and System V spawned a new child, OSF, a child often influences the decisions of the parent. AIX will be an important element of design in all future versions of Unix.

AIX
Traditionally, IBM offered Unix only on its RT (RISC technology) machines. But last autumn, it announced that it planned to offer Unix on all families of computers, from its largest (3090-600) down to its smallest, the PS/2a, the first for which it was released. It is shipping, and it is good. But it's also immense. AIX for the PS/2a includes not only all the standard stuff (a selection of shells, editors, mail system, communications, compiler, report generator, calculator, and so on), but also networking protocols (TCP/IP), 3270 support for interfacing with traditional IBM machines, DOS as a guest operating system (Merge), communications with terminal emulation (ATE), and a generous supply of excellent tools for the application program developer.

With all the modules available for PS/2 AIX, there are 50, 1.44-megabyte disks. That comes to more than 70 megabytes for the operating system and associated utilities!

Installing an operating system of that size is no small matter. And, if this is your first time, plan on doing it twice. The first installation will serve to ensure that everything works. The second will be necessary to get the disk partitions that you really need. Don't plan on the second one until you have spent at least a few days experimenting with the first installation. Be sure to spend some of your time with Merge. Decide how much disk space you want to dedicate to pure DOS. Put aside at least 4 hours for each installation. (With experience, you can probably get that down to 2 hours.)

Merge
If you are a DOS user migrating to Unix, you will definitely want Merge (developed by Locus Computing) on your PS/2 AIX. When you run Merge, everything appears as it would when running a vanilla DOS, even though you actually running AIX as the host and the disk is really a Unix (AIX) file system. Merge manages and maintains DOS files and programs on an AIX partition. (As I mentioned, you may still want a purely DOS partition, though.)

Merge is really the hook in AIX that enables you to run DOS. It is not a DOS emulation like VPix (from Interactive Systems). With Merge, you actually install a fully licensed PC-DOS. Disk drives, serial ports, and the screen all behave as if you were running DOS independently of any other operating system. I actually ran System Sleuth from the Merge DOS (see the Short Take “Sleuthing Your Troubles Away,” June BYTE). Everything behaved as if there were nothing between DOS and the real physical devices, except when I was memory snooping: There appeared to be only 640K bytes of memory when, in fact, there were 6 megabytes.

DOS is run on a virtual machine, and the devices are managed by Merge and AIX. But your DOS programs will never know: a wonderful and useful illusion. It is so well done that you can easily forget that you are actually running Merge. The stand-alone DOS versus Merge DOS performance degradation is trivial (provided that you have sufficient memory in your system to dedicate 1 megabyte to the virtual machine).

AIX is Unix
It is nice to have a transition from DOS to Unix, but the real question is, how good is AIX as a Unix? There had been some rumors that AIX was not really Unix. Not true: AIX is real Unix (whatever that might mean). It will be fully POSIX-compliant. (POSIX is the operations specification currently being developed by ANSI and IEEE. It is being supported by the U.S. government and will probably be supported by the International Standards Organization.)
Analog Behavioral Modeling

The Analog Behavioral Modeling option for PSpice allows one to describe analog components, or entire circuit blocks, using a formula or a look-up table. For linear blocks, the description can be either a Laplace transform or a table of frequency response. Once defined, PSpice can simulate circuits including such blocks.

The ability to model entire blocks of circuitry is a powerful aid in designing a system from the top down. A functional block can be described by its behavior without worrying about how that function will be implemented. Later, the block can be replaced by the actual circuitry.

Another application is the modeling of electronic components which are not built into PSpice. The photo above shows an example of simulating the DC characteristics of a 3/2-power-law device.

Since its introduction over five years ago, MicroSim's PSpice has more copies sold than all other commercial Spice programs combined. Here are some of the features which have made PSpice so popular:

- Standard parts libraries of over 2200 analog models: diodes, bipolar transistors, small-signal JFET's, power MOSFET's, opamps, voltage comparators, transformer cores, and opto-couplers.
- GaAs MESFET devices, BSIM MOS model.
- Non-linear transformers modeling saturation, hysteresis, and eddy current losses.
- Ideal switches for use with, for example, power supply and switched capacitor circuit designs.

Besides Analog Behavioral Modeling, these other PSpice options are also available:

- Digital Simulation, which allows one to simulate mixed analog/digital circuits with feedback between the analog and digital sections.
- Monte Carlo analysis to calculate the effect of parameter tolerances on circuit performance. This includes statistical, sensitivity, and worst case analyses.
- The Probe "software oscilloscope" provides an interactive viewing environment for simulation results (see photo above).
- The Parts parameter extraction program, allowing one to extract a device's model parameters from data sheet information.

PSpice is available on these computers:

- The PC family, including the PS/2, running DOS, Protected Mode DOS, or OS/2.
- The Macintosh II.
- The Sun 3, Sun 4, and SPARCstation families.
- The Apollo DN3000 and DN4000 workstations.
- The VAX/VMS family, including the MicroVAX.

Each copy of PSpice comes with our extensive product support. Our technical staff has over 100 years of experience in CAD/CAE and our software is supported by the engineers who wrote it. With PSpice, expert assistance is only a phone call away.

For our free information packet, including a PSpice demo diskette, call us toll free at (800) 826-8603 or, in California, (714) 770-3022. Find out for yourself why PSpice is the standard in circuit simulation.
ALIX contains all the standard System V calls and utilities as well as most of the Berkeley calls and utilities. Where there are overlaps, Berkeley Unix is given the decision. For instance, is to the standard output (screen) defaults to a multipia-column list of the file subdirectory. The UUCP (for Unix-to-Unix communications) system is the HoneyDabber version, BNU (Basic Network Utilities). This more modern set of utilities has more versatile device-control tables and remote-site specific permissions offering better security than the earlier versions found on System V machines. None of the machines using the System V BNU were affected by last year's network worm that brought thousands of computers to a standstill.

The system administration and X Window management programs are IBM's own (more on these later). You will not find EMACS, but vi and its friends are there. The mail system is the Berkeley version. The compiler is IBM's. AIX looks like Unix, feels like Unix, acts like Unix, runs Unix programs, and is a Unix license. It is as solid as any Unix you will find. I have no complaints. In fact, I have many compliments.

Perhaps due in part to shared libraries, but also to good operating-system engineering and compiler design, AIX is faster and more efficient in almost every activity than other versions of Unix on the PS/2s. The only exception is an important one: floating-point operations. Without a math coprocessor, floating-point operations creep along. With the addition of this expensive piece of ceramic and silicon, the floating-point operations are marginally better than their non-AIX counterparts. (I obtained these results with an early version of the new BYTE Unix benchmarks [available on BIX or on disk; see page 3 for details]. Unfortunately, the 25-MHz PS/2 Model 70-A21 that I was using was also an early release, and the machine died before I could complete the benchmarks.)

Special Features
Not the least of my compliments for AIX comes from my gratitude for decent documentation. Although the binding of the documentation is far from elegant, the writing and organization are a considerable improvement over the standard AT&T documents. I have eight full sets of Unix documentation from various sources. The prettiest are Apple's A/UX manuals. But IBM's is the most useful and readable. Most Unix implementers do little more than republish the AT&T

continued
TimeWands - The Obvious Choice

You have specific bar coding requirements. That's why we give you a choice!

The TimeWand II is a ruggedized bar code reader ready for heavy-duty use. Its programmability allows your custom applications to be pre-set with prompts and cross-reference files. The large internal memory sizes of 32, 64, and 128K easily hold a day's worth of transactions along with the date and time of each entry.

If your data collection needs are simpler, the original TimeWand offers a cost effective alternative. The TimeWand date and time stamps each bar code scan, like the TimeWand II, but is contained in a smaller and lighter package. Even though it is compact, the TimeWand can still gather an impressive 2000 scans.

Both TimeWands transfer their data through the host computer's serial port where the data is stored in an ASCII text file. This allows the data to be easily combined with a wide variety of software packages.

Choosing either the original TimeWand or TimeWand II provides you with a quality bar code reader at an affordable price. Call Videx at 503-758-0521 and ask for your free information kit.

TimeWand (8K).................$248.00
TimeWand II (32K)............$698.00

Videx
1105 NE Circle Blvd.
Corvallis, OR 97330-4285
503-758-0521 * FAX 503-752-5285
See us at ScanTech, Oct. 17-19, San Jose, CA, booth #3529;
Comdex/Fall 89, Nov. 13-17, Las Vegas, NV, booth #2998; and
at AutoFact, Oct. 31-Nov. 2, Detroit, MI, booth #2659.
Finally... a professional menu system in a graphics environment for Turbo C, Microsoft C, Turbo Pascal:

 graphics-MENU

ONLY $99 (BOM) SOURCE AVAIL.

graphics-MENU from ISLAND SYSTEMS is a comprehensive utilities package that allows the developer of graphics software applications to quickly create a user-friendly interface. You can spend more time focusing on the internals of your application.

Mouse handling:
- Full keyboard support:
 - Pull-down menu & popup messages
 - Underlying graphic automatically selected
- Mouse drag menu/message to orbital image brace
- Shadowed menus create a 3-D effect
- Horizontal list with corresponding pull-down menus that may have nested submenus to any depth
- Popup message boxes with or without popup menus
- Popup menus in any arrangement
- Controls & gauges with analog style entry
- Analog clock, editable by moving its hands with the mouse
- Limitless hybrids of the above menus for customizations:
 - Geometric interface functions:
 - Point rotation, degree, direction, radians conversion, true 4-quadrant angle ranges
 - Color Customizer allows complete color control
- Data entry module (optional add-on) allows easy form generation with data validation and range checking

“We are also including two utility programs: CUREDIT and MenuDesigner. CUREDIT is a cursor icon editor that enables you to create custom cursor icons and associate them with any mouse button or chord.

MenuDesigner is a very powerful utility that enables you to create and view complex horizontal & vertical menu structures on-screen and then write the corresponding Turbo Pascal or Turbo C code to implement this structure in your application program.”

Table 1: You could spend around $4000 to become fully involved with AIX.

<table>
<thead>
<tr>
<th>Product</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS/2 AIX</td>
<td>Kernel and basic Unix utilities. 1- to 2-user license included; 1- to 16-user license: add $200.</td>
<td>$695</td>
</tr>
<tr>
<td>Operating Systems</td>
<td>UUCP: message handler, mail, and some extensions to system administration and user tools.</td>
<td>$275</td>
</tr>
<tr>
<td>Extensions</td>
<td>Tools and interface for the novice.</td>
<td>$275</td>
</tr>
<tr>
<td>DOS Merge</td>
<td>Plain ASCII text formatting and typesetting for CAT phototypesetter.</td>
<td>$220</td>
</tr>
<tr>
<td>Text Formatting System</td>
<td>Standard network and local windows communications and controls, including a primitive window manager.</td>
<td>$214</td>
</tr>
<tr>
<td>VS FORTRAN</td>
<td>VS Pascal</td>
<td>$302</td>
</tr>
<tr>
<td>IBM C Language</td>
<td>Application Development & Relocatable & Removable Libraries.</td>
<td>$302</td>
</tr>
<tr>
<td>Toolkit</td>
<td>Workstation Host Interface Program</td>
<td>$192</td>
</tr>
<tr>
<td>TCP/IP</td>
<td>Connections to IBM mainframes.</td>
<td>$441</td>
</tr>
<tr>
<td>Ten/Plus</td>
<td>Interactive Systems' visual shell, editor, and mail system for Unix.</td>
<td>$330</td>
</tr>
<tr>
<td></td>
<td>Total:</td>
<td>$3998</td>
</tr>
</tbody>
</table>

AIX product pricing:

IBM has completely edited the set and added many useful supplements. AIX’s implementation of Interactive Systems’ Ten/Plus user interface is a valuable addition. The core of this is INeed, an easy-to-use and aesthetically pleasing integrated file manager and editor. Although its not as rich in commands as vi or as flexible as EMACS, it is much easier to learn and allows multiple editing windows. INeed provides a history of versions of INeed files, from which previous versions can be reconstructed. Unfortunately, in order to provide all these facilities, INeed does not use plain ASCII files, although they can be imported and exported. Ten/Plus also includes a mail and remote-connect interface.

IBM has a more general-purpose windowed interface to AIX called Usability Services. I found this interface awkward and far from intuitive. It can be driven by a mouse, but it requires special Alt-key sequences as well. A good X Window manager and associated user environment would be far more useful than this product.

AIX does provide a solid port of the X Window System (from MIT). Although IBM contributed its own window manager, which provides little more than the public versions from MIT, all the parts are there if you wish to develop your own. I suspect that the AIX window manager is a stopgap until IBM starts shipping Motif (from the OSF), a truly complete graphical user interface and a probable winner on all counts.

Important Subtleties

Of direct importance to the developer and of indirect importance to the end user, AIX implements shared libraries. This means that those parts of different documents. IBM has completely edited the set and added many useful supplements.
programs that are the same are loaded into memory only once. Shared libraries do not become part of the programs until the programs actually run, rather than at the time the programs are compiled and linked. Because a substantial portion of every program is common, shared libraries may use less disk space. Processes that use shared libraries may also require less main memory but may load slower.

As with all modern versions of Unix, the AIX kernel provides some form of virtual memory, the ability to run programs that require more memory than is available in physical RAM. A process running under the kernel uses three standard virtual segments: a text segment (usually the executable code of the program associated with the process), a data segment (the location of most of the variables used by the program), and a stack (the active area used for parameter passing, register snapshots, and address stacking). The use of shared libraries may also specify additional text and data segments. AIX processes can also create segments that are shared with other processes.

With the exception of the ugly and unnecessary messages issued from the C compiler that inform you that your compiler is copyrighted by IBM, AIX development tools are excellent, efficient, and well documented. Virtual and shared memory, standardized program message services, program monitor tools, and an advanced symbolic debugger are features that enhance the standard Unix application developer's environment.

Virtual Terminals
AIX provides virtual terminals on the console (the screen and keyboard connected directly to a PS/2). But unlike SCO Xenix and Interactive Systems' Unix, AIX does not use a simple entry in the device directory that looks to the system administration like any other serial terminal connection. Instead, a user already on the system initiates a virtual terminal by issuing open followed by a command. For example, open sh opens a virtual terminal running the Bourne shell; open dos opens a virtual terminal running DOS; and open logln opens a new log-in. There are 17 virtual terminals available. A special key combination rotates through the active virtual terminals. Processes associated with a virtual terminal continue even when that terminal is not being displayed.

Weaknesses
The trend these days is away from stand-alone Unix machines. Networked workstations and Unix boxes are the fashion. Although TCP/IP is fully implemented in AIX, the Network File System (developed by Sun Microsystems) is missing, even though it is included in Ultrix (DEC's Unix) and the new System V.4 Unix standard from AT&T. Although NFS is missing, IBM has not been negligent. True to form, IBM is implementing its own network interconnectivity, the Transparent Computing Facility (TCF). (See "A Transparent Environment," July BYTE.) This provides far more utility and transparency than any other comparable system. But it is proprietary to IBM, a great weakness.

Another weak element in AIX for the PS/2s is the system administration interface. Old-time Unix systems required Spartan priests (always a rare class) as system administrators. AIX does provide a more consistent and carefully crafted set of system administration tools than were found in those antique systems. But its set of administrative tools is smaller than when compared to that of SCO and Interactive Systems.

There is no reason that a clever administrator couldn't pull the AIX tools together under a menu structure, but the whole idea is not to require a clever administrator. Small Unix systems seldom have more than a few users, none of whom should need to be wizards.

Why AIX on the PS/2s?
The PS/2 configured for AIX is not cheap (see table 1). It is more than twice as expensive as an 80386 AT clone running SCO. So why would anyone want it? And why did IBM develop AIX for the PS/2s? The PS/2 Models 70 and 80 are designed as full 32-bit computers (unlike the AT machines). AIX for the PS/2s takes advantage of the new hardware.

But of greater importance is IBM's commitment to AIX. At first, I questioned the sincerity of its announcement to put AIX on the entire range of its computer families. IBM's demonstration at the 1988 Fall Unix Expo started to build my confidence in the company. IBM has revived its RT line and has nearly completed a full AIX for the 3090. These efforts are encouraging. The implementation of the Loca Operating System as TCP is a great glue to bind together all IBM systems. But the one grain of sand that tipped the scales of belief is the trinket that IBM handed out at the 1989 summer Usenix, a little flashlight with the words, "We've seen the light: AIX."

Ben Smith is a BYTE technical editor. He can be reached on BIX as "bensmith."
DESQview 2.2 and DESQview 386. The multitasking, windowing environments that work with your favorite software.

DESQview™ is the operating environment that brings OS/2™ power to DOS. And it lets you, with your trusty 8088, 8086, 80286, or 80386 PC, leap into the next generation in PC productivity. For not much money: And without throwing away your favorite software.

Introducing DESQview 2.2
And now, DESQview 2.2 adds capabilities, performance, and compatibility enhancements you've been asking for:
Like being able to fine tune DESQview performance "on the fly." Run Lotus Express and Metro. And the Intel Connection Co Processor. Even use the DOS/4.0 shell with DESQview. Have DESQview automatically install Quattro, Sprint, Aldus PageMaker, Microsoft Excel, Word Perfect, Datasage and as many as 80 other programs. And using the DESQview API, be able to dynamically link them.

More bang: less bytes
While other programs get bigger, we've worked to make DESQview smaller. And we've succeeded in a big way on PCs and PS/2's with extended, EMS 3.2 (AboveBoard), EEMS and EMS 4.0 memory—as well as on 386 PCs and background. Run 32-bit 386 programs, like Paradox 386, and IBM Interleaf simultaneously with your favorite DOS programs. All with the speed and performance you expect out of your 386. And with protection against "misbehaved" programs.

Promise and performance
And, of course, both DESQviews have all the features that made prior versions the popular choice in operating environments. The ability to multitask in 640K and beyond. View programs in windows or full screen. Transfer data. Access DOS via menus. Dial your phone. And create keystroke macros within and between programs.

Our story gets better and better
If there's any doubt about our commitment to your PC and PS/2 productivity, just look at our accomplishments over the years. We think you will understand why GE, Ford, Aetna, Monsanto, and so many other major corporations use DESQview. And why PC Magazine twice gave DESQview its Editor's Choice Award for "The Best Alternative to OS/2," why readers of InfoWorld voted DESQview "Product of the Year" three times. Why, by popular vote at Comdex Fall for two years in a row, DESQview was chosen "Best PC Environment" in PC Tech Journal's Systems Builder Contest, and just won their "Professional Solutions" Award.

DESQview lets you have it all now.
QEMM.
Break the
640K barrier
for $59.95

Your 80386 PC, IBM Personal System/2 Model 80, PC or AT with 80386 add-in board, as well as your IBM Personal System/2 Models 50 or 60 can all break through the DOS 640K barrier. Now you can have maximum use of your memory—whether you have one megabyte or 32—with the Quarterdeck Expanded Memory Manager. All without having to purchase special expanded memory boards.

QEMM uses hidden features within your existing memory to make it compatible with the Lotus-Intel-Microsoft Joint Memory Specification (EMS) version 4.0.

Now you can run colossal spreadsheets, databases, and CAD models designed for expanded memory, using Lotus 1-2-3, Symphony, Framework, Paradox, AutoCAD, Excel and more.

And if you'd like to use these programs all together—multitasking beyond 640K—QEMM works with our popular DESQview multitasking environment.

If you are one of the 12 million or so 8088, 8086 or 80286 PC users who feel left out, don't despair. We have options that let you keep your computer and favorite programs and give you today what the newest PCs and operating systems are promising for the future.

Visit your dealer for more information on barrier-breaking Quarterdeck products.

DESQview API Toolkit.
New C and Pascal Libraries, Debugger.
Panel Designer. And more.

API Reference Manual
The key to the power of the DESQview API, our Reference Manual contains all you need to know to write Assembly Language programs that take full advantage of DESQview's capabilities. And there's a 'include' file with symbols and macros to aid you in development.

API C Library
Here are C language interfaces for the entire set of API functions. It supports the Lotus* C, Metaware* C, Microsoft* C, and Turbo C compilers for all memory models. Included with the C Library package is the API Reference Manual and source code for the library.

API Pascal Library
The Pascal library provides interfaces for the entire set of API functions. It supports Turbo Pascal V4.0 and V5.0 compilers. Included are the API Reference Manual, source code for the library, and example programs.

API Debugger
The DESQview API Debugger is an interactive tool enabling the API programmer to trace and single step through API calls from several concurrently running DESQview-specific programs. Trace information is reported symbolically along with the program counter, registers, and stack at the time of the call. Trace conditions can be specified so that only calls of interest are reported.

API Panel Designer
This interactive tool helps you design windows, menus, help screens, error messages, and forms. It includes an editor that lets you construct an image of your panel using simple commands to enter, edit, copy, and move text, as well as draw lines and boxes. You can then define the characteristics of the window that will contain the panel, such as its position, size, and title. Finally, you can specify the locations and types of fields in the panel.

The Panel Designer automatically generates all the DESQview API data streams necessary to display and take input from your panel. These data streams may be grouped into panel libraries and stored on disk or as part of your program.

More Tools are Coming
Quarterdeck is committed to adding tools as needed by our users. To that end we have been working with Ashton Tate and Buzzwords International on dBASE III and dBASEIV translators. And in the works, we have BASIC and DOS Extender libraries.

Quarterdeck Office Systems, 180 Pico Blvd., Santa Monica, CA 90405 (213) 392-9651 FAX: (213) 399-3802

For additional information, please use the following Reader Service numbers: DESQview: #282 QEMM: #283 API Tools: #284 API Conference: #285
With VM/386 Multitasking, Each DOS Stands Alone

Unlike multitasking environments which force each task to share one copy of DOS, VM/386 is the only 386 control program which provides complete task independence. With our virtual machine architecture, designed specifically for the 80386 microprocessor, you can even crash and reboot an application — without affecting any of the others. Richard Eckhouse of IEEE Computer said "Unlike other such systems, VM/386 not only works well, but seems to be unbreakable."

Each virtual machine is just like a stand-alone PC, complete with its own copy of PC-DOS or MS-DOS (the real thing, mind you, not an imitation). So each virtual machine in your multitasking environment gets its own terminate-and-stay-resident (TSR) programs, AUTOEXEC, and CONFIG files.

As Namir Clement Shammas said in our Byte review: "VM/386 provides you with excellent control for adjusting the performance and operation of each virtual machine." VM/386 gives you other kinds of flexibility, too. You can set I/O privilege level and interrupt priorities so multiple devices can be run simultaneously and efficiently. You can adjust the amount of memory used by each application, including extended and expanded memory. VM/386 even eliminates "RAM cram," because you load each application in its own virtual machine.

And, most importantly for anyone trying to control complicated systems, you can adjust time slices down to the millisecond level. Developers are using this feature to update virtual machine performance "on the fly."

Another significant capability of VM/386 is the ability to run graphics and communications programs full-time in the background. VM/386 supports MDA, Hercules, EGA, and VGA. It runs Novell, 3COM, and IBM Token Ring networks, and micro-to-mainframe communications.

Why wait for a "new" operating system, and its inevitable compatibility and "first-release" problems? With VM/386, it takes only a few minutes to set up a fully-configurable, DOS-compatible multitasking environment on your 386.

Call today: IGC, 4800 Great America Parkway, Santa Clara, CA 95054
Telephone: 408-986-8373
Toll Free: 800-458-9108

See us at Comdex Fall '89
West Hall Booth #856

Circle 139 on Reader Service Card
(DEALERS: 140)
LOOKING BEYOND THE DOS PROMPT

A host of products bring ease of use to DOS systems without resorting to a graphical user interface

Stan Miastkowski

That bland C> prompt that stares at you from your microcomputer's screen has long been the bane of many new (and even experienced) computer users. Despite all the publicity and excitement about the upcoming generations of graphical user interfaces that will supposedly make computers incredibly easy to use, GUIs are generally designed for high-end (meaning expensive) systems with lots of RAM, fast-access hard disk drives, and high-speed processors. And that's not to mention all the as-yet-un-delivered software that has to be fine-tuned to a specific GUI. (For a detailed look at the subject, see "A Guide to GUIs," July BYTE.)

That's all well and good for the future, but if you own one of the millions of low-end microcomputers, you've probably been feeling left out and even forgotten. That's especially true if your system is 8088- or 8086-based, since even low-end DOS GUIs, such as Microsoft Windows and DESQview, either are no longer available for your system or run unacceptably slow. And even if you have an early 6-MHz 80286-based system, you're still not out of the woods, since these systems often lack the power to handle the large disk space requirements and heavy computational loads that GUIs put on a system.

The C> prompt, or DOS prompt, is part of a command-line interface (CLI), in which text commands, entered line by line, direct the computer through a sequence of operations. It's actually a linear descendant of CP/M, the first truly useful and widely available operating system for personal computers. Although the folks at Microsoft would probably deny it, the first version of DOS was a hastily patched-together modification of CP/M concepts (though not the actual operating-system code). In an effort to capitalize on the usefulness of that early operating system, users have been saddled with that C> prompt ever since.

Enter the Shell

As microcomputers became the standard operating platform, it quickly became evident that users needed a better way to interact with their systems. While it usually takes only a straightforward command to start most applications, many users have problems remembering the syntax of even the common DOS "housekeeping" commands (have you ever remembered the precise arguments to format a 720K-byte, 3½-inch floppy disk without looking in a manual?). It only gets worse for those more useful but esoteric commands, such as XCOPY. And there are many things that plain-vanilla DOS just doesn't do well at all. A continued
case in point is the DIR command, which gives you an unsorted list of files that normally scrolls off the screen before you can find the specific file that you're looking for.

Since hard disk drives are nearly a standard component of most systems, many users quickly build up a large collection of files. And thanks to another of CP/M's legacies, filenames "eight plus three" naming limitation standard component of most systems, looking for gives you an unsorted list of files that you can find the specific file that you're looking for. If you remember what goes where, getting there requires that you manually type in a CD (change directory) command, plus the sub-sub-subdirectory name, which makes the whole process a pain. As the amount of information on your hard disk grows, the process of locating and using a specific file gets more time-consuming and frustrating.

The beginnings of the solution came with what are widely known as DOS shells. Shells are software (usually RAM resident) that "surround" DOS with a program that interacts directly with DOS'S COMMAND.COM. This file, the operating system's command interpreter, intercepts and translates text commands into the low-level system calls that DOS really understands. Another way to think of DOS shells is as integrated environments that sit between your application and the operating system. This extra processing layer extends DOS by adding functions and features that DOS doesn't have by itself.

More than 49 Flavors
DOS shells come in a wide variety of flavors and approaches, but they all have some features in common. Most are very simple file managers: they find, display, and organize files, usually by showing something on the screen beyond that mute C> prompt. That something is usually a list of files in an individual directory, and because plain-vanilla DOS displays files only in the order in which they were put on the disk, shells take the process one step further by sorting them, usually alphabetically. The best shells also give you the ability to sort them by various other parameters, such as size.

A common thread throughout DOS shells is their ability to easily navigate through the maze of subdirectories and files through the simple process of "pointing and shooting." Point to the file (by moving the cursor) and press Return (or click the mouse), and you're moved directly to it.

Another common feature of DOS shells is their ability to perform common DOS operations on files and subdirectories. Although not all packages contain all these features, most you can do the following:

- Copy files
- Move files
- View files
- Change file attributes (e.g., read-only, hidden)
- Delete files and subdirectories
- Rename files and subdirectories
- Create files and subdirectories
- Tag multiple files for other operations

The key to the usefulness of DOS shells is their ability to perform most of these operations on more than one file at a time. You perform these tasks without having to physically type in individual

continued
The GV286/120

STANDARD FEATURES
• 80286 running at 12 MHz zero wait state.
• Proprietary, 32KB on-board RAM cache circuit using high speed (35ns) static RAM.
• 640x480 RAM, expandable to 1MB on motherboard.
• Socketed for 10MHz 80086 math coprocessor.
• 5.25" 1.2MB or 3.5" 1.44MB floppy drive.
• Western Digital 1:1 interleave dual controller.
• Enhanced 101-key keyboard.
• VGA systems include a high performance, 16-bit video adapter with 512K RAM.
• 200-watt power supply.
• 2 serial/1 parallel port standard (on add-in card).
• ROM based set-up and diagnostics.
• Made in U.S.A.

VGA* Extended
Mono VGA Color

44MB, 23ms $2,524 $2,969
155MB, 18ms, ESDI $3,309 $3,699
320MB, 18ms, ESDI $4,199 $4,409

* Subtract $200 for TTL rather than VGA.

ON LEASE, FOR AS LOW AS $77/MONTH.

OPTIONS
• RAM upgrades.
• Intel 80287 math coprocessor.
• On-site service agreement.
• MS-DOS 3.3 or 4.01.
• Other hardware configurations available.

Call today for the lowest prices on some of the finest equipment on the market. Powerful, high-performance machines for the most demanding business applications.

But don't just take our word for it. When PC Magazine awarded PC Designs its Editor's Choice, it called us "a remarkable value." And, when PC Week polled 3,000 corporate volume buyers, PC Designs scored number one in more categories than any other manufacturer.

No wonder PC Designs has become "The People's Choice" among businesses coast to coast.

For direct-from-the-manufacturer-prices, call 1-800-627-3248

PC Designs

2500 N. HEMLOCK CIRCLE, BROKEN ARROW, OK 74012 918-251-5550 TOLL FREE 1-800-627-3248
FAX 918-251-7097 EBBS 918-252-9137

PRICES SUBJECT TO CHANGE. "386" IS TRADEMARK OF INTEL CORP. RESTOCKING CHARGES MAY APPLY TO RETURNS. CIRCLE 108 ON READER SERVICE CARD.
file or directory names.

Another crucial difference between GUIs and DOS shells is that the shells don't need to be aware of the applications. They'll gladly start any communications file or executable file. That's very different from a true GUI like Microsoft Windows or OS/2's Presentation Manager (PM), where applications must be specifically developed and tailored to the GUI's application programmer interface. Of course, you can run most off-the-shelf DOS applications with GUIs, but only through the pain-in-the-neck process of exiting from the GUI environment.

Memory, Icons, Mice, and Smarts

Until recently, one of the biggest problems with DOS shells was their RAM hunger. Early DOS shells often took up 100K to 200K bytes of precious RAM space. With today's power applications often requiring 512K bytes or even 640K bytes of RAM to run, the RAM requirements of some shells (nearly all of which are RAM-resident) was just too much.

That problem has largely been solved because the vast majority of DOS shells essentially unload themselves from RAM each time you run an application, leaving a small RAM-resident kernel that "calls back" the full shell when you exit the application. The Norton Commander is a case in point: Normally it takes up 140K bytes of RAM, but it can be configured to leave a small 12K-byte kernel when it's not being used. The DOS 4.0 shell option (described later) does basically the same thing.

Most DOS shells are character-oriented. They don't use those cute little icons, for a number of reasons. One is the simple fact that there are still lots of low-end DOS systems that don't have graphics cards or monitors, and one of the biggest selling points of DOS shells is that they're useful to virtually any DOS user, no matter how limited his or her system.

And with apologies to Macintosh aficionados, the jury is still definitely out on just how useful armies of icons really are. Remembering what a couple dozen cryptic icons actually mean can be as much of a chore as remembering esoteric DOS commands. In fact, GUIs such as Microsoft Windows and OS/2 PM use very few icons. Instead, they rely mainly on windowing concepts and plain text to get the message across.

Most DOS shells offer additional features for graphics-equipped systems, but icons are still rare, mainly because of the legal questions involved due to the Apple/Microsoft lawsuit. One company that's apparently not too concerned about the legal situation is IBM. Version 1.2 of OS/2 PM (due on dealer shelves by November) will feature many more optional icons, including the ability to design your own. Of course, the ideal situation is to give users a choice of text or icons.

Finally, all the DOS shells mentioned here, from the simplest to the most sophisticated, let you use a mouse if you're rodent-inclined. At the same time, none of them require a mouse. This reflects a still-deep-seated aversion to mouse use in the DOS world. Mouse users and keyboard users still have heated arguments over the relative merits of each method. However, mice are destined to eventually become a near necessity for the easiest access to DOS shell features. All the DOS shells I've used are easier and faster to use than their text-mode counterparts.

Looking Beyond the DOS Prompt
Are you asking yourself what a bear has to do with super speed, remarkable resolution and fabulous colors? We did, too. How can anyone bear to work with less than incredible speed, we asked ourselves. How can anyone bear to work without extraordinary resolution? Bear to work with less than 256 spectacular colors? We got so beared out, we decided to share one with you. Along with the bear facts about ATI's award-winning board.

Such as:
- high resolution 800x600 and 1024x768 graphics
- fast 16-bit bus support
- 100% register-level compatible in VGA®, EGA®, CGA®, MDA®, and Hercules® modes
- analog and digital monitor support
- easy, switchless installation
- high resolution and 132 column drivers
- Microsoft® compatible bus mouse and mouse port included
- available in 256K and 512K versions

Oh, and bear this in mind - when it comes to VGAWONDER®, you'll be getting a honey of a price!

For more information, contact your supplier or ATI Technologies Inc.
3761 Victorio Park Avenue
Scarborough, Ontario
Canada M1W 3S2
Tel: (416) 756-0718
Fax: (416) 756-0720

Circle 23 on Reader Service Card
to use with a mouse.

Recent DOS shells have become increasingly sophisticated. The crying need for an easier way to interact with DOS has spawned a new category of intelligent DOS shells. In addition to file management, intelligent shells can provide you with services based on a file's characteristics. They let you organize your data by function and context, and they essentially don’t care what directory the data is located in. For example, you can associate groups of files with a given program (e.g., these files belong to this spreadsheet program), or you can provide the ability to examine the contents of spreadsheet or database files without having to run a program (commonly known as “viewing”).

Forests and Trees

The tree is an aptly named term for a feature that lets you quickly find individual files in the “forest” of files that inhabit the typical hard disk. It's simply a visual—but not necessarily graphical—display of all the files and subdirectories on a hard disk. In fact, the TREE command has been a little-used feature of DOS since version 2.0, when subdirectories first became available. It was little-used for the simple reason that while it showed you the tree structure on your disk, it did little else. You still had to navigate your way through subdirectories by typing the CD command.

The first and still best known program to take the tree concept and actually make it useful was XTree from Execu­tive Systems (now called XTree Co.). Although it has gone through several iterations (XTreePro is now also available for networks and multiple disk volumes), its basic approach to dealing with DOS remains essentially unchanged. XTree’s main screen (see photo 1) is a window into your disk’s file system, with subdirectories shown in a tree structure. As you move from subdirectory to subdirectory, the files contained in that subdirectory are shown in a box below it. You can then perform those common file operations on one or more files by pointing to the file, pressing Escape, and choosing the operation.

XTree’s user interface is useful because of its elegant simplicity. And the product’s basic “look and feel” has been copied by a number of competitors, who have added their own changes, additions, and enhancements. Tree8.0 from The Aldridge Co., with its window into the file/directory structure, is similar but takes a more contemporary approach to its user interface by using “drop down” menus. Although its features are similar to those of XTree, Tree86’s less cluttered display is a closer-to-GUI approach that many users prefer. It also works best with a mouse, although one isn’t required.

And for those of you who would like to have DOS-shell power without a huge outlay of bucks, there’s a shareware tree-oriented shell called TreeView. From the folks who distribute a popular shareware package called AutoMenu, TreeView has a raft of features; these include the unique ability to display as many as six different directories and drives at the same time.
Letting You Be You

There is one big problem with most DOS shells: While they make dealing with the inadequacies and idiosyncrasies of DOS easier, they often add their own idiosyncrasies that you have to learn to live with if you use them. Like all applications, a DOS shell is one part program. File viewers are another (an informal writer’s) vision of what the DOS interface should be. Although the major packages that I’m talking about here usually have a wide-enough variety of features, some DOS shells are incredibly quirky, seemingly designed by a programmer from another dimension. As with all software, it’s best to try before you buy.

One of the most popular DOS shells gives you a choice in the matter. The Norton Commander, now in version 2.0, offers you what at first glance is an incredibly cluttered screen. But the usefulness and organization of what’s there becomes apparent quickly. And if you look carefully at the bottom of the screen (see photo 2), you’ll see the C> prompt innocently sitting there. If you’re an experienced DOS user, sometimes you actually want to bypass shell features and type in a normal DOS command. The Norton Commander is the only DOS shell that lets you do this, and it’s indicative of the careful design and hard thinking about user needs that the company puts into all its products.

The Commander was also the first DOS shell that recognized the real-world need to work with more than one directory at a time. Its “dual-window” approach also remains unique to DOS shells and makes the process of copying or moving files from directory to directory or from disk to disk particularly easy, because you immediately see the results of the operation.

Surprisingly, the Norton Commander didn’t add a tree display to its list of features until its second release, and then it did so only because Norton Commander users asked for it. Norton’s tree display is optional, and most users find that they really don’t need it because of the Commander’s screen display and the ease with which you can move among files and subdirectories.

Norton also was the first to add advanced file-finding features, and version 2.0 was the first DOS shell to offer contextual file viewers. These allow users to view Lotus 1-2-3 and dBASE files as they actually appear in the programs without having to actually start up the associated programs. File viewers are one of the most important add-on DOS features to come down the pike in years, and they play a crucial role in the utility of the new breed of intelligent DOS shells.

The Norton Commander sits squarely in the middle between standard DOS shells and intelligent shells. In fact, you might call it “semi-intelligent.” Taking a look at the work behind it also indicates that developing a truly useful DOS shell is far from a trivial exercise. The source code for the Norton Commander 2.0, for example, consists of some 32,000 lines of C and about 15,000 lines of assembly language.

At Long Last, DOS

With the release of DOS 4.0 last year, both IBM and Microsoft finally recognized the need to make DOS easier to use. DOS 4.0’s optional SHELL utility bears similarities to the GUI of Microsoft Windows and IBM’s PM, with pull-down and pop-up menus. That IBM included a shell in DOS 4.0 isn’t very surprising. It’s all in keeping with IBM’s commitment to its Systems Application Architecture (SAA), a wide-ranging user interface specification that IBM plans to implement for all its systems, from mainframes to minicomputers to workstations to microcomputers. The aim is connectivity, and the DOS 4.0 shell is SAA all the way (see photo 3). And because SAA supports both graphics displays and character-oriented displays, even non-graphics-equipped microcomputers can use it. This is, however, a trade-off, because SAA eats into system overhead and runs slowly on many microcomputers.

Unfortunately, there hasn’t exactly been a wild rush to DOS 4.0. Part of the reason is that the first release was buggy. And although IBM fixed the bugs in a later release last fall, DOS 4.0 still has an undeserved reputation for incompatibility with older DOS applications and as a RAM hog. But its $150 price tag, while just a bit higher than many stand-alone DOS shells, also gives you the full DOS operating system.

One particularly even-handed feature of the DOS 4.0 shell is the very fact that it is optional. DOS 4.0 and whatever comes after it are sure to become standards...
eventually, and it's only a matter of time before developers will take advantage of new features that will require you to use the latest and greatest DOS. But since DOS shells differ so much, there's still going to be a hot market for add-in shells, allowing users to choose the one (if any) that they're most comfortable with.

3-2-1 Launch
Another important part of contemporary DOS shell technology is the user's ability to point to a file and run it. There are two parts to this equation: application files and data files. As mentioned earlier, most shells let you point and shoot at any communications or executable file. Things get more complicated when you want to point to a data file and have it start up its associated application. Macintosh users have had this ability for years, because Mac data files have a header that identifies the applications that created them, but this feature hasn't been available for DOS. That's one area where GUIs shine, but that ability is now slowly becoming available for DOS users.

The Norton Commander and some other DOS shells have a rudimentary ability to associate data files with applications through the simple process of using common file extensions. For example, you can set up the Norton Commander to start up Lotus 1-2-3 every time you choose a filename with a.WK1 extension, or Microsoft Word when you choose a filename ending in .TXT. But true associative file management is only just beginning to become available with intelligent DOS shells.

Adding Real Intelligence to DOS with ViewLink
Perhaps the biggest problem with all the DOS shells I've talked about so far is that they force you to deal with the restrictions of DOS's set-in-cement hierarchical file structure. Although directories and subdirectories make lots of sense internally to DOS, when you stop and think about it, this linear way of working just isn't the way people work in the real world. This is where intelligent shells go a step further by associating data files to their programs.

At first glance, both Traveling Software's ViewLink and Lotus Development's Magellan look a great deal like standard DOS shells, but there's more there than meets the eye. These packages are multifunction software that, in addition to the features of standard DOS shells, incorporate some of the features of indexers, outliners, and even Macintosh HyperCard.

ViewLink links together your data and applications using a concept called views (not to be confused with viewing). Views are categories of related data. The crucial concept of ViewLink is that it lets you gather related data into groups based on your work preferences instead of what DOS forces you into.

ViewLink's screen display (see photo 4) is one of those ubiquitous split-screen views. It has the views (categories) on the left, and files you've associated with the views on the right. Initially, the views are primarily subdirectory names. Because the data files that you incorporate into a view are automatically linked to their associated programs, ViewLink has a Macintosh-like ability to directly start a program when you select the data file.

But in ViewLink's very power lies a paradox. Getting the most out of ViewLink requires a sizable time investment; there's a lot of work to do beyond the initial automatic installation. To get the most from the program, you have to spend a great deal of time continuously fine-tuning it. Having a sophisticated DOS shell that can adjust itself to the way you work sounds great, but the downside is that you have to take a hard look at your work habits. You'll eventually have a system that acts like it's a natural extension of you, but it takes a commitment that not everyone is willing to make.

The way ViewLink works is tightly tied to specific applications. The installation utility lists some 60 of the most popular application programs. You tell ViewLink which applications you'll be using, and it then goes through a multi-step process that links data files to views and applications, searching through your entire hard disk. The end result is a master link file that keeps track of views, data files, and the applications they're linked to.

Since Traveling Software has applied for a patent for the linking technology, details on it aren't available. But its sophistication is just a harbinger of what you can expect to see in future intelligent DOS shells. For a hard disk filled with nearly 50 megabytes of programs and data, ViewLink's master link file takes up only about 130K bytes.

Magellan's New World View
Magellan takes a different approach to dealing with data. It treats your hard disk continued
Up to date.
Down to earth.

Changing the world. UNIX is changing the world of computers, the world of business—quite simply, changing the world. It’s revolutionizing office automation. It’s required for U.S. government computer contracts. It’s the backbone of information strategies worldwide.

The information you need. That’s why you need UNIXWorld—the magazine that keeps you up to date on the rapidly changing world of open systems computing. Each issue brings you the latest product trends and technical advances that can affect your business. The inside story on some of the world’s biggest high-tech companies. Easy-to-understand programming tips and tutorials that can help you and your company use UNIX to its fullest. And unbiased hardware and software reviews to help you invest wisely when you buy.

The whole UNIX-verse. UNIXWorld’s in-depth features go beyond dry technical facts, to show how the pieces fit together—to tell you what’s important about the advances and the strategies that are changing your world. And UNIXWorld consistently offers the freshest, most down-to-earth writing you’ll find in any computer publication.

Subscribe and Save. Subscribe today, and receive the next 12 issues of UNIXWorld for just half the regular newsstand price. Save even more by ordering for two or three years. You can’t lose—every subscription to UNIXWorld comes with a no-risk guarantee.

1 year $18.00 (save 50%)
2 years $32.00 (save 55%)
3 years $42.00 (save 60%)

Subscribe now! Call toll-free: 1-800-341-1522

UNIXWorld

If you’re into UNIX, you need UNIXWorld Magazine.
When it comes to hand scanners, IMAGE IS EVERYTHING! NISCAN’s advanced image processing technology is well suited for desktop publishing, optical character recognition, and paint programs. All for under $300.

FULLY FEATURED!
Pass NISCAN over any photograph, text or illustration and watch as a crisp, clear image appears instantly on your screen. Then employ any of NISCAN’s advanced editing features to help transform the ordinary into the extraordinary.

NISCAN covers a full 4.2 inch path and has 6 software selectable dither patterns and 32 contrast levels. The NISCAN package comes complete with scanner, GEM scan software, half card and helpful users guide.

NISCAN IS COMPATIBLE!
NISCAN runs on IBM PC/XT/AT* and compatibles. Image files are easily used in most paint and publishing programs, including VENTURA PUBLISHER*, ALDUS PAGEMAKER* and PC PAINTBRUSH+*.

Call 1-800-245-SCAN today and let us tell you about optional optical character recognition, image vectorization and image file conversion software.

For more information or the nearest NISCAN dealer, call 1-800-245-SCAN.

LOOKING BEYOND THE DOS PROMPT

as a whole, creating a master index of all files and their contents. Magellan also uses a proprietary technology that Lotus first used in its HAL A1 interface to Lotus 1-2-3. Although HAL was a commercial flop, the technology behind it lives on. The Magellan index, which is the key to its incredibly fast performance, creates an index file that normally takes up only 5 percent to 10 percent of the data space. In hopes of making Magellan something of an “industry standard” DOS shell, Lotus has just released the Magellan Viewer Toolkit ($150). Designed for applications developers, it lets them integrate a Magellan viewer into their finished software.

The most unusual feature of Magellan is its use of custom viewers for popular applications (see photo 5). It goes beyond the limited file-viewing abilities of the Norton Commander. Magellan’s integrated viewing technology lets you quickly scroll through lists of files and see most files as you’d see them within the application. Magellan comes with 16 viewers that are automatically invoked, because the files and applications are linked to the correct viewers during the installation process. Magellan even lets you peek into binary files and shows certain packed files (.ARC) in their unpacked state—instantly.

Magellan’s index also links data files and applications for quick launching. And its other features are numerous, including the ability to do fuzzy searches using plain-English phrases in an “explore” function. This is DOS shell technology taken to its current limits.

Hope for the GUI-Deprived
Although all the attention of computer buyers seems focused these days on high-end systems and which GUI to choose (when, of course, they become generally available), the continued proliferation of products that enhance and extend plain-vanilla DOS and make it easier to use portends well for the numerous nonpower users of nonpower systems. And even many power users will find enough features in these products to decide to stay with DOS until they’re compelled to make the substantial investment in the hardware and software for advanced systems like OS/2. The reports of the death of DOS are greatly exaggerated.

Stan Miastkowski is a BYTE consulting editor, managing director of K+S Concepts (a documentation and consulting firm), and editor of the OS Report newsletter. He can be reached on BIX as “stanm.”
IBM, Compaq or ZEOS

- **PC Resource Magazine**, "ZEOS... provides quality comparable with IBM or Compaq and does so for about 70% of the price."
- **Personal Computing**, "ZEOS... is the best value we've come across... its performance is right up there with the slickest, most expensive PCs you can buy."
- **PC Magazine**, "Don't pass up the ZEOS... solid construction, flexible design and escape-velocity performance make it a top flight choice."
- **InfoWorld**, "We find the ZEOS 386 an excellent value. Speed: Excellent. Compatibility: Excellent. Value: Excellent."
- **PC Magazine** Editors Choice, "The ZEOS 386 blows away every other computer... a smart choice."

The Choice is Clear. Dial 800-423-5891

IBM is a registered trademark of IBM Corporation. Compaq is a registered trademark of Compaq Computer Corporation. ZEOS is a registered trademark of ZEOS International Ltd.

Circle 273 on Reader Service Card
Your best reason yet to move up to a '386. Now you can own a complete ZEOS '386SX 16MHz hard drive system for less than comparable '286 systems. The ZEOS '386SX. ZEOS performance, quality and support. ZEOS value. The Choice is Clear.

If you plan to buy a 16- or 20MHz 286 machine, think again.
A fundamental change in computing is about to take place. Systems based on the 80286 processor will be replaced by systems based on the 80386SX.
As America's premier manufacturer of 80386 based systems, we've designed the new ZEOS 386SX to provide everyone with a window to the future. A future of '386 speed and performance at a fraction of what you would expect to pay.
And ZEOS knows '386 systems better than anyone. After all, PC Magazine chose ZEOS above 57 other companies for "For Overall Excellence" in their recent '386 Blockbuster issue.
The new ZEOS 386SX simply runs circles around '286 based machines. PC Magazine noted that the ZEOS 16MHz 386SX compares "favorably with the 20MHz '286 machines reviewed in 'The 80286: Unsafe at Higher Speeds?'" (PC Magazine, December 27, 1988).
So forget those 16- and 20MHz '286 machines forever. The ZEOS '386SX-16 "blows 'em right out of the water;" As PC Magazine says, "386SX-based machines are the right choice..." and the new ZEOS 386SX is the right choice for you.

30 Day Absolute Satisfaction Guarantee. One Full Year Limited Warranty.
If a company believes in their product, they should stand Rock Solid behind it. That's why your new ZEOS 386SX hard drive system includes our famous 30 Day Absolute Satisfaction Money Back Guarantee, One Full Year Limited Warranty and Express Parts Replacement Policy.

24 Hour a Day Sales and Toll Free Technical Support!
And talk about service! ZEOS is the only computer company in America standing by ready to help you Toll Free, 24 hours a day, 365 days a year. Nobody supports their customers like ZEOS!
Order your new ZEOS 386SX now with confidence. Your choice of ZEOS quality and performance is Guaranteed. Order now by calling 800-423-5891.

All prices and specifications are subject to change without notice. Please call for current pricing and warranty details.
Price Barrier!

Only $1,695.

The New ZEOS 386SX Hard Drive System. Below 286 Prices!

Only $1,695

The future is now!

Why be left behind with yesterday's 286 technology? This fast new ZEOS 386SX system is your high performance ticket to 386 computing power. It's actually faster and yet less expensive than comparable 286 systems.

- 80386SX-16 CPU, 8/16MHz Dual Speed Keyboard Selectable. Reset/Turbo Buttons.
- 512K DRAM, expandable to a System Total of 16MB.
- Shadow RAM and EMS capability.
- Fast 32MB Seagate 138R Hard Drive with autopark, 1.2MB Teac floppy drive.
- Ultra high speed Hard/Floppy controller. 1:1 interleave, High Speed transfer.
- Genuine Hercules* brand graphics controller. High-Res Amber Display with Tilt/Swivel.
- ZEOS/RS Enhanced Tactile/Click keyboard.
- 2 High Speed Serial Ports plus one Parallel and one Game Port.
- 6:16, 2:8 bit expansion slots. 80387SX support.
- Rugged ZEOS space saver case. Security lock and LED indicators.
- Includes ZEOS 24 Hour a Day Toll Free Technical Support and Customer Satisfaction package.

Order Now Toll Free 800-423-5891

FAX Orders Dial: 612-633-1325
In Minnesota Call: 612-633-5911
MasterCard, VISA, ZCARD, COD
Open 24 Hours a day, 365 Days a year.

ZEOS INTERNATIONAL LTD

2EOS is a publicly traded company; MPLS/St. Paul Local (612) 496 ZEOS International Ltd., 530 5th Avenue, N.W., St. Paul, MN 55102.
ZEOS '386 Systems

"For Overall Excellence..."

Complete ZEOS 20MHz '386 System. 80MB SCSI Drive!

Only $2995
16MHz systems from $2295!

The standard by which others are measured! Featuring 64K CACHE (twice that of most competitors) providing Zero-Wait State performance vastly superior to page/interleave memory schemes. Incredible Value.

- High speed Zero-Wait 64K read and write-back SRAM CACHE. The fastest method known.
- Genuine 32-bit Intel 80386-20MHz CPU
- 1MB of Zero-Wait DRAM Extendable to 16MB.
- Fast 80MB, 28pins SCSI Seagate Hard Drive, Teac® 1.2MB Floppy Drive.
- High speed HDD/FDD SCSI Host Adapter with Software.
- Genuine Hercules® brand graphics controller. High-Res Amber Display with Tilt/ Swivel.

Performance Comparisons using PC Labs Benchmark Series Release 4:

<table>
<thead>
<tr>
<th>Model</th>
<th>8086A Instruction Mix</th>
<th>Floating Point Calculation</th>
<th>Conventional Memory</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZEOS 286/16 Desktop</td>
<td>3.81</td>
<td>13.82</td>
<td>0.56</td>
</tr>
<tr>
<td>ZEOS 286/20 Desktop</td>
<td>2.87</td>
<td>10.82</td>
<td>0.36</td>
</tr>
<tr>
<td>IBM PS/2 Model 70-861</td>
<td>4.01</td>
<td>16.04</td>
<td>0.75</td>
</tr>
<tr>
<td>Compaq Deskpro 386/16</td>
<td>4.12</td>
<td>15.47</td>
<td>0.75</td>
</tr>
</tbody>
</table>

- 101 Key ZEOS Tactile/Click keyboard.
- 2 High Speed Serial Ports plus one Parallel and one Game port.
- 1-32, 6-16 and 1-8 bit slots.
- 80387 math coprocessor support.
- Rugged ZEOS 5-bay case. Including Security Lock and LED indicators.
- Includes ZEOS 24 Hour a Day Toll Free Technical Support and Customer Satisfaction package.

Options Galore: Including 14" VGA, add only $695. And an incredible selection of hard drives:
SCSI, RLL, ESDI or MFM and virtually any other add-on you could want!!

Order Now Toll Free
800-423-5891

FAX Orders Dial: 612-633-1325
in Minneapolis Call: 612-633-4391
MasterCard, VISA, ZCARD, COD
Open 24 Hours a day, 365 Days a year.

All prices and specifications are subject to change without notice. Please call for current pricing and warranty details. ZEOS is a publicly traded company; MPLS/St. Paul Local OTC.

Fall 1989 • W Y T E IBM Special Edition
"Out of 104 machines from 58 companies... For overall excellence we selected ZEOS International's 386-16 and 386-20."

The Editors of PC Magazine came to this conclusion after investing "25,000 hours of work by 60 people testing and reviewing 104 '386 PCs.' The review was thorough and their conclusion specific. Simply, that out of all the manufacturers in the world, ZEOS offers you the very best '386 Value.

In all areas, ZEOS machines are top performers. With uncompromising attention to quality and detail throughout. Not only do ZEOS systems themselves afford you the very best Values in computing today, they're backed up by the strongest after sales support in the industry.

At ZEOS we feel that if a company believes in its products it should stand Rock Solid behind them.

That's why ZEOS offers Toll Free Technical Support 24 Hours a day, seven days a week, 365 days a year! At ZEOS, we believe in standing by our customers whenever they need us.

Then add our 30 Day Absolute Satisfaction Money Back Guarantee, One Full Year Limited Warranty and Express Parts Replacement Policy. You've got the best.

And when you order your ZEOS '386 you can have your pick from the industry's broadest selection of options. As PC Magazine said, ZEOS offers "more options than even the most configuration hungry hound could possibly need."

Quality, Performance, Reliability and Support. Overall Excellence. That's why ZEOS is PC Magazine's number one choice. And that's why ZEOS is your best choice as well. So pick out that dream machine today and order it now with confidence. Your choice of ZEOS excellence is Guaranteed. Order now by calling 800-423-5891.

Complete 25MHz '386 Vertical System. 80MB SCSI Drive!

Only $3995

Complete 33MHz systems only $4995!

ZEOS 25MHz and 33MHz 80386 systems are the fastest, most advanced available anywhere. Government Computer News calls the ZEOS 386-33 "arguably the fastest MS-DOS and OS/2 micro in the world." Review after review, these ZEOS systems are selected as the best price/performance buys. A power user's dream!

- Ultra High speed Zero-Wait 64K SRAM CACHE.
- Genuine 32-bit Intel '386-25 or 33MHz CPU.
- 1MB of Zero-Wait DRAM Expandable to 16MB.
- Fast 80MB, 28ms SCSI Seagate Hard Drive. Teac* 1.2MB Floppy Drive.
- High speed HDD/FDD SCSI Host Adaptor with Software.
- Genuine Hercules® brand graphics controller. High-Res Amber Display with Tilt/Swivel.
- BIOS and Video Shadow RAM plus EMS Support.
- ZEOS Tactile/Click keyboard.
- 2 High Speed Serial Ports plus one Parallel and one Game port.
- 1-32, 6-16 and 1-8 bit slots.
- 80386 math coprocessor support.
- Rugged ZEOS 5-bay case. Security Lock, LED indicators.
- Includes ZEOS 24 Hour a Day Toll Free Technical Support.
- Many options available: including 14" VGA, add only $595. Plus a large selection of SCSI, RLL, ESDI or MFM hard drives and more.

Order Now Toll Free

800-423-5891

©1989 ZEOS International, Ltd., 520 5th Avenue, N.W., St. Paul, MN 55112. All product and company names are trademarks or registered trademarks of their respective holders.

Circle 275 on Reader Service Card

BYTE IBM Special Edition · Fall 1989 119
Right Now. Guaranteed!*

Yes, we can ship your new ZEOS® '286 or '386 today! We've built up an extra supply of the hottest selling computers in America. The celebrated ZEOS 286-12 and PC Magazine's Editors Choice—the ultra fast ZEOS 386-20.

Take your pick now for immediate delivery. These are both complete, genuine ZEOS Zero-Wait state systems. Both include an ultra-fast Seagate hard drive and all the other goodies. And they're ready to ship. Right Now.

Here's how it works. We have these extra systems pre-built and ready to ship. They include both High Resolution Monochrome and VGA systems. While supplies last, we will ship either of these systems to you the day you order subject to these conditions:

1. Your order must be received by 1PM Central Time.
2. Credit Cards are subject to credit card authorization.
3. Orders must be for our standard 286-12MHz system or 386-20MHz system, either monochrome or VGA. Any other systems or upgrades are custom built and will take slightly longer.

*Our Guarantee to You:

If we fail to ship your system under the conditions outlined, we will ship it at our expense as soon as it is ready. All systems are fully burned in and tested. Each system includes our 30 day Money Back Guarantee and One Full Year Limited Warranty.

Plus 24 Hour a day Toll Free technical support and Express Parts Replacement are included too!

This offer is good only as long as these pre-built Complete ZEOS 12MHz '286 with 32MB Hard Drive!

Only $1,395
For VGA color add $395

FREE Shareware Disks Too! 25 Software Programs Included
Every system will include 25 ready to run Shareware programs on free disks. Included are programs for Word Processing, Spread Sheets, Educational, Financial, Business, Games and more. With Shareware you can try the programs first before you register them with the author. What a great idea!

Standard Features Include:

- 80286-12 CPU, 6/12MHz
- Dual Speed keyboard/hardware selectable. Reset and Turbo buttons right up front.

Performance Comparisons using PC Labs Benchmark Series Release 4:

<table>
<thead>
<tr>
<th>Model</th>
<th>Instruction Mix</th>
<th>Floating Point Calculation</th>
<th>Conventional Memory</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZEOS 286/12 Desktop</td>
<td>4.78</td>
<td>18.84</td>
<td>0.72</td>
</tr>
<tr>
<td>IBM PC AT (12MHz)</td>
<td>8.96</td>
<td>35.60</td>
<td>1.29</td>
</tr>
<tr>
<td>IBM PS/2 Model 30</td>
<td>7.43</td>
<td>28.34</td>
<td>1.06</td>
</tr>
</tbody>
</table>

- Fast 32MB Seagate 138R Hard Drive with auto-park, 1.2MB Floppy Drive.
- Ultra high speed Hard/Floppy controller: 1.1 interleave, 800 KB/sec transfer rate.
- Genuine Hercules® (Yes, Hercules!) Brand graphics card. High-Resolution Amber Display with Tilt/Swivel Base.
- ZEOS Enhanced 101 Key Keyboard with our Pleasant Tactile/Click Feel.
- Serial and Parallel Printer Ports.
- Clock/Calendar with Battery Backup.
- 6:16 and 2-8 bit expansion slots.
- 80287 support, up to 12 MHz.
- Heavy Duty Case Complete with Security Lock and LED indicators.

Order Now Toll Free 800-423-5891

All prices and specifications are subject to change without notice. Please call for current pricing and warranty details. COD orders may require an advance deposit. PS/2 and AT are trademarks of IBM Corporation.
systems remain in stock; please give us a call to verify availability. This offer does not apply to other ZEOS systems or custom configurations.

Immediate shipment is only part of the story.

ZEOS builds Rock Solid computers. That's why we offer you our 30 Day Money Back Guarantee, Toll Free technical support and Full One Year Limited Warranty. Compare that to the others. Then compare performance. Performance is what ZEOS is all about. If you're buying a computer you may as well buy the fastest. The ZEOS 286-12 is the fastest in its class. It features true Zero-Wait state operation with speeds close to many 386 systems!

Or select the ZEOS 386-20. The Editors of PC Magazine did. In fact, they said "Out of 104 machines from 58 companies... for overall excellence in both the 16- and 20MHz categories, we selected ZEOS International's 386-16 and 386-20." And ZEOS 386 systems have racked up three PC Magazine Editor's Choice awards so far this year!

PC Resource Magazine put it this way "ZEOS... provides quality comparable with the IBM or Compaq and does so for about 70% of the cost." Personal Computing simply says "The best value we've come across so far."

We couldn't have said it better ourselves.

And these are the machines that we have ready to ship to you right now. Rock solid block buster ZEOS machines with quality and performance that is, in a word, Guaranteed. Order now by calling 800-432-5891.

Complete ZEOS 20MHz '386 with 80MB 28ms SCSI Drive!

Only $2,995
For VGA color add $595

Standard Features Include:
- Genuine 32-bit Intel 80386-20MHz CPU.
- High speed Zero-Wait 64K SRAM CACHE.
- 1MB of Zero-Wait DRAM Expandable to 16MB system total.
- Fast 80MB, 28ms SCSI Seagate Hard Drive, 1.2MB Floppy Drive.
- Ultra high speed Hard/Floppy SCSI controller.
- Genuine Hercules® Brand graphics card. High-Res Amber Display with Tilt/Swivel Base.

Performance Comparisons using PC Labs Benchmark Series Release 4:

<table>
<thead>
<tr>
<th>System</th>
<th>30356 Instruction MInst</th>
<th>Floating Point Calculation</th>
<th>Conventional Memory</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZEOS 386/20 Desktop</td>
<td>2.87</td>
<td>10.34</td>
<td>0.39</td>
</tr>
<tr>
<td>IBM PS/2 Model 70-121</td>
<td>3.54</td>
<td>12.73</td>
<td>0.61</td>
</tr>
<tr>
<td>Compaq Desktop 386/20a</td>
<td>3.91</td>
<td>15.48</td>
<td>0.40</td>
</tr>
</tbody>
</table>

Order Now Toll Free
800-423-5891

FAX Orders Dial: 612-633-1325
In Minnesota Call: 612-633-4991
MasterCard, VISA, Z Card and COD
Open 24 Hours a day!
ZEOS International, Ltd.
530 5th Avenue, N.W.
St. Paul, MN 55112 USA

ZEOS INTERNATIONAL LTD

Designed by a trademark of Compaq Computer Corporation. Corporate leasing plans are available. ZEOS is a publicly traded company; MPLS/St. Paul Local OTC. © 1989 ZEOS International, Ltd.
Terminal emulation doesn’t have to be this way.

We’ve all been there. Trying to remember whether the “Do” key is really <Ctrl-F1> or was it <Alt-F1>? And the editing keypad. Can you be absolutely sure you’re about to press the “Select” key and not the “Remove” key? The results can be disastrous.

That’s why KEA developed the PowerStation. The PowerStation is an exact VT200 layout keyboard bundled with VT240 or VT220 terminal emulation software, turns your IBM PC or compatible into a key-by-key replica of a DEC terminal – without messy labels! But what does that get you?

Peace of mind. The PowerStation keyboard takes the frustration out of switching between a DEC terminal and a PC because each key is right where you’d expect it to be. And our “Gold Key” version makes ALL-IN-1 and WPS a breeze.

Savings. If you think you can’t afford both emulation software and a keyboard, think again! The PowerStation can actually save you money by eliminating the time you waste every day translating between VT and PC keystrokes. And with the PowerStation, startup training costs are virtually eliminated.

Consistency. The PowerStation keyboard provides a consistent interface for both VT emulation and regular PC applications. In emulation mode you get the 105-key functionality of a real DEC keyboard and in PC mode you get a super enhanced keyboard. And you can use the PowerStation on virtually any PC! Move between an XT, AT, PS/2, AT&T PC and a DEC terminal without missing a keystroke.

The best in terminal emulation software. With the PowerStation keyboard you get the fastest, most precise, DEC terminal emulation software available: ZSTEM. You have the choice between two popular software packages: ZSTEM 240, our VT241/VT340 graphics emulator and ZSTEM 220, our VT220 text emulator. Both packages will impress you with their speed and feature-by-feature accuracy.

To top it off, the PowerStation gives you all this at a surprisingly low price. But find out for yourself why Digital Review Labs say “the PowerStation 240 is a godsend.” Call us at 800-663-8702.

PowerStation and ZSTEM are trademarks of KEA Systems Ltd. All other brand and product names are trademarks or registered trademarks of their respective holders.
Before you abandon DOS for other operating systems, look to expanded memory

David M. Yancich

As application programs become more powerful and flexible, the demand on system memory increases. When the system is based on real-mode, segmented-addressing processors, such as the 80x86 family, that demand often results in the 640K-byte limit being exceeded. However, if a large portion of the application's memory requirement is for data storage, there is a simple remedy.

The Lotus/Intel/Microsoft Enhanced Expanded Memory Specification (LIM/EEMS) can relieve much of the data storage burden from conventional memory by providing access to as much as 32 megabytes of additional memory.

Expanded Memory

The 80x86 processors, operating in real mode, have physical addressability to 1 megabyte of memory. Although the 80286 and 80386 processors have greater physical addressing capabilities when operating in OS/2 protected mode, when running in real mode they have the same 1-megabyte limitation. EMS was developed to allow real-mode processing to have access to additional memory. It uses a technique called paging, or bank switching. Simply put, paging redirects memory accesses within a 64K-byte, or larger, window of the 1-megabyte physical address space to memory outside of that space. The requirements for expanded memory include additional hardware (in the form of bank-switching registers) and a software device driver. The bank-switching registers act as gateways between the “physical” window within the 1-megabyte space and the “logical” memory that resides on the expanded memory board. The device driver, called the expanded memory manager (EMM), controls the registers so that a program’s memory accesses can be redirected throughout the entire range of available expanded memory. The physical address window consists of a minimum of 64K bytes of unused contiguous memory-address space, accessible in four 16K-byte pages. Each page can be individually addressed and directed to any part of the expanded memory, which is also accessible in 16K-byte pages (see figure 1).

A program that has not been written specifically to take advantage of expanded memory will gain no benefit from it, no matter how much expanded memory you have in your system. To access expanded memory, a program needs to communicate with the EMM for the purposes of verifying hardware/software functionality, allocating memory, “mapping” physical pages with logical pages so that memory accesses are routed to the proper place, and deallocating expanded...
We're looking for retired managers who want to get back into action."

Hamid W. McGraw, Jr.
Chairman Emeritus, McGraw-Hill, Inc.
I'm a volunteer supporter of the International Executive Service Corps, a not-for-profit organization with a vital mission:

We send retired U.S. managers overseas to help businesses in developing countries, which often respond by increasing their imports of U.S. goods. In fact, developing countries consume about 40 percent of U.S. exports.

As an IESC volunteer, you would not get a salary. But you would get expenses for you and your spouse, plus a world of personal satisfaction.

IESC leads the field in this kind of work. We've done over 9,000 projects in 81 countries. We could have a project just right for you. To find out, send this coupon to: Harold W. McGraw, Jr., Chairman, McGraw-Hill, Inc., P.O. Box 10005, Stamford, CT 06904-2005.

International Executive Service Corps

Dear Mr. McGraw: Tell me more about becoming an IESC volunteer. I am a recently retired manager or technician—or about to retire—from a U.S. company. I'm free to accept an overseas assignment. I understand that volunteers receive expenses for themselves and their spouses, but no salary.

Name
Address
City State Zip

In what publication did you see this ad?

Using Expanded Memory

Many of the programs that I have written have been for real-time data acquisition and data analysis, applications that require substantial data buffer and data array sizes. Storing this data in expanded memory allows me to generate more code to increase program functionality and user friendliness.

I have developed and placed in the public domain a library for use with Microsoft C that has functions that dynamically allocate and access expanded memory, similar to C's intrinsic malloc() functions. There are several issues that should be considered when developing code that will access expanded memory, and I will suggest some techniques that may be of interest.

First, you need the low-level functions that allow the application code to communicate with the EMM. The EMM is accessed using software interrupt Ox67. Most C compilers have functions that execute software interrupts. Microsoft C includes several variations, of which interrupt Ox67() and int67x() provide all the proper register passing required to execute the EMM (see listing 1). The functions I will describe were developed using this method. So, while developing these functions is essential to all subsequent steps, the work has largely been done. Complete details of the EMM functions are available from Intel (EMS) and AST Research (EEMS).

When I was writing my programs, I wanted to allocate expanded memory in a manner similar to allocating standard memory using the malloc() functions. I therefore needed a function that would check for memory availability, allocate the desired number of pages, and return some type of information to inform the program of the results. But unlike with malloc(), more information than an address would be necessary. The function, which I call xpmalloc(), returns a pointer to a structure that contains the information shown in listing 2.

Continued
Okay, we admit it may not be as profound as Einstein’s Theory of Relativity. But, if you’re a computer user, we bet it’s a lot more, shall we say, “relate” — not to mention a whole lot more sensible.

The “C” stands for CompuStar® — the world’s first and only multi-processor, convertible bus™ microcomputer. And, as the theory states, CompuStar means AT, MCA and EISA compatibility — all in a single system.

A CONVERTIBLE BUS?

Each CompuStar features snap-in bus “modules” that let you convert from one bus standard to another — a PC/AT™ bus, a PS/2™ (MCA) bus... or both!

SNAP-IN PS/2 AND AT BUS MODULES.

Depending on configuration, you can have up to 13 AT™ and/or PS/2™ bus expansion slots. Plus, when the new EISA bus becomes popular, we’re licensed to offer it as well.

THREE COMPUTERS IN ONE.

Buses are not the only thing you can reconfigure in a CompuStar. Each system can be equipped with any of three CPU Modules — an 80286, an 80386 and soon — an 80486! Since the modules are interchangeable, you won’t have to worry about buying the wrong computer system. We’ll even let you trade-in your CPU Module toward the purchase of any of the other more powerful modules.* But that’s not all. CompuStar features an incredible seven disk/tape compartments that we’ll gladly custom configure for you at the factory. No matter what your application, we can tailor fit a CompuStar to match it precisely.

CPU MODULES ARE INTERCHANGEABLE.

IT’S NUMBER ONE RATED.

If you’re thinking a computer with as much flexibility as CompuStar would have to compromise something, like performance — think again. The CompuStar is one of the fastest, most powerful systems available. In fact, CompuStar’s performance and flexibility so impressed InfoWorld magazine they gave it the highest rating of all hardware products tested in 1988! That’s astonishing when you consider you can buy a CompuStar for thousands of dollars less than a comparably equipped system from IBM or Compaq.

If the next generation in personal computers is what you’re shopping for, why not call us today at 803/796-7800 to arrange a no obligation, 31-day CompuStar™ trial in your office? Relatively speaking, it’s the only sensible thing to do. VAR inquiries also welcome.

Corporate Headquarters: 3243 Sunset Boulevard • West Columbia, SC 29169 • 803/796-7800 • FAX 803/796-7029

1Personal Computer AT, AT, PS/2 and IBM are trademarks of International Business Machines Corporation. 2MCA is a trademark of IBM.

*Some restrictions may apply. Call us for details on our trade-in and total customer satisfaction programs.
standard memory allocations, the requested amount of expanded memory is reserved by calling this function, but access requires slightly more preparation.

The next issue to consider is the size of your largest memory allocations and accesses. There are two possibilities: sizes greater than the physical window size (64K bytes) and sizes less than 64K bytes. To access expanded memory, the physical and logical pages first have to be mapped. Since the size of the physical window is 64K bytes, access to data elements greater than that requires new logical pages to be mapped into the window space.

From a programming aspect, this requires that the index into the data be constantly monitored so that if it crosses the 64K-byte boundary, the proper page remapping can occur. If the data size is less than 64K bytes, this is not a concern. As four 16K-byte pages can be mapped at a single time, direct access to 64K-byte memory can occur without the need to remap pages. Obviously, there is a trade-off between performance and array size.

I decided to develop two functions that would take care of page mapping and boundary checking when used with data arrays larger than 64K bytes: one for reading data, and one for writing data. The parameters passed to these functions are the data item index, the data value (writing) or pointer-to-data variable (reading), and a pointer to the xpmalloc structure, which was returned by xmalloc(). The values in the xpmalloc structure are used in the boundary-checking algorithms and page mapping procedures.

The functions must be defined for a specific data type so that an element size is known. For example, if the data is to be an array of float, the functions would use (sizeof(float) * index) to determine if the 64K-byte boundary has been crossed. If the boundary is crossed, new logical pages must be mapped into the physical window.

The next starting logical page number can be calculated by ((sizeof(float) * index) / PAGESIZE), where PAGESIZE = 16K bytes. This new logical page, and all higher logical pages allocated to this array, are then mapped into the physical window, allowing access to data elements beyond the 64K-byte boundary.

It's important to be aware of how page remapping changes the effective index into the data array. Since the physical window consists of 64K bytes of contiguous address space, a conventional memory access for element (64K bytes / sizeof (element)) + 1 would have an address that points outside the physical window. Because the new logical page was mapped into the window starting at the first physical page, the effective index for that element is 0 (see figure 2).

My data-accessing functions use a simple mod operation (index % 64K bytes) to calculate the proper physical address associated with the passed index parameter. When programs use these functions, every data access is checked for boundary integrity, causing a performance penalty. However, if the data array must be larger than 64K bytes and the application needs to access the entire array in a random order, the trade-off continues.

Figure 2: A conventional memory access for element (64K bytes / sizeof (element)) + 1 would have an address that points outside the physical window.
DRAW YOUR OWN CONCLUSIONS.

Over 200,000 people have discovered that Generic CADD is the most versatile and accurate drawing tool on their desk. Call for our new Generic CADD Sneak Preview™ disk ($9.95) or our free CADDalog and see why it's the #1 selling low-cost CADD program. Then start drawing a few conclusions of your own.

1-800-228-3601
favor the boundary-checking function.

When you use expanded memory allocations with third-party memory functions, remember that these functions expect to have access to contiguous addresses. No logical page mapping can be performed externally. Thus, access is strictly limited to physical window size.

Again, in cases where the size of the data is less than 64K bytes, you don't have to do any boundary checking. All required pages can be mapped, and access can occur. Limiting data sizes to the window size is the most straightforward way to access expanded memory. Listing 3 shows an example of allocating and accessing a 32K-byte integer array (within the physical window size limit, with the EMM functions assumed available).

Allowing multiple data allocations has an effect on the page mapping. If only one data allocation is involved, and it is less than 64K bytes, you can map the pages once and forget about them without incurring any further performance penalty. Clearly, this is the simplest and most direct access of expanded memory. If multiple allocations are involved, and their sizes are less than 64K bytes, logical pages should be mapped before access and unmapped after access (unmapping protects the data from inadvertent accesses). This creates a performance penalty when random accesses to different arrays are required. To reduce this penalty, as many continuous accesses to a single array as possible should be performed before the pages are remapped for a different array access. If both size and multiple allocations are involved, you incur the greatest penalty from the combination of boundary checks and page mapping.

The xmalloc structure includes an integer member, accessedFlag, that indicates which data allocation is currently mapped. If the same array is accessed several times in a row, the check for this flag will reduce page mappings and improve performance. Another point to remember when you're allocating expanded memory is deallocation. When your program terminates, all allocated logical pages must be deallocated, or they will be inaccessible for future use until the system is rebooted.

Specific Specifications
The latest expanded memory specifications are EMS 4.0 and EEMS 3.2. These two versions offer several benefits that greatly enhance their use. The major enhancement to both specifications over earlier versions is the ability to have larger physical address windows. This removes the 64K-byte direct-data-access limitation and allows direct access up to the window size.

The window size will vary from system to system, depending on the amount of unused contiguous address space. Access to a larger window cannot be accomplished by installation of the later version of the EMM alone; an expanded memory board that supports larger windows (i.e., has more bank-switching registers) is also required. Use EMS function 25 (Get mappable physical address array) or EEMS function 33 (Get standard physical window array) to determine the maximum window size that is available in your system.

Along with larger windows in high memory (above 640K bytes), mapping into conventional memory-address space is allowed, but this technique was actually included for operating-system access. Several functions available in the latest versions of the specifications offer enhanced capabilities, such as easy manipulation of memory—both expanded and conventional—and multiple page mapping with a single call.

For example, EMM function 24 provides memory move/exchange capabilities without page mapping. I found this function useful in saving screen images to expanded memory when developing a "windowing" user interface. EMS function 17 will map all pages within the physical window size in one call, which is useful in reducing the performance penalties in page remapping. Some benefits of the latest versions of the specifications require supporting hardware, but some do not. If you have earlier versions of the hardware, you can still install EMM updates and gain some benefits.

The expanded memory specifications have been around for several years, but until recently their use has seemed something of a black art known only to major application or operating-system developers. Today, many well-known and not-so-well-known applications have begun to exploit expanded memory and the EMM functions. If your application is knocking on the 640K-byte door, before you decide to move to OS/2 or other operating systems, give expanded memory a look.

Editor's note: Source code in C for the memory-allocation functions library is available on disk and on BIX. See page 3 for details.

David M. Yancich is a systems consultant in Baltimore. He can be contacted on BIX p/o "editors."
MOSAIC TWIN® LEVEL III

- Faster Recalculations Than 1-2-3®
- 3-D Worksheets
- Multiple And 3-D File Linking
- Enhanced Recalculation Speeds & Minimal Recalc
- Background Recalc
- Search And Replace
- Auto-Learn Macros
- Forms And Expanded Data Base Features
- Multiplan® And Excel™ Like File Consolidation
- On-Screen Memory And File Indicators
- 17 Types of Quality Presentation Graphics
- TEXT Charts
- Reads And Writes 1-2-3 Files Directly
- Exclusive "User Definable" Functions. This Breakthrough Feature Allows The User To Build Any Desired Function Within The Spreadsheets.

MOSAIC Marketing, Inc.
1972 Massachusetts
Cambridge, MA 02140
617-491-2434

$249

COMDEX/Fall 1989 November 14-18, 1989 • Las Vegas, Nevada • Booth #1208

Circle 185 on Reader Service Card
C_talk/Views is a development tool for C programmers that not only reduces the complexity of Microsoft Windows but also slashes development time by up to 75%.

Delivers on the promise of Object Oriented Programming.
Encapsulates more MS Windows functionality than any other tool on the market today. Get MS Windows applications off to a fast start with a framework of over 50 tested and ready-to-go object classes.

Provides support for the entire project.
Comes with Browsers, Intelligent Make, Application Streamliner, and an Interface Generator.

Gives you complete control.
Programming is still in C - use existing C libraries or call Microsoft Windows functions directly.

Offers real Object Oriented Programming.
Supports inheritance, encapsulation, and dynamic message binding. It is fully polymorphic - write less code than with other Microsoft Windows tools.

Pays for itself on even the smallest project.
Only $450.00 with no royalties. Comes complete with source code.

Watch for C_talk/Views for OS/2 PM, the Apple Macintosh and X Windows. Develop one program for all platforms.

C_talk/Views
From CNS, Inc.

CNS, Inc., Software Products Dept.
7090 Shady Oak Road, Minneapolis, Minnesota 55344
(612) 944-0170, Fax (612) 944-0923

© Copyright 1989 CNS, Inc. All rights reserved. Microsoft is a registered trademark of Microsoft Corporation. C_talk/Views is a trademark of CNS, Inc. C talk is a registered trademark of CNS, Inc.
New microcomputer bus architectures let multiple devices control input and output in a system

Brian T. Anderson and Marcy A. Puhnaty

Perhaps the biggest performance bottleneck in a microcomputer is the I/O bus. In most machines, the CPU must handle data transfers between peripherals and memory. This keeps the CPU from performing its more sophisticated processing chores and therefore degrades system throughput. Recently, however, new I/O architectures have been introduced that allow peripherals to take control of the bus. Called bus masters, these intelligent peripherals represent a significant advance in personal computer design.

Processors and Buses
Since the introduction of the IBM PC in 1981, changes in personal computing technology have focused on the CPU and the architecture of the I/O. CPU technology has migrated from the 4.77-MHz 8088/8086 to the 80286, with clock speeds of up to 20 MHz, and now to the 80386, with clock speeds of up to 33 MHz. The next plateau, 80486 technology, is fast approaching. But because a system is only as fast as its slowest part, faster processors alone cannot ensure faster systems. Improvements in I/O technology are also critical in improving system performance.

The evolution of the I/O bus architecture in microcomputers hasn't been as straightforward as the evolution of CPUs. It is much harder to speed up the bus than it is to speed up the CPU. You do gain some performance benefits by simply speeding up the bus, but you also run the risk of losing compatibility with existing peripheral devices and applications software.

The Evolving Standard
The most common microcomputer I/O bus architecture is the Industry Standard Architecture. ISA is an 8-MHz bus with 24-bit direct memory access (DMA), providing 16 megabytes of addressable memory. It was introduced with an 8-bit data path by IBM in the XT. The second version, with both an 8-bit and a 16-bit data path, appeared in 1984 in the AT. The ISA bus in the AT is a superset of the ISA bus in the XT, so all peripheral devices compatible with the XT are also compatible with the AT.

Billions of dollars have been spent on peripheral devices for this architecture.

The need for an improved PC bus architecture was prompted by the introduction of the 80386 processor. The increase in CPU performance that this chip engendered led IBM to introduce the Micro Channel architecture in 1987 with the PS/2 line of personal computers. MCA is a 10-MHz bus with 24-bit DMA, providing 16 megabytes of addressable memory. It also features a 32-bit data path. MCA is not...
compatible with the existing ISA standard and therefore will not support any of the existing ISA peripheral devices.

As an alternative to MCA, microcomputer manufacturers formed a consortium in October 1988 to establish a new bus architecture that would maintain compatibility with the ISA bus while providing for the advanced features introduced by MCA. The result is the Extended Industry Standard Architecture. EISA is an 8-MHz bus with 32-bit DMA, providing 4 gigabytes of addressable memory. The consortium—the so-called Gang of Nine—consists of AST Research, Compaq, Epson America, Hewlett-Packard, NEC Information Systems, Ing. C. Olivetti & Co., Tandy, Wyse Technology, and Zenith Data Systems. Intel has announced the availability of the EISA chip set, and EISA machines should be available later this year.

In addition to 32-bit data paths, MCA and EISA both feature notable advances over ISA. These include switchless auto-configuration, bus mastering, and burst-mode transfer. Of these, bus mastering is the most intriguing and promises the greatest performance benefits over the long term.

Basics of Bus Mastering

Put simply, a bus master is an intelligent device—typically, a microprocessor—that interfaces to the system bus and has the ability to control the transfer of data across that bus without intervention from the CPU. Since the CPU is not used for bus management, the bus master can operate in parallel with the CPU to transfer data across the bus at high speeds. This differs from the standard ISA I/O bus architecture, where the CPU controls all bus activity with the exception of DMA.

In the case of ISA, devices that are attached to the bus transfer data directly to memory using the system’s DMA controller instead of the CPU.

All peripheral devices attached to the bus are categorized as either masters or slaves. Whereas a master can take control and own the bus, a slave device must use the CPU to manage all bus transactions. Slave devices are serviced by the CPU only after a request is made via an interrupt signal. This signal notifies the CPU that the slave device needs it and the bus for a transaction. In ISA-based microcomputers, all peripheral devices are slaves; the CPU is the only master.

A bus master can play either of two roles in a computer system: It can be dedicated to handling specific tasks, or it can be a general-purpose processor. Typically, task-oriented bus masters are peripheral devices that perform high-performance tasks such as graphics, network control, and data acquisition. General-purpose bus masters are typically coprocessor peripherals. A coprocessor peripheral acts like the CPU so that the system work load can be shared or split between the two.

Sharing Control

A system bus can effectively support multiple bus masters by implementing a bus arbitration mechanism in the bus control circuitry. Bus arbitration selects and grants control of the bus to a bus master. When several bus masters are contending for control of the bus at the same time, a central arbiter mediates the request according to assigned priority levels. Depending on the implementation, priority levels might be assigned according to slot identification number or location, or the priority information continues...
Our standards are the toughest part of our 3.5" diskette.

We’ve got you covered. The rigid plastic jacket of our 3.5" Micro Diskette is molded to our own specifications for unsurpassed protection. And, our clipping level is 44% higher than industry standards. Call 800-343-4600 for the name of your nearest BASF supplier.

Depend on it.
might be stored on the bus-master board, as in the case of MCA. In this way, no bus master can control the bus for indefinite periods of time.

Bus architectures provide several signals to facilitate bus arbitration. Bus masters use these signals to request control of the bus and to determine if the request has been granted. Although bus-arbitration signals vary across architectures, all perform the same general function. For example, AST Research's SMARTslot architecture provides a very simple approach to bus arbitration. SMARTslot was one of the first ISA-compatible bus architectures to support bus mastering through the use of additional connectors added to the bus slot. Under SMARTslot, each slot has its own dedicated set of bus-arbitration signals: bus request, bus grant, and a shared bus busy signal. To request control of the bus, the bus master sends a request by asserting its unique bus-request line. The bus arbiter on the system board then determines which requesting bus master has the highest priority level. Bus control is then granted to the winning bus master by asserting that board's unique bus-grant line. When the bus master detects the bus-grant line, it asserts the bus busy signal to indicate that the bus is in use.

The Mastering Advantage

To assess the relative merits of bus mastering versus standard ISA bus communications, consider how each method transfers data to main memory. With ISA, the CPU controls the entire transaction. First, the CPU performs a read to the peripheral device to obtain the information to be transferred. It then writes that information to main memory. Thus, the transfer requires two bus cycles: one for the read and one for the write. With a bus master, however, only one bus cycle is needed to transfer the data to main memory, and the CPU is bypassed altogether. With a bus master, only the write operation requires use of the bus. In theory, use of a bus master doubles the data transfer rate for this operation.

Another important advantage of the newer PC I/O bus architectures is the ability of bus masters to perform burst transfers. Burst-mode operation allows a bus master to transfer a block of data during a single arbitration cycle. For example, 16 bytes of data can be transferred in one block using burst mode with MCA, as opposed to just 2 bytes under normal data transfer operations. Because the bus master operating in burst mode is transferring data in larger blocks, it can complete its transfer in less time and relinquish control of the bus faster so it can be used by other system devices. Bus masters initiate burst mode...
Introducing Wells American’s CompuStar II. It’s one hungry machine. Feed it the toughest applications you can dish out and it’s ready for “seconds” before IBM, Dell and all the others even get started.

IT FEEDS ON THE COMPETITION.

CompuStar II’s enormous appetite for devouring the competition comes from its unique, modular design. Interchangeable, plug-in CPU “modules” are available in 80286, 80386SX, 80386 and soon — 80486 configurations. The modules are remarkably inexpensive — as little as $695 for a '286 module, and incredibly powerful. The 33MHz '386 module achieves a stunning MIPS rating! Best of all, for up to one full year after purchase, you can trade in the module you originally select toward the purchase of any of the other more powerful modules.

IT DEVOURS OTHER COMPACTS.

Unlike other small footprint micros, CompuStar II won’t put your computer expansion needs on a diet. Each system features an amazing six bus slots — four of them available in a fully configured VGA system. That’s 25% more than IBM or Dell gives you. Better yet, you can have up to 11 slots with CompuStar II’s exclusive bus expansion chassis. No other compact system available offers this much room for growth. And no other comparably sized system can accommodate that growth better than CompuStar II.

Its whopping 200 watt power supply gives you more than twice as much reserve power as IBM or Dell.

And CompuStar II has more room for disk/tape drives — four compartments in all; three accessible from the front panel. IBM and Dell give you just three compartments and only two are accessible from the front. CompuStar II also accommodates 5½" and 3½" disk drives. IBM and Dell restrict you to 3½" drives only.

IT’S ALSO WELL-MANNERS.

Worried about quality and reliability? Don’t! Wells American has been making PCs longer than IBM or Dell! Each CompuStar II is money back guaranteed for 31 days, factory warranted for a full year and can be field serviced from hundreds of locations worldwide.

When you think about it, buying an IBM or Dell system instead of our new CompuStar II is sort of like eating hamburger when you could have had steak — and paid less for it. CompuStar II. . . from Wells American.

It makes “mincemeat” of everything else.

To receive a CompuStar II product information kit, call 1-803-796-7800. VAR inquiries welcome.
The Swiss Army Knife provides all the basic tools in one convenient package. It's a masterpiece of engineering.

So indeed is BASIC Tools. It provides all the essential programming tools in one brilliantly conceived package.

And at a special introductory price of $79.00, it's going to make Swiss cheese of the competition.

Look at all you get for one low price.

"Windows" lets you simultaneously display multiple overlapping windows and manage their titles, footers, contents, color, size and on-screen position. You can also scroll and move them around.

"Input Editing" routines help you build powerful and easy to use data entry screens. You can use Home, End, Ins, Del, arrow keys, function keys and Alt-key combinations. Set default values, colors, valid characters and field length. Enabled or disable echo on input fields. Set a masking character to hide data input.

"B+ Tree file manager" lets you use up to ten indexed files in a single program. Each record can be accessed through as many as eight different keys. Unlimited records per file. Add indexes to existing BASIC random files without modifying them.

Furthermore, our comprehensive manual and "Pop-up On-line Help" implemented through a TSR utility, along with sample source programs, make BASIC Tools easy to learn. Also, your applications are royalty free.

Take advantage of the $79.00 introductory price by ordering now. Call toll free at 1-800-232-6228. In Florida (305) 477-2703, 9-5 EST. Visa and MC accepted. 30-day money-back guarantee on direct orders.

Add $6.00 shipping and handling. Florida residents add 6% Sales Tax. Free technical support. Dealer inquiries welcomed.

Finalsoft Corporation, 3900 N.W. 79th Avenue, Suite 215, Miami, FL 33166.
WHETHER REPORT.

Whether you're a software developer writing new applications for the IBM or Mac, or a PC user securing proprietary data files, software and data protection has never had a brighter silver lining. For a number of very good reasons.

Beginning with the 'whether-expert' Rainbow Technologies. And ending with its Software Sentinel family of hardware keys. Starring five models that fit virtually any software program or data file you need to protect.

There's the best-selling SentinelPro for the IBM PC/XT/AT, PS/2 and compatibles, and even the Atari ST. Known worldwide for its virtually unbreakable security. And its ASIC technology. And its invisible operation. A close relation, the Sentinel-C stands at-the-ready for custom configurations and multiple software packages.

In the Apple market, security-minded Mac software developers turn to Eve. For completely transparent operation and world-class security of the protected software. Just by plugging Eve into the Mac ADB connector.

PC users wanting a low cost, user-friendly solution to the problem of securing sensitive data can call on the DataSentry. Using a proprietary Rainbow algorithm or DES, the DataSentry encrypts data files on individual PCs, protects modem transmissions and secures data on local area networks.

Rainbow's latest protection strategy is the SentinelShell—that lets users place a 'shell' around existing, off-the-shelf programs. Because access can be limited to those issued a key, libraries, universities and corporations can very simply guard their software investments.

Whatever your whether, Rainbow Technologies has the software and data protection products that make the difference. For more information, call 714-261-0228 in the U.S., or contact Rainbow Technologies Ltd. in the United Kingdom for the distributor nearest you. Whethercasters are standing by.
master cannot occur. Therefore, only one bus-master board can reside on the ISA bus. This bus master cannot transfer blocks of data under burst mode, as can MCA or EISA. An ISA bus master is limited to transferring 2 bytes per cycle. The lack of burst mode and the exclusion of bus arbitration on the ISA architecture has inhibited development of boards operating as bus masters for the ISA bus.

The MCA

IBM’s MCA extends the CPU’s local bus to provide an easy interface to the outside world. In this way, it is quite similar to the ISA bus. MCA, however, has many additional features, including support for bus masters and a 32-bit data path.

Bus arbitration on the MCA is distributed, meaning all contending bus masters play a role in the arbitration process. When a bus master wants to take control of the bus, it first drives the arbitration request signal (PREEMPT). When the previous bus master is finished with its data transfer, the central arbiter recognizes the PREEMPT line and then drives the arbitrate/grant (ARB/GNT) line into arbitration state. When the ARB/GNT line goes to the arbitration state, the bus master places its priority-level identification into the arbitration cycle on the four arbitration lines: ARB0, ARB1, ARB2, and ARB3. Each bus-master device then monitors these signals. If a bus master detects a priority level higher than its own, it removes itself from the arbitration cycle. At the end of the arbitration cycle, the ARB/GNT line changes state from high to low, thereby granting control of the bus to the bus master with the highest priority.

MCA also supports a fairness feature to prevent higher-priority devices from retaining indefinite control over the bus. It is important to note that priorities for system devices in MCA, such as DMA channels, are fixed in hardware. However, some of these fixed priorities can be changed through programming. MCA supports up to 16 bus masters.

ISA Extensions

AST Research’s SMARTslot architecture is a fully compatible 16-bit ISA bus extended with additional signals to support multiple bus masters. Arbitration control is centralized in the system’s bus-control circuitry, and arbitration priority-level assignments are fixed according to slot location. Each slot has its own unique arbitration signals for communicating with the central arbiter. Up to three bus masters are supported in addition to the CPU.

The EISA bus, like SMARTslot, is a fully compatible extension of the ISA bus. It supports multiple bus masters as well as a 32-bit data path, enhanced DMA functions, burst-mode transfers, and switchless auto-configuration. Arbitration on the EISA bus is also centralized on the system’s bus controller. Arbitration priority levels are fixed, and each one has its own line to signal requests for bus control on a rotational basis. Figure 1 illustrates the EISA rotational arbitration sequence. Note that a three-way rotation occurs between DMA, DRAM refresh, and all other devices in the arbitration scheme. DMA is given some preference to provide for compatibility with existing ISA DMA devices. It is important to note that although EISA is an open specification, all participating vendors are under nondisclosure on the specifics of the specification until the first EISA machines are released.

NuBus

NuBus is a true arbitrated system bus independent of the CPU. NuBus uses a distributed arbitration protocol like MCA and also supports an arbitration fairness scheme. Once a bus master has been granted control of the bus and subsequently releases it, this bus master cannot arbitrate for the bus again until all other requests have been serviced. NuBus also provides bus and resource locking signals to enhance the use of bus masters for multiprocessing applications.

Bus-Master Peripherals

Although bus mastering is relatively new to personal computers, it has been implemented on some peripherals. Some representative examples follow.

Even though the ISA bus does not efficiently support bus masters, some third-party board makers have designed add-in boards that make use of this feature.
Aw...What the Heck!

EXTREMELY POWERFUL
DesignCAD 3-D version 2.0 is as powerful as most CAD systems costing $5000 - $10,000! Features like: Complex Extrusions, linear, solid and circular, Blending of Surfaces, Shading, Cross Sectioning, Complex Sweeps and Translations, and Boolean operations make DesignCAD 3-D one of the most powerful 3-D CAD systems available...at any price! Engineers, Architects and Consultants constantly tell us that they use CAD systems costing thousands of dollars which are not as powerful as DesignCAD 3-D.

VERY EASY TO USE
Just because DesignCAD 3-D is powerful doesn't mean it is difficult to use. Single keystroke commands and side-bar menus which give short directions on how to proceed make DesignCAD 3-D a snap to use! While not required, DesignCAD 3-D supports all popular digitizers and mice. Many of the older, more cumbersome CAD systems require weeks of training before a user can be productive. DesignCAD 3-D users find they can be producing useful drawings in a matter of minutes! In a recent CAD contest only one contestant was able to match our drawing time. The package sold for $3000.00. The other CAD packages took up to twice as long to perform the same drawing and cost up to $5000.00!

Still don't believe us? The goblet pictured below required only 16 keystrokes and 3 commands to create! Top, front, side, and isometric views were created simultaneously...in less than one minute!

DesignCAD 3-D
only $399!

WHY BUY THIS ONE?
There is a very important reason to buy DesignCAD 3-D. PERFORMANCE. No other CAD system can match our price/performance ratio. Many people make the serious mistake of thinking that it is necessary to spend thousands of dollars to obtain a good 3-D CAD system. This is not true! We talk to people everyday that are sadly disappointed with their expensive CAD systems. Don't be one of them! Call us and we will send you a complete set of literature and a free slide show demo disk. Once you compare DesignCAD 3-D version 2.0 with other CAD systems we know you will choose DesignCAD 3-D.

DON'T TAKE OUR WORD FOR IT
Here is what other people have to say about DesignCAD 3-D:
"After you've worked with DesignCAD, the single keystroke commands are simple to remember and it becomes easy to "click one key" to execute a command. An extremely ergonomically designed program."
HENRY LEVET, Level & Slope Architects - New Orleans, LA
"Designed a $8,000 sq. ft. nursing home using DesignCAD."
"Recently I worked with a firm that builds decks. They purchased your product on my recommendation. I sat down with them and in two hours they were very proficient in DesignCAD. Now they are more effective; and we can communicate...it's wonderful to be able to do a block repeat 42 times and there are 42. 2x4's to make the deck!"
J. TURNER Architect, TAD Ltd. - The Woodlands, Texas
"Allows scientists and engineers to expand minimum time learning and using CAD software so that their time can be expended on the project at hand. It also allows scientists and engineers to quickly present to management all views of a subject (3-D)."
DR. STEVENS, NASA Space Scientist/Engineer

HINT, USE a 1024K RAM PC to get the best possible performance.

HOW DO I GET ONE?
DesignCAD 3-D version 2.0 is available from most retail computer stores, or you may order directly from us. DesignCAD 3-D is available in a number of foreign languages from distributors throughout the world. All you need to run DesignCAD 3-D is an IBM PC Compatible and 640K RAM. DesignCAD 3-D supports most graphics cards, printers, plotters and digitizers. Free information and a demo diskette are available by contacting us at:

American Small Business Computers, Inc.
377 South Mill Street
Plymouth, MI 48170
908/925-4600
FAX: 01-313-635-6359
TELEX: 8102400302

Circle 14 on Reader Service Card
The card was designed from scratch specifically for MCA. BICC converted it to act as a bus-master Ethernet controller for the ISA bus. IBM demonstrated a prototype general-purpose bus-master peripheral device code-named Wizard at Comdex in February. Wizard is an accelerator card that uses the Intel 80860 RISC processor. IBM equipped a PS/2 Model 80 with the Wizard board and OS/2 to compare its performance against the Sun Microsystems Sun-4/10 workstation and the Silicon Graphics Iris-40 workstation. IBM representatives claimed a performance improvement of 30 times that of the Sun workstation and eight times that of the Iris workstation for computational and graphics processing. IBM has also developed a System/370 general-purpose bus-master adapter for its PS/2 computers.

Although IBM is not actively marketing the product, it is available upon request. The System/370 card allows the PS/2s to run System/370 software.

IBM demonstrated a number of task-specific bus-master cards at 1988's Fall Comdex. Among them was a SCSI adapter card that could simultaneously control several SCSI hard disk drives. It was developed by IBM to demonstrate the benefits of bus mastering. IBM also demonstrated Texas Instruments' bus-master Token Ring adapter, which took over most network management duties from the CPU. IBM representatives claim that this technology lets the CPU in a PS/2 operate at 70 percent to 75 percent efficiency, since it will not have to deal with network management chores.

It is very important to note that there have been no formal announcements in the operating-system or applications software arenas with respect to support for bus masters. When available, this support will provide greater increases in system performance than what is provided by hardware alone.

The Road from Here
As is typical in the microcomputer industry, I/O hardware technology is far ahead of available peripheral and software support. Lack of support has limited immediate user demand for the new technology and has created a reluctance on the part of peripheral and software developers to embrace the new I/O bus technologies. Despite this lack of immediate support, bus architecture and bus mastering have become important issues to people making microcomputer purchasing decisions. The reason is that I/O bus technology can greatly affect the longevity of the system you buy.

The new bus technologies are a hardware foundation for the future. As peripheral and software support for the new I/O architectures builds, the benefits of bus mastering and burst transfers will be apparent. Bus mastering provides a way to protect your investment in microcomputer technology while taking advantage of new technologies. In the short term, bus masters will first make a dent in networking, data acquisition, and graphics applications. In turn, these pioneer products will sell more bus-mastering machines, which will lead to the development of more high-performance bus-mastering products. With high-performance peripherals available to free up your CPU, you don't need to constantly upgrade to higher-performing CPUs to upgrade the overall performance of your system.

Bus mastering is the wave of the future (see figure 2). Unlike the ISA bus, it will allow you to migrate to higher levels of performance without having to migrate to a new CPU. This will lengthen the usable lifetime of your microcomputer, thus protecting your investment in today's technology.

Brian T. Anderson is the senior manager of channel marketing at AST Research, Inc. He earned a B.S. in computer science at the University of New Orleans. Marcy A. Puhny is the product manager of high-performance systems at AST Research, Inc. She has a B.S. in business administration from Duquesne University. They can be reached on BIX c/o "editors."
Change is the enemy of procedural programming. Altering one aspect of a program can take weeks. And while you redesign, recode, and retest, you spend huge sums of money and sacrifice irretrievable market opportunities.

Unfortunately, change is inevitable, and survival depends on your ability to adapt. That's not just a cruel law of nature. It's a hard fact of business.

It's time that programming, too, embraced change.

The time has come for Objectworks, the object-oriented development system from PARCPlace.

Objectworks for Smalltalk-80 and Objectworks for C++ provide the tools to create and deliver programs designed to work in the fast-moving, ever-changing world of business.

More and more companies are evolving to Objectworks for designing commercial applications. Because designing for the future means designing for change.

Objectworks

ParcPlace Systems
1550 Plymouth Street
Mountain View, CA 94043
800-822-7880, In CA (415) 691-6700

By its very nature, the world embraces change.
By its very nature, conventional programming does not.
If these images didn't catch your eye, then why are you reading this ad?

Images that leap out at you, especially in a magazine like this, have to be powerful. And whether you need to present your business information more effectively or you want to expand into multi-media, you need strong visuals. Together with Truevision, you can develop that power for presentations, CAD, training, video production and more. And it's easier than you think. You can bring photo-realism and multi-media to your presentations by using a TARGA board with compatible software and peripherals from over 200 companies.

With a TARGA videographics board and your PC®, XT® or AT*-class machine, you can capture images in real-time from a video source, merge them with other images or add text and graphs, even create stunning broadcast-quality animations, and then output the result to video, tape, slides or paper prints. That's how to maximize your presentation efforts into multi-media.

Truevision videographics cards are ready for you today. Contact us at 800/856-TRUE for more information, or visit your local Authorized Truevision Reseller for a demonstration. We'll show you how to visualize your data in a way that no one else can.
CLASH OF THE GRAPHICS TITANS

IBM and Texas Instruments present rival graphics standards

Rick Cook

VGA, the latest graphics standard for MS-DOS and OS/2-based computers, offers 640-by-480-pixel resolution and 256 available colors. This is much better than earlier graphics standards, but users are already demanding higher resolution and more colorful graphics.

This demand is due in part to the "more-is-more" mentality that has driven the computer industry. Part of it is the need for higher resolutions for specialized applications like CAD and desktop publishing. However, much of the demand is due to the growing appeal of windowing interfaces like Presentation Manager under OS/2 and Microsoft Windows for MS-DOS. Although they can run on lower-resolution monitors, they look much better in high resolution.

Making displays that are much more capable than VGA requires some fundamental changes in the way that MS-DOS and OS/2 graphics systems work. Until now, the standard displays have been based on direct memory access, with the CPU doing most of the work. A display was treated as an area of the computer's main memory, subject to manipulation by the main processor. However, this gets increasingly clumsy and time-consuming as resolution and the number of colors increase.

It is possible to design an extended VGA board that can display 1024-by-768-pixel resolution in interlaced mode. However, such a board couldn't display more than 16 colors. More significant, it would be considerably slower than boards using graphics coprocessor chips.

For high-performance graphics, it makes more sense to off-load graphics functions to a specialized graphics coprocessor. Graphics coprocessor cards with resolutions beyond VGA have been available for some time. But since they have been expensive, they have generally been used only for applications demanding high resolution. Now, however, the broader demand is pushing high-resolution graphics into the PC mainstream. That, in turn, is producing a growing demand for a standard interface.

This year, two major approaches to a high-resolution graphics standard came to fruition. (For the purposes of this article, high resolution means anything beyond extended VGA, which is 1024 by 768 pixels.) Texas Instruments is supporting the Texas Instruments Graphics Architecture (TIGA) as a standard interface between computers using Intel microprocessors and graphics boards using its 340X0 series of graphics coprocessor chips. Western Digital, Headland Technologies, and Chips & Technologies are each pushing their...
versions of the 8514/A graphics adapter, which was originated by IBM for the PS/2 series.

A third possibility is a standard built around Intel's new 80860 graphics chip. However, although several companies are working on graphics boards using it, so far no one has tried to produce a standard graphics interface for the 80860.

Both would-be standards have a higher resolution than VGA. Both approach the "magic megapixel" mark (1024 by 1024 pixels, where display resolution begins to approach the limits of the human eye), and both offer many more colors and much more speed than VGA. How many more colors and how much more speed depend partly on the implementation.

Most of the time, both TIGA and the 8514/A standard are intended to be worked through software interfaces rather than going directly to the hardware. However, TIGA is completely a software interface, while the third-party 8514/A companies are making their products register-compatible with the IBM version so that programmers can go directly to the hardware if that's what they want to do.

Except for IBM's 8514/A card, no system using either standard is available yet. Western Digital announced its version of the 8514/A in early June, and TI started shipping version 1.1 of TIGA about the same time.

Both the 8514/A and TIGA have long lists of announced supporters. Over the next year, expect to be deluged with announcements for TIGA- and 8514/A-based graphics boards. Already the war of words has started between the two camps, as each side tries to influence users and software developers.

Graphics Platforms

Although TIGA provides a path to higher-resolution graphics, as is true with the 8514/A, the two quasi standards are quite different in design, intention, and implementation. IBM designed the 8514/A to be a closed hardware product and has never published the hardware specifications. TIGA is designed as an open software standard. TI is actively promoting it and is selling software development kits to help get TIGA-compatible products out into the market.

Both TIGA and the 8514/A are intended as software standards, but the third-party manufacturers of 8514/A chip sets expect that at least some software developers will want to go directly to the hardware. Thus, they are concerned about maintaining register-level compatibility with the 8514/A. TIGA was developed so that programmers would never have to go to the hardware.

The purposes behind the standards are different as well. IBM wanted a reasonably priced high-resolution graphics system for its PS/2 computers, and other manufacturers want to offer 8514/A-compatible graphics. IBM has the market power to establish a de facto standard.

None of the manufacturers of 34010 graphics boards has that kind of market muscle. Left to their own devices, they have all offered boards with different interfaces, complicating life for software developers and programmers and burying users in different drivers.

TIGA

TIGA is an attempt to bring order to the situation by standardizing the software interface. Many companies are already offering graphics cards using TI's 34010 coprocessor. However, their interfaces...

PERFORMANCE

Multiple Methodology Support. Data Flow - DeMarco/Youndon, Gane & Sarson and Ward & Mellor(real-time); Structure Charts; Entity Relation Diagrams; Decomposition Diagrams; Object Oriented Design(optional); State Transition Diagrams; Flow Charts; Presentation Annotation.

Microsoft® Windows. A user friendly standard interface, in a windowed mouse driven environment with drop down menus and pop up windows. (Chosen by IBM to be the basis for the OS/2 User Interface).

Network Version. Available with complete record and diagram locking: Novell, StarLAN, 3Com and others.

User Defined Attributes
Requirements Tracking
Test Plan Tracking
Change Requests
Rules and Balancing
Automatic Leveling
On-Line Reporting
Import/Export Capability
Graphic Clipboard
Context Sensitive Help

PRICE

$1395 for first copy; volume discounts to $895 for 51st copy.
30 day money back guarantee.

System Configuration: IBM® PCs and compatibles, Microsoft® Windows, 640K main memory, 10 MB Hard Disk recommended. Microsoft® Windows compatible input/output devices.

POPKIN SOFTWARE & SYSTEMS INCORPORATED

111 Prospect St., Suite 505
Stamford, CT 06901
(203) 323-3434 FAX (203)327-7652

System Architect logo is a trademark of Popkin Software & Systems Incorporated. IBM is a registered trademark of IBM Corporation; Microsoft is a registered trademark of Microsoft Corporation; dBase III Plus is a trademark of Ashton-Tate; 3Com is a trademark of 3Com Corp.; Novell is a trademark of Novell Inc. All specifications and prices are subject to change without notice at the sole discretion of the company. Product delivery is subject to availability.
Introducing the CAT Reader OCR for Hand Scanners.

Now there’s an OCR for your PC that allows you fast, accurate conversion of scanned text for only $295.00. The CAT Reader is pre-trained, as well as fully trainable, to read virtually any font (monospaced, proportional, typeset). And can automatically pull split columnar scans into complete pages while reading text at 200 dpi. You can even mask out unwanted graphics. The CAT Reader supports complete scanned text for only $295.00. The CAT Reader is pre-trained, as well as fully trainable, to read virtually any font (monospaced, proportional, typeset). And can automatically pull split columnar scans into complete pages while reading text at 200 dpi. You can even mask out unwanted graphics. The CAT Reader supports Complete PC, Logitech, Mitsubishi, Niscan and more. To direct order, or for more information, call 214-631-6688 or Fax 214-631-4059 (Visa, MC or AmEx) A Frisky OCR at a finicky price.

Computer Aided Technology, Inc.
7411 Hines Place, Suite 212, Dolles, Texas 77523

NOW!! A high speed stand alone copier for 5½ and 3½ inch diskettes duplicates virtually any format

When your requirements call for untouched, high speed duplication of virtually any 5¼ or 8½ inch diskette, Victory's Stand-Alone V2200 Duplicator is just what you need. The reliable, desktop design is ideal for both office and industrial use.

The V2200 features:
- Simple push-button operation
- Switchable 3½ and 5¼ inch copy drives
- Support for most formats including IBM, Apple, Amiga, and Atari
- Copy speed up to 250 disks/hour
- Batch Processing multiple jobs with different formats
- Production statistics display
- Exceptional copy quality

Top quality copying Victory Duplicators actually improve the quality of copies during duplication. The V2200 validates the integrity of each master disk and verifies copies bit by bit to ensure quality. The system automatically sorts copied disks into an accept or reject output carton.

Do-it-yourself service Victory systems have built in diagnostics to test and maintain the system. A preventive maintenance indicator alerts you at regular intervals to check drive alignment and clean drive heads using supplied brushes included with the system.

Call (800) 423-6103. And ask about Victory's family of affordable Autoduplicators.

TIGA Primitives
TIGA is a full-fledged programming language with nearly 150 functions and primitives. The primitives come in three flavors: core primitives, which are always available; extended primitives, which are kept in libraries and loaded at initialization if the program needs them; and user-extended primitives, which are written by the programmer and kept in libraries like extended primitives. Functionally, there is no difference between extended and user-extended primitives, and TI says there is no difference in overhead or speed.

Generally, the core primitives are concerned with basic environment manipulation (e.g., screen clears, return foreground and background colors, and set cursor shape). Most of the drawing commands, like draw line, and the array functions, like BitBlt (a block pixel move), are extended primitives to facilitate replacing them with custom routines if the programmer desires.

Although TIGA is tied to the 340x0...
family of coprocessors, it is independent of screen resolution, number of colors, and graphics constraints. Intended as a general-purpose interface, it readily adapts to new graphics equipment and new 340x0 coprocessors.

The Structure of TIGA
TIGA comes in three parts: the Application Interface (AI), the Communications Driver (CD), and the Graphics Manager (GM).

The AI consists of header files and a library that the application uses at compile and link time. It is the responsibility of the applications programmer to provide the AI, which is written using the TIGA primitives. TI sells a driver developer's kit for direct access to the standard TIGA environment and a software developer's kit for writing downloadable extensions to TIGA, including extended primitives.

The AI connects to the CD, a TSR program. This runs on the host PC and is specific to the graphics board. The CD takes function calls from the AI and passes information back and forth between the board and the host.

The CD in turn communicates with the GM on the 34010 board. Like the CD, the GM is specific to each graphics card and is supplied by the card's manufacturer. TI has a software development kit for hardware manufacturers who want to make their products TIGA-compatible. The GM includes a command executive that handles the board side of communications, the library of core primitives, and the extended and user-extended primitives downloaded at initialization.

Programming with TIGA
Although graphics functions can be written directly on TIGA, the simplest approach is to write the routines as part of the program on the host and then extract them and port them to TIGA. Since the C compiler for TIGA, GSP (for graphics systems processor C) (part of the software kit from TI), is Microsoft C-compatible, this is a straightforward process.

When writing for TIGA, a programmer will probably want to exploit the inherent parallelism of a TIGA system to get more speed. This means designing the code so the graphics card can work as much as possible without referring back to the host.

To get more speed, TIGA provides two ways to pass parameters from the host computer to the graphics board. The simplest and most flexible method is to use C-packet functions. (These are not to be confused with the C programming language; in this case, C refers to a stack.) Parameters for C-packet functions are received on the host side and passed to the communications buffer in the graphics card's memory by the CD. From there, the parameters are pushed onto the processor's stack. The function behaves as if it were invoked local to the host.

To make this work, the GM must understand the function's arguments. In C-packet mode, each argument is a separate packet with its own header. To make writing headers easier, the TIGA.H include file contains extra defines to represent the different data types.

The general format of a C-packet function is as follows:

```
ENTRY_POINTS NAME (CMD_ID, numpackets, packets1,...,packettm)
```

The entry point is one of three entry points, depending on the type of function call made by the function. One entry point is for functions that do not require return data, one is for functions that do return data, and one is for functions that pass pointers to data that is modified indirectly by the function. CMD_ID identifies the function, the number of packets tells the GM the number and kind of packets, and, finally, the packets themselves arrive.

A function to fill a rectangle would be

```c
define poke_breg(regno,value)
dm_cmd(POKE_BREC,3,(short)(regno),(long)(value));
```

The length is 3 because the parameter value is 32 bits (i.e., two words). To invoke the primitive, a parameter data_ptr would be placed on the stack to point to the location of the first parameter regno.

TI expects that most functions will use the C-packet mode. Only time-critical functions will use direct mode, and they will probably be written as C-packet functions initially and modified later. In addition to being easier to write, C-packet functions are safer. There is no continued
Playing the Benchmark Game

If you're reading this expecting to find tables of numbers showing you conclusively which standard is the fastest, you're out of luck. There are some very good reasons for this, not the least of which is that it is physically impossible to do comparative benchmarks as this is written.

Although the 8514/A has been available from IBM for two years, none of the third-party chip makers are selling chips at this time. Western Digital announced its first chip set in early June; Headland Technology was expected to have its first chips by the fall.

Since both companies claim that their implementations will be faster than the IBM version, what is available now isn't representative of what is supposed to be the best performance for the 8514/A. Nor are TIGA boards released products. Texas Instruments has a developer's kit for its own 34010 board, but it didn't start shipping version 1.1 of TIGA until early June. No one is marketing a TIGA board for end users yet.

All this may have changed by the time you read this, but as of now, there is no way to compare the developed commercial versions of either standard. In any event, it would be difficult to come up with a fair benchmark for two such different products. Not only are the architectures, instruction sets, and design philosophies of the 34010 and the 8514/A completely different, but TIGA is explicitly a software standard (and extensible in hand), while the 8514/A is a rigid hardware standard.

None of this has stopped Western Digital and TI from engaging in a battle of benchmarks over the merits of their approaches. On the basis of raw computing power, the 34010 probably gets the edge. It rates at about 1.2 million instructions per second compared to about 1 MIPS for the 8514/A. However, MIPS don't even begin to tell the whole story on something as specialized as a graphics coprocessor.

Western Digital claims that the IBM 8514/A is significantly faster than the 34010 and that its version will be faster yet. It has released a series of six benchmarks showing the 8514/A running much faster than the 34010. The benchmarks include line drawing and filling a polygon. In five of the six (the exception is the polygon fill), the 8514/A comes out ahead. Western Digital attributes this to the superior design of the 8514/A, especially a much better blitter.

Needless to say, TI isn't impressed. It claims that five of the six benchmarks were chosen to show the strengths of the 8514/A and ignore the chip set's major weaknesses. For example, none of the benchmarks involved drawing a curved line, since the 8514/A doesn't have a curved-line primitive.

Curved lines are immaterial, says Western Digital, since the time it takes to draw the vectors that make up the curves overshadows the time that it takes to set up the curve.

The real test, TI claims, comes with real-world applications. TI points to its AutoCAD driver, which it claims gives superior performance over AutoCAD on the 8514/A. Western Digital's 8514/A AutoCAD driver is no faster than VGA, says TI.

Headland Technology comes back with its Windows driver, claiming it gives better performance with Windows than any other driver.

Beyond all that, TI points to its latest graphics chip, the 34020, which is about five times as powerful as the 34010 and is still TIGA-compatible. The company says that 34020 boards will run 12 to 25 times faster on redraws than the 8514/A. The 8514/A backers dismiss that as overkill, and much too expensive for the business and general markets to boot. Besides, TI says, there will be faster versions of the 8514/A in the future.

In the long run, it is probably true that the important thing for most users, at least most business users, is how well the systems perform on applications, especially when running under OS/2 or Windows. However, that will depend very strongly on the quality of the application drivers written for each standard.

In another six months or a year, it should be possible for third parties to make meaningful performance comparisons between the standards. For now, it isn't.

Size checking with the fastest form of direct mode, and it is easy to overflow the buffers. Better to get everything right in C-packet mode first.

Inherent Extensibility

One of the advantages claimed for TIGA is an assured growth path. TIGA is not inherently limited in screen resolution, number of colors, or the coprocessor it uses. Already, TI has introduced the 34020, which is roughly five times as powerful as the 34010 and also TIGA-compatible.

Anyone trying to establish a standard software graphics interface has two major problems: one with software developers and one with hardware manufacturers. The problem with software companies is speed. A graphics interface has to be extremely fast or applications developers will bypass it, even at the expense of writing their own drivers for specific cards.

The problem with hardware manufacturers is market differentiation. Unless they are cloning an industry standard, like VGA, board manufacturers don't want to stick slavishly to a model. They want to add features that they think will make their products work better and faster. (Actually, even when cloning a standard, board makers like to provide extras. Most EGA and VGA cards offer features that aren't found on the IBM products.) The manufacturers want a way to add features in spite of the standard interface.

TIGA addresses the desire for extras by providing an extensible command set. Manufacturers or users with a TIGA development kit can write extensions using a compatible C compiler or assembler package and link the extensions into the TIGA libraries. For that matter, applications programmers can write new commands and link them into TIGA.

Speed is a more difficult problem. TI has spent a lot of time optimizing the primitives and interfaces to make TIGA work as quickly as possible.

By adding extended primitives, you can optimize TIGA for particular applications. TI used a set of extended primitives to write its Windows driver, for example, and this is part of the reason why it is so fast.

Source code for the libraries is available from TI. A programmer who wants a special function to speed up a particular job can study the functions in the libraries and use the information to adapt them or to write a completely new one.

Another way to get speed with a graphics coprocessor is by exploiting the continued
NEW FROM PERISCOPE

Real-Time Debugging for 386s and 286s

User Jeff Garbers, Crosstalk Communications' Director of Software Development, has been debugging with Periscope® Model IV and says. "The hardware really makes Periscope shine, especially when you've got timing-related problems. I can now track down changing pointers and altered buffers on my 386. I've been using it to debug Crossstalk* Mk. 4 and there's just no better way to do it."

Periscope IV gives you the ability to debug time-sensitive programs, hardware-interrupt routines, and programs with intermittent errors. You can run your program at full speed while tracking down unwanted memory overwrites. You can use the information captured in Periscope IV's real-time trace buffer to see EXACTLY what the system is doing, and to improve its performance.

A New Generation of Hardware-Assisted Debugging

Compatible with virtually any 286 or 386 with an AT-style bus, Periscope IV works on machines running up to 25MHz with any number of wait states. Because it gets information directly from the CPU, instead of from the system bus, Model IV is not sensitive to bus compatibility issues.

Periscope IV collects CPU information in its hardware trace buffer while the CPU runs at full speed. Whether you tell Periscope IV to capture just selected information or to capture everything, you can use its powerful trace buffer commands to search for and display the execution history the way you need to see it. And you can use the CPU cycle count information to get the last bit of performance out of your code.

With Periscope IV you can set hardware breakpoints on memory accesses (within the occurrence of specific sequences of events, such as "watch for the routine FOO to begin executing, then while it is, watch for the variable BAR to be written.

This capability, called sequential triggering, enables you to define complex conditions, then stop your program and examine what has happened when these conditions occur.

If you're developing a large application that needs all of the lower 640K, you can use the optional Plus board to keep Periscope totally out of normal DOS memory. The Plus board requires the use of a second slot.

The Periscope IV software is an extension of the software that comes with all models of Periscope. So, along with Periscope IV's powerful hardware, you get a full-function software debugger with source and symbol support for most popular PC compilers and linkers, Microsoft® Windows support, PLINK overlay support, dual monitor support, support for debugging device drivers and TSRs as well as regular programs, DOS independence, crash recovery, ease-of-use, and much more.

Prices on Periscope range from $145 for software-only Model II-X to $2,995 for a 25MHz 386 hardware-assisted Model IV. Call 800/722-7006 for pricing details, free information, to talk about your debugging needs, or to order your Periscope.

Order Your Periscope, Toll-Free, Today! 800-722-7006
MAJOR CREDIT CARDS AND QUALIFIED COMPANY PURCHASE ORDERS ACCEPTED

The Periscope Company, Inc.

1197 PEACHTREE ST.
PLAZA LEVEL
ATLANTA, GA 30361
404/875-8080
FAX 404/872-1973

Circle 206 on Reader Service Card (DEALERS: 207)
inherent parallelism of the system. With careful programming, TIGA offers an opportunity for processing graphics commands in parallel. The CPU can start a graphics process through TIGA and work on other things until the process is finished.

The 8514/A

The third-party manufacturers' approach to cloning the 8514/A is similar to what they did with VGA, EGA, and other earlier IBM graphics standards. They are attempting to leverage off IBM's market power and at the same time standardize their hardware at the register level while providing compatible extensions to enhance their products. Already, VESA (for Video Electronics Standards Association) has a subcommittee working on an 8514/A standard.

Among IBM graphics products, the 8514/A is in a class by itself. It has not evolved from any other IBM graphics standard, as VGA was developed from EGA, nor is it backward-compatible with any of them.

In the IBM implementation, there isn't any reason for the 8514/A to be compatible. The 8514/A is a PS/2 product, and the PS/2 series has VGA on the motherboard. In the PS/2s, the 8514/A adapter sits on the video bus and does nothing when VGA is active. IBM has not released a version to run on the AT bus and probably never will. The 8514/A is intended only for the PS/2 series.

Further, IBM broke tradition and did not release the hardware specification for the 8514/A. Instead, programmers are supposed to use function calls to the applications interface. This means that IBM is not committed to maintaining hardware or register compatibility in future products that use the AI.

One result is that cloning the 8514/A is harder than it was for VGA. It has taken more than two years from the announcement of the IBM product to the first register-compatible chip set. (The 8514/A was announced in April 1987 and started shipping in July 1987.) The 8514/A involved much more reverse engineering because of less initial information.

8514/A Architecture

Physically, the 8514/A is a VLSI two-chip set consisting of a master chip (the pixel address manager chip) and a pixel chip (the pixel data manager chip). Chips & Technologies' implementation is all on one chip.

The master chip contains the interface to the PC bus, the display controller, and the graphics processor. The pixel chip does the data manipulations on pixels needed to produce the images.

The display controller synchronizes signals to the display, like the horizontal and vertical sync signals. It also generates addresses for transfer cycles for the serialized portion of display memory and the interface control, if one is used. The display controller also refreshes the display memory.

The graphics processor is the most interesting part of the master chip from the programmer's standpoint. It does most of the work in creating graphics. Among other things, it generates coordinate addresses, draws lines, copies rectangles to and from anywhere in display memory, and transfers host data.

The pixel processor has a more limited job. It handles the manipulations of pixels in display memory. It can perform

BITWISE COMPUTERS - MORE THAN JUST A PRETTY FACE

<table>
<thead>
<tr>
<th>Model</th>
<th>Model 212M</th>
<th>Model 212</th>
<th>Model 325</th>
<th>Model 333</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU</td>
<td>12 Mhz 80286</td>
<td>12 Mhz 80286</td>
<td>25 Mhz 80386</td>
<td>33 Mhz 80386</td>
</tr>
<tr>
<td>RAM</td>
<td>1 Meg 0 Watt</td>
<td>1 Meg 0 Watt</td>
<td>4 Megs Interleaved</td>
<td>4 Megs Cache</td>
</tr>
<tr>
<td>DISPLAY</td>
<td>Monochrome</td>
<td>VGA color</td>
<td>VGA color</td>
<td>VGA color</td>
</tr>
</tbody>
</table>

PRICE

$1,395 $1,895 $3,195 $4,895

Prices are for complete systems, including Computer, Monitor, Keyboard, Hard Disk, DOS, Documentation, and 1 Year Warranty. Call for Portable Info!

Call for Monitor Upgrades up to 1024x768

Monitor Upgrades

Call for Hard Disk Upgrades - 66 to 157 Megs!
KAYPRO COMPUTERS
Rugged, Reliable, Reputable

All Kaypro computers feature:

- A rugged, American-built chassis with vinyl-clad case
- A reliable, one-year limited warranty
- A reputation of 37 years in aerospace electronics; 8 years in the computer business

KAYPRO XT
$549
Base System with Single Floppy, No Video

<table>
<thead>
<tr>
<th>XT Computer</th>
<th>Video Options (includes monitor & video adapter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disk Drive Options</td>
<td>14" Flat Mon. True 31 Dot Pitch VGA VGA Plus</td>
</tr>
<tr>
<td>Dual Floppies</td>
<td>889 1399 1599</td>
</tr>
<tr>
<td>20 MB Hard Drive, single floppy</td>
<td>1156 1649 1849</td>
</tr>
<tr>
<td>30 MB Hard Drive, single floppy</td>
<td>1210 1690 1899</td>
</tr>
</tbody>
</table>

KAYPRO 286/12
$999
Base System with Single 1.2MB Floppy, No Video

<table>
<thead>
<tr>
<th>286/12</th>
<th>Video Options (includes monitor & video adapter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disk Drive Options</td>
<td>14" Flat Mon. True 31 Dot Pitch VGA VGA Plus</td>
</tr>
<tr>
<td>20MB (40ms)</td>
<td>1499 2049 2249</td>
</tr>
<tr>
<td>40MB (28ms)</td>
<td>1799 2449 2649</td>
</tr>
<tr>
<td>70MB (26ms)</td>
<td>1949 2549 2749</td>
</tr>
</tbody>
</table>

KAYPRO 286/16
$1399
Base System with Single 1.2MB Floppy, No Video

<table>
<thead>
<tr>
<th>286/16</th>
<th>Video Options (includes monitor & video adapter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disk Drive Options</td>
<td>14" Flat Mon. True 31 Dot Pitch VGA VGA Plus</td>
</tr>
<tr>
<td>20MB (40ms)</td>
<td>1699 2249 2449</td>
</tr>
<tr>
<td>40MB (28ms)</td>
<td>1999 2649 2849</td>
</tr>
<tr>
<td>70MB (28ms)</td>
<td>2149 2749 2949</td>
</tr>
</tbody>
</table>

KAYPRO 386/20
$2299
Base System with Single 1.2MB Floppy, No Video

<table>
<thead>
<tr>
<th>386/20</th>
<th>Video Options (includes monitor & video adapter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disk Drive Options</td>
<td>14" Flat Mon. True 31 Dot Pitch VGA VGA Plus</td>
</tr>
<tr>
<td>40MB (28ms)</td>
<td>2799 3349 3549</td>
</tr>
<tr>
<td>70MB (28ms)</td>
<td>3099 3649 3849</td>
</tr>
<tr>
<td>150MB (26ms)</td>
<td>3849 4395 4595</td>
</tr>
</tbody>
</table>

Ask about Kaypro's full line of high-performance microcomputers, including the new 80386, 33 MHz machine.

30-Day Money-Back Guarantee
CALL TOLL-FREE
1-800-289-9899

FAX: 619-481-4369
Phone: 619-481-4302

Hours: Mon. - Fri., 8:00 a.m. - 4:30 p.m. P.S.T.
Payment: MasterCard, Visa, or Cashier's Check preferred. Terms available on approved credit.

Shipping and Handling: Within U.S.A., 3% minimum for UPS Ground. Call for shipping charges with alternate carriers.

Sales Tax: California residents, add 7%.

Dealer and Corporate Inquiries Welcome

KAYPRO COMPUTERS
533 Stevens Avenue
Solana Beach, CA 92075

Prices, terms, and specifications subject to change without notice.
Each Kaypro computer is shipped with DR DOS 3.4 by Digital Research, Inc., an MS DOS compatible operating system that runs up to 25% faster.
16 logical and 16 arithmetic functions on combinations of source and destination pixels. It has two color registers for cross-plane pixel processing, and eight color-compare functions to allow the selection of only certain pixels for processing. It also has read and write masks to limit processing to given display planes.

Another important feature of the pixel processor is the barrel shifter. This lets the chip do very fast alignments of source pixels during block copy operations and helps explain the 8514/A's speed on BitBlt.

In addition to the two chips, the 8514/A board includes display memory (usually 1 megabyte of VRAM), a pixel serializer chip, and a RAMDAC (for RAM D/A converter), as well as power-on self-test ROM. The pixel serializer takes the byte-at-a-time data from the display memory and converts it into a stream of bits. The RAMDAC (an INMOS IMS171 or compatible) converts the digital pixel information received from the serializer into the analog RGB signals needed by the 8514/A monitor.

Programming the 8514/A

Unlike the 340x0, the 8514/A is not a general-purpose graphics processor. It is not so much programmable as commandable (i.e., it doesn't have facilities for stored programming on the board), and its command set is both simple and not extensible.

The commands do more-complex jobs than they do with VGA. With VGA, a command essentially alters the state of the graphics system. The 8514/A does more with a single command, but the process is more like loading commands into a queue than programming a microprocessor. One of the jobs of the PC bus interface on the master chip is to maintain the command queue, including knowing when the queue is full.

Further, IBM expects programmers to use the AI with the 8514/A. This is a function-call system using a TSR program called HDILOAD.EXE to access the graphics board.

In contrast, register programming is done through I/O ports, with each register treated as an I/O port at a specific memory location. Most of the 56 registers in the 8514/A set are word registers. The exception is the palette registers, which are all byte registers.

Each major component of the 8514/A chip set (i.e., graphics processor, display controller, and pixel processor) has its associated set of registers. For example, the pixel processor registers include the background color register, foreground color register, write mask register, read mask register, color compare register, background mix register, foreground mix register, short stroke vector transfer register, and pixel data transfer register.

A number of these, like the display controller registers, are write-only.

In one sense, it is much simpler to program the 8514/A than to program a TIGA board. You use the appropriate function calls (under the AI) or place the appropriate values in the registers. In either case, the command set is sparse compared to that of TIGA. There is less to remember and deal with.

But writing useful programs with the 8514/A isn't necessarily simple. Even with the AI, the programmer has to deal with the 8514/A on a very basic level. Because the functions are limited, the programmer may have to spend more time figuring out how to make something happen. One 8514/A proponent compares programming the card to programming a plotter.

For example, to perform a BitBlt, the program first executes a command telling the 8514/A what kind of transfer is required (e.g., host to display or display to host). A second command gives the address to be read from or written to.

Third-Party Enhancements

Both Western Digital and Headland Technology have announced their own 8514/A chip sets, which are compatible right down to the register level. Like the many third-party VGA boards, these chip sets are designed to go beyond IBM by offering more features and better performance.

Western Digital calls its chip set the Personal Workstation Graphics Array I. It includes a number of features not found on the 8514/A, including the ability to support interlaced and noninterlaced monitors with a maximum resolution of 1280 by 1024 pixels. The clock speed of the chip set is 60 MHz, 30 percent faster than the IBM version, so it speeds up operations like BitBlt and rectangle fill. The PWGA I also has a shorter memory-transfer time, which further speeds up operations.
Here's the PC Voice Mail system that can increase your productivity by over 9 weeks.

The average business person wastes 5 to 7 hours each week on the telephone. That's over 9 weeks a year of wasted time and profit. That's why you need Watson.

What Is Watson?
It's the $249 hardware and software system that turns your PC and telephone into an intelligent communications system that outperforms voice messaging systems costing thousands of dollars more.

Why Watson?
Because Watson invented the category of PC voice mail. Because PC Magazine selected Watson Version 1 as "Editor's Choice for Product of the Year in 1984." Because Watson Version 6.23 is a Hayes-compatible modem (1200 or 2400 BPS) that runs completely in the background without interfering with other computing functions. Because Watson comes with a 60-day free support program. Because Watson has over 35,000 satisfied users. And because over 45% of our sales come from user referrals!

All This For Just $249.
With basic Watson you'll get a single or multiple user system that answers the phone, forwards messages to any phone, even pagers; provides private and public voice mailboxes; gives you a personal calendar and program- mable alarms plus a dictation system with full featured voice editing. You'll get auto dialing, remote access operation and message retrieval. Plus a sortable phone book based on a Rolodex file card structure in which you can enter free form notes and do key word searches. And it's all yours for just $249.

Watson Productivity Options.
Watson—Voice Information System (VIS). An English-like command language that allows you to customize voice messages, control message sequences with touch tones for both inbound and outbound response applications.

Add FAX—On The Same Line—To Watson's Voice Mail And Modem Capabilities.
With Watson Communications Center (WCC) software, if you've got a FAX board or are looking to add one, now you can have Telephone Answering and Voice Messaging and Modem and FAX on one computer, using just one telephone line. Perfect for the home office, small business, or work group in a large corporation, WCC gives you total integrated communications capabilities so you can look and sound more professional.

WCC is easy to use. One-button selection allows callers to choose how they want to communicate: with voice, with FAX, or with modem. Pop-up menus, function keys, and help screens make keyboard use simple.

WCC is flexible/configurable. VIS gives unmatched customizability and lets you control Watson to do outbound telemarketing, inbound bulletin boards, phone surveys, order entry, and many other tasks. WCC also provides complete privacy by allowing all communications to come straight to your PC.

WCC saves space and money. Eliminate the need and clutter of separate answering machine and FAX as well as the expense of a dedicated FAX telephone line.

To find out more, call 1-800-533-6120 and ask for our WCC Department. In MA, call 1-508-655-6066.

Now!
PS/2 Voice Mail and Modem For IBM's MCA Only $599.
All the features of Watson including VIS in one package for IBM's newest MCA technology:
• Built-in 2400 baud Hayes-compatible modem
• VIS—lets you program Watson/telephone interaction
• Single/multi-user capability
• Also available for XT, AT, 386 compatibles

Hear All About It.
To decide which Watson is right for you, call our Demo Hotline. You'll hear an actual demonstration and discover all the ways Watson can work for you.

Call Our Demo Hotline Now.

30 Day Money-Back Guarantee.
Try Watson for 30 days. If you aren't completely satisfied, return it for a full refund.

FREE Copy Of Phone Power Just For Listening To Our Demo.
We'll send you a free copy of Phone Power, if you call before 12/31/88 and ask for extension 245. No order necessary. Over 200 pages of practical techniques for small business owners and company executives. Make your telephone and your time more profitable.

In addition, the PWGA1 features a turbo BitBlt mode that can double the speed on 16-color images. In this mode, 8-bit data transfers from the on-board VRA M are treated as two 4-bit transfers, meaning that two pixels can be read per transfer. Four bits are sufficient to define 16 colors, and 8 bits can define 256 colors. If the application is using 16 or fewer colors, the PWGA1 can combine two 4-bit transfers into one 8-bit transfer, cutting the time needed in half.

Going to the Hardware
The conventional wisdom of MS-DOS graphics has always been that programmers will want to go to the hardware to get the maximum speed on their displays. Working through a software interface is significantly slower. Most manufacturers think this will be less of an issue with the 8514/A.

There are some significant differences between the 8514/A and the previous standards. For one thing, the 8514/A is a good deal faster, even through the AI. For many applications, it has enough speed that developers won’t feel the need to bypass the software interface.

A second difference is that the 8514/A is designed to work in the brave new world of OS/2. The IBM version is available only on PS/2s, which are intended to be IBM’s platforms for OS/2. It is harder to play games with the hardware under OS/2 than it is under MS-DOS.

This combination of speed and difficulty means that most applications software developers won’t be tempted to go directly to the hardware. However, system software developers may very well want to write to the registers to get as much speed for their applications as they can. This is the approach that Microsoft took in developing its 8514/A drivers for Windows.

Interlaced Video
Another peculiarity of IBM’s 8514/A is that it produces an interlaced display. Headland Technology and Western Digital say their chip sets can do the full 1024 by 768-pixel display without interlacing.

Interlaced modes are hardly new. Broadcast TV uses an interlaced system. So, in fact, does the Commodore Amiga. However, they have been uncommon in MS-DOS systems until now.

The advantage of an interlaced mode is that it lets you double the vertical resolution of a system without having to double the scan frequency of the monitor. Since the cost of a monitor increases with the scan frequency (although not linearly), that holds down costs.

In the case of the 8514/A, that could have been a significant cost. Even before the standard was announced, a number of multisync monitors were available that almost matched the 8514/A’s frequency of 33 kHz. Providing 8514/A resolution without interface would have meant going to a 60-KHz monitor, well outside the PC space of the art at the time the system was announced.

In designing the 8514/A, IBM was clearly concerned about keeping down the scan rate of its monitor. The logical display resolution would be 1024 by 960 pixels. Backing off the horizontal scan rate to 768 pixels cut the frequency requirements.

A lower vertical resolution also makes it easier to avoid flicker, one of the inherent disadvantages of interlaced video. In effect, interlacing cuts the screen refresh rate in half, since it takes two scans to completely refresh the screen. If the effective refresh rate is too low, the results are very noticeable.

The typical scan rate on a computer monitor is 60 times per second. This is fast enough that no flicker is noticeable. Doubling the vertical resolution and halving the refresh rate would drop the scan rate to 30 times per second, slow enough that flicker becomes apparent.

By holding the vertical resolution to 768 pixels, IBM was able to use a scan rate of 44 times per second. This is fast enough to significantly reduce flicker. In addition, the 8514 monitor uses a long-persistence phosphor, and the combination gives adequate display quality for almost any application.

Is Adequacy Sufficient?
The 8514/A appears to be designed with the philosophy that adequacy is sufficient. It is not a full-fledged graphics coprocessor with an extensive library of built-in functions. Instead, it is a rather simple processor with limited, hard-wired instructions.

In theory, the more powerful the graphics coprocessor, the better. This is the philosophy behind the 34010, the 80860, and most other graphics coprocessors. In practice, a powerful coprocessor trades off cost and ease of programming to get power. IBM apparently decided it made more sense to settle for less power in a less-expensive product.

As a result, the 8514/A’s instruction set is limited. Programming it is easy in the sense that once you decide how to do something, doing it is very straightforward. But figuring out how to go from a requirement to a programming strategy may take some thinking.

Notably missing from the 8514/A’s instruction set are arc-drawing primitives. Nor is there a polygon-fill primitive, although polygon fills can be done readily using the Begin Filled Area and End Filled Area commands.

Although the command set is fixed in

A Message To Our Subscribers

From time to time we make the BYTE subscriber list available to other companies who wish to send our subscribers material about their products. We take great care to screen these companies, choosing only those who are reputable, and whose products, services, or information we feel would be of interest to you. Direct mail is an efficient medium for presenting the latest personal computer goods and services to our subscribers.

Many BYTE subscribers appreciate this controlled use of our mailing list, and look forward to finding information of interest to them in the mail. Used are our subscribers' names and addresses only (no other information we may have is ever given).

While we believe the distribution of this information is of benefit to our subscribers, we firmly respect the wishes of any subscriber who does not want to receive such promotional literature. Should you wish to restrict the use of your name, simply send your request to the following address.

BYTE Magazine
ATTN: SUBSCRIBER SERVICE
PO. Box 555
Highstown, NJ 08520

154 Fall 1989 • BYTE IBM Special Edition
hardware, the chip set has considerable potential for expansion in resolution and color. For one thing, according to Headland Technology, the chips themselves will support resolutions of 1280 by 1024 pixels, even if the present boards won't. That means that increasing the resolution will be fairly straightforward.

Equally significant, one address chip can handle up to four pixel chips. That would let the 8514/A do 32-bit color at the same speed as the present 8-bit color.

IBM Moves

The 8514/A not only breaks new technical ground for IBM-compatible graphics standards, it also poses a marketing risk that earlier IBM-compatible standards did not. Because IBM did not release any of the hardware specifications, there is nothing to stop the company from coming out with a completely new product tomorrow that conforms to the software specification.

On the other hand, IBM has said that it intends to put the 8514/A on the motherboard of future models of PS/2. It has indicated that it intends to stay with the 8514/A for several years, albeit with expansions and extensions.

Further, the 8514/A’s backers say that they expect to build enough momentum in the market that it will be a standard no matter what IBM does. If there are 2 or 3 million 8514/A systems in users’ hands, applications developers are going to provide drivers for the 8514/A.

Upgrading to the 8514/A poses a dilemma for users. It is not backward-compatible, and not all software comes with 8514/A drivers.

There are several ways around this.

One of them is to install the 8514/A adapter alongside a VGA card and use the standard pass-through connector that is part of the VGA specification. That works, but it takes up a second expansion slot. In addition, in some VGA implementations, you run into a memory conflict. Third-party VGA board manufacturers have added features and modes to the boards, so their BIOSes are larger than IBM’s, and their implementations run over into 8514/A memory space.

Another possibility would be for manufacturers to offer boards that have both VGA and 8514/A on them. That would be more expensive than a regular 8514/A card, but it may prove popular with users with existing systems.

A Standard for the 1990s?

As this is written, it is much too early to tell which graphics system will become the next standard. Both the 8514/A and TIGA are attractive, and they both have strong and weak points.

TIGA offers a uniform, resolution-independent software interface that can be extended to meet programmers’ needs and can grow to handle new generations of graphics coprocessors. The 8514/A follows the classic path of turning an IBM product into a standard. It includes the ability to access the hardware directly for maximum speed, and the hardware may very well be less expensive than TIGA. Its backers also claim that it is faster than TIGA.

Technically, both of these proposed standards represent a significant advance over VGA. Which of them is successful will probably depend at least as much on the market factors as on their inherent benefits.

Rick Cook is a freelance writer in Phoenix, Arizona, specializing in computers and high-technology subjects. He can be reached on BIX as “rcook.”
Ours

<table>
<thead>
<tr>
<th>Quality</th>
<th>Features</th>
<th>Service</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value...</td>
<td>Reliability...</td>
<td>Ergonomic...</td>
</tr>
<tr>
<td>✔️ Performance</td>
<td>✔️ Lower Price</td>
<td>✔️ Higher Resolution 1600(H) x 1280(V) Pixels</td>
</tr>
<tr>
<td>✔️ 3 yr Warranty</td>
<td>✔️ 60 Day Money Back Guarantee</td>
<td>✔️ Faster</td>
</tr>
<tr>
<td>✔️ Custom Screen Fonts</td>
<td>✔️ The Elite/1600™ Display System</td>
<td>✔️ The Elite/1600™ delivers a picture that Publish magazine called “a real knockout with the finest text display you’ll find on any monitor—Mac or PC.”</td>
</tr>
</tbody>
</table>

Theirs?

<table>
<thead>
<tr>
<th>Expensive</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>✔️ Higher Price</td>
<td>✔️ Lower Resolution 1280(H) x 960(V) Pixels</td>
</tr>
<tr>
<td>✔️ 1 yr Warranty</td>
<td>✔️ NO Money Back Guarantee</td>
</tr>
<tr>
<td>✔️ Slower</td>
<td>✔️ ???</td>
</tr>
</tbody>
</table>

Get The Picture?

Meet our new Elite/1600™, a complete ultra-high resolution 19-inch monochrome display system with a 1600 x 1280 pixel resolution. It offers the highest quality two-page display system available for the IBM PS/2 Series, and IBM PC and compatible.

It has the same resolution as the Sun-4 workstation monitor. The extraordinary display, combined with a clean, stable, flicker-free picture means your images are razor-sharp, alignment perfect, drawings pin-point precise.

Each display system comes complete with a high resolution monitor, video interface card, and software drivers.

The Elite/1600™ is part of our extensive family of display products for the IBM compatible and Macintosh computers.

We carry a complete line of high resolution color, monochrome and gray-scale display systems.

The monitor you’ve got in mind is probably in our warehouse right now! Call our toll free number today, for our free information package.

1-800-343-5532

Discover for yourself how beautiful a big monitor can be.

Got the picture?

4201 Remo Crescent, Bensalem, PA 19020 USA
Phone: (215) 639-1636 FAX: (215) 639-3420

Circle 94 on Reader Service Card
New Reasons To Buy ARTIST™

1. Arris
2. ANVIL-5000pc
3. AutoSolid™
4. X-Windows
5. CADKEY
6. Hoops
7. VersaCAD
8. TOPAS/RIO

Plus Ten Well-Known Old Ones

Highly Software Compatible: An impressive list of over 200 graphic software products support the ARTIST™ Series. CAD, image processing and desktop publishing just begin the list of ARTIST applications.

Vast Product Line: The ARTIST Series includes 20 graphic controllers that range in resolution from 800 x 600 to 1684 x 1200. They display up to 16.7 million simultaneous colors and use Hitachi, TI and NEC graphic microprocessors to handle complex drawing commands.*

Single Screen Options: VGA, EGA, and CGA modules give you single screen workstations.* At the same time, they allow you to run popular software packages that support IBM graphic standards.

PC & MC Bus Compatible: We offer ARTIST graphic controllers for the IBM® PC/XT/AT, IBM PS/2 Micro Channel™ and compatibles. (Macintosh II products to be offered soon.)

Design Leadership: Control Systems was the first to produce a high performance graphic controller for the original IBM PC in 1982 and we repeated that effort in 1987 for the IBM PS/2s.

Peak Performance: We combine ARTIST controllers with ARTIST software drivers to give you fast, feature-packed graphic subsystems that few can match. Our ARTIST GT™ display list processing drivers give you instant zooms, birds-eye-views, transparent pens, and more.

High Customer Satisfaction: Our in-house testing procedures guarantee you smooth installation and operation. Less than 1% of ARTIST controllers are returned for repair.

Development Tools: We offer developer's toolkits for PGL, DGIS, X-Windows, and Hoops. Each has a complete set of graphic primitives to speed creation of new software applications.

Immediate Customer Support: Call us on our hotline and get same day customer service for all your ARTIST products. We've been told it's the best in the business.

Years of Experience: 8 years of graphics experience go into the development of new hardware and software products. As long as you own your ARTIST graphic workstation, Control Systems will be there to support you and offer you advanced ARTIST products.

Control Systems
P.O. Box 64750 St. Paul, MN 55164
or call
1-800-826-4281
In Canada call
1-800-543-8523
International calls
1-612-631-7800

Note: ARTIST controller features vary from product to product. Specifications are subject to change.

ARTIST and ARTIST GT are trademarks of Control Systems, Inc. IBM is a registered trademark and PS/2 and Micro Channel are trademarks of International Business Systems. Images courtesy of MCS, CADKEY, VersaCAD, Ithaca Software, Autodesk, Sigma Design, AT&T GSL. AutoSolid is a trademark of AutoDesk, Inc. ©Copyright 1988 Control Systems.
Is It Really Super?

The Super VGA standard is both a beginning to solving some problems and an end to simple solutions for others

Bill Nicholls

GA, Hercules, EGA, VGA, 8514/A—haven't we had enough? With resolutions ranging from 320 by 200 pixels to 1024 by 768 pixels and color options from monochrome to 256 colors from a palette of 256,000, we seem to have overdone the graphical user options a bit. What started as a simple choice between monochrome and color has become a confusing and expensive set of options for users and has escalated into a nightmare for manufacturers and programmers of video display adapters.

Each of these classes of display adapters has one or more standard text modes, ranging from 40 columns by 25 rows to 80 columns by 50 rows, and standard graphics modes that range from 640 by 200 pixels by 2 colors (CGA) to 640 by 480 pixels by 16 colors (VGA). Most of the modes in the earlier adapters are supported in the later ones, though sometimes with different setup parameters. For true IBM modes, all compatible adapters support the setup via BIOS calls.

In addition, almost every maker of display adapters has added special text and graphics modes (via hardware and BIOS extensions) that differentiate its product from others. For text, these special modes range up to 132 by 60 characters. For graphics, they range up to 1024 by 768 pixels, interlaced and noninterlaced, as well as 800 by 600 pixels in 16- and 256-color options.

As a result, software companies that produce graphics software have provided limited support for the special extended modes unique to a specific adapter. Thus, the video-adaptor manufacturers have had to greatly expand their programming and technical-support effort to provide software drivers for each graphics package in order to solve your installation problems. And you still have to figure out what combination of modes and software gives you the best result with your current display!

How Bad Can It Get?

Five chip sets currently support VGA-compatible displays: Renaissance, ATI Technologies, Western Digital Imaging (Paradise), Video Seven, and Tseng Labs. All have extensions requiring different programming to activate similar modes. A similar number of chip sets exists for the EGA standard and extensions, and the 8514/A has both a software application interface and a decoded hardware interface from Western Digital. 8514/A clones are expected soon and could further expand the incompatible setup and programming problem. You could have 30 to 60 independent sets of code for each application to drive the most common video adapters continued
in the most common graphics modes.

With the exceptions of Microsoft Windows and GEM for DOS, Presentation Manager for OS/2, and X Window for Unix, no common driver interface exists for graphics applications. Graphics applications now face a two-level software-support decision: which interface standards they should support, and which stand-alone adapters should support. To support the growing number of environments and video adapters, each graphics application must devote more programming resources to the graphics interface rather than to the application.

The good news is that a group of video chip, board, and display vendors saw this problem coming and formed an independent organization—VESA, the Video Electronics Standards Association. This organization recommends standard BIOS and programming interfaces for the extended graphics modes that hide the in-compatible hardware implementations.

The bad news is that the task is complex and must be done in a backward-compatible manner so as not to orphan the current installed base of VGA cards. The VESA VGA BIOS extension proposal version 2.0, called Super VGA, was issued in April. It will take time for final agreement and implementation of the new standards, and still more time to rewrite or upgrade the software drivers.

The Standards

The term Super VGA refers to video graphics products that implement a superset of the standard IBM display adapter. The VESA Super VGA Standard is the proposed software interface that will isolate the hardware differences and provide information in a hardware-independent manner. This means you will finally be able to write graphics software without needing special code for each specific chip set or having to identify which adapter you're using.

VESA is proposing standards for determining the video environment, programming support, compatibility, mode numbers, and BIOS functions. The video-mode numbers are 15 bits wide, while current VGA video-mode numbers are 7 bits wide and range from 00h to 13h. Manufacturers have established extended modes in the range from 14h to 7Fh. Values in the range 80h to FFh are not allowed since bit 7 is a Clear Video Memory flag. Except for mode 6Ah, all other VESA modes will equal or exceed 100h (see table 1).

An extended BIOS support using extended function 4Ph in the video interrupt 10 handler is also proposed. Function calls will return status in the AX register concerning support or nonsupport, success or failure (see table 2).

In addition to these functions, further analysis and discussions are aimed at other aspects of the video adapters. These include the following:

- Extended video-memory mapping, which could simplify windowing software by insulating it from most of the hardware details.
- External palette control to 6- and 8-bit D/A converters, which could create a uniform interface to either a 256,000-color palette or a 16-million-color palette.
- Variable start address for the CRT, important in animation techniques.
- Standard timing parameters for the display so that monitor manufacturers can provide monitors that synchronize without adjustment and provide the proper picture size at any resolution.

How Does This Affect the End User?

Except for the installation difficulties, as an end user, you don't see most of the current problems directly. What you do see are long delays required for the extended graphics modes, and separate drivers for each graphics software package for each specific adapter family.

VESA has yet to make an impact on the end user, but once the standards are accepted, you will see fewer but more-functional software drivers. In addition, switching to a new video display adapter usually won't mean getting a whole new set of drivers, since a driver written to the VESA standard should work with any VESA-compliant adapter.

Performance Issues

VESA standards may solve the incompatibility problem, but higher resolution presents another problem. Higher resolution means more pixels; more pixels mean more operations to update each screen; and more operations mean a slower response to any change.

Given today's systems and adapters, a 4.77-MHz computer will be slow at supporting EGA graphics. For basic 8-MHz ATs, VGA at 640 by 480 pixels is probably the best resolution with acceptable graphics performance. A 12-MHz AT can support VGA at 800 by 600 pixels, but 1024 by 768 pixels needs a 16-MHz continued
If you’re thinking of putting an IBM monitor on your PS/2, you’re not seeing the big picture.

When it comes to displays, bigger is better. That’s one reason why the Amdek Monitor/432 monochrome VGA has a big edge over IBM’s own standard PS/2 monitor. But it’s not the only reason. Because the 432 is, after all, from Amdek. A company with over 12 years experience in the computer monitor business, and the leading independent monochrome supplier. The 432’s 14" etched-surface, flat screen produces hardly any glare or distortion. And far less eyestrain than Big Blue’s PS/2 monitor with its smaller, 12” curved screen. What’s more, IBM’s smaller screen also carries a bigger price tag.

So, if you’re choosing a monochrome monitor for a PS/2 or any AT compatible, remember the company that hasn’t lost sight of the big picture. Amdek. For the dealer nearest you, call 1-800-PC AMDEK.
IS IT REALLY SUPER?

Table 3: Most graphics software runs at 640 by 480 pixels today, so the processor is handling 2.4 times as many pixels as CGA. The higher-resolution screens will clearly be slower.

<table>
<thead>
<tr>
<th>Video mode</th>
<th>Resolution</th>
<th>Number of pixels</th>
<th>Percent of CGA</th>
</tr>
</thead>
<tbody>
<tr>
<td>CGA</td>
<td>640 x 200</td>
<td>128,000</td>
<td>100</td>
</tr>
<tr>
<td>EGA</td>
<td>640 x 350</td>
<td>224,000</td>
<td>175</td>
</tr>
<tr>
<td>VGA</td>
<td>640 x 480</td>
<td>307,200</td>
<td>240</td>
</tr>
<tr>
<td>Super VGA</td>
<td>800 x 600</td>
<td>480,000</td>
<td>375</td>
</tr>
<tr>
<td>8514/A</td>
<td>1024 x 768</td>
<td>786,432</td>
<td>614</td>
</tr>
</tbody>
</table>

AT or 80386-based machine for good performance in graphics modes.

However, not all the limitations are in the processor—a 16-bit VGA will be faster than an 8-bit VGA, provided the hardware and software used can handle 16-bit graphics access. Unfortunately, this is the exception rather than the rule.

Look at this another way. Since most graphics software runs at 640 by 480 pixels today, the processor is handling 2.4 times as many pixels as CGA, but the higher-resolution screens will clearly be slower (see table 3). Two other factors also affect the delays: access to the video adapter memory, and the number of operations required to change a single pixel.

EGA is particularly bad for memory access, as five out of six memory accesses must be dedicated to refreshing the display, leaving only one out of six for updates. This is the primary reason for slow EGA displays.

VGA has a different problem. While memory access is faster, the larger pixel array requires as many as five I/O commands for each update due to the segmented addressing required to access 256k bytes or 512k bytes from a 64k-byte address space. While in 16-color mode, VGA can update two pixels at once; but in 256-color mode, it must access each pixel separately.

Adding insult to injury, many VGA adapters still have 8-bit registers even if they have 16-bit interfaces to the AT bus. Add further delays due to slower ROM BIOS access, and the situation can’t get much worse. The amazing thing is that good performance is delivered in most cases because of skillful programming in the graphics drivers, which are finely tuned to specific adapter hardware.

To accomplish further performance gains in the high-resolution area (800 by 600 pixels and up), hardware assistance in the form of dedicated graphics processors will provide the repetitive pixel manipulations currently dependent on the host CPU. Graphics chips available today include the Intel 82786, the Texas Instruments 34010 and 34020, and...
dGE is the most powerful database graphics package on the market, has just been voted the "best graphics tool for a database manager" according to the readers of Data Based Advisor. If you think that's impressive, consider this: the vote was based on dGE 2.0. Now dGE 3.0 is here.

dGE 3.0 is better than ever.

The Graphics Design Center, included in the new 3.0 version, supports the creation of graphic charts and pictures in a free-form menu driven environment. So instead of requiring you to program in dBASE source code, the Graphics Design Center writes the code for you after you've designed the image using pull-down menus and WYSIWYG editing screens.

There's more good news. Version 3 also adds a font editor, expanded printer support, 3-D bars, and a new font editor. What's more, dGE 3.0 works with: CGA, EGA, VGA and Hercules monitors, IBM PC, XT, AT, PS/2 and compatibles. Supports the most popular printers and plotters including HP-GL, Language plotters. PCX/PCG support now also included.

Impress your boss, your clients, and yourself. Easily.

dGE does what you want. And it does it with the dialect of your choice. Consider the possibilities:

GRAPHICS:
- Bar
- 3-D Bar
- High-low-close
- Pie
- Polar
- Photo

DIALECTS:
- dBASE III+
- dBASE IV
- Clipper
- FoxBASE+
- R:BASE
- Compiler
- QuickSilver
- dBase
- Eagle
- Microsoft C
- Quick C
- Turbo C

DGE comes complete with everything in all dialects

For more information and your FREE DEMO DISK just call 1-800-231-1293 or 1-206-941-2300 or write Pinnacle Publishing, P.O. Box 8099, Federal Way, WA 98003.

When you're ready for the best, you're ready for dGE.

Price: $195.00; contact Pinnacle Publishing or your local software dealer.

GARANTEE

dGE is backed by a thirty-day money back guarantee.

Pinnacle Publishing, Inc. P.O. Box 8099 Federal Way, WA 98003 206-941-2300 800/231-1293 FAX 206-946-1491

COME VISIT US AT COMDEX BOOTH #C-740
expected near the end of this year, the chip supporting the IBM 8514/A.

However, this is only half the equation. Graphics code today is written for host-processor bit- and pixel-twiddling. Changing to outboard chips will require at least a rewrite of the graphics driver, and maybe a redesign of the interface. Functions with repetitive operations, such as line drawing and area fill, are quick to pass as parameters, but complex shapes may be slower than the host CPU can handle. These complex operations will require bit maps of graphics objects to move rapidly between the host CPU and display processor.

Future Directions

Except for Texas Instruments’ TIGA standard for 340X0 boards, the issue of standards for “smart” video adapters is two years behind that of the VESA standard for VGA boards. As these boards drop below $1000 in the 1990s and become mainstream components, the problem of proliferation of interfaces will recur unless VESA or a follow-on group begins the lengthy process of achieving a standard through consensus.

In addition to the current proposed VESA standard, other standards work is planned, and new working groups include the 8514/A interface. To those groups should be added a group for analysis of performance issues, another for operating environments like Windows, and a third to study the transition issues as software has to support the smart graphics adapters.

As an end user, you can look forward to Super VGA as both a beginning and an end. Graphics-driver standards are beginning to solve the problems of incompatible hardware, but simple CPU support for higher-resolution displays is coming to an end.

For the near future, 1024 by 768 pixels will be an economic limit for most of us for graphics displays. This is also the approximate limit for reasonable performance when driven directly by an 80386-based CPU. For the next 8 to 12 months, these displays will become more cost-effective and popular as software support catches up with hardware capability and production volume enables prices to come down. Beyond that, future advances of graphics resolution and performance will depend largely on beginning to create new standards now.

Bill Nicholls has a B.S. degree in physics from Notre Dame University and is the owner of BOW Systems (Puyallup, WA). He can be reached on BIX as “billm.”
What Problems Lurk In Your Computer?

System Sleuth Knows!

Operating as easy-to-use PC environmental diagnostic software, System Sleuth probes every single sub-system in your PC — unravelling the mysteries of system problems and configuration conflicts — giving you the facts and nothing but the facts.

System Sleuth is thorough. It explores the entire PC environment — from available memory to add-in boards to disk drives to hardware interrupts — nothing escapes System Sleuth.

System Sleuth is fail-safe. Beyond a shadow of a doubt. We're talking diagnostic and no slip-ups — no accidental changes to any part of your system.

System Sleuth saves time and money. It's fast. It's accurate. So before you call in technical support people, get the facts from System Sleuth.

The Testimony:

"This is one of those programs that I didn't know I needed until I got it; now, what with all the hardware I try out around here, I use it all the time, and I can't think how I got along without it."
Jerry Pournelle, Byte Magazine May, 1989

"System Sleuth, an absolutely wonderful new utility... it shows an even better idea than IBM's on how to help the PC user and those who try to keep him up and running."
Jim Seymour, PC Week December, 1988

The Price: Just $149.00

The Verdict: Order now. Call 1-800-999-1557 Visa and MasterCard 30-day, money-back guarantee

SYSTEM SLEUTH™
Dariana Technology Group Inc.
23704-5 El Toro Road, Suite 34B, El Toro, CA 92630 • (714) 994-7400
System Sleuth is a trademark of Dariana Technology Group, Inc. Other brands and product names are trademarks of their respective holders.
BUYERS BEWARE! Northgate charges credit card sales only when system is in the shipping process. Some others use your money by charging cards at time of sale. We recommend you be aware of this when considering your vendor.
How can Northgate afford to offer a 286 with 32MB hard drive and one full megabyte of RAM when Dell's newest Series 210 system, for the same money, doesn't match up? Maybe it's the high cost of color advertising. We use two colors and pass the savings on to our customers. Would you rather get more computer for the money...or be entertained with color pictures?

Here's a fresh idea... Make Northgate and Dell's money-back guarantee program meaningful: Order from both companies. 30 days later send back the loser. Or keep life simple and place your order with Northgate. Odds are it's the one you'll keep anyway.

Phone Northgate for full details and pricing 800-548-1993

Canada: 800-338-8383

FINANCING: Use the Northgate "Big N" revolving credit card instead of tying up Visa or MC credit. Millions in financing available, easy to qualify. OR...Lease Northgate with up to five-year terms. Ideal when cash flow is important. Phone for details.

© 1989 Northgate. COMPUTER SYSTEMS. and the Northgate "N" logo are trademarks of Northgate Computer Systems, Inc. All other product and brand names are trademarks and registered trademarks of their respective companies.

Prices and specifications are subject to change without notice. Northgate reserves the right to substitute components of equal or greater quality or performance. All items subject to availability.

Northgate offers flexible purchase plans including a lease program to fit your individual financing needs.

P.S. Ask about OmnikeyPLUS, the new Northgate Keyboard designed the way you want it.

And the winner is... Call NOW!
When you want to know all about a computer system ... Ask Dr. Jerry Pournelle.*

Put a machine in Pournelle's workshop. He'll soon tell you everything you want to know about it with no punches pulled.

Recently, Dr. Pournelle looked at Northgate's 80386 Pipeline Page Mode system and reported in BYTE July, 1989 (excerpted):

BUYERS BEWARE! Northgate charges credit card sales only when system is in the shipping process. Some others use your money by charging cards at time of sale. We recommend you be aware of this when considering your vendor.

Hot 386/20 MHz System

Scorching 386/20 MHz Price

$2599.00

COMPLETE SYSTEM: 20MHz Processor; 65MB Hard Drive; 800,000 KBS Data Transfer; 1MB RAM (Expandable to 16MB); 1.2 and 1.44 high density floppy drives; M* Monitor; Herc. Compat. Card; MS-DOS 4.01; Full Size Desktop Case with 5 drive bays; OmniKey Keyboard; 1-Year parts/labor warranty; Replacement parts express overnight at our expense or At-Your-Office next day onsite service, one year at no extra cost. THE BEST PHONE TECH SUPPORT IN THE COMPUTER BUSINESS. Toll free, unlimited.

NOTE: Pipeline Page Mode system architecture is preferred in many applications to cache design. It is faster than all but the largest cache systems in certain applications requiring substantial memory calls.

*Jerry Pournelle holds a doctorate in psychology and is a writer who also enjoys a considerable living writing about computer present and future.
"... the case is sturdy, and the motherboard construction is clean and neat. The boards are thick; I've seen some clones with boards so thin they wave in the breeze."

"... I like this machine a lot."

"... The workmanship is superior."

"... there sure wasn't any installation required for this system. I just turned it on, and it came up in MS-DOS 4.01..."

[a software program] "... which is all graphics is almost twice as fast on the Northgate 80386 as on my other machines. So is Windows ...

"... I rate the Northgate 80386 as better than good enough on CPU and disk speed and wow! on video speed."

"... I have reports from other people who have Northgate computers, and they're happy."

"... All in all, the Northgate 80386 looks like one of the best deals in town."

SUDDEN SERVICE: We Ship All Orders for 386/20 Systems within 4 days!**

NORTHGATE COMPUTER SYSTEMS, INC.
13705 First Avenue North, Plymouth, Minnesota 55441
Canada: 800-338-8383

FINANCING: Use the Northgate "Big N" revolving credit card instead of tying up Visa or MC credit. Millions in financing available; easy to qualify. OR, Lease Northgate with up to five-year terms. Ideal when cash flow is important. Phone for details.

©Copyright Northgate Computer Systems, Inc. 1989. All Rights Reserved.
Northgate, NC-80386, Northgate "N", and the Northgate "N" logo are trademarks of Northgate Computer Systems, Inc. All other product and brand names are trademarks and registered trademarks of their respective companies.
NEW...
Northgate OmniKey™ PLUS
The keyboard you asked us to design!

Thousands of you asked us to make a keyboard designed the way you want, not what IBM and all their keyboard clones force on you.

Now... discover OmniKey/PLUS!

As are all our keyboards, Northgate's engineers designed this gem from the ground up. It's not a PacRim economy job anyone can buy. IT'S EXCLUSIVELY NORTHGATE.

One look, one touch tells you this is the best in keyboard design, in quality, in all its many features so you can type faster, confident all the keys are where you want them.

Now! Two separate keypads. Cursor arrows in logical, comfortable array—gone is the ill-conceived "inverted T." And the backslash key is placed "just right." See detail panels.

Will you prefer OmniKey/PLUS enough to discard your current keyboard? Take ten days to make up your mind. If not, return for full product cost refund.

Quantities may be limited so call or send your order today.

LOOK! Just a few new

F KEYS ON THE LEFT...
12 easy to reach, programmable F Keys where they belong and where your fingers expect to find them instinctively.

CONVENIENCE CLUSTER...
Large Backspace Key. hard to miss. L shaped Enter Key. Backslash next to Shift. Unshifted Asterisk Key—a wonderful addition.

Alps Click/Tactile Key Switches

Dip Switch compatible with nearly any IBM PC type system—PS/2, Zenith, Compaq, Dell, Tandy, AT&T

OmniKey/PLUS weighs 5.5 lbs., made to stay put on your desk

Cable plugs into back of keyboard

Low Profile Elegant Styling!

Introductory Limited Time Price
$119.00

For Dealer and Distributor Program Pricing, Phone Keyboard Dept. at 612-553-0734.
New OmniKey™/102 Model
Also Available . . . $99.00

For those who prefer Northgate's OmniKey/102, an up-dated version now joins our line. Same trial offer, same 3-year warranty.

Yes. Ship my OmniKey order(s). I understand I may use it for 10 days and if I wish, may return it for full product cost refund. I agree to pay for freight both ways.

Northgate will accept COD and purchase orders from credit-worthy buyers for quantities totalling $500.00 or greater. Dealer and distributors: for quantity prices phone our corporate headquarters 612-553-0794.

FAX orders to 612-553-1695.

SHIPPING: Allow 5 days for order processing before shipment. Thereafter, shipments can be:

- UPS Ground add $7.00 ea.
- allow 2-3 weeks for delivery
- Overnight Air add $25.00 ea.
- Second Day Air add $12.00 ea.

Shipping Included

Prepaid amount enclosed $____

Date_________________

Northgate Computer Systems, Inc.
13705 First Avenue North
Plymouth, Minnesota 55441

Name ____________________________

Company ____________________________

Ship to: ____________________________

City __________________ Zip ______

Phone ____________________________

Computer Brand & Type

<table>
<thead>
<tr>
<th>Qty</th>
<th>Item</th>
<th>Shipping</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OmniKey PLUS*</td>
<td>$14.99</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OmniKey/102</td>
<td>$ 9.99</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CIT 101</td>
<td>$ 9.99</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>$35.98</td>
</tr>
</tbody>
</table>

*No need to hit Num lock or hold down Shift Key, and we "inked" the inverted T.

Features of OmniKey PLUS.

- Compatible with virtually every IBM type computer in the world!
- Ten-day trial return for unquestioned full refund
- Three-year unconditional warranty, any cause, we will repair or replace.

Compatible with IBM PC and XT, IBM PCjr, Apple IIe, IIc, IIgs, IIc+, IIci, IIci+32, Macintosh, and IBM PS/2 models with IBM PC AT/PS/2 compatible RS-232 interface. Requires use of a standard IBM or compatible keyboard.}

Northgate Computer Systems, Inc.
13705 First Avenue North
Plymouth, Minnesota 55441

Phone Toll Free
800-526-2446

HOURS: Mon-Fri 7am-8pm, Sat 8am-4pm Central

Features of OmniKey PLUS:

- Numeric Keypad
 - With all the math operands in place around the numbers. Large print. No need to hit Num lock or hold down Shift Key, and we "inked" the inverted T.

- Cursor Screen Keypad
 - With arrows in familiar diamond pattern. No need to hit Num lock or hold down Shift Key, and we "inked" the inverted T.

- NUMBERS SCREEN KEYPAD
 - With arrows in familiar diamond pattern. No need to hit Num lock or hold down Shift Key, and we "inked" the inverted T.

- WITH all the math operands in familiar diamond place around the numbers. Large print. No need to hit Num lock or hold down Shift Key, and we "inked" the inverted T.

- AND we "inked" the Inverted T.

- FEATURES OF OMNlKEY PLUS.
- WITH all the math operands in familiar diamond place around the numbers. Large print. No need to hit Num lock or hold down Shift Key, and we "inked" the inverted T.

- FEATURES OF OMNlKEY PLUS.
- WITH all the math operands in familiar diamond place around the numbers. Large print. No need to hit Num lock or hold down Shift Key, and we "inked" the inverted T.
Here's How Buyers Who Demand the World's Highest Performance and Quality...

Order from Northgate...

DIAL 800-548-1993
Canada 800-338-8383

You'll be connected to a Northgate Account Manager. In an instant, you'll know you're dealing with a professional. A highly trained individual who understands computers and more importantly, understands people like you.

You'll immediately feel confident. Your questions will receive intelligent, careful consideration. And you'll get the truth, not the baloney.

If you're strictly shopping for the lowest price without considering quality and performance, don't call. But if you want the most computer for your investment...a system that runs rings around the others...with the most meaningful warranty* in the computer industry...

CALL NORTHGATE TODAY!

Join the ranks of Fortune 500 corporations...colleges and universities...individuals...government agencies around the world.

Call Northgate Today!

* If anything in your Northgate system goes down and disables your computer, Northgate guarantees to ship the proper replacement part OVERNIGHT AT OUR FREIGHT EXPENSE. You get a brand new part—be it the largest and most expensive hard drive to the smallest part—and it's shipped to you BEFORE YOU RETURN THE OFFENDING PART. Check our competition. In most cases, they must get the part back before you get a replacement. Often that's weeks. And you sit there, out of business until they get the old part repaired or replaced.

Northgate's phone tech crew is here to back you up. Unlimited phone help is available for as long as you own your Northgate. And for one year, you're protected with Northgate's Overnight Parts Replacement Warranty. If a system needs to come back for service, all parts and labor are FREE unless damage is caused by the end user.
Now Northgate Gives You Credit and No Payments Until 1990*
(Payments begin 90 days from the date your Northgate Computer System is delivered to you.)

WHY TIE UP YOUR OTHER CREDIT CARDS?

Use the Northgate, "Big N" credit card, and avoid the "payment crunch."

Simply fill out the "Big N" application, and send it in. Prompt approval assured!

Once you're approved, simply call our TOLL FREE number and one of our expert system consultants can help you design the Northgate System which will best suit your needs, and it will be shipped to you right away.

Best of all, there will be no payments due on your Northgate System for a full 90 days starting from the day you take delivery!

Northgate also offers flexible long term leasing plans too. You can choose the plan that will best fit your needs, with terms up to 5 years.

Phone Northgate Now...

800-548-1993

HOURS: Monday - Friday 7 a.m. - 6 p.m. Central
NEW EXTENDED SAT HOURS: 6 a.m. - 4 p.m. Central Canada Toll Free Order Funicine: 800-318-8161

NORTHGATE COMPUTER SYSTEMS, INC.
13705 First Avenue North, Plymouth, Minnesota 55441

*Interest will accrue during deferred period. 1.5% per month. 18% APR.
*Based on purchase price of $1,299.00 on the "Big N" revolving charge. Process subject to change without notice. Offer not valid for APO or FPO customers.

© Copyright Northgate Computer Systems, Inc. 1989. All Rights Reserved.
Northgate, ONYXWARE 102, OnyxWare Plus, and the Northgate "N" logo are trademarks of Northgate Computer Systems, Inc. All other product and brand names are trademarks and registered trademarks of their respective companies.

BYTE IBM Special Edition • Fall 1989
This text editing program—including pull-down menus, scroll bars, and all other Windows items—was created with just two lines of Actor code.

Actor® is the fastest, easiest way to develop applications for Microsoft Windows. The reason—Actor's reusable toolkit of objects such as dialog boxes and edit windows. It more than doubles your overall productivity, making Actor an essential part of any Windows development project.

A full-featured, interactive, Windows-based programming environment, Actor provides immediate compilation, interactive testing, and source-code debugging. You can use it to produce fast standalone applications that support all Windows features, including Dynamic Data Exchange (DDE) and expanded memory.

Actor is a powerful, pure object-oriented programming language. It's all you need to develop complete Windows applications. You also have the option to dynamically link Microsoft C code to your Actor program.

Either way, it's the fastest way to produce everything from prototypes to complete development projects. No wonder so many developers are already using Actor.

Call us now for more information. The sooner you do, the sooner you can speed up your Windows development work.

The Whitewater Group

600 Davis Street
Evanston, Illinois 60201 U.S.A.
(312) 328-3800
FAX (312) 328-9386

(800) 869-1144

Two New Products
For C or Actor Programmers

WinTrieve™

ISAM indexed file manager. Only $395, no royalties.

Whitewater Resource Toolkit™

Edit dialog boxes, bitmaps, icons and more. Only $195.
SQL: A DATABASE LANGUAGE SEQUEL TO dBASE

A look at SQL's command structure shows why it's likely to become a new standard

Mark L. Van Name and Bill Catchings

or many years, dBASE has been the dominant microcomputer database language. While dBASE undoubtedly still has a long life ahead of it, another database language, SQL (pronounced "sequel"), is emerging as a second standard for both database servers and stand-alone microcomputer databases.

SQL has for several years been the standard language for mainframe and minicomputer relational database systems. As such, it offers microcomputer users a single language for both stand-alone and host databases. SQL is particularly good for working with such host or server databases, in large part because it can manipulate groups of records at a time—an important capability when you're reading records over a network.

SQL also tries to minimize the effort that a database programmer must expend to retrieve data. It is a nonprocedural language: You tell a SQL database system what data you need, not how to get that data.

SQL is not, however, a full application development language like dBASE. While many SQL vendors have added programming extensions to the language, it's designed to work in conjunction with such traditional programming languages as COBOL, Pascal, PL/I, or C.

A Long History

SQL has been around since 1974–1975, when IBM developed the first version, SEQUEL (for Structured English Query Language), at the company's San Jose research center as part of a prototype relational database system, SEQUEL-XRM. A second version, SEQUEL/2, followed in 1976-1977 as part of IBM's System R relational database prototype.

SQL emerged from the research world in 1979 in a commercial database system, Oracle, from Oracle Corp. (then Relational Software). Oracle actually beat IBM to market with SQL, but IBM brought out its own products in the early 1980s—first SQL/DS for DOS/VSE mainframes, and then DB2 for MVS systems.

Where IBM goes, others are sure to follow; today, over 100 vendors offer versions of SQL. SQL microcomputer implementations abound, including IBM's OS/2 Extended Edition Database Manager, Oracle Corp.'s Oracle, Relational Technology's INGRES, the Sybase/Microsoft/Ashton-Tate SQL Server, the SQL component of dBASE IV, and Gupta Technologies' SQLBase.

All these versions follow, to at least some degree, a SQL standard that the X3H2 Database Committee of ANSI started developing in 1982. That group's initial proposal, which ANSI ratified in 1986, was very similar to IBM's DB2 dialect of SQL.

SQL's Many Faces

The ANSI SQL standard establishes a common target for the many SQL vendors, but it by no means precisely defines a single, all-inclusive language. In fact, no two versions of SQL, even those that are ANSI-compatible, are identical. The differences between SQL versions are due largely to the two different ways in which users and programmers must work with SQL.

Most SQL database vendors offer one or more interactive utilities that accept SQL. With such tools a user can, for example, write a SQL statement that requests the records of all the salespeople in Minneapolis, and then see those records. The dialects of such interactive products generally follow the ANSI standard, but they cannot do so completely.

That inability isn't the fault of the vendors; the ANSI standard doesn't define an interactive version of SQL. Instead, it concentrates on making SQL work with such traditional programming languages as COBOL and PL/I. The standard actually defines two different ways for SQL to work in programming languages.

Differences between interactive and programming language versions of SQL are almost unavoidable because of the way the two environments must handle multiple records that satisfy a single request. An interactive environment can just display
SPECIAL

IBM PS/2 MODEL 50-021

FEATURES: 1MB RAM, 80286 BASED PROCESSOR, 10MHZ, (1) 1.44MB 3.5" FLOPPY, 20MB FIXED DISK, VGA ADAPTER, PS/2 101 KEY K/B, PARALLEL & SERIAL PORT, CABLES & MANUALS, 100% IBM PRODUCT **REMANUFACTURED**

SUGG. RETAIL NEW $3,595.00
OUR PRICE $1,888.00
INCL. 90 DAY DEPOT WARRANTY, JUST LIKE NEW UNITS!
FREE NEW AMDEK MODEL 432 VGA MONITOR INCL. WITH EVERY UNIT
$245.00 VALUE AT NO CHARGE!
EXSEL, INC.
VISA 1-800-624-2001 MC
716-272-8770 FAX 716-272-8624

IBM 5 YEARS BEHIND!!!
THE REVOLUTIONARY PC
DISTRIBUTED DATABASE MANAGEMENT SYSTEM
RECORD-TRANS

The first and only one on the market with multiple remote locations
Data Base Management.
View and perform data base operations on two remote data bases
thousands of miles apart on the same screen at the same time!
DBase III, IV, Fox-Base, Clipper queried record transfer and binary
file transfer!
Concurrent Database operations in network environment. Distributed
Querying Processing.
Transfer only the updated records and not the whole database!
Results in 95% savings on your long-distance telephone bill or
more!
Batch Unattended Operations with timed scheduling capability. On-line
Interactive Operations. Password protection/log file. Powerful
and user friendly. Professional Technical Support. 30 day satisfaction
money back guarantee. Supports 300-9600 baud.
Requires MS-DOS 3.0 or higher, 512KB RAM and Hayes compatible
modem.
Only $250 per copy for significant on-line savings
MC/VISA

Database & Datacom Solutions
3611 S. Harbor Blvd., Suite 215
Santa Ana, CA 92704
(714) 434-1000

SQL: A DATABASE LANGUAGE SEQUEL TO dBASE

those records in a suitable format, hiding any programming details from the user. But a programmer must contend with a limitation of most traditional languages: They are not designed for procedures that return a variable number of records, as SQL statements can.

In the following discussion of SQL statements, we’ll use a syntax much like what you would find in an interactive SQL utility. Then we’ll explain how the ANSI standard lets you use SQL statements in a programming language. Because SQL is a large and comprehensive language, and one whose complete explanation has filled many books, we will necessarily cover only its key parts. They should serve, however, to illustrate how SQL works and what you can do with it.

Data by Definition
SQL is in a sense two languages in one: It’s a data definition language (DDL), with which you can define a database, and it’s also a data manipulation language (DML), with which you can manipulate the records in that database. We’ll start with the DDL.

SQL is based on the relational database model, where a database is a collection of one or more named tables. Each table is an unordered collection of rows, each of which has a fixed number of columns. Each column has a heading (name) and a data type. ANSI SQL defines three basic data types: character strings, exact numbers, and approximate numbers—roughly the strings, integers, and floating-point numbers of most programming languages.

Obviously, these tables, rows, and columns have analogs in traditional files, records, and fields. But they differ in that SQL lacks an order for the rows in a table. If you ask for all the rows that satisfy some criteria, SQL will return those rows to you in an implementation-specific order—and it won’t necessarily maintain that ordering in subsequent queries. If you want to get the rows back in a specific order, there’s a SQL verb that lets you do so.

Unlike the rows, the columns in a table do maintain the order in which you define them. That order is important primarily to the INSERT command, which we’ll discuss later.

In addition to permitting you to define individual tables, any relational system must enable you to relate those tables. When you want to express a relationship between rows in two tables, you use values in columns. Consider the following two simplified tables:

<table>
<thead>
<tr>
<th>Table Name: Employees</th>
</tr>
</thead>
<tbody>
<tr>
<td>Columns: Employee_Id, Last_Name, First_Name, Address, City, State, Zip</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table Name: Dependents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Columns: Employee_Id, Last_Name, First_Name</td>
</tr>
</tbody>
</table>

To make “Donald Smith” a dependent of “Judith Smith,” you put Judith Smith’s employee ID in the Employee_Id column of Donald Smith’s dependent row. The two columns that form the relationship—in this case, the Employee_Id column in each table—must have the same data type.

While you use this mechanism to relate rows, in SQL you never define such relationships. Instead, you define the tables and columns and then use the relationship in record retrievals when you need it.

SQL translates the relational database model into a database definition with several DDL statements. A SQL database definition is a group consisting of one or more schemata. A schema
is a definition of the part of the database that each user owns. For example, the SQL statement

```
CREATE SCHEMA AUTHORIZATION USER1
```
creates a schema that USER1 owns.

Once you’ve created a schema, you can define its tables, all of which start out empty. To define the two sample tables from above, you would issue the following commands:

```
CREATE TABLE Employees
( Employee_Id DECIMAL(5) NOT NULL UNIQUE,
  Last_Name CHAR(15),
  First_Name CHAR(15),
  Address CHAR(15),
  City CHAR(15),
  State CHAR(2),
  Zip CHAR(10) )
CREATE TABLE Dependents
( Employee_Id DECIMAL(5) NOT NULL,
  Last_Name CHAR(15),
  First_Name CHAR(15) )
```

Each CREATE TABLE statement gives the table’s name, along with the name and data types of each of that table’s columns. Each table in each schema must have a unique name. It is possible, however, for two tables in two different schemata to have the same name. When that happens, you distinguish those tables by referring to them with the qualified form \(U.T \), where \(U \) is the name of the user who owns the schema and \(T \) is the table’s name. So, if there were another Employees table in a different schema, you might refer to your table as \(USER1.Employees \).

You refer to columns in a similarly qualified form, \(T.C \), where \(T \) is the table name and \(C \) is the column name. (You can sometimes omit the \(T \) qualifier when the context makes it clear to SQL which column you want.)

```
Employees.Last_Name and Dependents.Last_Name identify two of the fields in our example. We could still further qualify Employees, as in \( USER1.Employees.Last_Name \), if there were a second Employees table in another schema.
```

We introduced two new elements in these examples: NOT NULL and UNIQUE. Any row can be missing the value for any column unless the definition of that column includes a NOT NULL qualifier. Because we wanted to force every row in both tables to include at least an employee ID, we made those columns NOT NULL. The UNIQUE qualifier on Employees.Employee_Id forces every row in the Employees table to have a unique employee ID. You can use this qualifier only on columns that are NOT NULL.

Other Commands

With the statements described above, you can define a complete ANSI SQL database. There are, however, a few other important DDL commands.

The CREATE VIEW statement lets you define a subset of a...
table. A view is a subset of the columns of a table and, optionally, a query that selects a subset of the table’s rows. If, for example, we wanted a view that listed the employee IDs and last names of all employees who live in Florida, we would enter

```
CREATE VIEW Floridians ( Employee_Id, Last_Name )
AS SELECT Employee_Id, Last_Name
FROM Employees
WHERE State = 'FL'
```

Note that the SELECT statement defines a query that picks the rows we wanted.

Once you define a view, you can treat it almost as if it were another table. The only difference is that SQL doesn’t let you update the rows of certain classes of views; basically, you can update rows in any view whose columns all come from a single table, as long as it includes all the NOT NULL columns from that table.

SQL’s DDL also contains a statement, GRANT, which controls database security. The GRANT statement has the following form:

```
GRANT <operation> ON <table> TO <user>
```

In this statement, <operation> is one or more of the SQL DML verbs (such as SELECT or INSERT). For example, USER1 could let USER2 query the Employees table by entering

```
GRANT SELECT ON Employees TO USER2
```

As it stands, this statement doesn’t let USER2 pass on this ability to other users. To add that ability, you must append the WITH GRANT OPTION clause:

```
GRANT SELECT ON Employees TO USER2 WITH GRANT OPTION
```

You can also take shortcuts. You can let a user do anything to a table by replacing <operation> with ALL. And you can open a table to all users by using PUBLIC instead of a user name.

After the Definition: DML

Once you’ve defined a database, you can begin working on it. SQL has four main DML verbs: INSERT, SELECT, UPDATE, and DELETE. All these verbs can work on more than one row at a time.

The SELECT statement is the heart of the language. It lets you query the database. Its result is essentially an unnamed, temporary relation that contains the data you requested. The SELECT statement follows this pattern:

```
SELECT <selection>
FROM <table_list>
<optional_query>
```

Here, <selection> is the list of fields that you want, and <table_list> is a comma-separated list of the tables that you’re using in the query.

If you wanted all the rows of the Dependents table, for example, you would enter

```
SELECT Employee_Id, Last_Name, First_Name
FROM Dependents
```

There are several other options for performing even this simple query. To avoid individually listing all the columns in a table when you want them all, you can replace <selection> with an asterisk (*). Thus, another way to express the above query is as follows:

```
SELECT *
FROM Dependents
```

By default, SELECT will return to you all the rows that match the query criteria that you present, even if some of those rows are completely redundant. In our example, if two parents work together and the company stores each dependent row twice (once for each parent), the above query would return those redundant rows. To eliminate them, you add the DISTINCT qualifier:

```
SELECT DISTINCT *
FROM Dependents
```

If you want to be sure to retain those rows, you can use the ALL qualifier in place of DISTINCT, but ALL is the default.

Some queries naturally span several tables. If, for example, you wanted the first names of all dependents of employees in Florida, you would need to use the following, more complicated SELECT:

```
SELECT Dependents.First_Name
FROM Dependents, Employees
WHERE ( Employees.State = 'FL' )
AND ( Employees.Employee_Id = Dependents.Employee_Id )
```

This example illustrates several more options. First, you’re retrieving from more than one table, so you must list both tables in the FROM clause. Next, because there’s a First_Name field in both tables, you have to qualify which one you want. Finally, you’re now using the <optional_query> clause. This clause can be far more complex than space permits us to cover fully here, but a few key portions are worth noting.

For a standard query, you first use the keyword WHERE and then give a Boolean expression that identifies the rows you want. That expression can contain groups of comparison clauses much like those of most programming languages, which you can separate and group by using AND, OR, and parentheses. The parentheses in the above example aren’t necessary, but they make the query easier to read.

The comparisons in a WHERE clause can involve a field and a value, or two fields. In our example, the first comparison chooses employees whose state is ‘FL’. The second comparison is more complicated; it performs what relational systems call a join. A join lets you choose matching rows in two different tables. In this example, we ask for all the Dependents whose Employee_Id column matches the Employee_Id column in any Employee record—in other words, the dependents of all employees. The SQL system puts these two clauses together so that you get only dependents of employees in Florida.

Joins can be very expensive because they can retrieve many rows; in this example, finding the dependents of all employees could take a lot of time. The SQL philosophy is that you should state the query you want and leave to the system the task of figuring out an efficient way to retrieve the data. In this example, it’s more effective for the system first to find all employees in Florida and then to join those rows to their dependents’ rows, rather than to do the join first.

The problem of determining how best to execute a SELECT
Solutions.

Whatever your system and whatever your memory requirement, the industry agrees that Boca Research has the solution.

BOCARAM/AT PLUS — "...an excellent solution for today's AT bus..." —Byron Druss, Product Manager, Robec Distributors
- User-upgradable to 8MB with 1Mb DIPs
- Supports DOS, OS/2, Unix, and Xenix operating systems; LIM/EMS 4.0 compatible
- ISA (AT) bus compatibility guaranteed at any CPU speed
- Product No. BRAT80 $225 (OK List)

BOCARAM/JAT I/O PLUS — "The perfect extension to the BOCARAM/AT PLUS...excellent for any CPU speed." —Lou Reda, VP/Operations, Chevco Computing Co.
- User-upgradable to 4MB with 1Mb DIPs
- Two serial ports and one parallel port
- Supports DOS, OS/2, Unix, and Xenix operating systems; LIM/EMS 4.0 compatible
- ISA (AT) bus compatibility for any CPU speed
- Product No. BRATP0 $295 (OK List)

BOCARAM/AT — "The engineering, design, and manufacturing quality of the Boca boards rate as top-notch." —PC Magazine
- User-upgradable to 4MB with 256K DIPs
- Supports DOS, OS/2, and LIM/EMS
- ISA (AT) bus compatible
- Product No. BRAT00 $225 (OK List)

BOCARAM/XT and BOCARAM/30 — "Best value among XT boards for budget-minded users." —InfoWorld
- User-upgradable to 2MB with 256K DIPs
- Supports Lotus/Intel/Microsoft EMS
- ISA (8-bit) bus compatible
- Product No. BRXT00 (PC/XTs) $175 (OK List)
- Product No. BR3000 (Models 25/30) $175 (OK List)

At Boca Research, we're committed to memory. For more information on these and other Boca Research solutions, see your local computer dealer.
query is called \textit{query optimization}, and it's an area in which SQL vendors are constantly trying to best one another. Most SQL systems also have guidelines that help you frame your queries in a way that the system is most likely to execute efficiently, but those guidelines vary widely.

Our example will return the \texttt{First_Name} we wanted, but the order in which they will appear is unknown. We can control that order with the ORDER BY option. The query

\begin{verbatim}
SELECT Dependents.First_Name
FROM Dependents, Employees
WHERE (Employees.State = 'FL')
 AND (Employees.Employee_Id = Dependents.Employee_Id)
ORDER BY Dependents.First_Name ASC
\end{verbatim}

returns the first names in ascending order. Because ASC (for \textit{ascending}) is the default in an ORDER BY clause, we could have omitted it here and produced the same result. To see the names in descending order, replace ASC with DESC.

There's much more to the SELECT statement; you can nest selects, group results, and compute functions like MIN, MAX, and AVG over the groups, and you can execute many other functions. You can also use more complicated comparison operators, including range checks and partial string matches.

Three other SQL verbs let you manipulate the rows in a table. You add new rows to a table with the INSERT statement. In its simplest form, you just give a table name and the values for the columns of the new row. The statement

\begin{verbatim}
INSERT INTO Dependents
VALUES (55816, 'Jones', 'Fred')
\end{verbatim}

creates a new dependent, Fred Jones, for employee 55816. Because SQL remembers the order of a table's columns, we don't need to include any column names. If you want to insert the column values in a different order, you can list the columns, after the table name, in that new order, as in

\begin{verbatim}
INSERT INTO Dependents (First_Name, Last_Name, Employee_Id)
VALUES ('Fred', 'Jones', 55816)
\end{verbatim}

You can also leave any columns null that the table's definition allows. To omit the first name from the new row above, use the NULL keyword:

\begin{verbatim}
INSERT INTO Dependents (First_Name, Last_Name, Employee_Id)
VALUES (NULL, 'Jones', 55816)
\end{verbatim}

You can use a more complicated form of INSERT to insert multiple rows at once. This form uses a SELECT statement as the source of its rows. For example, if we had a temporary table, \texttt{Temporary}, whose definition had only \texttt{First_Name} and \texttt{Last_Name} fields, we could use the following INSERT statement to fill it with the names of all Florida employees:

\begin{verbatim}
INSERT INTO Temporary (Last_Name, First_Name)
SELECT Last_Name, First_Name
FROM Employees
WHERE Employees.State = 'FL'
\end{verbatim}

You can change values in specific rows with the UPDATE statement. UPDATE uses a WHERE clause just like the one in SELECT to identify the row or rows that you want to change. For example, if the last name of employee 55816 changes to Jones-Smith, you can make that correction in all dependent records with the statement

\begin{verbatim}
UPDATE Dependents
SET Last_Name = 'Jones-Smith'
WHERE Employee_Id = 55816
\end{verbatim}

The DELETE statement similarly uses a WHERE clause to identify the rows that you want to remove. To delete all dependents for employee 55816, enter

\begin{verbatim}
DELETE FROM Dependents
WHERE Employee_Id = 55816
\end{verbatim}

Obviously, with this kind of power you have to be careful. If you leave off the WHERE clause, as in

\begin{verbatim}
DELETE FROM Dependents
\end{verbatim}

you delete all the rows in the \texttt{Dependents} table. The table definition itself remains, but the rows are gone. Fortunately, SQL also defines some transaction controls that provide a way to undo many errors.

A SQL transaction is a series of one or more commands that can end either normally or abnormally. If a transaction ends normally, all its commands are done. If a transaction ends abnormally, then none of its commands are done. The SQL system guarantees that the database is never in an inconsistent state (i.e., a state where one or more transactions are partially done).

To end a transaction normally, we use the verb COMMIT. COMMIT WORK completes the current transaction. It also effectively starts a new transaction; you're always working in a transaction.

Its counterpart is ROLLBACK; ROLLBACK WORK cancels all the database changes of the current transaction. The database then appears as it would if the transaction had never occurred. By using ROLLBACK right after our earlier accidental deletion, you could undo that mistake.

\section*{SQL in Programming Languages}

The SQL standard concentrates on making the SQL commands work with traditional programming languages. It offers two ways to do this.

The less frequently used approach is called the \textit{module language}. In it, you write a module that consists of a header and a series of procedures. The procedures contain only parameter definitions and one or more SQL statements.

For example, a module that lets us perform our simple DELETE might be

\begin{verbatim}
MODULE Deletion_Work LANGUAGE PLI
AUTHORIZATION USER1
PROCEDURE Delete_Dep
 SQLCODE;
 Emp_Id DECIMAL(5);
 DELETE FROM Dependents
 WHERE Dependents.Employee_Id = Emp_Id;
\end{verbatim}

\texttt{Emp_Id} is a parameter that will contain the ID of the employee whose dependents we want to delete. Note the special
Video Solutions.

Whatever your video requirements... look to Boca Research for the solution.

VGA by BOCA — "When it comes to performance, the 16-bit Boca VGA board is our recommendation."
—Lou Reda, VP/Operations, Chevco Computing Co.

- 16/8-bit PC bus auto-selected
- All standard VGA resolutions; up to 256 colors
- Offers 100% IBM VGA, EGA, CGA, MDA, and Hercules Graphics Card register level compatibility
- Auto-selects either monochrome or color VGA monitor
- Product No. VGA001 $345 (List)

MULTI-EGA by BOCA — "Its performance places the MultiEGA solidly in the top tier of the enhanced EGA boards..."
—BYTE, Curtis Franklin, Jr., March, 1988

- Supports 640 x 480 16-color extended EGA resolution
- Offers 100% IBM EGA, CGA, MDA, and Hercules Graphics Card compatibility
- Delivers crisp 132 columns x 43 lines text display
- Software drivers provided for Windows and AutoCAD
- Product No. EGA480 $299 (List)

EGA by BOCA — "...the EGA by BOCA...10% faster than any other card we tested."
—Computer Graphics Today

- Supports standard 640 x 350 EGA resolution
- Offers 100% IBM EGA, CGA, MDA, and Hercules Graphics Card compatibility
- Displays 16 simultaneous colors from a palette of 64
- 720 x 348 monochrome graphics resolution
- Product No. EGA350 $249 (List)

DUAL GRAPHICS ADAPTER — "Boca has done a quality job...DGA packs display circuitry plus I/O features into one compact, half-card."
—Byron Druss, Product Manager, Robec Distributors

- Supports IBM CGA, MDA, and Hercules Graphics Card
- 640 x 200 color resolution; 720 x 348 monochrome
- Standard 25-pin parallel port included
- Product No. DGA001 $99 (List)

At Boca Research, we're committed to video. For more information on these and other Boca Research solutions, see your local computer dealer.
parameter SQLEXEC; SQL requires this parameter in every procedure. When the procedure finishes, SQLEXEC will contain the result of the operation—positive for success, and negative for failure.

We could then call this procedure from a program in the usual way. In PL/I, it would be

```
CALL Delete_Deps (return_code, 55816);
```

Real modules would, of course, contain many more complicated procedures, but they would follow the same framework as our example.

The big advantage of the module language is that it requires very little from the host programming language. A new SQL-specific compiler can compile the module into an appropriate form, and then the host language needs only to be able to call and link to the module's procedures. Most systems support some form of cross-language procedure calls, so these requirements are easy to meet.

However, the module language is not very satisfactory, because you must write and compile all your SQL statements separately. To provide a more unified programming environment, the SQL standard also includes a series of appendices that define embedded versions of SQL for several languages.

An embedded version is designed to fit more smoothly into the language itself. It would be possible for vendors to implement embedded SQL by changing the compiler, but, instead, most provide preprocessors that convert embedded SQL into more-primitive calls that the underlying database system understands.

Embedded SQL lets you put SQL statements in the middle of ordinary code by prefixing those statements with EXEC SQL. For example, we could use embedded SQL to replace the above CALL to the SQL procedure with this code fragment:

```
EXEC SQL 	DECLARE Cl CURSOR FOR
SELECT Dependents.First_Name
FROM Dependents, Employees
WHERE ( Employees.State = :state )
AND ( Employees.Employee_Id = Dependents.Employee_Id )
ORDER BY Dependents.First_Name ASC;
```

The colon in front of state in the SELECT statement identifies state as a variable. (We'll consider the other variable, name, below.)

Once you've defined a cursor, you treat it much like a file. First you open it, and then you can cycle through its rows until there are no more. You could retrieve all the Floridian dependents using the above cursor in only a few statements, as the following pseudocode demonstrates (we ignore error checking here to save space).

```
state = 'FL'; /* pick the state you want */
EXEC SQL OPEN Cl; /* tell SQL to perform the query */
DO WHILE <more employees> /* read all rows */
EXEC SQL FETCH Cl INTO :name; /* now do what you will with the name you retrieved */
```

You can treat these three EXEC SQL options—OPEN, FETCH, and CLOSE—much like typical file open, read, and close statements.

Once you're on a record, you can change it with UPDATE or delete it with DELETE; both commands have embedded SQL versions that work on the current cursor row. Again, this is much like traditional file operations. You finish your work in the usual SQL way, with a COMMIT or ROLLBACK (prefixed, of course, by EXEC SQL).

The Rest of the Story

SQL is a large and powerful language, and we've hit on only the high points. While it may at first seem intimidating, SQL is similar to many of the file-querying tools that users have had on microcomputers for years. Once you're familiar with the SELECT statement, SQL's embedded versions closely resemble traditional file-processing functions.

SQL lets an organization use a single language to link its microcomputer, minicomputer, and mainframe databases. It is also the language that virtually all the announced LAN database servers support. As such links to host and server databases become more important, SQL will emerge as the second microcomputer database language standard.

Mark L. Van Name, a BYTE consulting editor, and Bill Catchings are independent computer consultants and freelance writers based in Raleigh, North Carolina. You can reach them on BIX as "mvname" and "wbc3," respectively.
Micro Channel Solutions.

Whatever your Micro Channel requirements... Boca Research answers with the right solutions.

BOCARAM.MCA 50Z — "...the product that answers the need for total IBM compatibility."
— Neil Peterman, U.S. Operations, M & S Elektronik
- 2MB Expanded/Extended Memory
- IBM ID and 100% TRAM compatibility
- Zero wait state operation (1Mb 100ns DIPs)
- Supports DOS, OS/2, and LIM/EMS 4.0
- Product No. BRMC20 $245 (OK List)

BOCARAM 50/60 — "For the price-conscious, we suggest the Boca Research Bocaram 50/60...an excellent value."
— InfoWorld
- Extended memory up to 4MB per board
- One wait state for compatibility with IBM PS/2 Models 50 and 60
- Supports DOS, OS/2, and EMS applications
- LIM/EMS Emulation
- Utilizes 1Mb 120ns DIPs
- Product No. BR5000 $295 (OK List)

BOCA.MCA PARALLEL — "A superior value at an economical price."
— Tom Pliska, President, Compu Sales, Inc.
- 100% IBM Micro Channel compatibility
- Single parallel port addressable as LPT1-3
- Custom-designed VLSI chip technology
- Product No. BMCP01 $110 (List)

BOCA.MCA SERIAL/PARALLEL — "The only quality Micro Channel product as a generic alternative."
— James C. Brown, President, Micro Supply, Inc.
- 100% IBM Micro Channel compatibility
- Provides 3 ports for maximum slot usage
- Two serial ports addressable as COM1-8
- One parallel port addressable as LPT1-3
- Custom designed VLSI chip technology
- Product No. BMCP2S2 $210 (List)

At Boca Research, we're committed to the Micro Channel. For more information on these and other Boca Research solutions, see your local computer dealer.
Introducing a better
way to protect your
whole family.

New network savers
from Emerson UPS.

However you use your network, a file
server power problem can really cost you.
In downtime. Lost data.
And frustration.

That's why we've intro-
duced two new Novell-
compatible uninterruptible
power systems (UPS) designed specifi-
cally to protect your file server, your whole
network and your data.

They're compact enough to fit under
a desk. Powerful enough for a file server
or your entire LAN—even those with
multiple drives and terminals.

And they're priced less than even one
hour of downtime.

Most important, the UPS 600 and
UPS 1250 come from Emerson, the
most reliable name in computer power
protection. Backed
by a network of
support from local
dealers and distrib-
utors. And nation-
wide service
from the leading
supplier of UPS
systems.

See how easy it can be to
protect your whole family. Just call us at
1-800-Back-UPS today.

EMERSON UPS
We protect the ones you love.
Metaname is a simple unit that provides the flexibility of Unix filenames for Turbo Pascal programs

Jim Kerr

Most operating systems permit the use of wildcard characters, or metacharacters, in commands that make reference to files. Metacharacters allow you to refer to certain files as a group, rather than having to specify the individual filenames. Unix, however, provides a more sophisticated way of specifying filenames than DOS does.

MS-DOS has just two metacharacters, * and ?. The * character represents any sequence of zero or more characters, and ? represents any single character. (MS-DOS filenames cannot contain the characters / \ (] : 1 < > - + = ; , * and ?.)

In the Unix operating system, there are five metacharacters: * ? [] -. The * character matches any sequence of zero or more characters, including the period, and can be followed by other characters. The symbol ? matches any single character. The remaining three metacharacters are used to define character classes. Character classes are just sets of characters, and they're described by a syntax similar to that used for sets in Pascal. For example, the character class [a-kp-z.6] includes the characters a, k, p through z (inclusive), and 6.

Note the special meaning of the hyphen in this example. When it appears in a character class between two other characters, the hyphen is interpreted as a range indicator. The hyphen may also be interpreted literally. This occurs if it appears as the first or last character in a character class, or if it appears outside the character-class specification. For example, the character class s-n matches all filenames that contain a hyphen, while ?[-0-9]* matches all filenames that have a hyphen or a digit in position 2. The hyphen has a sort of dual nature; depending on the context, it may be interpreted as either a metacharacter or a literal. For the sake of convenience, I'll refer to file masks containing metacharacters as metacharacter expressions.

Given a metacharacter expression for filenames, how can you tell if a particular filename matches the pattern? I'll discuss an algorithm to answer this in the next section and then describe a Turbo Pascal unit that implements the file-matching algorithm. Using the Metaname unit (described in detail later), a Turbo Pascal program can use Unix metacharacters in filename searches. This is illustrated in a simple demo program that accompanies the source code for this article.

Finite Automata

In automata theory, a language is defined as any collection of strings. In this context, a metacharacter
expression such as \(f^*[d-z]^*[xyz] \) describes a language—namely, the language of all strings that fit the implied pattern. To determine whether a filename is in the language \(L \) associated with a metacharacter expression, I'll use a language-recognition device called a finite automaton or finite state machine. This device takes a string as input, performs some computations, and then signals whether or not the string is in the language \(L \).

Were it not for the metacharacter *, filename matching would be easy. To determine whether a filename matches the expression \(f[^a-zA-Z0-9] \), for example, you would only need to check that the filename begins with \(f \), contains a vowel in the next position, and terminates after the third character.

Once you include * in the metacharacter repertoire, however, file matching becomes more complicated. To see why, consider what happens if the metacharacter expression is \(f^[d-z]x[^xyz] \) and the filename is "fuzzy". It's easy to see that the leading characters match, but what about the second character? Should the u be matched to the metacharacter s, or should it be assigned to the character class \([d-z]\)? When considering how to match the third character, s, you again have two options. You have to be prepared to manage several simultaneous decision paths when seeking a possible match. Understanding finite automata is helpful in understanding the element of nondeterminism introduced by the metacharacter *.

Perhaps the best way to illustrate how a finite automaton works is through an example. Figure 1 shows the finite automaton for the metacharacter expression \(f^[d-z]x[^xyz] \). The automaton consists of states, labeled \(s_0 \), \(s_2 \), and \(s_3 \), and labeled arcs connecting the states. The labels on the arcs indicate which characters permit a transition from one state to the next. In any automaton, there are two special states. State \(s_0 \) is the start state, because this is the state in which the automaton begins operating. State \(s_3 \) is the final state. In a certain sense, the final state represents the goal of the computation. Most often, the start state is indicated with an arrow, while the final state is drawn as a double circle.

The process of running a finite automaton is something like navigating through a maze. In a maze, there are prescribed start and stop positions, and restrictions on which direction you can go from any point. Moreover, it's not always clear which choice of direction will bring you to the desired goal. In a finite automaton, there are designated start and final states, and restrictions on when you can move from one state to another. As in a maze, there may be several states to move to under some circumstances, and the proper choice may become clear only in retrospect.

Initially, the automaton is in state \(s_0 \). Thereafter, characters are read from the input string one at a time. Each time a character is read, the automaton makes a transition from some state \(s_i \) to some state \(s_j \), if the arcs permit it. For a given input character, there may be no legal transitions, exactly one, or more than one.

For example, if the automaton is in state \(s_1 \) and the input character is q, the machine can either stay in \(s_1 \) (using the arc labeled *) or move to \(s_3 \). The operation of the automaton is not determined solely by the input string, because the machine can sometimes "choose" which state to enter next. For this reason, automata such as this are referred to as nondeterministic finite automata.

If there's some way to move from the start state to the final state such that the final state is entered after the last input character has been read, the finite automaton "accepts" the string; otherwise, it's rejected. For the automaton in figure 1, with the input string fuzzy, the proper choice of transitions yields the sequence \(s_0 \rightarrow s_1 \rightarrow s_2 \rightarrow s_1 \rightarrow s_3 \). Several other sequences are possible—for example, \(s_0 \rightarrow s_3 \rightarrow s_2 \rightarrow s_1 \rightarrow s_3 \)—but none of these leave the automaton in state \(s_3 \) when all input has been consumed.

For a given automaton and input string, how can you tell whether there's a sequence of transitions that takes the machine from its start state to its final state? One solution involves keeping a list of all the possible states the automaton can be in, on the basis of the input characters read thus far. If this state list contains the final state after all input has been read, then there must be some sequence of transitions that takes the automaton from the start state to the final state, and the string should be accepted.

If the final state doesn't appear in the final state list, the string is rejected. Table 1 illustrates this process for the automaton that is shown in figure 1. Since the order of states in the list isn't important, you can use a set representation for

Running a finite automaton is like navigating through a maze.

continued
Before you give your next presentation, press this button.

Turn Desktop Presentations Into Conference Room Power

Your desktop computer is one of the best tools around for creating great presentation images. Now VideoShow® can take those images into the conference room where you'll really impress your audience with high-resolution presentations in up to 100,000 brilliant colors on screen. And it's as easy as pressing a button.

Create impressive images with your favorite graphics or presentation software like Lotus® Freelance Plus®, Aldus® Persuasion™, Harvard™ Graphics, or Microsoft® PowerPoint™. Then take your presentation diskette into the conference room, insert it into VideoShow, and press the button.

VideoShow turns your images into exciting, boardroom-quality presentations with dynamic transition effects, all in brilliant full color. Even if you've created your images on a monochrome system.

And your computer stays in your office while you're in the conference room. Just connect VideoShow to a color monitor or large-screen video projector. Insert your presentation disk, and press the button.

Easy On Your Budget

There's a VideoShow electronic presentation system to fit every office, every budget, and every presentation need. And VideoShow can operate as the cornerstone of a full system for creating presentations in a variety of media.

Brilliant Slides, Too

When you need professional quality high-resolution slides, simply add PhotoMetric® SlideMaker® to turn your great images into great slides. At your desk. No service bureaus. No guesswork. No delays. No problems.

And Instant Overheads

VideoShow with Print-Maker® software and a color printer, produces sharp, brilliantly colored overhead transparencies and hardcopy handouts. Easily and instantly.

You have to see VideoShow to believe it. Call today 800-223-0999.

VideoShow is an electronic presentation unit for outstanding presentations in the conference room. Presentation images may be created with a PClAT, PS/2® or Macintosh®.

General Parametrics Corporation The leader in desktop presentation products
Regular Expressions

A regular expression is a compact notation for describing sets of strings that have a pattern to them. These patterns are formed by taking primitive strings, such as single characters and the empty string, and repeatedly applying them to operations of alternation, concatenation, and repetition.

Regular expressions are formed from the combination of metacharacters with standard characters. For example, the expression `\1\-\2?\[0-9]*` matches a decimal number with an optional sign and optional fractional part, and the expression `(\1\2)?` matches ABC, ABABC, ABABABABC, and so on.

The Unix editors and utilities use regular expressions extensively. In fact, there's a utility called grep (for global regular-expression printer) that does nothing more than find all strings in a file that match a given regular expression. Unfortunately, the way regular expressions differ from grep, tex editors, and other text-based utilities. For example, if you invoke the file-listing utility `ls` with `ls [ab]*`, the shell interprets `[ab]*` as `(a U b)(anything)*`, the set of strings that begin with `a` or `b`. But grep interprets `[ab]*` as the regular expression `(a U b)*`; that is, as strings of length zero or greater that consist exclusively of `a`'s and `b`'s. Since every line in a file contains the zero-length member of this set, the grep command will print out every line in the file. When using regular expressions under Unix, it's important to keep in mind whether you're dealing with the shell or with a utility.

Formally Defined

To form a regular expression, begin with a set of characters `Σ` called an alphabet. The regular expressions over alphabet `Σ` are defined as follows:

1. The empty string `ε` is a regular expression. Any single character `a` in `Σ` is a regular expression.
2. If `r` is a regular expression, so are `r*` and `(r)`.
3. If `r1` and `r2` are regular expressions, so are `r1 r2` and `r1 U r2`.

Associated with each regular expression `r` is a language, denoted by `L(r)`.

The definition of `L(r)`, like the definition of regular expressions, is recursive:

1. `L(ε) = {ε}`, the language consisting of the empty string. Also, `L(a) = {a}` for each `a` in `Σ`.
2. `L(r*) = L(r)*`. The expression on the right (the Kleene closure) is formed by concatenating zero or more strings in `L(r)`. Parentheses around a regular expression don’t affect the language it denotes, so `L((r)) = L(r)`.
3. `L(r1 r2) = L(r1) L(r2)`, and `L(r1 U r2) = L(r1) U L(r2)`. The first relation says that `L(r1 r2)` is obtained by constructing all strings of the form `s1 s2`, where `s1` is in `L(r1)` and `s2` is in `L(r2)`. The second says that `L(r1 U r2)` is the union of the languages `L(r1)` and `L(r2)`.

It's customary to give the highest precedence in regular expressions, concatenation the next highest, and union the lowest. The usual precedences can be overridden by using parentheses. Under this convention, you have `L(a U bbc) = L(a) U L(b)b cL(c) = [a, bc, bbc, bbbc, ...]`, while `L(a U b)(bc)` = `[ac, bc, abc, abc, ...]`.

This algorithm only applies to finite automata that recognize metacharacter expressions. These expressions, and the languages they generate, are but a small subclass of the so-called regular expressions and regular languages (see the textbook, "Regular Expressions" above). Some regular languages are quite complex, and constructing finite automata that recognize them is no simple matter. The relationship between finite automata and regular languages is well understood, however, and there are algorithms to answer almost every question relating to them. References 1, 2, and 3 contain comprehensive discussions of automata and languages.

Implementation

The algorithms given so far for automaton construction and operation are simple enough to master without much practice. They're also simple enough to easily implement in software. Moreover, there is a direct way to represent this sort of finite automata in Pascal. One consequence of the algorithm given earlier is that no state in the machine will have more than two outgoing arcs. Also, the automaton cannot have more than 12 states, since DOS filenames are limited to 12 characters. This means that you can represent the automaton as an array of records:

```
var Arcs : array[0..11] of record
  setl,set2 : set of char;
  NextState1,NextState2 : 0..11
end;
```

The fields setl and set2 are the sets of characters associated with the outgoing arcs from a particular state; NextState1 and NextState2 are the states that these outgoing arcs lead to. For the finite automaton shown in figure 1, you have

```
Arcs[1].setl := AllChars;
Arcs[1].set2 := [0..9];
Arcs[1].NextState1 := 1;
Arcs[1].NextState2 := 2;
```

where AllChars is the entire set of ASCII characters. If a state has only one

continued
"BYTE Gives Us Competent Customers!"

John Lancione, President of Clone Computers, Dallas, Texas

Why Clone Computers Chose BYTE:
“Our ads in BYTE are aimed at a technically advanced buyer. BYTE customers are the kind we want — they recognize the value of the products we are offering. They are bright, know what they want, explore the products offered, and make their own buying decisions.

BYTE Delivers Results!
In our ads we present products in a clear light, providing as much information as possible for a reader to make a buying decision. Our BYTE customers can discern this. BYTE gives us competent customers! And they keep what they buy — their return of product is very low.

BYTE is working for us!”

About Clone Computers:
John's company was a pioneer in the computer mail order industry. In 1980, he was the first to offer a free trial period (14 days) and give a money back guarantee for any reason if the customer wasn't satisfied. Today, Clone Computers' free trial period is thirty days and John's return policy is the same.
And John is shipping more product than ever to BYTE customers!

BYTE Subscribers Use Mail Order:
BYTE delivers the response that advertisers want for their products.
- 89% of BYTE readers use mail order advertising in BYTE to shop for micro products.
- The average BYTE subscriber purchased by mail order 30 times in the past 12 months.
- BYTE readers will be spending over $1 billion on mail order purchases in 1989.

Like John, BYTE is a pioneer in the industry. BYTE has been setting the standards for 15 years as a premier source of information for savvy buyers of computer products.

For more information on advertising in BYTE call your local BYTE sales representative or Steve Vito, Associate Publisher, at 603/924-9281
UNIX FILenames for Turbo Pascal

There is a direct way to represent this sort of finite automata in Pascal.

find matching filenames. To this end, I have written two procedures, called MatchFirst and MatchNext. These procedures have the same calling sequence as the Turbo Pascal file search procedures FindFirst and FindNext, but they accept Unix metacharacter expressions rather than just DOS wild cards. The interface section of the Metaname unit is as follows:

```
interface
uses DOS;
Procedure MatchFirst(Path: String;
    Attr: Word; var S: SearchRec);
Procedure MatchNext(var S: SearchRec);
```

The first argument of procedure MatchFirst specifies the path and metacharacter expression you want to match. A legal value for the variable Path might be `TP\PROGRAMS` *PGM.0-9J. The Path string doesn't have to be uppercase; MatchFirst performs case conversion automatically. The variable Attr gives the attribute of the file you're seeking: read-only, archive, directory, or whatever. If a match is found, information about the matching file is returned in the record variable S. The record type SearchRec (which is declared in the standard unit DOS) contains fields for the filename, size, date of creation, and file attributes.

If MatchFirst succeeds, you can invoke the procedure MatchNext to find the next matching file. These procedures return error codes through the DOS unit variable DosError. If the path argument in MatchFirst references a nonexistent directory, DosError is set to 2. If either MatchFirst or MatchNext fails to find a

continued

Oops!

CCMI/McGraw Hill's National Tariff Library Service Will Fill in the Blank!

At CCM/McGraw Hill's National Tariff Library Service, we know tariffs. Not just the rates, but the tariff complexities that govern your business telecommunications services. We can help you be sure you'll get the most for your voice/data dollar.

Our service provides the most frequently requested U.S. tariff information. If your requirements are very specialised, we'll focus on the jurisdictions, carriers, and services that matter to your company.

Call the experts at CCM/McGraw Hill's National Tariff Library Service today at 1 800 526-5307 or 1 701 825-3311.

CCMI/McGraw-Hill 300 North Franklin Turnpike Ramsey, New Jersey 07446
Build your business with a solid foundation...

COMTROL

COMTROL is the best source for leading multiuser technology.
The experts who created the first multiuser serial board in 1982, HOSTESS™, now offer a family of multiuser board options. Let our experience prove that we have the leading edge to keep you ahead. Join the leaders dedicated to innovation. You can depend on COMTROL to give you the latest technology.

Support is our commitment.
Today, support isn’t an option—it’s a necessity. We built a successful reputation with our excellent software support. COMTROL provides drivers for all major multiuser software. We give you direct access to our entire engineering staff. Our customers tell us that we back our products with the best, quality support in the business. Add value to your multiuser system with a name you can trust.

Success you can count on.
At COMTROL we have a Reseller Program—the way you want it. We offer our Resellers a wide range of marketing and support services. Keeping you satisfied is our #1 priority. We want to help you build a solid business. With COMTROL you’ve got a solid solution.

Make COMTROL a part of your plan...

Call us toll free at: 800-333-1033

The COMTROL logo and HOSTESS are trademarks of COMTROL Corporation.

Circle 65 on Reader Service Card
match, DosError is set to 18. If no error occurs, DosError is 0. To find all matching filenames, call MatchFirst, and if it returns without error, call MatchNext until DosError is nonzero.

Using the Metaname Unit
To use Unix metacharacters in a Turbo Pascal 4.0 program, you need only include the Metaname and DOS units in the uses clause at the beginning of the program. After that, you can invoke MatchFirst and MatchNext in the same way that you would call FindFirst and FindNext.

There are some points to keep in mind when using the Metaname unit. To maintain strict compatibility with Unix file operations, the metacharacters $ and ? match all characters when used in a filename search, including the period. If you want MatchFirst and MatchNext to be upwardly compatible with DOS wildcard matching, you should include the statement

```pascal
  $DEFINE DOSCOMPAT
```

near the beginning of the program. This will exclude the period from the set of characters that match $ and ?. Also important to know is that the Metaname unit doesn't perform any syntax checking on metacharacter expressions. If you try to match filenames to something like $[1-2], be prepared to suffer for your transgressions.

When using character classes, remember that the first and last characters in a range obey ASCII ordering. If you specify a class like [16-24], you won't get the numerals 16 to 24, but rather the digit 1, the range 6-2 (whatever that is), and the digit 4. On most Unix systems, a range in which the second character has a lower ordinal number than the first is processed by including the two characters into the class. With this interpretation, the class [16-24] is the same as [1246]. This approach is used here.

If you wish, you can use the code in Metaname to perform string matching on objects other than filenames. If you decide to do this, you will have to change the value of the MaxStates variable accordingly, and you will need to modify the getchar function if you want to enable case sensitivity.

With a modest amount of programming effort, you can write stand-alone programs to copy, move, delete, or list groups of files described by Unix metacharacter conventions. Once you've become accustomed to Unix file conventions, you may not want to move back to DOS wild cards again!

Editor's note: Metaname is available in a variety of formats. See page 3 for details.

REFERENCES

Jim Kerr is a former mathematics professor who is now studying computer science at the University of California at Santa Cruz. His principal interests are compiler design and language theory. He can be reached on BIX c/o "editors."

New! PC-Browse
A pop-up file scan and hypertext tool.

Pop-up Your Info.
Explore Hypertext.
Find Any File Fast.

- Pop up any text file or directory within your favorite applications. Need to see a report while you're in a spreadsheet? Missing a filename? Pop it up and view it, fast.
- Find a lost text file by contents. Quickly scan every file on your disk for a word or phrase. Use wild cards to widen or narrow your search.
- Find a lost file by name. List all matching filenames on your disk, in all matching directories and drives.
- Find pages sorted by keyword using the speedy Lookup search. Great for customer records, stock inventories, dictionaries, etc. Put your vital information on-line, fast.
- Paste in the information you select, or print it for later use. Need a name and address in your letter? Find it and paste it in, fast.

- Create help systems or menus with hypertext cross-reference links. Give your users, clients, or students instant access to information, style guides, or procedures. Links within and between files help to clarify relationships in your information.
- Explore 12 sample applications.
- Use multiple windows.
- Save places on the location list.
- Use shortcut hot keys.
- Link to and launch programs.
- Find foreign characters.
- Many customization options.
- Has on-line help, tutorial.
- Requires less than 60K RAM.
- Put all but 3K into EMS.

Brand New!
- Trial Shareware Disk Set $12
- Full Registered Package $54

Satisfaction Guaranteed

Our beta testers love it!
"Terrific! I load it every time. Also fun to use." — Prof. Harry Davis

"I just whipped out a name and address, etc Lookup file for my accountant and secretary... Works great." — Leonard Sisson

"A most useful new productivity tool!" — Arthur Boughley

"Flexibility blows Sidekick right out of the water." — Dr. Jon Mirsallis

From the PC-Write people...

Quicksoft, Inc.
219 First Ave N #224-BYTX Seattle, WA 98109

The Creative Choice
Call Today! 1-800-888-8088

192 Fall 1989 • BYTE IBM Special Edition

Circle 227 on Reader Service Card
PC COMMUNICATION SOLUTIONS OVER 56/64 KBPS DIGITAL LINES

HIGH SPEED FILE TRANSFER
SNA LAN GATEWAY, LAN TO LAN BRIDGE

- Intelligent AT/XT board for enhanced communications capabilities.
- Connections over increasingly popular switched 56 services from AT&T, US Sprint, MCI, Bell Companies and others, or over ISDN or private T1.
- DOS and UNIX drivers provide easy high-level programming interface.
- Efficient file transfer program, SPEEDCOM, included.
- Error correction with LAPB.
- Support for SDLC, X.25 packet, Group 4 FAX protocols.
- Use it for high speed transfer of bulk data files, desk-top video conferencing, or image transfer.
- GROUPLINX software option for interactive, multipoint data conferences.

To order, call DSP Technology today. And plug in your Speedlinx tomorrow. An EMS Group Company.

DSP Technology Corp.
For PC Connectivity

1325 CAPITAL PARKWAY CARROLLTON, TEXAS 75006 (214) 245-8831

Circle 10 on Reader Service Card
Diversified.

The creators of the first full-featured communications package for Microsoft Windows proudly present DynaComm®, the communications family that offers diversity in:

Functionality

- Comprehensive Script Language including:
 - Multiple Channel DDE
 - Dynamic Link Library Access

- Built-in Multiple Document Editor

- Reconfigurable Interface including:
 - Dynamically Controllable Custom Menus and Dialogs
 - Keyboard Remapping
 - User-definable Function Keys

- Terminal Emulations including:
 - IBM 3270
 - DEC VT100
 - DEC VT220
 - IBM 3101
 - Televideo 925/950

- File Transfers including:
 - INDSFILE
 - XModem/CRC
 - YModem Batch Mode
 - YTerm
 - Remit

- LAN Capabilities including:
 - NetBIOS
 - Ungermann-Bass
 - Eicon Gateway

Environments

- Microsoft Windows
- Apple Macintosh
- OS/2 Presentation Manager
- HP NewWave

Demanded.

"Microsoft evaluated several Windows-based terminal emulators for use in our MIS, Finance and Product Support departments. We chose DynaComm version 2.0 because it offered us a full-featured scripting language, NetBIOS support for high-speed LAN access, and the ability to use Windows products. The ability to move back and forth quickly from DynaComm to Excel to other applications, while keeping all of them active, has made our Finance and Product Support personnel just that much more productive."

Daniel Yingling
Systems Analyst
Microsoft Corporation

"DynaComm is an excellent solution for customers who need a powerful, flexible communications solution across multiple host platforms and microcomputers. We are excited that DynaComm is among the first communications software available for our NewWave environment."

Weh McKinney
General Manager
Santa Clara Information Systems Division
Hewlett-Packard

"DynaComm is the only software that provided the solution we needed for communications under Microsoft Windows with total LAN connectivity."

Steve Morse
Systems Architect
Manufacturers Hanover Trust

"After a thorough search for the single PC-based communications product best suited for our recently completed MacIntosh and IBM PC electronic mail customer interface, we selected DynaComm because it is clearly superior."

Tom Miller
Manager of Electronic Messaging
Westinghouse Electric Corporation

DynaComm

Dynamic Communications

Future Soft Engineering, Inc.

Future Soft Engineering, Inc. • 1001 South Dairy Ashford • Houston • TX 77077 • (713) 496-9400 • FAX (713) 496-1090

Available 3rd Quarter 1989. DynaComm is a registered trademark of Future Soft Engineering, Inc. Other trademarks are the property of their respective owners or licensors.

Circle 109 on Reader Service Card (DEALERS: 110)
WHICH LAN?

Understanding the strengths and weaknesses of the popular LAN connection options helps you get the system that fits your needs

Richard Watson

LANs are spreading like wildfire because they offer computing power that rivals that of minicomputer and mainframe installations at a fraction of the cost. When choosing a LAN, however, you have to take care that you don’t get burned.

While the business benefits of LANs are numerous, so too are the connection options available. You can choose from over 20 network operating systems that work with hardware from more than 60 ARCnet, 50 Ethernet, and 20 Token Ring vendors. The key to simplifying your choice is to acquire a good understanding of the basic LAN technologies and the benchmarks used to measure them. This article presents an overview of the most common LAN connection hardware and outlines how you should evaluate a LAN.

Roots of Connectivity

Linking computers to share information is nothing new. The technology for most of today’s LANs was created in the 1970s by minicomputer companies. As with most new technologies, the absence of standards led vendors to develop proprietary answers to problems of connectivity.

While many connection solutions exist, only a few enjoy widespread support in today’s microcomputer LAN market. Two of the more popular—ARCnet and Ethernet—are minicomputer connection solutions that have become standards in the LAN market. A later arrival on the scene is Token Ring, which can be considered a third-generation protocol and connection design. Backed by IBM, Token Ring is expected to rival Ethernet in the Fortune 1000 market.

Following Protocol

Selecting the proper LAN hardware has a direct impact on the performance and flexibility of the final LAN configuration. ARCnet, Ethernet, and Token Ring all have advantages and disadvantages you must consider in selecting equipment appropriate to you. What may be applicable for one implementation may not be the best choice for another.

Understanding some basic design aspects of each protocol is important for making informed judgments. Table 1 summarizes ARCnet, Ethernet, and Token Ring.

ARCnet

Datapoint Corp. originally developed ARCnet to permit Datapoint accounting equipment to exchange data in real time. Because Datapoint controls the hardware specifications and protocols of ARCnet, the microcomputer LAN version is virtually identical to the minicomputer implementation. The popularity of ARCnet in LANs today is a result of the simplicity of its continued
Table 1: Prices reflect the average retail cost of one board and one driver—they do not reflect the cost of other components of the LAN.

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Transfer rate (megabits per second)</th>
<th>Maximum packet size (bytes)</th>
<th>Cost per connection</th>
<th>Access</th>
<th>Media types</th>
<th>Attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARChnet</td>
<td>2.5</td>
<td>512</td>
<td>$200</td>
<td>Token-passing</td>
<td>Coaxial, unshielded twisted-pair, fiber-optic</td>
<td>Inexpensive; reliable; broad vendor support</td>
</tr>
<tr>
<td>Ethernet</td>
<td>10</td>
<td>1.5K</td>
<td>$400</td>
<td>CSMA/CD</td>
<td>Thin/thick coaxial, unshielded twisted-pair</td>
<td>Fast; broad vendor support; IEEE standard</td>
</tr>
<tr>
<td>Token Ring</td>
<td>4/16</td>
<td>4K</td>
<td>$400/$700</td>
<td>Token-passing</td>
<td>Shielded/unshielded twisted pair</td>
<td>Extensive features; IBM support; IEEE standard</td>
</tr>
</tbody>
</table>

Figure 1: The “free buffer?” query helps ensure the reliability of ARChnet data transfers.

ARChnet uses a token-passing protocol implemented with a combination of dedicated communication controllers and hybrid interface components. ARChnet’s basic star, or hub, topology and straightforward node configuration make it easy to install and debug. You can assign a network node one of 255 unique addresses by setting the configuration switches on the network interface card.

The ARChnet protocol is simple. On power-up, each node determines its order on the node list. The token starts at the node with the lowest station ID, which either initiates communication or passes the token to the next-higher numeric station. When a station with the token wants to transmit data, it initiates the ARChnet transmit protocol.

Before transmitting, a station must ensure that the target station has a buffer available to receive the next packet. It transmits a “free buffer?” inquiry to the destination station. If the destination has a buffer available, it sends an acknowledgment (ACK); the sending station then transmits the packet (see figure 1). If no buffer is available, the destination station returns a negative acknowledgment (NAK). Most ARChnet adapters have 2K-byte buffer memories, which hold four packets. This limitation can cause network performance to suffer when a busy node has no free buffers. In particular, a central server will often indicate a “no buffer” condition under heavy network traffic conditions.

After transmitting or receiving a negative acknowledgment, the sending station passes the token. Having built-in hardware support that helps ensure reliable packet delivery differentiates ARChnet from other LANs.

Adding and subtracting nodes is simple with ARChnet. Anytime the addition or subtraction of a node changes the sequence of active-node IDs, the network halts data transfer operations and reconfigures the network. These processes require only several hundred milliseconds to complete, but the network is down for this time. Thus, a network adapter that fails sporadically can bring the network to a standstill.

Ethernet Developed by Xerox in cooperation with Digital Equipment Corp. and Intel to interconnect DEC minicomputers, Ethernet has become a popular LAN for microcomputers. It is noted for superior performance and wide vendor support.

Ethernet’s dialogue on the network is much simpler than that of ARChnet because it supports larger buffers and CSMA/CD architecture. Unlike token-passing architectures, CSMA/CD places no restrictions on when data is transmitted; any station can transmit at any time. When two or more stations transmit data simultaneously, a collision occurs that can corrupt the data from each

maintenance and low cost per node.
WHICH LAN?

Station. The data-link layer detects collisions and resolves the contention by having each station wait for a random period before retransmitting (see figure 2).

Severe problems can occur on a CSMA/CD network when an adapter begins to fail and “jabbers” constantly. In this case, the network will be flooded with junk transmissions, causing almost constant collisions. To resolve this type of problem, the failing adapter must be removed as soon as it is identified.

Token Ring

Token Ring was developed by IBM in the early 1980s and is defined by the IEEE 802.5 standard. It was designed to support a broad variety of host machines, including mainframes as well as smaller computers such as PCs. Token Ring uses a token-passing technique that ensures a flat performance curve, regardless of the volume of traffic on the network (see figure 3). The Token Ring multiple-access control-level protocol is richer in its node addressability than is ARCnet (48 bits versus 8 bits). It also has integrated routing and priority mechanisms that let you optimize any configuration. Token Ring has no data-link mechanism for assuring that the destination node has a receive buffer available; this is handled at higher levels by software.

Architectural Comparisons

Token-passing adherents and fans of CSMA/CD have a nearly religious devotion to their favorite access method. The “token-passers” are quick to point out that a CSMA/CD architecture can theoretically be brought to its knees by the collision arbitration scheme. On the other side, the “collision detectors” note that token-passing architectures are penalized in a client-server configuration where the predominant flow of data is from the server to the client nodes. The server must wait its turn while the workstations process the token; hence, token passing is deterministically slow.

In reality, both architectures suffer under heavy loads. A heavily loaded CSMA/CD network experiences performance degradation due to the increased number of collisions. Similarly, a token-passing network begins to suffer in a heavily loaded environment due to full buffers at busy receiving stations. This situation is an especially serious one for ARCnet installations because most adapters can buffer only four packets.

The only generalization that you can make based on architecture is that, although both collision detection and token continued...
LAN Yardsticks

The goal of a LAN benchmark is to determine a single performance index for a LAN implementation. With LANs, however, it is important to understand that many components from different vendors contribute to the generation of a performance metric. To achieve optimum performance, you'll have to configure your system with components from many vendors.

You can simplify the problem of measuring the performance of a multivendor LAN configuration by ranking the components in the order of their impact on LAN performance in relation to the target application environment. In a database environment, for example, the record-locking mechanism is likely to be the most significant factor in network performance. Thus, you can optimize performance by selecting fast disk drives and by configuring servers and workstations with as much cache memory as possible.

Listed below, in the order of their impact, are the factors that determine the performance of a generalized LAN implementation.

1. Multiple access control (record locking)
2. Hardware configuration
3. Network operating-system inefficiency
4. Application inefficiency
5. Driver/network interface card inefficiency
6. DOS inefficiency
7. Protocol overhead

Applications Impact

To a great extent, the observed performance in any configuration depends on the type of application. For applications such as word processing, you will observe virtually no performance difference at an individual node regardless of the size of the network. For a database application, the observed performance will be greatly affected by the number of nodes in the network because of the logical record contention that's inherent in any complex multiuser file-access system.

In addition to the impact of the application, the exact hardware configuration can greatly impact the observed performance. The raw throughput of the LAN medium is important, but the CPU speeds of individual nodes, the speeds of file server disks, the amount of cache memory, and other important factors all have an impact on the observed throughput in some way.

Benchmark Fallacies

Reported test values are often based on single-workstation (i.e., one file server, one workstation) configurations. While these values are reported correctly, you should not extrapolate the same performance levels across a multistation configuration. More representative performance figures can be derived from 6- to 10-workstation configurations, which results in the reported average number of nodes per network.

Too often, reported test results favor the evaluation of a single component of the LAN (e.g., a network card or file server) and do not reflect observable performance in a user application environment. The results from a READ/OVERLAY operation are typical of these types of tests. In this case, a single user file is cached at the server (and partially cached at the workstation), and do not reflect observable performance. The results from a READ/OVERLAY operation are typical of these types of tests. In this case, a single user file is cached at the server (and partially cached at the workstation), and do not reflect observable performance in a user application environment. The results from a READ/OVERLAY operation are typical of these types of tests. In this case, a single user file is cached at the server (and partially cached at the workstation), and do not reflect observable performance in a user application environment.

The best performance tool for any LAN evaluation is utilization of the target application itself. Only with this application can you accurately model the performance of the LAN. While any performance values generated by using this tool will be accurate, multistation tests are difficult to simulate because of the lack of a mechanism to automate and synchronize the stations.

Understanding all the factors involved in performance numbers is important in making a valid decision on your best network configuration. When choosing a LAN, be sure to consider how closely the reported tests reflect your application environment. Don't follow the numbers blindly.

Hard Numbers

Quantifying the performance of a network is difficult because there is no accepted standard for determining LAN performance metrics. In lieu of a standard, I used common utilities to determine simple performance metrics for ARCnet, Ethernet, and Token Ring. The tests used simple DOS utilities on identical equipment to obtain a baseline performance metric for each technology. This provided a mean performance determination that normalized the effects of disk speed, workstation CPU speed, and server caching features. In all cases, I installed Tiara network adapters on a LAN using Novell's NetWare 2.12.

The first test copied the entire server disk across the network to the server and determined the average K-bytes per-second throughput. The second test used Novell's PERFORM2. Table 2 lists the results of the tests.

Observed performance in a LAN results from the complex interaction of many subcomponents within the LAN configuration. In evaluating complete systems, you should use tests that assess the impact of subcomponents such as network interface cards, workstation memory configurations, and CPU speed. See the text box "LAN Yardsticks" at left for more on evaluation.

Standards Issues

Standards have become more important as the LAN industry has matured. Fortunately, ARCnet, Ethernet, and Token Ring are all defined by a controlling body or standard that states exactly how the technology should be implemented.

Ethernet and Token Ring are defined by IEEE 802 (LAN technologies) committees. Specifically, the Ethernet protocol falls under the auspices of the 802.3 (CSMA/CD) committee, and Token Ring is controlled by the 802.5 committee. These committees have generated design specifications for their respective technologies; any product claiming to support one of these connection types must adhere to these specifications.

ARCnet is different: Datapoint acts as the controlling body for the implementation of ARCnet. Datapoint has final approval over all hardware implementations of the ARCnet technology to the point of being responsible for the microcode of all new ARCnet communication...
Sharing Information
Whatever your industry, your computers need to share information with your mainframe. Or, they need to exchange data with other computers. In either case, you need a total communications solution. You need software, hardware interfaces and modems that all work together smoothly. You need CLEO!

CLEO software products allow your computer to communicate with minicomputers and mainframes, and to emulate their workstations. Since 1981, CLEO has provided communications between micros, minis, and mainframes for the automotive, insurance, medical and banking industries. Today over 78,000 CLEO users worldwide are running on all major computer brands. The greatest number of these users run CLEO software on IBM Personal Computers and NETBIOS LANs.

Complete Software/Hardware Package
Every CLEO package contains all the software and hardware accessories you'll need. Your selected CLEO SNA, BSC, or Coax software is packaged with
1) an internal modem card for dial-up applications, or 2) an interface card and cable for use with your existing modem, or 3) a Coax card for local connectivity. There's no waiting for non-CLEO add-ons. And, you get prompt, single-source service.

Package prices range from $795.00 for most stand-alone packages, up to $1,995.00 for the 32-user SNA gateway.

Call us today to discuss your application.
CLEO Software
2652 Eastrock Dr.
Rockford, IL 61109
FAX 815/397-6535

Headquarters:
USA: 1-800/233-2536
Canada: 514/476-4878
International: 815/397-8110

Sales and Distribution:
Canada, East: 800/365-1205
Canada, West: 800/365-1210
Canada, Montreal: 514/377-3631
Colombia, S.A.: 12172266
Denmark: 02 94 81 19
England: (0991) 779544
Italy: (0331) 634 562
Mexico City: 550-8033
Sweden: 4687405070
W. Germany: 06151 55095

CLEO and 3780Plus are registered trademarks of CLEO Software. IBM is a registered trademark of International Business Machines Corporation.
The network consisted of a Compaq Deskpro 3116/20 server, three 12-MHz 80286 workstations, two 10-MHz 80286 workstations, and one 8-MHz 80286 workstation. As expected, ARCnet trailed Ethernet and Token Ring in performance. Ethernet’s superior showing probably reflects the configuration of the LAN rather than any inherent superiority over Token Ring.

LAN TESTING RESULTS

<table>
<thead>
<tr>
<th>Connection type</th>
<th>Server-to-station</th>
<th>PERFORM2</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCnet</td>
<td>200K bytes/second</td>
<td>137K bytes/second</td>
</tr>
<tr>
<td>Ethernet</td>
<td>450K bytes/second</td>
<td>971K bytes/second</td>
</tr>
<tr>
<td>Token Ring (4 megabits/second)</td>
<td>230K bytes/second</td>
<td>192K bytes/second</td>
</tr>
</tbody>
</table>

Note: 16 megabits/second not available.

Controllers. Thus, ARCnet has remained “pure” even though it is not controlled by any governing standards body.

Best Choice?

There is no “best” LAN configuration per se. You have to weigh the importance of cost, performance, and functionality in configuring your installation. Each connection type has its good and bad points.

If cost is a driving concern for your LAN configuration, ARCnet is a good choice. No other LAN connection interface offers a “standard” product for such a low cost per node. ARCnet is simple to install and features very acceptable performance, especially in a typical office environment that on average contains fewer than 20 nodes.

If performance is a major concern, you should consider Ethernet. Because of its CSMA/CD architecture, some people question Ethernet’s ability to deliver high performance under a heavy work load. In all practicality, however, Ethernet performs very well in most situations. Ethernet costs more than an ARCnet installation, but the speed and connectivity features offset the higher price.

Token Ring provides good performance connections plus features such as simple connectivity to mainframe systems, simplified bridging for large networks, and more sophisticated protocol-tuning mechanisms. For full-featured networks, Token Ring is the technology of choice.

ARCnet, Ethernet, and Token Ring thrive in today’s marketplace because each satisfies the requirements of certain customers. As long as you know your requirements, you will be able to select the connection option that’s best for you.

Richard Watson is vice president of engineering development for Tiara Computer Systems of Mountain View, California, which produces hardware and software products for LANs. He can be reached on BIX c/o “editors.”

NEW! NEW! NEW! - FROM ACS

1664 x 1200 ULTRA HI RES CONTROLLER FOR DESKTOP PUBLISHING

GRAPHMAX 10DP

- 1664 X 1200 Resolution
- 4 Shades Of Gray
- TMS 34010 Graphics Processor
- 512 KB or 1MB Program Memory
- Output Options: ECL or Analog
- Full Size Card, AT Bus
- Will Co-exist with EGA/VGA Cards
- Drivers for WINDOWS®, GEM/3®, DGIS®
- Large Base of Available Software (Ventura®, Pagemaker®, Excel®, etc.)

Enquiries from Dealers/OEMs Welcome

ACS International, Inc.
(An EMS Group Company)
Dallas, Texas
Phone (214) 242-0884
Fax (214) 245-1559

© Registered Trademarks of various well known companies

NOW AVAILABLE: Custom-designed library files or binders in elegant blue simulated leather stamped in gold leaf.

Binders—Holds 6 issues, open flat for easy reading.

- $7.95 each, two for $14.95, or four for $27.95.

Order Now!

CALL TOLL FREE (24 hours): 1-800-972-958

Mail to: Jane Jones Industries,
Dogs, IV, 499 East Erie Ave.,
Philadelphia, PA 19134

Please send _______ file(s) and _______ binder(s) for BYTE magazine.
Enclosed is $_____

Add $1 per file/binder for postage and handling. Outside U.S.A. add $2.50 per file/binder (U.S. funds only please).
Charge my: (minimum 33)

American Express
VISA
MasterCard
Diners Club

Card #:
Exp. Date:
Signature:

Protect Your Copies of BYTE

Files—Holds 6 issues.

- $7.95 each, two for $14.95, or four for $27.95.

Order Now!
Introducing DADiSP 2.0

DADiSP - The Big Picture in Data Analysis

DADiSP - interactive graphics and data analysis software for scientists and engineers. DADiSP 2.0 delivers unprecedented power, through easy-to-use menus. Choose from hundreds of analysis functions and graphic views—from tables to 3-D. Simultaneously display multiple windows, each with different data or analyses, for unlimited perspective on your toughest data analysis problems.

Build your own analysis worksheets — build and display an entire data analysis worksheet, without programming. And DADiSP's powerful graphic spreadsheet automatically recalculates and updates the entire worksheet if you change your data or an analysis step.

Do serious signal processing...the way you always pictured it! FFTs, digital filter design, convolutions, waterfall plots, and more — all at the press of a key.

Let your instruments do the talking — use DADiSP 488 to bring data from your instruments directly into a DADiSP window for immediate viewing and analysis.

Flexible, expandable, customizable — annotate your graphs and send them to printers, plotters, or publishing packages. Create your own macros, automate routine tasks, and run any program written in any language from within DADiSP. DADiSP even lets you build your own menus.

A proven standard — already used by thousands of engineers and scientists worldwide, in a whole range of applications like medical research, signal processing, chemistry, vibration analysis, communications, manufacturing quality control, test & measurement, and more. DADiSP supports the IBM PC and PS/2, SUN, DEC VAX, HP 9000 and Concurrent families of personal computers and workstations.

GET THE PICTURE!
CALL TODAY 617-577-1133

Ask for our Evaluation Disk. For more information, write to DSP Development Corporation, One Kendall Square, Cambridge, MA 02139, or FAX: 617-577-8211.

DADiSP Development Corporation

Australia-Interworld Electronics, 03 521-2932; England-Adept Scientific, (0462) 480055; Biosoft, (0223) 66622; Finland-Turion, 0-372-144; France-SM21, (1) 34510178; Sasca, 66077672; West Germany-DataLog, (02166) 46082; Stemmer Electronic, 089-809 02-4; Israel-Raccon Electronics, 03-491-922; Italy-BPS Computers, (02) 61299221; Japan-Astrodesign, 044-765-1011; Netherlands-Computer Engineering Roosendaal, 01650-57417; New Zealand-GTS Engineering, (09) 392 404; Sweden-Systek, 010-110140; Switzerland-Urech & Harr AG, 01 613323; Taiwan-Advantech, 261-2117

Circle 86 on Reader Service Card
Teach your HP LaserJet Series II the powerful PostScript language. In one easy lesson.

It's never been this easy.
Now, you can turn your HP LaserJet Series II into a PostScript language compatible printer simply by plugging in Pacific Data Products' PacificPage cartridge. That's all. No other add-ins, software or cables are required.

Immediately start printing PostScript language output from Ventura Publisher®, Aldus PageMaker®, WordPerfect 5.0®, Microsoft Word® as well as many other graphics and business application software packages. And PacificPage is compatible with IBM® and IBM-compatibles.

PacificPage is the result of the proven cartridge-based technology—Plotter in a Cartridge™, 25 Cartridges in One™—from Pacific Data Products and the innovative PostScript emulation skills of Phoenix Technologies, Ltd.

For the dealer that carries PacificPage in your area, or for more information on our other printer enhancement products, call Pacific Data Products at (619) 552-0880.
THE LANGUAGE OF LASERS

PostScript and PCL establish a range of page-description languages while newcomer CaPSL fills in the middle

Kent Quirk

When Hewlett-Packard introduced its printer-control language (PCL) level 1 with its first LaserJet printer, the company established the first standard for page-description languages (PDLs). But even after three revisions, PCL level 4 is an aging standard, challenged by two notable alternatives: Canon’s newcomer CaPSL and Adobe’s sophisticated PostScript.

The good news for laser-printer users is that each technology performs its job differently as a high-level printer language. Clear choices exist in a market where performance strides are a tradition (see the text box “Rigid Grids Spawned Today’s PDLs” on page 206).

HP’s PCL level 4

PCL level 4 can place black text at any location on a page, and page elements can be drawn in any order. Layouts begin at the upper left corner of the page, but application software isn’t forced to create a page from top to bottom. For example, a program could draw a black border to define a copy block before the text is actually printed (see table 1a).

But PCL offers only bit-mapped fonts that cannot be scaled or rotated (although landscape fonts are available). PCL can’t execute drawing commands more complicated than horizontal and vertical lines, which it implements as filled rectangles. It supports a few levels of gray (but not continuous shading) and several pattern fills for rectangular areas.

You begin nearly all PCL commands by typing ESC followed by a punctuation mark and a letter. Numeric parameters and a terminating letter may follow. PCL considers any other character printable text.

PCL prints raster images using pixel replication to change resolutions. It supports macros and overlays to create frequently used logos and forms.

Complicated images must be handled by the CPU, which will generate a bit map and then print the figure. However, using the CPU for rasterization means larger code sizes, longer image transmission times, and a waste of CPU resources. For example, to print text at an odd angle, you must choose a host-resident font, draw the font into a bit map, and transmit the entire bit map as an image.

Canon’s CaPSL

CaPSL, released last June, draws any shade of gray, places fonts in any orientation, and offers a selection of plotting commands for vector drawing. The language is designed to quickly transmit and execute page descriptions.

CaPSL implements a set of the ANSI/ISO screen control...
commands like those used by the ANSI. SYS device driver and many computer terminals.

The command format is simple: Most sequences begin with the command sequence initiator (CSI), which consists of the Escape character followed by a left square bracket. (CaPSL also provides a single-character replacement for the CSI.) Following the CSI are parameter numbers separated by semicolons. The last parameter is followed by an intermediate character and a terminator, which together define the function to be executed. CaPSL considers anything not part of a command sequence to be printable text (see table 1b).

For example, CSI 10;20f instructs the printer to begin drawing at row 10, column 20 (f is the terminator). These command sequences are fast to transmit and interpret. They are also extensible while remaining within the standard. Unfortunately, they are difficult to read and program (but this shouldn't hinder most users).

Page layouts originate at the upper left corner. The y-axis is inverted from the normal Cartesian plane. Coordinate measurement is flexible. Positions can be specified in several coordinate systems. There are horizontal and vertical motion indexes, the size of which can be set according to each font. Position settings can be units measured in decipoints, mils, hundredths of millimeters, or device dots (1/300 of an inch).

CaPSL's high-level drawing commands include instructions for lines, polylines, rectangles, arcs, circles, ellipses, quarter-ellipses, and graphics markers for line graphs. CaPSL can't combine lines and arcs into a single fillable object, nor can it produce nonelliptical curves, such as Bezier curves. Although restricted to rectangles, clipping can make them precise to the nearest pixel, character, or string.

The language can handle both bit-mapped and scalable fonts, including outline-font “hints” that tell the printer how to draw a font in a different size. CaPSL uses hinted fonts internally. Its bit-mapped images can be downloaded as either binary or hexadecimal data. It can scale these images up through pixel replication by a factor of 1, 2, 3, or 4. Scalable fonts can be scaled, skewed, outlined, shadowed, or filled with a pattern.

Macros include some programming-language features. Macros can execute other macros, or you can set a macro to run a specified number of times without conditionals or variables. This is helpful in creating forms and logos. (Canon printers come with many preloaded macros that set up the printer to various modes or generate commonly used forms.)

Adobe's PostScript
PostScript can do things no other printer language can do. It offers an elegant and highly extensible approach to page generation, especially when an algorithmic specification is the only compact way to describe an image. But what PostScript offers in sophistication, it sacrifices in speed—PostScript generally is the slowest of the PDLs.

PostScript constitutes a complete programming language with features specific to generating printed images. Most printers accept printable text and embed

Table 1: The following code samples (a) from HP's PCL level 4, (b) Canon's CaPSL, and (c) Adobe's PostScript each produce text in two different fonts and create a gray box bordered by 0.1-inch rules.

(a) PCL level 4

<table>
<thead>
<tr>
<th>Command</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>(ESC)E</td>
<td>Reset.</td>
</tr>
<tr>
<td>(ESC)sT</td>
<td>Select line printer.</td>
</tr>
<tr>
<td>(ESC)s10H</td>
<td>Select 16.66 pitch.</td>
</tr>
<tr>
<td>(ESC)s3720v720H</td>
<td>Move to 1 inch (720 decipoints) from top and left.</td>
</tr>
<tr>
<td>(ESC)s3T</td>
<td>Select Courier.</td>
</tr>
<tr>
<td>(ESC)s10H</td>
<td>Select 10 pitch.</td>
</tr>
<tr>
<td>(ESC)s3B</td>
<td>Select bold.</td>
</tr>
<tr>
<td>(ESC)a1440v720H</td>
<td>Move to 4 inches from top and left.</td>
</tr>
<tr>
<td>This text is written in Courier Bold at 10 cpi.</td>
<td></td>
</tr>
</tbody>
</table>

(b) CaPSL

<table>
<thead>
<tr>
<th>Command</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>(ESC)E</td>
<td>Soft reset.</td>
</tr>
<tr>
<td>(ESC)82</td>
<td>Paint memory mode full.</td>
</tr>
<tr>
<td>(ESC)732h</td>
<td>Enable scaling character sets.</td>
</tr>
<tr>
<td>(ESC)733h</td>
<td>Enable character set rotation.</td>
</tr>
<tr>
<td>(ESC)p</td>
<td>Select page format.</td>
</tr>
<tr>
<td>(ESC)P</td>
<td>Units are 1/720 of an inch (decipoints).</td>
</tr>
<tr>
<td>(ESC)[11h</td>
<td>Set positional units to size.</td>
</tr>
<tr>
<td>(ESC)P</td>
<td>Select character set.</td>
</tr>
<tr>
<td>(ESC)100C</td>
<td>Set 10 point.</td>
</tr>
<tr>
<td>(ESC)720,720f</td>
<td>Position to 1,1.</td>
</tr>
</tbody>
</table>

This was generated in Canon's CaPSL using the Swiss font at 10 point.}

continued
As a programming language, PostScript is designed to be read and executed in one pass, without backing up. A PostScript program usually is machine generated, although it is based on a set of English keywords.

The result is a language similar to but more readable than Forth. PostScript offers a stack-oriented architecture, with separate dictionaries to hold data and code for random access.

(c) PostScript

Command

/inch 72 mul def
1 inch 10 inch moveto
/Helvetica findfont
10 scalefont
setfont.

(This was generated with PostScript in the Helvetica font at 10 point.)

1 inch 9 inch moveto
/Times-Italic findfont
24 scalefont setfont

(This is written in 24-point Times Roman Italic.)

4 inch 7 inch moveto
1 inch 0 rlineto
0.1 inch rlineto
-1 inch 0 rlineto
closepath
gsave .5 setgray
.5 setlinewidth
.01 grestore
0.1 inch setlinewidth
stroke
showpage

Action

Define an inch for easy positioning.
Position to 1 inch from top (10 inches from bottom).
Get the font.
Scale it to 10 point
and tell PostScript to use it.

Draw the next text.
Change to Times Roman italic.
24 point.

We've defined the box as a closed path.
Remember the path.
Use 50 percent gray
and fill it.
Get the path back.
Use fat lines
and draw the outline.
Print the page.

The specially coded commands in the data stream. But PostScript reads its data stream as a set of commands, so you must enclose text in parentheses for it to print. A PostScript page description is really a program, and the text it generates is just a set of strings within that program (see table 1c).

As a programming language, PostScript is designed to be read and executed in one pass, without backing up. A PostScript program usually is machine generated, although it is based on a set of English keywords.

The result is a language similar to but more readable than Forth. PostScript offers a stack-oriented architecture, with separate dictionaries to hold data and code for random access.
Rigid Grids Spawned Today's PDLs

In the past 10 years, printer manufacturers have steadily developed more sophisticated ways to put marks on paper. As printer technology evolved, many people changed their ideas about what actually is a printer.

In the mid-1970s, people saw printers merely as a means for putting text on paper. The output page was an imaginary grid, and a printer placed vertical letters into boxes within the grid. Letters were a fixed size and shape, and they generally came from fully formed characters. You could print pages quickly or print them to look good, but trying to do both required expensive equipment. In any case, boldfacing was about the only choice for emphasizing text, and you accomplished this by changing the daisy wheel or overprinting. Languages used to control printers were simplistic. A few control characters moved the printer carriage left, up, down, and right.

The Diablo 630 daisy-wheel printer defined a control-language standard. Even today, most word processors and many printers support this minimal control language. The most expensive printers used proportional type for a "typeset" look, but few word processors took advantage of it.

The dot-matrix printer evolved as an inexpensive way to produce characters quickly. Initially, dot-matrix printers were considered to have poor quality. As recently as the mid-1980s, business correspondence relied on daisy-wheel printers, despite the heavier weight, louder noise, and slower speed.

But dot-matrix printers offered more flexibility. They provided a choice of two or three different (if ugly) fonts and two or three sizes of text. You could add emphasis to words without babysitting the printer. Text was still defined as letters in boxes, but now you could vary box sizes and create proportionally spaced text.

As ROM and microprocessor prices dropped, dot-matrix printers grew more intelligent. Old, one-character control sequences became two and three characters long, but they were generally invented from whole cloth by the manufacturers. A minimal standard of Epson compatibility arrived to keep the peace, but most manufacturers added to it in little (or not so little) ways.

The dot-matrix printer defined a smaller grid on the page, and you could fill any grid location with a dot or leave it blank. This meant that PCs could draw graphs or characters of arbitrary shapes and sizes. Unfortunately, pages had to be generated from top to bottom, which strained memory and computing power. Also, the process was slow, taking minutes per page. Resolution was poor, typically 72 dots per inch. Worst of all, some companies that claimed Epson compatibility apparently never tested their printers with an appropriate program.

Drawing commands include arcs, Bezier curves. Drawings consist of a path, which is a set of connected or disconnected lines and curves. A path can be stroked (i.e., traced with paint). Closed paths can be filled (using either of two fills), used as a clipping boundary, smoothed, converted to line segments, or processed in various ways.

PostScript isn't dependent on the output device's resolution until it draws into the bit map with the show, stroke, or fill operators. Elements are then converted into pixels at the device's resolution.

PostScript's measurement system is device independent. The default unit is the printer's point (1/72 of an inch), and the coordinate system is arranged in Cartesian form, with the origin at the lower left corner of the page. With a few exceptions, points are first processed through a translation matrix that lets the programmer use any coordinate system with two axes on a plane. You can directly manipulate this matrix or use scale, translation, and rotation operators.

PostScript typically stores fonts as outlines and then converts them to bit maps during printing. A printer font cache stores bit maps as they are generated, greatly improving text-processing speed with reused characters. PostScript fonts also function as paths, so you can treat letter forms as outlines for special purposes.

Font outlines must change with the device resolution and point size. Adobe font resident in PostScript include hints that tell the printer how to render outlines for different type sizes. Adobe won't reveal how to do this, although it continued
Introducing the first color PostScript printer priced to keep you in the black.

The QMS ColorScript 100 Model 10. Just $9,995.

Show-stopping presentations, powerful projections and crystal clear calculations in hard copy or transparency form. Everything your business needs to stand out from the crowd. All in a full spectrum of color for just $9,995. The QMS ColorScript 100 Model 10 easily connects to your Mac® or PC to add full color and the power of true Adobe® PostScript to your business — and, at this price, it helps you stay in the black! It's another first from QMS® and a breakthrough in color PostScript® printers.

Limitless Possibilities. The new QMS ColorScript 100 Model 10 allows you to have total control over the final appearance of your hard copies and transparencies. The Model 10 includes 35 resident typefaces that, thanks to PostScript, can be scaled to virtually any size and shape. Put that together with its ability to print over 16 million color variations and you'll see an entirely new dimension to composition.

Exclusive Advantages. The compact Model 10 gives you advantages you won't find with the competition. For example, PC users can put the Model 10 to work without adding any additional boards. And Mac users simply plug the Model 10 into the AppleTalk® port. The Model 10 prints at 300 dpi for near typeset quality presentations that spring to life in colors that adhere to PANTONE® Color Standards. If you need to expand your printing capabilities or memory, the Model 10 is designed to easily accept a 1 MB or 4 MB RAM upgrade. The Model 10 also features an SCSI interface that makes adding enough memory to store the entire PostScript typeface library as simple as plugging in a lamp.

1-800-523-2696. If improving your business edge is important to you, call our toll free number for the nearest Laser Connection® dealer. Your Laser Connection dealer can give you a demonstration and show you how the QMS ColorScript 100 Model 10 will add a colorful dimension to your presentations — and help keep you in the black.

©1989 Laser Connection

A QMS® Company
1-800-523-2696

publishes the raw font metrics (the height and width of the individual characters). This means that resident fonts in the smallest and largest type sizes look better than a downloaded version of the same font.

Bit-mapped images plague PostScript, even though it can scale them into arbitrary sizes. Because its input data stream cannot handle binary data, this data is often sent in hexadecimal form, doubling the image size and the transmission time.

Given PostScript’s abilities, why doesn’t everyone just go out and buy it? Its lack of speed can be impractical, especially for systems that generate hundreds of pages a day, such as print servers on large LANs. Unlike PostScript, CaPSL features speed optimizations like marker drawing commands and image compression. A normal PostScript page description as generated by current word processing programs is significantly longer than the same page as described by CaPSL or PCL. PostScript can’t cope with something as simple as a PrintScreen key press, because it can’t handle straight text. Finally, PostScript is expensive. Until the recent PostScript clones hit the market, PostScript added $1000 to $2000 to a printer’s cost.

Products such as Custom Applications’ Freedom of the Press and LaserGo’s GoScript now implement PostScript in software on the host computer and then send a bit map to a printer in raster-image mode. This approach is also slow, but it may be an alternative at sites where PostScript is used only occasionally.

A vast array of software products supports PCL, so it’s a safe purchase for those wanting laser-printer resolution. With newcomer CaPSL, Canon is betting that a market segment needs more functionality than PCL but not as much as PostScript’s. Even if CaPSL becomes a contender, powerful PostScript will likely remain the technology of choice for typesetting and image processing. However, as laser-printer processing improves, the speed and price gaps between PostScript and its competitors will probably continue to shrink.

Kent Quirk is a freelance writer and president of Tote Systems, Inc., in Westford, Massachusetts, a company that develops device drivers and embedded software. He can be reached on BIX as "kquirk."
A STANDARDS DICTIONARY

Which IBM PC standards have stood the test of time and are working well for vendors and users? Here are a few that fill the bill.

L. Brett Glass

The IBM PC architecture has spawned literally hundreds of standards, conventions, and common practices throughout the industry. At this point, seven years after the introduction of the PC, it’s worthwhile to take a good look at this collection of standards and see how far we’ve come and, by extrapolation, where we’re going.

The following list is limited to PC- or IBM-specific standards (SCSI, for example, does not qualify because it can be used with virtually any machine). And while this list has numerous entries, it is by no means complete. (Terms in italics are discussed under their own headings.)

.ARC File Format
This is the file format used by the ARC file-compression program, published by System Enhancement Associates (SEA) of Wayne, New Jersey. Programs from several other vendors read and write files in this format—most notably, PKARC and PKPAK utilities from PKWare, which added to the standard by providing additional compression options. (Although still available on many BBSes, PKARC and PKPAK have been discontinued due to litigation by SEA.) Neither the original ARC program nor the file format is PC-specific, but the program gained most of its popularity and installed base in the PC marketplace.

.DBF File Format
This is the file format used by Ashton-Tate’s dBASE programs. Products from many vendors other than Ashton-Tate read and write this format.

.PCX File Format
This is the file format for images produced by ZSoft’s PC Paintbrush (ZSoft is in Marietta, GA). It’s a common graphics file format on the PC and is also used by most scanners, fax programs, and desktop publishing programs.

.ZIP File Format
The file format for PKWare’s PKZIP utility, this is a compression and archiving program similar to SEA’s ARC.

8514/A Graphics Adapter
This is IBM’s current top-of-the-line graphics adapter. It can display 1024 by 768 pixels in as many as 256 simultaneous colors. A number of third-party intelligent graphics adapters emulate the 8514/A as well as providing their own sets of graphics commands.

Advanced Basic Input/Output System (ABIOS)
The BIOS is a set of low-level routines that is similar to the PC’s real-mode BIOS, but the BIOS is designed to work in protected mode. It continued
EXPANDED MEMORY SPECIFICATION (EMS)

Four 16K-byte EMS pages visible at once

- ROM BIOS
- 16K bytes
- 16K bytes
- 16K bytes
- EMS page frame
- BIOS extension ROM
- Expanded memory
- Video RAM
- 1-megabyte real-mode address limit
- EMS "expands" memory by switching up to 32 megabytes of 16K-byte pages in and out of the page frame.

Figure 1: To remember the difference between EMS memory and extended memory, you can think of the bank-switching process as "expanding" the memory map laterally rather than vertically.

comes standard on every PS/2 machine, but it is not present on IBM’s older machines or on most clones. (See “The IBM PC BIOS,” April BYTE, for a comprehensive description of the AIBIOS and how it works.)

Advanced Program-to-Program Communication (APPC)
The APPC is the part of IBM’s System Network Architecture (SNA) that allows processes on the same or different machines to communicate with one another. APPC is designed to be implemented on a wide variety of hardware. It is sometimes called LU 6.2; in fact, the two are intimately connected but are not the same thing. APPC refers to the higher layers of the protocol and its application program interface (API), while LU 6.2 refers to the software that implements APPC on a given machine. (For more on this protocol, see “A Logical Choice,” January BYTE.)

Basic Input/Output System (BIOS)
The BIOS is the heart of the PC and is among the most important factors in PC compatibility. (For a comprehensive discussion, see “The IBM PC BIOS,” April BYTE.)

Color Graphics Adapter (CGA)
The CGA was one of the first two display boards offered for the IBM PC (the other was the monochrome display/prin ter adapter (MDA). The CGA has a maximum graphics resolution of 640 by 200 pixels (two colors only) and can display, at most, 80 columns by 25 lines of text. All later IBM offerings are capable of emulating the CGA on a color screen.

Communicating Applications Specification (CAS)
CAS is an API that allows programs to communicate with Intel’s Connection CoProcessor fax modem card. (See “Making Applications Talk,” January
BYTE, for further information on this standard.)

Enhanced Industry Standard Architecture (EISA)
EISA is a bus that theoretically will be upwardly compatible from the industry standard architecture (ISA) and offer enhanced performance. EISA's development currently is being finalized by a consortium of compatible vendors. Some 200 vendors have paid for the details of the specification. EISA was designed to compete with IBM's Micro Channel architecture (MCA). Intel recently finished development of an EISA chip set.

Enhanced Expanded Memory Specification (EEMS)
EEMS was proposed by AST Research as an extension to the original Lotus/Intel/MS/DOS EMM. EEMS allows more than one 64K-byte area of RAM to be paged in and out at a time and lets applications reserve blocks of extended memory (EMB). Both these features were incorporated into version 4.0 of EMM.

Enhanced Graphics Adapter (EGA)
The EGA, IBM's enhanced follow-on to the MDA and CGA, incorporates all the text and graphics modes of both-plus a few more. It can produce a high-resolution monochrome display similar to that of the Hercules graphics card (HGC). Unlike the HGC, though, the EGA can display graphical pixels in two intensities and has different numbers of pixels in each row and column.

In its color modes, the EGA can produce an output signal equivalent to that of the CGA or a denser, higher-quality color image with a greater scan rate. The bit pattern in the standard EGA monitor switches between these two rates.) The EGA has a software-selectable color palette and limited pixel-manipulation hardware onboard. Despite the introduction of the more powerful professional graphics adapter (PGA), the EGA remained the dominant color graphics standard for the PC until the multicolor graphics array (MCGA) and video graphics array (VGA) were introduced.

Expanded Memory Specification (EMS)
The Expanded Memory Specification allows access to more than 1 megabyte of memory on a standard IBM PC by bank-switching 16K-byte blocks of RAM in and out of one or more 64K-byte areas called page frames (see figure 1). Versions of EMS before 4.0 allowed only one page frame with four 16K-byte pages to be visible at any one time; 4.0 extended the standard to allow any portion of RAM to be switched in this manner. This and other features of EMS 4.0 were adapted from AST Research's EEMS.

Extended Memory Specification (XMS)
The XMS manages extended memory on AT-class and 80386-based PCs. Before XMS, there were only ad hoc standards for reserved parts of this space; even IBM's VDISK and disk caching programs used different techniques.

XMS defines an API that allows you to reserve blocks of extended memory (extended memory blocks, or EMBs) and transfer data between them and the lowest 1 megabyte of RAM (i.e., the area available to real-mode programs). Figure 2 shows how XMS can also give real-mode programs access to almost 64K bytes of additional memory in an area that is known as the high memory area (HMA).

The area from hexadecimal addresses FFFF:000 to PFFF:FFFF can be addressed from real mode if the A20 line of the CPU is enabled; an XMS driver can reserve that area of memory for a program and take charge of enabling and disabling A20.

Finally, XMS manages blocks of memory between 640K bytes and 1 megabyte in the processor's "normal" address space. Add-on cards sometimes provide chunks of RAM that fall into this area; XMS allocates the space as upper memory blocks.

Graphical Environment Manager (GEM)
A graphical windowing environment created by Digital Research (Montebello, CA), GEM runs not only on PCs but also on Atari STs. Many applications, including Xerox's Ventura Publisher, run in the GEM environment.

Graftrax
Graftrax is actually Epson's standard for performing graphics on a dot-matrix printer. But IBM's decision to use Epson as the OEM for the IBM Graphics Printer meant that Graftrax became a de facto standard for IBM PC graphics output. Most laser printers for the PC can emulate an Epson printer running Graftrax.

GW BASIC
Because of the large number of features this language contains, the "GW" in the name of Microsoft's GW BASIC reputedly stands for "Gee Whiz." Derived
Bigger—

Vfeature Deluxe™ lets your DOS system use hard disks it thought it couldn't, all in one bootable piece—no artificial partitions! Span two drives into C: and boot from it, use MFM, RLL, ESDI, or SCSI. Interleave selection, physical format, security options included. **DOS 3.1-3.3** $120

DUB-14™ PCB takes a different approach to drive expansion, stretches your AT's Drive Table to support the drive you choose—MFM, ESDI, RLL, up to 2048 cylinders! Comes with setup and low-level format routines, works with UNIX, XENIX, Pico, Novell, DOS. **$95**

Faster—

Vcache™ speeds disk operations, stores data in RAM so it's there for you next time you need it—no waiting! Optional delayed sector write, lookahead buffer. Works with any type of memory, caches up to 15 Mb, bundles accelerators for your diskettes, screens, and keyboard. **DOS 2-4** $59.95

Voxt™ defragments disks for quicker access. Run it every day and keep your drive as fast as new! In a few seconds at boot time, Voxt arranges all your files neatly in contiguous clusters so you won't waste any time reading them back. Bundles timing and diagnostic utilities. **DOS 2-4** $135

Safer—

Vlock™ protects your system and its data from vandals and accidents. System access passwords control booting, activity menus decide who does what to which files, even locks out Ctrl-Break during boot! **$49.95**

Easier—

Vtools™ is a slick set of disk management tools for DOS and OS/2. Display directories in whatever order you like, browse files and change or delete them, compare and update multiple versions, find and manipulate categories of files, and more! **$49.95**

SEE YOUR DEALER OR CALL TOLL-FREE

1 (800) 284-3269

GOLDEN BOW SYSTEMS
2665 ARIANE DRIVE #207
SAN DIEGO, CA 92117
(619) 483-0901
FAX (619) 483-1924
TELEX 201520 GBUS UR
MC/VISA US shpg/hdlg 53 CA orders add 7%

EXTENDED MEMORY SPECIFICATION (XMS)

Extended memory above high memory area (HMA) is allocated as extended memory blocks and cannot be accessed directly from real mode.

The HMA is the first 65,536 bytes above 1 megabyte. You can access this area in real mode by doing tricks on an AT or compatible.

1-megabyte real-mode address limit.

Any unused space in this area can be filled with RAM and allocated as upper memory blocks. XMS will not interfere with EMS.

640K-byte "barrier"

RAM available for use by "standard"

DOS applications

Figure 2: Extended memory is the area above the 1-megabyte mark on an 80286- or 80386-based PC; it's simply a linear extension of the RAM below 1 megabyte.

from Microsoft's CP/M BASIC, GWBASIC has been largely supplanted by newer offerings such as QuickBASIC and Turbo BASIC. Nevertheless, GWBASIC is still an important standard in the PC world because IBM shipped it with all its machines.

Hercules Graphics Card (HGC)

Of the original IBM PC display adapters, neither the CGA nor the MDA provided everything early PC users wanted. The CGA could display graphics but used a coarse 8- by 8-character cell; the MDA displayed much clearer 9 by 14 characters but could show only text.

The Hercules graphics card, introduced during the early days of the PC, gave users the best of both worlds (except for color). It emulated the MDA and ran on the same monochrome TTL display, but it added monochrome graphics capabilities with a higher resolution than the CGA's. It also included a parallel printer port like the MDA's.

Generally speaking, the HGC has now been outmoded by newer adapters that bring the same resolution (or better) to color screens, but it remains one of the most successful third-party graphics board standards.

Industry Standard Architecture (ISA)

ISA refers to the bus signals and timings used in the original PC and AT computers. Because no formal timing specifications have ever been published for this bus, it has been thought of as an ad hoc standard; to this day, peripheral cards are often tested empirically for ISA compatibility. Proponents of EISA and MCA believe that one of these newer architectures will eventually replace or supersede ISA.
S Systems 10 MHz XT
- Intel 8086-1 CPU
- Phoenix BIOS
- 640K on board
- TRAC 350 floppy drive
- Multi I/O w/1P, 13, 1G, file, clock

XT/10 Video Options

<table>
<thead>
<tr>
<th>Drives</th>
<th>Mono</th>
<th>CGA</th>
<th>EGA</th>
<th>VGA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single</td>
<td>650</td>
<td>775</td>
<td>1045</td>
<td>1115</td>
</tr>
<tr>
<td>Dual</td>
<td>675</td>
<td>855</td>
<td>1125</td>
<td>1195</td>
</tr>
<tr>
<td>20MB</td>
<td>975</td>
<td>1150</td>
<td>1425</td>
<td>1495</td>
</tr>
<tr>
<td>40MB</td>
<td>1125</td>
<td>1305</td>
<td>1575</td>
<td>1645</td>
</tr>
</tbody>
</table>

S Systems 286/12
- Intel 80286-2 CPU
- Ami or Phoenix BIOS
- 1MB RAM on board
- TRAC 2.86, floppy drive
- Hard/floppy drive controller

AT 286-12 Video Options

<table>
<thead>
<tr>
<th>Drives</th>
<th>Mono</th>
<th>CGA</th>
<th>EGA</th>
<th>VGA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single</td>
<td>855</td>
<td>1305</td>
<td>1715</td>
<td>1375</td>
</tr>
<tr>
<td>20MB</td>
<td>1190</td>
<td>1640</td>
<td>1715</td>
<td>1715</td>
</tr>
<tr>
<td>40MB</td>
<td>1345</td>
<td>1795</td>
<td>1865</td>
<td>1865</td>
</tr>
</tbody>
</table>

S Systems 286-20
- Intel 80386-2 CPU
- Ami BIOS
- TRAC 3.0, floppy drive
- Multi I/O w/1P, 13, 1G, file, clock

AT 286-20 Video Options

<table>
<thead>
<tr>
<th>Drives</th>
<th>Mono</th>
<th>CGA</th>
<th>EGA</th>
<th>VGA</th>
</tr>
</thead>
<tbody>
<tr>
<td>20MB</td>
<td>3028</td>
<td>2475</td>
<td>2760</td>
<td>2545</td>
</tr>
<tr>
<td>40MB</td>
<td>2325</td>
<td>2625</td>
<td>2760</td>
<td>2545</td>
</tr>
<tr>
<td>80MB</td>
<td>2460</td>
<td>2885</td>
<td>2885</td>
<td>2885</td>
</tr>
</tbody>
</table>

Monochrome Monitors

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amdtek V210A</td>
<td>$85</td>
</tr>
<tr>
<td>Amdtek 410A</td>
<td>$150</td>
</tr>
<tr>
<td>NEC MultiSync GL</td>
<td>$220</td>
</tr>
<tr>
<td>Samsung mono-13 flat</td>
<td>$105</td>
</tr>
<tr>
<td>Samsung mono 14</td>
<td>$105</td>
</tr>
</tbody>
</table>

Hard Drives

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seagate 20MB</td>
<td>$225</td>
</tr>
<tr>
<td>Seagate 40MB</td>
<td>$410</td>
</tr>
<tr>
<td>Seagate 80MB</td>
<td>$600</td>
</tr>
<tr>
<td>Plus Hardcard-20</td>
<td>$335</td>
</tr>
<tr>
<td>Plus Hardcard-40</td>
<td>$670</td>
</tr>
<tr>
<td>Plus Passport-20</td>
<td>$415</td>
</tr>
<tr>
<td>Plus Passport-40</td>
<td>$560</td>
</tr>
</tbody>
</table>

Tape Drives

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Archive 5240</td>
<td>$225</td>
</tr>
<tr>
<td>Archive 5540</td>
<td>$649</td>
</tr>
<tr>
<td>Archive VP90</td>
<td>$169</td>
</tr>
<tr>
<td>Mountain 4340</td>
<td>$400</td>
</tr>
</tbody>
</table>

Math Co-processors

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intel 8087-8</td>
<td>$125</td>
</tr>
<tr>
<td>Intel 8087-10</td>
<td>$200</td>
</tr>
<tr>
<td>Intel 8087-16</td>
<td>$415</td>
</tr>
<tr>
<td>Intel 8087-20</td>
<td>$770</td>
</tr>
<tr>
<td>Intel 8087-25</td>
<td>$950</td>
</tr>
<tr>
<td>Intel 8087FSX</td>
<td>$375</td>
</tr>
<tr>
<td>Intel 8087</td>
<td>$315</td>
</tr>
</tbody>
</table>

Software

<table>
<thead>
<tr>
<th>Product</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aldus Pagemaker</td>
<td>$460</td>
</tr>
<tr>
<td>dBASE IV+</td>
<td>$400</td>
</tr>
<tr>
<td>Lotus 1-2-3 v. 3</td>
<td>$310</td>
</tr>
<tr>
<td>Lotus Symphony</td>
<td>$415</td>
</tr>
<tr>
<td>Microsoft Windows 386</td>
<td>$100</td>
</tr>
<tr>
<td>Microsoft Excel</td>
<td>$285</td>
</tr>
<tr>
<td>Microsoft Word</td>
<td>$215</td>
</tr>
<tr>
<td>Microsoft Works</td>
<td>$105</td>
</tr>
<tr>
<td>Paradox 3.0</td>
<td>$115</td>
</tr>
<tr>
<td>PPS First Publisher</td>
<td>$175</td>
</tr>
<tr>
<td>Ventura Publisher</td>
<td>$485</td>
</tr>
</tbody>
</table>

Diskette Drives

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toshiba 351SX</td>
<td>$985</td>
</tr>
</tbody>
</table>

Floppy Drives

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toshiba 360K</td>
<td>$705</td>
</tr>
<tr>
<td>Toshiba 1.2MB</td>
<td>$85</td>
</tr>
<tr>
<td>Toshiba 2.5MB</td>
<td>$75</td>
</tr>
<tr>
<td>Toshiba 4.25MB</td>
<td>$90</td>
</tr>
<tr>
<td>TRAC 360K</td>
<td>$75</td>
</tr>
<tr>
<td>TRAC 1.2MB</td>
<td>$90</td>
</tr>
<tr>
<td>TRAC 2.5MB</td>
<td>$90</td>
</tr>
<tr>
<td>TRAC 4.2MB</td>
<td>$90</td>
</tr>
</tbody>
</table>

Accelerator Boards

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inland 386-PC</td>
<td>$650</td>
</tr>
<tr>
<td>Inland 386</td>
<td>$900</td>
</tr>
</tbody>
</table>

Color/EQA Monitors

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amedeka C7022</td>
<td>$445</td>
</tr>
<tr>
<td>Amedeka C722</td>
<td>$515</td>
</tr>
<tr>
<td>AST EQA</td>
<td>$515</td>
</tr>
<tr>
<td>Mitsubishi 1410C</td>
<td>$495</td>
</tr>
<tr>
<td>Mitsubishi 1420C</td>
<td>$495</td>
</tr>
<tr>
<td>Sharp EGA 14</td>
<td>$375</td>
</tr>
</tbody>
</table>

VGA/CAD Monitors

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mitsubishi 381A</td>
<td>$515</td>
</tr>
<tr>
<td>NEC Multisync 11A</td>
<td>$500</td>
</tr>
<tr>
<td>NEC Multisync 3D</td>
<td>$675</td>
</tr>
<tr>
<td>NEC Multisync plus</td>
<td>$915</td>
</tr>
<tr>
<td>NEC Multisync</td>
<td>$500</td>
</tr>
<tr>
<td>Sony 1320F</td>
<td>$405</td>
</tr>
</tbody>
</table>

Printers

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEC P2200</td>
<td>$330</td>
</tr>
<tr>
<td>NEC FS200</td>
<td>$325</td>
</tr>
<tr>
<td>NEC FS300</td>
<td>$695</td>
</tr>
<tr>
<td>Okidata 320P</td>
<td>$375</td>
</tr>
<tr>
<td>Okidata 321P</td>
<td>$520</td>
</tr>
<tr>
<td>Okidata 390</td>
<td>$520</td>
</tr>
<tr>
<td>Okidata 390</td>
<td>$520</td>
</tr>
<tr>
<td>Okidata 390</td>
<td>$520</td>
</tr>
</tbody>
</table>

Laser Printers

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEC LC 890</td>
<td>$3405</td>
</tr>
<tr>
<td>HP Pagelaser</td>
<td>$275</td>
</tr>
</tbody>
</table>

Plotters

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>HI DMP52</td>
<td>$2495</td>
</tr>
<tr>
<td>HI DMP52MP</td>
<td>$2495</td>
</tr>
<tr>
<td>HI DMP61</td>
<td>$345</td>
</tr>
<tr>
<td>HI DMP62</td>
<td>$400</td>
</tr>
</tbody>
</table>

Video Boards

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hercules Colorcard</td>
<td>$155</td>
</tr>
<tr>
<td>Hercules Incolorcard</td>
<td>$150</td>
</tr>
<tr>
<td>Hercules VGA</td>
<td>$189</td>
</tr>
<tr>
<td>Hercules Sony 1302P</td>
<td>$300</td>
</tr>
<tr>
<td>Paradise EGA-350</td>
<td>$150</td>
</tr>
<tr>
<td>Paradise EGA-180</td>
<td>$210</td>
</tr>
<tr>
<td>Paradise VGA-Plus</td>
<td>$280</td>
</tr>
<tr>
<td>Paradise VGA-Plus-16</td>
<td>$320</td>
</tr>
<tr>
<td>Paradise VGA-Prof</td>
<td>$470</td>
</tr>
<tr>
<td>Quadram Quaduces</td>
<td>$285</td>
</tr>
<tr>
<td>Video 7 Vega Deluxe</td>
<td>$225</td>
</tr>
<tr>
<td>Video 7 Vega VGA</td>
<td>$300</td>
</tr>
<tr>
<td>Video 7 Fastwrite VGA</td>
<td>$300</td>
</tr>
<tr>
<td>Video VRAM-VGA</td>
<td>$475</td>
</tr>
</tbody>
</table>

Multifunction/Memory Boards

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>AST Rampage 2-256</td>
<td>$125</td>
</tr>
<tr>
<td>AST Rampage 2-256</td>
<td>$125</td>
</tr>
<tr>
<td>AST Rampage 2-256 Plus</td>
<td>$420</td>
</tr>
</tbody>
</table>

Floppy Drives

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toshiba 360K</td>
<td>$70</td>
</tr>
<tr>
<td>Toshiba 1.2MB</td>
<td>$65</td>
</tr>
<tr>
<td>Toshiba 2.5MB</td>
<td>$75</td>
</tr>
<tr>
<td>Toshiba 4.25MB</td>
<td>$90</td>
</tr>
<tr>
<td>TRAC 360K</td>
<td>$75</td>
</tr>
<tr>
<td>TRAC 1.2MB</td>
<td>$90</td>
</tr>
<tr>
<td>TRAC 2.5MB</td>
<td>$90</td>
</tr>
<tr>
<td>TRAC 4.2MB</td>
<td>$90</td>
</tr>
</tbody>
</table>

Accelerator Boards

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inland 386-PC</td>
<td>$650</td>
</tr>
<tr>
<td>Inland 386</td>
<td>$900</td>
</tr>
</tbody>
</table>

To order call 1-800-837-3573; Fax # 708-495-2629
Micro Channel Architecture (MCA)

With the advent of the PS/2 machines, IBM introduced the Micro Channel architecture, a multimaster, fully specified 16-/32-bit bus with a minimum cycle time of 100 nanoseconds. The MCA is IBM’s contender to replace ISA, but it is seeing only a limited acceptance due to incompatibility with existing cards and IBM royalty considerations.

Microsoft Windows

Microsoft Windows (and its 80286 and 80386 cousins) is a windowing and multitasking environment for PCs and compatibles running MS-DOS or PC-DOS. The Windows user interface resembles that of IBM and Microsoft’s Presentation Manager for OS/2.

Monochrome Display/Printer Adapter (MDA)

MDA was one of the original display options on the PC. Driving a high-persistence TTL monochrome monitor with two display intensities, the MDA showed 25 lines of 80 characters each. The 9- by 14-character cell made this adapter superior to the CGA (which used an 8- by 8-character cell) for text.

Microsoft Disk Operating System (MS-DOS)

This PC operating system had its origins in an 8086-based CP/M clone, 86-DOS, created by Seattle Computer Products.

MS-Net

MS-Net is Microsoft’s standard for networking MS-DOS. Using a redirector and NetBIOS, an MS-Net-based network allows peer-to-peer networking through the server message block (SMB) protocol.

Multicolor Graphics Array (MCGA)

IBM introduced the MCGA as part of the PS/2 Model 30. It provides some of the capabilities of IBM’s VGA display adapter and runs with a PS/2 analog monitor.

NetBIOS

NetBIOS is an API that lets programs running on IBM PCs access a LAN. Commands are provided to control activity on the Medium Access Control and session layers of the International Standards Organization protocol stack; all other layers are hidden. MS-Net uses NetBIOS to implement peripheral sharing.

Presentation Manager (PM)

Presentation Manager is the graphical user interface standard developed for OS/2 by IBM and Microsoft. It was first shipped with OS/2 1.1. PM uses overlapping windows, each containing an optional mouse-driven menu. PM is an evolving standard; one of the most significant ways that OS/2 1.2 is expected to be different from 1.1 is in its greater use of icons.

Professional Graphics Adapter (PGA)

The IBM professional graphics adapter was a high-end intelligent graphics board mostly used for CAD applications. Due to several factors, PGA did not become a popular standard.

RS-232 Connector (nine-pin)

When IBM decided to make a combination serial/parallel adapter for the AT, a small connector format was needed to allow both of the interfaces to fit on the back of a standard ISA interface card. Because the parallel connector could not be shrunk, the serial connector was: subsequently, the nine-conductor pin-out for
$10 PER MEGABYTE OF DRAM

The 325ET has a hard drive access speed almost undetectably different from that of dynamic memory. For the first time, the large capacity of a hard drive is accessible at an access time of one millisecond (1 ms). Why limit yourself to 2, 8 or 16 megabytes of fast memory and pay $500 per megabyte, when you can have up to 160 megabytes at a cost as low as $10 per megabyte?

50 TIMES FASTER

Instead of waiting for the 65 millisecond (ms) access time of an MFM drive, or even the 17 ms of an ESDI drive, you can have instantaneous access to your data. The 325ET is blindingly fast with an average disk access time of 1 ms. In addition, the system architecture allows data transfer speeds that match drive capabilities. That's really fast! In fact, the overall read/write performance of the 325ET is 50 times faster (5.000%) than the Compaq® 386/25.

53,000 PORTABLE PAGES

The 325ET, when located along side of a monitor, takes little desk space. The compact design of the 325ET lets you carry it onto an airplane and easily stow it under your seat. Imagine bringing the equivalent of seven four-drawer filing cabinets worth of valuable information to your next meeting - accessible in just 1 ms.

The New 25 Mhz Executive 325ET combines all the latest technologies in the most advanced 386 computer available. And it's transportable.
RS-232C became a de facto industry standard. The nine pins are assigned as follows:

1—carrier detect; 2—receive data; 3—transmit data; 4—data terminal ready; 5—ground; 6—data set ready; 7—request to send; 8—clear to send; 9—ring indicator.

Server Message Block Protocol (SMB)
The SMB protocol is used in MS-Net networks for peer-to-peer file and peripheral sharing. SMB is generally implemented using the session commands of NetBIOS; however, implementations are available for machines other than the PC (e.g., the VAX) so that they can act as servers.

TesSerRact (TSR)
TesSerRact is a standard developed by a team of programmers on CompuServe for terminate-and-stay-resident programs for the PC. TSR programs developed to this standard can coexist amicably with one another and can be removed safely from memory. TesSerRact builds on the work of an earlier standardization effort called Ringmaster.

Video Graphics Array (VGA)
VGA is IBM’s primary graphics standard for the PS/2 line of machines, and VGA-compatible graphics cards are currently available from many vendors. The VGA works with either a color monitor or a black-and-white gray-scale monitor; it is able to sense automatically the type of monitor and adjust accordingly. The maximum graphics resolution of the VGA is 640 by 480 pixels; it can display up to 16 simultaneous colors at that resolution, or 256 simultaneous colors with a resolution of 320 by 200 pixels.

Virtual Control Program Interface (VCPI)
The VCPI is a standard that allows programs that take advantage of the 80386’s protected mode to run under MS-DOS or PC-DOS.

Voice Communications Application Program Interface (VCAPI)
Part of IBM’s voice communications option (now out of production) for the AT, the VCAPI allows applications to control interfaces to telephone lines, a speech synthesizer, a modem, a dialer, an adaptive differential pulse-code modulation (ADPCM) sound-recording/playback facility, and a speech recognition facility. Reached via interrupt 14h, the VCAPI manages a multitasking TMS 320 signal-processing chip, along with its associated hardware.

WordStar File Format
Like the standard MS-DOS text file format, this format is a veteran of the CP/M operating system. It is similar to the standard text file format but sets the high bit in the last letter of each word in filled and justified text. The high bit of each character is also used to distinguish between hard and soft end-of-line sequences and movable and nonmovable hyphens. Control characters set off regions of the text with special attributes, such as boldface and underlining.

L. Brett Glass is a freelance programmer, author, and hardware designer residing in Palo Alto, California. He can be reached on BIX as “glass.”

How does FOUNTAIN 386SX compare with a true 386?

<table>
<thead>
<tr>
<th></th>
<th>FOUNTAIN 386SX</th>
<th>COMPAQ 386/16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load mark</td>
<td>21.3</td>
<td>20.0</td>
</tr>
<tr>
<td>SI advanced</td>
<td>10.0</td>
<td>17.6</td>
</tr>
<tr>
<td>Integer Address</td>
<td>18.0</td>
<td>12.0</td>
</tr>
<tr>
<td>Integer Multiply</td>
<td>13.0</td>
<td>13.7</td>
</tr>
<tr>
<td>Strings and More</td>
<td>1.76</td>
<td>1.87</td>
</tr>
<tr>
<td>Price</td>
<td>4.67</td>
<td>4.23</td>
</tr>
<tr>
<td>80286/4 00x</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Processor: Intel 20-MHz 386SX

Expansion: On-board 10-MB hard disk drive, 20-MB expansion disk

Memory: 1 MB of SRAM standard, 20-MB max; 4 MB on board, expandable to 10 MB

Power Supply: 200 watts standard; 110 VAC at 60 Hz, 220 VAC at 50 Hz

Keyboard: Enhanced 101-key layout

Fixed-Disk Controller: High-performance AT type E51 interface or ESDS controller

Storage: 1 MB floppy disk drive standard; 2 MB 1.44 MB optional, choice of 40, 80, 160 or 320 MB hard disk drive

Options: Monochrome display: 128 graphic characters, 80 horizontal; EGA display: IBM EGA Extended™ with 800x600 resolution

Fountain 386SX. The Smart Choice.

$1995.

Fountain 386SX with 1 MB memory at zero wall state, 12 MB floppy disk drive, 10 interface hard disk controller, 40 MB hard disk drive, and Monochrome display package.

Circle 106 on Reader Service Card
Don't Trash Your PC
Because of the
Software Revolution

SOTA's family of award winning
Enhancement Products extends the
life of any PC into the 1990s!

Any IBM, Amstrad, Olivetti,
AT&T 6300, Zenith, Compaq, and
other 8088/86 PC compatibles com-
bined with the SOTA 286i or
SOTA 386si and the Memory/16i will
allow you to run any of the next gen-
eration of advanced software.

Salvage your PC from obsolescence.

- **SOTA 386si**, 16 MHz PC accelerator with
 16K cache
- **SOTA 286i**, 12.5 MHz PC acceler­
 ator with 16K cache
- **Memory/16i**, up to
 8 MB of 16-bit LIM 4.0 accelerator memory
- **Floppy I/O Plus**, floppy controller for all
 3.5" & 5.25" floppy plus serial/parallel ports.

For details on how to
receive 1MB of Memory FREE,
contact your authorized
SOTA dealer or distributor.
1-800-237-1713,
in CA, 408-745-1111.

SOTA Technology, Inc.
559 Weddell Drive, Sunnyvale, CA 94089
Tel: 408-745-1111, Fax: 408-745-1640

SOTA 286i, SOTA 168i, Memory/16i, Floppy I/O Plus are trademarks of SOTA Technology, Inc.
All other products mentioned are trademarks of their respective manufacturers.
For PC-AT software blues, come and see the SOTA solution at COMDEX, booth #W862.
Several steps faster than the competition.

As you can plainly see, every Everex STEP™ system, from one end of our IBM® compatible line to the other, runs a good deal faster than anything the competition has to offer. So if you’re looking for the absolute fastest way to run today’s complex applications, it’s time to take a closer look at our STEPs.

What you’ll find is the thing that makes them faster. Namely, superior design. One example is our proprietary AMMA™ cache management architecture that lets you tear along at record speeds, especially in multi-user, multi-tasking applications. And AMMA is application transparent. So you gain speed without losing compatibility.
Better yet, you'll find that STEP systems are about as flexible as they come. We offer, for instance, both small-footprint and standard chassis sizes. 8 full-length expansion slots. 3 front panel selectable clock speeds. Plus BIOS support for over 60 drives.

All brought to you by one of the fastest growing computer companies in America. Namely, Everex. And a nationwide network of the finest resellers who ever configured a system or supported a customer.

Which makes your next step a rather obvious one. Call 1-800-334-4552 for more information and the name of your nearest Authorized Everex Reseller.
Don't Let the Desktop Programming Revolution Start Without You.

Presenting Matrix Layout 2.0

The Desktop Programming revolution has begun. More and more people are maximizing the productivity of their desktop computers without learning to write a line of code. It began with Matrix Layout. And continues with Layout 2.0.

More Power to the People
Matrix invented Desktop Programming to let you create your own programs right on your own PC. Now, Layout 2.0 makes it even easier to create your own powerful, professional-quality applications.

Start with Layout's tools window. Everything you'll need to build your program can be accessed by mouse or keystroke.

Next, use Layout's graphics and text tools to build a flowchart model of your program. Create your own windows, icons, and buttons. Cut and paste functions from other Layout programs. Or use the BlackBox Manager to add a BlackBox—a pre-built capability such as telecommunications or dBase support—to your Layout program. All, without writing a line of code.

Layout 2.0 is also a hypertext tool, allowing you to build Hypercard®-like cards, with text and graphics, and link them to related cards in any file. Use it to create cards for your flowcharts or to create hypertext applications that will run on any IBM-compatible PC.

Power to the Professional
Once your program is complete, Layout 2.0 can automatically create a ready-to-run .EXE file for use by any IBM PC. Or have Layout 2.0 write it in Turbo C, Lattice C, Microsoft C or QuickBASIC. The result: you've got a professional, stand-alone program that does exactly what you want it to. Use it, share it, modify it. You've got the power.

And a Powerful Bargain
For just $199.95 you get the entire Layout 2.0 package, including free technical support, and more programming power than you've ever had on your desktop. For more information, the location of your nearest Matrix dealer, or a copy of the Matrix Layout 2.0 VHS demonstration video (just $9.95 for shipping & handling), call today.

1-800-533-5644
(in Massachusetts, 617-567-0037)

Join the Desktop Programming revolution. Order Matrix Layout 2.0, today!
Until the day arrives when CPUs with on-chip FPUs, such as the 80486 and 1800, perform floating-point operations in a single cycle, there will be a need for numeric coprocessors like the Weitek 3167 and 4167. These devices employ large areas of silicon to perform multiplication and addition nearly as fast as they are fed operands and operators. That also makes them exquisitely sensitive to the quality of the CPU code that drives them. I'll explore how compiler optimizations can yield a nearly sixfold increase in the speed of a Weitek 3167.

The art of generating fast-running programs boils down to two problems: transforming the program into a new program that is faster but gives the same results (optimization) and choosing the fastest sequence of processor instructions for that new program (code generation).

A compiler's front end includes components specific to a particular language: the scanner, which recognizes lexical elements, and the parser, which builds a tree-structured representation of the program. The compiler's tree walker, or intermediate section, traverses the representation and rearranges it in a more efficient form. The back end, or code generator, writes the object code. You can find and perform optimizations in the front end and the intermediate section.

Front-End Optimizations
The most common front-end optimizations are strength reductions—transformations that replace one run-time calculation with another, faster one. For example, the FORTRAN expression $(x \times 2)$ can be replaced by $(x \times x)$; simple multiplication is about 10 times faster than exponentiation. For an 80386 running with a 3167, it pays to perform this strength reduction for integral exponents that fall between -4 and 11.

Other opportunities for strength reduction are cases of multiplication or division by 1 or -1; multiplication, subtraction, or addition of 0; and addition or subtraction of 1. However, the new generation of coprocessors invalidates some previously standard strength reductions. For example, it used to be faster to add or shift than to multiply, so an excellent reduction was to convert multiplications to a series of shifts and additions where possible. The more powerful multipliers of the latest generation of coprocessors render that optimization unnecessary.

Not all strength reductions are made in the interest of generating the best code. For example, many compilers perform the famous Whetstone strength reduction $\exp(\ln(u)) = u$. This reduction...
The other common front-end optimization is the reduction of constant expressions into literal constants. If the compiler can determine that an expression's arguments are constants, it can perform the operation itself and replace the operator node in the tree with a constant node.

Intermediate Optimizations

Among the intermediate optimizations are eliminating code that never executes or whose output is never referenced, moving function calls outside loops, rearranging loops, caching (placing in registers) hot variables and addresses used in loops, and eliminating common subexpressions. Such optimizations are normally accompanied by a data-flow analysis that generates statistics about each block, procedure, and variable in the program. These statistics will be used downstream by the code generator. Since all this information is stored in the tree, the process is often referred to as "decorating the tree."

Intermediate optimizations can make a huge difference in the way some code performs and hardly any in other cases. Why? If you write code that already incorporates these optimizations, there's little the compiler can improve. In practice, though, manually optimized code isn't very legible, so many programmers prefer to write more readable code and let the optimizer spruce it up. Most programs do benefit from optimization.

Inlining of procedures is an important optimization. As more programmers write in C and use structured techniques, the overhead of function calls becomes significant. Such programs tend to jump around as much as they execute. Assume that it takes 100 cycles to call and return from a function that takes only 20 cycles to execute. Placing the procedure in-line (i.e., within the main program flow) yields a fivefold improvement.

The technique used to inline functions is to compile all the procedures in an application into unoptimized trees, taking statistics about each. Then the tree-walker decides whether to graft a procedure onto the tree (i.e., inline it) or call it. Inlining plays a crucial role in speeding up systems that incur a big penalty when required to refill the processor's pipeline.

Generating Code

Register allocation is the crucial issue here. The forthcoming generation of computers will be able to do 20 to 40 million floating-point operations per second (MFLOPS) as long as everything stays on-chip. Variables that stay in registers can be accessed much faster than those in the cache or off-chip memory. Going off-chip for operands is like throwing out a piece of code that can be done on-chip. It's a meaningless piece of code that can be removed in the peephole stage.

Benefits of Optimization

Now I want to present two benchmarks I've adapted from the Whetstone benchmark. The first, which I call Whetmat, tests scalar floating-point arithmetic and measures raw coprocessor. Speed. This benchmark is available on BIX along with several other benchmarks under "microway." The second, which I call Whetmat, does a matrix multiply, which complicates the arithmetic with indexing. In the Whetmat, the interaction between CPU and FPU makes good optimization especially critical. I'll trace what happens to the speed of the Weitek 3167 as the various optimization and code-generation features of a FORTRAN compiler are successively enabled.

When compiled with a globally optimizing compiler, the Whetmat measures the rate at which a numeric coprocessor performs elementary register-to-register floating-point operations. These operations are always the fastest because they don't reference memory and can take advantage of the wide internal data paths inside the coprocessor. The Whetmat code is an example of a piece of software that is 100 percent floating-point-bound and for which it is easy to figure out what the precise floating-point activities are: 12 additions, 1 negate, 4 multiplies, and 4 floating-point stores and loads. I developed a weighting scheme that produces a result measured in Whetstones, and these can be interpreted as the number of scalar floating-point operations per second. Since there are no 80386 instructions in the code, the Whetmat—when compiled optimally, with all variables in registers—places an upper limit on coprocessor speed.

I ran the Whetmat on several machines. The 25-MHz Acer was representative of the best results. With a 25-MHz Weitek 3167, the Acer achieved 3.05 MFLOPS. The 25-MHz 80387 result was, by contrast, .798 MFLOPS. The re-
results can be interpreted simply. The Whet-

tek 3167 does over 3 million basic float-

point operations per second, the

80387 only about 800,000. Used as a

baseline, the Whetscale makes it possi-

ble to figure out how much time other

benchmarks waste doing address calcu-

lations and fetching operands from mem-

ory. For example, I weighted the Whet-

mat in the same way I weighted the

Whetscale but at best got only 1.7

MFLOPS from the 3167 (see next sec-

tion). From this I concluded that an opti-

mally coded 3167 vector operation

spends 40 percent or more of its time

performing nonnumerical activities.

The Whetmat Benchmark
I designed the Whetmat benchmark to

measure the speed of a single-precision

matrix multiplication. This is the kind of

real-world problem at which a good

FORTRAN compiler must excel. It also

shows how optimization is the key to

high-speed numeric processing. Listing

1 shows the most time-consuming part of

the Whetmat. It’s slowed by several

things: two floating-point operations per

iteration of the loop, address calculations

for all elements in the arrays, and oper-

and fetches from memory.

As I enabled the various optimizations

of the NDP FORTRAN compiler, the re-

sults improved by a factor of 5.8. This

actually means that as the code im-

proved, the number of 80386 cycles re-

quired to support the Weitek 3167 de-

clined by a factor of 5.8.

Listing 2 shows how a nonoptimizing

compiler would handle the Whetmat’s

inner loop. You can see immediately that

the address of C(I,J) is computed twice

per iteration—a waste of time. There are

three ways to tackle this problem. A

compiler that can remove local common

subexpressions would analyze this block,

discover that the second address calcula-

tion was redundant, and eliminate it.

Similarly, a compiler that can remove

global common subexpressions would

find that the address of C(I,J) was com-

puted in the previous block (when the re-

ferenced element was initialized to zero)

and use this address for both references

since neither I nor J change after the

initialization. If the register allocato

placed commonly used addresses in reg-

isters, this would result in slightly better

code. Finally, since neither I nor J

changes in the loop, they’re loop-invar-

iant (as are any expressions that depend

solely on them) and can be taken out of

the loop. Of these three methods, the

first is usually available, the second
sometimes, and the third rarely, because

it depends on data-flow analysis.

Once you’ve handled the redundant

address calculation, though, you’ve

barely scratched the surface. The com-
pilation of the addresses of the inner loop

variables is the next candidate for sim-

plification. These addresses depend on

the single variable K and several constants

that don’t change (I, J, and the size of the

array) as K does. K is an induction vari-

able; the compiler figures out that, every
time K increments, it’s necessary to add

4 to the current address of A and

4x140=560 to the address of B. It ac-

companies this by setting up registers to

hold the addresses of A and B and incre-

menting them by 4 and 560 at the end of

the loop. This optimization, in conjunc-

tion with the previous one, boosted per-

formance on the Weitek from .29

MFLOPS to .77 MFLOPS.

Next, the compiler can take advantage
of the fact that the array elements C(I,J)

continued
OPTIMIZING NUMERIC COPROCESSING

refer to a single entity from the point of initialization to the end of the inner loop. This entity should be treated like a scalar for the course of the calculation. That way, the code generator can leave C(U) in a register for the duration of the inner loop, where it really belongs. The effect of this optimization is to transform the inner loop into the fragment shown in Listing 3. This transformation is called register caching. Few compilers perform it because in addition to a global data-flow analysis it requires a careful search for aliases. Because even some of the best mainframe compilers don't do register caching, well-written programs like LINPAK explicitly use dummy variables in place of array elements when the array element is being used as an accumulator. With register caching turned on, performance jumped to 1.1 MFLOPS.

At this point, you're starting to scrape the bottom of the barrel. The next optimization depends on an idiosyncrasy of the 80386 prefetch mechanism and works in conjunction with advanced 80386 addressing modes. The trick employed here, called loop unrolling, entails placing sets of four loop iterations in-line. It takes more space but runs much faster because it keeps the processor's pipeline filled. Since the 80386 has to fill its prefetch queue every time it makes a jump, unrolling the loop yields considerable savings. At the same time, the compiler can use base addressing mode with an immediate constant that increases by 4 and 560 on each roll through the loop. Loop unrolling brought the benchmark result to 1.4 MFLOPS.

There's one more possibility. Because dot products are so important in the numerics repertoire, advanced FPUs like the Weitek 3167 often supply a special instruction to perform them. It's called the multiply/accumulate, and NDP FORTRAN supports it. With the multiply/accumulate switch turned on, the benchmark result jumped to 1.7 MFLOPS.

In the process of turning on these optimizations, Whetmat performance went from 2.91 MFLOPS to 1.7 MFLOPS—a nearly sixfold improvement in code quality. There's another way to look at this: The code in the inner loop of this program was reduced in size by a factor of almost 6. By counting the 80386 op codes executed per inner loop in each case, I determined that the increase in speed over the whole range of the experiment was virtually identical to the reduction in the number of 80386 op codes per loop—that is.

\[
\text{ratio of throughput} = 1.7/2.91 = 5.8 \\
\text{ratio of 80386 op codes/loop} = 23/4 = 5.75
\]

These results prove my thesis. In situations where numeric operations run as fast as basic CPU operations, the crucial issues in attaining rated numeric throughput are register allocation and reduction of the number of CPU operations required to support the numerics. The next generation of numeric processors will reach their full potential only with the help of advanced optimization techniques that minimize the number of supporting 80386 (or 80486) operations.

Stephen Fried is well known for his work in chemical lasers and the use of numeric coprocessors in the IBM PC. He is vice president of R & D at MicroWay, Inc., in Kingston, Massachusetts, and can be contacted on BIX c/o "editors."

Microcomputer News On-Line

In this fast paced industry, can you afford to wait a week or a month for information that may affect you today?

MicroBYTES Daily is an electronic news service covering the latest developments in the microcomputer industry. If it concerns MS DOS machines, Macintosh, Unix workstations, Amigas, Atari STs, peripherals, networks or software, you will find it in MicroBYTES.

Fast and Easy

Read the items as they break or use the powerful search command to quickly locate your information. Best of all you can download the text and print it or use it in your favorite word processor.

Whether you are a developer, marketer, or researcher, you need reliable information and you can count on MicroBYTES. Backed by the combined resources of BYTE Magazine, BYTEweek, and BIX, MicroBYTES gives you access to our world-wide network of reporters and the integrity and expertise of our editorial staff.

In your position as a leader in new technology, you cannot afford to be just one of the crowd. Get ahead with MicroBYTES.

Call now and subscribe today.

BIX One Phoenix Mill Lane, Peterborough, NH 03458
1-800-227-2983

224 Fall 1989 • BYTE IBM Special Edition
Aurora 1024™
GRAPHICS BOARD
THE DAWN OF A NEW GRAPHICS AGE

TI 34010 COPROCESSOR
8514/A COMPATIBLE BOARD
1024 x 768 with 256 COLORS!

The Aurora 1024™ brings the graphics user into the new age of graphics processing. By adding the Aurora 1024 high resolution graphics card to your XT or AT, you will have unparallel processing power with 100% IBM 8514/A compatibility. The Aurora 1024 is a full-featured TI 34010-based board that runs at resolutions up to 1024 x 768 x 256 colors.

HIGH SPEED
The Aurora 1024 is fast! It runs 20-50 times faster than VGA and 10-50% faster than IBM's 8514/A. But that's not all! With the specially designed ADI driver, you will see AutoCAD redraw 20 times faster than IBM's 8514/A and other industry-leading boards (as shown below).

WIDE COMPATIBILITY
With the Aurora 1024, you also get industry-wide software compatibility. That's because IBM's new graphic standard, the Adapter Interface (AI) used for the 8514/A, is included with every board. And for AutoCAD users, we also include our specially designed ADI driver—as well as the hottest performing Windows and VENTURA driver available. These interfaces give ready access to a wide range of important non-CAD application programs, such as Lotus 1-2-3®, Wordperfect®, Quattro®, PS/RIO®, PS/TOPAS®, EXCEL®, EnerGraphics™ and Pagemaker™ ... plus hundreds of other titles.

AFFORDABLE PRICE
The Aurora 1024 sets a new standard of value and performance at about half the price of most comparable high-resolution graphic boards. You simply won't find a better price anywhere! $995

ORDER TODAY
CALL TOLL FREE
1 (800) 325-0174

ENERTRONICS
Innovator in Graphic Solutions
COMPUTER DIRECT

WE WON'T BE UNDERSOLD!*

Now, A Complete XT® Compatible Computer For Under $300!!

640K 10MHz TURBO XT COMPUTER

For Only

$499.95 List
$499.95

Don't Pass Up The Wise Buy, Buy Wise Now And SAVE!

*High Tech IBM® XT® Compatible With Front Panel LCD Display, Switchable Turbo Mode, And Security Keylock
*Full 640K RAM, Installed And Tested
*Parallel, Serial, And Game Ports Standard
*CGA, RGB, MGA Card Included
*Clock/Calendar
*150 Watt Power Supply
*101 Key AT®Style Keyboard
*360K Floppy Drive And Controller
*32K ROM
*Completely Assembled, Tested, And Burned In!
*PLUS—Free Quality Word Processor “Ability”

TRIPLE THE VALUE!!!

1. We want you to be the first to take advantage of this opportunity. VIP Computer Inc. has made Computer Direct your source for the best deal in the country!
2. If this computer fails due to workmanship or quality during the first year, we will replace it
3. NO RISK! 30 Day Home Trial!!!

**FREE! DOS
A $69** Value**

**Throw Away Those Keys!!!
1 MB 16 Mhz* 0 Wait Computer**

Here's What You Get...
- 8 Or 12 Mhz Switchable Turbo
- 8086 Microprocessor
- 1 MEG Standard, Expandable To 4 MB
- Compatibl...
BEST SERVICE IN THE USA

PRICE IS NOT ENOUGH!

LOWEST PRICES EVER!

SEAGATE
Hard Drives & Hard Cards

20 MEG Half-Height Drive Kit
List $229.95
Model ST-225
$229.95

40 MEG Half-Height Drive
List $499
Model ST-251
$324.95

40 MEG Super Fast Drive
List $699
Model ST-251
$378.95

80 MEG Hard Drive
List $799
Model ST-251-1
$599.95

20 MEG Hard Card
List $399
Model ST-125
$294.95

30 MEG Hard Card
List $499
Model ST-138BLL
$334.95

180 CPS With NLQ Printer
List $149.95

180 CPS & Head Printer
List $199.95

15" Carriage
List $699.95

100% Hayes Compatible Credit Card Modem Software Included
$29.95 Value!

Special Introductory Offer

ST-225
40 MEG Half-Height Drive
List $449.95
Model ST-125
$319.95

ST-251
40 MEG Super Fast Drive
List $599.95
Model ST-251-1
$449.95

ST-251-1
100% Hayes Compatible 80 MEG Hard Drive
List $699.95
Model ST-251-1
$599.95

ST-138BLL
15" Carriage
List $699.95

ST-138BLL
5 1/4" DSDD Disks
List $19.95

ST-138BLL
5 1/4" High Density Disks
List $45.95

ST-138BLL
5 1/4" DSDD Disks
List $59.95

Magnavox 8762 Color RGB Monitor
List $234.95

Magnavox EGA Monitor
List $299.95

Magnavox EGA Monitor
List $349

1200 Baud Internal Modem

100% Hayes Compatible Modem Software Included
- a $29.95 Value!

$44.95
List $129.95

1200 Baud External Modem
100% Hayes Compatible

$59.95
List $239.95

2400 Baud Internal Modem
Made in the USA!

$89.95
List $129.95

2400 Baud External Modem
100% Hayes Compatible

$99.95
List $239.95

SAVE 1% with The Computer Direct Credit Card

Special Introductory Offer

No Annual Fee For the First Year

CALL TODAY!

FREE CATALOG!!!

VISA
MASTERCARD
COD

Circle 60 on Reader Service Card
High Resolution and Wide Screen for PCs and Apple Mac

FLEXSCAN™

MODEL 9400

Increasing sophistication in the use of personal computers for general business applications, CAD and DTP has led to a growing demand for better resolution and larger display devices. Combining wide compatibility and functionality with the latest ergonomic design, the FLEXSCAN 9400, with a maximum resolution of 1280 dots X 1024 lines, will not only meet these requirements but those of the next generation of advanced business PCs.

Wide compatibility

With a wide Horizontal scan frequency range (30-65kHz), the FLEXSCAN 9400 is compatible with most signal sources, including standard VGA, extended VGA, 8514/A, Ultra Hi-Res Graphics controllers for PCs, as well as the Macintosh II and its Hi-Res Graphics Adapters. With the FLEXSCAN 9400, future compatibility is assured.

Latest Technology

By adopting a DBF (Dynamic Beam Forming) Electron Gun CRT, resolution, convergence and brightness in the screen corners have been improved over a standard CRT. By combining this with Dynamic Focusing Circuitry, the FLEXSCAN 9400 will give a sharp and bright display image over the entire screen.

The 9400 also has 2 input terminals (BNCx5 and D-sub 9 pin) which can be easily selected from a front mounted switch. This convenient feature enables the professional user to have a one-monitor solution even if he runs both Ultra Hi-Res and general business applications.

Ergonomics and Utility

The CRT of the 9400 has a special coating which not only reduces reflection but also the static electricity generated on the surface of the screen.

Specifications

- CRT Triode Pitch: 0.31mm(Dot)
- CRT Size: 20"(18V)90° deflection
- CRT Face Treatment: Dark face, Non-glare screen
- Input Signals: Sync: Separate, TTL, positive/negative, Composite, TTL, positive/negative.
- Video: Separate, RGB, Analog
- 0.6~1.0Vp-p/75ohm positive
- Separate, RGB, Analog, Sync. on Green
- Scan Frequency:
 - H: 30kHz~65kHz (Automatic adjustment)
 - V: 55Hz~90Hz (Automatic adjustment)
- Standard Display Size: 360mm X 270mm
- Recommended Resolution: 1280 dots X 1024 lines
- Video Band Width: 120MHz
- Linearity: ±5% max.
- (for Horizontal scan frequency ranges 30~37/46 ~ 50/83 ~ 65kHz only)
- Dimensions: 496mm(W) X 561mm(D) X 471mm(H)(at tilt 0°)
- Net Weight: 37kg

Specifications are subject to change without notice.

APPLE and Macintosh are registered trademarks of Apple Computers Inc.

FLEXSCAN and NANAIO are registered trademarks of NANAIO USA CORPORATION

Circle 187 on Reader Service Card (DEALERS: 188)
Architectural limitations could have the DOS world up against the wall without compatibility, technology, and design breakthroughs

Gordon A. Campbell

Several issues have to be resolved before personal computers will be able to perform better, faster, or more powerfully. One major concern is that certain barriers may have been reached and that going beyond them may require more than just a leap of faith. Jumping up to the next level of personal computer performance may not happen as quickly or as smoothly as the orders of magnitude of previous improvement took place.

During the past 25 years, chip technology has kept up with developments in associated device hardware and software. But after pushing the limits of personal computers to levels unthought of even a few years ago, the industry may have painted itself into a technological corner. It must now take the time to unravel some tangles that it has created in the areas of compatibility, silicon technology, and design expertise.

In part because of advances made in chip technology, the industry has been able to build higher and higher performance into microcomputers. This process of continual architectural innovation driven by silicon methodology—as opposed to merely cranking up CPU speeds—will dominate the development of the industry-standard personal computer in the 1990s.

Anything You Can Do...
The computer industry evolved through three distinct phases. The first, really started by IBM, was the mainframe computer of the 1960s. The second phase was the minicomputer of the 1970s, launched by companies such as Digital Equipment, Wang Laboratories, and Data General. Today the industry is firmly entrenched in phase three, the era of the personal computer.

Each phase of this evolution was based on a parallel development in semiconductor chip technology. This process is especially true in the IBM PC world, which is by far the fastest-evolving branch of the computer industry.

Throughout the 1980s, the PC-compatible world, including semiconductor suppliers, PC manufacturers, and PC users, has gone through some interesting technology transitions. In most cases, the transitions were driven primarily by the rate of productivity and the innovations present in silicon technology.

The first PC, as defined by IBM, processed approximately 100,000 instructions per second—about one-tenth of a MIPS (1 million instructions per second). In those days (the early 1980s) it cost about $50,000 to put a theoretical 1 MIPS of processing power on your desktop. During the last five years or so, the suppliers of microprocessors, systems
logic, and other PC system semiconductor components have driven the transformation from one-tenth-of-a-MIPS machines to 2- to 4-MIPS machines.

In the course of this transition, the cost of that theoretical 1 MIPS of processing power was driven below $1000. In fact, some 80286-based machines now shipping already approach the $300-per-MIPS point. By 1990, PC-compatible machines may come with a standard 10 MIPS of processing power.

Sometime between 1990 and 1995, 100-MIPS PCs should arrive. This improvement in collective processing power will bring the cost per MIPS down below $50. The dramatic drop from $50,000 to $50 per MIPS illustrates the orders-of-magnitude increase in productivity the industry has achieved (see figure 1). This economy of scale is one reason PCs have reached such a staggering level of sales.

The nose-diving cost of raw computing power is the result of two factors: progress in microprocessor technology and the growing numbers of manufacturers of integrated system logic, graphics, I/O, and communications chip sets.

THE DECLINING COST OF POWER

![Image of a graph showing the declining cost of computing power over time, with key explaining different types of chips used in different generations of microprocessors.](image)

Figure 1: These curves represent processing power (in MHz and chip technology) and a PC timeline. Succeeding generations of faster and more-complex microprocessors have married with ever-higher levels of integration to produce lower computing costs per MIPS.
Without Exception, ProtoFinish Is The Best System On The Market.

- ASCII Based Screen Design Module
- 4th Generation Prototyping Language
- Music Design Module
- Screen Capture Utility
- Programmers’ Power Tools
- Samples & Utilities

Prototypes

Model the look and feel of your program before writing the code.

Quickly create your own program screens in the screen design module. Use "what if" editing features to experiment with layout and color. All screens are saved to disk and may be edited repeatedly. Simulate your program in action, including menu structure, user input, file I/O, windowing, scrolling and more with our easy-to-use 4GL. Incorporate your screens into C, PASCAL, BASIC, Clipper, or Assembler program code.

Demos

Show off your product’s best features.

Capture screens from your application with a memory-resident utility. Edit them in the screen design module and create any additional screens you may need. Use simple 4GL commands for interactive or timed screen display. Add animation to make your demo come alive. Run .BAT, .COM, or .EXE files as subprograms. Distribute your demo using our compact run-time utility, with no additional fees or mandatory copyright screen.

Tutorials

Provide a controlled environment for learning your program.

Capture screens, then modify and supplement them with the screen design module. Use versatile 4GL commands to interact extensively with your user. Build a realistic tutorial with the added benefits of pop-up help windows, prompts, error messages, etc. Distribute your tutorial using our run-time utility, with no additional fees or mandatory copyright screen.

Presentations

Get their attention and get your point across—quickly and easily.

Use fast ASCII-based screen design to express your ideas. Build an exciting “slide show” with easy 4GL commands for special effects such as wipes, dissolves and animation. Add captured graphics. Control display by pressing a key, or time it to synchronize with a recording. Even add music with a music module.

800-777-1437

ProtoFinish

8415 Washington Place NE
Albuquerque, NM 87113
(505) 821-9425
FAX (505) 821-9695

System Requirements: IBM PC, PS/2 or compatible; 256K; DOS 2.0 or higher

Circle 119 on Reader Service Card (DEALERS: 120)

$299.95

Proto

FINISH

PROTOTYPES • DEMOS • TUTORIALS • PRESENTATIONS
The advent of the microprocessor created the PC and revolutionized the industry because it offered end users vast amounts of inexpensive processing power.

Closely related to the importance of the microprocessor is the concept of the chip set. With this innovation, manufacturers were able to shoehorn the same logic functions onto five or fewer very-large-scale-integration (VLSI) chips, compared to the 100-plus small-scale-integration and medium-scale-integration chips that IBM had used to design the original PC.

The coming of the chip set not only lowered raw silicon costs but also provided a way for manufacturers to easily and quickly bring new generations of PCs to market. The same concept was applied to graphics and is now being applied to I/O, mass storage control, and other PC subsystems.

Alphabet Stew
So far, the history of the PC, as expressed in the cost-per-MIPS model outlined earlier, has followed a predictable course: Through sheer manufacturing volume and by offering architectural innovations captured in silicon, silicon suppliers brought down the cost of building a PC.

What technologies are driving the silicon suppliers? The integration power of VLSI techniques rests on process technology. In the early 1980s, the semiconductor industry really just starting to feel comfortable with its ability to integrate significant blocks of logic in a technology called negative-well metal-oxide semiconductor. NMOS was the first of the so-called MOS technologies, which have radically changed the semiconductor industry. MOS technologies differ radically from the previous power-hungry so-called bipolar techniques.

NMOS made it theoretically possible to manufacture thousands of transistors on a single piece of silicon without excessive thermal and power constraints.

When this technology was first put into place, NMOS was the highest-performance, cheapest way to manufacture transistors in an integrated block. However, a related technology called CMOS provided the technology to reach VLSI levels of hundreds of thousands of transistors on a chip and even ultra-large-scale-integration levels of over 1 million transistors on a chip.

During the same time frame in which the industry was moving into NMOS and CMOS process technologies, line-width technologies, which govern the actual physical dimensions of transistors, have moved line widths from around 2 to 4 mils down to 4 to 5 microns and, today, something like 1.5 microns and rapidly going to 1 micron. Beyond CMOS, a newer process technology known as BiCMOS (a hybrid of bipolar and CMOS technologies) promises to deliver both speed and the ability to integrate large numbers of transistors.

The 1-micron CMOS process barrier is a milestone in the semiconductor and PC industries. As they make the transition to 1-micron technologies, the possibility of producing the oft-talked-about single-chip PC becomes a reality.

The 1-micron barrier is a true watershed for putting PCs into silicon technology. The technology is solid and is likely to have a dramatic impact.

The PC industry is now firmly entrenched in the world of CMOS. VLSI circuits are driving integration levels to the ultimate Holy Grail of single-chip systems. PCs with single-chip AT-compatible logic are due to begin shipping any day now.

The PC-compatible world is also just entering the ULSI world, which is usually defined as the ability to manufacture 1-million-plus transistors on a chip. One of the first examples is Intel's 80486 microprocessor with approximately 1.2 million transistors.

From the standpoint of PC-compatible users, one way to view all this rapid technology change is that when manufacturers were saddled with NMOS and line-width technologies of 2 to 5 microns, they could produce only one-tenth-MIPS machines, and the cost of 1 MIPS was very high. Today, as manufacturers are about to cross the 1-micron technology barrier, users have in their sights 10-MIPS processing power below the $500-per-MIPS cost threshold.

When less-than-1-micron process technologies are reached, manufacturers will see even more productivity gains, and the 100-MIPS PC will become a reality.
Now you can eliminate 90% of your batch file problems for $99.95.

The Builder is the first compiler that transforms sluggish batch files into blazingly fast .COM and .EXE files. Not only does it give you turbo language speed, it extends the DOS batch language with over 50 new commands and keywords.

For example, menu commands like DropDown, PopUp, and LookAndFeel are built into the language, so you can quickly produce an unlimited number of programs, and distribute as many copies as you wish.

The Builder also includes a powerful editor to provide an integrated development environment.

And it's the perfect tool for creating installation scripts. The Builder has DOS dexterity that BASIC and C can't match.

And its small compiled code size won't hog memory or disk space.

What's more, by compiling a program with The Builder before you distribute it, you'll have bulletproof security.

Don't keep bitching about batch. Order The Builder today.

Call 1-800-873-9993 for complete details. Visa and Mastercard are welcome. Shipping and handling are free.

What batch files should have been in the first place.

Hyperkinetix, inc. 666 Baker Street, Suite 405, Costa Mesa, California 92626 (800) 873-9993 (714) 668-9234 FAX: (714) 979-2813

Circle 135 on Reader Service Card (DEALERS: 136)
The polar bear is the great white hunter of the Arctic Circle. Migrating long distances over the vast frozen desert, it tracks large prey such as seals and sea lions. In a sprint, it can reach speeds of up to 25 mph. When it raids the ice box, it doesn't waste energy on small fish.

The readers of BYTE magazine are just as selective. For they, too, are relentless hunters with big appetites. They are advanced personal computing experts whose hunger for new product information is insatiable. They seek technical analyses, extensive reviews, a complete rundown of product comparisons. Which is what they get in every BYTE. Some publications may promise you more paid readers than BYTE's 450,000. But none so voracious.
What About Memory?
So far I have been discussing the logic side of the equation: microprocessors, systems logic, graphics, and so forth. The memory side of the equation is equally important, especially today with the advent of enormous, memory-hungry application programs and operating systems.

The early PCs were shipped with 4K-byte and then 16K-byte DRAM. Today, after the transition through the 64K-byte DRAM generation, which was probably the briefest memory-density phase, the 256K-byte DRAM is the workhorse of the industry. And, although artificially high prices slowed down its acceptance somewhat, the 1-megabit DRAM is rapidly phasing in.

It did not take long for the 640K-byte memory barrier inherent in MS-DOS to become a headache; with PCs now routinely shipping with 8 megabytes or more of memory, the problem is compounded.

This has prompted many companies to develop both hardware and software solutions to enable users to transcend the 640K-byte barrier and be able to address, even with the lower end of the processor spectrum, large memory sizes in PCs.

Future machines will be designed to accept many megabytes of memory largely because today's application programs are starting to demand more memory space for data and for the programs themselves.

One result of faster processors coupled with larger addressable memory space is that users can handle larger computing problems in more reasonable time frames. This leads to a need to improve the I/O to try to keep pace with processing power and available memory.

The I/O under the original definition of the PC being about one-tenth that of a 1-MIPS machine was fairly adequate. Then the AT came out, and it was about a 1-MIPS machine and, again, I/O wasn't really an issue.

But now that manufacturers have taken the original 6-MHz AT and boosted it to the 80286-powered machines that today run at up to 25 MHz, they have boosted theoretical throughput by an order of magnitude. The implication of this is that when you get that much additional processing power, more memory support and better I/O are required. Today, many of the old AT bus and XT bus structures effectively hobble the processing power.

With respect to I/O-bound performance, the most significant change is the transition at IBM from the old industry-standard architectures of the XT and the AT to the new Micro Channel definition. With Micro Channel, IBM provided much better I/O capabilities and a bus definition that had the flexibility to do things that the old bus structure could not, such as bus mastering.

The adoption of the Micro Channel was not only an attempt to address I/O problems, but also a major transition on IBM's part. In essence, the introduction of the Micro Channel represents IBM's recognition that the adoption of mainframe computer architectures was required to keep up in the PC performance race.

Today throughout the industry, sophisticated mainframe techniques are migrating down to PCs. Mainframe techniques, such as cache memory subsystems, have now become a common item on PCs. Other mainframe techniques will also be applied to the PC, especially in the area of I/O processing.

The challenge for all the PC silicon
Are you planning to add a FAX machine to your office? Then you already know the advantages... increased efficiency, better productivity, lightning-fast communications with cross-town or cross-country customers and suppliers.

Now, consider the benefits of buying your unit from CompFax:
- the most competitive prices
- a full line of FAX machines to fit individual needs
- expert technical service and support
- fast delivery
- flexible credit terms
- service contracts
- price protection warranty

CompFax puts it all at your fingertips!

Sharp FO-220
Incorporates many networking feature of higher-priced models, such as confidential transmission and relay broadcast request.
$799.99/List: $1595.00
Blow out price!

Sharp FO-300
Incorporates high end features like rapid transmission, confidential reception, increased half-tone transmission abilities.
$1049.00/
List $1995.00

Sharp FO-330
Features an automatic cutter, 10-page automatic feeder, timer transmission and polling, halftone and auto-contrast controls.
$1149.00/
List $1795.00

Customer Support Line and Orders
Dealer inquiries welcome
1-800-243-7775
Call Today!

Illinois
312-394-3334 FAX 312-394-5235
Circle 53 on Reader Service Card (DEALERS: 54)
INVENTING THE PC’S FUTURE

suppliers is to adopt mainframe techniques and recast them into fast and inexpensive silicon. For example, cache controllers must be integrated into the other elements of the PC system logic. At Chips & Technologies, we have integrated both the cache controller and the DRAM controller onto the same chip as the CPU controller. Other companies (e.g., Intel) have taken different approaches.

Cache architectures are clear indicators of the migration of the mainframe to the desktop. The significance of the cache is that, as we push PC architectures up into the 16-, 20-, and 25-MHz performance ranges, there is a need for more efficient memory management.

The key to this process is to deliver the benefits of advanced computer architecture and still drive down costs. In contemplating the role of silicon in the mainframe approach to PC design, it is important to realize that, unlike the mainframe, power and size constraints will require even greater emphasis on sophisticated CMOS process technologies.

Most mainframes today derive much of their speed and throughput from the widespread use of emitter-coupled-logic circuits. ECL is blazingly fast but imposes a heavy penalty in terms of power requirements and thermal dissipation.

The PC’s success is due to the fact that manufacturers have managed to push performance levels while also incorporating direct cost improvements. Most cost contributions have come from the ability to do higher levels of integration and performance in fewer CMOS chips.

Semiconductor technologies offer a wide and almost unlimited range of performance. But in the PC world, it is a requirement to adopt the technology that will continue to drive the relative dollars-per-MIPS curve downward.

Process technology and semiconductor chip design are the basis of the PC industry. And there is a fair degree of commonality across product lines ranging from powerful server-type machines to emerging notebook computers.

For example, the rush in the laptop arena is to produce thinner and thinner machines. To support that, you will see laptops go in a couple of different directions. One will be an improvement in terms of thinness and weight; another will be support of VGA-quality graphics and 16 shades of gray and black-and-white and, ultimately, support of 16-color LCD with VGA resolution.

This class of machine requires extremely high levels of integration: single-chip logic systems, single-chip graphics controllers, single-chip power supply controllers, and so on. Laptop manufacturers are relentless in their pursuit of integration, and the semiconductor industry is responding in kind.

Then there will appear, on the very low end, techniques such as those combining several ICs in one package. This advanced packaging technology is now in demand to support what is being called the “pocket computer.” In this case, single-chip integration is insufficient; advanced packaging techniques are required.

Probably the two most significant trends in the PC world are the drive for higher levels of integration and the sudden rise of alternative microprocessors. The 8086 architecture has matured through the 80286, the 80386, and 80386SX, and now the 80486. Today the 80286 continues to be the workhorse of the single-task, single-user market and will most likely be so for the foreseeable future. The 80286 market will probably not grow a lot but will continue to be a high-volume segment of the overall market. At the slightly higher end, and particularly in machines where people want better communications capabilities, networking, and coupling capabilities, I expect to see the 80386SX as the highest-volume microprocessor, followed closely by the 80386, and that followed closely by the 80486.

Currently, several RISC-based machines are making a play to become a factor in the PC world. Basically, these microprocessor architectures are coming out of the workstation world with the ability either to do software emulation of MS-DOS packages or to actually include an Intel-architecture microprocessor in the computer.

Although interesting, I don’t think that these software-emulation capabilities will ever be successful as a commodity product. There are too many compatibility problems in that approach, and speed will remain an issue.

However, I do believe that some hybrid machines will appear that can support both Unix and DOS. It is likely this approach will have some common hardware, but largely separate processors.

In the near to medium future, I think that a number of different developments will ultimately lead to a dramatic change in PC architectures. One clear trend is that just by pushing the clock speed in some current microprocessors, 8-MIPS machines based on 33-MHz 80386 microprocessors and 10-MIPS machines based on 40-MHz 80386s become feasible. Now that the 80486 has introduced a
Finally. An on-line service that doesn’t nickel and dime you.

It’s BIX’s flat-fee service. BIX is short for BYTE Information Exchange. The on-line information service that’s yours for an unheard-of flat fee of just $39 for three months*—an amount you could easily waste in just two to four hours with an hourly rate, on-line service. (Not to mention the fact that you’d be nickel-and-dimed for its monthly minimums.)

And here’s another distinction: BIX is strictly for microcomputer pros; it contains no “fluff.” As a subscriber, here’s what you’ve got coming to you:

- All the information and ideas exchanged in more than 150 microcomputer-related conferences—a give-and-take in which you can participate.
- Microbytes Daily—up-to-the-minute industry news and new product information.
- Plus support from hardware vendors and software publishers, access to extensive software libraries, and the use of our electronic mail service—which allows binary attachments.

Subscribe to BIX right now—using your computer and modem. Set your telecommunications program for full duplex, 8 bits, no parity, 1 stop bit, or 7 bits, even parity, 1 stop bit. Now dial BIX at 617-861-9767, hit the return key, and respond as follows:

Prompt: You Enter
login (enter “bix”): bix
Name? bix flatfee

You can charge your BIX subscription to major credit cards, or have it billed to your company. You may also purchase unlimited off-peak access via Tymnet for just $15 per month, or $2 per off-peak hour, in the continental US**. For

For more information, including your local Tymnet access number, call 800-227-2983 (in New Hampshire and outside the United States, call 603-924-7681).

*Based on a $156 annual fee, billed quarterly—a subscription you may cancel at any time without future charges. You may also subscribe for a 3-month trial at just $39.

**For international rates, please consult your local PTT. Our international packet network address is 310690157880.

BIX
One Phoenix Mill Lane
Peterborough, NH 03458
800-227-2983. In NH 603-924-7681.
Circle 450 on Reader Service Card
different microprocessor architecture that allows almost a doubling of performance, I expect to see 80486 machines that will support between 15 and 20 MIPS in the main processor.

However, one thing that will happen is that the use of accelerators, floating-point processors, graphics processors, and communications processors will increase. It should come as no surprise that the coupling of all that silicon will result in a machine that has 50 to 100 MIPS of fully compatible processing power.

That is what I would expect to see happen on the PC side. On the workstation side, I think we're going to see RISC architectures that are inherently very fast, powerful processors pushing up easily into the 100-MIPS range. The interesting question to ask is, when will we hit the wall in terms of pushing clock speeds?

In the case of the PC, somewhere in the 40-MHz range is probably getting close to the top end of the spectrum.

This scenario is likely to develop for two reasons. The first problem concerns the silicon technology and the sheer complexity of designing and manufacturing the part. Submicron process technologies are not trivial undertakings, and the design methodology of advanced semiconductor devices is becoming more complex.

The second problem is that the industry is trying to build these super-PCs on plain old cheap PC boards using as few layers as possible. In the case of a mainframe product that runs at 60 or 70 MIPS, much of the design expertise is devoted to issues such as special kinds of terminations and special techniques used to reduce ringing, radio frequency generation, and other technical problems that are related to extremely high-frequency electronics.

The upshot of this approach is that PC board technology and current silicon technology may limit the speed of PCs to less than 50 MHz. A different architecture is needed to further increase the productivity of the PC. A possible solution is the approach being taken by some current manufacturers of workstation architectures. These RISC-based machines offer more MIPS than the Intel architecture can provide.

PCs with multiple processors could appear as early as 1990. A true multiprocessor architecture will dictate some dramatic changes, especially in operating systems. In the area of graphics, for instance, there will be development and integration into the PC of not just graphics processors, but accelerators and graphics management chips as well. These chips will be dedicated to supporting performance and productivity in those specific areas.

A major caveat in this scenario is compatibility, which is pretty much taken for granted today. The likely evolution of graphics accelerators and other hardware accelerators will once more raise compatibility as an issue.

Compatibility was, and continues to be, the foremost issue in the PC business; users can't reap the benefits of higher performance or lower cost if they don't have compatibility. As performance is enhanced, compatibility becomes an architectural issue. So far, the industry has successfully adapted the architecture to accommodate higher performance.

Gordon A. Campbell is president and CEO of Chips & Technologies in San Jose, California, a company he founded in 1984. He can be contacted on BIX c/o "editors."
THE BUYER'S MART—A Directory of Products and Services

THE BUYER'S MART is a monthly advertising section which enables readers to easily locate suppliers by product category. As a unique feature, each BUYER'S MART ad includes a Reader Service number to assist interested readers in requesting information from participating advertisers.

RATES: 1x—$550 5x—$2500 6x—$475 12x—$425
Prepayment must accompany each insertion. VISA/MC Accepted.

AD FORMAT: Each ad will be designed and typeset by BYTE. Advertisers must furnish typewritten copy. Ads can include headline (25 characters maximum), descriptive text (250 characters recommended, but up to 350 characters can be accommodated), plus company name, address and telephone number. Do not send logos or camera-ready artwork.

DEADLINE: Ad copy is due approximately 2 months prior to issue date. For example: November issue closes on September 9. Send your copy and payment to THE BUYER'S MART, BYTE Magazine, 1 Phoenix Mill Lane, Peterborough, NH 03458. For more information call Brian Higgins at 603-924-3754.

Inquiry 579.

Inquiry 578.

Inquiry 579.

Inquiry 580.
THE BUYER'S MART

BBS/PUBLIC DOMAIN

MedCom BBS
Use your modem to call
800/445-4888 (800/445-4227)
61 lines. 3/2/92
Group & private chat. Many games, including the new multi-
player, Twenty-Four, full-text search, "Flash Attack" from
Galacticom! Cheats/Chats/Games/E-Mail. 1000s of
chat, message boards, online & entertainment. Free
files & downloads.
8371 E Santa Ana Cyn Rd 8301, Anaheim, CA 92807
Voice: (714) 899-6998

C-UTILITIES

SCREENLIB® IS HERE!
BewareLIB® is a quality screen management library
written for applications programmers who want a
consistent, high-quality user interface with a minimum
of effort. Comes with complete source code in portable
C at no extra charge! Our special introductory price of
$395 will expire soon, so don't delay. For fastest ser-
vice, call with VAX/AMIGA.
Business Computer Services, Inc.
1982 South Southport Ave, Los Angeles CA 90020
Telephone: (213) 836-5026 Fax: (213) 836-4723

CAD/CAM

P-C-B ARTWORK MADE EASY!
Create and Revise Printed-Circuit-Artwork
on your IBM or Compubb.
* Hardware: Artwork Library
* Printer and Plotter Library
* Support Ideas
* Auto-Router available
* VICON Menu
Requirements: IBM or Compatible PC, 288K RAM, DOS
3.0 or later, PCBboards: $99.00 DEMO: $15.00
PCBoards
210 16th Ave South, Birmingham, AL 35205
(205) 833-1125

CD-ROM

CD-ROM Drives & Titles
Largest selection for PC & Mac.
Microsoft Program & Drive $995
Drive from IBM. Nudist of titles from $35.
MOST OFTEN RECOMMENDED. Call or write for free 100-page catalog.
Get it all from "The Bureau!"
Bureau of Electronic Publishing
121 Norwood Ave., Upper Montclair, NJ 07043
(201) 746-3231

CD-ROM Publishing Services
Complete CD-ROM publishing services including custom soft-
ware interface. Reasonable rates, fast turnaround. Call for
titles.
Hoptons Technology
CD-ROM Publisher
421 Hazel Lane
Huntingdon Valley, PA 19006-3217
(215) 631-9276 CBA: 74978514

CD WORM OUTLET
Call BBS: 800/445-4888 (800/445-4227)
Worm Selection for PC's & MAC
Microsoft - Commodore
LIBRARY & DIV. $650
SET PACK & DIV. $100
PC DIV. $200
CD-ROM DIV. $500
4974F, 4989F, 8042F, 8048F
Hy. Parts & Labor Free
FREE in a Dis—See our Synopsis in 10 min.
Promotions available with CD-ROM DIVS
MICROVision/CD: White Supply List
Jason Enterprises
218 Fox Rd, Buffalo, NY 14228, CALL: 716-673-8700

CD-ROM DEVELOPER'S LAB
Multimedia production resource for Mac & PC developers &
managers. Project design, management, ideas, programming,
previews, and mastering techniques & space from SMG's leading
technologies. Donors of Disk-Shell tools for imaging, audio,
amination, Mac, real applications using multimedia authoring tools.
TOMAsx & Mac, or Mac WW, Transportable $495. Visa or MasterCard.
Software Mart, Inc.
4131 Sipwood Springs Road 13-A, Austin, TX 78769
512-346-7877

CD-ROM DEVELOPER'S LAB
Inquiry 591.

SOFTWARE INSURANCE
INSURE YOUR COMPUTER! SAFENAME provides full
replacement of hardware, media and purchased software. As little as $395
a year protects comprehensive coverage. Blotted coverage; no list of equipment
needed. One call does it all. 800-999-0767 (Sat. 9 to 5)
TOLL FREE 1-800-999-9959
SAFEBLUE, The Insurance Agency Inc.

COMPUTER INSURANCE

YOUR Sales MESSAGE
about the special computer product or service that you provide belongs In print.
THE BUYER'S MART can help you reach computer professionals and
produce valuable inquiries for you.
Call Brian Higgins for more information
603-924-3754

COMPUTERS & PRINTERS

LAPTOPS * APPLE * IBM
COMPAQ SLT
ZENITH
SHARP
TOSHIBA
NEC
POLLIES
HARD DISK
SCHNEIDER
EPSON
FAX MACHINES

CD-ROM DEVELOPER'S LAB
Inquiry 592.

CROSS ASSEMBLERS

CROSS ASSEMBLERS/SIMULATORS
Brand new full-function simulator for the IBM control, supporting ALL
Todos 68K models plus the 80, 68K 40, and 68020 features, with full
documentation. 1st $950. Our $599 simulator for the 80486, 286, and
886 set to $50, with those for the 68020 to $29 each.
Our line of cross assemblers for all above target CPUs are also full PC con-
sidered and are sells for less than $50. We offer discounts to simulators plus maintance packages.
Lear Con Company
2440 Kipling St. Ste. 200, Lakewood, CO 80215
303-232-2228

CROSS ASSEMBLERS

CD-ROM DEVELOPER'S LAB
Inquiry 593.

DATA/DISK CONVERSION

DISK CONVERSIONS
Media transfer to or from: IBM, Amstrad, DEC, Wang, Lanier, CPT, Mocen, NBL, CT, Exxon, WRDP/LEX, also
WP, WS, MS/RPR'D, DWA, MM, Gemini, DEC
DX, MAB 11, Xenos/Writer, ASCII.
FREE TEST CONVERSION
CONVERSION SPECIALISTS
531 Main St., Ste. 635, El Segundo, CA 90245
(213) 345-0551
(213) 322-0319

DISK INTERCHANGE
SERVICE COMPANY
DISC specializes in transferring files between incompatible disk formats, and between disk and tape drives.
* Dedicated Word Processors
* Min. Mocen, NBL, CT, Exxon
* 3Track Tape (800, 1600 and 2880 BPS)
* Xerox, CPIM, UNIX, DOS, PRODOS, TSS/E, RT, 2
2 Park Drive = Westford, MA 01886
(508) 692-0050

DISK INTERFACE
SERVICE COMPANY

BUY YOUR OWN
CONVERSION SYSTEM!
With nearly a decade of experience in data conversion,
you can work with the industry leader in disk tape
cardiope and diskette conversion systems. Enjoy
the convenience of your own conversion system. Call
today to discuss your application.
Flagstaff Engineering
1120 Raben Lane, Flagstaff, AZ 86001
MasterCard - Visa - American Express Accepted.

10X FASTER EASIER TO USE
IBM PC TO TO HP FILE COPY
Update version uses windows. Call for free demo! IBM PC to HP File Copy allows IBM PCs, PS/2, compatibles
to interchange files with Hewlett-Packard Series 70, 80,
200, 300, 1000, 1000As.
Oswego Software
312/554-3567
Box 310
Oswego, IL 60543
FAX 312/554-3573

CONVERSION SERVICES
Convert any 8-track magnetic tape to or from over
2000 formats including 31/2, 51/4, 8 disk formats &
word processors & Disk-to-disk conversions also
available. Call for more info. Introducing OCR Scan-
ning Service.
Pivar Computers Services, Inc.
165 Arlington Hgts. Rd., Dept. 9B
Buffalo Grove, IL 60089
(800) 579-3341

DATABASE MGMT. SYSTEMS

IBM 5 YEARS BEHIND!
The reason IBM offered a PC is IBM System
RECORD-TRANS
Features. This line and only one on the market with multiple
locations, same State Storage. Only $520 per copy for significant on line savings. Requires
MS-DOS 30 or higher, 512K RAM and Hayes compatible
modem.
Database & Datasoft Solutions
3811 E. Harbor Blvd., Suite 220, Santa Ana, CA 92704
(714) 434-5990

DATABASE MGMT. SYSTEMS

BYE BYE IBM Special Edition • Fall 1989 243

Inquiry 594.

Inquiry 595.

Inquiry 600.

Inquiry 599.

Inquiry 601.
DISASSEMBLERS

<table>
<thead>
<tr>
<th>Inquiry</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>602.</td>
<td>Instant Replay III Build Demos, Tutorials, Prototypes, Presentations, Music, Timed Keyboard Magic Systems. Includes Screen Saver, KeyTest/Time Editor, Program Memory, and animated Hard Disk. Great way to learn the HEI. Not copy protected. No royalties. 60-day satisfaction guarantee. IBM and Comp. $4.95 US/CAN. C.O.D. Demo Diskette $5.50.</td>
</tr>
<tr>
<td>603.</td>
<td>Nostadamus, Inc. PO Box 950 Salt Lake City, Utah 84109 (801) 272-0671</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inquiry</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>604.</td>
<td>80x86 .EXE/COM to .ASM Automates renaming, edits, and more. Permits a minimum amount of IBM/XEN instruction. .ASM.files * Use symbolic names and IBM/XEN commands. * Protected for part of a work. * IBM/XEN Editor - 16-line display * IBM/XEN Editor - 16-line display</td>
</tr>
</tbody>
</table>

FAMILY GENEALOGY

<table>
<thead>
<tr>
<th>Inquiry</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>606.</td>
<td>See "By the Way" May issue pg. 76 "Disassembler 500 mb" at 10.0000/mb. (\text{in any file, FCMRM}) memory up to 8000 instruction set. .EXE/.ASM files: * Use IBM/XEN instructions and assembler statements * .ASM. files * 20 algorithms and seven passes * Only 8KB. Plus IBM/XEN windowing * To order call (901) 484-4956 or (901) 485-2308</td>
</tr>
<tr>
<td>607.</td>
<td>RSJWANSTEK INC. 17R Boulouise Rd., Newington, CT 06111 * best on the market: * MOVISA accepted</td>
</tr>
</tbody>
</table>

GRAPHICS

<table>
<thead>
<tr>
<th>Inquiry</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>608.</td>
<td>35mm SLIDES — in 24 Hours We transform your PC/3Graphics into fully colored high-resolution, 35mm slides and strips within 24 hours. Harvard, Point, Lotus, Freelance, and others supported. Free accepted by mail. Free Federal Express on all orders of 50+ slides. Only .64 per slide. Call for literature or circle reader service number shown below. Accent Presentations, Inc. 887 Neepawa Dr., nova, Va. 22503 (800) 222-2292</td>
</tr>
</tbody>
</table>

HARDWARE

<table>
<thead>
<tr>
<th>Inquiry</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>609.</td>
<td>Your sales message about the special computer product or service that you provide belongs in print. The Buyer's Mart can help you reach computer professionals and produce valuable inquiries for your company. Call Brian Higgins for more information (800) 224-3754</td>
</tr>
</tbody>
</table>

EDUCATIONAL

<table>
<thead>
<tr>
<th>Inquiry</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>610.</td>
<td>AUTOBIOGRAPHY WRITER SYSTEM Introducing powerful personal software CREATE YOUR AUTOBIOGRAPHY * Recall the key events in your life to create a story. * ~ 200 story templates * Print as you want: * IBM/XEN editor * Auto correct * 2000 word limit * Features support writing * CALL OR WRITE FOR MORE DETAILS * CALL: 805-681-8781 * KIDD & KIDD INC. PO Box 1264 Oak View, CA 93022 (805) 681-8781</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inquiry</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>611.</td>
<td>DISK DRIVE REPAIR Service for IBM and compatible drives. * We will repair your hard drive at a fraction of the cost of replacing it. FAST. * Turnaround!! * CALL FOR DETAILS. H & W micro, Inc. 826-C FOREST PARKWAY (404) 370-5113</td>
</tr>
</tbody>
</table>
The Buyer's Mart

HARDWARE/ADD-ONS

The World's Finest Highest Density Modulator
- 16 Meg on the smallest surface
- Organization: 2,048x32x100
- Package: 300 x 300 x 700
- Technology: CMOS hybrid 18, 18M24T1501-1
- Compatibility: With or without DMA

For more information please call
TermoTrol Corp.,
9999 Century Park West, Los Angeles, CA 90067
Tel: 213-384-3324
Inquiry 620.

MAILING LIST PROGRAMS

POSTAL BARCODE PRINTING
For the IBM Laser Printer.
Use this product to print 100,000 enve-lopes, labels, and packages. The IBM Laser Printer is the most reliable printer in the world. Only $89.95. VISA accepted.

T-Lan Systems
(207) 387-5851
Inquiry 626.

MEMORY BOARDS

MEMORY EXPANSION
Intel Above Boards w/1MH 4 MH PC/ATs
IBM, Compaq, Zenith etc.
1MB $298.00
2MB $498.00
16 MB $1498.00
Prices subject to change

COUNTERTRADE
(303) 530-5433
Inquiry 627.

LAPTOP COMPUTERS

The $25 Network
Try the first truly low-cost LAN
- Connect 2 or 3 PCs, 72b, 40b
- Uses serial port and wakeup
- Runs at 1MB baud
- Same number of free LAN resources: totally transparent
- Share any device, any file, any time
- Instant access to file system
- Switch between Windows and LAN
- Socrates, We make believers!

Information Modes
PO Box 25017, Pittsburgh, PA 15223
412-957-3338
Inquiry 822.

MEMORY PRODUCTS

LOW LOW PRICES

R & R Electronics
1-800-736-5844
Inquiry 629.

MISCELLANEOUS

Sollicit Your Congress
You have the power to change events. Our company can help you reach your legislative representatives. By phone, mail, or fax.

T-Lan Systems
(207) 387-5851
Inquiry 630.

MOTHER BOARDS

YOUR SALES MESSAGE
about the special computer product or service that you're interested in printing.

Call Brian Higgins for more information
603-924-3754
Inquiry 631.

NETWORKING

NETWORK BUSINESS SYSTEMS
Keycard Eliminator
$59
D & B Eliminator
$59
ELS Utilities
$59
Nettrack (lose password?)
$59
Gesttek BIOS (8088)
$59
BIOS Tool (patch drive title)
$59

NETWORK BUSINESS SYSTEMS
1215 Woodlawn Drive, Suite 154, Houston, TX 77027
(713) 782-4457
Inquiry 632.

NEURAL NETWORKS

“STATE OF THE ART

California Scientific Software
160 E. Vermont Ave, Santa Monica, CA 90404
(213) 655-1094
IBM PC XT, AT, PS/2

Inquiry 633.

PROGRAMMER'S TOOLS

LAN Application Development

Apache Software Technology
PO Box 387,Dept. N, Los Gatos, CA 95031
(408) 379-1111 ext. N1

Inquiry 634.

HYPERINTERFACE™

Menu Creator™ — A program generator for menu-driven user interface. Excellent for complex menu systems.

Avenpro Corp.
PO Box 998, Pacific Palisades, CA 90212
(213) 454-3888

Inquiry 635.

Support for Bitvive

The "Horton Utilities" for Bitvive users.

Information Architects, Inc.
PO Box 414, East Lansing, MI 48823

Inquiry 636.

BIOS BLUES?

The Award BIOS will update your PC/XT, PC/AT, or IBM to support:
- Enhanced Keyboards
- 1.44MB 3.5" Floppies
- Large Hard Drives
- IBM 3837-R400 or (412) 782-0384

Inquiry 637.
Inquiry 643.

PROGRAMMER’S TOOLS

TURBO PLUS $149.95

Turbo PLUS is a complete programming environment for use with Turbo Pascal 5.0 & 6.x. It includes Screen Panes, Code Generator, IDE Views, Dynamic Menu, Programming Language Libraries, VIP Support, and Sample Programs Included. All runtime work in both text and graphic modes is saved in your disk, backed up with Turbo’s Project Backup feature.

Nostradamus Inc.

PO Box 3525, Salt Lake City, UT 84103-3525

(801) 272-9677

Inquiry 638.

FREE BUYER’S GUIDE

Programmer’s Connection is an independent dealer representing more than 450 manufacturers with over 1000 software products for IBM personal computers and compatibles. We have serviced the professional programmer since 1984 by offering sound advice and low prices. Call or write today to receive your FREE comprehensive Buyer’s Guide.

Programmer’s Connection

US 800-336-1166

Canada 800-222-1166

North Central: 1-412/464-2516

Inquiry 639.

INSTANT TEXT SCREENS

- Assembly language programming for manuscript screens is tedious, time consuming work—RIGHT!
- Screen Assembler lets you design screens interactively, then generates ANSI source code callable from your microcomputer or ASCII program.
- Only $45.00—Your time is worth it

Soft Spoken Enterprises

1981 Northrop Street, Northridge, CA 91324

Inquiry 640.

DATABASE MANAGEMENT TOOLS

- CALL DBMS Creative File Manager with keyword searching.
- FREE DBMS/CL Complete File Manager with keyword searching.

SOFTWARE BLACKSMITHS INC.

6044 St. Hee Way, Mississauga, ONT Canada L9N 4M1

(416) 858-4468

Inquiry 641.

NETWORK CONTROL LIBRARIES

NETBOS ROUTINES allows access to low-level network functions. Name, session & datagram routines. Visit us at $999.

NETWORK MASTER provides access to Network internal functions. Complete control of your network from your terminal programs. $299.

Starlight Software

PO Box 1060, Wheaton, IL 60189

(312) 394-6622

Inquiry 842.

OBJECTIVE-C 4.0 68/12

Objective-C Compiler, Object-Oriented Technology on 68000 & 68010, 2MB RAM, 20KB NO, OS 2.3.1 & OS 3.1

Includes — Objective-C Compiler, Runtime Library, I/O interface, GNU C compiler, and Source Code Archive Check

THE STEPSTONE CORPORATION

76 Glen Road, Sandy Hook, CT 06482

(203) 246-1779

Inquiry 643.

气质直 TOOLS

THE BUYER’S MART

- Complete MenuDriven
- Complete Data/Software Columns
- No Source Code Changes
- Multiple Layers
- No Damaged Media
- Full Hand Disks Support
- Unlimited Formatting
- FREE Demo Disk

STOPCOPY $326

STOPCOPY PLUS $439

IBM COMPUTER SYSTEMS

(800) 871-1084

Inquiry 650.

PUBLIC DOMAIN

$1.00 SOFTWARE FOR IBM PC

Hundreeds to choose from, word processors, databases, spreadsheets, games, lottos, communications, business, music, DBMS, art, education, language and useful utilities for making your computer easier to learn. Most programs have documentation on the disk.

Free 125-page catalog.

BEST BITS & BYTES

(800) 222-1166

Inquiry 645.

FREE CATALOG $1.50 per DISK Sale

20 TOP IBM PC/DOS DISKS

(800) ONLY $20 + $3 S&H

QubeCalc, EDRAW, AutoMenu, Math Tutor, PC-DOS Help, Bauer’s Dictionary, E-Z-Form, PSY, Pac-Disk, PC-Stick, KidGames, Best Games, Home Inv., PC-Outfit, Form Letters, ImagePrint, SidedWrt, Prompt, Best Utilities.

BRIGHT FUTURE INCORPORATED

PO Box 103, East Weston, CT 06036

FREE CATALOG ($1.50 per disk)

Inquiry 645.

FREE CATALOG $1 IBM SOFTWARE

For your free 32-page Master Edition catalog featuring the best of IBM Shareware from just $1 each, call or write today!

1-800-336-2118

SOFSOURCE

Box 828, East Longmeadow, MA 01028

Inquiry 848.

MOVEABLE HARD DISKS

When all else fails, or to not a Portland Personal Data File. The only removable hard disk that is truly rugged enough to be portable. Long-term reliability is available. Available in 250mb.

If you don’t drop it, it’s repairable. Will repair upon order, with return of disk, reasonable price $395. Call now with VISAMAC

THE HARDWARE COMPANY, INC.

970 South Robinson Blvd., Suite 206, Los Angeles, CA 90026

(213) 189-9828 Fax: (213) 190-4772

Inquiry 849.

SECURITY

THE ULTIMATE COPY PROTECTION

- Passwords on master drives
- Cannot be copied by any device incl. Option Board
- Poly hard drive menuHQ
- Normal back-up of protected programs
- LAN support
- Creates safe demo version of your software

Standard Version $695, Automatic Version $945

DANCOTEC Computer

US 800-522-286 (In CA: 800-540-4924)

Inquiry 651.

Codastore Hardware Key

For software developers and MIS manager. Easy to install software protection against unauthorized use of off-the-shelf solution programs. Please, "SHELL" sound software without requiring access to source code. Copylock creates a copy and uses the key to identify it. Copylock also available, complete line of IBM software and disk security and encryption products. Call/write to Info MICHAMIC

120 Comstock Industrial Park, Kalamazoo, MI 49001

TEL: (616) 384-6642 FAX: (616) 384-6642

Elleshim Inc.

322 W运势 436, Suite B10-30, Allentown, PA 18107

TEL: (215) 966-1957 FAX: (215) 774-8103

Inquiry 652.

COPY PROTECTION

- The world's leading software manufacturers depend on Softguard copy protection systems. Your FREE BROCHURE introduces you to SuperDOS™—invaluable copy protection for IBM-PC (and compatibles) and Macintosh
- Hard disk supervisor to change code
- Customized versions
- LAN support

Turn B-Kops, printers and COM port devices

IBM RT at $995, M-series at $999

SUPERGUARD SYSTEMS, INC.

1205 N. 7TH ST. Suite 333, Santa Barbara, CA 93101

FAX (805) 963-1405

Inquiry 653.

HANDS OFF THE BOARD

STOP Copying Book — Requires password to book PC

Present Form Format — Expand text in virus

Present DOS FORMAT/DISK and low-level formats

Set hard disk read only & start with CRONOFF

Tom Boppa, printers and COM port devices

IBM RT at $995, M-series at $999

SYSTEMS CONSULTING INC.

PO Box 11328, Pittsburgh, PA 15238

(412) 969-1024

Inquiry 654.

SOFTWARE/ACCOUNTING

DBASE BUSINESS TOOLS

- GENERAL LEDGER
- ORDER ENTRY
- ACCOUNTS RECEIVABLE
- JOB ESTIMATING
- BILL OF MATERIALS
- PAYROLL

DBASE II BUSINESS

Carsed Card-Check-COD

GTAH SYSTEMS

4576 S Santa Monica Ave.
San Diego, CA 92107

(619) 223-3344

Inquiry 655.
SOFTWARE/BUSINESS

DATA ENTRY

POWERSFULLY SIMPLE

Since features, however, does not influence with two passes of the DFS*, PT, AT, and/or compatible. Designed for the DFS*, PT, AT, or compatible....

FULL VERSION AVAILABLE

Computer Kayes
Tel: 206-776-0443
Fax: 206-776-7210
Woodway, WA 98060 USA: 800-336-0203

SOFTWARE/DEVELOPMENT

Moby Words™

Moby Words™ has been ported with special attention for use in the word

554

Scrip Notary

554

(Includes 50,000 word lists + prices)

SOFTWARE/ENGINEERING

SIMULATION WITH GPPS/PC®

GPPS/PC® is an MS-DOS compatible version of the popular mainframe simulation language GPPS. Graphical, interactive, and an extremely intuitive user interface allows a totally new view of your models. If you are contemplating the creation or modification of a complete system you need GPPS/PC® to help you predict its behavior. Call now.

MINUTEMAN SOFTWARE,

P.O. Box 7176, Salem, Massachusetts, U.S.A.

SOFTWARE/ENGINEERING

FREE ENGINEERING MAGAZINE

Personal Engineering is a monthly magazine sent free of charge (USA only) to scientists/engineers who use PCs for technical applications. Topics each month include Instrumentation • Data Acquisition • Design Automation. To receive a free sample issue and qualification form either circle below or send your name, address and zip code to:

Personal Engineering Communications

Box 306, Brookline, MA 02146

SOFTWARE/ENGINEERING

PC CIRCUIT DESIGN AND ANALYSIS

LINEAR-SIZED SOFTWARE: POLAR.

DESCRIPTIVE SYNTHESIS

MAPPER (COINCIDENTLY)

FET (PRINTOUT)

IC (MODELED)

LS (ECOLOGIC)

LIGE (LOGIC)

LICOFAC Electronics, Inc.

3503 Essex Road, Columbus, OH 43221

PHONE: (614) 480-4200

SOFTWARE/ENGINEERING

TUTSIM™

USA's #1 Program for Linear and Non-

Continuous System Simulation now has

PERSONAL PRICES FOR PERSONAL: Under $20/50!

Full Restored 995 block program, full test and examples. An analog computer in your "IBM-compatible" Until Then >Thank You: 803.361.5270 + ($55.55 + (65) Data Tax

[Same program as our $895 professional version]

TUTSIM Products, 300 California Ave., #12.

Palo Alto, CA 94306

(415) 394-8350

SOFTWARE/ENGINEERING

BECORE ENTERTAINING!

With the new, improved Humor Processor Version 2 you can add humor to your speeches, newsletters, or everyday conversation. Create original jokes or select from the indexed, expandable joke database. Only $49.95 + $5.55 + ($55.55 Data Tax)

Responsive Software

1100 Tunnel Rd., Berkeley, CA 94705

SOFTWARE/ENGINEERING

SOFTWARE/GEOLLOGICAL

GEOLGICAL CATALOG

Geological software for log plotting, grading/contouring, digitizing, 3-D solid modelling, synthetic seismogram, fracture analysis, image processing, scout ticket manager, over 50 programs in catalog. Macintosh too? Please call, or write, for Free Catalog!

RockWare, Inc.

420 Kipling St., Suite 508, Wheat Ridge, CO 80033 USA

(303) 423-5645 Fax (303) 423-5617
SOFTWARE/SCIENTIFIC

LARGE MATRICES

- Light a 230 x 230 matrix in 0.5 min on your long stack IBM PC with 160K RAM.
- High-speed, high-precision matrix computations using the Intel 8087 chip.

JOYCE NUMERICS INC.
506 Chesapeake Drive, Suite 10-C-8, Wayne, PA 19087
(215) 955-8013

Inquiry 690.

FREE

- Technical application notes

- **1-800-942-MATH**
 MicroMath Scientific Software
 Salt Lake City, Utah 84121-3144

Inquiry 681.

POWER FFT

High performance FFT routine library for the IBM-PC. Users improved FFT, Prime Factor, and General FFT algorithms to give unmatched performance. Over 6000 efficient lengths up to 64K points. Coded in assembly. Complete 108 FFT in just minutes on computer. 256, 512, 1024, on MACH 128, 256, 512, 1024. Forward/reverse, dimension and transform real data. Uses with most C FORTRAN and Pascal products.

SOFFTEC
PO Box 2363, Westford, MA 01886

Inquiry 682.

SOFTWARE/SECURITY

- **HANDS OFF THE PROGRAM® OPERATING SYSTEM SECURITY**
 Secures subdirectories, files, printers and hard drives
 Keach key to unlock - automatic or manual
 Log PC boot, program exit, file open, logon/logoff
 Prevents DOS FORMAT and most viruses
 Drive A: Boot Protection / Hard Disk Lock
 IBM or 100 percent comp. -- DOS 5.00 + $37.95 SH

SYSTEMS CONSULTING INC.
PO Box 11096, Pittsburgh, PA 15231
(412) 953-6681

Inquiry 693.

SOFTWARE/ORDER

- **OPT-TECH SORT/MERGE**
 Extremely fast Sort/Merge/Select utility. Run as an MSDOS command or CALL as a subroutine. Supports most languages and file types including Birnba and dBASE. Unlisted file sizes, multiple keys and more.

- **NEW STATISTIX 3.0**
 PC Magazine Editors Choice
 * Superb Data Management * Excellent manual
 * Easy to use * Fast, free support
 * Range & Depth of Statistics

Buy the BEST for 1/2 the price of the competition

THE BUYER'S MART

STATISTICS

DBMS/COPY

- **COPY YOUR DATA INTO INFORMATION**
 Now your large database package can access any database.
 DBMS/COPY can quickly copy any database or spreadsheet file.
 DBMS/COPY can control any database or spreadsheet file.
 DBMS/COPY can operate on IBM, Apple, Microsoft, and Lotus databases.
 DBMS/COPY uses its own unique method of processing.
 DBMS/COPY is for IBM, Apple, Microsoft, and Lotus databases.

CONCEPTUAL SOFTWARE INC.
PO Box 10067, Houston, TX 77056
(713) 667-3423/3672/3423
4-STATION KNOW

Inquiry 686.

THE SURVEY SYSTEM

An easy-to-use package designed specifically for questionnaire data. Produces formats, cross tables, and tables data. (Incl. regression) & bar charts. Codes and reports answers to open-ended questions. All reports can be ready for professional presentations. CRT and interview option.

CREATIVE RESEARCH SYSTEMS
15 Lane Oaks Dr., Dept. 2B, Princeton, N.J. 08540
707-765-1001

Inquiry 687.

POWER 500 Gold

StatPac Gold is the award-winning statistics and forecasting package that fills the fast, flexible, easy to use, and dependable. Used in 10 different countries. Find the missing data. Get the facts! Call for your FREE brochure.

1-800-328-4701
Walonick Associates, Inc.
8500 Nicollet Ave., St. Louis Park, Minn. 55423
(612) 866-9222

Inquiry 688.

TERMINAL EMULATION

- DEBBI Does Dbase
 - Dbase/E قد b a l e D b a s e / E d i t o r - B i n a r y I n t e r f a c e
 - Now with DEBBI & Dbase, you can easily do d b a s e programming that utilizes your DBMS or a File System, load DEBBI and then can have your own d b a s e e n t i t l e s t o d b a s e t r a n s a c t i o n s to exchange data with your host. Very fast-very simple to use. Includes DBS module for d b a s e handling. As a single-use/32k development.

Finity Software
8602 Ridge Blvd., Suite 4-H, Brooklyn, N.Y. 11209
(718) 748-0248

Inquiry 699.

UNINTERRUPTIBLE POWER

HOW TO PROTECT YOUR COMPUTER

- **And Make It Last Longer**

FREE NEWSLETTER SERVICE. Just write to us to start.

Best Power Technology, Inc.
PO Box 293, Needham, Mass. 02194
(617) 566-9222, ext. 2703
TOLL FREE (800) 665-8774 ext. 2703
See our ad on page 208

Inquiry 700.

UTILITIES

Windows software, Box 12204, Roselle, Ill.

Inquiry 695.

APPLEWORKS => IBM

CROSS-ARCHITECTURE software lets IBM PC users access documents created on DOS/PC/DOS/2 & compatibles. Exchange AppleWorks with WordPerfect (keeps formatting), Lotus 1-2-3 (keeps formulas), dBASE IV (dBASE IV), etc.

Phone (919) 787-7720 for free info packet.

Softscape Co., PO Box 97263, Raleigh, NC 27624

Inquiry 702.

SAVE TIME AND MONEY

The Wenhams Software Company
5 Surf Rock St., Wernham, MA 01891
(908) 775-7058

Inquiry 704.

WORD PROCESSING

INFORMATION

- **FARSI / GREEK / ARABIC / RUSSIAN**
 - Native of Europe, Scandinavian, plus other hind, Persian, Bengali, Gujerati, Tamil, Thai, Korean, Viet, or 1,600. Full-featured multi-language word processor. Supports 256 emoj dies, 256 colors, 256 fonts, 256 fonts.

GAMMA PRODUCTIONS, INC.
761 Wadsworth Blvd., Suite 803, Santa Monica, CA 90401
21394-3522 Tie: 9039407235 Pro: Gamma Pro Win

Inquiry 705.

DINGUN

Inquiry 706.

PC-WRite 3.0

Fast, full featured word processor for IBM PC. Now adds large files & multiple columns. Also spell check, mail merge, networking, ASCII, and more. Easy-to-use, optional manual

Inquiry 708.
Excellence in Emulation

4200 Plus
Tektronix graphics for PS/2s and PCs
- enhanced PC productivity
- network and serial communications
- correct and complete emulation
- easy to install and use
- clear documentation
- dedicated tech support staff

FTG DATA SYSTEMS
FULL TEK GRAPHICS
10801 Dale Street, Suite J-2, P.O. Box 615, Stanton, CA 90680
(714) 965-3900 (800) 965-3900 FAX (714) 965-3989

NEW

VI: Point & Shoot™
PERSONAL MENU SERIES I
Navigate through your PC painlessly.
A menu system which makes
your PC work the way you do.
- Access to 160,000 applications
- Full security including Exit to DOS
- Built-in Screen Saver with date/time box
- Non-memory resident
- Over a dozen new features that you’ve asked for

NEW ADDITIONS to the
VI: Point & Shoot family:
VI: PS-NET - Advanced Point & Shoot network menu
VI: Security Blanket - Elegant, PC security and menu system

VI: Influence™
The electronic rotary file for every
PC user who must locate / talk to /
- Influence! - someone else to get things
done.
- Finds contacts as you type
- Search on any combination of 11 fields
- Links multiple dBASE III-compatible databases
- Autodailer, ticker file, print spooler, and more!

VARTECK™
International

AK Systems
20741 Manila St.
Chatsworth, CA 91311
(818) 709-8100
FAX: (818) 407-5889
TWX: 910-493-2071

9-TRACK MAG. TAPE SUBSYSTEM*
FOR THE IBM PC/XT/AT AND...

For information interchange, backup and archival storage,
AK Systems offers a 9-track, IBM format-compatible
1/2" magnetic tape subsystem for the IBM PC, featuring:
- IBM format 1600/3200 and 800 cpi.
- Software for PC-DOS, MS-DOS, XENIX.
- Also for AT&T, DEC, VAX, VME, S-100.

Write, phone or TWX for information.

Don’t Move!
without telling
BYTE

Clip out form below
and mail to:
BYTE Magazine
P.O. Box 555
Hightstown, NJ 08520

At least 8 weeks before you move, please give us your
new address and/or name change
(please print)

New address, name
Name ____________________________
Address ____________________________ Apt. ____________________________
City ____________________________ State ____________________________ Zip ____________________________

Current address, name
Name ____________________________ Apt. ____________________________
Address ____________________________ City ____________________________ State ____________________________ Zip ____________________________

For the dealer nearest you, call us toll free at:
1-800-456-1777 or
1-201-740-1750

Circle 107 on Reader Service Card
Circle 11 on Reader Service Card
Circle 111 on Reader Service Card
Circle 295 on Reader Service Card
Or any other code, for that matter! PromKit allows you to create EPROMs that look like read-only disk drives in your PC-compatible systems. Use PromKit even if you’re not a programmer. Just use PromKit to convert any disk into EPROM images for your Prom blaster! Copy system files, batch files, data files, or anything else you want. Use Proms for readonly, SRAMS for read-write! Includes source code in C. Over 180 pages. Including disk, only $179.

FREE We’ll include a free copy of the pocket-sized XT-AT Handbook by Choisser and Foster with each PromKit if you mention this ad when you order. Of course, this $9.95 value is also available by itself. Or buy five or more for only $5.00 each.

Call (619) 271-9526

Visa

Annabooks
12145 Alta Carmel Ct Suite 250-262
San Diego, California 92128
Money-back guarantee

VOICE RECOGNITION/SYNTHESIS

HEARSAY 1000 - An advanced, easy to use high-quality system that adds voice recognition and speech synthesis to existing MS-DOS or applications software. Voice commands replace keyboard commands and macros. Verbalizes text printed to the screen. Includes plug-in card, speaker/microphone assembly and instructions - $149.95. Speech only - $99.

IBM PC and COMPATIBLES

HEARSAY2000 - Similar to the HEARSAY 1000, incorporating advanced recognition algorithms that generate 98% accuracy, are 3 times faster and utilize rejection. Includes plug-in card, high-quality headset assembly and instructions - $299.95. Allow 4-6 weeks for delivery.

HEARSAY WORD PROCESSOR VOICE INTERFACE - An on-line system that automatically controls top word processors (WordPerfect, Word Star, etc.) via voice. Voice tutorial option also included. Increases productivity and eliminates costly training investments - $299.95. With Hearsay 2000 $499.95. Allow 4-6 for delivery.

HEARSAY RECORD & PLAYBACK - Available soon.

ORDER LINE (718) 232-7266

Checks, money orders add $4 ship/hand. COD additional. 30 DAY MONEY BACK GUARANTEE. ONE YEAR HARDWARE WARRANTY
Buying a 286™ is a dead end—

However, buying a 386™ system based on price alone can also be a bad decision. Buying too much or too little computing power is expensive and frustrating. Your Pi representative will analyze your computer use and design the right machine for your current and future needs. Your Pi computer will then be built exactly to your specifications. Pi Computer offers a line of DOS, OS/2™ and UNIX personal workstations based on a variety of 386™ motherboards, field proven to serve professionals in business, engineering and science with applications from text processing and accounting through advanced design verification and graphical process simulation.

Platforms range from a 16Mhz SX™ through a 386DX™ Cache/33.

Call Pi Computer to ensure that the professional workstation you purchase today will also serve your needs tomorrow.
Jameco ®

IBM-Compatible Display Monitor & Packages

JE1059 TM1610 EGA Monitor & EGA Card $450.00
JE2050 TM127 Multiscan Monitor & VGA Card $695.00
JE2050 TM1516 VGA Monitor & VGA Card $735.00

Display Monitors

AMBER 14" Amber Monitor $99.95
HM65H 14" Dega & VGA Monitor $129.95
M0070S 14" Multiscan Monitor 1920 x 1080 $1000.00
TM5154A 14" EGA 720 x 360 $365.00
TM5154A 14" VGA 720 x 480 $399.95
TM5157 14" Multiscan Monitor 800 x 600 $469.95
GM1468 14" Flat Paper White Monochrome $119.95
GM1489 14" Flat Screen Amber Monochrome $109.95

NEW! Multiscan Monitor & VGA Packages

JE1050 Package

TAPE DRIVES

3.5" and 5.25" Floppy Disk Drives

MPFI 1 PIC16C54 $69.95
SMK 322" Installation Kit for WAC 1240 $14.95
Toshiba 3550U 3.5" Internal Drive $109.95
TEAC FD35B 2.5" 35MB Half Height Drive $99.95
JE1020 5.25" 50MB Half Height Black $99.95
JE1020 3.5" 13MB Half Height Gray $99.95

24-Hour Order Hotline (415) 592-8097

SEAGATE HARD DISK DRIVES

Call or Write Today for a FREE 80-Page Catalog—24-Hour Order Hotline—(415) 592-8097

Computer Keyboards

IBM PC/XT/AT & Compatibles

JE2015 64-Key Standard AT Style Keyboard $59.95
JE1016 10-Key Enhanced Layout with 12 Function Keys $69.95
JE2016 114-Key Enhanced Layout with Solar Powered Calculator $79.95
JE2017 NEW 104-Key Enhanced Layout with Trackball (200 DPI Resolution) $99.95

IBM 20" & Math Coprocessors

JE2015 64-Key Standard AT Style Layout $59.95
JE1016 10-Key Enhanced Layout with 12 Function Keys $69.95
JE2016 114-Key Enhanced Layout with Solar Powered Calculator $79.95
JE2017 NEW 104-Key Enhanced Layout with Trackball (200 DPI Resolution) $99.95

DYNAMIC RAMS

4146-160 8M SDRAM (160ns) $7.25
4125B-100 262+441 (100ns) $3.95
4125B-100 262+441 (120ns) $3.95
4125B-100 262+441 (160ns) $3.95
511000-10 144+576 (160ns) $12.95
511000-50 144+576 (80ns) $13.95

Tablet Trackballs

JE2017 Pictured

$25.00 Minimum Order—U.S. Funds Only
California Residents add 6.5% Sales Tax
Shipping—Add 5% if 5% Insurance (May vary according to weight and shipping method)
Terms—Free subject to change without notice.
We are not responsible for typographical errors. We reserve the right to substitute manufacturers, brands, subject to availability and prior sale.

With Trackball!
SIMM	SIPP	MODELS	1 MG X 8-100NS	1 MG X 100NS	1 MG X 1-100NS	1 MG X 1-10NS	1 MG X 1-70NS	1 MG X 1-40NS	1 MG X 8-10NS	1 MG X 6-10NS	1 MG X 6-8NS	1 MG X 6-6NS	1 MG X 6-4NS	1 MG X 6-3NS	1 MG X 6-2NS	1 MG X 6-1NS	1 MG X 6-0NS	1 MG X 6-0NS	
64K	128K	256K	$120	$135	$140	$150	$160	$170	$180	$190	$200	$210	$220	$230	$240	$250	$260	$270	$280
512K	1024K	2048K	$210	$220	$230	$240	$250	$260	$270	$280	$290	$300	$310	$320	$330	$340	$350	$360	$370

| PS-2 | SIMM | 256K X 4 | $8.00 | $8.00 | $8.00 | $8.00 | $8.00 | $8.00 | $8.00 | $8.00 | $8.00 | $8.00 | $8.00 | $8.00 | $8.00 | $8.00 | $8.00 | $8.00 | $8.00 |

| PS-2 | SIMM | 512K X 4 | $16.00 | $16.00 | $16.00 | $16.00 | $16.00 | $16.00 | $16.00 | $16.00 | $16.00 | $16.00 | $16.00 | $16.00 | $16.00 | $16.00 | $16.00 | $16.00 | $16.00 |

HEWLETT-PACKARD LASERJET MODULES
- IBM SERIAL CARD...$18.95
- IBM PARALLEL PORT...$18.95

NO SLOT CLOCK
- IBM SERIAL 480/960...$999
- IBM PARALLEL 480/960...

** TERMS AND CONDITIONS **
- No Surcharge for MC / VISA
- Terms: MC = VISA = COD = CASH + AMEX add 4%
- Orders from qualified firms = 20% restocking fee on non-defective returns
- Prices subject to change

NORTH TECHNOLOGIES
- VGA WONDER 512+...$249
- VGA WONDER 256+...$249
- VGA EDGE+...$249
- EGA WONDER 16+...$249
- EGA WONDER 800+...$249
- GRAPHICS SOLUTION...$249
- ORCHID...$249
- UNITEX...$249
- MODEMS...$249

NEAR TECHNOLOGIES
- 800X 800 VGA...$249
- EGA/VGA...$249
- EGA/CGA...$249
- CGA...$249
- PROMODEM...$249
- MODEM...$249
- EGA...$249
- CGA...$249
- PC...$249
- PC...$249
- PC...$249

NEAR TECHNOLOGIES
- 800X 800 VGA...$249
- EGA/VGA...$249
- EGA/CGA...$249
- CGA...$249
- PROMODEM...$249
- MODEM...$249
- EGA...$249
- CGA...$249
- PC...$249
- PC...$249
- PC...$249
Memory Expansion Boards

BOCA RESEARCH
- **TOPHAT** - 8-bit board designed to top out conventional memory area of the IBM (after 16-bit compatibility)
- **TOPHAT II** - has 128 k on board which results in a true portable, contains up to 17MB using 1024K RAM. A related design uses 100K RAM with 256K memory. $59

IBM
- **IBM 1497/257** - For PS/2 Mod 5/90D
 - With 2 M expansion to 8 M
 - Use 25K SIMM RAM (IBM only)
 - $439
- **IBM 0430002** - For PS/2 Mod 10W
 - Use 2 M expansion to 8 M
 - $129
- **IBM 3502/3503** - For AT- Use 128K RAM
 - $65

BOCA RAM 50/60
- **BOCARAM** - A full length expanded memory board for the IBM PC, XT, AT and EISA bus compatible systems. Operates at CPU speeds up to 12MHz. Use standard 256K RAM chips and provides up to 2 M of expanded memory. $129

BOCA RAM 1000
- **BOCARAM PLUS** - Advanced expanded memory design for the IBM AT and 16-bit compatible systems. Operates at CPU speeds up to 16MHz and is set up through software, with the configuration stored in EEPROM. Use 128K & 1 Meg. RAM chips. Available in four configurations, 256K up to 8 Meg. $149

BUS CARD XT/AT
- **BOCARAM/AT PLUS** - A full length expanded memory board for the IBM PC, XT, AT and EISA bus compatible systems. Operates at CPU speeds up to 12MHz. Use standard 1024K RAM chips. Can also boot into conventional memory up to 4MB, provides a maximum of 2 Meg of LIM EMS 4.0 and max. 4 Meg of extended memory.$149

COMPAQ MEMORY ADD ON MODULES
- **MODEL**
 - 1MB
 - 4MB
 - $179
 - $349
 - 386/20
 - 386/20E
 - 386/E
 - $99
 - $99
 - $99
 - $99
 - $99

MEMORY EXPANSION BOARDS
- **MODEL**
 - 1MB
 - 4MB
 - $149
 - $349
 - 386/20
 - 386/20E
 - $99
 - $99
 - $99
 - $99

- **PORTABLE SIMM**
 - $149
 - $289

ZUCKER MEMORY BD
- **PS2** - 2MG MB - Up to 2 MB for microprocessor and/or CD-ROM Chipset, 256K + SIMM chipset $149

D-RAM TESTERS
- **UNI-001 RT**
 - Tests all parameters but speed
 - $119
 - 64X1 / 256X1 / 1Mx1
 - 64X4 / 256X4 / 4Mx1

- **UNI-002 RT**
 - Tests speed plus parameters
 - 64X1 / 256X1 / 1Mx1

- **UNI-003 RT**
 - Tests standard SIMM Modules
 - 1 Year Warranty
 - $199.95

ORCHID
- **RAMQUEST IIL** - Up to 75MB of writable memory for IBM PS/2 Model 20, 20W 0.6, 0.9, and 1.0
 - $599

- **RAMQUEST II PLUS** - The only multi-memory card that provides system expansion of 2 additional 256K SIMM slots on one board for IBM PS/2 Model 50, 60, 80 and 90. $599

- **RAMQUEST EXTRA** - The only multi-memory card that provides system expansion of 2 additional 256K SIMM slots on one board for IBM PS/2 Model 50, 60, 80 and 90. $599

- **RAMQUEST EXTRA** - The only multi-memory card that provides system expansion of 2 additional 256K SIMM slots on one board for IBM PS/2 Model 50, 60, 80 and 90. $599

Unitex, Inc

Corporate Headquarters
2852 F Walnut • Tusint, CA 92680
Phone: 714/730-5232 • FAX: 714/838-8593

Customer Service #: 714/730-9527
TOLL FREE OUTSIDE CA: 1/800/533-0055

Mon-Fri 7am - 5pm
Sat 8am - 2pm

IBM Special Edition • Fall 1989

American Express

Visa

MasterCard

Circle 257 on Reader Service Card
Circle 256 on Reader Service Card

UNICORN-YOUR IC SOURCE

COLLIMATOR PEN
A NEW EXCLUSIVE COLLIMATOR PEN containing a MOYTC grown GaAlAs laser. This collimator pen is designed for easy alignment in an optical read or write system, and consists of a lens and a laser device. The lens system collimates the diverging laser light. The wavefront quality is diffraction limited. The housing is circular and precision manufactured with a diameter of 11.0 mm and an accuracy between + and - 11.0 mm.

LIST PRICE $100.00 PRICE $39.99
Quality Components — Low Prices Since 1983

LASER DIODE
Designed for general industrial low power applications such as reading optical discs, optical memories, bar code scanners, security systems, alignment etc. The gain guided laser is constructed on a n-type gallium arsenide substrate with a Metal Organic Vapor Phase Epitaxial process (MOVPE). The device is mounted in a hermetic SOIC80 (diameter 5.0 mm) encapsulation. The SB1053 is standard equipped with a monitor diode, isolated from the case and optically coupled to the rear emitting facet of the laser. This fast responding monitor diode can be used as a sensor to control the laser optical output level.

LIST PRICE $35.00 PRICE $9.99
We Carry A Full Line of Components
CALL FOR FREE CATALOG

EPROMS

STOCK # PINS DESCRIPTION 1.99 25-95 100-

ON TARGET ASSOCIATES
Products and Services for Design and Manufacturing Engineers.

Micro Channel Design Consulting
Prototype Cards
Newsletter
ASIC's
Extender Cards
Adapter Bracket Sets
Burn-in Mother Boards

ON TARGET PACKAGE

...the PS/2 leaders.

PS/2 and Micro Channel: an integration of IBM Com.

Circle 194 on Reader Service Card

Advertise your computer products through BYTE BIES (2" x 3" ads)

For more information call Mark Stone at 603-924-6830

BYTE
One Phoenix Mill Lane
Peterborough, NH 03458

Circle 296 on Reader Service Card

DATA ACQUISITION INTERFACES FOR IBM PC/XT/AT & PS/2

FREE CATALOG
- PC Based Instruments
- Motion Control
- Frame Grabber Boards
- Industrial Data Acquisition
- Communications Interfaces
- Software Packages

-circle 175 on Reader Service Card

Circle 175 on Reader Service Card

Circle 141 on Reader Service Card

Circle 235 on Reader Service Card

Circle 147 on Reader Service Card

Circle 145 on Reader Service Card

Circle 144 on Reader Service Card

Circle 143 on Reader Service Card

Circle 142 on Reader Service Card

Circle 141 on Reader Service Card

Circle 140 on Reader Service Card

Circle 139 on Reader Service Card

Circle 138 on Reader Service Card

Circle 137 on Reader Service Card

Circle 136 on Reader Service Card

Circle 135 on Reader Service Card

Circle 134 on Reader Service Card

Circle 133 on Reader Service Card

Circle 132 on Reader Service Card

Circle 131 on Reader Service Card

Circle 130 on Reader Service Card

Circle 129 on Reader Service Card

Circle 128 on Reader Service Card

Circle 127 on Reader Service Card

Circle 126 on Reader Service Card

Circle 125 on Reader Service Card

Circle 124 on Reader Service Card

Circle 123 on Reader Service Card

Circle 122 on Reader Service Card

Circle 121 on Reader Service Card

Circle 120 on Reader Service Card

Circle 119 on Reader Service Card

Circle 118 on Reader Service Card

Circle 117 on Reader Service Card

Circle 116 on Reader Service Card

Circle 115 on Reader Service Card

Circle 114 on Reader Service Card

Circle 113 on Reader Service Card

Circle 112 on Reader Service Card

Circle 111 on Reader Service Card

Circle 110 on Reader Service Card

Circle 109 on Reader Service Card

Circle 108 on Reader Service Card

Circle 107 on Reader Service Card

Circle 106 on Reader Service Card

Circle 105 on Reader Service Card

Circle 104 on Reader Service Card

Circle 103 on Reader Service Card

Circle 102 on Reader Service Card

Circle 101 on Reader Service Card

Circle 100 on Reader Service Card

Circle 99 on Reader Service Card

Circle 98 on Reader Service Card

Circle 97 on Reader Service Card

Circle 96 on Reader Service Card

Circle 95 on Reader Service Card

Circle 94 on Reader Service Card

Circle 93 on Reader Service Card

Circle 92 on Reader Service Card

Circle 91 on Reader Service Card

Circle 90 on Reader Service Card

Circle 89 on Reader Service Card

Circle 88 on Reader Service Card

Circle 87 on Reader Service Card

Circle 86 on Reader Service Card

Circle 85 on Reader Service Card

Circle 84 on Reader Service Card

Circle 83 on Reader Service Card

Circle 82 on Reader Service Card

Circle 81 on Reader Service Card

Circle 80 on Reader Service Card

Circle 79 on Reader Service Card

Circle 78 on Reader Service Card

Circle 77 on Reader Service Card

Circle 76 on Reader Service Card

Circle 75 on Reader Service Card

Circle 74 on Reader Service Card

Circle 73 on Reader Service Card

Circle 72 on Reader Service Card

Circle 71 on Reader Service Card

Circle 70 on Reader Service Card

Circle 69 on Reader Service Card

Circle 68 on Reader Service Card

Circle 67 on Reader Service Card

Circle 66 on Reader Service Card

Circle 65 on Reader Service Card

Circle 64 on Reader Service Card

Circle 63 on Reader Service Card

Circle 62 on Reader Service Card

Circle 61 on Reader Service Card

Circle 60 on Reader Service Card

Circle 59 on Reader Service Card

Circle 58 on Reader Service Card

Circle 57 on Reader Service Card

Circle 56 on Reader Service Card

Circle 55 on Reader Service Card

Circle 54 on Reader Service Card

Circle 53 on Reader Service Card

Circle 52 on Reader Service Card

Circle 51 on Reader Service Card

Circle 50 on Reader Service Card

Circle 49 on Reader Service Card

Circle 48 on Reader Service Card

Circle 47 on Reader Service Card

Circle 46 on Reader Service Card

Circle 45 on Reader Service Card

Circle 44 on Reader Service Card

Circle 43 on Reader Service Card

Circle 42 on Reader Service Card

Circle 41 on Reader Service Card

Circle 40 on Reader Service Card

Circle 39 on Reader Service Card

Circle 38 on Reader Service Card

Circle 37 on Reader Service Card

Circle 36 on Reader Service Card

Circle 35 on Reader Service Card

Circle 34 on Reader Service Card

Circle 33 on Reader Service Card

Circle 32 on Reader Service Card

Circle 31 on Reader Service Card

Circle 30 on Reader Service Card

Circle 29 on Reader Service Card

Circle 28 on Reader Service Card

Circle 27 on Reader Service Card

Circle 26 on Reader Service Card

Circle 25 on Reader Service Card

Circle 24 on Reader Service Card

Circle 23 on Reader Service Card

Circle 22 on Reader Service Card

Circle 21 on Reader Service Card

Circle 20 on Reader Service Card

Circle 19 on Reader Service Card

Circle 18 on Reader Service Card

Circle 17 on Reader Service Card

Circle 16 on Reader Service Card

Circle 15 on Reader Service Card

Circle 14 on Reader Service Card

Circle 13 on Reader Service Card

Circle 12 on Reader Service Card

Circle 11 on Reader Service Card

Circle 10 on Reader Service Card

Circle 9 on Reader Service Card

Circle 8 on Reader Service Card

Circle 7 on Reader Service Card

Circle 6 on Reader Service Card

Circle 5 on Reader Service Card

Circle 4 on Reader Service Card

Circle 3 on Reader Service Card

Circle 2 on Reader Service Card

Circle 1 on Reader Service Card

Fall 1989 • BYTE IBM Special Edition

256
High Quality **No-Risk Guarantee **Low Price **Expert Service **Fast Delivery

We've built our reputation on these factors for 10 very successful years.

Clone 386

$1999

- 12Mhz, 500KHz Hard Drive
- 1 Mbyte RAM
- 14.4K Modem Monitor
- 32X Cache, basic system
- IBM Resale

Clone 286

$1279

- 12Mhz, 250KHz Hard Drive
- 1 Mbyte RAM
- 14.4K Modem Monitor

Clone Value Chart

- 286 MPU, 32k Cache
- **$2299**
- 386 MPU, 32k Cache
- **$2995**

Options for Clone 286/386 computers

- Add $71 for 25M, 32M RAM Seagate Hard Drive
- Add $50 for 25M, 32M Seagate Hard Drive
- Add $30 for 15M, 16M Seagate Hard Drive
- Add $15 for 10M, 16M Seagate Hard Drive

Clone 386/386SE SALES DEAL

- 20MHz CPU
- 32k Cache
- **$1495**

Clone CPU

- 286 MPU, 250KHz Hard Drive
- 1Mbyte RAM
- **$1990**

Clone CPU

- 386 MPU, 500KHz Hard Drive
- 2Mbyte RAM
- **$2295**

Clone CPU

- 386 MPU, 500KHz Hard Drive
- 2Mbyte RAM
- **$2995**

Clone CPU

- 386 MPU, 500KHz Hard Drive
- 2Mbyte RAM
- **$3495**

Different frequencies available

Clone CPU

- 386 MPU, 66MHz Hard Drive
- 2Mbyte RAM
- **$3495**

Clone CPU

- 386 MPU, 66MHz Hard Drive
- 2Mbyte RAM
- **$3495**

Clone CPU

- 386 MPU, 66MHz Hard Drive
- 2Mbyte RAM
- **$3495**

Clone CPU

- 386 MPU, 66MHz Hard Drive
- 2Mbyte RAM
- **$3495**

Save on 32MB & 49MB Hard Cards

- **$329**
- **$429**

These units are completely assembled with brand new components, memory, and hard drive. Fits IBM XT's, 100% compatible with Tandy 1000/1000A, SL, SL, TX. Please specify the exact size you want to use. We offer a year's parts and labor warranty. Circle 46 on Reader Service Card

Clone Computers

- 2544 W. Commerce St.
- Dallas, Texas 75222-3957
- Telex: 862761
- Fax: 214-638-8303

For professional technical assistance on Clone products, call 214-638-8826.

Visit our Iowa City location:

- 1-800-527-0347 AD

Due to the extended life of this edition of Byte, prices shown are subject to change (they probably lower)
BEST-386/25 W/387/25 $4,895.00

"CAD/CAM WORKSTATION SPECIAL."

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processor</td>
<td>80386 25 MHz system board w/32 KB static cache</td>
</tr>
<tr>
<td>Math Processor</td>
<td>80387 25 MHz Math Co-processor INCLUDED</td>
</tr>
<tr>
<td>RAM</td>
<td>4 MB SIMM RAM</td>
</tr>
<tr>
<td>Graphics Card</td>
<td>ATi VGA Wonder card/512K 1024 x 768 res.</td>
</tr>
<tr>
<td>Bus Mouse</td>
<td>NEC 3D Multisyn Color Monitor 1024 x 768 res.</td>
</tr>
<tr>
<td>Floppy Drive</td>
<td>5.25" 1.2 MB floppy drive (Teac)</td>
</tr>
<tr>
<td>Hard Drive</td>
<td>3.5" 1.44 MB floppy drive (Teac)</td>
</tr>
<tr>
<td>Hard Drive</td>
<td>90 MB SCSI hard disk</td>
</tr>
<tr>
<td>Adaptor</td>
<td>ATSC Host Adaptor</td>
</tr>
<tr>
<td>Floppy Controller</td>
<td>Floppy drive controller</td>
</tr>
<tr>
<td>Ports</td>
<td>2 serial, 1 parallel and 1 game port</td>
</tr>
<tr>
<td>Power Supply</td>
<td>Tower case w/275 W power supply</td>
</tr>
<tr>
<td>Keyboard</td>
<td>101 Enhanced keyboard</td>
</tr>
<tr>
<td>Operating System</td>
<td>MS DOS 4.01, GW Basic</td>
</tr>
<tr>
<td>BIOS</td>
<td>AMI BIOS with full MS-DOS, OS/2, SCO Xenix</td>
</tr>
</tbody>
</table>

LCD PORTABLE System

<table>
<thead>
<tr>
<th>Resolution</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>640 x 200</td>
<td>$1,495</td>
</tr>
<tr>
<td>640 x 400</td>
<td>$1,645</td>
</tr>
</tbody>
</table>

CRT PORTABLE System

<table>
<thead>
<tr>
<th>Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>MONOCHROME</td>
<td>$1,375</td>
</tr>
<tr>
<td>EGA COMPATIBLE</td>
<td>$1,525</td>
</tr>
</tbody>
</table>

30 DAYS MONEY BACK GUARANTEE

BEST-386/20 Tower System $2,995.00

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processor</td>
<td>80386 20 MHz system board</td>
</tr>
<tr>
<td>RAM</td>
<td>1 MB SIMM RAM 100ns</td>
</tr>
<tr>
<td>Video Card</td>
<td>Super 16 Bit VGA card 800 x 600 res. (Tatung)</td>
</tr>
<tr>
<td>Video Card</td>
<td>14" Color Multisyn Monitor 800 x 600 res. (Tatung)</td>
</tr>
<tr>
<td>Additional Features</td>
<td>Clock calendar with battery backup</td>
</tr>
<tr>
<td>Floppy Drive</td>
<td>5.25" 1.2 MB floppy drive (Teac)</td>
</tr>
<tr>
<td>Floppy Drive</td>
<td>3.5" 1.44 MB floppy drive (Teac)</td>
</tr>
<tr>
<td>Hard Drive</td>
<td>80 MB hard disk (Seagate ST-4096 28ms)</td>
</tr>
<tr>
<td>Hard Drive</td>
<td>1:1 Interleave Hard disk/Floppy drive controller</td>
</tr>
<tr>
<td>Hard Drive</td>
<td>2 serial, 1 parallel and 1 game port</td>
</tr>
<tr>
<td>Hard Drive</td>
<td>Tower case w/275 W power supply</td>
</tr>
<tr>
<td>Keyboard</td>
<td>101 Enhanced keyboard</td>
</tr>
<tr>
<td>Operating System</td>
<td>MS DOS 4.01, GW Basic</td>
</tr>
<tr>
<td>BIOS</td>
<td>AMI BIOS with full MS-DOS, OS/2, SCO Xenix</td>
</tr>
<tr>
<td>Compatibility</td>
<td>Novell, 3COM and PCNET compatibility</td>
</tr>
</tbody>
</table>

LCD PORTABLE System

<table>
<thead>
<tr>
<th>Resolution</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>640 x 200</td>
<td>$1,495</td>
</tr>
<tr>
<td>640 x 400</td>
<td>$1,645</td>
</tr>
</tbody>
</table>

BEST-286/12 Laptop System $2,495.00

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processor</td>
<td>286/16 (286/12) MHz 0 wait system board</td>
</tr>
<tr>
<td>RAM</td>
<td>1 MB RAM expandable to 8 MB</td>
</tr>
<tr>
<td>Screen</td>
<td>10.25" Gas Plasma Screen (720 x 400 res., 4 level gray)</td>
</tr>
<tr>
<td>Compatibility</td>
<td>EGA compatible with external adaptor</td>
</tr>
<tr>
<td>Floppy Drive</td>
<td>1.44 MB Floppy drive</td>
</tr>
<tr>
<td>Hard Drive</td>
<td>40 MB Hard disk 25ms (Connor)</td>
</tr>
<tr>
<td>Ports</td>
<td>1 serial, 1 parallel ports</td>
</tr>
<tr>
<td>Keyboard</td>
<td>85 key tactile keyboard w/ external keyboard connector</td>
</tr>
<tr>
<td>Operating System</td>
<td>MS DOS 4.01, GW Basic</td>
</tr>
<tr>
<td>BIOS</td>
<td>AMI BIOS with full MS-DOS, OS/2, SCO Xenix, Novell, 3COM and PCNET compatibility</td>
</tr>
</tbody>
</table>

CRT PORTABLE System

<table>
<thead>
<tr>
<th>Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>MONOCHROME</td>
<td>$1,375</td>
</tr>
<tr>
<td>EGA COMPATIBLE</td>
<td>$1,525</td>
</tr>
</tbody>
</table>

BEST-286/16 Laptop System $2,645.00

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processor</td>
<td>286/16 (286/12) MHz 0 wait system board</td>
</tr>
<tr>
<td>RAM</td>
<td>1 MB RAM expandable to 8 MB</td>
</tr>
<tr>
<td>Screen</td>
<td>10.25" Gas Plasma Screen (720 x 400 res., 4 level gray)</td>
</tr>
<tr>
<td>Compatibility</td>
<td>EGA compatible with external adaptor</td>
</tr>
<tr>
<td>Floppy Drive</td>
<td>1.44 MB Floppy drive</td>
</tr>
<tr>
<td>Hard Drive</td>
<td>40 MB Hard disk 25ms (Connor)</td>
</tr>
<tr>
<td>Ports</td>
<td>1 serial, 1 parallel ports</td>
</tr>
<tr>
<td>Keyboard</td>
<td>85 key tactile keyboard w/ external keyboard connector</td>
</tr>
<tr>
<td>Operating System</td>
<td>MS DOS 4.01, GW Basic</td>
</tr>
<tr>
<td>BIOS</td>
<td>AMI BIOS with full MS-DOS, OS/2, SCO Xenix, Novell, 3COM and PCNET compatibility</td>
</tr>
</tbody>
</table>

30 DAYS MONEY BACK GUARANTEE

BEST COMPUTER INC.

To Order Call 1-800-634-7920

Circle 27 on Reader Service Card
MODULAR CIRCUIT TECHNOLOGY

MINI-SIZED 386 MOTHERBOARDS

20MHZ 386

$249.95

Miniature upright lets you put your CPU where you want it.

- Small footprint (14" x 18" x 9"")
- Inside ISA slot
- Optional 4MB 50-pin RAM
- Eight expansion slots
- 1MB 68000 processor
- Standard AT power supply
- 200MB 3.5" disk drive
- 2 floppy drives
- 16-bit bus
- 5M crossing
- Optional floppy controller (FC-3001)
- 100% compatible

NEW!

SUPER UPRIGHT TOWER CASE

$499.95

Roomy case will hold all your peripherals.

- Space for 11 half-height drives and 3 full-height drives
- 5 exposed drive bays for floppy or tape drives
- Hinged front panel
- Restricts access to floppy drives
- Keylock, 經和 resets

NEW!

25MHZ 386 CACHE

$1499.95

This racehorse 386 combines memory caching and memory interlacing to reach 96K cache hit ratio for near zero wait.

- 25MHz 80386
- 50% faster than most 2400 baud data modems
- See DFI's page for details on line speeds
- Includes turbo mode
- Compatible with most existing controllers in system

NEW!

SUPER UPRIGHT TOWER CASE

$499.95

Celebrates the new price for the popular 386 case.

- 5MB crossing
- 2 floppy drives
- 3 hard drives
- 386 expansion slots
- 100% compatible

NEW!

14" SEIKO MONITOR

$599

A switchable monitor with 14" diagonal screen.

- Ultra-high resolution (1280 x 1024)
- 30" x 150" screen
- 386 expansion slots
- 100% compatible with most existing controllers in system

NEW!

ENHANCED KEYBOARD WITH CALCULATOR

$499.95

This dual audio frequency monitor utilizes a Sony Trinitron tube with a single cathode tube instead of the usual three. Three to obtain remarkably well-focused images and exceptionally vivid colors.

- 14 non-glare screen
- Ultra-high resolution
- 2000M pixel dot pitch
- 12 function keys
- 100% compatible
- Calculations to 999999

NEW!

HIGH DENSITY FLOPPY CONTROLLER

$499.95

High density floppy controller for your PC. Try this one.

- With existing controller cards in system
- XT or AT compatible
- 5MB crossing

NEW!

4800/2400 BAUD FAX/DATA MODEM

$119

The most compact modem that can be used with any controller card in system.

- 4800 baud FAX transmission capability
- Four 8-bit slots
- 100% compatible

NEW!

4800/2400 BAUD FAX/DATA MODEM

$119

The most compact modem that can be used with any controller card in system.

- 4800 baud FAX transmission capability
- Four 8-bit slots
- 100% compatible

NEW!

ENHANCED KEYBOARD WITH CALCULATOR

$249.95

This dual audio frequency monitor utilizes a Sony Trinitron tube with a single cathode tube instead of the usual three. Three to obtain remarkably well-focused images and exceptionally vivid colors.

- 14 non-glare screen
- Ultra-high resolution
- 2000M pixel dot pitch
- 12 function keys
- 100% compatible
- Calculations to 999999

NEW!

386S/25

$699

The new 386 case uses memory interlacing for near zero wait. It is the best case available for the 386.

- Socketed for 8087 coprocessor
- 16MHz/32MHz selectable speeds
- 8MB RAM
- 1MB RAM capacity
- Standard AT power supply
- 50% faster than most 380C computers

NEW!

MINI-SIZED 386 MOTHERBOARDS

$119

This small motherboard has 4MB 50-pin RAM for quiet operation.

- 1MB 68000 processor
- Inside ISA slot
- Two 8MB slots
- One 1MB slot for proprietary RAM card
- Amiga BIOS

NEW!

DFI-300 ETHERNET CARD

$199.95

Use this low-cost network card with almost any software designed for Ethernet protocols.

- 100% hardware compatible with Network to 1000 Ethernet card
- Connects with thick or thin Ethernet
- 15-pin Ethernet connector
- Includes NIC for thin Ethernet
- Includes both thin and thick Ethernet cards

NEW!

CALL OUR 24-HR BBS

(408) 859-0253

- Online ordering
- Conferences
- Technical information

NEW!

**Circle 6 on Reader Service Card (DEALERS: 7)
SOFTWARE

NEW LOW PRICE

VGA

COMPATIBLE PACKAGE $499

- 720 x 400 MAX RESOLUTION 60,480 IN TEXT PICS
- 320 x 200 IN TEXT PICS
- 640 x 480 IN TEXT PICS
- 60 IN TEXT RESOLUTION
- VGA, CGA, CGA AND VGA COMPATIBLE
- VGA-PRO (VGA CARD AND MONITOR)

VGA-MONITOR $399

- 17" ANALOG VGA - 210,400 DOT RESOLUTION
- TURBO/3 GP DRIVER, B/S, FRONT MOUNTED POWER SWITCH

RELAYS MULTISYNCH $429

- FULL FEATURED MULTISCAN TERMINAL WITH UNIFORM COLORS - 820 X 640 RESOLUTION, 16 PIN CLEAR DISPLAY
- AUTO DRIVING ON-TO-ONE ANALOG VIDEO INPUT
- JDR-MULTI

EQA-SPECIAL CARD & MONITOR $JUST 479

STANDARD KEYSORES

- BTC-5010 AUTO 50 x 50 16-CHAR X 4 LINE
- BTC-5010 AUTO 50 x 50 16-CHAR X 4 LINE
- BTC-3010 AUTO 30 x 30 16-CHAR X 4 LINE
- BTC-1010 AUTO 10 x 10 16-CHAR X 4 LINE

HIGH LOW PRICE

MODULAR CIRCUIT TECHNOLOGY

- DRIVE CONTROLLERS:
 - MCT-FT: DUAL FLOPPY DISK CONTROLLER $29.95
 - MCT-FTC: DUAL FLOPPY DISK CONTROLLER $29.95
 - MCT-FTC: DUAL FLOPPY DISK CONTROLLER $29.95
 - MCT-FTC: DUAL FLOPPY DISK CONTROLLER $29.95
- DISPLAY ADAPTERS:
 - MCT-MA: M.D.C. MONITOR/GRAPHICS $39.95
 - MCT-CG: COLORED GRAPHICS ADAPTER $49.95
 - MCT-MA: MONITOR/GRAPHICS ADAPTER $49.95
 - MCT-MA: MONITOR/GRAPHICS ADAPTER $49.95
- MULTIFUNCTION:
 - MCT-HO: MULTIFUNCTION $79.95
 - MCT-MF: MULTIFUNCTION $79.95
 - MCT-AIO: MULTIFUNCTION $79.95
- MEMORY CARDS:
 - MCT-EMS: 128K RAM CARD $59.95
 - MCT-AEMS: 288K RAM CARD $139.95

EPROM MODULE $119.95

- PROGRAMS 24 PIN SPORES, CMOS EPRONS & EPROMS FROM 1K TO 16K - HECC TO DDC
- CONVERTER - AUTO BLANK CHECK/PROGRAM VERIFY
- VPP 5 V, 12 V, 24 V, 36 V, 25 VOLS
- NORMAL, HIGH, INTENSITY, 48-DIGITAL PROGRAMMING ALGORITHMS
- MOD-MCP
- MOD-MP: 4-EPROM PROGRAMMER $189.95
- MOD-MP: 8-EPROM PROGRAMMER $329.95
- MOD-MP: 16-EPROM PROGRAMMER $499.95

DIGITAL IC MODULE $129.95

- PROGRAM WIN, Windows, Windows NT, DYNAMIC & STATIC RAM
- AUTO SEARCH FOR UNKNOWN IC ADDRESS
- DRAM/READABLE TEST PROCEDURES

PROM PROGRAMMER $249.95

- PROGRAMS ALL 24 PIN SPORES AND 21 PIN SPORES
- BLANK CHECK PROGRAM, AUTO HEADMASTER, VERIFY & SECURITY FUSE BLOW

MOO-PLAT

- CPU SOFTWARE - ENTRY LEVEL, PAL DEV. KIT
- MOD-PLAT $99.95

ORDER TOLL FREE 800-533-5000
EDITORIAL INDEX BY COMPANY

Index of companies covered in articles, columns, or news stories in this issue
Each reference is to the first page of the article or section in which the company name appears

<table>
<thead>
<tr>
<th>INQUIRY #</th>
<th>COMPANY</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>914</td>
<td>A.I. ARCHITECTS</td>
<td>56, 79</td>
</tr>
<tr>
<td>881</td>
<td>ADAPTIVE NETWORKS</td>
<td>56</td>
</tr>
<tr>
<td>882</td>
<td>ADOBE SYSTEMS</td>
<td>56, 203</td>
</tr>
<tr>
<td>913</td>
<td>ADVANCED LOGIC</td>
<td>15, 56</td>
</tr>
<tr>
<td>1160</td>
<td>RESEARCH</td>
<td>13, 56</td>
</tr>
<tr>
<td>884</td>
<td>AGFA COMPUGRAPHIC</td>
<td>56</td>
</tr>
<tr>
<td>885</td>
<td>ALDUS</td>
<td>56</td>
</tr>
<tr>
<td>1161</td>
<td>ALTOS COMPUTER SYSTEMS</td>
<td>13</td>
</tr>
<tr>
<td>886</td>
<td>AMDEK</td>
<td>56</td>
</tr>
<tr>
<td>887</td>
<td>ASTON-TATE</td>
<td>87, 175, 209</td>
</tr>
<tr>
<td>1162</td>
<td>ASTRESEARCH</td>
<td>13, 56, 123, 131, 209</td>
</tr>
<tr>
<td>915</td>
<td>AUTODESIGN</td>
<td>159</td>
</tr>
<tr>
<td>916</td>
<td>CADKEY</td>
<td>56</td>
</tr>
<tr>
<td>889</td>
<td>CANON U.S.A.</td>
<td>56, 203</td>
</tr>
<tr>
<td>912</td>
<td>CHIPS & TECHNOLOGIES</td>
<td>229</td>
</tr>
<tr>
<td>890</td>
<td>COMPAG COMPUTER</td>
<td>13, 56, 131</td>
</tr>
<tr>
<td>1164</td>
<td>CORVUS</td>
<td>87</td>
</tr>
<tr>
<td>893</td>
<td>DATAPoint</td>
<td>195</td>
</tr>
<tr>
<td>895</td>
<td>DIGITAL EQUIPMENT</td>
<td>95, 195</td>
</tr>
<tr>
<td>896</td>
<td>DIGITAL RESEARCH</td>
<td>209, 269</td>
</tr>
<tr>
<td>1165</td>
<td>DYNA COMPUTER</td>
<td>13</td>
</tr>
<tr>
<td>891</td>
<td>EPSON AMERICA</td>
<td>131</td>
</tr>
<tr>
<td>1166</td>
<td>EVEREX SYSTEMS</td>
<td>56</td>
</tr>
<tr>
<td>1167</td>
<td>FIVESTAR ELECTRONICS</td>
<td>13</td>
</tr>
<tr>
<td>904</td>
<td>FORMALSOFT</td>
<td>269</td>
</tr>
<tr>
<td>908</td>
<td>GUPTA TECHNOLOGIES</td>
<td>173</td>
</tr>
<tr>
<td>910</td>
<td>HAMILTON LABORATORIES</td>
<td>87</td>
</tr>
<tr>
<td>911</td>
<td>HEWLETT-PACKARD</td>
<td>56, 131, 203</td>
</tr>
<tr>
<td>893</td>
<td>HITACHI AMERICA</td>
<td>87</td>
</tr>
<tr>
<td>894</td>
<td>IBM</td>
<td>56</td>
</tr>
<tr>
<td>895</td>
<td>ING. C. OLIVETTI</td>
<td>131</td>
</tr>
<tr>
<td>896</td>
<td>INMOS</td>
<td>276</td>
</tr>
<tr>
<td>897</td>
<td>INSITE PERIPHERALS</td>
<td>56</td>
</tr>
<tr>
<td>900</td>
<td>INTER</td>
<td>56, 67, 123, 159, 209, 276</td>
</tr>
<tr>
<td>902</td>
<td>LOCUS COMPUTING</td>
<td>95</td>
</tr>
<tr>
<td>903</td>
<td>LOGISTIQUE</td>
<td>87</td>
</tr>
<tr>
<td>904</td>
<td>LOGITECH</td>
<td>87</td>
</tr>
<tr>
<td>1071</td>
<td>LOTUS DEVELOPMENT</td>
<td>105, 209, 269</td>
</tr>
<tr>
<td>1074</td>
<td>MAGEE ENTERPRISES</td>
<td>105</td>
</tr>
<tr>
<td>1168</td>
<td>MATRIX DIGITAL PRODUCTS</td>
<td>13</td>
</tr>
<tr>
<td>1169</td>
<td>MICRO EXPRESS</td>
<td>13</td>
</tr>
<tr>
<td>897</td>
<td>MICROSOFT</td>
<td>56, 87, 95, 173, 209, 269</td>
</tr>
<tr>
<td>898</td>
<td>MIPS</td>
<td>276</td>
</tr>
<tr>
<td>1170</td>
<td>NATIONAL MICROSYSTEMS</td>
<td>13</td>
</tr>
<tr>
<td>899</td>
<td>NEC INFORMATION SYSTEMS</td>
<td>131</td>
</tr>
<tr>
<td>890</td>
<td>O'NEILL COMMUNICATIONS</td>
<td>56</td>
</tr>
<tr>
<td>901</td>
<td>OPEN SOFTWARE FOUNDATION</td>
<td>56, 95</td>
</tr>
<tr>
<td>902</td>
<td>ORACLE</td>
<td>175</td>
</tr>
<tr>
<td>903</td>
<td>PC LINK</td>
<td>13</td>
</tr>
<tr>
<td>1072</td>
<td>PETER NORTON COMPUTING</td>
<td>105</td>
</tr>
<tr>
<td>904</td>
<td>PHAR LAP SOFTWARE</td>
<td>56, 79</td>
</tr>
<tr>
<td>917</td>
<td>PIXAR</td>
<td>56</td>
</tr>
<tr>
<td>918</td>
<td>QUADRAM</td>
<td>56, 79</td>
</tr>
<tr>
<td>902</td>
<td>QUALITAS</td>
<td>79</td>
</tr>
<tr>
<td>903</td>
<td>QUADRAM</td>
<td>56, 79</td>
</tr>
<tr>
<td>1073</td>
<td>RACET COMPUTES</td>
<td>131</td>
</tr>
<tr>
<td>904</td>
<td>RATIONAL SYSTEMS</td>
<td>56, 79</td>
</tr>
<tr>
<td>905</td>
<td>RELATIONAL TECHNOLOGIES</td>
<td>175</td>
</tr>
<tr>
<td>1074</td>
<td>RENAISSANCE</td>
<td>159</td>
</tr>
<tr>
<td>906</td>
<td>SEATTLE COMPUTER PRODUCTS</td>
<td>209</td>
</tr>
<tr>
<td>1075</td>
<td>SONY CORP. OF AMERICA</td>
<td>56</td>
</tr>
<tr>
<td>907</td>
<td>SUN MICROSYSTEMS</td>
<td>95, 276</td>
</tr>
<tr>
<td>908</td>
<td>SYBASE</td>
<td>175</td>
</tr>
<tr>
<td>1076</td>
<td>SYSTEM ENHANCEMENT ASSOCIATES</td>
<td>209</td>
</tr>
<tr>
<td>909</td>
<td>TANDY</td>
<td>13</td>
</tr>
<tr>
<td>1172</td>
<td>TRAVELING SOFTWARE</td>
<td>105, 269</td>
</tr>
<tr>
<td>910</td>
<td>TANGENT COMPUTE</td>
<td>13</td>
</tr>
<tr>
<td>905</td>
<td>TEXAC AMERICA</td>
<td>56</td>
</tr>
<tr>
<td>906</td>
<td>TEXAS INSTRUMENTS</td>
<td>159</td>
</tr>
<tr>
<td>907</td>
<td>TRANS-MICRO</td>
<td>56</td>
</tr>
<tr>
<td>908</td>
<td>WESTERN DIGITAL IMAGING</td>
<td>159</td>
</tr>
<tr>
<td>909</td>
<td>WYSE TECHNOLOGY</td>
<td>56, 131</td>
</tr>
<tr>
<td>911</td>
<td>XEROX</td>
<td>195</td>
</tr>
<tr>
<td>912</td>
<td>ZENITH DATA</td>
<td>56</td>
</tr>
<tr>
<td>1174</td>
<td>SYSTEMS</td>
<td>13, 56, 131</td>
</tr>
<tr>
<td>913</td>
<td>ZSOFT</td>
<td>209</td>
</tr>
</tbody>
</table>
Alphabetical Index to Advertisers

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>177</td>
<td>48</td>
<td>192</td>
<td>163</td>
<td>151</td>
<td>218</td>
<td>39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>177</td>
<td>49</td>
<td>193</td>
<td>164</td>
<td>152</td>
<td>219</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>286</td>
<td>200</td>
<td>50</td>
<td>194</td>
<td>165</td>
<td>153</td>
<td>220</td>
<td>41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>250</td>
<td>51</td>
<td>195</td>
<td>166</td>
<td>154</td>
<td>221</td>
<td>42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>256</td>
<td>52</td>
<td>196</td>
<td>167</td>
<td>155</td>
<td>222</td>
<td>43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>138</td>
<td>53</td>
<td>197</td>
<td>168</td>
<td>156</td>
<td>223</td>
<td>44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>258</td>
<td>54</td>
<td>198</td>
<td>169</td>
<td>157</td>
<td>224</td>
<td>45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>248</td>
<td>55</td>
<td>199</td>
<td>170</td>
<td>158</td>
<td>225</td>
<td>46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>261</td>
<td>56</td>
<td>200</td>
<td>171</td>
<td>159</td>
<td>226</td>
<td>47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>181</td>
<td>57</td>
<td>201</td>
<td>172</td>
<td>160</td>
<td>227</td>
<td>48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>261</td>
<td>58</td>
<td>202</td>
<td>173</td>
<td>161</td>
<td>228</td>
<td>49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>250</td>
<td>59</td>
<td>203</td>
<td>174</td>
<td>162</td>
<td>229</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>210</td>
<td>60</td>
<td>204</td>
<td>175</td>
<td>163</td>
<td>230</td>
<td>51</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>233</td>
<td>61</td>
<td>205</td>
<td>176</td>
<td>164</td>
<td>231</td>
<td>52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>279</td>
<td>62</td>
<td>206</td>
<td>177</td>
<td>165</td>
<td>232</td>
<td>53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>236</td>
<td>63</td>
<td>207</td>
<td>178</td>
<td>166</td>
<td>233</td>
<td>54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>267</td>
<td>64</td>
<td>208</td>
<td>179</td>
<td>167</td>
<td>234</td>
<td>55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>277</td>
<td>65</td>
<td>209</td>
<td>180</td>
<td>168</td>
<td>235</td>
<td>56</td>
<td></td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>287</td>
<td>66</td>
<td>210</td>
<td>181</td>
<td>169</td>
<td>236</td>
<td>57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>258</td>
<td>67</td>
<td>211</td>
<td>182</td>
<td>170</td>
<td>237</td>
<td>58</td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>288</td>
<td>68</td>
<td>212</td>
<td>183</td>
<td>171</td>
<td>238</td>
<td>59</td>
<td></td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>271</td>
<td>69</td>
<td>213</td>
<td>184</td>
<td>172</td>
<td>239</td>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>379</td>
<td>70</td>
<td>214</td>
<td>185</td>
<td>173</td>
<td>240</td>
<td>61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>349</td>
<td>71</td>
<td>215</td>
<td>186</td>
<td>174</td>
<td>241</td>
<td>62</td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>367</td>
<td>72</td>
<td>216</td>
<td>187</td>
<td>175</td>
<td>242</td>
<td>63</td>
<td></td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>373</td>
<td>73</td>
<td>217</td>
<td>188</td>
<td>176</td>
<td>243</td>
<td>64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>359</td>
<td>74</td>
<td>218</td>
<td>189</td>
<td>177</td>
<td>244</td>
<td>65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>383</td>
<td>75</td>
<td>219</td>
<td>190</td>
<td>178</td>
<td>245</td>
<td>66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>343</td>
<td>76</td>
<td>220</td>
<td>191</td>
<td>179</td>
<td>246</td>
<td>67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>341</td>
<td>77</td>
<td>221</td>
<td>192</td>
<td>180</td>
<td>247</td>
<td>68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>339</td>
<td>78</td>
<td>222</td>
<td>193</td>
<td>181</td>
<td>248</td>
<td>69</td>
<td></td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>345</td>
<td>79</td>
<td>223</td>
<td>194</td>
<td>182</td>
<td>249</td>
<td>70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>337</td>
<td>80</td>
<td>224</td>
<td>195</td>
<td>183</td>
<td>250</td>
<td>71</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

To get further information on the products advertised in BYTE, fill out the reader service card by circling the numbers on the card that correspond to the inquiry number listed with the advertiser. This index is provided as an additional service by the publisher, who assumes no liability for errors or omissions.

* Correspond directly with company.
To get further information on the products advertised in BYTE, fill out the reader service card by circling the numbers on the card that correspond to the inquiry number listed with the advertiser. This index is provided as an additional service by the publisher, who assumes no liability for errors or omissions.

* Correspond directly with company.

Index to Advertisers by Product Category

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>816</td>
<td>1000</td>
<td>823</td>
</tr>
<tr>
<td>101</td>
<td>815</td>
<td>2000</td>
<td>111</td>
</tr>
<tr>
<td>102</td>
<td>816</td>
<td>3000</td>
<td>112</td>
</tr>
<tr>
<td>103</td>
<td>816</td>
<td>4000</td>
<td>113</td>
</tr>
<tr>
<td>104</td>
<td>816</td>
<td>5000</td>
<td>114</td>
</tr>
<tr>
<td>105</td>
<td>816</td>
<td>6000</td>
<td>115</td>
</tr>
<tr>
<td>106</td>
<td>816</td>
<td>7000</td>
<td>116</td>
</tr>
<tr>
<td>107</td>
<td>816</td>
<td>8000</td>
<td>117</td>
</tr>
<tr>
<td>108</td>
<td>816</td>
<td>9000</td>
<td>118</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>815</td>
<td>1000</td>
<td>824</td>
</tr>
<tr>
<td>201</td>
<td>816</td>
<td>2000</td>
<td>111</td>
</tr>
<tr>
<td>202</td>
<td>816</td>
<td>3000</td>
<td>112</td>
</tr>
<tr>
<td>203</td>
<td>816</td>
<td>4000</td>
<td>113</td>
</tr>
<tr>
<td>204</td>
<td>816</td>
<td>5000</td>
<td>114</td>
</tr>
<tr>
<td>205</td>
<td>816</td>
<td>6000</td>
<td>115</td>
</tr>
<tr>
<td>206</td>
<td>816</td>
<td>7000</td>
<td>116</td>
</tr>
<tr>
<td>207</td>
<td>816</td>
<td>8000</td>
<td>117</td>
</tr>
<tr>
<td>208</td>
<td>816</td>
<td>9000</td>
<td>118</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>815</td>
<td>1000</td>
<td>825</td>
</tr>
<tr>
<td>301</td>
<td>816</td>
<td>2000</td>
<td>111</td>
</tr>
<tr>
<td>302</td>
<td>816</td>
<td>3000</td>
<td>112</td>
</tr>
<tr>
<td>303</td>
<td>816</td>
<td>4000</td>
<td>113</td>
</tr>
<tr>
<td>304</td>
<td>816</td>
<td>5000</td>
<td>114</td>
</tr>
<tr>
<td>305</td>
<td>816</td>
<td>6000</td>
<td>115</td>
</tr>
<tr>
<td>306</td>
<td>816</td>
<td>7000</td>
<td>116</td>
</tr>
<tr>
<td>307</td>
<td>816</td>
<td>8000</td>
<td>117</td>
</tr>
<tr>
<td>308</td>
<td>816</td>
<td>9000</td>
<td>118</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>400</td>
<td>815</td>
<td>1000</td>
<td>826</td>
</tr>
<tr>
<td>401</td>
<td>816</td>
<td>2000</td>
<td>111</td>
</tr>
<tr>
<td>402</td>
<td>816</td>
<td>3000</td>
<td>112</td>
</tr>
<tr>
<td>403</td>
<td>816</td>
<td>4000</td>
<td>113</td>
</tr>
<tr>
<td>404</td>
<td>816</td>
<td>5000</td>
<td>114</td>
</tr>
<tr>
<td>405</td>
<td>816</td>
<td>6000</td>
<td>115</td>
</tr>
<tr>
<td>406</td>
<td>816</td>
<td>7000</td>
<td>116</td>
</tr>
<tr>
<td>407</td>
<td>816</td>
<td>8000</td>
<td>117</td>
</tr>
<tr>
<td>408</td>
<td>816</td>
<td>9000</td>
<td>118</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>815</td>
<td>1000</td>
<td>827</td>
</tr>
<tr>
<td>501</td>
<td>816</td>
<td>2000</td>
<td>111</td>
</tr>
<tr>
<td>502</td>
<td>816</td>
<td>3000</td>
<td>112</td>
</tr>
<tr>
<td>503</td>
<td>816</td>
<td>4000</td>
<td>113</td>
</tr>
<tr>
<td>504</td>
<td>816</td>
<td>5000</td>
<td>114</td>
</tr>
<tr>
<td>505</td>
<td>816</td>
<td>6000</td>
<td>115</td>
</tr>
<tr>
<td>506</td>
<td>816</td>
<td>7000</td>
<td>116</td>
</tr>
<tr>
<td>507</td>
<td>816</td>
<td>8000</td>
<td>117</td>
</tr>
<tr>
<td>508</td>
<td>816</td>
<td>9000</td>
<td>118</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>600</td>
<td>815</td>
<td>1000</td>
<td>828</td>
</tr>
<tr>
<td>601</td>
<td>816</td>
<td>2000</td>
<td>111</td>
</tr>
<tr>
<td>602</td>
<td>816</td>
<td>3000</td>
<td>112</td>
</tr>
<tr>
<td>603</td>
<td>816</td>
<td>4000</td>
<td>113</td>
</tr>
<tr>
<td>604</td>
<td>816</td>
<td>5000</td>
<td>114</td>
</tr>
<tr>
<td>605</td>
<td>816</td>
<td>6000</td>
<td>115</td>
</tr>
<tr>
<td>606</td>
<td>816</td>
<td>7000</td>
<td>116</td>
</tr>
<tr>
<td>607</td>
<td>816</td>
<td>8000</td>
<td>117</td>
</tr>
<tr>
<td>608</td>
<td>816</td>
<td>9000</td>
<td>118</td>
</tr>
</tbody>
</table>
BYTE ADVERTISING SALES STAFF:
Steven M. Vito, Associate Publisher/V.P. of Marketing, One Phoenix Mill Lane, Peterborough, NH 03458, tel. (603) 924-9281
Arthur Kossack, Eastern Regional Sales Manager, 649 North Michigan Ave., Chicago, IL 60611, tel. (312) 751-3700
Jennifer L. Bartel, Western Regional Sales Manager, 8111 LJF Freeway, Suite 1350, Dallas, TX 75251, tel. (214) 644-1111
Liz Coyman, Inside Sales Director, One Phoenix Mill Lane, Peterborough, NH 03458, tel. (603) 924-2818

International Advertising Sales Staff:
Frank Tanis, European Sales Manager, BYTE Publications, Batenburg 103, 3437 AB Nieuwveen, The Netherlands, tel: 31 34 02 49496, fax: 31 34 02 37944

Karen Lonie
34 Dover St.
London W1X 4JR
England
tel: 44 171 438 8631
fax: 44 171 438 8630

Kay Weisman
Service Germany, Austria, & Switzerland
34 Dover St.
London W1X 4JR
England
tel: 44 171 438 1451
fax: 44 171 438 9636

Alessandro Cossi
Via Pavia Bianconica
30123 Milan, Italy
tel: 39 2 8804 400
fax: 39 2 8804 401

Mrs. Marie Barmag
Pedro Tzinke S. OIF, 132
Marchart 1, Madrid 4, Spain
tel: 34 50 52 601

Masaki Morii
1-6-9 Kanda-Surugadai, Chiyoda-Ku
Tokyo 102, Japan
tel: 81-3-5811-4018

Seleva Ltd.
56 Wilson House
17-27, Woburn Rd.
Central, Hong Kong
tel: 852 2362 6121
fax: 852 2362 6120

Seleva Ltd.
400 Orchard Rd.
#01-01
Singapore 0793

Seleva Ltd.
286 Orchard Rd.
#01-38
Singapore 0793

Seleva Ltd.
202 Orchard Rd.
#01-01
Singapore 0793

Seleva Ltd.
202 Orchard Rd.
#01-01
Singapore 0793

Mr. Ernest McCray
Empresa Internacional de Softwares Ltda.
Rua das Consoladas, 222
Centro, São Paulo
100 135 São Paulo, S.P., Brasil
tel: 55 1 3312 3581
fax: 55 1 3312 3582

BYTEx IBM Special Edition • Fall 1989 267
Attention BYTE Readers!! Now you can fax your requests for free product and advertiser information featured in this issue.

Just fax this page to 1-413-637-4343. You'll save time because your request for information will be processed as soon as your fax is received.

1. Circle the numbers below which correspond to the numbers assigned to advertisers and products that interest you.

2. Check off the answers to questions "A" through "C".

3. Prin your name, address, and fax number clearly on the form.

4. Remove this page or copy this page clearly and fax it to the number above.

Fill out this coupon carefully. PLEASE PRINT.

<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
<th>Company</th>
<th>Address</th>
<th>City</th>
<th>State/Province</th>
<th>Zip</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Phone Number</th>
<th>Fax Number</th>
</tr>
</thead>
</table>

A. What is your level of management responsibility?
1. Senior-level Management
2. Other Management
3. Non-Management

B. What is your primary job function/principal area of responsibility? (Check one.)
4. Administration
5. Accounting/Finance
6. MIS/DP/IT/Information Center
7. Product Design and Development
8. Research and Development
9. Manufacturing
10. Sales/Marketing
11. Purchasing
12. Personnel
13. Education/Training
14. Other: _______

C. Please indicate your organization's primary business activity: (Check one.)

Computer-Related Businesses:
15. Manufacturer (Hardware, Software)
16. Computer Retail Stores
17. Consultants
18. Service Bureau/Planning
19. Distributor/Wholesaler
20. Systems House/Integrator/VAR
21. Other: _______

Non-Computer-Related Businesses:
22. Manufacturing
23. Finance, Insurance, Real Estate
24. Retail/Wholesale
25. Education
26. Government
27. Military
28. Professions (Law, Medicine, Engineering, Architecture)
29. Consulting
30. Other Business Services
31. Transportation, Communications, Utilities
32. Other: _______

☐ I already subscribe to BYTE.
☐ Please send me one year of BYTE Magazine for $24.95 and bill me. Offer valid in U.S. and possessions only.
THE STATUS OF APPLICATIONS SOFTWARE: LATE

BYTE's software reviews editor offers his views on the widening gap between hardware and software

Dennis Allen

If you've ever set out to accomplish a particular task on your PC only to find there was no software that could do it, you've experienced software lag. It's a frustrating feeling—knowing that your computer is capable of doing what you need but is prevented from doing so by the lack of the right software. You've been cheated. The computer that once promised so much now has so little to offer.

The root of the problem is forked. Neither IBM nor Microsoft has provided a 32-bit DOS-compatible operating system, and developers are still learning how to cope with many megabytes of data. As a result, the current crop of applications software often relies on brute force to get things done.

Not everything, however, is bad in the software world. In fact, there is evidence that applications software is headed for a common user interface, and that WYSIWYG may become a way of life. And programs may even be getting smarter.

Although you don't need a crystal ball to predict that new changes in software are coming, exactly what the changes will be is less clear. But you can identify some of the forces driving the changes. The one thing that is certain is that users know what they want.

The Operating-System Bottleneck

Of course, not all the fault for the software lag belongs to applications developers. They're missing an operating system designed specifically for 80386-based hardware. Although OS/2 happens to work on 80386 systems, it was not designed for them. It's a 16-bit operating system for 80286 machines.

On the other hand, developers have yet to conquer OS/2. Even the grandest application of them all—Lotus 1-2-3 release 3.0, which took years to produce—was designed for DOS 3.x. You'd be hard-pressed to walk into any computer store and find five OS/2 applications sitting on the shelf. A lot of software companies talk about OS/2 applications, but few have actually produced any.

The reasons offered are many, but it all boils down to a matter of investment. While OS/2's complexities, such as multitasking and data sharing, ultimately offer more headroom for sophisticated programs, its learning curve for developers is more like a brick wall.

Even the software giants such as Lotus, Ashton-Tate, and Microsoft, with their abundant resources, have experienced setbacks. Just consider the long waits for 1-2-3 release 3.0, dBASE IV, and a full-featured Windows word processor. And those are just DOS-based applications.
Managing Megabytes

To complicate matters further, increased storage capacities have offered new opportunities and challenges for applications developers. While more storage would seem obviously better, not everyone is certain how best to use the hundreds of megabytes that optical drives provide.

For now, publishers are using CD-ROMs to provide static reference materials. Notable examples are Grolier's Electronic Encyclopedia and Microsoft's Programmer's Library. But what most users really need is for their applications to manage dynamic archiving.

Currently, when your hard disk becomes nearly full, you have to remove your older files. Maybe you archive them on floppy disks. If you do, chances are that you don't bother referring to those files again because it's too much trouble: You would have to fumble through all your archive disks, trying one and then another, to find a certain bit of information. You might even find it easier and faster to search through printed reports in a file cabinet.

That's one of the ironies of today's applications software. Although most of the modern world is convinced that you can do record keeping and manage things better on personal computers, you still have to resort to a file cabinet and PendaFlex folders to see your old records.

A better arrangement would be applications software that really takes advantage of read/write or WORM (write once, read many times) optical disks. Such software would, on a regular basis, archive your old records and files on optical disks. More important, the application program would manage those archives. It would continually update its index, so that, say, five years from now, on a moment's notice, you could call up the spreadsheet for October 1989's production costs. If you needed to change optical disks, the program would tell you which one to insert.

Also, your application should be able to use that archived information. It should be able to correlate it with more recent information to generate comparative reports and to project the next year's performance.

Unfortunately, that kind of software doesn't exist today, even though the hardware to handle such tasks exists. The fact is, software for dealing with large amounts of on-line data is just emerging.

Consider Lotus Magellan and Traveling Software's ViewLink, for example. They are the first major attempts to help you actively manage several megabytes of disparate information. Either will let you peer into data files on your hard disk and view the data in its native format. Both will also search your hard disk for the file or files containing specific information.

But while Magellan and ViewLink work fine as utilities for managing what's currently on your hard disk, they're really no help at managing archives on floppy disks. Both would also fall short in handling a gigabyte or more of data on optical disks. Even worse, both of these programs create a whole new set of problems. Magellan takes up valuable hard disk space with its index, and it needs to update the index frequently, sometimes taking several minutes to do that. And because ViewLink doesn't use an index, its searches can take a long time if you're working with a large disk with lots of data. Equally as bad, there are no Magellan or ViewLink equivalents for Windows or Presentation Manager (PM).

Calling on Brute Force

Also considerable is the muscle needed to run the current crop of software. Most of us have traded in our 8088-based systems for 80286s, and many have already traded their 80286 systems for 80386s. We do this to get merely adequate performance, while none of the software really takes advantage of the 80286 or 80386 architectures. Even worse, as we move up to systems that are more powerful than were thought possible just a few years ago, we still find ourselves waiting: waiting for AutoCAD to regenerate a complex drawing; waiting for 1-2-3 to recalculate a large spreadsheet; and waiting for Lotus Agenda to stop fiddling with the heads on the hard disk drive.

Agenda is a good example of the problem. Like other high-powered applications, Agenda is sophisticated and complex, and it demands an extraordinary amount of computing muscle. Yet aside from the brute force that it commands, it...
doesn't really take advantage of the features that 32-bit hardware offers.

Just to use Agenda, you have to devote a lot of time to learning it. In return, it organizes information like no other software—making lists and doing mundane chores for you automatically. It does so much that, in its relentless scan of your data looking for something it should do, you're left with a computer that responds with all the speed of a snail.

So here we are, using high-powered 80386-based systems (and probably 80486 systems, soon) to run applications that were designed years ago and written for 8088-based systems. Software developers for the PC have been somewhat ambivalent toward OS/2 (and toward Unix, for that matter), and they've been less than eager to commit to using the Micro Channel architecture. Rather than write applications software directly for these high-powered systems, developers have instead sought to extend DOS, "enhance" memory, and employ various other tricks.

But users expect more, and, in fact, they need more. They need programs that can manage several tasks at once so that they don't have to. They need programs that can work without conflict in a heterogeneous environment of applications. And they need software that can work with other software, sharing information and files.

The Common Interface

Applications are making progress in the area of user interfaces, however. Call it Mac envy, if you like—PC users liked what they saw on Apple's Macintosh. The Macintosh's graphical interface with pull-down menus was exactly what the corporate world had been looking for: an easy-to-learn system. For businesses, the time and expense for training people to use PCs has soared with no ceiling in sight.

None of this is news, really. It's just that the Mac proved long ago that personal computers could be made easier to learn and use. But in those early days of the Mac, there was no such interface for the IBM PC. Turning to the next best thing, the corporate world embraced simple menuing software that simply worked as a DOS shell to launch other applications. Programs such as Magee Enterprises' AutoMenu filled a void left by the software giants.

Meanwhile, virtually every application began to take on parts of the Mac interface. In many cases, developers simply added menus. Unlike the Mac, however, the PC had no standards for menu styles. So some programs imitated 1-2-3's menu format, calling it a de facto standard. Others went further and provided pull-down or pop-up menus. Applications became easier to use, but for the most part, they were all different.

Then came Digital Research's OEM and Microsoft's Windows. After several years, it appears Windows has gained a toehold in the PC market. Corporate buyers wanted PM for OS/2, but until it became available they saw Windows as a logical stepping-stone. The attraction was that businesses could develop their in-house applications on Windows today and later adapt them to PM for OS/2.

Now, that corporate strategy is beginning to pay dividends to individual users. Because of the significant number of systems running Windows in the corporate environment, developing applications for Windows is more attractive to developers. Granted, the number of Windows programs so far is small, but the group includes some really heavy hitters, such as Aldus PageMaker, Micrografx Designer, Sarna Ami Professional, and Microsoft Excel.

While the number of Windows programs is growing, it's not by leaps and bounds. Although the user interface issue has been all but resolved, applications developers, worried about the fluidity of the software market, have been riding the fence between developing for Windows and developing for OS/2. From their point of view, developing for both simultaneously isn't practical. They need to get their software products to market as quickly as possible to compete, and they need to concentrate their efforts; they can't afford to have half a development team working in OS/2 and the other half in Windows.

You might say that developers have learned a lot from Lotus's experiences in trying to develop its 1-2-3 for a multitude of platforms. The resulting delays have cost that company more than just a little overtime: Lotus also suffered a loss of credibility, which was reflected in the stock market.

It all comes down to this: Today's applications software for the PC is only inches away from a common user interface. Although it seems inevitable that in time that goal will be reached, it may not happen as quickly as users would like.

Going in the Right Direction

In other areas, applications developers have made headway. Consider the WYSIWYG phenomenon. Page-layout systems such as Aldus PageMaker and
Because of the significant number of systems running Windows in the corporate environment, developing applications for Windows is more attractive to developers.

Xerox's Ventura Publisher have been the catalysts. Although WYSIWYG on a PC had been possible before, for many people those were the pioneering programs. As page-layout programs, PageMaker's and Ventura Publisher's existence depended on WYSIWYG.

Other applications have followed suit. In fact, a whole subgenre of software—presentation graphics—faces near extinction merely because word processors, spreadsheets, and other applications have incorporated WYSIWYG presentation features.

It's really no wonder. After all, presentation counts for a lot in today's society. People give presentations to sell both goods and ideas. Strangely, though, many word processor developers try to skirt around the WYSIWYG issue, saying that users don't actually need WYSIWYG during the writing process and that users only need to see monospaced characters as they create text. Their argument is that you can go back later and make the whole thing look the way you want it to.

In truth, that argument is just smoke to hide the fact that most word processing software is simply too slow to work in WYSIWYG mode as you type. That's partly the fault of developers overburdening their products with a list of features so long that no one can remember or use them all. Each of those features steals precious memory and execution speed from the application. So, you end up with a word processor that can do many things you'll likely never ask it to do but cannot show you how your printed page will look—that is, of course, unless you exit the edit mode and enter the graphics mode to view your work, and then exit the graphics mode and enter the edit mode to continue writing. How silly the whole process is—to treat one computer as if it were two machines, one for writing and the other for layout.

There is, however, at least one notable exception. Samna's Ami lets you write and edit in WYSIWYG mode. It's also the first real word processor for Microsoft Windows. Others will certainly follow, and among them will be an offering from Microsoft itself as well as an enhanced version of Ami (Ami Professional). Another similar program, Lennane's DeScribe Word Publisher, is under development for OS/2 PM.

Advancements in Number Crunching

Another area of software that's been moving forward is number crunching. Spreadsheet applications have matured somewhat, and users have recently witnessed the emergence of a whole new generation of spreadsheet software. Generally, the most significant improvement is the three-dimensional worksheet, which lets you work on several worksheet pages at once. More and more of the major spreadsheet programs are offering that feature.

However, only one relatively new spreadsheet, FormalSoft's ProQube, provides true 3-D manipulation. Instead of simply letting you calculate separate pages, ProQube also lets you view your spreadsheet data from any aspect—front-to-back, side-to-side, or top-to-bottom. Imagine, for example, that you have a worksheet page for each month of the year, and that it calculates your profit or loss. Each of those pages would use the same template, and if you stacked one on top of another, you would have a "cube" (actually a block) of spreadsheet cells. Viewed from the front of this imaginary cube, each layer of cells would represent a particular month.

Any so-called 3-D spreadsheet can handle that task. But with ProQube, you can rotate the imaginary cube of data to view, say, the net profit from each month of the year. Or, from another angle, you might view the net profit for the month of May for each of the last five years.
THE STATUS OF APPLICATIONS SOFTWARE: LATE

Admittedly, with a little time, you could program formulas in any other spreadsheet to accomplish the same tasks. But the conceptual difference is quantum. ProQube lets you play "what-if" in a new way—one that requires less work on the part of the user. ProQube is a real attempt at handling human perspectives of spreadsheet data.

But spreadsheets are not the only application area where number crunching is being pushed. Another, perhaps less obvious, application is CAD. A sophisticated CAD package typically places more demands on a computer's mathematical abilities than any statistical analysis or equation solver package.

While 2-D drafting products, notably AutoCAD and others like it, have been around for some time, only recently have solid modeling packages become available. The difference is that the latter lets you construct objects with blocks, cones, spheres, and cylinders.

Let's say, for example, that you need to draw a hole for a vertical vent pipe that goes through the roof of a house. That's not as simple as it might sound. Because the roof is slanted and, therefore, the pipe is not perpendicular to the roof's plane, the hole is not a perfect circle. And trying to calculate the precise shape and size of the elliptical hole is not trivial. That's where solid modeling comes in. Instead of drawing a hole, you create a cylinder the size of the vent pipe and then simply place it through the slanted roof. Then, through what's called geometric subtraction, the solid modeling program can erase the cylinder (and everything that was in its way), leaving a perfectly shaped ellipse.

From the user's view, it's all quite simple, and it simply makes sense. Underneath it all, however, an awful lot of computations are made. For now, you can only find solid modeling systems at the high end of the CAD spectrum. But in time the technology will likely sift down to applications such as graphics design packages.

Future Applications
Understanding where we are in applications software is, of course, only a prelude to knowing where we're going. In time, developers will overcome the obstacles of the hardware-software gap and the operating-systems bottleneck and will adhere uniformly to a graphical user interface. The resulting applications software will no doubt reflect the trade-offs and compromises that are made to achieve those goals.

In addition, market-based external influences will affect applications software, but they may not be what you think. What will greatly affect U.S. applications software development is the foreign market—in particular, the long-awaited European community market. The European market after 1992 will cause two major changes. The first that users will probably see will be the vast new opportunities for U.S. software firms to sell their products in Europe. Although developers will face the problem of writing programs for many languages (in fact, many already do), they will also begin to produce applications that have more "global" characteristics.

Until now, most software written in the U.S. has been specifically tailored for U.S. tastes. It directly reflected feedback from U.S. users and their work habits and concepts. But as the European market becomes more important to U.S. software developers, it stands to reason that future applications software will reflect the needs of European users, too.

The change will probably be subtle. Since users may all be introduced to new and sometimes better ways of accomplishing their tasks, eventually much good will probably come of this gradual change. On the downside, there is a risk that developers will tend to overburden European users with programs that are more significant than the first. That change will be the emergence of large European-based software development houses. In fact, European-based companies will be the first to benefit from the new trade regulations there. Small but established software companies will suddenly have easier access to a much wider market—one that's based in their own backyard. That opportunity will inevitably lead to growth in European-based software companies, and that growth will thrust them into a strong position for entering and succeeding in the U.S. market. It could be that the next Lotus- or Microsoft-like software giant will be one that's based in Europe.

Then there is another external influence to consider: the USSR. So far, the only software to come from the USSR is a game. Tetris, but that may soon change. In fact, one U.S.-based company is already planning to introduce an expert system that was developed in the USSR. With trade restrictions lifted for exporting 80286-based computers to the Soviets, along with the Soviet desire to...
become a leader in world trade, you can expect to see more Soviet-based applications in the future. The first Soviet software will probably be Americanized applications based on Soviet-developed software engines. Such is the case with the soon-to-be-released expert system. The U.S. company is taking a Soviet-developed expert-system engine and adding a practical application interface for financial modeling.

The real wild card, however, is Japan. So far, largely because of cultural differences, Japan has found the American software market impenetrable. It's not that Japan isn't trying, though. The Japanese microcomputer industry is working on a new universal operating system, called TRON, and a new system of distributing software electronically—via phone, radio, and even vending machines. If either effort materializes, Japanese software companies will find themselves in an enviable position that could allow them to dominate the applications market. Their plan is grandiose and perhaps unattainable. But given Japan's past successes in identifying, penetrating, and ultimately controlling world technology markets, the possibility of continued success is very strong.

What the World Needs Now

Aside from those external market forces, just where should applications software be headed? In a nutshell, applications need to be smarter and easier to use. You should not have change your way of thinking and conform to the way a particular application program does things. Tasks that are obvious need to be done automatically. And the user interface should allow instinctive choices.

We need to see more programs like Lotus Agenda that are smart enough to do things automatically. Agenda is near¬

ly miraculous in the way it can take formal information and automatically categorize it; independently create project reports, to-do lists, and tickler files; and make associations between otherwise differing subjects. In those respects, Agenda comes the closest yet to imitating a top-notch personal secretary.

But for all its glory, Agenda is slow, and learning to use it is slower. In fact, one piece of Agenda folklore claims that White House Chief of Staff John Sununu, a personal computer enthusiast himself, considered Agenda for the Bush transition team. But the learning curve was so steep, and time for the transition team was so short, that Agenda was discounted in favor of another, simpler program.

We need more programs like Business Forecast Systems' Forecast Pro, a statistical forecaster that brings sophisticated mathematical formulas within reach of nonstatisticians. Forecast Pro has its own expert system that analyzes your data and then applies an appropriate forecast model. Before Forecast Pro, it took a real expert—someone with a degree in statistics—to choose and run the correct mathematical model just to project a company's business income.

We need more programs like ProQuibe that let us view our numerical data in ways that make sense to us, not just to our computers. Likewise, we need CAD and graphics design software that take advantage of solid modeling. Moreover, we need solid modeling software that allows the objects we create to have real-world characteristics. That way, when we design something, we can test its strength and function in the real world without resorting to a separate analysis program.

We also need applications that integrate other applications. Forget the dream of all-in-one applications for word processing, database management, spreadsheets, and so forth. Those integrated packages are nothing more than modern-day jacks-of-all-trades in a world of specialization. It's just plain smarter to buy separate programs that precisely fit your needs. What we really need is a new breed of software that can oversee all those separate applications: a kind of intelligent shell that watches over your work, learning your routines.

Let's say that every month you extract the sales data from your inventory system and import that into your forecaster to project next month's sales; then you import those projections into a spreadsheet to do your financial planning; and then you generate a report with your word processor to reflect the outcome. An intelligent shell would recognize the pattern and do the tasks for you at precisely the same time every month. When such intelligent software finally exists, all you will have to do is remember to leave the computer turned on.

The sad thing is that the personal computers that we have today, particularly the 80386-generation systems, can handle the job. But our present-day applications software, spawned by the 8088-based generation, is generations behind, and newer and better hardware is on the way. The unfortunate truth is that we cannot escape the generation gap.
No matter how well acquainted you are with making important personal computing decisions—decisions that may involve hundreds of thousands of dollars—the value of those decisions is only as good as the value of your information. Without quality information—it's hard to make quality decisions.

BYTEweek, McGraw-Hill's new weekly newsletter for professionals in the personal computer industry, is devoted to giving you that quality information through its timely and compact one-stop news format.

This new publication provides you with short, easy-to-read selections of the most important news and technological developments of the past week. And BYTEweek interprets this news with in-depth commentary and analysis.

Subscribe to BYTEweek for quality information. Remember, quality in...quality out.
Intel has released the 80486. A fine piece of work, it manages to put a complete 80386 system—80386 processor, 80387 FPU, cache, memory management unit, and so on—onto a single chip. And not only that, but to substantially improve the performance of the various chips, the 80486 takes fewer clock cycles than the 80386 to do the most frequent instructions. At constant clock rates, the 80486 is faster. The 80486 version of the 80387 is quicker than the real 80387, too. Not to mention that you get an 8K-byte cache (one-eighth the main memory of most early PCs) on-chip.

It is clear that the decision to make the 80486 an integrated 80386 system was not made by accident. It does nice things for users; it offers higher performance, a lower chip count, floating-point, lower power, and higher reliability. And all the 4.77-MHz 8088 software designed for 64K-byte machines will still work.

The 80486 does nice things for Intel, too—the company doesn’t need to worry about losing a slice of business to 80387 copiers (the math chip is built in), other cache controller vendors (ditto), or 80486 cloners (since copying the whole CPU is a serious undertaking).

The 80486 is a goody to vendors of high-end machines, as well; all they need to do is take a well-designed 32-bit 80386 system, make a few (if any) changes to the design, and stick an 80486 into it. The result is a powerful new computer with an established software base, and the whole thing costs no more (and perhaps less) to make than an 80386. Moreover, it can attract a much higher price by virtue of its 80486-ness and higher performance. Everybody wins, right?

Well, no, they don’t. The big losers are the users who buy the machine—because they have always believed the story about maintaining their “investment” in software. They have always fought for (and bought) a new machine that runs their old floppy disks, unchanged. As a result, they have bought themselves the dead weight of decade-old technology. The 80486 involves a fair amount of circuitry; how much of it is there simply to make the beast 8088-compatible, we can only guess. But we do know that when other companies have made machines—or microprocessors—that didn’t have to be 8088-compatible, they produced designs that used many fewer transistors to go much faster. INMOS’s T400 family uses about as many transistors as an 8086 but keeps pace with an 80386. Sun’s SPARC architecture (in its various guises) and MIPS’s R2000/R3000 processors use more transistors than an 80386 for much higher performance. And now, the 80486 isn’t even the fastest machine that Intel produces.

Indeed, the 80486 is the slowest of the three high-performance introductions this year. The most prominent of these was the 860, which, despite being grossly overhyped by the rumor mill (and, possibly, by Intel’s marketing) is easily twice as fast—and perhaps three times as fast—as the 80486. And the new member of the 960 family, which tries to execute three instructions per clock cycle under reasonable conditions, is much faster than the 80486.

Yes, IBM PC/MS-DOS fans, you addiction to the past has cost you a drop in performance of 50 percent or more. If you had been happy to eschew the past when better machines turned up, you wouldn’t have encouraged the software vendors to live in the past. Then, perhaps, they would have decided that there was real money to be made in portable software. Manufacturers might have created operating systems that added new and useful facilities (such as graphics) but that were simple and clean enough not to be bound to just one proprietary piece of hardware. (Of course, too much silliness in the operating-system spec would have been ignored by the software vendors.) Then you could have bought this year’s smart new machine with the assurance that your old software could be upgraded to the new machine for a nominal fee, and we’d all have much nicer, faster—and probably cheaper—computers than we do.

Pete Wilson is a senior engineer at Prisma, Inc. (Colorado Springs, CO). He previously worked on the design team for the INMOS transputer.
Monoputer/2™
The World’s Most Popular
Transputer Development System

Since 1985, the MicroWay Monoputer has become the favorite transputer development system, with thousands in use worldwide. Monoputer/2 extends the original design from 2 to 16 megabytes and adds an enhanced DMA powered interface. The board can be used to develop code for transputer networks or can be linked with other Monoputers or Quadputers to build a transputer network. It can be powered by a 20 or 25 MHz T800 and is priced from $1295.

Parallel Languages
Fortran and C Make Porting a Snap!

Microway stocks parallel languages from 3L, Logical Systems and Inmos. These include one Fortran, two Cs, Occam, Pascal, and Ada. We also stock NAG libraries for the T800 and ParaSoft’s debugger, profiler, and Express Operating Environment. A single T800 node costs $2,000, yet has the power of a $10,000 386/1167 system. Isn’t it time you considered porting your Fortran or C application to the transputer? It’s easier than you think!

For further information, please call MicroWay’s Technical Support staff at (508) 746-7341.

Quadputer™
Mainframe Power For Your PC

MicroWay’s Quadputer is the most versatile multiple transputer board on the market today. Each processor can have 1, 4 or 8 megabytes of local memory. In addition, two or more Quadputers can be linked to build large systems. One MicroWay customer reduced an 8 hour mainframe analysis to 15 minutes with five Quadputers, giving him realtime control of his business. Quadputer is priced from $1995.

COSMOS™/M
Finite Element Analysis Running on the Quadputer

One of the most fruitful areas for parallel processing is finite element analysis. Problems which can be broken into small pieces run naturally on systems built up of many processors. COSMOS/M running on a Quadputer took just 300 seconds to solve a problem which ran in 12,000 seconds on an AT. Even very large mainframe problems run fast on the Quadputer: a system with 12,000 degrees of freedom took just 806 seconds while another that had 23,000 DOF ran in just 40 minutes. Contact MicroWay for information on COSMOS/M.

MicroWay
World Leader in PC Numerics
Corporate Headquarters: P.O. Box 79, Kingston, MA 02364 USA (508) 746-7341
32 High St., Kingston-Upon-Thames, U.K., 01-541-5466
USA FAX 508-746-4678 Italy 02-74.90.749 Holland 40 836455 Germany 069-75-2023
And then... Maxell created the RD Series.

Never before has this level of Reliability and Durability been available in floppy disks. Introducing the new RD Series from Maxell.
Twice the durability of the disks you're now using.
Twice the resistance to dust and dirt.
And the RD Series is ten times more reliable than conventional floppy disks.
The Gold Standard has always meant maximum safety for your data. Now it means even more.